
www.allitebooks.com

http://www.allitebooks.org

ffirs.indd 3 30-01-2014 20:54:07

www.allitebooks.com

http://www.allitebooks.org

Professional

C# 5.0 and .NET 4.5.1

Current Author Team
Christian Nagel
Jay Glynn
Morgan Skinner

Authors On Previous Editions
Bill Evjen
Karli Watson

ffirs.indd 1 30-01-2014 20:54:07

www.allitebooks.com

http://www.allitebooks.org

Professional C# 5.0 and .NET 4.5.1

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

978-1-118-83303-2
978-1-118-83294-3 (ebk)
978-1-118-83298-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013958290

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

ffirs.indd 2 30-01-2014 20:54:07

www.allitebooks.com

http://www.allitebooks.org

To my family – Angela, Stephanie, and Matthias –

I love you all!

—Christian Nagel

This work is dedicated to my wife and son.

They are my world.

—Jay Glynn

Love is as strong as death;
Many waters cannot quench love,

Neither can the floods drown it.

—Morgan Skinner

ffirs.indd 3 30-01-2014 20:54:07

www.allitebooks.com

http://www.allitebooks.org

ACquisiTioNs EdiTor
Mary James

ProjECT EdiTor
Charlotte Kughen

TEChNiCAl EdiTors
Don Reamey
George Evjen

ProduCTioN EdiTor
Christine Mugnolo

EdiToriAl MANAgEr
Mary Beth Wakefield

FrEElANCEr EdiToriAl MANAgEr
Rosemarie Graham

AssoCiATE dirECTor oF MArkETiNg
David Mayhew

MArkETiNg MANAgEr
Ashley Zurcher

BusiNEss MANAgEr
Amy Knies

ViCE PrEsidENT ANd ExECuTiVE grouP
PuBlishEr
Richard Swadley

AssoCiATE PuBlishEr
Jim Minatel

ProjECT CoordiNATor, CoVEr
Katie Crocker

ProoFrEAdEr
Sarah Kaikini, Word One, New York

iNdExEr
Johnna VanHoose Dinse

CoVEr dEsigNEr
Wiley

CoVEr iMAgE
© Henrik5000/istockphoto.com

CrEdiTs

ffirs.indd 4 30-01-2014 20:54:07

www.allitebooks.com

http://www.allitebooks.org

ABouT ThE AuThors

ChrisTiAN NAgEl is a Microsoft Regional Director and Microsoft MVP, an associate of thinktecture, and
founder of CN innovation. A software architect and developer, he offers training and consulting on how to
develop solutions using the Microsoft platform. He draws on more than 25 years of software development
experience. Christian started his computing career with PDP 11 and VAX/VMS systems, covering a variety
of languages and platforms. Since 2000, when .NET was just a technology preview, he has been working
with various .NET technologies to build .NET solutions. Currently, he mainly coaches the development
of Windows Store apps accessing Windows Azure services. With his profound knowledge of Microsoft
technologies, he has written numerous books, and is certified as a Microsoft Certified Trainer (MCT) and
Solutions Developer (MCSD). Christian speaks at international conferences such as TechEd, Basta!,
and TechDays, and he founded INETA Europe to support .NET user groups. You can contact Christian via
his website www.cninnovation.com, read his blog at blogs.thinktecture.com/cnagel, and follow his
tweets at @christiannagel.

jAy glyNN started writing software more than 20 years ago, writing applications for the PICK operating
system using PICK basic. Since then, he has created software using Paradox PAL and Object PAL, Delphi,
VBA, Visual Basic, C, Java, and of course C#. He currently works for VGT as a software engineer writing
server-based software.

MorgAN skiNNEr began his computing career at a young age on the Sinclair ZX80 at school, where he
was underwhelmed by some code a teacher had written and so began programming in assembly language.
Since then he has used a wide variety of languages and platforms, including VAX Macro Assembler, Pascal,
Modula2, Smalltalk, X86 assembly language, PowerBuilder, C/C++, VB, and currently C#. He’s been
 programming in .NET since the PDC release in 2000, and liked it so much he joined Microsoft in 2001.
He’s now an independent consultant.

BusiNEss MANAgEr
Amy Knies

ViCE PrEsidENT ANd ExECuTiVE grouP
PuBlishEr
Richard Swadley

AssoCiATE PuBlishEr
Jim Minatel

ProjECT CoordiNATor, CoVEr
Katie Crocker

ProoFrEAdEr
Sarah Kaikini, Word One, New York

iNdExEr
Johnna VanHoose Dinse

CoVEr dEsigNEr
Wiley

CoVEr iMAgE
© Henrik5000/istockphoto.com

CrEdiTs

ffirs.indd 5 30-01-2014 20:54:07

www.allitebooks.com

http://www.allitebooks.org

ABouT ThE TEChNiCAl EdiTors

doN rEAMEy is an architect/principal engineer for TIBCO Software working on TIBCO Spotfire business
intelligence analytics software. Prior to TIBCO Don spent 12 years with Microsoft as a software develop-
ment engineer working on SharePoint, SharePoint Online and InfoPath Forms Service. Don has also spent
10 years writing software in the financial service industry for capital markets.

gEorgE EVjEN is the director of development for ArchitectNow, a St. Louis-based consulting company
specializing in custom client application architecture, design, and development, with clients ranging from
small technology start-ups to global enterprises. Prior to his involvement in the software industry, George
spent more than a dozen years coaching men’s basketball at all levels of the collegiate ranks. As a moti-
vational leader with an infectious positive outlook in nearly all situations, he is the ideal person to take
the lead directly for many of ArchitectNow’s largest projects and clients. Not only does he work as a lead
developer, but he also manages most of the coordination between ArchitectNow and the company’s external
contractors and resources.

George has extensive experience and expertise in all of Microsoft’s web-based and XAML-based
 technologies, as well as the newest web frameworks available. His specialties include enterprise-level WPF,
Silverlight, and Windows 8 projects, as well as ASP.NET MVC business application development. He speaks
to groups and at conferences around the region on topics of motivational leadership, project management,
and organization. You can find additional information on George and ArchitectNow’s capabilities at
http://www.architectnow.net.

ffirs.indd 6 30-01-2014 20:54:07

www.allitebooks.com

http://www.allitebooks.org

ACkNowlEdgMENTs

i would likE To ThANk Charlotte Kughen for making this text more readable; Mary James; and Jim
Minatel; and everyone else at Wiley who helped to get another edition of this great book published. I would
also like to thank my wife and children for supporting my writing. You’re my inspiration.

 — Christian Nagel

i wANT To ThANk my wife and son for putting up with the time and frustrations of working on a project
like this. I also want to thank all the dedicated people at Wiley for getting this book out the door.

 — Jay Glynn

ffirs.indd 7 30-01-2014 20:54:07

www.allitebooks.com

http://www.allitebooks.org

ffirs.indd 8 30-01-2014 20:54:07

www.allitebooks.com

http://www.allitebooks.org

Contents

IntroductIon xxiii

Part I: the C# Language

ChaPter 1: .net arChIteCture 3

The Relationship of C# to .NET 3
The Common Language Runtime 4
A Closer Look at Intermediate Language 7
Assemblies 14
.NET Framework Classes 16
Namespaces 17
Creating .NET Applications Using C# 18
The Role of C# in the .NET Enterprise Architecture 21
Summary 22

ChaPter 2: Core C# 23

Fundamental C# 24
Your First C# Program 24
Variables 27
Predefined Data Types 31
Flow Control 37
Enumerations 43
Namespaces 45
The Main() Method 47
More on Compiling C# Files 49
Console I/O 50
Using Comments 52
The C# Preprocessor Directives 54
C# Programming Guidelines 57
Summary 63

ChaPter 3: objeCts and tyPes 65

Creating and Using Classes 65
Classes and Structs 66
Classes 66
Anonymous Types 79

ftoc.indd 9 30-01-2014 20:59:59

x

CONTENTS

Structs 80
Weak References 82
Partial Classes 83
Static Classes 85
The Object Class 85
Extension Methods 87
Summary 88

ChaPter 4: InherItanCe 89

Inheritance 89
Types of Inheritance 89
Implementation Inheritance 90
Modifiers 99
Interfaces 100
Summary 105

ChaPter 5: generICs 107

Generics Overview 107
Creating Generic Classes 110
Generics Features 114
Generic Interfaces 118
Generic Structs 122
Generic Methods 124
Summary 128

ChaPter 6: arrays and tuPLes 129

Multiple Objects of the Same and Different Types 129
Simple Arrays 130
Multidimensional Arrays 132
Jagged Arrays 133
Array Class 134
Arrays as Parameters 139
Enumerations 140
Tuples 146
Structural Comparison 147
Summary 149

ChaPter 7: oPerators and Casts 151

Operators and Casts 151
Operators 151

ftoc.indd 10 30-01-2014 20:59:59

xi

CONTENTS

Type Safety 157
Comparing Objects for Equality 162
Operator Overloading 163
User-Defined Casts 172
Summary 181

ChaPter 8: deLegates, Lambdas, and events 183

Referencing Methods 183
Delegates 184
Lambda Expressions 198
Events 201
Summary 208

ChaPter 9: strIngs and reguLar exPressIons 209

Examining System.String 210
Regular Expressions 221
Summary 228

ChaPter 10: CoLLeCtIons 229

Overview 230
Collection Interfaces and Types 230
Lists 231
Queues 241
Stacks 245
Linked Lists 246
Sorted List 251
Dictionaries 252
Sets 259
Observable Collections 260
Bit Arrays 262
Immutable Collections 266
Concurrent Collections 268
Performance 275
Summary 277

ChaPter 11: Language Integrated Query 279

LINQ Overview 279
Standard Query Operators 287
Parallel LINQ 305
Expression Trees 307

ftoc.indd 11 30-01-2014 20:59:59

xii

CONTENTS

LINQ Providers 310
Summary 310

ChaPter 12: dynamIC Language extensIons 313

Dynamic Language Runtime 313
The Dynamic Type 314
Hosting the DLR ScriptRuntime 318
DynamicObject and ExpandoObject 321
Summary 324

ChaPter 13: asynChronous ProgrammIng 325

Why Asynchronous Programming Is Important 325
Asynchronous Patterns 326
Foundation of Asynchronous Programming 338
Error Handling 341
Cancellation 344
Summary 346

ChaPter 14: memory management and PoInters 347

Memory Management 347
Memory Management Under the Hood 348
Freeing Unmanaged Resources 353
Unsafe Code 358
Summary 372

ChaPter 15: refLeCtIon 373

Manipulating and Inspecting Code at Runtime 373
Custom Attributes 374
Using Reflection 380
Summary 389

ChaPter 16: errors and exCePtIons 391

Introduction 391
Exception Classes 392
Catching Exceptions 393
User-Defined Exception Classes 402
Caller Information 409
Summary 411

ftoc.indd 12 30-01-2014 20:59:59

xiii

CONTENTS

Part II: vIsuaL studIo

ChaPter 17: vIsuaL studIo 2013 415

Working with Visual Studio 2013 415
Creating a Project 420
Exploring and Coding a Project 425
Building a Project 437
Debugging Your Code 441
Refactoring Tools 447
Architecture Tools 448
Analyzing Applications 451
Unit Tests 457
Windows Store Apps, WCF, WF, and More 463
Summary 467

ChaPter 18: dePLoyment 469

Deployment as Part of the Application Life Cycle 469
Planning for Deployment 470
Traditional Deployment 471
ClickOnce 473
Web Deployment 479
Windows Store Apps 481
Summary 486

Part III: foundatIon

ChaPter 19: assembLIes 489

What are Assemblies? 489
Application Domains 499
Shared Assemblies 503
Configuring .NET Applications 510
Versioning 513
Sharing Assemblies Between Different Technologies 517
Summary 520

ChaPter 20: dIagnostICs 521

Diagnostics Overview 521
Code Contracts 522
Tracing 528

ftoc.indd 13 30-01-2014 21:00:00

xiv

CONTENTS

Event Logging 540
Performance Monitoring 548
Summary 554

ChaPter 21: tasks, threads, and synChronIzatIon 555

Overview 556
Parallel Class 557
Tasks 561
Cancellation Framework 566
Thread Pools 569
The Thread Class 570
Threading Issues 574
Synchronization 579
Timers 597
Data Flow 598
Summary 602

ChaPter 22: seCurIty 605

Introduction 605
Authentication and Authorization 606
Encryption 614
Access Control to Resources 621
Code Access Security 623
Distributing Code Using Certificates 629
Summary 630

ChaPter 23: InteroP 631

.NET and COM 631
Using a COM Component from a .NET Client 638
Using a .NET Component from a COM Client 649
Platform Invoke 659
Summary 663

ChaPter 24: manIPuLatIng fILes and the regIstry 665

File and the Registry 665
Managing the File System 666
Moving, Copying, and Deleting Files 674
Reading and Writing to Files 677
Mapped Memory Files 692
Reading Drive Information 693

ftoc.indd 14 30-01-2014 21:00:00

xv

CONTENTS

File Security 695
Reading and Writing to the Registry 699
Reading and Writing to Isolated Storage 704
Summary 707

ChaPter 25: transaCtIons 709

Introduction 709
Overview 710
Database and Entity Classes 712
Traditional Transactions 713
System.Transactions 716
Dependent Transactions 721
Isolation Level 729
Custom Resource Managers 731
File System Transactions 737
Summary 740

ChaPter 26: networkIng 741

Networking 741
The HttpClient Class 742
Displaying Output as an HTML Page 746
Utility Classes 756
Lower-Level Protocols 759
Summary 771

ChaPter 27: wIndows servICes 773

What Is a Windows Service? 773
Windows Services Architecture 775
Creating a Windows Service Program 777
Monitoring and Controlling Windows Services 793
Troubleshooting and Event Logging 802
Summary 803

ChaPter 28: LoCaLIzatIon 805

Global Markets 805
Namespace System.Globalization 806
Resources 817
Windows Forms Localization Using Visual Studio 823
Localization with ASP.NET Web Forms 830
Localization with WPF 832

ftoc.indd 15 30-01-2014 21:00:00

xvi

CONTENTS

A Custom Resource Reader 837
Creating Custom Cultures 840
Localization with Windows Store Apps 842
Summary 845

ChaPter 29: Core xamL 847

Uses of XAML 847
XAML Foundation 848
Dependency Properties 853
Bubbling and Tunneling Events 856
Attached Properties 859
Markup Extensions 861
Reading and Writing XAML 863
Summary 864

ChaPter 30: managed extensIbILIty framework 865

Introduction 865
MEF Architecture 866
Defining Contracts 873
Exporting Parts 875
Importing Parts 884
Containers and Export Providers 889
Catalogs 892
Summary 893

ChaPter 31: wIndows runtIme 895

Overview 895
Windows Runtime Components 902
Windows Store Apps 905
The Life Cycle of Applications 907
Application Settings 913
Summary 916

Part Iv: data

ChaPter 32: Core ado.net 919

ADO.NET Overview 919
Using Database Connections 922
Commands 927

ftoc.indd 16 30-01-2014 21:00:00

xvii

CONTENTS

Fast Data Access: The Data Reader 934
Asynchronous Data Access: Using Task and Await 936
Managing Data and Relationships: The DataSet Class 938
XML Schemas: Generating Code with XSD 948
Populating a DataSet 953
Persisting DataSet Changes 955
Working with ADO.NET 958
Summary 963

ChaPter 33: ado.net entIty framework 965

Programming with the Entity Framework 965
Entity Framework Mapping 967
Entities 972
Data Context 973
Relationships 975
Querying Data 980
Writing Data to the Database 982
Using the Code First Programming Model 987
Summary 995

ChaPter 34: manIPuLatIng xmL 997

XML 997
XML Standards Support in .NET 998
Introducing the System.Xml Namespace 998
Using System.Xml Classes 999
Reading and Writing Streamed XML 1000
Using the DOM in .NET 1007
Using XPathNavigators 1011
XML and ADO.NET 1020
Serializing Objects in XML 1027
LINQ to XML and .NET 1036
Working with Different XML Objects 1036
Using LINQ to Query XML Documents 1042
More Query Techniques for XML Documents 1045
Summary 1048

Part v: PresentatIon

ChaPter 35: Core wPf 1051

Understanding WPF 1052

ftoc.indd 17 30-01-2014 21:00:00

xviii

CONTENTS

Shapes 1055
Geometry 1056
Transformation 1058
Brushes 1060
Controls 1063
Layout 1068
Styles and Resources 1071
Triggers 1077
Templates 1080
Animations 1089
Visual State Manager 1095
3-D 1098
Summary 1102

ChaPter 36: busIness aPPLICatIons wIth wPf 1103

Introduction 1103
Menu and Ribbon Controls 1104
Commanding 1107
Data Binding 1109
TreeView 1139
DataGrid 1143
Summary 1154

ChaPter 37: CreatIng doCuments wIth wPf 1155

Introduction 1155
Text Elements 1156
Flow Documents 1164
Fixed Documents 1168
XPS Documents 1171
Printing 1173
Summary 1175

ChaPter 38: wIndows store aPPs: user InterfaCe 1177

Overview 1177
Microsoft Modern Design 1178
Sample Application Core Functionality 1180
App Bars 1187
Launching and Navigation 1188
Layout Changes 1190
Storage 1195

ftoc.indd 18 30-01-2014 21:00:00

www.allitebooks.com

http://www.allitebooks.org

xix

CONTENTS

Pickers 1201
Live Tiles 1202
Summary 1204

ChaPter 39: wIndows store aPPs: ContraCts and
devICes 1205

Overview 1205
Searching 1206
Sharing Contract 1208
Camera 1212
Geolocation 1213
Sensors 1216
Summary 1221

ChaPter 40: Core asP.net 1223

.NET Frameworks for Web Applications 1223
Web Technologies 1225
Hosting and Configuration 1226
Handlers and Modules 1229
Global Application Class 1233
Request and Response 1234
State Management 1236
ASP.NET Identity System 1247
Summary 1251

ChaPter 41: asP.net web forms 1253

Overview 1253
ASPX Page Model 1254
Master Pages 1263
Navigation 1267
Validating User Input 1268
Accessing Data 1271
Security 1280
Ajax 1283
Summary 1296

ChaPter 42: asP.net mvC 1297

ASP.NET MVC Overview 1297
Defining Routes 1299

ftoc.indd 19 30-01-2014 21:00:00

xx

CONTENTS

Creating Controllers 1300
Creating Views 1304
Submitting Data from the Client 1314
HTML Helpers 1318
Creating a Data-Driven Application 1323
Action Filters 1331
Authentication and Authorization 1332
Summary 1336

Part vI: CommunICatIon

ChaPter 43: wIndows CommunICatIon foundatIon 1339

WCF Overview 1339
Creating a Simple Service and Client 1342
Contracts 1354
Service Behaviors 1358
Binding 1362
Hosting 1368
Clients 1370
Duplex Communication 1372
Routing 1374
Summary 1379

ChaPter 44: asP.net web aPI 1381

Overview 1381
Creating Services 1382
Creating a .NET Client 1385
Web API Routing and Actions 1388
Using OData 1391
Security with the Web API 1400
Self-Hosting 1405
Summary 1406

ChaPter 45: wIndows workfLow foundatIon 1407

A Workflow Overview 1407
Hello World 1408
Activities 1409
Custom Activities 1413
Workflows 1419
Summary 1432

ftoc.indd 20 30-01-2014 21:00:00

xxi

CONTENTS

ChaPter 46: Peer-to-Peer networkIng 1433

Peer-to-Peer Networking Overview 1433
Peer Name Resolution Protocol (PNRP) 1437
Building P2P Applications 1439
Summary 1445

ChaPter 47: message QueuIng 1447

Overview 1448
Message Queuing Products 1450
Message Queuing Architecture 1451
Message Queuing Administrative Tools 1452
Programming Message Queuing 1453
Course Order Application 1460
Receiving Results 1470
Transactional Queues 1471
Message Queuing with WCF 1472
Message Queue Installation 1478
Summary 1478

Index 1479

ftoc.indd 21 30-01-2014 21:00:00

flast.indd 22 30-01-2014 20:59:28

IntroductIon

If you were to descrIbe the c# language and its associated environment, the .NET
Framework, as the most significant technology for developers available, you would not be
exaggerating. .NET is designed to provide an environment within which you can develop almost any
application to run on Windows, whereas C# is a programming language designed specifically to work
with the .NET Framework. By using C#, you can, for example, write a dynamic web page, a Windows
Presentation Foundation application, an XML web service, a component of a distributed application,
a database access component, a classic Windows desktop application, or even a new smart client
application that enables online and offline capabilities. This book covers the .NET Framework 4.5.1.
If you code using any of the prior versions, there may be sections of the book that will not work for
you. This book notifies you of items that are new and specific to the .NET Framework 4.5 and 4.5.1.

Don’t be fooled by the .NET label in the Framework’s name and think that this is a purely Internet-
focused framework. The .NET bit in the name is there to emphasize Microsoft’s belief that distributed
applications, in which the processing is distributed between client and server, are the way forward.
You must also understand that C# is not just a language for writing Internet or
network-aware applications. It provides a means for you to code almost any type of software or
component that you need to write for the Windows platform. Between them, C# and .NET have
revolutionized the way that developers write their programs and have made programming on
Windows much easier than it has ever been before.

So what’s the big deal about .NET and C#?

the sIgnIfIcance of .net and c#
To understand the significance of .NET, you must consider the nature of many of the Windows
technologies that have appeared in the past 20 years. Although they may look quite different on the
surface, all the Windows operating systems from Windows NT 3.1 (introduced in 1993) through
Windows 8.1 and Windows Server 2012 R2 have the same familiar Windows API for Windows
desktop and server applications at their core. Progressing through new versions of Windows, huge
numbers of new functions have been added to the API, but this has been a process to evolve and
extend the API rather than replace it.

With Windows 8, the main API of the operating system gets a replacement with Windows Runtime.
However, this runtime is still partly based on the familiar Windows API.

The same can be said for many of the technologies and frameworks used to develop software for
Windows. For example, Component Object Model (COM) originated as Object Linking and
Embedding (OLE). Originally, it was largely a means by which different types of Office documents
could be linked so that you could place a small Excel spreadsheet in your Word document, for
example. From that it evolved into COM, Distributed COM (DCOM), and eventually COM+ — a
sophisticated technology that formed the basis of the way almost all components communicated, as
well as implementing transactions, messaging services, and object pooling.

Microsoft chose this evolutionary approach to software for the obvious reason that it is concerned
with backward compatibility. Over the years, a huge base of third-party software has been written
for Windows, and Windows would not have enjoyed the success it has had if every time Microsoft
introduced a new technology it broke the existing code base!

flast.indd 23 30-01-2014 20:59:29

xxiv

introduction

Although backward compatibility has been a crucial feature of Windows technologies and one of the
strengths of the Windows platform, it does have a big disadvantage. Every time some technology evolves and
adds new features, it ends up a bit more complicated than it was before.

It was clear that something had to change. Microsoft could not go on forever extending the same
development tools and languages, always making them more and more complex to satisfy the conflicting
demands of keeping up with the newest hardware and maintaining backward compatibility with what was
around when Windows first became popular in the early 1990s. There comes a point in which you must
start with a clean slate if you want a simple yet sophisticated set of languages, environments, and developer
tools, which makes it easy for developers to write state-of-the-art software.

This fresh start is what C# and .NET were all about in the first incarnation. Roughly speaking, .NET is a
framework — an API — for programming on the Windows platform. Along with the .NET Framework, C#
is a language that has been designed from scratch to work with .NET, as well as to take advantage of all the
progress in developer environments and in your understanding of object-oriented programming principles
that have taken place over the past 25 years.

Before continuing, you must understand that backward compatibility has not been lost in the process.
Existing programs continue to work, and .NET was designed with the capability to work with existing
software. Presently, communication between software components on Windows takes place almost entirely
using COM. Taking this into account, the .NET Framework does have the capability to provide wrappers
around existing COM components so that .NET components can talk to them.

It is true that you don’t need to learn C# to write code for .NET. Microsoft has extended C++ and made
substantial changes to Visual Basic to turn it into a more powerful language to enable code written in
either of these languages to target the .NET environment. These other languages, however, are hampered
by the legacy of having evolved over the years rather than having been written from the start with today’s
technology in mind.

This book can equip you to program in C#, while at the same time provides the necessary background in
how the .NET architecture works. You not only cover the fundamentals of the C# language, but also see
examples of applications that use a variety of related technologies, including database access, dynamic web
pages, advanced graphics, and directory access.

While the Windows API evolved and was extended since the early days of Windows NT in 1993, the .NET
Framework offered a major change on how programs are written since the year 2002; now, starting with
the year 2012, we have the days of the next big change. Do such changes happen every 10 years? Windows
8 offers a new API: the Windows Runtime (WinRT) for Windows Store apps. This runtime is a native API
(like the Windows API) that is not build with the .NET runtime as its core, but offers great new features
that are based on ideas of .NET. Windows 8 includes the first release of this API available for modern-style
apps. Although this is not based on .NET, you still can use a subset of .NET with Windows Store apps, and
write the apps with C#. This new runtime evolves, and with Windows 8.1 version 2 is included. This book
will give you a start in writing Windows Store apps with C# and WinRT.

advantages of .net
So far, you’ve read in general terms about how great .NET is, but it can help to make your life as a developer
easier. This section briefly identifies some of the features of .NET:

➤➤ Object-oriented programming — Both the .NET Framework and C# are entirely based on object-
oriented principles from the start.

➤➤ Good design — A base class library, which is designed from the ground up in a highly intuitive way.

flast.indd 24 30-01-2014 20:59:29

xxv

introduction

➤➤ Language independence — With .NET, all the languages — Visual Basic, C#, and managed
C++ — compile to a common Intermediate Language. This means that languages are interoperable in
a way that has not been seen before.

➤➤ Better support for dynamic web pages — Though Classic ASP offered a lot of flexibility, it was also
inefficient because of its use of interpreted scripting languages, and the lack of object-oriented design
often resulted in messy ASP code. .NET offers an integrated support for web pages, using ASP
.NET. With ASP.NET, code in your pages is compiled and may be written in a .NET-aware high-level
language such as C# or Visual Basic 2013. .NET now takes it even further with outstanding support
for the latest web technologies such as Ajax and jQuery.

➤➤ Efficient data access — A set of .NET components, collectively known as ADO.NET, provides
efficient access to relational databases and a variety of data sources. Components are also
available to enable access to the file system and to directories. In particular, XML support is built
into .NET, enabling you to manipulate data, which may be imported from or exported to
non-Windows platforms.

➤➤ Code sharing — .NET has completely revamped the way that code is shared between applications,
introducing the concept of the assembly, which replaces the traditional DLL. Assemblies have formal
facilities for versioning, and different versions of assemblies can exist side by side.

➤➤ Improved security — Each assembly can also contain built-in security information that can indicate
precisely who or what category of user or process is allowed to call which methods on which classes.
This gives you a fine degree of control over how the assemblies that you deploy can be used.

➤➤ Zero-impact installation — There are two types of assemblies: shared and private. Shared assemblies
are common libraries available to all software, whereas private assemblies are intended only for use
with particular software. A private assembly is entirely self-contained, so the process to install it is
simple. There are no registry entries; the appropriate files are simply placed in the appropriate folder
in the file system.

➤➤ Support for web services — .NET has fully integrated support for developing web services as easily as
you would develop any other type of application.

➤➤ Visual Studio 2013 — .NET comes with a developer environment, Visual Studio 2013, which can cope
equally well with C++, C#, and Visual Basic 2013, as well as with ASP.NET or XML code. Visual
Studio 2013 integrates all the best features of the respective language-specific environments of all the
previous versions of this amazing IDE.

➤➤ C# — C# is a powerful and popular object-oriented language intended for use with .NET.

You look more closely at the benefits of the .NET architecture in Chapter 1, “.NET Architecture.”

what’s new In the .net framework 4.5 and .net 4.5.1
The first version of the .NET Framework (1.0) was released in 2002 to much enthusiasm. The .NET
Framework 2.0 was introduced in 2005 and was considered a major release of the Framework. The major
new feature of 2.0 was generics support in C# and the runtime (IL code changed for generics), and new
classes and interfaces. .NET 3.0 was based on the 2.0 runtime and introduced a new way to create UIs
(WPF with XAML and vector-based graphics instead of pixel-based), and a new communication technology
(WCF). .NET 3.5 together with C# 3.0 introduced LINQ, one query syntax that can be used for all data
sources. .NET 4.0 was another major release of the product that also brought a new version of the runtime
(4.0) and a new version of C# (4.0) to offer dynamic language integration and a huge new library for parallel
programming. The .NET Framework 4.5 is based on an updated version of the 4.0 runtime with many
outstanding new features. The .NET Framework 4.5.1 gives some small increments. However, with more

flast.indd 25 30-01-2014 20:59:29

xxvi

introduction

and more libraries that are part of the .NET Framework being distributed as NuGet packages, more and
more features are delivered out of band to the .NET Framework. For example, the Entity Framework, ASP
.NET Web API, and other .NET libraries got huge improvements.

With each release of the Framework, Microsoft has always tried to ensure that there were minimal breaking
changes to code developed. Thus far, Microsoft has been successful at this goal.

The following section details some of the changes that are new to C# 5.0 and the .NET Framework 4.5.1.

asynchronous Programming
Blocking the UI is unfriendly to the user; the user becomes impatient if the UI does not react. Maybe you’ve
had this experience with Visual Studio as well. Good news: Visual Studio has become a lot better in reacting
faster in many scenarios.

The .NET Framework always offered calling methods asynchronously. However, using synchronous
methods was a lot easier than calling their asynchronous variant. This changed with C# 5.0. Programming
asynchronously has become as easy as writing synchronous programs. New C# keywords are based on the
.NET Parallel Library that is available since .NET 4.0. Now the language offers productivity features.

windows store apps and the windows runtime
Windows Store apps can be programmed with C# using the Windows Runtime and a subset of the .NET
Framework. The Windows Runtime is a new native API that offers classes, methods, properties, and events
that look like .NET; although it is native. For using language projection features, the .NET runtime has
been enhanced. With .NET 4.5, the .NET 4.0 runtime gets an in-place update.

enhancements with data access
The ADO.NET Entity Framework offered important new features. Its version changed from 4.0 with .NET
4.0 to 5.0 with .NET 4.5, and to 6.0 with .NET 4.5.1. After the release of .NET 4.0, the Entity Framework
already received updates with versions 4.1, 4.2, and 4.3. New features such as Code First, spatial types,
using enums, and table-valued functions are now available.

enhancements with wPf
For programming Windows desktop applications, WPF has been enhanced. Now you can fill collections
from a non-UI thread; the ribbon control is now part of the framework; weak references with events have
been made easier; validation can be done asynchronously with the INotifyDataErrorInfo interface; and
live shaping allows easy dynamic sorting and grouping with data that changes.

asP.net mvc
Visual Studio 2010 included ASP.NET MVC 2.0. With the release of Visual Studio 2013, ASP.NET MVC
5.0 is available. ASP.NET MVC supplies you with the means to create ASP.NET using the
model-view-controller model that many developers expect. ASP.NET MVC provides developers with
testability, flexibility, and maintainability in the applications they build. ASP.NET MVC is not meant to be
a replacement for ASP.NET Web Forms but is simply a different way to construct your applications.

flast.indd 26 30-01-2014 20:59:29

xxvii

introduction

where c# fIts In
In one sense, C# is the same thing to programming languages that .NET is to the Windows environment.
Just as Microsoft has been adding more and more features to Windows and the Windows API over the
past 15 years, Visual Basic 2013 and C++ have undergone expansion. Although Visual Basic and C++ have
resulted in hugely powerful languages, both languages also suffer from problems because of the legacies left
over from the way they evolved.

For Visual Basic 6 and earlier versions, the main strength of the language was that it was simple to
understand and made many programming tasks easy, largely hiding the details of the Windows API and
the COM component infrastructure from the developer. The downside to this was that Visual Basic was
never truly object-oriented, so large applications quickly became disorganized and hard to maintain. Also,
because Visual Basic’s syntax was inherited from early versions of BASIC (which, in turn, was designed
to be intuitively simple for beginning programmers to understand, rather than to write large commercial
applications), it didn’t lend itself to well-structured or object-oriented programs.

C++, on the other hand, has its roots in the ANSI C++ language definition. It is not completely ANSI-
compliant for the simple reason that Microsoft first wrote its C++ compiler before the ANSI definition had
become official, but it comes close. Unfortunately, this has led to two problems. First, ANSI C++ has its
roots in a decade-old state of technology, and this shows up in a lack of support for modern concepts (such
as Unicode strings and generating XML documentation) and for some archaic syntax structures designed
for the compilers of yesteryear (such as the separation of declaration from definition of member functions).
Second, Microsoft has been simultaneously trying to evolve C++ into a language designed for high-
performance tasks on Windows, and to achieve that, it has been forced to add a huge number of Microsoft-
specific keywords as well as various libraries to the language. The result is that on Windows, the language
has become a complete mess. Just ask C++ developers how many definitions for a string they can think of:
char*, LPTSTR, string, CString (MFC version), CString (WTL version), wchar_t*, OLECHAR*, and so on.

Now enters .NET — a completely revolutionary environment that has brought forth new extensions to both
languages. Microsoft has gotten around this by adding yet more Microsoft-specific keywords to C++ and
by completely revamping Visual Basic to the current Visual Basic 2013, a language that retains some of
the basic VB syntax but that is so different in design from the original VB that it can be considered, for all
practical purposes, a new language.

It is in this context that Microsoft has provided developers an alternative — a language designed specifically
for .NET and designed with a clean slate. C# is the result. Officially, Microsoft describes C# as a “simple,
modern, object-oriented, and type-safe programming language derived from C and C++.” Most independent
observers would probably change that to “derived from C, C++, and Java.” Such descriptions are technically
accurate but do little to convey the beauty or elegance of the language. Syntactically, C# is similar to
both C++ and Java, to such an extent that many keywords are the same, and C# also shares the same
block structure with braces ({}) to mark blocks of code and semicolons to separate statements. The first
impression of a piece of C# code is that it looks quite like C++ or Java code. Beyond that initial similarity,
however, C# is a lot easier to learn than C++ and of comparable difficulty to Java. Its design is more in
tune with modern developer tools than both of those other languages, and it has been designed to provide,
simultaneously, the ease of use of Visual Basic and the high-performance, low-level memory access of C++,
if required. Some of the features of C# follow:

➤➤ Full support for classes and object-oriented programming, including interface and implementation
inheritance, virtual functions, and operator overloading.

➤➤ A consistent and well-defined set of basic types.
➤➤ Built-in support for an automatic generation of XML documentation.
➤➤ Automatic cleanup of dynamically allocated memory.

flast.indd 27 30-01-2014 20:59:29

xxviii

introduction

➤➤ The facility to mark classes or methods with user-defined attributes. This can be useful for
documentation and can have some effects on compilation (for example, marking methods to be
compiled only in debug builds).

➤➤ Full access to the .NET base class library and easy access to the Windows API (if you need it, which
will not be often).

➤➤ Pointers and direct memory access are available if required, but the language has been designed in
such a way that you can work without them in almost all cases.

➤➤ Support for properties and events in the style of Visual Basic.
➤➤ Just by changing the compiler options, you can compile either to an executable or to a library of

.NET components that can be called up by other code in the same way as ActiveX controls (COM
components).

➤➤ C# can be used to write ASP.NET dynamic web pages and XML web services.

Most of these statements, it should be pointed out, also apply to Visual Basic 2013 and Managed C++.
Because C# is designed from the start to work with .NET, however, means that its support for the features
of .NET is both more complete and offered within the context of a more suitable syntax than those of other
languages. Although the C# language is similar to Java, there are some improvements; in particular, Java is
not designed to work with the .NET environment.

Before leaving the subject, you must understand a couple of limitations of C#. The one area the language
is not designed for is time-critical or extremely high-performance code — the kind where you are worried
about whether a loop takes 1,000 or 1,050 machine cycles to run through, and you need to clean up your
resources the millisecond they are no longer needed. C++ is likely to continue to reign supreme among
low-level languages in this area. C# lacks certain key facilities needed for extremely high-performance apps,
including the capability to specify inline functions and destructors guaranteed to run at particular points in
the code. However, the proportions of applications that fall into this category are low.

what you need to wrIte and run c# code
The .NET Framework 4.5.1 can run on the client operating systems Windows Vista, 7, 8, 8.1, and the server
operating systems Windows Server 2008, 2008 R2, 2012, and 2012 R2. To write code using .NET, you
need to install the .NET 4.5.1 SDK.

In addition, unless you intend to write your C# code using a text editor or some other third-party developer
environment, you almost certainly also want Visual Studio 2013. The full SDK is not needed to run
managed code, but the .NET runtime is needed. You may find you need to distribute the .NET runtime with
your code for the benefit of those clients who do not have it already installed.

what thIs book covers
This book starts by reviewing the overall architecture of .NET in Chapter 1 to give you the background you
need to write managed code. After that, the book is divided into a number of sections that cover both the
C# language and its application in a variety of areas.

Part I: the c# language
This section gives a good grounding in the C# language. This section doesn’t presume knowledge of any
particular language; although, it does assume you are an experienced programmer. You start by looking at

flast.indd 28 30-01-2014 20:59:29

www.allitebooks.com

http://www.allitebooks.org

xxix

introduction

C#’s basic syntax and data types and then explore the object-oriented features of C# before looking at more
advanced C# programming topics.

Part II: visual studio
This section looks at the main IDE utilized by C# developers worldwide: Visual Studio 2013. The two
chapters in this section look at the best way to use the tool to build applications based on the .NET
Framework 4.5.1. In addition, this section also focuses on the deployment of your projects.

Part III: foundation
In this section, you look at the principles of programming in the .NET environment. In particular, you look
at security, threading, localization, transactions, how to build Windows services, and how to generate your
own libraries as assemblies, among other topics. One part is interaction with native code and assemblies
using Platform Invoke and COM interop. This section also gives information about how the Windows
Runtime differs from .NET and how to start writing Windows 8–style programs.

Part Iv: data
Here, you look at accessing data using ADO.NET and learn about the ADO.NET Entity Framework. You
can use core ADO.NET to get the best performance; the ADO.NET Entity Framework offers ease of use
with mapping objects to relations. Now, different programming models with Model First, Database First,
and Code First are available that are all discussed. This part also extensively covers support in .NET for
XML, using LINQ to query XML data sources.

Part v: Presentation
This section starts by showing you how to build applications based upon the Windows Presentation
Foundation. Not only are different control types, styles, resources, and data binding covered, but you can
also read about creating fixed and flow documents, and printing. Here, you can also read about creating
Windows Store apps, use of pictures for a nicer UI, grids, and contracts to interact with other applications.
Finally, this section includes coverage of the tremendous number of features that ASP.NET offers, building
websites with ASP.NET Web Forms, ASP.NET MVC, and dynamic data.

Part vI: communication
This section is all about communication. It covers services for platform-independent communication
using Windows Communication Foundation (WCF) and the ASP.NET Web API. With Message Queuing,
asynchronous disconnected communication is shown. This section looks at utilizing the Windows Workflow
Foundation and peer-to-peer networking.

conventIons
To help you get the most from the text and keep track of what’s happening, a number of conventions are
used throughout the book.

warnIng Warnings hold important, not-to-be-forgotten information that is directly
relevant to the surrounding text.

flast.indd 29 30-01-2014 20:59:29

xxx

introduction

note Notes indicate notes, tips, hints, tricks, and/or asides to the current discussion.

As for styles in the text:

➤➤ We highlight new terms and important words when we introduce them.
➤➤ We show keyboard strokes like this: Ctrl+A.
➤➤ We show filenames, URLs, and code within the text like so: persistence.properties.
➤➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that's particularly important in the present context or to
show changes from a previous code snippet.

source code
As you work through the examples in this book, you may choose either to type in all the code manually or
to use the source code files that accompany the book. All the source code used in this book is available for
download at www.wrox.com/go/procsharp. When at the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

note Because many books have similar titles, you may find it easiest to search by
ISBN; this book’s ISBN is 978-1-118-83303-2.

After you download the code, just decompress it with your favorite compression tool. Alternatively, you can
go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be grateful for your feedback. By sending in errata you may save another reader
hours of frustration, and at the same time you can help provide even higher quality information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information and, if
appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

flast.indd 30 30-01-2014 20:59:30

xxxi

introduction

P2P.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based system
for you to post messages relating to Wrox books and related technologies and interact with other readers
and technology users. The forums offer a subscription feature to e-mail you topics of interest of your
choosing when new posts are made to the forums. Wrox authors, editors, other industry experts, and your
fellow readers are present on these forums.

At http://p2p.wrox.com you can find a number of different forums to help you not only as you read this
book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join and any optional information you want to provide, and click
Submit.

 4. You will receive an e-mail with information describing how to verify your account and complete the
joining process.

note You can read messages in the forums without joining P2P but to post your own
messages, you must join.

After you join, you can post new messages and respond to messages other users post. You can read messages
at any time on the web. If you want to have new messages from a particular forum e-mailed to you, click the
Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, read the P2P FAQs for answers to questions about
how the forum software works as well as many common questions specific to P2P and Wrox books. To read
the FAQs, click the FAQ link on any P2P page.

flast.indd 31 30-01-2014 20:59:30

flast.indd 32 30-01-2014 20:59:30

PART I
The C# Language

 ➤ CHAPTER 1: .NET Architecture

 ➤ CHAPTER 2: Core C#

 ➤ CHAPTER 3: Objects and Types

 ➤ CHAPTER 4: Inheritance

 ➤ CHAPTER 5: Generics

 ➤ CHAPTER 6: Arrays and Tuples

 ➤ CHAPTER 7: Operators and Casts

 ➤ CHAPTER 8: Delegates, Lambdas, and Events

 ➤ CHAPTER 9: Strings and Regular Expressions

 ➤ CHAPTER 10: Collections

 ➤ CHAPTER 11: Language Integrated Query

 ➤ CHAPTER 12: Dynamic Language Extensions

 ➤ CHAPTER 13: Asynchronous Programming

 ➤ CHAPTER 14: Memory Management and Pointers

 ➤ CHAPTER 15: Refl ection

 ➤ CHAPTER 16: Errors and Exceptions

c01.indd 1 30-01-2014 19:56:47

c01.indd 2 30-01-2014 19:56:47

.NET Architecture
wHAT’s in THis CHAPTER?

➤➤ Compiling and running code that targets .NET
➤➤ Advantages of Microsoft Intermediate Language (MSIL)
➤➤ Value and reference types
➤➤ Data typing
➤➤ Understanding error handling and attributes
➤➤ Assemblies, .NET base classes, and namespaces

CodE downLoAds FoR THis CHAPTER

There are no code downloads for this chapter.

THE RELATionsHiP oF C# To .nET
This book emphasizes that the C# language must be considered in parallel with the .NET Framework,
rather than viewed in isolation. The C# compiler specifi cally targets .NET, which means that all code
written in C# always runs using the .NET Framework. This has two important consequences for the
C# language:

 1. The architecture and methodologies of C# refl ect the underlying methodologies of .NET.

 2. In many cases, specifi c language features of C# actually depend on features of .NET or of the
.NET base classes.

Because of this dependence, you must gain some understanding of the architecture and methodology
of .NET before you begin C# programming, which is the purpose of this chapter.

C# is a programming language newly designed for .NET and is signifi cant in two respects:

➤➤ It is specifi cally designed and targeted for use with Microsoft’s .NET Framework (a feature-rich
platform for the development, deployment, and execution of distributed applications).

➤➤ It is a language based on the modern object-oriented design methodology, and when designing it
Microsoft learned from the experience of all the other similar languages that have been around
since object-oriented principles came to prominence 20 years ago.

1

c01.indd 3 30-01-2014 19:56:50

4 ❘ CHAPTER 1 .NET ArchiTEcTurE

C# is a language in its own right. Although it is designed to generate code that targets the .NET
environment, it is not part of .NET. Some features are supported by .NET but not by C#, and you might
be surprised to learn that some features of the C# language are not supported by .NET or by MSIL (for
example, some instances of operator overloading).

However, because the C# language is intended for use with .NET, you must understand this Framework
if you want to develop applications in C# effectively. Therefore, this chapter takes some time to peek
underneath the surface of .NET.

THE Common LAnguAgE RunTimE
Central to the .NET Framework is its runtime execution environment, known as the Common Language
Runtime (CLR) or the .NET runtime. Code running under the control of the CLR is often termed
managed code.

However, before it can be executed by the CLR, any source code that you develop (in C# or some other
language) needs to be compiled. Compilation occurs in two steps in .NET:

 1. Compilation of source code to Microsoft Intermediate Language (IL).

 2. Compilation of IL to platform-specific code by the CLR.

This two-stage compilation process is important because the existence of the Microsoft Intermediate
Language is the key to providing many of the benefits of .NET.

IL shares with Java byte code the idea that it is a low-level language with a simple syntax (based on numeric
codes rather than text), which can be quickly translated into native machine code. Having this well-defined
universal syntax for code has significant advantages: platform independence, performance improvement,
and language interoperability.

Platform independence
First, platform independence means that the same file containing byte code instructions can be placed on
any platform; at runtime, the final stage of compilation can then be easily accomplished so that the code can
run on that particular platform. In other words, by compiling to IL you obtain platform independence for
.NET in much the same way as compiling to Java byte code gives Java platform independence.

The platform independence of .NET is only theoretical at present because a complete implementation of
.NET is available only for Windows. However, a partial, cross-platform implementation is available
(see, for example, the Mono project, an effort to create an open source implementation of .NET,
at www.go-mono.com). You can also use C# on iPhone and Android devices by using tools and libraries from
Xamarin (www.xamarin.com).

Performance improvement
Although previously compared to Java, IL is actually a bit more ambitious than Java byte code. IL is always
Just-in-Time compiled (known as JIT compilation), whereas Java byte code was often interpreted. One of
the disadvantages of Java was that, on execution, the process to translate from Java byte code to native
executable resulted in a loss of performance (with the exception of more recent cases in which Java is JIT
compiled on certain platforms).

Instead of compiling the entire application at one time (which could lead to a slow startup time), the JIT
compiler simply compiles each portion of code as it is called (just in time). When code has been compiled
once, the resultant native executable is stored until the application exits so that it does not need to be
recompiled the next time that portion of code is run. Microsoft argues that this process is more efficient
than compiling the entire application code at the start because of the likelihood that large portions of any
application code will not actually be executed in any given run. Using the JIT compiler, such code can never
be compiled.

c01.indd 4 30-01-2014 19:56:50

The Common Language Runtime ❘ 5

This explains why you can expect that execution of managed IL code will be almost as fast as executing
native machine code. What it does not explain is why Microsoft expects that you get a performance
improvement. The reason given for this is that because the final stage of compilation takes place at runtime,
the JIT compiler knows exactly what processor type the program runs on. This means that it can
optimize the final executable code to take advantage of any features or particular machine code instructions
offered by that particular processor.

Traditional compilers optimize the code, but they can perform optimizations that are only independent
of the particular processor that the code runs on. This is because traditional compilers compile to native
executable code before the software is shipped. This means that the compiler does not know what type of
processor the code runs on beyond basic generalities, such as that it is an x86-compatible processor or an
Alpha processor.

Language interoperability
The use of IL not only enables platform independence, but it also facilitates language interoperability.
Simply put, you can compile to IL from one language, and this compiled code should then be interoperable
with code that has been compiled to IL from another language.

You are probably now wondering which languages aside from C# are interoperable with .NET. The following
sections briefly discuss how some of the other common languages fit into .NET.

Visual Basic 2013
Visual Basic .NET 2002 underwent a complete revamp from Visual Basic 6 to bring it up to date with the
first version of the .NET Framework. The Visual Basic language had dramatically evolved from VB6, which
meant that VB6 was not a suitable language to run .NET programs. For example, VB6 is heavily integrated
into Component Object Model (COM) and works by exposing only event handlers as source code to the
developer — most of the background code is not available as source code. Not only that, it does not
support implementation inheritance, and the standard data types that Visual Basic 6 uses are incompatible
with .NET.

Visual Basic 6 was upgraded to Visual Basic .NET in 2002, and the changes that were made to the language
are so extensive you might as well regard Visual Basic as a new language.

Since then, Visual Basic evolved with many language enhancements — much as C# did. Visual Basic and C#
are very similar in their features because they are developed from the same product team within Microsoft.
As time has passed, Visual Basic acquired features that were once only available with C#, and C# acquired
features that were once only available with Visual Basic. Nowadays there are only minor differences
between Visual Basic and C#, and mainly it’s a matter of taste to use curly brackets or END statements.

Visual C++ 2013
Visual C++ 6 already had a large number of Microsoft-specific extensions on Windows. With Visual C++
.NET, extensions have been added to support the .NET Framework. This means that existing C++ source
code will continue to compile to native executable code without modification. It also means, however,
that it will run independently of the .NET runtime. If you want your C++ code to run within the .NET
Framework, you can simply add the following line to the beginning of your code:

#using <mscorlib.dll>

You can also pass the flag /clr to the compiler, which then assumes that you want to compile to managed
code and will hence emit IL instead of native machine code. The interesting thing about C++ is that when
you compile to managed code, the compiler can emit IL that contains an embedded native executable. This
means that you can mix managed types and unmanaged types in your C++ code. Thus, the managed C++ code,

class MyClass
{

c01.indd 5 30-01-2014 19:56:50

6 ❘ CHAPTER 1 .NET ArchiTEcTurE

defines a plain C++ class, whereas the code,

ref class MyClass
{

gives you a managed class, just as if you had written the class in C# or Visual Basic 2013. The advantage
to use managed C++ over C# code is that you can call unmanaged C++ classes from managed C++ code
without resorting to COM interop.

The compiler raises an error if you attempt to use features not supported by .NET on managed types (for
example, templates or multiple inheritances of classes). You can also find that you need to use nonstandard
C++ features when using managed classes.

Writing C++ programs that use .NET gives you different variants of interop scenarios. With the compiler
setting /clr for Common Language Runtime Support, you can completely mix all native and managed C++
features. Other options such as /clr:safe and /clr:pure restrict the use of native C++ pointers and thus
enable writing safe code like with C# and Visual Basic.

Visual C++ 2013 enables you to create programs for the Windows Runtime (WinRT) with Windows 8.1.
This way C++ does not use managed code but instead accesses the WinRT natively.

Visual F#
F# is a strongly typed functional programming language. This language has strong support inside Visual
Studio.

Being a functional programming language it looks very different from C#. For example, declaring a type
Person with the members FirstName and LastName looks like this:

module PersonSample

type Person(firstName : string, lastName : string) =
 member this.FirstName = firstName
 member this.LastName = lastName

And using the Person type makes use of the let keyword. printfn writes results to the console:

open PersonSample

[<EntryPoint>]
let main argv =
 let p = Person("Sebastian", "Vettel")
 let first = p.firstName
 let last = p.lastName
 printfn "%s %s" first last
 0 // return an integer exit code

F# can use all the types you create with C#, and vice versa. The advantage of F# is that it is a functional
language instead of object-oriented, and this helps with programming of complex algorithms — for
example, for financial and scientific applications.

COM and COM+
Technically speaking, COM and COM+ are not technologies targeted at .NET — components based on
them cannot be compiled into IL. (Although you can do so to some degree using managed C++ if the
original COM component were written in C++). However, COM+ remains an important tool because its
features are not duplicated in .NET. Also, COM components can still work — and .NET incorporates
COM interoperability features that make it possible for managed code to call up COM components and vice
versa (discussed in Chapter 23, “Interop”). In general, you will probably find it more convenient for most
purposes to code new components as .NET components so that you can take advantage of the .NET base
classes and the other benefits of running as managed code.

c01.indd 6 30-01-2014 19:56:50

www.allitebooks.com

http://www.allitebooks.org

A Closer Look at Intermediate Language ❘ 7

Windows Runtime
Windows 8 offers a new runtime used by Windows Store apps. Some parts of this runtime can be used with
desktop applications as well. You can use this runtime from Visual Basic, C#, C++, and JavaScript. When
using the runtime with these different environments, it looks different. Using it from C# it looks like classes
from the .NET Framework. Using it from JavaScript it looks like what JavaScript developers are used to
with JavaScript libraries. And using it from C++, methods looks like the Standard C++ Library. This is done
by using language projection. The Windows Runtime and how it looks from C# is discussed in Chapter 31,
“Windows Runtime.”

A CLosER Look AT inTERmEdiATE LAnguAgE
From what you learned in the previous section, Microsoft Intermediate Language obviously plays a
fundamental role in the .NET Framework. It makes sense now to take a closer look at the main features of
IL because any language that targets .NET logically needs to support these characteristics.

Here are the important features of IL:

➤➤ Object orientation and the use of interfaces

➤➤ Strong distinction between value and reference types

➤➤ Strong data typing

➤➤ Error handling using exceptions

➤➤ Use of attributes

The following sections explore each of these features.

support for object orientation and interfaces
The language independence of .NET does have some practical limitations. IL is inevitably going to
implement some particular programming methodology, which means that languages targeting it need to be
compatible with that methodology. The particular route that Microsoft has chosen to follow for IL is that of
classic object-oriented programming, with single implementation inheritance of classes.

In addition to classic object-oriented programming, IL also brings in the idea of interfaces, which saw their
first implementation under Windows with COM. Interfaces built using .NET produce interfaces that are
not the same as COM interfaces. They do not need to support any of the COM infrastructure. (For example,
they are not derived from IUnknown and do not have associated globally unique identifiers, more commonly
known as GUIDs.) However, they do share with COM interfaces the idea that they provide a contract, and
classes that implement a given interface must provide implementations of the methods and properties
specified by that interface.

You have now seen that working with .NET means compiling to IL, and that in turn means that you need
to understand traditional object-oriented methodologies. However, that alone is not sufficient to give
you language interoperability. After all, C++ and Java both use the same object-oriented paradigms but
are still not regarded as interoperable. You need to look a little more closely at the concept of language
interoperability.

So what exactly is language interoperability?

After all, COM enabled components written in different languages to work together in the sense of calling
each other’s methods. What was inadequate about that? COM, by virtue of being a binary standard, did
enable components to instantiate other components and call methods or properties against them, without
worrying about the language in which the respective components were written. To achieve this, however,
each object had to be instantiated through the COM runtime and accessed through an interface. Depending
on the threading models of the relative components, there may have been large performance losses
associated with marshaling data between apartments or running components or both on different threads.
In the extreme case of components hosted as an executable rather than DLL files, separate processes would

c01.indd 7 30-01-2014 19:56:51

8 ❘ CHAPTER 1 .NET ArchiTEcTurE

need to be created to run them. The emphasis was very much that components could talk to each other but
only via the COM runtime. In no way with COM did components written in different languages directly
communicate with each other, or instantiate instances of each other — it was always done with COM as an
intermediary. Not only that, but the COM architecture did not permit implementation inheritance, which
meant that it lost many of the advantages of object-oriented programming.

An associated problem was that, when debugging, you would still need to debug components written in
different languages independently. It was not possible to step between languages in the debugger. Therefore,
what you actually mean by language interoperability is that classes written in one language should talk
directly to classes written in another language. In particular:

➤➤ A class written in one language can inherit from a class written in another language.

➤➤ The class can contain an instance of another class, no matter what the languages of the two classes are.

➤➤ An object can directly call methods against another object written in another language.

➤➤ Objects (or references to objects) can be passed around between methods.

➤➤ When calling methods between languages, you can step between the method calls in the debugger,
even when this means stepping between source code written in different languages.

This is all quite an ambitious aim, but amazingly .NET and IL have achieved it. In the case of stepping
between methods in the debugger, this facility is actually offered by the Visual Studio integrated
development environment (IDE) rather than by the CLR.

distinct Value and Reference Types
As with any programming language, IL provides a number of predefined primitive data types. One
characteristic of IL, however, is that it makes a strong distinction between value and reference types. Value
types are those for which a variable directly stores its data, whereas reference types are those for which a
variable simply stores the address at which the corresponding data can be found.

In C++ terms, using reference types is similar to accessing a variable through a pointer, whereas for Visual
Basic the best analogy for reference types are objects, which in Visual Basic 6 are always accessed through
references. IL also lays down specifications about data storage: Instances of reference types are always stored
in an area of memory known as the managed heap, whereas value types are normally stored on the stack.
(Although if value types are declared as fields within reference types, they will be stored inline on the heap.)
Chapter 2, “Core C#,” discusses the stack and the managed heap and how they work.

strong data Typing
One important aspect of IL is that it is based on exceptionally strong data typing. That means that all
variables are clearly marked as being of a particular, specific data type. (There is no room in IL, for
example, for the Variant data type recognized by Visual Basic and scripting languages.) In particular, IL
does not normally permit any operations that result in ambiguous data types.

For instance, Visual Basic 6 developers are used to passing variables around without worrying too much
about their types because Visual Basic 6 automatically performs type conversion. C++ developers are used
to routinely casting pointers between different types. Performing this kind of operation can be great for
performance, but it breaks type safety. Hence, it is permitted only under certain circumstances in some
of the languages that compile to managed code. Indeed, pointers (as opposed to references) are permitted
only in marked blocks of code in C#, and not at all in Visual Basic. (Although they are allowed in managed
C++.) Using pointers in your code causes it to fail the memory type-safety checks performed by the CLR.
Some languages compatible with .NET, such as Visual Basic 2010, still allow some laxity in typing but only
because the compilers behind the scenes ensure that the type safety is enforced in the emitted IL.

Although enforcing type safety might initially appear to hurt performance, in many cases the benefits
gained from the services provided by .NET that rely on type safety far outweigh this performance loss. Such
services include the following:

c01.indd 8 30-01-2014 19:56:51

A Closer Look at Intermediate Language ❘ 9

➤➤ Language interoperability

➤➤ Garbage collection

➤➤ Security

➤➤ Application domains

The following sections take a closer look at why strong data typing is particularly important for these
features of .NET.

Strong Data Typing as a Key to Language Interoperability
If a class is to derive from or contains instances of other classes, it needs to know about all the data
types used by the other classes. This is why strong data typing is so important. Indeed, it is the absence
of any agreed-on system for specifying this information in the past that has always been the real barrier
to inheritance and interoperability across languages. This kind of information is simply not present in a
standard executable file or DLL.

Suppose that one of the methods of a Visual Basic 2013 class is defined to return an Integer — one of the
standard data types available in Visual Basic 2013. C# simply does not have any data type of that name.
Clearly, you can derive from the class, use this method, and use the return type from C# code only if the
compiler knows how to map Visual Basic 2013’s Integer type to some known type defined in C#. So, how
is this problem circumvented in .NET?

Common Type System

This data type problem is solved in .NET using the Common Type System (CTS). The CTS defines the
predefined data types available in IL so that all languages that target the .NET Framework can produce
compiled code ultimately based on these types.

For the previous example, Visual Basic 2013’s Integer is actually a 32-bit signed integer, which maps
exactly to the IL type known as Int32. Therefore, this is the data type specified in the IL code. Because the
C# compiler is aware of this type, there is no problem. At source code-level, C# refers to Int32 with the
keyword int, so the compiler simply treats the Visual Basic 2013 method as if it returned an int.

The CTS does not specify merely primitive data types but a rich hierarchy of types, which includes well-
defined points in the hierarchy at which code is permitted to define its own types. The hierarchical structure
of the CTS reflects the single-inheritance object-oriented methodology of IL, and resembles Figure 1-1.

Built-in Value
Types

User-defined
Value Types

Value Type

Pointer Types

Type
Reference

Type

Enumerations

Interface Types

Self-describing
Types

ArraysClass Types

User-defined
Reference

Types

Delegates Boxed Value
Types

FiguRE 1-1

c01.indd 9 30-01-2014 19:56:53

10 ❘ CHAPTER 1 .NET ArchiTEcTurE

All of the built-in value types aren’t here because they are covered in detail in Chapter 3, “Objects and
Types.” In C#, each predefined type is recognized by the compiler maps onto one of the IL built-in types.
The same is true in Visual Basic 2013.

Common Language Specification

The Common Language Specification (CLS) works with the CTS to ensure language interoperability. The
CLS is a set of minimum standards that all compilers targeting .NET must support. Because IL is a rich
language, writers of most compilers prefer to restrict the capabilities of a given compiler to support only a
subset of the facilities offered by IL and the CTS. That is fine as long as the compiler supports everything
defined in the CLS.

For example, take case sensitivity. IL is case-sensitive. Developers who work with case-sensitive languages
regularly take advantage of the flexibility that this case sensitivity gives them when selecting variable names.
Visual Basic 2013, however, is not case-sensitive. The CLS works around this by indicating that CLS-
compliant code should not expose any two names that differ only in their case. Therefore, Visual Basic 2013
code can work with CLS-compliant code.

This example shows that the CLS works in two ways:

 1. Individual compilers do not need to be powerful enough to support the full features of .NET — this
should encourage the development of compilers for other programming languages that target .NET.

 2. If you restrict your classes to exposing only CLS-compliant features, then it guarantees that code
written in any other compliant language can use your classes.

The beauty of this idea is that the restriction to using CLS-compliant features applies only to public and
protected members of classes and public classes. Within the private implementations of your classes, you can
write whatever non-CLS code you want because code in other assemblies (units of managed code; see later
in the section Assemblies) cannot access this part of your code.

Without going into the details of the CLS specifications here, in general, the CLS does not affect your C#
code much because of the few non-CLS-compliant features of C#.

noTE It is perfectly acceptable to write non-CLS-compliant code. However, if you
do, the compiled IL code is not guaranteed to be fully language interoperable. You can
mark your assembly or types to be CLS-compliant by applying the CLSCompliant attri-
bute. Using this attribute, the compiler checks for compliance. If a non-compliant data
type is used with the signature of a public method (for example, uint), you will get a
compiler warning that the method is not CLS compliant.

Garbage Collection
The garbage collector is .NET’s answer to memory management and in particular to the question of what
to do about reclaiming memory that running applications ask for. Up until now, two techniques have been
used on the Windows platform for de-allocating memory that processes have dynamically requested from
the system:

➤➤ Make the application code do it all manually.

➤➤ Make objects maintain reference counts.

Having the application code responsible for de-allocating memory is the technique used by lower-level, high-
performance languages such as C++. It is efficient and has the advantage that (in general) resources are never
occupied for longer than necessary. The big disadvantage, however, is the frequency of bugs. Code that
requests memory also should explicitly inform the system when it no longer requires that memory. However,
it is easy to overlook this, resulting in memory leaks.

c01.indd 10 30-01-2014 19:56:53

A Closer Look at Intermediate Language ❘ 11

Although modern developer environments do provide tools to assist in detecting memory leaks, they remain
difficult bugs to track down. That’s because they have no effect until so much memory has been leaked that
Windows refuses to grant any more to the process. By this point, the entire computer may have appreciably
slowed down due to the memory demands made on it.

Maintaining reference counts is favored in COM. The idea is that each COM component maintains a count
of how many clients are currently maintaining references to it. When this count falls to zero, the component
can destroy itself and free up associated memory and resources. The problem with this is that it still relies on
the good behavior of clients to notify the component that they have finished with it. It takes only one client
not to do so, and the object sits in memory. In some ways, this is a potentially more serious problem than a
simple C++-style memory leak because the COM object may exist in its own process, which means that it
can never be removed by the system. (At least with C++ memory leaks, the system can reclaim all memory
when the process terminates.)

The .NET runtime relies on the garbage collector instead. The purpose of this program is to clean up
memory. The idea is that all dynamically requested memory is allocated on the heap. (That is true for all
languages; although in the case of .NET, the CLR maintains its own managed heap for .NET applications
to use.) Sometimes, when .NET detects that the managed heap for a given process is becoming full and
therefore needs tidying up, it calls the garbage collector. The garbage collector runs through variables
currently in scope in your code, examining references to objects stored on the heap to identify which ones
are accessible from your code — that is, which objects have references that refer to them. Any objects not
referred to are deemed to be no longer accessible from your code and can therefore be removed. Java uses a
system of garbage collection similar to this.

Garbage collection works in .NET because IL has been designed to facilitate the process. The principle
requires that you cannot get references to existing objects other than by copying existing references and
that IL is type safe. In this context, if any reference to an object exists, there is sufficient information in the
reference to exactly determine the type of the object.

The garbage collection mechanism cannot be used with a language such as unmanaged C++, for example,
because C++ enables pointers to be freely cast between types.

One important aspect of garbage collection is that it is not deterministic. In other words, you cannot
guarantee when the garbage collector will be called. It will be called when the CLR decides that it is needed;
though you can override this process and call up the garbage collector in your code. Calling the garbage
collector in your code is good for testing purposes, but you shouldn’t do this in a normal program.

Look at Chapter 14, “Memory Management and Pointers,” for more information on the garbage collection
process.

Security
.NET can excel in terms of complementing the security mechanisms provided by Windows because it can
offer Code Access Security, whereas Windows offers only role-based security.

Role-based security is based on the identity of the account under which the process runs (that is, who owns
and runs the process). Code Access Security, by contrast, is based on what the code actually does and on
how much the code is trusted. Because of the strong type safety of IL, the CLR can inspect code before
running it to determine required security permissions. .NET also offers a mechanism by which code can
indicate in advance what security permissions it requires to run.

The importance of code-based security is that it reduces the risks associated with running code of dubious
origin (such as code that you have downloaded from the Internet). For example, even if code runs under
the administrator account, you can use code-based security to indicate that the code should still not be
permitted to perform certain types of operations that the administrator account would normally be allowed
to do, such as read or write to environment variables, read or write to the registry, or access the
.NET reflection features.

c01.indd 11 30-01-2014 19:56:53

12 ❘ CHAPTER 1 .NET ArchiTEcTurE

noTE Security issues are covered in more depth in Chapter 22, “Security.”

Application Domains
Application domains are an important innovation in .NET and are designed to ease the overhead involved
when running applications that need to be isolated from each other, but also need to communicate with
each other. The classic example of this is a web server application, which may be simultaneously responding
to a number of browser requests. It can, therefore, probably have a number of instances of the component
responsible for servicing those requests running simultaneously.

In pre-.NET days, the choice would be between allowing those instances to share a process (with the
resultant risk of a problem in one running instance bringing the whole website down) or isolating those
instances in separate processes (with the associated performance overhead). Before .NET, isolation of code
was only possible by using different processes. When you start a new application, it runs within the context
of a process. Windows isolates processes from each other through address spaces. The idea is that each
process has 4GB of virtual memory available in which to store its data and executable code (4GB is for
32-bit systems; 64-bit systems use more memory). Windows imposes an extra level of indirection by which
this virtual memory maps into a particular area of actual physical memory or disk space. Each process
gets a different mapping, with no overlap between the actual physical memories that the blocks of virtual
address space map to (see Figure 1-2).

FiguRE 1-2

Physical memory
or disk space

PROCESS 1

4GB virtual
memory

Physical
Memory

Physical memory
or disk space

PROCESS 2

4GB virtual
memory Self-describing

Types

In general, any process can access memory only by specifying an address in virtual memory — processes
do not have direct access to physical memory. Hence, it is simply impossible for one process to access the
memory allocated to another process. This provides an excellent guarantee that any badly behaved code
cannot damage anything outside of its own address space.

Processes do not just serve as a way to isolate instances of running code from each other; they also form
the unit to which security privileges and permissions are assigned. Each process has its own security token,
which indicates to Windows precisely what operations that process is permitted to do.

Although processes are great for security reasons, their big disadvantage is in the area of performance.
Often, a number of processes can actually work together, and therefore need to communicate with each
other. The obvious example of this is where a process calls up a COM component, which is an executable
and therefore is required to run in its own process. The same thing happens in COM when surrogates

c01.indd 12 30-01-2014 19:56:55

A Closer Look at Intermediate Language ❘ 13

are used. Because processes cannot share any memory, a complex
marshaling process must be used to copy data between the processes.
This results in a significant performance hit. If you need components
to work together and do not want that performance hit, you must
use DLL-based components and have everything running in the
same address space — with the associated risk that a badly behaved
component can bring everything else down.

Application domains are designed as a way to separate components
without resulting in the performance problems associated with passing
data between processes. The idea is that any one process is divided into
a number of application domains. Each application domain roughly
corresponds to a single application, and each thread of execution can
run in a particular application domain (see Figure 1-3).

If different executables run in the same process space, then they clearly
can easily share data because theoretically they can directly see each
other’s data. However, although this is possible in principle, the CLR makes sure that this does not happen
in practice by inspecting the code for each running application to ensure that the code cannot stray outside
of its own data areas. This looks, at first, like an almost impossible task to pull off — after all, how can you
tell what the program is going to do without actually running it?

It is usually possible to do this because of the strong type safety of the IL. In most cases, unless code uses
unsafe features such as pointers, the data types it uses ensures that memory is not accessed inappropriately.
For example, .NET array types perform bounds checking to ensure that no out-of-bounds array operations
are permitted. If a running application does need to communicate or share data with other applications
running in different application domains, it must do so by calling on .NET’s remoting services.

Code that has been verified to check that it cannot access data outside its application domain (other than
through the explicit remoting mechanism) is memory type safe. Such code can safely be run alongside other
type-safe code in different application domains within the same process.

Error Handling with Exceptions
The .NET Framework is designed to facilitate handling of error conditions using the same mechanism based
on exceptions that is employed by Java and C++. C++ developers should note that because of IL’s stronger
typing system, there is no performance penalty associated with the use of exceptions with IL in the way
that there is in C++. Also, the finally block, which has long been on many C++ developers’ wish lists, is
supported by .NET and by C#.

Exceptions are covered in detail in Chapter 16, “Errors and Exceptions.” Briefly, the idea is that certain
areas of code are designated as exception handler routines, with each one dealing with a particular error
condition (for example, a file not being found, or being denied permission to perform some operation).
These conditions can be defined as narrowly or as widely as you want. The exception architecture ensures
that when an error condition occurs, execution can immediately jump to the exception handler routine that
is most specifically geared to handle the exception condition in question.

The architecture of exception handling also provides a convenient means to pass an object containing
precise details of the exception condition to an exception-handling routine. This object might include an
appropriate message for the user and details of exactly where in the code the exception was detected.

Most exception-handling architecture, including the control of program flow when an exception occurs, is
handled by the high-level languages (C#, Visual Basic 2013, C++), and is not supported by any special IL
commands. C#, for example, handles exceptions using try{}, catch{}, and finally{} blocks of code. (For
more details, see Chapter 16.)

What .NET does do, however, is provide the infrastructure to enable compilers that target .NET to support
exception handling. In particular, it provides a set of .NET classes that can represent the exceptions and

FiguRE 1-3

PROCESS - 4GB virtual memory

APPLICATION DOMAIN:
an application uses some

of this virtual memory

APPLICATION DOMAIN:
another application uses

some of this virtual memory

c01.indd 13 30-01-2014 19:56:56

14 ❘ CHAPTER 1 .NET ArchiTEcTurE

the language interoperability to enable the thrown exception objects to be interpreted by the exception-
handling code, regardless of what language the exception-handling code is written in. This language
independence is absent from both the C++ and Java implementations of exception handling; although it is
present to a limited extent in the COM mechanism for handling errors, which involves returning error codes
from methods and passing error objects around. Because exceptions are handled consistently in different
languages is a crucial aspect of facilitating multi-language development.

use of Attributes
Attributes are familiar to developers who use C++ to write COM components (through their use in
Microsoft’s COM Interface Definition Language [IDL]). The initial idea of an attribute was that it provided
extra information concerning some item in the program that could be used by the compiler.

Attributes are supported in .NET — and now by C++, C#, and Visual Basic 2013. What is, however,
particularly innovative about attributes in .NET is that you can define your own custom attributes in your
source code. These user-defined attributes will be placed with the metadata for the corresponding data
types or methods. This can be useful for documentation purposes, in which they can be used with reflection
technology to perform programming tasks based on attributes. In addition, in common with the .NET
philosophy of language independence, attributes can be defined in source code in one language and read by
code written in another language.

noTE Chapter 15, “Reflection,” covers attributes.

AssEmbLiEs
An assembly is the logical unit that contains compiled code targeted at the .NET Framework. This chapter
doesn’t cover assemblies in detail because they are covered thoroughly in Chapter 19, “Assemblies,” but
following are the main points.

An assembly is completely self-describing and is a logical rather than a physical unit, which means that it
can be stored across more than one file. (Indeed, dynamic assemblies are stored in memory, not on file.) If
an assembly is stored in more than one file, there will be one main file that contains the entry point and
describes the other files in the assembly.

The same assembly structure is used for both executable code and library code. The only difference is that
an executable assembly contains a main program entry point, whereas a library assembly does not.

An important characteristic of assemblies is that they contain metadata that describes the types and
methods defined in the corresponding code. An assembly, however, also contains assembly metadata that
describes the assembly. This assembly metadata, contained in an area known as the manifest, enables checks
to be made on the version of the assembly and on its integrity.

noTE ildasm, a Windows-based utility, can be used to inspect the contents of an
assembly, including the manifest and metadata. ildasm is discussed in Chapter 19.

Because an assembly contains program metadata means that applications or other assemblies that call up
code in a given assembly do not need to refer to the registry, or to any other data source, to find out how
to use that assembly. This is a significant break from the old COM way to do things, in which the GUIDs
of the components and interfaces had to be obtained from the registry, and in some cases, the details of the
methods and properties exposed would need to be read from a type library.

c01.indd 14 30-01-2014 19:56:56

Assemblies ❘ 15

Having data spread out in up to three different locations meant there was the obvious risk of something
getting out of synchronization, which would prevent other software from using the component successfully.
With assemblies, there is no risk of this happening because all the metadata is stored with the program
executable instructions. Even though assemblies are stored across several files, there are still no problems
with data going out of synchronization. This is because the file that contains the assembly entry point also
stores details of, and a hash of, the contents of the other files, which means that if one of the files is replaced,
or in any way tampered with, this will almost certainly be detected and the assembly will refuse to load.

Assemblies come in two types: private and shared assemblies.

Private Assemblies
Private assemblies are the simplest type. They normally ship with software and are intended to be used
only with that software. The usual scenario in which you ship private assemblies is when you supply an
application in the form of an executable and a number of libraries, where the libraries contain code that
should be used only with that application.

The system guarantees that private assemblies will not be used by other software because an application
may load only private assemblies located in the same folder that the main executable is loaded in, or in a
subfolder of it.

Because you would normally expect that commercial software would always be installed in its own
directory, there is no risk of one software package overwriting, modifying, or accidentally loading private
assemblies intended for another package. And, because private assemblies can be used only by the software
package that they are intended for, you have much more control over what software uses them. There
is, therefore, less need to take security precautions because there is no risk, for example, of some other
commercial software overwriting one of your assemblies with some new version of it (apart from software
designed specifically to perform malicious damage). There are also no problems with name collisions. If
classes in your private assembly happen to have the same name as classes in someone else’s private assembly,
that does not matter because any given application can see only the one set of private assemblies.

Because a private assembly is entirely self-contained, the process to deploy it is simple. You simply place the
appropriate file(s) in the appropriate folder in the file system. (No registry entries need to be made.) This
process is known as zero impact (xcopy) installation.

shared Assemblies
Shared assemblies are intended to be common libraries that any other application can use. Because any other
software can access a shared assembly, more precautions need to be taken against the following risks:

➤➤ Name collisions, where another company’s shared assembly implements types that have the same
names as those in your shared assembly. Because client code can theoretically have access to both
assemblies simultaneously, this could be a serious problem.

➤➤ The risk of an assembly being overwritten by a different version of the same assembly — the new
version is incompatible with some existing client code.

The solution to these problems is placing shared assemblies in a special directory subtree in the file system,
known as the global assembly cache (GAC). Unlike with private assemblies, this cannot be done by simply
copying the assembly into the appropriate folder; it must be specifically installed into the cache. This process
can be performed by a number of .NET utilities and requires certain checks on the assembly, as well as
setting up of a small folder hierarchy within the assembly cache used to ensure assembly integrity.

To prevent name collisions, shared assemblies are given a name based on private key cryptography. (Private
assemblies are simply given the same name as their main filename.) This name is known as a strong name; it
is guaranteed to be unique and must be quoted by applications that reference a shared assembly.

Problems associated with the risk of overwriting an assembly are addressed by specifying version
information in the assembly manifest and by allowing side-by-side installations.

c01.indd 15 30-01-2014 19:56:57

16 ❘ CHAPTER 1 .NET ArchiTEcTurE

Reflection
Because assemblies store metadata, including details of all the types and members of these types defined in
the assembly, you can access this metadata programmatically. Full details of this are given in Chapter 15.
This technique, known as reflection, raises interesting possibilities because it means that managed code can
actually examine other managed code, and can even examine itself, to determine information about that
code. This is most commonly used to obtain the details of attributes; although you can also use reflection,
among other purposes, as an indirect way to instantiate classes or calling methods, given the names of those
classes or methods as strings. In this way, you could select classes to instantiate methods to call at runtime,
rather than at compile time, based on user input (dynamic binding).

Parallel Programming
The .NET Framework enables you to take advantage of all the multicore processors available today. The
parallel computing capabilities provide the means to separate work actions and run these across multiple
processors. The parallel programming APIs available now make writing safe multithreaded code simple;
though you must realize that you still need to account for race conditions and things such as deadlocks.

The new parallel programming capabilities provide a new Task Parallel Library and a PLINQ Execution
Engine. Chapter 21, “Tasks, Threads, and Synchronization,” covers parallel programming.

Asynchronous Programming
Based on the Task from the Task Parallel Library are the new async features of C# 5. Since .NET 1.0, many
classes from the .NET Framework offered asynchronous methods besides the synchronous variant. The user
interface thread should not be blocked when doing a task that takes a while. You’ve probably seen several
programs that have become unresponsive, which is annoying. A problem with the asynchronous methods
was that they were difficult to use. The synchronous variant was a lot easier to program with, and thus this
one was usually used.

Using the mouse the user is — with many years of experience — used to a delay. When moving objects or
just using the scrollbar, a delay is normal. With new touch interfaces, if there’s a delay the experience for the
user can be extremely annoying. This can be solved by calling asynchronous methods. If a method with the
WinRT might take more than 50 milliseconds, the WinRT offers only asynchronous method calls.

C# 5 now makes it easy to invoke new asynchronous methods. C# 5 defines two new keywords: async and
await. These keywords and how they are used are discussed in Chapter 13, “Asynchronous Programming.”

.nET FRAmEwoRk CLAssEs
Perhaps one of the biggest benefits to writing managed code, at least from a developer’s point of view, is that
you can use the .NET base class library. The .NET base classes are a massive collection of managed code
classes that enable you to do almost any of the tasks that were previously available through the Windows
API. These classes follow the same object model that IL uses, based on single inheritance. This means that
you can either instantiate objects of whichever .NET base class is appropriate or derive your own classes
from them.

The great thing about the .NET base classes is that they have been designed to be intuitive and easy
to use. For example, to start a thread, you call the Start() method of the Thread class. To disable a
TextBox, you set the Enabled property of a TextBox object to false. This approach — though familiar
to Visual Basic and Java developers whose respective libraries are just as easy to use — will be a welcome
relief to C++ developers, who for years have had to cope with such API functions as GetDIBits(),
RegisterWndClassEx(), and IsEqualIID(), and a plethora of functions that require Windows handles to
be passed around.

However, C++ developers always had easy access to the entire Windows API, unlike Visual Basic 6 and Java
developers who were more restricted in terms of the basic operating system functionality that they have

c01.indd 16 30-01-2014 19:56:57

www.allitebooks.com

http://www.allitebooks.org

Namespaces ❘ 17

access to from their respective languages. What is new about the .NET base classes is that they combine the
ease of use that was typical of the Visual Basic and Java libraries with the relatively comprehensive coverage
of the Windows API functions. Many features of Windows are still not available through the base classes,
and for those you need to call into the API functions, but in general, these are now confined to the more
exotic features. For everyday use, you can probably find the base classes adequate. Moreover, if you do need
to call into an API function, .NET offers a platform-invoke that ensures data types are correctly converted,
so the task is no harder than calling the function directly from C++ code would have been — regardless of
whether you code in C#, C++, or Visual Basic 2013.

Although Chapter 3 is nominally dedicated to the subject of base classes, after you have completed the
coverage of the syntax of the C# language, most of the rest of this book shows you how to use various
classes within the .NET base class library for the .NET Framework 4.5. That is how comprehensive
base classes are. As a rough guide, the areas covered by the .NET 4.5 base classes include the following:

➤➤ Core features provided by IL (including the primitive data types in the CTS discussed in Chapter 2)

➤➤ Windows UI support and controls (see Chapters 35–39)

➤➤ ASP.NET with Web Forms and MVC (see Chapters 30–42)

➤➤ Data access with ADO.NET and XML (see Chapters 32–34)

➤➤ File system and registry access (see Chapter 24, “Manipulating Files and Registry”)

➤➤ Networking and web browsing (see Chapter 26, “Networking”)

➤➤ .NET attributes and reflection (see Chapter 15)

➤➤ COM interoperability (see Chapter 23)

Incidentally, according to Microsoft sources, a large proportion of the .NET base classes have actually been
written in C#.

nAmEsPACEs
Namespaces are the way that .NET avoids name clashes between classes. They are designed to prevent
situations in which you define a class to represent a customer, name your class Customer, and then someone
else does the same thing. (A likely scenario in which — the proportion of businesses that have customers
seems to be quite high.)

A namespace is no more than a grouping of data types, but it has the effect that the names of all data
types within a namespace are automatically prefixed with the name of the namespace. It is also possible to
nest namespaces within each other. For example, most of the general-purpose .NET base classes are in a
namespace called System. The base class Array is in this namespace, so its full name is System.Array.

.NET requires all types to be defined in a namespace; for example, you could place your Customer
class in a namespace called YourCompanyName.ProjectName. This class would have the full name
YourCompanyName.ProjectName.Customer.

noTE If a namespace is not explicitly supplied, the type will be added to a nameless
global namespace.

Microsoft recommends that for most purposes you supply at least two nested namespace names: the first one
represents the name of your company, and the second one represents the name of the technology or software
package of which the class is a member, such as YourCompanyName.SalesServices.Customer. This
protects, in most situations, the classes in your application from possible name clashes with classes written
by other organizations.

Chapter 2 looks more closely at namespaces.

c01.indd 17 30-01-2014 19:56:57

18 ❘ CHAPTER 1 .NET ArchiTEcTurE

CREATing .nET APPLiCATions using C#
You can also use C# to create console applications: text-only applications that run in a DOS window.
You can probably use console applications when unit testing class libraries and for creating UNIX or
Linux daemon processes. More often, however, you can use C# to create applications that use many of the
technologies associated with .NET. This section gives you an overview of the different types of applications
that you can write in C#.

Creating AsP.nET Applications
The original introduction of ASP.NET 1.0 fundamentally changed the web programming model. ASP.NET 4.5
is a major release of the product and builds upon its earlier achievements. ASP.NET 4.5 follows on a series of
major revolutionary steps designed to increase your productivity. The primary goal of ASP.NET is to enable
you to build powerful, secure, dynamic applications using the least possible amount of code. As this is a C#
book, there are many chapters showing you how to use this language to build the latest in web applications.

The following section explores the key features of ASP.NET. For more details, refer to Chapters 40 to 42.

Features of ASP.NET
With the invention of ASP.NET, there were only ASP.NET Web Forms, which had the goal of easily creating
web applications in a way a Windows application developer was used to writing applications. It was the goal
not to need to write HTML and JavaScript.

Nowadays this is different again. HTML and JavaScript became important and modern again. And there’s
a new ASP.NET Framework that makes it easy to do this and gives a separation based on the well-known
Model View Controller (MVC) pattern for easier unit testing: ASP.NET MVC.

ASP.NET was refactored to have a foundation available both for ASP.NET Web Forms and ASP.NET MVC,
and then the UI frameworks are based on this foundation.

noTE Chapter 40, “Core ASP.NET” covers the foundation of ASP.NET.

ASP.NET Web Forms
To make web page construction easy, Visual Studio 2013 supplies Web Forms. Web pages can be built
graphically by dragging controls from a toolbox onto a form and then flipping over to the code aspect of
that form and writing event handlers for the controls. When you use C# to create a Web Form, you create
a C# class that inherits from the Page base class and an ASP.NET page that designates that class as its
code-behind. Of course, you do not need to use C# to create a Web Form; you can use Visual Basic 2013 or
another .NET-compliant language just as well.

ASP.NET Web Forms provide a rich functionality with controls that do not create only simple HTML code,
but with controls that do input validation using both JavaScript and server-side validation logic, grids, data
sources to access the database, offer Ajax features for dynamically rendering just parts of the page on the
client, and much more.

noTE Chapter 41, “ASP.NET Web Forms” discusses ASP.NET Web Forms.

Web Server Controls
The controls used to populate a Web Form are not controls in the same sense as ActiveX controls. Rather,
they are XML tags in the ASP.NET namespace that the web browser dynamically transforms into HTML
and client-side script when a page is requested. Amazingly, the web server can render the same server-side

c01.indd 18 30-01-2014 19:56:57

Creating .NET Applications Using C# ❘ 19

control in different ways, producing a transformation appropriate to the requestor’s particular web browser.
This means that it is now easy to write fairly sophisticated user interfaces for web pages, without worrying
about how to ensure that your page can run on any of the available browsers — because Web Forms take
care of that for you.

You can use C# or Visual Basic 2013 to expand the Web Form toolbox. Creating a new server-side control is
simply a matter of implementing .NET’s System.Web.UI.WebControls.WebControl class.

ASP.NET MVC
Visual Studio comes with ASP.NET MVC 4. This technology is already available in version 4. Contrary to
Web Forms where HTML and JavaScript is abstracted away from the developer, with the advent of HTML
5 and jQuery, using these technologies has become more important again. With ASP.NET MVC the focus
is on writing server-side code separated within model and controller and using views with just a little bit of
server-side code to get information from the controller. This separation makes unit testing a lot easier and
gives the full power to use HTML 5 and JavaScript libraries.

noTE Chapter 42, “ASP.NET MVC” covers ASP.NET MVC.

windows Presentation Foundation (wPF)
For creating Windows desktop applications, two technologies are available: Windows Forms and Windows
Presentation Foundation. Windows Forms consists of classes that just wrap native Windows controls and is
thus based on pixel graphics. Windows Presentation Foundation (WPF) is the newer technology based on
vector graphics.

WPF makes use of XAML in building applications. XAML stands for eXtensible Application Markup
Language. This new way to create applications within a Microsoft environment is something introduced
in 2006 and is part of the .NET Framework 3.0. This means that to run any WPF application, you need to
make sure that at least the .NET Framework 3.0 is installed on the client machine. Of course, you get new
WPF features with newer versions of the framework. With version 4.5, for example, the ribbon control and
live shaping are new features among many new controls.

XAML is the XML declaration used to create a form that represents all the visual aspects and behaviors
of the WPF application. Though you can work with a WPF application programmatically, WPF is a step
in the direction of declarative programming, which the industry is moving to. Declarative programming
means that instead of creating objects through programming in a compiled language such as C#, VB, or
Java, you declare everything through XML-type programming. Chapter 29, “Core XAML,” introduces
XAML (which is also used with XML Paper Specification, Windows Workflow Foundation, and Windows
Communication Foundation).

Chapter 35, “Core WPF,” details how to build WPF applications using XAML and C#. Chapter 36,
“Business Applications with WPF,” goes into more details on data-driven business applications with WPF
and XAML. Printing and creating documents is another important aspect of WPF covered in Chapter 37,
“Creating Documents with WPF.”

windows store Apps
Windows 8 started a new paradigm with touch-first Windows Store apps. With desktop applications the
user usually gets a menu and a toolbar, and receives a chrome with the application to see what he can do
next. Windows Store apps have the focus on the content. Chrome should be minimized to tasks the user
can do with the content, and not on different options he has. The focus is on the current task, and not what
the user might do next. This way the user remembers the application based on its content. Content and no
chrome is a buzz phrase with this technology.

c01.indd 19 30-01-2014 19:56:57

20 ❘ CHAPTER 1 .NET ArchiTEcTurE

Windows Store apps can be written with C# and XAML, using the Windows Runtime with a subset of the
.NET Framework. Windows Store apps offer huge new opportunities. The major disadvantage is that they
are only available with Windows 8 and newer Windows operating systems.

noTE Chapter 31, “Windows Runtime”, Chapter 38, “Windows Store Apps: UI,” and
Chapter 39, “Windows Store Apps: Contracts and Devices,” cover creating Windows
Store apps.

windows services
A Windows Service (originally called an NT Service) is a program designed to run in the background
in Windows NT kernel based operating systems. Services are useful when you want a program to run
continuously and ready to respond to events without having been explicitly started by the user. A good
example is the World Wide Web Service on web servers, which listens for web requests from clients.

It is easy to write services in C#. .NET Framework base classes are available in the System.ServiceProcess
namespace that handles many of the boilerplate tasks associated with services. In addition, Visual Studio .NET
enables you to create a C# Windows Service project, which uses C# source code for a basic Windows Service.
Chapter 27, “Windows Services,” explores how to write C# Windows Services.

windows Communication Foundation
One communication technology fused between client and server is the ASP.NET Web API. The ASP.NET
Web API is easy to use but doesn’t offer a lot of features such as offered from the SOAP protocol.

Windows Communication Foundation (WCF) is a feature-rich technology to offer a broad set
of communication options. With WCF you can use a REST-based communication but also a SOAP-based
communication with all the features used by standards-based web services such as security, transactions,
duplex and one-way communication, routing, discovery, and so on. WCF provides you with the ability to
build your service one time and then expose this service in a multitude of ways (under different protocols
even) by just making changes within a configuration file. You can find that WCF is a powerful new way to
connect disparate systems. Chapter 43, “Windows Communication Foundation,” covers this in detail. You can
also find WCF-based technologies such as Message Queuing with WCF in Chapter 47, “Message Queuing.”

ASP.NET Web API
A new way for simple communication to occur between the client and the server — a REST-based style — is
offered with the ASP.NET Web API. This new framework is based on ASP.NET MVC and makes use of
controllers and routing. The client can receive JSON or Atom data based on the Open Data specification.

The features of this new API make it easy to consume from web clients using JavaScript and also from
Windows Store apps.

noTE The ASP.NET Web API is covered in Chapter 44, “ASP.NET Web API.”

windows workflow Foundation
The Windows Workflow Foundation (WF) was introduced with the release of the .NET Framework 3.0
but had a good overhaul that many find more approachable now since .NET 4. There are some smaller
improvements with .NET 4.5 as well. You can find that Visual Studio 2013 has greatly improved for
working with WF and makes it easier to construct your workflows and write expressions using C# (instead
of VB in the previous edition). You can also find a new state machine designer and new activities.

c01.indd 20 30-01-2014 19:56:57

The Role of C# in the .NET Enterprise Architecture ❘ 21

noTE WF is covered in Chapter 45, “Windows Workflow Foundation.”

THE RoLE oF C# in THE .nET EnTERPRisE ARCHiTECTuRE
New technologies are coming at a fast pace. What should you use for enterprise applications? There are
many aspects that influence the decision. For example, what about the existing applications that have been
developed with current technology knowledge of the developers. Can you integrate new features with
legacy applications? Depending on the maintenance required, maybe it makes sense to rebuild some existing
applications for easier use of new features. Usually, legacy and new can coexist for many years to come.
What is the requirement for the client systems? Can the .NET Framework be upgraded to version 4.5, or is
2.0 a requirement? Or is .NET not available on the client?

There are many decisions to make, and .NET gives many options. You can use .NET on the client with
Windows Forms, WPF, or Windows 8-style apps. You can use .NET on the web server hosted with IIS and
the ASP.NET Runtime with ASP.NET Web Forms or ASP.NET MVC. Services can run within
IIS, and you can host the services from within Windows Services. C# presents an outstanding opportunity
for organizations interested in building robust, n-tiered client-server applications.

When combined with ADO.NET, C# has the capability to quickly and generically access data stores such
as SQL Server or other databases with data providers. The ADO.NET Entity Framework can be an easy
way to map database relations to object hierarchies. This is not only possible with SQL Server, but also
many different databases where an Entity Framework provider is offered. The returned data can be easily
manipulated using the ADO.NET object model or LINQ and automatically rendered as XML or JSON for
transport across an office intranet.

After a database schema has been established for a new project, C# presents an excellent medium for
implementing a layer of data access objects, each of which could provide insertion, updates, and deletion
access to a different database table.

Because it’s the first component-based C language, C# is a great language for implementing a business object
tier, too. It encapsulates the messy plumbing for intercomponent communication, leaving developers free
to focus on gluing their data access objects together in methods that accurately enforce their organizations’
business rules.

To create an enterprise application with C#, you create a class library project for the data access objects and
another for the business objects. While developing, you can use Console projects to test the methods on your
classes. Fans of extreme programming can build Console projects that can be executed automatically from
batch files to unit test that working code has not been broken.

On a related note, C# and .NET will probably influence the way you physically package your reusable
classes. In the past, many developers crammed a multitude of classes into a single physical component
because this arrangement made deployment a lot easier; if there were a versioning problem, you knew just
where to look. Because deploying .NET components involves simply copying files into directories, developers
can now package their classes into more logical, discrete components without encountering “DLL Hell.”

Last, but not least, ASP.NET pages coded in C# constitute an excellent medium for user interfaces. Because
ASP.NET pages compile, they execute quickly. Because they can be debugged in the Visual Studio 2013 IDE,
they are robust. Because they support full-scale language features such as early binding, inheritance, and
modularization, ASP.NET pages coded in C# are tidy and easily maintained.

After the hype of SOA and service-based programming, nowadays using services has becoming the norm.
The new hype is cloud-based programming, with Windows Azure as Microsoft’s offering. You can run
.NET applications in a range from ASP.NET Web Forms, ASP.NET Web API, or WCF either on on-premise
servers or in the cloud. Clients can make use of HTML 5 for a broad reach or make use of WPF or Windows
Store apps for rich functionality. Still with new technologies and options, .NET has a prosperous life.

c01.indd 21 30-01-2014 19:56:58

22 ❘ CHAPTER 1 .NET ArchiTEcTurE

summARy
This chapter covered a lot of ground, briefly reviewing important aspects of the .NET Framework and C#’s
relationship to it. It started by discussing how all languages that target .NET are compiled into Microsoft
Intermediate Language (IL) before this is compiled and executed by the Common Language Runtime (CLR).
This chapter also discussed the roles of the following features of .NET in the compilation and execution
process:

➤➤ Assemblies and .NET base classes

➤➤ COM components

➤➤ JIT compilation

➤➤ Application domains

➤➤ Garbage collection

Figure 1-4 provides an overview of how these features come into play during compilation and execution.

FiguRE 1-4

ASSEMBLY
containing IL

CODE

COMPILATION

EXECUTION

Language
Interoperability

through CTS
and CLS

VB.NET
Source Code

.NET base
classes

Assemblies
loaded

CLR ORGANIZES:

C# Source
Code

ASSEMBLY
containing IL

CODE

JIT
compilation

Security
permissions
granted

Memory type
safety checked

Creates App
Domain

Garbage collector
cleans up sources

PROCESS

Application domain

CODE EXECUTES
HERE COM interop

services

legacy COM
component

You learned about the characteristics of IL, particularly its strong data typing and object orientation, and
how these characteristics influence the languages that target .NET, including C#. You also learned how
the strongly typed nature of IL enables language interoperability, as well as CLR services such as garbage
collection and security. There was also a focus on the Common Language Specification (CLS) and the
Common Type System (CTS) to help deal with language interoperability.

Finally, you learned how C# can be used as the basis for applications built on several .NET technologies,
including ASP.NET and WPF.

Chapter 2 discusses how to write code in C#.

c01.indd 22 30-01-2014 19:56:59

Core C#
wHAT’s in THis CHAPTER?

➤➤ Declaring variables
➤➤ Initialization and scope of variables
➤➤ Predefi ned C# data types
➤➤ Dictating execution fl ow within a C# program using conditional

statements, loops, and jump statements
➤➤ Enumerations
➤➤ Namespaces
➤➤ The Main() method
➤➤ Basic command-line C# compiler options
➤➤ Using System.Console to perform console I/O
➤➤ Using internal comments and documentation features
➤➤ Preprocessor directives
➤➤ Guidelines and conventions for good programming in C#

wRox.Com CodE downloAds FoR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ ArgsExample.cs
➤➤ DoubleMain.cs
➤➤ ElseIf.cs
➤➤ First.cs
➤➤ MathClient.cs
➤➤ MathLibrary.cs
➤➤ NestedFor.cs
➤➤ Scope.cs

2

c02.indd 23 30-01-2014 20:04:48

24 ❘ CHAPTER 2 Core C#

➤➤ ScopeBad.cs
➤➤ ScopeTest2.cs
➤➤ StringExample.cs
➤➤ Var.cs

FundAmEnTAl C#
Now that you understand more about what C# can do, you will want to learn how to use it. This chapter
gives you a good start in that direction by providing a basic understanding of the fundamentals of C#
programming, which is built on in subsequent chapters. By the end of this chapter, you will know enough
C# to write simple programs (though without using inheritance or other object-oriented features, which are
covered in later chapters).

YouR FiRsT C# PRogRAm
Let’s start by compiling and running the simplest possible C# program — a simple console app consisting of
a class that writes a message to the screen.

noTE Later chapters present a number of code samples. The most common technique
for writing C# programs is to use Visual Studio 2012 to generate a basic project
and add your own code to it. However, because the aim of Part I is to teach the C#
language, we are going to keep things simple and avoid relying on Visual Studio 2012
until Chapter 17, “Visual Studio 2012.” Instead, we present the code as simple files that
you can type in using any text editor and compile from the command line.

The Code
Type the following into a text editor (such as Notepad), and save it with a .cs extension (for example,
First.cs). The Main() method is shown here (for more information, see “The Main Method” section later
in this chapter):

using System;

namespace Wrox
{
 public class MyFirstClass
 {
 static void Main()
 {
 Console.WriteLine("Hello from Wrox.");
 Console.ReadLine();
 return;
 }
 }
}

Compiling and Running the Program
You can compile this program by simply running the C# command-line compiler (csc.exe) against the
source file, like this:

csc First.cs

c02.indd 24 30-01-2014 20:04:48

Your First C# Program ❘ 25

If you want to compile code from the command line using the csc command, you should be aware that the .NET
command-line tools, including csc, are available only if certain environment variables have been set up. Depending
on how you installed .NET (and Visual Studio), this may or may not be the case on your machine.

noTE If you do not have the environment variables set up, you have two options: The
first is to run the batch file %Microsoft Visual Studio 2013%\Common7\Tools\
vsvars32.bat from the command prompt before running csc, where %Microsoft
Visual Studio 2013% is the folder to which Visual Studio 2013 has been installed.
The second, and easier, way is to use the Visual Studio 2013 command prompt instead
of the usual command prompt window. To find the Visual Studio 2013 command
prompt from the Start menu, select Programs ➪ Microsoft Visual Studio 2013 ➪Visual
Studio Tools. It is simply a command prompt window that automatically runs
vsvars32.bat when it opens.

Compiling the code produces an executable file named First.exe, which you can run from the command
line or from Windows Explorer like any other executable. Give it a try:

csc First.cs
Microsoft (R) Visual C# Compiler version 12.0.21005.1
for C# 5.0
Copyright (C) Microsoft Corporation. All rights reserved.

First.exe
Hello from Wrox.

A Closer look
First, a few general comments about C# syntax. In C#, as in other C-style languages, most statements end
in a semicolon (;) and can continue over multiple lines without needing a continuation character. Statements
can be joined into blocks using curly braces ({}). Single-line comments begin with two forward slash
characters (//), and multiline comments begin with a slash and an asterisk (/*) and end with
the same combination reversed (*/). In these aspects, C# is identical to C++ and Java but different from
Visual Basic. It is the semicolons and curly braces that give C# code such a different visual appearance
from Visual Basic code. If your background is predominantly Visual Basic, take extra care to remember
the semicolon at the end of every statement. Omitting this is usually the biggest single cause of compilation
errors among developers new to C-style languages. Another thing to remember is that C# is case sensitive.
That means the variables named myVar and MyVar are two different variables.

The first few lines in the previous code example are related to namespaces (mentioned later in this
chapter), which is a way to group together associated classes. The namespace keyword declares the
namespace with which your class should be associated. All code within the braces that follow it is regarded
as being within that namespace. The using statement specifies a namespace that the compiler should look
at to find any classes that are referenced in your code but aren’t defined in the current namespace. This
serves the same purpose as the import statement in Java and the using namespace statement in C++.

using System;

namespace Wrox
{

The reason for the presence of the using statement in the First.cs file is that you are going to use a library
class, System.Console. The using System statement enables you to refer to this class simply as Console
(and similarly for any other classes in the System namespace). Without using, you would have to fully
qualify the call to the Console.WriteLine method like this:

System.Console.WriteLine("Hello from Wrox.");

c02.indd 25 30-01-2014 20:04:49

26 ❘ CHAPTER 2 Core C#

The standard System namespace is where the most commonly used .NET types reside. It is important
to realize that everything you do in C# depends on the .NET base classes. In this case, you are using the
Console class within the System namespace to write to the console window. C# has no built-in keywords of
its own for input or output; it is completely reliant on the .NET classes.

noTE Because almost every C# program uses classes in the System namespace, we
will assume that a using System; statement is present in the file for all code snippets
in this chapter.

Next, you declare a class called MyFirstClass. However, because it has been placed in a namespace called
Wrox, the fully qualified name of this class is Wrox.MyFirstCSharpClass:

 class MyFirstCSharpClass
 {

All C# code must be contained within a class. The class declaration consists of the class keyword, followed
by the class name and a pair of curly braces. All code associated with the class should be placed between
these braces.

Next, you declare a method called Main(). Every C# executable (such as console applications, Windows
applications, and Windows services) must have an entry point — the Main() method (note the capital M):

 public static void Main()
 {

The method is called when the program is started. This method must return either nothing (void) or an
integer (int). Note the format of method definitions in C#:

 [modifiers] return_type MethodName([parameters])
{
 // Method body. NB. This code block is pseudo-code.
}

Here, the first square brackets represent certain optional keywords. Modifiers are used to specify certain
features of the method you are defining, such as from where the method can be called. In this case, you
have two modifiers: public and static. The public modifier means that the method can be accessed from
anywhere, so it can be called from outside your class. The static modifier indicates that the method does
not operate on a specific instance of your class and therefore is called without first instantiating the class.
This is important because you are creating an executable rather than a class library. You set the return type
to void, and in the example you don’t include any parameters.

Finally, we come to the code statements themselves:

 Console.WriteLine("Hello from Wrox.");
 Console.ReadLine();
 return;

In this case, you simply call the WriteLine() method of the System.Console class to write a line of text to
the console window. WriteLine() is a static method, so you don’t need to instantiate a Console object
before calling it.

Console.ReadLine() reads user input. Adding this line forces the application to wait for the carriage-return
key to be pressed before the application exits, and, in the case of Visual Studio 2013, the console window
disappears.

You then call return to exit from the method (also, because this is the Main() method, you exit the
program as well). You specified void in your method header, so you don’t return any values.

Now that you have had a taste of basic C# syntax, you are ready for more detail. Because it is virtually
impossible to write any nontrivial program without variables, we will start by looking at variables in C#.

c02.indd 26 30-01-2014 20:04:49

www.allitebooks.com

http://www.allitebooks.org

Variables ❘ 27

VARiAblEs
You declare variables in C# using the following syntax:

datatype identifier;

For example:

int i;

This statement declares an int named i. The compiler won’t actually let you use this variable in an
expression until you have initialized it with a value.

After it has been declared, you can assign a value to the variable using the assignment operator, =:

i = 10;

You can also declare the variable and initialize its value at the same time:

int i = 10;

If you declare and initialize more than one variable in a single statement, all the variables will be of the same
data type:

int x = 10, y =20; // x and y are both ints

To declare variables of different types, you need to use separate statements. You cannot assign different data
types within a multiple-variable declaration:

int x = 10;
bool y = true; // Creates a variable that stores true or false
int x = 10, bool y = true; // This won't compile!

Notice the // and the text after it in the preceding examples. These are comments. The // character
sequence tells the compiler to ignore the text that follows on this line because it is included for a human to
better understand the program, not part of the program itself. We further explain comments in code later in
this chapter.

initialization of Variables
Variable initialization demonstrates an example of C#’s emphasis on safety. Briefly, the C# compiler requires
that any variable be initialized with some starting value before you refer to that variable in an operation.
Most modern compilers will flag violations of this as a warning, but the ever-vigilant C# compiler treats
such violations as errors. This prevents you from unintentionally retrieving junk values from memory
left over from other programs.

C# has two methods for ensuring that variables are initialized before use:

➤➤ Variables that are fields in a class or struct, if not initialized explicitly, are by default zeroed out when
they are created (classes and structs are discussed later).

➤➤ Variables that are local to a method must be explicitly initialized in your code prior to any statements
in which their values are used. In this case, the initialization doesn’t have to happen when the variable
is declared, but the compiler checks all possible paths through the method and flags an error if it
detects any possibility of the value of a local variable being used before it is initialized.

For example, you can’t do the following in C#:

public static int Main()
{
 int d;
 Console.WriteLine(d); // Can't do this! Need to initialize d before use
 return 0;
}

c02.indd 27 30-01-2014 20:04:49

28 ❘ CHAPTER 2 Core C#

Notice that this code snippet demonstrates defining Main() so that it returns an int instead of void.

If you attempt to compile the preceding lines, you will receive this error message:

Use of unassigned local variable 'd'

Consider the following statement:

Something objSomething;

In C#, this line of code would create only a reference for a Something object, but this reference would not
yet actually refer to any object. Any attempt to call a method or property against this variable would result
in an error.

Instantiating a reference object in C# requires use of the new keyword. You create a reference as shown in
the previous example and then point the reference at an object allocated on the heap using the new keyword:

objSomething = new Something(); // This creates a Something on the heap

Type inference
Type inference makes use of the var keyword. The syntax for declaring the variable changes somewhat. The
compiler “infers” what the type of the variable is by what the variable is initialized to. For example:

int someNumber = 0;

becomes:

var someNumber = 0;

Even though someNumber is never declared as being an int, the compiler figures this out and someNumber is
an int for as long as it is in scope. Once compiled, the two preceding statements are equal.

Here is a short program to demonstrate:

using System;

namespace Wrox
{
 class Program
 {
 static void Main(string[] args)
 {
 var name = "Bugs Bunny";
 var age = 25;
 var isRabbit = true;

 Type nameType = name.GetType();
 Type ageType = age.GetType();
 Type isRabbitType = isRabbit.GetType();

 Console.WriteLine("name is type " + nameType.ToString());
 Console.WriteLine("age is type " + ageType.ToString());
 Console.WriteLine("isRabbit is type " + isRabbitType.ToString());
 }
 }
}

The output from this program is as follows:

name is type System.String
age is type System.Int32
isRabbit is type System.Bool

c02.indd 28 30-01-2014 20:04:49

Variables ❘ 29

There are a few rules that you need to follow:

➤➤ The variable must be initialized. Otherwise, the compiler doesn’t have anything from which to infer
the type.

➤➤ The initializer cannot be null.
➤➤ The initializer must be an expression.
➤➤ You can’t set the initializer to an object unless you create a new object in the initializer.

We examine this more closely in the discussion of anonymous types in Chapter 3, “Objects and Types.”

After the variable has been declared and the type inferred, the variable’s type cannot be changed. When
established, the variable’s type follows all the strong typing rules that any other variable type must follow.

Variable scope
The scope of a variable is the region of code from which the variable can be accessed. In general, the scope is
determined by the following rules:

➤➤ A field (also known as a member variable) of a class is in scope for as long as its containing class is in
scope.

➤➤ A local variable is in scope until a closing brace indicates the end of the block statement or method in
which it was declared.

➤➤ A local variable that is declared in a for, while, or similar statement is in scope in the body of that loop.

Scope Clashes for Local Variables
It’s common in a large program to use the same variable name for different variables in different parts of the
program. This is fine as long as the variables are scoped to completely different parts of the program so that
there is no possibility for ambiguity. However, bear in mind that local variables with the same name can’t be
declared twice in the same scope. For example, you can’t do this:

int x = 20;
// some more code
int x = 30;

Consider the following code sample:

using System;
namespace Wrox.ProCSharp.Basics
{
 public class ScopeTest
 {
 public static int Main()
 {
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine(i);
 } // i goes out of scope here
 // We can declare a variable named i again, because
 // there's no other variable with that name in scope
 for (int i = 9; i >= 0; i --)
 {
 Console.WriteLine(i);
 } // i goes out of scope here.
 return 0;
 }
 }
}

c02.indd 29 11-03-2014 16:42:57

30 ❘ CHAPTER 2 Core C#

This code simply prints out the numbers from 0 to 9, and then back again from 9 to 0, using two for loops.
The important thing to note is that you declare the variable i twice in this code, within the same method.
You can do this because i is declared in two separate loops, so each i variable is local to its own loop.

Here’s another example:

public static int Main()
{
 int j = 20;
 for (int i = 0; i < 10; i++)
 {
 int j = 30; // Can't do this — j is still in scope
 Console.WriteLine(j + i);
 }
 return 0;
}

If you try to compile this, you’ll get an error like the following:

ScopeTest.cs(12,15): error CS0136: A local variable named 'j' cannot be declared in
this scope because it would give a different meaning to 'j', which is already used
in a 'parent or current' scope to denote something else.

This occurs because the variable j, which is defined before the start of the for loop, is still in scope within the
for loop, and won’t go out of scope until the Main() method has finished executing. Although the second j
(the illegal one) is in the loop’s scope, that scope is nested within the Main() method’s scope. The compiler has
no way to distinguish between these two variables, so it won’t allow the second one to be declared.

Scope Clashes for Fields and Local Variables
In certain circumstances, however, you can distinguish between two identifiers with the same name
(although not the same fully qualified name) and the same scope, and in this case the compiler allows you to
declare the second variable. That’s because C# makes a fundamental distinction between variables that are
declared at the type level (fields) and variables that are declared within methods (local variables).

Consider the following code snippet:

using System;
namespace Wrox
{
 class ScopeTest2
 {
 static int j = 20;
 public static void Main()
 {
 int j = 30;
 Console.WriteLine(j);
 return;
 }
 }
}

This code will compile even though you have two variables named j in scope within the Main() method:
the j that was defined at the class level, and doesn’t go out of scope until the class is destroyed (when the
Main() method terminates and the program ends); and the j defined in Main(). In this case, the new
variable named j that you declare in the Main() method hides the class-level variable with the same name,
so when you run this code, the number 30 is displayed.

What if you want to refer to the class-level variable? You can actually refer to fields of a class or struct from
outside the object, using the syntax object.fieldname. In the previous example, you are accessing a static
field (you’ll learn what this means in the next section) from a static method, so you can’t use an instance of
the class; you just use the name of the class itself:

c02.indd 30 30-01-2014 20:04:49

Predefined Data Types ❘ 31

 ..
 public static void Main()
 {
 int j = 30;
 Console.WriteLine(j);
 Console.WriteLine(ScopeTest2.j);
 }
 ..

If you were accessing an instance field (a field that belongs to a specific instance of the class), you would need
to use the this keyword instead.

Constants
As the name implies, a constant is a variable whose value cannot be changed throughout its lifetime.
Prefixing a variable with the const keyword when it is declared and initialized designates that variable as a
constant:

const int a = 100; // This value cannot be changed.

Constants have the following characteristics:

➤➤ They must be initialized when they are declared; and after a value has been assigned, it can never be
overwritten.

➤➤ The value of a constant must be computable at compile time. Therefore, you can’t initialize a constant
with a value taken from a variable. If you need to do this, you must use a read-only field (this is
explained in Chapter 3).

➤➤ Constants are always implicitly static. However, notice that you don’t have to (and, in fact, are not
permitted to) include the static modifier in the constant declaration.

At least three advantages exist for using constants in your programs:

➤➤ Constants make your programs easier to read by replacing magic numbers and strings with readable
names whose values are easy to understand.

➤➤ Constants make your programs easier to modify. For example, assume that you have a
SalesTax constant in one of your C# programs, and that constant is assigned a value of 6 percent.
If the sales tax rate changes later, you can modify the behavior of all tax calculations simply by
assigning a new value to the constant; you don’t have to hunt through your code for the value .06 and
change each one, hoping you will find all of them.

➤➤ Constants help prevent mistakes in your programs. If you attempt to assign another value to
a constant somewhere in your program other than at the point where the constant is declared,
the compiler will flag the error.

PREdEFinEd dATA TYPEs
Now that you have seen how to declare variables and constants, let’s take a closer look at the data types
available in C#. As you will see, C# is much stricter about the types available and their definitions than some
other languages.

Value Types and Reference Types
Before examining the data types in C#, it is important to understand that C# distinguishes between two
categories of data type:

➤➤ Value types
➤➤ Reference types

c02.indd 31 30-01-2014 20:04:50

32 ❘ CHAPTER 2 Core C#

The next few sections look in detail at the syntax for value and reference types. Conceptually, the difference
is that a value type stores its value directly, whereas a reference type stores a reference to the value.

These types are stored in different places in memory; value types are stored in an area known as the stack,
and reference types are stored in an area known as the managed heap. It is important to be aware of
whether a type is a value type or a reference type because of the different effect each assignment has. For
example, int is a value type, which means that the following statement results in two locations in memory
storing the value 20:

// i and j are both of type int
i = 20;
j = i;

However, consider the following example. For this code, assume you have defined a class called Vector; and
that Vector is a reference type and has an int member variable called Value:

Vector x, y;
x = new Vector();
x.Value = 30; // Value is a field defined in Vector class
y = x;
Console.WriteLine(y.Value);
y.Value = 50;
Console.WriteLine(x.Value);

The crucial point to understand is that after executing this code, there is only one Vector object: x and y
both point to the memory location that contains this object. Because x and y are variables of a reference
type, declaring each variable simply reserves a reference — it doesn’t instantiate an object of the given type.
In neither case is an object actually created. To create an object, you have to use the new keyword, as shown.
Because x and y refer to the same object, changes made to x will affect y and vice versa. Hence, the code
will display 30 and then 50.

noTE C++ developers should note that this syntax is like a reference, not a pointer.
You use the . notation, not ->, to access object members. Syntactically, C# references
look more like C++ reference variables. However, behind the superficial syntax, the real
similarity is with C++ pointers.

If a variable is a reference, it is possible to indicate that it does not refer to any object by setting its value to null:

y = null;

If a reference is set to null, then clearly it is not possible to call any nonstatic member functions or fields
against it; doing so would cause an exception to be thrown at runtime.

In C#, basic data types such as bool and long are value types. This means that if you declare a bool
variable and assign it the value of another bool variable, you will have two separate bool values in memory.
Later, if you change the value of the original bool variable, the value of the second bool variable does not
change. These types are copied by value.

In contrast, most of the more complex C# data types, including classes that you yourself declare, are
reference types. They are allocated upon the heap, have lifetimes that can span multiple function calls, and
can be accessed through one or several aliases. The Common Language Runtime (CLR) implements an
elaborate algorithm to track which reference variables are still reachable and which have been orphaned.
Periodically, the CLR will destroy orphaned objects and return the memory that they once occupied back to
the operating system. This is done by the garbage collector.

C# has been designed this way because high performance is best served by keeping primitive types (such as
int and bool) as value types, and larger types that contain many fields (as is usually the case with classes)
as reference types. If you want to define your own type as a value type, you should declare it as a struct.

c02.indd 32 30-01-2014 20:04:50

Predefined Data Types ❘ 33

CTs Types
As mentioned in Chapter 1, “.NET Architecture,” the basic predefined types recognized by C# are not
intrinsic to the language but are part of the .NET Framework. For example, when you declare an int in C#,
you are actually declaring an instance of a .NET struct, System.Int32. This may sound like a small point,
but it has a profound significance: It means that you can treat all the primitive data types syntactically, as if
they were classes that supported certain methods. For example, to convert an int i to a string, you can
write the following:

string s = i.ToString();

It should be emphasized that behind this syntactical convenience, the types really are stored as primitive
types, so absolutely no performance cost is associated with the idea that the primitive types are notionally
represented by .NET structs.

The following sections review the types that are recognized as built-in types in C#. Each type is listed, along
with its definition and the name of the corresponding .NET type (CTS type). C# has 15 predefined types, 13
value types, and 2 (string and object) reference types.

Predefined Value Types
The built-in CTS value types represent primitives, such as integer and floating-point numbers, character, and
Boolean types.

Integer Types
C# supports eight predefined integer types, shown in the following table.

nAmE CTs TYPE dEsCRiPTion RAngE (min:mAx)

sbyte System.SByte 8-bit signed integer -128:127 (-27:27–1)

short System.Int16 16-bit signed integer -32,768:32,767 (-215:215–1)

int System.Int32 32-bit signed integer -2,147,483,648:2,147,483,647 (-231:231–1)

long System.Int64 64-bit signed integer -9,223,372,036,854,775,808:
9,223,372,036,854,775,807 (-263:263–1)

byte System.Byte 8-bit unsigned integer 0:255 (0:28–1)

ushort System.UInt16 16-bit unsigned integer 0:65,535 (0:216–1)

uint System.UInt32 32-bit unsigned integer 0:4,294,967,295 (0:232–1)

ulong System.UInt64 64-bit unsigned integer 0:18,446,744,073,709,551,615 (0:264–1)

Some C# types have the same names as C++ and Java types but have different definitions. For example,
in C# an int is always a 32-bit signed integer. In C++ an int is a signed integer, but the number of bits is
platform-dependent (32 bits on Windows). In C#, all data types have been defined in a platform-independent
manner to allow for the possible future porting of C# and .NET to other platforms.

A byte is the standard 8-bit type for values in the range 0 to 255 inclusive. Be aware that, in keeping with
its emphasis on type safety, C# regards the byte type and the char type as completely distinct, and any
programmatic conversions between the two must be explicitly requested. Also be aware that unlike the
other types in the integer family, a byte type is by default unsigned. Its signed version bears the special
name sbyte.

With .NET, a short is no longer quite so short; it is now 16 bits long. The int type is 32 bits long. The
long type reserves 64 bits for values. All integer-type variables can be assigned values in decimal or hex
notation. The latter requires the 0x prefix:

long x = 0x12ab;

c02.indd 33 30-01-2014 20:04:50

34 ❘ CHAPTER 2 Core C#

If there is any ambiguity about whether an integer is int, uint, long, or ulong, it will default to an int.
To specify which of the other integer types the value should take, you can append one of the following
characters to the number:

uint ui = 1234U;
long l = 1234L;
ulong ul = 1234UL;

You can also use lowercase u and l, although the latter could be confused with the integer 1 (one).

Floating-Point Types
Although C# provides a plethora of integer data types, it supports floating-point types as well.

nAmE CTs TYPE dEsCRiPTion

signiFiCAnT

FiguREs RAngE (APPRoximATE)

float System.Single 32-bit, single-precision
floating point

7 ±1.5 × 10245 to ±3.4 × 1038

double System.Double 64-bit, double-precision
floating point

15/16 ±5.0 × 102324 to ±1.7 × 10308

The float data type is for smaller floating-point values, for which less precision is required. The double
data type is bulkier than the float data type but offers twice the precision (15 digits).

If you hard-code a non-integer number (such as 12.3), the compiler will normally assume that you want the
number interpreted as a double. To specify that the value is a float, append the character F (or f) to it:

float f = 12.3F;

The Decimal Type
The decimal type represents higher-precision floating-point numbers, as shown in the following table.

nAmE CTs TYPE dEsCRiPTion
signiFiCAnT

FiguREs
RAngE (APPRoximATE)

decimal System.Decimal 128-bit, high-precision
decimal notation

28 ±1.0 × 10228 to ± 7.9 × 1028

One of the great things about the CTS and C# is the provision of a dedicated decimal type for financial
calculations. How you use the 28 digits that the decimal type provides is up to you. In other words, you can
track smaller dollar amounts with greater accuracy for cents or larger dollar amounts with more rounding
in the fractional portion. Bear in mind, however, that decimal is not implemented under the hood as a
primitive type, so using decimal has a performance effect on your calculations.

To specify that your number is a decimal type rather than a double, float, or an integer, you can append
the M (or m) character to the value, as shown here:

decimal d = 12.30M;

The Boolean Type
The C# bool type is used to contain Boolean values of either true or false.

nAmE CTs TYPE dEsCRiPTion
signiFiCAnT

FiguREs
RAngE (APPRoximATE)

bool System.Boolean Represents true or false NA true or false

c02.indd 34 30-01-2014 20:04:50

Predefined Data Types ❘ 35

You cannot implicitly convert bool values to and from integer values. If a variable (or a function return
type) is declared as a bool, you can only use values of true and false. You will get an error if you try to
use zero for false and a nonzero value for true.

The Character Type
For storing the value of a single character, C# supports the char data type.

nAmE CTs TYPE VAluEs

char System.Char Represents a single 16-bit (Unicode) character

Literals of type char are signified by being enclosed in single quotation marks — for example, 'A'. If you try
to enclose a character in double quotation marks, the compiler will treat this as a string and throw an error.

As well as representing chars as character literals, you can represent them with four-digit hex Unicode values
(for example, '\u0041'), as integer values with a cast (for example, (char)65), or as hexadecimal
values (for example,'\x0041'). You can also represent them with an escape sequence, as shown in the
following table.

EsCAPE sEquEnCE CHARACTER

\' Single quotation mark

\" Double quotation mark

\\ Backslash

\0 Null

\a Alert

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Tab character

\v Vertical tab

Predefined Reference Types
C# supports two predefined reference types, object and string, described in the following table.

nAmE CTs TYPE dEsCRiPTion

object System.Object The root type. All other types (including value types) in the CTS are
derived from object.

string System.String Unicode character string

The object Type
Many programming languages and class hierarchies provide a root type, from which all other objects in the
hierarchy are derived. C# and .NET are no exception. In C#, the object type is the ultimate parent type
from which all other intrinsic and user-defined types are derived. This means that you can use the object
type for two purposes:

➤➤ You can use an object reference to bind to an object of any particular subtype. For example, in
Chapter 7, “Operators and Casts,” you will see how you can use the object type to box a value
object on the stack to move it to the heap; object references are also useful in reflection, when code
must manipulate objects whose specific types are unknown.

c02.indd 35 30-01-2014 20:04:51

36 ❘ CHAPTER 2 Core C#

➤➤ The object type implements a number of basic, general-purpose methods, which include Equals(),
GetHashCode(), GetType(), and ToString(). Responsible user-defined classes may need to provide
replacement implementations of some of these methods using an object-oriented technique known as
overriding, which is discussed in Chapter 4, “Inheritance.” When you override ToString(), for example,
you equip your class with a method for intelligently providing a string representation of itself. If you
don’t provide your own implementations for these methods in your classes, the compiler will pick up the
implementations in object, which may or may not be correct or sensible in the context of your classes.

We examine the object type in more detail in subsequent chapters.

The string Type
C# recognizes the string keyword, which under the hood is translated to the .NET class, System.String.
With it, operations like string concatenation and string copying are a snap:

string str1 = "Hello ";
string str2 = "World";
string str3 = str1 + str2; // string concatenation

Despite this style of assignment, string is a reference type. Behind the scenes, a string object is allocated
on the heap, not the stack; and when you assign one string variable to another string, you get two references
to the same string in memory. However, string differs from the usual behavior for reference types. For
example, strings are immutable. Making changes to one of these strings creates an entirely new string
object, leaving the other string unchanged. Consider the following code:

using System;
class StringExample
{
 public static int Main()
 {
 string s1 = "a string";
 string s2 = s1;
 Console.WriteLine("s1 is " + s1);
 Console.WriteLine("s2 is " + s2);
 s1 = "another string";
 Console.WriteLine("s1 is now " + s1);
 Console.WriteLine("s2 is now " + s2);
 return 0;
 }
}

The output from this is as follows:

s1 is a string
s2 is a string
s1 is now another string
s2 is now a string

Changing the value of s1 has no effect on s2, contrary to what you’d expect with a reference type! What’s
happening here is that when s1 is initialized with the value a string, a new string object is allocated on the
heap. When s2 is initialized, the reference points to this same object, so s2 also has the value a string.
However, when you now change the value of s1, instead of replacing the original value, a new object is
allocated on the heap for the new value. The s2 variable will still point to the original object, so its value
is unchanged. Under the hood, this happens as a result of operator overloading, a topic that is explored in
Chapter 7. In general, the string class has been implemented so that its semantics follow what you would
normally intuitively expect for a string.

String literals are enclosed in double quotation marks ("."); if you attempt to enclose a string in single quotation
marks, the compiler will take the value as a char and throw an error. C# strings can contain the same Unicode
and hexadecimal escape sequences as chars. Because these escape sequences start with a backslash, you can’t use
this character unescaped in a string. Instead, you need to escape it with two backslashes (\\):

string filepath = "C:\\ProCSharp\\First.cs";

c02.indd 36 30-01-2014 20:04:51

www.allitebooks.com

http://www.allitebooks.org

Flow Control ❘ 37

Even if you are confident that you can remember to do this all the time, typing all those double backslashes can
prove annoying. Fortunately, C# gives you an alternative. You can prefix a string literal with the at character (@)
and all the characters after it will be treated at face value; they won’t be interpreted as escape sequences:

string filepath = @"C:\ProCSharp\First.cs";

This even enables you to include line breaks in your string literals:

string jabberwocky = @"'Twas brillig and the slithy toves
Did gyre and gimble in the wabe.";

In this case, the value of jabberwocky would be this:

'Twas brillig and the slithy toves
Did gyre and gimble in the wabe.

Flow ConTRol
This section looks at the real nuts and bolts of the language: the statements that allow you to control the flow
of your program rather than execute every line of code in the order it appears in the program.

Conditional statements
Conditional statements allow you to branch your code depending on whether certain conditions are met
or the value of an expression. C# has two constructs for branching code: the if statement, which allows
you to test whether a specific condition is met; and the switch statement, which allows you to compare an
expression with several different values.

The if Statement
For conditional branching, C# inherits the C and C++ if.else construct. The syntax should be fairly
intuitive for anyone who has done any programming with a procedural language:

if (condition)
 statement(s)
else
 statement(s)

If more than one statement is to be executed as part of either condition, these statements need to be joined
together into a block using curly braces ({.}). (This also applies to other C# constructs where statements
can be joined into a block, such as the for and while loops):

bool isZero;
if (i == 0)
{
 isZero = true;
 Console.WriteLine("i is Zero");
}
else
{
 isZero = false;
 Console.WriteLine("i is Non-zero");
}

If you want to, you can use an if statement without a final else statement. You can also combine else if
clauses to test for multiple conditions:

using System;
namespace Wrox
{
 class MainEntryPoint
 {

c02.indd 37 30-01-2014 20:04:51

38 ❘ CHAPTER 2 Core C#

 static void Main(string[] args)
 {
 Console.WriteLine("Type in a string");
 string input;
 input = Console.ReadLine();
 if (input == "")
 {
 Console.WriteLine("You typed in an empty string.");
 }
 else if (input.Length < 5)
 {
 Console.WriteLine("The string had less than 5 characters.");
 }
 else if (input.Length < 10)
 {
 Console.WriteLine("The string had at least 5 but less than 10
 Characters.");
 }
 Console.WriteLine("The string was " + input);
 }
 }

There is no limit to how many else ifs you can add to an if clause.

Note that the previous example declares a string variable called input, gets the user to enter text at the
command line, feeds this into input, and then tests the length of this string variable. The code also shows
how easy string manipulation can be in C#. To find the length of input, for example, use input.Length.

Another point to note about if is that you don’t need to use the braces if there’s only one statement in the
conditional branch:

if (i == 0) Let's add some brackets here.
 Console.WriteLine("i is Zero"); // This will only execute if i == 0
Console.WriteLine("i can be anything"); // Will execute whatever the
 // value of i

However, for consistency, many programmers prefer to use curly braces whenever they use an if statement.

The if statements presented also illustrate some of the C# operators that compare values. Note in particular
that C# uses == to compare variables for equality. Do not use = for this purpose. A single = is used to assign
values.

In C#, the expression in the if clause must evaluate to a Boolean. It is not possible to test an integer directly
(returned from a function, for example). You have to convert the integer that is returned to a Boolean true
or false, for example, by comparing the value with zero or null:

if (DoSomething() != 0)
{
 // Non-zero value returned
}
else
{
 // Returned zero
}

The switch Statement
The switch / case statement is good for selecting one branch of execution from a set of mutually exclusive
ones. It takes the form of a switch argument followed by a series of case clauses. When the expression
in the switch argument evaluates to one of the values beside a case clause, the code immediately following
the case clause executes. This is one example for which you don’t need to use curly braces to join statements
into blocks; instead, you mark the end of the code for each case using the break statement. You can also

c02.indd 38 30-01-2014 20:04:51

Flow Control ❘ 39

include a default case in the switch statement, which will execute if the expression evaluates to none of
the other cases. The following switch statement tests the value of the integerA variable:

switch (integerA)
{
 case 1:
 Console.WriteLine("integerA =1");
 break;
 case 2:
 Console.WriteLine("integerA =2");
 break;
 case 3:
 Console.WriteLine("integerA =3");
 break;
 default:
 Console.WriteLine("integerA is not 1,2, or 3");
 break;
}

Note that the case values must be constant expressions; variables are not permitted.

Though the switch.case statement should be familiar to C and C++ programmers, C#’s switch.case is
a bit safer than its C++ equivalent. Specifically, it prohibits fall-through conditions in almost all cases. This
means that if a case clause is fired early on in the block, later clauses cannot be fired unless you use a goto
statement to indicate that you want them fired, too. The compiler enforces this restriction by flagging every
case clause that is not equipped with a break statement as an error:

Control cannot fall through from one case label ('case 2:') to another

Although it is true that fall-through behavior is desirable in a limited number of situations, in the vast
majority of cases it is unintended and results in a logical error that’s hard to spot. Isn’t it better to code for
the norm rather than for the exception?

By getting creative with goto statements, you can duplicate fall-through functionality in your switch.
cases. However, if you find yourself really wanting to, you probably should reconsider your approach. The
following code illustrates both how to use goto to simulate fall-through, and how messy the resultant code
can be:

// assume country and language are of type string
switch(country)
{
 case "America":
 CallAmericanOnlyMethod();
 goto case "Britain";
 case "France":
 language = "French";
 break;
 case "Britain":
 language = "English";
 break;
}

There is one exception to the no-fall-through rule, however, in that you can fall through from one case to
the next if that case is empty. This allows you to treat two or more cases in an identical way (without the
need for goto statements):

switch(country)
{
 case "au":
 case "uk":
 case "us":
 language = "English";
 break;

c02.indd 39 30-01-2014 20:04:51

40 ❘ CHAPTER 2 Core C#

 case "at":
 case "de":
 language = "German";
 break;
}

One intriguing point about the switch statement in C# is that the order of the cases doesn’t matter — you
can even put the default case first! As a result, no two cases can be the same. This includes different
constants that have the same value, so you can’t, for example, do this:

// assume country is of type string
const string england = "uk";
const string britain = "uk";
switch(country)
{
 case england:
 case britain: // This will cause a compilation error.
 language = "English";
 break;
}

The previous code also shows another way in which the switch statement is different in C# compared to
C++: In C#, you are allowed to use a string as the variable being tested.

loops
C# provides four different loops (for, while, do. . .while, and foreach) that enable you to execute a block
of code repeatedly until a certain condition is met.

The for Loop
C# for loops provide a mechanism for iterating through a loop whereby you test whether a particular
condition holds true before you perform another iteration. The syntax is

for (initializer; condition; iterator):
 statement(s)

where:

➤➤ The initializer is the expression evaluated before the first loop is executed (usually initializing a local
variable as a loop counter).

➤➤ The condition is the expression checked before each new iteration of the loop (this must evaluate to
true for another iteration to be performed).

➤➤ The iterator is an expression evaluated after each iteration (usually incrementing the loop counter).

The iterations end when the condition evaluates to false.

The for loop is a so-called pretest loop because the loop condition is evaluated before the loop statements
are executed; therefore, the contents of the loop won’t be executed at all if the loop condition is false.

The for loop is excellent for repeating a statement or a block of statements for a predetermined number
of times. The following example demonstrates typical usage of a for loop. It will write out all the integers
from 0 to 99:

for (int i = 0; i < 100; i=i+1) // This is equivalent to
 // For i = 0 To 99 in VB.
{
 Console.WriteLine(i);
}

Here, you declare an int called i and initialize it to zero. This will be used as the loop counter. You then
immediately test whether it is less than 100. Because this condition evaluates to true, you execute the code

c02.indd 40 30-01-2014 20:04:52

Flow Control ❘ 41

in the loop, displaying the value 0. You then increment the counter by one, and walk through the process
again. Looping ends when i reaches 100.

Actually, the way the preceding loop is written isn’t quite how you would normally write it. C# has a
shorthand for adding 1 to a variable, so instead of i = i + 1, you can simply write i++:

for (int i = 0; i < 100; i++)
{
 // etc.
 }

You can also make use of type inference for the iteration variable i in the preceding example. Using type
inference the loop construct would be as follows:

for (var i = 0; i < 100; i++)
..

It’s not unusual to nest for loops so that an inner loop executes once completely for each iteration of an outer
loop. This approach is typically employed to loop through every element in a rectangular multidimensional
array. The outermost loop loops through every row, and the inner loop loops through every column in a
particular row. The following code displays rows of numbers. It also uses another Console method, Console.
Write(), which does the same thing as Console.WriteLine() but doesn’t send a carriage return to the
output:

using System;
namespace Wrox
{
 class MainEntryPoint
 {
 static void Main(string[] args)
 {
 // This loop iterates through rows
 for (int i = 0; i < 100; i+=10)
 {
 // This loop iterates through columns
 for (int j = i; j < i + 10; j++)
 {
 Console.Write(" " + j);
 }
 Console.WriteLine();
 }
 }
 }
}

Although j is an integer, it is automatically converted to a string so that the concatenation can take place.

The preceding sample results in this output:

 0 1 2 3 4 5 6 7 8 9
 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29
 30 31 32 33 34 35 36 37 38 39
 40 41 42 43 44 45 46 47 48 49
 50 51 52 53 54 55 56 57 58 59
 60 61 62 63 64 65 66 67 68 69
 70 71 72 73 74 75 76 77 78 79
 80 81 82 83 84 85 86 87 88 89
 90 91 92 93 94 95 96 97 98 99

It is technically possible to evaluate something other than a counter variable in a for loop’s test condition,
but it is certainly not typical. It is also possible to omit one (or even all) of the expressions in the for loop.
In such situations, however, you should consider using the while loop.

c02.indd 41 30-01-2014 20:04:52

42 ❘ CHAPTER 2 Core C#

The while Loop
Like the for loop, while is a pretest loop. The syntax is similar, but while loops take only one expression:

while(condition)
 statement(s);

Unlike the for loop, the while loop is most often used to repeat a statement or a block of statements for a
number of times that is not known before the loop begins. Usually, a statement inside the while loop’s body will
set a Boolean flag to false on a certain iteration, triggering the end of the loop, as in the following example:

bool condition = false;
while (!condition)
{
 // This loop spins until the condition is true.
 DoSomeWork();
 condition = CheckCondition(); // assume CheckCondition() returns a bool
}

The do. . .while Loop
The do...while loop is the post-test version of the while loop. This means that the loop’s test condition
is evaluated after the body of the loop has been executed. Consequently, do...while loops are useful for
situations in which a block of statements must be executed at least one time, as in this example:

bool condition;
do
{
 // This loop will at least execute once, even if Condition is false.
 MustBeCalledAtLeastOnce();
 condition = CheckCondition();
} while (condition);

The foreach Loop
The foreach loop enables you to iterate through each item in a collection. For now, don’t worry about
exactly what a collection is (it is explained fully in Chapter 10, “Collections”); just understand that it is
an object that represents a list of objects. Technically, to count as a collection, it must support an interface
called IEnumerable. Examples of collections include C# arrays, the collection classes in the System.
Collection namespaces, and user-defined collection classes. You can get an idea of the syntax of foreach
from the following code, if you assume that arrayOfInts is (unsurprisingly) an array of ints:

foreach (int temp in arrayOfInts)
{
 Console.WriteLine(temp);
}

Here, foreach steps through the array one element at a time. With each element, it places the value of the
element in the int variable called temp and then performs an iteration of the loop.

Here is another situation where type inference can be used. The foreach loop would become the following:

foreach (var temp in arrayOfInts)
..

temp would be inferred to int because that is what the collection item type is.

An important point to note with foreach is that you can’t change the value of the item in the collection
(temp in the preceding code), so code such as the following will not compile:

foreach (int temp in arrayOfInts)
{
 temp++;
 Console.WriteLine(temp);
}

c02.indd 42 30-01-2014 20:04:52

Enumerations ❘ 43

If you need to iterate through the items in a collection and change their values, you must use a for loop
instead.

Jump statements
C# provides a number of statements that enable you to jump immediately to another line in the program.
The first of these is, of course, the notorious goto statement.

The goto Statement
The goto statement enables you to jump directly to another specified line in the program, indicated by a
label (this is just an identifier followed by a colon):

goto Label1;
 Console.WriteLine("This won't be executed");
Label1:
 Console.WriteLine("Continuing execution from here");

A couple of restrictions are involved with goto. You can’t jump into a block of code such as a for loop, you
can’t jump out of a class, and you can’t exit a finally block after try.catch blocks (Chapter 16, “Errors
and Exceptions,” looks at exception handling with try.catch.finally).

The reputation of the goto statement probably precedes it, and in most circumstances, its use is sternly
frowned upon. In general, it certainly doesn’t conform to good object-oriented programming practices.

The break Statement
You have already met the break statement briefly — when you used it to exit from a case in a switch
statement. In fact, break can also be used to exit from for, foreach, while, or do..while loops. Control
will switch to the statement immediately after the end of the loop.

If the statement occurs in a nested loop, control switches to the end of the innermost loop. If the break occurs
outside of a switch statement or a loop, a compile-time error will occur.

The continue Statement
The continue statement is similar to break, and must also be used within a for, foreach, while, or do..
while loop. However, it exits only from the current iteration of the loop, meaning that execution will restart
at the beginning of the next iteration of the loop, rather than outside the loop altogether.

The return Statement
The return statement is used to exit a method of a class, returning control to the caller of the method. If
the method has a return type, return must return a value of this type; otherwise, if the method returns
void, you should use return without an expression.

EnumERATions
An enumeration is a user-defined integer type. When you declare an enumeration, you specify a set of
acceptable values that instances of that enumeration can contain. Not only that, but you can also give the
values user-friendly names. If, somewhere in your code, you attempt to assign a value that is not in the
acceptable set of values to an instance of that enumeration, the compiler will flag an error.

Creating an enumeration can save you a lot of time and headaches in the long run. At least three benefits
exist to using enumerations instead of plain integers:

➤➤ As mentioned, enumerations make your code easier to maintain by helping to ensure that your
variables are assigned only legitimate, anticipated values.

c02.indd 43 30-01-2014 20:04:52

44 ❘ CHAPTER 2 Core C#

➤➤ Enumerations make your code clearer by allowing you to refer to integer values by descriptive names
rather than by obscure “magic” numbers.

➤➤ Enumerations make your code easier to type, too. When you begin to assign a value to an instance of an
enumerated type, the Visual Studio .NET IDE will, through IntelliSense, pop up a list box of acceptable
values to save you some keystrokes and remind you of the possible options.

You can define an enumeration as follows:

public enum TimeOfDay
{
 Morning = 0,
 Afternoon = 1,
 Evening = 2
}

In this case, you use an integer value to represent each period of the day in the enumeration. You can now
access these values as members of the enumeration. For example, TimeOfDay.Morning will return the value
0. You will typically use this enumeration to pass an appropriate value into a method and iterate through the
possible values in a switch statement:

class EnumExample
{
 public static int Main()
 {
 WriteGreeting(TimeOfDay.Morning);
 return 0;
 }
 static void WriteGreeting(TimeOfDay timeOfDay)
 {
 switch(timeOfDay)
 {
 case TimeOfDay.Morning:
 Console.WriteLine("Good morning!");
 break;
 case TimeOfDay.Afternoon:
 Console.WriteLine("Good afternoon!");
 break;
 case TimeOfDay.Evening:
 Console.WriteLine("Good evening!");
 break;
 default:
 Console.WriteLine("Hello!");
 break;
 }
 }
}

The real power of enums in C# is that behind the scenes they are instantiated as structs derived from the
base class, System.Enum. This means it is possible to call methods against them to perform some useful
tasks. Note that because of the way the .NET Framework is implemented, no performance loss is associated
with treating the enums syntactically as structs. In practice, after your code is compiled, enums will exist as
primitive types, just like int and float.

You can retrieve the string representation of an enum, as in the following example, using the earlier
TimeOfDay enum:

TimeOfDay time = TimeOfDay.Afternoon;
Console.WriteLine(time.ToString());

This returns the string Afternoon.

Alternatively, you can obtain an enum value from a string:

TimeOfDay time2 = (TimeOfDay) Enum.Parse(typeof(TimeOfDay), "afternoon", true);
Console.WriteLine((int)time2);

c02.indd 44 30-01-2014 20:04:52

Namespaces ❘ 45

This code snippet illustrates both obtaining an enum value from a string and converting to an integer. To
convert from a string, you need to use the static Enum.Parse() method, which, as shown, takes three
parameters. The first is the type of enum you want to consider. The syntax is the keyword typeof followed
by the name of the enum class in brackets. (Chapter 7 explores the typeof operator in more detail.) The
second parameter is the string to be converted, and the third parameter is a bool indicating whether case
should be ignored when doing the conversion. Finally, note that Enum.Parse() actually returns an object
reference — you need to explicitly convert this to the required enum type (this is an example of an unboxing
operation). For the preceding code, this returns the value 1 as an object, corresponding to the enum value of
TimeOfDay.Afternoon. Converting explicitly to an int, this produces the value 1 again.

Other methods on System.Enum do things such as return the number of values in an enum definition or list
the names of the values. Full details are in the MSDN documentation.

nAmEsPACEs
As you saw earlier in this chapter, namespaces provide a way to organize related classes and other types.
Unlike a file or a component, a namespace is a logical, rather than a physical, grouping. When you define
a class in a C# file, you can include it within a namespace definition. Later, when you define another class
that performs related work in another file, you can include it within the same namespace, creating a logical
grouping that indicates to other developers using the classes how they are related and used:

namespace CustomerPhoneBookApp
{
 using System;
 public struct Subscriber
 {
 // Code for struct here..
 }
}

Placing a type in a namespace effectively gives that type a long name, consisting of the type’s namespace as a
series of names separated with periods (.), terminating with the name of the class. In the preceding example,
the full name of the Subscriber struct is CustomerPhoneBookApp.Subscriber. This enables distinct
classes with the same short name to be used within the same program without ambiguity. This full name is
often called the fully qualified name.

You can also nest namespaces within other namespaces, creating a hierarchical structure for your types:

namespace Wrox
{
 namespace ProCSharp
 {
 namespace Basics
 {
 class NamespaceExample
 {
 // Code for the class here..
 }
 }
 }
}

Each namespace name is composed of the names of the namespaces it resides within, separated with periods,
starting with the outermost namespace and ending with its own short name. Therefore, the full name for
the ProCSharp namespace is Wrox.ProCSharp, and the full name of the NamespaceExample class is Wrox.
ProCSharp.Basics.NamespaceExample.

You can use this syntax to organize the namespaces in your namespace definitions too, so the previous code
could also be written as follows:

namespace Wrox.ProCSharp.Basics
{

c02.indd 45 30-01-2014 20:04:52

46 ❘ CHAPTER 2 Core C#

 class NamespaceExample
 {
 // Code for the class here..
 }
}

Note that you are not permitted to declare a multipart namespace nested within another namespace.

Namespaces are not related to assemblies. It is perfectly acceptable to have different namespaces in the same
assembly or to define types in the same namespace in different assemblies.

Defining the namespace hierarchy should be planned out prior to the start of a project. Generally the accepted
format is CompanyName.ProjectName.SystemSection. In the previous example, Wrox is the company
name, ProCSharp is the project, and in the case of this chapter, Basics is the section.

The using directive
Obviously, namespaces can grow rather long and tiresome to type, and the capability to indicate a
particular class with such specificity may not always be necessary. Fortunately, as noted earlier in this
chapter, C# allows you to abbreviate a class’s full name. To do this, list the class’s namespace at the top of
the file, prefixed with the using keyword. Throughout the rest of the file, you can refer to the types in the
namespace simply by their type names:

using System;
using Wrox.ProCSharp;

As remarked earlier, virtually all C# source code will have the statement using System; simply because so
many useful classes supplied by Microsoft are contained in the System namespace.

If two namespaces referenced by using statements contain a type of the same name, you need to use the
full (or at least a longer) form of the name to ensure that the compiler knows which type to access. For
example, suppose classes called NamespaceExample exist in both the Wrox.ProCSharp.Basics and Wrox
.ProCSharp.OOP namespaces. If you then create a class called Test in the Wrox.ProCSharp namespace,
and instantiate one of the NamespaceExample classes in this class, you need to specify which of these two
classes you’re talking about:

using Wrox.ProCSharp.OOP;
using Wrox.ProCSharp.Basics;
namespace Wrox.ProCSharp
{
 class Test
 {
 public static int Main()
 {
 Basics.NamespaceExample nSEx = new Basics.NamespaceExample();
 // do something with the nSEx variable.
 return 0;
 }
 }
|

noTE Because using statements occur at the top of C# files, in the same place that
C and C++ list #include statements, it’s easy for programmers moving from C++ to
C# to confuse namespaces with C++-style header files. Don’t make this mistake. The
using statement does no physical linking between files, and C# has no equivalent to
C++ header files.

Your organization will probably want to spend some time developing a namespace convention so that
its developers can quickly locate functionality that they need and so that the names of the organization’s

c02.indd 46 30-01-2014 20:04:53

The Main() Method ❘ 47

homegrown classes won’t conflict with those in off-the-shelf class libraries. Guidelines on establishing your
own namespace convention, along with other naming recommendations, are discussed later in this chapter.

namespace Aliases
Another use of the using keyword is to assign aliases to classes and namespaces. If you need to refer to
a very long namespace name several times in your code but don’t want to include it in a simple using
statement (for example, to avoid type name conflicts), you can assign an alias to the namespace. The syntax
for this is as follows:

using alias = NamespaceName;

The following example (a modified version of the previous example) assigns the alias Introduction to
the Wrox.ProCSharp.Basics namespace and uses this to instantiate a NamespaceExample object, which
is defined in this namespace. Notice the use of the namespace alias qualifier (::). This forces the search to
start with the Introduction namespace alias. If a class called Introduction had been introduced in the
same scope, a conflict would occur. The :: operator enables the alias to be referenced even if the conflict
exists. The NamespaceExample class has one method, GetNamespace(), which uses the GetType() method
exposed by every class to access a Type object representing the class’s type. You use this object to return a
name of the class’s namespace:

using System;
using Introduction = Wrox.ProCSharp.Basics;
class Test
{
 public static int Main()
 {
 Introduction::NamespaceExample NSEx =
 new Introduction::NamespaceExample();
 Console.WriteLine(NSEx.GetNamespace());
 return 0;
 }
}
namespace Wrox.ProCSharp.Basics
{
 class NamespaceExample
 {
 public string GetNamespace()
 {
 return this.GetType().Namespace;
 }
 }
}

THE mAin() mETHod
As described at the beginning of this chapter, C# programs start execution at a method named Main(). This
must be a static method of a class (or struct), and must have a return type of either int or void.

Although it is common to specify the public modifier explicitly, because by definition the method must be
called from outside the program, it doesn’t actually matter what accessibility level you assign to the entry-
point method — it will run even if you mark the method as private.

multiple main() methods
When a C# console or Windows application is compiled, by default the compiler looks for exactly one
Main() method in any class matching the signature that was just described and makes that class method

c02.indd 47 30-01-2014 20:04:53

48 ❘ CHAPTER 2 Core C#

the entry point for the program. If there is more than one Main() method, the compiler returns an error
message. For example, consider the following code called DoubleMain.cs:

using System;
namespace Wrox
{
 class Client
 {
 public static int Main()
 {
 MathExample.Main();
 return 0;
 }
 }
 class MathExample
 {
 static int Add(int x, int y)
 {
 return x + y;
 }
 public static int Main()
 {
 int i = Add(5,10);
 Console.WriteLine(i);
 return 0;
 }
 }
}

This contains two classes, both of which have a Main() method. If you try to compile this code in the usual
way, you will get the following errors:

csc DoubleMain.cs
Microsoft (R) Visual C# 2010 Compiler version 4.0.20506.1
Copyright (C) Microsoft Corporation. All rights reserved.
DoubleMain.cs(7,25): error CS0017: Program
 'DoubleMain.exe' has more than one entry point defined:
 'Wrox.Client.Main()'. Compile with /main to specify the type that
 contains the entry point.
DoubleMain.cs(21,25): error CS0017: Program
 'DoubleMain.exe' has more than one entry point defined:
 'Wrox.MathExample.Main()'. Compile with /main to specify the type that
 contains the entry point.

However, you can explicitly tell the compiler which of these methods to use as the entry point for the
program by using the /main switch, together with the full name (including namespace) of the class to which
the Main() method belongs:

csc DoubleMain.cs /main:Wrox.MathExample

Passing Arguments to main()
The examples so far have shown only the Main() method without any parameters. However, when the program
is invoked, you can get the CLR to pass any command-line arguments to the program by including a parameter.
This parameter is a string array, traditionally called args (although C# will accept any name). The program can
use this array to access any options passed through the command line when the program is started.

The following example, ArgsExample.cs, loops through the string array passed in to the Main() method
and writes the value of each option to the console window:

using System;
namespace Wrox
{

c02.indd 48 30-01-2014 20:04:53

More on Compiling C# Files ❘ 49

 class ArgsExample
 {
 public static int Main(string[] args)
 {
 for (int i = 0; i < args.Length; i++)
 {
 Console.WriteLine(args[i]);
 }
 return 0;
 }
 }
}

You can compile this as usual using the command line. When you run the compiled executable, you can pass
in arguments after the name of the program, as shown here:

ArgsExample /a /b /c
/a
/b
/c

moRE on ComPiling C# FilEs
You have seen how to compile console applications using csc.exe, but what about other types of
applications? What if you want to reference a class library? The full set of compilation options for the C#
compiler is, of course, detailed in the MSDN documentation, but we list here the most important options.

To answer the first question, you can specify what type of file you want to create using the /target switch,
often abbreviated as /t. This can be one of those shown in the following table.

oPTion ouTPuT

/t:exe A console application (the default)

/t:library A class library with a manifest

/t:module A component without a manifest

/t:winexe A Windows application (without a console window)

If you want a nonexecutable file (such as a DLL) to be loadable by the .NET runtime, you must compile it
as a library. If you compile a C# file as a module, no assembly will be created. Although modules cannot be
loaded by the runtime, they can be compiled into another manifest using the /addmodule switch.

Another option to be aware of is /out. This enables you to specify the name of the output file produced by the
compiler. If the /out option isn’t specified, the compiler bases the name of the output file on the name of the
input C# file, adding an extension according to the target type (for example, exe for a Windows or console
application, or dll for a class library). Note that the /out and /t, or /target, options must precede the
name of the file you want to compile.

If you want to reference types in assemblies that aren’t referenced by default, you can use the /reference
or /r switch, together with the path and filename of the assembly. The following example demonstrates how
you can compile a class library and then reference that library in another assembly. It consists of two files:

➤➤ The class library
➤➤ A console application, which will call a class in the library

The first file is called MathLibrary.cs and contains the code for your DLL. To keep things simple, it
contains just one (public) class, MathLib, with a single method that adds two ints:

namespace Wrox
{
 public class MathLib
 {

c02.indd 49 30-01-2014 20:04:53

50 ❘ CHAPTER 2 Core C#

 public int Add(int x, int y)
 {
 return x + y;
 }
 }
}

You can compile this C# file into a .NET DLL using the following command:

csc /t:library MathLibrary.cs

The console application, MathClient.cs, will simply instantiate this object and call its Add() method,
displaying the result in the console window:

using System;
namespace Wrox
{
 class Client
 {
 public static void Main()
 {
 MathLib mathObj = new MathLib();
 Console.WriteLine(mathObj.Add(7,8));
 }
 }
}

To compile this code, use the /r switch to point at or reference the newly compiled DLL:

csc MathClient.cs /r:MathLibrary.dll

You can then run it as normal just by entering MathClient at the command prompt. This displays the
number 15 — the result of your addition.

ConsolE i/o
By this point, you should have a basic familiarity with C#’s data types, as well as some knowledge
of how the thread-of-control moves through a program that manipulates those data types. In this chapter,
you have also used several of the Console class’s static methods used for reading and writing data. Because
these methods are so useful when writing basic C# programs, this section briefly reviews them in more
detail.

To read a line of text from the console window, you use the Console.ReadLine() method. This reads an
input stream (terminated when the user presses the Return key) from the console window and returns
the input string. There are also two corresponding methods for writing to the console, which you have
already used extensively:

➤➤ Console.Write() — Writes the specified value to the console window.
➤➤ Console.WriteLine() — Writes the specified value to the console window but adds a newline

character at the end of the output.

Various forms (overloads) of these methods exist for all the predefined types (including object), so in most
cases you don’t have to convert values to strings before you display them.

For example, the following code lets the user input a line of text and then displays that text:

string s = Console.ReadLine();
Console.WriteLine(s);

Console.WriteLine() also allows you to display formatted output in a way comparable to C’s printf()
function. To use WriteLine() in this way, you pass in a number of parameters. The first is a string
containing markers in curly braces where the subsequent parameters will be inserted into the text. Each

c02.indd 50 30-01-2014 20:04:53

Console I/O ❘ 51

marker contains a zero-based index for the number of the parameter in the following list. For example, {0}
represents the first parameter in the list. Consider the following code:

int i = 10;
int j = 20;
Console.WriteLine("{0} plus {1} equals {2}", i, j, i + j);

The preceding code displays the following:

10 plus 20 equals 30

You can also specify a width for the value, and justify the text within that width, using positive values for
right justification and negative values for left justification. To do this, use the format {n,w}, where n is the
parameter index and w is the width value:

int i = 940;
int j = 73;
Console.WriteLine(" {0,4}\n+{1,4}\n — — \n {2,4}", i, j, i + j);

The result of the preceding is as follows:

 940
+ 73
 — —
 1013

Finally, you can also add a format string, together with an optional precision value. It is not possible to
provide a complete list of potential format strings because, as you will see in Chapter 9, “Strings and Regular
Expressions,” you can define your own format strings. However, the main ones in use for the predefined types
are described in the following table.

sTRing dEsCRiPTion

C Local currency format

D Decimal format. Converts an integer to base 10, and pads with leading zeros if a precision
specifier is given.

E Scientific (exponential) format. The precision specifier sets the number of decimal places (6 by
default). The case of the format string (e or E) determines the case of the exponential symbol.

F Fixed-point format; the precision specifier controls the number of decimal places. Zero is acceptable.

G General format. Uses E or F formatting, depending on which is more compact.

N Number format. Formats the number with commas as the thousands separators — for example 32,767.44.

P Percent format

X Hexadecimal format. The precision specifier can be used to pad with leading zeros.

Note that the format strings are normally case insensitive, except for e/E.

If you want to use a format string, you should place it immediately after the marker that specifies the
parameter number and field width, and separate it with a colon. For example, to format a decimal value as
currency for the computer’s locale, with precision to two decimal places, you would use C2:

decimal i = 940.23m;
decimal j = 73.7m;
Console.WriteLine(" {0,9:C2}\n+{1,9:C2}\n — — — — -\n {2,9:C2}", i, j, i + j);

The output of this in U.S. currency is as follows:

 $940.23
+ $73.70
 — — — — -
 $1,013.93

c02.indd 51 30-01-2014 20:04:53

52 ❘ CHAPTER 2 Core C#

As a final trick, you can also use placeholder characters instead of these format strings to map out
formatting, as shown in this example:

double d = 0.234;
Console.WriteLine("{0:#.00}", d);

This displays as .23 because the # symbol is ignored if there is no character in that place, and zeros are
either replaced by the character in that position if there is one or printed as a zero.

using CommEnTs
The next topic — adding comments to your code — looks very simple on the surface, but can be complex.
Comments can be beneficial to the other developers that may look at your code. Also, as you will see, they
can be used to generate documentation of your code for developers to use.

internal Comments within the source Files
As noted earlier in this chapter, C# uses the traditional C-type single-line (//..) and multiline (/* .. */)
comments:

// This is a single-line comment
/* This comment
 spans multiple lines. */

Everything in a single-line comment, from the // to the end of the line, is ignored by the compiler, and
everything from an opening /* to the next */ in a multiline comment combination is ignored. Obviously,
you can’t include the combination */ in any multiline comments, because this will be treated as the end of
the comment.

It is possible to put multiline comments within a line of code:

Console.WriteLine(/* Here's a comment! */ "This will compile.");

Use inline comments with care because they can make code hard to read. However, they can be useful when
debugging if, for example, you temporarily want to try running the code with a different value somewhere:

DoSomething(Width, /*Height*/ 100);

Comment characters included in string literals are, of course, treated like normal characters:

string s = "/* This is just a normal string .*/";

xml documentation
In addition to the C-type comments, illustrated in the preceding section, C# has a very neat feature that
we want to highlight: the capability to produce documentation in XML format automatically from special
comments. These comments are single-line comments but begin with three slashes (///) instead of the usual
two. Within these comments, you can place XML tags containing documentation of the types and type
members in your code.

The tags in the following table are recognized by the compiler.

TAg dEsCRiPTion

<c> Marks up text within a line as code — for example, <c>int i = 10;</c>.

<code> Marks multiple lines as code

<example> Marks up a code example

<exception> Documents an exception class. (Syntax is verified by the compiler.)

<include> Includes comments from another documentation file. (Syntax is verified by the compiler.)

<list> Inserts a list into the documentation

c02.indd 52 30-01-2014 20:04:54

Using Comments ❘ 53

TAg dEsCRiPTion

<para> Gives structure to text

<param> Marks up a method parameter. (Syntax is verified by the compiler.)

<paramref> Indicates that a word is a method parameter. (Syntax is verified by the compiler.)

<permission> Documents access to a member. (Syntax is verified by the compiler.)

<remarks> Adds a description for a member

<returns> Documents the return value for a method

<see> Provides a cross-reference to another parameter. (Syntax is verified by the compiler.)

<seealso> Provides a “see also” section in a description. (Syntax is verified by the compiler.)

<summary> Provides a short summary of a type or member

<typeparam> Used in the comment of a generic type to describe a type parameter

<typeparamref> The name of the type parameter

<value> Describes a property

To see how this works, add some XML comments to the MathLibrary.cs file from the previous “More on
Compiling C# Files” section. You will add a <summary> element for the class and for its Add() method, and
a <returns> element and two <param> elements for the Add() method:

// MathLib.cs
namespace Wrox
{
 ///<summary>
 /// Wrox.Math class.
 /// Provides a method to add two integers.
 ///</summary>
 public class MathLib
 {
 ///<summary>
 /// The Add method allows us to add two integers.
 ///</summary>
 ///<returns>Result of the addition (int)</returns>
 ///<param name="x">First number to add</param>
 ///<param name="y">Second number to add</param>
 public int Add(int x, int y)
 {
 return x + y;
 }
 }
}

The C# compiler can extract the XML elements from the special comments and use them to generate an
XML file. To get the compiler to generate the XML documentation for an assembly, you specify the /doc
option when you compile, together with the name of the file you want to be created:

csc /t:library /doc:MathLibrary.xml MathLibrary.cs

The compiler will throw an error if the XML comments do not result in a well-formed XML document.

The preceding will generate an XML file named Math.xml, which looks like this:

<?xml version="1.0"?>
<doc>
 <assembly>
 <name>MathLibrary</name>
 </assembly>
 <members>
 <member name="T:Wrox.MathLibrary">
 <summary>

c02.indd 53 30-01-2014 20:04:54

54 ❘ CHAPTER 2 Core C#

 Wrox.MathLibrary class.
 Provides a method to add two integers.
 </summary>
 </member>
 <member name=
 "M:Wrox.MathLibrary.Add(System.Int32,System.Int32)">
 <summary>
 The Add method allows us to add two integers.
 </summary>
 <returns>Result of the addition (int)</returns>
 <param name="x">First number to add</param>
 <param name="y">Second number to add</param>
 </member>
 </members>
</doc>

Notice how the compiler has actually done some work for you; it has created an <assembly> element and
added a <member> element for each type or member of a type in the file. Each <member> element has a name
attribute with the full name of the member as its value, prefixed by a letter that indicates whether it is a type
(T:), field (F:), or member (M:).

THE C# PREPRoCEssoR diRECTiVEs
Besides the usual keywords, most of which you have now encountered, C# also includes a number of
commands that are known as preprocessor directives. These commands are never actually translated to
any commands in your executable code, but they affect aspects of the compilation process. For example,
you can use preprocessor directives to prevent the compiler from compiling certain portions of your code. You
might do this if you are planning to release two versions of it — a basic version and an enterprise version
that will have more features. You could use preprocessor directives to prevent the compiler from compiling
code related to the additional features when you are compiling the basic version of the software. In another
scenario, you might have written bits of code that are intended to provide you with debugging information.
You probably don’t want those portions of code compiled when you actually ship the software.

The preprocessor directives are all distinguished by beginning with the # symbol.

noTE C++ developers will recognize the preprocessor directives as something that
plays an important part in C and C++. However, there aren’t as many preprocessor
directives in C#, and they are not used as often. C# provides other mechanisms, such
as custom attributes, that achieve some of the same effects as C++ directives. Also, note
that C# doesn’t actually have a separate preprocessor in the way that C++ does. The
so-called preprocessor directives are actually handled by the compiler. Nevertheless, C#
retains the name preprocessor directive because these commands give the impression of
a preprocessor.

The following sections briefly cover the purposes of the preprocessor directives.

#define and #undef
#define is used like this:

#define DEBUG

This tells the compiler that a symbol with the given name (in this case DEBUG) exists. It is a little bit like
declaring a variable, except that this variable doesn’t really have a value — it just exists. Also, this symbol
isn’t part of your actual code; it exists only for the benefit of the compiler, while the compiler is compiling
the code, and has no meaning within the C# code itself.

c02.indd 54 30-01-2014 20:04:54

The C# Preprocessor Directives ❘ 55

#undef does the opposite, and removes the definition of a symbol:

#undef DEBUG

If the symbol doesn’t exist in the first place, then #undef has no effect. Similarly, #define has no effect if a
symbol already exists.

You need to place any #define and #undef directives at the beginning of the C# source file, before any code
that declares any objects to be compiled.

#define isn’t much use on its own, but when combined with other preprocessor directives, especially #if, it
becomes very powerful.

noTE Incidentally, you might notice some changes from the usual C# syntax.
Preprocessor directives are not terminated by semicolons and they normally constitute the
only command on a line. That’s because for the preprocessor directives, C# abandons its
usual practice of requiring commands to be separated by semicolons. If the compiler sees a
preprocessor directive, it assumes that the next command is on the next line.

#if, #elif, #else, and #endif
These directives inform the compiler whether to compile a block of code. Consider this method:

 int DoSomeWork(double x)
 {
 // do something
 #if DEBUG
 Console.WriteLine("x is " + x);
 #endif
 }

This code will compile as normal except for the Console.WriteLine() method call contained inside the #if
clause. This line will be executed only if the symbol DEBUG has been defined by a previous #define directive.
When the compiler finds the #if directive, it checks to see whether the symbol concerned exists, and compiles
the code inside the #if clause only if the symbol does exist. Otherwise, the compiler simply ignores all the
code until it reaches the matching #endif directive. Typical practice is to define the symbol DEBUG while you
are debugging and have various bits of debugging-related code inside #if clauses. Then, when you are close to
shipping, you simply comment out the #define directive, and all the debugging code miraculously disappears,
the size of the executable file gets smaller, and your end users don’t get confused by seeing debugging
information. (Obviously, you would do more testing to ensure that your code still works without DEBUG
defined.) This technique is very common in C and C++ programming and is known as conditional compilation.

The #elif (=else if) and #else directives can be used in #if blocks and have intuitively obvious
meanings. It is also possible to nest #if blocks:

#define ENTERPRISE
#define W2K
// further on in the file
#if ENTERPRISE
 // do something
 #if W2K
 // some code that is only relevant to enterprise
 // edition running on W2K
 #endif
#elif PROFESSIONAL
 // do something else
#else
 // code for the leaner version
#endif

c02.indd 55 30-01-2014 20:04:54

56 ❘ CHAPTER 2 Core C#

noTE Unlike the situation in C++, using #if is not the only way to compile code
conditionally. C# provides an alternative mechanism through the Conditional
attribute, which is explored in Chapter 15, “Reflection.”

#if and #elif support a limited range of logical operators too, using the operators !, ==, !=, and ||. A
symbol is considered to be true if it exists and false if it doesn’t. For example:

#if W2K && (ENTERPRISE==false) // if W2K is defined but ENTERPRISE isn't

#warning and #error
Two other very useful preprocessor directives are #warning and #error. These will respectively cause
a warning or an error to be raised when the compiler encounters them. If the compiler sees a #warning
directive, it displays whatever text appears after the #warning to the user, after which compilation
continues. If it encounters a #error directive, it displays the subsequent text to the user as if it were a
compilation error message and then immediately abandons the compilation, so no IL code will be generated.

You can use these directives as checks that you haven’t done anything silly with your #define statements;
you can also use the #warning statements to remind yourself to do something:

#if DEBUG && RELEASE
 #error "You've defined DEBUG and RELEASE simultaneously!"
#endif
#warning "Don't forget to remove this line before the boss tests the code!"
 Console.WriteLine("*I hate this job.*");

#region and #endregion
The #region and #endregion directives are used to indicate that a certain block of code is to be treated as
a single block with a given name, like this:

#region Member Field Declarations
 int x;
 double d;
 Currency balance;
#endregion

This doesn’t look that useful by itself; it doesn’t affect the compilation process in any way. However, the real
advantage is that these directives are recognized by some editors, including the Visual Studio .NET editor.
These editors can use the directives to lay out your code better on the screen. You will see how this works in
Chapter 17.

#line
The #line directive can be used to alter the filename and line number information that is output by the
compiler in warnings and error messages. You probably won’t want to use this directive very often. It’s
most useful when you are coding in conjunction with another package that alters the code you are typing
in before sending it to the compiler. In this situation, line numbers, or perhaps the filenames reported by
the compiler, won’t match up to the line numbers in the files or the filenames you are editing. The #line
directive can be used to restore the match. You can also use the syntax #line default to restore the line to
the default line numbering:

#line 164 "Core.cs" // We happen to know this is line 164 in the file
 // Core.cs, before the intermediate
 // package mangles it.
// later on
#line default // restores default line numbering

c02.indd 56 30-01-2014 20:04:54

C# Programming Guidelines ❘ 57

#pragma
The #pragma directive can either suppress or restore specific compiler warnings. Unlike command-line
options, the #pragma directive can be implemented on the class or method level, enabling fine-grained control
over what warnings are suppressed and when. The following example disables the “field not used” warning
and then restores it after the MyClass class compiles:

#pragma warning disable 169
public class MyClass
{
 int neverUsedField;
}
#pragma warning restore 169

C# PRogRAmming guidElinEs
This final section of the chapter supplies the guidelines you need to bear in mind when writing C# programs.
These are guidelines that most C# developers will use. By using these guidelines other developers will feel
comfortable working with your code.

Rules for identifiers
This section examines the rules governing what names you can use for variables, classes, methods, and
so on. Note that the rules presented in this section are not merely guidelines: they are enforced by the C#
compiler.

Identifiers are the names you give to variables, to user-defined types such as classes and structs, and to
members of these types. Identifiers are case sensitive, so, for example, variables named interestRate and
InterestRate would be recognized as different variables. Following are a few rules determining what
identifiers you can use in C#:

➤➤ They must begin with a letter or underscore, although they can contain numeric characters.
➤➤ You can’t use C# keywords as identifiers.

The following table lists the C# reserved keywords.

abstract event new struct

as explicit null switch

base extern object this

bool false operator throw

break finally out true

byte fixed override try

case float params typeof

catch for private uint

char foreach protected ulong

checked goto public unchecked

class if readonly unsafe

const implicit ref ushort

continue in return using

decimal int sbyte virtual

default interface sealed void

(continues)

c02.indd 57 30-01-2014 20:04:54

58 ❘ CHAPTER 2 Core C#

abstract event new struct

delegate internal short volatile

do is sizeof while

double lock stackalloc

else long static

enum namespace string

If you need to use one of these words as an identifier (for example, if you are accessing a class written in
a different language), you can prefix the identifier with the @ symbol to indicate to the compiler that what
follows should be treated as an identifier, not as a C# keyword (so abstract is not a valid identifier, but @
abstract is).

Finally, identifiers can also contain Unicode characters, specified using the syntax \uXXXX, where XXXX
is the four-digit hex code for the Unicode character. The following are some examples of valid identifiers:

➤➤ Name

➤➤ Überfluß

➤➤ _Identifier

➤➤ \u005fIdentifier

The last two items in this list are identical and interchangeable (because 005f is the Unicode code for the
underscore character), so obviously these identifiers couldn’t both be declared in the same scope. Note that
although syntactically you are allowed to use the underscore character in identifiers, this isn’t recommended
in most situations. That’s because it doesn’t follow the guidelines for naming variables that Microsoft has
written to ensure that developers use the same conventions, making it easier to read one another’s code.

usage Conventions
In any development language, certain traditional programming styles usually arise. The styles are not part
of the language itself but rather are conventions — for example, how variables are named or how certain
classes, methods, or functions are used. If most developers using that language follow the same conventions,
it makes it easier for different developers to understand each other’s code — which in turn generally helps
program maintainability. Conventions do, however, depend on the language and the environment. For
example, C++ developers programming on the Windows platform have traditionally used the prefixes psz
or lpsz to indicate strings — char *pszResult; char *lpszMessage; — but on Unix machines it’s more
common not to use any such prefixes: char *Result; char *Message;.

You’ll notice from the sample code in this book that the convention in C# is to name variables without
prefixes: string Result; string Message;.

noTE The convention by which variable names are prefixed with letters that represent
the data type is known as Hungarian notation. It means that other developers reading
the code can immediately tell from the variable name what data type the variable
represents. Hungarian notation is widely regarded as redundant in these days of smart
editors and IntelliSense.

Whereas with many languages usage conventions simply evolved as the language was used, with C# and
the whole of the .NET Framework, Microsoft has written very comprehensive usage guidelines, which are
detailed in the .NET/C# MSDN documentation. This means that, right from the start, .NET programs have
a high degree of interoperability in terms of developers being able to understand code. The guidelines have

(continued)

c02.indd 58 30-01-2014 20:04:55

C# Programming Guidelines ❘ 59

also been developed with the benefit of some 20 years’ hindsight in object-oriented programming. Judging
by the relevant newsgroups, the guidelines have been carefully thought out and are well received in the
developer community. Hence, the guidelines are well worth following.

Note, however, that the guidelines are not the same as language specifications. You should try to follow the
guidelines when you can. Nevertheless, you won’t run into problems if you have a good reason for not doing
so — for example, you won’t get a compilation error because you don’t follow these guidelines. The general
rule is that if you don’t follow the usage guidelines, you must have a convincing reason. Departing from
the guidelines should be a conscious decision rather than simply not bothering. Also, if you compare the
guidelines with the samples in the remainder of this book, you’ll notice that in numerous examples we have
chosen not to follow the conventions. That’s usually because the conventions are designed for much larger
programs than our samples; and although they are great if you are writing a complete software package,
they are not really suitable for small 20-line standalone programs. In many cases, following the conventions
would have made our samples harder, rather than easier, to follow.

The full guidelines for good programming style are quite extensive. This section is confined to describing
some of the more important guidelines, as well as those most likely to surprise you. To be absolutely certain
that your code follows the usage guidelines completely, you need to refer to the MSDN documentation.

Naming Conventions
One important aspect of making your programs understandable is how you choose to name your items — and
that includes naming variables, methods, classes, enumerations, and namespaces.

It is intuitively obvious that your names should reflect the purpose of the item and should not clash with
other names. The general philosophy in the .NET Framework is also that the name of a variable should
reflect the purpose of that variable instance and not the data type. For example, height is a good name for
a variable, whereas integerValue isn’t. However, you are likely to find that principle an ideal that is hard
to achieve. Particularly when you are dealing with controls, in most cases you’ll probably be happier sticking
with variable names such as confirmationDialog and chooseEmployeeListBox, which do indicate the
data type in the name.

The following sections look at some of the things you need to think about when choosing names.

Casing of Names

In many cases you should use Pascal casing for names. With Pascal casing, the first letter of each
word in a name is capitalized: EmployeeSalary, ConfirmationDialog, PlainTextEncoding. You will
notice that nearly all the names of namespaces, classes, and members in the base classes follow Pascal
casing. In particular, the convention of joining words using the underscore character is discouraged.
Therefore, try not to use names such as employee_salary. It has also been common in other languages
to use all capitals for names of constants. This is not advised in C# because such names are harder to
read — the convention is to use Pascal casing throughout:

 const int MaximumLength;

The only other casing convention that you are advised to use is camel casing. Camel casing is similar to
Pascal casing, except that the first letter of the first word in the name is not capitalized: employeeSalary,
confirmationDialog, plainTextEncoding. Following are three situations in which you are advised to use
camel casing:

➤➤ For names of all private member fields in types:
 private int subscriberId;

Note, however, that often it is conventional to prefix names of member fields with an underscore:

 private int _subscriberId;

➤➤ For names of all parameters passed to methods:
 public void RecordSale(string salesmanName, int quantity);

c02.indd 59 30-01-2014 20:04:55

60 ❘ CHAPTER 2 Core C#

➤➤ To distinguish items that would otherwise have the same name. A common example is when a
property wraps around a field:

 private string employeeName;
 public string EmployeeName
 {
 get
 {
 return employeeName;
 }
 }

If you are doing this, you should always use camel casing for the private member and Pascal casing for the
public or protected member, so that other classes that use your code see only names in Pascal case (except
for parameter names).

You should also be wary about case sensitivity. C# is case sensitive, so it is syntactically correct for names
in C# to differ only by the case, as in the previous examples. However, bear in mind that your assemblies
might at some point be called from Visual Basic .NET applications — and Visual Basic .NET is not case
sensitive. Hence, if you do use names that differ only by case, it is important to do so only in situations in
which both names will never be seen outside your assembly. (The previous example qualifies as okay because
camel case is used with the name that is attached to a private variable.) Otherwise, you may prevent other
code written in Visual Basic .NET from being able to use your assembly correctly.

Name Styles

Be consistent about your style of names. For example, if one of the methods in a class is called
ShowConfirmationDialog(), then you should not give another method a name such as ShowDialogWarning()
or WarningDialogShow(). The other method should be called ShowWarningDialog().

Namespace Names

It is particularly important to choose Namespace names carefully to avoid the risk of ending up with the same
name for one of your namespaces as someone else uses. Remember, namespace names are the only way that
.NET distinguishes names of objects in shared assemblies. Therefore, if you use the same namespace name for
your software package as another package, and both packages are installed on the same computer, problems
will occur. Because of this, it’s almost always a good idea to create a top-level namespace with the name of
your company and then nest successive namespaces that narrow down the technology, group, or department
you are working in or the name of the package for which your classes are intended. Microsoft recommends
namespace names that begin with <CompanyName>.<TechnologyName>, as in these two examples:

WeaponsOfDestructionCorp.RayGunControllers
WeaponsOfDestructionCorp.Viruses

Names and Keywords

It is important that the names do not clash with any keywords. In fact, if you attempt to name an item in
your code with a word that happens to be a C# keyword, you’ll almost certainly get a syntax error because
the compiler will assume that the name refers to a statement. However, because of the possibility that your
classes will be accessed by code written in other languages, it is also important that you don’t use names
that are keywords in other .NET languages. Generally speaking, C++ keywords are similar to C# keywords,
so confusion with C++ is unlikely, and those commonly encountered keywords that are unique to Visual
C++ tend to start with two underscore characters. As with C#, C++ keywords are spelled in lowercase, so
if you hold to the convention of naming your public classes and members with Pascal-style names, they
will always have at least one uppercase letter in their names, and there will be no risk of clashes with C++
keywords. However, you are more likely to have problems with Visual Basic .NET, which has many
more keywords than C# does, and being non-case-sensitive means that you cannot rely on Pascal-style
names for your classes and methods.

c02.indd 60 30-01-2014 20:04:55

C# Programming Guidelines ❘ 61

The following table lists the keywords and standard function calls in Visual Basic .NET, which you should
avoid, if possible, in whatever case combination, for your public C# classes.

Abs Do Loc RGB

Add Double Local Right

AddHandler Each Lock RmDir

AddressOf Else LOF Rnd

Alias ElseIf Log RTrim

And Empty Long SaveSettings

Ansi End Loop Second

AppActivate Enum LTrim Seek

Append EOF Me Select

As Erase Mid SetAttr

Asc Err Minute SetException

Assembly Error MIRR Shared

Atan Event MkDir Shell

Auto Exit Module Short

Beep Exp Month Sign

Binary Explicit MustInherit Sin

BitAnd ExternalSource MustOverride Single

BitNot False MyBase SLN

BitOr FileAttr MyClass Space

BitXor FileCopy Namespace Spc

Boolean FileDateTime New Split

ByRef FileLen Next Sqrt

Byte Filter Not Static

ByVal Finally Nothing Step

Call Fix NotInheritable Stop

Case For NotOverridable Str

Catch Format Now StrComp

CBool FreeFile NPer StrConv

CByte Friend NPV Strict

CDate Function Null String

CDbl FV Object Structure

CDec Get Oct Sub

ChDir GetAllSettings Off Switch

ChDrive GetAttr On SYD

Choose GetException Open SyncLock

Chr GetObject Option Tab

CInt GetSetting Optional Tan

Class GetType Or Text

Clear GoTo Overloads Then

CLng Handles Overridable Throw

(continues)

c02.indd 61 30-01-2014 20:04:55

62 ❘ CHAPTER 2 Core C#

Abs Do Loc RGB

Close Hex Overrides TimeOfDay

Collection Hour ParamArray Timer

Command If Pmt TimeSerial

Compare Iif PPmt TimeValue

Const Implements Preserve To

Cos Imports Print Today

CreateObject In Private Trim

CShort Inherits Property Try

CSng Input Public TypeName

CStr InStr Put TypeOf

CurDir Int PV UBound

Date Integer QBColor UCase

DateAdd Interface Raise Unicode

DateDiff Ipmt RaiseEvent Unlock

DatePart IRR Randomize Until

DateSerial Is Rate Val

DateValue IsArray Read Weekday

Day IsDate ReadOnly While

DDB IsDbNull ReDim Width

Decimal IsNumeric Remove With

Declare Item RemoveHandler WithEvents

Default Kill Rename Write

Delegate Lcase Replace WriteOnly

DeleteSetting Left Reset Xor

Dim Lib Resume Year

Use of Properties and Methods
One area that can cause confusion regarding a class is whether a particular quantity should be represented
by a property or a method. The rules are not hard and fast, but in general you should use a property if
something should look and behave like a variable. (If you’re not sure what a property is, see Chapter 3.) This
means, among other things, that:

➤➤ Client code should be able to read its value. Write-only properties are not recommended, so, for
example, use a SetPassword() method, not a write-only Password property.

➤➤ Reading the value should not take too long. The fact that something is a property usually suggests that
reading it will be relatively quick.

➤➤ Reading the value should not have any observable and unexpected side effect. Furthermore, setting the
value of a property should not have any side effect that is not directly related to the property. Setting
the width of a dialog has the obvious effect of changing the appearance of the dialog on the screen.
That’s fine, because that’s obviously related to the property in question.

➤➤ It should be possible to set properties in any order. In particular, it is not good practice when setting a
property to throw an exception because another related property has not yet been set. For example, to
use a class that accesses a database, you need to set ConnectionString, UserName, and Password,
and then the author of the class should ensure that the class is implemented such that users can set
them in any order.

(continued)

c02.indd 62 30-01-2014 20:04:56

Summary ❘ 63

➤➤ Successive reads of a property should give the same result. If the value of a property is likely to change
unpredictably, you should code it as a method instead. Speed, in a class that monitors the motion of
an automobile, is not a good candidate for a property. Use a GetSpeed() method here; but, Weight
and EngineSize are good candidates for properties because they will not change for a given object.

If the item you are coding satisfies all the preceding criteria, it is probably a good candidate for a property.
Otherwise, you should use a method.

Use of Fields
The guidelines are pretty simple here. Fields should almost always be private, although in some cases it may
be acceptable for constant or read-only fields to be public. Making a field public may hinder your ability to
extend or modify the class in the future.

The previous guidelines should give you a foundation of good practices, and you should use them in
conjunction with a good object-oriented programming style.

A final helpful note to keep in mind is that Microsoft has been relatively careful about being consistent and
has followed its own guidelines when writing the .NET base classes, so a very good way to get an intuitive
feel for the conventions to follow when writing .NET code is to simply look at the base classes — see how
classes, members, and namespaces are named, and how the class hierarchy works. Consistency between the
base classes and your classes will facilitate readability and maintainability.

summARY
This chapter examined some of the basic syntax of C#, covering the areas needed to write simple C#
programs. We covered a lot of ground, but much of it will be instantly recognizable to developers who are
familiar with any C-style language (or even JavaScript).

You have seen that although C# syntax is similar to C++ and Java syntax, there are many minor
differences. You have also seen that in many areas this syntax is combined with facilities to write code
very quickly — for example, high-quality string handling facilities. C# also has a strongly defined type
system, based on a distinction between value and reference types. Chapters 3 and 4, “Objects and Types”
and “Inheritance” respectively, cover the C# object-oriented programming features.

c02.indd 63 30-01-2014 20:04:56

c02.indd 64 30-01-2014 20:04:56

Objects and Types
WHAT’s IN THIs CHAPTER?

➤➤ The differences between classes and structs
➤➤ Class members
➤➤ Passing values by value and by reference
➤➤ Method overloading
➤➤ Constructors and static constructors
➤➤ Read-only fi elds
➤➤ Partial classes
➤➤ Static classes
➤➤ Weak references
➤➤ The Object class, from which all other types are derived

WRox.CoM CodE doWNloAds FoR THIs CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ MathTest
➤➤ MathTestWeakReference
➤➤ ParameterTest

CREATING ANd usING ClAssEs
So far, you’ve been introduced to some of the building blocks of the C# language, including
variables, data types, and program fl ow statements, and you have seen a few very short complete
programs containing little more than the Main() method. What you haven’t seen yet is how to put
all these elements together to form a longer, complete program. The key to this lies in working with
classes — the subject of this chapter. Note that we cover inheritance and features related to inheritance
in Chapter 4, “Inheritance.”

3

c03.indd 65 30-01-2014 20:05:38

66 ❘ CHAPTER 3 Objects and types

NoTE This chapter introduces the basic syntax associated with classes. However,
we assume that you are already familiar with the underlying principles of using
classes — for example, that you know what a constructor or a property is. This chapter
is largely confined to applying those principles in C# code.

ClAssEs ANd sTRuCTs
Classes and structs are essentially templates from which you can create objects. Each object contains
data and has methods to manipulate and access that data. The class defines what data and behavior
each particular object (called an instance) of that class can contain. For example, if you have a class that
represents a customer, it might define fields such as CustomerID, FirstName, LastName, and Address,
which are used to hold information about a particular customer. It might also define functionality that acts
upon the data stored in these fields. You can then instantiate an object of this class to represent one specific
customer, set the field values for that instance, and use its functionality:

class PhoneCustomer
{
 public const string DayOfSendingBill = "Monday";
 public int CustomerID;
 public string FirstName;
 public string LastName;
}

Structs differ from classes in the way that they are stored in memory and accessed (classes are reference
types stored in the heap; structs are value types stored on the stack), and in some of their features (for
example, structs don’t support inheritance). You typically use structs for smaller data types for performance
reasons. In terms of syntax, however, structs look very similar to classes; the main difference is that you
use the keyword struct instead of class to declare them. For example, if you wanted all PhoneCustomer
instances to be allocated on the stack instead of the managed heap, you could write the following:

struct PhoneCustomerStruct
{
 public const string DayOfSendingBill = "Monday";
 public int CustomerID;
 public string FirstName;
 public string LastName;
}

For both classes and structs, you use the keyword new to declare an instance. This keyword creates the
object and initializes it; in the following example, the default behavior is to zero out its fields:

PhoneCustomer myCustomer = new PhoneCustomer(); // works for a class
PhoneCustomerStruct myCustomer2 = new PhoneCustomerStruct();// works for a struct

In most cases, you’ll use classes much more often than structs. Therefore, we discuss classes first and then
the differences between classes and structs and the specific reasons why you might choose to use a struct
instead of a class. Unless otherwise stated, however, you can assume that code presented for a class will
work equally well for a struct.

ClAssEs
The data and functions within a class are known as the class’s members. Microsoft’s official terminology
distinguishes between data members and function members. In addition to these members, classes can
contain nested types (such as other classes). Accessibility to the members can be public, protected,
internal protected, private, or internal. These are described in detail in Chapter 5, “Generics.”

c03.indd 66 30-01-2014 20:05:38

Classes ❘ 67

data Members
Data members are those members that contain the data for the class — fields, constants, and events. Data
members can be static. A class member is always an instance member unless it is explicitly declared as
static.

Fields are any variables associated with the class. You have already seen fields in use in the PhoneCustomer
class in the previous example.

After you have instantiated a PhoneCustomer object, you can then access these fields using the Object
.FieldName syntax, as shown in this example:

PhoneCustomer Customer1 = new PhoneCustomer();
Customer1.FirstName = "Simon";

Constants can be associated with classes in the same way as variables. You declare a constant using the
const keyword. If it is declared as public, then it will be accessible from outside the class:

class PhoneCustomer
{
 public const string DayOfSendingBill = "Monday";
 public int CustomerID;
 public string FirstName;
 public string LastName;
}

Events are class members that allow an object to notify a subscriber whenever something noteworthy
happens, such as a field or property of the class changing, or some form of user interaction occurring. The
client can have code, known as an event handler, that reacts to the event. Chapter 8, “Delegates, Lambdas,
and Events,” looks at events in detail.

Function Members
Function members are those members that provide some functionality for manipulating the data in the class.
They include methods, properties, constructors, finalizers, operators, and indexers.

➤➤ Methods are functions associated with a particular class. Like data members, function members are
instance members by default. They can be made static by using the static modifier.

➤➤ Properties are sets of functions that can be accessed from the client in a similar way to the public
fields of the class. C# provides a specific syntax for implementing read and write properties on your
classes, so you don’t have to use method names that have the words Get or Set embedded in them.
Because there’s a dedicated syntax for properties that is distinct from that for normal functions, the
illusion of objects as actual things is strengthened for client code.

➤➤ Constructors are special functions that are called automatically when an object is instantiated.
They must have the same name as the class to which they belong and cannot have a return type.
Constructors are useful for initialization.

➤➤ Finalizers are similar to constructors but are called when the CLR detects that an object is no
longer needed. They have the same name as the class, preceded by a tilde (~). It is impossible to
predict precisely when a finalizer will be called. Finalizers are discussed in Chapter 14, “Memory
Management and Pointers.”

➤➤ Operators, at their simplest, are actions such as + or –. When you add two integers, you are, strictly
speaking, using the + operator for integers. However, C# also allows you to specify how existing
operators will work with your own classes (operator overloading). Chapter 7, “Operators and Casts,”
looks at operators in detail.

➤➤ Indexers allow your objects to be indexed in the same way as an array or collection.

c03.indd 67 30-01-2014 20:05:39

68 ❘ CHAPTER 3 Objects and types

Methods
Note that official C# terminology makes a distinction between functions and methods. In C# terminology,
the term “function member” includes not only methods, but also other nondata members of a class
or struct. This includes indexers, operators, constructors, destructors, and — perhaps somewhat
surprisingly — properties. These are contrasted with data members: fields, constants, and events.

Declaring Methods

In C#, the definition of a method consists of any method modifiers (such as the method’s accessibility),
followed by the type of the return value, followed by the name of the method, followed by a list of input
arguments enclosed in parentheses, followed by the body of the method enclosed in curly braces:

[modifiers] return_type MethodName([parameters])
{
 // Method body
}

Each parameter consists of the name of the type of the parameter, and the name by which it can be
referenced in the body of the method. Also, if the method returns a value, a return statement must be used
with the return value to indicate each exit point, as shown in this example:

public bool IsSquare(Rectangle rect)
{
 return (rect.Height == rect.Width);
}

This code uses one of the .NET base classes, System.Drawing.Rectangle, which represents a rectangle.

If the method doesn’t return anything, specify a return type of void because you can’t omit the return type
altogether; and if it takes no arguments, you still need to include an empty set of parentheses after the method
name. In this case, including a return statement is optional — the method returns automatically when the
closing curly brace is reached. Note that a method can contain as many return statements as required:

public bool IsPositive(int value)
{
 if (value < 0)
 return false;
 return true;
}

Invoking Methods

The following example, MathTest, illustrates the syntax for definition and instantiation of classes, and
definition and invocation of methods. Besides the class that contains the Main() method, it defines a class
named MathTest, which contains a couple of methods and a field:

using System;

namespace Wrox
{
 class MainEntryPoint
 {
 static void Main()
 {
 // Try calling some static functions.
 Console.WriteLine("Pi is " + MathTest.GetPi());
 int x = MathTest.GetSquareOf(5);
 Console.WriteLine("Square of 5 is " + x);

 // Instantiate a MathTest object
 MathTest math = new MathTest(); // this is C#'s way of

c03.indd 68 30-01-2014 20:05:39

Classes ❘ 69

 // instantiating a reference type

 // Call nonstatic methods
 math.value = 30;
 Console.WriteLine(
 "Value field of math variable contains " + math.value);
 Console.WriteLine("Square of 30 is " + math.GetSquare());
 }
 }

 // Define a class named MathTest on which we will call a method
 class MathTest
 {
 public int value;

 public int GetSquare()
 {
 return value*value;
 }

 public static int GetSquareOf(int x)
 {
 return x*x;
 }

 public static double GetPi()
 {
 return 3.14159;
 }
 }
}

Running the MathTest example produces the following results:

Pi is 3.14159
Square of 5 is 25
Value field of math variable contains 30
Square of 30 is 900

As you can see from the code, the MathTest class contains a field that contains a number, as well as a
method to find the square of this number. It also contains two static methods: one to return the value of pi
and one to find the square of the number passed in as a parameter.

Some features of this class are not really good examples of C# program design. For example, GetPi()
would usually be implemented as a const field, but following good design here would mean using some
concepts that have not yet been introduced.

Passing Parameters to Methods

In general, parameters can be passed into methods by reference or by value. When a variable is passed
by reference, the called method gets the actual variable, or more to the point, a pointer to the variable in
memory. Any changes made to the variable inside the method persist when the method exits. However, when
a variable is passed by value, the called method gets an identical copy of the variable, meaning any changes
made are lost when the method exits. For complex data types, passing by reference is more efficient because
of the large amount of data that must be copied when passing by value.

In C#, reference types are passed by reference and value types are passed by value unless you specify
otherwise. However, be sure you understand the implications of this for reference types. Because reference
type variables hold only a reference to an object, it is this reference that is passed in as a parameter, not the
object itself. Hence, changes made to the underlying object will persist. Value type variables, in contrast,
hold the actual data, so a copy of the data itself is passed into the method. An int, for instance, is passed by
value to a method, and any changes that the method makes to the value of that int do not change the value

c03.indd 69 30-01-2014 20:05:39

70 ❘ CHAPTER 3 Objects and types

of the original int object. Conversely, if an array or any other reference type, such as a class, is passed into
a method, and the method uses the reference to change a value in that array, the new value is reflected in the
original array object.

Here is an example, ParameterTest.cs, which demonstrates the difference between value types and
reference types used as parameters:

using System;

namespace Wrox
{
 class ParameterTest
 {
 static void SomeFunction(int[] ints, int i)
 {
 ints[0] = 100;
 i = 100;
 }

 public static int Main()
 {
 int i = 0;
 int[] ints = { 0, 1, 2, 4, 8 };
 // Display the original values.
 Console.WriteLine("i = " + i);
 Console.WriteLine("ints[0] = " + ints[0]);
 Console.WriteLine("Calling SomeFunction. ..");

 // After this method returns, ints will be changed,
 // but i will not.
 SomeFunction(ints, i);
 Console.WriteLine("i = " + i);
 Console.WriteLine("ints[0] = " + ints[0]);
 return 0;
 }
 }
}

The output of the preceding is as follows:

ParameterTest.exe
i = 0
ints[0] = 0
Calling SomeFunction ...
i = 0
ints[0] = 100

Notice how the value of i remains unchanged, but the value changed in ints is also changed in the original
array.

The behavior of strings is different again. This is because strings are immutable (if you alter a string’s value,
you create an entirely new string), so strings don’t display the typical reference-type behavior. Any changes
made to a string within a method call won’t affect the original string. This point is discussed in more detail
in Chapter 9, “Strings and Regular Expressions.”

ref Parameters

As mentioned, passing variables by value is the default, but you can force value parameters to be passed by
reference. To do so, use the ref keyword. If a parameter is passed to a method, and the input argument for
that method is prefixed with the ref keyword, any changes that the method makes to the variable will affect
the value of the original object:

c03.indd 70 30-01-2014 20:05:39

Classes ❘ 71

static void SomeFunction(int[] ints, ref int i)
{
 ints[0] = 100;
 i = 100; // The change to i will persist after SomeFunction() exits.
}

You also need to add the ref keyword when you invoke the method:

SomeFunction(ints, ref i);

Finally, it is important to understand that C# continues to apply initialization requirements to parameters
passed to methods. Any variable must be initialized before it is passed into a method, whether it is passed in
by value or by reference.

out Parameters

In C-style languages, it is common for functions to be able to output more than one value from a single
routine. This is accomplished using output parameters, by assigning the output values to variables that
have been passed to the method by reference. Often, the starting values of the variables that are passed by
reference are unimportant. Those values will be overwritten by the function, which may never even look at
any previous value.

It would be convenient if you could use the same convention in C#, but C# requires that variables be
initialized with a starting value before they are referenced. Although you could initialize your input
variables with meaningless values before passing them into a function that will fill them with real,
meaningful ones, this practice is at best needless and at worst confusing. However, there is a way to
circumvent the C# compiler’s insistence on initial values for input arguments.

You do this with the out keyword. When a method’s input argument is prefixed with out, that method can
be passed a variable that has not been initialized. The variable is passed by reference, so any changes that
the method makes to the variable will persist when control returns from the called method. Again, you must
use the out keyword when you call the method, as well as when you define it:

static void SomeFunction(out int i)
{
 i = 100;
}

public static int Main()
{
 int i; // note how i is declared but not initialized.
 SomeFunction(out i);
 Console.WriteLine(i);
 return 0;
}

Named Arguments

Typically, parameters need to be passed into a method in the same order that they are defined. Named
arguments allow you to pass in parameters in any order. So for the following method:

string FullName(string firstName, string lastName)
{
 return firstName + " " + lastName;
}

The following method calls will return the same full name:

FullName("John", "Doe");
FullName(lastName: "Doe", firstName: "John");

If the method has several parameters, you can mix positional and named arguments in the same call.

c03.indd 71 30-01-2014 20:05:39

72 ❘ CHAPTER 3 Objects and types

Optional Arguments

Parameters can also be optional. You must supply a default value for optional parameters, which must be
the last ones defined. For example, the following method declaration would be incorrect:

void TestMethod(int optionalNumber = 10, int notOptionalNumber)
{
 System.Console.Write(optionalNumber + notOptionalNumber);
}

For this method to work, the optionalNumber parameter would have to be defined last.

Method Overloading

C# supports method overloading — several versions of the method that have different signatures (that is,
the same name but a different number of parameters and/or different parameter data types). To overload
methods, simply declare the methods with the same name but different numbers or types of parameters:

class ResultDisplayer
{
 void DisplayResult(string result)
 {
 // implementation
 }

 void DisplayResult(int result)
 {
 // implementation
 }
}

If optional parameters won’t work for you, then you need to use method overloading to achieve the same effect:

class MyClass
{
 int DoSomething(int x) // want 2nd parameter with default value 10
 {
 DoSomething(x, 10);
 }

 int DoSomething(int x, int y)
 {
 // implementation
 }
}

As in any language, method overloading carries with it the potential for subtle runtime bugs if the wrong
overload is called. Chapter 4 discusses how to code defensively against these problems. For now, you should
know that C# does place some minimum restrictions on the parameters of overloaded methods:

➤➤ It is not sufficient for two methods to differ only in their return type.
➤➤ It is not sufficient for two methods to differ only by virtue of a parameter having been declared as ref

or out.

Properties
The idea of a property is that it is a method or a pair of methods dressed to look like a field. A good example
of this is the Height property of a Windows form. Suppose that you have the following code:

// mainForm is of type System.Windows.Forms
mainForm.Height = 400;

c03.indd 72 30-01-2014 20:05:39

Classes ❘ 73

On executing this code, the height of the window will be set to 400 px, and you will see the window resize
on the screen. Syntactically, this code looks like you’re setting a field, but in fact you are calling a property
accessor that contains code to resize the form.

To define a property in C#, use the following syntax:

public string SomeProperty
{
 get
 {
 return "This is the property value.";
 }
 set
 {
 // do whatever needs to be done to set the property.
 }
}

The get accessor takes no parameters and must return the same type as the declared property. You should
not specify any explicit parameters for the set accessor either, but the compiler assumes it takes one
parameter, which is of the same type again, and which is referred to as value. For example, the following
code contains a property called Age, which sets a field called age. In this example, age is referred to as the
backing variable for the property Age:

private int age;

public int Age
{
 get
 {
 return age;
 }
 set
 {
 age = value;
 }
}

Note the naming convention used here. You take advantage of C#’s case sensitivity by using the same name,
Pascal-case for the public property, and camel-case for the equivalent private field if there is one. Some
developers prefer to use field names that are prefixed by an underscore: _age; this provides an extremely
convenient way to identify fields.

Read-Only and Write-Only Properties

It is possible to create a read-only property by simply omitting the set accessor from the property definition.
Thus, to make Name a read-only property, you would do the following:

private string name;

public string Name
{
 get
 {
 return name;
 }
}

It is similarly possible to create a write-only property by omitting the get accessor. However, this is
regarded as poor programming practice because it could be confusing to authors of client code. In general, it
is recommended that if you are tempted to do this, you should use a method instead.

c03.indd 73 30-01-2014 20:05:39

74 ❘ CHAPTER 3 Objects and types

Access Modifi ers for Properties

C# does allow the set and get accessors to have differing access modifi ers. This would allow a
property to have a public get and a private or protected set. This can help control how or when a property
can be set. In the following code example, notice that the set has a private access modifi er but the get
does not. In this case, the get takes the access level of the property. One of the accessors must follow the
access level of the property. A compile error will be generated if the get accessor has the protected access
level associated with it because that would make both accessors have a different access level from the
property.

public string Name
{
 get
 {
 return _name;
 }
 private set
 {
 _name = value;
 }
}

Auto-Implemented Properties

If there isn’t going to be any logic in the properties set and get, then auto-implemented properties can be
used. Auto-implemented properties implement the backing member variable automatically. The code for the
earlier Age example would look like this:

public int Age {get; set;}

The declaration private int Age; is not needed. The compiler will create this automatically.

By using auto-implemented properties, validation of the property cannot be done at the property set.
Therefore, in the last example you could not have checked to see if an invalid age is set. Also, both accessors
must be present, so an attempt to make a property read-only would cause an error:

public int Age {get;}

However, the access level of each accessor can be different, so the following is acceptable:

public int Age {get; private set;}

A NoTE AbouT INlINING

Some developers may be concerned that the previous sections have presented a number of
situations in which standard C# coding practices have led to very small functions — for
example, accessing a fi eld via a property instead of directly. Will this hurt performance
because of the overhead of the extra function call? The answer is no. There’s no need to
worry about performance loss from these kinds of programming methodologies in C#.
Recall that C# code is compiled to IL, then JIT compiled at runtime to native executable
code. The JIT compiler is designed to generate highly optimized code and will ruthlessly
inline code as appropriate (in other words, it replaces function calls with inline code). A
method or property whose implementation simply calls another method or returns a fi eld
will almost certainly be inlined. However, the decision regarding where to inline is made
entirely by the CLR. You cannot control which methods are inlined by using, for example,
a keyword similar to the inline keyword of C++.

c03.indd 74 30-01-2014 20:05:40

Classes ❘ 75

Constructors
The syntax for declaring basic constructors is a method that has the same name as the containing class and
that does not have any return type:

public class MyClass
{
 public MyClass()
 {
 }
 // rest of class definition

It’s not necessary to provide a constructor for your class. We haven’t supplied one for any of the examples
so far in this book. In general, if you don’t supply any constructor, the compiler will generate a default one
behind the scenes. It will be a very basic constructor that just initializes all the member fields by zeroing
them out (null reference for reference types, zero for numeric data types, and false for bools). Often, that
will be adequate; if not, you’ll need to write your own constructor.

Constructors follow the same rules for overloading as other methods — that is, you can provide as many
overloads to the constructor as you want, provided they are clearly different in signature:

 public MyClass() // zeroparameter constructor
 {
 // construction code
 }
 public MyClass(int number) // another overload
 {
 // construction code
 }

However, if you supply any constructors that take parameters, the compiler will not automatically supply
a default one. This is done only if you have not defined any constructors at all. In the following example,
because a one-parameter constructor is defined, the compiler assumes that this is the only constructor you
want to be available, so it will not implicitly supply any others:

public class MyNumber
{
 private int number;
 public MyNumber(int number)
 {
 this.number = number;
 }
}

This code also illustrates typical use of the this keyword to distinguish member fields from parameters of
the same name. If you now try instantiating a MyNumber object using a no-parameter constructor, you will
get a compilation error:

MyNumber numb = new MyNumber(); // causes compilation error

Note that it is possible to define constructors as private or protected, so that they are invisible to code in
unrelated classes too:

public class MyNumber
{
 private int number;
 private MyNumber(int number) // another overload
 {
 this.number = number;
 }
}

This example hasn’t actually defined any public or even any protected constructors for MyNumber. This
would actually make it impossible for MyNumber to be instantiated by outside code using the new operator

c03.indd 75 30-01-2014 20:05:40

76 ❘ CHAPTER 3 Objects and types

(though you might write a public static property or method in MyNumber that can instantiate the class). This
is useful in two situations:

➤➤ If your class serves only as a container for some static members or properties, and therefore should
never be instantiated

➤➤ If you want the class to only ever be instantiated by calling a static member function (this is the
so-called “class factory” approach to object instantiation)

Static Constructors

One novel feature of C# is that it is also possible to write a static no-parameter constructor for a class. Such
a constructor is executed only once, unlike the constructors written so far, which are instance constructors
that are executed whenever an object of that class is created:

class MyClass
{
 static MyClass()
 {
 // initialization code
 }
 // rest of class definition
}

One reason for writing a static constructor is if your class has some static fields or properties that need to be
initialized from an external source before the class is first used.

The .NET runtime makes no guarantees about when a static constructor will be executed, so you should
not place any code in it that relies on it being executed at a particular time (for example, when an assembly
is loaded). Nor is it possible to predict in what order static constructors of different classes will execute.
However, what is guaranteed is that the static constructor will run at most once, and that it will be
invoked before your code makes any reference to the class. In C#, the static constructor is usually executed
immediately before the first call, to any member of the class.

Note that the static constructor does not have any access modifiers. It’s never called by any other C# code,
but always by the .NET runtime when the class is loaded, so any access modifier such as public or private
would be meaningless. For this same reason, the static constructor can never take any parameters, and there
can be only one static constructor for a class. It should also be obvious that a static constructor can access
only static members, not instance members, of the class.

It is possible to have a static constructor and a zero-parameter instance constructor defined in the same
class. Although the parameter lists are identical, there is no conflict because the static constructor is
executed when the class is loaded, but the instance constructor is executed whenever an instance is created.
Therefore, there is no confusion about which constructor is executed or when.

If you have more than one class that has a static constructor, the static constructor that will be executed
first is undefined. Therefore, you should not put any code in a static constructor that depends on other static
constructors having been or not having been executed. However, if any static fields have been given default
values, these will be allocated before the static constructor is called.

The next example illustrates the use of a static constructor. It is based on the idea of a program that has user
preferences (which are presumably stored in some configuration file). To keep things simple, assume just
one user preference, a quantity called BackColor that might represent the background color to be used in
an application. Because we don’t want to get into the details of writing code to read data from an external
source here, assume also that the preference is to have a background color of red on weekdays and green on
weekends. All the program does is display the preference in a console window, but that is enough to see a
static constructor at work:

namespace Wrox.ProCSharp.StaticConstructorSample
{
 public class UserPreferences
 {

c03.indd 76 30-01-2014 20:05:40

Classes ❘ 77

 public static readonly Color BackColor;

 static UserPreferences()
 {
 DateTime now = DateTime.Now;
 if (now.DayOfWeek == DayOfWeek.Saturday
 || now.DayOfWeek == DayOfWeek.Sunday)
 BackColor = Color.Green;
 else
 BackColor = Color.Red;
 }

 private UserPreferences()
 {
 }
 }
}

This code shows how the color preference is stored in a static variable, which is initialized in the static
constructor. The field is declared as read-only, which means that its value can only be set in a constructor.
You learn about read-only fields in more detail later in this chapter. The code uses a few helpful structs that
Microsoft has supplied as part of the Framework class library. System.DateTime and System.Drawing
.Color. DateTime implement a static property, Now, which returns the current time; and an instance
property, DayOfWeek, which determines what day of the week a date-time represents. Color is used to store
colors. It implements various static properties, such as Red and Green as used in this example, which return
commonly used colors. To use Color, you need to reference the System.Drawing.dll assembly when
compiling, and you must add a using statement for the System.Drawing namespace:

using System;
using System.Drawing;

You test the static constructor with this code:

 class MainEntryPoint
 {
 static void Main(string[] args)
 {
 Console.WriteLine("User-preferences: BackColor is: " +
 UserPreferences.BackColor.ToString());
 }
 }

Compiling and running the preceding code results in this output:

User-preferences: BackColor is: Color [Red]

Of course, if the code is executed during the weekend, your color preference would be Green.

Calling Constructors from Other Constructors

You might sometimes find yourself in the situation where you have several constructors in a class, perhaps
to accommodate some optional parameters for which the constructors have some code in common. For
example, consider the following:

class Car
{
 private string description;
 private uint nWheels;
 public Car(string description, uint nWheels)
 {
 this.description = description;

c03.indd 77 30-01-2014 20:05:40

78 ❘ CHAPTER 3 Objects and types

 this.nWheels = nWheels;
 }

 public Car(string description)
 {
 this.description = description;
 this.nWheels = 4;
 }
// etc.

Both constructors initialize the same fields. It would clearly be neater to place all the code in one location.
C# has a special syntax known as a constructor initializer to enable this:

class Car
{
 private string description;
 private uint nWheels;

 public Car(string description, uint nWheels)
 {
 this.description = description;
 this.nWheels = nWheels;
 }

 public Car(string description): this(description, 4)
 {
 }
 // etc

In this context, the this keyword simply causes the constructor with the nearest matching parameters to be
called. Note that any constructor initializer is executed before the body of the constructor. Suppose that the
following code is run:

Car myCar = new Car("Proton Persona");

In this example, the two-parameter constructor executes before any code in the body of the one-parameter
constructor (though in this particular case, because there is no code in the body of the one-parameter
constructor, it makes no difference).

A C# constructor initializer may contain either one call to another constructor in the same class (using the
syntax just presented) or one call to a constructor in the immediate base class (using the same syntax, but
using the keyword base instead of this). It is not possible to put more than one call in the initializer.

readonly Fields
The concept of a constant as a variable that contains a value that cannot be changed is something that C#
shares with most programming languages. However, constants don’t necessarily meet all requirements.
On occasion, you may have a variable whose value shouldn’t be changed but the value is not known until
runtime. C# provides another type of variable that is useful in this scenario: the readonly field.

The readonly keyword provides a bit more flexibility than const, allowing for situations in which you
want a field to be constant but you also need to carry out some calculations to determine its initial value.
The rule is that you can assign values to a readonly field inside a constructor, but not anywhere else. It’s
also possible for a readonly field to be an instance rather than a static field, having a different value for
each instance of a class. This means that, unlike a const field, if you want a readonly field to be static, you
have to declare it as such.

Suppose that you have an MDI program that edits documents, and for licensing reasons you want to restrict
the number of documents that can be opened simultaneously. Assume also that you are selling different
versions of the software, and it’s possible for customers to upgrade their licenses to open more documents
simultaneously. Clearly, this means you can’t hard-code the maximum number in the source code. You
would probably need a field to represent this maximum number. This field will have to be read in — perhaps

c03.indd 78 30-01-2014 20:05:40

Anonymous Types ❘ 79

from a registry key or some other file storage — each time the program is launched. Therefore, your code
might look something like this:

 public class DocumentEditor
 {
 public static readonly uint MaxDocuments;

 static DocumentEditor()
 {
 MaxDocuments = DoSomethingToFindOutMaxNumber();
 }
 }

In this case, the field is static because the maximum number of documents needs to be stored only once
per running instance of the program. This is why it is initialized in the static constructor. If you had an
instance readonly field, you would initialize it in the instance constructor(s). For example, presumably each
document you edit has a creation date, which you wouldn’t want to allow the user to change (because that
would be rewriting the past!). Note that the field is also public — you don’t normally need to make readonly
fields private, because by definition they cannot be modified externally (the same principle also applies to
constants).

As noted earlier, date is represented by the class System.DateTime. The following code uses a System
.DateTime constructor that takes three parameters (year, month, and day of the month; for details about
this and other DateTime constructors see the MSDN documentation):

 public class Document
 {
 public readonly DateTime CreationDate;

 public Document()
 {
 // Read in creation date from file. Assume result is 1 Jan 2002
 // but in general this can be different for different instances
 // of the class
 CreationDate = new DateTime(2002, 1, 1);
 }
 }

CreationDate and MaxDocuments in the previous code snippet are treated like any other field, except that
because they are read-only they cannot be assigned outside the constructors:

void SomeMethod()
{
 MaxDocuments = 10; // compilation error here. MaxDocuments is readonly
}

It’s also worth noting that you don’t have to assign a value to a readonly field in a constructor. If you don’t
do so, it will be left with the default value for its particular data type or whatever value you initialized it to
at its declaration. That applies to both static and instance readonly fields.

ANoNyMous TyPEs
Chapter 2, “Core C#” discussed the var keyword in reference to implicitly typed variables. When used with
the new keyword, anonymous types can be created. An anonymous type is simply a nameless class that inherits
from object. The definition of the class is inferred from the initializer, just as with implicitly typed variables.

For example, if you needed an object containing a person’s first, middle, and last name, the declaration
would look like this:

var captain = new {FirstName = "James", MiddleName = "T", LastName = "Kirk"};

c03.indd 79 30-01-2014 20:05:41

80 ❘ CHAPTER 3 Objects and types

This would produce an object with FirstName, MiddleName, and LastName properties. If you were to create
another object that looked like:

var doctor = new {FirstName = "Leonard", MiddleName = "", LastName = "McCoy"};

then the types of captain and doctor are the same. You could set captain = doctor, for example.

If the values that are being set come from another object, then the initializer can be abbreviated. If you
already have a class that contains the properties FirstName, MiddleName, and LastName and you have an
instance of that class with the instance name person, then the captain object could be initialized like this:

var captain = new {person.FirstName, person.MiddleName, person.LastName};

The property names from the person object would be projected to the new object named captain, so the
object named captain would have the FirstName, MiddleName, and LastName properties.

The actual type name of these new objects is unknown. The compiler “makes up” a name for the type, but
only the compiler is ever able to make use of it. Therefore, you can’t and shouldn’t plan on using any type
reflection on the new objects because you will not get consistent results.

sTRuCTs
So far, you have seen how classes offer a great way to encapsulate objects in your program. You have also
seen how they are stored on the heap in a way that gives you much more flexibility in data lifetime, but
with a slight cost in performance. This performance cost is small thanks to the optimizations of managed
heaps. However, in some situations all you really need is a small data structure. If so, a class provides more
functionality than you need, and for best performance you probably want to use a struct. Consider the
following example:

class Dimensions
{
 public double Length;
 public double Width;
}

This code defines a class called Dimensions, which simply stores the length and width of an item. Suppose
you’re writing a furniture-arranging program that enables users to experiment with rearranging their
furniture on the computer, and you want to store the dimensions of each item of furniture. It might seem
as though you’re breaking the rules of good program design by making the fields public, but the point is
that you don’t really need all the facilities of a class for this. All you have is two numbers, which you’ll find
convenient to treat as a pair rather than individually. There is no need for a lot of methods, or for you to be
able to inherit from the class, and you certainly don’t want to have the .NET runtime go to the trouble of
bringing in the heap, with all the performance implications, just to store two doubles.

As mentioned earlier in this chapter, the only thing you need to change in the code to define a type as a
struct instead of a class is to replace the keyword class with struct:

 struct Dimensions
 {
 public double Length;
 public double Width;
 }

Defining functions for structs is also exactly the same as defining them for classes. The following code
demonstrates a constructor and a property for a struct:

struct Dimensions
{
 public double Length;
 public double Width;

 public Dimensions(double length, double width)

c03.indd 80 30-01-2014 20:05:41

Structs ❘ 81

 {
 Length = length;
 Width = width;
 }

 public double Diagonal
 {
 get
 {
 return Math.Sqrt(Length * Length + Width * Width);
 }
 }
}

Structs are value types, not reference types. This means they are stored either in the stack or inline (if they
are part of another object that is stored on the heap) and have the same lifetime restrictions as the simple
data types:

➤➤ Structs do not support inheritance.
➤➤ There are some differences in the way constructors work for structs. In particular, the compiler always

supplies a default no-parameter constructor, which you are not permitted to replace.
➤➤ With a struct, you can specify how the fields are to be laid out in memory (this is examined in Chapter

15, “Reflection,” which covers attributes).

Because structs are really intended to group data items together, you’ll sometimes find that most or all
of their fields are declared as public. Strictly speaking, this is contrary to the guidelines for writing .NET
code — according to Microsoft, fields (other than const fields) should always be private and wrapped by
public properties. However, for simple structs, many developers consider public fields to be acceptable
programming practice.

The following sections look at some of these differences between structs and classes in more detail.

structs Are Value Types
Although structs are value types, you can often treat them syntactically in the same way as classes. For
example, with the definition of the Dimensions class in the previous section, you could write this:

 Dimensions point = new Dimensions();
 point.Length = 3;
 point.Width = 6;

Note that because structs are value types, the new operator does not work in the same way as it does for
classes and other reference types. Instead of allocating memory on the heap, the new operator simply calls
the appropriate constructor, according to the parameters passed to it, initializing all fields. Indeed, for
structs it is perfectly legal to write this:

 Dimensions point;
 point.Length = 3;
 point.Width = 6;

If Dimensions were a class, this would produce a compilation error, because point would contain an
uninitialized reference — an address that points nowhere, so you could not start setting values to its fields.
For a struct, however, the variable declaration actually allocates space on the stack for the entire struct,
so it’s ready to assign values to. The following code, however, would cause a compilation error, with the
compiler complaining that you are using an uninitialized variable:

 Dimensions point;
 Double D = point.Length;

Structs follow the same rule as any other data type — everything must be initialized before use. A struct
is considered fully initialized either when the new operator has been called against it or when values have

c03.indd 81 30-01-2014 20:05:41

82 ❘ CHAPTER 3 Objects and types

been individually assigned to all its fields. Also, of course, a struct defined as a member field of a class is
initialized by being zeroed out automatically when the containing object is initialized.

The fact that structs are value types affects performance, though depending on how you use your struct, this
can be good or bad. On the positive side, allocating memory for structs is very fast because this takes place
inline or on the stack. The same is true when they go out of scope. Structs are cleaned up quickly and don’t
need to wait on garbage collection. On the negative side, whenever you pass a struct as a parameter or assign
a struct to another struct (as in A=B, where A and B are structs), the full contents of the struct are copied,
whereas for a class only the reference is copied. This results in a performance loss that varies according to
the size of the struct, emphasizing the fact that structs are really intended for small data structures. Note,
however, that when passing a struct as a parameter to a method, you can avoid this performance loss by
passing it as a ref parameter — in this case, only the address in memory of the struct will be passed in,
which is just as fast as passing in a class. If you do this, though, be aware that it means the called method
can, in principle, change the value of the struct.

structs and Inheritance
Structs are not designed for inheritance. This means it is not possible to inherit from a struct. The only
exception to this is that structs, in common with every other type in C#, derive ultimately from the class
System.Object. Hence, structs also have access to the methods of System.Object, and it is even possible
to override them in structs — an obvious example would be overriding the ToString() method. The actual
inheritance chain for structs is that each struct derives from a class, System.ValueType, which in turn
derives from System.Object. ValueType which does not add any new members to Object but provides
implementations of some of them that are more suitable for structs. Note that you cannot supply a different
base class for a struct: Every struct is derived from ValueType.

Constructors for structs
You can define constructors for structs in exactly the same way that you can for classes, but you are not
permitted to define a constructor that takes no parameters. This may seem nonsensical, but the reason is
buried in the implementation of the .NET runtime. In some rare circumstances, the .NET runtime would
not be able to call a custom zero-parameter constructor that you have supplied. Microsoft has therefore
taken the easy way out and banned zero-parameter constructors for structs in C#.

That said, the default constructor, which initializes all fields to zero values, is always present implicitly,
even if you supply other constructors that take parameters. It’s also impossible to circumvent the default
constructor by supplying initial values for fields. The following code will cause a compile-time error:

 struct Dimensions
 {
 public double Length = 1; // error. Initial values not allowed
 public double Width = 2; // error. Initial values not allowed
 }

Of course, if Dimensions had been declared as a class, this code would have compiled without any problems.

Incidentally, you can supply a Close() or Dispose() method for a struct in the same way you do for a
class. The Dispose() method is discussed in detail in Chapter 14.

WEAk REFERENCEs
When the class or struct is instantiated in the application code, it will have a strong reference as long as
there is any other code that references it. For example, if you have a class called MyClass() and you create
a reference to objects based on that class and call the variable myClassVariable as follows, as long as
myClassVariable is in scope there is a strong reference to the MyClass object:

MyClass myClassVariable = new MyClass();

c03.indd 82 30-01-2014 20:05:41

Partial Classes ❘ 83

This means that the garbage collector cannot clean up the memory used by the MyClass object. Generally
this is a good thing because you may need to access the MyClass object; but what if MyClass were very large
and perhaps wasn’t accessed very often? Then a weak reference to the object can be created.

A weak reference allows the object to be created and used, but if the garbage collector happens to run
(garbage collection is discussed in Chapter 14), it will collect the object and free up the memory. This is not
something you would typically want to do because of potential bugs and performance issues, but there are
certainly situations in which it makes sense.

Weak references are created using the WeakReference class. Because the object could be collected at any
time, it’s important that the existence of the object is valid before trying to reference it. Using the MathTest
class from before, this time we’ll create a weak reference to it using the WeakReference class:

static void Main()
{
 // Instantiate a weak reference to MathTest object
 WeakReference mathReference = new WeakReference(new MathTest());
 MathTest math;
 if(mathReference.IsAlive)
 {
 math = mathReference.Target as MathTest;
 math.Value = 30;
 Console.WriteLine("Value field of math variable contains " + math.Value);
 Console.WriteLine("Square of 30 is " + math.GetSquare());
 }
 else
 {
 Console.WriteLine("Reference is not available.");
 }

 GC.Collect();

 if(mathReference.IsAlive)
 {
 math = mathReference.Target as MathTest;
 }
 else
 {
 Console.WriteLine("Reference is not available.");
 }
}

When you create mathReference a new MathTest object is passed into the constructor. The MathTest object
becomes the target of the WeakReference object. When you want to use the MathTest object, you have to
check the mathReference object first to ensure it hasn’t been collected. You use the IsAlive property for
that. If the IsAlive property is true, then you can get the reference to the MathTest object from the target
property. Notice that you have to cast to the MathTest type, as the Target property returns an Object type.

Next, you call the garbage collector (GC.Collect()) and try to get the MathTest object again. This time the
IsAlive property returns false, and if you really wanted a MathTest object you would have to instantiate a
new version.

PARTIAl ClAssEs
The partial keyword allows the class, struct, method, or interface to span multiple files. Typically, a class
resides entirely in a single file. However, in situations in which multiple developers need access to the same
class, or, more likely, a code generator of some type is generating part of a class, having the class in multiple
files can be beneficial.

c03.indd 83 30-01-2014 20:05:41

84 ❘ CHAPTER 3 Objects and types

To use the partial keyword, simply place partial before class, struct, or interface. In the
following example, the class TheBigClass resides in two separate source files, BigClassPart1.cs and
BigClassPart2.cs:

//BigClassPart1.cs
partial class TheBigClass
{
 public void MethodOne()
 {
 }
}

//BigClassPart2.cs
partial class TheBigClass
{
 public void MethodTwo()
 {
 }
}

When the project that these two source files are part of is compiled, a single type called TheBigClass will
be created with two methods, MethodOne() and MethodTwo().

If any of the following keywords are used in describing the class, the same must apply to all partials of the
same type:

➤➤ public

➤➤ private

➤➤ protected

➤➤ internal

➤➤ abstract

➤➤ sealed

➤➤ new

➤➤ generic constraints

Nested partials are allowed as long as the partial keyword precedes the class keyword in the nested type.
Attributes, XML comments, interfaces, generic-type parameter attributes, and members are combined when
the partial types are compiled into the type. Given these two source files:

//BigClassPart1.cs
[CustomAttribute]
partial class TheBigClass: TheBigBaseClass, IBigClass
{
 public void MethodOne()
 {
 }
}

//BigClassPart2.cs
[AnotherAttribute]
partial class TheBigClass: IOtherBigClass
{
 public void MethodTwo()
 {
 }
}

the equivalent source file would be as follows after the compile:

[CustomAttribute]
[AnotherAttribute]

c03.indd 84 30-01-2014 20:05:41

The Object Class ❘ 85

partial class TheBigClass: TheBigBaseClass, IBigClass, IOtherBigClass
{
 public void MethodOne()
 {
 }

 public void MethodTwo()
 {
 }
}

sTATIC ClAssEs
Earlier, this chapter discussed static constructors and how they allowed the initialization of static member
variables. If a class contains nothing but static methods and properties, the class itself can become static. A
static class is functionally the same as creating a class with a private static constructor. An instance of the
class can never be created. By using the static keyword, the compiler can verify that instance members
are never accidentally added to the class. If they are, a compile error occurs. This helps guarantee that an
instance is never created. The syntax for a static class looks like this:

static class StaticUtilities
{
 public static void HelperMethod()
 {
 }
}

An object of type StaticUtilities is not needed to call the HelperMethod(). The type name is used to
make the call:

StaticUtilities.HelperMethod();

THE objECT ClAss
As indicated earlier, all .NET classes are ultimately derived from System.Object. In fact, if you don’t
specify a base class when you define a class, the compiler automatically assumes that it derives from Object.
Because inheritance has not been used in this chapter, every class you have seen here is actually derived from
System.Object. (As noted earlier, for structs this derivation is indirect — a struct is always derived from
System.ValueType, which in turn derives from System.Object.)

The practical significance of this is that, besides the methods, properties, and so on that you define, you also
have access to a number of public and protected member methods that have been defined for the Object
class. These methods are available in all other classes that you define.

system.object Methods
For the time being, the following list summarizes the purpose of each method; the next section provides
more details about the ToString() method in particular:

➤➤ ToString() — A fairly basic, quick-and-easy string representation. Use it when you just want a
quick idea of the contents of an object, perhaps for debugging purposes. It provides very little choice
regarding how to format the data. For example, dates can, in principle, be expressed in a huge variety
of different formats, but DateTime.ToString() does not offer you any choice in this regard. If
you need a more sophisticated string representation — for example, one that takes into account your
formatting preferences or the culture (the locale) — then you should implement the IFormattable
interface (see Chapter 9).

➤➤ GetHashCode() — If objects are placed in a data structure known as a map (also known as a hash
table or dictionary), it is used by classes that manipulate these structures to determine where to place

c03.indd 85 30-01-2014 20:05:42

86 ❘ CHAPTER 3 Objects and types

an object in the structure. If you intend your class to be used as a key for a dictionary, you need to
override GetHashCode(). Some fairly strict requirements exist for how you implement your overload,
which you learn about when you examine dictionaries in Chapter 10, “Collections.”

➤➤ Equals() (both versions) and ReferenceEquals() — As you’ll note by the existence of three
different methods aimed at comparing the equality of objects, the .NET Framework has quite a
sophisticated scheme for measuring equality. Subtle differences exist between how these three
methods, along with the comparison operator, ==, are intended to be used. In addition, restrictions
exist on how you should override the virtual, one-parameter version of Equals() if you choose to do
so, because certain base classes in the System.Collections namespace call the method and expect
it to behave in certain ways. You explore the use of these methods in Chapter 7 when you examine
operators.

➤➤ Finalize() — Covered in Chapter 13, “Asynchronous Programming,” this method is intended as the
nearest that C# has to C++-style destructors. It is called when a reference object is garbage collected
to clean up resources. The Object implementation of Finalize()doesn’t actually do anything and
is ignored by the garbage collector. You normally override Finalize() if an object owns references
to unmanaged resources that need to be removed when the object is deleted. The garbage collector
cannot do this directly because it only knows about managed resources, so it relies on any finalizers
that you supply.

➤➤ GetType() — This object returns an instance of a class derived from System.Type, so it can provide
an extensive range of information about the class of which your object is a member, including base
type, methods, properties, and so on. System.Type also provides the entry point into .NET’s
reflection technology. Chapter 15 examines this topic.

➤➤ MemberwiseClone() — The only member of System.Object that isn’t examined in detail anywhere
in the book. That’s because it is fairly simple in concept. It just makes a copy of the object and
returns a reference (or in the case of a value type, a boxed reference) to the copy. Note that the copy
made is a shallow copy, meaning it copies all the value types in the class. If the class contains any
embedded references, then only the references are copied, not the objects referred to. This method is
protected and cannot be called to copy external objects. Nor is it virtual, so you cannot override its
implementation.

The Tostring() Method
You’ve already encountered ToString() in Chapter 2. It provides the most convenient way to get a quick
string representation of an object.

For example:

int i = 50;
string str = i.ToString(); // returns "50"

Here’s another example:

enum Colors {Red, Orange, Yellow};
// later on in code...
Colors favoriteColor = Colors.Orange;
string str = favoriteColor.ToString(); // returns "Orange"

Object.ToString() is actually declared as virtual, and all these examples are taking advantage of the fact
that its implementation in the C# predefined data types has been overridden for us to return correct string
representations of those types. You might not think that the Colors enum counts as a predefined data type.
It actually is implemented as a struct derived from System.Enum, and System.Enum has a rather clever
override of ToString() that deals with all the enums you define.

If you don’t override ToString() in classes that you define, your classes will simply inherit the System
.Object implementation, which displays the name of the class. If you want ToString() to return a string
that contains information about the value of objects of your class, you need to override it. To illustrate this,
the following example, Money, defines a very simple class, also called Money, which represents U.S. currency

c03.indd 86 30-01-2014 20:05:42

Extension Methods ❘ 87

amounts. Money simply acts as a wrapper for the decimal class but supplies a ToString() method. Note
that this method must be declared as override because it is replacing (overriding) the ToString() method
supplied by Object. Chapter 4 discusses overriding in more detail. The complete code for this example is as
follows (note that it also illustrates use of properties to wrap fields):

using System;

namespace Wrox
{
 class MainEntryPoint
 {
 static void Main(string[] args)
 {
 Money cash1 = new Money();
 cash1.Amount = 40M;
 Console.WriteLine("cash1.ToString() returns: " + cash1.ToString());
 Console.ReadLine();
 }
 }
 public class Money
 {
 private decimal amount;

 public decimal Amount
 {
 get
 {
 return amount;
 }
 set
 {
 amount = value;
 }
 }
 public override string ToString()
 {
 return "$" + Amount.ToString();
 }
 }

}

This example is included just to illustrate syntactical features of C#. C# already has a predefined
type to represent currency amounts, decimal, so in real life you wouldn’t write a class to duplicate
this functionality unless you wanted to add various other methods to it; and in many cases, due to
formatting requirements, you’d probably use the String.Format() method (which is covered in
Chapter 8) rather than ToString() to display a currency string.

In the Main() method, you first instantiate a Money object. The ToString() method is then called, which
actually executes the overridden version of the method. Running this code gives the following results:

cash1.ToString() returns: $40

ExTENsIoN METHods
There are many ways to extend a class. If you have the source for the class, then inheritance, which is covered
in Chapter 4, is a great way to add functionality to your objects. If the source code isn’t available, extension
methods can help by enabling you to change a class without requiring the source code for the class.

Extension methods are static methods that can appear to be part of a class without actually being in the
source code for the class. Let’s say that the Money class from the previous example needs to have a method
AddToAmount(decimal amountToAdd). However, for whatever reason, the original source for the assembly

c03.indd 87 30-01-2014 20:05:42

88 ❘ CHAPTER 3 Objects and types

cannot be changed directly. All you have to do is create a static class and add the AddToAmount method as a
static method. Here is what the code would look like:

namespace Wrox
{
 public static class MoneyExtension
 {
 public static void AddToAmount(this Money money, decimal amountToAdd)
 {
 money.Amount += amountToAdd;
 }
 }
}

Notice the parameters for the AddToAmount method. For an extension method, the first parameter is the
type that is being extended preceded by the this keyword. This is what tells the compiler that this method
is part of the Money type. In this example, Money is the type that is being extended. In the extension method
you have access to all the public methods and properties of the type being extended.

In the main program, the AddToAmount method appears just as another method. The first parameter doesn’t
appear, and you do not have to do anything with it. To use the new method, you make the call just like any
other method:

cash1.AddToAmount(10M);

Even though the extension method is static, you use standard instance method syntax. Notice that you call
AddToAmount using the cash1 instance variable and not using the type name.

If the extension method has the same name as a method in the class, the extension method will never be
called. Any instance methods already in the class take precedence.

suMMARy
This chapter examined C# syntax for declaring and manipulating objects. You have seen how to declare
static and instance fields, properties, methods, and constructors. You have also seen that C# adds some new
features not present in the OOP model of some other languages — for example, static constructors provide
a means of initializing static fields, whereas structs enable you to define types that do not require the use
of the managed heap, which could result in performance gains. You have also seen how all types in C#
derive ultimately from the type System.Object, which means that all types start with a basic set of useful
methods, including ToString(). We mentioned inheritance a few times throughout this chapter, and you’ll
examine implementation and interface inheritance in C# in Chapter 4.

c03.indd 88 30-01-2014 20:05:42

Inheritance
WHAT’S In THIS CHAPTER?

➤➤ Types of inheritance
➤➤ Implementing inheritance
➤➤ Access modifi ers
➤➤ Interfaces

WRoX.CoM CoDE DoWnloADS FoR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ BankAccounts.cs
➤➤ CurrentAccounts.cs
➤➤ MortimerPhones.cs

InHERITAnCE
Chapter 3, “Objects and Types,” examined how to use individual classes in C#. The focus in that
chapter was how to defi ne methods, properties, constructors, and other members of a single class (or
a single struct). Although you learned that all classes are ultimately derived from the class System
.Object, you have not yet learned how to create a hierarchy of inherited classes. Inheritance is the
subject of this chapter, which explains how C# and the .NET Framework handle inheritance.

TyPES oF InHERITAnCE
Let’s start by reviewing exactly what C# does and does not support as far as inheritance is
concerned.

4

c04.indd 89 30-01-2014 20:06:28

90 ❘ CHAPTER 4 InherItance

Implementation Versus Interface Inheritance
In object-oriented programming, there are two distinct types of inheritance — implementation inheritance
and interface inheritance:

➤➤ Implementation inheritance means that a type derives from a base type, taking all the base type’s
member fields and functions. With implementation inheritance, a derived type adopts the base
type’s implementation of each function, unless the definition of the derived type indicates that a
function implementation is to be overridden. This type of inheritance is most useful when you need to
add functionality to an existing type, or when a number of related types share a significant amount of
common functionality.

➤➤ Interface inheritance means that a type inherits only the signatures of the functions, not any
implementations. This type of inheritance is most useful when you want to specify that a type makes
certain features available.

C# supports both implementation inheritance and interface inheritance. Both are incorporated into the
framework and the language from the ground up, thereby enabling you to decide which to use based on the
application’s architecture.

Multiple Inheritance
Some languages such as C++ support what is known as multiple inheritance, in which a class derives from
more than one other class. The benefits of using multiple inheritance are debatable: On the one hand, you
can certainly use multiple inheritance to write extremely sophisticated, yet compact code, as demonstrated
by the C++ ATL library. On the other hand, code that uses multiple implementation inheritance is often
difficult to understand and debug (a point that is equally well demonstrated by the C++ ATL library). As
mentioned, making it easy to write robust code was one of the crucial design goals behind the development
of C#. Accordingly, C# does not support multiple implementation inheritance. It does, however, allow types
to be derived from multiple interfaces — multiple interface inheritance. This means that a C# class can be
derived from one other class, and any number of interfaces. Indeed, we can be more precise: Thanks to the
presence of System.Object as a common base type, every C# class (except for Object) has exactly one base
class, and may additionally have any number of base interfaces.

Structs and Classes
Chapter 3 distinguishes between structs (value types) and classes (reference types). One restriction of using
structs is that they do not support inheritance, beyond the fact that every struct is automatically derived
from System.ValueType. Although it’s true that you cannot code a type hierarchy of structs, it is possible for
structs to implement interfaces. In other words, structs don’t really support implementation inheritance, but
they do support interface inheritance. The following summarizes the situation for any types that you define:

➤➤ Structs are always derived from System.ValueType. They can also be derived from any number of
interfaces.

➤➤ Classes are always derived from either System.Object or one that you choose. They can also be
derived from any number of interfaces.

IMPlEMEnTATIon InHERITAnCE
If you want to declare that a class derives from another class, use the following syntax:

class MyDerivedClass: MyBaseClass
{
 // functions and data members here
}

c04.indd 90 30-01-2014 20:06:28

Implementation Inheritance ❘ 91

noTE This syntax is very similar to C++ and Java syntax. However, C++ programmers,
who will be used to the concepts of public and private inheritance, should note that C#
does not support private inheritance, hence the absence of a public or private qualifier on
the base class name. Supporting private inheritance would have complicated the language
for very little gain. In practice, private inheritance is very rarely in C++ anyway.

If a class (or a struct) also derives from interfaces, the list of base class and interfaces is separated by
commas:

public class MyDerivedClass: MyBaseClass, IInterface1, IInterface2
{
 // etc.
}

For a struct, the syntax is as follows:

public struct MyDerivedStruct: IInterface1, IInterface2
{
 // etc.
}

If you do not specify a base class in a class definition, the C# compiler will assume that System.Object is
the base class. Hence, the following two pieces of code yield the same result:

class MyClass: Object // derives from System.Object
{
 // etc.
}

and:

class MyClass // derives from System.Object
{
 // etc.
}

For the sake of simplicity, the second form is more common.

Because C# supports the object keyword, which serves as a pseudonym for the System.Object class, you
can also write this:

class MyClass: object // derives from System.Object
{
 // etc.
}

If you want to reference the Object class, use the object keyword, which is recognized by intelligent editors
such as Visual Studio .NET and thus facilitates editing your code.

Virtual Methods
By declaring a base class function as virtual, you allow the function to be overridden in any derived
classes:

class MyBaseClass
{
 public virtual string VirtualMethod()
 {
 return "This method is virtual and defined in MyBaseClass";
 }
}

c04.indd 91 30-01-2014 20:06:28

92 ❘ CHAPTER 4 InherItance

It is also permitted to declare a property as virtual. For a virtual or overridden property, the syntax is
the same as for a nonvirtual property, with the exception of the keyword virtual, which is added to the
definition. The syntax looks like this:

public virtual string ForeName
{
 get { return foreName;}
 set { foreName = value;}
}
private string foreName;

For simplicity, the following discussion focuses mainly on methods, but it applies equally well to properties.

The concepts behind virtual functions in C# are identical to standard OOP concepts. You can override a virtual
function in a derived class; and when the method is called, the appropriate method for the type of object is
invoked. In C#, functions are not virtual by default but (aside from constructors) can be explicitly declared
as virtual. This follows the C++ methodology: For performance reasons, functions are not virtual unless
indicated. In Java, by contrast, all functions are virtual. C# does differ from C++ syntax, though, because it
requires you to declare when a derived class’s function overrides another function, using the override keyword:

class MyDerivedClass: MyBaseClass
{
 public override string VirtualMethod()
 {
 return "This method is an override defined in MyDerivedClass.";
 }
}

This syntax for method overriding removes potential runtime bugs that can easily occur in C++, when a
method signature in a derived class unintentionally differs slightly from the base version, resulting in the
method failing to override the base version. In C#, this is picked up as a compile-time error because the
compiler would see a function marked as override but no base method for it to override.

Neither member fields nor static functions can be declared as virtual. The concept simply wouldn’t make
sense for any class member other than an instance function member.

Hiding Methods
If a method with the same signature is declared in both base and derived classes but the methods are not declared
as virtual and override, respectively, then the derived class version is said to hide the base class version.

In most cases, you would want to override methods rather than hide them. By hiding them you risk calling the
wrong method for a given class instance. However, as shown in the following example, C# syntax is designed
to ensure that the developer is warned at compile time about this potential problem, thus making it safer to
hide methods if that is your intention. This also has versioning benefits for developers of class libraries.

Suppose that you have a class called HisBaseClass:

class HisBaseClass
{
 // various members
}

At some point in the future, you write a derived class that adds some functionality to HisBaseClass. In
particular, you add a method called MyGroovyMethod(), which is not present in the base class:

class MyDerivedClass: HisBaseClass
{
 public int MyGroovyMethod()
 {
 // some groovy implementation
 return 0;
 }
}

c04.indd 92 30-01-2014 20:06:28

Implementation Inheritance ❘ 93

One year later, you decide to extend the functionality of the base class. By coincidence, you add a method that
is also called MyGroovyMethod() and that has the same name and signature as yours, but probably doesn’t
do the same thing. When you compile your code using the new version of the base class, you have a potential
clash because your program won’t know which method to call. It’s all perfectly legal in C#, but because your
MyGroovyMethod() is not intended to be related in any way to the base class MyGroovyMethod(), the result
is that running this code does not yield the result you want. Fortunately, C# has been designed to cope very
well with these types of conflicts.

In these situations, C# generates a compilation warning that reminds you to use the new keyword to declare
that you intend to hide a method, like this:

class MyDerivedClass: HisBaseClass
{
 public new int MyGroovyMethod()
 {
 // some groovy implementation
 return 0;
 }
}

However, because your version of MyGroovyMethod() is not declared as new, the compiler picks up on the
fact that it’s hiding a base class method without being instructed to do so and generates a warning (this applies
whether or not you declared MyGroovyMethod() as virtual). If you want, you can rename your version of
the method. This is the recommended course of action because it eliminates future confusion. However, if you
decide not to rename your method for whatever reason (for example, if you’ve published your software as a
library for other companies, so you can’t change the names of methods), all your existing client code will still
run correctly, picking up your version of MyGroovyMethod(). This is because any existing code that accesses
this method must be done through a reference to MyDerivedClass (or a further derived class).

Your existing code cannot access this method through a reference to HisBaseClass; it would generate a
compilation error when compiled against the earlier version of HisBaseClass. The problem can only occur
in client code you have yet to write. C# is designed to issue a warning that a potential problem might occur in
future code — you need to pay attention to this warning and take care not to attempt to call your version of
MyGroovyMethod() through any reference to HisBaseClass in any future code you add. However, all your
existing code will still work fine. It may be a subtle point, but it’s an impressive example of how C# is able to
cope with different versions of classes.

Calling Base Versions of Functions
C# has a special syntax for calling base versions of a method from a derived class: base.<MethodName>().
For example, if you want a method in a derived class to return 90 percent of the value returned by the base
class method, you can use the following syntax:

class CustomerAccount
{
 public virtual decimal CalculatePrice()
 {
 // implementation
 return 0.0M;
 }
}
class GoldAccount: CustomerAccount
{
 public override decimal CalculatePrice()
 {
 return base.CalculatePrice() * 0.9M;
 }
}

Note that you can use the base.<MethodName>() syntax to call any method in the base class — you don’t
have to call it from inside an override of the same method.

c04.indd 93 30-01-2014 20:06:28

94 ❘ CHAPTER 4 InherItance

Abstract Classes and Functions
C# allows both classes and functions to be declared as abstract. An abstract class cannot be instantiated,
whereas an abstract function does not have an implementation, and must be overridden in any non-abstract
derived class. Obviously, an abstract function is automatically virtual (although you don’t need to supply the
virtual keyword; and doing so results in a syntax error). If any class contains any abstract functions, that
class is also abstract and must be declared as such:

abstract class Building
{
 public abstract decimal CalculateHeatingCost(); // abstract method
}

noTE C++ developers should note the slightly different terminology. In C++, abstract
functions are often described as pure virtual; in the C# world, the only correct term to
use is abstract.

Sealed Classes and Methods
C# allows classes and methods to be declared as sealed. In the case of a class, this means you can’t inherit
from that class. In the case of a method, this means you can’t override that method.

sealed class FinalClass
{
 // etc
}
class DerivedClass: FinalClass // wrong. Will give compilation error
{
 // etc
}

The most likely situation in which you’ll mark a class or method as sealed is if the class or method is internal
to the operation of the library, class, or other classes that you are writing, to ensure that any attempt to
override some of its functionality will lead to instability in the code. You might also mark a class or method as
sealed for commercial reasons, in order to prevent a third party from extending your classes in a manner that
is contrary to the licensing agreements. In general, however, be careful about marking a class or member as
sealed, because by doing so you are severely restricting how it can be used. Even if you don’t think it would
be useful to inherit from a class or override a particular member of it, it’s still possible that at some point in
the future someone will encounter a situation you hadn’t anticipated in which it is useful to do so. The .NET
base class library frequently uses sealed classes to make these classes inaccessible to third-party developers
who might want to derive their own classes from them. For example, string is a sealed class.

Declaring a method as sealed serves a purpose similar to that for a class:

class MyClass: MyClassBase
{
 public sealed override void FinalMethod()
 {
 // etc.
 }
}
class DerivedClass: MyClass
{
 public override void FinalMethod() // wrong. Will give compilation error
 {
 }
}

c04.indd 94 30-01-2014 20:06:28

Implementation Inheritance ❘ 95

In order to use the sealed keyword on a method or property, it must have first been overridden from a base
class. If you do not want a method or property in a base class overridden, then don’t mark it as virtual.

Constructors of Derived Classes
Chapter 3 discusses how constructors can be applied to individual classes. An interesting question arises
as to what happens when you start defining your own constructors for classes that are part of a hierarchy,
inherited from other classes that may also have custom constructors.

Assume that you have not defined any explicit constructors for any of your classes. This means that the
compiler supplies default zeroing-out constructors for all your classes. There is actually quite a lot going
on under the hood when that happens, but the compiler is able to arrange it so that things work out nicely
throughout the class hierarchy and every field in every class is initialized to whatever its default value is.
When you add a constructor of your own, however, you are effectively taking control of construction. This
has implications right down through the hierarchy of derived classes, so you have to ensure that you don’t
inadvertently do anything to prevent construction through the hierarchy from taking place smoothly.

You might be wondering why there is any special problem with derived classes. The reason is that when you
create an instance of a derived class, more than one constructor is at work. The constructor of the class you
instantiate isn’t by itself sufficient to initialize the class — the constructors of the base classes must also be
called. That’s why we’ve been talking about construction through the hierarchy.

To understand why base class constructors must be called, you’re going to develop an example
based on a cell phone company called MortimerPhones. The example contains an abstract base
class, GenericCustomer, which represents any customer. There is also a (non-abstract) class,
Nevermore60Customer, which represents any customer on a particular rate called the Nevermore60
rate. All customers have a name, represented by a private field. Under the Nevermore60 rate, the first
few minutes of the customer’s call time are charged at a higher rate, necessitating the need for the field
highCostMinutesUsed, which details how many of these higher-cost minutes each customer has used. The
class definitions look like this:

abstract class GenericCustomer
{
 private string name;
 // lots of other methods etc.
}
class Nevermore60Customer: GenericCustomer
{
 private uint highCostMinutesUsed;
 // other methods etc.
}

Don’t worry about what other methods might be implemented in these classes because we are concentrating
solely on the construction process here. If you download the sample code for this chapter, you’ll find that the
class definitions include only the constructors.

Take a look at what happens when you use the new operator to instantiate a Nevermore60Customer:

GenericCustomer customer = new Nevermore60Customer();

Clearly, both of the member fields name and highCostMinutesUsed must be initialized when customer is
instantiated. If you don’t supply constructors of your own, but rely simply on the default constructors, then
you’d expect name to be initialized to the null reference, and highCostMinutesUsed initialized to zero.
Let’s look in a bit more detail at how this actually happens.

The highCostMinutesUsed field presents no problem: The default Nevermore60Customer constructor
supplied by the compiler initializes this field to zero.

What about name? Looking at the class definitions, it’s clear that the Nevermore60Customer constructor
can’t initialize this value. This field is declared as private, which means that derived classes don’t have access

c04.indd 95 30-01-2014 20:06:29

96 ❘ CHAPTER 4 InherItance

to it. Therefore, the default Nevermore60Customer constructor won’t know that this field exists. The only
code items that have that knowledge are other members of GenericCustomer. Therefore, if name is going
to be initialized, that must be done by a constructor in GenericCustomer. No matter how big your class
hierarchy is, this same reasoning applies right down to the ultimate base class, System.Object.

Now that you have an understanding of the issues involved, you can look at what actually happens whenever
a derived class is instantiated. Assuming that default constructors are used throughout, the compiler first
grabs the constructor of the class it is trying to instantiate, in this case Nevermore60Customer. The first
thing that the default Nevermore60Customer constructor does is attempt to run the default constructor
for the immediate base class, GenericCustomer. The GenericCustomer constructor attempts to run the
constructor for its immediate base class, System.Object; but System.Object doesn’t have any base classes,
so its constructor just executes and returns control to the GenericCustomer constructor. That constructor
now executes, initializing name to null, before returning control to the Nevermore60Customer constructor.
That constructor in turn executes, initializing highCostMinutesUsed to zero, and exits. At this point, the
Nevermore60Customer instance has been successfully constructed and initialized.

The net result of all this is that the constructors are called in order of System.Object first, and then
progress down the hierarchy until the compiler reaches the class being instantiated. Notice that in this
process, each constructor handles initialization of the fields in its own class. That’s how it should normally
work, and when you start adding your own constructors you should try to stick to that principle.

Note the order in which this happens. It’s always the base class constructors that are called first. This means
there are no problems with a constructor for a derived class invoking any base class methods, properties,
and any other members to which it has access, because it can be confident that the base class has already
been constructed and its fields initialized. It also means that if the derived class doesn’t like the way that the
base class has been initialized, it can change the initial values of the data, provided that it has access to do
so. However, good programming practice almost invariably means you’ll try to prevent that situation from
occurring if possible, and you will trust the base class constructor to deal with its own fields.

Now that you know how the process of construction works, you can start fiddling with it by adding your
own constructors.

Adding a Constructor in a Hierarchy
This section takes the easiest case first and demonstrates what happens if you simply replace the default
constructor somewhere in the hierarchy with another constructor that takes no parameters. Suppose that
you decide that you want everyone’s name to be initially set to the string "<no name>" instead of to the
null reference. You’d modify the code in GenericCustomer like this:

public abstract class GenericCustomer
{
 private string name;
 public GenericCustomer()
 : base() // We could omit this line without affecting the compiled code.
 {
 name = "<no name>";
 }

Adding this code will work fine. Nevermore60Customer still has its default constructor, so the sequence of
events described earlier will proceed as before, except that the compiler uses the custom GenericCustomer
constructor instead of generating a default one, so the name field is always initialized to "<no name>" as
required.

Notice that in your constructor you’ve added a call to the base class constructor before the
GenericCustomer constructor is executed, using a syntax similar to that used earlier when you saw
how to get different overloads of constructors to call each other. The only difference is that this time you
use the base keyword instead of this to indicate that it’s a constructor to the base class, rather than a
constructor to the current class, you want to call. There are no parameters in the brackets after the base
keyword — that’s important because it means you are not passing any parameters to the base constructor,

c04.indd 96 30-01-2014 20:06:29

Implementation Inheritance ❘ 97

so the compiler has to look for a parameterless constructor to call. The result of all this is that the compiler
injects code to call the System.Object constructor, which is what happens by default anyway.

In fact, you can omit that line of code and write the following (as was done for most of the constructors so
far in this chapter):

public GenericCustomer()
{
 name = "<no name>";
}

If the compiler doesn’t see any reference to another constructor before the opening curly brace, it assumes
that you wanted to call the base class constructor; this is consistent with how default constructors work.

The base and this keywords are the only keywords allowed in the line that calls another constructor.
Anything else causes a compilation error. Also note that only one other constructor can be specified.

So far, this code works fine. One way to collapse the progression through the hierarchy of constructors,
however, is to declare a constructor as private:

private GenericCustomer()
{
 name = "<no name>";
}

If you try this, you’ll get an interesting compilation error, which could really throw you if you don’t
understand how construction down a hierarchy works:

'Wrox.ProCSharp.GenericCustomer.GenericCustomer()' is inaccessible due to its protection level

What’s interesting here is that the error occurs not in the GenericCustomer class but in the derived
class, Nevermore60Customer. That’s because the compiler tried to generate a default constructor
for Nevermore60Customer but was not able to, as the default constructor is supposed to invoke the
no-parameter GenericCustomer constructor. By declaring that constructor as private, you’ve made it
inaccessible to the derived class. A similar error occurs if you supply a constructor to GenericCustomer,
which takes parameters, but at the same time you fail to supply a no-parameter constructor. In this case, the
compiler won’t generate a default constructor for GenericCustomer, so when it tries to generate the default
constructors for any derived class, it again finds that it can’t because a no-parameter base class constructor
is not available. A workaround is to add your own constructors to the derived classes — even if you don’t
actually need to do anything in these constructors — so that the compiler doesn’t try to generate any default
constructors.

Now that you have all the theoretical background you need, you’re ready to move on to an example
demonstrating how you can neatly add constructors to a hierarchy of classes. In the next section, you start
adding constructors that take parameters to the MortimerPhones example.

Adding Constructors with Parameters to a Hierarchy
You’re going to start with a one-parameter constructor for GenericCustomer, which specifies that
customers can be instantiated only when they supply their names:

abstract class GenericCustomer
{
 private string name;
 public GenericCustomer(string name)
 {
 this.name = name;
 }

So far, so good. However, as mentioned previously, this causes a compilation error when the compiler
tries to create a default constructor for any derived classes because the default compiler-generated
constructors for Nevermore60Customer will try to call a no-parameter GenericCustomer constructor,

c04.indd 97 30-01-2014 20:06:29

98 ❘ CHAPTER 4 InherItance

and GenericCustomer does not possess such a constructor. Therefore, you need to supply your own
constructors to the derived classes to avoid a compilation error:

class Nevermore60Customer: GenericCustomer
{
 private uint highCostMinutesUsed;
 public Nevermore60Customer(string name)
 : base(name)
 {
 }

Now instantiation of Nevermore60Customer objects can occur only when a string containing the customer’s
name is supplied, which is what you want anyway. The interesting thing here is what the Nevermore60Customer
constructor does with this string. Remember that it can’t initialize the name field itself because it has no access
to private fields in its base class. Instead, it passes the name through to the base class for the GenericCustomer
constructor to handle. It does this by specifying that the base class constructor to be executed first is the one that
takes the name as a parameter. Other than that, it doesn’t take any action of its own.

Now examine what happens if you have different overloads of the constructor as well as a class hierarchy to
deal with. To this end, assume that Nevermore60 customers might have been referred to MortimerPhones
by a friend as part of one of those sign-up-a-friend-and-get-a-discount offers. This means that when you
construct a Nevermore60Customer, you may need to pass in the referrer’s name as well. In real life, the
constructor would have to do something complicated with the name, such as process the discount, but here
you’ll just store the referrer’s name in another field.

The Nevermore60Customer definition will now look like this:

class Nevermore60Customer: GenericCustomer
{
 public Nevermore60Customer(string name, string referrerName)
 : base(name)
 {
 this.referrerName = referrerName;
 }

 private string referrerName;
 private uint highCostMinutesUsed;

The constructor takes the name and passes it to the GenericCustomer constructor for processing;
referrerName is the variable that is your responsibility here, so the constructor deals with that parameter
in its main body.

However, not all Nevermore60Customers will have a referrer, so you still need a constructor that doesn’t
require this parameter (or a constructor that gives you a default value for it). In fact, you will specify that
if there is no referrer, then the referrerName field should be set to "<None>", using the following one-
parameter constructor:

public Nevermore60Customer(string name)
 : this(name, "<None>")
{
}

You now have all your constructors set up correctly. It’s instructive to examine the chain of events that
occurs when you execute a line like this:

GenericCustomer customer = new Nevermore60Customer("Arabel Jones");

The compiler sees that it needs a one-parameter constructor that takes one string, so the constructor it
identifies is the last one that you defined:

public Nevermore60Customer(string Name)
 : this(Name, "<None>")

c04.indd 98 30-01-2014 20:06:29

Modifiers ❘ 99

When you instantiate customer, this constructor is called. It immediately transfers control to the
corresponding Nevermore60Customer two-parameter constructor, passing it the values "ArabelJones",
and "<None>". Looking at the code for this constructor, you see that it in turn immediately passes control
to the one-parameter GenericCustomer constructor, giving it the string "ArabelJones", and in turn
that constructor passes control to the System.Object default constructor. Only now do the constructors
execute. First, the System.Object constructor executes. Next is the GenericCustomer constructor, which
initializes the name field. Then the Nevermore60Customer two-parameter constructor gets control back and
sorts out initializing the referrerName to "<None>". Finally, the Nevermore60Customer one-parameter
constructor executes; this constructor doesn’t do anything else.

As you can see, this is a very neat and well-designed process. Each constructor handles initialization of the
variables that are obviously its responsibility; and, in the process, your class is correctly instantiated and
prepared for use. If you follow the same principles when you write your own constructors for your classes,
even the most complex classes should be initialized smoothly and without any problems.

MoDIFIERS
You have already encountered quite a number of so-called modifiers — keywords that can be applied to a
type or a member. Modifiers can indicate the visibility of a method, such as public or private, or the
nature of an item, such as whether a method is virtual or abstract. C# has a number of modifiers, and at
this point it’s worth taking a minute to provide the complete list.

Visibility Modifiers
Visibility modifiers indicate which other code items can view an item.

MoDIFIER APPlIES To DESCRIPTIon

public Any types or members The item is visible to any other code.

protected Any member of a type, and
any nested type

The item is visible only to any derived type.

internal Any types or members The item is visible only within its containing
assembly.

private Any member of a type, and
any nested type

The item is visible only inside the type to which it
belongs.

protected internal Any member of a type, and
any nested type

The item is visible to any code within its containing
assembly and to any code inside a derived type.

Note that type definitions can be internal or public, depending on whether you want the type to be visible
outside its containing assembly:

public class MyClass
{
 // etc.

You cannot define types as protected, private, or protected internal because these visibility levels
would be meaningless for a type contained in a namespace. Hence, these visibilities can be applied only
to members. However, you can define nested types (that is, types contained within other types) with these
visibilities because in this case the type also has the status of a member. Hence, the following code is correct:

public class OuterClass
{
 protected class InnerClass
 {
 // etc.
 }
 // etc.
}

c04.indd 99 30-01-2014 20:06:29

100 ❘ CHAPTER 4 InherItance

If you have a nested type, the inner type is always able to see all members of the outer type. Therefore, with
the preceding code, any code inside InnerClass always has access to all members of OuterClass, even
where those members are private.

other Modifiers
The modifiers in the following table can be applied to members of types and have various uses. A few of
these modifiers also make sense when applied to types.

MoDIFIER APPlIES To DESCRIPTIon

new Function members The member hides an inherited member with the same
signature.

static All members The member does not operate on a specific instance of the
class.

virtual Function members only The member can be overridden by a derived class.

abstract Function members only A virtual member that defines the signature of the member but
doesn’t provide an implementation.

override Function members only The member overrides an inherited virtual or abstract member.

sealed Classes, methods, and
properties

For classes, the class cannot be inherited from. For properties
and methods, the member overrides an inherited virtual
member but cannot be overridden by any members in any
derived classes. Must be used in conjunction with override.

extern Static [DllImport]
methods only

The member is implemented externally, in a different language.

InTERFACES
As mentioned earlier, by deriving from an interface, a class is declaring that it implements certain functions.
Because not all object-oriented languages support interfaces, this section examines C#’s implementation of
interfaces in detail. It illustrates interfaces by presenting the complete definition of one of the interfaces that
has been predefined by Microsoft — System.IDisposable. IDisposable contains one method, Dispose(),
which is intended to be implemented by classes to clean up code:

public interface IDisposable
{
 void Dispose();
}

This code shows that declaring an interface works syntactically in much the same way as declaring an
abstract class. Be aware, however, that it is not permitted to supply implementations of any of the members
of an interface. In general, an interface can contain only declarations of methods, properties, indexers, and
events.

You can never instantiate an interface; it contains only the signatures of its members. An interface has
neither constructors (how can you construct something that you can’t instantiate?) nor fields (because that
would imply some internal implementation). Nor is an interface definition allowed to contain operator
overloads, although that’s not because there is any problem with declaring them; there isn’t, but because
interfaces are usually intended to be public contracts, having operator overloads would cause some
incompatibility problems with other .NET languages, such as Visual Basic .NET, which do not support
operator overloading.

Nor is it permitted to declare modifiers on the members in an interface definition. Interface members are
always implicitly public, and they cannot be declared as virtual or static. That’s up to implementing

c04.indd 100 30-01-2014 20:06:29

Interfaces ❘ 101

classes to decide. Therefore, it is fine for implementing classes to declare access modifiers, as demonstrated
in the example in this section.

For example, consider IDisposable. If a class wants to declare publicly that it implements the Dispose()
method, it must implement IDisposable, which in C# terms means that the class derives from
IDisposable:

class SomeClass: IDisposable
{
 // This class MUST contain an implementation of the
 // IDisposable.Dispose() method, otherwise
 // you get a compilation error.
 public void Dispose()
 {
 // implementation of Dispose() method
 }
 // rest of class
}

In this example, if SomeClass derives from IDisposable but doesn’t contain a Dispose() implementation
with the exact same signature as defined in IDisposable, you get a compilation error because the class is
breaking its agreed-on contract to implement IDisposable. Of course, it’s no problem for the compiler if a
class has a Dispose() method but doesn’t derive from IDisposable. The problem is that other code would
have no way of recognizing that SomeClass has agreed to support the IDisposable features.

noTE IDisposable is a relatively simple interface because it defines only one method.
Most interfaces contain more members.

Defining and Implementing Interfaces
This section illustrates how to define and use interfaces by developing a short program that follows the
interface inheritance paradigm. The example is based on bank accounts. Assume that you are writing code
that will ultimately allow computerized transfers between bank accounts. Assume also for this example that
there are many companies that implement bank accounts but they have all mutually agreed that any classes
representing bank accounts will implement an interface, IBankAccount, which exposes methods to deposit
or withdraw money, and a property to return the balance. It is this interface that enables outside code to
recognize the various bank account classes implemented by different bank accounts. Although the aim is
to enable the bank accounts to communicate with each other to allow transfers of funds between accounts,
that feature isn’t introduced just yet.

To keep things simple, you will keep all the code for the example in the same source file. Of course, if
something like the example were used in real life, you could surmise that the different bank account classes
would not only be compiled to different assemblies, but also be hosted on different machines owned by the
different banks. That’s all much too complicated for our purposes here. However, to maintain some realism,
you will define different namespaces for the different companies.

To begin, you need to define the IBankAccount interface:

namespace Wrox.ProCSharp
{
 public interface IBankAccount
 {
 void PayIn(decimal amount);
 bool Withdraw(decimal amount);
 decimal Balance { get; }
 }
}

c04.indd 101 30-01-2014 20:06:30

102 ❘ CHAPTER 4 InherItance

Notice the name of the interface, IBankAccount. It’s a best-practice convention to begin an interface name
with the letter I, to indicate it’s an interface.

noTE Chapter 2, “Core C#,” points out that in most cases, .NET usage guidelines
discourage the so-called Hungarian notation in which names are preceded by a letter
that indicates the type of object being defined. Interfaces are one of the few exceptions
for which Hungarian notation is recommended.

The idea is that you can now write classes that represent bank accounts. These classes don’t have to be
related to each other in any way; they can be completely different classes. They will all, however, declare
that they represent bank accounts by the mere fact that they implement the IBankAccount interface.

Let’s start off with the first class, a saver account run by the Royal Bank of Venus:

namespace Wrox.ProCSharp.VenusBank
{
 public class SaverAccount: IBankAccount
 {
 private decimal balance;
 public void PayIn(decimal amount)
 {
 balance += amount;
 }
 public bool Withdraw(decimal amount)
 {
 if (balance >= amount)
 {
 balance -= amount;
 return true;
 }
 Console.WriteLine("Withdrawal attempt failed.");
 return false;
 }
 public decimal Balance
 {
 get
 {
 return balance;
 }
 }
 public override string ToString()
 {
 return String.Format("Venus Bank Saver: Balance = {0,6:C}", balance);
 }
 }
}

It should be obvious what the implementation of this class does. You maintain a private field, balance, and
adjust this amount when money is deposited or withdrawn. You display an error message if an attempt to
withdraw money fails because of insufficient funds. Notice also that because we are keeping the code as simple
as possible, we are not implementing extra properties, such as the account holder’s name! In real life that
would be essential information, of course, but for this example it’s unnecessarily complicated.

The only really interesting line in this code is the class declaration:

public class SaverAccount: IBankAccount

You’ve declared that SaverAccount is derived from one interface, IBankAccount, and you have not explicitly
indicated any other base classes (which of course means that SaverAccount is derived directly from System
.Object). By the way, derivation from interfaces acts completely independently from derivation from classes.

c04.indd 102 30-01-2014 20:06:30

Interfaces ❘ 103

Being derived from IBankAccount means that SaverAccount gets all the members of IBankAccount; but
because an interface doesn’t actually implement any of its methods, SaverAccount must provide its own
implementations of all of them. If any implementations are missing, you can rest assured that the compiler
will complain. Recall also that the interface just indicates the presence of its members. It’s up to the class
to determine whether it wants any of them to be virtual or abstract (though abstract functions are of
course only allowed if the class itself is abstract). For this particular example, you don’t have any reason to
make any of the interface functions virtual.

To illustrate how different classes can implement the same interface, assume that the Planetary Bank of
Jupiter also implements a class to represent one of its bank accounts — a Gold Account:

namespace Wrox.ProCSharp.JupiterBank
{
 public class GoldAccount: IBankAccount
 {
 // etc
 }
}

We won’t present details of the GoldAccount class here; in the sample code, it’s basically identical to the
implementation of SaverAccount. We stress that GoldAccount has no connection with SaverAccount,
other than they both happen to implement the same interface.

Now that you have your classes, you can test them. You first need a few using statements:

using System;
using Wrox.ProCSharp;
using Wrox.ProCSharp.VenusBank;
using Wrox.ProCSharp.JupiterBank;

Now you need a Main() method:

namespace Wrox.ProCSharp
{
 class MainEntryPoint
 {
 static void Main()
 {
 IBankAccount venusAccount = new SaverAccount();
 IBankAccount jupiterAccount = new GoldAccount();
 venusAccount.PayIn(200);
 venusAccount.Withdraw(100);
 Console.WriteLine(venusAccount.ToString());
 jupiterAccount.PayIn(500);
 jupiterAccount.Withdraw(600);
 jupiterAccount.Withdraw(100);
 Console.WriteLine(jupiterAccount.ToString());
 }
 }
}

This code (which if you download the sample, you can find in the file BankAccounts.cs) produces the
following output:

C:> BankAccounts
Venus Bank Saver: Balance = £100.00
Withdrawal attempt failed.
Jupiter Bank Saver: Balance = £400.00

The main point to notice about this code is the way that you have declared both your reference variables
as IBankAccount references. This means that they can point to any instance of any class that implements
this interface. However, it also means that you can call only methods that are part of this interface
through these references — if you want to call any methods implemented by a class that are not part of the
interface, you need to cast the reference to the appropriate type. In the example code, you were able to call
ToString() (not implemented by IBankAccount) without any explicit cast, purely because ToString() is

c04.indd 103 30-01-2014 20:06:30

104 ❘ CHAPTER 4 InherItance

a System.Object method, so the C# compiler knows that it will be supported by any class (put differently,
the cast from any interface to System.Object is implicit). Chapter 7, “Operators and Casts,” covers the
syntax for performing casts.

Interface references can in all respects be treated as class references — but the power of an interface reference
is that it can refer to any class that implements that interface. For example, this allows you to form arrays of
interfaces, whereby each element of the array is a different class:

IBankAccount[] accounts = new IBankAccount[2];
accounts[0] = new SaverAccount();
accounts[1] = new GoldAccount();

Note, however, that you would get a compiler error if you tried something like this:

accounts[1] = new SomeOtherClass(); // SomeOtherClass does NOT implement
 // IBankAccount: WRONG!!

The preceding causes a compilation error similar to this:

Cannot implicitly convert type 'Wrox.ProCSharp. SomeOtherClass' to
 'Wrox.ProCSharp.IBankAccount'

Derived Interfaces
It’s possible for interfaces to inherit from each other in the same way that classes do. This concept is illustrated
by defining a new interface, ITransferBankAccount, which has the same features as IBankAccount but also
defines a method to transfer money directly to a different account:

namespace Wrox.ProCSharp
{
 public interface ITransferBankAccount: IBankAccount
 {
 bool TransferTo(IBankAccount destination, decimal amount);
 }
}

Because ITransferBankAccount is derived from IBankAccount, it gets all the members of IBankAccount
as well as its own. That means that any class that implements (derives from) ITransferBankAccount
must implement all the methods of IBankAccount, as well as the new TransferTo() method defined in
ITransferBankAccount. Failure to implement all these methods will result in a compilation error.

Note that the TransferTo() method uses an IBankAccount interface reference for the destination account.
This illustrates the usefulness of interfaces: When implementing and then invoking this method, you don’t
need to know anything about what type of object you are transferring money to — all you need to know is
that this object implements IBankAccount.

To illustrate ITransferBankAccount, assume that the Planetary Bank of Jupiter also offers a current
account. Most of the implementation of the CurrentAccount class is identical to implementations of
SaverAccount and GoldAccount (again, this is just to keep this example simple — that won’t normally be
the case), so in the following code only the differences are highlighted:

public class CurrentAccount: ITransferBankAccount
{
 private decimal balance;
 public void PayIn(decimal amount)
 {
 balance += amount;
 }
 public bool Withdraw(decimal amount)
 {
 if (balance >= amount)
 {
 balance -= amount;

c04.indd 104 30-01-2014 20:06:30

Summary ❘ 105

 return true;
 }
 Console.WriteLine("Withdrawal attempt failed.");
 return false;
 }
 public decimal Balance
 {
 get
 {
 return balance;
 }
 }
 public bool TransferTo(IBankAccount destination, decimal amount)
 {
 bool result;
 result = Withdraw(amount);
 if (result)
 {
 destination.PayIn(amount);
 }
 return result;
 }
 public override string ToString()
 {
 return String.Format("Jupiter Bank Current Account: Balance = {0,6:C}",balance);
 }
}

The class can be demonstrated with this code:

static void Main()
{
 IBankAccount venusAccount = new SaverAccount();
 ITransferBankAccount jupiterAccount = new CurrentAccount();
 venusAccount.PayIn(200);
 jupiterAccount.PayIn(500);
 jupiterAccount.TransferTo(venusAccount, 100);
 Console.WriteLine(venusAccount.ToString());
 Console.WriteLine(jupiterAccount.ToString());
}

The preceding code (CurrentAccounts.cs) produces the following output, which, as you can verify, shows
that the correct amounts have been transferred:

C:> CurrentAccount
Venus Bank Saver: Balance = £300.00
Jupiter Bank Current Account: Balance = £400.00

SuMMARy
This chapter described how to code inheritance in C#. You have seen that C# offers rich support for both
multiple interface and single implementation inheritance. You have also learned that C# provides a number
of useful syntactical constructs designed to assist in making code more robust. These include the override
keyword, which indicates when a function should override a base function; the new keyword, which
indicates when a function hides a base function; and rigid rules for constructor initializers that are designed
to ensure that constructors are designed to interoperate in a robust manner.

c04.indd 105 30-01-2014 20:06:30

c04.indd 106 30-01-2014 20:06:30

Generics
WHAT’S iN THiS CHAPTER?

➤➤ An overview of generics
➤➤ Creating generic classes
➤➤ Features of generic classes
➤➤ Generic interfaces
➤➤ Generic structs
➤➤ Generic methods

WROX.COM CODE DOWNlOADS FOR THiS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ Linked List Objects
➤➤ Linked List Sample
➤➤ Document Manager
➤➤ Variance
➤➤ Generic Methods
➤➤ Specialization

GENERiCS OVERViEW
Since the release of .NET 2.0, .NET has supported generics. Generics are not just a part of the
C# programming language; they are deeply integrated with the IL (Intermediate Language) code in the
assemblies. With generics, you can create classes and methods that are independent of contained types.
Instead of writing a number of methods or classes with the same functionality for different types, you
can create just one method or class.

Another option to reduce the amount of code is using the Object class. However, passing using types
derived from the Object class is not type safe. Generic classes make use of generic types that are

5

c05.indd 107 30-01-2014 20:11:51

108 ❘ CHAPTER 5 Generics

replaced with specific types as needed. This allows for type safety: the compiler complains if a specific type
is not supported with the generic class.

Generics are not limited to classes; in this chapter, you also see generics with interfaces and methods. Generics
with delegates can be found in Chapter 8, “Delegates, Lambdas, and Events.”

Generics are not a completely new construct; similar concepts exist with other languages. For example,
C++ templates have some similarity to generics. However, there’s a big difference between C++ templates
and .NET generics. With C++ templates, the source code of the template is required when a template
is instantiated with a specific type. Unlike C++ templates, generics are not only a construct of the C#
language, but are defined with the CLR. This makes it possible to instantiate generics with a specific type in
Visual Basic even though the generic class was defined with C#.

The following sections explore the advantages and disadvantages of generics, particularly in regard to the
following:

➤➤ Performance
➤➤ Type safety
➤➤ Binary code reuse
➤➤ Code bloat
➤➤ Naming guidelines

Performance
One of the big advantages of generics is performance. In Chapter 10, “Collections,” you will see non-generic
and generic collection classes from the namespaces System.Collections and System.Collections
.Generic. Using value types with non-generic collection classes results in boxing and unboxing when the
value type is converted to a reference type, and vice versa.

NOTE Boxing and unboxing are discussed in Chapter 7, “Operators and Casts.”
Here is just a short refresher about these terms.

Value types are stored on the stack, whereas reference types are stored on the heap. C# classes are reference
types; structs are value types. .NET makes it easy to convert value types to reference types, so you can
use a value type everywhere an object (which is a reference type) is needed. For example, an int can be
assigned to an object. The conversion from a value type to a reference type is known as boxing. Boxing
occurs automatically if a method requires an object as a parameter, and a value type is passed. In the other
direction, a boxed value type can be converted to a value type by using unboxing. With unboxing, the cast
operator is required.

The following example shows the ArrayList class from the namespace System.Collections. ArrayList
stores objects; the Add() method is defined to require an object as a parameter, so an integer type is boxed.
When the values from an ArrayList are read, unboxing occurs when the object is converted to an integer
type. This may be obvious with the cast operator that is used to assign the first element of the ArrayList
collection to the variable i1, but it also happens inside the foreach statement where the variable i2 of type
int is accessed:

var list = new ArrayList();
list.Add(44); // boxing — convert a value type to a reference type

int i1 = (int)list[0]; // unboxing — convert a reference type to
 // a value type

c05.indd 108 30-01-2014 20:11:51

Generics Overview ❘ 109

foreach (int i2 in list)
{
 Console.WriteLine(i2); // unboxing
}

Boxing and unboxing are easy to use but have a big performance impact, especially when iterating through
many items.

Instead of using objects, the List<T> class from the namespace System.Collections.Generic enables you
to define the type when it is used. In the example here, the generic type of the List<T> class is defined as
int, so the int type is used inside the class that is generated dynamically from the JIT compiler. Boxing and
unboxing no longer happen:

var list = new List<int>();
list.Add(44); // no boxing — value types are stored in the List<int>

int i1 = list[0]; // no unboxing, no cast needed

foreach (int i2 in list)
{
 Console.WriteLine(i2);
}

Type Safety
Another feature of generics is type safety. As with the ArrayList class, if objects are used, any type can
be added to this collection. The following example shows adding an integer, a string, and an object of type
MyClass to the collection of type ArrayList:

var list = new ArrayList();
list.Add(44);
list.Add("mystring");
list.Add(new MyClass());

If this collection is iterated using the following foreach statement, which iterates using integer elements,
the compiler accepts this code. However, because not all elements in the collection can be cast to an int, a
runtime exception will occur:

foreach (int i in list)
{
 Console.WriteLine(i);
}

Errors should be detected as early as possible. With the generic class List<T>, the generic type T defines
what types are allowed. With a definition of List<int>, only integer types can be added to the collection.
The compiler doesn’t compile this code because the Add() method has invalid arguments:

var list = new List<int>();
list.Add(44);
list.Add("mystring"); // compile time error
list.Add(new MyClass()); // compile time error

Binary Code Reuse
Generics enable better binary code reuse. A generic class can be defined once and can be instantiated with
many different types. Unlike C++ templates, it is not necessary to access the source code.

c05.indd 109 30-01-2014 20:11:51

110 ❘ CHAPTER 5 Generics

For example, here the List<T> class from the namespace System.Collections.Generic is instantiated
with an int, a string, and a MyClass type:

var list = new List<int>();
list.Add(44);

var stringList = new List<string>();
stringList.Add("mystring");

var myClassList = new List<MyClass>();
myClassList.Add(new MyClass());

Generic types can be defined in one language and used from any other .NET language.

Code Bloat
You might be wondering how much code is created with generics when instantiating them with different
specific types. Because a generic class definition goes into the assembly, instantiating generic classes
with specific types doesn’t duplicate these classes in the IL code. However, when the generic classes are
compiled by the JIT compiler to native code, a new class for every specific value type is created. Reference
types share all the same implementation of the same native class. This is because with reference types, only
a 4-byte memory address (with 32-bit systems) is needed within the generic instantiated class to reference a
reference type. Value types are contained within the memory of the generic instantiated class; and because
every value type can have different memory requirements, a new class for every value type is instantiated.

Naming Guidelines
If generics are used in the program, it helps when generic types can be distinguished from non-generic types.
Here are naming guidelines for generic types:

➤➤ Generic type names should be prefixed with the letter T.
➤➤ If the generic type can be replaced by any class because there’s no special requirement, and only one

generic type is used, the character T is good as a generic type name:

public class List<T> { }

public class LinkedList<T> { }

➤➤ If there’s a special requirement for a generic type (for example, it must implement an interface or
derive from a base class), or if two or more generic types are used, descriptive names should be used
for the type names:

public delegate void EventHandler<TEventArgs>(object sender,
 TEventArgs e);

public delegate TOutput Converter<TInput, TOutput>(TInput from);

public class SortedList<TKey, TValue> { }

CREATiNG GENERiC ClASSES
The example in this section starts with a normal, non-generic simplified linked list class that can contain
objects of any kind, and then converts this class to a generic class.

With a linked list, one element references the next one. Therefore, you must create a class that wraps the
object inside the linked list and references the next object. The class LinkedListNode contains a property
named Value that is initialized with the constructor. In addition to that, the LinkedListNode class contains
references to the next and previous elements in the list that can be accessed from properties (code file
LinkedListObjects/LinkedListNode.cs):

c05.indd 110 30-01-2014 20:11:52

Creating Generic Classes ❘ 111

 public class LinkedListNode
 {
 public LinkedListNode(object value)
 {
 this.Value = value;
 }

 public object Value { get; private set; }

 public LinkedListNode Next { get; internal set; }
 public LinkedListNode Prev { get; internal set; }
 }

The LinkedList class includes First and Last properties of type LinkedListNode that mark the
beginning and end of the list. The method AddLast() adds a new element to the end of the list. First, an
object of type LinkedListNode is created. If the list is empty, then the First and Last properties are set
to the new element; otherwise, the new element is added as the last element to the list. By implementing
the GetEnumerator() method, it is possible to iterate through the list with the foreach statement. The
GetEnumerator() method makes use of the yield statement for creating an enumerator type:

 public class LinkedList: IEnumerable
 {
 public LinkedListNode First { get; private set; }
 public LinkedListNode Last { get; private set; }

 public LinkedListNode AddLast(object node)
 {
 var newNode = new LinkedListNode(node);
 if (First == null)
 {
 First = newNode;
 Last = First;
 }
 else
 {
 LinkedListNode previous = Last;
 Last.Next = newNode;
 Last = newNode;
 Last.Prev = previous;
 }
 return newNode;
 }

 public IEnumerator GetEnumerator()
 {
 LinkedListNode current = First;
 while (current != null)
 {
 yield return current.Value;
 current = current.Next;
 }
 }
 }

NOTE The yield statement creates a state machine for an enumerator. This statement
is explained in Chapter 6, “Arrays and Tuples.”

c05.indd 111 30-01-2014 20:11:52

112 ❘ CHAPTER 5 Generics

Now you can use the LinkedList class with any type. The following code segment instantiates a new
LinkedList object and adds two integer types and one string type. As the integer types are converted to an
object, boxing occurs as explained earlier. With the foreach statement, unboxing happens. In the foreach
statement, the elements from the list are cast to an integer, so a runtime exception occurs with the third
element in the list because casting to an int fails (code file LinkedListObjects/Program.cs):

 var list1 = new LinkedList();
 list1.AddLast(2);
 list1.AddLast(4);
 list1.AddLast("6");

 foreach (int i in list1)
 {
 Console.WriteLine(i);
 }

Now let’s make a generic version of the linked list. A generic class is defined similarly to a normal class
with the generic type declaration. The generic type can then be used within the class as a field member,
or with parameter types of methods. The class LinkedListNode is declared with a generic type T. The
property Value is now type T instead of object; the constructor is changed as well to accept an object
of type T. A generic type can also be returned and set, so the properties Next and Prev are now of type
LinkedListNode<T> (code file LinkedListSample/LinkedListNode.cs):

 public class LinkedListNode<T>
 {
 public LinkedListNode(T value)
 {
 this.Value = value;
 }

 public T Value { get; private set; }
 public LinkedListNode<T> Next { get; internal set; }
 public LinkedListNode<T> Prev { get; internal set; }
 }

In the following code the class LinkedList is changed to a generic class as well. LinkedList<T> contains
LinkedListNode<T> elements. The type T from the LinkedList defines the type T of the properties
First and Last. The method AddLast() now accepts a parameter of type T and instantiates an object of
LinkedListNode<T>.

Besides the interface IEnumerable, a generic version is also available: IEnumerable<T>. IEnumerable<T>
derives from IEnumerable and adds the GetEnumerator() method, which returns IEnumerator<T>.
LinkedList<T> implements the generic interface IEnumerable<T> (code file LinkedListSample/
LinkedList.cs):

NOTE Enumerations and the interfaces IEnumerable and IEnumerator are discussed
in Chapter 6.

 public class LinkedList<T>: IEnumerable<T>
 {
 public LinkedListNode<T> First { get; private set; }
 public LinkedListNode<T> Last { get; private set; }

 public LinkedListNode<T> AddLast(T node)
 {

c05.indd 112 30-01-2014 20:11:52

Creating Generic Classes ❘ 113

 var newNode = new LinkedListNode<T>(node);
 if (First == null)
 {
 First = newNode;
 Last = First;
 }
 else
 {
 LinkedListNode<T> previous = Last;
 Last.Next = newNode;
 Last = newNode;
 Last.Prev = previous;
 }
 return newNode;
 }

 public IEnumerator<T> GetEnumerator()
 {
 LinkedListNode<T> current = First;

 while (current != null)
 {
 yield return current.Value;
 current = current.Next;
 }
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }
 }

Using the generic LinkedList<T>, you can instantiate it with an int type, and there’s no boxing.
Also, you get a compiler error if you don’t pass an int with the method AddLast(). Using the generic
IEnumerable<T>, the foreach statement is also type safe, and you get a compiler error if that variable in
the foreach statement is not an int (code file LinkedListSample/Program.cs):

 var list2 = new LinkedList<int>();
 list2.AddLast(1);
 list2.AddLast(3);
 list2.AddLast(5);

 foreach (int i in list2)
 {
 Console.WriteLine(i);
 }

Similarly, you can use the generic LinkedList<T> with a string type and pass strings to the AddLast()
method:

 var list3 = new LinkedList<string>();
 list3.AddLast("2");
 list3.AddLast("four");
 list3.AddLast("foo");

 foreach (string s in list3)
 {
 Console.WriteLine(s);
 }

c05.indd 113 30-01-2014 20:11:52

114 ❘ CHAPTER 5 Generics

NOTE Every class that deals with the object type is a possible candidate for a generic
implementation. Also, if classes make use of hierarchies, generics can be very helpful in
making casting unnecessary.

GENERiCS FEATuRES
When creating generic classes, you might need some additional C# keywords. For example, it is not possible
to assign null to a generic type. In this case, the keyword default can be used, as demonstrated in the next
section. If the generic type does not require the features of the Object class but you need to invoke some
specific methods in the generic class, you can define constraints.

This section discusses the following topics:

➤➤ Default values
➤➤ Constraints
➤➤ Inheritance
➤➤ Static members

This example begins with a generic document manager, which is used to read and write documents
from and to a queue. Start by creating a new Console project named DocumentManager and add the
class DocumentManager<T>. The method AddDocument() adds a document to the queue. The read-only
property IsDocumentAvailable returns true if the queue is not empty (code file DocumentManager/
DocumentManager.cs):

using System;
using System.Collections.Generic;

namespace Wrox.ProCSharp.Generics
{
 public class DocumentManager<T>
 {
 private readonly Queue<T> documentQueue = new Queue<T>();

 public void AddDocument(T doc)
 {
 lock (this)
 {
 documentQueue.Enqueue(doc);
 }
 }

 public bool IsDocumentAvailable
 {
 get { return documentQueue.Count > 0; }
 }
 }
}

Threading and the lock statement are discussed in Chapter 21, “Threads, Tasks, and Synchronization.”

Default Values
Now you add a GetDocument() method to the DocumentManager<T> class. Inside this method the type
T should be assigned to null. However, it is not possible to assign null to generic types. That’s because a
generic type can also be instantiated as a value type, and null is allowed only with reference types.

c05.indd 114 30-01-2014 20:11:52

Generics Features ❘ 115

To circumvent this problem, you can use the default keyword. With the default keyword, null is
assigned to reference types and 0 is assigned to value types:

 public T GetDocument()
 {
 T doc = default(T);
 lock (this)
 {
 doc = documentQueue.Dequeue();
 }
 return doc;
 }

NOTE The default keyword has multiple meanings depending on the context, or
where it is used. The switch statement uses a default for defining the default case,
and with generics default is used to initialize generic types either to null or to 0,
depending on if it is a reference or value type.

Constraints
If the generic class needs to invoke some methods from the generic type, you have to add constraints.

With DocumentManager<T>, all the document titles should be displayed in the DisplayAllDocuments()
method. The Document class implements the interface IDocument with the properties Title and Content
(code file DocumentManager/Document.cs):

 public interface IDocument
 {
 string Title { get; set; }
 string Content { get; set; }
 }

 public class Document: IDocument
 {
 public Document()
 {
 }

 public Document(string title, string content)
 {
 this.Title = title;
 this.Content = content;
 }

 public string Title { get; set; }
 public string Content { get; set; }
 }

To display the documents with the DocumentManager<T> class, you can cast the type T to the interface
IDocument to display the title (code file DocumentManager/DocumentManager.cs):

 public void DisplayAllDocuments()
 {
 foreach (T doc in documentQueue)
 {

c05.indd 115 30-01-2014 20:11:52

116 ❘ CHAPTER 5 Generics

 Console.WriteLine(((IDocument)doc).Title);
 }
 }

The problem here is that doing a cast results in a runtime exception if type T does not implement
the interface IDocument. Instead, it would be better to define a constraint with the DocumentManager
<TDocument> class specifying that the type TDocument must implement the interface IDocument. To clarify
the requirement in the name of the generic type, T is changed to TDocument. The where clause defines the
requirement to implement the interface IDocument:

 public class DocumentManager<TDocument>
 where TDocument: IDocument
 {

This way you can write the foreach statement in such a way that the type TDocument contains the property
Title. You get support from Visual Studio IntelliSense and the compiler:

 public void DisplayAllDocuments()
 {
 foreach (TDocument doc in documentQueue)
 {
 Console.WriteLine(doc.Title);
 }
 }

In the Main() method, the DocumentManager<T> class is instantiated with the type Document that
implements the required interface IDocument. Then new documents are added and displayed, and one of the
documents is retrieved (code file DocumentManager/Program.cs):

 static void Main()
 {
 var dm = new DocumentManager<Document>();
 dm.AddDocument(new Document("Title A", "Sample A"));
 dm.AddDocument(new Document("Title B", "Sample B"));

 dm.DisplayAllDocuments();

 if (dm.IsDocumentAvailable)
 {
 Document d = dm.GetDocument();
 Console.WriteLine(d.Content);
 }
 }

The DocumentManager now works with any class that implements the interface IDocument.

In the sample application, you’ve seen an interface constraint. Generics support several constraint types,
indicated in the following table.

CONSTRAiNT DESCRiPTiON

where T: struct With a struct constraint, type T must be a value type.

where T: class The class constraint indicates that type T must be a reference type.

where T: IFoo Specifies that type T is required to implement interface IFoo.

where T: Foo Specifies that type T is required to derive from base class Foo.

where T: new() A constructor constraint; specifies that type T must have a default constructor.

where T1: T2 With constraints it is also possible to specify that type T1 derives from a generic type
T2. This constraint is known as naked type constraint.

c05.indd 116 30-01-2014 20:11:53

Generics Features ❘ 117

NOTE Constructor constraints can be defined only for the default constructor. It is not
possible to define a constructor constraint for other constructors.

With a generic type, you can also combine multiple constraints. The constraint where T: IFoo, new()
with the MyClass<T> declaration specifies that type T implements the interface IFoo and has a default
constructor:

 public class MyClass<T>
 where T: IFoo, new()
 {
 //...

NOTE One important restriction of the where clause with C# is that it’s not possible
to define operators that must be implemented by the generic type. Operators cannot be
defined in interfaces. With the where clause, it is only possible to define base classes,
interfaces, and the default constructor.

inheritance
The LinkedList<T> class created earlier implements the interface IEnumerable<T>:

 public class LinkedList<T>: IEnumerable<T>
 {
 //...

A generic type can implement a generic interface. The same is possible by deriving from a class. A generic
class can be derived from a generic base class:

 public class Base<T>
 {
 }

 public class Derived<T>: Base<T>
 {
 }

The requirement is that the generic types of the interface must be repeated, or the type of the base class must
be specified, as in this case:

 public class Base<T>
 {
 }

 public class Derived<T>: Base<string>
 {
 }

This way, the derived class can be a generic or non-generic class. For example, you can define an abstract
generic base class that is implemented with a concrete type in the derived class. This enables you to write
generic specialization for specific types:

 public abstract class Calc<T>
 {
 public abstract T Add(T x, T y);

c05.indd 117 30-01-2014 20:11:53

118 ❘ CHAPTER 5 Generics

 public abstract T Sub(T x, T y);
 }

 public class IntCalc: Calc<int>
 {
 public override int Add(int x, int y)
 {
 return x + y;
 }

 public override int Sub(int x, int y)
 {
 return x — y;
 }
 }

Static Members
Static members of generic classes are only shared with one instantiation of the class, and require special
attention. Consider the following example, where the class StaticDemo<T> contains the static field x:

 public class StaticDemo<T>
 {
 public static int x;
 }

Because the class StaticDemo<T> is used with both a string type and an int type, two sets of static fields
exist:

StaticDemo<string>.x = 4;
StaticDemo<int>.x = 5;
Console.WriteLine(StaticDemo<string>.x); // writes 4

GENERiC iNTERFACES
Using generics, you can define interfaces that define methods with generic parameters. In the linked list
sample, you’ve already implemented the interface IEnumerable<out T>, which defines a GetEnumerator()
method to return IEnumerator<out T>. .NET offers a lot of generic interfaces for different scenarios;
examples include IComparable<T>, ICollection<T>, and IExtensibleObject<T>. Often older, non-
generic versions of the same interface exist; for example .NET 1.0 had an IComparable interface that was
based on objects. IComparable<in T> is based on a generic type:

 public interface IComparable<in T>
 {
 int CompareTo(T other);
 }

The older, non-generic IComparable interface requires an object with the CompareTo() method. This
requires a cast to specific types, such as to the Person class for using the LastName property:

 public class Person: IComparable
 {
 public int CompareTo(object obj)
 {
 Person other = obj as Person;
 return this.lastname.CompareTo(other.LastName);
 }
 //

c05.indd 118 30-01-2014 20:11:53

Generic Interfaces ❘ 119

When implementing the generic version, it is no longer necessary to cast the object to a Person:

 public class Person: IComparable<Person>
 {
 public int CompareTo(Person other)
 {
 return this.LastName.CompareTo(other.LastName);
 }
 //...

Covariance and Contra-variance
Prior to .NET 4, generic interfaces were invariant. .NET 4 added important changes for generic interfaces
and generic delegates: covariance and contra-variance. Covariance and contra-variance are used for the
conversion of types with arguments and return types. For example, can you pass a Rectangle to a method
that requests a Shape? Let’s get into examples to see the advantages of these extensions.

With .NET, parameter types are covariant. Assume you have the classes Shape and Rectangle, and
Rectangle derives from the Shape base class. The Display() method is declared to accept an object of the
Shape type as its parameter:

public void Display(Shape o) { }

Now you can pass any object that derives from the Shape base class. Because Rectangle derives from
Shape, a Rectangle fulfills all the requirements of a Shape and the compiler accepts this method call:

var r = new Rectangle { Width= 5, Height=2.5 };
Display(r);

Return types of methods are contra-variant. When a method returns a Shape it is not possible to assign it
to a Rectangle because a Shape is not necessarily always a Rectangle; but the opposite is possible. If a
method returns a Rectangle as the GetRectangle() method,

public Rectangle GetRectangle();

the result can be assigned to a Shape:

Shape s = GetRectangle();

Before version 4 of the .NET Framework, this behavior was not possible with generics. Since C# 4, the
language is extended to support covariance and contra-variance with generic interfaces and generic
delegates. Let’s start by defining a Shape base class and a Rectangle class (code files Variance/Shape.cs
and Rectangle.cs):

 public class Shape
 {
 public double Width { get; set; }
 public double Height { get; set; }

 public override string ToString()
 {
 return String.Format("Width: {0}, Height: {1}", Width, Height);
 }
 }

 public class Rectangle: Shape
 {
 }

c05.indd 119 30-01-2014 20:11:53

120 ❘ CHAPTER 5 Generics

Covariance with Generic interfaces
A generic interface is covariant if the generic type is annotated with the out keyword. This also means that
type T is allowed only with return types. The interface IIndex is covariant with type T and returns this type
from a read-only indexer (code file Variance/IIndex.cs):

 public interface IIndex<out T>
 {
 T this[int index] { get; }
 int Count { get; }
 }

The IIndex<T> interface is implemented with the RectangleCollection class. RectangleCollection
defines Rectangle for generic type T:

NOTE If a read-write indexer is used with the IIndex interface, the generic type
T is passed to the method and retrieved from the method. This is not possible with
covariance; the generic type must be defined as invariant. Defining the type as
invariant is done without out and in annotations (code file Variance/
RectangleCollection.cs):

 public class RectangleCollection: IIndex<Rectangle>
 {
 private Rectangle[] data = new Rectangle[3]
 {
 new Rectangle { Height=2, Width=5 },
 new Rectangle { Height=3, Width=7 },
 new Rectangle { Height=4.5, Width=2.9 }
 };

 private static RectangleCollection coll;
 public static RectangleCollection GetRectangles()
 {
 return coll ?? (coll = new RectangleCollection());
 }

 public Rectangle this[int index]
 {
 get
 {
 if (index < 0 || index > data.Length)
 throw new ArgumentOutOfRangeException("index");
 return data[index];
 }
 }
 public int Count
 {
 get
 {
 return data.Length;
 }
 }
 }

c05.indd 120 30-01-2014 20:11:53

Generic Interfaces ❘ 121

NOTE The RectangleCollection.GetRectangles() method makes use of the
coalescing operator that is, explained later in this chapter. If the variable coll is null,
the right side of operator is invoked to create a new instance of RectangleCollection
and assign it to the variable coll, which is returned from this method afterwards.

The RectangleCollection.GetRectangles() method returns a RectangleCollection that
implements the IIndex<Rectangle> interface, so you can assign the return value to a variable rectangle
of the IIndex<Rectangle> type. Because the interface is covariant, it is also possible to assign the returned
value to a variable of IIndex<Shape>. Shape does not need anything more than a Rectangle has to offer.
Using the shapes variable, the indexer from the interface and the Count property are used within the for
loop (code file Variance/Program.cs):

 static void Main()
 {
 IIndex<Rectangle> rectangles = RectangleCollection.GetRectangles();
 IIndex<Shape> shapes = rectangles;

 for (int i = 0; i < shapes.Count; i++)
 {
 Console.WriteLine(shapes[i]);
 }
 }

Contra-Variance with Generic interfaces
A generic interface is contra-variant if the generic type is annotated with the in keyword. This way, the
interface is only allowed to use generic type T as input to its methods (code file Variance/IDisplay.cs):

 public interface IDisplay<in T>
 {
 void Show(T item);
 }

The ShapeDisplay class implements IDisplay<Shape> and uses a Shape object as an input parameter
(code file Variance/ShapeDisplay.cs):

 public class ShapeDisplay: IDisplay<Shape>
 {
 public void Show(Shape s)
 {
 Console.WriteLine("{0} Width: {1}, Height: {2}", s.GetType().Name,
 s.Width, s.Height);
 }
 }

Creating a new instance of ShapeDisplay returns IDisplay<Shape>, which is assigned to the
shapeDisplay variable. Because IDisplay<T> is contra-variant, it is possible to assign the result to
IDisplay<Rectangle>, where Rectangle derives from Shape. This time the methods of the interface
define only the generic type as input, and Rectangle fulfills all the requirements of a Shape (code file
Variance/Program.cs):

 static void Main()
 {
 //...

 IDisplay<Shape> shapeDisplay = new ShapeDisplay();

c05.indd 121 30-01-2014 20:11:53

122 ❘ CHAPTER 5 Generics

 IDisplay<Rectangle> rectangleDisplay = shapeDisplay;
 rectangleDisplay.Show(rectangles[0]);
 }

GENERiC STRuCTS
Similar to classes, structs can be generic as well. They are very similar to generic classes with the exception
of inheritance features. In this section you look at the generic struct Nullable<T>, which is defined by the
.NET Framework.

An example of a generic struct in the .NET Framework is Nullable<T>. A number in a database and a
number in a programming language have an important difference: A number in the database can be null,
whereas a number in C# cannot be null. Int32 is a struct, and because structs are implemented as value
types, they cannot be null. This difference often causes headaches and a lot of additional work to map the
data. The problem exists not only with databases but also with mapping XML data to .NET types.

One solution is to map numbers from databases and XML files to reference types, because reference types
can have a null value. However, this also means additional overhead during runtime.

With the structure Nullable<T>, this can be easily resolved. The following code segment shows a simplified
version of how Nullable<T> is defined. The structure Nullable<T> defines a constraint specifying that
the generic type T needs to be a struct. With classes as generic types, the advantage of low overhead is
eliminated; and because objects of classes can be null anyway, there’s no point in using a class with the
Nullable<T> type. The only overhead in addition to the T type defined by Nullable<T> is the hasValue
Boolean field that defines whether the value is set or null. Other than that, the generic struct defines the
read-only properties HasValue and Value and some operator overloads. The operator overload to cast the
Nullable<T> type to T is defined as explicit because it can throw an exception in case hasValue is false.
The operator overload to cast to Nullable<T> is defined as implicit because it always succeeds:

 public struct Nullable<T>
 where T: struct
 {
 public Nullable(T value)
 {
 this.hasValue = true;
 this.value = value;
 }
 private bool hasValue;
 public bool HasValue
 {
 get
 {
 return hasValue;
 }
 }

 private T value;
 public T Value
 {
 get
 {
 if (!hasValue)
 {
 throw new InvalidOperationException("no value");
 }
 return value;
 }
 }

c05.indd 122 30-01-2014 20:11:54

Generic Structs ❘ 123

 public static explicit operator T(Nullable<T> value)
 {
 return value.Value;
 }
 public static implicit operator Nullable<T>(T value)
 {
 return new Nullable<T>(value);
 }

 public override string ToString()
 {
 if (!HasValue)
 return String.Empty;
 return this.value.ToString();
 }
 }

In this example, Nullable<T> is instantiated with Nullable<int>. The variable x can now be used as an
int, assigning values and using operators to do some calculation. This behavior is made possible by casting
operators of the Nullable<T> type. However, x can also be null. The Nullable<T> properties HasValue
and Value can check whether there is a value, and the value can be accessed:

Nullable<int> x;
x = 4;
x += 3;
if (x.HasValue)
{
 int y = x.Value;
}
x = null;

Because nullable types are used often, C# has a special syntax for defining variables of this type. Instead of
using syntax with the generic structure, the ? operator can be used. In the following example, the variables
x1 and x2 are both instances of a nullable int type:

Nullable<int> x1;
int? x2;

A nullable type can be compared with null and numbers, as shown. Here, the value of x is compared with
null, and if it is not null it is compared with a value less than 0:

int? x = GetNullableType();
if (x == null)
{
 Console.WriteLine("x is null");
}
else if (x < 0)
{
 Console.WriteLine("x is smaller than 0");
}

Now that you know how Nullable<T> is defined, let’s get into using nullable types. Nullable types can
also be used with arithmetic operators. The variable x3 is the sum of the variables x1 and x2. If any of the
nullable types have a null value, the result is null:

int? x1 = GetNullableType();
int? x2 = GetNullableType();
int? x3 = x1 + x2;

c05.indd 123 30-01-2014 20:11:54

124 ❘ CHAPTER 5 Generics

NOTE The GetNullableType()method, which is called here, is just a placeholder
for any method that returns a nullable int. For testing you can implement it to simply
return null or to return any integer value.

Non-nullable types can be converted to nullable types. With the conversion from a non-nullable type to a
nullable type, an implicit conversion is possible where casting is not required. This type of conversion always
succeeds:

int y1 = 4;
int? x1 = y1;

In the reverse situation, a conversion from a nullable type to a non-nullable type can fail. If the nullable
type has a null value and the null value is assigned to a non-nullable type, then an exception of type
InvalidOperationException is thrown. That’s why the cast operator is required to do an explicit
conversion:

int? x1 = GetNullableType();
int y1 = (int)x1;

Instead of doing an explicit cast, it is also possible to convert a nullable type to a non-nullable type with the
coalescing operator. The coalescing operator uses the syntax ?? to define a default value for the conversion
in case the nullable type has a value of null. Here, y1 gets a 0 value if x1 is null:

int? x1 = GetNullableType();
int y1 = x1 ?? 0;

GENERiC METHODS
In addition to defining generic classes, it is also possible to define generic methods. With a generic method,
the generic type is defined with the method declaration. Generic methods can be defined within non-generic
classes.

The method Swap<T>() defines T as a generic type that is used for two arguments and a variable
temp:

void Swap<T>(ref T x, ref T y)
{
 T temp;
 temp = x;
 x = y;
 y = temp;
}

A generic method can be invoked by assigning the generic type with the method call:

int i = 4;
int j = 5;
Swap<int>(ref i, ref j);

However, because the C# compiler can get the type of the parameters by calling the Swap() method, it is not
necessary to assign the generic type with the method call. The generic method can be invoked as simply as
non-generic methods:

int i = 4;
int j = 5;
Swap(ref i, ref j);

c05.indd 124 30-01-2014 20:11:54

Generic Methods ❘ 125

Generic Methods Example
In this example, a generic method is used to accumulate all the elements of a collection. To show the features
of generic methods, the following Account class, which contains Name and Balance properties, is used (code
file GenericMethods/Account.cs):

 public class Account
 {
 public string Name { get; private set; }
 public decimal Balance { get; private set; }

 public Account(string name, Decimal balance)
 {
 this.Name = name;
 this.Balance = balance;
 }
 }

All the accounts in which the balance should be accumulated are added to an accounts list of type
List<Account> (code file GenericMethods/Program.cs):

 var accounts = new List<Account>()
 {
 new Account("Christian", 1500),
 new Account("Stephanie", 2200),
 new Account("Angela", 1800),
 new Account("Matthias", 2400)
 };

A traditional way to accumulate all Account objects is by looping through them with a foreach statement,
as shown here. Because the foreach statement uses the IEnumerable interface to iterate the elements of
a collection, the argument of the AccumulateSimple() method is of type IEnumerable. The foreach
statement works with every object implementing IEnumerable. This way, the AccumulateSimple()
method can be used with all collection classes that implement the interface IEnumerable<Account>. In the
implementation of this method, the property Balance of the Account object is directly accessed (code file
GenericMethods/Algorithm.cs):

 public static class Algorithm
 {
 public static decimal AccumulateSimple(IEnumerable<Account> source)
 {
 decimal sum = 0;
 foreach (Account a in source)
 {
 sum += a.Balance;
 }
 return sum;
 }
 }

The AccumulateSimple() method is invoked like this:

 decimal amount = Algorithm.AccumulateSimple(accounts);

Generic Methods with Constraints
The problem with the first implementation is that it works only with Account objects. This can be avoided
by using a generic method.

c05.indd 125 30-01-2014 20:11:54

126 ❘ CHAPTER 5 Generics

The second version of the Accumulate() method accepts any type that implements the interface
IAccount. As you saw earlier with generic classes, generic types can be restricted with the where clause.
The same clause that is used with generic classes can be used with generic methods. The parameter of the
Accumulate() method is changed to IEnumerable<T>, a generic interface that is implemented by generic
collection classes (code file GenericMethods/Algorithms.cs):

 public static decimal Accumulate<TAccount>(IEnumerable<TAccount> source)
 where TAccount: IAccount
 {
 decimal sum = 0;

 foreach (TAccount a in source)
 {
 sum += a.Balance;
 }
 return sum;
 }

The Account class is now refactored to implement the interface IAccount (code file GenericMethods/
Account.cs):

 public class Account: IAccount
 {
 //...

The IAccount interface defines the read-only properties Balance and Name (code file GenericMethods/
IAccount.cs):

 public interface IAccount
 {
 decimal Balance { get; }
 string Name { get; }
 }

The new Accumulate() method can be invoked by defining the Account type as a generic type parameter
(code file GenericMethods/Program.cs):

 decimal amount = Algorithm.Accumulate<Account>(accounts);

Because the generic type parameter can be automatically inferred by the compiler from the parameter type
of the method, it is valid to invoke the Accumulate() method this way:

 decimal amount = Algorithm.Accumulate(accounts);

Generic Methods with Delegates
The requirement for the generic types to implement the interface IAccount may be too restrictive. The
following example hints at how the Accumulate() method can be changed by passing a generic delegate.
Chapter 8, “Delegates, Lambdas, and Events” provides all the details about how to work with generic
delegates, and how to use Lambda expressions.

This Accumulate() method uses two generic parameters, T1 and T2. T1 is used for the collection-
implementing IEnumerable<T1> parameter, which is the first one of the methods. The second parameter
uses the generic delegate Func<T1, T2, TResult>. Here, the second and third generic parameters are of
the same T2 type. A method needs to be passed that has two input parameters (T1 and T2) and a return type
of T2 (code file GenericMethods/Algorithm.cs).

c05.indd 126 30-01-2014 20:11:54

Generic Methods ❘ 127

 public static T2 Accumulate<T1, T2>(IEnumerable<T1> source,
 Func<T1, T2, T2> action)
 {
 T2 sum = default(T2);
 foreach (T1 item in source)
 {
 sum = action(item, sum);
 }
 return sum;
 }

In calling this method, it is necessary to specify the generic parameter types because the compiler cannot
infer this automatically. With the first parameter of the method, the accounts collection that is assigned is
of type IEnumerable<Account>. With the second parameter, a Lambda expression is used that defines two
parameters of type Account and decimal, and returns a decimal. This Lambda expression is invoked for
every item by the Accumulate() method (code file GenericMethods/Program.cs):

 decimal amount = Algorithm.Accumulate<Account, decimal>(
 accounts, (item, sum) => sum += item.Balance);

Don’t scratch your head over this syntax yet. The sample should give you a glimpse of the possible ways to
extend the Accumulate() method. Chapter 8 covers Lambda expressions in detail.

Generic Methods Specialization
Generic methods can be overloaded to define specializations for specific types. This is true for methods
with generic parameters as well. The Foo() method is defined in two versions. The first accepts a generic
parameter; the second one is a specialized version for the int parameter. During compile time, the best
match is taken. If an int is passed, then the method with the int parameter is selected. With any other
parameter type, the compiler chooses the generic version of the method (code file Specialization/
Program.cs):

 public class MethodOverloads
 {
 public void Foo<T>(T obj)
 {
 Console.WriteLine("Foo<T>(T obj), obj type: {0}", obj.GetType().Name);
 }

 public void Foo(int x)
 {
 Console.WriteLine("Foo(int x)");
 }

 public void Bar<T>(T obj)
 {
 Foo(obj);
 }
 }

The Foo() method can now be invoked with any parameter type. The sample code passes an int and a
string to the method:

 static void Main()
 {
 var test = new MethodOverloads();
 test.Foo(33);
 test.Foo("abc");
 }

c05.indd 127 30-01-2014 20:11:54

128 ❘ CHAPTER 5 Generics

Running the program, you can see by the output that the method with the best match is taken:

Foo(int x)
Foo<T>(T obj), obj type: String

Be aware that the method invoked is defined during compile time and not runtime. This can be easily
demonstrated by adding a generic Bar() method that invokes the Foo() method, passing the generic
parameter value along:

 public class MethodOverloads
 {
 // ...

 public void Bar<T>(T obj)
 {
 Foo(obj);
 }

The Main() method is now changed to invoke the Bar() method passing an int value:

 static void Main()
 {
 var test = new MethodOverloads();
 test.Bar(44);

From the output on the console you can see that the generic Foo() method was selected by the Bar()
method and not the overload with the int parameter. That’s because the compiler selects the method that is
invoked by the Bar() method during compile time. Because the Bar() method defines a generic parameter,
and because there’s a Foo() method that matches this type, the generic Foo() method is called. This is not
changed during runtime when an int value is passed to the Bar() method:

Foo<T>(T obj), obj type: Int32

SuMMARy
This chapter introduced a very important feature of the CLR: generics. With generic classes you can create
type-independent classes, and generic methods allow type-independent methods. Interfaces, structs, and
delegates can be created in a generic way as well. Generics make new programming styles possible. You’ve
seen how algorithms, particularly actions and predicates, can be implemented to be used with different
classes — and all are type safe. Generic delegates make it possible to decouple algorithms from collections.

You will see more features and uses of generics throughout this book. Chapter 8, “Delegates, Lambdas, and
Events,” introduces delegates that are often implemented as generics; Chapter 10, “Collections,” provides
information about generic collection classes; and Chapter 11, “Language Integrated Query,” discusses
generic extension methods. The next chapter demonstrates the use of generic methods with arrays.

c05.indd 128 30-01-2014 20:11:54

Arrays and Tuples
WHAT’S iN THiS CHAPTER?

 ➤ Simple arrays
 ➤ Multidimensional arrays
 ➤ Jagged arrays
 ➤ The Array class
 ➤ Arrays as parameters
 ➤ Enumerations
 ➤ Tuples
 ➤ Structural comparison

WRoX.Com CoDE DoWNloADS FoR THiS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

 ➤ SimpleArrays
 ➤ SortingSample
 ➤ ArraySegment
 ➤ YieldDemo
 ➤ StructuralComparison

mulTiPlE oBJECTS oF THE SAmE AND DiFFERENT TyPES
If you need to work with multiple objects of the same type, you can use collections (see Chapter 10,
“Collections”) and arrays. C# has a special notation to declare, initialize, and use arrays. Behind the
scenes, the Array class comes into play, which offers several methods to sort and fi lter the elements
inside the array. Using an enumerator, you can iterate through all the elements of the array.

To use multiple objects of different types, the type Tuple can be used. See the “Tuples” section later
in this chapter for details about this type.

6

c06.indd 129 30-01-2014 20:12:24

130 ❘ CHAPTER 6 ArrAys And Tuples

SimPlE ARRAyS
If you need to use multiple objects of the same type, you can use an array. An array is a data structure that
contains a number of elements of the same type.

Array Declaration
An array is declared by defining the type of elements inside the array, followed by empty brackets and
a variable name. For example, an array containing integer elements is declared like this:

int[] myArray;

Array initialization
After declaring an array, memory must be allocated to hold all the elements of the array. An array is a
reference type, so memory on the heap must be allocated. You do this by initializing the variable of the array
using the new operator, with the type and the number of elements inside the array. Here, you specify the size
of the array:

myArray = new int[4];

NoTE Value types and reference types are covered in Chapter 3, “Objects and Types.”

With this declaration and initialization, the variable myArray references four integer values that are
allocated on the managed heap (see Figure 6-1).

Stack

myArray

Managed Heap

int

int

int

int

FiguRE 6-1

NoTE An array cannot be resized after its size is specified without copying all the
elements. If you don’t know how many elements should be in the array in advance, you
can use a collection (see Chapter 10).

Instead of using a separate line to declare and initialize an array, you can use a single line:

int[] myArray = new int[4];

You can also assign values to every array element using an array initializer. Array initializers can be used
only while declaring an array variable, not after the array is declared:

int[] myArray = new int[4] {4, 7, 11, 2};

If you initialize the array using curly brackets, the size of the array can also be omitted, because the
compiler can count the number of elements itself:

c06.indd 130 30-01-2014 20:12:25

Simple Arrays ❘ 131

int[] myArray = new int[] {4, 7, 11, 2};

There’s even a shorter form using the C# compiler. Using curly brackets you can write the array declaration
and initialization. The code generated from the compiler is the same as the previous result:

int[] myArray = {4, 7, 11, 2};

Accessing Array Elements
After an array is declared and initialized, you can access the array elements using an indexer. Arrays support
only indexers that have integer parameters.

With the indexer, you pass the element number to access the array. The indexer always starts with a value of
0 for the first element. Therefore, the highest number you can pass to the indexer is the number of elements
minus one, because the index starts at zero. In the following example, the array myArray is declared and
initialized with four integer values. The elements can be accessed with indexer values 0, 1, 2, and 3.

int[] myArray = new int[] {4, 7, 11, 2};
int v1 = myArray[0]; // read first element
int v2 = myArray[1]; // read second element
myArray[3] = 44; // change fourth element

NoTE If you use a wrong indexer value where that is bigger than the length of the
array, an exception of type IndexOutOfRangeException is thrown.

If you don’t know the number of elements in the array, you can use the Length property, as shown in this
for statement:

 for (int i = 0; i < myArray.Length; i++)
 {
 Console.WriteLine(myArray[i]);
 }

Instead of using a for statement to iterate through all the elements of the array, you can also use the
foreach statement:

 foreach (var val in myArray)
 {
 Console.WriteLine(val);
 }

NoTE The foreach statement makes use of the IEnumerable and IEnumerator
interfaces, which are discussed later in this chapter.

using Reference Types
In addition to being able to declare arrays of predefined types, you can also declare arrays of custom
types. Let’s start with the following Person class, the properties FirstName and LastName using auto-
implemented properties, and an override of the ToString() method from the Object class (code file
SimpleArrays/Person.cs):

public class Person
{
 public string FirstName { get; set; }

c06.indd 131 30-01-2014 20:12:26

132 ❘ CHAPTER 6 ArrAys And Tuples

 public string LastName { get; set; }

 public override string ToString()
 {
 return String.Format("{0} {1}", FirstName, LastName);
 }
}

Declaring an array of two Person elements is similar to declaring an array of int:

Person[] myPersons = new Person[2];

However, be aware that if the elements in the array are reference types, memory must be allocated
for every array element. If you use an item in the array for which no memory was allocated,
a NullReferenceException is thrown.

NoTE For information about errors and exceptions, see Chapter 16, “Errors and
Exceptions.”

You can allocate every element of the array by using an indexer starting from 0:

myPersons[0] = new Person { FirstName="Ayrton", LastName="Senna" };
myPersons[1] = new Person { FirstName="Michael", LastName="Schumacher" };

Figure 6-2 shows the objects in the managed heap
with the Person array. myPersons is a
variable that is stored on the stack. This variable
references an array of Person elements that is
stored on the managed heap. This array has
enough space for two references. Every item in
the array references a Person object that is also
stored in the managed heap.

Similar to the int type, you can also use an array
initializer with custom types:

Person[] myPersons2 =
{
 new Person { FirstName="Ayrton", LastName="Senna"},
 new Person { FirstName="Michael", LastName="Schumacher"}
};

mulTiDimENSioNAl ARRAyS
Ordinary arrays (also known as one-dimensional arrays) are indexed by a single integer.
A multidimensional array is indexed by two or more integers.

Figure 6-3 shows the mathematical notation for a two-dimensional array that has three
rows and three columns. The first row has the values 1, 2, and 3, and the third row has
the values 7, 8, and 9.

To declare this two-dimensional array with C#, you put a comma inside the brackets.
The array is initialized by specifying the size of every dimension (also known as rank). Then the array
elements can be accessed by using two integers with the indexer:

int[,] twodim = new int[3, 3];
twodim[0, 0] = 1;

myPersons Reference Person

Person

Reference

Managed HeapStack

FiguRE 6-2

1, 2, 3
4, 5, 6
7, 8, 9

a =

FiguRE 6-3

c06.indd 132 30-01-2014 20:12:28

Jagged Arrays ❘ 133

twodim[0, 1] = 2;
twodim[0, 2] = 3;
twodim[1, 0] = 4;
twodim[1, 1] = 5;
twodim[1, 2] = 6;
twodim[2, 0] = 7;
twodim[2, 1] = 8;
twodim[2, 2] = 9;

NoTE After declaring an array, you cannot change the rank.

You can also initialize the two-dimensional array by using an array indexer if you know the values for the
elements in advance. To initialize the array, one outer curly bracket is used, and every row is initialized by
using curly brackets inside the outer curly brackets:

int[,] twodim = {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9}
 };

NoTE When using an array initializer, you must initialize every element of the array. It
is not possible to defer the initialization of some values until later.

By using two commas inside the brackets, you can declare a three-dimensional array:

int[,,] threedim = {
 { { 1, 2 }, { 3, 4 } },
 { { 5, 6 }, { 7, 8 } },
 { { 9, 10 }, { 11, 12 } }
 };

Console.WriteLine(threedim[0, 1, 1]);

JAggED ARRAyS
A two-dimensional array has a rectangular size (for example, 3 × 3 elements). A jagged array provides more
flexibility in sizing the array. With a jagged array every row can have a different size.

Figure 6-4 contrasts a two-dimensional array that has 3 × 3 elements with a jagged array. The jagged array
shown contains three rows, with the first row containing two elements, the second row containing six
elements, and the third row containing three elements.

Two-Dimensional Array Jagged Array

1 2 1 2

3 4 5 6 7 8

9 10 11

3

4 5 6

7 8 9

FiguRE 6-4

c06.indd 133 30-01-2014 20:12:30

134 ❘ CHAPTER 6 ArrAys And Tuples

A jagged array is declared by placing one pair of opening and closing brackets after another. To initialize
the jagged array, only the size that defines the number of rows in the first pair of brackets is set. The second
brackets that define the number of elements inside the row are kept empty because every row has a different
number of elements. Next, the element number of the rows can be set for every row:

 int[][] jagged = new int[3][];
 jagged[0] = new int[2] { 1, 2 };
 jagged[1] = new int[6] { 3, 4, 5, 6, 7, 8 };
 jagged[2] = new int[3] { 9, 10, 11 };

You can iterate through all the elements of a jagged array with nested for loops. In the outer for loop every
row is iterated, and the inner for loop iterates through every element inside a row:

 for (int row = 0; row < jagged.Length; row++)
 {
 for (int element = 0; element < jagged[row].Length; element++)
 {
 Console.WriteLine("row: {0}, element: {1}, value: {2}", row, element,
 jagged[row][element]);
 }
 }

The output of the iteration displays the rows and every element within the rows:

row: 0, element: 0, value: 1
row: 0, element: 1, value: 2
row: 1, element: 0, value: 3
row: 1, element: 1, value: 4
row: 1, element: 2, value: 5
row: 1, element: 3, value: 6
row: 1, element: 4, value: 7
row: 1, element: 5, value: 8
row: 2, element: 0, value: 9
row: 2, element: 1, value: 10
row: 2, element: 2, value: 11

ARRAy ClASS
Declaring an array with brackets is a C# notation using the Array class. Using the C# syntax behind
the scenes creates a new class that derives from the abstract base class Array. This makes it possible to use
methods and properties that are defined with the Array class with every C# array. For example, you’ve
already used the Length property or iterated through the array by using the foreach statement. By doing
this, you are using the GetEnumerator() method of the Array class.

Other properties implemented by the Array class are LongLength, for arrays in which the number of items
doesn’t fit within an integer, and Rank, to get the number of dimensions.

Let’s have a look at other members of the Array class by getting into various features.

Creating Arrays
The Array class is abstract, so you cannot create an array by using a constructor. However, instead
of using the C# syntax to create array instances, it is also possible to create arrays by using the static
CreateInstance() method. This is extremely useful if you don’t know the type of elements in advance,
because the type can be passed to the CreateInstance() method as a Type object.

The following example shows how to create an array of type int with a size of 5. The first argument of the
CreateInstance() method requires the type of the elements, and the second argument defines the size.
You can set values with the SetValue() method, and read values with the GetValue() method (code file
SimpleArrays/Program.cs):

c06.indd 134 30-01-2014 20:12:30

Array Class ❘ 135

 Array intArray1 = Array.CreateInstance(typeof(int), 5);
 for (int i = 0; i < 5; i++)
 {
 intArray1.SetValue(33, i);
 }

 for (int i = 0; i < 5; i++)
 {
 Console.WriteLine(intArray1.GetValue(i));
 }

You can also cast the created array to an array declared as int[]:

int[] intArray2 = (int[])intArray1;

The CreateInstance() method has many overloads to create multidimensional arrays and to create arrays
that are not 0-based. The following example creates a two-dimensional array with 2 × 3 elements. The first
dimension is 1-based; the second dimension is 10-based:

int[] lengths = { 2, 3 };
int[] lowerBounds = { 1, 10 };
Array racers = Array.CreateInstance(typeof(Person), lengths, lowerBounds);

Setting the elements of the array, the SetValue() method accepts indices for every dimension:

 racers.SetValue(new Person
 {
 FirstName = "Alain",
 LastName = "Prost"
 }, index1: 1, index2: 10);
 racers.SetValue(new Person
 {
 FirstName = "Emerson",
 LastName = "Fittipaldi"
 }, 1, 11);
 racers.SetValue(new Person
 {
 FirstName = "Ayrton",
 LastName = "Senna"
 }, 1, 12);
 racers.SetValue(new Person
 {
 FirstName = "Michael",
 LastName = "Schumacher"
 }, 2, 10);
 racers.SetValue(new Person
 {
 FirstName = "Fernando",
 LastName = "Alonso"
 }, 2, 11);
 racers.SetValue(new Person
 {
 FirstName = "Jenson",
 LastName = "Button"
 }, 2, 12);

Although the array is not 0-based, you can assign it to a variable with the normal C# notation. You just
have to take care not to cross the boundaries:

Person[,] racers2 = (Person[,])racers;
Person first = racers2[1, 10];
Person last = racers2[2, 12];

c06.indd 135 30-01-2014 20:12:30

136 ❘ CHAPTER 6 ArrAys And Tuples

Copying Arrays
Because arrays are reference types, assigning an array variable to another
one just gives you two variables referencing the same array. For copying
arrays, the array implements the interface ICloneable. The Clone()
method that is defined with this interface creates a shallow copy of
the array.

If the elements of the array are value types, as in the following code
segment, all values are copied (see Figure 6-5):

int[] intArray1 = {1, 2};
int[] intArray2 = (int[])intArray1.Clone();

If the array contains reference types, only the
references are copied, not the elements. Figure 6-6
shows the variables beatles and beatlesClone,
where beatlesClone is created by calling the
Clone() method from beatles. The Person
objects that are referenced are the same for
beatles and beatlesClone. If you change a
property of an element of beatlesClone, you
change the same object of beatles (code file
SimpleArray/Program.cs):

Person[] beatles = {
 new Person { FirstName="John", LastName="Lennon" },
 new Person { FirstName="Paul", LastName="McCartney" }
 };
Person[] beatlesClone = (Person[])beatles.Clone();

Instead of using the Clone() method, you can use the Array.Copy() method, which also creates a shallow
copy. However, there’s one important difference with Clone() and Copy(): Clone() creates a new array;
with Copy() you have to pass an existing array with the same rank and enough elements.

NoTE If you need a deep copy of an array containing reference types, you have to
iterate the array and create new objects.

Sorting
The Array class uses the Quicksort algorithm to sort the elements in the array. The Sort() method
requires the interface IComparable to be implemented by the elements in the array. Simple types such as
System.String and System.Int32 implement IComparable, so you can sort elements containing these types.

With the sample program, the array name contains elements of type string, and this array can be sorted
(code file SortingSample/Program.cs):

string[] names = {
 "Christina Aguilera",
 "Shakira",
 "Beyonce",
 "Lady Gaga"
 };

Array.Sort(names);

intArray1 1

2

intArray2 1

2

FiguRE 6-5

beatles Reference Person

Reference

beatlesClone Reference Person

Reference

FiguRE 6-6

c06.indd 136 30-01-2014 20:12:33

Array Class ❘ 137

foreach (var name in names)
{
 Console.WriteLine(name);
}

The output of the application shows the sorted result of the array:

Beyonce
Christina Aguilera
Lady Gaga
Shakira

If you are using custom classes with the array, you must implement the interface IComparable. This
interface defines just one method, CompareTo(), which must return 0 if the objects to compare are equal; a
value smaller than 0 if the instance should go before the object from the parameter; and a value larger than
0 if the instance should go after the object from the parameter.

Change the Person class to implement the interface IComparable<Person>. The comparison is first done
on the value of the LastName by using the Compare() method of the String class. If the LastName has the
same value, the FirstName is compared (code file SortingSample/Person.cs):

 public class Person: IComparable<Person>
 {
 public int CompareTo(Person other)
 {
 if (other == null) return 1;

 int result = string.Compare(this.LastName, other.LastName);
 if (result == 0)
 {
 result = string.Compare(this.FirstName, other.FirstName);
 }
 return result;
 }
 //...

Now it is possible to sort an array of Person objects by the last name (code file SortingSample/Program.cs):

 Person[] persons = {
 new Person { FirstName="Damon", LastName="Hill" },
 new Person { FirstName="Niki", LastName="Lauda" },
 new Person { FirstName="Ayrton", LastName="Senna" },
 new Person { FirstName="Graham", LastName="Hill" }
 };

 Array.Sort(persons);
 foreach (var p in persons)
 {
 Console.WriteLine(p);
 }

Using the sort of the Person class, the output returns the names sorted by last name:

Damon Hill
Graham Hill
Niki Lauda
Ayrton Senna

If the Person object should be sorted differently, or if you don’t have the option to change the class that is
used as an element in the array, you can implement the interface IComparer or IComparer<T>. These

c06.indd 137 30-01-2014 20:12:33

138 ❘ CHAPTER 6 ArrAys And Tuples

interfaces define the method Compare(). One of these interfaces must be implemented by the class that
should be compared. The IComparer interface is independent of the class to compare. That’s why the
Compare() method defines two arguments that should be compared. The return value is similar to
the CompareTo() method of the IComparable interface.

The class PersonComparer implements the IComparer<Person> interface to sort Person objects either by
firstName or by lastName. The enumeration PersonCompareType defines the different sorting options
that are available with PersonComparer: FirstName and LastName. How the compare should be done
is defined with the constructor of the class PersonComparer, where a PersonCompareType value is set.
The Compare() method is implemented with a switch statement to compare either by LastName or by
FirstName (code file SortingSample/PersonComparer.cs):

 public enum PersonCompareType
 {
 FirstName,
 LastName
 }

 public class PersonComparer: IComparer<Person>
 {
 private PersonCompareType compareType;

 public PersonComparer(PersonCompareType compareType)
 {
 this.compareType = compareType;
 }

 public int Compare(Person x, Person y)
 {
 if (x == null && y == null) return 0;
 if (x == null) return 1;
 if (y == null) return -1;

 switch (compareType)
 {
 case PersonCompareType.FirstName:
 return string.Compare(x.FirstName, y.FirstName);
 case PersonCompareType.LastName:
 return string.Compare(x.LastName, y.LastName);
 default:
 throw new ArgumentException("unexpected compare type");
 }
 }
 }

Now you can pass a PersonComparer object to the second argument of the Array.Sort() method. Here,
the persons are sorted by first name (code file SortingSample/Program.cs):

 Array.Sort(persons, new PersonComparer(PersonCompareType.FirstName));
 foreach (var p in persons)
 {
 Console.WriteLine(p);
 }

The persons array is now sorted by first name:

Ayrton Senna
Damon Hill
Graham Hill
Niki Lauda

c06.indd 138 30-01-2014 20:12:33

Arrays as Parameters ❘ 139

NoTE The Array class also offers Sort methods that require a delegate as an
argument. With this argument you can pass a method to do the comparison of two
objects, rather than rely on the IComparable or IComparer interfaces. Chapter 8,
“Delegates, Lambdas, and Events,” discusses how to use delegates.

ARRAyS AS PARAmETERS
Arrays can be passed as parameters to methods, and returned from methods. Returning an array, you just
have to declare the array as the return type, as shown with the following method GetPersons():

 static Person[] GetPersons()
 {
 return new Person[] {
 new Person { FirstName="Damon", LastName="Hill" },
 new Person { FirstName="Niki", LastName="Lauda" },
 new Person { FirstName="Ayrton", LastName="Senna" },
 new Person { FirstName="Graham", LastName="Hill" }
 };
 }

Passing arrays to a method, the array is declared with the parameter, as shown with the method
DisplayPersons():

 static void DisplayPersons(Person[] persons)
 {
 //...

Array Covariance
With arrays, covariance is supported. This means that an array can be declared as a base type and elements
of derived types can be assigned to the elements.

For example, you can declare a parameter of type object[] as shown and pass a Person[] to it:

 static void DisplayArray(object[] data)
 {
 //...
 }

NoTE Array covariance is only possible with reference types, not with value types.
In addition, array covariance has an issue that can only be resolved with runtime
exceptions. If you assign a Person array to an object array, the object array can then
be used with anything that derives from the object. The compiler accepts, for example,
passing a string to array elements. However, because a Person array is referenced by
the object array, a runtime exception, ArrayTypeMismatchException, occurs.

ArraySegment<T>
The struct ArraySegment<T> represents a segment of an array. If you are working with a large array,
and different methods work on parts of the array, you could copy the array part to the different methods.
Instead of creating multiple arrays, it is more efficient to use one array and pass the complete array to

c06.indd 139 30-01-2014 20:12:33

140 ❘ CHAPTER 6 ArrAys And Tuples

the methods. The methods should only use a part of the array. For this, you can pass the offset into the
array and the count of elements that the method should use in addition to the array. This way, at least
three parameters are needed. When using an array segment, just a single parameter is needed. The
ArraySegment<T> structure contains information about the segment (the offset and count).

The method SumOfSegments takes an array of ArraySegment<int> elements to calculate the sum of all
the integers that are defined with the segments and returns the sum (code file ArraySegmentSample/
Program.cs):

 static int SumOfSegments(ArraySegment<int>[] segments)
 {
 int sum = 0;
 foreach (var segment in segments)
 {
 for (int i = segment.Offset; i < segment.Offset +
 segment.Count; i++)
 {
 sum += segment.Array[i];
 }
 }
 return sum;
 }

This method is used by passing an array of segments. The first array element references three elements of
ar1 starting with the first element; the second array element references three elements of ar2 starting with
the fourth element:

 int[] ar1 = { 1, 4, 5, 11, 13, 18 };
 int[] ar2 = { 3, 4, 5, 18, 21, 27, 33 };

 var segments = new ArraySegment<int>[2]
 {
 new ArraySegment<int>(ar1, 0, 3),
 new ArraySegment<int>(ar2, 3, 3)
 };
 var sum = SumOfSegments(segments);

NoTE Array segments don’t copy the elements of the originating array. Instead, the
originating array can be accessed through ArraySegment<T>. If elements of the array
segment are changed, the changes can be seen in the original array.

ENumERATioNS
By using the foreach statement you can iterate elements of a
collection (see Chapter 10, “Collections”) without needing to know
the number of elements inside the collection. The foreach statement
uses an enumerator. Figure 6-7 shows the relationship between
the client invoking the foreach method and the collection. The
array or collection implements the IEnumerable interface with the
GetEnumerator() method. The GetEnumerator() method returns an
enumerator implementing the IEnumerator interface. The interface
IEnumerator is then used by the foreach statement to iterate through
the collection.

Client

Enumerator

IEnumerator

IEnumerable

Collection

FiguRE 6-7

c06.indd 140 30-01-2014 20:12:35

Enumerations ❘ 141

NoTE The GetEnumerator() method is defined with the interface IEnumerable. The
foreach statement doesn’t really need this interface implemented in the collection
class. It’s enough to have a method with the name GetEnumerator() that returns an
object implementing the IEnumerator interface.

iEnumerator interface
The foreach statement uses the methods and properties of the IEnumerator interface to iterate all elements
in a collection. For this, IEnumerator defines the property Current to return the element where the cursor
is positioned, and the method MoveNext() to move to the next element of the collection. MoveNext()
returns true if there’s an element, and false if no more elements are available.

The generic version of this interface IEnumerator<T> derives from the interface IDisposable and thus
defines a Dispose() method to clean up resources allocated by the enumerator.

NoTE The IEnumerator interface also defines the Reset() method for COM
interoperability. Many .NET enumerators implement this by throwing an exception of
type NotSupportedException.

foreach Statement
The C# foreach statement is not resolved to a foreach statement in the IL code. Instead, the C# compiler
converts the foreach statement to methods and properties of the IEnumerator interface. Here’s a simple
foreach statement to iterate all elements in the persons array and display them person by person:

foreach (var p in persons)
{
 Console.WriteLine(p);
}

The foreach statement is resolved to the following code segment. First, the GetEnumerator() method is
invoked to get an enumerator for the array. Inside a while loop, as long as MoveNext() returns true, the
elements of the array are accessed using the Current property:

IEnumerator<Person> enumerator = persons.GetEnumerator();
while (enumerator.MoveNext())
{
 Person p = enumerator.Current;
 Console.WriteLine(p);
}

yield Statement
Since the first release of C#, it has been easy to iterate through collections by using the foreach statement.
With C# 1.0, it was still a lot of work to create an enumerator. C# 2.0 added the yield statement for
creating enumerators easily. The yield return statement returns one element of a collection and moves
the position to the next element, and yield break stops the iteration.

The next example shows the implementation of a simple collection using the yield return statement. The
class HelloCollection contains the method GetEnumerator(). The implementation of the

c06.indd 141 30-01-2014 20:12:35

142 ❘ CHAPTER 6 ArrAys And Tuples

GetEnumerator() method contains two yield return statements where the strings Hello and World are
returned (code file YieldDemo/Program.cs):

using System;
using System.Collections;

namespace Wrox.ProCSharp.Arrays
{
 public class HelloCollection
 {
 public IEnumerator<string> GetEnumerator()
 {
 yield return "Hello";
 yield return "World";
 }
 }

NoTE A method or property that contains yield statements is also known as an iterator
block. An iterator block must be declared to return an IEnumerator or IEnumerable
interface, or the generic versions of these interfaces. This block may contain multiple
yield return or yield break statements; a return statement is not allowed.

Now it is possible to iterate through the collection using a foreach statement:

 public void HelloWorld()
 {
 var helloCollection = new HelloCollection();
 foreach (var s in helloCollection)
 {
 Console.WriteLine(s);
 }
 }
}

With an iterator block, the compiler generates a yield type, including a state machine, as shown in
the following code segment. The yield type implements the properties and methods of the interfaces
IEnumerator and IDisposable. In the example, you can see the yield type as the inner class Enumerator.
The GetEnumerator() method of the outer class instantiates and returns a new yield type. Within the yield
type, the variable state defines the current position of the iteration and is changed every time the method
MoveNext() is invoked. MoveNext() encapsulates the code of the iterator block and sets the value of the
current variable so that the Current property returns an object depending on the position:

 public class HelloCollection
 {
 public IEnumerator GetEnumerator()
 {
 return new Enumerator(0);
 }

 public class Enumerator: IEnumerator<string>, IEnumerator, IDisposable
 {
 private int state;
 private string current;

 public Enumerator(int state)
 {

c06.indd 142 30-01-2014 20:12:35

Enumerations ❘ 143

 this.state = state;
 }
 bool System.Collections.IEnumerator.MoveNext()
 {
 switch (state)
 {
 case 0:
 current = "Hello";
 state = 1;
 return true;
 case 1:
 current = "World";
 state = 2;
 return true;
 case 2:
 break;
 }

 return false;
 }

 void System.Collections.IEnumerator.Reset()
 {
 throw new NotSupportedException();
 }

 string System.Collections.Generic.IEnumerator<string>.Current
 {
 get
 {
 return current;
 }
 }
 object System.Collections.IEnumerator.Current
 {
 get
 {
 return current;
 }
 }

 void IDisposable.Dispose()
 {
 }
 }
 }

NoTE Remember that the yield statement produces an enumerator, and not just a list
filled with items. This enumerator is invoked by the foreach statement. As each item is
accessed from the foreach, the enumerator is accessed. This makes it possible to iterate
through huge amounts of data without reading all the data into memory in one turn.

Different Ways to iterate Through Collections
In a slightly larger and more realistic way than the Hello World example, you can use the yield return
statement to iterate through a collection in different ways. The class MusicTitles enables iterating the titles

c06.indd 143 30-01-2014 20:12:35

144 ❘ CHAPTER 6 ArrAys And Tuples

in a default way with the GetEnumerator() method, in reverse order with the Reverse() method, and
through a subset with the Subset() method (code file YieldDemo/MusicTitles.cs):

 public class MusicTitles
 {
 string[] names = { "Tubular Bells", "Hergest Ridge", "Ommadawn",
 "Platinum" };

 public IEnumerator<string> GetEnumerator()
 {
 for (int i = 0; i < 4; i++)
 {
 yield return names[i];
 }
 }

 public IEnumerable<string> Reverse()
 {
 for (int i = 3; i >= 0; i--)
 {
 yield return names[i];
 }
 }

 public IEnumerable<string> Subset(int index, int length)
 {
 for (int i = index; i < index + length; i++)
 {
 yield return names[i];
 }
 }
 }

NoTE The default iteration supported by a class is the GetEnumerator() method,
which is defined to return IEnumerator. Named iterations return IEnumerable.

The client code to iterate through the string array first uses the GetEnumerator() method, which you don’t
have to write in your code because it is used by default with the implementation of the foreach statement.
Then the titles are iterated in reverse, and finally a subset is iterated by passing the index and number of
items to iterate to the Subset() method (code file YieldDemo/Program.cs):

 var titles = new MusicTitles();
 foreach (var title in titles)
 {
 Console.WriteLine(title);
 }
 Console.WriteLine();

 Console.WriteLine("reverse");
 foreach (var title in titles.Reverse())
 {
 Console.WriteLine(title);
 }
 Console.WriteLine();

 Console.WriteLine("subset");

c06.indd 144 30-01-2014 20:12:36

Enumerations ❘ 145

 foreach (var title in titles.Subset(2, 2))
 {
 Console.WriteLine(title);
 }

Returning Enumerators with yield Return
With the yield statement you can also do more complex things, such as return an enumerator from yield
return. Using the following Tic-Tac-Toe game as an example, players alternate putting a cross or a circle in
one of nine fields. These moves are simulated by the GameMoves class. The methods Cross() and Circle()
are the iterator blocks for creating iterator types. The variables cross and circle are set to Cross() and
Circle() inside the constructor of the GameMoves class. By setting these fields the methods are not invoked,
but they are set to the iterator types that are defined with the iterator blocks. Within the Cross() iterator
block, information about the move is written to the console and the move number is incremented. If the
move number is higher than 8, the iteration ends with yield break; otherwise, the enumerator object
of the circle yield type is returned with each iteration. The Circle() iterator block is very similar to the
Cross() iterator block; it just returns the cross iterator type with each iteration (code file YieldDemo/
GameMoves.cs):

 public class GameMoves
 {
 private IEnumerator cross;
 private IEnumerator circle;

 public GameMoves()
 {
 cross = Cross();
 circle = Circle();
 }

 private int move = 0;
 const int MaxMoves = 9;

 public IEnumerator Cross()
 {
 while (true)
 {
 Console.WriteLine("Cross, move {0}", move);
 if (++move >= MaxMoves)
 yield break;
 yield return circle;
 }
 }

 public IEnumerator Circle()
 {
 while (true)
 {
 Console.WriteLine("Circle, move {0}", move);
 if (++move >= MaxMoves)
 yield break;
 yield return cross;
 }
 }
 }

From the client program, you can use the class GameMoves as follows. The first move is set by setting
enumerator to the enumerator type returned by game.Cross(). In a while loop, enumerator.MoveNext()
is called. The first time this is invoked, the Cross() method is called, which returns the other enumerator

c06.indd 145 30-01-2014 20:12:36

146 ❘ CHAPTER 6 ArrAys And Tuples

with a yield statement. The returned value can be accessed with the Current property and is set to the
enumerator variable for the next loop:

 var game = new GameMoves();
 IEnumerator enumerator = game.Cross();
 while (enumerator.MoveNext())
 {
 enumerator = enumerator.Current as IEnumerator;
 }

The output of this program shows alternating moves until the last move:

Cross, move 0
Circle, move 1
Cross, move 2
Circle, move 3
Cross, move 4
Circle, move 5
Cross, move 6
Circle, move 7
Cross, move 8

TuPlES
Whereas arrays combine objects of the same type, tuples can combine objects of different types. Tuples have
their origin in functional programming languages such as F# where they are used often. With the .NET
Framework, tuples are available for all .NET languages.

The .NET Framework defines eight generic Tuple classes (since version 4.0) and one static Tuple class that
act as a factory of tuples. The different generic Tuple classes support a different number of elements — e.g.,
Tuple<T1> contains one element, Tuple<T1, T2> contains two elements, and so on.

The method Divide() demonstrates returning a tuple with two members: Tuple<int, int>. The
parameters of the generic class define the types of the members, which are both integers. The tuple is created
with the static Create() method of the static Tuple class. Again, the generic parameters of the Create()
method define the type of tuple that is instantiated. The newly created tuple is initialized with the result
and reminder variables to return the result of the division (code file TupleSamle/Program.cs):

 public static Tuple<int, int> Divide(int dividend, int divisor)
 {
 int result = dividend / divisor;
 int reminder = dividend % divisor;

 return Tuple.Create<int, int>(result, reminder);
 }

The following example demonstrates invoking the Divide() method. The items of the tuple can be accessed
with the properties Item1 and Item2:

 var result = Divide(5, 2);
 Console.WriteLine("result of division: {0}, reminder: {1}",
 result.Item1, result.Item2);

If you have more than eight items that should be included in a tuple, you can use the Tuple class definition
with eight parameters. The last template parameter is named TRest to indicate that you must pass a tuple
itself. That way you can create tuples with any number of parameters.

c06.indd 146 30-01-2014 20:12:36

Structural Comparison ❘ 147

The following example demonstrates this functionality:

 public class Tuple<T1, T2, T3, T4, T5, T6, T7, TRest>

Here, the last template parameter is a tuple type itself, so you can create a tuple with any number of items:

 var tuple = Tuple.Create<string, string, string, int, int, int, double,
 Tuple<int, int>>("Stephanie", "Alina", "Nagel", 2009, 6, 2, 1.37,
 Tuple.Create<int, int>(52, 3490));

STRuCTuRAl ComPARiSoN
Both arrays and tuples implement the interfaces IStructuralEquatable and IStructuralComparable.
These interfaces are new since .NET 4 and compare not only references but also the content. This
interface is implemented explicitly, so it is necessary to cast the arrays and tuples to this interface on
use. IStructuralEquatable is used to compare whether two tuples or arrays have the same content;
IStructuralComparable is used to sort tuples or arrays.

With the sample demonstrating IStructuralEquatable, the Person class implementing the interface
IEquatable is used. IEquatable defines a strongly typed Equals() method where the values of the
FirstName and LastName properties are compared (code file StructuralComparison/Person.cs):

 public class Person: IEquatable<Person>
 {
 public int Id { get; private set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public override string ToString()
 {
 return String.Format("{0}, {1} {2}", Id, FirstName, LastName);
 }

 public override bool Equals(object obj)
 {
 if (obj == null)
 return base.Equals(obj);
 return Equals(obj as Person);
 }

 public override int GetHashCode()
 {
 return Id.GetHashCode();
 }

 public bool Equals(Person other)
 {
 if (other == null)
 return base.Equals(other);

 return this.Id == other.Id && this.FirstName == other.FirstName &&
 this.LastName == other.LastName;
 }
 }

Now two arrays containing Person items are created. Both arrays contain the same Person object with
the variable name janet, and two different Person objects that have the same content. The comparison
operator != returns true because there are indeed two different arrays referenced from two variable names,

c06.indd 147 30-01-2014 20:12:36

148 ❘ CHAPTER 6 ArrAys And Tuples

persons1 and persons2. Because the Equals() method with one parameter is not overridden by the Array
class, the same happens as with the == operator to compare the references, and they are not the same (code
file StructuralComparison/Program.cs):

 var janet = new Person { FirstName = "Janet", LastName = "Jackson" };
 Person[] persons1 = {
 new Person
 {
 FirstName = "Michael",
 LastName = "Jackson"
 },
 janet
 };
 Person[] persons2 = {
 new Person
 {
 FirstName = "Michael",
 LastName = "Jackson"
 },
 janet
 };
 if (persons1 != persons2)
 Console.WriteLine("not the same reference");

Invoking the Equals() method defined by the IStructuralEquatable interface — that is, the method
with the first parameter of type object and the second parameter of type IEqualityComparer — you can
define how the comparison should be done by passing an object that implements IEqualityComparer<T>.
A default implementation of the IEqualityComparer is done by the EqualityComparer<T> class.
This implementation checks whether the type implements the interface IEquatable, and invokes the
IEquatable.Equals() method. If the type does not implement IEquatable, the Equals() method from
the base class Object is invoked to do the comparison.

Person implements IEquatable<Person>, where the content of the objects is compared, and the arrays
indeed contain the same content:

 if ((persons1 as IStructuralEquatable).Equals(persons2,
 EqualityComparer<Person>.Default))
 {
 Console.WriteLine("the same content");
 }

Next, you’ll see how the same thing can be done with tuples. Here, two tuple instances are created that
have the same content. Of course, because the references t1 and t2 reference two different objects,
the comparison operator != returns true:

 var t1 = Tuple.Create<int, string>(1, "Stephanie");
 var t2 = Tuple.Create<int, string>(1, "Stephanie");
 if (t1 != t2)
 Console.WriteLine("not the same reference to the tuple");

The Tuple<> class offers two Equals() methods: one that is overridden from the Object base class
with an object as parameter, and the second that is defined by the IStructuralEqualityComparer
interface with object and IEqualityComparer as parameters. Another tuple can be passed to
the first method as shown. This method uses EqualityComparer<object>.Default to get an
ObjectEqualityComparer<object> for the comparison. This way, every item of the tuple is compared by
invoking the Object.Equals() method. If every item returns true, the result of the Equals() method is
true, which is the case here with the same int and string values:

c06.indd 148 30-01-2014 20:12:36

Summary ❘ 149

 if (t1.Equals(t2))
 Console.WriteLine("the same content");

You can also create a custom IEqualityComparer, as shown in the following example, with the
class TupleComparer. This class implements the two methods Equals() and GetHashCode() of
the IEqualityComparer interface:

 class TupleComparer: IEqualityComparer
 {
 public new bool Equals(object x, object y)
 {
 return x.Equals(y);
 }

 public int GetHashCode(object obj)
 {
 return obj.GetHashCode();
 }
 }

NoTE Implementation of the Equals() method of the IEqualityComparer interface
requires the new modifier or an implicit interface implementation because the base class
Object defines a static Equals() method with two parameters as well.

The TupleComparer is used, passing a new instance to the Equals() method of the Tuple<T1, T2>
class. The Equals() method of the Tuple class invokes the Equals() method of the TupleComparer for
every item to be compared. Therefore, with the Tuple<T1, T2> class, the TupleComparer is invoked two
times to check whether all items are equal:

 if (t1.Equals(t2, new TupleComparer()))
 Console.WriteLine("equals using TupleComparer");

SummARy
In this chapter, you’ve seen the C# notation to create and use simple, multidimensional, and jagged arrays.
The Array class is used behind the scenes of C# arrays, enabling you to invoke properties and methods of
this class with array variables.

You’ve seen how to sort elements in the array by using the IComparable and IComparer interfaces;
and you’ve learned how to create and use enumerators, the interfaces IEnumerable and IEnumerator, and
the yield statement.

Finally, you have seen how to unite objects of the same type to an array, and objects of different types to
a tuple.

The next chapter focuses on operators and casts.

c06.indd 149 30-01-2014 20:12:36

c06.indd 150 30-01-2014 20:12:36

Operators and Casts
WHAT’S in THiS CHAPTER?

➤➤ Operators in C#
➤➤ The idea of equality when dealing with reference and value types
➤➤ Data conversion between primitive data types
➤➤ Converting value types to reference types using boxing
➤➤ Converting between reference types by casting
➤➤ Overloading the standard operators for custom types
➤➤ Adding cast operators to custom types

WRoX.Com CodE doWnloAdS foR THiS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ SimpleCurrency
➤➤ SimpleCurrency2
➤➤ VectorStruct
➤➤ VectorStructMoreOverloads

oPERAToRS And CASTS
The preceding chapters have covered most of what you need to start writing useful programs using
C#. This chapter completes the discussion of the essential language elements and illustrates some
powerful aspects of C# that enable you to extend its capabilities.

oPERAToRS
Although most of C#’s operators should be familiar to C and C++ developers, this section discusses
the most important operators for the benefi t of new programmers and Visual Basic converts, and
sheds light on some of the changes introduced with C#.

7

c07.indd 151 30-01-2014 20:13:13

152 ❘ CHAPTER 7 OperatOrs and Casts

C# supports the operators listed in the following table:

CATEgoRy oPERAToR

Arithmetic + – * / %

Logical & | ^ ~ && || !

String concatenation +

Increment and decrement ++ ––

Bit shifting << >>

Comparison == != < > <= >=

Assignment = += -= *= /= %= &= |= ^= <<= >>=

Member access (for objects and structs) .

Indexing (for arrays and indexers) []

Cast ()

Conditional (the ternary operator) ?:

Delegate concatenation and removal (discussed in Chapter 8,
“Delegates, Lambdas, and Events”)

+ -

Object creation new

Type information sizeof is typeof as

Overflow exception control checked unchecked

Indirection and address []

Namespace alias qualifier (discussed in Chapter 2, “Core C#”) ::

Null coalescing operator ??

However, note that four specific operators (sizeof, *, ->, and &, listed in the following table) are available
only in unsafe code (code that bypasses C#’s type-safety checking), which is discussed in Chapter 14,
“Memory Management and Pointers.” It is also important to note that the sizeof operator keywords, when
used with the very early versions of the .NET Framework 1.0 and 1.1, required the unsafe mode. This is not
a requirement since the .NET Framework 2.0.

CATEgoRy oPERAToR

Operator keywords sizeof (for .NET Framework versions 1.0 and 1.1 only)

Operators * -> &

One of the biggest pitfalls to watch out for when using C# operators is that, as with other C-style languages,
C# uses different operators for assignment (=) and comparison (==). For instance, the following statement
means “let x equal three”:

x = 3;

If you now want to compare x to a value, you need to use the double equals sign ==:

if (x == 3)
{

}

Fortunately, C#’s strict type-safety rules prevent the very common C error whereby assignment is performed
instead of comparison in logical statements. This means that in C# the following statement will generate a
compiler error:

c07.indd 152 30-01-2014 20:13:13

Operators ❘ 153

if (x = 3)
{

}

Visual Basic programmers who are accustomed to using the ampersand (&) character to concatenate strings will
have to make an adjustment. In C#, the plus sign (+) is used instead for concatenation, whereas the & symbol
denotes a bitwise AND between two different integer values. The pipe symbol, |, enables you to perform a
bitwise OR between two integers. Visual Basic programmers also might not recognize the modulus (%) arithmetic
operator. This returns the remainder after division, so, for example, x % 5 returns 2 if x is equal to 7.

You will use few pointers in C#, and therefore few indirection operators. More specifically, the only
place you will use them is within blocks of unsafe code, because that is the only place in C# where pointers
are allowed. Pointers and unsafe code are discussed in Chapter 14.

operator Shortcuts
The following table shows the full list of shortcut assignment operators available in C#:

SHoRTCuT oPERAToR EquivAlEnT To

x++, ++x x = x + 1

x--, --x x = x – 1

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

x >>= y x = x >> y

x <<= y x = x << y

x &= y x = x & y

x |= y x = x | y

You may be wondering why there are two examples each for the ++ increment and the -- decrement
operators. Placing the operator before the expression is known as a prefix; placing the operator after the
expression is known as a postfix. Note that there is a difference in the way they behave.

The increment and decrement operators can act both as entire expressions and within expressions. When used
by themselves, the effect of both the prefix and postfix versions is identical and corresponds to the statement
x = x + 1. When used within larger expressions, the prefix operator will increment the value of x before
the expression is evaluated; in other words, x is incremented and the new value is used in the expression.
Conversely, the postfix operator increments the value of x after the expression is evaluated — the expression
is evaluated using the original value of x. The following example uses the increment operator (++) as an
example to demonstrate the difference between the prefix and postfix behavior:

int x = 5;

if (++x == 6) // true – x is incremented to 6 before the evaluation
{
 Console.WriteLine("This will execute");
}

if (x++ == 7) // false – x is incremented to 7 after the evaluation
{
 Console.WriteLine("This won't");
}

c07.indd 153 30-01-2014 20:13:13

154 ❘ CHAPTER 7 OperatOrs and Casts

The first if condition evaluates to true because x is incremented from 5 to 6 before the expression is
evaluated. The condition in the second if statement is false, however, because x is incremented to 7 only
after the entire expression has been evaluated (while x == 6).

The prefix and postfix operators --x and x-- behave in the same way, but decrement rather than increment the
operand.

The other shortcut operators, such as += and -=, require two operands, and are used to modify the value
of the first operand by performing an arithmetic, logical, or bitwise operation on it. For example, the next
two lines are equivalent:

x += 5;
x = x + 5;

The following sections look at some of the primary and cast operators that you will frequently use within
your C# code.

The Conditional Operator (==)
The conditional operator (?:), also known as the ternary operator, is a shorthand form of the if...else
construction. It gets its name from the fact that it involves three operands. It allows you to evaluate a
condition, returning one value if that condition is true, or another value if it is false. The syntax is as follows:

condition ? true_value: false_value

Here, condition is the Boolean expression to be evaluated, true_value is the value that will be returned if
condition is true, and false_value is the value that will be returned otherwise.

When used sparingly, the conditional operator can add a dash of terseness to your programs. It is especially
handy for providing one of a couple of arguments to a function that is being invoked. You can use it to
quickly convert a Boolean value to a string value of true or false. It is also handy for displaying the correct
singular or plural form of a word:

int x = 1;
string s = x + " ";
s += (x == 1 ? "man": "men");
Console.WriteLine(s);

This code displays 1 man if x is equal to one but will display the correct plural form for any other number.
Note, however, that if your output needs to be localized to different languages, you have to write more
sophisticated routines to take into account the different grammatical rules of different languages.

The checked and unchecked Operators
Consider the following code:

byte b = 255;
b++;
Console.WriteLine(b.ToString());

The byte data type can hold values only in the range 0 to 255, so incrementing the value of b causes an
overflow. How the CLR handles this depends on a number of issues, including compiler options; so whenever
there’s a risk of an unintentional overflow, you need some way to ensure that you get the result you want.

To do this, C# provides the checked and unchecked operators. If you mark a block of code as checked, the
CLR will enforce overflow checking, throwing an OverflowException if an overflow occurs. The following
changes the preceding code to include the checked operator:

byte b = 255;
checked
{
 b++;
}
Console.WriteLine(b.ToString());

c07.indd 154 30-01-2014 20:13:14

Operators ❘ 155

When you try to run this code, you will get an error message like this:

Unhandled Exception: System.OverflowException: Arithmetic operation resulted in an
 overflow at Wrox.ProCSharp.Basics.OverflowTest.Main(String[] args)

noTE You can enforce overflow checking for all unmarked code in your program by
-specifying the /checked compiler option.

If you want to suppress overflow checking, you can mark the code as unchecked:

byte b = 255;
unchecked
{
 b++;
}
Console.WriteLine(b.ToString());

In this case, no exception will be raised but you will lose data because the byte type cannot hold a value of
256, the overflowing bits will be discarded, and your b variable will hold a value of zero (0).

Note that unchecked is the default behavior. The only time you are likely to need to explicitly use the
unchecked keyword is when you need a few unchecked lines of code inside a larger block that you have
explicitly marked as checked.

The is Operator
The is operator allows you to check whether an object is compatible with a specific type. The phrase “is
compatible” means that an object either is of that type or is derived from that type. For example, to check
whether a variable is compatible with the object type, you could use the following bit of code:

int i = 10;
if (i is object)
{
 Console.WriteLine("i is an object");
}

int, like all C# data types, inherits from object; therefore, the expression i is object evaluates to true
in this case, and the appropriate message will be displayed.

The as Operator
The as operator is used to perform explicit type conversions of reference types. If the type being converted is
compatible with the specified type, conversion is performed successfully. However, if the types are incompatible,
the as operator returns the value null. As shown in the following code, attempting to convert an object
reference to a string will return null if the object reference does not actually refer to a string instance:

object o1 = "Some String";
object o2 = 5;

string s1 = o1 as string; // s1 = "Some String"
string s2 = o2 as string; // s2 = null

The as operator allows you to perform a safe type conversion in a single step without the need to first test
the type using the is operator and then perform the conversion.

The sizeof Operator
You can determine the size (in bytes) required on the stack by a value type using the sizeof operator:

Console.WriteLine(sizeof(int));

c07.indd 155 30-01-2014 20:13:14

156 ❘ CHAPTER 7 OperatOrs and Casts

This will display the number 4, because an int is 4 bytes long.

If you are using the sizeof operator with complex types (and not primitive types), you need to block the
code within an unsafe block as illustrated here:

unsafe
{
 Console.WriteLine(sizeof(Customer));
}

Chapter 14 looks at unsafe code in more detail.

The typeof Operator
The typeof operator returns a System.Type object representing a specified type. For example,
typeof(string) will return a Type object representing the System.String type. This is useful when you
want to use reflection to find information about an object dynamically. For more information, see Chapter 15,
“Reflection.”

Nullable Types and Operators
Looking at the Boolean type, you have a true or false value that you can assign to this type. However, what
if you wanted to define the value of the type as undefined? This is where using nullable types can add a
distinct value to your applications. If you use nullable types in your programs, you must always consider
the effect a null value can have when used in conjunction with the various operators. Usually, when using a
unary or binary operator with nullable types, the result will be null if one or both of the operands is null.
For example:

int? a = null;

int? b = a + 4; // b = null
int? c = a * 5; // c = null

However, when comparing nullable types, if only one of the operands is null, the comparison will always
equate to false. This means that you cannot assume a condition is true just because its opposite is false,
as often happens in programs using non-nullable types. For example:

int? a = null;
int? b = -5;

if (a > = b)
 Console.WriteLine("a > = b");
else
 Console.WriteLine("a < b");

noTE The possibility of a null value means that you cannot freely combine nullable
and non-nullable types in an expression. This is discussed in the section “Type
Conversions” later in this chapter.

The Null Coalescing Operator
The null coalescing operator (??) provides a shorthand mechanism to cater to the possibility of null values
when working with nullable and reference types. The operator is placed between two operands — the first
operand must be a nullable type or reference type, and the second operand must be of the same type as the
first or of a type that is implicitly convertible to the type of the first operand. The null coalescing operator
evaluates as follows:

c07.indd 156 30-01-2014 20:13:14

Type Safety ❘ 157

➤➤ If the first operand is not null, then the overall expression has the value of the first operand.
➤➤ If the first operand is null, then the overall expression has the value of the second operand.

For example:

int? a = null;
int b;

b = a ?? 10; // b has the value 10
a = 3;
b = a ?? 10; // b has the value 3

If the second operand cannot be implicitly converted to the type of the first operand, a compile-time error is
generated.

operator Precedence
The following table shows the order of precedence of the C# operators. The operators at the top of the table
are those with the highest precedence (that is, the ones evaluated first in an expression containing multiple
operators).

gRouP oPERAToRS

Primary () . [] x++ x-- new typeof sizeof checked unchecked

Unary + — ! ~ ++x --x and casts

Multiplication/division * / %

Addition/subtraction + -

Bitwise shift operators << >>

Relational < ><= >= is as

Comparison == !=

Bitwise AND &

Bitwise XOR ^

Bitwise OR |

Boolean AND &&

Boolean OR ||

Conditional operator ?:

Assignment = += -= *= /= %= &= |= ^= <<= >>= >>>=

noTE In complex expressions, avoid relying on operator precedence to produce the
correct result. Using parentheses to specify the order in which you want operators
applied clarifies your code and prevents potential confusion.

TyPE SAfETy
Chapter 1, “.NET Architecture,” noted that the Intermediate Language (IL) enforces strong type safety
upon its code. Strong typing enables many of the services provided by .NET, including security and
language interoperability. As you would expect from a language compiled into IL, C# is also strongly typed.
Among other things, this means that data types are not always seamlessly interchangeable. This section
looks at conversions between primitive types.

c07.indd 157 30-01-2014 20:13:14

158 ❘ CHAPTER 7 OperatOrs and Casts

noTE C# also supports conversions between different reference types and allows you
to define how data types that you create behave when converted to and from other
types. Both of these topics are discussed later in this chapter.

Generics, however, enable you to avoid some of the most common situations in which
you would need to perform type conversions. See Chapter 5, “Generics” and Chapter
10, “Collections,” for details.

Type Conversions
Often, you need to convert data from one type to another. Consider the following code:

byte value1 = 10;
byte value2 = 23;
byte total;
total = value1 + value2;
Console.WriteLine(total);

When you attempt to compile these lines, you get the following error message:

Cannot implicitly convert type 'int' to 'byte'

The problem here is that when you add 2 bytes together, the result will be returned as an int, not another
byte. This is because a byte can contain only 8 bits of data, so adding 2 bytes together could very easily
result in a value that cannot be stored in a single byte. If you want to store this result in a byte variable,
you have to convert it back to a byte. The following sections discuss two conversion mechanisms supported
by C# — implicit and explicit.

Implicit Conversions
Conversion between types can normally be achieved automatically (implicitly) only if you can guarantee that
the value is not changed in any way. This is why the previous code failed; by attempting a conversion from
an int to a byte, you were potentially losing 3 bytes of data. The compiler won’t let you do that unless you
explicitly specify that’s what you want to do. If you store the result in a long instead of a byte, however,
you will have no problems:

byte value1 = 10;
byte value2 = 23;
long total; // this will compile fine
total = value1 + value2;
Console.WriteLine(total);

Your program has compiled with no errors at this point because a long holds more bytes of data than
a byte, so there is no risk of data being lost. In these circumstances, the compiler is happy to make the
conversion for you, without your needing to ask for it explicitly.

The following table shows the implicit type conversions supported in C#:

fRom To

sbyte short, int, long, float, double, decimal, BigInteger

byte short, ushort, int, uint, long, ulong, float, double, decimal, BigInteger

short int, long, float, double, decimal, BigInteger

ushort int, uint, long, ulong, float, double, decimal, BigInteger

int long, float, double, decimal, BigInteger

uint long, ulong, float, double, decimal, BigInteger

c07.indd 158 30-01-2014 20:13:14

Type Safety ❘ 159

fRom To

long, ulong float, double, decimal, BigInteger

float double, BigInteger

char ushort, int, uint, long, ulong, float, double, decimal, BigInteger

As you would expect, you can perform implicit conversions only from a smaller integer type to a larger one,
not from larger to smaller. You can also convert between integers and floating-point values; however, the
rules are slightly different here. Though you can convert between types of the same size, such as int/uint
to float and long/ulong to double, you can also convert from long/ulong back to float. You might lose
4 bytes of data doing this, but it only means that the value of the float you receive will be less precise than
if you had used a double; the compiler regards this as an acceptable possible error because the magnitude of
the value is not affected. You can also assign an unsigned variable to a signed variable as long as the value
limits of the unsigned type fit between the limits of the signed variable.

Nullable types introduce additional considerations when implicitly converting value types:

➤➤ Nullable types implicitly convert to other nullable types following the conversion rules described for
non-nullable types in the previous table; that is, int? implicitly converts to long?, float?, double?,
and decimal?.

➤➤ Non-nullable types implicitly convert to nullable types according to the conversion rules described in
the preceding table; that is, int implicitly converts to long?, float?, double?, and decimal?.

➤➤ Nullable types do not implicitly convert to non-nullable types; you must perform an explicit
conversion as described in the next section. That’s because there is a chance that a nullable type will
have the value null, which cannot be represented by a non-nullable type.

Explicit Conversions
Many conversions cannot be implicitly made between types, and the compiler will return an error if any are
attempted. These are some of the conversions that cannot be made implicitly:

➤➤ int to short — Data loss is possible.
➤➤ int to uint — Data loss is possible.
➤➤ uint to int — Data loss is possible.
➤➤ float to int — Everything is lost after the decimal point.
➤➤ Any numeric type to char — Data loss is possible.
➤➤ decimal to any numeric type — The decimal type is internally structured differently from both

integers and floating-point numbers.
➤➤ int? to int — The nullable type may have the value null.

However, you can explicitly carry out such conversions using casts. When you cast one type to another, you
deliberately force the compiler to make the conversion. A cast looks like this:

long val = 30000;
int i = (int)val; // A valid cast. The maximum int is 2147483647

You indicate the type to which you are casting by placing its name in parentheses before the value to be
converted. If you are familiar with C, this is the typical syntax for casts. If you are familiar with the C++
special cast keywords such as static_cast, note that these do not exist in C#; you have to use the older
C-type syntax.

Casting can be a dangerous operation to undertake. Even a simple cast from a long to an int can cause
problems if the value of the original long is greater than the maximum value of an int:

long val = 3000000000;
int i = (int)val; // An invalid cast. The maximum int is 2147483647

c07.indd 159 30-01-2014 20:13:15

160 ❘ CHAPTER 7 OperatOrs and Casts

In this case, you will not get an error, but nor will you get the result you expect. If you run this code and
output the value stored in i, this is what you get:

-1294967296

It is good practice to assume that an explicit cast will not return the results you expect. As shown earlier, C#
provides a checked operator that you can use to test whether an operation causes an arithmetic overflow.
You can use the checked operator to confirm that a cast is safe and to force the runtime to throw an
overflow exception if it is not:

long val = 3000000000;
int i = checked((int)val);

Bearing in mind that all explicit casts are potentially unsafe, take care to include code in your application to
deal with possible failures of the casts. Chapter 16, “Errors and Exceptions,” introduces structured exception
handling using the try and catch statements.

Using casts, you can convert most primitive data types from one type to another; for example, in the following
code, the value 0.5 is added to price, and the total is cast to an int:

double price = 25.30;
int approximatePrice = (int)(price + 0.5);

This gives the price rounded to the nearest dollar. However, in this conversion, data is lost — namely,
everything after the decimal point. Therefore, such a conversion should never be used if you want to
continue to do more calculations using this modified price value. However, it is useful if you want to output
the approximate value of a completed or partially completed calculation — if you don’t want to bother the
user with a lot of figures after the decimal point.

This example shows what happens if you convert an unsigned integer into a char:

ushort c = 43;
char symbol = (char)c;
Console.WriteLine(symbol);

The output is the character that has an ASCII number of 43, the + sign. You can try any kind of conversion
you want between the numeric types (including char) and it will work, such as converting a decimal into a
char, or vice versa.

Converting between value types is not restricted to isolated variables, as you have seen. You can convert an
array element of type double to a struct member variable of type int:

struct ItemDetails
{
 public string Description;
 public int ApproxPrice;
}

//..

double[] Prices = { 25.30, 26.20, 27.40, 30.00 };

ItemDetails id;
id.Description = "Hello there.";
id.ApproxPrice = (int)(Prices[0] + 0.5);

To convert a nullable type to a non-nullable type or another nullable type where data loss may occur, you
must use an explicit cast. This is true even when converting between elements with the same basic underlying
type — for example, int? to int or float? to float. This is because the nullable type may have the value
null, which cannot be represented by the non-nullable type. As long as an explicit cast between two equivalent
non-nullable types is possible, so is the explicit cast between nullable types. However, when casting from a
nullable type to a non-nullable type and the variable has the value null, an InvalidOperationException is
thrown. For example:

c07.indd 160 30-01-2014 20:13:15

Type Safety ❘ 161

int? a = null;
int b = (int)a; // Will throw exception

Using explicit casts and a bit of care and attention, you can convert any instance of a simple value type to
almost any other. However, there are limitations on what you can do with explicit type conversions — as far
as value types are concerned, you can only convert to and from the numeric and char types and enum types.
You cannot directly cast Booleans to any other type or vice versa.

If you need to convert between numeric and string, you can use methods provided in the .NET class library.
The Object class implements a ToString() method, which has been overridden in all the .NET predefined
types and which returns a string representation of the object:

int i = 10;
string s = i.ToString();

Similarly, if you need to parse a string to retrieve a numeric or Boolean value, you can use the Parse()
method supported by all the predefined value types:

string s = "100";
int i = int.Parse(s);
Console.WriteLine(i + 50); // Add 50 to prove it is really an int

Note that Parse() will register an error by throwing an exception if it is unable to convert the string (for
example, if you try to convert the string Hello to an integer). Again, exceptions are covered in Chapter 15.

Boxing and unboxing
In Chapter 2 you learned that all types — both the simple predefined types such as int and char, and the
complex types such as classes and structs — derive from the object type. This means you can treat even
literal values as though they are objects:

string s = 10.ToString();

However, you also saw that C# data types are divided into value types, which are allocated on the stack,
and reference types, which are allocated on the managed heap. How does this square with the capability to
call methods on an int, if the int is nothing more than a 4-byte value on the stack?

C# achieves this through a bit of magic called boxing. Boxing and its counterpart, unboxing, enable you to
convert value types to reference types and then back to value types. We include this in the section on casting
because this is essentially what you are doing — you are casting your value to the object type. Boxing is the
term used to describe the transformation of a value type to a reference type. Basically, the runtime creates a
temporary reference-type box for the object on the heap.

This conversion can occur implicitly, as in the preceding example, but you can also perform it explicitly:

int myIntNumber = 20;
object myObject = myIntNumber;

Unboxing is the term used to describe the reverse process, whereby the value of a previously boxed value
type is cast back to a value type. We use the term cast here because this has to be done explicitly. The syntax
is similar to explicit type conversions already described:

int myIntNumber = 20;
object myObject = myIntNumber; // Box the int
int mySecondNumber = (int)myObject; // Unbox it back into an int

A variable can be unboxed only if it has been boxed. If you execute the last line when myObject is not a
boxed int, you will get a runtime exception thrown at runtime.

One word of warning: When unboxing, you have to be careful that the receiving value variable
has enough room to store all the bytes in the value being unboxed. C#’s ints, for example, are

c07.indd 161 30-01-2014 20:13:15

162 ❘ CHAPTER 7 OperatOrs and Casts

only 32 bits long, so unboxing a long value (64 bits) into an int, as shown here, will result in an
InvalidCastException:

long myLongNumber = 333333423;
object myObject = (object)myLongNumber;
int myIntNumber = (int)myObject;

ComPARing oBjECTS foR EquAliTy
After discussing operators and briefly touching on the equality operator, it is worth considering for a moment
what equality means when dealing with instances of classes and structs. Understanding the mechanics of
object equality is essential for programming logical expressions and is important when implementing operator
overloads and casts, the topic of the rest of this chapter.

The mechanisms of object equality vary depending on whether you are comparing reference types (instances
of classes) or value types (the primitive data types, instances of structs, or enums). The following sections
present the equality of reference types and value types independently.

Comparing Reference Types for Equality
You might be surprised to learn that System.Object defines three different methods for comparing objects
for equality: ReferenceEquals() and two versions of Equals(). Add to this the comparison operator (==)
and you actually have four ways to compare for equality. Some subtle differences exist between the different
methods, which are examined next.

The ReferenceEquals() Method
ReferenceEquals() is a static method that tests whether two references refer to the same instance of a
class, specifically whether the two references contain the same address in memory. As a static method, it
cannot be overridden, so the System.Object implementation is what you always have. ReferenceEquals()
always returns true if supplied with two references that refer to the same object instance, and false
otherwise. It does, however, consider null to be equal to null:

SomeClass x, y;
x = new SomeClass();
y = new SomeClass();
bool B1 = ReferenceEquals(null, null); // returns true
bool B2 = ReferenceEquals(null,x); // returns false
bool B3 = ReferenceEquals(x, y); // returns false because x and y
 // point to different objects

The Virtual Equals() Method
The System.Object implementation of the virtual version of Equals() also works by comparing
references. However, because this method is virtual, you can override it in your own classes to compare
objects by value. In particular, if you intend instances of your class to be used as keys in a dictionary, you
need to override this method to compare values. Otherwise, depending on how you override Object
.GetHashCode(), the dictionary class that contains your objects will either not work at all or work very
inefficiently. Note that when overriding Equals(), your override should never throw exceptions. Again,
that’s because doing so can cause problems for dictionary classes and possibly some other .NET base classes
that internally call this method.

The Static Equals() Method
The static version of Equals() actually does the same thing as the virtual instance version. The difference
is that the static version takes two parameters and compares them for equality. This method is able to cope
when either of the objects is null; therefore, it provides an extra safeguard against throwing exceptions if

c07.indd 162 30-01-2014 20:13:15

Operator Overloading ❘ 163

there is a risk that an object might be null. The static overload first checks whether the references it has
been passed are null. If they are both null, it returns true (because null is considered to be equal to
null). If just one of them is null, it returns false. If both references actually refer to something, it calls the
virtual instance version of Equals(). This means that when you override the instance version of Equals(),
the effect is the same as if you were overriding the static version as well.

Comparison Operator (==)
It is best to think of the comparison operator as an intermediate option between strict value comparison and
strict reference comparison. In most cases, writing the following means that you are comparing references:

bool b = (x == y); // x, y object references

However, it is accepted that there are some classes whose meanings are more intuitive if they are treated
as values. In those cases, it is better to override the comparison operator to perform a value comparison.
Overriding operators is discussed next, but the obvious example of this is the System.String class for
which Microsoft has overridden this operator to compare the contents of the strings rather than their
references.

Comparing value Types for Equality
When comparing value types for equality, the same principles hold as for reference types: ReferenceEquals()
is used to compare references, Equals() is intended for value comparisons, and the comparison operator is
viewed as an intermediate case. However, the big difference is that value types need to be boxed to be converted
to references so that methods can be executed on them. In addition, Microsoft has already overloaded the
instance Equals() method in the System.ValueType class to test equality appropriate to value types. If you
call sA.Equals(sB) where sA and sB are instances of some struct, the return value will be true or false,
according to whether sA and sB contain the same values in all their fields. On the other hand, no overload of ==
is available by default for your own structs. Writing (sA == sB) in any expression will result in a compilation
error unless you have provided an overload of == in your code for the struct in question.

Another point is that ReferenceEquals() always returns false when applied to value types because, to
call this method, the value types need to be boxed into objects. Even if you write the following, you will still
get the result of false:

bool b = ReferenceEquals(v,v); // v is a variable of some value type

The reason is because v will be boxed separately when converting each parameter, which means you get
different references. Therefore, there really is no reason to call ReferenceEquals() to compare value types
because it doesn’t make much sense.

Although the default override of Equals() supplied by System.ValueType will almost certainly be
adequate for the vast majority of structs that you define, you might want to override it again for your own
structs to improve performance. Also, if a value type contains reference types as fields, you might want
to override Equals() to provide appropriate semantics for these fields because the default override of
Equals() will simply compare their addresses.

oPERAToR ovERloAding
This section looks at another type of member that you can define for a class or a struct: the operator
overload. Operator overloading is something that will be familiar to C++ developers. However, because the
concept is new to both Java and Visual Basic developers, we explain it here. C++ developers will probably
prefer to skip ahead to the main operator overloading example.

The point of operator overloading is that you do not always just want to call methods or properties on
objects. Often, you need to do things like add quantities together, multiply them, or perform logical operations
such as comparing objects. Suppose you defined a class that represents a mathematical matrix. In the world

c07.indd 163 30-01-2014 20:13:15

164 ❘ CHAPTER 7 OperatOrs and Casts

of math, matrices can be added together and multiplied, just like numbers. Therefore, it is quite plausible that
you would want to write code like this:

Matrix a, b, c;
// assume a, b and c have been initialized
Matrix d = c * (a + b);

By overloading the operators, you can tell the compiler what + and * do when used in conjunction with a
Matrix object, enabling you to write code like the preceding. If you were coding in a language that did not
support operator overloading, you would have to define methods to perform those operations. The result
would certainly be less intuitive and would probably look something like this:

Matrix d = c.Multiply(a.Add(b));

With what you have learned so far, operators like + and * have been strictly for use with the predefined data
types, and for good reason: The compiler knows what all the common operators mean for those data types. For
example, it knows how to add two longs or how to divide one double by another double, and it can generate
the appropriate intermediate language code. When you define your own classes or structs, however, you have to
tell the compiler everything: what methods are available to call, what fields to store with each instance, and so
on. Similarly, if you want to use operators with your own types, you have to tell the compiler what the relevant
operators mean in the context of that class. You do that by defining overloads for the operators.

The other thing to stress is that overloading is not just concerned with arithmetic operators. You also need to
consider the comparison operators, ==, <, >, !=, >=, and <=. Take the statement if (a==b). For classes,
this statement will, by default, compare the references a and b. It tests whether the references point to the
same location in memory, rather than checking whether the instances actually contain the same data. For
the string class, this behavior is overridden so that comparing strings really does compare the contents of
each string. You might want to do the same for your own classes. For structs, the == operator does not do
anything at all by default. Trying to compare two structs to determine whether they are equal produces a
compilation error unless you explicitly overload == to tell the compiler how to perform the comparison.

In many situations, being able to overload operators enables you to generate more readable and intuitive
code, including the following:

➤➤ Almost any mathematical object such as coordinates, vectors, matrices, tensors, functions, and so
on. If you are writing a program that does some mathematical or physical modeling, you will almost
certainly use classes representing these objects.

➤➤ Graphics programs that use mathematical or coordinate-related objects when calculating positions
on-screen.

➤➤ A class that represents an amount of money (for example, in a financial program).
➤➤ A word processing or text analysis program that uses classes representing sentences, clauses, and

so on. You might want to use operators to combine sentences (a more sophisticated version of
concatenation for strings).

However, there are also many types for which operator overloading is not relevant. Using operator
overloading inappropriately will make any code that uses your types far more difficult to understand. For
example, multiplying two DateTime objects does not make any sense conceptually.

How operators Work
To understand how to overload operators, it’s quite useful to think about what happens when the compiler
encounters an operator. Using the addition operator (+) as an example, suppose that the compiler processes
the following lines of code:

int myInteger = 3;
uint myUnsignedInt = 2;
double myDouble = 4.0;
long myLong = myInteger + myUnsignedInt;
double myOtherDouble = myDouble + myInteger;

c07.indd 164 30-01-2014 20:13:15

Operator Overloading ❘ 165

Now consider what happens when the compiler encounters this line:

long myLong = myInteger + myUnsignedInt;

The compiler identifies that it needs to add two integers and assign the result to a long. However, the
expression myInteger + myUnsignedInt is really just an intuitive and convenient syntax for calling a
method that adds two numbers. The method takes two parameters, myInteger and myUnsignedInt, and
returns their sum. Therefore, the compiler does the same thing it does for any method call: It looks for the
best matching overload of the addition operator based on the parameter types — in this case, one that takes
two integers. As with normal overloaded methods, the desired return type does not influence the compiler’s
choice as to which version of a method it calls. As it happens, the overload called in the example takes two
int parameters and returns an int; this return value is subsequently converted to a long.

The next line causes the compiler to use a different overload of the addition operator:

double myOtherDouble = myDouble + myInteger;

In this instance, the parameters are a double and an int, but there is no overload of the addition operator
that takes this combination of parameters. Instead, the compiler identifies the best matching overload of the
addition operator as being the version that takes two doubles as its parameters, and it implicitly casts the
int to a double. Adding two doubles requires a different process from adding two integers. Floating-point
numbers are stored as a mantissa and an exponent. Adding them involves bit-shifting the mantissa of one of
the doubles so that the two exponents have the same value, adding the mantissas, then shifting the mantissa
of the result and adjusting its exponent to maintain the highest possible accuracy in the answer.

Now you are in a position to see what happens if the compiler finds something like this:

Vector vect1, vect2, vect3;
// initialize vect1 and vect2
vect3 = vect1 + vect2;
vect1 = vect1*2;

Here, Vector is the struct, which is defined in the following section. The compiler sees that it needs to add
two Vector instances, vect1 and vect2, together. It looks for an overload of the addition operator, which
takes two Vector instances as its parameters.

If the compiler finds an appropriate overload, it calls up the implementation of that operator. If it cannot
find one, it checks whether there is any other overload for + that it can use as a best match — perhaps
something with two parameters of other data types that can be implicitly converted to Vector instances. If
the compiler cannot find a suitable overload, it raises a compilation error, just as it would if it could not find
an appropriate overload for any other method call.

operator overloading Example: The vector Struct
This section demonstrates operator overloading through developing a struct named Vector that represents
a three-dimensional mathematical vector. Don’t worry if mathematics is not your strong point — the vector
example is very simple. As far as you are concerned here, a 3D vector is just a set of three numbers (doubles)
that tell you how far something is moving. The variables representing the numbers are called x, y, and z:
the x tells you how far something moves east, y tells you how far it moves north, and z tells you how far
it moves upward (in height). Combine the three numbers and you get the total movement. For example, if
x=3.0, y=3.0, and z=1.0 (which you would normally write as (3.0, 3.0, 1.0), you’re moving 3 units
east, 3 units north, and rising upward by 1 unit.

You can add or multiply vectors by other vectors or by numbers. Incidentally, in this context, we use the
term scalar, which is math-speak for a simple number — in C# terms that is just a double. The significance
of addition should be clear. If you move first by the vector (3.0, 3.0, 1.0) then you move by the vector
(2.0, -4.0, -4.0), the total amount you have moved can be determined by adding the two vectors.
Adding vectors means adding each component individually, so you get (5.0, -1.0, -3.0). In this context,
mathematicians write c=a+b, where a and b are the vectors and c is the resulting vector. You want to be able
to use the Vector struct the same way.

c07.indd 165 30-01-2014 20:13:16

166 ❘ CHAPTER 7 OperatOrs and Casts

noTE The fact that this example is developed as a struct rather than a class is not
significant. Operator overloading works in the same way for both structs and classes.

Following is the definition for Vector — containing the member fields, constructors, a ToString() override
so you can easily view the contents of a Vector, and, finally, that operator overload:

namespace Wrox.ProCSharp.OOCSharp
{
 struct Vector
 {
 public double x, y, z;

 public Vector(double x, double y, double z)
 {
 this.x = x;
 this.y = y;
 this.z = z;
 }

 public Vector(Vector rhs)
 {
 x = rhs.x;
 y = rhs.y;
 z = rhs.z;
 }

 public override string ToString()
 {
 return "(" + x + ", " + y + ", " + z + ")";
 }

This example has two constructors that require specifying the initial value of the vector, either by passing in the
values of each component or by supplying another Vector whose value can be copied. Constructors like the
second one, that takes a single Vector argument, are often termed copy constructors because they effectively
enable you to initialize a class or struct instance by copying another instance. Note that to keep things simple,
the fields are left as public. We could have made them private and written corresponding properties to access
them, but it would not make any difference to the example, other than to make the code longer.

Here is the interesting part of the Vector struct — the operator overload that provides support for the
addition operator:

 public static Vector operator + (Vector lhs, Vector rhs)
 {
 Vector result = new Vector(lhs);
 result.x += rhs.x;
 result.y += rhs.y;
 result.z += rhs.z;

 return result;
 }
 }
}

The operator overload is declared in much the same way as a method, except that the operator keyword
tells the compiler it is actually an operator overload you are defining. The operator keyword is followed
by the actual symbol for the relevant operator, in this case the addition operator (+). The return type is
whatever type you get when you use this operator. Adding two vectors results in a vector; therefore, the return
type is also a Vector. For this particular override of the addition operator, the return type is the same as the
containing class, but that is not necessarily the case, as you will see later in this example. The two parameters
are the things you are operating on. For binary operators (those that take two parameters), such as the

c07.indd 166 30-01-2014 20:13:16

Operator Overloading ❘ 167

addition and subtraction operators, the first parameter is the value on the left of the operator, and the second
parameter is the value on the right.

noTE It is conventional to name your left-hand parameters lhs (for left-hand side)
and your right-hand parameters rhs (for right-hand side).

C# requires that all operator overloads be declared as public and static, which means they are associated
with their class or struct, not with a particular instance. Because of this, the body of the operator overload
has no access to non-static class members or the this identifier. This is fine because the parameters provide
all the input data the operator needs to know to perform its task.

Now that you understand the syntax for the addition operator declaration, examine what happens inside the
operator:

 {
 Vector result = new Vector(lhs);
 result.x += rhs.x;
 result.y += rhs.y;
 result.z += rhs.z;

 return result;
 }

This part of the code is exactly the same as if you were declaring a method, and you should easily be able
to convince yourself that this will return a vector containing the sum of lhs and rhs as defined. You simply
add the members x, y, and z together individually.

Now all you need to do is write some simple code to test the Vector struct:

 static void Main()
 {
 Vector vect1, vect2, vect3;

 vect1 = new Vector(3.0, 3.0, 1.0);
 vect2 = new Vector(2.0, -4.0, -4.0);
 vect3 = vect1 + vect2;

 Console.WriteLine("vect1 = " + vect1.ToString());
 Console.WriteLine("vect2 = " + vect2.ToString());
 Console.WriteLine("vect3 = " + vect3.ToString());
 }

Saving this code as Vectors.cs and compiling and running it returns this result:

vect1 = (3, 3, 1)
vect2 = (2, -4, -4)
vect3 = (5, -1, -3)

Adding More Overloads
In addition to adding vectors, you can multiply and subtract them and compare their values. In this section,
you develop the Vector example further by adding a few more operator overloads. You won’t develop the
complete set that you’d probably need for a fully functional Vector type, but just enough to demonstrate
some other aspects of operator overloading. First, you’ll overload the multiplication operator to support
multiplying vectors by a scalar and multiplying vectors by another vector.

Multiplying a vector by a scalar simply means multiplying each component individually by the scalar: for example,
2 * (1.0, 2.5, 2.0) returns (2.0, 5.0, 4.0). The relevant operator overload looks similar to this:

public static Vector operator * (double lhs, Vector rhs)
{

c07.indd 167 30-01-2014 20:13:16

168 ❘ CHAPTER 7 OperatOrs and Casts

 return new Vector(lhs * rhs.x, lhs * rhs.y, lhs * rhs.z);
}

This by itself, however, is not sufficient. If a and b are declared as type Vector, you can write code like this:

b = 2 * a;

The compiler will implicitly convert the integer 2 to a double to match the operator overload signature.
However, code like the following will not compile:

b = a * 2;

The point is that the compiler treats operator overloads exactly like method overloads. It examines all the
available overloads of a given operator to find the best match. The preceding statement requires the first
parameter to be a Vector and the second parameter to be an integer, or something to which an integer can
be implicitly converted. You have not provided such an overload. The compiler cannot start swapping the
order of parameters, so the fact that you’ve provided an overload that takes a double followed by a Vector
is not sufficient. You need to explicitly define an overload that takes a Vector followed by a double as
well. There are two possible ways of implementing this. The first way involves breaking down the vector
multiplication operation in the same way that you have done for all operators so far:

public static Vector operator * (Vector lhs, double rhs)
{
 return new Vector(rhs * lhs.x, rhs * lhs.y, rhs *lhs.z);
}

Given that you have already written code to implement essentially the same operation, however, you might
prefer to reuse that code by writing the following:

public static Vector operator * (Vector lhs, double rhs)
{
 return rhs * lhs;
}

This code works by effectively telling the compiler that when it sees a multiplication of a Vector by a double, it
can simply reverse the parameters and call the other operator overload. The sample code for this chapter uses the
second version, because it looks neater and illustrates the idea in action. This version also makes the code more
maintainable because it saves duplicating the code to perform the multiplication in two separate overloads.

Next, you need to overload the multiplication operator to support vector multiplication. Mathematics provides
a couple of ways to multiply vectors, but the one we are interested in here is known as the dot product or inner
product, which actually returns a scalar as a result. That’s the reason for this example, to demonstrate that
arithmetic operators don’t have to return the same type as the class in which they are defined.

In mathematical terms, if you have two vectors (x, y, z) and (X, Y, Z), then the inner product is
defined to be the value of x*X + y*Y + z*Z. That might look like a strange way to multiply two things
together, but it is actually very useful because it can be used to calculate various other quantities. If you
ever write code that displays complex 3D graphics, such as using Direct3D or DirectDraw, you will almost
certainly find that your code needs to work out inner products of vectors quite often as an intermediate step
in calculating where to place objects on the screen. What concerns us here is that we want users of your
Vector to be able to write double X = a*b to calculate the inner product of two Vector objects (a and b).
The relevant overload looks like this:

public static double operator * (Vector lhs, Vector rhs)
{
 return lhs.x * rhs.x + lhs.y * rhs.y + lhs.z * rhs.z;
}

Now that you understand the arithmetic operators, you can confirm that they work using a simple test method:

static void Main()
{
 // stuff to demonstrate arithmetic operations
 Vector vect1, vect2, vect3;
 vect1 = new Vector(1.0, 1.5, 2.0);

c07.indd 168 30-01-2014 20:13:16

Operator Overloading ❘ 169

 vect2 = new Vector(0.0, 0.0, -10.0);

 vect3 = vect1 + vect2;

 Console.WriteLine("vect1 = " + vect1);
 Console.WriteLine("vect2 = " + vect2);
 Console.WriteLine("vect3 = vect1 + vect2 = " + vect3);
 Console.WriteLine("2*vect3 = " + 2*vect3);
 vect3 += vect2;

 Console.WriteLine("vect3+=vect2 gives " + vect3);

 vect3 = vect1*2;

 Console.WriteLine("Setting vect3=vect1*2 gives " + vect3);

 double dot = vect1*vect3;

 Console.WriteLine("vect1*vect3 = " + dot);
}

Running this code (Vectors2.cs) produces the following result:

Vectors2
vect1 = (1, 1.5, 2)
vect2 = (0, 0, -10)
vect3 = vect1 + vect2 = (1, 1.5, -8)
2*vect3 = (2, 3, -16)
vect3+=vect2 gives (1, 1.5, -18)
Setting vect3=vect1*2 gives (2, 3, 4)
vect1*vect3 = 14.5

This shows that the operator overloads have given the correct results; but if you look at the test code closely,
you might be surprised to notice that it actually used an operator that wasn’t overloaded — the addition
assignment operator, +=:

 vect3 += vect2;

 Console.WriteLine("vect3 += vect2 gives " + vect3);

Although += normally counts as a single operator, it can be broken down into two steps: the addition and the
assignment. Unlike the C++ language, C# does not allow you to overload the = operator; but if you overload
+, the compiler will automatically use your overload of + to work out how to perform a += operation. The
same principle works for all the assignment operators, such as -=, *=, /=, &=, and so on.

Overloading the Comparison Operators
As shown earlier in the section “Operators,” C# has six comparison operators, and they are paired as follows:

➤➤ == and !=
➤➤ > and <
➤➤ >= and <=

The C# language requires that you overload these operators in pairs. That is, if you overload ==, you must
overload != too; otherwise, you get a compiler error. In addition, the comparison operators must return
a bool. This is the fundamental difference between these operators and the arithmetic operators. The
result of adding or subtracting two quantities, for example, can theoretically be any type depending on the
quantities. You have already seen that multiplying two Vector objects can be implemented to give a scalar.
Another example involves the .NET base class System.DateTime. It’s possible to subtract two DateTime
instances, but the result is not a DateTime; instead it is a System.TimeSpan instance. By contrast, it doesn’t
really make much sense for a comparison to return anything other than a bool.

c07.indd 169 30-01-2014 20:13:16

170 ❘ CHAPTER 7 OperatOrs and Casts

noTE If you overload == and !=, you must also override the Equals() and
GetHashCode() methods inherited from System.Object; otherwise, you’ll get a compiler
warning. The reasoning is that the Equals() method should implement the same kind of
equality logic as the == operator.

Apart from these differences, overloading the comparison operators follows the same principles as
overloading the arithmetic operators. However, comparing quantities isn’t always as simple as you might
think. For example, if you simply compare two object references, you will compare the memory address
where the objects are stored. This is rarely the desired behavior of a comparison operator, so you must code
the operator to compare the value of the objects and return the appropriate Boolean response. The following
example overrides the == and != operators for the Vector struct. Here is the implementation of ==:

public static bool operator == (Vector lhs, Vector rhs)
{
 if (lhs.x == rhs.x && lhs.y == rhs.y && lhs.z == rhs.z)
 return true;
 else
 return false;
}

This approach simply compares two Vector objects for equality based on the values of their components.
For most structs, that is probably what you will want to do, though in some cases you may need to think
carefully about what you mean by equality. For example, if there are embedded classes, should you simply
compare whether the references point to the same object (shallow comparison) or whether the values of the
objects are the same (deep comparison)?

With a shallow comparison, the objects point to the same point in memory, whereas deep comparisons
work with values and properties of the object to deem equality. You want to perform equality checks
depending on the depth to help you decide what you want to verify.

noTE Don’t be tempted to overload the comparison operator by calling the instance
version of the Equals() method inherited from System.Object. If you do and then an
attempt is made to evaluate (objA == objB), when objA happens to be null, you will
get an exception, as the .NET runtime tries to evaluate null.Equals(objB). Working the
other way around (overriding Equals() to call the comparison operator) should be safe.

You also need to override the != operator. Here is the simple way to do this:

public static bool operator != (Vector lhs, Vector rhs)
{
 return ! (lhs == rhs);
}

As usual, you should quickly confirm that your override works with some test code. This time you’ll define
three Vector objects and compare them:

static void Main()
{
 Vector vect1, vect2, vect3;

 vect1 = new Vector(3.0, 3.0, -10.0);
 vect2 = new Vector(3.0, 3.0, -10.0);
 vect3 = new Vector(2.0, 3.0, 6.0);

 Console.WriteLine("vect1==vect2 returns " + (vect1==vect2));
 Console.WriteLine("vect1==vect3 returns " + (vect1==vect3));

c07.indd 170 30-01-2014 20:13:16

Operator Overloading ❘ 171

 Console.WriteLine("vect2==vect3 returns " + (vect2==vect3));

 Console.WriteLine();

 Console.WriteLine("vect1!=vect2 returns " + (vect1!=vect2));
 Console.WriteLine("vect1!=vect3 returns " + (vect1!=vect3));
 Console.WriteLine("vect2!=vect3 returns " + (vect2!=vect3));
}

Compiling this code (the Vectors3.cs sample in the code download) generates the following compiler
warning because you haven’t overridden Equals() for your Vector. For our purposes here, that doesn’t, so
we will ignore it:

Microsoft (R) Visual C# 2010 Compiler version 4.0.21006.1
for Microsoft (R) .NET Framework version 4.0
Copyright (C) Microsoft Corporation. All rights reserved.

Vectors3.cs(5,11): warning CS0660: 'Wrox.ProCSharp.OOCSharp.Vector' defines
 operator == or operator != but does not override Object.Equals(object o)
Vectors3.cs(5,11): warning CS0661: 'Wrox.ProCSharp.OOCSharp.Vector' defines
 operator == or operator != but does not override Object.GetHashCode()

Running the example produces these results at the command line:

Vectors3
vect1==vect2 returns True
vect1==vect3 returns False
vect2==vect3 returns False

vect1!=vect2 returns False
vect1!=vect3 returns True
vect2!=vect3 returns True

Which operators Can you overload?
It is not possible to overload all the available operators. The operators that you can overload are listed in the
following table:

CATEgoRy oPERAToRS RESTRiCTionS

Arithmetic binary +, *, /, -, % None

Arithmetic unary +, -, ++, -- None

Bitwise binary &, |, ^, <<, >> None

Bitwise unary !, ~true, false The true and false operators must be overloaded
as a pair.

Comparison ==, !=,>=, <=>, <, Comparison operators must be overloaded in pairs.

Assignment +=, -=, *=, /=, >>=,
<<=, %=, &=, |=, ^=

You cannot explicitly overload these operators; they are
overridden implicitly when you override the individual
operators such as +, -, %, and so on.

Index [] You cannot overload the index operator directly. The
indexer member type, discussed in Chapter 2, allows
you to support the index operator on your classes and
structs.

Cast () You cannot overload the cast operator directly. User-
defined casts (discussed next) allow you to define
custom cast behavior.

c07.indd 171 30-01-2014 20:13:17

172 ❘ CHAPTER 7 OperatOrs and Casts

uSER-dEfinEd CASTS
Earlier in this chapter (see the “Explicit Conversions” section), you learned that you can convert values
between predefined data types through a process of casting. You also saw that C# allows two different types
of casts: implicit and explicit. This section looks at these types of casts.

For an explicit cast, you explicitly mark the cast in your code by including the destination data type inside
parentheses:

 int I = 3;
 long l = I; // implicit
 short s = (short)I; // explicit

For the predefined data types, explicit casts are required where there is a risk that the cast might fail or some
data might be lost. The following are some examples:

➤➤ When converting from an int to a short, the short might not be large enough to hold the value of
the int.

➤➤ When converting from signed to unsigned data types, incorrect results are returned if the signed
variable holds a negative value.

➤➤ When converting from floating-point to integer data types, the fractional part of the number will be
lost.

➤➤ When converting from a nullable type to a non-nullable type, a value of null causes an exception.

By making the cast explicit in your code, C# forces you to affirm that you understand there is a risk of data
loss, and therefore presumably you have written your code to take this into account.

Because C# allows you to define your own data types (structs and classes), it follows that you need the facility
to support casts to and from those data types. The mechanism is to define a cast as a member operator of one of
the relevant classes. Your cast operator must be marked as either implicit or explicit to indicate how you
are intending it to be used. The expectation is that you follow the same guidelines as for the predefined casts: if
you know that the cast is always safe regardless of the value held by the source variable, then you define it as
implicit. Conversely, if you know there is a risk of something going wrong for certain values — perhaps some
loss of data or an exception being thrown — then you should define the cast as explicit.

noTE You should define any custom casts you write as explicit if there are any source
data values for which the cast will fail or if there is any risk of an exception being
thrown.

The syntax for defining a cast is similar to that for overloading operators discussed earlier in this
chapter. This is not a coincidence — a cast is regarded as an operator whose effect is to convert from the
source type to the destination type. To illustrate the syntax, the following is taken from an example
struct named Currency, which is introduced later in this section:

public static implicit operator float (Currency value)
{
 // processing
}

The return type of the operator defines the target type of the cast operation, and the single parameter
is the source object for the conversion. The cast defined here allows you to implicitly convert the value
of a Currency into a float. Note that if a conversion has been declared as implicit, the compiler permits
its use either implicitly or explicitly. If it has been declared as explicit, the compiler only permits it to
be used explicitly. In common with other operator overloads, casts must be declared as both public and
static.

c07.indd 172 30-01-2014 20:13:17

User-Defined Casts ❘ 173

noTE C++ developers will notice that this is different from C++, in which casts are
instance members of classes.

implementing user-defined Casts
This section illustrates the use of implicit and explicit user-defined casts in an example called
SimpleCurrency (which, as usual, is available in the code download). In this example, you define a struct,
Currency, which holds a positive USD ($) monetary value. C# provides the decimal type for this purpose,
but it is possible you will still want to write your own struct or class to represent monetary values if you
need to perform sophisticated financial processing and therefore want to implement specific methods on
such a class.

noTE The syntax for casting is the same for structs and classes. This example happens
to be for a struct, but it would work just as well if you declared Currency as a class.

Initially, the definition of the Currency struct is as follows:

 struct Currency
 {
 public uint Dollars;
 public ushort Cents;

 public Currency(uint dollars, ushort cents)
 {
 this.Dollars = dollars;
 this.Cents = cents;
 }

 public override string ToString()
 {
 return string.Format("${0}.{1,-2:00}", Dollars,Cents);
 }
 }

The use of unsigned data types for the Dollar and Cents fields ensures that a Currency instance can hold
only positive values. It is restricted this way to illustrate some points about explicit casts later. You might
want to use a class like this to hold, for example, salary information for company employees (people’s
salaries tend not to be negative!). To keep the class simple, the fields are public, but usually you would make
them private and define corresponding properties for the dollars and cents.

Start by assuming that you want to be able to convert Currency instances to float values, where the
integer part of the float represents the dollars. In other words, you want to be able to write code like this:

 Currency balance = new Currency(10,50);
 float f = balance; // We want f to be set to 10.5

To be able to do this, you need to define a cast. Hence, you add the following to your Currency definition:

 public static implicit operator float (Currency value)
 {
 return value.Dollars + (value.Cents/100.0f);
 }

The preceding cast is implicit. It is a sensible choice in this case because, as it should be clear from the
definition of Currency, any value that can be stored in the currency can also be stored in a float. There is
no way that anything should ever go wrong in this cast.

c07.indd 173 30-01-2014 20:13:17

174 ❘ CHAPTER 7 OperatOrs and Casts

noTE There is a slight cheat here: in fact, when converting a uint to a float, there
can be a loss in precision, but Microsoft has deemed this error sufficiently marginal to
count the uint-to-float cast as implicit.

However, if you have a float that you would like to be converted to a Currency, the conversion is not
guaranteed to work. A float can store negative values, which Currency instances can’t, and a float
can store numbers of a far higher magnitude than can be stored in the (uint) Dollar field of Currency.
Therefore, if a float contains an inappropriate value, converting it to a Currency could give unpredictable
results. Because of this risk, the conversion from float to Currency should be defined as explicit. Here is
the first attempt, which will not return quite the correct results, but it is instructive to examine why:

 public static explicit operator Currency (float value)
 {
 uint dollars = (uint)value;
 ushort cents = (ushort)((value-dollars)*100);
 return new Currency(dollars, cents);
 }

The following code will now successfully compile:

 float amount = 45.63f;
 Currency amount2 = (Currency)amount;

However, the following code, if you tried it, would generate a compilation error, because it attempts to use
an explicit cast implicitly:

 float amount = 45.63f;
 Currency amount2 = amount; // wrong

By making the cast explicit, you warn the developer to be careful because data loss might occur. However,
as you will soon see, this is not how you want your Currency struct to behave. Try writing a test harness
and running the sample. Here is the Main() method, which instantiates a Currency struct and attempts a
few conversions. At the start of this code, you write out the value of balance in two different ways (this will
be needed to illustrate something later in the example):

static void Main()
{
 try
 {
 Currency balance = new Currency(50,35);

 Console.WriteLine(balance);
 Console.WriteLine("balance is " + balance);
 Console.WriteLine("balance is (using ToString()) " + balance.ToString());

 float balance2= balance;

 Console.WriteLine("After converting to float, = " + balance2);

 balance = (Currency) balance2;

 Console.WriteLine("After converting back to Currency, = " + balance);
 Console.WriteLine("Now attempt to convert out of range value of " +
 "-$50.50 to a Currency:");

 checked
 {
 balance = (Currency) (-50.50);
 Console.WriteLine("Result is " + balance.ToString());
 }

c07.indd 174 30-01-2014 20:13:17

User-Defined Casts ❘ 175

 }
 catch(Exception e)
 {
 Console.WriteLine("Exception occurred: " + e.Message);
 }
}

Notice that the entire code is placed in a try block to catch any exceptions that occur during your casts. In
addition, the lines that test converting an out-of-range value to Currency are placed in a checked block in
an attempt to trap negative values. Running this code produces the following output:

simplecurrency
50.35
Balance is $50.35
Balance is (using ToString()) $50.35
After converting to float, = 50.35
After converting back to Currency, = $50.34
Now attempt to convert out of range value of -$100.00 to a Currency:
Result is $4294967246.00

This output shows that the code did not quite work as expected. First, converting back from float to
Currency gave a wrong result of $50.34 instead of $50.35. Second, no exception was generated when you
tried to convert an obviously out-of-range value.

The first problem is caused by rounding errors. If a cast is used to convert from a float to a uint, the
computer will truncate the number rather than round it. The computer stores numbers in binary rather
than decimal, and the fraction 0.35 cannot be exactly represented as a binary fraction (just as 1/3 cannot be
represented exactly as a decimal fraction; it comes out as 0.3333 recurring). The computer ends up storing
a value very slightly lower than 0.35 that can be represented exactly in binary format. Multiply by 100
and you get a number fractionally less than 35, which is truncated to 34 cents. Clearly, in this situation,
such errors caused by truncation are serious, and the way to avoid them is to ensure that some intelligent
rounding is performed in numerical conversions instead.

Luckily, Microsoft has written a class that does this: System.Convert. The System.Convert object
contains a large number of static methods to perform various numerical conversions, and the one that we
want is Convert.ToUInt16(). Note that the extra care taken by the System.Convert methods does come
at a performance cost. You should use them only when necessary.

Let’s examine the second problem — why the expected overflow exception wasn’t thrown. The issue here
is this: The place where the overflow really occurs isn’t actually in the Main() routine at all — it is inside
the code for the cast operator, which is called from the Main() method. The code in this method was not
marked as checked.

The solution is to ensure that the cast itself is computed in a checked context too. With both this change
and the fix for the first problem, the revised code for the conversion looks like the following:

 public static explicit operator Currency (float value)
 {
 checked
 {
 uint dollars = (uint)value;
 ushort cents = Convert.ToUInt16((value-dollars)*100);
 return new Currency(dollars, cents);
 }
 }

Note that you use Convert.ToUInt16() to calculate the cents, as described earlier, but you do not use it
for calculating the dollar part of the amount. System.Convert is not needed when calculating the dollar
amount because truncating the float value is what you want there.

c07.indd 175 30-01-2014 20:13:17

176 ❘ CHAPTER 7 OperatOrs and Casts

noTE The System.Convert methods also carry out their own overflow checking.
Hence, for the particular case we are considering, there is no need to place the call to
Convert.ToUInt16() inside the checked context. The checked context is still required,
however, for the explicit casting of value to dollars.

You won’t see a new set of results with this new checked cast just yet because you have some more
modifications to make to the SimpleCurrency example later in this section.

noTE If you are defining a cast that will be used very often, and for which performance
is at an absolute premium, you may prefer not to do any error checking. That is also a
legitimate solution, provided that the behavior of your cast and the lack of error checking
are very clearly documented.

Casts Between Classes
The Currency example involves only classes that convert to or from float — one of the predefined data
types. However, it is not necessary to involve any of the simple data types. It is perfectly legitimate to define
casts to convert between instances of different structs or classes that you have defined. You need to be aware
of a couple of restrictions, however:

➤➤ You cannot define a cast if one of the classes is derived from the other (these types of casts already
exist, as you will see).

➤➤ The cast must be defined inside the definition of either the source or the destination data type.

To illustrate these requirements, suppose that you have the class hierarchy shown in Figure 7-1.

In other words, classes C and D are indirectly derived from A. In this case, the only legitimate user-defined
cast between A, B, C, or D would be to convert between classes C and D, because these classes are not derived
from each other. The code to do so might look like the following (assuming you want the casts to be explicit,
which is usually the case when defining casts between user-defined classes):

 public static explicit operator D(C value)
 {
 // and so on
 }
 public static explicit operator C(D value)
 {
 // and so on
 }

For each of these casts, you can choose where you place the definitions — inside the
class definition of C or inside the class definition of D, but not anywhere else. C#
requires you to put the definition of a cast inside either the source class (or struct)
or the destination class (or struct). A side effect of this is that you cannot define
a cast between two classes unless you have access to edit the source code for at least one of them. This is
sensible because it prevents third parties from introducing casts into your classes.

After you have defined a cast inside one of the classes, you cannot also define the same cast inside the other
class. Obviously, there should be only one cast for each conversion; otherwise, the compiler would not know
which one to use.

Casts Between Base and Derived Classes
To see how these casts work, start by considering the case in which both the source and the destination are
reference types, and consider two classes, MyBase and MyDerived, where MyDerived is derived directly or
indirectly from MyBase.

System Object

A

B

C D

figuRE 7-1

c07.indd 176 30-01-2014 20:13:19

User-Defined Casts ❘ 177

First, from MyDerived to MyBase, it is always possible (assuming the constructors are available) to write this:

MyDerived derivedObject = new MyDerived();
MyBase baseCopy = derivedObject;

Here, you are casting implicitly from MyDerived to MyBase. This works because of the rule that any
reference to a type MyBase is allowed to refer to objects of class MyBase or anything derived from MyBase.
In OO programming, instances of a derived class are, in a real sense, instances of the base class, plus
something extra. All the functions and fields defined on the base class are defined in the derived class too.

Alternatively, you can write this:

MyBase derivedObject = new MyDerived();
MyBase baseObject = new MyBase();
MyDerived derivedCopy1 = (MyDerived) derivedObject; // OK
MyDerived derivedCopy2 = (MyDerived) baseObject; // Throws exception

This code is perfectly legal C# (in a syntactic sense, that is) and illustrates casting from a base class to a
derived class. However, the final statement will throw an exception when executed. When you perform the
cast, the object being referred to is examined. Because a base class reference can, in principle, refer to a
derived class instance, it is possible that this object is actually an instance of the derived class that you are
attempting to cast to. If that is the case, the cast succeeds, and the derived reference is set to refer to the
object. If, however, the object in question is not an instance of the derived class (or of any class derived from
it), the cast fails and an exception is thrown.

Notice that the casts that the compiler has supplied, which convert between base and derived class, do not
actually do any data conversion on the object in question. All they do is set the new reference to refer to
the object if it is legal for that conversion to occur. To that extent, these casts are very different in nature
from the ones that you normally define yourself. For example, in the SimpleCurrency example earlier,
you defined casts that convert between a Currency struct and a float. In the float-to-Currency cast, you
actually instantiated a new Currency struct and initialized it with the required values. The predefined
casts between base and derived classes do not do this. If you want to convert a MyBase instance into a real
MyDerived object with values based on the contents of the MyBase instance, you cannot use the cast syntax
to do this. The most sensible option is usually to define a derived class constructor that takes a base class
instance as a parameter, and have this constructor perform the relevant initializations:

class DerivedClass: BaseClass
{
 public DerivedClass(BaseClass rhs)
 {
 // initialize object from the Base instance
 }
 // etc.

Boxing and Unboxing Casts
The previous discussion focused on casting between base and derived classes where both participants were
reference types. Similar principles apply when casting value types, although in this case it is not possible to
simply copy references — some copying of data must occur.

It is not, of course, possible to derive from structs or primitive value types. Casting between base and
derived structs invariably means casting between a primitive type or a struct and System.Object.
(Theoretically, it is possible to cast between a struct and System.ValueType, though it is hard to see why
you would want to do this.)

The cast from any struct (or primitive type) to object is always available as an implicit cast — because it is
a cast from a derived type to a base type — and is just the familiar process of boxing. For example, using the
Currency struct:

Currency balance = new Currency(40,0);
object baseCopy = balance;

c07.indd 177 30-01-2014 20:13:19

178 ❘ CHAPTER 7 OperatOrs and Casts

When this implicit cast is executed, the contents of balance are copied onto the heap into a boxed object,
and the baseCopy object reference is set to this object. What actually happens behind the scenes is this:
When you originally defined the Currency struct, the .NET Framework implicitly supplied another (hidden)
class, a boxed Currency class, which contains all the same fields as the Currency struct but is a reference
type, stored on the heap. This happens whenever you define a value type, whether it is a struct or an
enum, and similar boxed reference types exist corresponding to all the primitive value types of int, double,
uint, and so on. It is not possible, or necessary, to gain direct programmatic access to any of these boxed
classes in source code, but they are the objects that are working behind the scenes whenever a value type is
cast to object. When you implicitly cast Currency to object, a boxed Currency instance is instantiated
and initialized with all the data from the Currency struct. In the preceding code, it is this boxed Currency
instance to which baseCopy refers. By these means, it is possible for casting from derived to base type to
work syntactically in the same way for value types as for reference types.

Casting the other way is known as unboxing. Like casting between a base reference type and a derived
reference type, it is an explicit cast because an exception will be thrown if the object being cast is not of the
correct type:

object derivedObject = new Currency(40,0);
object baseObject = new object();
Currency derivedCopy1 = (Currency)derivedObject; // OK
Currency derivedCopy2 = (Currency)baseObject; // Exception thrown

This code works in a way similar to the code presented earlier for reference types. Casting derivedObject
to Currency works fine because derivedObject actually refers to a boxed Currency instance — the cast is
performed by copying the fields out of the boxed Currency object into a new Currency struct. The second
cast fails because baseObject does not refer to a boxed Currency object.

When using boxing and unboxing, it is important to understand that both processes actually copy the data
into the new boxed or unboxed object. Hence, manipulations on the boxed object, for example, will not
affect the contents of the original value type.

multiple Casting
One thing you will have to watch for when you are defining casts is that if the C# compiler is presented with
a situation in which no direct cast is available to perform a requested conversion, it will attempt to find a
way of combining casts to do the conversion. For example, with the Currency struct, suppose the compiler
encounters a few lines of code like this:

Currency balance = new Currency(10,50);
long amount = (long)balance;
double amountD = balance;

You first initialize a Currency instance, and then you attempt to convert it to a long. The trouble is that you
haven’t defined the cast to do that. However, this code still compiles successfully. What will happen is that
the compiler will realize that you have defined an implicit cast to get from Currency to float, and the
compiler already knows how to explicitly cast a float to a long. Hence, it will compile that line of code
into IL code that converts balance first to a float, and then converts that result to a long. The same thing
happens in the final line of the code, when you convert balance to a double. However, because the cast
from Currency to float and the predefined cast from float to double are both implicit, you can write this
conversion in your code as an implicit cast. If you prefer, you could also specify the casting route explicitly:

Currency balance = new Currency(10,50);
long amount = (long)(float)balance;
double amountD = (double)(float)balance;

However, in most cases, this would be seen as needlessly complicating your code. The following code, by
contrast, produces a compilation error:

Currency balance = new Currency(10,50);
long amount = balance;

c07.indd 178 30-01-2014 20:13:19

User-Defined Casts ❘ 179

The reason is that the best match for the conversion that the compiler can find is still to convert first to float
and then to long. The conversion from float to long needs to be specified explicitly, though.

Not all of this by itself should give you too much trouble. The rules are, after all, fairly intuitive and
designed to prevent any data loss from occurring without the developer knowing about it. However, the
problem is that if you are not careful when you define your casts, it is possible for the compiler to select
a path that leads to unexpected results. For example, suppose that it occurs to someone else in the group
writing the Currency struct that it would be useful to be able to convert a uint containing the total number
of cents in an amount into a Currency (cents, not dollars, because the idea is not to lose the fractions of a
dollar). Therefore, this cast might be written to try to achieve this:

public static implicit operator Currency (uint value)
{
 return new Currency(value/100u, (ushort)(value%100));
} // Do not do this!

Note the u after the first 100 in this code to ensure that value/100u is interpreted as a uint. If you had
written value/100, the compiler would have interpreted this as an int, not a uint.

The comment Do not do this! is clearly noted in this code, and here is why: The following code snippet
merely converts a uint containing 350 into a Currency and back again; but what do you think bal2 will
contain after executing this?

uint bal = 350;
Currency balance = bal;
uint bal2 = (uint)balance;

The answer is not 350 but 3! Moreover, it all follows logically. You convert 350 implicitly to a Currency,
giving the result balance.Dollars = 3, balance.Cents = 50. Then the compiler does its usual figuring
out of the best path for the conversion back. Balance ends up being implicitly converted to a float (value
3.5), and this is converted explicitly to a uint with value 3.

Of course, other instances exist in which converting to another data type and back again causes data
loss. For example, converting a float containing 5.8 to an int and back to a float again will lose the
fractional part, giving you a result of 5, but there is a slight difference in principle between losing the
fractional part of a number and dividing an integer by more than 100. Currency has suddenly become a
rather dangerous class that does strange things to integers!

The problem is that there is a conflict between how your casts interpret integers. The casts between Currency
and float interpret an integer value of 1 as corresponding to one dollar, but the latest uint-to-Currency cast
interprets this value as one cent. This is an example of very poor design. If you want your classes to be easy to
use, you should ensure that all your casts behave in a way that is mutually compatible, in the sense that they
intuitively give the same results. In this case, the solution is obviously to rewrite the uint-to-Currency cast so
that it interprets an integer value of 1 as one dollar:

public static implicit operator Currency (uint value)
{
 return new Currency(value, 0);
}

Incidentally, you might wonder whether this new cast is necessary at all. The answer is that it could be
useful. Without this cast, the only way for the compiler to carry out a uint-to-Currency conversion would
be via a float. Converting directly is a lot more efficient in this case, so having this extra cast provides
performance benefits, though you need to ensure that it provides the same result as via a float, which you
have now done. In other situations, you may also find that separately defining casts for different predefined
data types enables more conversions to be implicit rather than explicit, though that is not the case here.

A good test of whether your casts are compatible is to ask whether a conversion will give the same results
(other than perhaps a loss of accuracy as in float-to-int conversions) regardless of which path it takes. The
Currency class provides a good example of this. Consider this code:

Currency balance = new Currency(50, 35);
ulong bal = (ulong) balance;

c07.indd 179 30-01-2014 20:13:19

180 ❘ CHAPTER 7 OperatOrs and Casts

At present, there is only one way that the compiler can achieve this conversion: by converting the Currency
to a float implicitly, then to a ulong explicitly. The float-to-ulong conversion requires an explicit
conversion, but that is fine because you have specified one here.

Suppose, however, that you then added another cast, to convert implicitly from a Currency to a uint. You
will actually do this by modifying the Currency struct by adding the casts both to and from uint. This
code is available as the SimpleCurrency2 example:

 public static implicit operator Currency (uint value)
 {
 return new Currency(value, 0);
 }

 public static implicit operator uint (Currency value)
 {
 return value.Dollars;
 }

Now the compiler has another possible route to convert from Currency to ulong: to convert from Currency
to uint implicitly, then to ulong implicitly. Which of these two routes will it take? C# has some precise
rules about the best route for the compiler when there are several possibilities. (The rules are not covered in
this book, but if you are interested in the details, see the MSDN documentation.) The best answer is that
you should design your casts so that all routes give the same answer (other than possible loss of precision),
in which case it doesn’t really matter which one the compiler picks. (As it happens in this case, the compiler
picks the Currency-to-uint-to-ulong route in preference to Currency-to-float-to-ulong.)

To test the SimpleCurrency2 sample, add this code to the test code for SimpleCurrency:

try
{
 Currency balance = new Currency(50,35);

 Console.WriteLine(balance);
 Console.WriteLine("balance is " + balance);
 Console.WriteLine("balance is (using ToString()) " + balance.ToString());

 uint balance3 = (uint) balance;

 Console.WriteLine("Converting to uint gives " + balance3);

Running the sample now gives you these results:

simplecurrency2
50
balance is $50.35
balance is (using ToString()) $50.35
Converting to uint gives 50
After converting to float, = 50.35
After converting back to Currency, = $50.34
Now attempt to convert out of range value of -$50.50 to a Currency:
Result is $4294967246.00

The output shows that the conversion to uint has been successful, though as expected, you have lost the cents
part of the Currency in making this conversion. Casting a negative float to Currency has also produced the
expected overflow exception now that the float-to-Currency cast itself defines a checked context.

However, the output also demonstrates one last potential problem that you need to be aware of when
working with casts. The very first line of output does not display the balance correctly, displaying 50 instead
of $50.35. Consider these lines:

 Console.WriteLine(balance);
 Console.WriteLine("balance is " + balance);
 Console.WriteLine("balance is (using ToString()) " + balance.ToString());

c07.indd 180 30-01-2014 20:13:20

Summary ❘ 181

Only the last two lines correctly display the Currency as a string. So what is going on? The problem here
is that when you combine casts with method overloads, you get another source of unpredictability. We will
look at these lines in reverse order.

The third Console.WriteLine() statement explicitly calls the Currency.ToString() method, ensuring
that the Currency is displayed as a string. The second does not. However, the string literal "balance is"
passed to Console.WriteLine() makes it clear to the compiler that the parameter is to be interpreted as a
string. Hence, the Currency.ToString() method is called implicitly.

The very first Console.WriteLine() method, however, simply passes a raw Currency struct to Console
.WriteLine(). Now, Console.WriteLine() has many overloads, but none of them takes a Currency
struct. Therefore, the compiler will start fishing around to see what it can cast the Currency to in order to
make it match up with one of the overloads of Console.WriteLine(). As it happens, one of the Console
.WriteLine() overloads is designed to display uints quickly and efficiently, and it takes a uint as a
parameter — you have now supplied a cast that converts Currency implicitly to uint.

In fact, Console.WriteLine() has another overload that takes a double as a parameter and displays the
value of that double. If you look closely at the output from the first SimpleCurrency example, you will see
that the first line of output displayed Currency as a double, using this overload. In that example, there wasn’t
a direct cast from Currency to uint, so the compiler picked Currency-to-float-to-double as its preferred
way of matching up the available casts to the available Console.WriteLine() overloads. However, now that
there is a direct cast to uint available in SimpleCurrency2, the compiler has opted for that route.

The upshot of this is that if you have a method call that takes several overloads and you attempt to pass it a
parameter whose data type doesn’t match any of the overloads exactly, then you are forcing the compiler to
decide not only what casts to use to perform the data conversion, but also which overload, and hence which
data conversion, to pick. The compiler always works logically and according to strict rules, but the results may
not be what you expected. If there is any doubt, you are better off specifying which cast to use explicitly.

SummARy
This chapter looked at the standard operators provided by C#, described the mechanics of object equality,
and examined how the compiler converts the standard data types from one to another. It also demonstrated
how you can implement custom operator support on your data types using operator overloads. Finally, you
looked at a special type of operator overload, the cast operator, which enables you to specify how instances
of your types are converted to other data types.

c07.indd 181 30-01-2014 20:13:20

c07.indd 182 30-01-2014 20:13:20

Delegates, Lambdas,
and Events

WHAT’s iN THis CHAPTER?

➤➤ Delegates
➤➤ Lambda expressions
➤➤ Closures
➤➤ Events
➤➤ Weak Events

WROx.COM CODE DOWNlOADs FOR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ Simple Delegates
➤➤ Bubble Sorter
➤➤ Lambda Expressions
➤➤ Events Sample
➤➤ Weak Events

REFERENCiNg METHODs
Delegates are the .NET variant of addresses to methods. Compare this to C++, where a function
pointer is nothing more than a pointer to a memory location that is not type-safe. You have no idea
what a pointer is really pointing to, and items such as parameters and return types are not known.

8

c08.indd 183 30-01-2014 20:13:56

184 ❘ CHAPTER 8 Delegates, lambDas, anD events

This is completely different with .NET; delegates are type-safe classes that define the return types and types
of parameters. The delegate class not only contains a reference to a method, but can hold references to
multiple methods.

Lambda expressions are directly related to delegates. When the parameter is a delegate type, you can use
a lambda expression to implement a method that’s referenced from the delegate.

This chapter explains the basics of delegates and lambda expressions, and shows you how to implement
methods called by delegates with lambda expressions. It also demonstrates how .NET uses delegates as
the means of implementing events.

DElEgATEs
Delegates exist for situations in which you want to pass methods around to other methods. To see what that
means, consider this line of code:

 int i = int.Parse("99");

You are so used to passing data to methods as parameters, as in this example, that you don’t consciously
think about it, so the idea of passing methods around instead of data might sound a little strange. However,
sometimes you have a method that does something, and rather than operate on data, the method might need
to do something that involves invoking another method. To complicate things further, you do not know at
compile time what this second method is. That information is available only at runtime and hence will need
to be passed in as a parameter to the first method. That might sound confusing, but it should become clearer
with a couple of examples:

➤➤ Starting threads and tasks — It is possible in C# to tell the computer to start a new sequence of
execution in parallel with what it is currently doing. Such a sequence is known as a thread, and
starting one is done using the Start method on an instance of one of the base classes, System
.Threading.Thread. If you tell the computer to start a new sequence of execution, you have to tell
it where to start that sequence; that is, you have to supply the details of a method in which execution
can start. In other words, the constructor of the Thread class takes a parameter that defines the
method to be invoked by the thread.

➤➤ Generic library classes — Many libraries contain code to perform various standard tasks. It is usually
possible for these libraries to be self-contained, in the sense that you know when you write to the
library exactly how the task must be performed. However, sometimes the task contains a subtask,
which only the individual client code that uses the library knows how to perform. For example, say
that you want to write a class that takes an array of objects and sorts them in ascending order. Part of
the sorting process involves repeatedly taking two of the objects in the array and comparing them to
see which one should come first. If you want to make the class capable of sorting arrays of any object,
there is no way that it can tell in advance how to do this comparison. The client code that hands your
class the array of objects must also tell your class how to do this comparison for the particular objects
it wants sorted. The client code has to pass your class details of an appropriate method that can be
called to do the comparison.

➤➤ Events — The general idea here is that often you have code that needs to be informed when some
event takes place. GUI programming is full of situations similar to this. When the event is raised, the
runtime needs to know what method should be executed. This is done by passing the method that
handles the event as a parameter to a delegate. This is discussed later in this chapter.

In C and C++, you can just take the address of a function and pass it as a parameter. There’s no type safety
with C. You can pass any function to a method where a function pointer is required. Unfortunately, this
direct approach not only causes some problems with type safety, but also neglects the fact that when you
are doing object-oriented programming, methods rarely exist in isolation, but usually need to be associated
with a class instance before they can be called. Because of these problems, the .NET Framework does not

c08.indd 184 30-01-2014 20:13:57

Delegates ❘ 185

syntactically permit this direct approach. Instead, if you want to pass methods around, you have to wrap
the details of the method in a new kind of object, a delegate. Delegates, quite simply, are a special type
of object — special in the sense that, whereas all the objects defined up to now contain data, a delegate
contains the address of a method, or the address of multiple methods.

Declaring Delegates
When you want to use a class in C#, you do so in two stages. First, you need to define the class — that is,
you need to tell the compiler what fields and methods make up the class. Then (unless you are using only
static methods), you instantiate an object of that class. With delegates it is the same process. You start by
declaring the delegates you want to use. Declaring delegates means telling the compiler what kind of method
a delegate of that type will represent. Then, you have to create one or more instances of that delegate.
Behind the scenes, the compiler creates a class that represents the delegate.

The syntax for declaring delegates looks like this:

 delegate void IntMethodInvoker(int x);

This declares a delegate called IntMethodInvoker, and indicates that each instance of this delegate can
hold a reference to a method that takes one int parameter and returns void. The crucial point to understand
about delegates is that they are type-safe. When you define the delegate, you have to provide full details about
the signature and the return type of the method that it represents.

NOTE One good way to understand delegates is to think of a delegate as something
that gives a name to a method signature and the return type.

Suppose that you want to define a delegate called TwoLongsOp that will represent a method that takes two
longs as its parameters and returns a double. You could do so like this:

 delegate double TwoLongsOp(long first, long second);

Or, to define a delegate that will represent a method that takes no parameters and returns a string, you
might write this:

 delegate string GetAString();

The syntax is similar to that for a method definition, except there is no method body and the definition is
prefixed with the keyword delegate. Because what you are doing here is basically defining a new class, you
can define a delegate in any of the same places that you would define a class — that is to say, either inside
another class, outside of any class, or in a namespace as a top-level object. Depending on how visible you
want your definition to be, and the scope of the delegate, you can apply any of the normal access modifiers
to delegate definitions — public, private, protected, and so on:

NOTE We really mean what we say when we describe defining a delegate as defining
a new class. Delegates are implemented as classes derived from the class System
.MulticastDelegate, which is derived from the base class System.Delegate. The
C# compiler is aware of this class and uses its delegate syntax to hide the details of the
operation of this class. This is another good example of how C# works in conjunction
with the base classes to make programming as easy as possible.

c08.indd 185 30-01-2014 20:13:57

186 ❘ CHAPTER 8 Delegates, lambDas, anD events

 public delegate string GetAString();

After you have defined a delegate, you can create an instance of it so that you can use it to store details
about a particular method.

NOTE There is an unfortunate problem with terminology here. When you are talking
about classes, there are two distinct terms — class, which indicates the broader
definition, and object, which means an instance of the class. Unfortunately, with
delegates there is only the one term; delegate can refer to both the class and the object.
When you create an instance of a delegate, what you have created is also referred to as
a delegate. You need to be aware of the context to know which meaning is being used
when we talk about delegates.

Using Delegates
The following code snippet demonstrates the use of a delegate. It is a rather long-winded way of calling the
ToString method on an int (code file GetAStringDemo/Program.cs):

private delegate string GetAString();

static void Main()
 {
 int x = 40;
 GetAString firstStringMethod = new GetAString(x.ToString);
 Console.WriteLine("String is {0}", firstStringMethod());
 // With firstStringMethod initialized to x.ToString(),
 // the above statement is equivalent to saying
 // Console.WriteLine("String is {0}", x.ToString());
 }

This code instantiates a delegate of type GetAString and initializes it so it refers to the ToString method of
the integer variable x. Delegates in C# always syntactically take a one-parameter constructor, the parameter
being the method to which the delegate refers. This method must match the signature with which you
originally defined the delegate. In this case, you would get a compilation error if you tried to initialize the
variable firstStringMethod with any method that did not take any parameters and return a string. Notice
that because int.ToString is an instance method (as opposed to a static one), you need to specify the
instance (x) as well as the name of the method to initialize the delegate properly.

The next line actually uses the delegate to display the string. In any code, supplying the name of a delegate
instance, followed by parentheses containing any parameters, has exactly the same effect as calling the
method wrapped by the delegate. Hence, in the preceding code snippet, the Console.WriteLine statement
is completely equivalent to the commented-out line.

In fact, supplying parentheses to the delegate instance is the same as invoking the Invoke method of the
delegate class. Because firstStringMethod is a variable of a delegate type, the C# compiler replaces
firstStringMethod with firstStringMethod.Invoke:

firstStringMethod();
firstStringMethod.Invoke();

For less typing, at every place where a delegate instance is needed, you can just pass the name of the address.
This is known by the term delegate inference. This C# feature works as long as the compiler can resolve

c08.indd 186 30-01-2014 20:13:57

Delegates ❘ 187

the delegate instance to a specific type. The example initialized the variable firstStringMethod of type
GetAString with a new instance of the delegate GetAString:

 GetAString firstStringMethod = new GetAString(x.ToString);

You can write the same just by passing the method name with the variable x to the variable
firstStringMethod:

 GetAString firstStringMethod = x.ToString;

The code that is created by the C# compiler is the same. The compiler detects that a delegate type is required
with firstStringMethod, so it creates an instance of the delegate type GetAString and passes the address
of the method with the object x to the constructor.

NOTE Be aware that you can’t type the brackets to the method name as x.ToString
and pass it to the delegate variable. This would be an invocation of the method. The
invocation of x.ToString returns a string object that can’t be assigned to the delegate
variable. You can only assign the address of a method to the delegate variable.

Delegate inference can be used anywhere a delegate instance is required. Delegate inference can also be used
with events because events are based on delegates (as you will see later in this chapter).

One feature of delegates is that they are type-safe to the extent that they ensure that the signature of the
method being called is correct. However, interestingly, they don’t care what type of object the method is
being called against or even whether the method is a static method or an instance method.

NOTE An instance of a given delegate can refer to any instance or static method on
any object of any type, provided that the signature of the method matches the signature
of the delegate.

To demonstrate this, the following example expands the previous code snippet so that it uses the
firstStringMethod delegate to call a couple of other methods on another object — an instance method
and a static method. For this, you use the Currency struct. The Currency struct has its own overload of
ToString and a static method with the same signature to GetCurrencyUnit. This way, the same delegate
variable can be used to invoke these methods (code file GetAStringDemo/Currency.cs):

 struct Currency
 {
 public uint Dollars;
 public ushort Cents;

 public Currency(uint dollars, ushort cents)
 {
 this.Dollars = dollars;
 this.Cents = cents;
 }

 public override string ToString()
 {
 return string.Format("${0}.{1,2:00}", Dollars,Cents);
 }

c08.indd 187 30-01-2014 20:13:57

188 ❘ CHAPTER 8 Delegates, lambDas, anD events

 public static string GetCurrencyUnit()
 {
 return "Dollar";
 }

 public static explicit operator Currency (float value)
 {
 checked
 {
 uint dollars = (uint)value;
 ushort cents = (ushort)((value - dollars) * 100);
 return new Currency(dollars, cents);
 }
 }

 public static implicit operator float (Currency value)
 {
 return value.Dollars + (value.Cents / 100.0f);
 }

 public static implicit operator Currency (uint value)
 {
 return new Currency(value, 0);
 }

 public static implicit operator uint (Currency value)
 {
 return value.Dollars;
 }
 }

Now you can use the GetAString instance as follows:

 private delegate string GetAString();

 static void Main()
 {
 int x = 40;
 GetAString firstStringMethod = x.ToString;
 Console.WriteLine("String is {0}", firstStringMethod());

 Currency balance = new Currency(34, 50);

 // firstStringMethod references an instance method
 firstStringMethod = balance.ToString;
 Console.WriteLine("String is {0}", firstStringMethod());

 // firstStringMethod references a static method
 firstStringMethod = new GetAString(Currency.GetCurrencyUnit);
 Console.WriteLine("String is {0}", firstStringMethod());
 }

This code shows how you can call a method via a delegate and subsequently reassign the delegate to refer to
different methods on different instances of classes, even static methods or methods against instances
of different types of class, provided that the signature of each method matches the delegate definition.

c08.indd 188 30-01-2014 20:13:57

Delegates ❘ 189

When you run the application, you get the output from the different methods that are referenced by the
delegate:

String is 40
String is $34.50
String is Dollar

However, you still haven’t seen the process of actually passing a delegate to another method. Nor has this
actually achieved anything particularly useful yet. It is possible to call the ToString method of int and
Currency objects in a much more straightforward way than using delegates. Unfortunately, the nature of
delegates requires a fairly complex example before you can really appreciate their usefulness. The next section
presents two delegate examples. The first one simply uses delegates to call a couple of different operations. It
illustrates how to pass delegates to methods and how you can use arrays of delegates — although arguably
it still doesn’t do much that you couldn’t do a lot more simply without delegates. The second, much more
complex, example presents a BubbleSorter class, which implements a method to sort arrays of objects into
ascending order. This class would be difficult to write without using delegates.

simple Delegate Example
This example defines a MathOperations class that uses a couple of static methods to perform two
operations on doubles. Then you use delegates to invoke these methods. The math class looks like this:

 class MathOperations
 {
 public static double MultiplyByTwo(double value)
 {
 return value * 2;
 }

 public static double Square(double value)
 {
 return value * value;
 }
 }

You invokethese methods as follows (code file SimpleDelegate/Program.cs):

using System;

namespace Wrox.ProCSharp.Delegates
{
 delegate double DoubleOp(double x);

 class Program
 {
 static void Main()
 {
 DoubleOp[] operations =
 {
 MathOperations.MultiplyByTwo,
 MathOperations.Square
 };

 for (int i=0; i < operations.Length; i++)
 {
 Console.WriteLine("Using operations[{0}]:", i);
 ProcessAndDisplayNumber(operations[i], 2.0);
 ProcessAndDisplayNumber(operations[i], 7.94);
 ProcessAndDisplayNumber(operations[i], 1.414);
 Console.WriteLine();

c08.indd 189 30-01-2014 20:13:57

190 ❘ CHAPTER 8 Delegates, lambDas, anD events

 }
 }

 static void ProcessAndDisplayNumber(DoubleOp action, double value)
 {
 double result = action(value);
 Console.WriteLine("Value is {0}, result of operation is {1}",
 value, result);
 }
 }
}

In this code, you instantiate an array of DoubleOp delegates (remember that after you have defined a
delegate class, you can basically instantiate instances just as you can with normal classes, so putting
some into an array is no problem). Each element of the array is initialized to refer to a different operation
implemented by the MathOperations class. Then, you loop through the array, applying each operation to
three different values. This illustrates one way of using delegates — to group methods together into an array
so that you can call several methods in a loop.

The key lines in this code are the ones in which you actually pass each delegate to the
ProcessAndDisplayNumber method, such as here:

 ProcessAndDisplayNumber(operations[i], 2.0);

The preceding passes in the name of a delegate but without any parameters. Given that operations[i] is a
delegate, syntactically:

➤➤ operations[i] means the delegate (that is, the method represented by the delegate)
➤➤ operations[i](2.0) means actually call this method, passing in the value in parentheses

The ProcessAndDisplayNumber method is defined to take a delegate as its first parameter:

 static void ProcessAndDisplayNumber(DoubleOp action, double value)

Then, when in this method, you call:

 double result = action(value);

This actually causes the method that is wrapped up by the action delegate instance to be called and its
return result stored in Result. Running this example gives you the following:

SimpleDelegate
Using operations[0]:
Value is 2, result of operation is 4
Value is 7.94, result of operation is 15.88
Value is 1.414, result of operation is 2.828

Using operations[1]:
Value is 2, result of operation is 4
Value is 7.94, result of operation is 63.0436
Value is 1.414, result of operation is 1.999396

Action<T> and Func<T> Delegates
Instead of defining a new delegate type with every parameter and return type, you can use the Action<T> and
Func<T> delegates. The generic Action<T> delegate is meant to reference a method with void return. This
delegate class exists in different variants so that you can pass up to 16 different parameter types. The Action
class without the generic parameter is for calling methods without parameters. Action<in T> is for calling

c08.indd 190 30-01-2014 20:13:57

Delegates ❘ 191

a method with one parameter; Action<in T1, in T2> for a method with two parameters; and Action<in
T1, in T2, in T3, in T4, in T5, in T6, in T7, in T8> for a method with eight parameters.

The Func<T> delegates can be used in a similar manner. Func<T> allows you to invoke methods with a
return type. Similar to Action<T>, Func<T> is defined in different variants to pass up to 16 parameter types
and a return type. Func<out TResult> is the delegate type to invoke a method with a return type and
without parameters. Func<in T, out TResult> is for a method with one parameter, and Func<in T1, in
T2, in T3, in T4, out TResult> is for a method with four parameters.

The example in the preceding section declared a delegate with a double parameter and a double return type:

 delegate double DoubleOp(double x);

Instead of declaring the custom delegate DoubleOp you can use the Func<in T, out TResult> delegate.
You can declare a variable of the delegate type, or as shown here, an array of the delegate type:

 Func<double, double>[] operations =
 {
 MathOperations.MultiplyByTwo,
 MathOperations.Square
 };

and use it with the ProcessAndDisplayNumber() method as a parameter:

 static void ProcessAndDisplayNumber(Func<double, double> action,
 double value)
 {
 double result = action(value);
 Console.WriteLine("Value is {0}, result of operation is {1}",
 value, result);
 }

Bubblesorter Example
You are now ready for an example that shows the real usefulness of delegates. You are going to write a
class called BubbleSorter. This class implements a static method, Sort, which takes as its first parameter
an array of objects, and rearranges this array into ascending order. For example, if you were to pass it this
array of ints, {0, 5, 6, 2, 1}, it would rearrange this array into {0, 1, 2, 5, 6}.

The bubble-sorting algorithm is a well-known and very simple way to sort numbers. It is best suited to small
sets of numbers, because for larger sets of numbers (more than about 10), far more efficient algorithms
are available. It works by repeatedly looping through the array, comparing each pair of numbers and,
if necessary, swapping them, so that the largest numbers progressively move to the end of the array. For
sorting ints, a method to do a bubble sort might look similar to this:

 bool swapped = true;
 do
 {
 swapped = false;
 for (int i = 0; i < sortArray.Length — 1; i++)
 {
 if (sortArray[i] > sortArray[i+1])) // problem with this test
 {
 int temp = sortArray[i];
 sortArray[i] = sortArray[i + 1];
 sortArray[i + 1] = temp;
 swapped = true;
 }
 }
 } while (swapped);

c08.indd 191 30-01-2014 20:13:58

192 ❘ CHAPTER 8 Delegates, lambDas, anD events

This is all very well for ints, but you want your Sort method to be able to sort any object. In other words,
if some client code hands you an array of Currency structs or any other class or struct that it may have
defined, you need to be able to sort the array. This presents a problem with the line if(sortArray[i] <
sortArray[i+1]) in the preceding code, because that requires you to compare two objects on the array to
determine which one is greater. You can do that for ints, but how do you do it for a new class that doesn’t
implement the < operator? The answer is that the client code that knows about the class will have to pass
in a delegate wrapping a method that does the comparison. Also, instead of using an int type for the temp
variable, a generic Sort method can be implemented using a generic type.

With a generic Sort<T> method accepting type T, a comparison method is needed that has two parameters
of type T and a return type of bool for the if comparison. This method can be referenced from a Func<T1,
T2, TResult> delegate, where T1 and T2 are the same type: Func<T, T, bool>.

This way, you give your Sort<T> method the following signature:

 static public void Sort<T>(IList<T> sortArray, Func<T, T, bool> comparison)

The documentation for this method states that comparison must refer to a method that takes two
arguments, and returns true if the value of the first argument is smaller than the second one.

Now you are all set. Here’s the definition for the BubbleSorter class (code file BubbleSorter/
BubbleSorter.cs):

 class BubbleSorter
 {
 static public void Sort<T>(IList<T> sortArray, Func<T, T, bool> comparison)
 {
 bool swapped = true;
 do
 {
 swapped = false;
 for (int i = 0; i < sortArray.Count — 1; i++)
 {
 if (comparison(sortArray[i+1], sortArray[i]))
 {
 T temp = sortArray[i];
 sortArray[i] = sortArray[i + 1];
 sortArray[i + 1] = temp;
 swapped = true;
 }
 }
 } while (swapped);
 }
 }

To use this class, you need to define another class, which you can use to set up an array that needs sorting.
For this example, assume that the Mortimer Phones mobile phone company has a list of employees and
wants them sorted according to salary. Each employee is represented by an instance of a class, Employee,
which looks similar to this (code file BubbleSorter/Employee.cs):

 class Employee
 {
 public Employee(string name, decimal salary)
 {
 this.Name = name;
 this.Salary = salary;
 }

 public string Name { get; private set; }
 public decimal Salary { get; private set; }

c08.indd 192 30-01-2014 20:13:58

Delegates ❘ 193

 public override string ToString()
 {
 return string.Format("{0}, {1:C}", Name, Salary);
 }

 public static bool CompareSalary(Employee e1, Employee e2)
 {
 return e1.Salary < e2.Salary;
 }
 }

Note that to match the signature of the Func<T, T, bool> delegate, you have to define CompareSalary
in this class as taking two Employee references and returning a Boolean. In the implementation, the
comparison based on salary is performed.

Now you are ready to write some client code to request a sort (code file BubbleSorter/Program.cs):

using System;

namespace Wrox.ProCSharp.Delegates
{
 class Program
 {
 static void Main()
 {
 Employee[] employees =
 {
 new Employee("Bugs Bunny", 20000),
 new Employee("Elmer Fudd", 10000),
 new Employee("Daffy Duck", 25000),
 new Employee("Wile Coyote", 1000000.38m),
 new Employee("Foghorn Leghorn", 23000),
 new Employee("RoadRunner", 50000)
 };

 BubbleSorter.Sort(employees, Employee.CompareSalary);

 foreach (var employee in employees)
 {
 Console.WriteLine(employee);
 }
 }
 }
}

Running this code shows that the Employees are correctly sorted according to salary:

BubbleSorter
Elmer Fudd, $10,000.00
Bugs Bunny, $20,000.00
Foghorn Leghorn, $23,000.00
Daffy Duck, $25,000.00
RoadRunner, $50,000.00
Wile Coyote, $1,000,000.38

Multicast Delegates
So far, each of the delegates you have used wraps just one method call. Calling the delegate amounts to
calling that method. If you want to call more than one method, you need to make an explicit call through
a delegate more than once. However, it is possible for a delegate to wrap more than one method. Such a

c08.indd 193 30-01-2014 20:13:58

194 ❘ CHAPTER 8 Delegates, lambDas, anD events

delegate is known as a multicast delegate. When a multicast delegate is called, it successively calls each
method in order. For this to work, the delegate signature should return a void; otherwise, you would only
get the result of the last method invoked by the delegate.

With a void return type, the Action<double> delegate can be used (code file MulticastDelegates/Program.cs):

 class Program
 {
 static void Main()
 {
 Action<double> operations = MathOperations.MultiplyByTwo;
 operations += MathOperations.Square;

In the earlier example, you wanted to store references to two methods, so you instantiated an array of
delegates. Here, you simply add both operations into the same multicast delegate. Multicast delegates
recognize the operators + and +=. Alternatively, you can expand the last two lines of the preceding code, as
in this snippet:

 Action<double> operation1 = MathOperations.MultiplyByTwo;
 Action<double> operation2 = MathOperations.Square;
 Action<double> operations = operation1 + operation2;

Multicast delegates also recognize the operators – and -= to remove method calls from the delegate.

NOTE In terms of what’s going on under the hood, a multicast delegate is a class
derived from System.MulticastDelegate, which in turn is derived from System
.Delegate. System.MulticastDelegate, and has additional members to allow the
chaining of method calls into a list.

To illustrate the use of multicast delegates, the following code recasts the SimpleDelegate example into
a new example, MulticastDelegate. Because you now need the delegate to refer to methods that return
void, you have to rewrite the methods in the MathOperations class so they display their results instead of
returning them:

 class MathOperations
 {
 public static void MultiplyByTwo(double value)
 {
 double result = value * 2;
 Console.WriteLine("Multiplying by 2: {0} gives {1}", value, result);
 }

 public static void Square(double value)
 {
 double result = value * value;
 Console.WriteLine("Squaring: {0} gives {1}", value, result);
 }
 }

To accommodate this change, you also have to rewrite ProcessAndDisplayNumber:

 static void ProcessAndDisplayNumber(Action<double> action, double value)
 {
 Console.WriteLine();

c08.indd 194 30-01-2014 20:13:58

Delegates ❘ 195

 Console.WriteLine("ProcessAndDisplayNumber called with value = {0}",
 value);
 action(value);
 }

Now you can try out your multicast delegate:

 static void Main()
 {
 Action<double> operations = MathOperations.MultiplyByTwo;
 operations += MathOperations.Square;

 ProcessAndDisplayNumber(operations, 2.0);
 ProcessAndDisplayNumber(operations, 7.94);
 ProcessAndDisplayNumber(operations, 1.414);
 Console.WriteLine();
 }

Each time ProcessAndDisplayNumber is called now, it will display a message saying that it has been called.
Then the following statement will cause each of the method calls in the action delegate instance to be
called in succession:

 action(value);

Running the preceding code produces this result:

MulticastDelegate

ProcessAndDisplayNumber called with value = 2
Multiplying by 2: 2 gives 4
Squaring: 2 gives 4

ProcessAndDisplayNumber called with value = 7.94
Multiplying by 2: 7.94 gives 15.88
Squaring: 7.94 gives 63.0436

ProcessAndDisplayNumber called with value = 1.414
Multiplying by 2: 1.414 gives 2.828
Squaring: 1.414 gives 1.999396

If you are using multicast delegates, be aware that the order in which methods chained to the same delegate
will be called is formally undefined. Therefore, avoid writing code that relies on such methods being called
in any particular order.

Invoking multiple methods by one delegate might cause an even bigger problem. The multicast delegate
contains a collection of delegates to invoke one after the other. If one of the methods invoked by a delegate
throws an exception, the complete iteration stops. Consider the following MulticastIteration example.
Here, the simple delegate Action that returns void without arguments is used. This delegate is meant to
invoke the methods One and Two, which fulfill the parameter and return type requirements of the delegate. Be
aware that method One throws an exception (code file MulticastDelegateWithIteration/Program.cs):

using System;

namespace Wrox.ProCSharp.Delegates
{
 class Program
 {
 static void One()
 {

c08.indd 195 30-01-2014 20:13:58

196 ❘ CHAPTER 8 Delegates, lambDas, anD events

 Console.WriteLine("One");
 throw new Exception("Error in one");
 }

 static void Two()
 {
 Console.WriteLine("Two");
 }

In the Main method, delegate d1 is created to reference method One; next, the address of method Two is
added to the same delegate. d1 is invoked to call both methods. The exception is caught in a try/catch
block:

 static void Main()
 {
 Action d1 = One;
 d1 += Two;

 try
 {
 d1();
 }
 catch (Exception)
 {
 Console.WriteLine("Exception caught");
 }
 }
 }
}

Only the first method is invoked by the delegate. Because the first method throws an exception, iterating the
delegates stops here and method Two() is never invoked. The result might differ because the order of calling
the methods is not defined:

One
Exception Caught

NOTE Errors and exceptions are explained in detail in Chapter 16, “Errors and
Exceptions.”

In such a scenario, you can avoid the problem by iterating the list on your own. The Delegate class defines
the method GetInvocationList that returns an array of Delegate objects. You can now use this delegate
to invoke the methods associated with them directly, catch exceptions, and continue with the next iteration:

 static void Main()
 {
 Action d1 = One;
 d1 += Two;

 Delegate[] delegates = d1.GetInvocationList();
 foreach (Action d in delegates)
 {
 try
 {
 d();

c08.indd 196 30-01-2014 20:13:58

Delegates ❘ 197

 }
 catch (Exception)
 {
 Console.WriteLine("Exception caught");
 }
 }
 }

When you run the application with the code changes, you can see that the iteration continues with the next
method after the exception is caught:

One
Exception caught
Two

Anonymous Methods
Up to this point, a method must already exist for the delegate to work (that is, the delegate is defined with the
same signature as the method(s) it will be used with). However, there is another way to use delegates — with
anonymous methods. An anonymous method is a block of code that is used as the parameter for the
delegate.

The syntax for defining a delegate with an anonymous method doesn’t change. It’s when the delegate
is instantiated that things change. The following very simple console application shows how using an
anonymous method can work (code file AnonymousMethods/Program.cs):

using System;

namespace Wrox.ProCSharp.Delegates
{
 class Program
 {
 static void Main()
 {
 string mid = ", middle part,";

 Func<string, string> anonDel = delegate(string param)
 {
 param += mid;
 param += " and this was added to the string.";
 return param;
 };
 Console.WriteLine(anonDel("Start of string"));

 }
 }
}

The delegate Func<string, string> takes a single string parameter and returns a string. anonDel is a
variable of this delegate type. Instead of assigning the name of a method to this variable, a simple block of
code is used, prefixed by the delegate keyword, followed by a string parameter.

As you can see, the block of code uses a method-level string variable, mid, which is defined outside of the
anonymous method and adds it to the parameter that was passed in. The code then returns the string value.
When the delegate is called, a string is passed in as the parameter and the returned string is output to the
console.

The benefit of using anonymous methods is that it reduces the amount of code you have to write. You don’t
need to define a method just to use it with a delegate. This becomes evident when defining the delegate for

c08.indd 197 30-01-2014 20:13:58

198 ❘ CHAPTER 8 Delegates, lambDas, anD events

an event (events are discussed later in this chapter), and it helps reduce the complexity of code, especially
where several events are defined. With anonymous methods, the code does not perform faster. The compiler
still defines a method; the method just has an automatically assigned name that you don’t need to know.

A couple of rules must be followed when using anonymous methods. You can’t have a jump statement
(break, goto, or continue) in an anonymous method that has a target outside of the anonymous method.
The reverse is also true — a jump statement outside the anonymous method cannot have a target inside the
anonymous method.

Unsafe code cannot be accessed inside an anonymous method, and the ref and out parameters that
are used outside of the anonymous method cannot be accessed. Other variables defined outside of the
anonymous method can be used.

If you have to write the same functionality more than once, don’t use anonymous methods. In this case,
instead of duplicating the code, write a named method. You only have to write it once and reference it by its
name.

Beginning with C# 3.0, you can use lambda expressions instead of writing anonymous methods.

lAMBDA ExPREssiONs
Since C# 3.0, you can use a different syntax for assigning code implementation to delegates: lambda
expressions. Lambda expressions can be used whenever you have a delegate parameter type. The previous
example using anonymous methods is modified here to use a lambda expression.

NOTE The syntax of lambda expressions is simpler than the syntax of anonymous
methods. In a case where a method to be invoked has parameters and you don’t need
the parameters, the syntax of anonymous methods is simpler, as you don’t need to
supply parameters in that case.

using System;

namespace Wrox.ProCSharp.Delegates
{
 class Program
 {
 static void Main()
 {
 string mid = ", middle part,";

 Func<string, string> lambda = param =>
 {
 param += mid;
 param += " and this was added to the string.";
 return param;
 };

 Console.WriteLine(lambda("Start of string"));
 }
 }
}

The left side of the lambda operator, =>, lists the parameters needed. The right side following the lambda
operator defines the implementation of the method assigned to the variable lambda.

c08.indd 198 30-01-2014 20:13:59

Lambda Expressions ❘ 199

Parameters
With lambda expressions there are several ways to define parameters. If there’s only one parameter, just the
name of the parameter is enough. The following lambda expression uses the parameter named s. Because
the delegate type defines a string parameter, s is of type string. The implementation invokes the String
.Format method to return a string that is finally written to the console when the delegate is invoked:
change uppercase TEST:

 Func<string, string> oneParam = s =>
 String.Format("change uppercase {0}", s.ToUpper());
 Console.WriteLine(oneParam("test"));

If a delegate uses more than one parameter, you can combine the parameter names inside brackets. Here, the
parameters x and y are of type double as defined by the Func<double, double, double> delegate:

 Func<double, double, double> twoParams = (x, y) => x * y;
 Console.WriteLine(twoParams(3, 2));

For convenience, you can add the parameter types to the variable names inside the brackets. If the compiler
can’t match an overloaded version, using parameter types can help resolve the matching delegate:

 Func<double, double, double> twoParamsWithTypes = (double x, double y) => x * y;
 Console.WriteLine(twoParamsWithTypes(4, 2));

Multiple Code lines
If the lambda expression consists of a single statement, a method block with curly brackets and a return
statement are not needed. There’s an implicit return added by the compiler:

 Func<double, double> square = x => x * x;

It’s completely legal to add curly brackets, a return statement, and semicolons. Usually it’s just easier to
read without them:

 Func<double, double> square = x =>
 {
 return x * x;
 }

However, if you need multiple statements in the implementation of the lambda expression, curly brackets
and the return statement are required:

 Func<string, string> lambda = param =>
 {
 param += mid;
 param += " and this was added to the string.";
 return param;
 };

Closures
With lambda expressions you can access variables outside the block of the lambda expression. This is
known by the term closure. Closures are a great feature but they can also be very dangerous if not used
correctly.

c08.indd 199 30-01-2014 20:13:59

200 ❘ CHAPTER 8 Delegates, lambDas, anD events

In the following example here, a lambda expression of type Func<int, int> requires one int parameter
and returns an int. The parameter for the lambda expression is defined with the variable x. The
implementation also accesses the variable someVal, which is outside the lambda expression. As long as you
do not assume that the lambda expression creates a new method that is used later when f is invoked, this
might not look confusing at all. Looking at this code block, the returned value calling f should be the value
from x plus 5, but this might not be the case:

 int someVal = 5;
 Func<int, int> f = x => x + someVal;

Assuming the variable someVal is later changed, and then the lambda expression invoked, the new value of
someVal is used. The result here invoking f(3) is 10:

 someVal = 7;
 Console.WriteLine(f(3));

In particular, when the lambda expression is invoked by a separate thread, you might not know when the
invocation happened and thus what value the outside variable currently has.

Now you might wonder how it is possible at all to access variables outside of the lambda expression from
within the lambda expression. To understand this, consider what the compiler does when you define a
lambda expression. With the lambda expression x => x + someVal, the compiler creates an anonymous
class that has a constructor to pass the outer variable. The constructor depends on how many variables you
access from the outside. With this simple example, the constructor accepts an int. The anonymous class
contains an anonymous method that has the implementation as defined by the lambda expression, with the
parameters and return type:

 public class AnonymousClass
 {
 private int someVal;
 public AnonymousClass(int someVal)
 {
 this.someVal = someVal;
 }
 public int AnonymousMethod(int x)
 {
 return x + someVal;
 }
 }

Using the lambda expression and invoking the method creates an instance of the anonymous class and
passes the value of the variable from the time when the call is made.

Closures with Foreach statements
foreach statements have an important change with C# 5 in regard to closures. In the following example,
first a list named values is filled with the values 10, 20, and 30. The funcs variable references a generic
list in which each object references a delegate of type Func<int>. The elements of the funcs list are added
within the first foreach statement. The function added to the items is defined with a lambda expression.
This lambda expression makes use of the variable val that is declared outside of the lambda as a loop
variable with the foreach statement. The second foreach statement iterates through the list of funcs to
invoke every method that is referenced:

 var values = new List<int>() { 10, 20, 30 };
 var funcs = new List<Func<int>>();

 foreach (var val in values)

c08.indd 200 30-01-2014 20:13:59

Events ❘ 201

 {
 funcs.Add(() => val);
 }
 foreach (var f in funcs)
 {
 Console.WriteLine((f()));
 }

The outcome of this code snippet changed with C# 5. Using C# 4 or earlier versions of the compiler, 30 is
written to the console three times. Using a closure with the first foreach loop, the functions that are created
don’t take the value of the val variable during the time of the iteration, but instead when the functions are
invoked. As you’ve already seen in Chapter 6, “Arrays and Tuples,” the compiler creates a while loop out
from the foreach statement. With C# 4 the compiler defines the loop variable outside of the while loop and
reuses it with every iteration. Thus, at the end of the loop the variable has the value from the last iteration.
To get 10, 20, 30 with the result of the code using C# 4, it’s necessary to change the code to use a local
variable that is passed to the lambda expression. Here, a different value is retained with every iteration.

 var values = new List<int>() { 10, 20, 30 };
 var funcs = new List<Func<int>>();

 foreach (var val in values)
 {
 var v = val;
 funcs.Add(() => v);
 }
 foreach (var f in funcs)
 {
 Console.WriteLine((f()));
 }

Using C# 5 the code change to have a local variable is no longer necessary. C# now creates the loop variable
differently locally within the block of the while loop and thus the value is retained automatically. You just
need to be aware of these different behaviors of C# 4 and 5.

NOTE Lambda expressions can be used anywhere the type is a delegate. Another use
of lambda expressions is when the type is Expression or Expression<T>. , in which
case the compiler creates an expression tree. This feature is discussed in Chapter 11,
“Language Integrated Query.”

EvENTs
Events are based on delegates and offer a publish/subscribe mechanism to delegates. You can find events
everywhere across the framework. In Windows applications, the Button class offers the Click event. This
type of event is a delegate. A handler method that is invoked when the Click event is fired needs to be
defined, with the parameters as defined by the delegate type.

In the code example shown in this section, events are used to connect CarDealer and Consumer classes.
The CarDealer offers an event when a new car arrives. The Consumer class subscribes to the event to be
informed when a new car arrives.

Event Publisher
We start with a CarDealer class that offers a subscription based on events. CarDealer defines the
event named NewCarInfo of type EventHandler<CarInfoEventArgs> with the event keyword.
Inside the method NewCar, the event NewCarInfo is fired by invoking the method RaiseNewCarInfo.

c08.indd 201 30-01-2014 20:13:59

202 ❘ CHAPTER 8 Delegates, lambDas, anD events

The implementation of this method verifies if the delegate is not null, and raises the event (code file
EventSample/CarDealer.cs):

using System;

namespace Wrox.ProCSharp.Delegates
{
 public class CarInfoEventArgs: EventArgs
 {
 public CarInfoEventArgs(string car)
 {
 this.Car = car;
 }

 public string Car { get; private set; }
 }

 public class CarDealer
 {
 public event EventHandler<CarInfoEventArgs> NewCarInfo;

 public void NewCar(string car)
 {
 Console.WriteLine("CarDealer, new car {0}", car);

 RaiseNewCarInfo(car);
 }

 protected virtual void RaiseNewCarInfo(string car)
 {
 EventHandler<CarInfoEventArgs> newCarInfo = NewCarInfo;
 if (newCarInfo != null)
 {
 newCarInfo(this, new CarInfoEventArgs(car));
 }
 }
 }
}

The class CarDealer offers the event NewCarInfo of type EventHandler<CarInfoEventArgs>.
As a convention, events typically use methods with two parameters; the first parameter is an object
and contains the sender of the event, and the second parameter provides information about the
event. The second parameter is different for various event types. .NET 1.0 defined several hundred
delegates for events for all different data types. That’s no longer necessary with the generic delegate
EventHandler<T>. EventHandler<TEventArgs> defines a handler that returns void and accepts two
parameters. With EventHandler<TEventArgs>, the first parameter needs to be of type object, and the
second parameter is of type T. EventHandler<TEventArgs> also defines a constraint on T; it must derive
from the base class EventArgs, which is the case with CarInfoEventArgs:

 public event EventHandler<CarInfoEventArgs> NewCarInfo;

The delegate EventHandler<TEventArgs> is defined as follows:

 public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e)
 where TEventArgs: EventArgs

Defining the event in one line is a C# shorthand notation. The compiler creates a variable of the delegate
type EventHandler<CarInfoEventArgs> and adds methods to subscribe and unsubscribe from the
delegate. The long form of the shorthand notation is shown next. This is very similar to auto-properties

c08.indd 202 30-01-2014 20:13:59

Events ❘ 203

and full properties. With events, the add and remove keywords are used to add and remove a handler to the
delegate:

 private EventHandler<CarInfoEventArgs> newCarInfo;
 public event EventHandler<CarInfoEventArgs> NewCarInfo
 {
 add
 {
 newCarInfo += value;
 }
 remove
 {
 newCarInfo -= value;
 }
 }

NOTE The long notation to define events is useful if more needs to be done than just
adding and removing the event handler, such as adding synchronization for multiple
thread access. The WPF controls make use of the long notation to add bubbling and
tunneling functionality with the events. You can read more about event bubbling
and tunneling events in Chapter 29, “Core XAML.”

The class CarDealer fires the event in the method RaiseNewCarInfo. Using the delegate NewCarInfo with
brackets invokes all the handlers that are subscribed to the event. Remember, as shown with multicast
delegates, the order of the methods invoked is not guaranteed. To have more control over calling the handler
methods you can use the Delegate class method GetInvocationList to access every item in the delegate
list and invoke each on its own, as shown earlier.

Before firing the event, it is necessary to check whether the delegate NewCarInfo is not null. If no one
subscribed, the delegate is null:

 protected virtual void RaiseNewCarInfo(string car)
 {
 var newCarInfo = NewCarInfo;
 if (newCarInfo != null)
 {
 newCarInfo(this, new CarInfoEventArgs(car));
 }
 }

Event listener
The class Consumer is used as the event listener. This class subscribes to the event of the CarDealer and defines
the method NewCarIsHere that in turn fulfills the requirements of the EventHandler<CarInfoEventArgs>
delegate with parameters of type object and CarInfoEventArgs (code file EventsSample/Consumer.cs):

using System;

namespace Wrox.ProCSharp.Delegates
{
 public class Consumer
 {

c08.indd 203 30-01-2014 20:13:59

204 ❘ CHAPTER 8 Delegates, lambDas, anD events

 private string name;

 public Consumer(string name)
 {
 this.name = name;
 }

 public void NewCarIsHere(object sender, CarInfoEventArgs e)
 {
 Console.WriteLine("{0}: car {1} is new", name, e.Car);
 }
 }
}

Now the event publisher and subscriber need to connect. This is done by using the NewCarInfo event of
the CarDealer to create a subscription with +=. The consumer Michael subscribes to the event, then the
consumer sebastian, and next Michael unsubscribes with -= (code file EventsSample/Program.cs):

namespace Wrox.ProCSharp.Delegates
{
 class Program
 {
 static void Main()
 {
 var dealer = new CarDealer();

 var michael = new Consumer("Michael");
 dealer.NewCarInfo += michael.NewCarIsHere;

 dealer.NewCar("Ferrari");

 var sebastian = new Consumer("Sebastian");
 dealer.NewCarInfo += sebastian.NewCarIsHere;

 dealer.NewCar("Mercedes");

 dealer.NewCarInfo -= michael.NewCarIsHere;

 dealer.NewCar("Red Bull Racing");
 }
 }
}

Running the application, a Ferrari arrived and Michael was informed. Because after that Sebastian registers
for the subscription as well, both Michael and Sebastian are informed about the new Mercedes. Then
Michael unsubscribes and only Sebastian is informed about the Red Bull:

CarDealer, new car Ferrari
Michael: car Ferrari is new
CarDealer, new car Mercedes
Michael: car Mercedes is new
Sebastian: car Mercedes is new
CarDealer, new car Red Bull
Sebastian: car Red Bull is new

Weak Events
With events, the publisher and listener are directly connected. This can be a problem with garbage
collection. For example, if a listener is not directly referenced any more, there’s still a reference from the
publisher. The garbage collector cannot clean up memory from the listener, as the publisher still holds a
reference and fires events to the listener.

c08.indd 204 30-01-2014 20:14:00

Events ❘ 205

This strong connection can be resolved by using the weak event pattern and using the WeakEventManager
as an intermediary between the publisher and listeners.

The preceding example with the CarDealer as publisher and the Consumer as listener is modified in this
section to use the weak event pattern.

Weak Event Manager
To use weak events you need to create a class that derives from WeakEventManager, which is defined in the
namespace System.Windows in the assembly WindowsBase.

The class WeakCarInfoEventManager is the weak event manager class that manages the connection
between the publisher and the listener for the NewCarInfo event. This class implements a singleton
pattern so that only one instance is created. The static property CurrentManager creates an object of type
WeakCarInfoEventManager if it doesn’t exist, and returns a reference to it. WeakCarInfoEventManager
.CurrentManager is used to access the singleton object from the WeakCarInfoEventManager.

With the weak event pattern, the weak event manager class needs the static methods AddListener and
RemoveListener. The listener is connected and disconnected to the events of the publisher with these
methods, instead of using the events from the publisher directly. The listener also needs to implement the
interface IWeakEventListener, which is shown shortly. With the AddListener and RemoveListener
methods, methods from the base class WeakEventManager are invoked to add and remove the listeners.

With the WeakCarInfoEventManager class you also need to override the StartListening and
StopListening methods from the base class. StartListening is called when the first listener is
added, StopListening when the last listener is removed. StartListening and StopListening subscribes
and unsubscribes, respectively, a method from the weak event manager to listen for the event from the
publisher. In case the weak event manager class needs to connect to different publisher types, you can
check the type information from the source object before doing the cast. The event is then forwarded to
the listeners by calling the DeliverEvent method from the base class, which in turn invokes the method
ReceiveWeakEvent from the IWeakEventListener interface in the listeners (code file WeakEventsSample/
WeakCarInfoEventManger.cs):

using System.Windows;

namespace Wrox.ProCSharp.Delegates
{
 public class WeakCarInfoEventManager: WeakEventManager
 {
 public static void AddListener(object source, IWeakEventListener listener)
 {
 CurrentManager.ProtectedAddListener(source, listener);
 }

 public static void RemoveListener(object source, IWeakEventListener listener)
 {
 CurrentManager.ProtectedRemoveListener(source, listener);
 }

NOTE With subscribers that are created dynamically, in order to not be in danger of
having resource leaks, you need to pay special attention to events. That is, you need to
either ensure that you unsubscribe events before the subscribers go out of scope (are not
needed any longer), or use weak events.

c08.indd 205 30-01-2014 20:14:00

206 ❘ CHAPTER 8 Delegates, lambDas, anD events

 public static WeakCarInfoEventManager CurrentManager
 {
 get
 {
 var manager = GetCurrentManager(typeof(WeakCarInfoEventManager))
 as WeakCarInfoEventManager;
 if (manager == null)
 {
 manager = new WeakCarInfoEventManager();
 SetCurrentManager(typeof(WeakCarInfoEventManager), manager);
 }
 return manager;
 }
 }

 protected override void StartListening(object source)
 {
 (source as CarDealer).NewCarInfo += CarDealer_NewCarInfo;
 }

 void CarDealer_NewCarInfo(object sender, CarInfoEventArgs e)
 {
 DeliverEvent(sender, e);
 }

 protected override void StopListening(object source)
 {
 (source as CarDealer).NewCarInfo = CarDealer_NewCarInfo;
 }
 }
}

NOTE WPF makes use of the weak event pattern with the event manager
classes: CollectionChangedEventManager, CurrentChangedEventManager,
CurrentChangingEventManager, PropertyChangedEventManager,
DataChangedEventManager, and LostFocusEventManager.

With the publisher class CarDealer there’s no need to change anything. It has the same implementation as
before.

Event listener
The listener needs to be changed to implement the interface IWeakEventListener. This interface
defines the method ReceiveWeakEvent that is called from the weak event manager when the event arrives.
The method implementation acts as a proxy and in turn invokes the method NewCarIsHere (code file
WeakEventsSample/Consumer.cs):

using System;
using System.Windows;

namespace Wrox.ProCSharp.Delegates
{
 public class Consumer: IWeakEventListener
 {
 private string name;

 public Consumer(string name)

c08.indd 206 30-01-2014 20:14:00

Events ❘ 207

 {
 this.name = name;
 }

 public void NewCarIsHere(object sender, CarInfoEventArgs e)
 {
 Console.WriteLine("{0}: car {1} is new", name, e.Car);
 }

 bool IWeakEventListener.ReceiveWeakEvent(Type managerType, object sender,
 EventArgs e)
 {
 NewCarIsHere(sender, e as CarInfoEventArgs);
 return true;
 }
 }
}

Inside the Main method, where the publisher and listeners are connected, the connection is now made by
using the static AddListener and RemoveListener methods from the WeakCarInfoEventManager class
(code file WeakEventsSample/Program.cs):

 static void Main()
 {
 var dealer = new CarDealer();

 var michael = new Consumer("Michael");
 WeakCarInfoEventManager.AddListener(dealer, michael);

 dealer.NewCar("Mercedes");

 var sebastian = new Consumer("Sebastian");
 WeakCarInfoEventManager.AddListener(dealer, sebastian);

 dealer.NewCar("Ferrari");

 WeakCarInfoEventManager.RemoveListener(dealer, michael);

 dealer.NewCar("Red Bull Racing");
 }

With this additional work of implementing the weak event pattern, the publisher and listeners are no longer
strongly connected. When a listener is not referenced anymore, it can be garbage collected.

generic Weak Event Manager
.NET 4.5 has a new implementation of a weak event manager. The generic class
WeakEventManager<TEventSource, TEventArgs> derives from the base class WeakEventManager and
makes dealing with weak events a lot easier. Using this class it’s no longer necessary to implement a custom
weak event manager class for every event, nor is it necessary that the consumer implements the interface
IWeakEventsListener. All that is required is using the generic weak event manager on subscribing to the
events.

The main program to subscribe to the events is now changed to use the generic WeakEventManager
with the event source being the CarDealer type, and the event args that are passed with the event the
CarInfoEventArgs type. The class defines the AddHandler method to subscribe to an event, and
the RemoveHandler method to unsubscribe. Then the program works as before but with a lot less code:

 var dealer = new CarDealer();

 var michael = new Consumer("Michael");

c08.indd 207 30-01-2014 20:14:00

208 ❘ CHAPTER 8 Delegates, lambDas, anD events

 WeakEventManager<CarDealer, CarInfoEventArgs>.AddHandler(dealer,
 “NewCarInfo”, michael.NewCarIsHere);

 dealer.NewCar("Mercedes");

 var sebastian = new Consumer("Sebastian");
 WeakEventManager<CarDealer, CarInfoEventArgs>.AddHandler(dealer,
 “NewCarInfo”, sebastian.NewCarIsHere);

 dealer.NewCar("Ferrari");

 WeakEventManager<CarDealer, CarInfoEventArgs>.RemoveHandler(dealer,
 “NewCarInfo”, michael.NewCarIsHere);

 dealer.NewCar("Red Bull Racing");

sUMMARy
This chapter provided the basics of delegates, lambda expressions, and events. You learned how to declare
a delegate and add methods to the delegate list; you learned how to implement methods called by delegates
with lambda expressions; and you learned the process of declaring event handlers to respond to an event, as
well as how to create a custom event and use the patterns for raising the event.

As a .NET developer, you will use delegates and events extensively, especially when developing Windows
applications. Events are the means by which the .NET developer can monitor the various Windows messages
that occur while the application is executing. Otherwise, you would have to monitor the WndProc function
and catch the WM_MOUSEDOWN message instead of getting the mouse Click event for a button.

Using delegates and events in the design of a large application can reduce dependencies and the coupling of
layers. This enables you to develop components that have a higher reusability factor.

Lambda expressions are C# language features on delegates. With these, you can reduce the amount of code
you need to write. Lambda expressions are not only used with delegates, as you will see in Chapter 11,
“Language Integrated Query.”

The next chapter covers the use of strings and regular expressions.

c08.indd 208 30-01-2014 20:14:00

Strings and Regular Expressions
WHAT’S in THiS CHAPTER?

➤➤ Building strings

➤➤ Formatting expressions

➤➤ Using regular expressions

WRox.Com CodE doWnloAdS FoR THiS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ Encoder.cs

➤➤ Encoder2.cs

➤➤ FormattableVector.cs

➤➤ RegularExpressionPlayground.cs

➤➤ StringEncoder.cs

Strings have been used consistently since the beginning of this book, but you might not have realized
that the stated mapping that the string keyword in C# actually refers to is the System.String .NET
base class. System.String is a very powerful and versatile class, but it is by no means the only string-
related class in the .NET armory. This chapter begins by reviewing the features of System.String
and then looks at some nifty things you can do with strings using some of the other .NET classes — in
particular those in the System.Text and System.Text.RegularExpressions namespaces. This
chapter covers the following areas:

➤➤ Building strings — If you’re performing repeated modifi cations on a string — for example, to
build a lengthy string prior to displaying it or passing it to some other method or application —
the String class can be very ineffi cient. When you fi nd yourself in this kind of situation,
another class, System.Text.StringBuilder, is more suitable because it has been designed
exactly for this scenario.

➤➤ Formatting expressions — This chapter takes a closer look at the formatting expressions that
have been used in the Console.WriteLine() method throughout the past few chapters.
These formatting expressions are processed using two useful interfaces, IFormatProvider

9

c09.indd 209 30-01-2014 20:14:31

210 ❘ CHAPTER 9 StringS and regular expreSSionS

and IFormattable. By implementing these interfaces on your own classes, you can define your own
formatting sequences so that Console.WriteLine() and similar classes display the values of your
classes in whatever way you specify.

➤➤ Regular expressions — .NET also offers some very sophisticated classes that deal with cases in which
you need to identify or extract substrings that satisfy certain fairly sophisticated criteria; for example,
finding all occurrences within a string where a character or set of characters is repeated: finding
all words that begin with “s” and contain at least one “n:” or strings that adhere to an employee
ID or a social security number construction. Although you can write methods to perform this kind
of processing using the String class, writing such methods is cumbersome. Instead, some classes,
specifically those from System.Text.RegularExpressions, are designed to perform this kind of
processing.

ExAmining SySTEm.STRing
Before digging into the other string classes, this section briefly reviews some of the available methods in the
String class itself.

System.String is a class specifically designed to store a string and allow a large number of operations on
the string. In addition, due to the importance of this data type, C# has its own keyword and associated
syntax to make it particularly easy to manipulate strings using this class.

You can concatenate strings using operator overloads:

string message1 = "Hello"; // returns "Hello"
message1 += ", There"; // returns "Hello, There"
string message2 = message1 + "!"; // returns "Hello, There!"

C# also allows extraction of a particular character using an indexer-like syntax:

string message = "Hello";
char char4 = message[4]; // returns 'o'. Note the string is zero-indexed

This enables you to perform such common tasks as replacing characters, removing whitespace, and changing
case. The following table introduces the key methods.

mETHod dESCRiPTion

Compare Compares the contents of strings, taking into account the culture (locale) in
assessing equivalence between certain characters.

CompareOrdinal Same as Compare but doesn’t take culture into account.

Concat Combines separate string instances into a single instance.

CopyTo Copies a specific number of characters from the selected index to an entirely
new instance of an array.

Format Formats a string containing various values and specifiers for how each value
should be formatted.

IndexOf Locates the first occurrence of a given substring or character in the string.

IndexOfAny Locates the first occurrence of any one of a set of characters in a string.

Insert Inserts a string instance into another string instance at a specified index.

Join Builds a new string by combining an array of strings.

LastIndexOf Same as IndexOf but finds the last occurrence.

LastIndexOfAny Same as IndexOf Any but finds the last occurrence.

c09.indd 210 30-01-2014 20:14:31

Examining System.String ❘ 211

PadLeft Pads out the string by adding a specified repeated character to the left side of
the string.

PadRight Pads out the string by adding a specified repeated character to the right side of
the string.

Replace Replaces occurrences of a given character or substring in the string with
another character or substring.

Split Splits the string into an array of substrings; the breaks occur wherever a given
character occurs.

Substring Retrieves the substring starting at a specified position in a string.

ToLower Converts the string to lowercase.

ToUpper Converts the string to uppercase.

Trim Removes leading and trailing whitespace.

noTE Please note that this table is not comprehensive; it is intended to give you an
idea of the features offered by strings.

Building Strings
As you have seen, String is an extremely powerful class that implements a large number of very useful
methods. However, the String class has a shortcoming that makes it very inefficient for making repeated
modifications to a given string — it is actually an immutable data type, which means that after you initialize
a string object, that string object can never change. The methods and operators that appear to modify the
contents of a string actually create new strings, copying across the contents of the old string if necessary.
For example, consider the following code:

string greetingText = "Hello from all the guys at Wrox Press. ";
greetingText += "We do hope you enjoy this book as much as we enjoyed writing it.";

When this code executes, first an object of type System.String is created and initialized to hold the text
Hello from all the guys at Wrox Press. (Note the space after the period.) When this happens, the
.NET runtime allocates just enough memory in the string to hold this text (39 chars), and the variable
greetingText is set to refer to this string instance.

In the next line, syntactically it looks like more text is being added onto the string, but it is not. Instead,
a new string instance is created with just enough memory allocated to store the combined text — that’s
103 characters in total. The original text, Hello from all the people at Wrox Press., is copied into
this new string instance along with the extra text: We do hope you enjoy this book as much as we
enjoyed writing it. Then, the address stored in the variable greetingText is updated, so the variable
correctly points to the new String object. The old String object is now unreferenced — there are no
variables that refer to it — so it will be removed the next time the garbage collector comes along to clean out
any unused objects in your application.

By itself, that doesn’t look too bad, but suppose you wanted to create a very simple encryption scheme
by adding 1 to the ASCII value of each character in the string. This would change the string to Ifmmp
gspn bmm uif hvst bu Xspy Qsftt. Xf ep ipqf zpv fokpz uijt cppl bt nvdi bt xf fokpzfe
xsjujoh ju. Several ways of doing this exist, but the simplest and (if you are restricting yourself to using
the String class) almost certainly the most efficient way is to use the String.Replace() method, which

c09.indd 211 30-01-2014 20:14:31

212 ❘ CHAPTER 9 StringS and regular expreSSionS

replaces all occurrences of a given substring in a string with another substring. Using Replace(), the code
to encode the text looks like this:

string greetingText = "Hello from all the guys at Wrox Press. ";
greetingText += "We do hope you enjoy this book as much as we enjoyed writing it.";

for(int i = 'z'; i>= 'a'; i--)
{
 char old1 = (char)i;
 char new1 = (char)(i+1);
 greetingText = greetingText.Replace(old1, new1);
}

for(int i = 'Z'; i>='A'; i--)
{
 char old1 = (char)i;
 char new1 = (char)(i+1);
 greetingText = greetingText.Replace(old1, new1);
}

Console.WriteLine("Encoded:\n" + greetingText);

noTE Simply this code does not wrap Z to A or z to a. These letters are encoded to
[and {, respectively.

In this example, the Replace() method works in a fairly intelligent way, to the extent that it won’t actually
create a new string unless it actually makes changes to the old string. The original string contained 23
different lowercase characters and three different uppercase ones. The Replace() method will therefore
have allocated a new string 26 times in total, with each new string storing 103 characters. That means
because of the encryption process, there will be string objects capable of storing a combined total of 2,678
characters now sitting on the heap waiting to be garbagecollected! Clearly, if you use strings to do text
processing extensively, your applications will run into severe performance problems.

To address this kind of issue, Microsoft supplies the System.Text.StringBuilder class. StringBuilder
is not as powerful as String in terms of the number of methods it supports. The processing you can do on a
StringBuilder is limited to substitutions and appending or removing text from strings. However, it works
in a much more efficient way.

When you construct a string using the String class, just enough memory is allocated to hold the string
object. The StringBuilder, however, normally allocates more memory than is actually needed. You, as
a developer, have the option to indicate how much memory the StringBuilder should allocate; but if
you do not, the amount defaults to a value that varies according to the size of the string with which the
StringBuilder instance is initialized. The StringBuilder class has two main properties:

➤➤ Length — Indicates the length of the string that it actually contains

➤➤ Capacity — Indicates the maximum length of the string in the memory allocation

Any modifications to the string take place within the block of memory assigned to the StringBuilder
instance, which makes appending substrings and replacing individual characters within strings very
efficient. Removing or inserting substrings is inevitably still inefficient because it means that the following

c09.indd 212 30-01-2014 20:14:32

Examining System.String ❘ 213

part of the string has to be moved. Only if you perform an operation that exceeds the capacity of the string
is it necessary to allocate new memory and possibly move the entire contained string. In adding extra
capacity, based on our experiments the StringBuilder appears to double its capacity if it detects that
the capacity has been exceeded and no new value for capacity has been set.

For example, if you use a StringBuilder object to construct the original greeting string, you might write
this code:

StringBuilder greetingBuilder =
 new StringBuilder("Hello from all the guys at Wrox Press. ", 150);
greetingBuilder.AppendFormat("We do hope you enjoy this book as much as we enjoyed
 writing it");

noTE To use the StringBuilder class, you need a System.Text reference in your
code.

This code sets an initial capacity of 150 for the StringBuilder. It is always a good idea to set a capacity
that covers the likely maximum length of a string, to ensure that the StringBuilder does not need to
relocate because its capacity was exceeded. By default, the capacity is set to 16. Theoretically, you can set
a number as large as the number you pass in an int, although the system will probably complain that it
does not have enough memory if you actually try to allocate the maximum of two billion characters (the
theoretical maximum that a StringBuilder instance is allowed to contain).

When the preceding code is executed, it first creates a StringBuilder object that looks like Figure 9-1.

Console.WriteLine("The double is {0, 10:E} and the int contains {1}", d, i)

String.Format("The double is {0, 10:E} and the int contains {1}", d, i)

StringBuilder
("The double is")

StringBuilder.AppendFormat
("{0, 10:E}", d)

StringBuilder.Append
(" and the int contains ")

StringBuilder.AppendFormat
("{1}”, i)

FiguRE 9-1

c09.indd 213 30-01-2014 20:14:33

214 ❘ CHAPTER 9 StringS and regular expreSSionS

Then, on calling the AppendFormat() method, the remaining text is placed in the empty space, without the
need to allocate more memory. However, the real efficiency gain from using a StringBuilder is realized
when you make repeated text substitutions. For example, if you try to encrypt the text in the same way as
before, you can perform the entire encryption without allocating any more memory whatsoever:

StringBuilder greetingBuilder =
 new StringBuilder("Hello from all the guys at Wrox Press. ", 150);
greetingBuilder.AppendFormat("We do hope you enjoy this book as much as we " +
 "enjoyed writing it");

Console.WriteLine("Not Encoded:\n" + greetingBuilder);

for(int i = 'z'; i>='a'; i--)
{
 char old1 = (char)i;
 char new1 = (char)(i+1);
 greetingBuilder = greetingBuilder.Replace(old1, new1);
}

for(int i = 'Z'; i>='A'; i--)
{
 char old1 = (char)i;
 char new1 = (char)(i+1);
 greetingBuilder = greetingBuilder.Replace(old1, new1);
}

Console.WriteLine("Encoded:\n" + greetingBuilder);

This code uses the StringBuilder.Replace() method, which does the same thing as String.Replace()
but without copying the string in the process. The total memory allocated to hold strings in the preceding
code is 150 characters for the StringBuilder instance, as well as the memory allocated during the string
operations performed internally in the final Console.WriteLine() statement.

Normally, you want to use StringBuilder to perform any manipulation of strings, and String to store or
display the final result.

StringBuilder members
You have seen a demonstration of one constructor of StringBuilder, which takes an initial string and
capacity as its parameters. There are others. For example, you can supply only a string:

StringBuilder sb = new StringBuilder("Hello");

Or you can create an empty StringBuilder with a given capacity:

StringBuilder sb = new StringBuilder(20);

Apart from the Length and Capacity properties, there is a read-only MaxCapacity property that indicates
the limit to which a given StringBuilder instance is allowed to grow. By default, this is specified by
int.MaxValue (roughly two billion, as noted earlier), but you can set this value to something lower when
you construct the StringBuilder object:

// This will both set initial capacity to 100, but the max will be 500.
// Hence, this StringBuilder can never grow to more than 500 characters,
// otherwise it will raise exception if you try to do that.
StringBuilder sb = new StringBuilder(100, 500);

You can also explicitly set the capacity at any time, though an exception will be raised if you set it to a value
less than the current length of the string or a value that exceeds the maximum capacity:

c09.indd 214 30-01-2014 20:14:33

Examining System.String ❘ 215

StringBuilder sb = new StringBuilder("Hello");
sb.Capacity = 100;

The following table lists the main StringBuilder methods.

mETHod dESCRiPTion

Append() Appends a string to the current string.

AppendFormat() Appends a string that has been formatted from a format specifier.

Insert() Inserts a substring into the current string.

Remove() Removes characters from the current string.

Replace() Replaces all occurrences of a character with another character or a substring
with another substring in the current string.

ToString() Returns the current string cast to a System.String object (overridden from
System.Object).

Several overloads of many of these methods exist.

noTE AppendFormat() is actually the method that is ultimately called when you
call Console.WriteLine(), which is responsible for determining what all the format
expressions like {0:D} should be replaced with. This method is examined in the next
section.

There is no cast (either implicit or explicit) from StringBuilder to String. If you want to output the
contents of a StringBuilder as a String, you must use the ToString() method.

Now that you have been introduced to the StringBuilder class and have learned some of the ways in
which you can use it to increase performance, be aware that this class does not always deliver the increased
performance you are seeking. Basically, the StringBuilder class should be used when you are manipulating
multiple strings. However, if you are just doing something as simple as concatenating two strings, you will
find that System.String performs better.

Format Strings
So far, a large number of classes and structs have been written for the code samples presented in this book,
and they have normally implemented a ToString() method in order to display the contents of a given
variable. However, users often want the contents of a variable to be displayed in different, often culture-
and locale-dependent ways. The .NET base class, System.DateTime, provides the most obvious example of
this. For example, you might want to display the same date as 10 June 2012, 10 Jun 2012, 6/10/12 (USA),
10/6/12 (UK), or 10.06.2012 (Germany).

Similarly, the Vector struct in Chapter 7, “Operators and Casts,” implements the Vector.ToString()
method to display the vector in the format (4, 56, 8). There is, however, another very common way to
write vectors, whereby this vector would appear as 4i + 56j + 8k. If you want the classes that you write
to be user-friendly, they need to support the capability to display string representations in any of the formats
that users are likely to want to use. The .NET runtime defines a standard way in which this should be done:
the IFormattable interface. Learning how to add this important feature to your classes and structs is the
subject of this section.

As you probably know, you need to specify the format in which you want a variable displayed when you
call Console.WriteLine(). Therefore, this section uses this method as an example, although most of

c09.indd 215 30-01-2014 20:14:33

216 ❘ CHAPTER 9 StringS and regular expreSSionS

the discussion applies to any situation in which you want to format a string. For example, if you want to
display the value of a variable in a list box or text box, you normally use the String.Format() method to
obtain the appropriate string representation of the variable. However, the actual format specifiers you use
to request a particular format are identical to those passed to Console.WriteLine(). Hence, this section
focuses on Console.WriteLine() as an example. It begins by examining what actually happens when you
supply a format string to a primitive type, and from this you will see how you can plug format specifiers for
your own classes and structs into the process.

Chapter 2, “Core C#,” uses format strings in Console.Write() and Console.WriteLine() like this:

double d = 13.45;
int i = 45;
Console.WriteLine("The double is {0,10:E} and the int contains {1}", d, i);

The format string itself consists mostly of the text to be displayed; but wherever a variable needs to be
formatted, its index in the parameter list appears in braces. You might also include other information inside
the braces concerning the format of that item, such as the following:

➤➤ The number of characters to be occupied by the representation of the item, prefixed by a comma.
A negative number indicates that the item should be left-justified, whereas a positive number indicates
that it should be right-justified. If the item occupies more characters than have been requested, it will
still appear in full.

➤➤ A format specifier, preceded by a colon. This indicates how you want the item to be formatted. For
example, you can indicate whether you want a number to be formatted as a currency or displayed in
scientific notation.

The following table lists the common format specifiers for the numeric types, which were briefly discussed in
Chapter 2.

SPECiFiER APPliES To mEAning ExAmPlE

C Numeric types Locale-specific monetary
value

$4834.50 (USA) £4834.50 (UK)

D Integer types
only

General integer 4834

E Numeric types Scientific notation 4.834E+003

F Numeric types Fixed-point decimal 4384.50

G Numeric types General number 4384.5

N Numeric types Common locale-specific
format for numbers

4,384.50 (UK/USA)4 384,50 (continental
Europe)

P Numeric types Percentage notation 432,000.00%

X Integer types
only

Hexadecimal format 1120 (If you want to display 0x1120, you
will have to write out the 0x separately)

If you want an integer to be padded with zeros, you can use the format specifier 0 (zero) repeated as many
times as the number length requires. For example, the format specifier 0000 will cause 3 to be displayed as
0003, and 99 to be displayed as 0099, and so on.

It is not possible to provide a complete list, because other data types can add their own specifiers. The aim
here is to demonstrate how to define your own specifiers for your own classes.

How the String Is Formatted
As an example of how strings are formatted, consider executing the following statement:

c09.indd 216 30-01-2014 20:14:34

Examining System.String ❘ 217

Console.WriteLine("The double is {0,10:E} and the int contains {1}", d, i);

In the preceding example, Console.WriteLine() just passes the entire set of parameters to the static
method, String.Format(). This is the same method that you would call if you wanted to format these
values for use in a string to be displayed in a text box, for example. The implementation of the three-
parameter overload of WriteLine() basically does this:

// Likely implementation of Console.WriteLine()

public void WriteLine(string format, object arg0, object arg1)
{
 this.WriteLine(string.Format(this.FormatProvider, format,
 new object[]{arg0, arg1}));
}

The one-parameter overload of this method, which is in turn called in the preceding code sample, simply
writes out the contents of the string it has been passed, without doing any further formatting on it.

String.Format() now needs to construct the final string by replacing each format specifier with a
suitable string representation of the corresponding object. However, as shown earlier, for this process of
building up a string you need a StringBuilder instance, rather than a string instance. In this example,
a StringBuilder instance is created and initialized with the first known portion of the string, the text
“The double is”. Next, the StringBuilder.AppendFormat() method is called, passing in the first
format specifier, {0,10:E}, as well as the associated object, double, to add the string representation of
this object to the string object being constructed. This process continues with StringBuilder.Append()
and StringBuilder.AppendFormat() being called repeatedly until the entire formatted string has been
obtained.

Now the interesting part: StringBuilder.AppendFormat() has to figure out how to format the object.
First, it probes the object to determine whether it implements an interface in the System namespace called
IFormattable. This can be done quite simply by trying to cast an object to this interface and seeing
whether the cast succeeds, or by using the C# is keyword. If this test fails, AppendFormat() calls the
object’s ToString() method, which all objects either inherit from System.Object or override. This is
exactly what happens here because none of the classes written so far has implemented this interface. That is
why the overrides of Object.ToString() have been sufficient to allow the structs and classes from earlier
chapters, such as Vector, to be displayed in Console.WriteLine() statements.

However, all the predefined primitive numeric types do implement this interface, which means that for
those types, and in particular for double and int in the example, the basic ToString() method inherited
from System.Object will not be called. To understand what happens instead, you need to examine the
IFormattable interface.

IFormattable defines just one method, which is also called ToString(). However, this method takes two
parameters as opposed to the System.Object version, which doesn’t take any parameters. The following
code shows the definition of IFormattable:

interface IFormattable
{
 string ToString(string format, IFormatProvider formatProvider);
}

The first parameter that this overload of ToString() expects is a string that specifies the requested format.
In other words, it is the specifier portion of the string that appears inside the braces ({}) in the string
originally passed to Console.WriteLine() or String.Format(). For example, in the example the original
statement was as follows:

Console.WriteLine("The double is {0,10:E} and the int contains {1}", d, i);

c09.indd 217 30-01-2014 20:14:34

218 ❘ CHAPTER 9 StringS and regular expreSSionS

Hence, when evaluating the first specifier, {0,10:E}, this overload is called against the double variable, d,
and the first parameter passed to it will be E. The StringBuilder.AppendFormat() method will pass in
here the text that appears after the colon in the appropriate format specifier from the original string.

We won’t worry about the second ToString() parameter in this book. It is a reference to an object that
implements the IFormatProvider interface. This interface provides further information that ToString()
might need to consider when formatting the object, such as culture-specific details (a .NET culture is
similar to a Windows locale; if you are formatting currencies or dates, you need this information). If you are
calling this ToString() overload directly from your source code, you might want to supply such an object.
However, StringBuilder.AppendFormat() passes in null for this parameter. If formatProvider is null,
then ToString() is expected to use the culture specified in the system settings.

Getting back to the example, the first item you want to format is a double, for which you are requesting
exponential notation, with the format specifier E. The StringBuilder.AppendFormat() method
establishes that the double does implement IFormattable, and will therefore call the two-parameter
ToString() overload, passing it the string E for the first parameter and null for the second parameter. It is
now up to the double’s implementation of this method to return the string representation of the double in
the appropriate format, taking into account the requested format and the current culture. StringBuilder.
AppendFormat() will then sort out padding the returned string with spaces, if necessary, to fill the 10
characters specified by the format string.

The next object to be formatted is an int, for which you are not requesting any particular format (the
format specifier was simply {1}). With no format requested, StringBuilder.AppendFormat() passes in a
null reference for the format string. The two-parameter overload of int.ToString() is expected to respond
appropriately. No format has been specifically requested; therefore, it calls the no-parameter ToString()
method.

This entire string formatting process is summarized in Figure 9-2.

The FormattableVector Example
Now that you know how format strings are constructed, this section extends the Vector example from
Chapter 7 so that you can format vectors in a variety of ways. You can download the code for this example
from www.wrox.com; the filename is FormattableVector.cs. With your new knowledge of the principles
involved now in hand, you will discover that the actual coding is quite simple. All you need to do is implement
IFormattable and supply an implementation of the ToString() overload defined by that interface.

The format specifiers you are going to support are as follows:

➤➤ N — Should be interpreted as a request to supply a quantity known as the Norm of the Vector. This
is just the sum of the squares of its components, which for mathematics buffs happens to be equal to
the square of the length of the Vector, and is usually displayed between double vertical bars, like this:
||34.5||.

➤➤ VE — Should be interpreted as a request to display each component in scientific format, just as the
specifier E applied to a double indicates (2.3E+01, 4.5E+02, 1.0E+00)

➤➤ IJK — Should be interpreted as a request to display the vector in the form 23i + 450j + 1k

➤➤ Anything else should simply return the default representation of the Vector (23, 450, 1.0).

To keep things simple, you are not going to implement any option to display the vector in combined IJK and
scientific format. However, you will test the specifier in a case-insensitive way, so that you allow ijk instead
of IJK. Note that it is entirely up to you which strings you use to indicate the format specifiers.

To achieve this, you first modify the declaration of Vector so it implements IFormattable:

c09.indd 218 30-01-2014 20:14:34

Examining System.String ❘ 219

FiguRE 9-2

RegEx MatchCollection

Match

GroupCollection

Group

CaptureCollection

Capture

Console.WriteLine("The double is {0, 10:E} and the int contains {1}", d, i)

String.Format("The double is {0, 10:E} and the int contains {1}", d, i)

StringBuilder
("The double is")

StringBuilder.AppendFormat
("{0, 10:E}", d)

Hello from Wrox! <uninitialized>

StringBuilder.AppendFormat
(" and the int contains ")

StringBuilder.AppendFormat
("{1}”, i)

c09.indd 219 30-01-2014 20:14:36

220 ❘ CHAPTER 9 StringS and regular expreSSionS

struct Vector: IFormattable
{
 public double x, y, z;

 // Beginning part of Vector

Now you add your implementation of the two-parameter ToString() overload:

public string ToString(string format, IFormatProvider formatProvider)
{
 if (format == null)
 {
 return ToString();
 }

 string formatUpper = format.ToUpper();

 switch (formatUpper)
 {
 case "N":
 return "|| " + Norm().ToString() + " ||";
 case "VE":
 return String.Format("({0:E}, {1:E}, {2:E})", x, y, z);
 case "IJK":
 StringBuilder sb = new StringBuilder(x.ToString(), 30);
 sb.AppendFormat(" i + ");
 sb.AppendFormat(y.ToString());
 sb.AppendFormat(" j + ");
 sb.AppendFormat(z.ToString());
 sb.AppendFormat(" k");
 return sb.ToString();
 default:
 return ToString();
 }
}

That is all you have to do! Notice how you take the precaution of checking whether format is null before
you call any methods against this parameter — you want this method to be as robust as reasonably possible.
The format specifiers for all the primitive types are case insensitive, so that is the behavior that other
developers will expect from your class, too. For the format specifier VE, you need each component to be
formatted in scientific notation, so you just use String.Format() again to achieve this. The fields x, y, and
z are all doubles. For the case of the IJK format specifier, quite a few substrings need to be added to the
string, so you use a StringBuilder object to improve performance.

For completeness, you also reproduce the no-parameter ToString() overload developed earlier:

public override string ToString()
{
 return "(" + x + ", " + y + ", " + z + ")";
}

Finally, you need to add a Norm() method that computes the square (norm) of the vector because you didn’t
actually supply this method when you developed the Vector struct:

public double Norm()
{
 return x*x + y*y + z*z;
}

Now you can try your formattable vector with some suitable test code:

c09.indd 220 30-01-2014 20:14:36

Regular Expressions ❘ 221

static void Main()
{
 Vector v1 = new Vector(1,32,5);
 Vector v2 = new Vector(845.4, 54.3, -7.8);
 Console.WriteLine("\nIn IJK format,\nv1 is {0,30:IJK}\nv2 is {1,30:IJK}",
 v1, v2);
 Console.WriteLine("\nIn default format,\nv1 is {0,30}\nv2 is {1,30}", v1, v2);
 Console.WriteLine("\nIn VE format\nv1 is {0,30:VE}\nv2 is {1,30:VE}", v1, v2);
 Console.WriteLine("\nNorms are:\nv1 is {0,20:N}\nv2 is {1,20:N}", v1, v2);
}

The result of running this sample is as follows:

FormattableVector
In IJK format,
v1 is 1 i + 32 j + 5 k
v2 is 845.4 i + 54.3 j + -7.8 k

In default format,
v1 is (1, 32, 5)
v2 is (845.4, 54.3, -7.8)

In VE format
v1 is (1.000000E+000, 3.200000E+001, 5.000000E+000)
v2 is (8.454000E+002, 5.430000E+001, -7.800000E+000)

Norms are:
v1 is || 1050 ||
v2 is || 717710.49 ||

This indicates that your custom specifiers are being picked up correctly.

REgulAR ExPRESSionS
Regular expressions are one of those small technology aids that are incredibly useful in a wide range
of programs. You can think of regular expressions as a mini-programming language with one specific
purpose: to locate substrings within a large string expression. It is not a new technology; it originated in
the UNIX environment and is commonly used with the Perl programming language. Microsoft ported
it onto Windows, where up until recently it has been used mostly with scripting languages. Today,
regular expressions are supported by a number of .NET classes in the namespace System.Text
.RegularExpressions. You can also find the use of regular expressions in various parts of the .NET
Framework. For instance, they are used within the ASP.NET validation server controls.

If you are not familiar with the regular expressions language, this section introduces both regular
expressions and their related .NET classes. If you are familiar with regular expressions, you will probably
want to just skim through this section to pick out the references to the .NET base classes. You might like
to know that the .NET regular expression engine is designed to be mostly compatible with Perl 5 regular
expressions, although it has a few extra features.

introduction to Regular Expressions
The regular expressions language is designed specifically for string processing. It contains two features:

A set of escape codes for identifying specific types of characters. You will be familiar with the use of
the * character to represent any substring in DOS expressions. (For example, the DOS command Dir
Re* lists the files with names beginning with Re.) Regular expressions use many sequences like this to
represent items such as any one character, a word break, one optional character, and so on.

➤➤ A system for grouping parts of substrings and intermediate results during a search operation

c09.indd 221 30-01-2014 20:14:36

222 ❘ CHAPTER 9 StringS and regular expreSSionS

With regular expressions, you can perform very sophisticated and high-level operations on strings. For
example, you can do all of the following:

➤➤ Identify (and perhaps either flag or remove) all repeated words in a string (e.g., “The computer books
books” to “The computer books”)

➤➤ Convert all words to title case (e.g., “this is a Title” to “This Is A Title”)

➤➤ Convert all words longer than three characters to title case (e.g., “this is a Title” to “This is a Title”)

➤➤ Ensure that sentences are properly capitalized

➤➤ Separate the various elements of a URI (e.g., given http://www.wrox.com, extract the protocol,
computer name, filename, and so on)

Of course, all these tasks can be performed in C# using the various methods on System.String and
System.Text.StringBuilder. However, in some cases, this would require writing a fair amount of C#
code. Using regular expressions, this code can normally be compressed to just a couple of lines. Essentially,
you instantiate a System.Text.RegularExpressions.RegEx object (or, even simpler, invoke a static
RegEx() method), pass it the string to be processed, and pass in a regular expression (a string containing the
instructions in the regular expressions language), and you’re done.

A regular expression string looks at first sight rather like a regular string, but interspersed with escape
sequences and other characters that have a special meaning. For example, the sequence \b indicates the
beginning or end of a word (a word boundary), so if you wanted to indicate you were looking for the
characters th at the beginning of a word, you would search for the regular expression, \bth (that is, the
sequence word boundary-t-h). If you wanted to search for all occurrences of th at the end of a word,
you would write th\b (the sequence t-h-word boundary). However, regular expressions are much more
sophisticated than that and include, for example, facilities to store portions of text that are found in a search
operation. This section only scratches the surface of the power of regular expressions.

noTE For more on regular expressions, please see Andrew Watt’s Beginning Regular
Expressions (John Wiley & Sons, 2005).

Suppose your application needed to convert U.S. phone numbers to an international format. In the United
States, the phone numbers have the format 314-123-1234, which is often written as (314) 123-1234. When
converting this national format to an international format, you have to include +1 (the country code of the
United States) and add brackets around the area code: +1 (314) 123-1234. As find-and-replace operations
go, that is not too complicated. It would still require some coding effort if you were going to use the String
class for this purpose (meaning you would have to write your code using the methods available from
System.String). The regular expressions language enables you to construct a short string that achieves the
same result.

This section is intended only as a very simple example, so it concentrates on searching strings to identify
certain substrings, not on modifying them.

The RegularExpressionsPlayaround Example
The rest of this section develops a short example called RegularExpressionsPlayaround that illustrates
some of the features of regular expressions, and how to use the .NET regular expressions engine in C#
by performing and displaying the results of some searches. The text you are going to use as your sample
document is the introduction to a book on ASP.NET, Professional ASP.NET 4: in C# and VB (Wiley, 2010):

const string myText =
@"This comprehensive compendium provides a broad and thorough investigation of all
aspects of programming with ASP.NET. Entirely revised and updated for the fourth
release of .NET, this book will give you the information you need to
master ASP.NET and build a dynamic, successful, enterprise Web application.";

c09.indd 222 30-01-2014 20:14:36

Regular Expressions ❘ 223

noTE This code is valid C# code, despite all the line breaks. It nicely illustrates the
utility of verbatim strings that are prefixed by the @ symbol.

This text is referred to as the input string. To get your bearings and get used to the regular expressions of
.NET classes, you start with a basic plain -text search that does not feature any escape sequences or regular
expression commands. Suppose that you want to find all occurrences of the string “ion”. This search string
is referred to as the pattern. Using regular expressions and the Text variable declared previously, you could
write the following:

const string pattern = "ion";
MatchCollection myMatches = Regex.Matches(myText, pattern,
 RegexOptions.IgnoreCase |
 RegexOptions.ExplicitCapture);

foreach (Match nextMatch in myMatches)
{
 Console.WriteLine(nextMatch.Index);
}

This code uses the static method Matches() of the Regex class in the System.Text.RegularExpressions
namespace. This method takes as parameters some input text, a pattern, and a set of optional flags
taken from the RegexOptions enumeration. In this case, you have specified that all searching should be
caseinsensitive. The other flag, ExplicitCapture, modifies how the match is collected in a way that, for
your purposes, makes the search a bit more efficient — you’ll see why this is later (although it does have
other uses that we won’t explore here). Matches() returns a reference to a MatchCollection object.
A match is the technical term for the results of finding an instance of the pattern in the expression.
It is represented by the class System.Text.RegularExpressions.Match. Therefore, you return a
MatchCollection that contains all the matches, each represented by a Match object. In the preceding code,
you simply iterate over the collection and use the Index property of the Match class, which returns the index
in the input text where the match was found. Running this code results in three matches. The following
table details some of the RegexOptions enumerations.

mEmBER nAmE dESCRiPTion

CultureInvariant Specifies that the culture of the string is ignored.

ExplicitCapture Modifies the way the match is collected by making sure that valid
captures are the ones that are explicitly named.

IgnoreCase Ignores the case of the string that is input.

IgnorePatternWhitespace Removes unescaped whitespace from the string and enables
comments that are specified with the pound or hash sign.

Multiline Changes the characters ^ and $ so that they are applied to the
beginning and end of each line and not just to the beginning and
end of the entire string.

RightToLeft Causes the inputted string to be read from right to left instead of
the default left to right (ideal for some Asian and other languages
that are read in this direction).

Singleline Specifies a single-line mode where the meaning of the dot (.) is
changed to match every character.

So far, nothing is new from the preceding example apart from some .NET base classes. However, the power
of regular expressions comes from that pattern string. The reason is because the pattern string is not limited
to only plain text. As hinted earlier, it can also contain what are known as meta-characters, which are

c09.indd 223 30-01-2014 20:14:36

224 ❘ CHAPTER 9 StringS and regular expreSSionS

special characters that provide commands, as well as escape sequences, which work in much the same way
as C# escape sequences. They are characters preceded by a backslash (\) and have special meanings.

For example, suppose you wanted to find words beginning with n. You could use the escape sequence
\b, which indicates a word boundary (a word boundary is just a point where an alphanumeric character
precedes or follows a whitespace character or punctuation symbol):

const string pattern = @"\bn";
MatchCollection myMatches = Regex.Matches(myText, pattern,
 RegexOptions.IgnoreCase |
 RegexOptions.ExplicitCapture);

Notice the @ character in front of the string. You want the \b to be passed to the .NET regular expressions
engine at runtime — you don’t want the backslash intercepted by a well-meaning C# compiler that thinks
it’s an escape sequence in your source code. If you want to find words ending with the sequence ion, you
write this:

const string pattern = @"ion\b";

If you want to find all words beginning with the letter a and ending with the sequence ion (which has as its
only match the word application in the example), you have to put a bit more thought into your code. You
clearly need a pattern that begins with \ba and ends with ion\b, but what goes in the middle? You need to
somehow tell the application that between the a and the ion there can be any number of characters as long
as none of them are whitespace. In fact, the correct pattern looks like this:

const string pattern = @"\ba\S*ion\b";

Eventually you will get used to seeing weird sequences of characters like this when working with regular
expressions. It actually works quite logically. The escape sequence \S indicates any character that is not a
whitespace character. The * is called a quantifier. It means that the preceding character can be repeated any
number of times, including zero times. The sequence \S* means any number of characters as long as they
are not whitespace characters. The preceding pattern will, therefore, match any single word that begins with
a and ends with ion.

The following table lists some of the main special characters or escape sequences that you can use. It is not
comprehensive, but a fuller list is available in the MSDN documentation.

SymBol dESCRiPTion ExAmPlE mATCHES

^ Beginning of input text ^B B, but only if first character in text

$ End of input text X$ X, but only if last character in text

. Any single character except
the newline character (\)

i.ation isation, ization

* Preceding character may be
repeated zero or more times

ra*t rt, rat, raat, raaat, and so on

+ Preceding character may be
repeated one or more times

ra+t rat, raat, raaat and so on, but not rt

? Preceding character may be
repeated zero or one time

ra?t rt and rat only

\s Any whitespace character \sa [space]a, \ta, \na (\t and \n have
the same meanings as in C#)

\S Any character that isn’t
whitespace

\SF aF, rF, cF, but not \tf

\b Word boundary ion\b Any word ending in ion

\B Any position that isn’t a word
boundary

\BX\B Any X in the middle of a word

c09.indd 224 30-01-2014 20:14:37

Regular Expressions ❘ 225

If you want to search for one of the meta-characters, you can do so by escaping the corresponding character
with a backslash. For example, . (a single period) means any single character other than the newline
character, whereas \. means a dot.

You can request a match that contains alternative characters by enclosing them in square brackets. For
example, [1|c] means one character that can be either 1 or c. If you wanted to search for any occurrence
of the words map or man, you would use the sequence ma[n|p]. Within the square brackets, you can also
indicate a range, for example [a-z], to indicate any single lowercase letter, [A-E] to indicate any uppercase
letter between A and E (including the letters A and E themselves), or [0–9] to represent a single digit. If you
wanted to search for an integer (that is, a sequence that contains only the characters 0 through 9), you could
write [0–9]+.

noTE The use of the + character specifies there must be at least one such digit, but
there may be more than one — so this would match 9, 83, 854, and so on.

displaying Results
In this section, you code the RegularExpressionsPlayaround example to get a feel for how regular
expressions work.

The core of the example is a method called WriteMatches(), which writes out all the matches from a
MatchCollection in a more detailed format. For each match, it displays the index of where the match was
found in the input string, the string of the match, and a slightly longer string, which consists of the match
plus up to 10 surrounding characters from the input text — up to five characters before the match and up to
five afterward. (It is fewer than five characters if the match occurred within five characters of the beginning
or end of the input text.) In other words, a match on the word messaging that occurs near the end of the
input text quoted earlier would display and messaging of d (five characters before and after the match),
but a match on the final word data would display g of data. (only one character after the match), because
after that you get to the end of the string. This longer string enables you to see more clearly where the
regular expression locates the match:

static void WriteMatches(string text, MatchCollection matches)
{
 Console.WriteLine("Original text was: \n\n" + text + "\n");
 Console.WriteLine("No. of matches: " + matches.Count);

 foreach (Match nextMatch in matches)
 {
 int index = nextMatch.Index;
 string result = nextMatch.ToString();
 int charsBefore = (index < 5) ? index: 5;
 int fromEnd = text.Length-index-result.Length;
 int charsAfter = (fromEnd < 5) ? fromEnd: 5;
 int charsToDisplay = charsBefore + charsAfter + result.Length;

 Console.WriteLine("Index: {0}, \tString: {1}, \t{2}",
 index, result, text.Substring(index-charsBefore, charsToDisplay));
 }
}

The bulk of the processing in this method is devoted to the logic of figuring out how many characters in the
longer substring it can display without overrunning the beginning or end of the input text. Note that you use
another property on the Match object, Value, which contains the string identified for the match. Other
than that, RegularExpressionsPlayaround simply contains a number of methods with names such as

c09.indd 225 30-01-2014 20:14:37

226 ❘ CHAPTER 9 StringS and regular expreSSionS

Find1, Find2, and so on, which perform some of the searches based on the examples in this section. For
example, Find2 looks for any string that contains a at the beginning of a word:

static void Find2()
{
 string text = @"This comprehensive compendium provides a broad and thorough
 investigation of all aspects of programming with ASP.NET. Entirely revised and
 updated for the 3.5 Release of .NET, this book will give you the information
 you need to master ASP.NET and build a dynamic, successful, enterprise Web
 application.";
 string pattern = @"\ba";
 MatchCollection matches = Regex.Matches(text, pattern,
 RegexOptions.IgnoreCase);
 WriteMatches(text, matches);
}

Along with this is a simple Main() method that you can edit to select one of the Find<n>() methods:

static void Main()
{
 Find1();
 Console.ReadLine();
}

The code also needs to make use of the RegularExpressions namespace:

using System;
using System.Text.RegularExpressions;

Running the example with the Find2() method shown previously gives these results:

RegularExpressionsPlayaround
Original text was:

This comprehensive compendium provides a broad and thorough investigation of all
aspects of programming with ASP.NET. Entirely revised and updated for the 3.5
Release of .NET, this book will give you the information you need to master ASP.NET
and build a dynamic, successful, enterprise Web application.

No. of matches: 1
Index: 291, String: application, Web application.

matches, groups, and Captures
One nice feature of regular expressions is that you can group characters. It works the same way as
compound statements in C#. In C#, you can group any number of statements by putting them in braces,
and the result is treated as one compound statement. In regular expression patterns, you can group any
characters (including meta-characters and escape sequences), and the result is treated as a single character.
The only difference is that you use parentheses instead of braces. The resultant sequence is known as a
group.

For example, the pattern (an)+ locates any recurrences of the sequence an. The + quantifier applies only to
the previous character, but because you have grouped the characters together, it now applies to repeats of
an treated as a unit. This means that if you apply (an)+ to the input text, bananas came to Europe late
in the annals of history, the anan from bananas is identified; however, if you write an+, the program
selects the ann from annals, as well as two separate sequences of an from bananas. The expression (an)+

c09.indd 226 30-01-2014 20:14:37

Regular Expressions ❘ 227

identifies occurrences of an, anan, ananan, and so on, whereas the expression an+ identifies occurrences of
an, ann, annn, and so on.

noTE You might be wondering why with the preceding example (an)+ selects anan
from the word “banana” but doesn’t identify either of the two occurrences of an from
the same word. The rule is that matches must not overlap. If a couple of possibilities
would overlap, then by default the longest possible sequence is matched.

However, groups are actually more powerful than that. By default, when you form part of the pattern into a
group, you are also asking the regular expression engine to remember any matches against just that group,
as well as any matches against the entire pattern. In other words, you are treating that group as a pattern to
be matched and returned in its own right. This can be extremely useful if you want to break up strings into
component parts.

For example, URIs have the format <protocol>://<address>:<port>, where the port is optional. An
example of this is http://www.wrox.com:4355. Suppose you want to extract the protocol, the address,
and the port from a URI in which there may or may not be whitespace (but no punctuation) immediately
following the URI. You could do so using this expression:

\b(\S+)://([^:]+)(?::(\S+))?\b

Here is how this expression works: First, the leading and trailing \b sequences ensure that you consider
only portions of text that are entire words. Within that, the first group, (\S+)://, identifies one or more
characters that don’t count as whitespace, and that are followed by:// — the http:// at the start of an
HTTP URI. The brackets cause the http to be stored as a group. Next, ([^:]+) identifies the string
www.wrox.com in the URI. This group will end either when it encounters the end of the word (the closing \b)
or a colon (:) as marked by the next group.

The next group identifies the port (:4355). The following ? indicates that this group is optional in the
match — if there is no: xxxx, this won’t prevent a match from being marked. This is very important because
the port number is not always specified in a URI — in fact, it is usually absent. However, things are a bit
more complicated than that. You want to indicate that the colon might or might not appear too, but you
don’t want to store this colon in the group. You achieved this by using two nested groups. The inner (\S+)
identifies anything that follows the colon (for example, 4355). The outer group contains the inner group
preceded by the colon, and this group in turn is preceded by the sequence ?:. This sequence indicates that
the group in question should not be saved (you only want to save 4355; you don’t need :4355 as well!). Don’t
be confused by the two colons following each other — the first colon is part of the ?: sequence that says
“don’t save this group,” and the second is text to be searched for.

If you run this pattern on the following string, you’ll get one match: http://www.wrox.com:

Hey I've just found this amazing URI at
http:// what was it --oh yes http://www.wrox.com

Within this match you will find the three groups just mentioned, as well as a fourth group that represents
the match itself. Theoretically, it is possible for each group itself to return no, one, or more than one match.
Each of these individual matches is known as a capture. Therefore, the first group, (\S+), has one capture,
http. The second group also has one capture (www.wrox.com). The third group, however, has no captures,
because there is no port number on this URI.

Notice that the string contains a second http://. Although this does match up to the first group, it will not
be captured by the search because the entire search expression does not match this part of the text.

There isn’t space here to show examples of C# code that uses groups and captures, but you should know that
the .NET RegularExpressions classes support groups and captures through classes known as Group and

c09.indd 227 30-01-2014 20:14:37

228 ❘ CHAPTER 9 StringS and regular expreSSionS

RegEx MatchCollection

Match

GroupCollection

Group

CaptureCollection

Capture

FiguRE 9-3

Capture. Also, the GroupCollection and CaptureCollection classes represent collections of
groups and captures, respectively. The Match class exposes the Groups property, which returns the
corresponding GroupCollection object. The Group class correspondingly implements the Captures
property, which returns a CaptureCollection. The relationship between the objects is shown in Figure 9-3.

You might not want to return a Group object every time you just want to group some characters. A fair
amount of overhead is involved in instantiating the object, which is not necessary if all you want to do
is group some characters as part of your search pattern. You can disable this by starting the group with
the character sequence ?: for an individual group, as was done for the URI example, or for all groups by
specifying the RegExOptions.ExplicitCaptures flag on the RegEx.Matches() method, as was done in
the earlier examples.

SummARy
You have quite a number of available data types at your disposal when working with the .NET Framework.
One of the most frequently used types in your applications (especially applications that focus on submitting
and retrieving data) is the string data type. The importance of string is the reason why this book has an
entire chapter that focuses on how to use the string data type and manipulate it in your applications.

When working with strings in the past, it was quite common to just slice and dice the strings as needed
using concatenation. With the .NET Framework, you can use the StringBuilder class to accomplish a lot
of this task with better performance than before.

Last, but hardly least, advanced string manipulation using regular expressions is an excellent tool to search
through and validate your strings.

c09.indd 228 30-01-2014 20:14:39

Collections
wHAT’s iN THis CHAPTER?

➤➤ Understanding collection interfaces and types
➤➤ Working with lists, queues, and stacks
➤➤ Working with linked and sorted lists
➤➤ Using dictionaries and sets
➤➤ Using bit arrays and bit vectors
➤➤ Using immutable and concurrent collections
➤➤ Evaluating performance

wROX.COM COdE dOwNlOAds fOR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ List Samples

➤➤ Queue Sample

➤➤ Linked List Sample

➤➤ Sorted List Sample

➤➤ Dictionary Sample

➤➤ Set Sample

➤➤ Observable Collection Sample

➤➤ BitArray Sample

➤➤ Immutable Collections Sample

➤➤ Pipeline Sample

10

c10.indd 229 30-01-2014 20:15:17

230 ❘ CHAPTER 10 ColleCtions

OvERviEw
In Chapter 6, “Arrays and Tuples,” you learned about arrays and the interfaces implemented by the Array
class. The size of arrays is fixed. If the number of elements is dynamic, you should use a collection class
instead of an array.

List<T> is a collection class that can be compared to arrays; but there are also other kinds of collections:
queues, stacks, linked lists, dictionaries, and sets. The other collection classes have partly different APIs
to access the elements in the collection and often a different internal structure for how the items are stored
in memory. This chapter covers all of these collection classes and their differences, including performance
differences.

You can also read about bit arrays and concurrent collections that can be used from multiple threads.

NOTE Version 1 of the .NET Framework included only non-generic collection
classes such as ArrayList and HashTable. CLR 2.0 added support for generics
and added generic collection classes. The focus of this chapter is just on the newer
group of collection classes and ignores the old ones, as they are not needed with
new applications.

 COllECTiON iNTERfACEs ANd TyPEs
Most collection classes can be found in the System.Collections and System.Collections.Generic
namespaces. Generic collection classes are located in the System.Collections.Generic namespace.
Collection classes that are specialized for a specific type are located in the System.Collections
.Specialized namespace. Thread-safe collection classes are in the System.Collections.Concurrent
namespace. Immutable collection classes are in the System.Collections.Immutable namespace.

Of course, there are also other ways to group collection classes. Collections can be grouped into lists, collec-
tions, and dictionaries based on the interfaces that are implemented by the collection class.

NOTE You can read detailed information about the interfaces IEnumerable and
IEnumerator in Chapter 6.

The following table describes interfaces implemented by collections and lists.

iNTERfACE dEsCRiPTiON

IEnumerable<T> The interface IEnumerable is required by the
foreach statement. This interface defines the method
GetEnumerator which returns an enumerator that
implements the IEnumerator interface.

ICollection<T> ICollection<T> is implemented by generic collection
classes. With this you can get the number of items in the
collection (Count property), and copy the collection to an
array (CopyTo method). You can also add and remove items
from the collection (Add, Remove, Clear).

c10.indd 230 30-01-2014 20:15:18

Lists ❘ 231

IList<T> The IList<T> interface is for lists where elements can
be accessed from their position. This interface defines an
indexer, as well as ways to insert or remove items from
specific positions (Insert, RemoveAt methods). IList<T>
derives from ICollection<T>.

ISet<T> This interface is implemented by sets. Sets allow combin-
ing different sets into a union, getting the intersection of
two sets, and checking whether two sets overlap. ISet<T>
derives from ICollection<T>.

IDictionary<TKey, TValue> The interface IDictionary<TKey, TValue> is implement-
ed by generic collection classes that have a key and a value.
With this interface all the keys and values can be accessed,
items can be accessed with an indexer of type key, and
items can be added or removed.

ILookup<TKey, TValue> Similar to the IDictionary<TKey, TValue> interface,
lookups have keys and values. However, with lookups the
collection can contain multiple values with one key.

IComparer<T> The interface IComparer<T> is implemented by a com-
parer and used to sort elements inside a collection with the
Compare method.

IEqualityComparer<T> IEqualityComparer<T> is implemented by a comparer
that can be used for keys in a dictionary. With this interface
the objects can be compared for equality. Since .NET 4, this
interface is also implemented by arrays and tuples.

IProducerConsumerCollection<T> The interface IProducerConsumerCollection<T> is
new since .NET 4 and supports new thread-safe collection
classes.

IReadOnlyCollection<T>
IReadOnlyList<T>
IReadOnlyDictionary<TKey, TValue>

The interfaces IReadOnlyCollection<T>,
IReadOnlyList<T>, and IReadOnlyDictionary<TKey,
TValue> are for collections that cannot be changed after
initialization. The members of these interfaces allow only
retrieving objects, but not adding or modifying them.

IImmutableArray<T>
IImmutableList<T>
IImmutableQueue<T>
IImmutableSet<T>
IImmutableDictionary<TKey, TValue>

The immutable interfaces define methods and properties for
immutable collections. These collections cannot be changed
after initialization.

lisTs
For resizable lists, the .NET Framework offers the generic class List<T>. This class implements the IList,
ICollection, IEnumerable, IList<T>, ICollection<T>, and IEnumerable<T> interfaces.

The following examples use the members of the class Racer as elements to be added to the collection to rep-
resent a Formula-1 racer. This class has five properties: Id, FirstName, LastName, Country, and the num-
ber of Wins. With the constructors of the class, the name of the racer and the number of wins can be passed
to set the members. The method ToString is overridden to return the name of the racer. The class Racer

c10.indd 231 30-01-2014 20:15:18

232 ❘ CHAPTER 10 ColleCtions

also implements the generic interface IComparable<T> for sorting racer elements and IFormattable (code
file ListSamples/Racer.cs):

 [Serializable]
 public class Racer: IComparable<Racer>, IFormattable
 {
 public int Id { get; private set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Country { get; set; }
 public int Wins { get; set; }
 public Racer(int id, string firstName, string lastName,
 string country)
 :this(id, firstName, lastName, country, wins: 0)
 { }

 public Racer(int id, string firstName, string lastName,
 string country, int wins)
 {
 this.Id = id;
 this.FirstName = firstName;
 this.LastName = lastName;
 this.Country = country;
 this.Wins = wins;
 }

 public override string ToString()
 {
 return String.Format("{0} {1}", FirstName, LastName);
 }

 public string ToString(string format, IFormatProvider formatProvider)
 {
 if (format == null) format = "N";
 switch (format.ToUpper())
 {
 case "N": // name
 return ToString();
 case "F": // first name
 return FirstName;
 case "L": // last name
 return LastName;
 case "W": // Wins
 return String.Format("{0}, Wins: {1}", ToString(), Wins);
 case "C": // Country
 return String.Format("{0}, Country: {1}", ToString(), Country);
 case "A": // All
 return String.Format("{0}, {1} Wins: {2}", ToString(), Country,
 Wins);
 default:
 throw new FormatException(String.Format(formatProvider,
 "Format {0} is not supported", format));
 }
 }

 public string ToString(string format)
 {

c10.indd 232 30-01-2014 20:15:18

Lists ❘ 233

 return ToString(format, null);
 }

 public int CompareTo(Racer other)
 {
 if (other == null) return -1;
 int compare = string.Compare(this.LastName, other.LastName);
 if (compare == 0)
 return string.Compare(this.FirstName, other.FirstName);
 return compare;
 }
 }

Creating lists
You can create list objects by invoking the default constructor. With the generic class List<T>, you must
specify the type for the values of the list with the declaration. The following code shows how to declare a
List<T> with int and a list with Racer elements. ArrayList is a non-generic list that accepts any Object
type for its elements.

Using the default constructor creates an empty list. As soon as elements are added to the list, the capacity of
the list is extended to allow four elements. If the fifth element is added, the list is resized to allow eight ele-
ments. If eight elements are not enough, the list is resized again to contain 16 elements. With every resize the
capacity of the list is doubled:

 var intList = new List<int>();
 var racers = new List<Racer>();

If the capacity of the list changes, the complete collection is reallocated to a new memory block. With
the implementation of List<T>, an array of type T is used. With reallocation, a new array is created, and
Array.Copy copies the elements from the old array to the new array. To save time, if you know the number
of elements in advance that should be in the list; you can define the capacity with the constructor. The fol-
lowing example creates a collection with a capacity of 10 elements. If the capacity is not large enough for the
elements added, the capacity is resized to 20 and then to 40 elements — doubled again:

 List<int> intList = new List<int>(10);

You can get and set the capacity of a collection by using the Capacity property:

 intList.Capacity = 20;

The capacity is not the same as the number of elements in the collection. The number of elements in the col-
lection can be read with the Count property. Of course, the capacity is always larger or equal to the number
of items. As long as no element was added to the list, the count is 0:

 Console.WriteLine(intList.Count);

If you are finished adding elements to the list and don’t want to add any more, you can get rid of the
unneeded capacity by invoking the TrimExcess method; however, because the relocation takes time,
TrimExcess has no effect if the item count is more than 90 percent of capacity:

 intList.TrimExcess();

Collection Initializers
You can also assign values to collections using collection initializers. The syntax of collection initializers is
similar to array initializers, explained in Chapter 6. With a collection initializer, values are assigned to the
collection within curly brackets at the time the collection is initialized:

 var intList = new List<int>() {1, 2};
 var stringList = new List<string>() {"one", "two"};

c10.indd 233 30-01-2014 20:15:18

234 ❘ CHAPTER 10 ColleCtions

NOTE Collection initializers are not reflected within the IL code of the compiled
assembly. The compiler converts the collection initializer to invoke the Add method for
every item from the initializer list.

Adding Elements
You can add elements to the list with the Add method, shown in the following example. The generic instanti-
ated type defines the parameter type of the Add method:

 var intList = new List<int>();
 intList.Add(1);
 intList.Add(2);

 var stringList = new List<string>();
 stringList.Add("one");
 stringList.Add("two");

The variable racers is defined as type List<Racer>. With the new operator, a new object of the same
type is created. Because the class List<T> was instantiated with the concrete class Racer, now only Racer
objects can be added with the Add method. In the following sample code, five Formula-1 racers are created
and added to the collection. The first three are added using the collection initializer, and the last two are
added by invoking the Add method explicitly (code file ListSamples/Program.cs):

 var graham = new Racer(7, "Graham", "Hill", "UK", 14);
 var emerson = new Racer(13, "Emerson", "Fittipaldi", "Brazil", 14);
 var mario = new Racer(16, "Mario", "Andretti", "USA", 12);

 var racers = new List<Racer>(20) {graham, emerson, mario};

 racers.Add(new Racer(24, "Michael", "Schumacher", "Germany", 91));
 racers.Add(new Racer(27, "Mika", "Hakkinen", "Finland", 20));

With the AddRange method of the List<T> class, you can add multiple elements to the collection at once.
The method AddRange accepts an object of type IEnumerable<T>, so you can also pass an array as shown
here:

 racers.AddRange(new Racer[] {
 new Racer(14, "Niki", "Lauda", "Austria", 25),
 new Racer(21, "Alain", "Prost", "France", 51)});

NOTE The collection initializer can be used only during declaration of the collection.
The AddRange method can be invoked after the collection is initialized. In case you get
the data dynamically after creating the collection, you need to invoke AddRange.

If you know some elements of the collection when instantiating the list, you can also pass any object that
implements IEnumerable<T> to the constructor of the class. This is very similar to the AddRange method:

 var racers = new List<Racer>(
 new Racer[] {
 new Racer(12, "Jochen", "Rindt", "Austria", 6),
 new Racer(22, "Ayrton", "Senna", "Brazil", 41) });

Inserting Elements
You can insert elements at a specified position with the Insert method:

 racers.Insert(3, new Racer(6, "Phil", "Hill", "USA", 3));

c10.indd 234 30-01-2014 20:15:18

Lists ❘ 235

The method InsertRange offers the capability to insert a number of elements, similar to the AddRange
method shown earlier.

If the index set is larger than the number of elements in the collection, an exception of type
ArgumentOutOfRangeException is thrown.

Accessing Elements
All classes that implement the IList and IList<T> interface offer an indexer, so you can access the ele-
ments by using an indexer and passing the item number. The first item can be accessed with an index value
0. By specifying racers[3], for example, you access the fourth element of the list:

 Racer r1 = racers[3];

Getting the number of elements with the Count property, you can do a for loop to iterate through every
item in the collection, and use the indexer to access every item:

 for (int i = 0; i < racers.Count; i++)
 {
 Console.WriteLine(racers[i]);
 }

NOTE Indexed access to collection classes is available with ArrayList,
StringCollection, and List<T>.

Because List<T> implements the interface IEnumerable, you can iterate through the items in the collection
using the foreach statement as well:

 foreach (Racer r in racers)
 {
 Console.WriteLine(r);
 }

NOTE How the foreach statement is resolved by the compiler to make use of the
IEnumerable and IEnumerator interfaces, is explained in Chapter 6.

Instead of using the foreach statement, the List<T> class also offers a ForEach method that is declared
with an Action<T> parameter:

public void ForEach(Action<T> action);

The implementation of ForEach is shown next. ForEach iterates through every item of the collection and
invokes the method that is passed as a parameter for every item:

public class List<T>: IList<T>
{
 private T[] items;

 //...

 public void ForEach(Action<T> action)
 {
 if (action == null) throw new ArgumentNullException("action");

 foreach (T item in items)
 {

c10.indd 235 30-01-2014 20:15:19

236 ❘ CHAPTER 10 ColleCtions

 action(item);
 }
 }
 //...
}

To pass a method with ForEach, Action<T> is declared as a delegate that defines a method with a void
return type and parameter T:

public delegate void Action<T>(T obj);

With a list of Racer items, the handler for the ForEach method must be declared with a Racer object as a
parameter and a void return type:

public void ActionHandler(Racer obj);

Because one overload of the Console.WriteLine method accepts Object as a parameter, you can pass the
address of this method to the ForEach method, and every racer of the collection is written to the console:

 racers.ForEach(Console.WriteLine);

You can also write a lambda expression that accepts a Racer object as a parameter and contains an imple-
mentation to write a string to the console using Console.WriteLine. Here, the format A is used with the
ToString method of the IFormattable interface to display all information about the racer:

 racers.ForEach(r => Console.WriteLine("{0:A}", r));

NOTE Lambda expressions are explained in Chapter 8, “Delegates, Lambdas, and
Events.”

Removing Elements
You can remove elements by index or pass the item that should be removed. Here, the fourth element is
removed from the collection:

 racers.RemoveAt(3);

You can also directly pass a Racer object to the Remove method to remove this element. Removing by index
is faster, because here the collection must be searched for the item to remove. The Remove method first
searches in the collection to get the index of the item with the IndexOf method, and then uses the index to
remove the item. IndexOf first checks if the item type implements the interface IEquatable<T>. If it does,
the Equals method of this interface is invoked to find the item in the collection that is the same as the one
passed to the method. If this interface is not implemented, the Equals method of the Object class is used
to compare the items. The default implementation of the Equals method in the Object class does a bitwise
comparison with value types, but compares only references with reference types.

NOTE Chapter 7, “Operators and Casts,” explains how you can override the Equals
method.

In the following example, the racer referenced by the variable graham is removed from the collection. The
variable graham was created earlier when the collection was filled. Because the interface IEquatable<T>
and the Object.Equals method are not overridden with the Racer class, you cannot create a new object
with the same content as the item that should be removed and pass it to the Remove method:

 if (!racers.Remove(graham))
 {
 Console.WriteLine("object not found in collection");
 }

c10.indd 236 30-01-2014 20:15:19

Lists ❘ 237

The method RemoveRange removes a number of items from the collection. The first parameter specifies the
index where the removal of items should begin; the second parameter specifies the number of items to be
removed:

 int index = 3;
 int count = 5;
 racers.RemoveRange(index, count);

To remove all items with some specific characteristics from the collection, you can use the RemoveAll
method. This method uses the Predicate<T> parameter when searching for elements, which is discussed
next. To remove all elements from the collection, use the Clear method defined with the ICollection<T>
interface.

Searching
There are different ways to search for elements in the collection. You can get the index to the found item, or
the item itself. You can use methods such as IndexOf, LastIndexOf, FindIndex, FindLastIndex, Find,
and FindLast. To just check whether an item exists, the List<T> class offers the Exists method.

The method IndexOf requires an object as a parameter and returns the index of the item if it is found inside
the collection. If the item is not found, –1 is returned. Remember that IndexOf is using the IEquatable<T>
interface to compare the elements:

 int index1 = racers.IndexOf(mario);

With the IndexOf method, you can also specify that the complete collection should not be searched, instead
specifying an index where the search should start and the number of elements that should be iterated for the
comparison.

Instead of searching a specific item with the IndexOf method, you can search for an item that has some
specific characteristics that you can define with the FindIndex method. FindIndex requires a parameter of
type Predicate:

public int FindIndex(Predicate<T> match);

The Predicate<T> type is a delegate that returns a Boolean value and requires type T as a parameter. This
delegate can be used similarly to the Action delegate shown earlier with the ForEach method. If the predi-
cate returns true, there’s a match and the element is found. If it returns false, the element is not found and
the search continues:

public delegate bool Predicate<T>(T obj);

With the List<T> class that is using Racer objects for type T, you can pass the address of a method that
returns a bool and defines a parameter of type Racer to the FindIndex method. Finding the first racer of a
specific country, you can create the FindCountry class as shown next. The FindCountryPredicate method
has the signature and return type defined by the Predicate<T> delegate. The Find method uses the variable
country to search for a country that you can pass with the constructor of the class:

 public class FindCountry
 {
 public FindCountry(string country)
 {
 this.country = country;
 }
 private string country;

 public bool FindCountryPredicate(Racer racer)
 {
 Contract.Requires<ArgumentNullException>(racer != null);

 return racer.Country == country;
 }
 }

c10.indd 237 30-01-2014 20:15:19

238 ❘ CHAPTER 10 ColleCtions

With the FindIndex method, you can create a new instance of the FindCountry class, pass a country string
to the constructor, and pass the address of the Find method. In the following example, after FindIndex
completes successfully, index2 contains the index of the first item where the Country property of the racer
is set to Finland:

 int index2 = racers.FindIndex(new FindCountry("Finland").
 FindCountryPredicate);

Instead of creating a class with a handler method, you can use a lambda expression here as well. The result
is exactly the same as before. Now the lambda expression defines the implementation to search for an item
where the Country property is set to Finland:

 int index3 = racers.FindIndex(r => r.Country == "Finland");

Similar to the IndexOf method, with the FindIndex method you can also specify the index where the
search should start and the count of items that should be iterated through. To do a search for an index
beginning from the last element in the collection, you can use the FindLastIndex method.

The method FindIndex returns the index of the found item. Instead of getting the index, you can also go
directly to the item in the collection. The Find method requires a parameter of type Predicate<T>, much
as the FindIndex method. The Find method in the following example searches for the first racer in the list
that has the FirstName property set to Niki. Of course, you can also do a FindLast search to find the last
item that fulfills the predicate:

 Racer racer = racers.Find(r => r.FirstName == "Niki");

To get not only one, but all the items that fulfill the requirements of a predicate, you can use the FindAll
method. The FindAll method uses the same Predicate<T> delegate as the Find and FindIndex methods.
The FindAll method does not stop when the first item is found but instead iterates through every item in
the collection and returns all items for which the predicate returns true.

With the FindAll method invoked in the next example, all racer items are returned where the property
Wins is set to more than 20. All racers who won more than 20 races are referenced from the bigWinners
list:

 List<Racer> bigWinners = racers.FindAll(r => r.Wins > 20);

Iterating through the variable bigWinners with a foreach statement gives the following result:

 foreach (Racer r in bigWinners)
 {
 Console.WriteLine("{0:A}", r);
 }

Michael Schumacher, Germany Wins: 91
Niki Lauda, Austria Wins: 25
Alain Prost, France Wins: 51

The result is not sorted, but you’ll see that done next.

Sorting
The List<T> class enables sorting its elements by using the Sort method. Sort uses the quick sort algo-
rithm whereby all elements are compared until the complete list is sorted.

You can use several overloads of the Sort method. The arguments that can be passed are a generic del-
egate Comparison<T>, the generic interface IComparer<T>, and a range together with the generic interface
IComparer<T>:

public void List<T>.Sort();
public void List<T>.Sort(Comparison<T>);
public void List<T>.Sort(IComparer<T>);
public void List<T>.Sort(Int32, Int32, IComparer<T>);

c10.indd 238 30-01-2014 20:15:19

Lists ❘ 239

Using the Sort method without arguments is possible only if the elements in the collection implement the
interface IComparable.

Here, the class Racer implements the interface IComparable<T> to sort racers by last name:

 racers.Sort();
 racers.ForEach(Console.WriteLine);

If you need to do a sort other than the default supported by the item types, you need to use other techniques,
such as passing an object that implements the IComparer<T> interface.

The class RacerComparer implements the interface IComparer<T> for Racer types. This class enables you
to sort by either the first name, last name, country, or number of wins. The kind of sort that should be done
is defined with the inner enumeration type CompareType. The CompareType is set with the constructor of
the class RacerComparer. The interface IComparer<Racer> defines the method Compare, which is required
for sorting. In the implementation of this method, the Compare and CompareTo methods of the string and
int types are used (code file ListSamples/RacerComparer.cs):

 public class RacerComparer: IComparer<Racer>
 {
 public enum CompareType
 {
 FirstName,
 LastName,
 Country,
 Wins
 }

 private CompareType compareType;
 public RacerComparer(CompareType compareType)
 {
 this.compareType = compareType;
 }

 public int Compare(Racer x, Racer y)
 {
 if (x == null && y == null) return 0;
 if (x == null) return -1;
 if (y == null) return 1;
 int result;
 switch (compareType)
 {
 case CompareType.FirstName:
 return string.Compare(x.FirstName, y.FirstName);
 case CompareType.LastName:
 return string.Compare(x.LastName, y.LastName);
 case CompareType.Country:
 result = string.Compare(x.Country, y.Country);
 if (result == 0)
 return string.Compare(x.LastName, y.LastName);
 else
 return result;
 case CompareType.Wins:
 return x.Wins.CompareTo(y.Wins);
 default:
 throw new ArgumentException("Invalid Compare Type");
 }
 }
 }

c10.indd 239 30-01-2014 20:15:19

240 ❘ CHAPTER 10 ColleCtions

NOTE The Compare method returns 0 if the two elements passed to it are equal with
the order. If a value less than 0 is returned, the first argument is less than the second.
With a value larger than 0, the first argument is greater than the second. Passing null
with an argument, the method shouldn’t throw a NullReferenceException. Instead,
null should take its place before any other element, thus –1 is returned if the first argu-
ment is null, and +1 if the second argument is null.

An instance of the RacerComparer class can now be used with the Sort method. Passing the enumeration
RacerComparer.CompareType.Country sorts the collection by the property Country:

 racers.Sort(new RacerComparer(RacerComparer.CompareType.Country));
 racers.ForEach(Console.WriteLine);

Another way to do the sort is by using the overloaded Sort method, which requires a Comparison<T>
delegate:

public void List<T>.Sort(Comparison<T>);

Comparison<T> is a delegate to a method that has two parameters of type T and a return type int. If the
parameter values are equal, the method must return 0. If the first parameter is less than the second, a value
less than zero must be returned; otherwise, a value greater than zero is returned:

public delegate int Comparison<T>(T x, T y);

Now you can pass a lambda expression to the Sort method to do a sort by the number of wins. The two
parameters are of type Racer, and in the implementation the Wins properties are compared by using the int
method CompareTo. Also in the implementation, r2 and r1 are used in reverse order, so the number of wins
is sorted in descending order. After the method has been invoked, the complete racer list is sorted based on
the racer’s number of wins:

 racers.Sort((r1, r2) => r2.Wins.CompareTo(r1.Wins));

You can also reverse the order of a complete collection by invoking the Reverse method.

Type Conversion
With the List<T> method ConvertAll<TOutput>, all types of a collection can be converted to a different
type. The ConvertAll<TOutput> method uses a Converter delegate that is defined like this:

public sealed delegate TOutput Converter<TInput, TOutput>(TInput from);

The generic types TInput and TOutput are used with the conversion. TInput is the argument of the delegate
method, and TOutput is the return type.

In this example, all Racer types should be converted to Person types. Whereas the Racer type contains a
firstName, lastName, country, and the number of wins, the Person type contains just a name. For the
conversion, the country of the racer and the number of race wins can be ignored, but the name must be
converted:

 [Serializable]
 public class Person
 {
 private string name;

 public Person(string name)
 {
 this.name = name;
 }

 public override string ToString()

c10.indd 240 30-01-2014 20:15:19

Queues ❘ 241

 {
 return name;
 }
 }

The conversion happens by invoking the racers.ConvertAll<Person> method. The argument of this
method is defined as a lambda expression with an argument of type Racer and a Person type that is
returned. In the implementation of the lambda expression, a new Person object is created and returned. For
the Person object, the FirstName and LastName are passed to the constructor:

 List<Person> persons =
 racers.ConvertAll<Person>(
 r => new Person(r.FirstName + " " + r.LastName));

The result of the conversion is a list containing the converted Person objects: persons of type
List<Person>.

Read-only Collections
After collections are created they are read/write of course; otherwise, you couldn’t fill them with any
values. However, after the collection is filled, you can create a read-only collection. The List<T> col-
lection has the method AsReadOnly that returns an object of type ReadOnlyCollection<T>. The
class ReadOnlyCollection<T> implements the same interfaces as List<T>, but all methods and
properties that change the collection throw a NotSupportedException. Besides the interfaces of
List<T>, ReadOnlyCollection<T> also implements the interfaces IReadOnlyCollection<T> and
IReadOnlyList<T>. With the members of these interfaces, the collection cannot be changed.

QuEuEs
A queue is a collection whose elements are processed first in, first out (FIFO), meaning the item that is put
first in the queue is read first. Examples of queues are standing in line at the airport, a human resources
queue to process employee applicants, print jobs waiting to be processed in a print queue, and a thread wait-
ing for the CPU in a round-robin fashion. Sometimes the elements of a queue differ in their priority. For
example, in the queue at the airport, business passengers are processed before economy passengers. In this
case, multiple queues can be used, one queue for each priority. At the airport this is easily handled with sep-
arate check-in queues for business and economy passengers. The same is true for print queues and threads.
You can have an array or a list of queues whereby one item in the array stands for a priority. Within every
array item there’s a queue, where processing happens using the FIFO principle.

NOTE Later in this chapter, a different implementation with a linked list is used to
define a list of priorities.

A queue is implemented with the Queue<T> class in the namespace System.Collections.Generic.
Internally, the Queue<T> class is using an array of type T, similar to the List<T> type. It implements the
interfaces IEnumerable<T> and ICollection; but not ICollection<T>, which is not implemented because
this interface defines Add and Remove methods that shouldn’t be available for queues.

The Queue<T> class does not implement the interface IList<T>, so you cannot access the queue using
an indexer. The queue just allows you to add an item to it, which is put at the end of the queue (with the
Enqueue method), and to get items from the head of the queue (with the Dequeue method).

Figure 10-1 shows the items of a queue. The Enqueue method adds items to one end of the queue; the
items are read and removed at the other end of the queue with the Dequeue method. Invoking the Dequeue
method once more removes the next item from the queue.

c10.indd 241 30-01-2014 20:15:20

242 ❘ CHAPTER 10 ColleCtions

Methods of the Queue<T> class are described in the following table.

sElECTEd QuEuE <T> MEMbERs dEsCRiPTiON

Count Returns the number of items in the queue.

Enqueue Adds an item to the end of the queue.

Dequeue Reads and removes an item from the head of the queue. If there are no
more items in the queue when the Dequeue method is invoked, an excep-
tion of type InvalidOperationException is thrown.

Peek Reads an item from the head of the queue but does not remove the item.

TrimExcess Resizes the capacity of the queue. The Dequeue method removes items
from the queue, but it doesn’t resize the capacity of the queue. To get rid
of the empty items at the beginning of the queue, use the TrimExcess
method.

When creating queues, you can use constructors similar to those used with the List<T> type. The default
constructor creates an empty queue, but you can also use a constructor to specify the capacity. As items are
added to the queue, the capacity is increased to hold 4, 8, 16, and 32 items if the capacity is not defined.
Similar to the List<T> class, the capacity is always doubled as required. The default constructor of the non-
generic Queue class is different, because it creates an initial array of 32 empty items. With an overload of the
constructor, you can also pass any other collection that implements the IEnumerable<T> interface that is
copied to the queue.

The following example demonstrating the use of the Queue<T> class is a document management application.
One thread is used to add documents to the queue, and another thread reads documents from the queue and
processes them.

The items stored in the queue are of type Document. The Document class defines a title and content (code file
QueueSample/Document.cs):

 public class Document
 {
 public string Title { get; private set; }
 public string Content { get; private set; }

 public Document(string title, string content)
 {
 this.Title = title;
 this.Content = content;
 }
 }

The DocumentManager class is a thin layer around the Queue<T> class. It defines how to handle documents:
adding documents to the queue with the AddDocument method, and getting documents from the queue with
the GetDocument method.

fiGuRE 10-1

Enqueue Dequeue

c10.indd 242 30-01-2014 20:15:21

Queues ❘ 243

Inside the AddDocument method, the document is added to the end of the queue using the Enqueue method.
The first document from the queue is read with the Dequeue method inside GetDocument. Because mul-
tiple threads can access the DocumentManager concurrently, access to the queue is locked with the lock
statement.

NOTE Threading and the lock statement are discussed in Chapter 21, “Tasks,
Threads, and Synchronization.”

IsDocumentAvailable is a read-only Boolean property that returns true if there are documents in the
queue, and false if not (code file QueueSample/DocumentManager.cs):

 public class DocumentManager
 {
 private readonly Queue<Document> documentQueue = new Queue<Document>();

 public void AddDocument(Document doc)
 {
 lock (this)
 {
 documentQueue.Enqueue(doc);
 }
 }

 public Document GetDocument()
 {
 Document doc = null;
 lock (this)
 {
 doc = documentQueue.Dequeue();
 }
 return doc;
 }

 public bool IsDocumentAvailable
 {
 get
 {
 return documentQueue.Count > 0;
 }
 }
 }

The class ProcessDocuments processes documents from the queue in a separate task. The only method
that can be accessed from the outside is Start. In the Start method, a new task is instantiated.
A ProcessDocuments object is created to starting the task, and the Run method is defined as the start
method of the task. The StartNew method of the TaskFactory (which is accessed from the static Factory
property of the Task class) requires a delegate Action parameter where the address of the Run method can
be passed to. The StartNew method of the TaskFactory immediately starts the task.

With the Run method of the ProcessDocuments class, an endless loop is defined. Within this loop, the prop-
erty IsDocumentAvailable is used to determine whether there is a document in the queue. If so, the docu-
ment is taken from the DocumentManager and processed. Processing in this example is writing information

c10.indd 243 30-01-2014 20:15:21

244 ❘ CHAPTER 10 ColleCtions

only to the console. In a real application, the document could be written to a file, written to the database, or
sent across the network (code file QueueSample/ProcessDocuments.cs):

 public class ProcessDocuments
 {
 public static void Start(DocumentManager dm)
 {
 Task.Factory.StartNew(new ProcessDocuments(dm).Run);
 }

 protected ProcessDocuments(DocumentManager dm)
 {
 if (dm == null)
 throw new ArgumentNullException("dm");
 documentManager = dm;
 }

 private DocumentManager documentManager;

 protected void Run()
 {
 while (true)
 {
 if (documentManager.IsDocumentAvailable)
 {
 Document doc = documentManager.GetDocument();
 Console.WriteLine("Processing document {0}", doc.Title);
 }
 Thread.Sleep(new Random().Next(20));
 }
 }
 }

In the Main method of the application, a DocumentManager object is instantiated, and the document
processing task is started. Then 1,000 documents are created and added to the DocumentManager (code file
QueueSample/Program.cs):

 class Program
 {
 static void Main()
 {
 var dm = new DocumentManager();

 ProcessDocuments.Start(dm);

 // Create documents and add them to the DocumentManager
 for (int i = 0; i < 1000; i++)
 {
 var doc = new Document("Doc " + i.ToString(), "content");
 dm.AddDocument(doc);
 Console.WriteLine("Added document {0}", doc.Title);
 Thread.Sleep(new Random().Next(20));
 }
 }
 }

When you start the application, the documents are added to and removed from the queue, and you get out-
put similar to the following:

Added document Doc 279
Processing document Doc 236
Added document Doc 280

c10.indd 244 30-01-2014 20:15:21

Stacks ❘ 245

Processing document Doc 237
Added document Doc 281
Processing document Doc 238
Processing document Doc 239
Processing document Doc 240
Processing document Doc 241
Added document Doc 282
Processing document Doc 242
Added document Doc 283
Processing document Doc 243

A real-life scenario using the task described with the sample application
might be an application that processes documents received with a web
service.

sTACks
A stack is another container that is very similar to the queue. You just use
different methods to access the stack. The item that is added last to the stack
is read first, so the stack is a last in, first out (LIFO) container.

Figure 10-2 shows the representation of a stack where the Push method adds
an item to the stack, and the Pop method gets the item that was added last.

Similar to the Queue<T> class, the Stack<T> class implements the interfaces IEnumerable<T> and
ICollection.

Members of the Stack<T> class are listed in the following table.

sElECTEd sTACk<T> MEMbERs dEsCRiPTiON

Count Returns the number of items in the stack.

Push Adds an item on top of the stack.

Pop Removes and returns an item from the top of the stack. If the stack is
empty, an exception of type InvalidOperationException is thrown.

Peek Returns an item from the top of the stack but does not remove the item.

Contains Checks whether an item is in the stack and returns true if it is.

In this example, three items are added to the stack with the Push method. With the foreach method, all
items are iterated using the IEnumerable interface. The enumerator of the stack does not remove the items;
it just returns them item by item (code file StackSample/Program.cs):

 var alphabet = new Stack<char>();
 alphabet.Push('A');
 alphabet.Push('B');
 alphabet.Push('C');

 foreach (char item in alphabet)
 {
 Console.Write(item);
 }
 Console.WriteLine();

fiGuRE 10-2

Push Pop

c10.indd 245 30-01-2014 20:15:23

246 ❘ CHAPTER 10 ColleCtions

Because the items are read in order from the last item added to the first, the following result is produced:

CBA

Reading the items with the enumerator does not change the state of the items. With the Pop method, every
item that is read is also removed from the stack. This way, you can iterate the collection using a while loop
and verify the Count property if items still exist:

 var alphabet = new Stack<char>();
 alphabet.Push('A');
 alphabet.Push('B');
 alphabet.Push('C');

 Console.Write("First iteration: ");
 foreach (char item in alphabet)
 {
 Console.Write(item);
 }
 Console.WriteLine();

 Console.Write("Second iteration: ");
 while (alphabet.Count > 0)
 {
 Console.Write(alphabet.Pop());
 }
 Console.WriteLine();

The result gives CBA twice, once for each iteration. After the second iteration, the stack is empty because
the second iteration used the Pop method:

First iteration: CBA
Second iteration: CBA

liNkEd lisTs
LinkedList<T> is a doubly linked list, whereby one element references the next and the previous one, as
shown in Figure 10-3. This way you can easily walk through the complete list forward by moving to the
next element, or backward by moving to the previous element.

Value

Next

Previous

Value

Next

Previous

Value

Next

Previous

Value

Next

Previous

fiGuRE 10-3

The advantage of a linked list is that if items are inserted anywhere in the list, the linked list is very fast.
When an item is inserted, only the Next reference of the previous item and the Previous reference of the
next item must be changed to reference the inserted item. With the List<T> class, when an element is
inserted all subsequent elements must be moved.

Of course, there’s also a disadvantage with linked lists. Items of linked lists can be accessed only one after
the other. It takes a long time to find an item that’s somewhere in the middle or at the end of the list.

c10.indd 246 30-01-2014 20:15:24

Linked Lists ❘ 247

A linked list cannot just store the items inside the list; together with every item, the linked list must have
information about the next and previous items. That’s why the LinkedList<T> contains items of type
LinkedListNode<T>. With the class LinkedListNode<T>, you can get to the next and previous items in
the list. The LinkedListNode<T> class defines the properties List, Next, Previous, and Value. The List
property returns the LinkedList<T> object that is associated with the node. Next and Previous are for
iterating through the list and accessing the next or previous item. Value returns the item that is associated
with the node. Value is of type T.

The LinkedList<T> class itself defines members to access the first (First) and last (Last) item of the list, to
insert items at specific positions (AddAfter, AddBefore, AddFirst, AddLast), to remove items from specific
positions (Remove, RemoveFirst, RemoveLast), and to find elements where the search starts from either the
beginning (Find) or the end (FindLast) of the list.

The sample application to demonstrate linked lists uses a linked list together with a list. The linked list
contains documents as in the queue example, but the documents have an additional priority associated with
them. The documents will be sorted inside the linked list depending on the priority. If multiple documents
have the same priority, the elements are sorted according to the time when the document was inserted.

Figure 10-4 describes the collections of the sample application. LinkedList<Document> is the linked list
containing all the Document objects. The figure shows the title and priority of the documents. The title
indicates when the document was added to the list: The first document added has the title "One", the second
document has the title "Two", and so on. You can see that the documents One and Four have the same prior-
ity, 8, but because One was added before Four, it is earlier in the list.

When new documents are added to the linked list, they should be added after the last docu-
ment that has the same priority. The LinkedList<Document> collection contains elements of type
LinkedListNode<Document>. The class LinkedListNode<T> adds Next and Previous
properties to walk from one node to the next. For referencing such elements, the List<T> is defined as
List<LinkedListNode<Document>>. For fast access to the last document of every priority, the
collection List<LinkedListNode> contains up to 10 elements, each referencing the last document of every
priority. In the upcoming discussion, the reference to the last document of every priority is called the
priority node.

Using the previous example, the Document class is extended to contain the priority, which is set with the
constructor of the class (code file LinkedListSample/Document.cs):

 public class Document
 {
 public string Title { get; private set; }
 public string Content { get; private set; }
 public byte Priority { get; private set; }

 public Document(string title, string content, byte priority)
 {
 this.Title = title;
 this.Content = content;
 this.Priority = priority;
 }
 }

The heart of the solution is the PriorityDocumentManager class. This class is very easy to use. With the
public interface of this class, new Document elements can be added to the linked list, the first document can
be retrieved, and for testing purposes it also has a method to display all elements of the collection as they
are linked in the list.

The class PriorityDocumentManager contains two collections. The collection of type
LinkedList<Document> contains all documents. The collection of type List<LinkedListNode<Document>>
contains references of up to 10 elements that are entry points for adding new documents with a specific priority.

c10.indd 247 30-01-2014 20:15:25

248 ❘ CHAPTER 10 ColleCtions

Both collection variables are initialized with the constructor of the class PriorityDocumentManager. The list
collection is also initialized with null (code file LinkedListSample/PriorityDocumentManager.cs):

 public class PriorityDocumentManager
 {
 private readonly LinkedList<Document> documentList;

 // priorities 0.9
 private readonly List<LinkedListNode<Document>> priorityNodes;

 public PriorityDocumentManager()
 {
 documentList = new LinkedList<Document>();

 priorityNodes = new List<LinkedListNode<Document>>(10);
 for (int i = 0; i < 10; i++)
 {
 priorityNodes.Add(new LinkedListNode<Document>(null));
 }
 }

fiGuRE 10-4

LinkedList<Document>

Six

9

9

8

7

6

5

4

3

2

1

0

One

8

Four

8

Three

4

Two

3

Five

1

Seven

1

Eight

1

List<LinkedListNode<Document>>

c10.indd 248 30-01-2014 20:15:26

Linked Lists ❘ 249

Part of the public interface of the class is the method AddDocument. AddDocument does nothing more than
call the private method AddDocumentToPriorityNode. The reason for having the implementation inside a
different method is that AddDocumentToPriorityNode may be called recursively, as you will see soon:

 public void AddDocument(Document d)
 {
 if (d == null) throw new ArgumentNullException("d");

 AddDocumentToPriorityNode(d, d.Priority);
 }

The first action that is done in the implementation of AddDocumentToPriorityNode is a check to see if the
priority fits in the allowed priority range. Here, the allowed range is between 0 and 9. If a wrong value is
passed, an exception of type ArgumentException is thrown.

Next, you check whether there’s already a priority node with the same priority as the priority that was
passed. If there’s no such priority node in the list collection, AddDocumentToPriorityNode is invoked
recursively with the priority value decremented to check for a priority node with the next lower priority.

If there’s no priority node with the same priority or any priority with a lower value, the document can be
safely added to the end of the linked list by calling the method AddLast. In addition, the linked list node is
referenced by the priority node that’s responsible for the priority of the document.

If there’s an existing priority node, you can get the position inside the linked list where the document should
be inserted. In the following example, you must determine whether a priority node already exists with the
correct priority, or if there’s just a priority node that references a document with a lower priority. In the first
case, you can insert the new document after the position referenced by the priority node. Because the prior-
ity node always must reference the last document with a specific priority, the reference of the priority node
must be set. It gets more complex if only a priority node referencing a document with a lower priority exists.
Here, the document must be inserted before all documents with the same priority as the priority node. To
get the first document of the same priority, a while loop iterates through all linked list nodes, using the
Previous property, until a linked list node is reached that has a different priority. This way, you know the
position where the document must be inserted, and the priority node can be set:

 private void AddDocumentToPriorityNode(Document doc, int priority)
 {
 if (priority > 9 || priority < 0)
 throw new ArgumentException("Priority must be between 0 and 9");

 if (priorityNodes[priority].Value == null)
 {
 ––priority;
 if (priority >= 0)
 {
 // check for the next lower priority
 AddDocumentToPriorityNode(doc, priority);
 }
 else // now no priority node exists with the same priority or lower
 // add the new document to the end
 {
 documentList.AddLast(doc);
 priorityNodes[doc.Priority] = documentList.Last;
 }
 return;
 }
 else // a priority node exists
 {
 LinkedListNode<Document> prioNode = priorityNodes[priority];
 if (priority == doc.Priority)
 // priority node with the same priority exists
 {

c10.indd 249 30-01-2014 20:15:26

250 ❘ CHAPTER 10 ColleCtions

 documentList.AddAfter(prioNode, doc);

 // set the priority node to the last document with the same priority
 priorityNodes[doc.Priority] = prioNode.Next;
 }
 else // only priority node with a lower priority exists
 {
 // get the first node of the lower priority
 LinkedListNode<Document> firstPrioNode = prioNode;

 while (firstPrioNode.Previous != null &&
 firstPrioNode.Previous.Value.Priority == prioNode.Value.Priority)
 {
 firstPrioNode = prioNode.Previous;
 prioNode = firstPrioNode;
 }

 documentList.AddBefore(firstPrioNode, doc);

 // set the priority node to the new value
 priorityNodes[doc.Priority] = firstPrioNode.Previous;
 }
 }
 }

Now only simple methods are left for discussion. DisplayAllNodes does a foreach loop to display the pri-
ority and the title of every document to the console.

The method GetDocument returns the first document (the document with the highest priority) from the
linked list and removes it from the list:

 public void DisplayAllNodes()
 {
 foreach (Document doc in documentList)
 {
 Console.WriteLine("priority: {0}, title {1}", doc.Priority, doc.Title);
 }
 }

 // returns the document with the highest priority
 // (that's first in the linked list)
 public Document GetDocument()
 {
 Document doc = documentList.First.Value;
 documentList.RemoveFirst();
 return doc;
 }
 }

In the Main method, the PriorityDocumentManager is used to demonstrate its functionality. Eight new
documents with different priorities are added to the linked list, and then the complete list is displayed (code
file LinkedListSample/Program.cs):

 static void Main()
 {
 var pdm = new PriorityDocumentManager();
 pdm.AddDocument(new Document("one", "Sample", 8));
 pdm.AddDocument(new Document("two", "Sample", 3));
 pdm.AddDocument(new Document("three", "Sample", 4));
 pdm.AddDocument(new Document("four", "Sample", 8));
 pdm.AddDocument(new Document("five", "Sample", 1));
 pdm.AddDocument(new Document("six", "Sample", 9));

c10.indd 250 30-01-2014 20:15:26

Sorted List ❘ 251

 pdm.AddDocument(new Document("seven", "Sample", 1));
 pdm.AddDocument(new Document("eight", "Sample", 1));

 pdm.DisplayAllNodes();
 }

With the processed result, you can see that the documents are sorted first by priority and second by when
the document was added:

priority: 9, title six
priority: 8, title one
priority: 8, title four
priority: 4, title three
priority: 3, title two
priority: 1, title five
priority: 1, title seven
priority: 1, title eight

sORTEd lisT
If the collection you need should be sorted based on a key, you can use the SortedList<TKey, TValue>.
This class sorts the elements based on a key. You can use any type for the value, and also for the key.

The following example creates a sorted list for which both the key and the value are of type string. The
default constructor creates an empty list, and then two books are added with the Add method. With over-
loaded constructors, you can define the capacity of the list and pass an object that implements the interface
IComparer<TKey>, which is used to sort the elements in the list.

The first parameter of the Add method is the key (the book title); the second parameter is the value (the ISBN
number). Instead of using the Add method, you can use the indexer to add elements to the list. The indexer
requires the key as an index parameter. If a key already exists, the Add method throws an exception of type
ArgumentException. If the same key is used with the indexer, the new value replaces the old value (code file
SortedListSample/Program.cs):

 var books = new SortedList<string, string>();
 books.Add("Professional WPF Programming", "978–0–470–04180–2");
 books.Add("Professional ASP.NET MVC 3", "978–1–1180–7658–3");
 books["Beginning Visual C# 2010"] = "978–0–470-50226-6";
 books["Professional C# 4 and .NET 4"] = "978–0–470–50225–9";

NOTE SortedList<TKey, TValue> allows only one value per key. If you need mul-
tiple values per key you can use Lookup<TKey, TElement>.

You can iterate through the list using a foreach statement. Elements returned by the enumerator are of type
KeyValuePair<TKey, TValue>, which contains both the key and the value. The key can be accessed with
the Key property, and the value can be accessed with the Value property:

 foreach (KeyValuePair<string, string> book in books)
 {
 Console.WriteLine("{0}, {1}", book.Key, book.Value);
 }

The iteration displays book titles and ISBN numbers ordered by the key:

Beginning Visual C# 2010, 978-0-470-50226-6
Professional ASP.NET MVC 3, 978-1-1180-7658-3
Professional C# 4 and .NET 4, 978-0-470-50225-9
Professional WPF Programming, 978-0-470-04180-2

c10.indd 251 30-01-2014 20:15:27

252 ❘ CHAPTER 10 ColleCtions

You can also access the values and keys by using the Values and Keys properties. The Values property
returns IList<TValue> and the Keys property returns IList<TKey>, so you can use these properties with a
foreach statement:

 foreach (string isbn in books.Values)
 {
 Console.WriteLine(isbn);
 }

 foreach (string title in books.Keys)
 {
 Console.WriteLine(title);
 }

The first loop displays the values, and next the keys:

978-0-470-50226-6
978-1-1180-7658-3
978-0-470-50225-9
978-0-470-04180-2
Beginning Visual C# 2010
Professional ASP.NET MVC 3
Professional C# 4 and .NET 4
Professional WPF Programming

If you try to access an element with an indexer and passing a key that does not exist, an exception of type
KeyNotFoundException is thrown. To avoid that exception you can use the method ContainsKey, which
returns true if the key passed exists in the collection, or you can invoke the method TryGetValue, which
tries to get the value but doesn’t throw an exception if it isn’t found:

 string isbn;
 string title = "Professional C# 7.0";
 if (!books.TryGetValue(title, out isbn))
 {
 Console.WriteLine("{0} not found", title);
 }

diCTiONARiEs
A dictionary represents a sophisticated data structure that enables you to access an element based on a key.
Dictionaries are also known as hash tables or maps. The main feature of dictionaries is fast lookup based on
keys. You can also add and remove items freely, a bit like a List<T>, but without the performance overhead
of having to shift subsequent items in memory.

Figure 10-5 shows a simplified representation of a dictionary. Here employee-ids such as B4711 are the
keys added to the dictionary. The key is transformed into a hash. With the hash a number is created to
associate an index with the values. The index then contains a link to the value. The figure is simplified
because it is possible for a single index entry to be associated with multiple values, and the index can be
stored as a tree.

The .NET Framework offers several dictionary classes. The main class to use is Dictionary<TKey,
TValue>.

key Type
A type that is used as a key in the dictionary must override the method GetHashCode of the Object class.
Whenever a dictionary class needs to determine where an item should be located, it calls the GetHashCode
method. The int that is returned by GetHashCode is used by the dictionary to calculate an index of where
to place the element. We won’t go into this part of the algorithm; what you should know is that it involves
prime numbers, so the capacity of a dictionary is a prime number.

c10.indd 252 30-01-2014 20:15:27

Dictionaries ❘ 253

The implementation of GetHashCode must satisfy the following requirements:

➤➤ The same object should always return the same value.

➤➤ Different objects can return the same value.

➤➤ It should execute as quickly as possible; it must be inexpensive to compute.

➤➤ It must not throw exceptions.

➤➤ It should use at least one instance field.

➤➤ The hash code value should be evenly distributed across the entire range of numbers that an int can
store.

➤➤ The hash code should not change during the lifetime of the object.

NOTE Good performance of the dictionary is based on a good implementation of the
method GetHashCode.

What’s the reason for having hash code values evenly distributed across the range of integers? If two keys
return hashes that have the same index, the dictionary class needs to start looking for the nearest available
free location to store the second item — and it will have to do some searching to retrieve this item later. This
is obviously going to hurt performance. In addition, if a lot of your keys are tending to provide the same
storage indexes for where they should be stored, this kind of clash becomes more likely. However, because of
the way that Microsoft’s part of the algorithm works, this risk is minimized when the calculated hash values
are evenly distributed between int.MinValue and int.MaxValue.

Besides having an implementation of GetHashCode, the key type also must implement the IEquatable<T>
.Equals method or override the Equals method from the Object class. Because different key objects may
return the same hash code, the method Equals is used by the dictionary comparing keys. The dictionary

61

Tony Stewart

Index ValuesKeys

B12836

B4711

B12836

N34434

0

1

2

31

32

60

Jimmie JohnsonB4711

Matt KensethN34434

. . .

. . .

fiGuRE 10-5

c10.indd 253 30-01-2014 20:15:28

254 ❘ CHAPTER 10 ColleCtions

examines whether two keys, such as A and B, are equal, invoking A.Equals(B). This means that you must
ensure that the following is always true:

If A.Equals(B) is true, then A.GetHashCode and B.GetHashCode must always return the same hash code.

This may seem a fairly subtle point, but it is crucial. If you contrived some way of overriding these methods
so that the preceding statement were not always true, a dictionary that uses instances of this class as its
keys would not work properly. Instead, you’d find funny things happening. For example, you might place
an object in the dictionary and then discover that you could never retrieve it, or you might try to retrieve an
entry and have the wrong entry returned.

NOTE For this reason, the C# compiler displays a compilation warning if you supply
an override for Equals but don’t supply an override for GetHashCode.

For System.Object this condition is true because Equals simply compares references, and GetHashCode
actually returns a hash that is based solely on the address of the object. This means that hash tables based
on a key that doesn’t override these methods will work correctly. However, the problem with this approach
is that keys are regarded as equal only if they are the same object. That means when you place an object
in the dictionary, you have to hang onto the reference to the key; you can’t simply instantiate another key
object later with the same value. If you don’t override Equals and GetHashCode, the type is not very conve-
nient to use in a dictionary.

Incidentally, System.String implements the interface IEquatable and overloads GetHashCode appropri-
ately. Equals provides value comparison, and GetHashCode returns a hash based on the value of the string.
Strings can be used conveniently as keys in dictionaries.

Number types such as Int32 also implement the interface IEquatable and overload GetHashCode.
However, the hash code returned by these types simply maps to the value. If the number you would like to
use as a key is not itself distributed around the possible values of an integer, using integers as keys doesn’t
fulfill the rule of evenly distributing key values to get the best performance. Int32 is not meant to be used in
a dictionary.

If you need to use a key type that does not implement IEquatable and override GetHashCode accord-
ing to the key values you store in the dictionary, you can create a comparer implementing the interface
IEqualityComparer<T>. IEqualityComparer<T> defines the methods GetHashCode and Equals with
an argument of the object passed, so you can offer an implementation different from the object type itself.
An overload of the Dictionary<TKey, TValue> constructor allows passing an object implementing
IEqualityComparer<T>. If such an object is assigned to the dictionary, this class is used to generate the
hash codes and compare the keys.

dictionary Example
The dictionary example in this section is a program that sets up a dictionary of employees. The dictionary
is indexed by EmployeeId objects, and each item stored in the dictionary is an Employee object that stores
details of an employee.

The struct EmployeeId is implemented to define a key to be used in a dictionary. The members of the class
are a prefix character and a number for the employee. Both of these variables are read-only and can be
initialized only in the constructor to ensure that keys within the dictionary shouldn’t change, and this way
that is guaranteed. The fields are filled within the constructor. The ToString method is overloaded to get a
string representation of the employee ID. As required for a key type, EmployeeId implements the interface
IEquatable and overloads the method GetHashCode (code file DictionarySample/EmployeeId.cs):

c10.indd 254 30-01-2014 20:15:29

Dictionaries ❘ 255

 [Serializable]
 public class EmployeeIdException : Exception
 {
 public EmployeeIdException(string message) : base(message) { }
 }

 [Serializable]
 public struct EmployeeId : IEquatable<EmployeeId>
 {
 private readonly char prefix;
 private readonly int number;

 public EmployeeId(string id)
 {
 Contract.Requires<ArgumentNullException>(id != null);

 prefix = (id.ToUpper())[0];
 int numLength = id.Length - 1;
 try
 {
 number = int.Parse(id.Substring(1, numLength > 6 ? 6 : numLength));
 }
 catch (FormatException)
 {
 throw new EmployeeIdException("Invalid EmployeeId format");
 }
 }

 public override string ToString()
 {
 return prefix.ToString() + string.Format("{0,6:000000}", number);
 }

 public override int GetHashCode()
 {
 return (number ^ number << 16) * 0x15051505;
 }

 public bool Equals(EmployeeId other)
 {
 if (other == null) return false;

 return (prefix == other.prefix && number == other.number);
 }

 public override bool Equals(object obj)
 {
 return Equals((EmployeeId)obj);
 }

 public static bool operator ==(EmployeeId left, EmployeeId right)
 {
 return left.Equals(right);
 }

 public static bool operator !=(EmployeeId left, EmployeeId right)
 {
 return !(left == right);
 }
 }

The Equals method that is defined by the IEquatable<T> interface compares the values of two
EmployeeId objects and returns true if both values are the same. Instead of implementing the Equals

c10.indd 255 30-01-2014 20:15:29

256 ❘ CHAPTER 10 ColleCtions

method from the IEquatable<T> interface, you can also override the Equals method from the Object
class:

 public bool Equals(EmployeeId other)
 {
 if (other == null) return false;
 return (prefix == other.prefix && number == other.number);
 }

With the number variable, a value from 1 to around 190,000 is expected for the employees. This doesn’t fill
the range of an integer. The algorithm used by GetHashCode shifts the number 16 bits to the left, then does
an XOR with the original number, and finally multiplies the result by the hex value 15051505. The hash
code is fairly evenly distributed across the range of an integer:

 public override int GetHashCode()
 {
 return (number ^ number << 16) * 0x15051505;
 }

NOTE On the Internet, you can find a lot more complex algorithms that have a better
distribution across the integer range. You can also use the GetHashCode method of a
string to return a hash.

The Employee class is a simple entity class containing the name, salary, and ID of the employee. The con-
structor initializes all values, and the method ToString returns a string representation of an instance. The
implementation of ToString uses a format string to create the string representation for performance reasons
(code file DictionarySample/Employee.cs):

 [Serializable]
 public class Employee
 {
 private string name;
 private decimal salary;
 private readonly EmployeeId id;

 public Employee(EmployeeId id, string name, decimal salary)
 {
 this.id = id;
 this.name = name;
 this.salary = salary;
 }

 public override string ToString()
 {
 return String.Format("{0}: {1, -20} {2:C}",
 id.ToString(), name, salary);
 }
 }

In the Main method of the sample application, a new Dictionary<TKey, TValue> instance is created,
where the key is of type EmployeeId and the value is of type Employee. The constructor allocates a capac-
ity of 31 elements. Remember that capacity is based on prime numbers. However, when you assign a value
that is not a prime number, you don’t need to worry. The Dictionary<TKey, TValue> class itself takes
the next prime number that follows the integer passed to the constructor to allocate the capacity. The
employee objects and IDs are created and added to the dictionary with the Add method. Instead of using the
Add method, you can also use the indexer to add keys and values to the dictionary, as shown here with the
employees Matt and Brad (code file DictionarySample/Program.cs):

c10.indd 256 30-01-2014 20:15:29

Dictionaries ❘ 257

 static void Main()
 {
 var employees = new Dictionary<EmployeeId, Employee>(31);
 var idTony = new EmployeeId("C3755");
 var tony = new Employee(idTony, "Tony Stewart", 379025.00m);
 employees.Add(idTony, tony);
 Console.WriteLine(tony);
 var idCarl = new EmployeeId("F3547");
 var carl = new Employee(idCarl, "Carl Edwards", 403466.00m);
 employees.Add(idCarl, carl);
 Console.WriteLine(carl);
 var idKevin = new EmployeeId("C3386");
 var kevin = new Employee(idKevin, "Kevin Harwick", 415261.00m);
 employees.Add(idKevin, kevin);
 Console.WriteLine(kevin);
 var idMatt = new EmployeeId("F3323");
 var matt = new Employee(idMatt, "Matt Kenseth", 1589390.00m);
 employees[idMatt] = matt;
 Console.WriteLine(matt);
 var idBrad = new EmployeeId("D3234");
 var brad = new Employee(idBrad, "Brad Keselowski", 322295.00m);
 employees[idBrad] = brad;
 Console.WriteLine(brad);

After the entries are added to the dictionary, inside a while loop employees are read from the dictionary.
The user is asked to enter an employee number to store in the variable userInput, and the user can exit the
application by entering X. If the key is in the dictionary, it is examined with the TryGetValue method of the
Dictionary<TKey, TValue> class. TryGetValue returns true if the key is found and false otherwise. If
the value is found, the value associated with the key is stored in the employee variable. This value is written
to the console.

NOTE You can also use an indexer of the Dictionary<TKey, TValue> class instead
of TryGetValue to access a value stored in the dictionary. However, if the key is not
found, the indexer throws an exception of type KeyNotFoundException.

 while (true)
 {
 Console.Write("Enter employee id (X to exit)> ");
 var userInput = Console.ReadLine();
 userInput = userInput.ToUpper();
 if (userInput == "X") break;

 EmployeeId id;
 try
 {
 id = new EmployeeId(userInput);

 Employee employee;
 if (!employees.TryGetValue(id, out employee))
 {
 Console.WriteLine("Employee with id {0} does not exist",
 id);
 }
 else
 {
 Console.WriteLine(employee);
 }
 }
 catch (EmployeeIdException ex)

c10.indd 257 30-01-2014 20:15:29

258 ❘ CHAPTER 10 ColleCtions

 {
 Console.WriteLine(ex.Message);
 }
 }
 }
 }

Running the application produces the following output:

Enter employee id (X to exit)> C3386
C003386: Kevin Harwick $415,261.00
Enter employee id (X to exit)> F3547
F003547: Carl Edwards $403,466.00
Enter employee id (X to exit)> X
Press any key to continue ...

lookups
Dictionary<TKey, TValue> supports only one value per key. The class Lookup<TKey, TElement> resem-
bles a Dictionary<TKey, TValue> but maps keys to a collection of values. This class is implemented in the
assembly System.Core and defined with the namespace System.Linq.

Lookup<TKey, TElement> cannot be created as a normal dictionary. Instead, you have to invoke the
method ToLookup, which returns a Lookup<TKey, TElement> object. The method ToLookup is an exten-
sion method that is available with every class implementing IEnumerable<T>. In the following example,
a list of Racer objects is filled. Because List<T> implements IEnumerable<T>, the ToLookup method can
be invoked on the racers list. This method requires a delegate of type Func<TSource, TKey> that defines
the selector of the key. Here, the racers are selected based on their country by using the lambda expression
r => r.Country. The foreach loop accesses only the racers from Australia by using the indexer (code file
LookupSample/Program.cs):

 var racers = new List<Racer>();
 racers.Add(new Racer("Jacques", "Villeneuve", "Canada", 11));
 racers.Add(new Racer("Alan", "Jones", "Australia", 12));
 racers.Add(new Racer("Jackie", "Stewart", "United Kingdom", 27));
 racers.Add(new Racer("James", "Hunt", "United Kingdom", 10));
 racers.Add(new Racer("Jack", "Brabham", "Australia", 14));

 var lookupRacers = racers.ToLookup(r => r.Country);

 foreach (Racer r in lookupRacers["Australia"])
 {
 Console.WriteLine(r);
 }

NOTE You can read more about extension methods in Chapter 11, “Language
Integrated Query.” Lambda expressions are explained in Chapter 8.

The output shows the racers from Australia:

Alan Jones
Jack Brabham

sorted dictionaries
SortedDictionary<TKey, TValue> is a binary search tree in which the items are sorted based on the key.
The key type must implement the interface IComparable<TKey>. If the key type is not sortable, you can also
create a comparer implementing IComparer<TKey> and assign the comparer as a constructor argument of
the sorted dictionary.

c10.indd 258 30-01-2014 20:15:29

Sets ❘ 259

Earlier in this chapter you read about SortedList<TKey, TValue>. SortedDictionary<TKey, TValue>
and SortedList<TKey, TValue> have similar functionality, but because SortedList<TKey, TValue> is
implemented as a list that is based on an array, and SortedDictionary<TKey, TValue> is implemented as
a dictionary, the classes have different characteristics:

➤➤ SortedList<TKey, TValue> uses less memory than SortedDictionary<TKey, TValue>.

➤➤ SortedDictionary<TKey, TValue> has faster insertion and removal of elements.

➤➤ When populating the collection with already sorted data, SortedList<TKey, TValue> is faster if
capacity changes are not needed.

NOTE SortedList consumes less memory than SortedDictionary.
SortedDictionary is faster with inserts and the removal of unsorted data.

sETs
A collection that contains only distinct items is known by the term set. The .NET Framework includes two
sets, HashSet<T> and SortedSet<T>, that both implement the interface ISet<T>. HashSet<T> contains an
unordered list of distinct items; with SortedSet<T> the list is ordered.

The ISet<T> interface offers methods to create a union of multiple sets, an intersection of sets, or to provide
information if one set is a superset or subset of another.

In the following sample code, three new sets of type string are created and filled with Formula-1 cars. The
HashSet<T> class implements the ICollection<T> interface. However, the Add method is implemented
explicitly and a different Add method is offered by the class, as you can see here. The Add method differs by
the return type; a Boolean value is returned to provide the information if the element was added. If the
element was already in the set, it is not added, and false is returned (code file SetSample/Program.cs):

 var companyTeams = new HashSet<string>()
 { "Ferrari", "McLaren", "Mercedes" };
 var traditionalTeams = new HashSet<string>() { "Ferrari", "McLaren" };
 var privateTeams = new HashSet<string>()
 { "Red Bull", "Toro Rosso", "Force India", "Sauber" };

 if (privateTeams.Add("Williams"))
 Console.WriteLine("Williams added");
 if (!companyTeams.Add("McLaren"))
 Console.WriteLine("McLaren was already in this set");

The result of these two Add methods is written to the console:

Williams added
McLaren was already in this set

The methods IsSubsetOf and IsSupersetOf compare a set with a collection that implements the
IEnumerable<T> interface and returns a Boolean result. Here, IsSubsetOf verifies whether every element
in traditionalTeams is contained in companyTeams, which is the case; IsSupersetOf verifies whether
traditionalTeams has any additional elements compared to companyTeams:

 if (traditionalTeams.IsSubsetOf(companyTeams))
 {
 Console.WriteLine("traditionalTeams is subset of companyTeams");
 }

 if (companyTeams.IsSupersetOf(traditionalTeams))
 {
 Console.WriteLine("companyTeams is a superset of traditionalTeams");
 }

c10.indd 259 30-01-2014 20:15:29

260 ❘ CHAPTER 10 ColleCtions

The output of this verification is shown here:

traditionalTeams is a subset of companyTeams
companyTeams is a superset of traditionalTeams

Williams is a traditional team as well, which is why this team is added to the traditionalTeams collection:

 traditionalTeams.Add("Williams");
 if (privateTeams.Overlaps(traditionalTeams))
 {
 Console.WriteLine("At least one team is the same with the " +
 "traditional and private teams");
 }

Because there’s an overlap, this is the result:

At least one team is the same with the traditional and private teams.

The variable allTeams that references a new SortedSet<string> is filled with a union of companyTeams,
privateTeams, and traditionalTeams by calling the UnionWith method:

 var allTeams = new SortedSet<string>(companyTeams);
 allTeams.UnionWith(privateTeams);
 allTeams.UnionWith(traditionalTeams);

 Console.WriteLine();
 Console.WriteLine("all teams");
 foreach (var team in allTeams)
 {
 Console.WriteLine(team);
 }

Here, all teams are returned but every team is listed just once because the set contains only unique values;
and because the container is a SortedSet<string>, the result is ordered:

Ferrari
Force India
Lotus
McLaren
Mercedes
Red Bull
Sauber
Toro Rosso
Williams

The method ExceptWith removes all private teams from the allTeams set:

 allTeams.ExceptWith(privateTeams);
 Console.WriteLine();
 Console.WriteLine("no private team left");
 foreach (var team in allTeams)
 {
 Console.WriteLine(team);
 }

The remaining elements in the collection do not contain any private team:

Ferrari
McLaren
Mercedes

ObsERvAblE COllECTiONs
In case you need information when items in the collection are removed or added, you can use the
ObservableCollection<T> class. This class was defined for WPF so that the UI is informed about collec-
tion changes; therefore, this class is defined in the assembly WindowsBase and you need to reference it. The
namespace of this class is System.Collections.ObjectModel.

c10.indd 260 30-01-2014 20:15:30

Observable Collections ❘ 261

ObservableCollection<T> derives from the base class Collection<T> that can be used to create custom
collections and it uses List<T> internal. From the base class, the virtual methods SetItem and RemoveItem
are overridden to fire the CollectionChanged event. Clients of this class can register to this event by using
the interface INotifyCollectionChanged.

The next example demonstrates using an ObservableCollection<string> where the method
Data_CollectionChanged is registered to the CollectionChanged event. Two items are added to the
end — one item is inserted, and one item is removed (code file ObservableCollectionSample/Program.cs):

 var data = new ObservableCollection<string>();
 data.CollectionChanged += Data_CollectionChanged;
 data.Add("One");
 data.Add("Two");
 data.Insert(1, "Three");
 data.Remove("One");

The method Data_CollectionChanged receives NotifyCollectionChangedEventArgs containing infor-
mation about changes to the collection. The Action property provides information if an item was added or
removed. With removed items, the OldItems property is set and lists the removed items. With added items,
the NewItems property is set and lists the new items:

 static void Data_CollectionChanged(object sender,
 NotifyCollectionChangedEventArgs e)
 {
 Console.WriteLine("action: {0}", e.Action.ToString());

 if (e.OldItems != null)
 {
 Console.WriteLine("starting index for old item(s): {0}",
 e.OldStartingIndex);
 Console.WriteLine("old item(s):");
 foreach (var item in e.OldItems)
 {
 Console.WriteLine(item);
 }
 }
 if (e.NewItems != null)
 {
 Console.WriteLine("starting index for new item(s): {0}",
 e.NewStartingIndex);
 Console.WriteLine("new item(s): ");
 foreach (var item in e.NewItems)
 {
 Console.WriteLine(item);
 }
 }
 Console.WriteLine();
 }

Running the application results in the following output. First the items One and Two are added to the collec-
tion, and thus the Add action is shown with the indexes 0 and 1. The third item, Three, is inserted on posi-
tion 1 so it shows the action Add with index 1. Finally, the item One is removed as shown with the action
Remove and index 0:

action: Add
starting index for new item(s): 0
new item(s):
One

action: Add
starting index for new item(s): 1
new item(s):

c10.indd 261 30-01-2014 20:15:30

262 ❘ CHAPTER 10 ColleCtions

Two

action: Add
starting index for new item(s): 1
new item(s):
Three

action: Remove
starting index for old item(s): 0
old item(s):
One

biT ARRAys
If you need to deal with a number of bits, you can use the class BitArray and the struct BitVector32.
BitArray is located in the namespace System.Collections; BitVector32 is in the namespace System
.Collections.Specialized. The most important difference between these two types is that BitArray is
resizable, which is useful if you don’t know the number of bits needed in advance, and it can contain a large
number of bits. BitVector32 is stack-based and therefore faster. BitVector32 contains only 32 bits, which
are stored in an integer.

bitArray
The class BitArray is a reference type that contains an array of ints, where for every 32 bits a new integer
is used. Members of this class are described in the following table.

biTARRAy MEMbERs dEsCRiPTiON

Count Length The get accessor of both Count and Length return the number of bits in the array.
With the Length property, you can also define a new size and resize the collection.

Item
Get
Set

You can use an indexer to read and write bits in the array. The indexer is of type
bool. Instead of using the indexer, you can also use the Get and Set methods to
access the bits in the array.

SetAll The method SetAll sets the values of all bits according to the parameter passed to
the method.

Not The method Not generates the inverse of all bits of the array.

And
Or
Xor

With the methods And, Or, and Xor, you can combine two BitArray objects. The
And method does a binary AND, where the result bits are set only if the bits from
both input arrays are set. The Or method does a binary OR, where the result bits are
set if one or both of the input arrays are set. The Xor method is an exclusive OR,
where the result is set if only one of the input bits is set.

The helper method DisplayBits iterates through a BitArray and displays 1 or 0 to the console, depending
on whether or not the bit is set (code file BitArraySample/Program.cs):

 static void DisplayBits(BitArray bits)
 {
 foreach (bool bit in bits)
 {
 Console.Write(bit ? 1: 0);
 }
 }

c10.indd 262 30-01-2014 20:15:30

Bit Arrays ❘ 263

The example to demonstrate the BitArray class creates a bit array with 8 bits, indexed from 0 to 7. The
SetAll method sets all 8 bits to true. Then the Set method changes bit 1 to false. Instead of the Set
method, you can also use an indexer, as shown with indexes 5 and 7:

 var bits1 = new BitArray(8);
 bits1.SetAll(true);
 bits1.Set(1, false);
 bits1[5] = false;
 bits1[7] = false;
 Console.Write("initialized: ");
 DisplayBits(bits1);
 Console.WriteLine();

This is the displayed result of the initialized bits:

initialized: 10111010

The Not method generates the inverse of the bits of the BitArray:

 Console.Write(" not ");
 DisplayBits(bits1);
 bits1.Not();
 Console.Write(" = ");
 DisplayBits(bits1);
 Console.WriteLine();

The result of Not is all bits inversed. If the bit were true, it is false; and if it were false, it is true:

not 10111010 = 01000101

In the following example, a new BitArray is created. With the constructor, the variable bits1 is used to
initialize the array, so the new array has the same values. Then the values for bits 0, 1, and 4 are set to dif-
ferent values. Before the Or method is used, the bit arrays bits1 and bits2 are displayed. The Or method
changes the values of bits1:

 var bits2 = new BitArray(bits1);
 bits2[0] = true;
 bits2[1] = false;
 bits2[4] = true;
 DisplayBits(bits1);
 Console.Write(" or ");
 DisplayBits(bits2);
 Console.Write(" = ");
 bits1.Or(bits2);
 DisplayBits(bits1);
 Console.WriteLine();

With the Or method, the set bits are taken from both input arrays. In the result, the bit is set if it was set
with either the first or the second array:

01000101 or 10001101 = 11001101

Next, the And method is used to operate on bits2 and bits1:

 DisplayBits(bits2);
 Console.Write(" and ");
 DisplayBits(bits1);
 Console.Write(" = ");
 bits2.And(bits1);
 DisplayBits(bits2);
 Console.WriteLine();

c10.indd 263 30-01-2014 20:15:30

264 ❘ CHAPTER 10 ColleCtions

The result of the And method only sets the bits where the bit was set in both input arrays:

10001101 and 11001101 = 10001101

Finally, the Xor method is used for an exclusive OR:

 DisplayBits(bits1);
 Console.Write(" xor ");
 DisplayBits(bits2);
 bits1.Xor(bits2);
 Console.Write(" = ");
 DisplayBits(bits1);
 Console.WriteLine();

With the Xor method, the resultant bits are set only if the bit was set either in the first or the second input,
but not both:

11001101 xor 10001101 = 01000000

bitvector32
If you know the number of bits you need in advance, you can use the BitVector32 structure instead of
BitArray. BitVector32 is more efficient because it is a value type and stores the bits on the stack inside an
integer. With a single integer you have a place for 32 bits. If you need more bits, you can use
multiple BitVector32 values or the BitArray. The BitArray can grow as needed; this is not an option
with BitVector32.

The following table shows the members of BitVector that are very different from BitArray.

biTvECTOR MEMbERs dEsCRiPTiON

Data The property Data returns the data behind BitVector32 as an integer.

Item The values for BitVector32 can be set using an indexer. The indexer is
overloaded — you can get and set the values using a mask or a section of type
BitVector32.Section.

CreateMask CreateMask is a static method that you can use to create a mask for accessing
specific bits in the BitVector32.

CreateSection CreateSection is a static method that you can use to create several sections within
the 32 bits.

The following example creates BitVector32 with the default constructor, whereby all 32 bits are
initialized to false. Then masks are created to access the bits inside the bit vector. The first call to
CreateMask creates a mask to access the first bit. After CreateMask is invoked, bit1 has a value of 1.
Invoking CreateMask once more and passing the first mask as a parameter to CreateMask returns a mask
to access the second bit, which is 2. bit3 then has a value of 4 to access bit number 3, and bit4 has a value
of 8 to access bit number 4.

Then the masks are used with the indexer to access the bits inside the bit vector and to set the fields accord-
ingly (code file BitArraySample/Program.cs):

 var bits1 = new BitVector32();
 int bit1 = BitVector32.CreateMask();
 int bit2 = BitVector32.CreateMask(bit1);
 int bit3 = BitVector32.CreateMask(bit2);
 int bit4 = BitVector32.CreateMask(bit3);
 int bit5 = BitVector32.CreateMask(bit4);

 bits1[bit1] = true;

c10.indd 264 30-01-2014 20:15:30

Bit Arrays ❘ 265

 bits1[bit2] = false;
 bits1[bit3] = true;
 bits1[bit4] = true;
 bits1[bit5] = true;
 Console.WriteLine(bits1);

BitVector32 has an overridden ToString method that not only displays the name of the class but also 1 or
0 if the bits are set or not, respectively:

BitVector32{00000000000000000000000000011101}

Instead of creating a mask with the CreateMask method, you can define the mask yourself; you can also set
multiple bits at once. The hexadecimal value abcdef is the same as the binary value 1010 1011 1100 1101
1110 1111. All the bits defined with this value are set:

 bits1[0xabcdef] = true;
 Console.WriteLine(bits1);

With the output shown you can verify the bits that are set:

BitVector32{00000000101010111100110111101111}

Separating the 32 bits to different sections can be extremely useful. For example, an IPv4 address is defined
as a four-byte number that is stored inside an integer. You can split the integer by defining four sections.
With a multicast IP message, several 32-bit values are used. One of these 32-bit values is separated in these
sections: 16 bits for the number of sources, 8 bits for a querier’s query interval code, 3 bits for a querier’s
robustness variable, a 1-bit suppress flag, and 4 bits that are reserved. You can also define your own bit
meanings to save memory.

The following example simulates receiving the value 0x79abcdef and passes this value to the constructor of
BitVector32, so that the bits are set accordingly:

 int received = 0x79abcdef;

 BitVector32 bits2 = new BitVector32(received);
 Console.WriteLine(bits2);

The bits are shown on the console as initialized:

BitVector32{01111001101010111100110111101111}

Then six sections are created. The first section requires 12 bits, as defined by the hexadecimal value 0xfff
(12 bits are set); section B requires 8 bits; section C, 4 bits; section D and E, 3 bits; and section F, 2 bits.
The first call to CreateSection just receives 0xfff to allocate the first 12 bits. With the second call to
CreateSection, the first section is passed as an argument, so the next section continues where the first sec-
tion ended. CreateSection returns a value of type BitVector32.Section that contains the offset and the
mask for the section:

 // sections: FF EEE DDD CCCC BBBBBBBB
 // AAAAAAAAAAAA
 BitVector32.Section sectionA = BitVector32.CreateSection(0xfff);
 BitVector32.Section sectionB = BitVector32.CreateSection(0xff, sectionA);
 BitVector32.Section sectionC = BitVector32.CreateSection(0xf, sectionB);
 BitVector32.Section sectionD = BitVector32.CreateSection(0x7, sectionC);
 BitVector32.Section sectionE = BitVector32.CreateSection(0x7, sectionD);
 BitVector32.Section sectionF = BitVector32.CreateSection(0x3, sectionE);

Passing a BitVector32.Section to the indexer of the BitVector32 returns an int just mapped to the sec-
tion of the bit vector. As shown next, a helper method, IntToBinaryString, retrieves a string representa-
tion of the int number:

 Console.WriteLine("Section A: {0}",
 IntToBinaryString(bits2[sectionA], true));
 Console.WriteLine("Section B: {0}",
 IntToBinaryString(bits2[sectionB], true));

c10.indd 265 30-01-2014 20:15:30

266 ❘ CHAPTER 10 ColleCtions

 Console.WriteLine("Section C: {0}",
 IntToBinaryString(bits2[sectionC], true));
 Console.WriteLine("Section D: {0}",
 IntToBinaryString(bits2[sectionD], true));
 Console.WriteLine("Section E: {0}",
 IntToBinaryString(bits2[sectionE], true));
 Console.WriteLine("Section F: {0}",
 IntToBinaryString(bits2[sectionF], true));

The method IntToBinaryString receives the bits in an integer and returns a string representation contain-
ing 0 and 1. With the implementation, 32 bits of the integer are iterated through. In the iteration, if the bit
is set, 1 is appended to the StringBuilder; otherwise, 0 is appended. Within the loop, a bit shift occurs to
check if the next bit is set:

 static string IntToBinaryString(int bits, bool removeTrailingZero)
 {
 var sb = new StringBuilder(32);

 for (int i = 0; i < 32; i++)
 {
 if ((bits & 0x80000000) != 0)
 {
 sb.Append("1");
 }
 else
 {
 sb.Append("0");
 }
 bits = bits << 1;
 }
 string s = sb.ToString();
 if (removeTrailingZero)
 {
 return s.TrimStart('0');
 }
 else
 {
 return s;
 }
 }

The result displays the bit representation of sections A to F, which you can now verify with the value that
was passed into the bit vector:

Section A: 110111101111
Section B: 10111100
Section C: 1010
Section D: 1
Section E: 111
Section F: 1

iMMuTAblE COllECTiONs
If an object can change its state, it is hard to use it from multiple simultaneously running tasks.
Synchronization is necessary with these collections. If an object cannot change its state, it’s a lot easier to
use it from multiple threads. An object that can’t change is an immutable object.

With Visual Studio 2013 Microsoft offers a new collection library: Microsoft Immutable Collections. As the
name suggests, it contains immutable collection classes — collection classes that cannot be changed after
they have been created. This library is available as a NuGet package and contains new collection classes in
the namespace System.Collections.Immutable. You can use this library with both .NET 4.5 and .NET
4.5.1 projects.

c10.indd 266 30-01-2014 20:15:31

Immutable Collections ❘ 267

Let’s start with a simple immutable string array. You can create the array with the static Create method as
shown. The Create method is overloaded where other variants of this method allow passing any number of
elements. In this code snippet (code file ImmutableCollectionsSample/Program.cs), an empty array is
created:

 ImmutableArray<string> a1 = ImmutableArray.Create<string>();

An empty array is not very useful. The ImmutableArray<T> type offers an Add method to add elements.
However, contrary to other collection classes, the Add method does not change the immutable collection
itself. Instead, a new immutable collection is returned. So after the call of the Add method, a1 is still an
empty collection, and a2 is an immutable collection with one element. The Add method returns the new
immutable collection:

 ImmutableArray<string> a2 = a1.Add("Williams");

With this, it is possible to use this API in a fluent way and invoke one Add method after the other. The vari-
able a3 now references an immutable collection containing four elements:

 ImmutableArray<string> a3 =
 a2.Add("Ferrari").Add("Mercedes").Add("Red Bull Racing");

With each of these stages using the immutable array, the complete collections are not copied with every step.
Instead, the immutable types make use of the shared state and only copy the collection when it’s necessary.

However, it’s even more efficient to first fill the collection and then make it an immutable array. When some
manipulation needs to take place, you can again use a mutable collection. A builder class offered by the
immutable types helps with that.

To see this in action, first an Account class is created that is put into the collection (code file
ImmutableCollectionSample/Account.cs):

 public class Account
 {
 public string Name { get; set; }
 public decimal Amount { get; set; }
 }

Next a List<Account> collection is created and filled with sample accounts (code file
ImmutableCollectionSample/Program.cs):

 List<Account> accounts = new List<Account>() {
 new Account {
 Name = "Scrooge McDuck",
 Amount = 667377678765m
 },
 new Account {
 Name = "Donald Duck",
 Amount = -200m
 },
 new Account {
 Name = "Ludwig von Drake",
 Amount = 20000m
 }};

From the accounts collection, an immutable collection can be created with the extension method
ToImmutableList. This extension method is available as soon as the namespace System.Collections
.Immutable is opened:

 ImmutableList<Account> immutableAccounts = accounts.ToImmutableList();

The variable immutableAccounts can be enumerated like other collections. It just cannot be changed.

Now, to make some changes again, you can create a builder by invoking the ToBuilder method. This
method returns a collection that can be changed. In the sample code, all accounts with an amount larger

c10.indd 267 30-01-2014 20:15:31

268 ❘ CHAPTER 10 ColleCtions

than 0 are removed. The original immutable collection is not changed. After the change with the builder is
completed, a new immutable collection is created by invoking the ToImmutable method of the Builder.
This collection is used next to output all overdrawn accounts:

 ImmutableList<Account>.Builder builder = immutableAccounts.ToBuilder();
 for (int i = 0; i < builder.Count; i++)
 {
 Account a = builder[i];
 if (a.Amount > 0)
 {
 builder.Remove(a);
 }
 }

 ImmutableList<Account> overdrawnAccounts = builder.ToImmutable();

 foreach (var item in overdrawnAccounts)
 {
 Console.WriteLine("{0} {1}", item.Name, item.Amount);
 }

NOTE Read-only collections were previously discussed in this chapter in the section
“Read-only Collections.” Read-only collections offer a read-only view on a collection.
The collection can still be changed from others that access the collection without the
read-only view. With immutable collections, nobody can change the collection.

NOTE The topics of using multiple tasks threads, and programming with asynchro-
nous methods are explained in detail in Chapter 13, “Asynchronous Programming”,
and Chapter 21.

CONCuRRENT COllECTiONs
Since version 4 of the .NET Framework, .NET offers thread-safe collection classes within the namespace
System.Collections.Concurrent. Thread-safe collections are guarded against multiple threads accessing
them in conflicting ways.

For thread-safe access of collections, the interface IProducerConsumerCollection<T> is defined. The most
important methods of this interface are TryAdd and TryTake. TryAdd tries to add an item to the collection,
but this might fail if the collection is locked from adding items. To provide this information, the method
returns a Boolean value indicating success or failure. TryTake works the same way to inform the caller
about success or failure, and returns on success an item from the collection. The following list describes the
collection classes from the System.Collections.Concurrent namespace and its functionality:

➤➤ ConcurrentQueue<T> — This class is implemented with a lock-free algorithm and uses 32 item
arrays that are combined in a linked list internally. Methods to access the elements of the queue are
Enqueue, TryDequeue, and TryPeek. The naming of these methods is very similar to the methods of
Queue<T> that you know already, with the difference of the “Try” prefix to indicate the method call
might fail.

Because this class implements the interface IProducerConsumerCollection<T>, the methods
TryAdd and TryTake just invoke Enqueue and TryDequeue.

c10.indd 268 30-01-2014 20:15:31

Concurrent Collections ❘ 269

➤➤ ConcurrentStack<T> — Very similar to ConcurrentQueue<T> but with other item access methods,
this class defines the methods Push, PushRange, TryPeek, TryPop, and TryPopRange. Internally this
class uses a linked list of its items.

➤➤ ConcurrentBag<T> — This class doesn’t define any order in which to add or take items. It uses a con-
cept that maps threads to arrays used internally and thus tries to reduce locks. The methods to access
elements are Add, TryPeek, and TryTake.

➤➤ ConcurrentDictionary<TKey, TValue> — This is a thread-safe collection of keys and values.
TryAdd, TryGetValue, TryRemove, and TryUpdate are methods to access the members in a non-
blocking fashion. Because the items are based on keys and values, ConcurrentDictionary<TKey,
TValue> does not implement IProducerConsumerCollection<T>.

➤➤ BlockingCollection<T> — A collection that blocks and waits until it is possible to do the task by
adding or taking the item, BlockingCollection<T> offers an interface to add and remove items
with the Add and Take methods. These methods block the thread and wait until the task becomes pos-
sible. The Add method has an overload whereby you also can pass a CancellationToken. This token
enables cancelling a blocking call. If you don’t want the thread to wait for an endless time, and you
don’t want to cancel the call from the outside, the methods TryAdd and TryTake are offered as well,
whereby you can also specify a time-out value for the maximum amount of time you would like to
block the thread and wait before the call should fail.

The ConcurrentXXX collection classes are thread-safe, returning false if an action is not possible with the
current state of threads. You always have to check whether adding or taking the item was successful before
moving on. You can’t trust the collection to always fulfill the task.

BlockingCollection<T> is a decorator to any class implementing the IProducerConsumerCollection<T>
interface and by default uses ConcurrentQueue<T>. With the constructor you can also pass any other class
that implements IProducerConsumerCollection<T>, e.g., ConcurrentBag<T> and ConcurrentStack<T>.

Creating Pipelines
A great use for these concurrent collection classes is with pipelines. One task writes some content to a col-
lection class while another task can read from the collection at the same time.

The following sample application demonstrates the use of the BlockingCollection<T> class with multiple
tasks that form a pipeline. The first pipeline is shown in Figure 10-6. The task for the first stage reads file-
names and adds them to a queue. While this task is running, the task for stage two can already start to read
the filenames from the queue and load their content. The result is written to another queue. Stage 3 can be
started at the same time to read the content from the second queue and process it. Here, the result is written
to a dictionary.

In this scenario, the next stage can only start when stage 3 is completed and the content is finally processed
with a full result in the dictionary. The next steps are shown in Figure 10-7. Stage 4 reads from the diction-
ary, converts the data, and writes it to a queue. Stage 5 adds color information to the items and puts them in
another queue. The last stage displays the information. Stages 4 to 6 can run concurrently as well.

Looking at the code of this sample application, the complete pipeline is managed within the method
StartPipeline. Here, the collections are instantiated and passed to the various stages of the pipeline. The
first stage is processed with ReadFilenamesAsync, and the second and third stages, LoadContentAsync
and ProcessContentAsync, are running simultaneously. The fourth stage, however, can only start when
the first three stages are completed (code file PipelineSample/Program.cs):

 private static async void StartPipeline()
 {
 var fileNames = new BlockingCollection<string>();
 var lines = new BlockingCollection<string>();
 var words = new ConcurrentDictionary<string, int>();
 var items = new BlockingCollection<Info>();

c10.indd 269 30-01-2014 20:15:31

270 ❘ CHAPTER 10 ColleCtions

fiGuRE 10-6

Read Filenames

Load Content

Process Content

Transfer Content

Add Color

Display Content

fiGuRE 10-7

 var coloredItems = new BlockingCollection<Info>();
 Task t1 = PipelineStages.ReadFilenamesAsync(@"../../..", fileNames);
 ConsoleHelper.WriteLine("started stage 1");
 Task t2 = PipelineStages.LoadContentAsync(fileNames, lines);
 ConsoleHelper.WriteLine("started stage 2");
 Task t3 = PipelineStages.ProcessContentAsync(lines, words);
 await Task.WhenAll(t1, t2, t3);
 ConsoleHelper.WriteLine("stages 1, 2, 3 completed");

c10.indd 270 30-01-2014 20:15:34

Concurrent Collections ❘ 271

 Task t4 = PipelineStages.TransferContentAsync(words, items);
 Task t5 = PipelineStages.AddColorAsync(items, coloredItems);
 Task t6 = PipelineStages.ShowContentAsync(coloredItems);
 ConsoleHelper.WriteLine("stages 4, 5, 6 started");

 await Task.WhenAll(t4, t5, t6);
 ConsoleHelper.WriteLine("all stages finished");
 }

NOTE This example application makes use of tasks and the async and await key-
words, which are explained in detail in Chapter 13. You can read more about threads,
tasks, and synchronization in Chapter 21. File I/O is discussed in Chapter 24,
“Manipulating Files and the Registry.”

The example writes information to the console using the ConsoleHelper class. This class provides an easy
way to change the color for console output and uses synchronization to avoid returning output with the
wrong colors (code file PipelineSample/ConsoleHelper.cs):

using System;
namespace Wrox.ProCSharp.Collections
{
 public class ConsoleHelper
 {
 private static object syncOutput = new object();
 public static void WriteLine(string message)
 {
 lock (syncOutput)
 {
 Console.WriteLine(message);
 }
 }
 public static void WriteLine(string message, string color)
 {
 lock (syncOutput)
 {
 Console.ForegroundColor = (ConsoleColor)Enum.Parse(
 typeof(ConsoleColor), color);
 Console.WriteLine(message);
 Console.ResetColor();
 }
 }
 }
}

using a blockingCollection
Let’s get into the first stage of the pipeline. ReadFilenamesAsync receives a BlockingCollection<T>
where it can write its output. The implementation of this method uses an enumerator to iter-
ate C# files within the specified directory and its subdirectories. The filenames are added to the
BlockingCollection<T> with the Add method. After adding filenames is completed, the CompleteAdding
method is invoked to inform all readers that they should not wait for any additional items in the collection
(code file PipelineSample/PipelineStages.cs):

using System.Collections.Concurrent;
using System.IO;
using System.Linq;
using System.Threading.Tasks;

c10.indd 271 30-01-2014 20:15:34

272 ❘ CHAPTER 10 ColleCtions

namespace Wrox.ProCSharp.Collections
{
 public static class PipelineStages
 {
 public static Task ReadFilenamesAsync(string path,
 BlockingCollection<string> output)
 {
 return Task.Run(() =>
 {
 foreach (string filename in Directory.EnumerateFiles(path, "*.cs",
 SearchOption.AllDirectories))
 {
 output.Add(filename);
 ConsoleHelper.WriteLine(string.Format("stage 1: added {0}",
 filename));
 }
 output.CompleteAdding();
 });
 }

NOTE If you have a reader that reads from a BlockingCollection<T> at the same
time a writer adds items, it is important to invoke the CompleteAdding method.
Otherwise, the reader would wait for more items to arrive within the foreach loop.

The next stage is to read the file and add its content to another collection , which is done from the
LoadContentAsync method. This method uses the filenames passed with the input collection, opens
the file, and adds all lines of the file to the output collection. With the foreach loop, the method
GetConsumingEnumerable is invoked with the input blocking collection to iterate the items. It’s possible to
use the input variable directly without invoking GetConsumingEnumerable, but this would only iterate the
current state of the collection, and not the items that are added afterwards:

 public static async Task LoadContentAsync(BlockingCollection<string> input,
 BlockingCollection<string> output)
 {
 foreach (var filename in input.GetConsumingEnumerable())
 {
 using (FileStream stream = File.OpenRead(filename))
 {
 var reader = new StreamReader(stream);
 string line = null;
 while ((line = await reader.ReadLineAsync()) != null)
 {
 output.Add(line);
 ConsoleHelper.WriteLine(string.Format("stage 2: added {0}", line));
 }
 }
 }
 output.CompleteAdding();
 }

NOTE If a reader is reading a collection at the same time while it is filled,
you need to get the enumerator of the blocking collection with the method
GetConsumingEnumerable instead of iterating the collection directly.

c10.indd 272 30-01-2014 20:15:35

Concurrent Collections ❘ 273

using a Concurrentdictionary
Stage 3 is implemented in the ProcessContentAsync method. This method gets the lines from the input
collection, and then splits and filters words to an output dictionary. The method AddOrIncrementValue is a
helper method implemented as an extension method for dictionaries is shown next:

 public static Task ProcessContentAsync(BlockingCollection<string> input,
 ConcurrentDictionary<string, int> output)
 {
 return Task.Run(() =>
 {
 foreach (var line in input.GetConsumingEnumerable())
 {
 string[] words = line.Split(' ', ';', '\t', '{', '}', '(', ')',
 ':', ',', '"');
 foreach (var word in words.Where(w => !string.IsNullOrEmpty(w)))
 {
 output.AddOrIncrementValue(word);
 ConsoleHelper.WriteLine(string.Format("stage 3: added {0}",
 word));
 }
 }
 });
 }

NOTE Extension methods are explained in Chapter 3, “Objects and Types.”

Remember that stage 3 in the pipeline adds a word to the dictionary if it doesn’t exist yet, and increments
a value in the dictionary if the word is already in there. This functionality is implemented in the extension
method AddOrIncrementValue. Because the dictionary cannot be used with the BlockingCollection<T>,
there are no blocking methods that wait until adding values succeeds. Instead, TryXXX methods can be
used where it’s necessary to verify if adding or updating the value succeeded. If another thread were updat-
ing a value at the same time, updates can fail. The implementation makes use of TryGetValue to check
if an item is already in the dictionary, TryUpdate to update a value, and TryAdd to add a value (code file
PipelineSample/ConcurrentDictionaryExtensions.cs):

using System.Collections.Concurrent;
namespace Wrox.ProCSharp.Collections
{
 public static class ConcurrentDictionaryExtension
 {
 public static void AddOrIncrementValue(
 this ConcurrentDictionary<string, int> dict, string key)
 {
 bool success = false;
 while (!success)
 {
 int value;
 if (dict.TryGetValue(key, out value))
 {
 if (dict.TryUpdate(key, value + 1, value))
 {
 success = true;
 }
 }
 else
 {
 if (dict.TryAdd(key, 1))

c10.indd 273 30-01-2014 20:15:35

274 ❘ CHAPTER 10 ColleCtions

 {
 success = true;
 }
 }
 }
 }
 }
}

Running the application with the first three stages, you’ll see output like the following, with one where the
stages operating are interleaved:

stage 3: added get
stage 3: added set
stage 3: added public
stage 3: added int
stage 3: added Wins
stage 2: added public static class Pipeline
stage 2: added {
stage 2: added public static Task ReadFil
stage 2: added {
stage 2: added return Task.Run(() =>

Completing the Pipeline
After the first three stages are completed, the next three stages can run in parallel again.
TransferContentAsync gets the data from the dictionary, converts it to the type Info, and puts it into the
output BlockingCollectiony<T> (code file PipelineSample/PipelineStages.cs):

 public static Task TransferContentAsync(
 ConcurrentDictionary<string, int> input,
 BlockingCollection<Info> output)
 {
 return Task.Run(() =>
 {
 foreach (var word in input.Keys)
 {
 int value;
 if (input.TryGetValue(word, out value))
 {
 var info = new Info { Word = word, Count = value };
 output.Add(info);
 ConsoleHelper.WriteLine(string.Format("stage 4: added {0}",
 info));
 }
 }
 output.CompleteAdding();
 });
 }

The pipeline stage AddColorAsync sets the Color property of the Info type depending on the value of the
Count property:

 public static Task AddColorAsync(BlockingCollection<Info> input,
 BlockingCollection<Info> output)
 {
 return Task.Run(() =>
 {
 foreach (var item in input.GetConsumingEnumerable())
 {
 if (item.Count > 40)
 {
 item.Color = "Red";

c10.indd 274 30-01-2014 20:15:35

Performance ❘ 275

 }
 else if (item.Count > 20)
 {
 item.Color = "Yellow";
 }
 else
 {
 item.Color = "Green";
 }
 output.Add(item);
 ConsoleHelper.WriteLine(string.Format(
 "stage 5: added color {1} to {0}", item, item.Color));
 }
 output.CompleteAdding();
 });
 }

The last stage writes the resulting items to the console in the specified color:

 public static Task ShowContentAsync(BlockingCollection<Info> input)
 {
 return Task.Run(() =>
 {
 foreach (var item in input.GetConsumingEnumerable())
 {
 ConsoleHelper.WriteLine(string.Format("stage 6: {0}", item),
 item.Color);
 }
 });
 }

Running the application results in the output shown in Figure 10-8.

fiGuRE 10-8

PERfORMANCE
Many collection classes offer the same functionality as others; for example, SortedList offers nearly the
same features as SortedDictionary. However, often there’s a big difference in performance. Whereas one
collection consumes less memory, the other collection class is faster with retrieval of elements. The MSDN
documentation often provides performance hints about methods of the collection, giving you information
about the time the operation requires in big-O notation:

O(1)
O(log n)
O(n)

c10.indd 275 30-01-2014 20:15:35

276 ❘ CHAPTER 10 ColleCtions

O(1) means that the time this operation needs is constant no matter how many items are in the collection.
For example, the ArrayList has an Add method with O(1) behavior. No matter how many elements are
in the list, it always takes the same amount of time when adding a new element to the end of the list. The
Count property provides the number of items, so it is easy to find the end of the list.

O(n) means it takes the worst case time of N to perform an operation on the collection. The Add method of
ArrayList can be an O(n) operation if a reallocation of the collection is required. Changing the capacity
causes the list to be copied, and the time for the copy increases linearly with every element.

O(log n) means that the time needed for the operation increases with every element in the collection, but
the increase of time for each element is not linear but logarithmic. SortedDictionary<TKey, TValue>
has O(log n) behavior for inserting operations inside the collection; SortedList<TKey, TValue> has O(n)
behavior for the same functionality. Here, SortedDictionary<TKey, TValue> is a lot faster because it is
more efficient to insert elements into a tree structure than into a list.

The following table lists collection classes and their performance for different actions such as adding, insert-
ing, and removing items. Using this table you can select the best collection class for the purpose of your
use. The left column lists the collection class. The Add column gives timing information about adding items
to the collection. The List<T> and the HashSet<T> classes define Add methods to add items to the collec-
tion. With other collection classes use a different method to add elements to the collection; for example, the
Stack<T> class defines a Push method, and the Queue<T> class defines an Enqueue method. You can find
this information in the table as well.

If there are multiple big-O values in a cell, the reason is because if a collection needs to be resized, resizing
takes a while. For example, with the List<T> class, adding items needs O(1). If the capacity of the collection
is not large enough and the collection needs to be resized, the resize requires O(n) time. The larger the col-
lection, the longer the resize operation takes. It’s best to avoid resizes by setting the capacity of the collection
to a value that can hold all the elements.

If the table cell contents is n/a, the operation is not applicable with this collection type.

COllECTiON Add iNsERT REMOvE iTEM sORT fiNd

List<T> O(1) or O(n)
if the collec-
tion must be
resized

O(n) O(n) O(1) O (n log
n), worst
case O(n
^ 2)

O(n)

Stack<T> Push, O(1)
or O(n) if the
stack must be
resized

n/a Pop, O(1) n/a n/a n/a

Queue<T> Enqueue, O(1)
or O(n) if the
queue must be
resized

n/a Dequeue,
O(1)

n/a n/a n/a

HashSet<T> O(1) or O(n) if
the set must
be resized

Add O(1)
or O(n)

O(1) n/a n/a n/a

SortedSet<T> O(1) or O(n) if
the set must
be resized

Add O(1)
or O(n)

O(1) n/a n/a n/a

LinkedList<T> AddLast O(1) Add
After
O(1)

O(1) n/a n/a O(n)

c10.indd 276 30-01-2014 20:15:35

Summary ❘ 277

Dictionary
<TKey, TValue>

O(1) or O(n) n/a O(1) O(1) n/a n/a

SortedDictionary
<TKey, TValue>

O(log n) n/a O(log n) O(log n) n/a n/a

SortedList
<TKey, TValue>

O(n) for
unsorted data,
O(log n) for
end of list,
O(n) if resize is
needed

n/a O(n) O(log n) to
read/write,
O(log n) if the
key is in the
list, O(n) if the
key is not in
the list

n/a n/a

suMMARy
This chapter took a look at working with different kinds of collections. Arrays are fixed in size, but you
can use lists for dynamically growing collections. For accessing elements on a first-in, first-out basis,
there’s a queue; and you can use a stack for last-in, first-out operations. Linked lists allow for fast inser-
tion and removal of elements but are slow for searching. With keys and values, you can use dictionaries,
which are fast for searching and inserting elements. Sets are useful for unique items and can be ordered
(SortedSet<T>) or not ordered (HashSet<T>). ObservableCollection<T> raises events when items change
in the list.

You’ve also looked at several interfaces and classes in this chapter, including how to use them for access-
ing and sorting collections. Finally, you looked at some specialized collections, such as BitArray and
BitVector32, which are optimized for working with a collection of bits.

Chapter 11 gives you details about Language Integrated Query (LINQ).

c10.indd 277 30-01-2014 20:15:35

c10.indd 278 30-01-2014 20:15:35

11
Language Integrated Query

WHAT’S IN THIS CHAPTER?

 ➤ Traditional queries across objects using List
 ➤ Extension methods
 ➤ LINQ query operators
 ➤ Parallel LINQ
 ➤ Expression trees

WRox.CoM CoDE DoWNLoADS FoR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

 ➤ LINQ Intro
 ➤ Enumerable Sample
 ➤ Parallel LINQ
 ➤ Expression Trees

LINQ ovERvIEW
LINQ (Language Integrated Query) integrates query syntax inside the C# programming language,
making it possible to access different data sources with the same syntax. LINQ accomplishes this by
offering an abstraction layer.

This chapter describes the core principles of LINQ and the language extensions for C# that make the
C# LINQ Query possible.

NoTE For details about using LINQ across the database, you should read Chapter
33, “ADO.NET Entity Framework.” For information about querying XML data, read
Chapter 34, “Manipulating XML,” after reading this chapter.

c11.indd 279 30-01-2014 20:16:11

280 ❘ CHAPTER 11 Language Integrated Query

This chapter starts with a simple LINQ query before diving into the full potential of LINQ. The C#
language offers integrated query language that is converted to method calls. This section shows you what
the conversion looks like so you can use all the possibilities of LINQ.

Lists and Entities
The LINQ queries in this chapter are performed on a collection containing Formula-1 champions from 1950
to 2011. This data needs to be prepared with entity classes and lists.

For the entities, the type Racer is defined. Racer defines several properties and an overloaded ToString
method to display a racer in a string format. This class implements the interface IFormattable to support
different variants of format strings, and the interface IComparable<Racer>, which can be used to sort a list
of racers based on the LastName. For more advanced queries, the class Racer contains not only single-value
properties such as FirstName, LastName, Wins, Country, and Starts, but also multivalue properties such
as Cars and Years. The Years property lists all the years of the championship title. Some racers have won
more than one title. The Cars property is used to list all the cars used by the driver during the title years
(code file DataLib/Racer.cs):

using System;
using System.Collections.Generic;

namespace Wrox.ProCSharp.LINQ
{
 [Serializable]
 public class Racer: IComparable<Racer>, IFormattable
 {
 public Racer(string firstName, string lastName, string country,
 int starts, int wins)
 : this(firstName, lastName, country, starts, wins, null, null)
 {
 }
 public Racer(string firstName, string lastName, string country,
 int starts, int wins, IEnumerable<int> years, IEnumerable<string> cars)
 {
 this.FirstName = firstName;
 this.LastName = lastName;
 this.Country = country;
 this.Starts = starts;
 this.Wins = wins;
 this.Years = new List<int>(years);
 this.Cars = new List<string>(cars);
 }

 public string FirstName {get; set;}
 public string LastName {get; set;}
 public int Wins {get; set;}
 public string Country {get; set;}
 public int Starts {get; set;}
 public IEnumerable<string> Cars { get; private set; }
 public IEnumerable<int> Years { get; private set; }

 public override string ToString()
 {
 return String.Format("{0} {1}", FirstName, LastName);
 }

 public int CompareTo(Racer other)
 {
 if (other == null) return -1;

c11.indd 280 30-01-2014 20:16:11

LINQ Overview ❘ 281

 return string.Compare(this.LastName, other.LastName);
 }

 public string ToString(string format)
 {
 return ToString(format, null);
 }

 public string ToString(string format, IFormatProvider formatProvider)
 {
 switch (format)
 {
 case null:
 case "N":
 return ToString();
 case "F":
 return FirstName;
 case "L":
 return LastName;
 case "C":
 return Country;
 case "S":
 return Starts.ToString();
 case "W":
 return Wins.ToString();
 case "A":
 return String.Format("{0} {1}, {2}; starts: {3}, wins: {4}",
 FirstName, LastName, Country, Starts, Wins);
 default:
 throw new FormatException(String.Format(
 "Format {0} not supported", format));
 }
 }
 }
}

A second entity class is Team. This class just contains the name and an array of years for constructor
championships. Similar to a driver championship, there’s a constructor championship for the best team of a
year (code file DataLib/Team.cs):

 [Serializable]
 public class Team
 {
 public Team(string name, params int[] years)
 {
 this.Name = name;
 this.Years = new List<int>(years);
 }
 public string Name { get; private set; }
 public IEnumerable<int> Years { get; private set; }
 }

The class Formula1 returns a list of racers in the method GetChampions. The list is filled with all Formula-1
champions from the years 1950 to 2011 (code file DataLib/Formula1.cs):

using System.Collections.Generic;

namespace Wrox.ProCSharp.LINQ
{
 public static class Formula1

c11.indd 281 30-01-2014 20:16:11

282 ❘ CHAPTER 11 Language Integrated Query

 {
 private static List<Racer> racers;

 public static IList<Racer> GetChampions()
 {
 if (racers == null)
 {
 racers = new List<Racer>(40);
 racers.Add(new Racer("Nino", "Farina", "Italy", 33, 5,
 new int[] { 1950 }, new string[] { "Alfa Romeo" }));
 racers.Add(new Racer("Alberto", "Ascari", "Italy", 32, 10,
 new int[] { 1952, 1953 }, new string[] { "Ferrari" }));
 racers.Add(new Racer("Juan Manuel", "Fangio", "Argentina", 51, 24,
 new int[] { 1951, 1954, 1955, 1956, 1957 },
 new string[] { "Alfa Romeo", "Maserati", "Mercedes", "Ferrari" }));
 racers.Add(new Racer("Mike", "Hawthorn", "UK", 45, 3,
 new int[] { 1958 }, new string[] { "Ferrari" }));
 racers.Add(new Racer("Phil", "Hill", "USA", 48, 3, new int[] { 1961 },
 new string[] { "Ferrari" }));
 racers.Add(new Racer("John", "Surtees", "UK", 111, 6,
 new int[] { 1964 }, new string[] { "Ferrari" }));
 racers.Add(new Racer("Jim", "Clark", "UK", 72, 25,
 new int[] { 1963, 1965 }, new string[] { "Lotus" }));
 racers.Add(new Racer("Jack", "Brabham", "Australia", 125, 14,
 new int[] { 1959, 1960, 1966 },
 new string[] { "Cooper", "Brabham" }));
 racers.Add(new Racer("Denny", "Hulme", "New Zealand", 112, 8,
 new int[] { 1967 }, new string[] { "Brabham" }));
 racers.Add(new Racer("Graham", "Hill", "UK", 176, 14,
 new int[] { 1962, 1968 }, new string[] { "BRM", "Lotus" }));
 racers.Add(new Racer("Jochen", "Rindt", "Austria", 60, 6,
 new int[] { 1970 }, new string[] { "Lotus" }));
 racers.Add(new Racer("Jackie", "Stewart", "UK", 99, 27,
 new int[] { 1969, 1971, 1973 },
 new string[] { "Matra", "Tyrrell" }));
 //...

 return racers;
 }
 }
 }
}

Where queries are done across multiple lists, the GetConstructorChampions method that follows returns
the list of all constructor championships (these championships have been around since 1958):

 private static List<Team> teams;
 public static IList<Team> GetContructorChampions()
 {
 if (teams == null)
 {
 teams = new List<Team>()
 {
 new Team("Vanwall", 1958),
 new Team("Cooper", 1959, 1960),
 new Team("Ferrari", 1961, 1964, 1975, 1976, 1977, 1979, 1982,
 1983, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008),
 new Team("BRM", 1962),
 new Team("Lotus", 1963, 1965, 1968, 1970, 1972, 1973, 1978),
 new Team("Brabham", 1966, 1967),
 new Team("Matra", 1969),
 new Team("Tyrrell", 1971),

c11.indd 282 30-01-2014 20:16:11

LINQ Overview ❘ 283

 new Team("McLaren", 1974, 1984, 1985, 1988, 1989, 1990, 1991, 1998),
 new Team("Williams", 1980, 1981, 1986, 1987, 1992, 1993, 1994, 1996,
 1997),
 new Team("Benetton", 1995),
 new Team("Renault", 2005, 2006),
 new Team("Brawn GP", 2009),
 new Team("Red Bull Racing", 2010, 2011)
 };
 }
 return teams;
 }

LINQ Query
Using these prepared lists and entities, you can do a LINQ query — for example, a query to get all world
champions from Brazil sorted by the highest number of wins. To accomplish this you could use methods of
the List<T> class; e.g., the FindAll and Sort methods. However, using LINQ there’s a simpler syntax as
soon as you get used to it (code file LINQIntro/Program.cs):

 private static void LinqQuery()
 {
 var query = from r in Formula1.GetChampions()
 where r.Country == "Brazil"
 orderby r.Wins descending
 select r;

 foreach (Racer r in query)
 {
 Console.WriteLine("{0:A}", r);
 }
 }

The result of this query shows world champions from Brazil ordered by number of wins:

Ayrton Senna, Brazil; starts: 161, wins: 41
Nelson Piquet, Brazil; starts: 204, wins: 23
Emerson Fittipaldi, Brazil; starts: 143, wins: 14

The statement

from r in Formula1.GetChampions()
where r.Country == "Brazil"
orderby r.Wins descending
select r;

is a LINQ query. The clauses from, where, orderby, descending, and select are predefined keywords in
this query.

The query expression must begin with a from clause and end with a select or group clause. In between
you can optionally use where, orderby, join, let, and additional from clauses.

NoTE The variable query just has the LINQ query assigned to it. The query is not
performed by this assignment, but rather as soon as the query is accessed using the
foreach loop. This is discussed in more detail later in the section “Deferred Query
Execution.”

c11.indd 283 30-01-2014 20:16:12

284 ❘ CHAPTER 11 Language Integrated Query

Extension Methods
The compiler converts the LINQ query to invoke method calls instead of the LINQ query. LINQ offers
various extension methods for the IEnumerable<T> interface, so you can use the LINQ query across any
collection that implements this interface. An extension method is defined as a static method whose first
parameter defines the type it extends, and it is declared in a static class.

Extension methods make it possible to write a method to a class that doesn’t already offer the method at
first. You can also add a method to any class that implements a specific interface, so multiple classes can
make use of the same implementation.

For example, wouldn’t you like to have a Foo method with the String class? The String class is sealed,
so it is not possible to inherit from this class; but you can create an extension method, as shown in the
following code:

public static class StringExtension
{
 public static void Foo(this string s)
 {
 Console.WriteLine("Foo invoked for {0}", s);
 }
}

An extension method is defined as a static method where the first parameter defines the type it extends
and it is declared in a static class. The Foo method extends the string class, as is defined with the first
parameter. For differentiating extension methods from normal static methods, the extension method also
requires the this keyword with the first parameter.

Indeed, it is now possible to use the Foo method with the string type:

string s = "Hello";
s.Foo();

The result shows Foo invoked for Hello in the console, because Hello is the string passed to the Foo
method.

This might appear to be breaking object-oriented rules because a new method is defined for a type without
changing the type or deriving from it. However, this is not the case. The extension method cannot access
private members of the type it extends. Calling an extension method is just a new syntax for invoking a
static method. With the string you can get the same result by calling the method Foo this way:

string s = "Hello";
StringExtension.Foo(s);

To invoke the static method, write the class name followed by the method name. Extension methods are
a different way to invoke static methods. You don’t have to supply the name of the class where the static
method is defined. Instead, because of the parameter type the static method is selected by the compiler. You
just have to import the namespace that contains the class to get the Foo extension method in the scope of the
String class.

One of the classes that define LINQ extension methods is Enumerable in the namespace System.Linq.
You just have to import the namespace to open the scope of the extension methods of this class. A sample
implementation of the Where extension method is shown in the following code. The first parameter of the
Where method that includes the this keyword is of type IEnumerable<T>. This enables the Where method
to be used with every type that implements IEnumerable<T>. A few examples of types that implement this
interface are arrays and List<T>. The second parameter is a Func<T, bool> delegate that references a
method that returns a Boolean value and requires a parameter of type T. This predicate is invoked within
the implementation to examine whether the item from the IEnumerable<T> source should be added into the

c11.indd 284 30-01-2014 20:16:12

LINQ Overview ❘ 285

destination collection. If the method is referenced by the delegate, the yield return statement returns the
item from the source to the destination:

public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source,
 Func<TSource, bool> predicate)
{
 foreach (TSource item in source)
 if (predicate(item))
 yield return item;
}

Because Where is implemented as a generic method, it works with any type that is contained in a collection.
Any collection implementing IEnumerable<T> is supported.

NoTE The extension methods here are defined in the namespace System.Linq in the
assembly System.Core.

Now it’s possible to use the extension methods Where, OrderByDescending, and Select from the class
Enumerable. Because each of these methods returns IEnumerable<TSource>, it is possible to invoke
one method after the other by using the previous result. With the arguments of the extension methods,
anonymous methods that define the implementation for the delegate parameters are used (code file
LINQIntro/Program.cs):

 static void ExtensionMethods()
 {
 var champions = new List<Racer>(Formula1.GetChampions());
 IEnumerable<Racer> brazilChampions =
 champions.Where(r => r.Country == "Brazil").
 OrderByDescending(r => r.Wins).
 Select(r => r);

 foreach (Racer r in brazilChampions)
 {
 Console.WriteLine("{0:A}", r);
 }
 }

Deferred Query Execution
When the query expression is defined during runtime, the query does not run. The query runs when the
items are iterated.

Let’s have a look once more at the extension method Where. This extension method makes use of the yield
return statement to return the elements where the predicate is true. Because the yield return statement
is used, the compiler creates an enumerator and returns the items as soon as they are accessed from the
enumeration:

public static IEnumerable<T> Where<T>(this IEnumerable<T> source,
 Func<T, bool> predicate)
{
 foreach (T item in source)
 {
 if (predicate(item))
 {
 yield return item;
 }
 }
}

c11.indd 285 30-01-2014 20:16:12

286 ❘ CHAPTER 11 Language Integrated Query

This has a very interesting and important effect. In the following example a collection of string elements
is created and filled with first names. Next, a query is defined to get all names from the collection whose
first letter is J. The collection should also be sorted. The iteration does not happen when the query is
defined. Instead, the iteration happens with the foreach statement, where all items are iterated. Only one
element of the collection fulfills the requirements of the where expression by starting with the letter J: Juan.
After the iteration is done and Juan is written to the console, four new names are added to the collection.
Then the iteration is done again:

 var names = new List<string> { "Nino", "Alberto", "Juan", "Mike", "Phil" };

 var namesWithJ = from n in names
 where n.StartsWith("J")
 orderby n
 select n;

 Console.WriteLine("First iteration");
 foreach (string name in namesWithJ)
 {
 Console.WriteLine(name);
 }
 Console.WriteLine();

 names.Add("John");
 names.Add("Jim");
 names.Add("Jack");
 names.Add("Denny");

 Console.WriteLine("Second iteration");
 foreach (string name in namesWithJ)
 {
 Console.WriteLine(name);
 }

Because the iteration does not happen when the query is defined, but does happen with every foreach,
changes can be seen, as the output from the application demonstrates:

First iteration
Juan

Second iteration
Jack
Jim
John
Juan

Of course, you also must be aware that the extension methods are invoked every time the query is used
within an iteration. Most of the time this is very practical, because you can detect changes in the source
data. However, sometimes this is impractical. You can change this behavior by invoking the extension
methods ToArray, ToList, and the like. In the following example, you can see that ToList iterates through
the collection immediately and returns a collection implementing IList<string>. The returned list is then
iterated through twice; in between iterations, the data source gets new names:

 var names = new List<string>
 { "Nino", "Alberto", "Juan", "Mike", "Phil" };
 var namesWithJ = (from n in names
 where n.StartsWith("J")
 orderby n
 select n).ToList();

 Console.WriteLine("First iteration");

c11.indd 286 30-01-2014 20:16:12

Standard Query Operators ❘ 287

 foreach (string name in namesWithJ)
 {
 Console.WriteLine(name);
 }
 Console.WriteLine();

 names.Add("John");
 names.Add("Jim");
 names.Add("Jack");
 names.Add("Denny");

 Console.WriteLine("Second iteration");
 foreach (string name in namesWithJ)
 {
 Console.WriteLine(name);
 }

The result indicates that in between the iterations the output stays the same although the collection values
have changed:

First iteration
Juan

Second iteration
Juan

STANDARD QuERy oPERAToRS
Where, OrderByDescending, and Select are only a few of the query operators defined by LINQ. The
LINQ query defines a declarative syntax for the most common operators. There are many more query
operators available with the Enumerable class.

The following table lists the standard query operators defined by the Enumerable class.

STANDARD QuERy oPERAToRS DESCRIPTIoN

Where

OfType<TResult>

Filtering operators define a restriction to the elements returned. With
the Where query operator you can use a predicate; for example, a
Lambda expression that returns a bool. OfType<TResult> filters the
elements based on the type and returns only the elements of the type
TResult.

Select

SelectMany

Projection operators are used to transform an object into a new object
of a different type. Select and SelectMany define a projection to
select values of the result based on a selector function.

OrderBy

ThenBy

OrderByDescending
ThenByDescending

Reverse

Sorting operators change the order of elements returned. OrderBy
sorts values in ascending order; OrderByDescending sorts values
in descending order. ThenBy and ThenByDescending operators are
used for a secondary sort if the first sort gives similar results. Reverse
reverses the elements in the collection.

Join

GroupJoin

Join operators are used to combine collections that might not be
directly related to each other. With the Join operator a join of two
collections based on key selector functions can be done. This is similar
to the JOIN you know from SQL. The GroupJoin operator joins two
collections and groups the results.

GroupBy

ToLookup

Grouping operators put the data into groups. The GroupBy operator
groups elements with a common key. ToLookup groups the elements
by creating a one-to-many dictionary.

(continues)

c11.indd 287 30-01-2014 20:16:12

288 ❘ CHAPTER 11 Language Integrated Query

STANDARD QuERy oPERAToRS DESCRIPTIoN

Any

All

Contains

Quantifier operators return a Boolean value if elements of the
sequence satisfy a specific condition. Any, All, and Contains are
quantifier operators. Any determines if any element in the collection
satisfies a predicate function; All determines if all elements in the
collection satisfy a predicate. Contains checks whether a specific
element is in the collection.

Take

Skip

TakeWhile

SkipWhile

Partitioning operators return a subset of the collection. Take, Skip,
TakeWhile, and SkipWhile are partitioning operators. With these,
you get a partial result. With Take, you have to specify the number
of elements to take from the collection; Skip ignores the specified
number of elements and takes the rest. TakeWhile takes the elements
as long as a condition is true.

Distinct

Union

Intersect

Except

Zip

Set operators return a collection set. Distinct removes duplicates
from a collection. With the exception of Distinct, the other set
operators require two collections. Union returns unique elements that
appear in either of the two collections. Intersect returns elements
that appear in both collections. Except returns elements that appear in
just one collection. Zip combines two collections into one.

First

FirstOrDefault

Last

LastOrDefault

ElementAt

ElementAtOrDefault

Single

SingleOrDefault

Element operators return just one element. First returns the first
element that satisfies a condition. FirstOrDefault is similar to
First, but it returns a default value of the type if the element is not
found. Last returns the last element that satisfies a condition. With
ElementAt, you specify the position of the element to return. Single
returns only the one element that satisfies a condition. If more than one
element satisfies the condition, an exception is thrown.

Count

Sum

Min

Max

Average

Aggregate

Aggregate operators compute a single value from a collection. With
aggregate operators, you can get the sum of all values, the number of
all elements, the element with the lowest or highest value, an average
number, and so on.

ToArray

AsEnumerable

ToList

ToDictionary

Cast<TResult>

Conversion operators convert the collection to an array: IEnumerable,
IList, IDictionary, and so on.

Empty

Range

Repeat

Generation operators return a new sequence. The collection is empty
using the Empty operator; Range returns a sequence of numbers, and
Repeat returns a collection with one repeated value.

The following sections provide examples demonstrating how to use these operators.

(continued)

c11.indd 288 30-01-2014 20:16:12

Standard Query Operators ❘ 289

Filtering
This section looks at some examples for a query.

With the where clause, you can combine multiple expressions — for example, get only the racers from Brazil
and Austria who won more than 15 races. The result type of the expression passed to the where clause just
needs to be of type bool:

 var racers = from r in Formula1.GetChampions()
 where r.Wins > 15 &&
 (r.Country == "Brazil" || r.Country == "Austria")
 select r;

 foreach (var r in racers)
 {
 Console.WriteLine("{0:A}", r);
 }

Starting the program with this LINQ query returns Niki Lauda, Nelson Piquet, and Ayrton Senna, as
shown here:

Niki Lauda, Austria, Starts: 173, Wins: 25
Nelson Piquet, Brazil, Starts: 204, Wins: 23
Ayrton Senna, Brazil, Starts: 161, Wins: 41

Not all queries can be done with the LINQ query syntax, and not all extension methods are mapped to
LINQ query clauses. Advanced queries require using extension methods. To better understand complex
queries with extension methods, it’s good to see how simple queries are mapped. Using the extension
methods Where and Select produces a query very similar to the LINQ query done before:

 var racers = Formula1.GetChampions().
 Where(r => r.Wins > 15 &&
 (r.Country == "Brazil" || r.Country == "Austria")).
 Select(r => r);

Filtering with Index
One scenario in which you can’t use the LINQ query is an overload of the Where method. With an overload
of the Where method, you can pass a second parameter that is the index. The index is a counter for every
result returned from the filter. You can use the index within the expression to do some calculation based
on the index. In the following example, the index is used within the code that is called by the Where
extension method to return only racers whose last name starts with A if the index is even (code file
EnumerableSample/Program.cs):

 var racers = Formula1.GetChampions().
 Where((r, index) => r.LastName.StartsWith("A") && index % 2 != 0);
 foreach (var r in racers)
 {
 Console.WriteLine("{0:A}", r);
 }

The racers with last names beginning with the letter A are Alberto Ascari, Mario Andretti, and Fernando
Alonso. Because Mario Andretti is positioned within an index that is odd, he is not in the result:

Alberto Ascari, Italy; starts: 32, wins: 10
Fernando Alonso, Spain; starts: 177, wins: 27

c11.indd 289 30-01-2014 20:16:13

290 ❘ CHAPTER 11 Language Integrated Query

Type Filtering
For filtering based on a type you can use the OfType extension method. Here the array data contains
both string and int objects. Using the extension method OfType, passing the string class to the generic
parameter returns only the strings from the collection (code file EnumerableSample/Program.cs):

 object[] data = { "one", 2, 3, "four", "five", 6 };
 var query = data.OfType<string>();
 foreach (var s in query)
 {
 Console.WriteLine(s);
 }

Running this code, the strings one, four, and five are displayed:

one
four
five

Compound from
If you need to do a filter based on a member of the object that itself is a sequence, you can use a compound
from. The Racer class defines a property Cars, where Cars is a string array. For a filter of all racers who
were champions with a Ferrari, you can use the LINQ query shown next. The first from clause accesses the
Racer objects returned from Formula1.GetChampions. The second from clause accesses the Cars property
of the Racer class to return all cars of type string. Next the cars are used with the where clause to filter
only the racers who were champions with a Ferrari (code file EnumerableSample/Program.cs):

 var ferrariDrivers = from r in Formula1.GetChampions()
 from c in r.Cars
 where c == "Ferrari"
 orderby r.LastName
 select r.FirstName + " " + r.LastName;

If you are curious about the result of this query, following are all Formula-1 champions driving a Ferrari:

Alberto Ascari
Juan Manuel Fangio
Mike Hawthorn
Phil Hill
Niki Lauda
Kimi Räikkönen
Jody Scheckter
Michael Schumacher
John Surtees

The C# compiler converts a compound from clause with a LINQ query to the SelectMany extension
method. SelectMany can be used to iterate a sequence of a sequence. The overload of the SelectMany
method that is used with the example is shown here:

public static IEnumerable<TResult> SelectMany<TSource, TCollection, TResult> (
 this IEnumerable<TSource> source,
 Func<TSource,
 IEnumerable<TCollection>> collectionSelector,
 Func<TSource, TCollection, TResult> resultSelector);

The first parameter is the implicit parameter that receives the sequence of Racer objects from the
GetChampions method. The second parameter is the collectionSelector delegate where the inner

c11.indd 290 30-01-2014 20:16:13

Standard Query Operators ❘ 291

sequence is defined. With the lambda expression r => r.Cars, the collection of cars should be returned.
The third parameter is a delegate that is now invoked for every car and receives the Racer and Car
objects. The lambda expression creates an anonymous type with a Racer and a Car property. As a result of
this SelectMany method, the hierarchy of racers and cars is flattened and a collection of new objects of an
anonymous type for every car is returned.

This new collection is passed to the Where method so that only the racers driving a Ferrari are filtered.
Finally, the OrderBy and Select methods are invoked:

 var ferrariDrivers = Formula1.GetChampions().
 SelectMany(r => r.Cars,
 (r, c) => new { Racer = r, Car = c }).
 Where(r => r.Car == "Ferrari").
 OrderBy(r => r.Racer.LastName).
 Select(r => r.Racer.FirstName + " " + r.Racer.LastName);

Resolving the generic SelectMany method to the types that are used here, the types are resolved as follows.
In this case the source is of type Racer, the filtered collection is a string array, and of course the name of
the anonymous type that is returned is not known and is shown here as TResult:

public static IEnumerable<TResult> SelectMany<Racer, string, TResult> (
 this IEnumerable<Racer> source,
 Func<Racer, IEnumerable<string>> collectionSelector,
 Func<Racer, string, TResult> resultSelector);

Because the query was just converted from a LINQ query to extension methods, the result is the same as
before.

Sorting
To sort a sequence, the orderby clause was used already. This section reviews the earlier example, now with
the orderby descending clause. Here the racers are sorted based on the number of wins as specified by the
key selector in descending order (code file EnumerableSample/Program.cs):

 var racers = from r in Formula1.GetChampions()
 where r.Country == "Brazil"
 orderby r.Wins descending
 select r;

The orderby clause is resolved to the OrderBy method, and the orderby descending clause is resolved to
the OrderByDescending method:

 var racers = Formula1.GetChampions().
 Where(r => r.Country == "Brazil").
 OrderByDescending(r => r.Wins).
 Select(r => r);

The OrderBy and OrderByDescending methods return IOrderedEnumerable<TSource>. This interface
derives from the interface IEnumerable<TSource> but contains an additional method, CreateOrdered
Enumerable<TSource>. This method is used for further ordering of the sequence. If two items are
the same based on the key selector, ordering can continue with the ThenBy and ThenByDescending
methods. These methods require an IOrderedEnumerable<TSource> to work on but return this interface
as well. Therefore, you can add any number of ThenBy and ThenByDescending methods to sort the
collection.

Using the LINQ query, you just add all the different keys (with commas) for sorting to the orderby clause.
In the next example, the sort of all racers is done first based on country, next on last name, and finally

c11.indd 291 30-01-2014 20:16:13

292 ❘ CHAPTER 11 Language Integrated Query

on first name. The Take extension method that is added to the result of the LINQ query is used to return
the first 10 results:

 var racers = (from r in Formula1.GetChampions()
 orderby r.Country, r.LastName, r.FirstName
 select r).Take(10);

The sorted result is shown here:

Argentina: Fangio, Juan Manuel
Australia: Brabham, Jack
Australia: Jones, Alan
Austria: Lauda, Niki
Austria: Rindt, Jochen
Brazil: Fittipaldi, Emerson
Brazil: Piquet, Nelson
Brazil: Senna, Ayrton
Canada: Villeneuve, Jacques
Finland: Hakkinen, Mika

Doing the same with extension methods makes use of the OrderBy and ThenBy methods:

 var racers = Formula1.GetChampions().
 OrderBy(r => r.Country).
 ThenBy(r => r.LastName).
 ThenBy(r => r.FirstName).
 Take(10);

Grouping
To group query results based on a key value, the group clause can be used. Now the Formula-1 champions
should be grouped by country, and the number of champions within a country should be listed. The clause
group r by r.Country into g groups all the racers based on the Country property and defines a new
identifier g that can be used later to access the group result information. The result from the group clause is
ordered based on the extension method Count that is applied on the group result; and if the count is the same,
the ordering is done based on the key. This is the country because this was the key used for grouping. The
where clause filters the results based on groups that have at least two items, and the select clause creates an
anonymous type with the Country and Count properties (code file EnumerableSample/Program.cs):

 var countries = from r in Formula1.GetChampions()
 group r by r.Country into g
 orderby g.Count() descending, g.Key
 where g.Count() >= 2
 select new {
 Country = g.Key,
 Count = g.Count()
 };

 foreach (var item in countries)
 {
 Console.WriteLine("{0, -10} {1}", item.Country, item.Count);
 }

The result displays the collection of objects with the Country and Count properties:

UK 10
Brazil 3

c11.indd 292 30-01-2014 20:16:13

Standard Query Operators ❘ 293

Finland 3
Australia 2
Austria 2
Germany 2
Italy 2
USA 2

Doing the same with extension methods, the groupby clause is resolved to the GroupBy method. What’s
interesting with the declaration of the GroupBy method is that it returns an enumeration of objects
implementing the IGrouping interface. The IGrouping interface defines the Key property, so you can
access the key of the group after defining the call to this method:

public static IEnumerable<IGrouping<TKey, TSource>> GroupBy<TSource, TKey>(
 this IEnumerable<TSource> source, Func<TSource, TKey> keySelector);

The group r by r.Country into g clause is resolved to GroupBy(r => r.Country) and returns the
group sequence. The group sequence is first ordered by the OrderByDecending method, then by the ThenBy
method. Next, the Where and Select methods that you already know are invoked:

 var countries = Formula1.GetChampions().
 GroupBy(r => r.Country).
 OrderByDescending(g => g.Count()).
 ThenBy(g => g.Key).
 Where(g => g.Count() >= 2).
 Select(g => new { Country = g.Key,
 Count = g.Count() });

Grouping with Nested objects
If the grouped objects should contain nested sequences, you can do that by changing the anonymous
type created by the select clause. With this example, the returned countries should contain not only
the properties for the name of the country and the number of racers, but also a sequence of the names
of the racers. This sequence is assigned by using an inner from/in clause assigned to the Racers
property. The inner from clause is using the g group to get all racers from the group, order them by
last name, and create a new string based on the first and last name (code file EnumerableSample/
Program.cs):

 var countries = from r in Formula1.GetChampions()
 group r by r.Country into g
 orderby g.Count() descending, g.Key
 where g.Count() >= 2
 select new
 {
 Country = g.Key,
 Count = g.Count(),
 Racers = from r1 in g
 orderby r1.LastName
 select r1.FirstName + " " + r1.LastName
 };
 foreach (var item in countries)
 {
 Console.WriteLine("{0, -10} {1}", item.Country, item.Count);
 foreach (var name in item.Racers)
 {
 Console.Write("{0}; ", name);
 }
 Console.WriteLine();
 }

c11.indd 293 30-01-2014 20:16:13

294 ❘ CHAPTER 11 Language Integrated Query

The output now lists all champions from the specified countries:

UK 10
Jenson Button; Jim Clark; Lewis Hamilton; Mike Hawthorn; Graham Hill;
Damon Hill; James Hunt; Nigel Mansell; Jackie Stewart; John Surtees;
Brazil 3
Emerson Fittipaldi; Nelson Piquet; Ayrton Senna;
Finland 3
Mika Hakkinen; Kimi Raikkonen; Keke Rosberg;
Australia 2
Jack Brabham; Alan Jones;
Austria 2
Niki Lauda; Jochen Rindt;
Germany 2
Michael Schumacher; Sebastian Vettel;
Italy 2
Alberto Ascari; Nino Farina;
USA 2
Mario Andretti; Phil Hill;

Inner Join
You can use the join clause to combine two sources based on specific criteria. First, however, let’s get
two lists that should be joined. With Formula-1, there are drivers and a constructors championships. The
drivers are returned from the method GetChampions, and the constructors are returned from the method
GetConstructorChampions. It would be interesting to get a list by year in which every year lists the driver
and the constructor champions.

To do this, the first two queries for the racers and the teams are defined (code file EnumerableSample/
Program.cs):

 var racers = from r in Formula1.GetChampions()
 from y in r.Years
 select new
 {
 Year = y,
 Name = r.FirstName + " " + r.LastName
 };

 var teams = from t in Formula1.GetContructorChampions()
 from y in t.Years
 select new
 {
 Year = y,
 Name = t.Name
 };

Using these two queries, a join is done based on the year of the driver champion and the year of the team
champion with the join clause. The select clause defines a new anonymous type containing Year, Racer,
and Team properties:

 var racersAndTeams = (from r in racers
 join t in teams on r.Year equals t.Year
 select new
 {
 r.Year,
 Champion = r.Name,
 Constructor = t.Name
 }).Take(10);

c11.indd 294 30-01-2014 20:16:13

Standard Query Operators ❘ 295

 Console.WriteLine("Year World Champion\t Constructor Title");
 foreach (var item in racersAndTeams)
 {
 Console.WriteLine("{0}: {1,-20} {2}", item.Year, item.Champion,
 item.Constructor);
 }

Of course you can also combine this to just one LINQ query, but that’s a matter of taste:

 var racersAndTeams =
 (from r in
 from r1 in Formula1.GetChampions()
 from yr in r1.Years
 select new
 {
 Year = yr,
 Name = r1.FirstName + " " + r1.LastName
 }
 join t in
 from t1 in Formula1.GetContructorChampions()
 from yt in t1.Years
 select new
 {
 Year = yt,
 Name = t1.Name
 }
 on r.Year equals t.Year
 orderby t.Year
 select new
 {
 Year = r.Year,
 Racer = r.Name,
 Team = t.Name
 }).Take(10);

The output displays data from the anonymous type for the first 10 years in which both a drivers and
constructor championship took place:

Year World Champion Constructor Title
1958: Mike Hawthorn Vanwall
1959: Jack Brabham Cooper
1960: Jack Brabham Cooper
1961: Phil Hill Ferrari
1962: Graham Hill BRM
1963: Jim Clark Lotus
1964: John Surtees Ferrari
1965: Jim Clark Lotus
1966: Jack Brabham Brabham
1967: Denny Hulme Brabham

Left outer Join
The output from the previous join sample started with the year 1958 — the first year when both the drivers’
and constructor championship started. The drivers’ championship started earlier, in the year 1950. With
an inner join, results are returned only when matching records are found. To get a result with all the years
included, a left outer join can be used. A left outer join returns all the elements in the left sequence even
when no match is found in the right sequence.

The earlier LINQ query is changed to a left outer join. A left outer join is defined with the join clause
together with the DefaultIfEmpty method. If the left side of the query (the racers) does not have a

c11.indd 295 30-01-2014 20:16:13

296 ❘ CHAPTER 11 Language Integrated Query

matching constructor champion, the default value for the right side is defined by the DefaultIfEmpty
method (code file EnumerableSample/Program.cs):

 var racersAndTeams =
 (from r in racers
 join t in teams on r.Year equals t.Year into rt
 from t in rt.DefaultIfEmpty()
 orderby r.Year
 select new
 {
 Year = r.Year,
 Champion = r.Name,
 Constructor = t == null ? “no constructor championship” : t.Name
 }).Take(10);

Running the application with this query, the output starts with the year 1950 as shown here:

Year Champion Constructor Title
1950: Nino Farina no constructor championship
1951: Juan Manuel Fangio no constructor championship
1952: Alberto Ascari no constructor championship
1953: Alberto Ascari no constructor championship
1954: Juan Manuel Fangio no constructor championship
1955: Juan Manuel Fangio no constructor championship
1956: Juan Manuel Fangio no constructor championship
1957: Juan Manuel Fangio no constructor championship
1958: Mike Hawthorn Vanwall
1959: Jack Brabham Cooper

Group Join
A left outer join makes use of a group join together with the into clause. It uses partly the same syntax as
the group join. The group join just doesn’t need the DefaultIfEmpty method.

With a group join, two independent sequences can be joined, whereby one sequence contains a list of items
for one element of the other sequence.

The following example uses two independent sequences. One is the list of champions that you already know
from previous examples. The second sequence is a collection of Championship types. The Championship
type is shown in the next code snippet. This class contains the year of the championship and the racers with
the first, second, and third position of the year with the properties Year, First, Second, and Third (code
file DataLib/Championship.cs):

 public class Championship
 {
 public int Year { get; set; }
 public string First { get; set; }
 public string Second { get; set; }
 public string Third { get; set; }
 }

The collection of championships is returned from the method GetChampionships as shown in the following
code snippet (code file DataLib/Formula1.cs):

 private static List<Championship> championships;
 public static IEnumerable<Championship> GetChampionships()
 {
 if (championships == null)
 {
 championships = new List<Championship>();
 championships.Add(new Championship

c11.indd 296 30-01-2014 20:16:14

Standard Query Operators ❘ 297

 {
 Year = 1950,
 First = "Nino Farina",
 Second = "Juan Manuel Fangio",
 Third = "Luigi Fagioli"
 });
 championships.Add(new Championship
 {
 Year = 1951,
 First = "Juan Manuel Fangio",
 Second = "Alberto Ascari",
 Third = "Froilan Gonzalez"
 });
 //...

The list of champions should be combined with the list of racers that are found within the first three
positions in every year of championships, and the results for every year should be displayed.

The information that should be shown is defined with the RacerInfo class, as shown here (code file
EnumerableSample/RacerInfo.cs):

 public class RacerInfo
 {
 public int Year { get; set; }
 public int Position { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 }

With a join statement the racers from both lists can be combined.

Because in the list of championships every item contains three racers, this list needs to be flattened first. One
way to do this is by using the SelectMany method. SelectMany makes use of a lambda expression that
returns a list of three items for every item in the list. Within the implementation of the lambda expression,
because the RacerInfo contains the FirstName and the LastName properties, and the collection received
just contains only a name with First, Second, and Third properties, the string needs to be divided. This
is done with the help of the extension methods FirstName and SecondName (code file EnumerableSample/
Program.cs):

 var racers = Formula1.GetChampionships()
 .SelectMany(cs => new List<RacerInfo>()
 {
 new RacerInfo {
 Year = cs.Year,
 Position = 1,
 FirstName = cs.First.FirstName(),
 LastName = cs.First.LastName()
 },
 new RacerInfo {
 Year = cs.Year,
 Position = 2,
 FirstName = cs.Second.FirstName(),
 LastName = cs.Second.LastName()
 },
 new RacerInfo {
 Year = cs.Year,
 Position = 3,
 FirstName = cs.Third.FirstName(),
 LastName = cs.Third.LastName()
 }
 });

c11.indd 297 30-01-2014 20:16:14

298 ❘ CHAPTER 11 Language Integrated Query

The extension methods FirstName and SecondName just use the last blank character to split up the string:

 public static class StringExtension
 {
 public static string FirstName(this string name)
 {
 int ix = name.LastIndexOf(' ');
 return name.Substring(0, ix);
 }
 public static string LastName(this string name)
 {
 int ix = name.LastIndexOf(' ');
 return name.Substring(ix + 1);
 }
 }

Now the two sequences can be joined. Formula1.GetChampions returns a list of Racers, and the racers
variable returns the list of RacerInfo that contains the year, the result, and the names of racers. It’s not enough
to compare the items from these two collections by using the last name. Sometimes a racer and his father can be
found in the list (e.g., Damon Hill and Graham Hill), so it’s necessary to compare the items by both FirstName
and LastName. This is done by creating a new anonymous type for both lists. Using the into clause, the result
from the second collection is put into the variable yearResults. yearResults is created for every racer in
the first collection and contains the results of the matching first name and last name from the second collection.
Finally, with the LINQ query a new anonymous type is created that contains the needed information:

 var q = (from r in Formula1.GetChampions()
 join r2 in racers on
 new
 {
 FirstName = r.FirstName,
 LastName = r.LastName
 }
 equals
 new
 {
 FirstName = r2.FirstName,
 LastName = r2.LastName
 }
 into yearResults
 select new
 {
 FirstName = r.FirstName,
 LastName = r.LastName,
 Wins = r.Wins,
 Starts = r.Starts,
 Results = yearResults
 });

 foreach (var r in q)
 {
 Console.WriteLine("{0} {1}", r.FirstName, r.LastName);
 foreach (var results in r.Results)
 {
 Console.WriteLine("{0} {1}.", results.Year, results.Position);
 }
 }

The last results from the foreach loop are shown next. Lewis Hamilton has been twice among the top
three, 2007 as second and 2008 as first. Jenson Button is found three times, 2004, 2009, and 2011; and
Sebastian Vettel was world champion two times and had the second position in 2009:

c11.indd 298 30-01-2014 20:16:14

Standard Query Operators ❘ 299

Lewis Hamilton
2007 2.
2008 1.
Jenson Button
2004 3.
2009 1.
2011 2.
Sebastian Vettel
2009 2.
2010 1.
2011 1.

Set operations
The extension methods Distinct, Union, Intersect, and Except are set operations. The following
example creates a sequence of Formula-1 champions driving a Ferrari and another sequence of Formula-1
champions driving a McLaren, and then determines whether any driver has been a champion driving both of
these cars. Of course, that’s where the Intersect extension method can help.

First, you need to get all champions driving a Ferrari. This uses a simple LINQ query with a compound
from to access the property Cars that’s returning a sequence of string objects (code file EnumerableSample/
Program.cs):

 var ferrariDrivers = from r in
 Formula1.GetChampions()
 from c in r.Cars
 where c == "Ferrari"
 orderby r.LastName
 select r;

Now the same query with a different parameter of the where clause is needed to get all McLaren racers. It’s
not a good idea to write the same query again. One option is to create a method in which you can pass the
parameter car:

 private static IEnumerable<Racer> GetRacersByCar(string car)
 {
 return from r in Formula1.GetChampions()
 from c in r.Cars
 where c == car
 orderby r.LastName
 select r;
 }

However, because the method wouldn’t be needed in other places, defining a variable of a delegate type to
hold the LINQ query is a good approach. The variable racersByCar needs to be of a delegate type that
requires a string parameter and returns IEnumerable<Racer>, similar to the method implemented earlier.
To do this, several generic Func<> delegates are defined, so you do not need to declare your own delegate.
A lambda expression is assigned to the variable racersByCar. The left side of the lambda expression defines
a car variable of the type that is the first generic parameter of the Func delegate (a string). The right side
defines the LINQ query that uses the parameter with the where clause:

 Func<string, IEnumerable<Racer>> racersByCar =
 car => from r in Formula1.GetChampions()
 from c in r.Cars
 where c == car
 orderby r.LastName
 select r;

c11.indd 299 30-01-2014 20:16:14

300 ❘ CHAPTER 11 Language Integrated Query

Now you can use the Intersect extension method to get all racers who won the championship with a
Ferrari and a McLaren:

 Console.WriteLine("World champion with Ferrari and McLaren");
 foreach (var racer in racersByCar("Ferrari").Intersect(
 racersByCar("McLaren")))
 {
 Console.WriteLine(racer);
 }

The result is just one racer, Niki Lauda:

World champion with Ferrari and McLaren
Niki Lauda

NoTE The set operations compares the objects by invoking the GetHashCode and
Equals methods of the entity class. For custom comparisons, you can also pass an
object that implements the interface IEqualityComparer<T>. In the preceding example
here, the GetChampions method always returns the same objects, so the default
comparison works. If that’s not the case, the set methods offer overloads in which a
comparison can be defined.

Zip
The Zip method is new since .NET 4 and enables you to merge two related sequences into one with a
predicate function.

First, two related sequences are created, both with the same filtering (country Italy) and ordering. For
merging this is important, as item 1 from the first collection is merged with item 1 from the second
collection, item 2 with item 2, and so on. In case the count of the two sequences is different, Zip stops when
the end of the smaller collection is reached.

The items in the first collection have a Name property and the items in the second collection have LastName
and Starts properties.

Using the Zip method on the collection racerNames requires the second collection racerNamesAndStarts
as the first parameter. The second parameter is of type Func<TFirst, TSecond, TResult>. This
parameter is implemented as a lambda expression and receives the elements of the first collection
with the parameter first, and the elements of the second collection with the parameter second. The
implementation creates and returns a string containing the Name property of the first element and
the Starts property of the second element (code file EnumerableSample/Program.cs):

 var racerNames = from r in Formula1.GetChampions()
 where r.Country == "Italy"
 orderby r.Wins descending
 select new
 {
 Name = r.FirstName + " " + r.LastName
 };

 var racerNamesAndStarts = from r in Formula1.GetChampions()
 where r.Country == "Italy"
 orderby r.Wins descending
 select new
 {
 LastName = r.LastName,

c11.indd 300 30-01-2014 20:16:14

Standard Query Operators ❘ 301

 Starts = r.Starts
 };

 var racers = racerNames.Zip(racerNamesAndStarts,
 (first, second) => first.Name + ", starts: " + second.Starts);
 foreach (var r in racers)
 {
 Console.WriteLine(r);
 }

The result of this merge is shown here:

Alberto Ascari, starts: 32
Nino Farina, starts: 33

Partitioning
Partitioning operations such as the extension methods Take and Skip can be used for easy paging — for
example, to display just 5 racers on the first page, and continue with the next 5 on the following pages.

With the LINQ query shown here, the extension methods Skip and Take are added to the end of the
query. The Skip method first ignores a number of items calculated based on the page size and the actual
page number; the Take method then takes a number of items based on the page size (code file
EnumerableSample/Program.cs):

 int pageSize = 5;

 int numberPages = (int)Math.Ceiling(Formula1.GetChampions().Count() /
 (double)pageSize);

 for (int page = 0; page < numberPages; page++)
 {
 Console.WriteLine("Page {0}", page);

 var racers =
 (from r in Formula1.GetChampions()
 orderby r.LastName, r.FirstName
 select r.FirstName + " " + r.LastName).
 Skip(page * pageSize).Take(pageSize);

 foreach (var name in racers)
 {
 Console.WriteLine(name);
 }
 Console.WriteLine();
 }

Here is the output of the first three pages:

Page 0
Fernando Alonso
Mario Andretti
Alberto Ascari
Jack Brabham
Jenson Button

Page 1
Jim Clark
Juan Manuel Fangio
Nino Farina

c11.indd 301 30-01-2014 20:16:14

302 ❘ CHAPTER 11 Language Integrated Query

Emerson Fittipaldi
Mika Hakkinen

Page 2
Lewis Hamilton
Mike Hawthorn
Damon Hill
Graham Hill
Phil Hill

Paging can be extremely useful with Windows or web applications, showing the user only a part of the data.

NoTE Note an important behavior of this paging mechanism: because the query is
done with every page, changing the underlying data affects the results. New objects are
shown as paging continues. Depending on your scenario, this can be advantageous to
your application. If this behavior is not what you need, you can do the paging not over
the original data source but by using a cache that maps to the original data.

With the TakeWhile and SkipWhile extension methods you can also pass a predicate to retrieve or skip
items based on the result of the predicate.

Aggregate operators
The aggregate operators such as Count, Sum, Min, Max, Average, and Aggregate do not return a sequence
but a single value instead.

The Count extension method returns the number of items in the collection. In the following example, the
Count method is applied to the Years property of a Racer to filter the racers and return only those who
won more than three championships. Because the same count is needed more than once in the same query, a
variable numberYears is defined by using the let clause (code file EnumerableSample/Program.cs):

 var query = from r in Formula1.GetChampions()
 let numberYears = r.Years.Count()
 where numberYears >= 3
 orderby numberYears descending, r.LastName
 select new
 {
 Name = r.FirstName + " " + r.LastName,
 TimesChampion = numberYears
 };

 foreach (var r in query)
 {
 Console.WriteLine("{0} {1}", r.Name, r.TimesChampion);
 }

The result is shown here:

Michael Schumacher 7
Juan Manuel Fangio 5
Alain Prost 4
Jack Brabham 3
Niki Lauda 3
Nelson Piquet 3
Ayrton Senna 3
Jackie Stewart 3

c11.indd 302 30-01-2014 20:16:14

Standard Query Operators ❘ 303

The Sum method summarizes all numbers of a sequence and returns the result. In the next example, Sum is
used to calculate the sum of all race wins for a country. First the racers are grouped based on country; then,
with the new anonymous type created, the Wins property is assigned to the sum of all wins from a single
country:

 var countries =
 (from c in
 from r in Formula1.GetChampions()
 group r by r.Country into c
 select new
 {
 Country = c.Key,
 Wins = (from r1 in c
 select r1.Wins).Sum()
 }
 orderby c.Wins descending, c.Country
 select c).Take(5);

 foreach (var country in countries)
 {
 Console.WriteLine("{0} {1}", country.Country, country.Wins);
 }

The most successful countries based on the Formula-1 race champions are as follows:

UK 167
Germany 112
Brazil 78
France 51
Finland 42

The methods Min, Max, Average, and Aggregate are used in the same way as Count and Sum. Min returns
the minimum number of the values in the collection, and Max returns the maximum number. Average
calculates the average number. With the Aggregate method you can pass a lambda expression that
performs an aggregation of all the values.

Conversion operators
In this chapter you’ve already seen that query execution is deferred until the items are accessed. Using
the query within an iteration, the query is executed. With a conversion operator, the query is executed
immediately and the result is returned in an array, a list, or a dictionary.

In the next example, the ToList extension method is invoked to immediately execute the query and put the
result into a List<T> (code file EnumerableSample/Program.cs):

 List<Racer> racers = (from r in Formula1.GetChampions()
 where r.Starts > 150
 orderby r.Starts descending
 select r).ToList();
 foreach (var racer in racers)
 {
 Console.WriteLine("{0} {0:S}", racer);
 }

It’s not that simple to get the returned objects into the list. For example, for fast access from a car to a racer
within a collection class, you can use the new class Lookup<TKey, TElement>.

c11.indd 303 30-01-2014 20:16:15

304 ❘ CHAPTER 11 Language Integrated Query

NoTE The Dictionary<TKey, TValue> class supports only a single value for a key.
With the class Lookup<TKey TElement> from the namespace System.Linq, you can
have multiple values for a single key. These classes are covered in detail in Chapter 10,
“Collections.”

Using the compound from query, the sequence of racers and cars is flattened, and an anonymous type with
the properties Car and Racer is created. With the lookup that is returned, the key should be of type string
referencing the car, and the value should be of type Racer. To make this selection, you can pass a key and
an element selector to one overload of the ToLookup method. The key selector references the Car property,
and the element selector references the Racer property:

 var racers = (from r in Formula1.GetChampions()
 from c in r.Cars
 select new
 {
 Car = c,
 Racer = r
 }).ToLookup(cr => cr.Car, cr => cr.Racer);
 if (racers.Contains("Williams"))
 {
 foreach (var williamsRacer in racers["Williams"])
 {
 Console.WriteLine(williamsRacer);
 }
 }

The result of all “Williams” champions accessed using the indexer of the Lookup class is shown here:

Alan Jones
Keke Rosberg
Nigel Mansell
Alain Prost
Damon Hill
Jacques Villeneuve

In case you need to use a LINQ query over an untyped collection, such as the ArrayList, you can use the
Cast method. In the following example, an ArrayList collection that is based on the Object type is filled
with Racer objects. To make it possible to define a strongly typed query, you can use the Cast method:

 var list = new System.Collections.ArrayList(Formula1.GetChampions()
 as System.Collections.ICollection);

 var query = from r in list.Cast<Racer>()
 where r.Country == "USA"
 orderby r.Wins descending
 select r;
 foreach (var racer in query)
 {
 Console.WriteLine("{0:A}", racer);
 }

Generation operators
The generation operators Range, Empty, and Repeat are not extension methods, but normal static methods
that return sequences. With LINQ to Objects, these methods are available with the Enumerable class.

c11.indd 304 30-01-2014 20:16:15

Parallel LINQ ❘ 305

Have you ever needed a range of numbers filled? Nothing is easier than using the Range method. This
method receives the start value with the first parameter and the number of items with the second
parameter:

 var values = Enumerable.Range(1, 20);
 foreach (var item in values)
 {
 Console.Write("{0} ", item);
 }
 Console.WriteLine();

NoTE The Range method does not return a collection filled with the values as defined.
This method does a deferred query execution similar to the other methods. It returns a
RangeEnumerator that simply does a yield return with the values incremented.

Of course, the result now looks like this:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

You can combine the result with other extension methods to get a different result — for example, using the
Select extension method:

 var values = Enumerable.Range(1, 20).Select(n => n * 3);

The Empty method returns an iterator that does not return values. This can be used for parameters that
require a collection for which you can pass an empty collection.

The Repeat method returns an iterator that returns the same value a specific number of times.

PARALLEL LINQ
The class ParallelEnumerable in the System.Linq namespace to splits the work of queries across
multiple threads. Although the Enumerable class defines extension methods to the IEnumerable<T>
interface, most extension methods of the ParallelEnumerable class are extensions for the class
ParallelQuery<TSource>. One important exception is the AsParallel method, which extends
IEnumerable<TSource> and returns ParallelQuery<TSource>, so a normal collection class can be
queried in a parallel manner.

Parallel Queries
To demonstrate Parallel LINQ (PLINQ), a large collection is needed. With small collections you won’t see
any effect when the collection fits inside the CPU’s cache. In the following code, a large int collection is
filled with random values (code file ParallelLinqSample/Program.cs):

 static IEnumerable<int> SampleData()
 {
 const int arraySize = 100000000;
 var r = new Random();
 return Enumerable.Range(0, arraySize).Select(x => r.Next(140)).ToList();
 }

Now you can use a LINQ query to filter the data, do some calculations, and get an average of the filtered
data. The query defines a filter with the where clause to summarize only the items with values < 20, and

c11.indd 305 30-01-2014 20:16:15

306 ❘ CHAPTER 11 Language Integrated Query

then the aggregation function sum is invoked. The only difference to the LINQ queries you’ve seen so far is
the call to the AsParallel method:

 var res = (from x in data.AsParallel()
 where Math.Log(x) < 4
 select x).Average();

Like the LINQ queries shown already, the compiler changes the syntax to invoke the methods
AsParallel, Where, Select, and Average. AsParallel is defined with the ParallelEnumerable
class to extend the IEnumerable<T> interface, so it can be called with a simple array. AsParallel returns
ParallelQuery<TSource>. Because of the returned type, the Where method chosen by the compiler is
ParallelEnumerable.Where instead of Enumerable.Where. In the following code, the Select and
Average methods are from ParallelEnumerable as well. In contrast to the implementation of the
Enumerable class, with the ParallelEnumerable class the query is partitioned so that multiple threads can
work on the query. The collection can be split into multiple parts whereby different threads work on each
part to filter the remaining items. After the partitioned work is completed, merging must occur to get the
summary result of all parts:

var res = data.AsParallel().Where(x => Math.Log(x) < 4).
 Select(x => x).Average();

Running this code starts the task manager so you can confirm that all CPUs of your system are busy. If you
remove the AsParallel method, multiple CPUs might not be used. Of course, if you don’t have multiple
CPUs on your system, then don’t expect to see an improvement with the parallel version.

Partitioners
The AsParallel method is an extension not only to the IEnumerable<T> interface, but also to the
Partitioner class. With this you can influence the partitions to be created.

The Partitioner class is defined within the namespace System.Collections.Concurrent and has
different variants. The Create method accepts arrays or objects implementing IList<T>. Depending on
that, as well as on the parameter loadBalance , which is of type Boolean and available with some overloads
of the method, a different partitioner type is returned. For arrays, .NET 4 includes DynamicPartitionerFor
Array<TSource> and StaticPartitionerForArray<TSource>, both of which derive from the abstract
base class OrderablePartitioner<TSource>.

In the following example, the code from the “Parallel Queries” section is changed to manually create a
partitioner instead of relying on the default one:

 var result = (from x in Partitioner.Create(data, true).AsParallel()
 where Math.Log(x) < 4
 select x).Average();

You can also influence the parallelism by invoking the methods WithExecutionMode and
WithDegreeOfParallelism. With WithExecutionMode you can pass a value of ParallelExecutionMode,
which can be Default or ForceParallelism. By default, Parallel LINQ avoids parallelism with high
overhead. With the method WithDegreeOfParallelism you can pass an integer value to specify the
maximum number of tasks that should run in parallel. This is useful if not all CPU cores should be used by
the query.

Cancellation
.NET offers a standard way to cancel long-running tasks, and this is also true for Parallel LINQ.

To cancel a long-running query, you can add the method WithCancellation to the query and
pass a CancellationToken to the parameter. The CancellationToken is created from the

c11.indd 306 30-01-2014 20:16:15

Uploaded by [StormRG]

Expression Trees ❘ 307

CancellationTokenSource. The query is run in a separate thread where the exception of type
OperationCanceledException is caught. This exception is fired if the query is cancelled. From the main
thread the task can be cancelled by invoking the Cancel method of the CancellationTokenSource:

 var cts = new CancellationTokenSource();

 Task.Factory.StartNew(() =>
 {
 try
 {
 var res = (from x in data.AsParallel().WithCancellation(cts.Token)
 where Math.Log(x) < 4
 select x).Average();
 Console.WriteLine("query finished, sum: {0}", res);
 }
 catch (OperationCanceledException ex)
 {
 Console.WriteLine(ex.Message);
 }
 });

 Console.WriteLine("query started");
 Console.Write("cancel? ");
 string input = Console.ReadLine();
 if (input.ToLower().Equals("y"))
 {
 // cancel!
 cts.Cancel();
 }

NoTE You can read more about cancellation and the CancellationToken in Chapter
21, “Tasks, Threads, and Synchronization.”

ExPRESSIoN TREES
With LINQ to Objects, the extension methods require a delegate type as parameter; this way, a lambda
expression can be assigned to the parameter. Lambda expressions can also be assigned to parameters of type
Expression<T>. The C# compiler defines different behavior for lambda expressions depending on the type.
If the type is Expression<T>, the compiler creates an expression tree from the lambda expression and stores
it in the assembly. The expression tree can be analyzed during runtime and optimized for querying against
the data source.

Let’s turn to a query expression that was used previously (code file ExpressionTreeSample/Program.cs):

 var brazilRacers = from r in racers
 where r.Country == "Brazil"
 orderby r.Wins
 select r;

The preceding query expression uses the extension methods Where, OrderBy, and Select. The
Enumerable class defines the Where extension method with the delegate type Func<T, bool> as
parameter predicate:

public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source, Func<TSource, bool> predicate);

c11.indd 307 30-01-2014 20:16:15

308 ❘ CHAPTER 11 Language Integrated Query

This way, the lambda expression is assigned to the predicate. Here, the lambda expression is similar to an
anonymous method, as explained earlier:

Func<Racer, bool> predicate = r => r.Country == "Brazil";

The Enumerable class is not the only class for defining the Where extension method. The Where extension
method is also defined by the class Queryable<T>. This class has a different definition of the Where
extension method:

public static IQueryable<TSource> Where<TSource>(
 this IQueryable<TSource> source,
 Expression<Func<TSource, bool>> predicate);

Here, the lambda expression is assigned to the type Expression<T>, which behaves differently:

Expression<Func<Racer, bool>> predicate = r => r.Country == "Brazil";

Instead of using delegates, the compiler emits an expression tree to the assembly. The expression tree
can be read during runtime. Expression trees are built from classes derived from the abstract base class
Expression. The Expression class is not the same as Expression<T>. Some of the expression classes that
inherit from Expression include BinaryExpression, ConstantExpression, InvocationExpression,
LambdaExpression, NewExpression, NewArrayExpression, TernaryExpression, UnaryExpression,
and more. The compiler creates an expression tree resulting from the lambda expression.

For example, the lambda expression r.Country == "Brazil" makes use of ParameterExpression,
MemberExpression, ConstantExpression, and MethodCallExpression to create a tree and store the tree
in the assembly. This tree is then used during runtime to create an optimized query to the underlying data
source.

The method DisplayTree is implemented to display an expression tree graphically on the console. In
the following example, an Expression object can be passed, and depending on the expression type some
information about the expression is written to the console. Depending on the type of the expression,
DisplayTree is called recursively:

NoTE This method does not deal with all expression types, only the types that
are used with the following example expression.

 private static void DisplayTree(int indent, string message,
 Expression expression)
 {
 string output = String.Format("{0} {1} ! NodeType: {2}; Expr: {3} ",
 "".PadLeft(indent, '>'), message, expression.NodeType, expression);

 indent++;
 switch (expression.NodeType)
 {
 case ExpressionType.Lambda:
 Console.WriteLine(output);
 LambdaExpression lambdaExpr = (LambdaExpression)expression;
 foreach (var parameter in lambdaExpr.Parameters)
 {
 DisplayTree(indent, "Parameter", parameter);
 }
 DisplayTree(indent, "Body", lambdaExpr.Body);
 break;

c11.indd 308 30-01-2014 20:16:16

Expression Trees ❘ 309

 case ExpressionType.Constant:
 ConstantExpression constExpr = (ConstantExpression)expression;
 Console.WriteLine("{0} Const Value: {1}", output, constExpr.Value);
 break;
 case ExpressionType.Parameter:
 ParameterExpression paramExpr = (ParameterExpression)expression;
 Console.WriteLine("{0} Param Type: {1}", output,
 paramExpr.Type.Name);
 break;
 case ExpressionType.Equal:
 case ExpressionType.AndAlso:
 case ExpressionType.GreaterThan:
 BinaryExpression binExpr = (BinaryExpression)expression;
 if (binExpr.Method != null)
 {
 Console.WriteLine("{0} Method: {1}", output,
 binExpr.Method.Name);
 }
 else
 {
 Console.WriteLine(output);
 }
 DisplayTree(indent, "Left", binExpr.Left);
 DisplayTree(indent, "Right", binExpr.Right);
 break;
 case ExpressionType.MemberAccess:
 MemberExpression memberExpr = (MemberExpression)expression;
 Console.WriteLine("{0} Member Name: {1}, Type: {2}", output,
 memberExpr.Member.Name, memberExpr.Type.Name);
 DisplayTree(indent, "Member Expr", memberExpr.Expression);
 break;
 default:
 Console.WriteLine();
 Console.WriteLine("{0} {1}", expression.NodeType,
 expression.Type.Name);
 break;
 }
 }

The expression that is used for showing the tree is already well known. It’s a lambda expression with a
Racer parameter, and the body of the expression takes racers from Brazil only if they have won more than
six races:

 Expression<Func<Racer, bool>> expression =
 r => r.Country == "Brazil" && r.Wins > 6;

 DisplayTree(0, "Lambda", expression);

Looking at the tree result, you can see from the output that the lambda expression consists of a Parameter
and an AndAlso node type. The AndAlso node type has an Equal node type to the left and a GreaterThan
node type to the right. The Equal node type to the left of the AndAlso node type has a MemberAccess node
type to the left and a Constant node type to the right, and so on:

Lambda! NodeType: Lambda; Expr: r => ((r.Country == "Brazil")
 AndAlso (r.Wins > 6))
> Parameter! NodeType: Parameter; Expr: r Param Type: Racer
> Body! NodeType: AndAlso; Expr: ((r.Country == "Brazil")
 AndAlso (r.Wins > 6))
>> Left! NodeType: Equal; Expr: (r.Country == "Brazil") Method: op_Equality
>>> Left! NodeType: MemberAccess; Expr: r.Country

c11.indd 309 30-01-2014 20:16:16

310 ❘ CHAPTER 11 Language Integrated Query

 Member Name: Country, Type: String
>>>> Member Expr! NodeType: Parameter; Expr: r Param Type: Racer
>>> Right! NodeType: Constant; Expr: "Brazil" Const Value: Brazil
>> Right! NodeType: GreaterThan; Expr: (r.Wins > 6)
>>> Left! NodeType: MemberAccess; Expr: r.Wins Member Name: Wins, Type: Int32
>>>> Member Expr! NodeType: Parameter; Expr: r Param Type: Racer
>>> Right! NodeType: Constant; Expr: 6 Const Value: 6

Examples where the Expression<T> type is used are with the ADO.NET Entity Framework and the client
provider for WCF Data Services. These technologies define methods with Expression<T> parameters.
This way the LINQ provider accessing the database can create a runtime-optimized query by reading the
expressions to get the data from the database.

LINQ PRovIDERS
.NET includes several LINQ providers. A LINQ provider implements the standard query operators for a
specific data source. LINQ providers might implement more extension methods than are defined by LINQ,
but the standard operators must at least be implemented. LINQ to XML implements additional methods
that are particularly useful with XML, such as the methods Elements, Descendants, and Ancestors
defined by the class Extensions in the System.Xml.Linq namespace.

Implementation of the LINQ provider is selected based on the namespace and the type of the first
parameter. The namespace of the class that implements the extension methods must be opened; otherwise,
the extension class is not in scope. The parameter of the Where method defined by LINQ to Objects and the
Where method defined by LINQ to Entities is different.

The Where method of LINQ to Objects is defined with the Enumerable class:

public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source, Func<TSource, bool> predicate);

Inside the System.Linq namespace is another class that implements the operator Where. This
implementation is used by LINQ to Entities. You can find the implementation in the class Queryable:

public static IQueryable<TSource> Where<TSource>(
 this IQueryable<TSource> source,
 Expression<Func<TSource, bool>> predicate);

Both of these classes are implemented in the System.Core assembly in the System.Linq namespace. How
does the compiler select what method to use, and what’s the magic with the Expression type? The lambda
expression is the same regardless of whether it is passed with a Func<TSource, bool> parameter or an
Expression<Func<TSource, bool>> parameter—only the compiler behaves differently. The selection
is done based on the source parameter. The method that matches best based on its parameters is chosen
by the compiler. The CreateQuery<T> method of the ObjectContext class that is defined by ADO.NET
Entity Framework returns an ObjectQuery<T> object that implements IQueryable<TSource>, and thus
the Entity Framework uses the Where method of the Queryable class.

SuMMARy
This chapter described and demonstrated the LINQ query and the language constructs on which
the query is based, such as extension methods and lambda expressions. You’ve looked at the various
LINQ query operators — not only for filtering and ordering of data sources, but also for partitioning,
grouping, doing conversions, joins, and so on.

With Parallel LINQ, you’ve seen how longer queries can easily be parallelized.

c11.indd 310 30-01-2014 20:16:16

Summary ❘ 311

Another important concept of this chapter is the expression tree. Expression trees enable building the
query to the data source at runtime because the tree is stored in the assembly. You can read about its great
advantages in Chapter 33, “ADO.NET Entity Framework.” LINQ is a very in-depth topic, and you can see
Chapters 33 and 34, “Manipulating XML,” for more information. Other third-party providers are also
available for download, such as LINQ to MySQL, LINQ to Amazon, LINQ to Flickr, LINQ to LDAP, and
LINQ to SharePoint. No matter what data source you have, with LINQ you can use the same query syntax.

c11.indd 311 30-01-2014 20:16:16

c11.indd 312 30-01-2014 20:16:16

Dynamic Language Extensions
WHAT’S in THiS CHAPTER?

 ➤ Understanding the Dynamic Language Runtime

 ➤ The dynamic type

 ➤ The DLR ScriptRuntime

 ➤ Creating dynamic objects with DynamicObject and ExpandoObject

WRox.Com CoDE DoWnLoADS FoR THiS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

 ➤ DLRHost

 ➤ Dynamic

 ➤ DynamicFileReader

 ➤ ErrorExample

The growth of languages such as Ruby and Python, and the increased use of JavaScript, have
intensifi ed interest in dynamic programming. In previous versions of the .NET Framework, the var
keyword and anonymous methods started C# down the “dynamic” road. In version 4, the dynamic
type was added. Although C# is still a statically typed language, these additions give it the dynamic
capabilities that some developers are looking for.

In this chapter, you’ll look at the dynamic type and the rules for using it. You’ll also see what an
implementation of DynamicObject looks like and how it can be used. ExpandoObject, which is the
frameworks implementation of DynamicObject, will also be covered.

DynAmiC LAnguAgE RunTimE
The dynamic capabilities of C# 4 are part of the dynamic language runtime (DLR). The DLR is a set
of services that is added to the common language runtime (CLR) to enable the addition of dynamic
languages such as Ruby and Python. It also enables C# to take on some of the same
dynamic capabilities that these dynamic languages have.

12

c12.indd 313 30-01-2014 20:17:01

314 ❘ CHAPTER 12 Dynamic Language extensions

There is a version of the DLR that is open source and resides on the CodePlex website. This same version is
included with the .NET 4.5 Framework, with some additional support for language implementers.

In the .NET Framework, the DLR is found in the System.Dynamic namespace as well as a few additional
classes in the System.Runtime.CompilerServices namespace.

IronRuby and IronPython, which are open-source versions of the Ruby and Python languages, use the DLR.
Silverlight also uses the DLR. It’s possible to add scripting capabilities to your applications by hosting the
DLR. The scripting runtime enables you to pass variables to and from the script.

THE DynAmiC TyPE
The dynamic type enables you to write code that bypasses compile-time type checking. The compiler will
assume that whatever operation is defined for an object of type dynamic is valid. If that operation isn’t valid,
the error won’t be detected until runtime. This is shown in the following example:

 class Program
{
 static void Main(string[] args)
 {
 var staticPerson = new Person();
 dynamic dynamicPerson = new Person();
 staticPerson.GetFullName("John", "Smith");
 dynamicPerson.GetFullName("John", "Smith");
 }
}

class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string GetFullName()
 {
 return string.Concat(FirstName, " ", LastName);
 }
}

This example will not compile because of the call to staticPerson.GetFullName. There isn’t a method on
the Person object that takes two parameters, so the compiler raises the error. If that line of code were to be
commented out, the example would compile. If executed, a runtime error would occur. The exception that is
raised is RuntimeBinderException. The RuntimeBinder is the object in the runtime that evaluates the call
to determine whether Person really does support the method that was called. Binding is discussed later in
the chapter.

Unlike the var keyword, an object that is defined as dynamic can change type during runtime. Remember
that when the var keyword is used, the determination of the object’s type is delayed. Once the type is
defined, it can’t be changed. Not only can you change the type of a dynamic object, you can change it
many times. This differs from casting an object from one type to another. When you cast an object, you are
creating a new object with a different but compatible type. For example, you cannot cast an int to a Person
object. In the following example, you can see that if the object is a dynamic object, you can change it from
int to Person:

dynamic dyn;

dyn = 100;
Console.WriteLine(dyn.GetType());
Console.WriteLine(dyn);

c12.indd 314 30-01-2014 20:17:01

The Dynamic Type ❘ 315

dyn = "This is a string";
Console.WriteLine(dyn.GetType());
Console.WriteLine(dyn);

dyn = new Person() { FirstName = "Bugs", LastName = "Bunny" };
Console.WriteLine(dyn.GetType());
Console.WriteLine("{0} {1}", dyn.FirstName, dyn.LastName);

Executing this code would show that the dyn object actually changes type from System.Int32 to System
.String to Person. If dyn had been declared as an int or string, the code would not have compiled.

Note a couple of limitations to the dynamic type. A dynamic object does not support extension methods.
Nor can anonymous functions (lambda expressions) be used as parameters to a dynamic method call, so
LINQ does not work well with dynamic objects. Most LINQ calls are extension methods, and lambda
expressions are used as arguments to those extension methods.

Dynamic Behind the Scenes
So what’s going on behind the scenes to make this happen? C# is still a statically typed language. That
hasn’t changed. Take a look at the IL (Intermediate Language) that’s generated when the dynamic type is
used.

First, this is the example C# code that you’re looking at:

using System;

namespace DeCompile
{
 class Program
 {
 static void Main(string[] args)
 {
 StaticClass staticObject = new StaticClass();
 DynamicClass dynamicObject = new DynamicClass();
 Console.WriteLine(staticObject.IntValue);
 Console.WriteLine(dynamicObject.DynValue);
 Console.ReadLine();
 }
 }

 class StaticClass
 {
 public int IntValue = 100;
 }

 class DynamicClass
 {
 public dynamic DynValue = 100;
 }
}

You have two classes, StaticClass and DynamicClass. StaticClass has a single field that returns an
int. DynamicClass has a single field that returns a dynamic object. The Main method just creates these
objects and prints out the value that the methods return. Simple enough.

Now comment out the references to the DynamicClass in Main like this:

static void Main(string[] args)
{
 StaticClass staticObject = new StaticClass();
 //DynamicClass dynamicObject = new DynamicClass();

c12.indd 315 30-01-2014 20:17:01

316 ❘ CHAPTER 12 Dynamic Language extensions

 Console.WriteLine(staticObject.IntValue);
 //Console.WriteLine(dynamicObject.DynValue);
 Console.ReadLine();
}

Using the ildasm tool (discussed in Chapter 19, “Assemblies”), you can look at the IL that is generated for
the Main method:

.method private hidebysig static void Main(string[] args) cil managed
{
 .entrypoint
 // Code size 26 (0x1a)
 .maxstack 1
 .locals init ([0] class DeCompile.StaticClass staticObject)
 IL_0000: nop
 IL_0001: newobj instance void DeCompile.StaticClass::.ctor()
 IL_0006: stloc.0
 IL_0007: ldloc.0
 IL_0008: ldfld int32 DeCompile.StaticClass::IntValue
 IL_000d: call void [mscorlib]System.Console::WriteLine(int32)
 IL_0012: nop
 IL_0013: call string [mscorlib]System.Console::ReadLine()
 IL_0018: pop
 IL_0019: ret
} // end of method Program::Main

Without going into the details of IL but just looking at this section of code, you can still pretty much tell
what’s going on. Line 0001, the StaticClass constructor, is called. Line 0008 calls the IntValue field of
StaticClass. The next line writes out the value.

Now comment out the StaticClass references and uncomment the DynamicClass references:

static void Main(string[] args)
{
 //StaticClass staticObject = new StaticClass();
 DynamicClass dynamicObject = new DynamicClass();
 Console.WriteLine(staticObject.IntValue);
 //Console.WriteLine(dynamicObject.DynValue);
 Console.ReadLine();
}

Compile the application again and this is what is generated:

.method private hidebysig static void Main(string[] args) cil managed
{
 .entrypoint
 // Code size 121 (0x79)
 .maxstack 9
 .locals init ([0] class DeCompile.DynamicClass dynamicObject,
 [1] class
[Microsoft.CSharp]Microsoft.CSharp.RuntimeBinder.CSharpArgumentInfo[]
 CS$0$0000)
 IL_0000: nop
 IL_0001: newobj instance void DeCompile.DynamicClass::.ctor()
 IL_0006: stloc.0
 IL_0007: ldsfld class [System.Core]System.Runtime.CompilerServices.CallSite'1
 <class [mscorlib]
System.Action'3<class
[System.Core]System.Runtime.CompilerServices.CallSite,class [mscorlib]
System.Type,object>> DeCompile.Program/'<Main>o__SiteContainer0'::'<>p__Site1'

c12.indd 316 30-01-2014 20:17:01

The Dynamic Type ❘ 317

 IL_000c: brtrue.s IL_004d
 IL_000e: ldc.i4.0
 IL_000f: ldstr "WriteLine"
 IL_0014: ldtoken DeCompile.Program
 IL_0019: call class [mscorlib]System.Type
[mscorlib]System.Type::GetTypeFromHandle
(valuetype [mscorlib]System.RuntimeTypeHandle)
 IL_001e: ldnull
 IL_001f: ldc.i4.2
 IL_0020: newarr
[Microsoft.CSharp]Microsoft.CSharp.RuntimeBinder.CSharpArgumentInfo
 IL_0025: stloc.1
 IL_0026: ldloc.1
 IL_0027: ldc.i4.0
 IL_0028: ldc.i4.s 33
 IL_002a: ldnull
 IL_002b: newobj instance void [Microsoft.CSharp]Microsoft.CSharp.RuntimeBinder
.CSharpArgumentInfo::.ctor(valuetype [Microsoft.CSharp]Microsoft.CSharp.RuntimeBinder
.CSharpArgumentInfoFlags, string)
 IL_0030: stelem.ref
 IL_0031: ldloc.1
 IL_0032: ldc.i4.1
 IL_0033: ldc.i4.0
 IL_0034: ldnull
 IL_0035: newobj instance void [Microsoft.CSharp]Microsoft.CSharp.RuntimeBinder
.CSharpArgumentInfo::.ctor(valuetype [Microsoft.CSharp]Microsoft.CSharp.RuntimeBinder
.CSharpArgumentInfoFlags, string)
 IL_003a: stelem.ref
 IL_003b: ldloc.1
 IL_003c: newobj instance void [Microsoft.CSharp]Microsoft.CSharp.RuntimeBinder
.CSharpInvokeMemberBinder::.ctor(valuetype Microsoft.CSharp]Microsoft.CSharp
.RuntimeBinder.CSharpCallFlags, string)
class [mscorlib]System.Type,
class [mscorlib]System.Collections.Generic.IEnumerable'1
<class [mscorlib]System.Type>,
class [mscorlib]System.Collections.Generic.IEnumerable'1
<class [Microsoft.CSharp]Microsoft.CSharp.RuntimeBinder.CSharpArgumentInfo>)
 IL_0041: call class [System.Core]System.Runtime.CompilerServices.CallSite'1
<!0> class [System.Core]System.Runtime.CompilerServices.CallSite'1
<class [mscorlib]System.Action'3
<class [System.Core]System.Runtime.CompilerServices.CallSite,
class [mscorlib]System.Type,object>>::Create(class
[System.Core]System.Runtime.CompilerServices.CallSiteBinder)
 IL_0046: stsfld class [System.Core]System.Runtime.CompilerServices.CallSite'1
<class [mscorlib]System.Action'3
<class [System.Core]System.Runtime.CompilerServices.CallSite,
class [mscorlib]System.Type,object>>
DeCompile.Program/'<Main>o__SiteContainer0'::'<>p__Site1'
 IL_004b: br.s IL_004d
 IL_004d: ldsfld class [System.Core]System.Runtime.CompilerServices.CallSite'1
<class [mscorlib]System.Action'3
<class [System.Core]System.Runtime.CompilerServices.CallSite,
class [mscorlib]System.Type,object>>
DeCompile.Program/'<Main>o__SiteContainer0'::'<>p__Site1'
 IL_0052: ldfld !0 class [System.Core]System.Runtime.CompilerServices.CallSite'1
<class [mscorlib]System.Action'3
<class [System.Core]System.Runtime.CompilerServices.CallSite,
class [mscorlib]System.Type,object>>::Target
 IL_0057: ldsfld class [System.Core]System.Runtime.CompilerServices.CallSite'1
<class [mscorlib]System.Action'3
<class [System.Core]System.Runtime.CompilerServices.CallSite,
class [mscorlib]System.Type,object>>

c12.indd 317 30-01-2014 20:17:01

318 ❘ CHAPTER 12 Dynamic Language extensions

DeCompile.Program/'<Main>o__SiteContainer0'::'<>p__Site1'
 IL_005c: ldtoken [mscorlib]System.Console
 IL_0061: call class [mscorlib]System.Type
[mscorlib]System.Type::GetTypeFromHandle
(valuetype [mscorlib]System.RuntimeTypeHandle)
 IL_0066: ldloc.0
 IL_0067: ldfld object DeCompile.DynamicClass::DynValue
 IL_006c: callvirt instance void class [mscorlib]System.Action'3
 <class [System.Core]System.Runtime.CompilerServices.CallSite, class
 [mscorlib]System.Type,object>::Invoke(!0,!1,!2)
 IL_0071: nop
 IL_0072: call string [mscorlib]System.Console::ReadLine()
 IL_0077: pop
 IL_0078: ret
} // end of method Program::Main

It’s safe to say that the C# compiler is doing a little extra work to support the dynamic type. Looking at the
generated code, you can see references to System.Runtime.CompilerServices.CallSite and System
.Runtime.CompilerServices.CallSiteBinder.

The CallSite is a type that handles the lookup at runtime. When a call is made on a dynamic object
at runtime, something has to check that object to determine whether the member really exists. The call
site caches this information so the lookup doesn’t have to be performed repeatedly. Without this process,
performance in looping structures would be questionable.

After the CallSite does the member lookup, the CallSiteBinder is invoked. It takes the information from
the call site and generates an expression tree representing the operation to which the binder is bound.

There is obviously a lot going on here. Great care has been taken to optimize what would appear to
be a very complex operation. Clearly, although using the dynamic type can be useful, it does come with a
price.

HoSTing THE DLR SCRiPTRunTimE
Imagine being able to add scripting capabilities to an application, or passing values in and out of the script
so the application can take advantage of the work that the script does. These are the kind of capabilities that
hosting the DLR’s ScriptRuntime in your app gives you. Currently, IronPython, IronRuby, and JavaScript
are supported as hosted scripting languages.

The ScriptRuntime enables you to execute snippets of code or a
complete script stored in a file. You can select the proper language
engine or allow the DLR to figure out which engine to use. The script
can be created in its own app domain or in the current one. Not
only can you pass values in and out of the script, you can call methods
on dynamic objects created in the script.

This degree of flexibility provides countless uses for hosting the
ScriptRuntime. The following example demonstrates one way that you
can use the ScriptRuntime. Imagine a shopping cart application. One
of the requirements is to calculate a discount based on certain criteria.
These discounts change often as new sales campaigns are started and
completed. There are many ways to handle such a requirement; this
example shows how it could be done using the ScriptRuntime and a
little Python scripting.

For simplicity, the example is a Windows client app. It could be part of
a larger web application or any other application. Figure 12-1 shows a
sample screen for the application. FiguRE 12-1

c12.indd 318 30-01-2014 20:17:02

Hosting the DLR ScriptRuntime ❘ 319

Using the values provided for the number of items and the total cost of the items, the application applies a
discount based on which radio button is selected. In a real application, the system would use a slightly more
sophisticated technique to determine the discount to apply, but for this example the radio buttons will suffice.

Here is the code that performs the discount:

private void button1_Click(object sender, RoutedEventArgs e)
{
 string scriptToUse;
 if (CostRadioButton.IsChecked.Value)
 {
 scriptToUse = "AmountDisc.py";
 }
 else
 {
 scriptToUse = "CountDisc.py";
 }
 ScriptRuntime scriptRuntime = ScriptRuntime.CreateFromConfiguration();
 ScriptEngine pythEng = scriptRuntime.GetEngine("Python");
 ScriptSource source = pythEng.CreateScriptSourceFromFile(scriptToUse);
 ScriptScope scope = pythEng.CreateScope();
 scope.SetVariable("prodCount", Convert.ToInt32(totalItems.Text));
 scope.SetVariable("amt", Convert.ToDecimal(totalAmt.Text));
 source.Execute(scope);
 label5.Content = scope.GetVariable("retAmt").ToString();
}

The first part just determines which script to apply, AmountDisc.py or CountDisc.py. AmountDisc.py
does the discount based on the amount of the purchase:

discAmt = .25
retAmt = amt
if amt > 25.00:
 retAmt = amt-(amt*discAmt)

The minimum amount needed for a discount to be applied is $25. If the amount is less than that, then no
discount is applied; otherwise, a discount of 25 percent is applied.

ContDisc.py applies the discount based on the number of items purchased:

discCount = 5
discAmt = .1
retAmt = amt
if prodCount > discCount:
 retAmt = amt-(amt*discAmt)

In this Python script, the number of items purchased must be more than 5 for a 10 percent discount to be
applied to the total cost.

The next step is getting the ScriptRuntime environment set up. For this, four specific tasks are performed:
creating the ScriptRuntime object, setting the proper ScriptEngine, creating the ScriptSource,
and creating the ScriptScope.

The ScriptRuntime object is the starting point, or base, for hosting. It contains the global state of the
hosting environment. The ScriptRuntime is created using the CreateFromConfiguration static method.
This is what the app.config file looks like:

<configuration>
 <configSections>
 <section

c12.indd 319 30-01-2014 20:17:02

320 ❘ CHAPTER 12 Dynamic Language extensions

 name="microsoft.scripting"
 type="Microsoft.Scripting.Hosting.Configuration.Section,
 Microsoft.Scripting,
 Version=0.9.6.10,
 Culture=neutral,
 PublicKeyToken=null"
 requirePermission="false" />
 </configSections>

 <microsoft.scripting>
 <languages>
 <language
 names="IronPython;Python;py"
 extensions=".py"
 displayName="IronPython 2.6 Alpha"
 type="IronPython.Runtime.PythonContext,
 IronPython,
 Version=2.6.0.1,
 Culture=neutral,
 PublicKeyToken=null" />
 </languages>
 </microsoft.scripting>
</configuration>

The code defines a section for “microsoft.scripting” and sets a couple of properties for the IronPython
language engine.

Next, you get a reference to the ScriptEngine from the ScriptRuntime. In the example, you specify that
you want the Python engine, but the ScriptRuntime would have been able to determine this on its own
because of the py extension on the script.

The ScriptEngine does the work of executing the script code. There are several methods for executing
scripts from files or from snippets of code. The ScriptEngine also gives you the ScriptSource and
ScriptScope.

The ScriptSource object is what gives you access to the script. It represents the source code of the script.
With it you can manipulate the source of the script, load it from a disk, parse it line by line, and even
compile the script into a CompiledCode object. This is handy if the same script is executed multiple times.

The ScriptScope object is essentially a namespace. To pass a value into or out of a script, you bind a
variable to the ScriptScope. In the following example, you call the SetVariable method to pass into
the Python script the prodCount variable and the amt variable. These are the values from the totalItems
text box and the totalAmt text box. The calculated discount is retrieved from the script by using the
GetVariable method. In this example, the retAmt variable has the value you’re looking for.

The CalcTax button illustrates how to call a method on a Python object. The script CalcTax.py is a very
simple method that takes an input value, adds 7.5 percent tax, and returns the new value. Here’s what the
code looks like:

def CalcTax(amount):
 return amount*1.075

Here is the C# code to call the CalcTax method:

private void button2_Click(object sender, RoutedEventArgs e)
{
 ScriptRuntime scriptRuntime = ScriptRuntime.CreateFromConfiguration();
 dynamic calcRate = scriptRuntime.UseFile("CalcTax.py");
 label6.Content = calcRate.CalcTax(Convert.ToDecimal(label5.Content)).ToString();
}

c12.indd 320 30-01-2014 20:17:02

DynamicObject and ExpandoObject ❘ 321

A very simple process — you create the ScriptRuntime object using the same configuration settings as
before. calcRate is a ScriptScope object. You defined it as dynamic so you can easily call the CalcTax
method. This is an example of the how the dynamic type can make life a little easier.

DynAmiCoBjECT AnD ExPAnDooBjECT
What if you want to create your own dynamic object? You have a couple of options for doing that: by
deriving from DynamicObject or by using ExpandoObject. Using DynamicObject is a little more work
because you have to override a couple of methods. ExpandoObject is a sealed class that is ready to use.

Dynamicobject
Consider an object that represents a person. Normally, you would define properties for the first name, middle
name, and last name. Now imagine the capability to build that object during runtime, with the system having
no prior knowledge of what properties the object may have or what methods the object may support. That’s
what having a DynamicObject-based object can provide. There may be very few times when you need this sort
of functionality, but until now the C# language had no way of accommodating such a requirement.

First take a look at what the DynamicObject looks like:

class WroxDynamicObject : DynamicObject
{
 Dictionary<string, object> _dynamicData = new Dictionary<string, object>();

 public override bool TryGetMember(GetMemberBinder binder, out object result)
 {
 bool success = false;
 result = null;
 if (_dynamicData.ContainsKey(binder.Name))
 {
 result = _dynamicData[binder.Name];
 success = true;
 }
 else
 {
 result = "Property Not Found!";
 success = false;
 }
 return success;
 }

 public override bool TrySetMember(SetMemberBinder binder, object value)
 {
 _dynamicData[binder.Name] = value;
 return true;
 }

 public override bool TryInvokeMember(InvokeMemberBinder binder,
 object[] args,
 out object result)
 {
 dynamic method = _dynamicData[binder.Name];
 result = method((DateTime)args[0]);
 return result != null;
 }

}

c12.indd 321 30-01-2014 20:17:02

322 ❘ CHAPTER 12 Dynamic Language extensions

In this example, you’re overriding three methods: TrySetMember, TryGetMember, and TryInvokeMember.

TrySetMember adds the new method, property, or field to the object. In this case, you store the member
information in a Dictionary object. The SetMemberBinder object that is passed into the TrySetMember
method contains the Name property, which is used to identify the element in the Dictionary.

The TryGetMember retrieves the object stored in the Dictionary based on the GetMemberBinder Name
property.

Here is the code that makes use of the new dynamic object just created:

dynamic wroxDyn = new WroxDynamicObject();
wroxDyn.FirstName = "Bugs";
wroxDyn.LastName = "Bunny";
Console.WriteLine(wroxDyn.GetType());
Console.WriteLine("{0} {1}", wroxDyn.FirstName, wroxDyn.LastName);

It looks simple enough, but where is the call to the methods you overrode? That’s where the .NET
Framework helps. DynamicObject handles the binding for you; all you have to do is reference the properties
FirstName and LastName as if they were there all the time.

Adding a method is also easily done. You can use the same WroxDynamicObject and add a
GetTomorrowDate method to it. It takes a DateTime object and returns a date string representing the next
day. Here’s the code:

dynamic wroxDyn = new WroxDynamicObject();
Func<DateTime, string> GetTomorrow = today => today.AddDays(1).ToShortDateString();
wroxDyn.GetTomorrowDate = GetTomorrow;
Console.WriteLine("Tomorrow is {0}", wroxDyn.GetTomorrowDate(DateTime.Now));

You create the delegate GetTomorrow using Func<T, TResult>. The method the delegate represents is the
call to AddDays. One day is added to the Date that is passed in, and a string of that date is returned. The
delegate is then set to GetTomorrowDate on the wroxDyn object. The last line calls the new method, passing
in the current day’s date. Hence the dynamic magic and you have an object with a valid method.

Expandoobject
ExpandoObject works similarly to the WroxDynamicObject created in the previous section. The difference
is that you don’t have to override any methods, as shown in the following code example:

static void DoExpando()
{
 dynamic expObj = new ExpandoObject();
 expObj.FirstName = "Daffy";
 expObj.LastName = "Duck";
 Console.WriteLine(expObj.FirstName + " " + expObj.LastName);
 Func<DateTime, string> GetTomorrow = today => today.AddDays(1).ToShortDateString();
 expObj.GetTomorrowDate = GetTomorrow;
 Console.WriteLine("Tomorrow is {0}", expObj.GetTomorrowDate(DateTime.Now));

 expObj.Friends = new List<Person>();
 expObj.Friends.Add(new Person() { FirstName = "Bob", LastName = "Jones" });
 expObj.Friends.Add(new Person() { FirstName = "Robert", LastName = "Jones" });
 expObj.Friends.Add(new Person() { FirstName = "Bobby", LastName = "Jones" });

 foreach (Person friend in expObj.Friends)
 {
 Console.WriteLine(friend.FirstName + " " + friend.LastName);
 }
}

c12.indd 322 30-01-2014 20:17:02

DynamicObject and ExpandoObject ❘ 323

Notice that this code is almost identical to what you did earlier. You add a FirstName and LastName
property, add a GetTomorrow function, and then do one additional thing — add a collection of Person
objects as a property of the object.

At first glance it may seem that this is no different from using the dynamic type, but there are a couple
of subtle differences that are important. First, you can’t just create an empty dynamic typed object. The
dynamic type has to have something assigned to it. For example, the following code won’t work:

dynamic dynObj;
dynObj.FirstName = "Joe";

As shown in the previous example, this is possible with ExpandoObject.

Second, because the dynamic type has to have something assigned to it, it will report back the type assigned
to it if you do a GetType call. For example, if you assign an int, it will report back that it is an int. This
won’t happen with ExpandoObject or an object derived from DynamicObject.

If you have to control the addition and access of properties in your dynamic object, then deriving from
DynamicObject is your best option. With DynamicObject, you can use several methods to override and
control exactly how the object interacts with the runtime. For other cases, using the dynamic type or the
ExpandoObject may be appropriate.

Following is another example of using dynamic and ExpandoObject. Assume that the requirement is to
develop a general-purpose comma-separated values (CSV) file parsing tool. You won’t know from one
execution to another what data will be in the file, only that the values will be comma-separated and that the
first line will contain the field names.

First, open the file and read in the stream. A simple helper method can be used to do this:

private StreamReader OpenFile(string fileName)
{
 if(File.Exists(fileName))
 {
 return new StreamReader(fileName);
 }
 return null;
}

This just opens the file and creates a new StreamReader to read the file contents.

Now you want to get the field names. This is easily done by reading in the first line from the file and using
the Split function to create a string array of field names:

string[] headerLine = fileStream.ReadLine().Split(',');

Next is the interesting part. You read in the next line from the file, create a string array just like you did
with the field names, and start creating your dynamic objects. Here’s what the code looks like:

var retList = new List<dynamic>();
while (fileStream.Peek() > 0)
{
 string[] dataLine = fileStream.ReadLine().Split(',');
 dynamic dynamicEntity = new ExpandoObject();
 for(int i=0;i<headerLine.Length;i++)
 {
 ((IDictionary<string,object>)dynamicEntity).Add(headerLine[i],dataLine[i]);
 }
 retList.Add(dynamicEntity);
}

c12.indd 323 30-01-2014 20:17:02

324 ❘ CHAPTER 12 Dynamic Language extensions

Once you have the string array of field names and data elements, you create a new ExpandoObject and
add the data to it. Notice that you cast the ExpandoObject to a Dictionary object. You use the field name
as the key and the data as the value. Then you can add the new object to the retList object you created
and return it to the code that called the method.

What makes this nice is you have a section of code that can handle any data you give it. The only
requirements in this case are ensuring that the field names are the first line and that everything is comma-
separated. This concept could be expanded to other file types or even to a DataReader.

SummARy
In this chapter we looked at how the dynamic type can change the way you look at C# programming.
Using ExpandoObject in place of multiple objects can reduce the number of lines of code significantly.
Also using the DLR and adding scripting languages like Python or Ruby can help building a more
polymorphic application that can be changed easily without re-compiling.

Dynamic development is becoming increasingly popular because it enables you to do things that are very
difficult in a statically typed language. The dynamic type and the DLR enable C# programmers to make use
of some dynamic capabilities.

c12.indd 324 30-01-2014 20:17:03

Asynchronous Programming
WHAT’s in THis CHAPTER?

 ➤ Why asynchronous programming is important
 ➤ Asynchronous patterns
 ➤ Foundations of the async and await keywords
 ➤ Creating and using asynchronous methods
 ➤ Error handling with asynchronous methods

WRoX.Com CodE doWnloAds FoR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
download Code tab. The code for this chapter is divided into the following major examples:

 ➤ Async Patterns
 ➤ Foundations
 ➤ Error Handling

WHy AsynCHRonous PRogRAmming is imPoRTAnT
The most important change of C# 5 is the advances provided with asynchronous programming. C#
5 adds only two new keywords: async and await. These two keywords are the main focus of this
chapter.

With asynchronous programming a method is called that runs in the background (typically with the
help of a thread or task), and the calling thread is not blocked.

In this chapter, you can read about different patterns on asynchronous programming such as the
asynchronous pattern, the event-based asynchronous pattern, and the new task-based asynchronous
pattern (TAP). TAP makes use of the async and await keywords. Comparing these patterns you can
see the real advantage of the new style of asynchronous programming.

After discussing the different patterns, you will see the foundation of asynchronous programming by
creating tasks and invoking asynchronous methods. You’ll learn about what’s behind the scenes with
continuation tasks and the synchronization context.

13

c13.indd 325 30-01-2014 20:17:39

326 ❘ CHAPTER 13 Asynchronous ProgrAmming

Error handling needs some special emphasis; as with asynchronous tasks, some scenarios require some dif-
ferent handling with errors.

The last part of this chapter discusses how cancellation can be done. Background tasks can take a while
and there might be a need to cancel the task while it is still running. How this can be done, you’ll also read
in this chapter.

Chapter 21, “Tasks, Threads, and Synchronization” covers other information about parallel programming.

Users find it annoying when an application does not immediately react to requests. With the mouse, we have
become accustomed to experiencing a delay, as we’ve learned that behavior over several decades. With a
touch UI, an application needs to immediately react to requests. Otherwise, the user tries to redo the action.

Because asynchronous programming was hard to achieve with older versions of the .NET Framework, it was
not always done when it should have been. One of the applications that blocked the UI thread fairly often is
Visual Studio 2010. With that version, opening a solution containing hundreds of projects meant you could
take a long coffee break. Since Visual Studio 2012, that’s no longer the case, as projects are loaded asyn-
chronously in the background, with the selected project loaded first. This loading behavior is just one exam-
ple of important changes built into Visual Studio 2012 related to asynchronous programming. Similarly,
users of Visual Studio 2010 are likely familiar with the experience of a dialog not reacting. This is less likely
to occur with Visual Studio 2012 and 2013.

Many APIs with the .NET Framework offer both a synchronous and an asynchronous version. Because the
synchronous version of the API was a lot easier to use, it was often used where it wasn’t appropriate. With
the new Windows Runtime (WinRT), if an API call is expected to take longer than 40 milliseconds, only
an asynchronous version is available. Now, with .NET 4.5 programming, asynchronously is as easy as pro-
gramming in a synchronous manner, so there shouldn’t be any barrier to using the asynchronous APIs.

AsynCHRonous PATTERns
Before stepping into the new async and await keywords it is best to understand asynchronous patterns
from the .NET Framework. Asynchronous features have been available since .NET 1.0, and many classes in
the .NET Framework implement one or more such patterns. The asynchronous pattern is also available
with the delegate type.

Because doing updates on the UI, both with Windows Forms, and WPF with the asynchronous pattern is
quite complex, .NET 2.0 introduced the event-based asynchronous pattern. With this pattern, an event
handler is invoked from the thread that owns the synchronization context, so updating UI code is easily
handled with this pattern. Previously, this pattern was also known with the name asynchronous component
pattern.

Now, with .NET 4.5, another new way to achieve asynchronous programming is introduced: the task-based
asynchronous pattern (TAP). This pattern is based on the Task type that was new with .NET 4 and makes
use of a compiler feature with the keywords async and await.

To understand the advantage of the async and await keywords, the first sample application makes use of
Windows Presentation Foundation (WPF) and network programming to provide an overview of asynchro-
nous programming. If you have no experience with WPF and network programming, don’t despair. You can
still follow the essentials here and gain an understanding of how asynchronous programming can be done.
The following examples demonstrate the differences between the asynchronous patterns. After looking at
these, you’ll learn the basics of asynchronous programming with some simple console applications.

noTE WPF is covered in detail in Chapters 35, “Core WPF,” and 36, “Business
Applications with WPF,” and network programming is discussed in Chapter 26,
“Networking.”

c13.indd 326 30-01-2014 20:17:39

Asynchronous Patterns ❘ 327

The sample application to show the differences between the asynchronous patterns is a WPF application
that makes use of types in a class library. The application is used to find images on the web using services
from Bing and Flickr. The user can enter a search term to find images, and the search term is sent to Bing
and Flickr services with a simple HTTP request.

The UI design from the Visual Studio designer is shown in Figure 13-1. On top of the screen is a text input
field followed by several buttons that start the search or clear the result list. The left side below the control
area contains a ListBox for displaying all the images found. On the right side is an Image control to display
the image that is selected within the ListBox control in a version with a higher resolution.

FiguRE 13-1

To understand the sample application we will start with the class library AsyncLib, which contains several
helper classes. These classes are used by the WPF application.

The class SearchItemResult represents a single item from a result collection that is used to display the
image together with a title and the source of the image. This class just defines simple properties: Title, Url,
ThumbnailUrl, and Source. The property ThumbnailIUrl is used to reference a thumbnail image, the Url
property contains a link to a larger-size image. Title contains some text to describe the image. The base
class of SearchItemResult is BindableBase. This base class just implements a notification mechanism by
implementing the interface INotifyPropertyChanged that is used by WPF to make updates with data bind-
ing (code file AsyncLib/SearchItemResult.cs):

namespace Wrox.ProCSharp.Async
{
 public class SearchItemResult : BindableBase
 {
 private string title;
 public string Title
 {
 get { return title; }
 set { SetProperty(ref title, value); }
 }

 private string url;
 public string Url
 {
 get { return url; }
 set { SetProperty(ref url, value); }
 }

c13.indd 327 30-01-2014 20:17:39

328 ❘ CHAPTER 13 Asynchronous ProgrAmming

 private string thumbnailUrl;
 public string ThumbnailUrl
 {
 get { return thumbnailUrl; }
 set { SetProperty(ref thumbnailUrl, value); }
 }

 private string source;
 public string Source
 {
 get { return source; }
 set { SetProperty(ref source, value); }
 }
 }
}

The class SearchInfo is another class used with data binding. The property SearchTerm contains the user
input to search for images with that type. The List property returns a list of all found images represented
with the SearchItemResult type (code file AsyncLib/SearchInfo.cs):

using System.Collections.ObjectModel;

namespace Wrox.ProCSharp.Async
{
 public class SearchInfo : BindableBase
 {
 public SearchInfo()
 {
 list = new ObservableCollection<SearchItemResult>();
 list.CollectionChanged += delegate { OnPropertyChanged("List"); };
 }

 private string searchTerm;
 public string SearchTerm
 {
 get { return searchTerm; }
 set { SetProperty(ref searchTerm, value); }
 }

 private ObservableCollection<SearchItemResult> list;
 public ObservableCollection<SearchItemResult> List
 {
 get
 {
 return list;
 }
 }
 }
}

In the XAML code, a TextBox is used to enter the search term. This control is bound to the SearchTerm
property of the SearchInfo type. Several Button controls are used to activate an event handler, e.g., the
Sync button invokes the OnSearchSync method (XAML file AsyncPatterns/MainWindow.xaml):

 <StackPanel Orientation="Horizontal" Grid.Row="0">
 <StackPanel.LayoutTransform>
 <ScaleTransform ScaleX="2" ScaleY="2" />
 </StackPanel.LayoutTransform>
 <TextBox Text="{Binding SearchTerm}" Width="200" Margin="4" />
 <Button Click="OnClear">Clear</Button>
 <Button Click="OnSearchSync">Sync</Button>
 <Button Click="OnSeachAsyncPattern">Async</Button>

c13.indd 328 30-01-2014 20:17:39

Asynchronous Patterns ❘ 329

 <Button Click="OnAsyncEventPattern">Async Event</Button>
 <Button Click="OnTaskBasedAsyncPattern">Task Based Async</Button>
 </StackPanel>

The second part of the XAML code contains a ListBox. To have a special representation for the items
in the ListBox, an ItemTemplate is used. Every item is represented with two TextBlock controls and one
Image control. The ListBox is bound to the List property of the SearchInfo class, and properties of the
item controls are bound to properties of the SearchItemResult type:

 <Grid Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="3*" />
 </Grid.ColumnDefinitions>
 <ListBox Grid.IsSharedSizeScope="True" ItemsSource="{Binding List}"
 Grid.Column="0" IsSynchronizedWithCurrentItem="True"
 Background="Black">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition SharedSizeGroup="ItemTemplateGroup" />
 </Grid.ColumnDefinitions>
 <StackPanel HorizontalAlignment="Stretch" Orientation="Vertical"
 Background="{StaticResource linearBackgroundBrush}">
 <TextBlock Text="{Binding Source}" Foreground="White" />
 <TextBlock Text="{Binding Title}" Foreground="White" />
 <Image HorizontalAlignment="Center"
 Source="{Binding ThumbnailUrl}" Width="100" />
 </StackPanel>
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 <GridSplitter Grid.Column="1" Width="3" HorizontalAlignment="Left" />
 <Image Grid.Column="1" Source="{Binding List/Url}" />
 </Grid>

Now let’s get into the BingRequest class. This class contains some information about how to make a
request to the Bing service. The Url property of this class returns a URL string that can be used to make
a request for images. The request is comprised of the search term, a number of images that should be
requested (Count), and a number of images to skip (Offset). With Bing, authentication is needed. The user
Id is defined with the AppId, and used with the Credentials property that returns a NetworkCredential
object. To run the application, you need to register with Windows Azure Marketplace and sign up for the
Bing Search API. At the time of this writing, up to 5000 transactions per month are free—this should be
enough for running the sample application. Every search is one transaction. The link for the registration to
the Bing Search API is https://datamarket.azure.com/dataset/bing/search. After registration you
need to copy the application Id. After obtaining the application Id, add it to the BingRequest class.

After sending a request to Bing by using the created URL, Bing returns XML. The Parse method of the
BingRequest class parses the XML and returns a collection of SearchItemResult objects (code file
AsyncLib/BingRequest.cs):

noTE The Parse methods in the classes BingRequest and FlickrRequest make
use of LINQ to XML. How to use LINQ to XML is covered in Chapter 34,
“Manipulating XML.”

c13.indd 329 30-01-2014 20:17:39

330 ❘ CHAPTER 13 Asynchronous ProgrAmming

using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Xml.Linq;

namespace Wrox.ProCSharp.Async
{
 public class BingRequest : IImageRequest
 {
 private const string AppId = "enter your Bing AppId here";

 public BingRequest()
 {
 Count = 50;
 Offset = 0;
 }
 private string searchTerm;
 public string SearchTerm
 {
 get { return searchTerm; }
 set { searchTerm = value; }
 }

 public ICredentials Credentials
 {
 get
 {
 return new NetworkCredentials(AppId, AppId);
 }
 }

 public string Url
 {
 get
 {
 return string.Format("https://api.datamarket.azure.com/" +
 "Data.ashx/Bing/Search/v1/Image?Query=%27{0}%27&" +
 "$top={1}&$skip={2}&$format=Atom",
 SearchTerm, Count, Offset);
 }
 }

 public int Count { get; set; }
 public int Offset { get; set; }

 public IEnumerable<SearchItemResult> Parse(string xml)
 {
 XElement respXml = XElement.Parse(xml);
 // XNamespace atom = XNamespace.Get("http://www.w3.org/2005/Atom");
 XNamespace d = XNamespace.Get(
 "http://schemas.microsoft.com/ado/2007/08/dataservices");
 XNamespace m = XNamespace.Get(
 "http://schemas.microsoft.com/ado/2007/08/dataservices/metadata");

 return (from item in respXml.Descendants(m + "properties")
 select new SearchItemResult
 {
 Title = new string(item.Element(d +
 "Title").Value.Take(50).ToArray()),
 Url = item.Element(d + "MediaUrl").Value,
 ThumbnailUrl = item.Element(d + "Thumbnail").
 Element(d + "MediaUrl").Value,

c13.indd 330 30-01-2014 20:17:39

Asynchronous Patterns ❘ 331

 Source = "Bing"
 }).ToList();
 }
 }
}

Both the BingRequest class and the FlickrRequest class implement the interface IImageRequest. This
interface defines the properties SearchTerm and Url, and the method Parse, which enables easy iteration
through both image service providers (code file AsyncLib/IImageRequest.cs):

using System;
using System.Collections.Generic;
using System.Net;

namespace Wrox.ProCSharp.Async
{
 public interface IImageRequest
 {
 string SearchTerm { get; set; }
 string Url { get; }

 IEnumerable<SearchItemResult> Parse(string xml);

 ICredentials Credentials { get; }
 }
}

The FlickrRequest class is very similar to BingRequest. It just creates a different URL to request an
image with a search term, and has a different implementation of the Parse method, just as the returned
XML from Flickr differs from the returned XML from Bing. As with Bing, to create an application Id for
Flickr, you need to register with Flickr and request it: http://www.flickr.com/services/apps/create/
apply/.

using System.Collections.Generic;
using System.Linq;
using System.Xml.Linq;

namespace Wrox.ProCSharp.Async
{
 public class FlickrRequest : IImageRequest
 {
 private const string AppId = "Enter your Flickr AppId here";

 public FlickrRequest()
 {
 Count = 50;
 Page = 1;
 }

 private string searchTerm;
 public string SearchTerm
 {
 get { return searchTerm; }
 set { searchTerm = value; }
 }

 public string Url
 {
 get

c13.indd 331 30-01-2014 20:17:40

332 ❘ CHAPTER 13 Asynchronous ProgrAmming

 {
 return string.Format("http://api.flickr.com/services/rest?" +
 "api_key={0}&method=flickr.photos.search&content_type=1&" +
 "text={1}&per_page={2}&page={3}", AppId, SearchTerm, Count, Page);
 }
 }

 public ICredentials Credentials
 {
 get { return null; }
 }

 public int Count { get; set; }
 public int Page { get; set; }

 public IEnumerable<SearchItemResult> Parse(string xml)
 {
 XElement respXml = XElement.Parse(xml);
 return (from item in respXml.Descendants("photo")
 select new SearchItemResult
 {
 Title = new string(item.Attribute("title").Value.
 Take(50).ToArray()),
 Url = string.Format("http://farm{0}.staticflickr.com/" +
 "{1}/{2}_{3}_z.jpg",
 item.Attribute("farm").Value, item.Attribute("server").Value,
 item.Attribute("id").Value, item.Attribute("secret").Value),
 ThumbnailUrl = string.Format("http://farm{0}." +
 "staticflickr.com/{1}/{2}_{3}_t.jpg",
 item.Attribute("farm").Value,
 item.Attribute("server").Value,
 item.Attribute("id").Value,
 item.Attribute("secret").Value),
 Source = "Flickr"
 }).ToList();
 }
 }
}

Now you just need to connect the types from the library and the WPF application. In the constructor of the
MainWindow class, an instance of SearchInfo is created, and the DataContext of the window is set to this
instance. Now data binding can take place, shown earlier with the XAML code (code file AsyncPatterns/
MainWindow.xaml.cs):

 public partial class MainWindow : Window
 {
 private SearchInfo searchInfo;

 public MainWindow()
 {
 InitializeComponent();
 searchInfo = new SearchInfo();
 this.DataContext = searchInfo;
 }

The MainWindow class also contains the helper method GetSearchRequests, which returns a collection of
IImageRequest objects in the form of BingRequest and FlickrRequest types. In case you only registered
with one of these services, you can change this code to return only the one with which you registered.
Of course, you can also create IImageRequest types of other services, e.g., using Google or Yahoo. Then
add these request types to the collection returned:

c13.indd 332 30-01-2014 20:17:40

Asynchronous Patterns ❘ 333

 private IEnumerable<IImageRequest> GetSearchRequests()
 {
 return new List<IImageRequest>
 {
 new BingRequest { SearchTerm = searchInfo.SearchTerm },
 new FlickrRequest { SearchTerm = searchInfo.SearchTerm}
 };
 }

synchronous Call
Now that everything is set up, let’s start with a synchronous call to these services. The click handler of the
Sync button, OnSearchSync, iterates through all search requests returned from GetSearchRequests and
uses the Url property to make an HTTP request with the WebClient class. The method DownloadString
blocks until the result is received. The resulting XML is assigned to the resp variable. The XML con-
tent is parsed with the help of the Parse method, which returns a collection of SearchItemResult
objects. The items of these collections are then added to the list contained within searchInfo (code file
AsyncPatterns/MainWindow.xaml.cs):

 private void OnSearchSync(object sender, RoutedEventArgs e)
 {
 foreach (var req in GetSearchRequests())
 {
 var client = new WebClient();
 client.Credentials = req.Credentials;
 string resp = client.DownloadString(req.Url);
 IEnumerable<SearchItemResult> images = req.Parse(resp);
 foreach (var image in images)
 {
 searchInfo.List.Add(image);
 }
 }
 }

Running the application (see Figure 13-2), the user interface is blocked until the method OnSearchSync is
finished making network calls to Bing and Flickr, as well as parsing the results. The amount of time needed
to complete these calls varies according to the speed of your network and the current workload of Bing and
Flickr. Whatever it is, however, the wait is unpleasant to the user.

FiguRE 13-2

Therefore, make the call asynchronously instead.

c13.indd 333 30-01-2014 20:17:40

334 ❘ CHAPTER 13 Asynchronous ProgrAmming

Asynchronous Pattern
One way to make the call asynchronously is by using the asynchronous pattern. The asynchro-
nous pattern defines a BeginXXX method and an EndXXX method. For example, if a synchronous
method DownloadString is offered, the asynchronous variants would be BeginDownloadString and
EndDownloadString. The BeginXXX method takes all input arguments of the synchronous method, and
EndXXX takes the output arguments and return type to return the result. With the asynchronous pattern, the
BeginXXX method also defines a parameter of AsyncCallback, which accepts a delegate that is invoked as
soon as the asynchronous method is completed. The BeginXXX method returns IAsyncResult, which can
be used for polling to verify whether the call is completed, and to wait for the end of the method.

The WebClient class doesn’t offer an implementation of the asynchronous pattern. Instead, the
HttpWebRequest class could be used, which offers this pattern with the methods BeginGetResponse and
EndGetResponse. This is not done in the following sample. Instead, a delegate is used. The delegate type
defines an Invoke method to make a synchronous method call, and BeginInvoke and EndInvoke meth-
ods to use it with the asynchronous pattern. Here, the delegate downloadString of type Func<string,
string> is declared to reference a method that has a string parameter and returns a string. The method
that is referenced by the downloadString variable is implemented as a Lambda expression and invokes the
synchronous method DownloadString of the WebClient type. The delegate is invoked asynchronously
by calling the BeginInvoke method. This method uses a thread from the thread pool to make an
asynchronous call.

The first parameter of the BeginInvoke method is the first generic string parameter of the Func delegate
where the URL can be passed. The second parameter is of type AsyncCallback. AsyncCallback is a del-
egate that requires IAsyncResult as a parameter. The method referenced by this delegate is invoked as soon
as the asynchronous method is completed. When that happens, downloadString.EndInvoke is invoked
to retrieve the result, which is dealt with in the same manner as before to parse the XML content and get
the collection of items. However, here it is not possible to directly go back to the UI, as the UI is bound to a
single thread, and the callback method is running within a background thread. Therefore, it’s necessary to
switch back to the UI thread by using the Dispatcher property from the window. The Invoke method of
the Dispatcher requires a delegate as a parameter; that’s why the Action<SearchItemResult> delegate is
specified, which adds an item to the collection bound to the UI (code file AsyncPatterns/MainWindow
.xaml.cs):

 private void OnSeachAsyncPattern(object sender, RoutedEventArgs e)
 {
 Func<string, ICredentials, string> downloadString = (address, cred) =>
 {
 var client = new WebClient();
 client.Credentials = cred;
 return client.DownloadString(address);
 };

 Action<SearchItemResult> addItem = item => searchInfo.List.Add(item);

 foreach (var req in GetSearchRequests())
 {
 downloadString.BeginInvoke(req.Url, req.Credentials, ar =>
 {
 string resp = downloadString.EndInvoke(ar);
 IEnumerable<SearchItemResult> images = req.Parse(resp);
 foreach (var image in images)
 {
 this.Dispatcher.Invoke(addItem, image);
 }
 }, null);
 }
 }

c13.indd 334 30-01-2014 20:17:40

Asynchronous Patterns ❘ 335

An advantage of the asynchronous pattern is that it can be implemented easily just by using the functional-
ity of delegates. The program now behaves as it should; the UI is no longer blocked. However, using the
asynchronous pattern is difficult. Fortunately, .NET 2.0 introduced the event-based asynchronous pattern,
which makes it easier to deal with UI updates. This pattern is discussed next.

noTE Delegate types and Lambda expressions are explained in Chapter 8, “Delegates,
Lambdas, and Events.” Threads and thread pools are covered in Chapter 21.

Event-Based Asynchronous Pattern
The method OnAsyncEventPattern makes use of the event-based asynchronous pattern. This pattern is
implemented by the WebClient class and thus it can be directly used.

This pattern defines a method with the suffix "Async". Therefore, for example, for the synchronous method
DownloadString, the WebClient class offers the asynchronous variant DownloadStringAsync. Instead of
defining a delegate that is invoked when the asynchronous method is completed, an event is defined. The
DownloadStringCompleted event is invoked as soon as the asynchronous method DownloadStringAsync
is completed. The method assigned to the event handler is implemented within a Lambda expression. The
implementation is very similar to before, but now it is possible to directly access UI elements because the
event handler is invoked from the thread that has the synchronization context, and this is the UI thread in
the case of Windows Forms and WPF applications (code file AsyncPatterns/MainWindow.xaml.cs):

 private void OnAsyncEventPattern(object sender, RoutedEventArgs e)
 {
 foreach (var req in GetSearchRequests())
 {
 var client = new WebClient();
 client.Credentials = req.Credentials;
 client.DownloadStringCompleted += (sender1, e1) =>
 {
 string resp = e1.Result;
 IEnumerable<SearchItemResult> images = req.Parse(resp);
 foreach (var image in images)
 {
 searchInfo.List.Add(image);
 }
 };
 client.DownloadStringAsync(new Uri(req.Url));
 }
 }

An advantage of the event-based asynchronous pattern is that it is easy to use. Note, however, that it is not
that easy to implement this pattern in a custom class. One way to use an existing implementation of this pat-
tern to make synchronous methods asynchronous is with the BackgroundWorker class. BackgroundWorker
implements the event-based asynchronous pattern.

This makes the code a lot simpler. However, the order is reversed compared to synchronous method calls.
Before invoking the asynchronous method, you need to define what happens when the method call is com-
pleted. The following section plunges into the new world of asynchronous programming with the async and
await keywords.

c13.indd 335 30-01-2014 20:17:40

336 ❘ CHAPTER 13 Asynchronous ProgrAmming

Task-Based Asynchronous Pattern
The WebClient class is updated with .NET 4.5 to offer the task-based asynchronous pattern (TAP) as well.
This pattern defines a suffix Async method that returns a Task type. Because the WebClient class already
offers a method with the Async suffix to implement the task-based asynchronous pattern, the new method
has the name DownloadStringTaskAsync.

The method DownloadStringTaskAsync is declared to return Task<string>. You do not need to declare a
variable of Task<string> to assign the result from DownloadStringTaskAsync; instead, a variable of type
string can be declared, and the await keyword used. The await keyword unblocks the thread (in this case
the UI thread) to do other tasks. As soon as the method DownloadStringTaskAsync completes its background
processing, the UI thread can continue and get the result from the background task to the string variable resp.
Also, the code following this line continues (code file AsyncPatterns/MainWindow.xaml.cs):

 private async void OnTaskBasedAsyncPattern(object sender,
 RoutedEventArgs e)
 {
 foreach (var req in GetSearchRequests())
 {
 var client = new WebClient();
 client.Credentials = req.Credentials;
 string resp = await client.DownloadStringTaskAsync(req.Url);

 IEnumerable<SearchItemResult> images = req.Parse(resp);
 foreach (var image in images)
 {
 searchInfo.List.Add(image);
 }
 }
 }

noTE The async keyword creates a state machine similar to the yield return state-
ment, which is discussed in Chapter 6, “Arrays and Tuples.”

The code is much simpler now. There is no blocking, and no manually switching back to the UI thread,
as this is done automatically; and the code has the same order as you’re used to with synchronous
programming.

Next, the code is changed to use a different class from WebClient, one in which the task-based event pat-
tern is more directly implemented and synchronous methods are not offered. This class, new with .NET 4.5,
is HttpClient. doing an asynchronous GET request is done with the GetAsync method. Then, to read the
content another asynchronous method is needed. ReadAsStringAsync returns the content formatted in a
string:

 private async void OnTaskBasedAsyncPattern(object sender,
 RoutedEventArgs e)
 {
 foreach (var req in GetSearchRequests())
 {
 var clientHandler = new HttpClientHandler
 {
 Credentials = req.Credentials
 };
 var client = new HttpClient(clientHandler);

c13.indd 336 30-01-2014 20:17:41

Asynchronous Patterns ❘ 337

 var response = await client.GetAsync(req.Url);
 string resp = await response.Content.ReadAsStringAsync();

 IEnumerable<SearchItemResult> images = req.Parse(resp);
 foreach (var image in images)
 {
 searchInfo.List.Add(image);
 }
 }
 }

Parsing of the XML string to could take a while. Because the parsing code is running in the UI thread, the
UI thread cannot react to user requests at that time. To create a background task from synchronous
functionality, Task.Run can be used. In the following example, Task.Run wraps the parsing of the XML
string to return the SearchItemResult collection:

 private async void OnTaskBasedAsyncPattern(object sender,
 RoutedEventArgs e)
 {
 foreach (var req in GetSearchRequests())
 {
 var clientHandler = new HttpClientHandler
 {
 Credentials = req.Credentials
 };
 var client = new HttpClient(clientHandler);
 var response = await client.GetAsync(req.Url, cts.Token);
 string resp = await response.Content.ReadAsStringAsync();

 await Task.Run(() =>
 {
 IEnumerable<SearchItemResult> images = req.Parse(resp);
 foreach (var image in images)
 {
 searchInfo.List.Add(image);
 }
 }
 }
 }

Because the method passed to the Task.Run method is running in a background thread, here we have the
same problem as before referencing some UI code. One solution would be to just do req.Parse within
the Task.Run method, and do the foreach loop outside of the task to add the result to the list in the UI thread.
WPF with .NET 4.5 offers a better solution, however, that enables filling collections that are bound to the
UI from a background thread. This extension only requires enabling the collection for synchronization using
BindingOperations.EnableCollectionSynchronization, as shown in the following code snippet:

 public partial class MainWindow : Window
 {
 private SearchInfo searchInfo;
 private object lockList = new object();

 public MainWindow()
 {
 InitializeComponent();
 searchInfo = new SearchInfo();
 this.DataContext = searchInfo;

 BindingOperations.EnableCollectionSynchronization(
 searchInfo.List, lockList);
 }

c13.indd 337 30-01-2014 20:17:41

338 ❘ CHAPTER 13 Asynchronous ProgrAmming

Having looked at the advantages of the async and await keywords, the next section examines the program-
ming foundation behind these keywords.

FoundATion oF AsynCHRonous PRogRAmming
The async and await keywords are just a compiler feature. The compiler creates code by using the Task
class. Instead of using the new keywords, you could get the same functionality with C# 4 and methods of
the Task class; it’s just not as convenient.

This section gives information about what the compiler does with the async and await keywords, an easy
way to create an asynchronous method, how you can invoke multiple asynchronous methods in parallel, and
how you can change a class that just offers the asynchronous pattern to use the new keywords.

Creating Tasks
Let’s start with the synchronous method Greeting, which takes a while before returning a string (code file
Foundations/Program.cs):

 static string Greeting(string name)
 {
 Thread.Sleep(3000);
 return string.Format("Hello, {0}", name);
 }

To make such a method asynchronously, the method GreetingAsync is defined. The task-based asyn-
chronous pattern specifies that an asynchronous method is named with the Async suffix and returns a
task. GreetingAsync is defined to have the same input parameters as the Greeting method but returns
Task<string>. Task<string>, which defines a task that returns a string in the future. A simple way to
return a task is by using the Task.Run method. The generic version Task.Run<string>() creates a task
that returns a string:

 static Task<string> GreetingAsync(string name)
 {
 return Task.Run<string>(() =>
 {
 return Greeting(name);
 });
 }

Calling an Asynchronous method
You can call this asynchronous method GreetingAsync by using the await keyword on the task that is
returned. The await keyword requires the method to be declared with the async modifier. The code within
this method does not continue before the GreetingAsync method is completed. However, the thread that
started the CallerWithAsync method can be reused. This thread is not blocked:

 private async static void CallerWithAsync()
 {
 string result = await GreetingAsync("Stephanie");
 Console.WriteLine(result);
 }

Instead of passing the result from the asynchronous method to a variable, you can also use the await key-
word directly within parameters. Here, the result from the GreetingAsync method is awaited like in the
previously code snippet, but this time the result is directly passed to the Console.WriteLine method:

c13.indd 338 30-01-2014 20:17:41

Foundation of Asynchronous Programming ❘ 339

 private async static void CallerWithAsync2()
 {
 Console.WriteLine(await GreetingAsync("Stephanie"));
 }

noTE The async modifier can only be used with methods returning a Task or void. It
cannot be used with the entry point of a program, the Main method. await can only be
used with methods returning a Task.

In the next section you’ll see what’s driving this await keyword. Behind the scenes, continuation tasks are
used.

Continuation with Tasks
GreetingAsync returns a Task<string> object. The Task object contains information about the task cre-
ated, and allows waiting for its completion. The ContinueWith method of the Task class defines the code
that should be invoked as soon as the task is finished. The delegate assigned to the ContinueWith method
receives the completed task with its argument, which allows accessing the result from the task using the
Result property:

 private static void CallerWithContinuationTask()
 {
 Task<string> t1 = GreetingAsync("Stephanie");
 t1.ContinueWith(t =>
 {
 string result = t.Result;
 Console.WriteLine(result);
 });
 }

The compiler converts the await keyword by putting all the code that follows within the block of a
ContinueWith method.

synchronization Context
If you verify the thread that is used within the methods you will find that in both methods,
CallerWithAsync and CallerWithContinuationTask, different threads are used during the lifetime of the
methods. One thread is used to invoke the method GreetingAsync, and another thread takes action after
the await keyword or within the code block in the ContinueWith method.

With a console application usually this is not an issue. However, you have to ensure that at least one fore-
ground thread is still running before all background tasks that should be completed are finished. The sample
application invokes Console.ReadLine to keep the main thread running until the return key is pressed.

With applications that are bound to a specific thread for some actions (e.g., with WPF applications, UI ele-
ments can only be accessed from the UI thread), this is an issue.

Using the async and await keywords you don’t have to do any special actions to access the UI thread after
an await completion. By default the generated code switches the thread to the thread that has the synchro-
nization context. A WPF application sets a DispatcherSynchronizationContext, and a Windows Forms
application sets a WindowsFormsSynchronizationContext. If the calling thread of the asynchronous
method is assigned to the synchronization context, then with the continuous execution after the await, by
default the same synchronization context is used. If the same synchronization context shouldn’t be used, you

c13.indd 339 30-01-2014 20:17:41

340 ❘ CHAPTER 13 Asynchronous ProgrAmming

must invoke the Task method ConfigureAwait(continueOnCapturedContext: false). An example that
illustrates this usefulness is a WPF application in which the code that follows the await is not using any UI
elements. In this case, it is faster to avoid the switch to the synchronization context.

using multiple Asynchronous methods
Within an asynchronous method you can call not only one but multiple asynchronous methods. How you
code this depends on whether the results from one asynchronous method are needed by another.

Calling Asynchronous Methods Sequentially
The await keyword can be used to call every asynchronous method. In cases where one method is
dependent on the result of another method, this is very useful. Here, the second call to GreetingAsync
is completely independent of the result of the first call to GreetingAsync. Thus, the complete method
MultipleAsyncMethods could return the result faster if await is not used with every single method, as
shown in the following example:

 private async static void MultipleAsyncMethods()
 {
 string s1 = await GreetingAsync("Stephanie");
 string s2 = await GreetingAsync("Matthias");
 Console.WriteLine("Finished both methods.\n " +
 "Result 1: {0}\n Result 2: {1}", s1, s2);
 }

Using Combinators
If the asynchronous methods are not dependent on each other, it is a lot faster not to await on each sepa-
rately, and instead assign the return of the asynchronous method to a Task variable. The GreetingAsync
method returns Task<string>. Both these methods can now run in parallel. Combinators can help with
this. A combinator accepts multiple parameters of the same type and returns a value of the same type. The
passed parameters are “combined” to one. Task combinators accept multiple Task objects as parameter and
return a Task.

The sample code invokes the Task.WhenAll combinator method that you can await to have both tasks
finished:

 private async static void MultipleAsyncMethodsWithCombinators1()
 {
 Task<string> t1 = GreetingAsync("Stephanie");
 Task<string> t2 = GreetingAsync("Matthias");
 await Task.WhenAll(t1, t2);
 Console.WriteLine("Finished both methods.\n " +
 "Result 1: {0}\n Result 2: {1}", t1.Result, t2.Result);
 }

The Task class defines the WhenAll and WhenAny combinators. The Task returned from the WhenAll
method is completed as soon as all tasks passed to the method are completed; the Task returned from the
WhenAny method is completed as soon as one of the tasks passed to the method is completed.

The WhenAll method of the Task type defines several overloads. If all the tasks return the same type,
an array of this type can be used for the result of the await. The GreetingAsync method returns a
Task<string>, and awaiting for this method results in a string. Therefore, Task.WhenAll can be used to
return a string array:

 private async static void MultipleAsyncMethodsWithCombinators2()
 {
 Task<string> t1 = GreetingAsync("Stephanie");

c13.indd 340 30-01-2014 20:17:41

Error Handling ❘ 341

 Task<string> t2 = GreetingAsync("Matthias");
 string[] result = await Task.WhenAll(t1, t2);
 Console.WriteLine("Finished both methods.\n " +
 "Result 1: {0}\n Result 2: {1}", result[0], result[1]);
 }

Converting the Asynchronous Pattern
Not all classes from the .NET Framework introduced the new asynchronous method style with .NET 4.5.
There are still many classes just offering the asynchronous pattern with BeginXXX and EndXXX methods
and not task-based asynchronous methods as you will see when working with different classes from the
framework.

First, let’s create an asynchronous method from the previously-defined synchronous method Greeting
with the help of a delegate. The Greeting method receives a string as parameter and returns a string, thus
a variable of Func<string, string> delegate is used to reference this method. According to the asyn-
chronous pattern, the BeginGreeting method receives a string parameter in addition to AsyncCallback
and object parameters and returns IAsyncResult. The EndGreeting method returns the result from the
Greeting method—a string—and receives an IAsyncResult parameter. With the implementation just the
delegate is used to make the implementation asynchronously.

 private static Func<string, string> greetingInvoker = Greeting;

 static IAsyncResult BeginGreeting(string name, AsyncCallback callback,
 object state)
 {
 return greetingInvoker.BeginInvoke(name, callback, state);
 }

 static string EndGreeting(IAsyncResult ar)
 {
 return greetingInvoker.EndInvoke(ar);
 }

Now the BeginGreeting and EndGreeting methods are available, and these should be converted to use the
async and await keywords to get the results. The TaskFactory class defines the FromAsync method that
allows converting methods using the asynchronous pattern to the TAP.

With the sample code, the first generic parameter of the Task type, Task<string>, defines the return value
from the method that is invoked. The generic parameter of the FromAsync method defines the input type
of the method. In this case the input type is again of type string. With the parameters of the FromAsync
method, the first two parameters are delegate types to pass the addresses of the BeginGreeting and
EndGreeting methods. After these two parameters, the input parameters and the object state parameter
follow. The object state is not used, so null is assigned to it. Because the FromAsync method returns a Task
type, in the sample code Task<string>, an await can be used as shown:

 private static async void ConvertingAsyncPattern()
 {
 string s = await Task<string>.Factory.FromAsync<string>(
 BeginGreeting, EndGreeting, "Angela", null);
 Console.WriteLine(s);
 }

ERRoR HAndling
Chapter 16, “Errors and Exceptions,” provides detailed coverage of errors and exception handling.
However, in the context of asynchronous methods, you should be aware of some special handling of errors.

c13.indd 341 30-01-2014 20:17:41

342 ❘ CHAPTER 13 Asynchronous ProgrAmming

Let’s start with a simple method that throws an exception after a delay (code file ErrorHandling/Program.cs):

 static async Task ThrowAfter(int ms, string message)
 {
 await Task.Delay(ms);
 throw new Exception(message);
 }

If you call the asynchronous method without awaiting it, you can put the asynchronous method within
a try/catch block—and the exception will not be caught. That’s because the method DontHandle has
already completed before the exception from ThrowAfter is thrown. You need to await the ThrowAfter
method, as shown in the following example:

 private static void DontHandle()
 {
 try
 {
 ThrowAfter(200, "first");
 // exception is not caught because this method is finished
 // before the exception is thrown
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

WARning Asynchronous methods that return void cannot be awaited. The issue with
this is that exceptions that are thrown from async void methods cannot be caught.
That’s why it is best to return a Task type from an asynchronous method. Handler
methods or overridden base methods are exempted from this rule.

Handling Exceptions with Asynchronous methods
A good way to deal with exceptions from asynchronous methods is to use await and put a try/catch state-
ment around it, as shown in the following code snippet. The HandleOneError method releases the thread
after calling the ThrowAfter method asynchronously, but it keeps the Task referenced to continue as soon
as the task is completed. When that happens (which in this case is when the exception is thrown after two
seconds), the catch matches and the code within the catch block is invoked:

 private static async void HandleOneError()
 {
 try
 {
 await ThrowAfter(2000, "first");
 }
 catch (Exception ex)
 {
 Console.WriteLine("handled {0}", ex.Message);
 }
 }

c13.indd 342 30-01-2014 20:17:42

Error Handling ❘ 343

Exceptions with multiple Asynchronous methods
What if two asynchronous methods are invoked that each throw exceptions? In the following example, first
the ThrowAfter method is invoked, which throws an exception with the message first after two seconds.
After this method is completed, the ThrowAfter method is invoked, throwing an exception after one
second. Because the first call to ThrowAfter already throws an exception, the code within the try block
does not continue to invoke the second method, instead landing within the catch block to deal with the first
exception:

 private static async void StartTwoTasks()
 {
 try
 {
 await ThrowAfter(2000, "first");
 await ThrowAfter(1000, "second"); // the second call is not invoked
 // because the first method throws
 // an exception
 }
 catch (Exception ex)
 {
 Console.WriteLine("handled {0}", ex.Message);
 }
 }

Now let’s start the two calls to ThrowAfter in parallel. The first method throws an exception after two
seconds, the second one after one second. With Task.WhenAll you wait until both tasks are completed,
whether an exception is thrown or not. Therefore, after a wait of about two seconds, Task.WhenAll is
completed, and the exception is caught with the catch statement. However, you will only see the exception
information from the first task that is passed to the WhenAll method. It’s not the task that threw the excep-
tion first (which is the second task), but the first task in the list:

 private async static void StartTwoTasksParallel()
 {
 try
 {
 Task t1 = ThrowAfter(2000, "first");
 Task t2 = ThrowAfter(1000, "second");
 await Task.WhenAll(t1, t2);
 }
 catch (Exception ex)
 {
 // just display the exception information of the first task
 // that is awaited within WhenAll
 Console.WriteLine("handled {0}", ex.Message);
 }
 }

One way to get the exception information from all tasks is to declare the task variables t1 and t2 outside
of the try block, so they can be accessed from within the catch block. Here you can check the status of the
task to determine whether they are in a faulted state with the IsFaulted property. In case of an exception,
the IsFaulted property returns true. The exception information itself can be accessed by using
Exception.InnerException of the Task class. Another, and usually better, way to retrieve exception
information from all tasks is demonstrated next.

using AggregateException information
To get the exception information from all failing tasks, the result from Task.WhenAll can be written to a
Task variable. This task is then awaited until all tasks are completed. Otherwise the exception would still be

c13.indd 343 30-01-2014 20:17:42

344 ❘ CHAPTER 13 Asynchronous ProgrAmming

missed. As described in the last section, with the catch statement just the exception of the first task can be
retrieved. However, now you have access to the Exception property of the outer task. The Exception
property is of type AggregateException. This exception type defines the property InnerExceptions (not
only InnerException), which contains a list of all the exceptions from the awaited for. Now you can easily
iterate through all the exceptions:

 private static async void ShowAggregatedException()
 {
 Task taskResult = null;
 try
 {
 Task t1 = ThrowAfter(2000, "first");
 Task t2 = ThrowAfter(1000, "second");
 await (taskResult = Task.WhenAll(t1, t2));
 }
 catch (Exception ex)
 {
 Console.WriteLine("handled {0}", ex.Message);
 foreach (var ex1 in taskResult.Exception.InnerExceptions)
 {
 Console.WriteLine("inner exception {0}", ex1.Message);
 }
 }
 }

CAnCEllATion
With background tasks that can run longer in some scenarios, it is useful to cancel the tasks. For cancella-
tion, .NET offers a standard mechanism that has been available since .NET 4. This mechanism can be used
with the task-based asynchronous pattern.

The cancellation framework is based on cooperative behavior; it is not forceful. A long-running task needs
to check itself if it is canceled, in which case it is the responsibility of the task to cleanup any open resources
and finish its work.

Cancellation is based on the CancellationTokenSource class, which can be used to send cancel
requests. Requests are sent to tasks that reference the CancellationToken that is associated with the
CancellationTokenSource. The following section looks at an example by modifying the AsyncPatterns
sample created earlier in this chapter to add support for cancellation.

starting a Cancellation
First, a variable cts of type CancellationTokenSource is defined with the private field members of the
class MainWindow. This member will be used to cancel tasks and pass tokens to the methods that should be
cancelled (code file AsyncPatterns/MainWindow.xaml.cs):

 public partial class MainWindow : Window
 {
 private SearchInfo searchInfo;
 private object lockList = new object();
 private CancellationTokenSource cts;

For a new button that can be activated by the user to cancel the running task, the event handler method
OnCancel is added. Within this method, the variable cts is used to cancel the tasks with the Cancel
method:

c13.indd 344 30-01-2014 20:17:42

Cancellation ❘ 345

 private void OnCancel(object sender, RoutedEventArgs e)
 {
 if (cts != null)
 cts.Cancel();
 }

The CancellationTokenSource also supports cancellation after a specified amount of time. The method
CancelAfter enables passing a value, in milliseconds, after which a task should be cancelled.

Cancellation with Framework Features
Now let’s pass the CancellationToken to an asynchronous method. Several of the asynchronous meth-
ods in the framework support cancellation by offering an overload whereby a CancellationToken
can be passed. One example is the GetAsync method of the HttpClient class. The overloaded
GetAsync method accepts a CancellationToken in addition to the URI string. The token from the
CancellationTokenSource can be retrieved by using the Token property.

The implementation of the GetAsync method periodically checks whether the operation should be cancelled.
If so, it does a cleanup of resources before throwing the exception OperationCanceledException. This
exception is caught with the catch handler in the following code snippet:

 private async void OnTaskBasedAsyncPattern(object sender,
 RoutedEventArgs e)
 {
 cts = new CancellationTokenSource();
 try
 {
 foreach (var req in GetSearchRequests())
 {
 var client = new HttpClient();
 var response = await client.GetAsync(req.Url, cts.Token);
 string resp = await response.Content.ReadAsStringAsync();

 //...
 }
 }
 catch (OperationCanceledException ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

Cancellation with Custom Tasks
What about custom tasks that should be cancelled? The Run method of the Task class offers an overload to
pass a CancellationToken as well. However, with custom tasks it is necessary to check whether cancella-
tion is requested. In the following example, this is implemented within the foreach loop. The token can be
checked by using the IsCancellationRequsted property. If you need to do some cleanup before throwing
the exception, it is best to verify that cancellation is requested. If cleanup is not needed, an exception can be
fired immediately after the check, which is done with the ThrowIfCancellationRequested method:

 await Task.Run(() =>
 {
 var images = req.Parse(resp);
 foreach (var image in images)

c13.indd 345 30-01-2014 20:17:42

346 ❘ CHAPTER 13 Asynchronous ProgrAmming

 {
 cts.Token.ThrowIfCancellationRequested();
 searchInfo.List.Add(image);
 }
 }, cts.Token);

Now the user can cancel long-running tasks.

summARy
This chapter introduced the async and await keywords that are new with C# 5. Having looked at several
examples, you’ve seen the advantages of the task-based asynchronous pattern compared to the asynchronous
pattern and the event-based asynchronous pattern available with earlier editions of .NET.

You’ve also seen how easy it is to create asynchronous methods with the help of the Task class, and learned
how to use the async and await keywords to wait for these methods without blocking threads. Finally, you
looked at the error-handling aspect of asynchronous methods.

For more information on parallel programming, and details about threads and tasks, see Chapter 21.

The next chapter continues with core features of C# and .NET and gives detailed information on memory
and resource management.

c13.indd 346 30-01-2014 20:17:42

Memory Management
and Pointers

WHAT’s In THIs CHAPTER?

➤➤ Allocating space on the stack and heap at runtime
➤➤ Garbage collection
➤➤ Releasing unmanaged resources using destructors and the System

.IDisposable interface
➤➤ The syntax for using pointers in C#
➤➤ Using pointers to implement high-performance stack-based arrays

WRoX.CoM CodE doWnloAds FoR THIs CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ PointerPlayground
➤➤ PointerPlayground2
➤➤ QuickArray

MEMoRy MAnAgEMEnT
This chapter presents various aspects of memory management and memory access. Although the
runtime removes much of the responsibility for memory management from the programmer, it is
useful to understand how memory management works, and important to know how to work with
unmanaged resources effi ciently.

A good understanding of memory management and knowledge of the pointer capabilities provided by
C# will better enable you to integrate C# code with legacy code and perform effi cient memory manip-
ulation in performance-critical systems.

14

c14.indd 347 30-01-2014 20:18:30

348 ❘ CHAPTER 14 MeMory ManageMent and Pointers

MEMoRy MAnAgEMEnT UndER THE Hood
One of the advantages of C# programming is that the programmer does not need to worry about detailed
memory management; the garbage collector deals with the problem of memory cleanup on your behalf. As
a result, you get something that approximates the efficiency of languages such as C++ without the complex-
ity of having to handle memory management yourself as you do in C++. However, although you do not have
to manage memory manually, it still pays to understand what is going on behind the scenes. Understanding
how your program manages memory under the covers will help you increase the speed and performance
of your applications. This section looks at what happens in the computer’s memory when you allocate
variables.

noTE The precise details of many of the topics of this section are not presented here.
This section serves as an abbreviated guide to the general processes rather than as a
statement of exact implementation.

Value data Types
Windows uses a system known as virtual addressing, in which the mapping from the memory address seen
by your program to the actual location in hardware memory is entirely managed by Windows. As a result,
each process on a 32-bit processor sees 4GB of available memory, regardless of how much hardware mem-
ory you actually have in your computer (on 64-bit processors this number is greater). This memory contains
everything that is part of the program, including the executable code, any DLLs loaded by the code, and the
contents of all variables used when the program runs. This 4GB of memory is known as the virtual address
space or virtual memory. For convenience, this chapter uses the shorthand memory.

Each memory location in the available 4GB is numbered starting from zero. To access a value stored at a
particular location in memory, you need to supply the number that represents that memory location. In any
compiled high-level language, including C#, Visual Basic, C++, and Java, the compiler converts human-read-
able variable names into memory addresses that the processor understands.

Somewhere inside a processor’s virtual memory is an area known as the stack. The stack stores value data
types that are not members of objects. In addition, when you call a method, the stack is used to hold a copy
of any parameters passed to the method. To understand how the stack works, you need to understand the
importance of variable scope in C#. If variable a goes into scope before variable b, then b will always go out
of scope first. Consider the following code:

{
 int a;
 // do something
 {
 int b;
 // do something else
 }
}

First, a is declared. Then, inside the inner code block, b is declared. Then the inner code block terminates
and b goes out of scope, then a goes out of scope. Therefore, the lifetime of b is entirely contained within the
lifetime of a. The idea that you always de-allocate variables in the reverse order of how you allocate them is
crucial to the way the stack works.

Note that b is in a different block from code (defined by a different nesting of curly braces). For this reason,
it is contained within a different scope. This is termed as block scope or structure scope.

You do not know exactly where in the address space the stack is — you don’t need to know for C# develop-
ment. A stack pointer (a variable maintained by the operating system) identifies the next free location on the

c14.indd 348 30-01-2014 20:18:30

Memory Management Under the Hood ❘ 349

stack. When your program first starts running, the stack pointer will point to just past the end of the block
of memory that is reserved for the stack. The stack fills downward, from high memory addresses to low
addresses. As data is put on the stack, the stack pointer is adjusted accordingly, so it always points
to just past the next free location. This is illustrated in Figure 14-1, which shows a stack pointer with a value
of 800000 (0xC3500 in hex); the next free location is the address 799999.

The following code tells the compiler that you need space in memory to store an integer and a double, and
these memory locations are referred to as nRacingCars and engineSize. The line that declares each vari-
able indicates the point at which you start requiring access to this variable. The closing curly brace of the
block in which the variables are declared identifies the point at which both variables go out of scope:

{
 int nRacingCars = 10;
 double engineSize = 3000.0;
 // do calculations;
}

Assuming that you use the stack shown in Figure 14-1, when the
variable nRacingCars comes into scope and is assigned the value
10, the value 10 is placed in locations 799996 through 799999,
the 4 bytes just below the location pointed to by the stack
pointer (4 bytes because that’s how much memory is needed
to store an int). To accommodate this, 4 is subtracted from
the value of the stack pointer, so it now points to the location
799996, just after the new first free location (799995).

The next line of code declares the variable engineSize (a double) and initializes it to the value 3000.0.
A double occupies eight bytes, so the value 3000.0 is placed in locations 799988 through 799995 on the
stack, and the stack pointer is decremented by eight, so that it again points to the location just after the next
free location on the stack.

When engineSize goes out of scope, the runtime knows that it is no longer needed. Because of the way
variable lifetimes are always nested, you can guarantee that whatever happened while engineSize was in
scope, the stack pointer is now pointing to the location where engineSize is stored. To remove engine-
Size from the stack, the stack pointer is incremented by eight and it now points to the location immediately
after the end of engineSize. At this point in the code, you are at the closing curly brace, so nRacingCars
also goes out of scope. The stack pointer is incremented by 4. When another variable comes into scope after
engineSize and nRacingCars have been removed from the stack, it overwrites the memory descending
from location 799999, where nRacingCars was stored.

If the compiler hits a line such as int i, j, then the order of variables coming into scope looks indetermi-
nate. Both variables are declared at the same time and go out of scope at the same time. In this situation, it
does not matter in what order the two variables are removed from memory. The compiler internally always
ensures that the one that was put in memory first is removed last, thus preserving the rule that prohibits
crossover of variable lifetimes.

Reference data Types
Although the stack provides very high performance, it is not flexible enough to be used for all variables. The
requirement that the lifetime of a variable must be nested is too restrictive for many purposes. Often, you
need to use a method to allocate memory for storing data and keeping that data available long after that
method has exited. This possibility exists whenever storage space is requested with the new operator — as is
the case for all reference types. That is where the managed heap comes in.

If you have done any C++ coding that required low-level memory management, you are familiar with the
heap. The managed heap is not quite the same as the heap C++ uses, however; the managed heap works
under the control of the garbage collector and provides significant benefits compared to traditional heaps.

FIgURE 14-1

Location

800000 USED

799999 FREE

Stack Pointer

799998

799997

c14.indd 349 30-01-2014 20:18:32

350 ❘ CHAPTER 14 MeMory ManageMent and Pointers

The managed heap (or heap for short) is just another area of memory from the processor’s available
memory. The following code demonstrates how the heap works and how memory is allocated for reference
data types:

void DoWork()
{
 Customer arabel;
 arabel = new Customer();
 Customer otherCustomer2 = new EnhancedCustomer();
}

This code assumes the existence of two classes, Customer and EnhancedCustomer. The EnhancedCustomer
class extends the Customer class.

First, you declare a Customer reference called arabel. The space for this is allocated on the stack, but
remember that this is only a reference, not an actual Customer object. The arabel reference occupies 4
bytes, enough space to hold the address at which a Customer object will be stored. (You need 4 bytes to
represent a memory address as an integer value between 0 and 4GB.)

The next line,

arabel = new Customer();

does several things. First, it allocates memory on the heap to store a Customer object (a real object, not just
an address). Then it sets the value of the variable arabel to the address of the memory it has allocated to the
new Customer object. (It also calls the appropriate Customer constructor to initialize the fields in the class
instance, but we won’t worry about that here.)

The Customer instance is not placed on the stack — it is placed on the heap. In this example, you don’t
know precisely how many bytes a Customer object occupies, but assume for the sake of argument that it is
32. These 32 bytes contain the instance fields of Customer as well as some information that .NET uses to
identify and manage its class instances.

To find a storage location on the heap for the new Customer object, the .NET runtime looks through the
heap and grabs the first adjacent, unused block of 32 bytes. Again for the sake of argument, assume that this
happens to be at address 200000, and that the arabel reference occupied locations 799996 through 799999
on the stack. This means that before instantiating the arabel object, the memory content will look similar
to Figure 14-2.

FIgURE 14-2

STACK HEAP

FREE

200000

199999

USED

USED

799996 – 799999
arabel

FREE

Stack Pointer

After allocating the new Customer object, the content of memory will look like Figure 14-3. Note that
unlike the stack, memory in the heap is allocated upward, so the free space can be found above the
used space.

c14.indd 350 30-01-2014 20:18:33

Memory Management Under the Hood ❘ 351

The next line of code both declares a Customer reference and instantiates a Customer object. In this
instance, space on the stack for the otherCustomer2 reference is allocated and space for the mrJones object
is allocated on the heap in a single line of code:

 Customer otherCustomer2 = new EnhancedCustomer();

This line allocates 4 bytes on the stack to hold the otherCustomer2 reference, stored at locations 799992
through 799995. The otherCustomer2 object is allocated space on the heap starting at location 200032.

It is clear from the example that the process of setting up a reference variable is more complex than that for
setting up a value variable, and there is performance overhead. In fact, the process is somewhat oversimpli-
fied here, because the .NET runtime needs to maintain information about the state of the heap, and this
information needs to be updated whenever new data is added to the heap. Despite this overhead, you now
have a mechanism for allocating variables that is not constrained by the limitations of the stack. By assign-
ing the value of one reference variable to another of the same type, you have two variables that reference
the same object in memory. When a reference variable goes out of scope, it is removed from the stack as
described in the previous section, but the data for a referenced object is still sitting on the heap. The data
remains on the heap until either the program terminates or the garbage collector removes it, which happens
only when it is no longer referenced by any variables.

That is the power of reference data types, and you will see this feature used extensively in C# code. It means
that you have a high degree of control over the lifetime of your data, because it is guaranteed to exist in the
heap as long as you are maintaining some reference to it.

garbage Collection
The previous discussion and diagrams show the managed heap working very much like the stack, to the
extent that successive objects are placed next to each other in memory. This means that you can determine
where to place the next object by using a heap pointer that indicates the next free memory location, which
is adjusted as you add more objects to the heap. However, things are complicated by the fact that the
lives of the heap-based objects are not coupled with the scope of the individual stack-based variables that
reference them.

When the garbage collector runs, it removes all those objects from the heap that are no longer referenced.
Immediately after doing this, the heap will have objects scattered on it, mixed up with memory that has just
been freed (see Figure 14-4).

If the managed heap stayed like this, allocating space for new objects would be an awkward process, with
the runtime having to search through the heap for a block of memory big enough to store each new object.

FIgURE 14-3

STACK HEAP

FREE

200032

200000 – 2000031
arabel instance

1999999

USED

USED

799996 – 799999
arabel

FREE

Stack Pointer

c14.indd 351 30-01-2014 20:18:34

352 ❘ CHAPTER 14 MeMory ManageMent and Pointers

However, the garbage collector does not leave the heap in this state. As soon as the gar-
bage collector has freed up all the objects it can, it compacts the heap by moving all the
remaining objects to form one continuous block of memory. This means that the heap
can continue working just like the stack, as far as locating where to store new objects.
Of course, when the objects are moved about, all the references to those objects need to
be updated with the correct new addresses, but the garbage collector handles that too.

This action of compacting by the garbage collector is where the managed heap works
very differently from old, unmanaged heaps. With the managed heap, it is just a ques-
tion of reading the value of the heap pointer, rather than iterating through a linked list
of addresses to find somewhere to put the new data. For this reason, instantiating an
object under .NET is should be much faster. Interestingly, accessing objects tends to be
faster too, because the objects are compacted toward the same area of memory on the
heap, resulting in less page swapping. Microsoft believes that these performance gains
more than compensate for the performance penalty you get whenever the garbage col-
lector needs to do some work to compact the heap and change all those references to
objects it has moved.

noTE Generally, the garbage collector runs when the .NET runtime determines that
garbage collection is required. You can force the garbage collector to run at a certain
point in your code by calling System.GC.Collect. The System.GC class is a .NET
class that represents the garbage collector, and the Collect method initiates a garbage
collection. The GC class is intended for rare situations in which you know that it’s a
good time to call the garbage collector; for example, if you have just de-referenced a
large number of objects in your code. However, the logic of the garbage collector does
not guarantee that all unreferenced objects will be removed from the heap in a single
garbage collection pass.

When objects are created, they are placed within the managed heap. The first section of the heap is called
the generation 0 section, or gen 0. As your new objects are created, they are moved into this section of the
heap. Therefore, this is where the youngest objects reside.

Your objects remain there until the first collection of objects occurs through the garbage collection process.
The objects that remain alive after this cleansing are compacted and then moved to the next section or gen-
erational part of the heap — the generation 1, or gen 1, section.

At this point, the generation 0 section is empty, and all new objects are again placed in this section. Older
objects that survived the GC (garbage collection) process are found further down in the generation 1 sec-
tion. This movement of aged items actually occurs one more time. The next collection process that occurs
is then repeated. This means that the items that survived the GC process from the generation 1 section are
moved to the generation 2 section, and the gen 0 items go to gen 1, again leaving gen 0 open for new objects.

noTE Interestingly, a garbage collection will occur when you allocate an item that
exceeds the capacity of the generation 0 section or when a GC.Collect is called.

This process greatly improves the performance of your application. Typically, your youngest objects are the
ones that can be collected, and a large number of younger-related objects might be reclaimed as well. If
these objects reside next to each other in the heap, then the garbage collection process will be faster. In
addition, because related objects are residing next to each other, program execution will be faster all around.

Another performance-related aspect of garbage collection in .NET is how the framework deals with larger
objects that are added to the heap. Under the covers of .NET, larger objects have their own managed heap,

FIgURE 14-4

In use

In use

In use

Free

Free

c14.indd 352 30-01-2014 20:18:36

Freeing Unmanaged Resources ❘ 353

referred to as the Large Object Heap. When objects greater than 85,000 bytes are utilized, they go to this
special heap rather than the main heap. Your .NET application doesn’t know the difference, as this is all
managed for you. Because compressing large items in the heap is expensive, it isn’t done for the objects resid-
ing in the Large Object Heap.

In an effort to improve GC even more, collections on the generation 2 section and from the Large Object
Heap are now done on a background thread. This means that application threads are only blocked for gen-
eration 0 and generation 1 collections, which reduces the overall pause time, especially for large-scale server
apps. This feature is on by default for both servers and workstations. To turn it off, set the <gcConcurrent>
element in the configuration file to false.

Another optimization to help in application performance is GC balancing. This is specific to server GC.
Typically a server will have a pool of threads doing roughly the same thing. The memory allocation will be
similar across all the threads. For servers there is one GC heap per logical server. So when one of the heaps
runs out of memory and triggers a GC, all of the other heaps most likely will benefit from the GC as well.
If a thread happens to use a lot more memory than other threads and it causes a GC, the other threads
may not be close to requiring the GC so it’s not efficient. The GC will balance the heaps — both the Small
Object Heap and also the Large Object Heap. By doing this balancing process, you can reduce unnecessary
collection.

To take advantage of hardware with lots of memory, the GC has added the GCSettings.LatencyMode
property. Setting the property to one of the values in the GCLatencyMode enumeration will give a little con-
trol to how the GC performs collections. Table 14-1 shows the possible values that can be used.

TAblE 14-1: Settings for GCLatencyMode

MEMbER dEsCRIPTIon

Batch Disables the concurrency settings and sets the GC for
maximum throughput. This will override the configura-
tion setting.

Interactive The default behavior.

LowLatency Conservative GC. Full collections only occur when there
is memory pressure on the system. Should only be used
for short periods of time to perform specific operations.

SustainedLowLatency Do full blocking collections only when there is system
memory pressure.

The amount of time that the LowLatency settings are used should be kept to a minimum. The amount of
memory being allocated should be as small as possible. An out-of-memory error could occur if care is not
taken.

To take advantage of new high memory 64-bit machines, the <gcAllorVeryLargeObjects> configuration
setting has been added. This will allow an object greater than 2 GB in size to be created. This will have no
effect on 32-bit machines on which the 2GB limit is still in place.

FREEIng UnMAnAgEd REsoURCEs
The presence of the garbage collector means that you usually do not need to worry about objects you no
longer need; you simply allow all references to those objects to go out of scope and let the garbage collector
free memory as required. However, the garbage collector does not know how to free unmanaged resources
(such as file handles, network connections, and database connections). When managed classes encapsulate
direct or indirect references to unmanaged resources, you need to make special provisions to ensure that the
unmanaged resources are released when an instance of the class is garbage collected.

c14.indd 353 30-01-2014 20:18:36

354 ❘ CHAPTER 14 MeMory ManageMent and Pointers

When defining a class, you can use two mechanisms to automate the freeing of unmanaged resources. These
mechanisms are often implemented together because each provides a slightly different approach:

➤➤ Declare a destructor (or finalizer) as a member of your class.
➤➤ Implement the System.IDisposable interface in your class.

The following sections discuss each of these mechanisms in turn, and then look at how to implement them
together for best results.

destructors
You have seen that constructors enable you to specify actions that must take place whenever an instance
of a class is created. Conversely, destructors are called before an object is destroyed by the garbage collec-
tor. Given this behavior, a destructor would initially seem like a great place to put code to free unmanaged
resources and perform a general cleanup. Unfortunately, things are not so straightforward.

noTE Although we talk about destructors in C#, in the underlying .NET architecture
these are known as finalizers. When you define a destructor in C#, what is emitted
into the assembly by the compiler is actually a Finalize method. It doesn’t affect any
of your source code, but you need to be aware of it when examining the content of an
assembly.

The syntax for a destructor will be familiar to C++ developers. It looks like a method, with the same name
as the containing class, but prefixed with a tilde (~). It has no return type, and takes no parameters or access
modifiers. Here is an example:

class MyClass
{
 ~MyClass()
 {
 // destructor implementation
 }
}

When the C# compiler compiles a destructor, it implicitly translates the destructor code to the equivalent of
a Finalize method, which ensures that the Finalize method of the parent class is executed. The following
example shows the C# code equivalent to the Intermediate Language (IL) that the compiler would generate
for the ~MyClass destructor:

protected override void Finalize()
{
 try
 {
 // destructor implementation
 }
 finally
 {
 base.Finalize();
 }
}

As shown, the code implemented in the ~MyClass destructor is wrapped in a try block contained in the
Finalize method. A call to the parent’s Finalize method is ensured by placing the call in a finally
block. You can read about try and finally blocks in Chapter 16, “Errors and Exceptions.”

Experienced C++ developers make extensive use of destructors, sometimes not only to clean up resources
but also to provide debugging information or perform other tasks. C# destructors are used far less than
their C++ equivalents. The problem with C# destructors as compared to their C++ counterparts is that they

c14.indd 354 30-01-2014 20:18:36

Freeing Unmanaged Resources ❘ 355

are nondeterministic. When a C++ object is destroyed, its destructor runs immediately. However, because
of the way the garbage collector works when using C#, there is no way to know when an object’s destructor
will actually execute. Hence, you cannot place any code in the destructor that relies on being run at a cer-
tain time, and you should not rely on the destructor being called for different class instances in any particu-
lar order. When your object is holding scarce and critical resources that need to be freed as soon as possible,
you do not want to wait for garbage collection.

Another problem with C# destructors is that the implementation of a destructor delays the final removal of
an object from memory. Objects that do not have a destructor are removed from memory in one pass of the
garbage collector, but objects that have destructors require two passes to be destroyed: The first pass calls
the destructor without removing the object, and the second pass actually deletes the object. In addition, the
runtime uses a single thread to execute the Finalize methods of all objects. If you use destructors
frequently, and use them to execute lengthy cleanup tasks, the impact on performance can be noticeable.

The Idisposable Interface
In C#, the recommended alternative to using a destructor is using the System.IDisposable interface. The
IDisposable interface defines a pattern (with language-level support) that provides a deterministic mecha-
nism for freeing unmanaged resources and avoids the garbage collector–related problems inherent with
destructors. The IDisposable interface declares a single method named Dispose, which takes no param-
eters and returns void. Here is an implementation for MyClass:

class MyClass: IDisposable
{
 public void Dispose()
 {
 // implementation
 }
}

The implementation of Dispose should explicitly free all unmanaged resources used directly by an object
and call Dispose on any encapsulated objects that also implement the IDisposable interface. In this way,
the Dispose method provides precise control over when unmanaged resources are freed.

Suppose that you have a class named ResourceGobbler, which relies on the use of some external resource
and implements IDisposable. If you want to instantiate an instance of this class, use it, and then dispose of
it, you could do so like this:

ResourceGobbler theInstance = new ResourceGobbler();

// do your processing

theInstance.Dispose();

Unfortunately, this code fails to free the resources consumed by theInstance if an exception occurs during
processing, so you should write the code as follows using a try block (as covered in detail in Chapter 16):

ResourceGobbler theInstance = null;

try
{
 theInstance = new ResourceGobbler();

 // do your processing
}
finally
{
 if (theInstance != null)
 {
 theInstance.Dispose();
 }
}

c14.indd 355 30-01-2014 20:18:36

356 ❘ CHAPTER 14 MeMory ManageMent and Pointers

This version ensures that Dispose is always called on theInstance and that any resources consumed by it
are always freed, even if an exception occurs during processing. However, if you always had to repeat such a
construct, it would result in confusing code. C# offers a syntax that you can use to guarantee that Dispose
is automatically called against an object that implements IDisposable when its reference goes out of
scope. The syntax to do this involves the using keyword — though now in a very different context, which
has nothing to do with namespaces. The following code generates IL code equivalent to the try block just
shown:

using (ResourceGobbler theInstance = new ResourceGobbler())
{
 // do your processing
}

The using statement, followed in brackets by a reference variable declaration and instantiation, causes
that variable to be scoped to the accompanying statement block. In addition, when that variable goes out
of scope, its Dispose method will be called automatically, even if an exception occurs. However, if you are
already using try blocks to catch other exceptions, it is cleaner and avoids additional code indentation if
you avoid the using statement and simply call Dispose in the finally clause of the existing try block.

noTE For some classes, the notion of a Close method is more logical than Dispose,
such as when dealing with files or database connections. In these cases, it is common
to implement the IDisposable interface and then implement a separate Close method
that simply calls Dispose. This approach provides clarity in the use of your classes and
supports the using statement provided by C#.

Implementing Idisposable and a destructor
The previous sections discussed two alternatives for freeing unmanaged resources used by the classes you
create:

➤➤ The execution of a destructor is enforced by the runtime but is nondeterministic and places an unac-
ceptable overhead on the runtime because of the way garbage collection works.

➤➤ The IDisposable interface provides a mechanism that enables users of a class to control when
resources are freed but requires discipline to ensure that Dispose is called.

In general, the best approach is to implement both mechanisms to gain the benefits of both while overcom-
ing their limitations. You implement IDisposable on the assumption that most programmers will call
Dispose correctly, but implement a destructor as a safety mechanism in case Dispose is not called. Here is
an example of a dual implementation:

using System;

public class ResourceHolder: IDisposable
{

 private bool isDisposed = false;

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (!isDisposed)

c14.indd 356 30-01-2014 20:18:36

Freeing Unmanaged Resources ❘ 357

 {
 if (disposing)
 {
 // Cleanup managed objects by calling their
 // Dispose() methods.
 }
 // Cleanup unmanaged objects
 }
 isDisposed = true;
 }

 ~ResourceHolder()
 {
 Dispose (false);
 }

 public void SomeMethod()
 {
 // Ensure object not already disposed before execution of any method
 if(isDisposed)
 {
 throw new ObjectDisposedException("ResourceHolder");
 }

 // method implementation...
 }
}

You can see from this code that there is a second protected overload of Dispose that takes one bool
parameter — and this is the method that does all the cleaning up. Dispose(bool) is called by both the
destructor and by IDisposable.Dispose. The point of this approach is to ensure that all cleanup code is in
one place.

The parameter passed to Dispose(bool) indicates whether Dispose(bool) has been invoked by the
destructor or by IDisposable.Dispose — Dispose(bool) should not be invoked from anywhere else in
your code. The idea is this:

➤➤ If a consumer calls IDisposable.Dispose, that consumer is indicating that all managed and unman-
aged resources associated with that object should be cleaned up.

➤➤ If a destructor has been invoked, all resources still need to be cleaned up. However, in this case, you
know that the destructor must have been called by the garbage collector and you should not attempt
to access other managed objects because you can no longer be certain of their state. In this situation,
the best you can do is clean up the known unmanaged resources and hope that any referenced man-
aged objects also have destructors that will perform their own cleaning up.

The isDisposed member variable indicates whether the object has already been disposed of and ensures
that you do not try to dispose of member variables more than once. It also allows you to test whether an
object has been disposed of before executing any instance methods, as shown in SomeMethod. This simplis-
tic approach is not thread-safe and depends on the caller ensuring that only one thread is calling the method
concurrently. Requiring a consumer to enforce synchronization is a reasonable assumption and one that is
used repeatedly throughout the .NET class libraries (in the Collection classes, for example). Threading
and synchronization are discussed in Chapter 21, “Tasks, Threads, and Synchronization.”

Finally, IDisposable.Dispose contains a call to the method System.GC.SuppressFinalize. GC is
the class that represents the garbage collector, and the SuppressFinalize method tells the garbage
collector that a class no longer needs to have its destructor called. Because your implementation of
Dispose has already done all the cleanup required, there’s nothing left for the destructor to do. Calling
SuppressFinalize means that the garbage collector will treat that object as if it doesn’t have a destructor
at all.

c14.indd 357 30-01-2014 20:18:36

358 ❘ CHAPTER 14 MeMory ManageMent and Pointers

UnsAFE CodE
As you have just seen, C# is very good at hiding much of the basic memory management from the developer,
thanks to the garbage collector and the use of references. However, sometimes you will want direct access to
memory. For example, you might want to access a function in an external (non-.NET) DLL that requires a
pointer to be passed as a parameter (as many Windows API functions do), or possibly for performance rea-
sons. This section examines the C# facilities that provide direct access to the content of memory.

Accessing Memory directly with Pointers
Although we are introducing pointers as if they were a new topic, in reality pointers are not new at all.
You have been using references freely in your code, and a reference is simply a type-safe pointer. You have
already seen how variables that represent objects and arrays actually store the memory address of where the
corresponding data (the referent) is stored. A pointer is simply a variable that stores the address of some-
thing else in the same way as a reference. The difference is that C# does not allow you direct access to the
address contained in a reference variable. With a reference, the variable is treated syntactically as if it stores
the actual content of the referent.

C# references are designed to make the language simpler to use and to prevent you from inadvertently doing
something that corrupts the contents of memory. With a pointer, however, the actual memory address is
available to you. This gives you a lot of power to perform new kinds of operations. For example, you can
add 4 bytes to the address in order to examine or even modify whatever data happens to be stored 4 bytes
further in memory.

There are two main reasons for using pointers:

➤➤ Backward compatibility — Despite all the facilities provided by the .NET runtime, it is still possible to
call native Windows API functions, and for some operations this may be the only way to accomplish
your task. These API functions are generally written in C++ or # and often require pointers as param-
eters. However, in many cases it is possible to write the DllImport declaration in a way that avoids
use of pointers — for example, by using the System.IntPtr class.

➤➤ Performance — On those occasions when speed is of the utmost importance, pointers can provide a
route to optimized performance. If you know what you are doing, you can ensure that data is accessed
or manipulated in the most efficient way. However, be aware that more often than not, there are
other areas of your code where you can likely make the necessary performance improvements without
resorting to using pointers. Try using a code profiler to look for the bottlenecks in your code — one is
included with Visual Studio.

Low-level memory access has a price. The syntax for using pointers is more complex than that for reference
types, and pointers are unquestionably more difficult to use correctly. You need good programming skills
and an excellent ability to think carefully and logically about what your code is doing to use pointers suc-
cessfully. Otherwise, it is very easy to introduce subtle, difficult-to-find bugs into your program when using
pointers. For example, it is easy to overwrite other variables, cause stack overflows, access areas of memory
that don’t store any variables, or even overwrite information about your code that is needed by the .NET
runtime, thereby crashing your program.

In addition, if you use pointers your code must be granted a high level of trust by the runtime’s code access
security mechanism or it will not be allowed to execute. Under the default code access security policy, this is
only possible if your code is running on the local machine. If your code must be run from a remote location,
such as the Internet, users must grant your code additional permissions for it to work. Unless the users trust
you and your code, they are unlikely to grant these permissions. Code access security is discussed in more
detail in Chapter 22, “Security.”

Despite these issues, pointers remain a very powerful and flexible tool in the writing of efficient code.

c14.indd 358 30-01-2014 20:18:37

Unsafe Code ❘ 359

WARnIng We strongly advise against using pointers unnecessarily because your code
will not only be harder to write and debug, but it will also fail the memory type safety
checks imposed by the CLR.

Writing Unsafe Code with the unsafe Keyword
As a result of the risks associated with pointers, C# allows the use of pointers only in blocks of code that
you have specifically marked for this purpose. The keyword to do this is unsafe. You can mark an indi-
vidual method as being unsafe like this:

unsafe int GetSomeNumber()
{
 // code that can use pointers
}

Any method can be marked as unsafe, regardless of what other modifiers have been applied to it (for
example, static methods or virtual methods). In the case of methods, the unsafe modifier applies to
the method’s parameters, allowing you to use pointers as parameters. You can also mark an entire class or
struct as unsafe, which means that all its members are assumed unsafe:

unsafe class MyClass
{
 // any method in this class can now use pointers
}

Similarly, you can mark a member as unsafe:

class MyClass
{
 unsafe int* pX; // declaration of a pointer field in a class
}

Or you can mark a block of code within a method as unsafe:

void MyMethod()
{
 // code that doesn't use pointers
 unsafe
 {
 // unsafe code that uses pointers here
 }
 // more 'safe' code that doesn't use pointers
}

Note, however, that you cannot mark a local variable by itself as unsafe:

int MyMethod()
{
 unsafe int *pX; // WRONG
}

If you want to use an unsafe local variable, you need to declare and use it inside a method or block that is
unsafe. There is one more step before you can use pointers. The C# compiler rejects unsafe code unless you
tell it that your code includes unsafe blocks. The flag to do this is unsafe. Hence, to compile a file named
MySource.cs that contains unsafe blocks (assuming no other compiler options), the command is,

csc /unsafe MySource.cs

or:

csc -unsafe MySource.cs

c14.indd 359 30-01-2014 20:18:37

360 ❘ CHAPTER 14 MeMory ManageMent and Pointers

noTE If you are using Visual Studio 2005, 2008, 2010, 2012, or 2013 you will
also find the option to compile unsafe code in the Build tab of the project properties
window.

Pointer Syntax
After you have marked a block of code as unsafe, you can declare a pointer using the following syntax:

int* pWidth, pHeight;
double* pResult;
byte*[] pFlags;

This code declares four variables: pWidth and pHeight are pointers to integers, pResult is a pointer to a
double, and pFlags is an array of pointers to bytes. It is common practice to use the prefix p in front of
names of pointer variables to indicate that they are pointers. When used in a variable declaration, the sym-
bol * indicates that you are declaring a pointer (that is, something that stores the address of a variable of the
specified type).

noTE C++ developers should be aware of the syntax difference between C++ and C#.
The C# statement int* pX, pY; corresponds to the C++ statement int *pX, *pY;.
In C#, the * symbol is associated with the type, rather than the variable name.

When you have declared variables of pointer types, you can use them in the same way as normal variables,
but first you need to learn two more operators:

➤➤ & means take the address of, and converts a value data type to a pointer — for example int to *int.
This operator is known as the address operator.

➤➤ * means get the content of this address, and converts a pointer to a value data type — for example,
*float to float. This operator is known as the indirection operator (or the de-reference operator).

You can see from these definitions that & and * have opposite effects.

noTE You might be wondering how it is possible to use the symbols & and * in this
manner because these symbols also refer to the operators of bitwise AND (&) and multi-
plication (*). Actually, it is always possible for both you and the compiler to know what
is meant in each case because with the pointer meanings, these symbols always appear
as unary operators — they act on only one variable and appear in front of that variable
in your code. By contrast, bitwise AND and multiplication are binary operators — they
require two operands.

The following code shows examples of how to use these operators:

int x = 10;
int* pX, pY;
pX = &x;
pY = pX;
*pY = 20;

You start by declaring an integer, x, with the value 10 followed by two pointers to integers, pX and pY. You
then set pX to point to x (that is, you set the content of pX to the address of x). Then you assign the value of
pX to pY, so that pY also points to x. Finally, in the statement *pY = 20, you assign the value 20 as the con-
tents of the location pointed to by pY — in effect changing x to 20 because pY happens to point to x. Note
that there is no particular connection between the variables pY and x. It is just that at the present time, pY
happens to point to the memory location at which x is held.

c14.indd 360 30-01-2014 20:18:37

Unsafe Code ❘ 361

To get a better understanding of what is going on, consider that the integer x is stored at memory loca-
tions 0x12F8C4 through 0x12F8C7 (1243332 to 1243335 in decimal) on the stack (there are four locations
because an int occupies 4 bytes). Because the stack allocates memory downward, this means that the vari-
ables pX will be stored at locations 0x12F8C0 to 0x12F8C3, and pY will end up at locations 0x12F8BC to
0x12F8BF. Note that pX and pY also occupy 4 bytes each. That is not because an int occupies 4 bytes, but
because on a 32-bit processor you need 4 bytes to store an address. With these addresses, after executing the
previous code, the stack will look like Figure 14-5.

noTE Although this process is illustrated with integers, which are stored consecutively
on the stack on a 32-bit processor, this does not happen for all data types. The reason
is because 32-bit processors work best when retrieving data from memory in 4-byte
chunks. Memory on such machines tends to be divided into 4-byte blocks, and each
block is sometimes known under Windows as a DWORD because this was the name
of a 32-bit unsigned int in pre-.NET days. It is most efficient to grab DWORDs from
memory — storing data across DWORD boundaries normally results in a hardware
performance hit. For this reason, the .NET runtime normally pads out data types so
that the memory they occupy is a multiple of 4. For example, a short occupies 2 bytes,
but if a short is placed on the stack, the stack pointer will still be decremented by 4, not
2, so the next variable to go on the stack will still start at a DWORD boundary.

You can declare a pointer to any value type (that is, any of the predefined types uint, int, byte, and so on,
or to a struct). However, it is not possible to declare a pointer to a class or an array; this is because doing
so could cause problems for the garbage collector. To work properly, the garbage collector needs to know
exactly what class instances have been created on the heap, and where they are; but if your code started
manipulating classes using pointers, you could very easily corrupt the information on the heap concerning
classes that the .NET runtime maintains for the garbage collector. In this context, any data type that the
garbage collector can access is known as a managed type. Pointers can only be declared as unmanaged types
because the garbage collector cannot deal with them.

Casting Pointers to Integer Types
Because a pointer really stores an integer that represents an address, you won’t be surprised to know that
the address in any pointer can be converted to or from any integer type. Pointer-to-integer-type conversions
must be explicit. Implicit conversions are not available for
such conversions. For example, it is perfectly legitimate to
write the following:

int x = 10;
int* pX, pY;
pX = &x;
pY = pX;
*pY = 20;
uint y = (uint)pX;
int* pD = (int*)y;

The address held in the pointer pX is cast to a uint and
stored in the variable y. You have then cast y back to an
int* and stored it in the new variable pD. Hence, now pD also points to the value of x.

The primary reason for casting a pointer value to an integer type is to display it. The Console.Write and
Console.WriteLine methods do not have any overloads that can take pointers, but they will accept and
display pointer values that have been cast to integer types:

Console.WriteLine("Address is " + pX); // wrong -- will give a
 // compilation error
Console.WriteLine("Address is " + (uint)pX); // OK

x=20 (=0x14)

pX=0x12F8C4

pY=012F8C40x12F8BC-0x12F8BF

0x12F8C0-0x12F8C3

0x12F8C4-0x12F8C7

FIgURE 14-5

c14.indd 361 30-01-2014 20:18:39

362 ❘ CHAPTER 14 MeMory ManageMent and Pointers

You can cast a pointer to any of the integer types. However, because an address occupies 4 bytes on 32-bit
systems, casting a pointer to anything other than a uint, long, or ulong is almost certain to lead to over-
flow errors. (An int causes problems because its range is from roughly –2 billion to 2 billion, whereas
an address runs from zero to about 4 billion.) When C# is released for 64-bit processors, an address will
occupy 8 bytes. Hence, on such systems, casting a pointer to anything other than ulong is likely to lead to
overflow errors.

It is also important to be aware that the checked keyword does not apply to conversions involving pointers.
For such conversions, exceptions will not be raised when overflows occur, even in a checked context. The
.NET runtime assumes that if you are using pointers, you know what you are doing and are not worried
about possible overflows.

Casting Between Pointer Types
You can also explicitly convert between pointers pointing to different types. For example, the following is
perfectly legal code:

byte aByte = 8;
byte* pByte= &aByte;
double* pDouble = (double*)pByte;

However, if you try something like this, be careful. In this example, if you look at the double value pointed
to by pDouble, you will actually be looking up some memory that contains a byte (aByte), combined with
some other memory, and treating it as if this area of memory contained a double, which will not give you
a meaningful value. However, you might want to convert between types to implement the equivalent of a
C union, or you might want to cast pointers from other types into pointers to sbyte to examine individual
bytes of memory.

void Pointers
If you want to maintain a pointer but not specify to what type of data it points, you can declare it as a
pointer to a void:

int* pointerToInt;
void* pointerToVoid;
pointerToVoid = (void*)pointerToInt;

The main use of this is if you need to call an API function that requires void* parameters. Within the C#
language, there isn’t a great deal that you can do using void pointers. In particular, the compiler will flag an
error if you attempt to de-reference a void pointer using the * operator.

Pointer Arithmetic
It is possible to add or subtract integers to and from pointers. However, the compiler is quite clever about
how it arranges this. For example, suppose that you have a pointer to an int and you try to add 1 to its
value. The compiler will assume that you actually mean you want to look at the memory location following
the int, and hence it will increase the value by 4 bytes — the size of an int. If it is a pointer to a double,
adding 1 will actually increase the value of the pointer by 8 bytes, the size of a double. Only if the pointer
points to a byte or sbyte (1 byte each), will adding 1 to the value of the pointer actually change its
value by 1.

You can use the operators +, -, +=, -=, ++, and -- with pointers, with the variable on the right side of these
operators being a long or ulong.

noTE It is not permitted to carry out arithmetic operations on void pointers.

c14.indd 362 30-01-2014 20:18:39

Unsafe Code ❘ 363

For example, assume the following definitions:

uint u = 3;
byte b = 8;
double d = 10.0;
uint* pUint= &u; // size of a uint is 4
byte* pByte = &b; // size of a byte is 1
double* pDouble = &d; // size of a double is 8

Next, assume the addresses to which these pointers point are as follows:

➤➤ pUint: 1243332
➤➤ pByte: 1243328
➤➤ pDouble: 1243320

Then execute this code:

++pUint; // adds (1*4) = 4 bytes to pUint
pByte -= 3; // subtracts (3*1) = 3 bytes from pByte
double* pDouble2 = pDouble + 4; // pDouble2 = pDouble + 32 bytes (4*8 bytes)

The pointers now contain this:

➤➤ pUint: 1243336
➤➤ pByte: 1243325
➤➤ pDouble2: 1243352

noTE The general rule is that adding a number X to a pointer to type T with value P
gives the result P + X*(sizeof(T)). If successive values of a given type are stored in
successive memory locations, pointer addition works very well, allowing you to move
pointers between memory locations. If you are dealing with types such as byte or
char, though, with sizes not in multiples of 4, successive values will not, by default, be
stored in successive memory locations.

You can also subtract one pointer from another pointer, if both pointers point to the same data type. In this
case, the result is a long whose value is given by the difference between the pointer values divided by the
size of the type that they represent:

double* pD1 = (double*)1243324; // note that it is perfectly valid to
 // initialize a pointer like this.
double* pD2 = (double*)1243300;
long L = pD1-pD2; // gives the result 3 (=24/sizeof(double))

The sizeof Operator
This section has been referring to the size of various data types. If you need to use the size of a type in your
code, you can use the sizeof operator, which takes the name of a data type as a parameter and returns the
number of bytes occupied by that type, as shown in this example:

int x = sizeof(double);

This will set x to the value 8.

The advantage of using sizeof is that you don’t have to hard-code data type sizes in your code, making
your code more portable. For the predefined data types, sizeof returns the following values:

sizeof(sbyte) = 1; sizeof(byte) = 1;
sizeof(short) = 2; sizeof(ushort) = 2;
sizeof(int) = 4; sizeof(uint) = 4;
sizeof(long) = 8; sizeof(ulong) = 8;
sizeof(char) = 2; sizeof(float) = 4;
sizeof(double) = 8; sizeof(bool) = 1;

c14.indd 363 30-01-2014 20:18:39

364 ❘ CHAPTER 14 MeMory ManageMent and Pointers

You can also use sizeof for structs that you define yourself, although in that case, the result depends on
what fields are in the struct. You cannot use sizeof for classes.

Pointers to Structs: The Pointer Member Access Operator
Pointers to structs work in exactly the same way as pointers to the predefined value types. There is, however,
one condition — the struct must not contain any reference types. This is due to the restriction mentioned
earlier that pointers cannot point to any reference types. To avoid this, the compiler will flag an error if you
create a pointer to any struct that contains any reference types.

Suppose that you had a struct defined like this:

struct MyStruct
{
 public long X;
 public float F;
}

You could define a pointer to it as follows:

MyStruct* pStruct;

Then you could initialize it like this:

MyStruct Struct = new MyStruct();
pStruct = &Struct;

It is also possible to access member values of a struct through the pointer:

(*pStruct).X = 4;
(*pStruct).F = 3.4f;

However, this syntax is a bit complex. For this reason, C# defines another operator that enables you to
access members of structs through pointers using a simpler syntax. It is known as the pointer member
access operator, and the symbol is a dash followed by a greater-than sign, so it looks like an arrow: ->.

noTE C++ developers will recognize the pointer member access operator because C++
uses the same symbol for the same purpose.

Using the pointer member access operator, the previous code can be rewritten like this:

pStruct->X = 4;
pStruct->F = 3.4f;

You can also directly set up pointers of the appropriate type to point to fields within a struct,

long* pL = &(Struct.X);
float* pF = &(Struct.F);

or:

long* pL = &(pStruct->X);
float* pF = &(pStruct->F);

Pointers to Class Members
As indicated earlier, it is not possible to create pointers to classes. That is because the garbage collector does
not maintain any information about pointers, only about references, so creating pointers to classes could
cause garbage collection to not work properly.

However, most classes do contain value type members, and you might want to create pointers to them. This
is possible but requires a special syntax. For example, suppose that you rewrite the struct from the previous
example as a class:

c14.indd 364 30-01-2014 20:18:39

Unsafe Code ❘ 365

class MyClass
{
 public long X;
 public float F;
}

Then you might want to create pointers to its fields, X and F, in the same way as you did earlier.
Unfortunately, doing so will produce a compilation error:

MyClass myObject = new MyClass();
long* pL = &(myObject.X); // wrong -- compilation error
float* pF = &(myObject.F); // wrong -- compilation error

Although X and F are unmanaged types, they are embedded in an object, which sits on the heap. During gar-
bage collection, the garbage collector might move MyObject to a new location, which would leave pL and pF
pointing to the wrong memory addresses. Because of this, the compiler will not let you assign addresses of
members of managed types to pointers in this manner.

The solution is to use the fixed keyword, which tells the garbage collector that there may be pointers ref-
erencing members of certain objects, so those objects must not be moved. The syntax for using fixed looks
like this if you just want to declare one pointer:

MyClass myObject = new MyClass();
fixed (long* pObject = &(myObject.X))
{
 // do something
}

You define and initialize the pointer variable in the brackets following the keyword fixed. This pointer
variable (pObject in the example) is scoped to the fixed block identified by the curly braces. As a result,
the garbage collector knows not to move the myObject object while the code inside the fixed block is
executing.

If you want to declare more than one pointer, you can place multiple fixed statements before the same code
block:

MyClass myObject = new MyClass();
fixed (long* pX = &(myObject.X))
fixed (float* pF = &(myObject.F))
{
 // do something
}

You can nest entire fixed blocks if you want to fix several pointers for different periods:

MyClass myObject = new MyClass();
fixed (long* pX = &(myObject.X))
{
 // do something with pX
 fixed (float* pF = &(myObject.F))
 {
 // do something else with pF
 }
}

You can also initialize several variables within the same fixed block, if they are of the same type:

MyClass myObject = new MyClass();
MyClass myObject2 = new MyClass();
fixed (long* pX = &(myObject.X), pX2 = &(myObject2.X))
{
 // etc.
}

In all these cases, it is immaterial whether the various pointers you are declaring point to fields in the same
or different objects or to static fields not associated with any class instance.

c14.indd 365 30-01-2014 20:18:39

366 ❘ CHAPTER 14 MeMory ManageMent and Pointers

Pointer Example: PointerPlayground
This section presents an example that uses pointers. The following code is an example named
PointerPlayground. It does some simple pointer manipulation and displays the results, enabling you to see
what is happening in memory and where variables are stored:

using System;

namespace PointerPlayground
{
 class MainEntryPoint
 {
 static unsafe void Main()
 {
 int x=10;
 short y = -1;
 byte y2 = 4;
 double z = 1.5;
 int* pX = &x;
 short* pY = &y;
 double* pZ = &z;

 Console.WriteLine(
 "Address of x is 0x{0:X}, size is {1}, value is {2}",
 (uint)&x, sizeof(int), x);
 Console.WriteLine(
 "Address of y is 0x{0:X}, size is {1}, value is {2}",
 (uint)&y, sizeof(short), y);
 Console.WriteLine(
 "Address of y2 is 0x{0:X}, size is {1}, value is {2}",
 (uint)&y2, sizeof(byte), y2);
 Console.WriteLine(
 "Address of z is 0x{0:X}, size is {1}, value is {2}",
 (uint)&z, sizeof(double), z);
 Console.WriteLine(
 "Address of pX=&x is 0x{0:X}, size is {1}, value is 0x{2:X}",
 (uint)&pX, sizeof(int*), (uint)pX);
 Console.WriteLine(
 "Address of pY=&y is 0x{0:X}, size is {1}, value is 0x{2:X}",
 (uint)&pY, sizeof(short*), (uint)pY);
 Console.WriteLine(
 "Address of pZ=&z is 0x{0:X}, size is {1}, value is 0x{2:X}",
 (uint)&pZ, sizeof(double*), (uint)pZ);

 *pX = 20;
 Console.WriteLine("After setting *pX, x = {0}", x);
 Console.WriteLine("*pX = {0}", *pX);

 pZ = (double*)pX;
 Console.WriteLine("x treated as a double = {0}", *pZ);

 Console.ReadLine();
 }
 }
}

This code declares four value variables:

➤➤ An int x
➤➤ A short y
➤➤ A byte y2
➤➤ A double z

c14.indd 366 30-01-2014 20:18:40

Unsafe Code ❘ 367

It also declares pointers to three of these values: pX, pY, and pZ.

Next, you display the value of these variables as well as their size and address. Note that in taking the
address of pX, pY, and pZ, you are effectively looking at a pointer to a pointer — an address of an address
of a value. Also, in accordance with the usual practice when displaying addresses, you have used the {0:X}
format specifier in the Console.WriteLine commands to ensure that memory addresses are displayed in
hexadecimal format.

Finally, you use the pointer pX to change the value of x to 20 and do some pointer casting to see what hap-
pens if you try to treat the content of x as if it were a double.

Compiling and running this code results in the following output. This screen output demonstrates the effects
of attempting to compile both with and without the /unsafe flag:

csc PointerPlayground.cs
Microsoft (R) Visual C# Compiler version 4.0.30319.17379
for Microsoft(R) .NET Framework 4.5
Copyright (C) Microsoft Corporation. All rights reserved.

PointerPlayground.cs(7,26): error CS0227: Unsafe code may only appear if
 compiling with /unsafe

csc /unsafe PointerPlayground.cs
Microsoft (R) Visual C# Compiler version 4.0.30319.17379
for Microsoft(R) .NET Framework 4.5
Copyright (C) Microsoft Corporation. All rights reserved.

PointerPlayground
Address of x is 0x12F4B0, size is 4, value is 10
Address of y is 0x12F4AC, size is 2, value is -1
Address of y2 is 0x12F4A8, size is 1, value is 4
Address of z is 0x12F4A0, size is 8, value is 1.5
Address of pX=&x is 0x12F49C, size is 4, value is 0x12F4B0
Address of pY=&y is 0x12F498, size is 4, value is 0x12F4AC
Address of pZ=&z is 0x12F494, size is 4, value is 0x12F4A0
After setting *pX, x = 20
*pX = 20
x treated as a double = 2.86965129997082E-308

Checking through these results confirms the description of how the stack operates presented in the
“Memory Management Under the Hood” section earlier in this chapter. It allocates successive variables
moving downward in memory. Notice how it also confirms that blocks of memory on the stack are always
allocated in multiples of 4 bytes. For example, y is a short (of size 2), and has the (decimal) address
1242284, indicating that the memory locations reserved for it are locations 1242284 through 1242287. If
the .NET runtime had been strictly packing up variables next to each other, Y would have occupied just two
locations, 1242284 and 1242285.

The next example illustrates pointer arithmetic, as well as pointers to structs and class members. This exam-
ple is named PointerPlayground2. To start, you define a struct named CurrencyStruct, which represents
a currency value as dollars and cents. You also define an equivalent class named CurrencyClass:

internal struct CurrencyStruct
{
 public long Dollars;
 public byte Cents;

 public override string ToString()
 {
 return "$" + Dollars + "." + Cents;
 }
}

internal class CurrencyClass

c14.indd 367 30-01-2014 20:18:40

368 ❘ CHAPTER 14 MeMory ManageMent and Pointers

{
 public long Dollars;
 public byte Cents;

 public override string ToString()
 {
 return "$" + Dollars + "." + Cents;
 }
}

Now that you have your struct and class defined, you can apply some pointers to them. Following is the
code for the new example. Because the code is fairly long, we will go through it in detail. You start by
displaying the size of CurrencyStruct, creating a couple of CurrencyStruct instances and creating
some CurrencyStruct pointers. You use the pAmount pointer to initialize the members of the amount1
CurrencyStruct and then display the addresses of your variables:

public static unsafe void Main()
{
 Console.WriteLine(
 "Size of CurrencyStruct struct is " + sizeof(CurrencyStruct));
 CurrencyStruct amount1, amount2;
 CurrencyStruct* pAmount = &amount1;
 long* pDollars = &(pAmount->Dollars);
 byte* pCents = &(pAmount->Cents);

 Console.WriteLine("Address of amount1 is 0x{0:X}", (uint)&amount1);
 Console.WriteLine("Address of amount2 is 0x{0:X}", (uint)&amount2);
 Console.WriteLine("Address of pAmount is 0x{0:X}", (uint)&pAmount);
 Console.WriteLine("Address of pDollars is 0x{0:X}", (uint)&pDollars);
 Console.WriteLine("Address of pCents is 0x{0:X}", (uint)&pCents);
 pAmount->Dollars = 20;
 *pCents = 50;
 Console.WriteLine("amount1 contains " + amount1);

Now you do some pointer manipulation that relies on your knowledge of how the stack works. Due to the
order in which the variables were declared, you know that amount2 will be stored at an address immediately
below amount1. The sizeof(CurrencyStruct) operator returns 16 (as demonstrated in the screen output
coming up), so CurrencyStruct occupies a multiple of 4 bytes. Therefore, after you decrement your cur-
rency pointer, it points to amount2:

 --pAmount; // this should get it to point to amount2
 Console.WriteLine("amount2 has address 0x{0:X} and contains {1}",
 (uint)pAmount, *pAmount);

Notice that when you call Console.WriteLine, you display the contents of amount2, but you haven’t yet
initialized it. What is displayed will be random garbage — whatever happened to be stored at that location
in memory before execution of the example. There is an important point here: normally, the C# compiler
would prevent you from using an uninitialized variable, but when you start using pointers, it is very easy to
circumvent many of the usual compilation checks. In this case, you have done so because the compiler has
no way of knowing that you are actually displaying the contents of amount2. Only you know that, because
your knowledge of the stack means that you can tell what the effect of decrementing pAmount will be. Once
you start doing pointer arithmetic, you will find that you can access all sorts of variables and memory loca-
tions that the compiler would usually stop you from accessing, hence the description of pointer arithmetic as
unsafe.

Next, you do some pointer arithmetic on your pCents pointer. pCents currently points to amount1.Cents,
but the aim here is to get it to point to amount2.Cents, again using pointer operations instead of directly
telling the compiler that’s what you want to do. To do this, you need to decrement the address pCents con-
tains by sizeof(Currency):

c14.indd 368 30-01-2014 20:18:40

Unsafe Code ❘ 369

 // do some clever casting to get pCents to point to cents
 // inside amount2
 CurrencyStruct* pTempCurrency = (CurrencyStruct*)pCents;
 pCents = (byte*) (--pTempCurrency);
 Console.WriteLine("Address of pCents is now 0x{0:X}", (uint)&pCents);

Finally, you use the fixed keyword to create some pointers that point to the fields in a class instance and use
these pointers to set the value of this instance. Notice that this is also the first time that you have been able
to look at the address of an item stored on the heap, rather than the stack:

 Console.WriteLine("\nNow with classes");
 // now try it out with classes
 CurrencyClass amount3 = new CurrencyClass();

 fixed(long* pDollars2 = &(amount3.Dollars))
 fixed(byte* pCents2 = &(amount3.Cents))
 {
 Console.WriteLine(
 "amount3.Dollars has address 0x{0:X}", (uint)pDollars2);
 Console.WriteLine(
 "amount3.Cents has address 0x{0:X}", (uint) pCents2);
 *pDollars2 = -100;
 Console.WriteLine("amount3 contains " + amount3);
 }

Compiling and running this code gives output similar to this:

csc /unsafe PointerPlayground2.cs
Microsoft (R) Visual C# 2010 Compiler version 4.0.21006.1
Copyright (C) Microsoft Corporation. All rights reserved.

PointerPlayground2
Size of CurrencyStruct struct is 16
Address of amount1 is 0x12F4A4
Address of amount2 is 0x12F494
Address of pAmount is 0x12F490
Address of pDollars is 0x12F48C
Address of pCents is 0x12F488
amount1 contains $20.50
amount2 has address 0x12F494 and contains $0.0
Address of pCents is now 0x12F488

Now with classes
amount3.Dollars has address 0xA64414
amount3.Cents has address 0xA6441C
amount3 contains $-100.0

Notice in this output the uninitialized value of amount2 that is displayed, and notice that the size of the
CurrencyStruct struct is 16 — somewhat larger than you would expect given the size of its fields (a long
and a byte should total 9 bytes).

Using Pointers to optimize Performance
Until now, all the examples have been designed to demonstrate the various things that you can do with
pointers. We have played around with memory in a way that is probably interesting only to people who like
to know what’s happening under the hood, but that doesn’t really help you write better code. Now you’re
going to apply your understanding of pointers and see an example of how judicious use of pointers has a
significant performance benefit.

Creating Stack-based Arrays
This section explores one of the main areas in which pointers can be useful: creating high-performance, low-
overhead arrays on the stack. As discussed in Chapter 2, “Core C#,” C# includes rich support for handling

c14.indd 369 30-01-2014 20:18:40

370 ❘ CHAPTER 14 MeMory ManageMent and Pointers

arrays. Although C# makes it very easy to use both 1-dimensional and rectangular or jagged multidimen-
sional arrays, it suffers from the disadvantage that these arrays are actually objects; they are instances of
System.Array. This means that the arrays are stored on the heap, with all the overhead that this involves.
There may be occasions when you need to create a short-lived, high-performance array and don’t want the
overhead of reference objects. You can do this by using pointers, although as you see in this section, this is
easy only for 1-dimensional arrays.

To create a high-performance array, you need to use a new keyword: stackalloc. The stackalloc
command instructs the .NET runtime to allocate an amount of memory on the stack. When you
call stackalloc, you need to supply it with two pieces of information:

➤➤ The type of data you want to store
➤➤ The number of these data items you need to store

For example, to allocate enough memory to store 10 decimal data items, you can write the following:

decimal* pDecimals = stackalloc decimal[10];

This command simply allocates the stack memory; it does not attempt to initialize the memory to any
default value. This is fine for the purpose of this example because you are creating a high-performance
array, and initializing values unnecessarily would hurt performance.

Similarly, to store 20 double data items, you write this:

double* pDoubles = stackalloc double[20];

Although this line of code specifies the number of variables to store as a constant, this can equally be a
quantity evaluated at runtime. Therefore, you can write the previous example like this:

int size;
size = 20; // or some other value calculated at runtime
double* pDoubles = stackalloc double[size];

You can see from these code snippets that the syntax of stackalloc is slightly unusual. It is followed imme-
diately by the name of the data type you want to store (which must be a value type) and then by the number
of items you need space for, in square brackets. The number of bytes allocated will be this number multi-
plied by sizeof(data type). The use of square brackets in the preceding code sample suggests an array,
which is not too surprising. If you have allocated space for 20 doubles, then what you have is an array of
20 doubles. The simplest type of array that you can have is a block of memory that stores one element after
another (see Figure 14-6).

This diagram also shows the pointer returned by stackalloc, which is always a pointer to the allocated
data type that points to the top of the newly allocated memory block. To use the memory block, you simply
de-reference the returned pointer. For example, to allocate space for 20 doubles and then set the first ele-
ment (element 0 of the array) to the value 3.0, write this:

double* pDoubles = stackalloc double[20];
*pDoubles = 3.0;

To access the next element of the array, you use pointer arithmetic. As described earlier, if you add 1 to
a pointer, its value will be increased by the size of whatever data type it points to. In this case, that’s just
enough to take you to the next free memory location in the block that you have allocated. Therefore, you
can set the second element of the array (element number 1) to the value 8.4:

double* pDoubles = stackalloc double [20];
*pDoubles = 3.0;
*(pDoubles+1) = 8.4;

By the same reasoning, you can access the element with index X of the array with the expression
*(pDoubles+X).

Effectively, you have a means by which you can access elements of your array, but for general-purpose use,
this syntax is too complex. Fortunately, C# defines an alternative syntax using square brackets. C# gives a

c14.indd 370 30-01-2014 20:18:40

Unsafe Code ❘ 371

very precise meaning to square brackets when they are applied to pointers; if the variable p is any pointer
type and X is an integer, then the expression p[X] is always interpreted by the compiler as meaning *(p+X).
This is true for all pointers, not only those initialized using stackalloc. With this shorthand notation, you
now have a very convenient syntax for accessing your array. In fact, it means that you have exactly the same
syntax for accessing 1-dimensional, stack-based arrays as you do for accessing heap-based arrays that are
represented by the System.Array class:

double* pDoubles = stackalloc double [20];
pDoubles[0] = 3.0; // pDoubles[0] is the same as *pDoubles
pDoubles[1] = 8.4; // pDoubles[1] is the same as *(pDoubles+1)

noTE This idea of applying array syntax to pointers is not new. It has been a fun-
damental part of both the C and the C++ languages ever since those languages were
invented. Indeed, C++ developers will recognize the stack-based arrays they can obtain
using stackalloc as being essentially identical to classic stack-based C and C++
arrays. This syntax and the way it links pointers and arrays is one reason why the C
language became popular in the 1970s, and the main reason why the use of pointers
became such a popular programming technique in C and C++.

Although your high-performance array can be accessed
in the same way as a normal C# array, a word of cau-
tion is in order. The following code in C# raises an
exception:

double[] myDoubleArray = new double [20];
myDoubleArray[50] = 3.0;

The exception occurs because you are trying to access
an array using an index that is out of bounds; the
index is 50, whereas the maximum allowed value is
19. However, if you declare the equivalent array using
stackalloc, there is no object wrapped around the
array that can perform bounds checking. Hence, the
following code will not raise an exception:

double* pDoubles = stackalloc double [20];
pDoubles[50] = 3.0;

In this code, you allocate enough memory to hold 20
doubles. Then you set sizeof(double) memory loca-
tions, starting at the location given by the start of this
memory + 50*sizeof(double) to hold the double value
3.0. Unfortunately, that memory location is way outside the area of memory that you have allocated for the
doubles. There is no knowing what data might be stored at that address. At best, you may have used some
currently unused memory, but it is equally possible that you may have just overwritten some locations in
the stack that were being used to store other variables or even the return address from the method currently
being executed. Again, you see that the high performance to be gained from pointers comes at a cost; you
need to be certain you know what you are doing, or you will get some very strange runtime bugs.

QuickArray Example
Our discussion of pointers ends with a stackalloc example called QuickArray. In this example, the
program simply asks users how many elements they want to be allocated for an array. The code then uses

Pointer
returned by
stackalloc

Successive memory
allocations on the

stack

Element 0 of array

Element 1 of array

Element 2 of array

etc.

FIgURE 14-6

c14.indd 371 30-01-2014 20:18:42

372 ❘ CHAPTER 14 MeMory ManageMent and Pointers

stackalloc to allocate an array of longs that size. The elements of this array are populated with the
squares of the integers starting with 0 and the results are displayed on the console:

using System;

namespace QuickArray
{
 internal class Program
 {
 private static unsafe void Main()
 {
 Console.Write("How big an array do you want? \n> ");
 string userInput = Console.ReadLine();
 uint size = uint.Parse(userInput);

 long* pArray = stackalloc long[(int) size];
 for (int i = 0; i < size; i++)
 {
 pArray[i] = i*i;
 }

 for (int i = 0; i < size; i++)
 {
 Console.WriteLine("Element {0} = {1}", i, *(pArray + i));
 }

 Console.ReadLine();
 }
 }
}

Here is the output from the QuickArray example:

How big an array do you want?
> 15
Element 0 = 0
Element 1 = 1
Element 2 = 4
Element 3 = 9
Element 4 = 16
Element 5 = 25
Element 6 = 36
Element 7 = 49
Element 8 = 64
Element 9 = 81
Element 10 = 100
Element 11 = 121
Element 12 = 144
Element 13 = 169
Element 14 = 196
_

sUMMARy
Remember that in order to become a truly proficient C# programmer, you must have a solid understanding
of how memory allocation and garbage collection work. This chapter described how the CLR manages and
allocates memory on the heap and the stack. It also illustrated how to write classes that free unmanaged
resources correctly, and how to use pointers in C#. These are both advanced topics that are poorly under-
stood and often implemented incorrectly by novice programmers.

This chapter should be treated as a companion to what you learn from Chapter 16 on error handling and
from Chapter 21 about dealing with threading. The next chapter of this book looks at reflection in C#.

c14.indd 372 30-01-2014 20:18:42

Refl ection
WHAT’s iN THis CHAPTER?

➤➤ Using custom attributes
➤➤ Inspecting the metadata at runtime using refl ection
➤➤ Building access points from classes that enable refl ection

WRoX.Com CodE doWNloAds foR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp
on the Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ LookupWhatsNew
➤➤ TypeView
➤➤ VectorClass
➤➤ WhatsNewAttributes

mANiPulATiNg ANd iNsPECTiNg CodE AT RuNTimE
This chapter focuses on custom attributes and refl ection. Custom attributes are mechanisms that
enable you to associate custom metadata with program elements. This metadata is created at
 compile time and embedded in an assembly. Refl ection is a generic term that describes the capabil-
ity to inspect and manipulate program elements at runtime. For example, refl ection allows you to
do the following:

➤➤ Enumerate the members of a type
➤➤ Instantiate a new object
➤➤ Execute the members of an object
➤➤ Find out information about a type
➤➤ Find out information about an assembly
➤➤ Inspect the custom attributes applied to a type
➤➤ Create and compile a new assembly

15

c15.indd 373 30-01-2014 20:19:14

374 ❘ CHAPTER 15 Reflection

This list represents a great deal of functionality and encompasses some of the most powerful and complex
capabilities provided by the .NET Framework class library. Because one chapter does not have the space to
cover all the capabilities of reflection, it focuses on those elements that you are likely to use most frequently.

To demonstrate custom attributes and reflection, in this chapter you first develop an example based on a
company that regularly ships upgrades of its software and wants to have details about these upgrades
documented automatically. In the example, you define custom attributes that indicate the date when
program elements were last modified, and what changes were made. You then use reflection to develop an
application that looks for these attributes in an assembly and can automatically display all the details about
what upgrades have been made to the software since a given date.

Another example in this chapter considers an application that reads from or writes to a database and uses
custom attributes as a way to mark which classes and properties correspond to which database tables and
columns. By reading these attributes from the assembly at runtime, the program can automatically retrieve
or write data to the appropriate location in the database, without requiring specific logic for each table or
column.

CusTom ATTRibuTEs
You have already seen in this book how you can define attributes on various items within your program.
These attributes have been defined by Microsoft as part of the .NET Framework class library, and many of
them receive special support from the C# compiler. This means that for those particular attributes, the
compiler can customize the compilation process in specific ways — for example, laying out a struct in
memory according to the details in the StructLayout attributes.

The .NET Framework also enables you to define your own attributes. Obviously, these attributes won’t have
any effect on the compilation process because the compiler has no intrinsic awareness of them. However,
these attributes will be emitted as metadata in the compiled assembly when they are applied to program
elements.

By itself, this metadata might be useful for documentation purposes, but what makes attributes really
powerful is that by using reflection, your code can read this metadata and use it to make decisions at
runtime. This means that the custom attributes that you define can directly affect how your code runs.
For example, custom attributes can be used to enable declarative code access security checks for custom
permission classes, to associate information with program elements that can then be used by testing tools,
or when developing extensible frameworks that allow the loading of plug-ins or modules.

Writing Custom Attributes
To understand how to write your own custom attributes, it is useful to know what the compiler does when it
encounters an element in your code that has a custom attribute applied to it. To take the database example,
suppose that you have a C# property declaration that looks like this:

[FieldName("SocialSecurityNumber")]
public string SocialSecurityNumber
{
 get {
 // etc.

When the C# compiler recognizes that this property has an attribute applied to it (FieldName), it first
appends the string Attribute to this name, forming the combined name FieldNameAttribute. The compiler
then searches all the namespaces in its search path (those namespaces that have been mentioned in a using
statement) for a class with the specified name. Note that if you mark an item with an attribute whose name
already ends in the string Attribute, the compiler will not add the string to the name a second time; it will
leave the attribute name unchanged. Therefore, the preceding code is equivalent to this:

c15.indd 374 30-01-2014 20:19:15

Custom Attributes ❘ 375

[FieldNameAttribute("SocialSecurityNumber")]
public string SocialSecurityNumber
{
 get {
 // etc.

The compiler expects to find a class with this name, and it expects this class to be derived directly or
indirectly from System.Attribute. The compiler also expects that this class contains information governing
the use of the attribute. In particular, the attribute class needs to specify the following:

➤➤ The types of program elements to which the attribute can be applied (classes, structs, properties,
methods, and so on)

➤➤ Whether it is legal for the attribute to be applied more than once to the same program element
➤➤ Whether the attribute, when applied to a class or interface, is inherited by derived classes and

interfaces
➤➤ The mandatory and optional parameters the attribute takes

If the compiler cannot find a corresponding attribute class, or if it finds one but the way that you have used
that attribute does not match the information in the attribute class, the compiler will raise a compilation
error. For example, if the attribute class indicates that the attribute can be applied only to classes but you
have applied it to a struct definition, a compilation error will occur.

Continuing with the example, assume that you have defined the FieldName attribute like this:

[AttributeUsage(AttributeTargets.Property,
 AllowMultiple=false,
 Inherited=false)]
public class FieldNameAttribute: Attribute
{
 private string name;
 public FieldNameAttribute(string name)
 {
 this.name = name;
 }
}

The following sections discuss each element of this definition.

AttributeUsage Attribute
The first thing to note is that the attribute class itself is marked with an attribute — the System
.AttributeUsage attribute. This is an attribute defined by Microsoft for which the C# compiler
provides special support. (You could argue that AttributeUsage isn’t an attribute at all; it is more like a
meta-attribute, because it applies only to other attributes, not simply to any class.) The primary purpose
of AttributeUsage is to identify the types of program elements to which your custom attribute can be
applied. This information is provided by the first parameter of the AttributeUsage attribute. This
parameter is mandatory, and it is of an enumerated type, AttributeTargets. In the previous example, you
have indicated that the FieldName attribute can be applied only to properties, which is fine, because that
is exactly what you have applied it to in the earlier code fragment. The members of the AttributeTargets
enumeration are as follows:

➤➤ All

➤➤ Assembly

➤➤ Class

➤➤ Constructor

➤➤ Delegate

➤➤ Enum

c15.indd 375 30-01-2014 20:19:15

376 ❘ CHAPTER 15 Reflection

➤➤ Event

➤➤ Field

➤➤ GenericParameter (.NET 2.0 and higher only)
➤➤ Interface

➤➤ Method

➤➤ Module

➤➤ Parameter

➤➤ Property

➤➤ ReturnValue

➤➤ Struct

This list identifies all the program elements to which you can apply attributes. Note that when applying the
attribute to a program element, you place the attribute in square brackets immediately before the element.
However, two values in the preceding list do not correspond to any program element: Assembly and
Module. An attribute can be applied to an assembly or a module as a whole, rather than to an element in
your code; in this case the attribute can be placed anywhere in your source code, but it must be prefixed
with the Assembly or Module keyword:

[assembly:SomeAssemblyAttribute(Parameters)]
[module:SomeAssemblyAttribute(Parameters)]

When indicating the valid target elements of a custom attribute, you can combine these values using the
bitwise OR operator. For example, if you want to indicate that your FieldName attribute can be applied
to both properties and fields, you would use the following:

 [AttributeUsage(AttributeTargets.Property | AttributeTargets.Field,
 AllowMultiple=false,
 Inherited=false)]
 public class FieldNameAttribute: Attribute

You can also use AttributeTargets.All to indicate that your attribute can be applied to all types of
program elements. The AttributeUsage attribute also contains two other parameters, AllowMultiple and
Inherited. These are specified using the syntax of <ParameterName>=<ParameterValue>, instead of
simply specifying the values for these parameters. These parameters are optional — you can omit them.

The AllowMultiple parameter indicates whether an attribute can be applied more than once to the same
item. The fact that it is set to false here indicates that the compiler should raise an error if it sees something
like this:

[FieldName("SocialSecurityNumber")]
[FieldName("NationalInsuranceNumber")]
public string SocialSecurityNumber
{

 // etc.

If the Inherited parameter is set to true, an attribute applied to a class or interface will also automatically
be applied to all derived classes or interfaces. If the attribute is applied to a method or property, it will
automatically apply to any overrides of that method or property, and so on.

Specifying Attribute Parameters
This section demonstrates how you can specify the parameters that your custom attribute takes. When
the compiler encounters a statement such as the following, it examines the parameters passed into the
attribute — which is a string — and looks for a constructor for the attribute that takes exactly those parameters:

c15.indd 376 30-01-2014 20:19:15

Custom Attributes ❘ 377

[FieldName("SocialSecurityNumber")]
public string SocialSecurityNumber
{

 // etc.

If the compiler finds an appropriate constructor, it emits the specified metadata to the assembly. If the compiler
does not find an appropriate constructor, a compilation error occurs. As discussed later in this chapter,
reflection involves reading metadata (attributes) from assemblies and instantiating the attribute classes
they represent. Because of this, the compiler must ensure that an appropriate constructor exists that will
allow the runtime instantiation of the specified attribute.

In the example, you have supplied just one constructor for FieldNameAttribute, and this constructor takes
one string parameter. Therefore, when applying the FieldName attribute to a property, you must supply one
string as a parameter, as shown in the preceding code.

To allow a choice of what types of parameters should be supplied with an attribute, you can provide
different constructor overloads, although normal practice is to supply just one constructor and use properties
to define any other optional parameters, as explained next.

Specifying Optional Attribute Parameters
As demonstrated with the AttributeUsage attribute, an alternative syntax enables optional parameters to
be added to an attribute. This syntax involves specifying the names and values of the optional parameters.
It works through public properties or fields in the attribute class. For example, suppose that you modify
the definition of the SocialSecurityNumber property as follows:

[FieldName("SocialSecurityNumber", Comment="This is the primary key field")]
public string SocialSecurityNumber
{

 // etc.

In this case, the compiler recognizes the <ParameterName>=<ParameterValue> syntax of the second
parameter and does not attempt to match this parameter to a FieldNameAttribute constructor. Instead, it
looks for a public property or field (although public fields are not considered good programming practice,
so normally you will work with properties) of that name that it can use to set the value of this parameter. If
you want the previous code to work, you have to add some code to FieldNameAttribute:

 [AttributeUsage(AttributeTargets.Property,
 AllowMultiple=false,
 Inherited=false)]
 public class FieldNameAttribute: Attribute
 {
 private string comment;
 public string Comment
 {
 get
 {
 return comment;
 }
 set
 {
 comment = value;
 }
 }

 // etc
 }

c15.indd 377 30-01-2014 20:19:15

378 ❘ CHAPTER 15 Reflection

Custom Attribute Example: WhatsNewAttributes
In this section you start developing the example mentioned at the beginning of the chapter. WhatsNewAttributes
provides for an attribute that indicates when a program element was last modified. This is a more ambitious
code example than many of the others in that it consists of three separate assemblies:

➤➤ WhatsNewAttributes — Contains the definitions of the attributes
➤➤ VectorClass — Contains the code to which the attributes have been applied
➤➤ LookUpWhatsNew — Contains the project that displays details about items that have changed

Of these, only the LookUpWhatsNew assembly is a console application of the type that you have used up
until now. The remaining two assemblies are libraries — they each contain class definitions but no program
entry point. For the VectorClass assembly, this means that the entry point and test harness class have been
removed from the VectorAsCollection sample, leaving only the Vector class. These classes are
represented later in this chapter.

Managing three related assemblies by compiling at the command line is tricky. Although the commands
for compiling all these source files are provided separately, you might prefer to edit the code sample (which
you can download from the Wrox web site at www.wrox.com) as a combined Visual Studio solution, as
discussed in Chapter 17, “Visual Studio 2013.” The download includes the required Visual Studio 2013
solution files.

The WhatsNewAttributes Library Assembly
This section starts with the core WhatsNewAttributes assembly. The source code is contained
in the file WhatsNewAttributes.cs, which is located in the WhatsNewAttributes project of the
WhatsNewAttributes solution in the example code for this chapter. The syntax for this is quite simple. At
the command line, you supply the flag target:library to the compiler. To compile WhatsNewAttributes,
type the following:

csc /target:library WhatsNewAttributes.cs

The WhatsNewAttributes.cs file defines two attribute classes, LastModifiedAttribute and Supports
WhatsNewAttribute. You use the attribute LastModifiedAttribute to mark when an item was last
modified. It takes two mandatory parameters (parameters that are passed to the constructor): the date of
the modification and a string containing a description of the changes. One optional parameter named
issues (for which a public property exists) can be used to describe any outstanding issues for the item.

In practice, you would probably want this attribute to apply to anything. To keep the code simple, its usage
is limited here to classes and methods. You will allow it to be applied more than once to the same item
(AllowMultiple=true) because an item might be modified more than once, and each modification has to be
marked with a separate attribute instance.

SupportsWhatsNew is a smaller class representing an attribute that doesn’t take any parameters. The
purpose of this assembly attribute is to mark an assembly for which you are maintaining documentation
via the LastModifiedAttribute. This way, the program that examines this assembly later knows that the
assembly it is reading is one on which you are actually using your automated documentation process. Here is
the complete source code for this part of the example (code file WhatsNewAttributes.cs):

using System;

namespace WhatsNewAttributes
{
 [AttributeUsage(
 AttributeTargets.Class | AttributeTargets.Method,
 AllowMultiple=true, Inherited=false)]
 public class LastModifiedAttribute: Attribute

c15.indd 378 30-01-2014 20:19:15

Custom Attributes ❘ 379

 {
 private readonly DateTime _dateModified;
 private readonly string _changes;

 public LastModifiedAttribute(string dateModified, string changes)
 {
 dateModified = DateTime.Parse(dateModified);
 _changes = changes;
 }

 public DateTime DateModified
 {
 get { return _dateModified; }
 }

 public string Changes
 {
 get { return _changes; }
 }

 public string Issues { get; set; }
 }

 [AttributeUsage(AttributeTargets.Assembly)]
 public class SupportsWhatsNewAttribute: Attribute
 {
 }
}

Based on what has been discussed, this code should be fairly clear. Notice, however, that we have not
bothered to supply set accessors to the Changes and DateModified properties. There is no need for these
accessors because you are requiring these parameters to be set in the constructor as mandatory parameters.
You need the get accessors so that you can read the values of these attributes.

The VectorClass Assembly
To use these attributes, you will be using a modified version of the earlier VectorAsCollection example.
Note that you need to reference the WhatsNewAttributes library that you just created. You also need to
indicate the corresponding namespace with a using statement so the compiler can recognize the attributes:

using System;
using System.Collections;
using System.Text;
using WhatsNewAttributes;

[assembly: SupportsWhatsNew]

This code also adds the line that marks the assembly itself with the SupportsWhatsNew attribute.

Now for the code for the Vector class. You are not making any major changes to this class; you only add a
couple of LastModified attributes to mark the work that you have done on this class in this chapter. Then
Vector is defined as a class instead of a struct to simplify the code (of the next iteration of the example) that
displays the attributes. (In the VectorAsCollection example, Vector is a struct, but its enumerator is a
class. This means that the next iteration of the example would have had to pick out both classes and structs
when looking at the assembly, which would have made the example less straightforward.)

namespace VectorClass
{
 [LastModified("14 Feb 2010", "IEnumerable interface implemented " +
 "So Vector can now be treated as a collection")]

c15.indd 379 30-01-2014 20:19:15

380 ❘ CHAPTER 15 Reflection

 [LastModified("10 Feb 2010", "IFormattable interface implemented " +
 "So Vector now responds to format specifiers N and VE")]
 class Vector: IFormattable, IEnumerable
 {
 public double x, y, z;

 public Vector(double x, double y, double z)
 {
 this.x = x;
 this.y = y;
 this.z = z;
 }

 [LastModified("10 Feb 2010",
 "Method added in order to provide formatting support")]
 public string ToString(string format, IFormatProvider formatProvider)
 {
 if (format == null)
 {
 return ToString();
 }

You also mark the contained VectorEnumerator class as new:

 [LastModified("14 Feb 2010",
 "Class created as part of collection support for Vector")]
 private class VectorEnumerator: IEnumerator
 {

To compile this code from the command line, type the following:

csc /target:library /reference:WhatsNewAttributes.dll VectorClass.cs

That’s as far as you can get with this example for now. You are unable to run anything yet because all you
have are two libraries. After taking a look at reflection in the next section, you will develop the final part of
the example, in which you look up and display these attributes.

usiNg REflECTioN
In this section, you take a closer look at the System.Type class, which enables you to access information
concerning the definition of any data type. You’ll also look at the System.Reflection.Assembly class,
which you can use to access information about an assembly or to load that assembly into your program.
Finally, you will combine the code in this section with the code in the previous section to complete the
WhatsNewAttributes example.

The system.Type Class
So far you have used the Type class only to hold the reference to a type as follows:

Type t = typeof(double);

Although previously referred to as a class, Type is an abstract base class. Whenever you instantiate a Type
object, you are actually instantiating a class derived from Type. Type has one derived class corresponding to
each actual data type, though in general the derived classes simply provide different overloads of the various
Type methods and properties that return the correct data for the corresponding data type. They do not
typically add new methods or properties. In general, there are three common ways to obtain a Type
reference that refers to any given type.

c15.indd 380 30-01-2014 20:19:15

Using Reflection ❘ 381

➤➤ You can use the C# typeof operator as shown in the preceding code. This operator takes the name of
the type (not in quotation marks, however) as a parameter.

➤➤ You can use the GetType method, which all classes inherit from System.Object:

double d = 10;
Type t = d.GetType();

GetType is called against a variable, rather than taking the name of a type. Note, however, that the
Type object returned is still associated with only that data type. It does not contain any information
that relates to that instance of the type. The GetType method can be useful if you have a reference to
an object but you are not sure what class that object is actually an instance of.

➤➤ You can call the static method of the Type class, GetType:

Type t = Type.GetType("System.Double");

Type is really the gateway to much of the reflection functionality. It implements a huge number of methods
and properties — far too many to provide a comprehensive list here. However, the following subsections
should give you a good idea of the kinds of things you can do with the Type class. Note that the available
properties are all read-only; you use Type to find out about the data type — you cannot use it to make any
modifications to the type!

Type Properties
You can divide the properties implemented by Type into three categories. First, a number of properties
retrieve the strings containing various names associated with the class, as shown in the following table:

PRoPERTy RETuRNs

Name The name of the data type

FullName The fully qualified name of the data type (including the namespace name)

Namespace The name of the namespace in which the data type is defined

Second, it is possible to retrieve references to further type objects that represent related classes, as shown in
the following table.

PRoPERTy RETuRNs TyPE REfERENCE CoRREsPoNdiNg To

BaseType The immediate base type of this type

UnderlyingSystemType The type to which this type maps in the .NET runtime (recall that certain .NET
base types actually map to specific predefined types recognized by IL)

A number of Boolean properties indicate whether this type is, for example, a class, an enum, and so
on. These properties include IsAbstract, IsArray, IsClass, IsEnum, IsInterface, IsPointer,
IsPrimitive (one of the predefined primitive data types), IsPublic, IsSealed, and IsValueType. The
following example uses a primitive data type:

Type intType = typeof(int);
Console.WriteLine(intType.IsAbstract); // writes false
Console.WriteLine(intType.IsClass); // writes false
Console.WriteLine(intType.IsEnum); // writes false
Console.WriteLine(intType.IsPrimitive); // writes true
Console.WriteLine(intType.IsValueType); // writes true

c15.indd 381 30-01-2014 20:19:16

382 ❘ CHAPTER 15 Reflection

This example uses the Vector class:

Type vecType = typeof(Vector);
Console.WriteLine(vecType.IsAbstract); // writes false
Console.WriteLine(vecType.IsClass); // writes true
Console.WriteLine(vecType.IsEnum); // writes false
Console.WriteLine(vecType.IsPrimitive); // writes false
Console.WriteLine(vecType.IsValueType); // writes false

Finally, you can also retrieve a reference to the assembly in which the type is defined. This is returned as a
reference to an instance of the System.Reflection.Assembly class, which is examined shortly:

Type t = typeof (Vector);
Assembly contai6ningAssembly = new Assembly(t);

Methods
Most of the methods of System.Type are used to obtain details about the members of the corresponding
data type — the constructors, properties, methods, events, and so on. Quite a large number of methods exist,
but they all follow the same pattern. For example, two methods retrieve details about the methods of the
data type: GetMethod and GetMethods. GetMethod() returns a reference to a System.Reflection
.MethodInfo object, which contains details about a method. GetMethods returns an array of such
references. As the names suggest, the difference is that GetMethods returns details about all the methods,
whereas GetMethod returns details about just one method with a specified parameter list. Both
methods have overloads that take an extra parameter, a BindingFlags enumerated value that indicates
which members should be returned — for example, whether to return public members, instance members,
static members, and so on.

For example, the simplest overload of GetMethods takes no parameters and returns details about all the
public methods of the data type:

Type t = typeof(double);
MethodInfo[] methods = t.GetMethods();
foreach (MethodInfo nextMethod in methods)
{
 // etc.
 }

The member methods of Type that follow the same pattern are shown in the following table. Note that
plural names return an array.

TyPE of objECT RETuRNEd mETHod(s)

ConstructorInfo GetConstructor(), GetConstructors()

EventInfo GetEvent(), GetEvents()

FieldInfo GetField(), GetFields()

MemberInfo GetMember(), GetMembers(), GetDefaultMembers()

MethodInfo GetMethod(), GetMethods()

PropertyInfo GetProperty(), GetProperties()

The GetMember and GetMembers methods return details about any or all members of the data type, regardless
of whether these members are constructors, properties, methods, and so on.

c15.indd 382 30-01-2014 20:19:16

Using Reflection ❘ 383

The TypeView Example
This section demonstrates some of the features of the Type class with a
short example, TypeView, which you can use to list the members of a data
type. The example demonstrates how to use TypeView for a double;
however, you can swap this type with any other data type just by changing one
line of the code in the example. TypeView displays far more information
than can be displayed in a console window, so we’re going to take a
break from our normal practice and display the output in a message box.
Running TypeView for a double produces the results shown in Figure 15-1.

The message box displays the name, full name, and namespace of the data
type as well as the name of the underlying type and the base type. Next,
it simply iterates through all the public instance members of the data
type, displaying for each member the declaring type, the type of member
(method, field, and so on), and the name of the member. The declaring
type is the name of the class that actually declares the type member (for
example, System.Double if it is defined or overridden in System.Double,
or the name of the relevant base type if the member is simply inherited
from a base class).

TypeView does not display signatures of methods because you are retrieving
details about all public instance members through MemberInfo objects,
and information about parameters is not available through a MemberInfo
object. To retrieve that information, you would need references to
MethodInfo and other more specific objects, which means that you would
need to obtain details about each type of member separately.

TypeView does display details about all public instance members; but for
doubles, the only ones defined are fields and methods. For this example,
you will compile TypeView as a console application — there is no problem
with displaying a message box from a console application. However, because you are using a message box,
you need to reference the base class assembly System.Windows.Forms.dll, which contains the classes in
the System.Windows.Forms namespace in which the MessageBox class that you will need is defined. The
code for TypeView is as follows. To begin, you need to add a few using statements:

using System;
using System.Reflection;
using System.Text;
using System.Windows.Forms;

You need System.Text because you will be using a StringBuilder object to build up the text to be
displayed in the message box, and System.Windows.Forms for the message box itself. The entire code is
in one class, MainClass, which has a couple of static methods and one static field, a StringBuilder
instance called OutputText, which will be used to build the text to be displayed in the message box. The
main method and class declaration look like this:

 class MainClass
 {
 static StringBuilder OutputText = new StringBuilder();

 static void Main()
 {
 // modify this line to retrieve details of any
 // other data type
 Type t = typeof(double);

 AnalyzeType(t);

figuRE 15-1

c15.indd 383 30-01-2014 20:19:16

384 ❘ CHAPTER 15 Reflection

 MessageBox.Show(OutputText.ToString(), "Analysis of type "
 + t.Name);
 Console.ReadLine();
 }

The Main method implementation starts by declaring a Type object to represent your chosen data type.
You then call a method, AnalyzeType, which extracts the information from the Type object and uses it to
build the output text. Finally, you show the output in a message box. Using the MessageBox class is fairly
intuitive. You just call its static Show method, passing it two strings, which will, respectively, be the
text in the box and the caption. AnalyzeType is where the bulk of the work is done:

 static void AnalyzeType(Type t)
 {
 AddToOutput("Type Name: " + t.Name);
 AddToOutput("Full Name: " + t.FullName);
 AddToOutput("Namespace: " + t.Namespace);

 Type tBase = t.BaseType;

 if (tBase != null)
 {
 AddToOutput("Base Type:" + tBase.Name);
 }

 Type tUnderlyingSystem = t.UnderlyingSystemType;

 if (tUnderlyingSystem != null)
 {
 AddToOutput("UnderlyingSystem Type:" + tUnderlyingSystem.Name);
 }

 AddToOutput("\nPUBLIC MEMBERS:");
 MemberInfo [] Members = t.GetMembers();

 foreach (MemberInfo NextMember in Members)
 {
 AddToOutput(NextMember.DeclaringType + " " +
 NextMember.MemberType + " " + NextMember.Name);
 }
 }

You implement the AnalyzeType method by calling various properties of the Type object to get the
information you need concerning the type names, then call the GetMembers method to get an array of
MemberInfo objects that you can use to display the details for each member. Note that you use a helper
method, AddToOutput, to build the text to be displayed in the message box:

 static void AddToOutput(string Text)
 {
 OutputText.Append("\n" + Text);
 }

Compile the TypeView assembly using this command:

csc /reference:System.Windows.Forms.dll Program.cs

The Assembly Class
The Assembly class is defined in the System.Reflection namespace and provides access to the metadata for
a given assembly. It also contains methods that enable you to load and even execute an assembly — assuming
that the assembly is an executable. As with the Type class, Assembly contains too many methods and

c15.indd 384 30-01-2014 20:19:16

Using Reflection ❘ 385

properties to cover here, so this section is confined to covering those methods and properties that you need
to get started and that you will use to complete the WhatsNewAttributes example.

Before you can do anything with an Assembly instance, you need to load the corresponding assembly into
the running process. You can do this with either the static members Assembly.Load or Assembly
.LoadFrom. The difference between these methods is that Load takes the name of the assembly, and the
runtime searches in a variety of locations in an attempt to locate the assembly. These locations include
the local directory and the global assembly cache. LoadFrom takes the full path name of an assembly and
does not attempt to find the assembly in any other location:

 Assembly assembly1 = Assembly.Load("SomeAssembly");
 Assembly assembly2 = Assembly.LoadFrom
 (@"C:\My Projects\Software\SomeOtherAssembly");

A number of other overloads of both methods exist, which supply additional security information. After you
have loaded an assembly, you can use various properties on it to find out, for example, its full name:

 string name = assembly1.FullName;

Getting Details About Types Defined in an Assembly
One nice feature of the Assembly class is that it enables you to obtain details about all the types that are
defined in the corresponding assembly. You simply call the Assembly.GetTypes method, which returns an
array of System.Type references containing details about all the types. You can then manipulate these Type
references as explained in the previous section:

Type[] types = theAssembly.GetTypes();

foreach(Type definedType in types)
{
 DoSomethingWith(definedType);
}

Getting Details About Custom Attributes
The methods you use to find out which custom attributes are defined on an assembly or type depend
on the type of object to which the attribute is attached. If you want to find out what custom attributes
are attached to an assembly as a whole, you need to call a static method of the Attribute class,
GetCustomAttributes, passing in a reference to the assembly:

NoTE This is actually quite significant. You may have wondered why, when you
defined custom attributes, you had to go to all the trouble of actually writing classes for
them, and why Microsoft didn’t come up with some simpler syntax. Well, the answer
is here. The custom attributes genuinely exist as objects, and when an assembly is
loaded you can read in these attribute objects, examine their properties, and call their
methods.

Attribute[] definedAttributes =
 Attribute.GetCustomAttributes(assembly1);
 // assembly1 is an Assembly object

GetCustomAttributes, which is used to get assembly attributes, has a few overloads. If you call it
without specifying any parameters other than an assembly reference, it simply returns all the custom
attributes defined for that assembly. You can also call GetCustomAttributes by specifying a second

c15.indd 385 30-01-2014 20:19:17

386 ❘ CHAPTER 15 Reflection

parameter, which is a Type object that indicates the attribute class in which you are interested. In this case,
GetCustomAttributes returns an array consisting of all the attributes present that are of the specified type.

Note that all attributes are retrieved as plain Attribute references. If you want to call any of the methods
or properties you defined for your custom attributes, you need to cast these references explicitly to the
relevant custom attribute classes. You can obtain details about custom attributes that are attached to a given
data type by calling another overload of Assembly.GetCustomAttributes, this time passing a Type reference
that describes the type for which you want to retrieve any attached attributes. To obtain attributes that are
attached to methods, constructors, fields, and so on, however, you need to call a GetCustomAttributes
method that is a member of one of the classes MethodInfo, ConstructorInfo, FieldInfo, and so on.

If you expect only a single attribute of a given type, you can call the GetCustomAttribute method instead,
which returns a single Attribute object. You will use GetCustomAttribute in the WhatsNewAttributes
example to find out whether the SupportsWhatsNew attribute is present in the assembly. To do this,
you call GetCustomAttribute, passing in a reference to the WhatsNewAttributes assembly, and the
type of the SupportsWhatsNewAttribute attribute. If this attribute is present, you get an Attribute
instance. If no instances of it are defined in the assembly, you get null. If two or more instances are found,
GetCustomAttribute throws a System.Reflection.AmbiguousMatchException. This is what that call
would look like:

 Attribute supportsAttribute =
 Attribute.GetCustomAttributes(assembly1,
 typeof(SupportsWhatsNewAttribute));

Completing the WhatsNewAttributes Example
You now have enough information to complete the WhatsNewAttributes example by writing the source
code for the final assembly in the sample, the LookUpWhatsNew assembly. This part of the application is
a console application. However, it needs to reference the other assemblies of WhatsNewAttributes and
VectorClass. Although this is going to be a command-line application, you will follow the previous
TypeView example in that you actually display the results in a message box because there is a lot of text
output — too much to show in a console window screenshot.

The file is called LookUpWhatsNew.cs, and the command to compile it is as follows:

csc /reference:WhatsNewAttributes.dll /reference:VectorClass.dll LookUpWhatsNew.cs

In the source code of this file, you first indicate the namespaces you want to infer. System.Text is there
because you need to use a StringBuilder object again:

using System;
using System.Reflection;
using System.Windows.Forms;
using System.Text;
using WhatsNewAttributes;

namespace LookUpWhatsNew
{

The class that contains the main program entry point as well as the other methods is WhatsNewChecker.
All the methods you define are in this class, which also has two static fields — outputText, which contains
the text as you build it in preparation for writing it to the message box, and backDateTo, which stores the
date you have selected. All modifications made since this date will be displayed. Normally, you would
display a dialog inviting the user to pick this date, but we don’t want to get sidetracked into that kind of
code. For this reason, backDateTo is hard-coded to a value of 1 Feb 2010. You can easily change this date
when you download the code:

c15.indd 386 30-01-2014 20:19:17

Using Reflection ❘ 387

 internal class WhatsNewChecker
 {
 private static readonly StringBuilder outputText = new StringBuilder(1000);
 private static DateTime backDateTo = new DateTime(2010, 2, 1);

 static void Main()
 {
 Assembly theAssembly = Assembly.Load("VectorClass");
 Attribute supportsAttribute =
 Attribute.GetCustomAttribute(
 theAssembly, typeof(SupportsWhatsNewAttribute));
 string name = theAssembly.FullName;

 AddToMessage("Assembly: " + name);

 if (supportsAttribute == null)
 {
 AddToMessage(
 "This assembly does not support WhatsNew attributes");
 return;
 }
 else
 {
 AddToMessage("Defined Types:");
 }

 Type[] types = theAssembly.GetTypes();

 foreach(Type definedType in types)
 DisplayTypeInfo(definedType);

 MessageBox.Show(outputText.ToString(),
 "What\'s New since " + backDateTo.ToLongDateString());
 Console.ReadLine();
 }

The Main method first loads the VectorClass assembly, and then verifies that it is marked with the
SupportsWhatsNew attribute. You know VectorClass has the SupportsWhatsNew attribute applied to it
because you have only recently compiled it, but this is a check that would be worth making if users were
given a choice of which assembly they wanted to check.

Assuming that all is well, you use the Assembly.GetTypes method to get an array of all the types defined
in this assembly, and then loop through them. For each one, you call a method, DisplayTypeInfo, which
adds the relevant text, including details regarding any instances of LastModifiedAttribute, to the
outputText field. Finally, you show the message box with the complete text. The DisplayTypeInfo
method looks like this:

 private static void DisplayTypeInfo(Type type)
 {
 // make sure we only pick out classes
 if (!(type.IsClass))
 {
 return;
 }

 AddToMessage("\nclass " + type.Name);

 Attribute [] attribs = Attribute.GetCustomAttributes(type);

 if (attribs.Length == 0)
 {

c15.indd 387 30-01-2014 20:19:17

388 ❘ CHAPTER 15 Reflection

 AddToMessage("No changes to this class\n");
 }
 else
 {
 foreach (Attribute attrib in attribs)
 {
 WriteAttributeInfo(attrib);
 }
 }

 MethodInfo [] methods = type.GetMethods();
 AddToMessage("CHANGES TO METHODS OF THIS CLASS:");

 foreach (MethodInfo nextMethod in methods)
 {
 object [] attribs2 =
 nextMethod.GetCustomAttributes(
 typeof(LastModifiedAttribute), false);

 if (attribs2 != null)
 {
 AddToMessage(
 nextMethod.ReturnType + " " + nextMethod.Name + "()");
 foreach (Attribute nextAttrib in attribs2)
 {
 WriteAttributeInfo(nextAttrib);
 }
 }
 }
 }

Notice that the first thing you do in this method is check whether the Type reference you have been passed
actually represents a class. Because, to keep things simple, you have specified that the LastModified attribute
can be applied only to classes or member methods, you would be wasting time by doing any processing if the
item is not a class (it could be a class, delegate, or enum).

Next, you use the Attribute.GetCustomAttributes method to determine whether this class has any
LastModifiedAttribute instances attached to it. If so, you add their details to the output text, using a
helper method, WriteAttributeInfo.

Finally, you use the Type.GetMethods method to iterate through all the member methods of this
data type, and then do the same with each method as you did for the class — check whether it has any
LastModifiedAttribute instances attached to it; if so, you display them using WriteAttributeInfo.

The next bit of code shows the WriteAttributeInfo method, which is responsible for determining
what text to display for a given LastModifiedAttribute instance. Note that this method is passed an
Attribute reference, so it needs to cast this to a LastModifiedAttribute reference first. After it has
done that, it uses the properties that you originally defined for this attribute to retrieve its parameters. It
confirms that the date of the attribute is sufficiently recent before actually adding it to the text for display:

 private static void WriteAttributeInfo(Attribute attrib)
 {

 LastModifiedAttribute lastModifiedAttrib =
 attrib as LastModifiedAttribute;

 if (lastModifiedAttrib == null)
 {
 return;
 }

c15.indd 388 30-01-2014 20:19:17

Summary ❘ 389

 // check that date is in range
 DateTime modifiedDate = lastModifiedAttrib.DateModified;

 if (modifiedDate < backDateTo)
 {
 return;
 }

 AddToMessage(" MODIFIED: " +
 modifiedDate.ToLongDateString() + ":");
 AddToMessage(" " + lastModifiedAttrib.Changes);

 if (lastModifiedAttrib.Issues != null)
 {
 AddToMessage(" Outstanding issues:" +
 lastModifiedAttrib.Issues);
 }
 }

Finally, here is the helper AddToMessage method:

 static void AddToMessage(string message)
 {
 outputText.Append("\n" + message);
 }
 }
}

Running this code produces the results shown in
Figure 15-2.

Note that when you list the types defined in
the VectorClass assembly, you actually pick
up two classes: Vector and the embedded
VectorEnumerator class. In addition, note that
because the backDateTo date of 1 Feb is hard-coded
in this example, you actually pick up the attributes
that are dated 14 Feb (when you added the collection
support) but not those dated 10 Feb (when you added
the IFormattable interface).

summARy
No chapter can cover the entire topic of
reflection, an extensive subject worthy of a book of
its own. Instead, this chapter illustrated the Type and
Assembly classes, which are the primary entry points
through which you can access the extensive capabilities
provided by reflection.

In addition, this chapter demonstrated a specific
aspect of reflection that you are likely to use more
often than any other — the inspection of custom attri-
butes. You learned how to define and apply
your own custom attributes, and how to retrieve
information about custom attributes at
runtime.

figuRE 15-2

c15.indd 389 30-01-2014 20:19:17

c15.indd 390 30-01-2014 20:19:17

Errors and Exceptions
WHAT’s in THis CHAPTER?

➤➤ Looking at the exception classes
➤➤ Using try. . .catch. . .fi nally to capture exceptions
➤➤ Creating user-defi ned exceptions
➤➤ Retrieving caller information

WRox.CoM CoDE DoWnloADs FoR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ Simple Exceptions
➤➤ Solicit Cold Call
➤➤ Caller Information

inTRoDuCTion
Errors happen, and they are not always caused by the person who coded the application. Sometimes
your application will generate an error because of an action that was initiated by the end user of the
application, or it might be simply due to the environmental context in which your code is running. In
any case, you should anticipate errors occurring in your applications and code accordingly.

The .NET Framework has enhanced the ways in which you deal with errors. C#’s mechanism for
handling error conditions enables you to provide custom handling for each type of error condition, as
well as to separate the code that identifi es errors from the code that handles them.

No matter how good your coding is, your programs should be capable of handling any possible
errors that may occur. For example, in the middle of some complex processing of your code, you
may discover that it doesn’t have permission to read a fi le; or, while it is sending network requests,
the network may go down. In such exceptional situations, it is not enough for a method to simply
return an appropriate error code — there might be 15 or 20 nested method calls, so what you really
want the program to do is jump back up through all those calls to exit the task completely and take

16

c16.indd 391 30-01-2014 20:24:05

392 ❘ CHAPTER 16 Errors and ExcEptions

the appropriate counteractions. The C# language has very good facilities to handle this kind of situation,
through the mechanism known as exception handling.

This chapter covers catching and throwing exceptions in many different scenarios. You will see exception
types from different namespaces and their hierarchy, and learn about how to create custom exception types.
You will learn different ways to catch exceptions, e.g. how to catch exceptions with the exact exception type
or a base class. You will learn how to deal with nested try blocks, and how you could catch exceptions that
way. For code that should be invoked no matter if an exception occurs or the code continues with any error,
you will learn creating try/finally code blocks.

A new C# 5 feature that helps with handling errors enables the retrieval of caller information such as the file
path, the line number, and the member name. This new feature is covered in the chapter as well.

By the end of this chapter, you will have a good grasp of advanced exception handling in your C# applications.

ExCEPTion ClAssEs
In C#, an exception is an object created (or thrown) when a particular exceptional error condition occurs.
This object contains information that should help identify the problem. Although you can create your own
exception classes (and you will be doing so later), .NET includes many predefined exception classes — too
many to provide a comprehensive list here. The class hierarchy diagram in Figure 16-1 shows a few of these
classes to give you a sense of the general pattern. This section provides a quick survey of some of the
exceptions available in the .NET base class library.

FiguRE 16-1

c16.indd 392 30-01-2014 20:24:06

Catching Exceptions ❘ 393

All the classes in Figure 16-1 are part of the System namespace, except for IOException and
CompositionException and the classes derived from these two classes. IOException and its derived classes
are part of the namespace System.IO. The System.IO namespace deals with reading from and writing to
files. CompositionException and its derived classes are part of the namespace System.ComponentModel
.Composition. This namespace deals with dynamically loading parts and components. In general, there is no
specific namespace for exceptions. Exception classes should be placed in whatever namespace is appropriate
to the classes that can generate them — hence, I/O-related exceptions are in the System.IO namespace.
You will find exception classes in quite a few of the base class namespaces.

The generic exception class, System.Exception, is derived from System.Object, as you would expect for a
.NET class. In general, you should not throw generic System.Exception objects in your code, because they
provide no specifics about the error condition.

Two important classes in the hierarchy are derived from System.Exception:

➤➤ SystemException — This class is for exceptions that are usually thrown by the .NET runtime or
that are considered to be of a generic nature and might be thrown by almost any application. For
example, StackOverflowException is thrown by the .NET runtime if it detects that the stack is full.
However, you might choose to throw ArgumentException or its subclasses in your own code if you
detect that a method has been called with inappropriate arguments. Subclasses of SystemException
include classes that represent both fatal and nonfatal errors.

➤➤ ApplicationException — With the initial design of the .NET Framework, this class was meant to
be the base class for custom application exception classes. However, some exception classes that
are thrown by the CLR derive from this base class (e.g., TargetInvocationException), and exceptions
thrown from applications derive from SystemException (e.g., ArgumentException). Therefore, it’s
no longer a good practice to derive custom exception types from ApplicationException, as this
doesn’t offer any benefits. Instead, custom exception classes can derive directly from the Exception
base class. Many exception classes in the .NET Framework directly derive from Exception.

Other exception classes that might come in handy include the following:

➤➤ StackOverflowException — This exception is thrown when the area of memory allocated to the
stack is full. A stack overflow can occur if a method continuously calls itself recursively. This is
generally a fatal error, because it prevents your application from doing anything apart from terminating
(in which case it is unlikely that even the finally block will execute). Trying to handle errors like this
yourself is usually pointless; instead, you should have the application gracefully exit.

➤➤ EndOfStreamException — The usual cause of an EndOfStreamException is an attempt to read
past the end of a file. A stream represents a flow of data between data sources. Streams are covered in
detail in Chapter 26, “Networking.”

➤➤ OverflowException — An example when this occurs is if you attempt to cast an int containing a
value of -40 to a uint in a checked context.

The other exception classes shown in Figure 16-1 are not discussed here.

The class hierarchy for exceptions is somewhat unusual in that most of these classes do not add any
functionality to their respective base classes. However, in the case of exception handling, the common
reason for adding inherited classes is to indicate more specific error conditions. Often, it isn’t necessary
to override methods or add any new ones (although it is not uncommon to add extra properties that carry
extra information about the error condition). For example, you might have a base ArgumentException class
intended for method calls whereby inappropriate values are passed in, and an ArgumentNullException
class derived from it, which is intended to handle a null argument if passed.

CATCHing ExCEPTions
Given that the .NET Framework includes a selection of predefined base class exception objects, this section
describes how you use them in your code to trap error conditions. In dealing with possible error conditions
in C# code, you will typically divide the relevant part of your program into blocks of three different types:

c16.indd 393 30-01-2014 20:24:06

394 ❘ CHAPTER 16 Errors and ExcEptions

➤➤ try blocks encapsulate the code that forms part of the normal operation of your program and that
might encounter some serious error conditions.

➤➤ catch blocks encapsulate the code dealing with the various error conditions that your code might
have encountered by working through any of the code in the accompanying try block. This block
could also be used for logging errors.

➤➤ finally blocks encapsulate the code that cleans up any resources or takes any other action that
you normally want handled at the end of a try or catch block. It is important to understand
that the finally block is executed whether or not an exception is thrown. Because the purpose of
the finally block is to contain cleanup code that should always be executed, the compiler will
flag an error if you place a return statement inside a finally block. An example of using the
finally block is closing any connections that were opened in the try block. Understand that
the finally block is completely optional. If your application does not require any cleanup code
(such as disposing of or closing any open objects), then there is no need for this block.

The following steps outline how these blocks work together to trap error conditions:

 1. The execution flow first enters the try block.

 2. If no errors occur in the try block, execution proceeds normally through the block, and when the end
of the try block is reached, the flow of execution jumps to the finally block if one is present (Step 5).
However, if an error does occur within the try block, execution jumps to a catch block (Step 3).

 3. The error condition is handled in the catch block.

 4. At the end of the catch block, execution automatically transfers to the finally block if one is present.

 5. The finally block is executed (if present).

The C# syntax used to bring all this about looks roughly like this:

 try
 {
 // code for normal execution
 }
 catch
 {
 // error handling
 }
 finally
 {
 // clean up
 }

Actually, a few variations on this theme exist:

➤➤ You can omit the finally block because it is optional.
➤➤ You can also supply as many catch blocks as you want to handle specific types of errors. However,

you don’t want to get too carried away and have a huge number of catch blocks.
➤➤ You can omit the catch blocks altogether, in which case the syntax serves not to identify exceptions,

but as a way to guarantee that code in the finally block will be executed when execution leaves the
try block. This is useful if the try block contains several exit points.

So far so good, but the question that has yet to be answered is this: If the code is running in the try block, how
does it know when to switch to the catch block if an error occurs? If an error is detected, the code does something
known as throwing an exception. In other words, it instantiates an exception object class and throws it:

 throw new OverflowException();

Here, you have instantiated an exception object of the OverflowException class. As soon as the
application encounters a throw statement inside a try block, it immediately looks for the catch block

c16.indd 394 30-01-2014 20:24:06

Catching Exceptions ❘ 395

associated with that try block. If more than one catch block is associated with the try block, it identifies
the correct catch block by checking which exception class the catch block is associated with. For example,
when the OverflowException object is thrown, execution jumps to the following catch block:

 catch (OverflowException ex)
 {
 // exception handling here
 }

In other words, the application looks for the catch block that indicates a matching exception class instance
of the same class (or of a base class).

With this extra information, you can expand the try block just demonstrated. Assume, for the sake of
argument, that two possible serious errors can occur in the try block: an overflow and an array out
of bounds. Assume also that your code contains two Boolean variables, Overflow and OutOfBounds,
which indicate whether these conditions exist. You have already seen that a predefined exception class exists
to indicate overflow (OverflowException); similarly, an IndexOutOfRangeException class exists to
handle an array that is out of bounds.

Now your try block looks like this:

 try
 {
 // code for normal execution

 if (Overflow == true)
 {
 throw new OverflowException();
 }

 // more processing

 if (OutOfBounds == true)
 {
 throw new IndexOutOfRangeException();
 }

 // otherwise continue normal execution
 }
 catch (OverflowException ex)
 {
 // error handling for the overflow error condition
 }
 catch (IndexOutOfRangeException ex)
 {
 // error handling for the index out of range error condition
 }
 finally
 {
 // clean up
 }

So far, this might not look that much different from what you could have done a long time ago if you ever
used the Visual Basic 6 On Error GoTo statement (with the possible exception that the different parts of the
code are separated). C#, however, provides a far more powerful and flexible mechanism for error handling.

This is because you can have throw statements that are nested in several method calls inside the try block, but
the same try block continues to apply even as execution flow enters these other methods. If the application
encounters a throw statement, it immediately goes back up through all the method calls on the stack, looking
for the end of the containing try block and the start of the appropriate catch block. During this process, all
the local variables in the intermediate method calls will correctly go out of scope. This makes the try...catch

c16.indd 395 30-01-2014 20:24:07

396 ❘ CHAPTER 16 Errors and ExcEptions

architecture well suited to the situation described at the beginning of this section, whereby the error occurs
inside a method call that is nested inside 15 or 20 method calls, and processing has to stop immediately.

As you can probably gather from this discussion, try blocks can play a very significant role in controlling the flow
of your code’s execution. However, it is important to understand that exceptions are intended for exceptional con-
ditions, hence their name. You wouldn’t want to use them as a way of controlling when to exit a do...while loop.

implementing Multiple Catch Blocks
The easiest way to see how try...catch...finally blocks work in practice is with a couple of examples. The
first example is called SimpleExceptions. It repeatedly asks the user to type in a number and then displays
it. However, for the sake of this example, imagine that the number has to be between 0 and 5; otherwise, the
program won’t be able to process the number properly. Therefore, you will throw an exception if the user
types in anything outside of this range. The program then continues to ask for more numbers for processing
until the user simply presses the Enter key without entering anything.

noTE You should note that this code does not provide a good example of when to
use exception handling, but it shows good practice on how to use exception handling.
As their name suggests, exceptions are provided for other than normal circumstances.
Users often type in silly things, so this situation doesn’t really count. Normally, your
program will handle incorrect user input by performing an instant check and asking the
user to retype the input if it isn’t valid. However, generating exceptional situations is
difficult in a small example that you can read through in a few minutes, so we will
tolerate this less than ideal one to demonstrate how exceptions work. The examples
that follow present more realistic situations.

The code for SimpleExceptions looks like this (code file SimpleExceptions/Program.cs):

using System;

namespace Wrox.ProCSharp.ErrorsAndExceptions
{
 public class Program
 {
 public static void Main()
 {
 while (true)
 {
 try
 {
 string userInput;

 Console.Write("Input a number between 0 and 5 " +
 "(or just hit return to exit)> ");
 userInput = Console.ReadLine();

 if (userInput == "")
 {
 break;
 }

 int index = Convert.ToInt32(userInput);

 if (index < 0 || index > 5)
 {
 throw new IndexOutOfRangeException("You typed in " + userInput);
 }

 Console.WriteLine("Your number was " + index);

c16.indd 396 30-01-2014 20:24:07

Catching Exceptions ❘ 397

 }
 catch (IndexOutOfRangeException ex)
 {
 Console.WriteLine("Exception: " +
 "Number should be between 0 and 5. {0}", ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine(
 "An exception was thrown. Message was: {0}", ex.Message);
 }
 finally
 {
 Console.WriteLine("Thank you");
 }
 }
 }
 }
}

The core of this code is a while loop, which continually uses Console.ReadLine to ask for user input.
ReadLine returns a string, so your first task is to convert it to an int using the System.Convert.ToInt32
method. The System.Convert class contains various useful methods to perform data conversions, and it
provides an alternative to the int.Parse method. In general, System.Convert contains methods to
perform various type conversions. Recall that the C# compiler resolves int to instances of the System
.Int32 base class.

noTE It is also worth pointing out that the parameter passed to the catch block is
scoped to that catch block — which is why you are able to use the same parameter
name, ex, in successive catch blocks in the preceding code.

In the preceding example, you also check for an empty string, because this is your condition for exiting the
while loop. Notice how the break statement actually breaks right out of the enclosing try block as well as
the while loop because this is valid behavior. Of course, when execution breaks out of the try block, the
Console.WriteLine statement in the finally block is executed. Although you just display a greeting here,
more commonly you will be doing tasks like closing file handles and calling the Dispose method of various
objects to perform any cleanup. After the application leaves the finally block, it simply carries on executing
into the next statement that it would have executed had the finally block not been present. In the case of
this example, though, you iterate back to the start of the while loop and enter the try block again (unless
the finally block was entered as a result of executing the break statement in the while loop, in which case
you simply exit the while loop).

Next, you check for your exception condition:

 if (index < 0 || index > 5)
 {
 throw new IndexOutOfRangeException("You typed in " + userInput);
 }

When throwing an exception, you need to specify what type of exception to throw. Although the class
System.Exception is available, it is intended only as a base class. It is considered bad programming
practice to throw an instance of this class as an exception, because it conveys no information about the
nature of the error condition. Instead, the .NET Framework contains many other exception classes that are
derived from System.Exception. Each of these matches a particular type of exception condition, and you
are free to define your own as well. The goal is to provide as much information as possible about the
particular exception condition by throwing an instance of a class that matches the particular error condition.

c16.indd 397 30-01-2014 20:24:07

398 ❘ CHAPTER 16 Errors and ExcEptions

In the preceding example, System.IndexOutOfRangeException is the best choice for the circumstances.
IndexOutOfRangeException has several constructor overloads. The one chosen in the example takes a
string describing the error. Alternatively, you might choose to derive your own custom Exception object
that describes the error condition in the context of your application.

Suppose that the user next types a number that is not between 0 and 5. This will be picked up by the
if statement and an IndexOutOfRangeException object will be instantiated and thrown. At this
point, the application will immediately exit the try block and hunt for a catch block that handles
IndexOutOfRangeException. The first catch block it encounters is this:

 catch (IndexOutOfRangeException ex)
 {
 Console.WriteLine(
 "Exception: Number should be between 0 and 5. {0}", ex.Message);
 }

Because this catch block takes a parameter of the appropriate class, the catch block will receive the
 exception instance and be executed. In this case, you display an error message and the Exception.Message
property (which corresponds to the string passed to the IndexOutOfRangeException’s constructor).
After executing this catch block, control then switches to the finally block, just as if no exception had
occurred.

Notice that in the example you have also provided another catch block:

 catch (Exception ex)
 {
 Console.WriteLine("An exception was thrown. Message was: {0}",
 ex.Message);
 }

This catch block would also be capable of handling an IndexOutOfRangeException if it weren’t for the
fact that such exceptions will already have been caught by the previous catch block. A reference to a base
class can also refer to any instances of classes derived from it, and all exceptions are derived from System
.Exception. This catch block isn’t executed because the application executes only the first suitable catch
block it finds from the list of available catch blocks. This second catch block is here, however, because not
only your own code is covered by the try block. Inside the block, you actually make three separate calls to
methods in the System namespace (Console.ReadLine, Console.Write, and Convert.ToInt32), and any
of these methods might throw an exception.

If the user types in something that is not a number — say a or hello — the Convert.ToInt32 method will
throw an exception of the class System.FormatException to indicate that the string passed into ToInt32
is not in a format that can be converted to an int. When this happens, the application will trace back
through the method calls, looking for a handler that can handle this exception. Your first catch block (the
one that takes an IndexOutOfRangeException) will not do. The application then looks at the second catch
block. This one will do because FormatException is derived from Exception, so a FormatException
instance can be passed in as a parameter here.

The structure of the example is actually fairly typical of a situation with multiple catch blocks. You start
with catch blocks that are designed to trap very specific error conditions. Then, you finish with more general
blocks that cover any errors for which you have not written specific error handlers. Indeed, the order of the
catch blocks is important. Had you written the previous two blocks in the opposite order, the code would
not have compiled, because the second catch block is unreachable (the Exception catch block would
catch all exceptions). Therefore, the uppermost catch blocks should be the most granular options available,
ending with the most general options.

Now that you have analyzed the code for the example, you can run it. The following output illustrates
what happens with different inputs and demonstrates both the IndexOutOfRangeException and the
FormatException being thrown:

c16.indd 398 30-01-2014 20:24:07

Catching Exceptions ❘ 399

SimpleExceptions
Input a number between 0 and 5 (or just hit return to exit)> 4
Your number was 4
Thank you
Input a number between 0 and 5 (or just hit return to exit)> 0
Your number was 0
Thank you
Input a number between 0 and 5 (or just hit return to exit)> 10
Exception: Number should be between 0 and 5. You typed in 10
Thank you
Input a number between 0 and 5 (or just hit return to exit)> hello
An exception was thrown. Message was: Input string was not in a correct format.
Thank you
Input a number between 0 and 5 (or just hit return to exit)>
Thank you

Catching Exceptions from other Code
The previous example demonstrates the handling of two exceptions. One of them,
IndexOutOfRangeException, was thrown by your own code. The other, FormatException, was thrown
from inside one of the base classes. It is very common for code in a library to throw an exception if it detects
that a problem has occurred, or if one of the methods has been called inappropriately by being passed
the wrong parameters. However, library code rarely attempts to catch exceptions; this is regarded as the
responsibility of the client code.

Often, exceptions are thrown from the base class libraries while you are debugging. The process of debugging
to some extent involves determining why exceptions have been thrown and removing the causes. Your aim
should be to ensure that by the time the code is actually shipped, exceptions occur only in very exceptional
circumstances; and if possible, are handled appropriately in your code.

system.Exception Properties
The example illustrated the use of only the Message property of the exception object. However, a number of
other properties are available in System.Exception, as shown in the following table.

PRoPERTy DEsCRiPTion

Data Enables you to add key/value statements to the exception that can be used to
supply extra information about it

HelpLink A link to a help file that provides more information about the exception

InnerException If this exception was thrown inside a catch block, then InnerException
contains the exception object that sent the code into that catch block.

Message Text that describes the error condition

Source The name of the application or object that caused the exception

StackTrace Provides details about the method calls on the stack (to help track down the
method that threw the exception)

TargetSite A .NET reflection object that describes the method that threw the exception

Of these properties, StackTrace and TargetSite are supplied automatically by the .NET runtime if a stack
trace is available. Source will always be filled in by the .NET runtime as the name of the assembly in which
the exception was raised (though you might want to modify the property in your code to give more specific
information), whereas Data, Message, HelpLink, and InnerException must be filled in by the code that

c16.indd 399 30-01-2014 20:24:07

400 ❘ CHAPTER 16 Errors and ExcEptions

threw the exception, by setting these properties immediately before throwing the exception. For example,
the code to throw an exception might look something like this:

 if (ErrorCondition == true)
 {
 var myException = new ClassMyException("Help!!!!");
 myException.Source = "My Application Name";
 myException.HelpLink = "MyHelpFile.txt";
 myException.Data["ErrorDate"] = DateTime.Now;
 myException.Data.Add("AdditionalInfo",
 "Contact Bill from the Blue Team");
 throw myException;
 }

Here, ClassMyException is the name of the particular exception class you are throwing. Note that it is
common practice for the names of all exception classes to end with Exception. In addition, note that the
Data property is assigned in two possible ways.

What Happens if an Exception isn’t Handled?
Sometimes an exception might be thrown but there is no catch block in your code that is able to handle
that kind of exception. The SimpleExceptions example can serve to illustrate this. Suppose, for
example, that you omitted the FormatException and catch-all catch blocks, and supplied only the
block that traps an IndexOutOfRangeException. In that circumstance, what would happen if a
FormatException were thrown?

The answer is that the .NET runtime would catch it. Later in this section, you learn how you can nest try
blocks; and in fact, there is already a nested try block behind the scenes in the example. The .NET runtime
has effectively placed the entire program inside another huge try block — it does this for every .NET
program. This try block has a catch handler that can catch any type of exception. If an exception occurs
that your code does not handle, the execution flow will simply pass right out of your program and be
trapped by this catch block in the .NET runtime. However, the results of this probably will not be what
you want, as the execution of your code will be terminated promptly. The user will see a dialog that
complains that your code has not handled the exception, and that provides any details about the exception
the .NET runtime was able to retrieve. At least the exception will have been caught! This is what happened
earlier in Chapter 2, “Core C#,” in the Vector example when the program threw an exception.

In general, if you are writing an executable, try to catch as many exceptions as you reasonably can and
handle them in a sensible way. If you are writing a library, it is normally best not to handle exceptions
(unless a particular exception represents something wrong in your code that you can handle); instead,
assume that the calling code will handle any errors it encounters. However, you may nevertheless want to
catch any Microsoft-defined exceptions, so that you can throw your own exception objects that give more
specific information to the client code.

nested try Blocks
One nice feature of exceptions is that you can nest try blocks inside each other, like this:

 try
 {
 // Point A
 try
 {
 // Point B
 }
 catch
 {
 // Point C

c16.indd 400 30-01-2014 20:24:08

Catching Exceptions ❘ 401

 }
 finally
 {
 // clean up
 }
 // Point D
 }
 catch
 {
 // error handling
 }
 finally
 {
 // clean up
 }

Although each try block is accompanied by only one catch block in this example, you could string several
catch blocks together, too. This section takes a closer look at how nested try blocks work.

If an exception is thrown inside the outer try block but outside the inner try block (points A and D), the
situation is no different from any of the scenarios you have seen before: Either the exception is caught by the
outer catch block and the outer finally block is executed, or the finally block is executed and the .NET
runtime handles the exception.

If an exception is thrown in the inner try block (point B), and a suitable inner catch block can handle the
exception, then, again, you are in familiar territory: The exception is handled there, and the inner finally
block is executed before execution resumes inside the outer try block (at point D).

Now suppose that an exception occurs in the inner try block but there isn’t a suitable inner catch block to
handle it. This time, the inner finally block is executed as usual, but then the .NET runtime has no choice
but to leave the entire inner try block to search for a suitable exception handler. The next obvious place to
look is in the outer catch block. If the system finds one here, then that handler will be executed and then
the outer finally block is executed. If there is no suitable handler here, the search for one continues. In this
case, it means the outer finally block will be executed, and then, because there are no more catch blocks,
control will be transferred to the .NET runtime. Note that the code beyond point D in the outer try block is
not executed at any point.

An even more interesting thing happens when an exception is thrown at point C. If the program is at point
C, it must be already processing an exception that was thrown at point B. It is quite legitimate to throw
another exception from inside a catch block. In this case, the exception is treated as if it had been thrown
by the outer try block, so flow of execution immediately leaves the inner catch block, and executes the
inner finally block, before the system searches the outer catch block for a handler. Similarly, if an
exception is thrown in the inner finally block, control is immediately transferred to the best appropriate
handler, with the search starting at the outer catch block.

noTE It is perfectly legitimate to throw exceptions from catch and finally blocks.
You can either just throw the same exception again using the throw keyword without
passing any exception information, or throw a new exception object. Throwing a new
exception you can assign the original exception with the constructor of the new object
as inner exception. This is covered in “Modifying the Type of Exception” next.

Although the situation has been shown with just two try blocks, the same principles hold no matter how
many try blocks you nest inside each other. At each stage, the .NET runtime will smoothly transfer control
up through the try blocks, looking for an appropriate handler. At each stage, as control leaves a catch
block, any cleanup code in the corresponding finally block (if present) will be executed, but no code
outside any finally block will be run until the correct catch handler has been found and run.

c16.indd 401 30-01-2014 20:24:08

402 ❘ CHAPTER 16 Errors and ExcEptions

The nesting of try blocks can also occur between methods themselves. For example, if method A calls
method B from within a try block, then method B itself has a try block within it as well.

Now that you have seen how having nested try blocks can work, let’s get into scenarios where this is very
useful:

➤➤ To modify the type of exception thrown
➤➤ To enable different types of exception to be handled in different places in your code

Modifying the Type of Exception
Modifying the type of the exception can be useful when the original exception thrown does not adequately
describe the problem. What typically happens is that something — possibly the .NET runtime — throws a
fairly low-level exception indicating that something such as an overflow occurred (OverflowException),
or an argument passed to a method was incorrect (a class derived from ArgumentException). However,
because of the context in which the exception occurred, you will know that this reveals some other underlying
problem (for example, an overflow can only happen at that point in your code because a file you just
read contained incorrect data). In that case, the most appropriate thing that your handler for the first
exception can do is throw another exception that more accurately describes the problem, thereby enabling
another catch block further along to deal with it more appropriately. In this case, it can also forward the
original exception through a property implemented by Exception called InnerException, which simply
contains a reference to any other related exception that was thrown — in case the ultimate handler routine
needs this extra information.

Of course, an exception might occur inside a catch block. For example, you might normally read in a
configuration file that contains detailed instructions for handling the error but it turns out that this file is
not there.

Handling Different Exceptions in Different Places
The second reason to have nested try blocks is so that different types of exceptions can be handled at
different locations in your code. A good example of this is if you have a loop in which various exception
conditions can occur. Some of these might be serious enough that you need to abandon the entire loop,
whereas others might be less serious and simply require that you abandon that iteration and move on to the
next iteration around the loop. You could achieve this by having a try block inside the loop, which handles
the less serious error conditions, and an outer try block outside the loop, which handles the more serious
error conditions. You will see how this works in the next exceptions example.

usER-DEFinED ExCEPTion ClAssEs
You are now ready to look at a second example that illustrates exceptions. This example, called
SolicitColdCall, contains two nested try blocks and illustrates the practice of defining your own custom
exception classes and throwing another exception from inside a try block.

This example assumes that a sales company wants to increase its customer base. The company’s sales team
is going to phone a list of people to invite them to become customers, a practice known in sales jargon as
cold-calling. To this end, you have a text file available that contains the names of the people to be cold-called.
The file should be in a well-defined format in which the first line contains the number of people in the file
and each subsequent line contains the name of the next person. In other words, a correctly formatted file of
names might look like this:

4
George Washington
Benedict Arnold
John Adams
Thomas Jefferson

c16.indd 402 30-01-2014 20:24:08

User-Defined Exception Classes ❘ 403

This version of cold-calling is designed to display the name of the person on the screen (perhaps for the
salesperson to read). That is why only the names and not the phone numbers of the individuals are contained
in the file.

For this example, your program will ask the user for the name of the file and then simply read it in and
display the names of people. That sounds like a simple task, but even so a couple of things can go wrong and
require you to abandon the entire procedure:

➤➤ The user might type the name of a file that does not exist. This will be caught as a FileNotFound
exception.

➤➤ The file might not be in the correct format. There are two possible problems here. One, the first line
of the file might not be an integer. Two, there might not be as many names in the file as the first line of
the file indicates. In both cases, you want to trap this oddity as a custom exception that has been
written especially for this purpose, ColdCallFileFormatException.

There is something else that can go wrong that, while not causing you to abandon the entire process, will
mean you need to abandon a person’s name and move on to the next name in the file (and therefore trap
it by an inner try block). Some people are spies working for rival sales companies, so you obviously do
not want to let these people know what you are up to by accidentally phoning one of them. For simplicity,
assume that you can identify who the spies are because their names begin with B. Such people should have
been screened out when the data file was first prepared, but just in case any have slipped through, you
need to check each name in the file and throw a SalesSpyFoundException if you detect a sales spy. This,
of course, is another custom exception object.

Finally, you will implement this example by coding a class, ColdCallFileReader, which maintains the
connection to the cold-call file and retrieves data from it. You will code this class in a very safe way, which
means that its methods will all throw exceptions if they are called inappropriately — for example, if a
method that reads a file is called before the file has even been opened. For this purpose, you will write
another exception class, UnexpectedException.

Catching the user-Defined Exceptions
Let’s start with the Main method of the SolicitColdCall sample, which catches your user-defined exceptions.
Note that you need to call up file-handling classes in the System.IO namespace as well as the System
namespace (code file SolicitColdCall/Program.cs):

using System;
using System.IO;

namespace Wrox.ProCSharp.ErrorsAndExceptions
{
 class Program
 {
 static void Main()
 {
 Console.Write("Please type in the name of the file " +
 "containing the names of the people to be cold called > ");
 string fileName = Console.ReadLine();
 var peopleToRing = new ColdCallFileReader();

 try
 {
 peopleToRing.Open(fileName);
 for (int i = 0; i < peopleToRing.NPeopleToRing; i++)
 {
 peopleToRing.ProcessNextPerson();
 }

c16.indd 403 30-01-2014 20:24:08

404 ❘ CHAPTER 16 Errors and ExcEptions

 Console.WriteLine("All callers processed correctly");
 }
 catch(FileNotFoundException)
 {
 Console.WriteLine("The file {0} does not exist", fileName);
 }
 catch(ColdCallFileFormatException ex)
 {
 Console.WriteLine("The file {0} appears to have been corrupted",
 fileName);
 Console.WriteLine("Details of problem are: {0}", ex.Message);
 if (ex.InnerException != null)
 {
 Console.WriteLine(
 "Inner exception was: {0}", ex.InnerException.Message);
 }
 }
 catch(Exception ex)
 {
 Console.WriteLine("Exception occurred:\n" + ex.Message);
 }
 finally
 {
 peopleToRing.Dispose();
 }
 Console.ReadLine();
 }
 }

This code is a little more than just a loop to process people from the file. You start by asking the user for
the name of the file. Then you instantiate an object of a class called ColdCallFileReader, which is defined
shortly. The ColdCallFileReader class is the class that handles the file reading. Notice that you do this
outside the initial try block — that’s because the variables that you instantiate here need to be available in
the subsequent catch and finally blocks, and if you declared them inside the try block they would go out
of scope at the closing curly brace of the try block, where the compiler would complain about.

In the try block, you open the file (using the ColdCallFileReader.Open method) and loop over all the
people in it. The ColdCallFileReader.ProcessNextPerson method reads in and displays the name of
the next person in the file, and the ColdCallFileReader.NPeopleToRing property indicates how many
people should be in the file (obtained by reading the file’s first line). There are three catch blocks: one for
FileNotFoundException, one for ColdCallFileFormatException, and one to trap any other .NET
exceptions.

In the case of a FileNotFoundException, you display a message to that effect. Notice that in this
catch block, the exception instance is not actually used at all. This catch block is used to illustrate the
user-friendliness of the application. Exception objects generally contain technical information that is useful
for developers, but not the sort of stuff you want to show to end users. Therefore, in this case you create a
simpler message of your own.

For the ColdCallFileFormatException handler, you have done the opposite, specifying how to obtain
fuller technical information, including details about the inner exception, if one is present.

Finally, if you catch any other generic exceptions, you display a user-friendly message, instead of letting any
such exceptions fall through to the .NET runtime. Note that here you are not handling any other exceptions
not derived from System.Exception, because you are not calling directly into non-.NET code.

The finally block is there to clean up resources. In this case, that means closing any open file — performed
by the ColdCallFileReader.Dispose method.

c16.indd 404 30-01-2014 20:24:08

User-Defined Exception Classes ❘ 405

noTE C# offers a the using statement where the compiler itself creates a try/finally
block calling the Dispose method in the finally block. The using statement is available
on objects implementing a Dispose method. You can read the details of the using
statement in Chapter 14, “Memory Management and Pointers.”

Throwing the user-Defined Exceptions
Now take a look at the definition of the class that handles the file reading and (potentially) throws your
user-defined exceptions: ColdCallFileReader. Because this class maintains an external file connection,
you need to ensure that it is disposed of correctly in accordance with the principles outlined for the
disposing of objects in Chapter 4, “Inheritance.” Therefore, you derive this class from IDisposable.

First, you declare some private fields (code file SolicitColdCall/ColdCallFileReader.cs):

 public class ColdCallFileReader: IDisposable
 {
 private FileStream fs;
 private StreamReader sr;
 private uint nPeopleToRing;
 private bool isDisposed = false;
 private bool isOpen = false;

FileStream and StreamReader, both in the System.IO namespace, are the base classes that you will use
to read the file. FileStream enables you to connect to the file in the first place, whereas StreamReader is
designed to read text files and implements a method, ReadLine, which reads a line of text from a file. You
look at StreamReader more closely in Chapter 24, “Manipulating Files and the Registry,” which discusses
file handling in depth.

The isDisposed field indicates whether the Dispose method has been called. ColdCallFileReader is
implemented so that after Dispose has been called, it is not permitted to reopen connections and reuse the
object. isOpen is also used for error checking — in this case, checking whether the StreamReader actually
connects to an open file.

The process of opening the file and reading in that first line — the one that tells you how many people are in
the file — is handled by the Open method:

 public void Open(string fileName)
 {
 if (isDisposed)
 throw new ObjectDisposedException("peopleToRing");

 fs = new FileStream(fileName, FileMode.Open);
 sr = new StreamReader(fs);

 try
 {
 string firstLine = sr.ReadLine();
 nPeopleToRing = uint.Parse(firstLine);
 isOpen = true;
 }
 catch (FormatException ex)
 {
 throw new ColdCallFileFormatException(
 "First line isn\'t an integer", ex);
 }
 }

c16.indd 405 30-01-2014 20:24:08

406 ❘ CHAPTER 16 Errors and ExcEptions

The first thing you do in this method (as with all other ColdCallFileReader methods) is check whether
the client code has inappropriately called it after the object has been disposed of, and if so, throw a pre-
defined ObjectDisposedException object. The Open method checks the isDisposed field to determine
whether Dispose has already been called. Because calling Dispose implies that the caller has now finished
with this object, you regard it as an error to attempt to open a new file connection if Dispose has been
called.

Next, the method contains the first of two inner try blocks. The purpose of this one is to catch any errors
resulting from the first line of the file not containing an integer. If that problem arises, the .NET runtime
throws a FormatException, which you trap and convert to a more meaningful exception that indicates a
problem with the format of the cold-call file. Note that System.FormatException is there to indicate
format problems with basic data types, not with files, so it’s not a particularly useful exception to pass back
to the calling routine in this case. The new exception thrown will be trapped by the outermost try block.
Because no cleanup is needed here, there is no need for a finally block.

If everything is fine, you set the isOpen field to true to indicate that there is now a valid file connection
from which data can be read.

The ProcessNextPerson method also contains an inner try block:

 public void ProcessNextPerson()
 {
 if (isDisposed)
 {
 throw new ObjectDisposedException("peopleToRing");
 }

 if (!isOpen)
 {
 throw new UnexpectedException(
 "Attempted to access coldcall file that is not open");
 }

 try
 {
 string name;
 name = sr.ReadLine();
 if (name == null)
 {
 throw new ColdCallFileFormatException("Not enough names");
 }
 if (name[0] == 'B')
 {
 throw new SalesSpyFoundException(name);
 }
 Console.WriteLine(name);
 }
 catch(SalesSpyFoundException ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally
 {
 }
 }

Two possible problems exist with the file here (assuming there actually is an open file connection; the
ProcessNextPerson method checks this first). One, you might read in the next name and discover that it is a
sales spy. If that condition occurs, then the exception is trapped by the first catch block in this method. Because

c16.indd 406 30-01-2014 20:24:09

User-Defined Exception Classes ❘ 407

that exception has been caught here, inside the loop, it means that execution can subsequently continue in the
Main method of the program, and the subsequent names in the file will continue to be processed.

A problem might also occur if you try to read the next name and discover that you have already reached the
end of the file. The way that the StreamReader object’s ReadLine method works is if it has gone past
the end of the file, it doesn’t throw an exception but simply returns null. Therefore, if you find a null
string, you know that the format of the file was incorrect because the number in the first line of the file
indicated a larger number of names than were actually present in the file. If that happens, you throw a
ColdCallFileFormatException, which will be caught by the outer exception handler (which causes the
execution to terminate).

Again, you don’t need a finally block here because there is no cleanup to do; however, this time an empty
finally block is included just to show that you can do so, if you want.

The example is nearly finished. You have just two more members of ColdCallFileReader to look at: the
NPeopleToRing property, which returns the number of people that are supposed to be in the file, and
the Dispose method, which closes an open file. Notice that the Dispose method returns only if it has
already been called — this is the recommended way of implementing it. It also confirms that there actually is
a file stream to close before closing it. This example is shown here to illustrate defensive coding techniques:

 public uint NPeopleToRing
 {
 get
 {
 if (isDisposed)
 {
 throw new ObjectDisposedException("peopleToRing");
 }

 if (!isOpen)
 {
 throw new UnexpectedException(
 "Attempted to access cold–call file that is not open");
 }

 return nPeopleToRing;
 }
 }

 public void Dispose()
 {
 if (isDisposed)
 {
 return;
 }

 isDisposed = true;
 isOpen = false;

 if (fs != null)
 {
 fs.Close();
 fs = null;
 }
 }

c16.indd 407 30-01-2014 20:24:09

408 ❘ CHAPTER 16 Errors and ExcEptions

Defining the user-Defined Exception Classes
Finally, you need to define your own three exception classes. Defining your own exception is quite easy
because there are rarely any extra methods to add. It is just a case of implementing a constructor to ensure that
the base class constructor is called correctly. Here is the full implementation of SalesSpyFoundException
(code file SolicitColdCall/SalesSpyFoundException.cs):

 public class SalesSpyFoundException: Exception
 {
 public SalesSpyFoundException(string spyName)
 : base("Sales spy found, with name " + spyName)
 {
 }

 public SalesSpyFoundException(string spyName, Exception innerException)
 : base("Sales spy found with name " + spyName, innerException)
 {
 }
 }

Notice that it is derived from Exception, as you would expect for a custom exception. In fact, in practice,
you would probably have added an intermediate class, something like ColdCallFileException, derived
from Exception, and then derived both of your exception classes from this class. This ensures that the
handling code has that extra-fine degree of control over which exception handler handles each exception.
However, to keep the example simple, you will not do that.

You have done one bit of processing in SalesSpyFoundException. You have assumed that the message
passed into its constructor is just the name of the spy found, so you turn this string into a more meaningful
error message. You have also provided two constructors: one that simply takes a message, and one that
also takes an inner exception as a parameter. When defining your own exception classes, it is best to
include, at a minimum, at least these two constructors (although you will not actually be using the second
SalesSpyFoundException constructor in this example).

Now for the ColdCallFileFormatException. This follows the same principles as the previous
exception, but you don’t do any processing on the message (code file SolicitColdCall/
ColdCallFileFormatException.cs):

 public class ColdCallFileFormatException: Exception
 {
 public ColdCallFileFormatException(string message)
 : base(message)
 {
 }

 public ColdCallFileFormatException(string message, Exception innerException)
 : base(message, innerException)
 {
 }
 }

Finally, UnexpectedException, which looks much the same as ColdCallFileFormatException (code file
SolicitColdCall/UnexpectedException.cs):

 public class UnexpectedException: Exception
 {
 public UnexpectedException(string message)
 : base(message)
 {
 }

c16.indd 408 30-01-2014 20:24:09

Caller Information ❘ 409

 public UnexpectedException(string message, Exception innerException)
 : base(message, innerException)
 {
 }
 }

Now you are ready to test the program. First, try the people.txt file. The contents are defined here:

4
George Washington
Benedict Arnold
John Adams
Thomas Jefferson

This has four names (which match the number given in the first line of the file), including one spy. Then try
the following people2.txt file, which has an obvious formatting error:

49
George Washington
Benedict Arnold
John Adams
Thomas Jefferson

Finally, try the example but specify the name of a file that does not exist, such as people3.txt. Running the
program three times for the three filenames returns these results:

SolicitColdCall
Please type in the name of the file containing the names of the people to be cold
 called > people.txt
George Washington
Sales spy found, with name Benedict Arnold
John Adams
Thomas Jefferson
All callers processed correctly

SolicitColdCall
Please type in the name of the file containing the names of the people to be cold
 called > people2.txt
George Washington
Sales spy found, with name Benedict Arnold
John Adams
Thomas Jefferson
The file people2.txt appears to have been corrupted.
Details of the problem are: Not enough names

SolicitColdCall
Please type in the name of the file containing the names of the people to be cold
 called > people3.txt
The file people3.txt does not exist.

This application has demonstrated a number of different ways in which you can handle the errors and
exceptions that you might find in your own applications.

CAllER inFoRMATion
When dealing with errors, it is often helpful to get information about the error where it occurred. C# 5
has a new feature to get this information with the help of attributes and optional parameters. The
attributes CallerLineNumber, CallerFilePath, and CallerMemberName, defined within the namespace

c16.indd 409 30-01-2014 20:24:09

410 ❘ CHAPTER 16 Errors and ExcEptions

System.Runtime.CompilerServices, can be applied to parameters. Normally with optional parameters,
the compiler assigns the default values on method invocation in case these parameters are not supplied
with the call information. With caller information attributes, the compiler doesn’t fill in the default values,
but instead fills in the line number, file path, and member name.

The Log method from the following code snippet demonstrates how to use these attributes. With the
implementation, the information is written to the console (code file CallerInformation/Program.cs):

 public void Log([CallerLineNumber] int line = -1,
 [CallerFilePath] string path = null,
 [CallerMemberName] string name = null)
 {
 Console.WriteLine((line < 0) ? "No line" : "Line " + line);
 Console.WriteLine((path == null) ? "No file path" : path);
 Console.WriteLine((name == null) ? "No member name" : name);
 Console.WriteLine();
 }

Let’s invoke this method with some different scenarios. In the following Main method, the Log method
is called by using an instance of the Program class, within the set accessor of the property, and within a
lambda expression. Argument values are not assigned to the method, enabling the compiler to fill it in:

 static void Main()
 {
 var p = new Program();
 p.Log();
 p.SomeProperty = 33;

 Action a1 = () => p.Log();
 a1();
 }

 private int someProperty;
 public int SomeProperty
 {
 get { return someProperty; }
 set
 {
 this.Log();
 someProperty = value;
 }
 }

The result of the running program is shown next. Where the Log method was invoked, you can see the line
numbers, the filename, and the caller member name. With the Log inside the Main method, the member
name is Main. The invocation of the Log method inside the set accessor of the property SomeProperty
shows SomeProperty. The Log method inside the lambda expression doesn’t show the name of the
generated method, but instead the name of the method where the lambda expression was invoked (Main),
which is of course more useful.

Line 11
c:\ProCSharp\ErrorsAndExceptions\CallerInformation\Program.cs
Main

Line 24
c:\ProCSharp\ErrorsAndExceptions\CallerInformation\Program.cs
SomeProperty

Line 14
c:\ProCSharp\ErrorsAndExceptions\CallerInformation\Program.cs
Main

c16.indd 410 30-01-2014 20:24:09

Summary ❘ 411

Using the Log method within a constructor, the caller member name shows ctor. With a destructor, the
caller member name is Finalize, as this is the method name generated.

noTE A great use of the CallerMemberName attribute is with the implementation
of the interface INotifyPropertyChanged. This interface requires the name of the
property to be passed with the method implementation. You can see the implementation
of this interface in several chapters in this book — for example, Chapter 36, “Business
Applications with WPF.”

suMMARy
This chapter examined the rich mechanism C# provides for dealing with error conditions through exceptions.
You are not limited to the generic error codes that could be output from your code; instead, you have the
capability to go in and uniquely handle the most granular of error conditions. Sometimes these error
conditions are provided to you through the .NET Framework itself; but at other times, you might want
to code your own error conditions as illustrated in this chapter. In either case, you have many ways to
protect the workflow of your applications from unnecessary and dangerous faults.

The next chapter enables you to implement a lot of what you learned so far in this book within the .NET
developer’s IDE — Visual Studio 2013.

c16.indd 411 30-01-2014 20:24:09

c16.indd 412 30-01-2014 20:24:09

PART II
Visual Studio

 ➤ CHAPTER 17: Visual Studio 2013

 ➤ CHAPTER 18: Deployment

c17.indd 413 30-01-2014 20:24:57

c17.indd 414 30-01-2014 20:24:57

Visual Studio 2013
WHAT’S IN THIS CHAPTER?

➤➤ Using Visual Studio 2013
➤➤ Architecture tools
➤➤ Analyzing applications
➤➤ Testing
➤➤ Refactoring with Visual Studio
➤➤ Visual Studio 2013’s multi-targeting capabilities
➤➤ Working with various technologies — WPF, WCF, WF, and more

WROx.COM COdE dOWNlOAdS FOR THIS CHAPTER

There are no code downloads for this chapter.

WORKING WITH VISUAl STUdIO 2013
At this point, you should be familiar with the C# language and almost ready to move on to the
applied sections of the book, which cover how to use C# to program a variety of applications. Before
doing that, however, it’s important to understand how you can use Visual Studio and some of the
features provided by the .NET environment to get the best from your programs.

This chapter explains what programming in the .NET environment means in practice. It covers
Visual Studio, the main development environment in which you will write, compile, debug, and opti-
mize your C# programs, and provides guidelines for writing good applications. Visual Studio is the
main IDE used for numerous purposes, including writing ASP.NET applications, Windows Forms,
Windows Presentation Foundation (WPF) applications, Windows Store apps accessing WCF services
or the Web API, and more.

This chapter also explores what it takes to build applications that are targeted at the .NET Framework
4.5 and 4.5.1. Working with Visual Studio 2013 enables you to work with the latest application
types, such as WPF, the Windows Communication Foundation (WCF), and the Windows Workfl ow
Foundation (WF), directly.

17

c17.indd 415 30-01-2014 20:25:00

416 ❘ CHAPTER 17 Visual studio 2013

Visual Studio 2013 is a fully integrated development environment. It is designed to make the process of writ-
ing your code, debugging it, and compiling it to an assembly to be shipped as easy as possible. This means
that Visual Studio gives you a very sophisticated multiple-document–interface application in which you can
do just about everything related to developing your code. It offers the following features:

➤➤ Text editor — Using this editor, you can write your C# (as well as Visual Basic 2013, C++, F#,
JavaScript, XAML, and SQL) code. This text editor is quite sophisticated. For example, as you type,
it automatically lays out your code by indenting lines, matching start and end brackets of code blocks,
and color-coding keywords. It also performs some syntax checks as you type, and underlines code that
causes compilation errors, also known as design-time debugging. In addition, it features IntelliSense,
which automatically displays the names of classes, fields, or methods as you begin to type them. As
you start typing parameters to methods, it also shows you the parameter lists for the available over-
loads. Figure 17-1 shows the IntelliSense feature in action with one of the .NET base classes, ListBox.

FIGURE 17-1

NOTE By pressing Ctrl+Space, you can bring back the IntelliSense list box if you need
it or if for any reason it is not visible. In case you want to see some code below the
IntelliSense box, just keep pressing the Ctrl button.

➤➤ Design view editor — This editor enables you to place user-interface and data-access controls in your
project; Visual Studio automatically adds the necessary C# code to your source files to instantiate
these controls in your project. (This is possible because all .NET controls are instances of particular
base classes.)

➤➤ Supporting windows — These windows enable you to view and modify aspects of your project, such
as the classes in your source code, as well as the available properties (and their startup values) for
Windows Forms and Web Forms classes. You can also use these windows to specify compilation
options, such as which assemblies your code needs to reference.

c17.indd 416 30-01-2014 20:25:01

Working with Visual Studio 2013 ❘ 417

➤➤ Integrated debugger — It is in the nature of programming that your code will not run correctly
the first time you try it. Or the second time. Or the third time. Visual Studio seamlessly links up
to a debugger for you, enabling you to set breakpoints and watches on variables from within the
environment.

➤➤ Integrated MSDN help — Visual Studio enables you to access the MSDN documentation from within
the IDE. For example, if you are not sure of the meaning of a keyword while using the text editor, sim-
ply select the keyword and press the F1 key, and Visual Studio will access MSDN to show you related
topics. Similarly, if you are not sure what a certain compilation error means, you can bring up the
documentation for that error by selecting the error message and pressing F1.

➤➤ Access to other programs — Visual Studio can also access a number of other utilities that enable
you to examine and modify aspects of your computer or network, without your having to leave the
developer environment. With the tools available, you can check running services and database connec-
tions, look directly into your SQL Server tables, and even browse the Web using an Internet Explorer
window.

Visual Studio 2010 redesigned the shell to be based on WPF instead of native Windows controls. Visual
Studio 2012 had some user interface (UI) changes based on this. In particular, the UI has been enhanced in
the way of the Modern UI style. The heart of the Modern UI style is content, rather than chrome. Of course,
with a tool like Visual Studio, it’s not possible to remove all the chrome; but given the importance
of working with the code editor, Visual Studio 2012 provided more space for it. Menus and toolbars have
been reduced in size; and by default, only one toolbar opens. Eliminating the borders from menus and toolbars
has also provided more space for the editor. In addition, whereas with Visual Studio 2010 a lot of other tool
windows were usually open, now many features are integrated within the new Solution Explorer.

Along with the new Microsoft modern user interface design, the use of color has been modified. If you
worked with previous versions of Visual Studio, you may have occasionally found yourself unable to edit the
code, only to realize a few moments later that you were running in the debugger. Now, the status of your
project can be clearly identified by its color in the status bar. Because missing colors were a major objection
in the community, Visual Studio 2013 offers themes that can be more colorful.

Better responsiveness was a major goal for Visual Studio 2012 and 2013. In previous versions, if you opened
a solution consisting of many projects, you could probably take your first coffee break before working with
the solution. Now, all the projects are loaded asynchronously; the files that are opened for editing are loaded
first, with the others opened later in the background. This way, you can already do some work before load-
ing is done. New asynchronous features can be found in many places. For example, while the IntelliSense
thread is starting and loading information, you can already start typing the methods you know in the editor.
The assemblies from the Add Reference dialog are searched asynchronously as well. Because more opera-
tions are taking place in the background, Visual Studio 2012 has been a lot more responsive than previous
editions.

For XAML code editing, Visual Studio 2010 and Expression Blend 4 had different editor engines. Now, the
teams within Microsoft have been merged, and Visual Studio includes the same editor as Blend for Visual
Studio. This is great news if you want to work with both tools, as they now work very similarly. Template
editing is also strongly integrated into Visual Studio. Visual Studio 2013 enhances this integration by offer-
ing easier navigation to styles and IntelliSense with data binding.

Another improvement to Visual Studio is search. There are many places where search can be used, and
in previous versions of Visual Studio it was not unusual to need a feature but not be able to find the
menu entry. Now you can use the Quick Launch located at the top-right corner of the window to search
for menus, toolbars, and options (see Figure 17-2). Search functionality is also available from the tool-
box, Solution Explorer, the code editor (which you can invoke by pressing Ctrl+F), the assemblies on the
Reference Manager, and more.

c17.indd 417 30-01-2014 20:25:01

418 ❘ CHAPTER 17 Visual studio 2013

Project File Changes
When you opened a project with Visual Studio 2010 that was created with Visual Studio 2008, the project
file was converted and you could no longer open the project with Visual Studio 2008. Starting with Visual
Studio 2013, this behavior functions differently. If you open a Visual Studio 2010 project with Visual Studio
2013, you can still open the file with Visual Studio 2010. Visual Studio 2013 uses the same file format. This
enables a team of members working with different versions of Visual Studio to work with the same proj-
ect. However, as soon as you change a project to use .NET Framework 4.5.1, the project can no longer be
opened with Visual Studio 2010. Visual Studio 2010 supports only .NET programs from version 2.0 to
version 4.0. With Visual Studio 2012, you can open .NET 4.5.1 projects.

If you install Visual Studio 2012 on Windows 8 or 8.1, you can create a completely new category of appli-
cations: Windows Store apps. You can create these applications with C# and XAML and use the new
Windows Runtime in addition to a subset of the .NET Framework. These applications can run on Windows
8 and later versions of Windows.

With Windows Store apps, the compatibility that is offered by Visual Studio and different .NET versions is
not the same as with pure .NET applications. With Visual Studio 2013 you can create new Windows Store
apps for Windows 8.1, but not for Windows 8. To create Windows 8 apps, you need Visual Studio 2012.
However, you can edit existing Windows 8 apps with Visual Studio 2013.

Visual Studio Editions
Visual Studio 2013 is available in several editions. The least expensive is Visual Studio 2013 Express
Edition, as this edition is free! Available for purchase are the Professional, Premium, and Ultimate editions.

FIGURE 17-2

c17.indd 418 30-01-2014 20:25:01

Working with Visual Studio 2013 ❘ 419

Only the Ultimate edition includes all the features. What you will miss with Visual Studio Professional 2013
is code metrics, a lot of testing tools, checking for code clones, as well as architecting and modeling tools.
Exclusive to the Ultimate edition is IntelliTrace, load testing, and some architecture tools. The Microsoft
Fakes framework (unit test isolation) is only available with Visual Studio Premium and Ultimate. This chap-
ter’s tour of Visual Studio 2013 includes a few features that are available only with specific editions. For
detailed information about the features of each edition of Visual Studio 2013, see http://www.microsoft
.com/visualstudio/en-us/products/compare.

Visual Studio Settings
When you start Visual Studio the first time, you are asked to select a settings collection that matches your
environment, e.g., General Development, Visual Basic, Visual C#, Visual C++, or Web Development. These
different settings reflect the different tools historically used for these languages. When writing applica-
tions on the Microsoft platform, different tools are used to create Visual Basic, C++, and Web applications.
Similarly, Visual Basic, Visual C++, and Visual InterDev have completely different programming environ-
ments, with completely different settings and tool options.

After choosing the main category of settings to define keyboard shortcuts, menus, and the position of
tool windows, you can change every setting with Tools ➪ Customize (toolbars and commands), and
Tools ➪ Options (here you find the settings for all the tools). You can also reset the settings collection
with Tools ➪ Import and Export Settings, which invokes a wizard that enables you to select a new default
collection of settings (see Figure 17-3).

FIGURE 17-3

The following sections walk through the process of creating, coding, and debugging a project, demonstrating
what Visual Studio can do to help you at each stage.

c17.indd 419 30-01-2014 20:25:02

420 ❘ CHAPTER 17 Visual studio 2013

CREATING A PROjECT
After installing Visual Studio 2013, you will want to start your first project. With Visual Studio, you rarely
start with a blank file and then add C# code, in the way that you have been doing in the previous chapters
in this book. (Of course, the option of asking for an empty application project is there if you really do want
to start writing your code from scratch or if you are going to create a solution that will contain a number of
projects.)

Instead, the idea is that you tell Visual Studio roughly what type of project you want to create, and it will
generate the files and C# code that provide a framework for that type of project. You then proceed to add
your code to this outline. For example, if you want to build a Windows client application (a WPF applica-
tion), Visual Studio will start you off with a XAML file and a file containing C# source code that creates
a basic form. This form is capable of communicating with Windows and receiving events. It can be maxi-
mized, minimized, or resized; all you need to do is add the controls and functionality you want. If your
application is intended to be a command-line utility (a console application), Visual Studio gives you a basic
namespace, a class, and a Main method to get you started.

Last, but hardly least, when you create your project, Visual Studio also sets up the compilation options
that you are likely to supply to the C# compiler — whether it is to compile to a command-line application,
a library, or a WPF application. It also tells the compiler which base class libraries you will need to refer-
ence (a WPF GUI application will need to reference many of the WPF-related libraries; a console application
probably will not). Of course, you can modify all these settings as you are editing if necessary.

The first time you start Visual Studio, you are presented with an IDE containing menus, a toolbar, and a page
with getting started information, how-to videos, and latest news (see Figure 17-4). The Start Page contains
various links to useful websites and enables you to open existing projects or start a new project altogether.

FIGURE 17-4

In this case, the Start Page reflects what is shown after you have already used Visual Studio 2013, as it
includes a list of the most recently edited projects. You can just click one of these projects to open it again.

Multi-targeting the .NET Framework
Visual Studio enables you to target the version of the .NET Framework that you want to work with. When
you open the New Project dialog, shown in Figure 17-5, a drop-down list in the top area of the dialog dis-
plays the available options.

c17.indd 420 30-01-2014 20:25:02

Creating a Project ❘ 421

FIGURE 17-5

In this case, you can see that the drop-down list enables you to target the .NET Frameworks 2.0, 3.0, 3.5, 4,
4.5, and 4.5.1. You can also install other versions of the .NET Framework by clicking the More Frameworks
link. This link opens a website from which you can download other versions of the .NET Framework, e.g.,
4.01, 4.02, and 4.03.

When you use the Upgrade dialog to upgrade a Visual Studio 2012 solution to Visual Studio 2013, it is
important to understand that you are only upgrading the solution to use Visual Studio 2013; you are not
upgrading your project to the .NET Framework 4.5.1. Your project will stay on the framework version you
were using, but now you will be able to use the new Visual Studio 2013 to work on your project.

If you want to change the version of the framework the solution is using, right-click the project and select the prop-
erties of the solution. If you are working with an ASP.NET project, you will see the dialog shown in Figure 17-6.

FIGURE 17-6

c17.indd 421 30-01-2014 20:25:03

422 ❘ CHAPTER 17 Visual studio 2013

From this dialog, the Application tab enables you to change the version of the framework that the applica-
tion is using.

Selecting a Project Type
To create a new project, select File ➪ New Project from the Visual Studio menu. The New Project dialog will
appear (see Figure 17-7) — giving you your first inkling of the variety of different projects you can create.

FIGURE 17-7

Using this dialog, you effectively select the initial framework files and code you want Visual Studio to gener-
ate for you, the type of compilation options you want, and the compiler you want to compile your code
with — either Visual C#, LightSwitch, Visual Basic, Visual C++, Visual F#, or JavaScript. You can
immediately see the language integration that Microsoft has promised for .NET at work here! This particular
example uses a C# console application.

The following tables describe all the options that are available to you under the Visual C# projects. Note
that some other, more specialized C# template projects are available under the Other Projects option.

Using Windows Project Templates
The first table lists the projects available with the Windows category:

IF yOU CHOOSE… yOU GET THE C# COdE ANd COMPIlATION OPTIONS TO GENERATE…

Windows Forms Application A basic empty form that responds to events. Windows Forms wraps native
Windows controls and uses pixel-based graphics with GDI+.

WPF Application A basic empty form that responds to events. Although the project type is
similar to the Windows Forms Application project type (Windows Forms), this
Windows Application project type enables you to build an XAML-based smart
client solution with vector-based graphics and styles.

c17.indd 422 30-01-2014 20:25:03

Creating a Project ❘ 423

Console Application An application that runs at the command-line prompt or in a console window.

Class Library A .NET class library that can be called up by other code.

Portable Class Library A class library that can be used by WPF, Silverlight, Windows Phone, and
Windows Store apps.

WPF Browser Application Quite similar to the Windows Application for WPF, this variant enables you to
build a XAML-based application that is targeted at the browser. Nowadays,
you should think about using a different technology for this, such as a WPF
application with ClickOnce, a Silverlight project, or HTML 5.

Empty Project An empty project that just contains an application configuration file and set-
tings for a console application.

Windows Service A Windows Service that can automatically start up with Windows and act on
behalf of a privileged local system account.

WPF Custom Control Library A custom control that can be used in a Windows Presentation Foundation
application.

WPF User Control Library A user control library built using Windows Presentation Foundation.

Windows Forms Control Library A project for creating controls for use in Windows Forms applications.

Using Windows Store Project Templates
The next table covers Windows Store apps. These templates are available only if Visual Studio is installed
on Windows 8.1. The templates are used to create applications that run within the new modern UI on
Windows 8.1.

IF yOU CHOOSE… yOU GET THE C# COdE ANd COMPIlATION OPTIONS TO GENERATE…

Blank App (XAML) A basic empty Windows Store app with XAML, without styles and other
base classes. The styles and base classes can be added easily later.

Grid App (XAML) A Windows Store app with three pages for displaying groups and item
details.

Hub App (XAML) A Windows Store app with three pages that make use of a new Hub
control.

Split App (XAML) A Windows Store app with two pages for displaying groups and the
items of a group.

Class Library (Windows Store apps) A .NET class library that can be called up by other Windows Store apps
programmed with .NET.

Windows Runtime Component A Windows Runtime class library that can be called up by other Win-
dows Store apps developed with different programming languages
(C#, C++, JavaScript).

Portable Class Library A class library that can be used by WPF, Silverlight, Windows Phone,
and Windows Store apps.

Unit Test Library (Windows Store apps) A library that contains unit tests for Windows Store apps.

Coded UI Test Project A project to define coded UI tests to automatically test the UI.

Using Web Project Templates
One major change for ASP.NET within Visual Studio 2013 is that there are no longer different templates
to choose from for Web Forms, ASP.NET MVC, and so on. Instead, there’s one ASP.NET Web Application
template to choose from. When you select this template, you can select the features you want for this tem-
plate — for example, ASP.NET MVC or ASP.NET Web Forms. This makes it a lot easier to mix different
technologies within one project.

c17.indd 423 30-01-2014 20:25:03

424 ❘ CHAPTER 17 Visual studio 2013

After selecting the ASP.NET Web Application Template, you get the choice of selecting some preconfigured
templates as shown in Figure 17-8.

FIGURE 17-8

These templates that are offered for Web Applications are described in the following table. You can choose
folders and core references for Web Forms, MVC, and the Web API.

IF yOU CHOOSE… yOU GET THE C# COdE ANd COMPIlATION OPTIONS TO GENERATE…

Empty This template doesn’t have any content. It’s perfect for creating a site with HTML and
CSS pages.

Web Forms This template by default adds folders for Web Forms. You can add MVC and Web API
configurations to mix it up.

MVC This template makes use of the Model-View-Controller pattern with web applications.
You can use this to create a modern Web application.

Web API The Web API template makes it possible to easily create RESTful services. The MVC
folders and core references are added with this template as well because documenta-
tion for the service is created with MVC.

Single Page Application The Single Page Application template creates the structure using MVC where mostly
only a single page is used; it makes use of JavaScript code to retrieve data from the
server.

Facebook The Facebook template is based on MVC and creates a controller derived from
FacebookRealtimeUpdateController to easily integrate with Facebook.

Using WCF Project Templates
To create a Windows Communication Foundation (WCF) application that enables communication between
the client and server, you can select from the following WCF project templates.

c17.indd 424 30-01-2014 20:25:04

Exploring and Coding a Project ❘ 425

IF yOU CHOOSE… yOU GET THE C# COdE ANd COMPIlATION OPTIONS TO GENERATE…

WCF Service Library A library that contains a sample service contract and implementation, as
well as the configuration. The project is configured to start a WCF service
host that hosts the service and a test client application.

WCF Service Application A Web project that contains a WCF contract and service implementation.

WCF Workflow Service Application A Web project that hosts a WCF service with the Workflow runtime.

Syndication Service Library A WCF service library with a WCF contract and implementation that hosts
RSS or ATOM feeds.

Workflow Project Templates
This table describes the project templates available for creating Windows Workflow Foundation (WF)
projects.

IF yOU CHOOSE… yOU GET THE C# COdE ANd COMPIlATION OPTIONS TO GENERATE…

Workflow Console Application A Windows Workflow Foundation executable that hosts a workflow.

WCF Workflow Service Application A Web project that hosts a WCF service with the Workflow runtime.

Activity Library A workflow activity library that can be used with workflows.

Activity Designer Library A library that is used to create XAML user interfaces for activities to show
and configure activities in the workflow designer.

This is not a full list of the Visual Studio 2013 project templates, but it reflects some of the most commonly
used templates. The main additions to this version of Visual Studio are the Windows Store project tem-
plates. These new capabilities are covered in other chapters later in this book. Be sure to look at Chapter 31,
“Windows Runtime”, and Chapter 38, “Windows Store Apps: UI” in particular. You can also find new proj-
ect templates online using the search capability available through the New Project dialog.

ExPlORING ANd COdING A PROjECT
This section looks at the features that Visual Studio provides to help you add and explore code with your
project. You will learn about using the Solution Explorer to explore files and code, use features from the
editor such as IntelliSense and code snippets, and explore other windows such as the Properties window and
the Document Outline.

Solution Explorer
After creating a project, the most important tool you will use besides the code editor is the Solution
Explorer. With this tool you can navigate through all files and items of your project, and see all the classes
and members of classes. The Solution Explorer has been greatly enhanced in Visual Studio 2013.

NOTE When running a console application from within Visual Studio, there’s a com-
mon misconception that it’s necessary to have a Console.ReadLine method at the last
line of the Main method to keep the console window open. That’s not the case. You
can start the application with Debug ➪ Start without Debugging (or press Ctrl+F5)
instead of Debug ➪ Start Debugging (or F5). This keeps the window open until a key is
pressed. Using F5 to start the application makes sense if breakpoints are set, and then
Visual Studio halts at the breakpoints anyway.

c17.indd 425 30-01-2014 20:25:04

426 ❘ CHAPTER 17 Visual studio 2013

Working with Projects and Solutions
The Solution Explorer displays your projects and solutions. It’s important to understand the distinction
between these:

➤➤ A project is a set of all the source-code fi les and resources that will compile into a single assembly (or
in some cases, a single module). For example, a project might be a class library or a Windows GUI
application.

➤➤ A solution is the set of all the projects that make up a particular software package (application).

To understand this distinction, consider what happens when you ship a project, which consists of more
than one assembly. For example, you might have a user interface, custom controls, and other components
that ship as libraries of parts of the application. You might even have a different user interface for admin-
istrators, and a service that is called across the network. Each of these parts of the application might be
contained in a separate assembly, and hence they are regarded
by Visual Studio as separate projects. However, it is quite
likely that you will be coding these projects in parallel and
in conjunction with one another. Thus, it is quite useful to
be able to edit them all as one single unit in Visual Studio.
Visual Studio enables this by regarding all the projects as
forming one solution, and treating the solution as the unit
that it reads in and allows you to work on.

Up until now, this chapter has been loosely talking about creating
a console project. In fact, in the example you are working on,
Visual Studio has actually created a solution for you — although
this particular solution contains just one project. You can see
this scenario refl ected in the Solution Explorer (see Figure 17-9),
which contains a tree structure that defi nes your solution.

In this case, the project contains your source fi le, Program.cs,
as well as another C# source fi le, AssemblyInfo.cs (found in the Properties folder), which enables you
to provide information that describes the assembly and specify versioning information. (You look at this fi le
in detail in Chapter 19, “Assemblies.”) The Solution Explorer also indicates the assemblies that your project
references. You can see this by expanding the References folder in the Solution Explorer.

If you have not changed any of the default settings in Visual Studio, you will probably fi nd the Solution
Explorer in the top-right corner of your screen. If you cannot see it, just go to the View menu and select
Solution Explorer.

The solution is described by a fi le with the extension .sln — in this example, it is ConsoleApplication1
.sln. The solution fi le is a text fi le that contains information about all the projects contained within the
solution, as well as global items that can be used with all contained projects.

The C# project is described by a fi le with the extension .csproj — in this example, it is Console
Application1.csproj. This is an XML fi le that you can open directly from within Solution Explorer.
However, to do this, you need to unload the project fi rst, which you can do by clicking the project name and
selecting Unload Project in the context menu. After the project is unloaded, the context menu contains the
entry Edit ConsoleApplication1.csproj, from which you can directly access the XML code.

REVEAlING HIddEN FIlES

By default, Solution Explorer hides some fi les. By clicking the button Show All Files on the
Solution Explorer toolbar, you can display all hidden fi les. For example, the bin and obj
directories store compiled and intermediate fi les. Subfolders of obj hold various temporary
or intermediate fi les; subfolders of bin hold the compiled assemblies.

FIGURE 17-9

c17.indd 426 30-01-2014 20:25:05

Exploring and Coding a Project ❘ 427

Adding Projects to a Solution
As you work through the following sections, you will see how Visual Studio works with Windows desktop
applications and console applications. To that end, you create a Windows project called BasicForm that you
will add to your current solution, ConsoleApplication1.

NOTE Creating the BasicForm project means that you will end up with a solution
containing a WPF application and a console application. That is not a very common
scenario — you are more likely to have one application and a number of libraries — but
it enables you to see more code! You might, however, create a solution like this if, for
example, you are writing a utility that you want to run either as a WPF application or
as a command-line utility.

You can create the new project in several ways. One way is to select New ➪ Project from the File menu (as you
have done already) or you can select Add ➪ New Project from the File menu. Selecting Add ➪ New Project
from the File menu brings up the familiar Add New Project dialog; as shown in Figure 17-10, however, Visual
Studio wants to create the new project in the preexisting ConsoleApplication1 location of the solution.

FIGURE 17-10

If you select this option, a new project is added, so the ConsoleApplication1 solution now contains a con-
sole application and a WPF application.

NOTE In accordance with Visual Studio’s language independence, the new project
does not need to be a C# project. It is perfectly acceptable to put a C# project, a Visual
Basic project, and a C++ project in the same solution. We will stick with C# here
because this is a C# book!

c17.indd 427 30-01-2014 20:25:06

428 ❘ CHAPTER 17 Visual studio 2013

Of course, this means that ConsoleApplication1 is not
really an appropriate name for the solution anymore. To
change the name, you can right-click the name of the solu-
tion and select Rename from the context menu. Call the
new solution DemoSolution. The Solution Explorer win-
dow should now look like Figure 17-11.

As you can see, Visual Studio has made your newly added
WPF project automatically reference some of the extra base
classes that are important for WPF functionality.

Note that if you look in Windows Explorer, the name of the
solution file has changed to DemoSolution.sln. In general,
if you want to rename any files, the Solution Explorer win-
dow is the best place to do so, because Visual Studio will
then automatically update any references to that file in the
other project files. If you rename files using only Windows
Explorer, you might break the solution because Visual
Studio will not be able to locate all the files it needs to read
into the IDE. As a result, you will need to manually edit the
project and solution files to update the file references.

Setting the Startup Project
Bear in mind that if you have multiple projects in a solution, you need to configure which one should run as
the startup project. You can also configure multiple projects to start simultaneously. There are a lot of ways
to do this. After selecting a project in the Solution Explorer, the context menu offers a Set as Startup Project
option, which enables one startup project at a time. You can also use the context menu Debug ➪ Start new
instance to start one project after the other. To simultaneously start more than one project, click the solu-
tion in the Solution Explorer and select the context menu Set Startup Projects. This opens the dialog shown
in Figure 17-12. After you check Multiple startup projects, you can define what projects should be started.

FIGURE 17-11

FIGURE 17-12

c17.indd 428 30-01-2014 20:25:06

Exploring and Coding a Project ❘ 429

Discovering Types and Members
A WPF application contains a lot more initial code than a
console application when Visual Studio first creates it. That
is because creating a window is an intrinsically more com-
plex process. Chapter 35, “Core WPF,” discusses the code
for a WPF application in detail. For now, have a look at the
XAML code in MainWindow.xaml, and in the C# source code
MainWindow.xaml.cs. There’s also some hidden generated C#
code. Iterating through the tree in the Solution Explorer, below
MainWindow.xaml.cs you can find the class MainWindow.
With all the code files, the Solution Explorer shows the types
within that file. Within the type MainWindow you can see the
members of the class. _contentLoaded is a field of type bool.
Clicking this field opens the file MainWindow.g.i.cs. This
file — a part of the MainWindow class — is generated by the
designer and contains initialization code.

Previewing Items
A new feature offered by Visual Studio 2013 in the Solution
Explorer is the button to Preview Selected Items. When this
button is enabled and you click an item in the Solution Explorer, the editor for this item opens, as usual.
However, if the item was not opened previously, the tab flow of the editor shows the new opened item right-
most. Now, when you click another item, the previous one opened is closed. This helps significantly with
reducing the number of opened items.

In the editor tab of the previewed item is the Keep Open button, which promotes the item to stay open even
when another item is clicked; the tab for the item that you’re keeping open moves to the left.

Using Scopes
Setting scopes allows you to focus on a specific part of the solution. The list of items shown by the Solution
Explorer can grow really huge. For example, opening the context menu of a type enables you to select the
base type from the menu Base Types. Here you can see the complete inheritance hierarchy of the type, as
shown in Figure 17-13.

Because Solution Explorer contains more information than you can easily view with one screen, you can
open multiple Solution Explorer windows at once with the menu option New Solution Explorer View, and
you can set the scope to a specific element, e.g., to a project or a class, by selecting Scope to This from the
context menu. To return to the previous scope, click the Back button.

Adding Items to a Project
Directly from within Solution Explorer you can add different items to the project. Selecting the project and
opening the context menu Add ➪ New Item opens the dialog shown in Figure 17-14. Another way to get to
the same dialog is by using the main menu Project ➪ Add New Item. Here you find many different catego-
ries, such as code items to add classes or interfaces, data items for using the Entity Framework or other data
access technologies, and a lot more.

Managing References
The Reference Manager, shown in Figure 17-15, has been greatly enhanced with Visual Studio. Selecting
References in Solution Explorer and clicking the context menu Add Reference opens this dialog. Here you
can add references to other assemblies in the same solution, assemblies from the .NET Framework, COM
type libraries, and browse for assemblies on the disk.

FIGURE 17-13

c17.indd 429 30-01-2014 20:25:07

430 ❘ CHAPTER 17 Visual studio 2013

Using NuGet Packages to Install and Update Microsoft and Third-party Tools
The NuGet Package Manager, shown in Figure 17-16, is an important tool for installing and updating
Microsoft and third-party libraries and tools. Some parts of the .NET Framework need a separate instal-
lation, e.g., version 6.0 of the Entity Framework, or TPL DataFlow; and some JavaScript libraries such as
jQuery and Modernizr. If your project contains packages installed by the NuGet Package Manager, you will
be automatically informed when a new version of a package is available.

FIGURE 17-14

FIGURE 17-15

c17.indd 430 30-01-2014 20:25:07

Exploring and Coding a Project ❘ 431

Working with the Code Editor
The Visual Studio code editor is where most of your development work takes place. This editor increased in
size in Visual Studio after the removal of some toolbars from the default configuration, and the removal of
borders from the menus, toolbars, and tab headers. The following sections take a look at some of the most
useful features of this editor.

The Folding Editor
One notable feature of Visual Studio is its use of a folding editor as its default code editor. Figure 17-17
shows the code for the console application that you generated earlier. Notice the little minus signs on the
left-hand side of the window. These signs mark the points where the editor assumes that a new block of code
(or documentation comment) begins. You can click these icons to close up the view of the corresponding
block of code just as you would close a node in a tree control (see Figure 17-18).

FIGURE 17-16

FIGURE 17-17 FIGURE 17-18

c17.indd 431 30-01-2014 20:25:08

432 ❘ CHAPTER 17 Visual studio 2013

This means that while you are editing you can focus on just the areas of code you want to look at, hiding the
bits of code you are not interested in working with at that moment. If you do not like the way the editor has
chosen to block off your code, you can indicate your own blocks of collapsible code with the C# preproces-
sor directives, #region and #endregion. For example, to collapse the code inside the Main method, you
would add the code shown in Figure 17-19.

The code editor automatically detects the #region block and places a new minus sign by the #region
directive, enabling you to close the region. Enclosing this code in a region enables the editor to close it (see
Figure 17-20), marking the area with the comment you specified in the #region directive. The compiler,
however, ignores the directives and compiles the Main method as normal.

FIGURE 17-19

FIGURE 17-20

IntelliSense
In addition to the folding editor feature, Visual Studio’s code editor also incorporates Microsoft’s popular
IntelliSense capability, which not only saves you typing but also ensures that you use the correct parameters.

c17.indd 432 30-01-2014 20:25:08

Exploring and Coding a Project ❘ 433

IntelliSense remembers your preferred choices and starts with these initially instead of at the beginning of
the sometimes rather lengthy lists that IntelliSense can now provide.

The code editor also performs some syntax checking on your code, underlining these errors with a short
wavy line, even before you compile the code. Hovering the mouse pointer over the underlined text brings up
a small box that contains a description of the error.

CodeLens
One great new feature in Visual Studio 2013 is the CodeLens. Did you ever change a method and wonder,
“Did I miss a method calling this?” Now it’s really easy to find callers. The number of references is directly
shown in the editor (see Figure 17-21). When you click the references link, the CodeLens opens so you can
see the code of the callers and navigate to them. You can also see the reference with another new feature, the
Code Map. The Code Map is discussed later in the “Analyzing Applications” section.

FIGURE 17-21

Using Code Snippets
Great productivity features from the code editor are code snippets. Just by writing cw<tab><tab> in the
editor, the editor creates a Console.WriteLine();. Visual Studio comes with many code snippets, e.g.,
with the shortcuts do, for, forr, foreach, while for creating loops, equals for an implementation of the
Equals method, attribute and exception for creating Attribute- and Exception- derived types, and
many more. You can see all the code snippets available with the Code Snippets Manager (see Figure 17-22)
by selecting Tools ➪ Code Snippets Manager. You can also create custom snippets.

Visual Studio 2013 offers code snippets for XAML. Snippets are available at http://xamlsnippets.code-
plex.com.

learning and Understanding Other Windows
In addition to the code editor and Solution Explorer, Visual Studio provides a number of other windows that
enable you to view and/or manage your projects from different points of view.

c17.indd 433 30-01-2014 20:25:09

434 ❘ CHAPTER 17 Visual studio 2013

NOTE The rest of this section describes several other windows. If any of these windows
are not visible on your monitor, you can select it from the View menu. To show the
design view and code editor, right-click the filename in Solution Explorer and select
View Designer or View Code from the context menu, or select the item from the tool-
bar at the top of Solution Explorer. The design view and code editor share the same
tabbed window.

Using the Design View Window
If you are designing a user interface application, such as a WPF applica-
tion, Windows control library, or ASP.NET Web Forms application,
you can use the Design View window. This window presents a visual
overview of what your form will look like. You normally use the Design
View window in conjunction with a window known as the toolbox. The
toolbox contains a large number of .NET components that you can drag
onto your program. Toolbox components vary according to project type.
Figure 17-23 shows the items displayed within a WPF application.

To add your own custom categories to the toolbox, execute the following
steps:

 1. Right-click any category.

 2. Select Add Tab from the context menu.

You can also place other tools in the toolbox by selecting Choose Items
from the same context menu — this is particularly useful for adding your
own custom components or components from the .NET Framework that
are not present in the toolbox by default.

FIGURE 17-22

FIGURE 17-23

c17.indd 434 30-01-2014 20:25:09

Exploring and Coding a Project ❘ 435

Using the Properties Window
You know from the first part of the book that .NET classes can imple-
ment properties. The Properties window is available with projects, files,
and when selecting items using the Design view. Figure 17-24 shows the
Properties view with a Windows Service.

With this window you can see all the properties of an item and config-
ure it accordingly. Some properties can be changed by entering text in
a text box, others have predefined selections, and others have a custom
editor (such as the More Colors dialog for ASP.NET Web Forms, shown
in Figure 17-25). You can also add event handlers to events with the
Properties window.

With WPF applications, the Properties window looks very different, as
you can see in Figure 17-26. This window provides much more graphical
feedback and allows graphical configuration of the properties. If it looks
familiar, that might be because it originated in Expression Blend. As men-
tioned earlier, Visual Studio and Blend for Visual Studio have many similarities.

FIGURE 17-24

FIGURE 17-25 FIGURE 17-26

NOTE Interestingly, the standard Properties window is implemented as a System
.Windows.Forms.PropertyGrid instance, which internally uses the reflection tech-
nology described in Chapter 15, “Reflection,” to identify the properties and property
values to display.

Using the Class View Window
While the Solution Explorer can show classes and members of classes, that’s the normal job of the Class
View (see Figure 17-27). To invoke the class view, select View ➪ Class View. The Class View shows the hier-
archy of the namespaces and classes in your code. It provides a tree view that you can expand to see which
namespaces contain what classes, and what classes contain what members.

c17.indd 435 30-01-2014 20:25:10

436 ❘ CHAPTER 17 Visual studio 2013

A nice feature of the Class View is that if you right-click the
name of any item for which you have access to the source code,
then the context menu displays the Go To Definition option,
which takes you to the definition of the item in the code edi-
tor. Alternatively, you can do this by double-clicking the item
in Class View (or, indeed, by right-clicking the item you want
in the source code editor and choosing the same option from
the resulting context menu). The context menu also enables
you to add a field, method, property, or indexer to a class. In
other words, you specify the details for the relevant member
in a dialog, and the code is added for you. This feature can be
particularly useful for adding properties and indexers, as it can
save you quite a bit of typing.

Using the Object Browser Window
An important aspect of programming in the .NET environment
is being able to find out what methods and other code items are
available in the base classes and any other libraries that you
are referencing from your assembly. This feature is available
through a window called the Object Browser. You can access
this window by selecting Object Browser from the View menu in Visual Studio 2013. With this tool you
can browse for and select existing component sets, such as .NET 4.5.1, .NET 4.5, .NET 4.0, .NET 3.5, and
.NET for Windows Store apps, and view the classes and members of the classes that are available with this
subset. You can also select the Windows Runtime by selecting Windows in the Browse drop-down (as shown
in Figure 17-28) to find all namespaces, types, and methods of this native new API for Windows Store apps.

FIGURE 17-27

FIGURE 17-28

c17.indd 436 30-01-2014 20:25:10

Building a Project ❘ 437

Using the Server Explorer Window
You can use the Server Explorer window, shown in Figure 17-29, to find
out about aspects of the computers in your network while coding. With
the Servers section, you can find information about services running
(which is extremely useful in developing Windows Services), create new
performance counts, and access the event logs. The Data Connections
section enables not only connecting to existing databases and querying
data, but also creating a new database. Visual Studio 2013 also has a
lot of Windows Azure information built in to Server Explorer, including
options for Windows Azure Compute, Mobile Services, Storage, Service
Bus, and Virtual Machines.

Using the Document Outline
A window available with WPF applications is the Document Outline.
Figure 17-30 shows this window opened with an application from
Chapter 36, “Business Applications with WPF.” Here, you can view the
logical structure and hierarchy of the XAML elements, lock elements to
prevent changing them unintentionally, easily move elements within the
hierarchy, group elements within a new container element, and change
layout types.

With this tool you can also create XAML templates and graphically edit data binding.

Arranging Windows
While exploring Visual Studio, you might have noticed that many of the
windows have some interesting functionality more reminiscent of tool-
bars. In particular, they can all either float (also on a second display), or
they can be docked. When they are docked, they display an extra icon
that looks like a pin next to the minimize button in the top-right corner
of each window. This icon really does act like a pin — it can be used
to pin the window open. A pinned window (the pin is displayed verti-
cally), behaves just like the regular windows you are used to. When they
are unpinned, however (the pin is displayed horizontally), they remain
open only as long as they have the focus. As soon as they lose the
focus (because you clicked or moved your mouse somewhere else), they
smoothly retreat into the main border around the entire Visual Studio
application. Pinning and unpinning windows provides another way to
make the best use of the limited space on your screen.

BUIldING A PROjECT
Visual Studio is not only about coding your projects. It is actually an IDE that manages the full life cycle of
your project, including the building or compiling of your solutions. This section examines the options that
Visual Studio provides for building your project.

Building, Compiling, and Making Code
Before examining the various build options, it is important to clarify some terminology. You will often see
three different terms used in connection with the process of getting from your source code to some sort of
executable code: compiling, building, and making. The origin of these three terms reflects the fact that until
recently, the process of getting from source code to executable code involved more than one step (this is still
the case in C++). This was due in large part to the number of source files in a program.

FIGURE 17-29

FIGURE 17-30

c17.indd 437 30-01-2014 20:25:10

438 ❘ CHAPTER 17 Visual studio 2013

In C++, for example, each source file needs to be compiled individually. This results in what are known as
object files, each containing something like executable code, but where each object file relates to only one
source file. To generate an executable, these object files need to be linked together, a process that is officially
known as linking. The combined process was usually referred to — at least on the Windows platform — as
building your code. However, in C# terms the compiler is more sophisticated, able to read in and treat all
your source files as one block. Hence, there is not really a separate linking stage, so in the context of C#, the
terms compile and build are used interchangeably.

The term make basically means the same thing as build, although it is not really used in the context of C#.
The term make originated on old mainframe systems on which, when a project was composed of many
source files, a separate file would be written containing instructions to the compiler on how to build a
project — which files to include and what libraries to link to, and so on. This file was generally known as a
makefile and it is still quite standard on UNIX systems. The project file is in reality something like the old
makefile, it’s just a new advanced XML variant. You can use the MSBuild command with the project file
as input, and all the sources will be compiled. Using build files is very helpful on a separate build server on
which all developers check their code in, and overnight the build process is done.

debugging and Release Builds
The idea of having separate builds is very familiar to C++ developers, and to a lesser degree to those with a
Visual Basic background. The point here is that when you are debugging, you typically want your execut-
able to behave differently from when you are ready to ship the software. When you are ready to ship your
software, you want the executable to be as small and fast as possible. Unfortunately, these two requirements
are not compatible with your needs when you are debugging code, as explained in the following sections.

Optimization
High performance is achieved partly by the compiler’s many optimizations of the code. This means that
the compiler actively looks at your source code as it is compiling to identify places where it can modify the
precise details of what you are doing in a way that does not change the overall effect but makes things more
efficient. For example, suppose the compiler encountered the following source code:

double InchesToCm(double ins)
{
 return ins*2.54;
}

// later on in the code
Y = InchesToCm(X);

It might replace it with this:

Y = X * 2.54;

Similarly, it might replace,

{
 string message = "Hi";
 Console.WriteLine(message);
}

with this:

Console.WriteLine("Hi");

By doing so, the compiler bypasses having to declare any unnecessary object reference in the process.

It is not possible to exactly pin down what optimizations the C# compiler does — nor whether the two pre-
vious examples would actually occur with any particular situation — because those kinds of details are not
documented. (Chances are good that for managed languages such as C#, the previous optimizations would
occur at JIT compilation time, not when the C# compiler compiles source code to assembly.) Obviously,

c17.indd 438 30-01-2014 20:25:11

Building a Project ❘ 439

for proprietary reasons, companies that write compilers are usually quite reluctant to provide many details
about the tricks that their compilers use. Note that optimizations do not affect your source code — they
affect only the contents of the executable code. However, the previous examples should give you a good idea
of what to expect from optimizations.

The problem is that although optimizations like the examples just shown help a great deal in making your
code run faster, they are detrimental for debugging. In the first example, suppose that you want to set a
breakpoint inside the InchesToCm method to see what is going on in there. How can you possibly do that
if the executable code does not actually have an InchesToCm method because the compiler has removed it?
Moreover, how can you set a watch on the Message variable when that does not exist in the compiled
code either?

Debugger Symbols
During debugging, you often have to look at the values of variables, and you specify them by their source
code names. The trouble is that executable code generally does not contain those names — the compiler
replaces the names with memory addresses. .NET has modified this situation somewhat to the extent that
certain items in assemblies are stored with their names, but this is true of only a small minority of
items — such as public classes and methods — and those names will still be removed when the assembly is
JIT-compiled. Asking the debugger to tell you the value in the variable called HeightInInches is not going
to get you very far if, when the debugger examines the executable code, it sees only addresses and no refer-
ence to the name HeightInInches anywhere.

Therefore, to debug properly, you need to make extra debugging information available in the executable.
This information includes, among other things, names of variables and line information that enables the
debugger to match up which executable machine assembly language instructions correspond to your original
source code instructions. You will not, however, want that information in a release build, both for propri-
etary reasons (debugging information makes it a lot easier for other people to disassemble your code) and
because it increases the size of the executable.

Extra Source Code Debugging Commands
A related issue is that quite often while you are debugging there will be extra lines in your code to display
crucial debugging-related information. Obviously, you want the relevant commands removed entirely from
the executable before you ship the software. You could do this manually, but wouldn’t it be so much easier
if you could simply mark those statements in some way so that the compiler ignores them when it is compil-
ing your code to be shipped? You’ve already seen in the first part of the book how this can be done in C# by
defining a suitable processor symbol, and possibly using this in conjunction with the Conditional attribute,
giving you what is known as conditional compilation.

What all these factors add up to is that you need to compile almost all commercial software in a slightly dif-
ferent way when debugging than in the final product that is shipped. Visual Studio can handle this because,
as you have already seen, it stores details about all the options it is supposed to pass to the compiler when it
has your code compiled. All that Visual Studio has to do to support different types of builds is store more
than one set of such details. These different sets of build information are referred to as configurations.
When you create a project, Visual Studio automatically gives you two configurations, Debug and Release:

➤➤ Debug — This configuration commonly specifies that no optimizations are to take place, extra debug-
ging information is to be present in the executable, and the compiler is to assume that the debug pre-
processor symbol Debug is present unless it is explicitly #undefined in the source code.

➤➤ Release — This configuration specifies that the compiler should optimize the compilation, that there
should be no extra debugging information in the executable, and that the compiler should not assume
that any particular preprocessor symbol is present.

You can define your own configurations as well. You might want to do this, for example, to set up pro-
fessional-level builds and enterprise-level builds so that you can ship two versions of the software. In the
past, because of issues related to Unicode character encodings being supported on Windows NT but not on

c17.indd 439 30-01-2014 20:25:11

440 ❘ CHAPTER 17 Visual studio 2013

Windows 95, it was common for C++ projects to feature a Unicode configuration and an MBCS (multi-byte
character set) configuration.

Selecting a Configuration
At this point you might be wondering how Visual Studio, given that it stores details about more than one
configuration, determines which one to use when arranging for a project to be built. The answer is that
there is always an active configuration, which is the configuration that is used when you ask Visual Studio to
build a project. (Note that configurations are set for each project, rather than each solution.)

By default, when you create a project, the Debug configuration is the active configuration. You can change
which configuration is the active one by clicking the Build menu option and selecting the Configuration
Manager item. It is also available through a drop-down menu in the main Visual Studio toolbar.

Editing Configurations
In addition to choosing the active configuration, you can also examine and edit the configurations. To do
this, select the relevant project in Solution Explorer and then select Properties from the Project menu. This
brings up a sophisticated dialog. (Alternatively, you can access the same dialog by right-clicking the name of
the project in Solution Explorer and then selecting Properties from the context menu.)

This dialog contains a tabbed view that enables you to select many different general areas to examine or
edit. Space does not permit showing all of these areas, but this section outlines a couple of the most impor-
tant ones.

Figure 17-31 shows a tabbed view of the available properties for a particular application. This screenshot
shows the general application settings for the ConsoleApplication1 project that you created earlier in the
chapter.

FIGURE 17-31

c17.indd 440 30-01-2014 20:25:11

Debugging Your Code ❘ 441

Among the points to note are that you can select the name of the assembly as well as the type of assembly
to be generated. The options here are Console Application, Windows Application, and Class Library. Of
course, you can change the assembly type if you want (though arguably, you might wonder why you did not
pick the correct project type when you asked Visual Studio to generate the project for you in the first place)!

Figure 17-32 shows the build configuration properties. Note that a list box near the top of the dialog
enables you to specify which configuration you want to look at. You can see — in the case of the Debug
configuration — that the compiler assumes that the DEBUG and TRACE preprocessor symbols have been
defined. In addition, the code is not optimized and extra debugging information is generated.

FIGURE 17-32

In general, you won’t need to adjust the configuration settings; but if you ever do need to modify them, you
are now familiar with the different available configuration properties.

dEBUGGING yOUR COdE
At this point, you are ready to run and debug the application. In C#, as in pre-.NET languages, the main
technique involved in debugging is simply setting breakpoints and using them to examine what is going on
in your code at a certain point in its execution.

Setting Breakpoints
You can set breakpoints from Visual Studio on any line of your code that is actually executed. The simplest
way is to click the line in the code editor, within the shaded area near the far left of the document window
(or press the F9 key when the appropriate line is selected). This sets up a breakpoint on that particular line,

c17.indd 441 30-01-2014 20:25:12

442 ❘ CHAPTER 17 Visual studio 2013

which pauses execution and transfers control to the debugger as soon as that line is reached in the execution
process. As in previous versions of Visual Studio, a breakpoint is indicated by a red circle to the left of the
line in the code editor. Visual Studio also highlights the line by displaying the text and background in a dif-
ferent color. Clicking the circle again removes the breakpoint.

If breaking every time at a particular line is not adequate for your particular problem, you can also set
conditional breakpoints. To do this, select Debug ➪ Windows ➪ Breakpoints. This brings up a dialog
that requests details about the breakpoint you want to set. Among the options available, you can do the
following:

➤➤ Specify that execution should break only after the breakpoint has been passed a certain number of
times.

➤➤ Specify that the breakpoint should be activated only after the line has been reached a defined number
of times — for example, every twentieth time a line is executed. (This is useful when debugging large
loops.)

➤➤ Set the breakpoints relative to a variable, rather than an instruction. In this case, the value of the
variable will be monitored and the breakpoints triggered whenever the value of this variable changes.
You might find, however, that using this option slows down your code considerably. Checking whether
the value of a variable has changed after every instruction adds a lot of processor time.

With this dialog you also have the option to export and import breakpoint settings, which is useful for
working with different breakpoint arrangements depending on what scenario you want to debug into, and
to store the debug settings.

Using data Tips and debugger Visualizers
After a breakpoint has been hit, you will usually want to investigate the values of variables. The simplest
way to do this is to hover the mouse cursor over the name of the variable in the code editor. This causes a
little data tip box that shows the value of that variable to pop up, which can also be expanded for greater
detail. This data tip box is shown in Figure 17-33.

FIGURE 17-33

c17.indd 442 30-01-2014 20:25:12

Debugging Your Code ❘ 443

Some of the values shown in the data tip offer a magnifying glass. Clicking this magnifying class provides
one or more options to use a debugger visualizer — depending on the type. With WPF controls, the WPF
Visualizer enables you to take a closer look at the control (see Figure 17-34). With this visualizer you can
view the visual tree that is used during runtime, including all the actual property settings. This visual tree
also gives you a preview of the element that you select within the tree.

FIGURE 17-34

Figure 17-35 shows the XML Visualizer, which displays XML content. Many other visualizers are avail-
able as well, such as HTML and Text visualizers, and visualizers that display the content of a DataTable or
DataSet.

FIGURE 17-35

c17.indd 443 30-01-2014 20:25:12

444 ❘ CHAPTER 17 Visual studio 2013

Monitoring and Changing Variables
Sometimes you might prefer to have a more continuous look at values. For that you can use the Autos,
Locals, and Watch windows to examine the contents of variables. Each of these windows is designed to
monitor different variables:

➤➤ Autos — Monitors the last few variables that have been accessed as the program was executing.

➤➤ Locals — Monitors variables that are accessible in the method currently being executed.

➤➤ Watch — Monitors any variables that you have explicitly specified by typing their names into the
Watch window. You can drag and drop variables to the Watch window.

These windows are only visible when the program is running under the debugger. If you do not see them,
select Debug ➪ Windows, and then select the desired menu. The Watch window offers four different win-
dows in case there’s so much to watch and you want to group that. With all these windows you can both
watch and change the values, enabling you to try different paths in the program without leaving the debug-
ger. The Locals window is shown in Figure 17-36.

FIGURE 17-36

Another window that doesn’t directly relate to the other windows discussed, but is still an important one on
monitoring and changing variables is the Immediate window. This window also enables looking at variable
values. You can use this window to enter code and run it. This is very helpful when doing some tests during
a debug session, enabling you to hone in on details, try a method out, and change a debug run dynamically.

Exceptions
Exceptions are great when you are ready to ship your application, ensuring that error conditions are handled
appropriately. Used well, they can ensure that users are never presented with technical or annoying dialogs.
Unfortunately, exceptions are not so great when you are trying to debug your application. The problem is
twofold:

➤➤ If an exception occurs when you are debugging, you often do not want it to be handled automatically —
especially if automatically handling it means retiring gracefully and terminating execution! Rather,
you want the debugger to help you determine why the exception has occurred. Of course, if you have
written good, robust, defensive code, your program will automatically handle almost anything —
including the bugs that you want to detect!

➤➤ If an exception for which you have not written a handler occurs, the .NET runtime will still search
for one. Unfortunately, by the time it discovers there isn’t one, it will have terminated your program.
There will not be a call stack left, and you will not be able to look at the values of any of your vari-
ables because they will all have gone out of scope.

c17.indd 444 30-01-2014 20:25:13

Debugging Your Code ❘ 445

Of course, you can set breakpoints in your catch blocks, but that often does not help very much because
when the catch block is reached, flow of execution will, by definition, have exited the corresponding try
block. That means the variables you probably wanted to examine the values of, to figure out what has gone
wrong, will have gone out of scope. You will not even be able to look at the stack trace to find what method
was being executed when the throw statement occurred, because control will have left that method. Setting
the breakpoints at the throw statement will obviously solve this; but if you are coding defensively, there will
be many throw statements in your code. How can you tell which one threw the exception?

Visual Studio provides a very neat answer to all of this. In the main Debug menu is an item called
Exceptions. Clicking this item opens the Exceptions dialog (see Figure 17-37), where you can specify what
happens when an exception is thrown. You can choose to continue execution or to stop and start
debugging — in which case execution stops and the debugger steps in at the throw statement.

FIGURE 17-37

What makes this a really powerful tool is that you can customize the behavior according to which class of
exception is thrown. You can configure to break into the debugger whenever it encounters any exception
thrown by a .NET base class, but not to break into the debugger for specific exception types.

Visual Studio is aware of all the exception classes available in the .NET base classes, and of quite a few
exceptions that can be thrown outside the .NET environment. Visual Studio is not automatically aware
of any custom exception classes that you write, but you can manually add your exception classes to the list,
and specify which of your exceptions should cause execution to stop immediately. To do this, just click the
Add button (which is enabled when you have selected a top-level node from the tree) and type in the name of
your exception class.

Multithreading
Visual Studio also offers great support for debugging multithreaded programs. When debugging multi-
threaded programs, you must understand that the program behaves differently depending on whether it is
running in the debugger or not. If you reach a breakpoint, Visual Studio stops all threads of the program,
so you have the chance to access the current state of all the threads. To switch between different threads you
can enable the Debug Location toolbar. This toolbar contains a combo box for all processes and another
combo box for all threads of the running application. Selecting a different thread you’ll find the code line
where the thread currently halts, and the variables currently accessible from different threads. The Parallel
Tasks window (shown in Figure 17-38) shows all running tasks, including their status, location, task name,

c17.indd 445 30-01-2014 20:25:13

446 ❘ CHAPTER 17 Visual studio 2013

the current thread that’s used by the task, the application domain, and the process identifier. This window
also indicates when different threads block each other, causing a deadlock.

Figure 17-39 shows the Parallel Stacks window, where you can see different threads or tasks (depending on
the selection) in a hierarchical view. You can jump to the source code directly by clicking the task or thread.

FIGURE 17-38

FIGURE 17-39

IntelliTrace
Another great debugging feature is IntelliTrace, which is
available only with Visual Studio 2013 Ultimate Edition.
IntelliTrace, also known as historical debugging, provides
historical information. Hitting a breakpoint, you can have a
look at previous information in time (see Figure 17-40),
such as previous breakpoints, exceptions that were thrown,
database access, ASP.NET events, tracing, or gestures from
a user such as clicking a button. By clicking on previous
events you can have a look at local variables, the call stack,
and method calls that were done. This makes it easy to find
problems without restarting a debug session and setting
breakpoints to methods that have been invoked before seeing
the issue.

NOTE In case you’re experiencing slow debugging, turning off IntelliTrace might help.

FIGURE 17-40

c17.indd 446 30-01-2014 20:25:13

Refactoring Tools ❘ 447

REFACTORING TOOlS
Many developers develop their applications first for functionality; then, once the functionality is in place,
they rework their applications to make them more manageable and more readable. This process is called
refactoring. Refactoring involves reworking code for readability and performance, providing type safety,
and ensuring that applications adhere to standard OO (object-oriented) programming practices. Reworking
also happens when updates are made to applications.

The C# environment of Visual Studio 2013 includes a set of refactoring tools, which you can find under the
Refactoring option in the Visual Studio menu. To see this in action, create a new class called Car in Visual
Studio:

namespace ConsoleApplication1
{
 public class Car
 {
 public string color;
 public string doors;

 public int Go()
 {
 int speedMph = 100;
 return speedMph;
 }
 }
}

Now suppose that for the purpose of refactoring, you want to change the code a bit so that the color and
door variables are encapsulated in public .NET properties. The refactoring capabilities of Visual Studio
2013 enable you to simply right-click either of these properties in the document window and select Refactor
➪ Encapsulate Field. This will pull up the Encapsulate Field dialog, shown in Figure 17-41.

From this dialog you can provide the name of the property and click the OK button, which changes the
selected public field into a private field, while also encapsulating the field in a public .NET property. After
you click OK, the code is reworked into the following (after redoing both fields):

namespace ConsoleApplication1
{
 public class Car
 {
 private string color;
 public string Color
 {
 get { return color; }
 set { color = value; }
 }
 private string doors;
 public string Doors
 {
 get { return doors; }
 set { doors = value; }
 }

 public int Go()
 {
 int speedMph = 100;
 return speedMph;
 }
 }
}

FIGURE 17-41

c17.indd 447 30-01-2014 20:25:14

448 ❘ CHAPTER 17 Visual studio 2013

As you can see, these wizards make it quite simple to refactor your code — not only on one page but
throughout an entire application. Also included are capabilities to do the following:

➤➤ Rename method names, local variables, fields, and more

➤➤ Extract methods from a selection of code

➤➤ Extract interfaces based on a set of existing type members

➤➤ Promote local variables to parameters

➤➤ Rename or reorder parameters

You will find that the refactoring capabilities provided by Visual Studio 2013 offer a great way to get
cleaner, more readable, and better-structured code.

ARCHITECTURE TOOlS
Before starting with coding programs, you should have an architectural viewpoint to your solution, ana-
lyze requirements, and define a solution architecture. Architecture tools are available with Visual Studio
Ultimate 2013. Reading the diagrams is also possible with Visual Studio Premium 2013.

Figure 17-42 shows the Add New Item dialog that appears after creating a modeling project. It provides
options to create a UML use-case diagram, a class diagram, a sequence diagram, and an activity diagram.
The standard UML diagrams are not discussed in this chapter, as you can find several books covering
this group. Instead, this section looks at two Microsoft-specific diagrams: Directed Graph Document (or
Dependency Graph) and Layer Diagram.

FIGURE 17-42

dependency Graph
With the dependency graph you can see dependencies between assemblies, classes, and even members of
classes. Figure 17-43 shows the dependency graph of a Calculator example from Chapter 30, “Managed
Extensibility Framework” that includes a calculator hosting application and several libraries, such as a con-
tract assembly and the add-in assemblies SimpleCalculator, FuelEconomy, and TemperatureConversion.
The dependency graph is created by selecting Architecture ➪ Generate Dependency Graph ➪ For Solution.
This activity analyzes all projects of the solution, displaying all the assemblies in a single diagram and draw-
ing lines between the assemblies to show dependencies. In Figure 17-43 the external dependencies have been
removed to show only the dependencies between the assemblies of the solution. The varying thickness of

c17.indd 448 30-01-2014 20:25:14

Architecture Tools ❘ 449

FIGURE 17-43

the lines between the assemblies reflects the degree of dependency. An assembly contains several types and
members of types, and a number of types and its members are used from other assemblies.

You can dig deeper into the dependencies too. Figure 17-44 shows a more detailed diagram, including the
classes of the Calculator assembly and their dependencies. The dependency on the CalculatorContract
assembly is shown here as well. For simplicity, other assemblies have been removed from the diagram. In a
large graph you can also zoom in and out of several parts of the graph.

You can even go deeper, displaying fields, properties, methods, and events, and how they depend on each other.

FIGURE 17-44

c17.indd 449 30-01-2014 20:25:14

450 ❘ CHAPTER 17 Visual studio 2013

layer diagram
The layer diagram is very much related to the dependency graph. You can create the layer diagram out of the
dependency graph (or from Solution Explorer by selecting assemblies or classes), or create the layer diagram
from scratch before doing any development.

Different layers can define client and server parts in a distributed solution, e.g., a layer for a Windows appli-
cation, one for the service, and one for the data access library, or layers based on assemblies. A layer can
also contain other layers.

Figure 17-45 shows a layer diagram with the main layers Calculator UI, CalculatorUtils, Contracts,
and AddIns. The AddIns layer contains inner layers FuelEconomy, TemperatureConversion, and
Calculator. The number that’s displayed with the layer reflects the number of items that are linked to
that layer.

To create a layer diagram, select Architecture ➪ New Diagram ➪ Layer Diagram. This creates an empty
diagram to which you can add layers from the toolbox or the Architecture Explorer. The Architecture
Explorer contains a Solution View and a Class View from which you can select all items of the solution to
add them to the layer diagram. Selecting items and dragging them to the layer is all you need to build the
layer diagram. Selecting a layer and clicking the context menu View Links opens the Layer Explorer, shown
in Figure 17-46, which displays all the items contained in the selected layer(s).

FIGURE 17-45

FIGURE 17-46

c17.indd 450 30-01-2014 20:25:15

Analyzing Applications ❘ 451

During application development, the layer diagram can be validated to analyze whether all the dependen-
cies are on track. If a layer has a dependency in a wrong direction, or has a dependency on a layer that it
shouldn’t, this architecture validation returns with errors.

ANAlyzING APPlICATIONS
The architectural diagrams discussed in the preceding section — the dependency graph and the layer dia-
gram — are not only of interest before the coding starts, they also help in analyzing the application and
keeping it on the right track to ensure that it doesn’t generate inaccurate dependencies. There are many more
useful tools available with Visual Studio 2013 that can help you analyze and proactively troubleshoot your
application. This section looks at some of these Visual Studio analysis tools.

Code Map
The Code Map is a great new tool that helps you understand code. This tool shows methods, properties,
fields, variables, and events and how they relate together in interaction (see Figure 17-47).

An easy way to build up the code map for the parts of the code that are of special interest is to run the
debugger and click the items of interest, which opens the Show on Code Map context menu. This way the
map is not overblown with information but just shows the aspects that are now of interest.

There are different ways to create the code map. Besides building it up while running the debugger, you can
also create a code map by clicking elements in the source code without the debugger running. You can also
use the Solution Explorer and add items to the code map from there.

FIGURE 17-47

c17.indd 451 30-01-2014 20:25:15

452 ❘ CHAPTER 17 Visual studio 2013

Sequence diagram
To better understand a single method, you can create a sequence diagram from the method. Sequence dia-
grams can be created directly from within the editor by clicking a method name and selecting the context
menu Generate Sequence Diagram. Within the dialog to create the sequence diagram, you can specify the
call depth for the analysis; whether you want to include calls from the current project, the solution, or the
solution and external references; and whether calls to properties and System objects should be excluded.

The sample diagram shown in Figure 17-48 is created from the WPFCalculator project created in the
Managed Extensibility Framework sample in Chapter 30. It illustrates the sequence diagram of the
method OnCalculate. Here, you can see that OnCalculate is an instance method in the MainWindow. At
first, a condition is checked that verifies the length of currentOperands, and only continues if the value
is 2. If this is successful, InvokeCalculatorAsync is invoked on the CalculatorManager class. The
CalculatorManger class invokes the Run method of the Task type, and a deferred call started from the Run
method invokes the Operate method on some object that implements the ICalculator interface.

FIGURE 17-48

Profiler
To analyze a complete run of the application, you can use the profiler. This performance tool enables you
to find what methods are called, how often, how much time is spent in what methods, how much memory
is used, and much more. An easy way to start using profiling is to open the Performance Wizard by select-
ing Analyze ➪ Performance and Diagnostics and clicking the Start button. Figure 17-49 shows the differ-
ent profiling methods available. The first option, which has the least overhead, is CPU sampling. Using this
option, performance information is sampled after specific time intervals. You don’t see all method calls

c17.indd 452 30-01-2014 20:25:15

Analyzing Applications ❘ 453

invoked, in particular if they are running just for a short time. Again, the advantage of this option is low
overhead. When running a profiling session, you must always be aware that you’re monitoring not only the
performance of the application, but the performance of getting the data. You shouldn’t profile all data at
once, as sampling all of the data influences the outcome. Collecting information about .NET memory allo-
cation helps you identify memory leaks and provides information about what type of objects need how much
memory. Resource contention data helps with the analysis of threads, enabling you to easily identify whether
different threads block each other.

FIGURE 17-49

After configuring the options in the Performance Explorer, you can immediately start the application and
run profiling after exiting the wizard. You can also change some options afterward by modifying the prop-
erties of a profiling setting. Using these settings, you can decide to add memory profiling with an instrumen-
tation session, and add CPU counters and Windows counters to the profiling session to see this information
in conjunction with the other profiled data.

Figure 17-50 shows the summary screen of a profiling session. Here you can see CPU usage by the applica-
tion, a hot path indicating which functions are taking the most time, and a sorted list of the functions that
have used the most CPU time.

The profiler has many more screens, too many to show here. One view is a function view that you can sort
based on the number of calls made to the function, or the elapsed inclusive and exclusive times used by the
function. This information can help you identify methods deserving of another look in terms of perfor-
mance, while others might not be worthwhile because they are not called very often or they do not take an
inordinate amount of time.

Clicking within a function, you can invoke details about it, as shown in Figure 17-51. This enables you to
see which functions are called and immediately step into the source code. The Caller/Callee view also pro-
vides information about what functions have been called by what function.

Profiling is available with Visual Studio Professional Edition. Using the Premium Edition, you can configure
tier interaction profiling that enables you to view the SQL statements generated and the time spent on
ADO.NET queries, as well as information on ASP.NET pages.

c17.indd 453 30-01-2014 20:25:16

454 ❘ CHAPTER 17 Visual studio 2013

FIGURE 17-50

FIGURE 17-51

Concurrency Visualizer
The Concurrency Visualizer helps you to analyze threading issues with applications. Running this analyzer
tool provides a summary screen like the one shown in Figure 17-52. Here, you can compare the amount of
CPU needed by the application with overall system performance. You can also switch to a Threads view
that displays information about all the running application threads and what state they were in over time.

c17.indd 454 30-01-2014 20:25:16

Analyzing Applications ❘ 455

Switching to the Cores view displays information about how many cores have been used. If your application
just makes use of one CPU core and it is busy all the time, adding some parallelism features might improve
performance by making use of more cores. You might see that different threads are active over time but
only one thread is active at any given point in time. In that case, you should probably change your locking
behavior. You can also see if threads are working on I/O. If the I/O rate is high with multiple threads, the
disk might be the bottleneck and threads just wait on each other to complete I/O. This behavior might war-
rant reducing the number of threads doing I/O, or using an SSD drive. Clearly, these analysis tools provide a
great deal of useful information.

FIGURE 17-52

NOTE With Visual Studio 2013, you need to download and install the Concurrency
Visualizer via Tools ➪ Extensions and Updates.

Code Analysis
You can verify the code with code analysis rules. Static code analysis is available with the Professional
Edition of Visual Studio 2013. Clicking the properties of a project, you can see the Code Analysis tab,
where you can select and edit a set of code analysis rules that should be run upon building the
project, or with a separate start of Run Code Analysis. A single rule set can be configured as shown in
Figure 17-53. With the rule set you can also specify whether the rule should result in a warning or an error.

c17.indd 455 30-01-2014 20:25:16

456 ❘ CHAPTER 17 Visual studio 2013

FIGURE 17-53

Before running the code analysis, you should define the rules that apply. Microsoft defines various rule
sets for predefined rules, such as Microsoft Managed Recommended Rules or Microsoft Extended Design
Guideline Rules. You can create your own rule set, or define the rule set to use. Even when applying a rule
set, you might not agree with some of the rules, which is fine. You can configure the rule set to exclude that
rule and/or add custom rules that fit your needs. You can also suppress rules, either on a per-project basis or
just with classes or methods where the rule applies. For example, suppose one rule specifies that the spelling
of Wrox should match what is used in the namespace. The spell-checking that is used by Visual Studio does
not include “Wrox.” However, this term should be allowed as a namespace name. To not receive an error
message for this term, you can ignore the rule. When the error comes up with the Analysis window, the
erroneous rule can be selected to be suppressed. On suppression, either an attribute is added to the identifier
where the error occurred or the rule is suppressed globally with the application in GlobalSuppressions.cs:

 [assembly: System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Naming",
 "CA1704:IdentifiersShouldBeSpelledCorrectly", MessageId = "Wrox",
 Scope = "namespace", Target = "Wrox.ProCSharp.MEF")]

Code Metrics
Checking code metrics provides information about how maintainable the code is. The code metrics shown
in Figure 17-54 display a maintainability index for the complete Calculator library of 82, and includes
details about every class and method. These ratings are color-coded: A red rating, in the range of 0 to 9,
means low maintainability; a yellow rating, in the range of 10 to 19, means moderate maintainability; and
a green rating, in the range of 20 to 100, means high maintainability. The cyclomatic complexity provides
feedback about the different code paths. More code paths means more unit tests are required to go through
every option. The depth of inheritance reflects the hierarchy of the types. The greater the number of base
classes, the harder it is to find the one to which a field belongs. The value for class coupling indicates how
tightly types are coupled, e.g., used with parameters or locals. More coupling means more complexity in
terms of maintaining the code.

c17.indd 456 30-01-2014 20:25:17

Unit Tests ❘ 457

FIGURE 17-54

UNIT TESTS
Writing unit tests helps with code maintenance. For example, when performing a code update, you want to
be confident that the update won’t break something else. Having automatic unit tests in place helps to ensure
that all functionality is retained after code changes are made. Visual Studio 2013 offers a robust unit testing
framework.

Creating Unit Tests
The following example tests a very simple method. The class DeepThought contains the
TheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything method, which returns 42 as a
result. To ensure that nobody changes the method to return a wrong result (maybe someone who didn’t read
The Hitchhiker’s Guide to the Galaxy), a unit test is created:

 public class DeepThought
 {
 public int TheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything()
 {
 return 42;
 }
 }

To create a unit test, the Unit Test Project template is available within the group of Visual C# projects. A
unit test class is marked with the TestClass attribute, and a test method with the TestMethod attribute.
The implementation creates an instance of DeepThought and invokes the method that is to be tested,
TheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything. The return value is compared
with the value 42 using Assert.AreEqual. In case Assert.AreEqual fails, the test fails:

 [TestClass]
 public class TestProgram
 {
 [TestMethod]
 public void
 TestTheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything()
 {
 int expected = 42;
 DeepThought f1 = new DeepThought();
 int actual =
 f1.TheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything();
 Assert.AreEqual(expected, actual);
 }

Running Unit Tests
Using the Test Explorer (opened via Test ➪ Windows ➪ Test Explorer), you can run the tests from the solu-
tion (see Figure 17-55).

Figure 17-56 shows a failed test, which includes all details about the failure.

c17.indd 457 30-01-2014 20:25:17

458 ❘ CHAPTER 17 Visual studio 2013

FIGURE 17-55

FIGURE 17-56

Of course, this was a very simple scenario; the tests are not usually that simple. For example, methods can
throw exceptions; they can have different routes to return other values; and they can make use of other code
(e.g., database access code, or services that are invoked) that shouldn’t be tested with the single unit. Now
you’ll look at a more involved scenario for unit testing.

The following class StringSample defines a constructor with a string parameter and contains the method
GetStringDemo, which uses different paths depending on the first and second parameter and returns a
string that results from these parameters, and a field member of the class:

 public class StringSample
 {
 public StringSample(string init)
 {
 if (init == null)
 throw new ArgumentNullException("init");
 this.init = init;
 }
 private string init;
 public string GetStringDemo(string first, string second)
 {
 if (first == null)
 throw new ArgumentNullException("first");
 if (string.IsNullOrEmpty(first))
 throw new ArgumentException("empty string is not allowed", first);
 if (second == null)
 throw new ArgumentNullException("second");
 if (second.Length > first.Length)
 throw new ArgumentOutOfRangeException("second",
 "must be shorter than first");
 int startIndex = first.IndexOf(second);
 if (startIndex < 0)

c17.indd 458 30-01-2014 20:25:17

Unit Tests ❘ 459

 {
 return string.Format("{0} not found in {1}", second, first);
 }
 else if (startIndex < 5)
 {
 return string.Format("removed {0} from {1}: {2}", second, first,
 first.Remove(startIndex, second.Length));
 }
 else
 {
 return init.ToUpperInvariant();
 }
 }
 }

A unit test should test every possible execution route, and check for exceptions, discussed next.

Expecting Exceptions
When invoking the constructor of the StringSample class and calling the method GetStringDemo with
null, an ArgumentNullException is expected. This can be done with testing code easily, applying the
ExpectedException attribute to the test method as shown in the following example. This way, the test
method succeeds with the exception:

 [TestMethod]
 [ExpectedException(typeof(ArgumentNullException))]
 public void TestStringSampleNull()
 {
 StringSample sample = new StringSample(null);
 }

The exception thrown by the GetStringDemo method can be dealt with similarly.

Testing All Code Paths
To test all code paths, multiple tests can be created, with each one taking a different route. The following
test sample passes the strings a and b to the GetStringDemo method. Because the second string is not con-
tained within the first string, the first path of the if statement applies. The result is checked accordingly:

 [TestMethod]
 public void GetStringDemoAB()
 {
 string expected = "b not found in a";
 StringSample sample = new StringSample(String.Empty);
 string actual = sample.GetStringDemo("a", "b");
 Assert.AreEqual(expected, actual);
 }

The next test method verifies another path of the GetStringDemo method. Here, the second string is
found in the first one, and the index is lower than 5; therefore, it results in the second code block of the if
statement:

 [TestMethod]
 public void GetStringDemoABCDBC()
 {
 string expected = "removed bc from abcd: ad";
 StringSample sample = new StringSample(String.Empty);
 string actual = sample.GetStringDemo("abcd", "bc");
 Assert.AreEqual(expected, actual);
 }

All other code paths can be tested similarly. To see what code is covered by unit tests, and what code is still
missing, you can open the Code Coverage Results window, shown in Figure 17-57.

c17.indd 459 30-01-2014 20:25:18

460 ❘ CHAPTER 17 Visual studio 2013

FIGURE 17-57

External dependencies
Many methods are dependent on some functionality outside of the application’s control, e.g., calling a web
service or accessing a database. Maybe the service or database is not available during some test runs, which
tests the availability of these external resources. Or worse, maybe the database or service returns different
data over time, and it’s hard to compare this with expected data. This must be excluded from the unit test.

The following example is dependent on some functionality outside. The method ChampionsByCountry
accesses an XML file from a web server that contains a list of Formula-1 world champions with Firstname,
Lastname, Wins, and Country elements. This list is filtered by country, and numerically ordered using the
value from the Wins element. The returned data is an XElement that contains converted XML code:

 public XElement ChampionsByCountry(string country)
 {
 XElement champions = XElement.Load(
 "http://www.cninnovation.com/downloads/Racers.xml");
 var q = from r in champions.Elements("Racer")
 where r.Element("Country").Value == country
 orderby int.Parse(r.Element("Wins").Value) descending
 select new XElement("Racer",
 new XAttribute("Name", r.Element("Firstname").Value + " " +
 r.Element("Lastname").Value),
 new XAttribute("Country", r.Element("Country").Value),
 new XAttribute("Wins", r.Element("Wins").Value));
 return new XElement("Racers", q.ToArray());
 }

NOTE For more information on LINQ to XML, read Chapter 34, “Manipulating
XML.”

For this method a unit test should be done. The test should not be dependent on the source from the server.
Server unavailability is one issue, but it can also be expected that the data on the server changes over time
to return new champions, and other values. The current test should ensure that filtering is done as expected,
returning a correctly filtered list, and in the correct order.

One way to create a unit test that is independent of the data source is to refactor the implementation of the
ChampionsByCountry method by using a factory that returns an XElement to replace the XElement.Load
method with something that can be independent of the data source. The interface IChampionsLoader
defines an interface with the method LoadChampions that can replace the aforementioned method:

 public interface IChampionsLoader
 {
 XElement LoadChampions();
 }

c17.indd 460 30-01-2014 20:25:18

Unit Tests ❘ 461

The class ChampionsLoader, which implements the interface IChampionsLoader, implements the interface
by using the XElement.Load method:

 public class ChampionsLoader : IChampionsLoader
 {
 public XElement LoadChampions()
 {
 return XElement.Load("http://www.cninnovation.com/downloads/Racers.xml");
 }
 }

Now it’s possible to change the implementation of the ChampionsByCountry method (the new method is
named ChampionsByCountry2 to make both variants available for unit testing) by using an interface to load
the champions instead of using XElement.Load directly. The IChampionsLoader is passed with the con-
structor of the class Formula1, and this loader is then used by ChampionsByCountry2:

 public class Formula1
 {
 private IChampionsLoader loader;
 public Formula1(IChampionsLoader loader)
 {
 this.loader = loader;
 }
 public XElement ChampionsByCountry2(string country)
 {
 var q = from r in loader.LoadChampions().Elements("Racer")
 where r.Element("Country").Value == country
 orderby int.Parse(r.Element("Wins").Value) descending
 select new XElement("Racer",
 new XAttribute("Name", r.Element("Firstname").Value + " " +
 r.Element("Lastname").Value),
 new XAttribute("Country", r.Element("Country").Value),
 new XAttribute("Wins", r.Element("Wins").Value));
 return new XElement("Racers", q.ToArray());
 }
 }

With a typical implementation, a ChampionsLoader instance would be passed to the Formula1 constructor
to retrieve the racers from the server.

When creating the unit test, a custom method can be implemented that returns sample Formula-1 champi-
ons, as shown in the method Formula1SampleData:

 internal static string Formula1SampleData()
 {
 return @"
<Racers>
 <Racer>
 <Firstname>Nelson</Firstname>
 <Lastname>Piquet</Lastname>
 <Country>Brazil</Country>
 <Starts>204</Starts>
 <Wins>23</Wins>
 </Racer>
 <Racer>
 <Firstname>Ayrton</Firstname>
 <Lastname>Senna</Lastname>
 <Country>Brazil</Country>
 <Starts>161</Starts>
 <Wins>41</Wins>
 </Racer>
 <Racer>
 <Firstname>Nigel</Firstname>
 <Lastname>Mansell</Lastname>

c17.indd 461 30-01-2014 20:25:18

462 ❘ CHAPTER 17 Visual studio 2013

 <Country>England</Country>
 <Starts>187</Starts>
 <Wins>31</Wins>
 </Racer>
 //... more sample data

For verifying the results that should be returned, verification data is created that matches the request with
the sample data to the Formula1VerificationData method:

 internal static XElement Formula1VerificationData()
 {
 return XElement.Parse(@"
<Racers>
 <Racer Name=""Mika Hakkinen"" Country=""Finland"" Wins=""20"" />
 <Racer Name=""Kimi Raikkonen"" Country=""Finland"" Wins=""18"" />
</Racers>");
 }

The loader of the test data implements the same interface — IChampionsLoader — as the
ChampionsLoader class. This loader just makes use of the sample data; it doesn’t access the web server:

 public class F1TestLoader : IChampionsLoader
 {
 public XElement LoadChampions()
 {
 return XElement.Parse(Formula1SampleData());
 }
 }

Now it’s easy to create a unit test that makes use of the sample data:

 [TestMethod]
 public void TestChampionsByCountry2()
 {
 Formula1 f1 = new Formula1(new F1TestLoader());
 XElement actual = f1.ChampionsByCountry2("Finland");
 Assert.AreEqual(Formula1VerificationData().ToString(),
 actual.ToString());
 }

Of course, a real test should not only cover a case that passes Finland as a string and two champions are
returned with the test data. Other tests should be written to pass a string with no matching result, a case in
which more than two champions are returned, and probably a case in which the number sort order would be
different from the alphanumeric sort order.

Fakes Framework
It’s not always possible to refactor the method that should be tested to be independent of a data source. This is
when the Fakes Framework becomes very useful. This framework is part of Visual Studio Ultimate Edition.

The ChampionsByCountry method is tested as it was before. The implementation makes use of XElement
.Load, which directly accesses a file on the web server. The Fakes Framework enables you to change the
implementation of the ChampionsByCountry method just for the testing case by replacing the XElement
.Load method with something else:

 public XElement ChampionsByCountry(string country)
 {
 XElement champions = XElement.Load(
 "http://www.cninnovation.com/downloads/Racers.xml");
 var q = from r in champions.Elements("Racer")
 where r.Element("Country").Value == country
 orderby int.Parse(r.Element("Wins").Value) descending
 select new XElement("Racer",
 new XAttribute("Name", r.Element("Firstname").Value + " " +

c17.indd 462 30-01-2014 20:25:18

Windows Store Apps, WCF, WF, and More ❘ 463

 r.Element("Lastname").Value),
 new XAttribute("Country", r.Element("Country").Value),
 new XAttribute("Wins", r.Element("Wins").Value));
 return new XElement("Racers", q.ToArray());
 }

To use the Fakes Framework with the references of the unit testing project, select the assembly that contains
the XElement class. XElement is within the System.Xml.Linq assembly. Opening the context menu while
the System.Xml.Linq assembly is selected provides the menu option Add Fakes Assembly. Selecting this
creates the System.Xml.Linq.4.0.0.0.Fakes assembly, which contains shim classes in the namespace
System.Xml.Linq.Fakes. You will find all the types of the System.Xml.Linq assembly with a shimmed
version, e.g., ShimXAttribute for XAttribute, and ShimXDocument for XDocument. For the example, only
ShimXElement is needed. ShimXElement contains a member for every public overloaded member of the
XElement class. The Load method of XElement is overloaded to receive a string, a Stream, a TextReader,
and an XmlReader, and overloads exist with a second LoadOptions parameter. ShimXElement defines mem-
bers named LoadString, LoadStream, LoadTextReader, LoadXmlReader, and others with LoadOptions as
well, such as LoadStringLoadOptions and LoadStreamLoadOptions. All these members are of a delegate
type that allows specifying a custom method that should be invoked in place of the method call in the
method that should be tested. The unit test method TestChampionsByCountry replaces the XElement.Load
method with one parameter in the Formula1.ChampionsByCountry method with the call to XElement
.Parse, accessing the sample data. ShimXElement.LoadString specifies the new implementation. Using
shims, it’s necessary to create a context, which you can do using ShimsContext.Create. The context is
active until the Dispose method is invoked by the end of the using block:

 [TestMethod]
 public void TestChampionsByCountry()
 {
 using (ShimsContext.Create())
 {
 ShimXElement.LoadString = s => XElement.Parse(Formula1SampleData());
 Formula1 f1 = new Formula1();
 XElement actual = f1.ChampionsByCountry("Finland");
 Assert.AreEqual(Formula1VerificationData().ToString(),
 actual.ToString());
 }
 }

Although it is best to have a flexible implementation of the code that should be tested, the Fakes Framework
offers a useful way to change an implementation such that it is not dependent on outside resources for test-
ing purposes.

WINdOWS STORE APPS, WCF, WF, ANd MORE
This last section of the chapter looks at some specific application types. We’ve already covered console and
WPF applications; now let’s get into WCF, WF, and Windows Store apps. Windows Store apps are new since
Visual Studio 2012. To create Windows Store apps for Windows 8.1, you need Visual Studio 2013. With
Visual Studio 2013 you can also maintain existing Windows 8 apps, but you cannot create new Windows 8
apps. For creating Windows 8 apps, you need Visual Studio 2012.

Building WCF Applications with Visual Studio
A WCF service library is a project template for creating a service that can be called from a client application
using requests that use either the SOAP protocol across HTTP, TCP, or other networking protocols, or a
REST-style form of communication.

The template for the WCF service application automatically creates a service contract, an operation
contract, a data contract, and a service implementation file — all you need to provide is a small sample
implementation.

c17.indd 463 30-01-2014 20:25:18

464 ❘ CHAPTER 17 Visual studio 2013

Running the application starts both a server and a client application to test the service. The dialog of the
server application is shown in Figure 17-58. If the host fails to start for some reason, you can access this
dialog from the Windows notification area to determine the cause. If the host shouldn’t be started, you can
disable it with the WCF options in the project properties.

FIGURE 17-58

The WCF Test client (see Figure 17-59) is started because of the debug command-line argument settings
/client:"WcfTestClient.exe". Using this dialog you can invoke many different kinds of service calls
(not all calls are supported). It enables easy testing that also provides information about the SOAP message
that is sent.

WCF applications are discussed in detail in Chapter 43, “Windows Communication Foundation.”

FIGURE 17-59

c17.indd 464 30-01-2014 20:25:19

Windows Store Apps, WCF, WF, and More ❘ 465

Building WF Applications with Visual Studio
Another dramatically different application style (when it comes to building the application from within
Visual Studio) is the Windows Workflow application type. For an example of this, select the Workflow
Console Application project type from the Workflow section of the New Project dialog. This will create a
console application with a Workflow1.xaml file.

When building applications that make use of Windows Workflow Foundation, you’ll notice that there is a
heavy dependency on the design view. With the designer, you can create variables and drop many different
activities from the toolbox onto the design view. Looking closely at the workflow (see Figure 17-60), you
can see that it consists of a while loop, a sequence, and actions based on conditions (such as an if-else
statement).

Windows Workflow Foundation is covered in detail in Chapter 45, “Windows Workflow Foundation.”

FIGURE 17-60

c17.indd 465 30-01-2014 20:25:19

466 ❘ CHAPTER 17 Visual studio 2013

Building Windows Store Apps with Visual Studio 2013
If Visual Studio 2013 is installed on Windows 8.1, you can create Windows Store apps. The new Hub App
(XAML) template already contains three pages with sample data. Using this template, you’ll find several files
in Solution Explorer. The Assets folder contains some predefined icons. The Common folder contains some
helper classes such as RelayCommand to be used with commands, converters, a suspension manager, and the
NavigationHelper that deals with lifetime management. The DataModel folder contains classes that produce
sample data, and there are some XAML pages with code-behind. A package Manifest Editor opens when
you click the Package.appxmanifest file (see Figure 17-61). This editor, which is specific to Windows Store
apps, enables configuration of the UI to define names and tiles, capabilities and declarations, and how the
application should be packaged.

FIGURE 17-61

Running the application (see Figure 17-62), you can see that the template already defined formatting and
styles as required by the Windows Store app guidelines. Clearly, it’s a lot easier to start with this, rather than
create all the styles from scratch. You likely already know some Windows Store apps that were started with
this project template.

Windows Store apps are covered in more detail in Chapters 31, 38, and 39, “Windows Store Apps:
Contracts and Devices”.

c17.indd 466 30-01-2014 20:25:19

Summary ❘ 467

SUMMARy
This chapter explored one of the most important programming tools in the .NET environment: Visual
Studio 2013. The bulk of the chapter examined how this tool facilitates writing code in C#.

Visual Studio 2013 is one of the easiest development environments to work with in the programming world.
Not only does Visual Studio make rapid application development (RAD) easy to achieve, it enables you to
dig deeply into the mechanics of how your applications are created. This chapter focused on using Visual
Studio for refactoring, multi-targeting, analyzing existing code, and creating unit tests and making use of
the Fakes Framework.

This chapter also looked at some of the latest projects available to you through the .NET Framework 4.5.1,
including Windows Presentation Foundation, Windows Communication Foundation, Windows Workflow
Foundation, and of course Windows Store apps.

Chapter 18 is on deployment of applications.

FIGURE 17-62

c17.indd 467 30-01-2014 20:25:20

c17.indd 468 30-01-2014 20:25:20

Deployment
WHAT’s in THis CHAPTER?

➤➤ Deployment requirements
➤➤ Deployment scenarios
➤➤ Deployment using ClickOnce
➤➤ Deployment of web applications
➤➤ Windows Store app deployment

WRoX.Com CoDE DoWnloADs foR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is found in the following examples:

➤➤ WPFSampleApp

➤➤ WebSampleApp

➤➤ WinStoreSplitApp

➤➤ Win81PackageSample

DEPloymEnT As PART of THE APPliCATion lifE CyClE
The development process does not end when the source code is compiled and the testing is complete.
At that stage, the job of getting the application into the user’s hands begins. Whether it’s an ASP.NET
application, a WPF client application, or a Windows Store app, the software must be deployed to a
target environment.

Deployment should be considered very early in the design of the application, as this can infl uence the
technology to be used for the application itself.

The .NET Framework has made deployment much easier than it was in the past. The pains of register-
ing COM components and writing new hives to the registry have been eliminated.

This chapter looks at the options that are available for application deployment, both from an
ASP.NET perspective and from the rich client perspective including Windows 8 Apps.

18

c18.indd 469 30-01-2014 20:26:14

470 ❘ CHAPTER 18 Deployment

PlAnning foR DEPloymEnT
Often, deployment is an afterthought in the development process that can lead to nasty, if not costly,
surprises. To avoid grief in deployment scenarios, you should plan the deployment process during the
initial design stage. Any special deployment considerations — such as server capacity, desktop security,
or where assemblies will be loaded from — should be built into the design from the start, resulting in a
much smoother deployment process.

Another issue that you should address early in the development process is the environment in which to
test the deployment. Whereas unit testing of application code and deployment options can be done on the
developer’s system, the deployment must be tested in an environment that resembles the target system. This
is important to eliminate the dependencies that don’t exist on a targeted computer. An example of this
might be a third-party library that has been installed on the developer’s computer early in the project. The
target computer might not have this library on it. It can be easy to forget to include it in the deployment
package. Testing on the developer’s system would not uncover the error because the library already exists.
Documenting dependencies can help to eliminate this potential problem.

Deployment processes can be complex for a large application. Planning for the deployment can save time
and effort when the deployment process is actually implemented.

Choosing the proper deployment option must be done with the same care and planning as any other aspect
of the system being developed. Choosing the wrong option makes the process of getting the software into
the users’ hands difficult and frustrating.

overview of Deployment options
This section provides an overview of the deployment options that are available to .NET developers. Most of
these options are discussed in greater detail later in this chapter:

➤➤ xcopy — The xcopy utility lets you copy an assembly or group of assemblies to an application folder,
reducing your development time. Because assemblies are self-discovering (that is, the metadata
that describes the assembly is included in the assembly), you do not need to register anything in the
registry.

Each assembly keeps track of what other assemblies it requires to execute. By default, the assembly
looks in the current application folder for the dependencies. The process of moving (or probing)
assemblies to other folders is discussed later in this chapter.

➤➤ ClickOnce — The ClickOnce technology offers a way to build self-updating Windows-based applica-
tions. ClickOnce enables an application to be published to a website, a file share, or even a CD. As
updates and new builds are made to the application, they can be published to the same location or site
by the development team. As the application is used by the end user, it can automatically check the
location to see if an update is available. If so, an update is attempted.

➤➤ Windows Installer — There are some restrictions when ClickOnce doesn’t work. If the installation
requires administrative privileges (e.g., for deploying Windows Services), Windows Installer can be the
best option.

➤➤ Deploying web applications — When a website is deployed, a virtual site is created with IIS, and the
files needed to run the application are copied to the server. With Visual Studio you have different
options to copy the files: using the FTP protocol, accessing a network share, or using a commonly
used option in previous years, FrontPage Server Extensions (FPSE). A newer technology is creating
Web Deploy packages, which are discussed later in this chapter.

➤➤ Windows Store apps — These apps can be deployed from the Windows Store, or by using PowerShell
scripts from an enterprise environment. Creating packages for Windows Store apps is covered later in
this chapter.

c18.indd 470 30-01-2014 20:26:14

Traditional Deployment ❘ 471

Deployment Requirements
It is instructive to look at the runtime requirements of a .NET-based application. The CLR has certain
requirements on the target platform before any managed application can execute.

The first requirement that must be met is the operating system. Currently, the following operating systems
can run .NET 4.5–based applications:

➤➤ Windows Vista SP2

➤➤ Windows 7

➤➤ Windows 8 (.NET 4.5 is already included)

➤➤ Windows 8.1 (.NET 4.5.1 is already included)

The following server platforms are supported:

➤➤ Windows Server 2008 SP2

➤➤ Windows Server 2008 R2

➤➤ Windows Server 2012 (.NET 4.5 is already included)

➤➤ Windows Server 2012 R2 (.NET 4.5.1 is already included)

Windows Store apps that are created with Visual Studio 2012 run on Windows 8 and 8.1. Windows Store
apps created with Visual Studio 2013 run on Windows 8.1.

You also must consider hardware requirements when deploying .NET applications. The minimum hardware
requirements for both the client and the server are a CPU with 1GHz and 512MB of RAM.

For best performance, increase the amount of RAM — the more RAM the better your .NET application
runs. This is especially true for server applications. You can use the Performance Monitor to analyze the
RAM usage of your applications.

Deploying the .nET Runtime
When an application is developed using .NET, there is a dependency on the .NET runtime. This may seem
rather obvious, but sometimes the obvious can be overlooked. The following table shows the version number
and the filename that would have to be distributed. With Windows 8.1 and Windows Server 2012 R2, .NET
4.5.1 is already included.

.nET VERsion filEnAmE

2.0.50727.42 dotnetfx.exe

3.0.4506.30 dotnetfx3.exe (includes x86 and x64)

3.5.21022.8 dotnetfx35.exe (includes x86, x64, and ia64)

4.0.0.0 dotnetfx40.exe (includes x86, x64, and ia64)

4.5.50501 dotnetFx45.exe (includes x86 and x64)

4.5.51641 dotnetFx451.exe (includes x86 and x64)

TRADiTionAl DEPloymEnT
If deployment is part of an application’s original design considerations, deployment can be as simple as
copying a set of files to the target computer. This section discusses simple deployment scenarios and differ-
ent options for deployment.

To see the first deployment option in action, you must have an application to deploy. At first, the ClientWPF
solution is used, which requires the library AppSupport.

c18.indd 471 30-01-2014 20:26:15

472 ❘ CHAPTER 18 Deployment

ClientWPF is a rich client application using WPF. AppSupport is a class library containing one simple class
that returns a string with the current date and time.

The sample applications use AppSupport to fill a label with a string containing the current date. To use the
examples, first load and build AppSupport. Then, in the ClientWPF project, set a reference to the newly
built AppSupport.dll.

Here is the code for the AppSupport assembly:

using System;

namespace AppSupport
{
 public class DateService
 {
 public string GetLongDateInfoString()
 {
 return string.Format("Today's date is {0:D}", DateTime.Today);
 }

 public string GetShortDateInfoString()
 {
 return string.Format("Today's date is {0:d}", DateTime.Today);
 }
 }
}

This simple assembly suffices to demonstrate the deployment options available to you.

xcopy Deployment
xcopy deployment is a term used for the process of copying a set of files to a folder on the target machine
and then executing the application on the client. The term comes from the DOS command xcopy.exe.
Regardless of the number of assemblies, if the files are copied into the same folder, the application will
execute — rendering the task of editing the configuration settings or registry obsolete.

To see how an xcopy deployment works, execute the following steps:

 1. Open the ClientWPF solution (ClientWPF.sln) that is part of the sample download file.

 2. Change the target to Release and do a full compile.

 3. Use the File Explorer to navigate to the project folder \ClientWPF\bin\Release and double-click
ClientWPF.exe to run the application.

 4. Click the button to see the current date displayed in the two text boxes. This verifies that the applica-
tion functions properly. Of course, this folder is where Visual Studio placed the output, so you would
expect the application to work.

 5. Create a new folder and call it ClientWPFTest. Copy just the two assemblies (AppSupport.dll and
ClientWPFTest.exe) from the release folder to this new folder and then delete the release folder.
Again, double-click the ClientWPF.exe file to verify that it’s working.

That’s all there is to it; xcopy deployment provides the capability to deploy a fully functional application
simply by copying the assemblies to the target machine. Although the example used here is simple, you can
use this process for more complex applications. There really is no limit to the size or number of assemblies
that can be deployed using this method.

Scenarios in which you might not want to use xcopy deployment are when you need to place assemblies in
the global assembly cache (GAC) or add icons to the Start menu. Also, if your application still relies on a
COM library of some type, you will not be able to register the COM components easily.

c18.indd 472 30-01-2014 20:26:15

ClickOnce ❘ 473

xcopy and Web Applications
xcopy deployment can also work with web applications, with the exception of the folder structure. You must
establish the virtual directory of your web application and configure the proper user rights. This process is
generally accomplished with the IIS administration tool.

After the virtual directory is set up, the web application files can be copied to the virtual directory. Copying
a web application’s files can be a bit tricky. A couple of configuration files, as well as any images that the
pages might be using, need to be accounted for.

Windows installer
ClickOnce is Microsoft’s preferred technology for installing Windows applications; it is discussed later in
more depth. However, ClickOnce has some restrictions. ClickOnce installation doesn’t require administra-
tor rights and installs applications in a directory where the user has rights. If multiple users are working on
one system, the application needs to be installed for all users. Also, it is not possible to install shared COM
components and configure them in the registry, install assemblies to the GAC, and register Windows ser-
vices. All these tasks require administrative privileges.

noTE For information about installing assemblies to the GAC, read Chapter 19,
“Assemblies.”

To do these administrative tasks, you need to create a Windows installer package. Installer packages are
MSI files (which can be started from setup.exe) that make use of the Windows Installer technology.

Creating Windows installer packages is no longer part of Visual Studio (it was part of Visual Studio 2010).
You can use InstallShield Limited Edition, which is free, with Visual Studio 2013. A project template
includes information for the download and registration with Flexera Software.

InstallShield Limited Edition offers a simple wizard to create an installation package based on applica-
tion information (name, website, version number); installation requirements (supported operating systems
and prerequisite software before the installation can start); application files and their shortcuts on the
Start menu and the desktop; and, settings for the registry. You can optionally prompt the user for a license
agreement.

If this is all that you need, and you don’t need to add custom dialogs to the installation experience,
InstallShield Limited Edition can provide an adequate deployment solution. Otherwise, you need to
install another product such as the full version of InstallShield (www.flexerasoftware.com/products/
installshield.htm), or the free WiX toolset (http://wix.codeplex.com).

ClickOnce, Web Deploy packages, and deployment of Windows Store apps are discussed in detail later in
this chapter.

CliCkonCE
ClickOnce is a deployment technology that enables applications to be self-updating. Applications are pub-
lished to a file share, website, or media such as a CD. When published, ClickOnce apps can be automatically
updated with minimal user input.

ClickOnce also solves the security permission problem. Normally, to install an application the user needs
Administrative rights. With ClickOnce, a user without admin rights can install and run the application.
However, the application is installed in a user-specific directory. In case multiple users log in to the same
system, every user needs to install the application.

c18.indd 473 30-01-2014 20:26:15

474 ❘ CHAPTER 18 Deployment

Clickonce operation
ClickOnce applications have two XML-based manifest files associated with them. One is the application
manifest, and the other is the deployment manifest. These two files describe everything that is required to
deploy an application.

The application manifest contains information about the application such as permissions required, assem-
blies to include, and other dependencies. The deployment manifest contains details about the application’s
deployment, such as settings and location of the application manifest. The complete schemas for the mani-
fests are in the .NET SDK documentation.

As mentioned earlier, ClickOnce has some limitations, such as assemblies cannot be added to the GAC, and
Windows Services cannot be configured in the registry. In such scenarios, Windows Installer is clearly a
better choice. ClickOnce can still be used for a large number of applications, however.

Publishing a Clickonce Application
Because everything that ClickOnce needs to know is contained in the two manifest files, the process of pub-
lishing an application for ClickOnce deployment is simply generating the manifests and placing the files in
the proper location. The manifest files can be generated in Visual Studio. There is also a command-line tool
(mage.exe) and a version with a GUI (mageUI.exe).

You can create the manifest files in Visual Studio 2013 in two ways. At the bottom of the Publish tab on
the Project Properties dialog are two buttons: Publish Wizard and Publish Now. The Publish Wizard asks
several questions about the deployment of the application and then generates the manifest files and copies
all the needed files to the deployment location. The Publish Now button uses the values that have been set in
the Publish tab to create the manifest files and copies the files to the deployment location.

To use the command-line tool, mage.exe, the values for the various ClickOnce properties must be passed in.
Manifest files can be both created and updated using mage.exe. Typing mage.exe -help at the command
prompt gives the syntax for passing in the values required.

The GUI version of mage.exe (mageUI.exe) is similar in appearance to the Publish tab in Visual Studio
2013. An application and deployment manifest file can be created and updated using the GUI tool.

ClickOnce applications appear in the Install/Uninstall Programs control panel applet just like any other
installed application. One big difference is that the user is presented with the choice of either uninstall-
ing the application or rolling back to the previous version. ClickOnce keeps the previous version in the
ClickOnce application cache.

Let’s start with the process of creating a ClickOnce installation. As a prerequisite for this process, you
need to have IIS installed on the system, and Visual Studio must be started with elevated privileges. The
ClickOnce installation program will be directly published to the local IIS, which requires administrative
privileges.

Open the ClientWPF project with Visual Studio, select the Publish tab in the Project properties, and click
the Publish Wizard button. The first screen, shown in Figure 18-1, asks for the publish location. Use the
local IIS http://localhost/ProCSharpSample.

The next screen provides the option to place a shortcut on the Start menu to make the application available
online or offline. Leave the default option. Then you are ready to publish, and a browser window is opened
to install the application (see Figure 18-2).

Before clicking the Install button, we’ll have a look at the ClickOnce settings that have been made by the
wizard.

c18.indd 474 30-01-2014 20:26:15

ClickOnce ❘ 475

figURE 18-1

figURE 18-2

Clickonce settings
Several properties are available for both manifest files. You can configure many of these properties with
the Publish tab (see Figure 18-3) within the Visual Studio project settings. The most important property is
the location from which the application should be deployed. We’ve used IIS with the sample, but a network
share or CD could be used as well.

c18.indd 475 30-01-2014 20:26:15

476 ❘ CHAPTER 18 Deployment

The Publish tab has an Application Files button that invokes a dialog that lists all assemblies and configura-
tion files required by the application. The Prerequisite button displays a list of common prerequisites that
can be installed along with the application. These prerequisites are defined by Microsoft Installer packages
and need to be installed before the ClickOnce application can be installed. Referring back to Figure 18-2,
you can see the .NET Framework 4.5 listed as a prerequisite before the application can be installed using the
web page. You have the choice of installing the prerequisites from the same location from which the applica-
tion is being published or from the vendor’s website.

The Updates button displays a dialog (see Figure 18-4) containing information about how the application
should be updated. As new versions of an application are made available, ClickOnce can be used to update
the application. Options include checking for updates every time the application starts or checking in the
background. If the background option is selected, a specified period of time between checks can be entered.
Options for allowing the user to be able to decline or accept the update are available. This can be used to
force an update in the background so that users are never aware that the update is occurring. The next time
the application is run, the new version is used instead of the older version. A separate location for the update
files can be used as well. This way, the original installation package can be located in one location and
installed for new users, and all the updates can be staged in another location.

You can set the application up so that it will run in either online or offline mode. In offline mode the appli-
cation can be run from the Start menu and acts as if it were installed using the Windows Installer. Online
mode means that the application will run only if the installation folder is available.

Using the Publish Wizard makes more changes with the project settings than you can see in the Publish tab.
With the Signing tab, you can see that the ClickOnce manifest is signed. For the current deployment, a test
certificate was created. The test certificate is only good for testing. Before changing to production you need to
get an application signing certificate from a certification authority, and sign the manifest with this. Looking
at the Security tab, you can see that ClickOnce security has been enabled, and by default the application is
configured as a full-trust application. This configuration gives the application the same rights the user has, and

figURE 18-3

c18.indd 476 30-01-2014 20:26:16

ClickOnce ❘ 477

it can do all the things the user is allowed to do. Users are prompted with the installation regarding whether
they trust the application. The configuration can be changed to a partial-trust application, which applies lower
ClickOnce security permissions. For example, with the Internet zone the application can only read and write
from isolated storage instead of accessing the complete file system. You can read more about the .NET code
access security in Chapter 22, “Security.”

figURE 18-4

figURE 18-5

Application Cache for Clickonce files
Applications distributed with ClickOnce are not installed in the Program Files folder. Instead, they
are placed in an application cache that resides in the Local Settings folder under the current user’s
Documents And Settings folder. Controlling this aspect of the deployment means that multiple versions of
an application can reside on the client PC at the same time. If the application is set to run online, every ver-
sion that the user has accessed is retained. For applications that are set to run locally, the current and previ-
ous versions are retained.

This makes it a very simple process to roll back a ClickOnce application to its previous version. If the user
selects the Install/Uninstall Programs control panel applet, the dialog presented contains the options to
remove the ClickOnce application or roll back to the previous version (see Figure 18-5). An administrator
can change the manifest file to point to the previous
version. If the administrator does this, the next time
the user runs that application, a check is made for an
update. Instead of finding new assemblies to deploy,
the application will restore the previous version with-
out any interaction from the user.

Application installation
Now let’s start the application installation from the
browser screen shown earlier (refer to Figure 18-2).
When you click the Install button, you see the dialog
shown in Figure 18-6. Because the publisher of the
test certificate is not trusted by the system, a red flag

c18.indd 477 30-01-2014 20:26:16

478 ❘ CHAPTER 18 Deployment

is shown. Click the More Information link to get more information about the certificate and see that the
application wants full-trust access. If you trust the application, you can click the Install button to install the
application.

After the installation, you can find the application with the Start menu, and it’s also listed with Programs
and Features in the control panel.

figURE 18-6

Clickonce Deployment APi
With the ClickOnce settings you can configure the application to automatically check for updates as dis-
cussed earlier. Often this is not a practical approach. Maybe some super-users should get a new version of
the application earlier. If they are happy with the new version, other users should be privileged to receive the
update as well. With such a scenario, you can use your own user-management information database, and
update the application programmatically.

For programmatic updates, the assembly System.Deployment and classes from the System.Deployment
namespace can be used to check application version information and do an update. The following code snip-
pet (code file MainWindow.xaml.cs) contains a click handler for an Update button in the application. It first
checks whether the application is a ClickOnce-deployed application by checking the IsNetworkDeployed
property from the ApplicationDeployment class. Using the CheckForUpdateAsync method, it determines
whether a newer version is available on the server (in the update directory specified by the ClickOnce set-
tings). On receiving the information about the update, the CheckForUpdateCompleted event is fired. With
this event handler, the second argument (type CheckForUpdateCompletedEventArgs) contains informa-
tion on the update, the version number, and whether it is a mandatory update. If an update is available, it is
installed automatically by calling the UpdateAsync method:

 private void OnUpdate(object sender, RoutedEventArgs e)
 {
 if (ApplicationDeployment.IsNetworkDeployed)
 {
 ApplicationDeployment.CurrentDeployment.CheckForUpdateCompleted +=
 (sender1, e1) =>
 {
 if (e1.UpdateAvailable)
 {
 ApplicationDeployment.CurrentDeployment.UpdateCompleted +=
 (sender2, e2) =>
 {

c18.indd 478 30-01-2014 20:26:16

Web Deployment ❘ 479

 MessageBox.Show("Update completed");
 };
 ApplicationDeployment.CurrentDeployment.UpdateAsync();
 }
 else
 {
 MessageBox.Show("No update available");
 }

 };
 ApplicationDeployment.CurrentDeployment.CheckForUpdateAsync();
 }
 }

Using the Deployment API code, you can manually test for updates directly from the application.

WEb DEPloymEnT
With web applications, binaries for controllers (MVC) or code-behind (Web Forms), as well as HTML,
JavaScript files, style sheets, and configuration files need to be deployed.

The easiest way to deploy a web application is to use Web Deploy. This feature is available both with on-
premises IIS as well as Windows Azure websites. With Web Deploy, a package is created that can be directly
uploaded with IIS. This package is a zip file that contains all the content needed for a web application,
including database files.

Web Application
To demonstrate Web Deploy, a new ASP.NET MVC 5 project using the template ASP.NET Web Application
is created. This automatically creates an application with Home and About pages, including login and regis-
tration, as shown in Figure 18-7.

figURE 18-7

c18.indd 479 30-01-2014 20:26:16

480 ❘ CHAPTER 18 Deployment

Configuration files
One important part of the web application is the configuration file. In terms of deployment, you have to con-
sider different versions of this file. For example, if you are using a different database for the web application
that is running on the local system, there’s a special testing database for the staging server, and of course a
live database for the production server. The connection string is different for these servers, just as the
debug configuration differs. If you create separate Web.config files for these scenarios and then add a
new configuration value to the local Web.config file, it would be easy to overlook changing the other
configuration files.

Visual Studio offers a special feature to deal with that. You can create one configuration file, and define
how the file should be transformed to the staging and deployment servers. By default, with an ASP.NET web
project, in the Solution Explorer you can see a Web.config file alongside Web.debug.config and Web
.release.config. These two later files contain only transformations. You can also add other configuration
files, e.g., for a staging server, as well. This can be done by selecting the solution in Solution Explorer, open-
ing the Configuration Manager, and adding a new configuration (e.g., a Staging configuration). As soon as
a new configuration is available, you can select the Web.config file, and choose the Add Config Transform
option from the context menu. This then adds a config transformation file with the name of the configura-
tion, e.g., Web.Staging.config.

The content of the transformation configuration files just defines transformations from the original con-
figuration file, e.g., the compilation element below system.web is changed to remove the debug attribute as
follows:

 <system.web>
 <compilation xdt:Transform="RemoveAttributes(debug)" />

Creating a Web Deploy Package
To define the deployment for a web application, the project properties provide the Package/Publish Web
settings (see Figure 18-8). With the configuration, you can select to publish only the files needed to run the
application. This excludes all the C# source code files. Other options are to publish all files in the project, or
all files in the project folder.

With the items to deploy, you can specify including databases with the package that are defined with the
separate Package/Publish SQL tab. There you can import databases from the configuration file, and create
SQL scripts to create the schema and also load data. These scripts can be included with the package to cre-
ate a database on the target system.

The other configuration options with Package/Publish Web are the name of the zip file and the name of the
IIS application. When deploying the package to IIS, the name defined with the package is the default name
of the IIS application. On installation, the administrator can override this name.

After the package is configured, the Publish menu in the context menu of the Solution Explorer can be
selected to create a package. The first dialog enables creating or selecting a profile. Profiles can be used to
deploy packages to different servers, e.g., you can define one profile to deploy to the staging server, and one
profile for the production server. If you are running your site on Windows Azure websites, you can down-
load a profile from Windows Azure that can be imported with the Publish Web tool. This profile contains a
URL for the server as well as a username and password. The second dialog of this wizard enables to specify
the publish method. Valid options are to create a Web Deploy Package (which you do now), directly perform
a Web Deploy to a server, or use FTP, the file system, or the FrontPage Server Extensions. Figure 18-9 shows
the Web Deploy Package selected, and thus allows defining the package location and the name of the web-
site. The third dialog enables you to specify the configuration that should be deployed to the package. If you
created the Staging configuration earlier, now Debug, Release, and Staging configurations are available.

After completing the wizard and clicking the Publish button, the Web Deploy package is created. You can
open it to see the files in the package. If you have IIS running, you can open the IIS Manager to deploy the
zip file and create a new web application.

c18.indd 480 30-01-2014 20:26:17

Windows Store Apps ❘ 481

figURE 18-8

figURE 18-9

WinDoWs sToRE APPs
Installing Windows Store apps is a completely different story. With normal .NET applications, copying the
executable with the DLLs as shown earlier with xcopy deployment is one way to go. This is not an option
with Windows Store apps. Unpackaged apps can only be used on systems with a developer license.

c18.indd 481 30-01-2014 20:26:17

482 ❘ CHAPTER 18 Deployment

Windows Store apps need to be packaged. This enables the app in the Windows Store to make the applica-
tion broadly available in the Windows Store. There’s also a different option to deploy Windows Store apps
in an environment without adding it to the Windows Store. This is known as sideloading. With all these
options it is necessary to create an app package, so let’s start with that.

Creating an App Package
A Windows Store app package is a file with the .appx file extension, which is really just a zip file. This file
contains all the XAML files, binaries, pictures, and configurations. You can create a package with either
Visual Studio or the command-line utility MakeAppx.exe.

A simple Windows Store app that already contains some core functionality can be created with the Visual
Studio application template Split App (XAML) that is in the Windows Store category. This template includes
two pages that can be navigated. The sample app has the name WinStoreSplitApp.

What’s important for the packaging are images in the Assets folder. The files Logo, SmallLogo, and
StoreLogo represent logos of the application that should be replaced by custom application logos. The file
Package.appxmanifest is a XML file that contains all the definitions needed for the app package. Opening
this file invokes the Package Editor, which contains four tabs: Application UI, Capabilities, Declarations,
and Packaging. The Packaging dialog is shown in Figure 18-10. Here you can configure the package name,
the logo for the store, the version number and the certificate. By default, only just a certificate for testing
purposes is created. Before deploying the application, the certificate must be replaced with a certificate from
a certification authority that is trusted by Windows.

figURE 18-10

The Application UI tab enables configuration of the application name, a description of the application, and
small and wide logos. Configurable capabilities vary according to the system features and the devices the
application is using, e.g., the Music Library, or the webcam, etc. The user is informed about which capabili-
ties the application is using. If the application does not specify the capabilities it needs, during runtime the
application is not allowed to use it. With the Declarations tab, the application can register more features,
e.g., to use it as a share target, or to specify whether some functionality should run in the background.

Using Visual Studio, you can create a package by clicking the project in Solution Explorer, and selecting
the Store ➪ Create App Package context menu. The first selection with this Create App Package wizard is

c18.indd 482 30-01-2014 20:26:17

Windows Store Apps ❘ 483

to specify whether the application should be uploaded to the Windows Store. If that’s not the case, side-
loading can be used to deploy the package, as discussed later. In case you didn’t register your account with
the Windows Store yet, select the sideloading option. In the second dialog of the wizard, select Release
instead of Debug Code for the package; you can also select the platforms for which the package should
be generated: x86, x64, and ARM CPUs. This is all that’s needed to build the package. To view what’s in
the package you can rename the .appx file to a .zip file extension, and find all the images, metadata, and
binaries.

Windows App Certification kit
Upon creation of the app package, the last dialog of the wizard enables the Windows App Certification Kit.
The command line for this tool is appcertui.exe. You can use this command line and pass the package for
testing.

When you deploy your application to the Windows Store, it is necessary for the application to fulfill some
requirements. You can check most of the requirements beforehand.

Running this tool you should give the application some time. It requires several minutes to test the applica-
tion and get the results. During this time you shouldn’t interact with the tool or your running application.
The following table shows what is tested with the application:

TEsT DEsCRiPTion

Crashes and hangs test The application may not crash or stop responding.
Long-running tasks should be done asynchronously to prevent blocking
the application.

App manifest compliance test Verifies that the app manifest content is correct. Also, the application
might only have one tile after the installation. The user can add ad-
ditional tiles while configuring the application, but for the start only one
tile is allowed.

Windows security features test Verifies that the application does not delete the user’s data without
consent, and it won’t be an entry point for viruses or malware.

Supported API test The app may only use Windows 8.1 APIs (Windows Runtime and a
subset of .NET), and cannot depend on libraries that don’t have this
limitation. The app may only depend on
software from the Windows Store.

Performance test The app must launch in 5 seconds or less, and suspend in 2 seconds or
less.

App manifest resources test The app must contain localized resources for all the languages it sup-
ports. Image files that are created by the Visual Studio template for the
tiles and store logo must be replaced.

Figure 18-11 shows a partial result of a failed run of the tests. The image files haven’t been replaced.

sideloading
For the broadest set of customers, you should publish the app to the Windows Store. With the store you have
flexibility in terms of licensing; that is, you can have a version for sale to individuals, or volume licensing
whereby you can identify who is running the app based on a unique ID and device.

For enterprise scenarios, when the application shouldn’t be in the Windows Store, sideloading can be used.

c18.indd 483 30-01-2014 20:26:17

484 ❘ CHAPTER 18 Deployment

Sideloading has some requirements for the participating systems: the PC needs to be joined with an Active
Directory, and a group policy that allows all trusted apps to be installed needs to be in place. This group
policy adds the registry key HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\Appx\
AllowAllTrustedApps with a value of 1. The last requirement is that the application must be signed with a
certificate that is trusted. This can also be a custom certificate whereby the certification server is listed as a
trusted root certification authority.

noTE Windows 8.1 Enterprise edition has sideloading enabled by default. For other
platforms it is necessary to buy a key for sideloading.

Custom applications can be preinstalled for all users on an initial Windows 8.1 image that is distributed to
all client systems, or installed with the following PowerShell cmdlet:

add-appxpackage Package.appx

Windows Deployment APi
The new Windows Runtime defines the namespace Windows.Management.Deployment, which contains
the PackageManager class, which can be used to deploy Windows 8 packages programmatically. The
AddPackageAsync method adds a package to the system, RemovePackageAsync removes it.

The following code snippet (code file Win81PackageSample/Program.cs) demonstrates the use of the
PackageManager class. The PackageManager can only be used from desktop applications, which is why a
.NET console application was created:

figURE 18-11

c18.indd 484 30-01-2014 20:26:18

Windows Store Apps ❘ 485

using System;
using System.Collections.Generic;
using System.IO;
using Windows.ApplicationModel;
using Windows.Management.Deployment;
namespace Win81PackageSample
{
 class Program
 {
 static void Main()
 {
 var pm = new PackageManager();
 IEnumerable<Package> packages = pm.FindPackages();
 foreach (var package in packages)
 {
 try
 {
 Console.WriteLine("Architecture: {0}",
 package.Id.Architecture.ToString());
 Console.WriteLine("Family: {0}", package.Id.FamilyName);
 Console.WriteLine("Full name: {0}", package.Id.FullName);
 Console.WriteLine("Name: {0}", package.Id.Name);
 Console.WriteLine("Publisher: {0}", package.Id.Publisher);
 Console.WriteLine("Publisher Id: {0}", package.Id.PublisherId);
 if (package.InstalledLocation != null)
 Console.WriteLine(package.InstalledLocation.Path);
 Console.WriteLine();
 }
 catch (FileNotFoundException ex)
 {
 Console.WriteLine("{0}, file: {1}", ex.Message, ex.FileName);
 }
 }
 Console.ReadLine();
 }
 }
}

noTE To reference the Windows Runtime 2.0 for Windows 8.1 from .NET applica-
tions, the Windows tab in the Reference Manager can be used to add the reference
to Windows. This tab can be enabled by adding <TargetPlatformVersion>8.1</
TargetPlatformVersion> to the project file. The reference to the System.Runtime
assembly must be added to the project file manually as well:
<Reference Include="System.Runtime" />.

Because the PackageManager class requires administrator rights, an application manifest with the
requestedExecutionLevel requireAdministrator is added to the project. This automatically starts the
application in elevated mode. The created app.manifest file from Visual Studio also defines a list of IDs
that can be specified to support a specific platform version. The following sample code has the version for
Windows 8.1 uncommented:

<?xml version="1.0" encoding="utf-8"?>
<asmv1:assembly manifestVersion="1.0"
 xmlns="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv1="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv2="urn:schemas-microsoft-com:asm.v2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <assemblyIdentity version="1.0.0.0" name="MyApplication.app" />

c18.indd 485 30-01-2014 20:26:18

486 ❘ CHAPTER 18 Deployment

 <trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
 <security>
 <requestedPrivileges xmlns="urn:schemas-microsoft-com:asm.v3">
 <requestedExecutionLevel level="requireAdministrator"
 uiAccess="false" />
 </requestedPrivileges>
 </security>
 </trustInfo>
 <compatibility xmlns="urn:schemas-microsoft-com:compatibility.v1">
 <application>
 <supportedOS Id="{1f676c76-80e1-4239-95bb-83d0f6d0da78}"/>
 </application>
 </compatibility>
</asmv1:assembly>

Running the application provides information about all the packages installed on the system. This is an
extract of the output:

Architecture: X64
Family: Microsoft.BingFinance_8wekyb3d8bbwe
Full name: Microsoft.BingFinance_3.0.1.174_x64__8wekyb3d8bbwe
Name: Microsoft.BingFinance
Publisher: CN=Microsoft Corporation, O=Microsoft Corporation, L=Redmond,
S=Washington, C=US
Publisher Id: 8wekyb3d8bbwe
C:\Program Files\WindowsApps\Microsoft.BingFinance_
3.0.1.174_x64__8wekyb3d8bbwe

Architecture: X64
Family: Microsoft.BingFoodAndDrink_8wekyb3d8bbwe
Full name: Microsoft.BingFoodAndDrink_3.0.1.177_x64__8wekyb3d8bbwe
Name: Microsoft.BingFoodAndDrink
Publisher: CN=Microsoft Corporation, O=Microsoft Corporation,
 L=Redmond, S=Washington, C=US
Publisher Id: 8wekyb3d8bbwe
C:\Program Files\WindowsApps\Microsoft.BingFoodAndDrink_
3.0.1.177_x64__8wekyb3d8bbwe

Architecture: X64
Family: Microsoft.BingHealthAndFitness_8wekyb3d8bbwe
Full name: Microsoft.BingHealthAndFitness_3.0.1.176_x64__8wekyb3d8bbwe
Name: Microsoft.BingHealthAndFitness
Publisher: CN=Microsoft Corporation, O=Microsoft Corporation,
L=Redmond, S=Washington, C=US
Publisher Id: 8wekyb3d8bbwe
C:\Program Files\WindowsApps\Microsoft.BingHealthAndFitness_
3.0.1.176_x64__8weky

sUmmARy
Deployment is an important part of the application life cycle that should be thought about from the begin-
ning of the project, as it also influences the technology used. Deploying different application types have been
shown in this chapter.

You’ve seen the deployment of Windows applications using ClickOnce. ClickOnce offers an easy automatic
update capability that can also be triggered directly from within the application, as you’ve seen with the
System.Deployment API. In the section on deploying web applications, you looked at the Web Deploy
package, which can be deployed easily with a custom managed IIS as well as Windows Azure websites.

You also learned how to deploy Windows Store apps, which you can publish in the Windows Store, but also
deploy using PowerShell in an enterprise environment without using the store.

The next chapter is the first of a group covering the foundations of the .NET Framework, assemblies.

c18.indd 486 30-01-2014 20:26:18

PART III
Foundation

 ➤ CHAPTER 19: Assemblies

 ➤ CHAPTER 20: Diagnostics

 ➤ CHAPTER 21: Tasks, Threads, and Synchronization

 ➤ CHAPTER 22: Security

 ➤ CHAPTER 23: Interop

 ➤ CHAPTER 24: Manipulating Files and the Registry

 ➤ CHAPTER 25: Transactions

 ➤ CHAPTER 26: Networking

 ➤ CHAPTER 26: Windows Services

 ➤ CHAPTER 28: Localization

 ➤ CHAPTER 29: Core XAML

 ➤ CHAPTER 30: Managed Extensibility Framework

 ➤ CHAPTER 31: Windows Runtime

c19.indd 487 30-01-2014 20:26:51

c19.indd 488 30-01-2014 20:26:51

Assemblies
wHAT’S iN THiS CHAPTER?

➤➤ An overview of assemblies
➤➤ Creating assemblies
➤➤ Using application domains
➤➤ Sharing assemblies
➤➤ Versioning
➤➤ Sharing assemblies between different technologies

wRoX.CoM CoDE DowNloADS FoR THiS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ Application Domains
➤➤ Dynamic Assembly
➤➤ Shared Demo

wHAT ARE ASSEMbliES?
An assembly is the .NET term for a deployment and confi guration unit. This chapter discusses
exactly what assemblies are, how they can be applied, and why they are such a useful feature.

You will learn how to create assemblies dynamically, how to load assemblies into application
domains, and how to share assemblies between different applications. The chapter also covers
versioning, which is an important aspect of sharing assemblies.

Assemblies are the deployment units of .NET applications, which consist of one or more assemblies.
.NET executables, with the usual extension .EXE or .DLL, are known by the term assembly. What’s
the difference between an assembly and a native DLL or EXE? Although they both have the same
fi le extension, .NET assemblies include metadata that describes all the types that are defi ned in the
assembly, with information about its members — methods, properties, events, and fi elds.

19

c19.indd 489 30-01-2014 20:26:55

490 ❘ CHAPTER 19 Assemblies

The metadata of .NET assemblies also provides information about the files that belong to the assembly,
version information, and the exact information about assemblies that are used. .NET assemblies are the
answer to the DLL hell we’ve seen previously with native DLLs.

Assemblies are self-describing installation units, consisting of one or more files. One assembly could be a
single DLL or EXE that includes metadata, or it can consist of different files — for example, resource files,
modules, and an EXE.

Assemblies can be private or shared. With simple .NET applications, using only private assemblies is
the best way to work. No special management, registration, versioning, and so on is needed with private
assemblies. The only application that could have version problems with private assemblies is your own
application. Other applications are not influenced because they have their own copies of the assemblies.
The private components you use within your application are installed at the same time as the application
itself. Private assemblies are located in the same directory as the application or subdirectories thereof.
This way, you shouldn’t have any versioning problems with the application. No other application will
ever overwrite your private assemblies. Of course, it is still a good idea to use version numbers for private
assemblies, too. This helps a lot with code changes (as you can detect on your own: these assemblies have
a different version, there must be some changes), but it’s not a requirement of .NET.

With shared assemblies, several applications can use the same assembly and have a dependency on it. Shared
assemblies reduce the need for disk and memory space. With shared assemblies, many rules must be fulfilled — a
shared assembly must have a version number and a unique name, and usually it’s installed in the global assembly
cache (GAC). The GAC enables you to share different versions of the same assembly on a system.

Assembly Features
The features of an assembly can be summarized as follows:

➤➤ Assemblies are self-describing. It’s no longer necessary to pay attention to registry keys for
apartments, to get the type library from some other place, and so on. Assemblies include metadata
that describes the assembly. The metadata includes the types exported from the assembly and a
manifest; the next section describes the function of a manifest.

➤➤ Version dependencies are recorded inside an assembly manifest. Storing the version of any referenced
assemblies in the manifest makes it possible to easily find deployment faults because of wrong
versions available. The version of the referenced assembly that will be used can be configured by the
developer and the system administrator. Later in this chapter, you’ll learn which version policies are
available and how they work.

➤➤ Assemblies can be loaded side by side. Beginning with Windows 2000, a side-by-side feature
enables different versions of the same DLL to be used on a system. Did you ever check the directory
<windows>\winsxs? .NET allows different versions of the same assembly to be used inside a single
process! How is this useful? If assembly A references version 1 of the shared assembly Shared, and
assembly B uses version 2 of the shared assembly Shared, and you are using both assembly A and B,
you need both versions of the shared assembly Shared in your application — and with .NET both
versions are loaded and used. The .NET 4 runtime even allows multiple CLR versions (2 and 4)
inside one process. This enables, for example, loading plugins with different CLR requirements.
While there’s no direct .NET way to communicate between objects in different CLR versions inside
one process, you can use other techniques, such as COM.

➤➤ Application isolation is ensured by using application domains. With application domains, a number
of applications can run independently inside a single process. Faults in one application running in
one application domain cannot directly affect other applications inside the same process running
in another application domain.

➤➤ Installation can be as easy as copying the files that belong to an assembly. An xcopy can be enough.
This feature is named ClickOnce deployment. However, in some cases ClickOnce deployment cannot
be applied, and a normal Windows installation is required. Deployment of applications is discussed in
Chapter 18, “Deployment.”

c19.indd 490 30-01-2014 20:26:55

What are Assemblies? ❘ 491

Assembly Structure
An assembly consists of assembly metadata describing the complete assembly, type metadata describing the
exported types and methods, MSIL code, and resources. All these parts can be inside of one file or spread
across several files.

In the first example (see Figure 19-1), the assembly metadata, type metadata, MSIL
code, and resources are all in one file — Component.dll. The assembly consists of a
single file.

The second example shows a single assembly spread across three files (see Figure
19-2). Component.dll has assembly metadata, type metadata, and MSIL code, but
no resources. The assembly uses a picture from picture.jpeg that is not embedded
inside Component.dll but referenced from within the assembly metadata. The
assembly metadata also references a module called util.netmodule, which itself
includes only type metadata and MSIL code for a class. A module has no assembly
metadata; thus, the module itself has no version information, nor can it be installed
separately. All three files in this example make up a single assembly; the assembly is
the installation unit. It would also be possible to put the manifest in a different file.

Assembly Manifests
An important part of an assembly is a manifest, which is part of the metadata. It describes the assembly
with all the information that’s needed to reference it and lists all its dependencies. The parts of the manifest
are as follows:

➤➤ Identity — Name, version, culture, and public key.
➤➤ A list of files — Files belonging to this assembly. A single assembly must have at least one file but may

contain a number of files.

Component.dll

Assembly
Metadata

Type Metadata

IL Code

Resources

FiguRE 19-1
Component.dll

Assembly
Metadata

Type Metadata

IL Code

Util.netmodule

Type Metadata

IL Code

Picture.jpeg

Resource

FiguRE 19-2

c19.indd 491 30-01-2014 20:26:58

492 ❘ CHAPTER 19 Assemblies

➤➤ A list of referenced assemblies — All assemblies used from the assembly are documented inside the
manifest. This reference information includes the version number and the public key, which is used to
uniquely identify assemblies. The public key is discussed later in this chapter.

➤➤ A set of permission requests — These are the permissions needed to run this assembly. You can find
more information about permissions in Chapter 22, “Security.”

➤➤ Exported types — These are included if they are defined within a module and the module is referenced
from the assembly; otherwise, they are not part of the manifest. A module is a unit of reuse. The type
description is stored as metadata inside the assembly. You can get the structures and classes with the
properties and methods from the metadata. This replaces the type library that was used with COM to
describe the types. For the use of COM clients, it’s easy to generate a type library from the manifest.
The reflection mechanism uses the information about the exported types for late binding to classes.
See Chapter 15, “Reflection,” for more information about reflection.

Namespaces, Assemblies, and Components
You might be a little bit confused by the meanings of namespaces, types, assemblies, and components. How
does a namespace fit into the assembly concept? The namespace is completely independent of an assembly.
You can have different namespaces in a single assembly, but the same namespace can be spread across
assemblies. The namespace is just an extension of the type name — it belongs to the name of the type.

For example, the assemblies mscorlib and system contain the namespace System.Threading among many
other namespaces. Although the assemblies contain the same namespaces, you will not find the same class
names.

Private and Shared Assemblies
Assemblies can be private or shared. A private assembly is found either in the same directory as the
application or within one of its subdirectories. With a private assembly, it’s not necessary to think about
naming conflicts with other classes or versioning problems. The assemblies that are referenced during
the build process are copied to the application directory. Private assemblies are the usual way to build
assemblies, especially when applications and components are built within the same company.

NoTE Although it is still possible to have naming conflicts with private assemblies
(multiple private assemblies may be part of the application and they could have
conflicts, or a name in a private assembly might conflict with a name in a shared
assembly used by the application), naming conflicts are greatly reduced. If you you
will be using multiple private assemblies or working with shared assemblies in other
applications, it’s a good idea to use well-named namespaces and types to minimize
naming conflicts.

When using shared assemblies, you have to be aware of some rules. The assembly must be unique;
therefore, it must also have a unique name, called a strong name. Part of the strong name is a mandatory
version number. Shared assemblies are mostly used when a vendor other than the application vendor builds
the component, or when a large application is split into subprojects. Also, some technologies, such as .NET
Enterprise Services, require shared assemblies in specific scenarios.

Satellite Assemblies
A satellite assembly is an assembly that contains only resources. This is extremely useful for localization.
Because an assembly has a culture associated with it, the resource manager looks for satellite assemblies
containing the resources of a specific culture.

c19.indd 492 30-01-2014 20:26:58

What are Assemblies? ❘ 493

NoTE You can read more about satellite assemblies in Chapter 28, “Localization.”

Viewing Assemblies
You can view assemblies by using the command-line utility ildasm, the MSIL disassembler. You can open
an assembly by starting ildasm from the command line with the assembly as an argument or by selecting
File ➪ Open from the menu.

Figure 19-3 shows ildasm opening the example that you will
build a little later in the chapter, SharedDemo.dll. Note the
manifest and the SharedDemo type in the Wrox.ProCSharp
.Assemblies namespace. When you open the manifest, you
can see the version number and the assembly attributes, as
well as the referenced assemblies and their versions. You can
see the MSIL code by opening the methods of the class.

Creating Assemblies
Now that you know what assemblies are, it is time to build
some. Of course, you have already built assemblies in
previous chapters, because a .NET executable counts as
an assembly. This section looks at special options for building
assemblies.

Creating Modules and Assemblies
All C# project types in Visual Studio create an assembly. Whether you choose a DLL or EXE project
type, an assembly is always created. With the command-line C# compiler, csc, it’s also possible to create
modules. A module is a DLL without assembly attributes (so it’s not an assembly, but it can be added to
assemblies later). The command:

csc /target:module hello.cs

creates a module hello.netmodule. You can view this module using ildasm.

A module also has a manifest, but there is no .assembly entry inside the manifest (except for the external
assemblies that are referenced) because a module has no assembly attributes. It’s not possible to configure
versions or permissions with modules; that can be done only at the assembly scope. You can find references
to assemblies in the manifest of the module. With the /addmodule option of csc, it’s possible to add
modules to existing assemblies.

To compare modules to assemblies, create a simple class A and compile it by using the following command:

csc /target:module A.cs

The compiler generates the file A.netmodule, which doesn’t include assembly information (as you can
see using ildasm to look at the manifest information). The manifest of the module shows the referenced
assembly mscorlib and the .module entry (see Figure 19-4).

FiguRE 19-3

c19.indd 493 30-01-2014 20:26:58

494 ❘ CHAPTER 19 Assemblies

Next, create an assembly B, which includes the
module A.netmodule. It’s not necessary to
have a source file to generate this assembly. The
command to build the assembly is as follows:

csc /target:library /addmodule:A.
netmodule /out:B.dll

Looking at the assembly using ildasm, you
can find only a manifest. In the manifest, the
assembly mscorlib is referenced. Next, you
see the assembly section with a hash algorithm
and the version. The number of the algorithm
defines the type of the algorithm used to create
the hash code of the assembly. When creating an assembly programmatically, it is possible to select the
algorithm. Part of the manifest is a list of all modules belonging to the assembly. Figure 19-5 shows
.file A.netmodule, which belongs to the
assembly. Classes exported from modules are
part of the assembly manifest; classes exported
from the assembly itself are not.

Modules enable the faster startup of assemblies
because not all types are inside a single file. The
modules are loaded only when needed. Another
reason to use modules is if you want to create
an assembly with more than one programming
language. One module could be written using
Visual Basic, another module could be written
using C#, and these two modules could be
included in a single assembly.

Assembly Attributes
When creating a Visual Studio project, the source file AssemblyInfo.cs is generated automatically. It is
located below Properties in Solution Explorer. You can use the normal source code editor to configure the
assembly attributes in this file. This is the file generated from the project template:

using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
//
// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
[assembly: AssemblyTitle("ClassLibrary1")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("CN innovation")]
[assembly: AssemblyProduct("ClassLibrary1")]
[assembly: AssemblyCopyright("Copyright @ CN innovation 2013]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(false)]

FiguRE 19-4

FiguRE 19-5

c19.indd 494 30-01-2014 20:26:59

What are Assemblies? ❘ 495

// The following GUID is for the ID of the typelib if this project is exposed
// to COM
[assembly: Guid("21649c19-6609-4607-8fc0-d75f1f27a8ff")]

//
// Version information for an assembly consists of the following four
// values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can default the Build and Revision
// Numbers by using the '*' as shown below:
// [assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

This file is used for configuration of the assembly manifest. The compiler reads the assembly attributes to
inject the specific information into the manifest.

The assembly: prefix with the attribute marks an assembly-level attribute. Assembly-level attributes are, in
contrast to the other attributes, not attached to a specific language element. The arguments that can be used
for the assembly attribute are classes of the namespaces System.Reflection, System.Runtime
.CompilerServices, and System.Runtime.InteropServices.

NoTE You can read more about attributes and how to create and use custom
attributes in Chapter 15.

The following table describes the assembly attributes defined within the System.Reflection namespace.

ASSEMbly ATTRibuTE DESCRiPTioN

AssemblyCompany Specifies the company name.

AssemblyConfiguration Specifies build information such as retail or debugging
information.

AssemblyCopyright and
AssemblyTrademark

Holds the copyright and trademark information.

AssemblyDefaultAlias Can be used if the assembly name is not easily readable (such as a
GUID when the assembly name is created dynamically). With this
attribute an alias name can be specified.

AssemblyDescription Describes the assembly or the product. Looking at the properties
of the executable file, this value shows up as Comments.

AssemblyProduct Specifies the name of the product where the assembly belongs.

AssemblyTitle Used to give the assembly a friendly name. The friendly name can
include spaces. With the file properties you can see this value as
Description.

AssemblyCulture Defines the culture of the assembly. This attribute is important for
satellite assemblies.

(continues)

c19.indd 495 30-01-2014 20:26:59

496 ❘ CHAPTER 19 Assemblies

ASSEMbly ATTRibuTE DESCRiPTioN

AssemblyInformationalVersion This attribute isn’t used for version checking when assemblies are
referenced; it is for information only. It is very useful to specify the
version of an application that uses multiple assemblies. Opening
the properties of the executable you can see this value as the
Product Version.

AssemblyVersion Provides the version number of the assembly. Versioning is
discussed later in this chapter.

AssemblyFileVersion Defines the version of the file. The value shows up with the
Windows file properties dialog, but it doesn’t have any influence
on .NET behavior.

Here’s an example of how these attributes might be configured:

[assembly: AssemblyTitle("Professional C#")]
[assembly: AssemblyDescription("Sample Application")]
[assembly: AssemblyConfiguration("Retail version")]
[assembly: AssemblyCompany("Wrox Press")]
[assembly: AssemblyProduct("Wrox Professional Series")]
[assembly: AssemblyCopyright("Copyright (C) Wrox Press
2013]
[assembly: AssemblyTrademark("Wrox is a registered
trademark of " +
 "John Wiley & Sons, Inc.")]
[assembly: AssemblyCulture("")]

[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

With Visual Studio 2013, you can configure these attributes
with the project properties, select the tab Application,
and click the button Assembly Information, as shown in
Figure 19-6.

Creating and loading Assemblies Dynamically
During development, you add a reference to an assembly so that it is included with the assembly
references, and the types of the assembly are available to the compiler. During runtime, the referenced
assembly is loaded as soon as a type of the assembly is instantiated or a method of the type is used. Instead
of using this automatic behavior, you can also load assemblies programmatically. To load assemblies
programmatically, you can use the class Assembly with the static method Load(). This method is
overloaded, meaning you can pass the name of the assembly using AssemblyName, the name of the assembly,
or a byte array.

It is also possible to create an assembly on the fly, as shown in the next example. Here, C# code is
entered in a text box, a new assembly is dynamically created by starting the C# compiler, and the
compiled code is invoked.

To compile C# code dynamically, you can use the class CSharpCodeProvider from the namespace
Microsoft.CSharp. Using this class, you can compile code and generate assemblies from a DOM tree, from
a file, and from source code.

(continued)

FiguRE 19-6

c19.indd 496 30-01-2014 20:26:59

What are Assemblies? ❘ 497

The UI of the application is created by using
WPF. You can see the design view of the UI
in Figure 19-7. The window is made up of
a TextBox to enter C# code, a Button, and a
TextBlock WPF control that spans all columns
of the last row to display the result.

To dynamically compile and run C# code,
the class CodeDriver defines the method
CompileAndRun(). This method compiles
the code from the text box and starts the
generated method (code file DynamicAssembly/
CodeDriver.cs):

using System;
using System.CodeDom.Compiler;
using System.IO;
using System.Reflection;
using System.Text;
using Microsoft.CSharp;

namespace Wrox.ProCSharp.Assemblies
{
 public class CodeDriver
 {
 private string prefix =
 "using System;" +
 "public static class Driver" +
 "{" +
 " public static void Run()" +
 " {";

 private string postfix =
 " }" +
 "}";

 public string CompileAndRun(string input, out bool hasError)
 {
 hasError = false;
 string returnData = null;

 CompilerResults results = null;
 using (var provider = new CSharpCodeProvider())
 {
 var options = new CompilerParameters();
 options.GenerateInMemory = true;

 var sb = new StringBuilder();
 sb.Append(prefix);
 sb.Append(input);
 sb.Append(postfix);

 results = provider.CompileAssemblyFromSource(options, sb.ToString());
 }

 if (results.Errors.HasErrors)
 {
 hasError = true;
 var errorMessage = new StringBuilder();
 foreach (CompilerError error in results.Errors)

FiguRE 19-7

c19.indd 497 30-01-2014 20:26:59

498 ❘ CHAPTER 19 Assemblies

 {
 errorMessage.AppendFormat("{0} {1}", error.Line,
 error.ErrorText);
 }
 returnData = errorMessage.ToString();
 }
 else
 {
 TextWriter temp = Console.Out;
 var writer = new StringWriter();
 Console.SetOut(writer);
 Type driverType = results.CompiledAssembly.GetType("Driver");

 driverType.InvokeMember("Run", BindingFlags.InvokeMethod |
 BindingFlags.Static | BindingFlags.Public, null, null, null);
 Console.SetOut(temp);

 returnData = writer.ToString();
 }

 return returnData;
 }
 }
}

The method CompileAndRun() requires a string input parameter in which one or multiple lines of
C# code can be passed. Because every method that is called must be included in a method and a
class, the variables prefix and postfix define the structure of the dynamically created class Driver
and the method Run() that surround the code from the parameter. Using a StringBuilder, the prefix,
postfix, and the code from the input variable are merged to create a complete class that can be compiled.
Using this resultant string, the code is compiled with the CSharpCodeProvider class. The method
CompileAssemblyFromSource() dynamically creates an assembly. Because this assembly is needed only in
memory, the compiler parameter option GenerateInMemory is set.

If the source code that was passed contains some errors, these will appear in the Errors collection of
CompilerResults. The errors are returned with the return data, and the variable hasError is set to true.

If the source code compiles successfully, the Run() method of the new Driver class is invoked. Invocation
of this method is done using reflection. From the newly compiled assembly that can be accessed using
CompilerResults.CompiledType, the new class Driver is referenced by the driverType variable. Then
the InvokeMember() method of the Type class is used to invoke the method Run(). Because this method is
defined as a public static method, the BindingFlags must be set accordingly. To see a result of the program
that is written to the console, the console is redirected to a StringWriter to finally return the complete
output of the program with the returnData variable.

NoTE Running the code with the InvokeMember() method makes use of .NET
reflection. Reflection is discussed in Chapter 15.

The Click event of the WPF button is connected to the Compile_Click() method where the CodeDriver
class is instantiated, and the CompileAndRun() method is invoked. The input is taken from the TextBox
named textCode, and the result is written to the TextBlock textOutput (code file DynamicAssembly/
DynamicAssemblyWindow.xaml.cs):

 private void Compile_Click(object sender, RoutedEventArgs e)
 {
 textOutput.Background = Brushes.White;

c19.indd 498 30-01-2014 20:27:00

Application Domains ❘ 499

 var driver = new CodeDriver();
 bool isError;
 textOutput.Text = driver.CompileAndRun(textCode.Text, out isError);
 if (isError)
 {
 textOutput.Background = Brushes.Red;
 }
 }

Now you can start the application; enter C# code
in the TextBox as shown in Figure 19-8, and
compile and run the code.

The program as written so far has the
disadvantage that every time you click the
Compile and Run button, a new assembly is
created and loaded, so the program always needs
more and more memory. You cannot unload an
assembly from the application. To unload assemblies, application domains are needed.

APPliCATioN DoMAiNS
Before .NET, processes were used as isolation boundaries, with each process having its private virtual
memory, an application running in one process could not write to the memory of another application
and thereby crash the other application. The process was used as an isolation and security boundary
between applications. With the .NET
architecture, you have a new boundary for
applications: application domains. With
managed IL code, the runtime can ensure that
access to the memory of another
application inside a single process can’t happen.
Multiple applications can run in a single
process within multiple application domains
(see Figure 19-9).

An assembly is loaded into an application
domain. In Figure 19-9, you can see
process 4711 with two application domains.
In application domain A, objects one and
two are instantiated, object one in assembly
one, and object two in assembly two. The
second application domain in process 4711 has
an instance of object one. To minimize memory consumption, the code of assemblies is loaded only once
into an application domain. Instance and static members are not shared among application domains.
It’s not possible to directly access objects within another application domain; a proxy is needed instead.
Therefore, in Figure 19-9, the object one in application domain B cannot directly access the objects one or
two in application domain A without a proxy.

The AppDomain class is used to create and terminate application domains, load and unload assemblies and
types, and enumerate assemblies and threads in a domain. In this section, you program a small example to
see application domains in action.

First, create a C# console application called AssemblyA. In the Main() method, add a Console.
WriteLine() so that you can see when this method is called. In addition, add the class Demo with a
constructor with two int values as arguments, which will be used to create instances with the AppDomain

FiguRE 19-8

Process 4711

AppDomain A

one

two

AppDomain B

one

Process 4712

AppDomain C

two

FiguRE 19-9

c19.indd 499 30-01-2014 20:27:02

500 ❘ CHAPTER 19 Assemblies

class. The AssemblyA.exe assembly will be loaded from the second application that will be created (code
file AssemblyA/Program.cs):

using System;

namespace Wrox.ProCSharp.Assemblies
{
 public class Demo
 {
 public Demo(int val1, int val2)
 {
 Console.WriteLine("Constructor with the values {0}, {1} in domain " +
 "{2} called", val1, val2, AppDomain.CurrentDomain.FriendlyName);
 }
 }

 class Program
 {
 static void Main()
 {
 Console.WriteLine("Main in domain {0} called",
 AppDomain.CurrentDomain.FriendlyName);
 }
 }
}

Running the application produces this output:

Main in domain AssemblyA.exe called.

The second project you create is again a C# console application: DomainTest. First, display the name
of the current domain using the property FriendlyName of the AppDomain class. With the CreateDomain()
method, a new application domain with the friendly name New AppDomain is created. Next, load the
assembly AssemblyA into the new domain and call the Main() method by calling ExecuteAssembly()
(code file DomainTest/Program.cs):

using System;
using System.Reflection;

namespace Wrox.ProCSharp.Assemblies
{
 class Program
 {
 static void Main()
 {
 AppDomain currentDomain = AppDomain.CurrentDomain;
 Console.WriteLine(currentDomain.FriendlyName);
 AppDomain secondDomain = AppDomain.CreateDomain("New AppDomain");
 secondDomain.ExecuteAssembly("AssemblyA.exe");
 }
 }
}

Before starting the program DomainTest.exe, reference the assembly AssemblyA.exe with the DomainTest
project. Referencing the assembly with Visual Studio 2012 copies the assembly to the project directory so
that the assembly can be found. If the assembly cannot be found, a System.IO.FileNotFoundException
exception is thrown.

When DomainTest.exe is run, you get the following console output. DomainTest.exe is the friendly
name of the first application domain. The second line is the output of the newly loaded assembly in the New

c19.indd 500 30-01-2014 20:27:02

Application Domains ❘ 501

AppDomain. With a process viewer, you will not see the process AssemblyA.exe executing because no new
process is created. AssemblyA is loaded into the process DomainTest.exe.

DomainTest.exe
Main in domain New AppDomain called

Instead of calling the Main() method in the newly loaded assembly, you can also create a new instance.
In the following example, replace the ExecuteAssembly() method with a CreateInstance(). The first
argument is the name of the assembly, AssemblyA. The second argument defines the type that should be
instantiated: Wrox.ProCSharp.Assemblies.AppDomains.Demo. The third argument, true, means that
case is ignored. System.Reflection.BindingFlags.CreateInstance is a binding flag enumeration value
to specify that the constructor should be called:

 AppDomain secondDomain = AppDomain.CreateDomain("New AppDomain");
 // secondDomain.ExecuteAssembly("AssemblyA.exe");
 secondDomain.CreateInstance("AssemblyA",
 "Wrox.ProCSharp.Assemblies.Demo", true,
 BindingFlags.CreateInstance, null, new object[] {7, 3},
 null, null);

The results of a successful run of the application are as follows:

DomainTest.exe
Constructor with the values 7, 3 in domain New AppDomain called

Now you have seen how to create and call application domains. In runtime hosts, application domains are
created automatically. Most application types just have the default application domain. ASP.NET creates an
application domain for each web application that runs on a web server. Internet Explorer creates application
domains in which managed controls will run. For applications, it can be useful to create application domains
if you want to unload an assembly. You can unload assemblies only by terminating an application domain.

NoTE Application domains are an extremely useful construct if assemblies are loaded
dynamically and there is a requirement to unload assemblies after use. Within the
primary application domain, it is not possible to get rid of loaded assemblies. However,
it is possible to end application domains such that all assemblies loaded only within the
application domain are cleaned from the memory.

With this knowledge about application domains, it is now possible to change the WPF program created
earlier. The new class CodeDriverInAppDomain creates a new application domain using AppDomain
.CreateDomain. Inside this new application domain, the class CodeDriver is instantiated using
CreateInstanceAndUnwrap(). Using the CodeDriver instance, the CompileAndRun() method is invoked
before the new application domain is unloaded again:

using System;
using System.Runtime.Remoting;

namespace Wrox.ProCSharp.Assemblies
{
 public class CodeDriverInAppDomain
 {
 public string CompileAndRun(string code, out bool hasError)
 {
 AppDomain codeDomain = AppDomain.CreateDomain(“CodeDriver”);

 CodeDriver codeDriver = (CodeDriver)

c19.indd 501 30-01-2014 20:27:02

502 ❘ CHAPTER 19 Assemblies

 codeDomain.CreateInstanceAndUnwrap(“DynamicAssembly”,
 “Wrox.ProCSharp.Assemblies.CodeDriver”);

 string result = codeDriver.CompileAndRun(code, out hasError);

 AppDomain.Unload(codeDomain);

 return result;
 }
 }
}

NoTE The class CodeDriver itself now is used both in the main application domain
and in the new application domain; that’s why it is not possible to get rid of the code
that this class is using. If you want to do that, you can define an interface that is
implemented by the CodeDriver and just use the interface in the main application
domain. However, here this is not an issue because it’s only necessary to get rid of the
dynamically created assembly with the Driver class.

To access the class CodeDriver from a different application domain, the class CodeDriver must derive from
the base class MarshalByRefObject. Only classes that derive from this base type can be accessed across
another application domain. In the main application domain, a proxy is instantiated to invoke the methods
of this class across an inter-application domain channel (code file DynamicAssembly/CodeDriver.cs):

using System;
using System.CodeDom.Compiler;
using System.IO;
using System.Reflection;
using System.Text;
using Microsoft.CSharp;

namespace Wrox.ProCSharp.Assemblies
{
 public class CodeDriver: MarshalByRefObject
 {

The Compile_Click() event handler can now be changed to use the CodeDriverInAppDomain class instead
of the CodeDriver class (code file DynamicAssembly/DynamicAssemblyWindow.xaml.cs):

 private void Compile_Click(object sender, RoutedEventArgs e)
 {
 var driver = new CodeDriverInAppDomain();
 bool isError;
 textOutput.Text = driver.CompileAndRun(textCode.Text, out isError);
 if (isError)
 {
 textOutput.Background = Brushes.Red;
 }
 }

Now you can click the Compile and Run button of the application any number of times and the generated
assembly is always unloaded.

NoTE You can see the loaded assemblies in an application domain with the
GetAssemblies() method of the AppDomain class.

c19.indd 502 30-01-2014 20:27:02

Shared Assemblies ❘ 503

SHARED ASSEMbliES
Assemblies can be isolated for use by a single application — not sharing an assembly is the default. When
using shared assemblies, specific requirements must be followed. This section explores everything that’s
needed for sharing assemblies. Strong names are required to uniquely identify a shared assembly. You can
create a strong name by signing the assembly. This section also explains the process of delayed signing.
Shared assemblies are typically installed into the global assembly cache (GAC). You will read about how to
use the GAC in this section.

Strong Names
A shared assembly name must be globally unique, and it must be possible to protect the name. At no time
can any other person create an assembly using the same name.

COM solved the first requirement by using a globally unique identifier (GUID). The second issue, however,
still existed because anyone could steal the GUID and create a different object with the same identifier. Both
issues are solved with strong names of .NET assemblies.

A strong name consists of the following:

➤➤ The name of the assembly itself.
➤➤ A version number enables the use of different versions of the same assembly at the same time.

Different versions can also work side by side and can be loaded concurrently inside the same process.
➤➤ A public key guarantees that the strong name is unique. It also guarantees that a referenced assembly

cannot be replaced from a different source.
➤➤ A culture (cultures are discussed in Chapter 28).

NoTE A shared assembly must have a strong name to uniquely identify it.

A strong name is a simple text name accompanied by a version number, a public key, and a culture. You
wouldn’t create a new public key with every assembly; you’d have one in your company, so the key uniquely
identifies your company’s assemblies.

However, this key cannot be used as a trust key. Assemblies can carry Authenticode signatures to build a
trust. The key for the Authenticode signature can be a different one from the key used for the strong name.

NoTE For development purposes, a different public key can be used and later
exchanged easily with the real key. This feature is discussed later in the section
“Delayed Signing of Assemblies.”

To uniquely identify the assemblies in your companies, a useful namespace hierarchy should be used
to name your classes. Here is a simple example showing how to organize namespaces: Wrox Press
could use the major namespace Wrox for its classes and namespaces. In the hierarchy below the namespace,
the namespaces must be organized so that all classes are unique. Every chapter of this book uses a
different namespace of the form Wrox.ProCSharp.<Chapter>; this chapter uses Wrox.ProCSharp
.Assemblies. Therefore, if there is a class Hello in two different chapters, there’s no conflict because
of different namespaces. Utility classes that are used across different books can go into the namespace
Wrox.Utilities.

A company name commonly used as the first part of the namespace is not necessarily unique, so something
else must be used to build a strong name. For this the public key is used. Because of the public/private key
principle in strong names, no one without access to your private key can destructively create an assembly
that could be unintentionally called by the client.

c19.indd 503 30-01-2014 20:27:02

504 ❘ CHAPTER 19 Assemblies

integrity using Strong Names
A public/private key pair must be used to create a shared component. The compiler writes the public key to
the manifest, creates a hash of all files that belong to the assembly, and signs the hash with the private key,
which is not stored within the assembly. It is then guaranteed that no one can change your assembly. The
signature can be verified with the public key.

During development, the client assembly must reference the shared assembly. The compiler writes the public
key of the referenced assembly to the manifest of the client assembly. To reduce storage, it is not the public key
that is written to the manifest of the client assembly, but a public key token. The public key token consists of
the last eight bytes of a hash of the public key and is unique.

At runtime, during loading of the shared assembly (or at install time if the client is installed using the native
image generator), the hash of the shared component assembly can be verified by using the public key stored
inside the client assembly. Only the owner of the private key can change the shared component assembly.
There is no way a component Math that was created by vendor A and referenced from a client can be
replaced by a component from a hacker. Only the owner of the private key can replace the shared component
with a new version. Integrity is guaranteed insofar as the shared assembly comes from the expected publisher.

Figure 19-10 shows a shared component with a public key referenced by a client assembly that has a public
key token of the shared assembly inside the manifest.

Client Assembly

Manifest

Reference
PK:3 B BA 32

Shared Component

signature

Manifest

PK:3 B BA 32

FiguRE 19-10

global Assembly Cache
The global assembly cache (GAC) is, as the name implies, a cache for globally available assemblies.
Most shared assemblies are installed inside this cache; otherwise, a shared directory (also on a server)
can be used.

The GAC is located in the directory <windows>\Microsoft.NET\assembly. Inside this directory, you can
find multiple GACxxx directories. The GACxxx directories contain shared assemblies. GAC_MSIL contains the
assemblies with pure .NET code; GAC_32 contains the assemblies that are specific to a 32-bit platform. On a
64-bit system, you can also find the directory GAC_64 with assemblies specific for 64 bit platforms.

In the directory <windows>\assembly\NativeImages _ <runtime version>, you can find the
assemblies compiled to native code. If you go deeper in the directory structure, you will find directory names
that are similar to the assembly names, and below that a version directory and the assemblies themselves.
This enables installation of different versions of the same assembly.

gacutil.exe is a utility to install, uninstall, and list assemblies using the command line. The following list
explains some of the gacutil options:

➤➤ gacutil /l — Lists all assemblies from the assembly cache.
➤➤ gacutil /i mydll — Installs the shared assembly mydll into the assembly cache. With the option

/f you can force the installation to the GAC even if the assembly is already installed. This is useful if
you changed the assembly but didn’t change the version number.

➤➤ gacutil /u mydll — Uninstalls the assembly mydll.

c19.indd 504 30-01-2014 20:27:04

Shared Assemblies ❘ 505

NoTE For production you should use an installer program to install shared assemblies
to the GAC. Deployment is covered in Chapter 18.

NoTE The directory for shared assemblies prior to .NET 4 is at <windows>\
assembly. This directory includes a Windows shell extension to give it a nicer look
for displaying assemblies and version numbers. This shell extension is not available for
.NET 4 assemblies.

Creating a Shared Assembly
In the next example, you create a shared assembly and a client that uses it. Creating shared assemblies is
not much different from creating private assemblies. Create a simple Visual C# class library project with
the name SharedDemo. Change the namespace to Wrox.ProCSharp.Assemblies and the class name to
SharedDemo. Enter the following code. In the constructor of the class, all lines of a file are read into an
array. The name of the file is passed as an argument to the constructor. The method GetQuoteOfTheDay()
just returns a random string of the array (code file SharedDemo/SharedDemo.cs).

using System;
using System.IO;

namespace Wrox.ProCSharp.Assemblies
{
 public class SharedDemo
 {
 private string[] quotes;
 private Random random;

 public SharedDemo(string filename)
 {
 quotes = File.ReadAllLines(filename);
 random = new Random();
 }

 public string GetQuoteOfTheDay()
 {
 int index = random.Next(1, quotes.Length);
 return quotes[index];
 }
 }
}

Creating a Strong Name
A strong name is needed to share this assembly. You can create such a name with the strong name
tool (sn):

sn -k mykey.snk

The strong name utility generates and writes a public/private key pair, and writes this pair to a file; here the
file is mykey.snk.

With Visual Studio 2012, you can sign the assembly with the project properties by selecting the Signing
tab, as shown in Figure 19-11. You can also create keys with this tool. However, you should not create a

c19.indd 505 30-01-2014 20:27:04

506 ❘ CHAPTER 19 Assemblies

key file for every project. Just a few keys for the complete company can be used instead. It is useful to create
different keys depending on security requirements (see Chapter 22).

Setting the signing option with Visual Studio adds the /keyfile option to the compiler setting. Visual
Studio also allows you to create a keyfile that is secured with a password. As shown in the figure, such a file
has the file extension .pfx.

FiguRE 19-11

FiguRE 19-12

After rebuilding, the public key can be found
inside the manifest. You can verify this using
ildasm, as shown in Figure 19-12.

installing the Shared Assembly
With a public key in the assembly, you can now
install it in the global assembly cache using the
global assembly cache tool, gacutil, with
the /i option. The /f option forces you to
write the assembly to the GAC, even if it is
already there:

gacutil /i SharedDemo.dll /f

Then you can use the Global Assembly Cache Viewer or gacutil /l SharedDemo to check the version of
the shared assembly to see if it is successfully installed.

using the Shared Assembly
To use the shared assembly, create a C# console application called Client. Change the name of the
namespace to Wrox.ProCSharp.Assemblies. The shared assembly can be referenced in the same way as a
private assembly: by selecting Project ➪ Add Reference from the menu.

c19.indd 506 30-01-2014 20:27:04

Shared Assemblies ❘ 507

NoTE With shared assemblies the reference property Copy Local can be set to false.
This way, the assembly is not copied to the directory of the output files but will be
loaded from the GAC instead.

Add the file quotes.txt to the project items, and set the property Copy to Output Directory to Copy
if newer.

Here’s the code for the client application (code file Client/Program.cs):

using System;
namespace Wrox.ProCSharp.Assemblies
{
 class Program
 {
 static void Main()
 {
 var quotes = new SharedDemo("Quotes.txt");
 for (int i=0; i < 3; i++)
 {
 Console.WriteLine(quotes.GetQuoteOfTheDay());
 Console.WriteLine();
 }
 }
 }
}

Looking at the manifest in the client assembly
using ildasm (see Figure 19-13), you can see the
reference to the shared assembly SharedDemo:
.assembly extern SharedDemo. Part of this
referenced information is the version number,
discussed next, and the token of the public key.

The token of the public key can also be seen
within the shared assembly using the strong name utility: sn –T shows the token of the public key in the
assembly, and sn –Tp shows the token and the public key. Note the use of the uppercase T!

The result of your program with a sample quotes file is shown here:

"We don't like their sound. And guitar music is on the way out."
 — Decca Recording, Co., in rejecting the Beatles, 1962

"The ordinary 'horseless carriage' is at present a luxury for the wealthy; and
although its price will probably fall in the future, it will never come into as
common use as the bicycle." — The Literary Digest, 1889

"Landing and moving around the moon offers so many serious problems for human
beings that it may take science another 200 years to lick them", Lord Kelvin
(1824–1907)

Delayed Signing of Assemblies
The private key of a company should be safely stored. Most companies don’t give all developers access to the
private key; only a few security people have it. That’s why the signature of an assembly can be added at a
later date, such as before distribution. When the assembly attribute AssemblyDelaySign is set to true, no
signature is stored in the assembly, but enough free space is reserved so that it can be added later. Without

FiguRE 19-13

c19.indd 507 30-01-2014 20:27:05

508 ❘ CHAPTER 19 Assemblies

using a key, you cannot test the assembly and install it in the GAC; however, you can use a temporary key
for testing purposes, later replacing this key with the real company key.

The following steps are required to delay signing of assemblies:

 1. Create a public/private key pair with the strong name utility sn. The generated file mykey.snk includes
both the public and private keys.

sn -k mykey.snk

 2. Extract the public key to make it available to developers. The option –p extracts the public key of the
keyfile. The file mykeypub.snk holds only the public key.

sn -p mykey.snk mykeypub.snk

All developers in the company can use this keyfile mykeypub.snk and compile the assembly with the
/delaysign+ option. This way, the signature is not added to the assembly, but it can be added after-
ward. In Visual Studio 2012, the delay sign option can be set with a check box in the Signing settings.

 3. Turn off verification of the signature, because the assembly doesn’t have a signature:

sn -Vr SharedDemo.dll

 4. Before distribution the assembly can be re-signed with the sn utility. Use the –R option to re-sign
previously signed or delayed signed assemblies. Re-signing of the assembly can be done by the person
who creates the deployment package for the application and has access to the private key that is used
for distribution.

sn -R MyAssembly.dll mykey.snk

NoTE The signature verification should be turned off only during the development
process. Never distribute an assembly without verification, as it would be possible for
the assembly to be replaced with a malicious one.

NoTE Re-signing of assemblies can be automated by defining the tasks in an MSBuild
file. This is discussed in Chapter 17, “Visual Studio 2013.”

References
Assemblies in the GAC can have references associated with them. These references are responsible for the
fact that a cached assembly cannot be deleted if it is still needed by an application. For example, if a shared
assembly is installed by a Microsoft installer package (.msi file), it can only be deleted by uninstalling the
application, not by deleting it directly from the GAC. Trying to delete the assembly from the GAC results in
the following error message:

"Assembly <name> could not be uninstalled because it is required by other
applications."

You can set a reference to the assembly by using the gacutil utility with the option /r. The option /r
requires a reference type, a reference ID, and a description. The type of the reference can be one of three
options: UNINSTALL_KEY, FILEPATH, or OPAQUE. UNINSTALL_KEY is used by MSI when a registry key is
defined that is also needed for the uninstallation. A directory can be specified with FILEPATH. A useful

c19.indd 508 30-01-2014 20:27:05

Shared Assemblies ❘ 509

directory would be the root directory of the application. The OPAQUE reference type enables you to set any
type of reference.

The command line:

gacutil /i shareddemo.dll /r FILEPATH c:\ProCSharp\Assemblies\Client "Shared Demo"

installs the assembly shareddemo in the GAC with a reference to the directory of the client application.
Another installation of the same assembly is possible with a different path, or an OPAQUE ID, such as in this
command line:

gacutil /i shareddemo.dll /r OPAQUE 4711 "Opaque installation"

Now, the assembly is in the GAC only once, but it has two references. To delete the assembly from the GAC,
both references must be removed:

gacutil /u shareddemo /r OPAQUE 4711 "Opaque installation"
gacutil /u shareddemo /r FILEPATH c:\ProCSharp\Assemblies\Client "Shared Demo"

NoTE To remove a shared assembly, the option /u requires the assembly name without
the file extension .DLL. Conversely, the option /i to install a shared assembly requires
the complete filename, including the file extension.

NoTE Chapter 18 covers the deployment of assemblies in which the reference count is
being dealt with in an MSI package.

Native image generator
With the native image generator, Ngen.exe, you can compile the IL code to native code at installation time.
This way, the program can start faster because the compilation during runtime is no longer necessary.
Comparing precompiled assemblies to assemblies for which the JIT compiler needs to run is not different
from a performance perspective after the IL code is compiled. The biggest improvement you get with the
native image generator is that the application starts faster because there’s no need to run JIT. Also, during
runtime JIT is not needed as the IL code is already compiled. If your application is not using a lot of CPU
time, you might not see a big improvement here. Reducing the startup time of the application might be
enough reason to use the native image generator. If you do create a native image from the executable, you
should also create native images from all the DLLs that are loaded by the executable. Otherwise, the JIT
compiler still needs to run.

The ngen utility installs the native image in the native image cache. The physical directory of the native
image cache is <windows>\assembly\NativeImages<RuntimeVersion>.

With ngen install myassembly, you can compile the MSIL code to native code and install it into the
native image cache. This should be done from an installation program if you would like to put the assembly
in the native image cache.

With ngen, you can also display all assemblies from the native image cache with the option display. If you
add an assembly name to the display option, you get information about all assemblies that are dependent
on the assembly; and after the long list, you can see all versions of this assembly installed:

C:\>ngen display System.Core
Microsoft (R) CLR Native Image Generator - Version 4.0.30319.17626

c19.indd 509 30-01-2014 20:27:05

510 ❘ CHAPTER 19 Assemblies

Copyright (c) Microsoft Corporation. All rights reserved.

NGEN Roots that depend on "System.Core":

C:\Program Files (x86)\Common Files\Microsoft Shared\VSTA\Pipeline.v10.0\
AddInViews\Microsoft.VisualStudio.Tools.Applications.Runtime.v10.0.dll
C:\Program Files (x86)\Common Files\Microsoft Shared\VSTA\Pipeline.v10.0\
HostSideAdapters\Microsoft.VisualStudio.Tools.Office.Excel.HostAdapter.v10.0.
dll
C:\Program Files (x86)\Common Files\Microsoft Shared\VSTA\Pipeline.v10.0\
HostSideAdapters\Microsoft.VisualStudio.Tools.Office.HostAdapter.v10.0.dll
c:\Program Files (x86)\Microsoft Expression\Blend 4\
Microsoft.Windows.Design.Extensibility\
Microsoft.Windows.Design.Extensibility.dll
...

Native Images:

System.AddIn, Version=3.5.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089
System.AddIn, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

In case the security of the system changes, it is not sure if the precompiled native image has the security
requirements it needs for running the application. This is why the native images become invalid with a
system configuration change. With the command ngen update, all native images are rebuilt to include the
new configurations.

Installing .NET 4.5 also installs the Native Runtime Optimization Service, which can be used to defer
compilation of native images and regenerate native images that have been invalidated.

The command ngen install myassembly /queue can be used by an installation program to defer
compilation of myassembly to a native image using the Native Image Service. ngen update /queue
regenerates all native images that have been invalidated. With the ngen queue options pause, continue,
and status, you can control the service and get status information.

NoTE You might be wondering why the native images cannot be created on the
developer system, enabling you to just distribute them to the production system. The
reason is because the native image generator takes care of the CPU that is installed
with the target system, and compiles the code optimized for the CPU type. During
installation of the application, the CPU is known.

CoNFiguRiNg .NET APPliCATioNS
Previous to COM, application configuration typically was using INI files. In the following application
generation, the registry was the major place for configuration. All COM components are configured in the
registry. The first version of Internet Information Server (IIS) had its complete configuration in the registry
as well. The registry has its advantage on a centralized place for all configuration. One disadvantage
was the open API where applications put configuration values to places in the registry that wasn’t meant
to. Also, xcopy deployment is not possible with registry configuration. IIS later changed to a custom
binary configuration format that is only accessible via IIS Admin APIs. Nowadays, IIS uses XML files
for its configuration. XML configuration files are also the preferred place to store configuration values for
.NET applications. Configuration files can simply be copied. The configuration files use XML syntax to
specify startup and runtime settings for applications.

c19.indd 510 30-01-2014 20:27:05

Configuring .NET Applications ❘ 511

This section explores the following:

➤➤ What you can configure using the XML base configuration files
➤➤ How you can redirect a strongly named referenced assembly to a different version
➤➤ How you can specify the directory of assemblies to find private assemblies in subdirectories and

shared assemblies in common directories or on a server

Configuration Categories
The configuration can be grouped into the following categories:

➤➤ Startup settings — Enable you to specify the version of the required runtime. It’s possible that
different versions of the runtime could be installed on the same system. The version of the runtime can
be specified with the <startup> element.

➤➤ Runtime settings — Enable you to specify how garbage collection is performed by the runtime and
how the binding to assemblies works. You can also specify the version policy and the code base with
these settings. You take a more detailed look into the runtime settings later in this chapter.

➤➤ WCF settings — Used to configure applications using WCF. You deal with these configurations in
Chapter 43, “Windows Communication Foundation.”

➤➤ Security settings — Covered in Chapter 22, configuration for cryptography and permissions is
handled here.

These settings can be provided in three types of configuration files:

➤➤ Application configuration files — Include specific settings for an application, such as binding
information to assemblies, configuration for remote objects, and so on. Such a configuration file
is placed into the same directory as the executable; it has the same name as the executable with a
.config extension. ASP.NET configuration files are named web.config.

➤➤ Machine configuration files — Used for system-wide configurations. You can also specify assembly
binding and remoting configurations here. During a binding process, the machine configuration file
is consulted before the application configuration file. The application configuration can override
settings from the machine configuration. The application configuration file should be the preferred
place for application-specific settings so that the machine configuration file remains smaller and
more manageable. Machine configuration files are located at %runtime_install_path%\config\
Machine.config.

➤➤ Publisher policy files — Can be used by a component creator to specify that a shared assembly is
compatible with older versions. If a new assembly version just fixes a bug of a shared component,
it is not necessary to put application configuration files in every application directory that uses
this component; the publisher can mark it as compatible by adding a publisher policy file instead.
If the component doesn’t work with all applications, it is possible to override the publisher policy
setting in an application configuration file. In contrast to the other configuration files, publisher policy
files are stored in the GAC.

To understand how these configuration files are used, recall that how a client finds an assembly (also called
binding) depends on whether the assembly is private or shared. Private assemblies must be in the directory
of the application or a subdirectory thereof. A process called probing is used to find such an assembly. If the
assembly doesn’t have a strong name, the version number is not used with probing.

Shared assemblies can be installed in the GAC or placed in a directory, on a network share, or on a website.
You specify such a directory with the configuration of the codeBase shortly. The public key, version, and
culture are all important aspects when binding to a shared assembly. The reference of the required assembly
is recorded in the manifest of the client assembly, including the name, the version, and the public key token.
All configuration files are checked to apply the correct version policy. The GAC and code bases specified
in the configuration files are checked, followed by the application directories, and probing rules are then
applied.

c19.indd 511 30-01-2014 20:27:05

512 ❘ CHAPTER 19 Assemblies

binding to Assemblies
You’ve already seen how to install a shared assembly to the GAC. Instead of doing that, you can configure
a specific shared directory by using configuration files. This feature can be used if you want to make the
shared components available on a server. Another possible scenario is when you want to share an assembly
between your applications but you don’t want to make it publicly available in the GAC, so you put it into a
shared directory instead.

There are two ways to find the correct directory for an assembly: the codeBase element in an XML
configuration file, or through probing. The codeBase configuration is available only for shared assemblies,
and probing is done for private assemblies.

<codeBase>
The <codeBase> element can be configured with an application configuration file. The following application
configuration file redirects the search for the assembly SharedDemo to load it from the network:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="SharedDemo" culture="neutral"
 publicKeyToken="f946433fdae2512d" />
 <codeBase version=”1.0.0.0”
 href="http://www.christiannagel.com/WroxUtils/SharedDemo.dll" />
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

The <codeBase> element has the attributes version and href. With version, the original referenced
version of the assembly must be specified. With href, you can define the directory from which the assembly
should be loaded. In the preceding example, a path using the HTTP protocol is used. A directory on a local
system or a share is specified by using href="file://C:/WroxUtils/SharedDemo.dll".

<probing>
When the <codeBase> is not configured and the assembly is not stored in the GAC, the runtime tries to
find an assembly through probing. The .NET runtime tries to find assemblies with either a .dll or an
.exe file extension in the application directory or in one of its subdirectories that has the same name as the
assembly searched for. If the assembly is not found here, the search continues. You can configure search
directories with the <probing> element in the <runtime> section of application configuration files. This
XML configuration can also be done easily by selecting the properties of the application with the .NET
Framework Configuration tool. You can configure the directories where the probing should occur by using
the search path in the .NET Framework configuration.

The XML file produced has the following entries:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <probing privatePath="bin;utils;" />
 </assemblyBinding>
 </runtime>
</configuration>

The <probing> element has just a single required attribute: privatePath. This application configuration
file tells the runtime that assemblies should be searched for in the base directory of the application, followed

c19.indd 512 30-01-2014 20:27:06

Versioning ❘ 513

by the bin and util directories. Both directories are subdirectories of the application base directory. It’s not
possible to reference a private assembly outside the application base directory or a subdirectory thereof. An
assembly outside of the application base directory must have a shared name and can be referenced using the
<codeBase> element, as shown earlier.

VERSioNiNg
For private assemblies, versioning is not important because the referenced assemblies are copied with the
client. The client uses the assembly it has in its private directories. This is different for shared assemblies,
however. This section looks at the traditional problems that can occur with sharing.

With shared components, more than one client application can use the same component. The new version
can break existing clients when updating a shared component with a newer version. You can’t stop
shipping new versions because new features will be requested and introduced with new versions of existing
components. You can try to program carefully for backward compatibility, but that’s not always possible.

A solution to this dilemma could be an architecture that allows installation of different versions of shared
components, with clients using the version that they referenced during the build process. This solves a lot of
problems but not all of them. What happens if you detect a bug in a component that’s referenced from the
client? You would like to update this component and ensure that the client uses the new version instead of
the version that was referenced during the build process.

Therefore, depending on the type in the fix of the new version, you sometimes want to use a newer version,
and you also want to use the older referenced version. The .NET architecture enables both scenarios. In
.NET, the original referenced assembly is used by default. You can redirect the reference to a different
version by using configuration files. Versioning plays a key role in the binding architecture — how the client
gets the right assembly where the components reside.

Version Numbers
Assemblies have a four-part version number — for example, 1.1.400.3300. The parts are <Major>,
<Minor>,<Build>,<Revision>. How these numbers are used depends on your application configuration.

NoTE It’s a good policy to change the major or minor number on changes
incompatible with the previous version, but just the build or revision number with
compatible changes. This way, it can be assumed that redirecting an assembly to a new
version where just the build and revision have changed is safe.

With Visual Studio 2013, you can define the version number of the assembly with the assembly information
in the project settings. The project settings write the assembly attribute [AssemblyVersion] to the file
AssemblyInfo.cs:

[assembly: AssemblyVersion("1.0.0.0")]

Instead of defining all four version numbers, you can also place an asterisk in the third or fourth place:

[assembly: AssemblyVersion("1.0.*")]

With this setting, the first two numbers specify the major and minor version, and the asterisk (*) means that
the build and revision numbers are auto-generated. The build number is the number of days since January
1, 2000, and the revision is the number of seconds since midnight divided by two. Though the automatic
versioning might help during development time, before shipping it is a good practice to define a specific
version number.

c19.indd 513 30-01-2014 20:27:06

514 ❘ CHAPTER 19 Assemblies

This version is stored in the .assembly section of the manifest.

Referencing the assembly in the client application stores the version of the referenced assembly in the
manifest of the client application.

getting the Version Programmatically
To enable checking the version of the assembly that is used from the client application, add the read-only
property FullName to the SharedDemo class created earlier to return the strong name of the assembly.
For easy use of the Assembly class, you have to import the System.Reflection namespace (code file
SharedDemo/SharedDemo.cs):

public string FullName
{
 get
 {
 return Assembly.GetExecutingAssembly().FullName;
 }
}

The FullName property of the Assembly class holds the name of the class, the version, the locality, and the
public key token, as shown in the following output, when calling FullName in your client application.

In the client application, just add a call to FullName in the Main() method after creating the shared
component (code file Client/Program.cs):

static void Main()
{
 var quotes = new SharedDemo("Quotes.txt");
 Console.WriteLine(quotes.FullName);

Be sure to register the new version of the shared assembly SharedDemo again in the GAC, using gacutil.
If the referenced version cannot be found, you will get a System.IO.FileLoadException, because the
binding to the correct assembly failed.

With a successful run, you can see the full name of the referenced assembly:

SharedDemo, Version=1.0.0.0, Culture=neutral, PublicKeyToken= f946433fdae2512d

This client program can now be used to test different configurations of this shared component.

binding to Assembly Versions
With a configuration file, you can specify that the binding should happen to a different version of a shared
assembly. Assume that you create a new version of the shared assembly SharedDemo with major and minor
versions 1.1. Maybe you don’t want to rebuild the client but just want the new version of the assembly to
be used with the existing client instead. This is useful in cases where either a bug is fixed with the shared
assembly or you just want to get rid of the old version because the new version is compatible.

By running gacutil.exe, you can see that the versions 1.0.0.0 and 1.0.3300.0 are installed for the
SharedDemo assembly:

> gacutil -l SharedDemo

Microsoft (R) .NET Global Assembly Cache Utility. Version 4.0.30319.17626
Copyright (c) Microsoft Corporation. All rights reserved.

The Global Assembly Cache contains the following assemblies:
 SharedDemo, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=f946433fdae2512d, processorArchitecture=x86

c19.indd 514 30-01-2014 20:27:06

Versioning ❘ 515

 SharedDemo, Version=1.0.3300.0, Culture=neutral,
 PublicKeyToken=f946433fdae2512d, processorArchitecture=x86

Number of items = 2

Figure 19-14 shows the manifest of the client
application for which the client references version
1.0.0.0 of the assembly SharedDemo.

Now, again, an application configuration
file is needed. As before, the assembly that
is redirected needs to be specified with the
<assemblyIdentity> element. This element
identifies the assembly using the name, culture,
and public key token. For a redirect to a different
version, the <bindingRedirect> element is used. The oldVersion attribute specifies what version of the
assembly should be redirected to a new version. With oldVersion you can specify a range like the one
shown, with all assemblies from version 1.0.0.0 to 1.0.3300.0 to be redirected. The new version is specified
with the newVersion attribute (configuration file Client/App.config):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="SharedDemo" culture="neutral"
 publicKeyToken="f946433fdae2512d" />
 <bindingRedirect oldVersion="1.0.0.0–1.0.3300.0"
 newVersion="1.0.3300.0" />
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

Publisher Policy Files
Using assemblies shared from the GAC enables you to use publisher policies to override versioning issues.
Assume that you have an assembly used by some applications. What can be done if a critical bug is found in
the shared assembly? You have seen that it is not necessary to rebuild all the applications that use this shared
assembly, because you can use configuration files to redirect to the new version of this shared assembly.
Maybe you don’t know all the applications that use this shared assembly, but you want to get the bug fix to
all of them. In that case, you can create publisher policy files to redirect all applications to the new version
of the shared assembly.

NoTE Publisher policy files apply only to shared assemblies installed in the GAC.

To set up publisher policies, you have to do the following:

➤➤ Create a publisher policy file.
➤➤ Create a publisher policy assembly.
➤➤ Add the publisher policy assembly to the GAC.

Creating a Publisher Policy File
A publisher policy file is an XML file that redirects an existing version or version range to a new version.
The syntax used here is the same as that used for application configuration files, so you can use the file

FiguRE 19-14

c19.indd 515 30-01-2014 20:27:06

516 ❘ CHAPTER 19 Assemblies

you created earlier to redirect the old versions 1.0.0.0 through 1.0.3300.0 to the new version 1.0.3300.0.
Rename the previously created file to mypolicy.config to use it as a publisher policy file.

Creating a Publisher Policy Assembly
To associate the publisher policy file with the shared assembly, it is necessary to create a publisher policy
assembly and place it in the GAC. The tool you can use to create such a file is the assembly linker, al. The
option /linkresource adds the publisher policy file to the generated assembly. The name of the generated
assembly must start with policy, followed by the major and minor version number of the assembly that
should be redirected, and the filename of the shared assembly. In this case the publisher policy assembly
must be named policy.1.0.SharedDemo.dll to redirect the assemblies SharedDemo with the major
version 1 and minor version 0. The key that must be added to this publisher key with the option /keyfile
is the same key that was used to sign the shared assembly SharedDemo to guarantee that the version
redirection is from the same publisher:

al /linkresource:mypolicy.config /out:policy.1.0.SharedDemo.dll
/keyfile:.\.\mykey.snk

Adding the Publisher Policy Assembly to the GAC
The publisher policy assembly can now be added to the GAC with the utility gacutil:

gacutil -i policy.1.0.SharedDemo.dll

Do not forget the -f option if the same policy file was already published. Then remove the application
configuration file that was placed in the directory of the client application and start the client application.
Although the client assembly references 1.0.0.0, you use the new version 1.0.3300.0 of the shared assembly
because of the publisher policy.

Overriding Publisher Policies
With a publisher policy, the publisher of the shared assembly guarantees that a new version of the assembly
is compatible with the old version. As you know from changes to traditional DLLs, such guarantees don’t
always hold. Maybe all applications except one are working with the new shared assembly. To fix the
one application that has a problem with the new release, the publisher policy can be overridden by using an
application configuration file.

You can disable the publisher policy by adding the XML element <publisherPolicy> with the attribute
apply="no" (configuration file Client/App.config):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="SharedDemo" culture="neutral"
 publicKeyToken="f946433fdae2512d" />
 <publisherPolicy apply=”no” />
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

By disabling the publisher policy, you can configure different version redirection in the application
configuration file.

Runtime Version
Installing and using multiple versions is not only possible with assemblies but also with the .NET runtime
(CLR). The versions 1.0, 1.1, 2.0, and 4.0 (and later versions) of the CLR can be installed on the same

c19.indd 516 30-01-2014 20:27:06

Sharing Assemblies Between Different Technologies ❘ 517

operating system side by side. Visual Studio 2012 targets applications running on CLR 2.0 with .NET 2.0,
3.0, and 3.5, and CLR 4.0 with .NET 4 and 4.5.

If the application is built with CLR 2.0, it might run without changes on a system where only CLR version
4.0 is installed. The reverse is not true: If the application is built with CLR 4.0, it cannot run on a system on
which only CLR 2.0 is installed.

In an application configuration file, not only can you redirect versions of referenced assemblies, you can also
define the required version of the runtime. You can specify the version that’s required for the application in
an application configuration file. The element <supportedRuntime> marks the runtime versions that are
supported by the application. The order of <supportedRuntime> elements defines the preference if multiple
runtime versions are available on the system. The following configuration prefers the .NET 4 runtime and
supports 2.0. Remember that in order for this to be possible, the application must be built with the target
framework .NET 2.0, 3.0 or 3.5.

<?xml version="1.0"?>
<configuration>
 <startup>
 <supportedRuntime version="v4.0" />
 <supportedRuntime version="v2.0.50727" />
 </startup>
</configuration>

Optionally, the SKUs can be defined with the sku attribute. The SKU defines the .NET Framework version,
e.g., 4.0 with SP1, or the client profile. The following snippet requires the full version of .NET 4.5:

 <supportedRuntime version="v4.0" sku=”.NET Framework,Version=4.5” />

To specify the client profile of .NET 4.0 with SP2, this string is specified:

.NET Framework,Version=4.02,Profile=Client

All the possible SKUs can be found in the registry key HKLM\SOFTWARE\Microsoft\.NETFramework\
v4.0.30319\SKUs.

SHARiNg ASSEMbliES bETwEEN DiFFERENT TECHNologiES
Sharing assemblies is not limited to different .NET applications; you can also share code or assemblies
between different technologies — for example, between .NET and Windows Store apps. This section
describes the different options available, including their advantages and disadvantages. Your requirements
will determine which option is most appropriate for your environment.

Sharing Source Code
The first option is not really a variant of sharing assemblies; instead, source code is shared. To share source
code between different technologies, you can use C# preprocessor directives and define conditional compilation
symbols, as shown in the following code snippet. Here, the method PlatformString returns a string, which
varies according to whether the symbol SILVERLIGHT or NETFX_CORE or neither of these symbols is defined:

 public string PlatformString()
 {
#if SILVERLIGHT
 return "Silverlight";
#elif NETFX_CORE
 return Windows Store App
#else
 return "Default";
#endif
 }

c19.indd 517 30-01-2014 20:27:06

518 ❘ CHAPTER 19 Assemblies

You can define the code with these platform dependencies within a normal .NET library. With other
libraries, such as a Class Library for Windows Store Apps or a Silverlight 5 class library, symbols are defined
as shown in Figure 19-15, which in this case uses a Class Library for Windows Store Apps.

With other projects, existing items can be added with
the option Add as Link from Solution Explorer. This
way, the source code only exists once, and can be edited
from all projects where the link was added. Depending
on the project in which the file is opened for editing, the
Visual Studio editor highlights the code from the part
of the current active #if block. In Figure 19-16, three
different projects have the same file, Demo.cs, linked.
The links have a different symbol within Solution
Explorer.

When sharing source code, every project type can
take full advantage of all its features. However, it’s
necessary to define different code segments to handle
the differences. For that, preprocessor directives can be
used to deal with different method implementations, or
different methods, or even different implementations of
complete types.

Portable Class library
Sharing the binary assembly instead of the source code
can be done with the portable class library. Visual Studio
2013 provides a template for creating portable class
libraries. With this library you can configure multiple
target frameworks, as shown in Figure 19-17. Here, the
target frameworks .NET 4.5 and .NET for Windows
Store apps are selected. This enables all references,
classes, and methods to be used with all the selected
frameworks.

FiguRE 19-15

FiguRE 19-16

c19.indd 518 30-01-2014 20:27:07

Sharing Assemblies Between Different Technologies ❘ 519

If all the frameworks are selected, of course, the classes that can be used are very limited. The available
classes and class members are displayed within the Object Browser, as shown in Figure 19-18.

FiguRE 19-17

FiguRE 19-18

c19.indd 519 30-01-2014 20:27:07

520 ❘ CHAPTER 19 Assemblies

For example, using .NET Framework 4.5 and .NET for Metro-style apps, a subset of MEF and WCF, is
available. Classes from WPF, Windows Forms, ASP.NET, and ADO.NET are not available. It’s possible
to create a view model within the portable library to be used with the MVVM pattern. With the portable
library, the view model classes cannot use libraries that reference ADO.NET. Of course, it’s a common
scenario to use a database from a Windows application. To do this you can use some server-side code that
accesses the database and use a communication protocol to access the service.

NoTE The MVVM Pattern (Model-View-ViewModel) separates the user interface
(view) from the data (model) using a layer between (view-model). This pattern is often
used with WPF applications.

SuMMARy
Assemblies are the installation unit for the .NET platform. Microsoft learned from problems with
previous architectures (like COM) and did a complete redesign to avoid them. This chapter discussed
the main features of assemblies: that they are self-describing, and require no type library or registry
information.

Because version dependencies are exactly recorded with assemblies, the old DLL hell no longer exists, and
development, deployment, and administration have become a lot easier.

You learned the differences between private and shared assemblies and saw how shared assemblies can
be created. With private assemblies, you don’t have to pay attention to uniqueness and versioning issues
because these assemblies are copied and only used by a single application. Sharing assemblies requires the
use of a key for uniqueness and to define the version. You also looked at the GAC, which can be used as an
intelligent store for shared assemblies.

You can have faster application startup by using the native image generator. With this, the JIT compiler does
not need to run because the native code is created during installation.

You looked at all the aspects of assembly versioning, including overriding the policy to use a version of an
assembly different from the one that was used during development; this is achieved using publisher policies
and application configuration files. You learned how probing works with private assemblies.

The chapter also discussed loading assemblies dynamically and creating assemblies during runtime. If
you want more information on this, read about the plugin model of .NET 4 in Chapter 30, “Managed
Extensibility Framework.”

The next chapter is on diagnostics, to find failures with applications not only during development but also
on a production system.

c19.indd 520 30-01-2014 20:27:07

20
Diagnostics

WHAT’s In THIs CHAPTER?

➤➤ Code contracts
➤➤ Tracing
➤➤ Event logging
➤➤ Performance monitoring

WRoX.CoM CodE doWnLoAds FoR THIs CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ Code Contracts

➤➤ Tracing Demo

➤➤ Tracing Demo with EventLog

➤➤ EventSource Sample

➤➤ Event Log

➤➤ Event Log Reader

➤➤ Performance Counter

dIAGnosTICs ovERvIEW
This chapter explains how to get real-time information about your running application in order to
identify any issues that it might have during production or to monitor resource usage to ensure that
higher user loads can be accommodated. This is where the namespace System.Diagnostics comes
into play. This namespace offers classes for tracing, event logging, performance counts, and code
contracts.

One way to deal with errors in your application, of course, is by throwing exceptions. However, an
application might not fail with an exception, but still not behave as expected. The application might
be running well on most systems but have a problem on a few. On the live system, you can change the
log behavior by changing a confi guration value and get detailed live information about what’s going
on in the application. This can be done with tracing.

c20.indd 521 30-01-2014 20:27:40

522 ❘ CHAPTER 20 Diagnostics

If there are problems with applications, the system administrator needs to be informed. The Event Viewer
is a commonly used tool that not only the system administrator should be aware of. With the Event Viewer,
you can both interactively monitor problems with applications and be informed about specific events that
happen by adding subscriptions. The event-logging mechanism enables you to write information about the
application.

To analyze resources needed by applications, you can monitor applications with specified time intervals,
e.g. get counts every 5 minutes. This way you can have data for 24 hours or a week without filling terabytes,
and can plan for a different application distribution or the extension of system resources. The Performance
Monitor can be used to get these data. You can write live data from your application by using performance
counts.

Design by contract is another feature offered by the .NET Framework. A method signature defines the type
of parameters. It doesn’t give you any information about the values that you can pass to the method. This
is a feature of design by contract. Using classes from the namespace System.Diagnostics.Contracts you
can define preconditions, postconditions, and invariants. These contracts can be checked during runtime but
also with a static contract analyzer. This chapter explains these facilities and demonstrates how you can use
them from your applications.

CodE ConTRACTs
Design by contract is an idea from the Eiffel programming language that defines preconditions, postcondi-
tions, and invariants. .NET includes classes for static and runtime checks of code within the namespace
System.Diagnostics.Contracts that can be used by all .NET languages. With this functionality you
can define preconditions, postconditions, and invariants within a method. The preconditions specify what
requirements the parameters must fulfill, the postconditions define the requirements on returned data, and
the invariants define the requirements of variables within the method itself.

Contract information can be compiled both into the debug code and the release code. It is also possible to
define a separate contract assembly, and many checks can be made statically without running the applica-
tion. You can also define contracts on interfaces that cause the implementations of the interface to fulfill
the contracts. Contract tools can rewrite the assembly to inject contract checks within the code for runtime
checks, check the contracts during compile time, and add contract information to the generated XML
documentation.

Figure 20-1 shows the project properties for the code contracts in Visual Studio 2013. Here, you can define
what level of runtime checking should be done, indicate whether assert dialogs should be opened on
contract failures, and configure static checking. Setting the Perform Runtime Contract Checking to Full
defines the symbol CONTRACTS_FULL. Because many of the contract methods are annotated with the
attribute [Conditional("CONTRACTS_FULL")], all runtime checks are performed with this setting only.

noTE To work with code contracts you can use classes available with .NET 4.0 in
the namespace System.Diagnostics.Contracts. However, no tool is included with
Visual Studio 2013. You need to install the NuGet package Code Contracts Editor
Extensions from Microsoft Research.

Code contracts are defined with the Contract class. All contract requirements that you define in a
method, whether they are preconditions or postconditions, must be placed at the beginning of the method.
You can also assign a global event handler to the event ContractFailed that is invoked for every failed
contract during runtime. Invoking SetHandled with the e parameter of type ContractFailedEventArgs
stops the standard behavior of failures that would throw an exception (code file CodeContractSamples/
Program.cs):

c20.indd 522 30-01-2014 20:27:40

Code Contracts ❘ 523

 Contract.ContractFailed += (sender, e) =>
 {
 Console.fdhWriteLine(e.Message);
 e.SetHandled();
 };

Preconditions
Preconditions check the parameters that are passed to a method. With the Contract class, preconditions are
defined with the Requires method. With the Requires method, a Boolean value must be passed, and an
optional message string with the second parameter that is shown when the condition does not succeed. The
following example requires that the argument min be less than or equal to the argument max:

 static void MinMax(int min, int max)
 {
 Contract.Requires(min <= max);
 //...
 }

Using the generic variant of the Requires method enables specifying an exception type that should be
invoked in case the condition is not fulfilled. The following contract throws an ArgumentNullException
if the argument o is null. The exception is not thrown if an event handler sets the ContractFailed event
to handled. Also, if the Assert on Contract Failure setting is configured, Trace.Assert is used to stop the
program instead of throwing the exception defined:

FIGURE 20-1

c20.indd 523 30-01-2014 20:27:41

524 ❘ CHAPTER 20 Diagnostics

 static void Preconditions(object o)
 {
 Contract.Requires<ArgumentNullException>(o != null,
 "Preconditions, o may not be null");
 //...

Requires<TException> is not annotated with the attribute [Conditional("CONTRACTS_FULL")];
nor does it have a condition on the DEBUG symbol, so this runtime check is done in any case.
Requires<TException> throws the defined exception if the condition is not fulfilled.

For checking collections that are used as arguments, the Contract class offers Exists and ForAll methods.
ForAll checks every item in the collection if the condition succeeds. In the example, it checks whether every
item in the collection has a value smaller than 12. With the Exists method, it checks whether any one ele-
ment in the collection meets the condition:

 static void ArrayTest(int[] data)
 {
 Contract.Requires(Contract.ForAll(data, i => i < 12));

Both the methods Exists and ForAll have an overload whereby you can pass two integers,
fromInclusive and toExclusive, instead of IEnumerable<T>. A range from the numbers (excluding
toExclusive) is passed to the predicate defined with the third parameter. Exists and ForAll can be used
with preconditions, postconditions, and invariants.

Postconditions
Postconditions define guarantees about shared data and return values after the method has completed.
Although they define some guarantees on return values, they must be written at the beginning of a method;
all contract requirements must be at the beginning of the method.

Ensures and EnsuresOnThrow<TException> are postconditions. The following contract ensures that the
variable sharedState is less than 6 at the end of the method (the value can change in between):

 private static int sharedState = 5;
 static void Postcondition()
 {
 Contract.Ensures(sharedState < 6);
 sharedState = 9;
 Console.WriteLine("change sharedState invariant {0}", sharedState);
 sharedState = 3;
 Console.WriteLine("before returning change it to a valid value {0}",
 sharedState);
 }

With EnsuresOnThrow<TException>, it is guaranteed that a shared state meets a condition if a specified
exception is thrown.

To guarantee a return value, the special value Result<T> can be used with an Ensures contract. In the
next example, the result is of type int as is also defined with the generic type T for the Result method. The
Ensures contract guarantees that the return value is less than 6:

 static int ReturnValue()
 {
 Contract.Ensures(Contract.Result<int>() < 6);
 return 3;
 }

You can also compare a current value to an old value. This is done with the OldValue<T> method, which
returns the original value on method entry for the variable passed. The following contract ensures that the
result returned from the method is larger than the old value received from the argument x:

c20.indd 524 30-01-2014 20:27:41

Code Contracts ❘ 525

 static int ReturnLargerThanInput(int x)
 {
 Contract.Ensures(Contract.Result<int>() > Contract.OldValue<int>(x));
 return x + 3;
 }

If a method returns values with the out modifier instead of just with the return statement, conditions can
be defined with ValueAtReturn. The following contract defines that the x variable must be larger than 5
and smaller than 20 on return, and with the y variable module 5 must equal 0 on return:

 static void OutParameters(out int x, out int y)
 {
 Contract.Ensures(Contract.ValueAtReturn<int>(out x) > 5 &&
 Contract.ValueAtReturn<int>(out x) < 20);
 Contract.Ensures(Contract.ValueAtReturn<int>(out y) % 5 == 0);
 x = 8;
 y = 10;
 }

Invariants
Invariants define contracts for variables during the object’s lifetime. Contract.Requires defines input
requirements of a method, and Contract.Ensures defines requirements on method end. Contract
.Invariant defines conditions that must succeed during the whole lifetime of an object.

The following code snippet shows an invariant check of the member variable x, which must be larger than 5.
With the initialization of x, x is initialized to 10, which fulfills the contract. The call to Contract
.Invariant can only be placed within a method that has the ContractInvariantMethod attribute applied.
This method can be public or private, can have any name (the name ObjectInvariant is suggested), and
can only contain contract invariant checks:

 private int x = 10;
 [ContractInvariantMethod]
 private void ObjectInvariant()
 {
 Contract.Invariant(x > 5);
 }

Invariant verification is always done at the end of public methods. In the next example, the method
Invariant assigns 3 to the variable x, which results in a contract failure at the end of this method:

 public void Invariant()
 {
 x = 3;
 Console.WriteLine("invariant value: {0}", x);
 // contract failure at the end of the method
 }

Purity
You can use custom methods within contract methods, but these methods must be pure. Pure means that the
method doesn’t change any visible state of the object.

You can mark methods and types as pure by applying the Pure attribute. get accessors of properties are
assumed to be pure by default. With the current version of the code contract tools, purity is not enforced.

Contracts for Interfaces
With interfaces you can define methods, properties, and events that a class derived from the interface must
implement. With the interface declaration you cannot define how the interface must be implemented, but
now this is possible using code contracts.

c20.indd 525 30-01-2014 20:27:41

526 ❘ CHAPTER 20 Diagnostics

In the following example, the interface IPerson defines FirstName, LastName, and Age properties, and the
method ChangeName. What’s special about this interface is the attribute ContractClass. This attribute is
applied to the interface IPerson and defines that the PersonContract class is used as the code contract for
the interface (code file CodeContractsSamples/IPerson.cs):

 [ContractClass(typeof(PersonContract))]
 public interface IPerson
 {
 string FirstName { get; set; }
 string LastName { get; set; }
 int Age { get; set; }
 void ChangeName(string firstName, string lastName);
 }

The class PersonContract implements the interface IPerson and defines code contracts for all the mem-
bers. This is defined with the get accessors of the properties but can also be defined with all methods that
are not allowed to change state. The FirstName and LastName get accessors also define that the result must
be a string with Contract.Result. The get accessor of the Age property defines a postcondition, ensuring
that the returned value is between 0 and 120. The set accessor of the FirstName and LastName properties
requires that the value passed is not null. The set accessor of the Age property defines a precondition that
the passed value is between 0 and 120 (code file CodeContractSamples/PersonContract.cs):

 [ContractClassFor(typeof(IPerson))]
 public abstract class PersonContract : IPerson
 {
 string IPerson.FirstName
 {
 get { return Contract.Result<String>(); }
 set { Contract.Requires(value != null); }
 }
 string IPerson.LastName
 {
 get { return Contract.Result<String>(); }
 set { Contract.Requires(value != null); }
 }
 int IPerson.Age
 {
 get
 {
 Contract.Ensures(Contract.Result<int>() >= 0 &&
 Contract.Result<int>() < 121);
 return Contract.Result<int>();
 }
 set
 {
 Contract.Requires(value >= 0 && value < 121);
 }
 }
 void IPerson.ChangeName(string firstName, string lastName)
 {
 Contract.Requires(firstName != null);
 Contract.Requires(lastName != null);
 }
 }

Now a class implementing the IPerson interface must fulfill all the contract requirements. The class Person
is a simple implementation of the interface that fulfills the contract (code file CodeContractsSamples/
Person.cs):

 public class Person : IPerson
 {
 public Person(string firstName, string lastName)
 {

c20.indd 526 30-01-2014 20:27:41

Code Contracts ❘ 527

 this.FirstName = firstName;
 this.LastName = lastName;
 }

 public string FirstName { get; private set; }
 public string LastName { get; private set; }
 public int Age { get; set; }

 public void ChangeName(string firstName, string lastName)
 {
 this.FirstName = firstName;
 this.LastName = lastName;
 }
 }

When using the class Person, the contract must also be fulfilled. For example, assigning null to a property is
not allowed:

 var p = new Person { FirstName = "Tom", LastName = null };
 // contract error

Nor is it allowed to assign an invalid value to the Age property:

 var p = new Person { FirstName = "Tom", LastName = "Turbo" };
 p.Age = 133; // contract error

Abbreviations
A new feature of .NET 4.5 and code contracts are abbreviations. If some contracts are required repeat-
edly, a reuse mechanism is available. A method that contains multiple contracts can be attributed with the
ContractAbbreviator attribute, and thus it can be used within other methods requiring this contract:

 [ContractAbbreviator]
 private static void CheckCollectionContract(int[] data)
 {
 Contract.Requires<ArgumentNullException>(data != null);
 Contract.Requires(Contract.ForAll(data, x => x < 12));
 }

Now the method CheckCollectionContract can be used within a method, checking the parameter for a
non-null value, and checking every value of the collection to be smaller than 12:

 private static void Abbrevations(int[] data)
 {
 CheckCollectionContract(data);
 }

Contracts and Legacy Code
With a lot of legacy code, arguments are often checked with if statements and throw an exception if a
condition is not fulfilled. With code contracts, it is not necessary to rewrite the verification; just add one line
of code:

 static void PrecondtionsWithLegacyCode(object o)
 {
 if (o == null) throw new ArgumentNullException("o");
 Contract.EndContractBlock();

The EndContractBlock defines that the preceding code should be handled as a contract. If other contract
statements are used as well, the EndContractBlock is not necessary.

c20.indd 527 30-01-2014 20:27:41

528 ❘ CHAPTER 20 Diagnostics

noTE When using assemblies with legacy code, with the code contracts configuration
the assembly mode must be set to Custom Parameter Validation.

TRACInG
Tracing enables you to see informational messages about the running application. To get information
about a running application, you can start the application in the debugger. During debugging, you can
walk through the application step by step and set breakpoints at specific lines and when you reach specific
conditions. The problem with debugging is that a program with release code can behave differently from a
program with debug code. For example, while the program is stopping at a breakpoint, other threads of the
application are suspended as well. Also, with a release build, the compiler-generated output is optimized
and, thus, different effects can occur. With optimized release code, garbage collection is much more aggres-
sive than with debug code. The order of calls within a method can be changed, and some methods can be
removed completely and be called in-place. There is a need to have runtime information from the release
build of a program as well. Trace messages are written with both debug and release code.

A scenario showing how tracing helps is described here. After an application is deployed, it runs on one
system without problems, while on another system intermittent problems occur. When you enable verbose
tracing, the system with the problems gives you detailed information about what’s happening inside the
application. The system that is running without problems has tracing configured just for error messages
redirected to the Windows event log system. Critical errors are seen by the system administrator. The over-
head of tracing is very small because you configure a trace level only when needed.

The tracing architecture has four major parts:

➤➤ Source — The originator of the trace information. You use the source to send trace messages.

➤➤ Switch — Defines the level of information to log. For example, you can request just error information
or detailed verbose information.

➤➤ Listeners — Trace listeners define the location to which the trace messages should be written.

➤➤ Filters — Listeners can have filters attached. The filter defines what trace messages should be written
by the listener. This way, you can have different listeners for the same source that write different levels
of information.

Figure 20-2 shows a Visual Studio class diagram illustrating the major classes for tracing and how
they are connected. The TraceSource uses a switch to define what information to log. It has a
TraceListenerCollection associated with it, to which trace messages are forwarded. The collection con-
sists of TraceListener objects, and every listener has a TraceFilter connected.

noTE Several .NET technologies make use of trace sources, which you just need to
enable to see what’s going on. For example, WPF defines, among others, sources such
as System.Windows.Data, System.Windows.RoutedEvent, System.Windows
.Markup, and System.Windows.Media.Animation. However, with WPF, you need to
enable tracing not only by configuring listeners but also by setting within the registry
key HKEY_CURRENT_USER\Software\MicrosoftTracing\WPF a new DWORD named
ManagedTracing and the value 1 — or turn it on programmatically.

Classes from the System.Net namespace use the trace source System.Net; WCF uses
the trace sources System.ServiceModel and System.ServiceModel
.MessageLogging. WCF tracing is discussed in Chapter 43, “Windows
Communication Foundation.”

c20.indd 528 30-01-2014 20:27:42

Tracing ❘ 529

Trace sources
You can write trace messages with the TraceSource class. Tracing requires the Trace flag of the compiler
settings. With a Visual Studio project, the Trace flag is set by default with debug and release builds, but you
can change it through the Build properties of the project.

noTE The TraceSource class is more difficult to use compared to the Trace class
when writing trace messages, but it provides more options.

To write trace messages, you need to create a new TraceSource instance. In the constructor, the name of
the trace source is defined. The method TraceInformation writes an informational message to the trace
output. Instead of just writing informational messages, the TraceEvent method requires an enumeration
value of type TraceEventType to define the type of the trace message. TraceEventType.Error specifies the
message as an error message. You can define it with a trace switch to see only error messages.

The second argument of the TraceEvent method requires an identifier. The ID can be used within the
application itself. For example, you can use id 1 for entering a method and id 2 for exiting a method.
The method TraceEvent is overloaded, so the TraceEventType and the ID are the only required param-
eters. Using the third parameter of an overloaded method, you can pass the message written to the trace.
TraceEvent also supports passing a format string with any number of parameters, in the same way as
Console.WriteLine. TraceInformation does nothing more than invoke TraceEvent with an identifier
of 0. TraceInformation is just a simplified version of TraceEvent. With the TraceData method, you can
pass any object — for example, an exception instance — instead of a message.

To ensure that data is written by the listeners and does not stay in memory, you need to do a Flush. If the
source is no longer needed, you can invoke the Close method, which closes all listeners associated with the
trace source. Close does a Flush as well (code file TracingDemo/Program.cs):

 public class Program
 {
 internal static TraceSource trace =
 new TraceSource("Wrox.ProCSharp.Instrumentation");

FIGURE 20-2

c20.indd 529 30-01-2014 20:27:42

530 ❘ CHAPTER 20 Diagnostics

 static void TraceSourceDemo1()
 {
 trace.TraceInformation("Info message");

 trace.TraceEvent(TraceEventType.Error, 3, "Error message");
 trace.TraceData(TraceEventType.Information, 2, "data1", 4, 5);
 trace.Close();
 }

noTE You can use different trace sources within your application. It makes sense to
define different sources for different libraries, so that you can enable different trace
levels for different parts of your application. To use a trace source, you need to know its
name. A common naming convention is to use the same name as the assembly name.

The TraceEventType enumeration that is passed as an argument to the TraceEvent method defines the
following levels to indicate the severity of the problem: Verbose, Information, Warning, Error, and
Critical. Critical defines a fatal error or application crash; Error defines a recoverable error. Trace mes-
sages at the Verbose level provide detailed debugging information. TraceEventType also defines action
levels Start, Stop, Suspend, and Resume, which define timely events inside a logical operation. As the code
is written now, it does not display any trace message because the switch associated with the trace source is
turned off.

Trace switches
To enable or disable trace messages, you can configure a trace switch. Trace switches are classes
derived from the abstract base class Switch. Derived classes are BooleanSwitch, TraceSwitch, and
SourceSwitch. The class BooleanSwitch can be turned on and off, and the other two classes provide a
range level. One range is defined by the SourceLevels enumeration. To configure trace switches, you must
know the values associated with the SourceLevels enumeration. SourceLevels defines the values Off,
Error, Warning, Info, and Verbose.

You can associate a trace switch programmatically by setting the Switch property of the TraceSource. In
the following example, the associated switch is of type SourceSwitch, has the name Wrox.ProCSharp
.Diagnostics, and has the level Verbose:

 internal static SourceSwitch traceSwitch =
 new SourceSwitch("Wrox.ProCSharp.Diagnostics")
 { Level = SourceLevels.Verbose };
 internal static TraceSource trace =
 new TraceSource("Wrox.ProCSharp.Diagnostics")
 { Switch = traceSwitch };

Setting the level to Verbose means that all trace messages should be written. If you set the value to Error,
only error messages are displayed. Setting the value to Information means that error, warning, and info
messages are shown. By writing the trace messages once more, you can see the messages while running the
debugger in the Output window.

Usually, you would want to change the switch level not by recompiling the application, but instead by
changing the configuration. The trace source can be configured in the application configuration file.
Tracing is configured within the <system.diagnostics> element. The trace source is defined with the
<source> element as a child element of <sources>. The name of the source in the configuration file must
exactly match the name of the source in the program code. In the next example, the trace source has a
switch of type System.Diagnostics.SourceSwitch associated with the name MySourceSwitch. The
switch itself is defined within the <switches> section, and the level of the switch is set to verbose
(config file TracingDemo/App.config):

c20.indd 530 30-01-2014 20:27:42

Tracing ❘ 531

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="Wrox.ProCSharp.Diagnostics" switchName="MySourceSwitch"
 switchType="System.Diagnostics.SourceSwitch" />
 </sources>
 <switches>
 <add name="MySourceSwitch" value="Verbose"/>
 </switches>
 </system.diagnostics>
</configuration>

Now you can change the trace level just by changing the configuration file; there’s no need to recompile the
code. After the configuration file is changed, you must restart the application.

Trace Listeners
By default, trace information is written to the Output window of the Visual Studio debugger; but by chang-
ing the application’s configuration, you can redirect the trace output to different locations.

Where the tracing results should be written to is defined by trace listeners. A trace listener is derived from
the abstract base class TraceListener. .NET includes several trace listeners to write the trace events to dif-
ferent targets. For file-based trace listeners, the base class TextWriterTraceListener is used, along with
the derived classes XmlWriterTraceListener to write to XML files and DelimitedListTraceListener
to write to delimited files. Writing to the event log is done with either the EventLogTraceListener or the
EventProviderTraceListener. The latter uses the event file format available since Windows Vista. You
can also combine web tracing with System.Diagnostics tracing and use the WebPageTraceListener to
write System.Diagnostics tracing to the web trace file, trace.axd.

.NET Framework delivers many listeners to which trace information can be written; but if the provided lis-
teners don’t fulfill your requirements, you can create a custom listener by deriving a class from the base class
TraceListener. With a custom listener, you can, for example, write trace information to a web service,
write messages to your mobile phone, and so on. It’s not usually desirable to receive hundreds of messages
on your phone, however, and with verbose tracing this can become really expensive.

You can configure a trace listener programmatically by creating a listener object and assigning it to the
Listeners property of the TraceSource class. However, usually it is more interesting to just change a con-
figuration to define a different listener.

You can configure listeners as child elements of the <source> element. With the listener, you define the type
of the listener class and use initializeData to specify where the output of the listener should go. The fol-
lowing configuration defines the XmlWriterTraceListener to write to the file demotrace.xml, and the
DelimitedListTraceListener to write to the file demotrace.txt (config file TracingDemo/App.config):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="Wrox.ProCSharp.Diagnostics" switchName="MySourceSwitch"
 switchType="System.Diagnostics.SourceSwitch">
 <listeners>
 <add name="xmlListener"
 type="System.Diagnostics.XmlWriterTraceListener"
 traceOutputOptions="None"
 initializeData="c:/logs/mytrace.xml" />
 <add name="delimitedListener" delimiter=":"
 type="System.Diagnostics.DelimitedListTraceListener"
 traceOutputOptions="DateTime, ProcessId"
 initializeData="c:/logs/mytrace.txt" />

c20.indd 531 30-01-2014 20:27:42

532 ❘ CHAPTER 20 Diagnostics

 </listeners>
 </source>
 </sources>
 <switches>
 <add name="MySourceSwitch" value="Verbose"/>
 </switches>
 </system.diagnostics>
</configuration>

With the listener, you can also specify what additional information should be written to the trace log. This
information is specified with the traceOutputOptions XML attribute and is defined by the TraceOptions
enumeration. The enumeration defines Callstack, DateTime, LogicalOperationStack, ProcessId,
ThreadId, and None. You can add this comma-separated information to the traceOutputOptions XML
attribute, as shown with the delimited trace listener.

The delimited file output from the DelimitedListTraceListener, including the process ID and date/time,
is shown here:

"Wrox.ProCSharp.Diagnostics":Start:0:"Main started"::7724:""::
"2012-05-11T14:31:50.8677211Z"::
"Wrox.ProCSharp.Diagnostics":Information:0:"Info message"::7724:"Main"::
"2012-05-11T14:31:50.8797132Z"::
"Wrox.ProCSharp.Diagnostics":Error:3:"Error message"::7724:"Main"::
"2012-05-11T14:31:50.8817119Z"::
"Wrox.ProCSharp.Diagnostics":Information:2::"data1","4","5":7724:"Main"::
"2012-05-11T14:31:50.8817119Z"::

The XML output from the XmlWriterTraceListener always contains the name of the computer, the pro-
cess ID, the thread ID, the message, the time created, the source, and the activity ID. Other fields, such as
the call stack, logical operation stack, and timestamp, vary according to the trace output options.

noTE You can use the XmlDocument, XPathNavigator , and XElement classes to
analyze the content from the XML file. These classes are covered in Chapter 34 ,
“Manipulating XML.”

If a listener should be used by multiple trace sources, you can add the listener configuration to the element
<sharedListeners>, which is independent of the trace source. The name of the listener that is configured
with a shared listener must be referenced from the listeners of the trace source:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="Wrox.ProCSharp.Diagnostics" switchName="MySourceSwitch"
 switchType="System.Diagnostics.SourceSwitch">
 <listeners>
 <add name="xmlListener"
 type="System.Diagnostics.XmlWriterTraceListener"
 traceOutputOptions="None"
 initializeData="c:/logs/mytrace.xml" />
 <add name="delimitedListener" />
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add name="delimitedListener" delimiter=":"
 type="System.Diagnostics.DelimitedListTraceListener"

c20.indd 532 30-01-2014 20:27:43

Tracing ❘ 533

 traceOutputOptions="DateTime, ProcessId"
 initializeData="c:/logs/mytrace.txt" />
 </sharedListeners>
 <switches>
 <add name="MySourceSwitch" value="Verbose"/>
 </switches>
 </system.diagnostics>
</configuration>

Filters
Every listener has a Filter property that defines whether the listener should write the trace message. For
example, multiple listeners can be used with the same trace source. One of the listeners writes verbose mes-
sages to a log file, and another listener writes error messages to the event log. Before a listener writes a trace
message, it invokes the ShouldTrace method of the associated filter object to determine whether the trace
message should be written.

A filter is a class that is derived from the abstract base class TraceFilter. .NET offers two filter implemen-
tations: SourceFilter and EventTypeFilter. With the source filter, you can specify that trace messages
are to be written only from specific sources. The event type filter is an extension of the switch functionality.
With a switch, it is possible to define, according to the trace severity level, whether the event source should
forward the trace message to the listeners. If the trace message is forwarded, the listener can then use the
filter to determine whether the message should be written.

The changed configuration now defines that the delimited listener should write trace messages only if the
severity level is of type warning or higher, because of the defined EventTypeFilter. The XML listener
specifies a SourceFilter and accepts trace messages only from the source Wrox.ProCSharp.Tracing. If
you have a large number of sources defined to write trace messages to the same listener, you can change the
configuration for the listener to concentrate on trace messages from a specific source:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="Wrox.ProCSharp.Tracing" switchName="MySourceSwitch"
 switchType="System.Diagnostics.SourceSwitch">
 <listeners>
 <add name="xmlListener" />
 <add name="delimitedListener" />
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add name="delimitedListener" delimiter=":"
 type="System.Diagnostics.DelimitedListTraceListener"
 traceOutputOptions="DateTime, ProcessId"
 initializeData="c:/logs/mytrace.txt">
 <filter type="System.Diagnostics.EventTypeFilter"
 initializeData="Warning" />
 </add>
 <add name="xmlListener"
 type="System.Diagnostics.XmlWriterTraceListener"
 traceOutputOptions="None"
 initializeData="c:/logs/mytrace.xml">
 <filter type="System.Diagnostics.SourceFilter"
 initializeData="Wrox.ProCSharp.Diagnostics" />
 </add>
 </sharedListeners>
 <switches>

c20.indd 533 30-01-2014 20:27:43

534 ❘ CHAPTER 20 Diagnostics

 <add name="MySourceSwitch" value="Verbose"/>
 </switches>
 </system.diagnostics>
</configuration>

The tracing architecture can be extended. Just as you can write a custom listener derived from the base class
TraceListener, you can create a custom filter derived from TraceFilter. With that capability, you can
create a filter that specifies writing trace messages depending, for example, on the time, on an exception that
occurred lately, or on the weather.

Correlation
With trace logs, you can see the relationship of different methods in several ways. To see the call stack of
the trace events, a configuration only needs to track the call stack with the XML listener. You can also
define a logical call stack that can be shown in the log messages; and you can define activities to map trace
messages.

To show the call stack and the logical call stack with the trace messages, the XmlWriterTraceListener
can be configured to the corresponding traceOuputOptions. The MSDN documentation (http://msdn.
microsoft.com/en-us/library/System.Diagnostics.XmlWriterTraceListener(v=vs.110).aspx)
provides details about all the other options you can configure for tracing with this listener.

 <sharedListeners>
 <add name="xmlListener" type="System.Diagnostics.XmlWriterTraceListener"
 traceOutputOptions="LogicalOperationStack, Callstack"
 initializeData="c:/logs/mytrace.xml">
 </add>
 </sharedListeners>

So you can see the correlation with trace logs, in the Main method a new activity ID is assigned to the
CorrelationManager by setting the ActivityID property. Events of type TraceEventType.Start and
TraceEventType.Stop are done at the beginning and end of the Main method. In addition, a logical opera-
tion named "Main" is started and stopped with the StartLogicalOperation and StopLogicalOperation
methods:

 static void Main()
 {
 // start a new activity
 if (Trace.CorrelationManager.ActivityId == Guid.Empty)
 {
 Guid newGuid = Guid.NewGuid();
 Trace.CorrelationManager.ActivityId = newGuid;
 }
 trace.TraceEvent(TraceEventType.Start, 0, "Main started");

 // start a logical operation
 Trace.CorrelationManager.StartLogicalOperation("Main");

 TraceSourceDemo1();
 StartActivityA();
 Trace.CorrelationManager.StopLogicalOperation();
 Thread.Sleep(3000);
 trace.TraceEvent(TraceEventType.Stop, 0, "Main stopped");
 }

The method StartActivityA that is called from within the Main method creates a new activity by setting
the ActivityId of the CorrelationManager to a new GUID. Before the activity stops, the ActivityId of
the CorrelationManager is reset to the previous value. This method invokes the Foo method and creates a
new task with the Task.Factory.StartNew method. This task is created so that you can see how different
threads are displayed in a trace viewer:

c20.indd 534 30-01-2014 20:27:43

Tracing ❘ 535

noTE Tasks are explained in Chapter 21, “Tasks, Threads, and Synchronization.”

 private static void StartActivityA()
 {
 Guid oldGuid = Trace.CorrelationManager.ActivityId;
 Guid newActivityId = Guid.NewGuid();
 Trace.CorrelationManager.ActivityId = newActivityId;

 Trace.CorrelationManager.StartLogicalOperation("StartActivityA");

 trace.TraceEvent(TraceEventType.Verbose, 0,
 "starting Foo in StartNewActivity");
 Foo();

 trace.TraceEvent(TraceEventType.Verbose, 0,
 "starting a new task");
 Task.Run(() => WorkForATask());

 Trace.CorrelationManager.StopLogicalOperation();
 Trace.CorrelationManager.ActivityId = oldGuid;
 }

The Foo method that is started from within the StartActivityA method starts a new logical operation.
The logical operation Foo is started within the StartActivityA logical operation:

 private static void Foo()
 {
 Trace.CorrelationManager.StartLogicalOperation("Foo operation");

 trace.TraceEvent(TraceEventType.Verbose, 0, "running Foo");

 Trace.CorrelationManager.StopLogicalOperation();
 }

The task that is created from within the StartActivityA method runs the method WorkForATask.
Here, only simple trace events with start and stop information, and verbose information, are written to
the trace:

 private static void WorkForATask()
 {
 trace.TraceEvent(TraceEventType.Start, 0, "WorkForATask started");

 trace.TraceEvent(TraceEventType.Verbose, 0, "running WorkForATask");

 trace.TraceEvent(TraceEventType.Stop, 0, "WorkForATask completed");
 }

To analyze the trace information, the tool Service Trace Viewer, svctraceviewer.exe, can be started.
This tool is mainly used to analyze WCF traces, but you can also use it to analyze any trace that is writ-
ten with the XmlWriterTraceListener. Figure 20-3 shows the Activity tab of Service Trace Viewer,
with each activity displayed on the left, and the events displayed on the right. When you select an event
you can choose to display either the complete message in XML or a formatted view. The latter displays
basic information, application data, the logical operation stack, and the call stack in a nicely formatted
manner.

Figure 20-4 shows the Graph tab of the dialog. Using this view, different processes or threads can be
selected for display in separate swim lanes. As a new thread is created with the Task class, a second
swim lane appears by selecting the thread view.

c20.indd 535 30-01-2014 20:27:43

536 ❘ CHAPTER 20 Diagnostics

FIGURE 20-4

FIGURE 20-3

c20.indd 536 30-01-2014 20:27:43

Tracing ❘ 537

Tracing with ETW
A fast way to do tracing is by using Event Tracing for Windows (ETW). ETW is used by Windows for trac-
ing, event logging, and performance counts. To write traces with ETW, the EventProviderTraceListener
can be configured as a listener, as shown in the following snippet. The type attribute is used to find the class
dynamically. The class name is specified with the strong name of the assembly together with the class name.
With the initializeData attribute, a GUID needs to be specified to uniquely identify your listener. You
can create a GUID by using the command-line tool uuidgen or the graphical tool guidgen:

 <sharedListeners>
 <add name="etwListener"
 type="System.Diagnostics.Eventing.EventProviderTraceListener,
 System.Core, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"
 initializeData="{8ADA630A-F1CD-48BD-89F7-02CE2E7B9625}"/>

After changing the configuration, before you run the program once more to write traces using ETW, you
need to start a trace session by using the logman command. The start option starts a new session to log.
The -p option defines the name of the provider; here the GUID is used to identify the provider. The -o
option defines the output file, and the -ets option sends the command directly to the event trace system
without scheduling:

logman start mysession -p {8ADA630A-F1CD-48BD-89F7-02CE2E7B9625}
 -o mytrace.etl -ets

After running the application, the trace session can be stopped with the stop command:

logman stop mysession -ets

The log file is in a binary format. To get a readable representation, the utility tracerpt can be used. With
this tool it’s possible to extract CSV, XML, and EVTX formats, as specified with the -of option:

tracerpt mytrace.etl -o mytrace.xml -of XML

noTE The command-line tools logman and tracerpt are included with the Windows
operating system.

Using Eventsource
EventSource is a new class for tracing, available since .NET 4.5. This class gives a new way to do tracing
and is fully based on ETW. This class and types that can be used with EventSource are defined within the
System.Diagnostics.Tracing namespace.

A simple way to use EventSource is to create a class that derives from the EventSource type and defin-
ing methods to write trace information by calling the WriteEvent method of the base class. The class
MyProjectEventSource defines strongly typed members like Startup and CallService that invoke the
method WriteEvent of the base class (code file EventSourceSample/MyProjectEventSource.cs):

 public class MyProjectEventSource : EventSource
 {
 private MyProjectEventSource()
 {
 }

 public static MyProjectEventSource Log = new MyProjectEventSource();

 public void Startup()

c20.indd 537 30-01-2014 20:27:44

538 ❘ CHAPTER 20 Diagnostics

 {
 base.WriteEvent(1);
 }

 public void CallService(string url)
 {
 base.WriteEvent(2, url);
 }

 public void ServiceError(string message, int error)
 {
 base.WriteEvent(3, message, error);
 }
 }

In a simple scenario where just information messages should be written, nothing more is necessary. Besides
passing an event ID to the trace log, the WriteEvent method has 14 overloads that allow passing message
strings, int, and long values, and any number of objects.

With this implementation, the members of the MyProjectEventSource type can be used to write trace mes-
sages as shown in the Program class (code file EventSourceSample/Program.cs). The Main method makes
a trace log calling the Startup method, invokes the NetworkRequestSample method to create a trace log
via the CallService method, and makes a trace log in case of an error:

 class Program
 {
 static void Main()
 {
 MyProjectEventSource.Log.Startup();
 NetworkRequestSample();
 Console.ReadLine();
 }

 private static async void NetworkRequestSample()
 {
 try
 {
 var client = new HttpClient();
 string url = "http://www.cninnovaton.com";
 MyProjectEventSource.Log.CallService(url);
 string result = await client.GetStringAsync(url);
 Console.WriteLine("Complete.................");
 }
 catch (Exception ex)
 {
 MyProjectEventSource.Log.ServiceError(ex.Message, ex.HResult);
 }
 }
 }

Trace messages can be accessed out-of-process using the logman utility (as discussed earlier in the “Tracing
with ETW” section). You can also use the PerfView utility to read trace messages. You can download
PerfView from the Microsoft Download Center at http://www.microsoft.com/downloads.

For accessing trace messages in-process, you can use the EventListener base class. You just need to
create a class that derives from the EventListener class and overrides the OnEventWritten method.
With this method, trace messages are passed to the parameter of type EventWrittenEventArgs.
Thet sample implementation sends information about the event, including the payload, which is the
additional data passed to the WriteEvent method of the EventSource (code file EventSourceSample/
MyListener.cs):

c20.indd 538 30-01-2014 20:27:44

Tracing ❘ 539

 class MyListener : EventListener
 {

 protected override void OnEventSourceCreated(EventSource eventSource)
 {
 Console.WriteLine("created {0} {1}", eventSource.Name, eventSource.Guid);
 }

 protected override void OnEventWritten(EventWrittenEventArgs eventData)
 {
 Console.WriteLine("event id: {0} source: {1}", eventData.EventId,
 eventData.EventSource.Name);
 foreach (var payload in eventData.Payload)
 {
 Console.WriteLine("\t{0}", payload);
 }
 }
 }

The listener is activated in the Main method of the Program class. Event sources can be accessed calling the
static method GetSources of the EventSource class:

 IEnumerable<EventSource> eventSources = EventSource.GetSources();
 InitListener(eventSources);

The InitListener method invokes the EnableEvents method of the custom listener and passes every event
source. The sample code registers to listen to log every message setting EventLevel.LogAlways. You can
also specify just to write information messages, which also include errors, or errors only. Specifying this
level is very similar to the trace source switch discussed earlier in the “Trace Switches” section:

 private static void InitListener(IEnumerable<EventSource> sources)
 {
 listener = new MyListener();
 foreach (var source in sources)
 {
 listener.EnableEvents(source, EventLevel.LogAlways);
 }
 }

Advanced Tracing with Eventsource
For many applications, using the EventSource as described in the previous section is all that you
need. However, you also have more control of tracing as shown in the code file EventSourceSample/
MyAdvancedProjectEventSource.cs.

By default, the name of the event source is the same as the name of the class, but you can change the name
and the unique identifier by applying the EventSource attribute. Every event trace method can be accompa-
nied by the Event attribute. Here you can define the ID of the event, an opcode, the trace level, custom key-
words, and tasks. The listener can filter out trace messages based on keywords. The keywords are specified
by setting single bits in a flag-style enumeration:

 [EventSource(Name="EventSourceSample", Guid="45FFF0E2-7198-4E4F-9FC3-DF6934680096")]
 class MyAdvancedProjectEventSource : EventSource
 {
 public class Keywords
 {
 public const EventKeywords Network = (EventKeywords)1;
 public const EventKeywords Database = (EventKeywords)2;
 public const EventKeywords Diagnostics = (EventKeywords)4;
 public const EventKeywords Performance = (EventKeywords)8;
 }

 public class Tasks

c20.indd 539 30-01-2014 20:27:44

540 ❘ CHAPTER 20 Diagnostics

 {
 public const EventTask CreateMenus = (EventTask)1;
 public const EventTask QueryMenus = (EventTask)2;
 }
 private MyAdvancedProjectEventSource()
 {
 }

 public static MyAdvancedProjectEventSource Log = new MyAdvancedProjectEventSource();

 [Event(1, Opcode=EventOpcode.Start, Level=EventLevel.Verbose)]
 public void Startup()
 {
 base.WriteEvent(1);
 }
 [Event(2, Opcode=EventOpcode.Info, Keywords=Keywords.Network,
 Level=EventLevel.Verbose, Message="{0}")]
 public void CallService(string url)
 {
 base.WriteEvent(2);
 }

 [Event(3, Opcode=EventOpcode.Info, Keywords=Keywords.Network,
 Level=EventLevel.Error, Message="{0} error: {1}")]
 public void ServiceError(string message, int error)
 {
 base.WriteEvent(3);
 }

 [Event(4, Opcode=EventOpcode.Info, Task=Tasks.CreateMenus,
 Level=EventLevel.Verbose, Keywords=Keywords.Network)]
 public void SomeTask()
 {
 base.WriteEvent(4);
 }
 }

With the new detailed usage of the event definition, the listener needs to specify the keywords that should be
logged besides the log level:

 listener.EnableEvents(source, EventLevel.Verbose, (EventKeywords)15L);

EvEnT LoGGInG
System administrators use the Event Viewer to get critical messages about the health of the system and appli-
cations, and informational messages. You should write error messages from your application to the event log
so that the information can be read with the Event Viewer.

Trace messages can be written to the event log if you configure the EventLogTraceListener class. The
EventLogTraceListener has an EventLog object associated with it to write the event log entries. You can
also use the EventLog class directly to write and read event logs.

In this section, you explore the following:

➤➤ Event-logging architecture

➤➤ Classes for event logging from the System.Diagnostics namespace

➤➤ Adding event logging to services and other application types

➤➤ Creating an event log listener with the EnableRaisingEvents property of the EventLog class

➤➤ Using a resource file to define messages

Figure 20-5 shows an example of a log entry resulting from a failed access with Distributed COM.

For custom event logging, you can use classes from the System.Diagnostics namespace.

c20.indd 540 30-01-2014 20:27:44

Event Logging ❘ 541

FIGURE 20-5

FIGURE 20-6

Event-logging Architecture
Event log information is stored in several log files. The most important ones are application, security, and
system. Looking at the registry configuration of the event log service, you will notice several entries under
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Eventlog with configurations pointing
to the specific files. The system log file is used from the system and device drivers. Applications and services
write to the application log. The security log is a read-only log for applications. The auditing feature of the
operating system uses the security log. Every application can also create a custom category and write event
log entries there, such as Media Center.

You can read these events by using the Event Viewer administrative tool. To open it directly from the Server
Explorer of Visual Studio, right-click the Event Logs item and select the Launch Event Viewer entry from the
context menu. The Event Viewer dialog is shown in Figure 20-6.

c20.indd 541 30-01-2014 20:27:45

542 ❘ CHAPTER 20 Diagnostics

The event log contains the following information:

➤➤ Type — The main types are Information, Warning, or Error. Information is an infrequently used type
that denotes a successful operation; Warning denotes a problem that is not immediately significant;
and Error denotes a major problem. Additional types are FailureAudit and SuccessAudit, but
these types are used only for the security log.

➤➤ Date — Date and Time show the day and time that the event occurred.

➤➤ Source — The Source is the name of the software that logs the event. The source for the application
log is configured in the following registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Eventlog\
 Application\[ApplicationName]

Within this key, the value EventMessageFile is configured to point to a resource DLL that holds
error messages:

➤➤ Event ID — The event identifier specifies a particular event message.

➤➤ Category — A category can be defined so that event logs can be filtered when using the Event Viewer.
Categories can be defined according to an event source.

Event-logging Classes
For writing event logs, two different Windows APIs exist. One API, available since Windows Vista, is
wrapped by the classes in the namespace System.Diagnostics.Eventing. The other wrapper classes are
in the System.Diagnostics namespace.

The System.Diagnostics namespace has the following classes for event logging.

noTE This book covers event logs using the System.Diagnostics namespace. The
other event logs from the System.Diagnostics.Eventing namespace don’t have
strong support for .NET, require several command-line tools, and unsafe C# code.

CLAss dEsCRIPTIon

EventLog With the EventLog class, you can read and write entries in the event log, and
establish applications as event sources.

EventLogEntry The EventLogEntry class represents a single entry in the event log. With
the EventLogEntryCollection, you can iterate through EventLogEntry
items.

EventLogInstaller The EventLogInstaller class is the installer for an EventLog component.
EventLogInstaller calls EventLog.CreateEventSource to create an
event source.

EventLogTraceListener With the help of the EventLogTraceListener, traces can be written to the
event log. This class implements the abstract class TraceListener.

The heart of event logging is in the EventLog class. The members of this class are explained in the
following table.

c20.indd 542 30-01-2014 20:27:45

Event Logging ❘ 543

EvEnTLoG MEMbER dEsCRIPTIon

Entries With the Entries property, you can read event logs. Entries returns an
EventLogEntryCollection that contains EventLogEntry
objects holding information about the events. There is no need to invoke a
Read method. The collection is filled as soon as you access
this property.

Log Specifies the log for reading or writing event logs.

LogDisplayName A read-only property that returns the display name of the log.

MachineName Specifies the system on which to read or write log entries.

Source Specifies the source of the event entries to write.

CreateEventSource() Creates a new event source and a new log file.

DeleteEventSource() Invoke this to get rid of an event source.

SourceExists() Using this element, you can verify whether the source already exists before
creating an event source.

WriteEntry() WriteEvent() Write event log entries with either the WriteEntry or WriteEvent
method. WriteEntry is simpler, because you just need to pass a string.
WriteEvent is more flexible, because you can use message files that are
independent of the application and that support localization.

Clear() Removes all entries from an event log.

Delete() Deletes a complete event log.

Creating an Event source
Before writing events, you must create an event source. You can use either the CreateEventSource method
of the EventLog class or the class EventLogInstaller. Because you need administrative privileges when
creating an event source, an installation program is best for defining the new source.

The following example verifies that an event log source named EventLogDemoApp already exists. If it
doesn’t exist, then an object of type EventSourceCreationData is instantiated that defines the source
name EventLogDemoApp and the log name ProCSharpLog. Here, all events of this source are written to the
ProCSharpLog event log. The default is the application log:

 string logName = "ProCSharpLog";
 string sourceName = "EventLogDemoApp";

 if (!EventLog.SourceExists(sourceName))
 {
 var eventSourceData = new EventSourceCreationData(sourceName, logName);

 EventLog.CreateEventSource(eventSourceData);
 }

The name of the event source is an identifier of the application that writes the events. For the system admin-
istrator reading the log, the information helps to identify the event log entries in order to map them to
application categories. Examples of names for event log sources are LoadPerf for the Performance Monitor,
MSSQLSERVER for Microsoft SQL Server, MsiInstaller for the Windows Installer, Winlogon, Tcpip, Time-
Service, and so on.

c20.indd 543 30-01-2014 20:27:45

544 ❘ CHAPTER 20 Diagnostics

Setting the name “Application” for the event log writes event log entries to the application log. You can also
create your own log by specifying a different application log name. Log files are located in the directory
<windows>\System32\WinEvt\Logs.

With the EventSourceCreationData class, you can also specify several more characteristics for the event
log, as described in the following table.

EvEnTsoURCECREATIondATA dEsCRIPTIon

Source Gets or sets the name of the event source.

LogName Defines the log where event log entries are written. The default
is the application log.

MachineName Defines the system to read or write log entries.

CategoryResourceFile Defines a resource file for categories. Categories enable easier
filtering of event log entries within a single source.

CategoryCount Defines the number of categories in the category resource file.

MessageResourceFile Instead of specifying that the message should be written to the
event log in the program that writes the events, messages can
be defined in a resource file that is assigned to the MessageRe-
sourceFile property. Messages from the resource file are
localizable.

ParameterResourceFile Messages in a resource file can have parameters. The param-
eters can be replaced by strings defined in a resource file that is
assigned to the ParameterResourceFile property.

Writing Event Logs
For writing event log entries, you can use the WriteEntry or WriteEvent methods of the EventLog
class. The EventLog class has both a static and an instance method WriteEntry. The static method
WriteEntry requires a parameter of the source. The source can also be set with the constructor of the
EventLog class. In the following example, the log name, the local machine, and the event source name are
defined in the constructor. Next, three event log entries are written with the message as the first param-
eter of the WriteEntry method. WriteEntry is overloaded. The second parameter you can assign is an
enumeration of type EventLogEntryType. With EventLogEntryType, you can define the severity of the
event log entry. Possible values are Information, Warning, and Error; and for auditing, SuccessAudit
and FailureAudit. Depending on the type, different icons are shown in the Event Viewer. With the third
parameter, you can specify an application-specific event ID that can be used by the application itself. In
addition, you can pass application-specific binary data and a category.

 using (var log = new EventLog(logName, ".", sourceName))
 {
 log.WriteEntry("Message 1");
 log.WriteEntry("Message 2", EventLogEntryType.Warning);
 log.WriteEntry("Message 3", EventLogEntryType.Information, 33);
 }

Resource Files
Instead of defining the messages for the event log in the C# code and passing it to the WriteEntry method,
you can create a message resource file, define messages in the resource file, and pass message identifiers to
the WriteEvent method. Resource files also support localization.

c20.indd 544 30-01-2014 20:27:45

Event Logging ❘ 545

noTE Message resource files are native resource files that have nothing in common with
.NET resource files. .NET resource files are covered in Chapter 28, “Localization.”

A message file is a text file with the mc file extension. The syntax that this file uses to
define messages is very strict. The sample file EventLogMessages.mc contains four
categories followed by event messages. Every message has an ID that can be used by
the application writing event entries. Parameters that can be passed from the appli-
cation are defined with % syntax in the message text (resource file EventLogDemo/
EventLogDemoMessages.mc):

; // EventLogDemoMessages.mc
; // **

; // — Event categories -
; // Categories must be numbered consecutively starting at 1.
; // **

MessageId=0x1
Severity=Success
SymbolicName=INSTALL_CATEGORY
Language=English
Installation
.

MessageId=0x2
Severity=Success
SymbolicName=DATA_CATEGORY
Language=English
Database Query
.

MessageId=0x3
Severity=Success
SymbolicName=UPDATE_CATEGORY
Language=English
Data Update
.

MessageId=0x4
Severity=Success
SymbolicName=NETWORK_CATEGORY
Language=English
Network Communication
.

; // — Event messages -
; // *********************************

MessageId = 1000
Severity = Success
Facility = Application
SymbolicName = MSG_CONNECT_1000
Language=English
Connection successful.
.

MessageId = 1001
Severity = Error
Facility = Application
SymbolicName = MSG_CONNECT_FAILED_1001
Language=English
Could not connect to server %1.

c20.indd 545 30-01-2014 20:27:45

546 ❘ CHAPTER 20 Diagnostics

.

MessageId = 1002
Severity = Error
Facility = Application
SymbolicName = MSG_DB_UPDATE_1002
Language=English
Database update failed.
.

MessageId = 1003
Severity = Success
Facility = Application
SymbolicName = APP_UPDATE
Language=English
Application %%5002 updated.
.

; // — Event log display name -
; // **

MessageId = 5001
Severity = Success
Facility = Application
SymbolicName = EVENT_LOG_DISPLAY_NAME_MSGID
Language=English
Professional C# Sample Event Log
.

; // — Event message parameters -
; // Language independent insertion strings
; // **

MessageId = 5002
Severity = Success
Facility = Application
SymbolicName = EVENT_LOG_SERVICE_NAME_MSGID
Language=English
EventLogDemo.EXE
.

For the exact syntax of message files, check the MSDN documentation for Message Text
Files (http://msdn.microsoft.com/library/windows/desktop/dd996906.aspx).

Use the Messages Compiler, mc.exe, to create a binary message file. The following command compiles the
source file containing the messages to a messages file with the .bin extension and the file Messages.rc,
which contains a reference to the binary message file:

mc -s EventLogDemoMessages.mc

Next, you must use the Resource Compiler, rc.exe. The following command creates the resource file
EventLogDemoMessages.RES:

rc EventLogDemoMessages.rc

With the linker, you can bind the binary message file EventLogDemoMessages.RES to a native DLL:

link /DLL /SUBSYSTEM:WINDOWS /NOENTRY /MACHINE:x86 EventLogDemoMessages.RES

c20.indd 546 30-01-2014 20:27:45

Event Logging ❘ 547

Now, you can register an event source that defines the resource files as shown in the following code. First, a
check is done to determine whether the event source named EventLogDemoApp exists. If the event log must
be created because it does not exist, the next check verifies that the resource file is available. Some samples
in the MSDN documentation demonstrate writing the message file to the <windows>\system32 directory,
but you shouldn’t do that. Copy the message DLL to a program-specific directory that you can get with the
SpecialFolder enumeration value ProgramFiles. If you need to share the messages file among multiple
applications, you can put it into Environment.SpecialFolder.CommonProgramFiles.

If the file exists, a new object of type EventSourceCreationData is instantiated. In the constructor, the
name of the source and the name of the log are defined. You use the properties CategoryResourceFile,
MessageResourceFile, and ParameterResourceFile to define a reference to the resource file. After the
event source is created, you can find the information on the resource files in the registry with the event
source. The method CreateEventSource registers the new event source and log file. Finally, the method
RegisterDisplayName from the EventLog class specifies the name of the log as it is displayed in the Event
Viewer. The ID 5001 is taken from the message file (code file EventLogDemo/Program.cs):

 string logName = "ProCSharpLog";
 string sourceName = "EventLogDemoApp";
 string resourceFile = Environment.GetFolderPath(
 Environment.SpecialFolder.ProgramFiles) +
 @"\procsharp\EventLogDemoMessages.dll";

 if (!EventLog.SourceExists(sourceName))
 {
 if (!File.Exists(resourceFile))
 {
 Console.WriteLine("Message resource file does not exist");
 return;
 }

 var eventSource = new EventSourceCreationData(sourceName, logName);

 eventSource.CategoryResourceFile = resourceFile;
 eventSource.CategoryCount = 4;
 eventSource.MessageResourceFile = resourceFile;
 eventSource.ParameterResourceFile = resourceFile;

 EventLog.CreateEventSource(eventSource);
 }
 else
 {
 logName = EventLog.LogNameFromSourceName(sourceName, ".");
 }

 var evLog = new EventLog(logName, ".", sourceName);
 evLog.RegisterDisplayName(resourceFile, 5001);

noTE To delete a previously created event source, you can use EventLog
.DeleteEventSource(sourceName). To delete a log, you can invoke EventLog
.Delete(logName).

Now you can use the WriteEvent method instead of WriteEntry to write the event log entry. WriteEvent
requires an object of type EventInstance as a parameter. With the EventInstance, you can assign the message
ID, the category, and the severity of type EventLogEntryType. In addition to the EventInstance parameter,
WriteEvent accepts parameters for messages that have parameters and binary data in the form of a byte array:

c20.indd 547 30-01-2014 20:27:46

548 ❘ CHAPTER 20 Diagnostics

 using (var log = new EventLog(logName, ".", sourceName))
 {
 var info1 = new EventInstance(1000, 4,
 EventLogEntryType.Information);

 log.WriteEvent(info1);
 var info2 = new EventInstance(1001, 4,
 EventLogEntryType.Error);
 log.WriteEvent(info2, "avalon");

 var info3 = new EventInstance(1002, 3,
 EventLogEntryType.Error);
 byte[] additionalInfo = { 1, 2, 3 };
 log.WriteEvent(info3, additionalInfo);
 }

noTE For the message identifiers, define a class with const values, which provide a
more meaningful name for the identifiers in the application.

You can read the event log entries with the Event Viewer.

PERFoRMAnCE MonIToRInG
Performance monitoring can be used to get information about the normal behavior of applications, to
compare ongoing system behavior with previously established norms, and to observe changes and trends,
particularly in applications running on the server. When you have a scenario of more and more users access-
ing the application, before the first user complains about a performance issue, the system administrator can
already act and increase resources where needed. The Performance Monitor (PerfMon) is a great tool to see
all the performance counts for acting early. As a developer, this tool also helps a lot to understand the run-
ning application and its foundation technologies.

Microsoft Windows has many performance objects, such as System, Memory, Objects, Process,
Processor, Thread, Cache, and so on. Each of these objects has many counts to monitor. For example,
with the Process object, the user time, handle count, page faults, thread count, and so on can be monitored
for all processes or for specific process instances. The .NET Framework and several applications, such as
SQL Server, also add application-specific objects.

Performance-monitoring Classes
The System.Diagnostics namespace provides the following classes for performance monitoring:

➤➤ PerformanceCounter — Can be used both to monitor counts and to write counts. New performance
categories can also be created with this class.

➤➤ PerformanceCounterCategory — Enables you to step through all existing categories, as well as cre-
ate new ones. You can programmatically obtain all the counters in a category.

➤➤ PerformanceCounterInstaller — Used for the installation of performance counters. Its use is
similar to that of the EventLogInstaller discussed previously.

Performance Counter builder
The sample application PerformanceCounterDemo is a simple Windows application with just two buttons
to demonstrate writing performance counts. The handler of one button registers a performance counter
category; the handler of the other button writes a performance counter value. In a similar way to the sample

c20.indd 548 30-01-2014 20:27:46

Performance Monitoring ❘ 549

application, you can add performance counters to a Windows Service (see Chapter 27, “Windows Services”),
to a network application (see Chapter 26, “Networking”), or to any other application from which you
would like to receive live counts.

Using Visual Studio, you can create a new performance counter category by selecting Performance Counters
in Server Explorer and then selecting Create New Category from the context menu. This launches the
Performance Counter Builder (see Figure 20-7). Set the name of the performance counter category to Wrox
Performance Counters. The following table shows all performance counters of the sample application.

noTE In order to create a performance counter category with Visual Studio, Visual
Studio must be started in elevated mode.

FIGURE 20-7

PERFoRMAnCE CoUnTER dEsCRIPTIon TyPE

of button clicks Total # of button clicks NumberOfItems32

of button clicks/sec # of button clicks per second RateOfCountsPerSecond32

of mouse move events Total # of mouse move events NumberOfItems32

of mouse move events/sec # of mouse move events per second RateOfCountsPerSecond32

Performance Counter Builder writes the configuration to the performance database. This can also be done
dynamically by using the Create method of the PerformanceCounterCategory class in the System
.Diagnostics namespace. An installer for other systems can easily be added later using Visual Studio.

The following code snippet shows how a performance category can be added programmatically. With the
tool from Visual Studio, you can only create a global performance category that doesn’t have different
values for different processes of running applications. Creating a performance category programmatically
enables you to monitor performance counts from different applications, which is done here.

c20.indd 549 30-01-2014 20:27:46

550 ❘ CHAPTER 20 Diagnostics

First, a const for the category name is defined, as well as SortedList<TKey, TValue>, which contains the
names of the performance counts (code file PerformanceCounterDemo/MainWindow.xaml.cs):

 private const string perfomanceCounterCategoryName =
 "Wrox Performance Counters";
 private SortedList<string, Tuple<string, string>> perfCountNames;

The list of the perfCountNames variable is filled in within the method InitializePerformanceCountNames. The
value of the sorted list is defined as Tuple<string, string> to define both the name and the description of
the performance counter:

 private void InitializePerfomanceCountNames()
 {
 perfCountNames = new SortedList<string, Tuple<string, string>>();
 perfCountNames.Add("clickCount", Tuple.Create("# of button Clicks",
 "Total # of button clicks"));
 perfCountNames.Add("clickSec", Tuple.Create("# of button clicks/sec",
 "# of mouse button clicks in one second"));
 perfCountNames.Add("mouseCount", Tuple.Create("# of mouse move events",
 "Total # of mouse move events"));
 perfCountNames.Add("mouseSec", Tuple.Create("# of mouse move events/sec",
 "# of mouse move events in one second"));
 }

The performance counter category is created next, in the method OnRegisterCounts. After a check to ver-
ify that the category does not already exist, the array CounterCreationData is created, which is filled with
the types and names of the performance counts. Next, PerformanceCounterCategory.Create creates the
new category. PerformanceCounterCategoryType.MultiInstance defines that the counts are not global,
but rather that different values for different instances can exist:

 private void OnRegisterCounts(object sender, RoutedEventArgs e)
 {
 if (!PerformanceCounterCategory.Exists(
 perfomanceCounterCategoryName))
 {
 var counterCreationData = new CounterCreationData[4];
 counterCreationData[0] = new CounterCreationData
 {
 CounterName = perfCountNames["clickCount"].Item1,
 CounterType = PerformanceCounterType.NumberOfItems32,
 CounterHelp = perfCountNames["clickCount"].Item2
 };
 counterCreationData[1] = new CounterCreationData
 {
 CounterName = perfCountNames["clickSec"].Item1,
 CounterType = PerformanceCounterType.RateOfCountsPerSecond32,
 CounterHelp = perfCountNames["clickSec"].Item2,
 };
 counterCreationData[2] = new CounterCreationData
 {
 CounterName = perfCountNames["mouseCount"].Item1,
 CounterType = PerformanceCounterType.NumberOfItems32,
 CounterHelp = perfCountNames["mouseCount"].Item2,
 };
 counterCreationData[3] = new CounterCreationData
 {
 CounterName = perfCountNames["mouseSec"].Item1,
 CounterType = PerformanceCounterType.RateOfCountsPerSecond32,
 CounterHelp = perfCountNames["mouseSec"].Item2,
 };
 var counters = new CounterCreationDataCollection(counterCreationData);

 var category = PerformanceCounterCategory.Create(
 perfomanceCounterCategoryName,

c20.indd 550 30-01-2014 20:27:46

Performance Monitoring ❘ 551

 "Sample Counters for Professional C#",
 PerformanceCounterCategoryType.MultiInstance,
 counters);

 MessageBox.Show(String.Format("category {0} successfully created",
 category.CategoryName));
 }

Adding PerformanceCounter Components
With Windows Forms or Windows Service applications, you can add PerformanceCounter components from
the toolbox or from Server Explorer by dragging and dropping to the designer surface.

With WPF applications that’s not possible. However, it’s not a lot of work to define the performance counters
manually, as this is done with the method InitializePerformanceCounters. In the
following example, the CategoryName for all performance counts is set from the const string performance-
CounterCategoryName; the CounterName is set from the sorted list. Because the application writes perfor-
mance counts, the ReadOnly property must be set to false. When writing an application that only reads
performance counts for display purposes, you can use the default value of the ReadOnly property, which is
true. The InstanceName of the PerformanceCounter object is set to an application name. If the counters
are configured to be global counts, then InstanceName may not be set:

 private PerformanceCounter performanceCounterButtonClicks;
 private PerformanceCounter performanceCounterButtonClicksPerSec;
 private PerformanceCounter performanceCounterMouseMoveEvents;
 private PerformanceCounter performanceCounterMouseMoveEventsPerSec;

 private void InitializePerformanceCounters()
 {
 performanceCounterButtonClicks = new PerformanceCounter
 {
 CategoryName = perfomanceCounterCategoryName,
 CounterName = perfCountNames["clickCount"].Item1,
 ReadOnly = false,
 MachineName = ".",
 InstanceLifetime = PerformanceCounterInstanceLifetime.Process,
 InstanceName = this.instanceName
 };
 performanceCounterButtonClicksPerSec = new PerformanceCounter
 {
 CategoryName = perfomanceCounterCategoryName,
 CounterName = perfCountNames["clickSec"].Item1,
 ReadOnly = false,
 MachineName = ".",
 InstanceLifetime = PerformanceCounterInstanceLifetime.Process,
 InstanceName = this.instanceName
 };
 performanceCounterMouseMoveEvents = new PerformanceCounter
 {
 CategoryName = perfomanceCounterCategoryName,
 CounterName = perfCountNames["mouseCount"].Item1,
 ReadOnly = false,
 MachineName = ".",
 InstanceLifetime = PerformanceCounterInstanceLifetime.Process,
 InstanceName = this.instanceName
 };
 performanceCounterMouseMoveEventsPerSec = new PerformanceCounter
 {
 CategoryName = perfomanceCounterCategoryName,
 CounterName = perfCountNames["mouseSec"].Item1,
 ReadOnly = false,
 MachineName = ".",

c20.indd 551 30-01-2014 20:27:46

552 ❘ CHAPTER 20 Diagnostics

 InstanceLifetime = PerformanceCounterInstanceLifetime.Process,
 InstanceName = this.instanceName
 };
 }

To calculate the performance values, you need to add the fields clickCountPerSec and
mouseMoveCountPerSec:

 public partial class MainWindow : Window
 {
 // Performance monitoring counter values
 private int clickCountPerSec = 0;
 private int mouseMoveCountPerSec = 0;

Add an event handler to the Click event of the button, add an event handler to the MouseMove event of the
button, and add the following code to the handlers:

 private void OnButtonClick(object sender, RoutedEventArgs e)
 {
 this.performanceCounterButtonClicks.Increment();
 this.clickCountPerSec++;
 }

 private void OnMouseMove(object sender, MouseEventArgs e)
 {
 this.performanceCounterMouseMoveEvents.Increment();
 this.mouseMoveCountPerSec++;
 }

The Increment method of the PerformanceCounter object increments the counter by one. If you need
to increment the counter by more than one — for example, to add information about a byte count sent or
received — you can use the IncrementBy method. For the performance counts that show the value in sec-
onds, just the two variables, clickCountPerSec and mouseMovePerSec, are incremented.

To show updated values every second, add a DispatcherTimer to the members of the MainWindow:

 private DispatcherTimer timer;

This timer is configured and started in the constructor. The DispatcherTimer class is a timer from the
namespace System.Windows.Threading. For applications other than WPF, you can use other timers as dis-
cussed in Chapter 21. The code that is invoked by the timer is defined with an anonymous method:

 public MainWindow()
 {
 InitializeComponent();
 InitializePerfomanceCountNames();
 InitializePerformanceCounts();
 if (PerformanceCounterCategory.Exists(perfomanceCounterCategoryName))
 {
 buttonCount.IsEnabled = true;
 timer = new DispatcherTimer(TimeSpan.FromSeconds(1),
 DispatcherPriority.Background,
 delegate
 {
 this.performanceCounterButtonClicksPerSec.RawValue =
 this.clickCountPerSec;
 this.clickCountPerSec = 0;
 this.performanceCounterMouseMoveEventsPerSec.RawValue =
 this.mouseMoveCountPerSec;
 this.mouseMoveCountPerSec = 0;
 },
 Dispatcher.CurrentDispatcher);
 timer.Start();
 }
 }

c20.indd 552 30-01-2014 20:27:47

Performance Monitoring ❘ 553

perfmon.exe
Now you can monitor the application. You can start Performance Monitor from the Administrative Tools
applet in the control panel. Within Performance Monitor, click the + button in the toolbar; there, you can
add performance counts. Wrox Performance Counters shows up as a performance object. All the counters
that have been configured appear in the Available counters list, as shown in Figure 20-8.

After you have added the counters to the performance monitor, you can view the actual values of the service
over time (see Figure 20-9). Using this performance tool, you can also create log files to analyze the perfor-
mance data later.

FIGURE 20-8

FIGURE 20-9

c20.indd 553 30-01-2014 20:27:47

554 ❘ CHAPTER 20 Diagnostics

sUMMARy
In this chapter, you have looked at tracing and logging facilities that can help you find intermittent problems
in your applications. You should plan early, building these features into your applications, as this will help
you avoid many troubleshooting problems later.

With tracing, you can write debugging messages to an application that can also be used for the final prod-
uct delivered. If there are problems, you can turn tracing on by changing configuration values, and find the
issues.

Event logging provides the system administrator with information that can help identify some of the criti-
cal issues with the application. Performance monitoring helps in analyzing the load from applications and
enables proactive planning for resources that might be required.

c20.indd 554 30-01-2014 20:27:47

Tasks, Threads, and
Synchronization

wHAT’s iN THis CHAPTER?

➤➤ An overview of multi-threading
➤➤ Working with the Parallel class
➤➤ Tasks
➤➤ Cancellation framework
➤➤ Thread class and thread pools
➤➤ Threading issues
➤➤ Synchronization techniques
➤➤ Timers

wROX.COM COdE dOwNlOAds FOR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
download Code tab. The code for this chapter is divided into the following major examples:

➤➤ Parallel
➤➤ Task
➤➤ Cancellation
➤➤ ThreadClass
➤➤ Synchronization
➤➤ dataFlow

21

c21.indd 555 30-01-2014 20:28:22

556 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

OvERviEw
There are several reasons for using threading. Suppose that you are making a network call from an
application that might take some time. You don’t want to stall the user interface and force the user to wait
idly until the response is returned from the server. The user could perform some other actions in the
meantime or even cancel the request that was sent to the server. Using threads can help.

For all activities that require a wait — for example, because of file, database, or network access — a new
thread can be started to fulfill other tasks at the same time. Even if you have only processing-intensive tasks
to do, threading can help. Multiple threads of a single process can run on different CPUs, or, nowadays, on
different cores of a multiple-core CPU, at the same time.

You must be aware of some issues when running multiple threads, however. Because they can run during
the same time, you can easily get into problems if the threads access the same data. To avoid that, you must
implement synchronization mechanisms.

NOTE The use of asynchronous methods with the new async and await keywords is
covered in Chapter 13, “Asynchronous Programming.”

This chapter provides the foundation you need to program applications with multiple threads. The major
namespaces in this chapter are System.Threading and System.Threading.Tasks.

A thread is an independent stream of instructions in a program. All the C# example programs up to this
point have one entry point — the Main method. Execution starts with the first statement in the Main method
and continues until that method returns.

This program structure is all very well for programs in which there is one identifiable sequence of tasks,
but often a program needs to do more than one thing at the same time. Threads are important both for
 client-side and server-side applications. While you type C# code in the Visual Studio editor, the code is
analyzed to underline missing semicolons or other syntax errors. This is done by a background thread. The
same thing is done by the spell checker in Microsoft Word. One thread is waiting for input from the user,
while the other does some background research. A third thread can store the written data in an interim
file, while another one downloads some additional data from the Internet.

In an application that is running on the server, one thread, the listener thread, waits for a request from a
client. As soon as the request comes in, the request is forwarded to a separate worker thread, which
continues the communication with the client. The listener thread immediately comes back to get the next
request from the next client.

A process contains resources, such as Window handles, handles to the file system, or other kernel objects.
Every process has virtual memory allocated. A process contains at least one thread, and the operating system
schedules threads. A thread has a priority, a program counter for the program location where it is actually
processing, and a stack in which to store its local variables. Every thread has its own stack, but the memory for
the program code and the heap are shared among all threads of a single process. This makes communication
among threads of one process fast — the same virtual memory is addressed by all threads of a process.
However, this also makes things difficult because multiple threads can change the same memory location.

A process manages resources, which include virtual memory and Window handles, and contains at least one
thread. A thread is required to run the program. Prior to .NET 4 you had to program threads directly
with the Thread and ThreadPool classes. Nowadays you can use an abstraction of these classes, working with
Parallel and Task classes. In some special scenarios, the Thread and ThreadPool classes are still needed.
It’s good practice to use the classes that are the easiest ones to work with and just use the more complex
classes when advanced functionality is really needed. Most programs are written without handcrafted IL
code. However, there are some cases when even this is needed.

In order to write code that takes advantage of parallel features, you have to differentiate between two
main scenarios: task parallelism and data parallelism. With task parallelism, code that’s using the CPU is

c21.indd 556 30-01-2014 20:28:23

Parallel Class ❘ 557

 parallelized. Multiple cores of the CPU can be used to fulfill an activity that consists of multiple tasks a lot
faster, instead of just doing one task after the other in a single core. With data parallelism, data collections
are used. The work on the collection can be split up into multiple tasks. Of course, there are variants that
mix task and data parallelism.

NOTE One variant of task parallelism is offered by Parallel LINQ, covered in
Chapter 11, “Language Integrated Query.”

PARAllEl ClAss
One great abstraction of threads is the Parallel class. With this class, both data and task parallelism is
offered. This class is in the namespace System.Threading.Tasks.

The Parallel class defines static methods for a parallel for and foreach. With the C# statements for
and foreach, the loop is run from one thread. The Parallel class uses multiple tasks and, thus, multiple
threads for this job.

While the Parallel.For and Parallel.ForEach methods invoke the same code during each iteration,
Parallel.Invoke allows you to invoke different methods concurrently. Parallel.Invoke is for task
parallelism, Parallel.ForEach for data parallelism.

looping with the Parallel.For Method
The Parallel.For method is similar to the C# for loop statement to perform a task a number of times.
With Parallel.For, the iterations run in parallel. The order of iteration is not defined.

With the For method, the first two parameters define the start and end of the loop. The following example
has the iterations from 0 to 9. The third parameter is an Action<int> delegate. The integer parameter is the
iteration of the loop that is passed to the method referenced by the delegate. The return type of Parallel
.For is the struct ParallelLoopResult, which provides information if the loop is completed (code file
ParallelSamples/Program.cs):

 ParallelLoopResult result =
 Parallel.For(0, 10, i =>
 {
 Console.WriteLine("{0}, task: {1}, thread: {2}", i,
 Task.CurrentId, Thread.CurrentThread.ManagedThreadId);
 Thread.Sleep(10);
 });
 Console.WriteLine("Is completed: {0}", result.IsCompleted);

In the body of Parallel.For, the index, task identifier, and thread identifier are written to the console.
As shown in the following output, the order is not guaranteed. You will see different results if you run this
 program once more. This run of the program had the order 0-2-4-6-8… with five tasks and five threads.
A task does not necessarily map to one thread. A thread could also be reused by different tasks.

0, task: 1, thread: 1
2, task: 2, thread: 3
4, task: 3, thread: 4
6, task: 4, thread: 5
8, task: 5, thread: 6
5, task: 3, thread: 4
7, task: 4, thread: 5
9, task: 5, thread: 6

c21.indd 557 30-01-2014 20:28:23

558 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

3, task: 2, thread: 3
1, task: 1, thread: 1
Is completed: True

In the previous example, the method Thread.Sleep is used instead of Task.Delay, which is new with
.NET 4.5. Task.Delay is an asynchronous method that releases the thread for other jobs to do. Using the
await keyword, the code following is invoked as soon as the delay is completed. The code after the delay
can run in another thread than the code before.

Let’s change the previous example to now use the Task.Delay method, writing task thread and loop
iteration information to the console as soon as the delay is finished:

 ParallelLoopResult result =
 Parallel.For(0, 10, async i =>
 {
 Console.WriteLine("{0}, task: {1}, thread: {2}", i,
 Task.CurrentId, Thread.CurrentThread.ManagedThreadId);

 await Task.Delay(10);
 Console.WriteLine("{0}, task: {1}, thread: {2}", i,
 Task.CurrentId, Thread.CurrentThread.ManagedThreadId);
 });
 Console.WriteLine("is completed: {0}", result.IsCompleted);

The result of this follows. With the output after the Thread.Delay method you can see the thread change.
For example, loop iteration 2, which had thread Id 3 before the delay, has thread Id 4 after the delay.
You can also see that tasks no longer exist, only threads, and here previous threads are reused. Another
 important aspect is that the For method of the Parallel class is completed without waiting for the delay.
The Parallel class just waits for the tasks it created, but not other background activity. It is also possible
that you won’t see the output from the methods after the delay at all — if the main thread (which is a
foreground thread) is finished, all the background threads are stopped. Foreground and background threads
are discussed later in this chapter.

2, task: 2, thread: 3
0, task: 1, thread: 1
4, task: 3, thread: 5
6, task: 4, thread: 6
8, task: 5, thread: 4
3, task: 2, thread: 3
7, task: 2, thread: 3
9, task: 5, thread: 4
5, task: 3, thread: 5
1, task: 1, thread: 1
is completed: True
5, task: , thread: 6
6, task: , thread: 6
7, task: , thread: 6
3, task: , thread: 6
8, task: , thread: 6
4, task: , thread: 6
0, task: , thread: 6
9, task: , thread: 5
2, task: , thread: 4
1, task: , thread: 3

wARNiNg As demonstrated here, although using async features with .NET 4.5 and
C# 5 is very easy, it’s still important to know what’s happening behind the scenes, and
you have to pay attention to some issues.

c21.indd 558 30-01-2014 20:28:23

Parallel Class ❘ 559

Stopping Parallel.For Early
You can also break the Parallel.For early without looping through all the iterations. A method
overload of the For method accepts a third parameter of type Action<int, ParallelLoopState>. By
defining a method with these parameters, you can influence the outcome of the loop by invoking the Break
or Stop methods of the ParallelLoopState.

Remember, the order of iterations is not defined (code file ParallelSamples/Program.cs):

 ParallelLoopResult result =
 Parallel.For(10, 40, async (int i, ParallelLoopState pls) =>
 {
 Console.WriteLine("i: {0} task {1}", i, Task.CurrentId);
 await Task.Delay(10);
 if (i > 15)
 pls.Break();
 });
 Console.WriteLine("Is completed: {0}", tresult.IsCompleted);
 Console.WriteLine("lowest break iteration: {0}",
 result.LowestBreakIteration);

This run of the application demonstrates that the iteration breaks up with a value higher than 15, but other
tasks can simultaneously run and tasks with other values can run. With the help of the LowestBreak
Iteration property, you can specify ignoring results from other tasks:

10 task 1
24 task 3
31 task 4
38 task 5
17 task 2
11 task 1
12 task 1
13 task 1
14 task 1
15 task 1
16 task 1
Is completed: False
lowest break iteration: 16

Parallel.For might use several threads to do the loops. If you need an initialization that should be
done with every thread, you can use the Parallel.For<TLocal> method. The generic version of the For
method accepts — besides the from and to values — three delegate parameters. The first parameter is of type
Func<TLocal>. Because the example here uses a string for TLocal, the method needs to be defined
as Func<string>, a method returning a string. This method is invoked only once for each thread that is
used to do the iterations.

The second delegate parameter defines the delegate for the body. In the example, the parameter is of type
Func<int, ParallelLoopState, string, string>. The first parameter is the loop iteration; the second
parameter, ParallelLoopState, enables stopping the loop, as shown earlier. With the third parameter,
the body method receives the value that is returned from the init method. The body method also needs to
return a value of the type that was defined with the generic For parameter.

The last parameter of the For method specifies a delegate, Action<TLocal>; in the example, a string is
received. This method, a thread exit method, is called only once for each thread:

 Parallel.For<string>(0, 20, () =>
 {
 // invoked once for each thread
 Console.WriteLine("init thread {0}, task {1}",

c21.indd 559 30-01-2014 20:28:23

560 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

 Thread.CurrentThread.ManagedThreadId, Task.CurrentId);
 return String.Format("t{0}",
 Thread.CurrentThread.ManagedThreadId);
 },
 (i, pls, str1) =>
 {
 // invoked for each member
 Console.WriteLine("body i {0} str1 {1} thread {2} task {3}", i, str1,
 Thread.CurrentThread.ManagedThreadId, Task.CurrentId);
 Thread.Sleep(10);
 return String.Format("i {0}", i);
 },
 (str1) =>
 {
 // final action on each thread
 Console.WriteLine("finally {0}", str1);
 });

The result of running this program once is shown here:

init thread 1, task 1
init thread 5, task 4
init thread 3, task 2
init thread 4, task 3
init thread 6, task 5
body i 10 str1 t4 thread 4 task 3
body i 1 str1 i 0 thread 1 task 1
body i 1 str1 t6 thread 6 task 5
body i 15 str1 t5 thread 5 task 4
body i 5 str1 t3 thread 3 task 2
body i 11 str1 i 10 thread 4 task 3
body i 16 str1 i 15 thread 5 task 4
body i 2 str1 i 1 thread 6 task 5
body i 4 str1 i 0 thread 1 task 1
body i 17 str1 i 16 thread 5 task 4
body i 3 str1 i 2 thread 6 task 5
body i 6 str1 i 4 thread 1 task 1
body i 13 str1 i 5 thread 3 task 2
body i 12 str1 i 11 thread 4 task 3
body i 7 str1 i 6 thread 1 task 1
finally i 3
body i 14 str1 i 13 thread 3 task 2
finally i 17
body i 18 str1 i 12 thread 4 task 3
finally i 14
body i 8 str1 i 7 thread 1 task 1
body i 19 str1 i 18 thread 4 task 3
body i 9 str1 i 8 thread 1 task 1
finally i 19
finally i 9

looping with the Parallel.ForEach Method
Parallel.ForEach iterates through a collection implementing IEnumerable in a way similar to the
foreach statement, but in an asynchronous manner. Again, the order is not guaranteed:

 string[] data = {"zero", "one", "two", "three", "four", "five",
 "six", "seven", "eight", "nine", "ten", "eleven", "twelve"};
 ParallelLoopResult result =
 Parallel.ForEach<string>(data, s =>

c21.indd 560 30-01-2014 20:28:23

Tasks ❘ 561

 {
 Console.WriteLine(s);
 });

If you need to break up the loop, you can use an overload of the ForEach method with a ParallelLoop
State parameter. You can do this in the same way it was done earlier with the For method. An overload of
the ForEach method can also be used to access an indexer to get the iteration number, as shown here:

 Parallel.ForEach<string>(data, (s, pls, l) =>
 {
 Console.WriteLine("{0} {1}", s, l);
 });

invoking Multiple Methods with the Parallel.invoke Method
If multiple tasks should run in parallel, you can use the Parallel.Invoke method, which offers the task
parallelism pattern. Parallel.Invoke allows the passing of an array of Action delegates, whereby you can
assign methods that should run. The example code passes the Foo and Bar methods to be invoked in parallel
(code file ParallelSamples/Program.cs):

 static void ParallelInvoke()
 {
 Parallel.Invoke(Foo, Bar);
 }

 static void Foo()
 {
 Console.WriteLine("foo");
 }

 static void Bar()
 {
 Console.WriteLine("bar");
 }

The Parallel class is very easy to use — both for task and data parallelism. If more control is needed, and
you don’t want to wait until the action started with the Parallel class is completed, the Task class comes
in handy. Of course, it’s also possible to combine the Task and Parallel classes.

TAsks
For more control over the parallel actions, the Task class from the namespace System.Threading.Tasks
can be used. A task represents some unit of work that should be done. This unit of work can run in a separate
thread; and it is also possible to start a task in a synchronized manner, which results in a wait for the
calling thread. With tasks, you have an abstraction layer but also a lot of control over the underlying threads.

Tasks provide much more flexibility in organizing the work you need to do. For example, you can define
continuation work — what should be done after a task is complete. This can be differentiated based on
whether the task was successful or not. You can also organize tasks in a hierarchy. For example, a parent
task can create new children tasks. Optionally, this can create a dependency, so canceling a parent task also
cancels its child tasks.

starting Tasks
To start a task, you can use either the TaskFactory or the constructor of the Task and the Start method.
The Task constructor just gives you more flexibility in creating the task.

c21.indd 561 30-01-2014 20:28:23

562 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

When starting a task, an instance of the Task class can be created, and the code that should run can be
assigned with an Action or Action<object> delegate, with either no parameters or one object parameter.
In the following example, a method is defined with one parameter. In the implementation, the Id of the task
and the Id of the thread are written to the console, as well as information if the thread is coming from a
thread pool, and if the thread is a background thread. Writing multiple messages to the console is
synchronized by using the lock keyword with the taskMethodLock synchronization object. This way,
parallel calls to TaskMethod can be done, and multiple writes to the console are not interleaving each other.
Otherwise the title could be written by one task, and the thread information follows by another task
(code file TaskSamples/Program.cs):

 static object taskMethodLock = new object();
 static void TaskMethod(object title)
 {
 lock (taskMethodLock)
 {
 Console.WriteLine(title);
 Console.WriteLine("Task id: {0}, thread: {1}",
 Task.CurrentId == null ? "no task" : Task.CurrentId.ToString(),
 Thread.CurrentThread.ManagedThreadId);
 Console.WriteLine("is pooled thread: {0}",
 Thread.CurrentThread.IsThreadPoolThread);
 Console.WriteLine("is background thread: {0}",
 Thread.CurrentThread.IsBackground);
 Console.WriteLine();
 }
 }

The following sections describe different ways to start a new task.

Tasks Using the Thread Pool
In this section, different ways are shown to start a task that uses a thread from the thread pool. The thread
pool offers a pool of background threads and is discussed in more detail in the section “Thread Pools.”
For now, it’s helpful to know that the thread pool manages threads on its own, increasing or decreasing the
number of threads within the pool as needed. Threads from the pool are used to fulfill some actions, and
returned to the pool afterward.

The first way to create a task is with an instantiated TaskFactory, where the method TaskMethod is passed
to the StartNew method, and the task is immediately started. The second approach uses the static Factory
property of the Task class to get access to the TaskFactory, and to invoke the StartNew method. This is
very similar to the first version in that it uses a factory, but there’s less control over factory creation. The
third approach uses the constructor of the Task class. When the Task object is instantiated, the task does
not run immediately. Instead, it is given the status Created. The task is then started by calling the Start
method of the Task class. The fourth approach, new with .NET 4.5, calls the Run method of the
Task that immediately starts the task. The Run method doesn’t have an overloaded variant to pass an
Action<object> delegate, but it’s easy to simulate this by assigning a Lambda expression of type Action,
and using the parameter within its implementation.

 static void TasksUsingThreadPool()
 {
 var tf = new TaskFactory();
 Task t1 = tf.StartNew(TaskMethod, “using a task factory”);

 Task t2 = Task.Factory.StartNew(TaskMethod, “factory via a task”);

 var t3 = new Task(TaskMethod, “using a task constructor and Start”);

c21.indd 562 30-01-2014 20:28:24

Tasks ❘ 563

 t3.Start();

 Task t4 = Task.Run(() => TaskMethod(“using the Run method”));

 }

The output returned with these variants is as follows. All these versions create a new task, and a thread
from the thread pool is used:

using a task factory
Task id: 1, thread: 6
is pooled thread: True
is background thread: True

factory via a task
Task id: 2, thread: 4
is pooled thread: True
is background thread: True

using the Run method
Task id: 3, thread: 5
is pooled thread: True
is background thread: True

using a task constructor and Start
Task id: 4, thread: 3
is pooled thread: True
is background thread: True

With both the Task constructor and the StartNew method of the TaskFactory, you can pass values from
the enumeration TaskCreationOptions. Using this creation option you can change how the task should
behave differently, as is shown in the next sections.

Synchronous Tasks
A task does not necessarily mean to use a thread from a thread pool — it can use other threads as well. Tasks
can also run synchronously, with the same thread as the calling thread. The following code snippet uses the
method RunSynchronously of the Task class:

 private static void RunSynchronousTask()
 {
 TaskMethod("just the main thread");
 var t1 = new Task(TaskMethod, “run sync”);
 t1.RunSynchronously();
 }

Here, the TaskMethod is first called directly from the main thread before it is invoked from the newly
created Task. As you can see from the following console output, the main thread doesn’t have a task Id, it is
a foreground thread, and it is not a pooled thread. Calling the method RunSynchronously uses exactly the
same thread as the calling thread, but creates a task if one wasn’t created previously:

just the main thread
Task id: no task, thread: 1
is pooled thread: False
is background thread: False

run sync
Task id: 1, thread: 1
is pooled thread: False
is background thread: False

c21.indd 563 30-01-2014 20:28:24

564 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

Tasks Using a Separate Thread
If the code of a task should run for a longer time, TaskCreationOptions.LongRunning should be used to
instruct the task scheduler to create a new thread, rather than use a thread from the thread pool. This way,
the thread doesn’t need to be managed by the thread pool. When a thread is taken from the thread pool, the
task scheduler can decide to wait for an already running task to be completed and use this thread instead of
creating a new thread with the pool. With a long-running thread, the task scheduler knows immediately that
it doesn’t make sense to wait for this one. The following code snippet creates a long running task:

 private static void LongRunningTask()
 {
 var t1 = new Task(TaskMethod, “long running”,
 TaskCreationOptions.LongRunning);
 t1.Start();
 }

Indeed, using the option TaskCreationOptions.LongRunning, a thread from the thread pool is not used.
Instead, a new thread is created:

long running
Task id: 1, thread: 3
is pooled thread: False
is background thread: True

Futures—Results from Tasks
When a task is finished, it can write some stateful information to a shared object. Such a shared object must
be thread-safe. Another option is to use a task that returns a result. Such a task is also known as future as it
returns a result in the future. With early versions of the Task Parallel Library (TPL), the class had the name
Future as well. Now it is a generic version of the Task class. With this class it is possible to define the type
of the result that is returned with a task.

A method that is invoked by a task to return a result can be declared with any return type. The following
example method TaskWithResult returns two int values with the help of a Tuple. The input of the
method can be void or of type object, as shown here (code file TaskSamples/Program.cs):

 static Tuple<int, int> TaskWithResult(object division)
 {
 Tuple<int, int> div = (Tuple<int, int>)division;
 int result = div.Item1 / div.Item2;
 int reminder = div.Item1 % div.Item2;
 Console.WriteLine("task creates a result...");

 return Tuple.Create<int, int>(result, reminder);
 }

NOTE Tuples are explained in Chapter 6, “Arrays and Tuples.”

When defining a task to invoke the method TaskWithResult, the generic class Task<TResult> is used. The
generic parameter defines the return type. With the constructor, the method is passed to the Func delegate,
and the second parameter defines the input value. Because this task needs two input values in the object
parameter, a tuple is created as well. Next, the task is started. The Result property of the Task instance t1
blocks and waits until the task is completed. Upon task completion, the Result property contains the result
from the task:

c21.indd 564 30-01-2014 20:28:24

Tasks ❘ 565

 var t1 = new Task<Tuple<int,int>>(TaskWithResult,
 Tuple.Create<int, int>(8, 3));
 t1.Start();
 Console.WriteLine(t1.Result);
 t1.Wait();
 Console.WriteLine("result from task: {0} {1}", t1.Result.Item1,
 t1.Result.Item2);

Continuation Tasks
With tasks, you can specify that after a task is finished another specific task should start to run — for example,
a new task that uses a result from the previous one or should do some cleanup if the previous task failed.

Whereas the task handler has either no parameter or one object parameter, the continuation handler
has a parameter of type Task. Here, you can access information about the originating task (code file
TaskSamples/Program.cs):

 static void DoOnFirst()
 {
 Console.WriteLine("doing some task {0}", Task.CurrentId);
 Thread.Sleep(3000);
 }

 static void DoOnSecond(Task t)
 {
 Console.WriteLine("task {0} finished", t.Id);
 Console.WriteLine("this task id {0}", Task.CurrentId);
 Console.WriteLine("do some cleanup");
 Thread.Sleep(3000);
 }

A continuation task is defined by invoking the ContinueWith method on a task. You could also use the
TaskFactory for this. t1.OnContinueWith(DoOnSecond) means that a new task invoking the method
DoOnSecond should be started as soon as the task t1 is finished. You can start multiple tasks when one task
is finished, and a continuation task can have another continuation task, as this next example demonstrates:

 Task t1 = new Task(DoOnFirst);
 Task t2 = t1.ContinueWith(DoOnSecond);
 Task t3 = t1.ContinueWith(DoOnSecond);
 Task t4 = t2.ContinueWith(DoOnSecond);

So far, the continuation tasks have been started when the previous task was finished, regardless of the
result. With values from TaskContinuationOptions, you can define that a continuation task should only
start if the originating task was successful (or faulted). Some of the possible values are OnlyOnFaulted,
NotOnFaulted, OnlyOnCanceled, NotOnCanceled, and OnlyOnRanToCompletion:

 Task t5 = t1.ContinueWith(DoOnError,
 TaskContinuationOptions.OnlyOnFaulted);

NOTE The compiler-generated code from the await keyword discussed in Chapter 13
makes use of continuation tasks.

Task Hierarchies
With task continuations, one task is started after another. Tasks can also form a hierarchy. When a task
itself starts a new task, a parent/child hierarchy is started.

c21.indd 565 30-01-2014 20:28:24

566 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

In the code snippet that follows, within the task of the parent, a new task object is created, and the task is
started. The code to create a child task is the same as that to create a parent task. The only difference is that
the task is created from within another task:

 static void ParentAndChild()
 {
 var parent = new Task(ParentTask);
 parent.Start();
 Thread.Sleep(2000);
 Console.WriteLine(parent.Status);
 Thread.Sleep(4000);
 Console.WriteLine(parent.Status);
 }

 static void ParentTask()
 {
 Console.WriteLine("task id {0}", Task.CurrentId);
 var child = new Task(ChildTask);
 child.Start();
 Thread.Sleep(1000);
 Console.WriteLine("parent started child");
 }

 static void ChildTask()
 {
 Console.WriteLine("child");
 Thread.Sleep(5000);
 Console.WriteLine("child finished");
 }

If the parent task is finished before the child task, the status of the parent task is shown as WaitingFor
ChildrenToComplete. The parent task is completed with the status RanToCompletion as soon as
all children tasks are completed as well. Of course, this is not the case if the parent creates a task with the
TaskCreationOption DetachedFromParent.

Canceling a parent task also cancels the children. The cancellation framework is discussed next.

CANCEllATiON FRAMEwORk
.NET 4.5 includes a cancellation framework to enable the canceling of long-running tasks in a standard
manner. Every blocking call should support this mechanism. Of course, not every blocking call currently
implements this new technology, but more and more are doing so. Among the technologies that offer this
mechanism already are tasks, concurrent collection classes, and Parallel LINQ, as well as several
synchronization mechanisms.

The cancellation framework is based on cooperative behavior; it is not forceful. A long-running task checks
whether it is canceled and returns control accordingly.

A method that supports cancellation accepts a CancellationToken parameter. This class defines the property
IsCancellationRequested, whereby a long operation can check if it should abort. Other ways for a long
operation to check for cancellation include using a WaitHandle property that is signaled when the token is
canceled, or using the Register method. The Register method accepts parameters of type Action and
ICancelableOperation. The method that is referenced by the Action delegate is invoked when the token is
canceled. This is similar to the ICancelableOperation, whereby the Cancel method of an object
implementing this interface is invoked when the cancellation is done.

Cancellation of Parallel.For
This section starts with a simple example using the Parallel.For method. The Parallel class provides
overloads for the For method, whereby you can pass a parameter of type ParallelOptions. With

c21.indd 566 30-01-2014 20:28:24

Cancellation Framework ❘ 567

ParallelOptions, you can pass a CancellationToken. The CancellationToken is generated by
creating a CancellationTokenSource. CancellationTokenSource implements the interface
ICancelableOperation and can therefore be registered with the CancellationToken and allows
 cancellation with the Cancel method. The example doesn’t call the Cancel method directly, but makes use
of a new .NET 4.5 method to cancel the token after 500 milliseconds with the CancelAfter method.

Within the implementation of the For loop, the Parallel class verifies the outcome of the Cancellation
Token and cancels the operation. Upon cancellation, the For method throws an exception of type
OperationCanceledException, which is caught in the example. With the CancellationToken, it is
possible to register for information when the cancellation is done. This is accomplished by calling the
Register method and passing a delegate that is invoked on cancellation (code file CancellationSamples/
Program.cs):

 var cts = new CancellationTokenSource();
 cts.Token.Register(() => Console.WriteLine("*** token canceled"));

 // send a cancel after 500 ms
 cts.CancelAfter(500);

 try
 {
 ParallelLoopResult result =
 Parallel.For(0, 100, new ParallelOptions()
 {
 CancellationToken = cts.Token,
 },
 x =>
 {
 Console.WriteLine("loop {0} started", x);
 int sum = 0;
 for (int i = 0; i < 100; i++)
 {
 Thread.Sleep(2);
 sum += i;
 }
 Console.WriteLine("loop {0} finished", x);
 });
 }
 catch (OperationCanceledException ex)
 {
 Console.WriteLine(ex.Message);
 }

Running the application, you will get output similar to the following. Iteration 0, 1, 25, 75, and 50 were all
started. This is on a system with a quad-core CPU. With the cancellation, all other iterations were canceled
before starting. The iterations that were started are allowed to finish because cancellation is always done in
a cooperative way to avoid the risk of resource leaks when iterations are canceled somewhere in between:

loop 0 started
loop 1 started
loop 25 started
loop 75 started
loop 50 started
** token cancelled
loop 75 finished
loop 0 finished
loop 50 finished
loop 25 finished
loop 1 finished
The operation was canceled.

c21.indd 567 30-01-2014 20:28:24

568 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

Cancellation of Tasks
The same cancellation pattern is used with tasks. First, a new CancellationTokenSource is created.
If you need just one cancellation token, you can use a default token by accessing Task.Factory
.CancellationToken. Then, similar to the previous code, the task is canceled after 500 milliseconds. The
task doing the major work within a loop receives the cancellation token via the TaskFactory object.
The cancellation token is assigned to the TaskFactory by setting it in the constructor. This cancellation
token is used by the task to check if cancellation is requested by checking the IsCancellationRequested
property of the CancellationToken:

 static void CancelTask()
 {
 var cts = new CancellationTokenSource();
 cts.Token.Register(() => Console.WriteLine("*** task cancelled"));

 // send a cancel after 500 ms
 cts.CancelAfter(500);

 Task t1 = Task.Run(() =>
 {
 Console.WriteLine("in task");
 for (int i = 0; i < 20; i++)
 {
 Thread.Sleep(100);
 CancellationToken token = cts.Token;
 if (token.IsCancellationRequested)
 {
 Console.WriteLine("cancelling was requested, " +
 "cancelling from within the task");
 token.ThrowIfCancellationRequested();
 break;
 }
 Console.WriteLine("in loop");
 }
 Console.WriteLine("task finished without cancellation");
 }, cts.Token);

 try
 {
 t1.Wait();
 }
 catch (AggregateException ex)
 {
 Console.WriteLine("exception: {0}, {1}", ex.GetType().Name, ex.Message);
 foreach (var innerException in ex.InnerExceptions)
 {
 Console.WriteLine("inner excepion: {0}, {1}",
 ex.InnerException.GetType().Name, ex.InnerException.Message);
 }
 }
 }

When running the application, you can see that the task starts, runs for a few loops, and gets the cancellation
request. The task is canceled and throws a TaskCanceledException, which is initiated from the method
call ThrowIfCancellationRequested. With the caller waiting for the task, you can see that the exception
AggregateException is caught and contains the inner exception TaskCanceledException. This is used
for a hierarchy of cancellations — for example, if you run a Parallel.For within a task that is
canceled as well. The final status of the task is Canceled:

c21.indd 568 30-01-2014 20:28:24

Thread Pools ❘ 569

in task
in loop
in loop
in loop
in loop
*** task cancelled
cancelling was requested, cancelling from within the task
exception: AggregateException, One or more errors occurred.
inner excepion: TaskCanceledException, A task was canceled.

THREAd POOls
This section takes a look at what’s behind the scenes of tasks: thread pools. Creating threads takes time.
When you have different short tasks to do, you can create a number of threads in advance and send requests
as they should be done. It would be nice if this number of threads increased as more were needed, and
decreased as needed to release resources.

There is no need to create such a list on your own. The list is managed by the ThreadPool class. This class
increases and decreases the number of threads in the pool as they are needed, up to the maximum number of
threads, which is configurable. With a quad-core CPU, the default is currently set to 1,023 worker threads
and 1,000 I/O threads. You can specify the minimum number of threads that should be started immediately
when the pool is created and the maximum number of threads that are available in the pool. If the number
of jobs to process exceeds the maximum number of threads in the pool, the newest jobs are queued and must
wait for a thread to complete its work.

The following sample application first reads the maximum number of worker and I/O threads and writes
this information to the console. Then, in a for loop, the method JobForAThread is assigned to a thread
from the thread pool by invoking the method ThreadPool.QueueUserWorkItem and passing a delegate of
type WaitCallback. The thread pool receives this request and selects one of the threads from the pool to
invoke the method. If the pool is not already running, the pool is created and the first thread is started. If
the pool is already running and one thread is free to do the task, the job is forwarded to that thread
(code file ThreadPoolSamples/Program.cs):

using System;
using System.Threading;

namespace Wrox.ProCSharp.Threading
{
 class Program
 {
 static void Main()
 {
 int nWorkerThreads;
 int nCompletionPortThreads;
 ThreadPool.GetMaxThreads(out nWorkerThreads, out nCompletionPortThreads);
 Console.WriteLine("Max worker threads: {0}, " +
 "I/O completion threads: {1}", nWorkerThreads, nCompletionPortThreads);

 for (int i = 0; i < 5; i++)
 {
 ThreadPool.QueueUserWorkItem(JobForAThread);
 }
 Thread.Sleep(3000);
 }

 static void JobForAThread(object state)
 {
 for (int i = 0; i < 3; i++)
 {

c21.indd 569 30-01-2014 20:28:25

570 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

 Console.WriteLine("loop {0}, running inside pooled thread {1}",
 i, Thread.CurrentThread.ManagedThreadId);
 Thread.Sleep(50);
 }
 }
 }
}

When you run the application, you can see that 1,023 worker threads are possible with the current settings.
The five jobs are processed by four pooled threads (because this is a quad-core system). Your results may
vary, and you can change the job’s sleep time and the number of jobs to process to get very different results:

Max worker threads: 1023, I/O completion threads: 1000
loop 0, running inside pooled thread 4
loop 0, running inside pooled thread 6
loop 0, running inside pooled thread 5
loop 0, running inside pooled thread 3
loop 1, running inside pooled thread 3
loop 1, running inside pooled thread 6
loop 1, running inside pooled thread 5
loop 1, running inside pooled thread 4
loop 2, running inside pooled thread 6
loop 2, running inside pooled thread 4
loop 2, running inside pooled thread 5
loop 2, running inside pooled thread 3
loop 0, running inside pooled thread 4
loop 1, running inside pooled thread 4
loop 2, running inside pooled thread 4

Thread pools are very easy to use, but there are some restrictions:

➤➤ All thread pool threads are background threads. If all foreground threads of a process are finished, all
background threads are stopped. You cannot change a pooled thread to a foreground thread.

➤➤ You cannot set the priority or name of a pooled thread.
➤➤ For COM objects, all pooled threads are multithreaded apartment (MTA) threads. Many COM

objects require a single-threaded apartment (STA) thread.
➤➤ Use pooled threads only for a short task. If a thread should run all the time (for example, the

spell-checker thread of Word), create a thread with the Thread class (or use the LongRunning option
on creating a Task).

THE THREAd ClAss
If more control is needed, the Thread class can be used. This class enables you to create foreground threads
and set different priorities with threads.

With the Thread class, you can create and control threads. The code here is a very simple example of
creating and starting a new thread. The constructor of the Thread class is overloaded to accept a delegate
parameter of type ThreadStart or ParameterizedThreadStart. The ThreadStart delegate defines a
method with a void return type and without arguments. After the Thread object is created, you can start
the thread with the Start method (code file ThreadSamples/Program.cs):

using System;
using System.Threading;

namespace Wrox.ProCSharp.Threading
{
 class Program
 {
 static void Main()

c21.indd 570 30-01-2014 20:28:25

The Thread Class ❘ 571

 {
 var t1 = new Thread(ThreadMain);
 t1.Start();
 Console.WriteLine("This is the main thread.");
 }

 static void ThreadMain()
 {
 Console.WriteLine("Running in a thread.");
 }
 }
}

When you run the application, you get the output of the two threads:

This is the main thread.
Running in a thread.

There is no guarantee regarding what output comes first. Threads are scheduled by the operating system;
which thread comes first can be different each time.

You have seen how a Lambda expression can be used with an asynchronous delegate. You can use it with
the Thread class as well by passing the implementation of the thread method to the argument of the Thread
constructor:

using System;
using System.Threading;

namespace Wrox.ProCSharp.Threading
{
 class Program
 {
 static void Main()
 {
 var t1 = new Thread(() => Console.WriteLine("running in a thread, id: {0}",
 Thread.CurrentThread.ManagedThreadId));
 t1.Start();
 Console.WriteLine("This is the main thread, id: {0}",
 Thread.CurrentThread.ManagedThreadId);
 }
 }
}

The output of the application shows both the thread name and the Id:

This is the main thread, id: 1
Running in a thread, id: 3.

Passing data to Threads
There are two ways to pass some data to a thread. You can either use the Thread constructor with the
ParameterizedThreadStart delegate or create a custom class and define the method of the thread as an
instance method so that you can initialize data of the instance before starting the thread.

For passing data to a thread, a class or struct that holds the data is needed. Here, the struct Data containing
a string is defined, but you can pass any object you want:

 public struct Data
 {
 public string Message;
 }

c21.indd 571 30-01-2014 20:28:25

572 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

If the ParameterizedThreadStart delegate is used, the entry point of the thread must have a parameter of
type object and a void return type. The object can be cast to what it is, and here the message is written to
the console:

 static void ThreadMainWithParameters(object o)
 {
 Data d = (Data)o;
 Console.WriteLine("Running in a thread, received {0}", d.Message);
 }

With the constructor of the Thread class, you can assign the new entry point ThreadMainWithParameters
and invoke the Start method, passing the variable d:

 static void Main()
 {
 var d = new Data { Message = "Info" };
 var t2 = new Thread(ThreadMainWithParameters);
 t2.Start(d);
 }

Another way to pass data to the new thread is to define a class (see the class MyThread), whereby you define
the fields that are needed as well as the main method of the thread as an instance method of the class:

 public class MyThread
 {
 private string data;

 public MyThread(string data)
 {
 this.data = data;
 }

 public void ThreadMain()
 {
 Console.WriteLine("Running in a thread, data: {0}", data);
 }
 }

This way, you can create an object of MyThread and pass the object and the method ThreadMain to the
constructor of the Thread class. The thread can access the data:

 var obj = new MyThread("info");
 var t3 = new Thread(obj.ThreadMain);
 t3.Start();

Background Threads
The process of the application keeps running as long as at least one foreground thread is running. If more
than one foreground thread is running and the Main method ends, the process of the application remains
active until all foreground threads finish their work.

A thread you create with the Thread class, by default, is a foreground thread. Thread pool threads are
always background threads.

When you create a thread with the Thread class, you can define whether it should be a foreground or
background thread by setting the property IsBackground. The Main method sets the IsBackground
property of the thread t1 to false (which is the default). After starting the new thread, the main thread just
writes an end message to the console. The new thread writes a start and an end message, and in between it

c21.indd 572 30-01-2014 20:28:25

The Thread Class ❘ 573

sleeps for three seconds, which gives the main thread a good chance to finish before the new thread com-
pletes its work:

 class Program
 {
 static void Main()
 {
 var t1 = new Thread(ThreadMain)
 { Name = “MyNewThread”, IsBackground = false };
 t1.Start();
 Console.WriteLine("Main thread ending now.");
 }

 static void ThreadMain()
 {
 Console.WriteLine("Thread {0} started", Thread.CurrentThread.Name);
 Thread.Sleep(3000);
 Console.WriteLine("Thread {0} completed", Thread.CurrentThread.Name);
 }
 }

When you start the application, you will still see the completion message written to the console, although
the main thread completed its work earlier. The reason is that the new thread is a foreground thread as well:

Main thread ending now.
Thread MyNewThread1 started
Thread MyNewThread1 completed

If you change the IsBackground property used to start the new thread to true, the result shown on the
console is different. You might have the same result shown here — the start message of the new thread is
shown but never the end message. Alternatively, you might not see the start message either, if the thread was
prematurely ended before it had a chance to kick off:

Main thread ending now.
Thread MyNewThread1 started

Background threads are very useful for background tasks. For example, when you close the Word application,
it doesn’t make sense for the spell-checker to keep its process running. The spell-checker thread can be killed
when the application is closed. However, the thread organizing the Outlook message store should remain
active until it is finished, even if Outlook is closed.

Thread Priority
You have learned that the operating system schedules threads, and you have had a chance to influence the
scheduling by assigning a priority to the thread. Before changing the priority, you must understand the
thread scheduler. The operating system schedules threads based on a priority, and the thread with the highest
priority is scheduled to run in the CPU. A thread stops running and gives up the CPU if it waits for a
resource.

There are several reasons why a thread must wait, such as in response to a sleep instruction, while waiting
for disk I/O to complete, while waiting for a network packet to arrive, and so on. If the thread does not give
up the CPU on its own, it is preempted by the thread scheduler. A thread has a time quantum, which means
it can use the CPU continuously until this time is reached (in case there isn’t a thread with a higher priority).
If multiple threads are running with the same priority, waiting to get the CPU, the thread scheduler uses a
round-robin scheduling principle to give the CPU to one thread after another. If a thread is preempted, it is
added last to the queue.

c21.indd 573 30-01-2014 20:28:25

574 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

The time quantum and round-robin principles are used only if multiple threads are running with the same
priority. The priority is dynamic. If a thread is CPU-intensive (requires the CPU continuously without waiting
for resources), the priority is lowered to the level of the base priority that is defined with the thread. If a
thread is waiting for a resource, the thread gets a priority boost and the priority is increased. Because of the
boost, there is a good chance that the thread gets the CPU the next time that the wait ends.

With the Thread class, you can influence the base priority of the thread by setting the Priority property.
The Priority property requires a value that is defined by the ThreadPriority enumeration. The levels
defined are Highest, AboveNormal, Normal, BelowNormal, and Lowest.

NOTE Be careful when giving a thread a higher priority, because this may decrease
the chance for other threads to run. You can change the priority for a short time if
necessary.

Controlling Threads
The thread is created by invoking the Start method of a Thread object. However, after invoking the Start
method, the new thread is still not in the Running state, but in the Unstarted state. The thread changes to
the Running state as soon as the operating system thread scheduler selects the thread to run. You can
read the current state of a thread by reading the property Thread.ThreadState.

With the Thread.Sleep method, a thread goes into the WaitSleepJoin state and waits until it is woken up
again after the time span defined by the Sleep method has elapsed.

To stop another thread, you can invoke the method Thread.Abort. When this method is called, an exception
of type ThreadAbortException is thrown in the thread that receives the abort. With a handler to catch this
exception, the thread can do some cleanup before it ends. The thread also has a chance to continue running
after receiving the ThreadAbortException as a result of invoking Thread.ResetAbort. The state of the
thread receiving the abort request changes from AbortRequested to the Aborted state if the thread does
not reset the abort.

If you need to wait for a thread to end, you can invoke the Thread.Join method. Thread.Join blocks the
current thread and sets it to the WaitSleepJoin state until the thread that is joined is completed.

THREAdiNg issuEs
Programming with multiple threads is challenging. When starting multiple threads that access the same
data, you can get intermittent problems that are hard to find. The problems are the same whether you use
tasks, Parallel LINQ, or the Parallel class. To avoid getting into trouble, you must pay attention to
synchronization issues and the problems that can occur with multiple threads. This section covers two in
particular: race conditions and deadlocks.

Race Conditions
A race condition can occur if two or more threads access the same objects and access to the shared state is
not synchronized. To demonstrate a race condition, the following example defines the class StateObject,
with an int field and the method ChangeState. In the implementation of ChangeState, the state variable
is verified to determine whether it contains 5; if it does, the value is incremented. Trace.Assert is the next
statement, which immediately verifies that state now contains the value 6.

After incrementing by 1 a variable that contains the value 5, you might assume that the variable now has the
value 6; but this is not necessarily the case. For example, if one thread has just completed the if
(state == 5) statement, it might be preempted, with the scheduler running another thread. The second

c21.indd 574 30-01-2014 20:28:25

Threading Issues ❘ 575

thread now goes into the if body and, because the state still has the value 5, the state is incremented by 1 to 6.
The first thread is then scheduled again, and in the next statement the state is incremented to 7. This is when the
race condition occurs and the assert message is shown (code file ThreadingIssues/SampleTask.cs):

 public class StateObject
 {
 private int state = 5;

 public void ChangeState(int loop)
 {
 if (state == 5)
 {
 state++;
 Trace.Assert(state == 6, "Race condition occurred after " +
 loop + " loops");
 }
 state = 5;
 }
 }

You can verify this by defining a method for a task. The method RaceCondition of the class SampleTask
gets a StateObject as a parameter. Inside an endless while loop, the ChangeState method is invoked. The
variable i is used just to show the loop number in the assert message:

 public class SampleTask
 {
 public void RaceCondition(object o)
 {
 Trace.Assert(o is StateObject, "o must be of type StateObject");
 StateObject state = o as StateObject;

 int i = 0;
 while (true)
 {
 state.ChangeState(i++);
 }
 }
 }

In the Main method of the program, a new StateObject is created that is shared among all the tasks. Task
objects are created by invoking the RaceCondition method with the Lambda expression that is passed to the
Run method of the Task. The main thread then waits for user input. However, there’s a good chance that
the program halts before reading user input, as a race condition will happen:

 static void RaceConditions()
 {
 var state = new StateObject();
 for (int i = 0; i < 2; i++)
 {
 Task.Run(() => new SampleTask().RaceCondition(state));
 }
 }

When you start the program, you will get race conditions. How long it takes until the first race condition
happens depends on your system and whether you build the program as a release build or a debug build.
With a release build, the problem will happen more often because the code is optimized. If you have multiple
CPUs in your system or dual/quad-core CPUs, where multiple threads can run concurrently, the problem
will also occur more often than with a single-core CPU. The problem will occur with a single-core CPU
because thread scheduling is preemptive, but not that often.

c21.indd 575 30-01-2014 20:28:25

576 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

Figure 21-1 shows an assertion of the program in which the race condition occurred after 64 loops. If you
start the application multiple times, you will always get different results.

FiguRE 21-1

You can avoid the problem by locking the shared object. You do this inside the thread by locking the
variable state, which is shared among the threads, with the lock statement, as shown in the following
example. Only one thread can exist inside the lock block for the state object. Because this object is shared
among all threads, a thread must wait at the lock if another thread has the lock for state. As soon as the lock
is accepted, the thread owns the lock, and gives it up at the end of the lock block. If every thread changing
the object referenced with the state variable is using a lock, the race condition no longer occurs:

 public class SampleTask
 {
 public void RaceCondition(object o)
 {
 Trace.Assert(o is StateObject, "o must be of type StateObject");
 StateObject state = o as StateObject;

 int i = 0;
 while (true)
 {
 lock (state) // no race condition with this lock
 {
 state.ChangeState(i++);
 }
 }
 }
 }

c21.indd 576 30-01-2014 20:28:26

Threading Issues ❘ 577

Instead of performing the lock when using the shared object, you can make the shared object thread-safe.
In the following code, the ChangeState method contains a lock statement. Because you cannot lock the
state variable itself (only reference types can be used for a lock), the variable sync of type object is
defined and used with the lock statement. If a lock is done using the same synchronization object every time
the value state is changed, race conditions no longer happen:

 public class StateObject
 {
 private int state = 5;
 private object sync = new object();

 public void ChangeState(int loop)
 {
 lock (sync)
 {
 if (state == 5)
 {
 state++;
 Trace.Assert(state == 6, "Race condition occurred after " +
 loop + " loops");
 }
 state = 5;
 }
 }
 }

deadlocks
Too much locking can get you in trouble as well. In a deadlock, at least two threads halt and wait for
each other to release a lock. As both threads wait for each other, a deadlock occurs and the threads wait
endlessly.

To demonstrate deadlocks, the following code instantiates two objects of type StateObject and passes
them with the constructor of the SampleTask class. Two tasks are created: one task running the method
Deadlock1 and the other task running the method Deadlock2 (code file ThreadingIssues/Program.cs):

 var state1 = new StateObject();
 var state2 = new StateObject();
 new Task(new SampleTask(state1, state2).Deadlock1).Start();
 new Task(new SampleTask(state1, state2).Deadlock2).Start();

The methods Deadlock1 and Deadlock2 now change the state of two objects: s1 and s2. That’s why two
locks are generated. Deadlock1 first does a lock for s1 and next for s2. Deadlock2 first does a lock for s2
and then for s1. Now, it may happen occasionally that the lock for s1 in Deadlock1 is resolved. Next, a
thread switch occurs, and Deadlock2 starts to run and gets the lock for s2. The second thread now waits
for the lock of s1. Because it needs to wait, the thread scheduler schedules the first thread again, which now
waits for s2. Both threads now wait and don’t release the lock as long as the lock block is not ended. This is
a typical deadlock (code file ThreadingIssues/SampleTask.cs):

 public class SampleTask
 {
 public SampleTask(StateObject s1, StateObject s2)
 {
 this.s1 = s1;
 this.s2 = s2;
 }

 private StateObject s1;

c21.indd 577 30-01-2014 20:28:26

578 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

 private StateObject s2;

 public void Deadlock1()
 {
 int i = 0;
 while (true)
 {
 lock (s1)
 {
 lock (s2)
 {
 s1.ChangeState(i);
 s2.ChangeState(i++);
 Console.WriteLine("still running, {0}", i);
 }
 }
 }
 }

 public void Deadlock2()
 {
 int i = 0;
 while (true)
 {
 lock (s2)
 {
 lock (s1)
 {
 s1.ChangeState(i);
 s2.ChangeState(i++);
 Console.WriteLine("still running, {0}", i);
 }
 }
 }
 }
 }

As a result, the program will run a number of loops and soon become unresponsive. The message “still
running” is just written a few times to the console. Again, how soon the problem occurs depends on your
system configuration, and the result will vary.

With Visual Studio 2013, you can run the program in debug mode, click the Break All button, and open the
Parallel Tasks window (see Figure 21-2). Here, you can see that the threads have the status deadlock.

FiguRE 21-2

A deadlock problem is not always as obvious as it is here. One thread locks s1 and then s2; the other thread
locks s2 and then s1. In this case, you just need to change the order so that both threads perform the locks
in the same order. However, the locks might be hidden deeply inside a method. You can prevent this problem
by designing a good lock order in the initial architecture of the application, and by defining timeouts for the
locks, as demonstrated in the next section.

c21.indd 578 30-01-2014 20:28:26

Synchronization ❘ 579

syNCHRONizATiON
It is best to avoid synchronization issues by not sharing data between threads. Of course, this is not always
possible. If data sharing is necessary, you must use synchronization techniques so that only one thread at
a time accesses and changes shared state. Remember the synchronization issues with race conditions and
deadlocks. If you don’t pay attention to these issues, finding the source of problems in an application is
difficult because threading issues occur only from time to time.

This section discusses synchronization technologies that you can use with multiple threads:

➤➤ lock statement
➤➤ Interlocked class
➤➤ Monitor class
➤➤ SpinLock struct
➤➤ WaitHandle class
➤➤ Mutex class
➤➤ Semaphore class
➤➤ Events classes
➤➤ Barrier class
➤➤ ReaderWriterLockSlim class

You can use the lock, Interlocked, and Monitor classes for synchronization within a process. The classes
Mutex, Event, SemaphoreSlim, and ReaderWriterLockSlim also offer synchronization among threads of
multiple processes.

The lock statement and Thread safety
C# has its own keyword for the synchronization of multiple threads: the lock statement. The lock
statement provides an easy way to hold and release a lock. Before adding lock statements, however, let’s
look at another race condition. The class SharedState demonstrates using shared state between threads
and shares an integer value (code file SynchronizationSamples/SharedState.cs):

 public class SharedState
 {
 public int State { get; set; }
 }

The class Job contains the method DoTheJob, which is the entry point for a new task. With the
implementation, the State of SharedState is incremented 50,000 times. The variable sharedState is
initialized in the constructor of this class (code file SynchronizationSamples/Job.cs):

 public class Job
 {
 SharedState sharedState;
 public Job(SharedState sharedState)
 {
 this.sharedState = sharedState;
 }
 public void DoTheJob()
 {
 for (int i = 0; i < 50000; i++)
 {
 sharedState.State += 1;
 }
 }
 }

c21.indd 579 30-01-2014 20:28:26

580 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

In the Main method, a SharedState object is created and passed to the constructor of 20 Task objects. All
tasks are started. After starting the tasks, the Main method does another loop to wait until every one of the
20 tasks is completed. After the tasks are completed, the summarized value of the shared state is written
to the console. With 50,000 loops and 20 tasks, a value of 1,000,000 could be expected. Often, however,
this is not the case (code file SynchronizationSamples/Program.cs):

 class Program
 {
 static void Main()
 {
 int numTasks = 20;
 var state = new SharedState();
 var tasks = new Task[numTasks];

 for (int i = 0; i < numTasks; i++)
 {
 tasks[i] = Task.Run(() => new Job(state).DoTheJob());
 }

 for (int i = 0; i < numTasks; i++)
 {
 tasks[i].Wait();
 }
 Console.WriteLine("summarized {0}", state.State);
 }
 }

The results of multiple runs of the application are as follows:

summarized 314430
summarized 310683
summarized 315653
summarized 299973
summarized 326617

The behavior is different every time, but none of the results are correct. As noted earlier, you will see big
differences between debug and release builds, and according to the type of CPU that you are using. If you
change the loop count to smaller values, you will often get correct values — but not every time. In this case
the application is small enough to see the problem easily; in a large application, the reason for such a
problem can be hard to find.

You must add synchronization to this program. To do so, use the lock keyword. defining the object with the
lock statement means that you wait to get the lock for the specified object. You can pass only a reference type.
Locking a value type would just lock a copy, which wouldn’t make any sense. In any case, the C# compiler
issues an error if value types are used with the lock statement. As soon as the lock is granted — only one
thread gets the lock — the block of the lock statement can run. At the end of the lock statement block, the
lock for the object is released, and another thread waiting for the lock can be granted access to it:

lock (obj)
{
 // synchronized region
}

To lock static members, you can place the lock on the type object:

lock (typeof(StaticClass))
{
}

You can make the instance members of a class thread-safe by using the lock keyword. This way, only one
thread at a time can access the methods DoThis and DoThat for the same instance:

c21.indd 580 30-01-2014 20:28:26

Synchronization ❘ 581

 public class Demo
 {
 public void DoThis()
 {
 lock (this)
 {
 // only one thread at a time can access the DoThis and DoThat methods
 }
 }
 public void DoThat()
 {
 lock (this)
 {
 }
 }
 }

However, because the object of the instance can also be used for synchronized access from the outside, and
you can’t control this from the class itself, you can apply the SyncRoot pattern. With the SyncRoot pattern,
a private object named syncRoot is created, and this object is used with the lock statements:

 public class Demo
 {
 private object syncRoot = new object();

 public void DoThis()
 {
 lock (syncRoot)
 {
 // only one thread at a time can access the DoThis and DoThat methods
 }
 }
 public void DoThat()
 {
 lock (syncRoot)
 {
 }
 }
 }

Using locks costs time and is not always needed. You can create two versions of a class: synchronized and
nonsynchronized. This is demonstrated in the next example code by changing the class Demo. The class Demo
itself is not synchronized, as shown in the implementation of the DoThis and DoThat methods. The class
also defines the IsSynchronized property, whereby the client can get information about the synchronization
option of the class. To make a synchronized variant of the class, the static method Synchronized can be
used to pass a nonsynchronized object, and this method returns an object of type SynchronizedDemo.
SynchronizedDemo is implemented as an inner class that is derived from the base class Demo and overrides
the virtual members of the base class. The overridden members make use of the SyncRoot pattern:

 public class Demo
 {
 private class SynchronizedDemo: Demo
 {
 private object syncRoot = new object();
 private Demo d;

 public SynchronizedDemo(Demo d)
 {
 this.d = d;
 }

c21.indd 581 30-01-2014 20:28:26

582 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

 public override bool IsSynchronized
 {
 get { return true; }
 }

 public override void DoThis()
 {
 lock (syncRoot)
 {
 d.DoThis();
 }
 }

 public override void DoThat()
 {
 lock (syncRoot)
 {
 d.DoThat();
 }
 }
 }

 public virtual bool IsSynchronized
 {
 get { return false; }
 }

 public static Demo Synchronized(Demo d)
 {
 if (!d.IsSynchronized)
 {
 return new SynchronizedDemo(d);
 }
 return d;
 }

 public virtual void DoThis()
 {
 }

 public virtual void DoThat()
 {
 }
 }

Bear in mind that when using the SynchronizedDemo class, only methods are synchronized. There is no
synchronization for invoking two members of this class.

Now, we’ll change the SharedState class that was not synchronized at first to use the SyncRoot pat-
tern. If you try to make the SharedState class thread-safe by locking access to the properties with the
SyncRoot pattern, you still get the race condition shown earlier in the “Race Conditions” section (code file
SynchronizationSamples/SharedState.cs):

 public class SharedState
 {
 private int state = 0;
 private object syncRoot = new object();

 public int State // there's still a race condition,
 // don't do this!
 {

c21.indd 582 30-01-2014 20:28:27

Synchronization ❘ 583

 get { lock (syncRoot) {return state; }}
 set { lock (syncRoot) {state = value; }}
 }
 }

The thread invoking the DoTheJob method is accessing the get accessor of the SharedState class to
get the current value of the state, and then the get accessor sets the new value for the state. In between
calling the get and set accessors, the object is not locked, and another thread can read the interim value
(code file SynchronizationSamples/Job.cs):

 public void DoTheJob()
 {
 for (int i = 0; i < 50000; i++)
 {
 sharedState.State += 1;
 }
 }

Therefore, it is better to leave the SharedState class as it was earlier, without thread safety (code file
SynchronizationSamples/SharedState.cs):

 public class SharedState
 {
 public int State { get; set; }
 }

In addition, add the lock statement where it belongs, inside the method DoTheJob (code file
SynchronizationSamples/Job.cs):

 public void DoTheJob()
 {
 for (int i = 0; i < 50000; i++)
 {
 lock (sharedState)
 {
 sharedState.State += 1;
 }
 }
 }

This way, the results of the application are always as expected:

summarized 1000000

NOTE Using the lock statement in one place does not mean that all other threads
accessing the object are waiting. You have to explicitly use synchronization with every
thread accessing the shared state.

Of course, you can also change the design of the SharedState class and offer incrementing as an atomic
operation. This is a design question — what should be an atomic functionality of the class? The next code
snippet just keeps the increment locked (code file SynchronizationSamples/SharedState.cs):

 public class SharedState
 {
 private int state = 0;

c21.indd 583 30-01-2014 20:28:27

584 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

 private object syncRoot = new object();

 public int State
 {
 get { return state; }
 }

 public int IncrementState()
 {
 lock (syncRoot)
 {
 return ++state;
 }
 }
 }

There is, however, a faster way to lock the increment of the state, as shown next.

interlocked
The Interlocked class is used to make simple statements for variables atomic. i++ is not thread-safe. It
consists of getting a value from the memory, incrementing the value by 1, and storing the value back in
memory. These operations can be interrupted by the thread scheduler. The Interlocked class provides
methods for incrementing, decrementing, exchanging, and reading values in a thread-safe manner.

Using the Interlocked class is much faster than other synchronization techniques. However, you can use it
only for simple synchronization issues.

For example, instead of using the lock statement to lock access to the variable someState when
setting it to a new value, in case it is null, you can use the Interlocked class, which is faster (code file
SynchronizationSamples/SharedState.cs):

 lock (this)
 {
 if (someState == null)
 {
 someState = newState;
 }
 }

The faster version with the same functionality uses the Interlocked.CompareExchange method:

 Interlocked.CompareExchange<SomeState>(ref someState,
 newState, null);

Instead of performing incrementing inside a lock statement as shown here:

 public int State
 {
 get
 {
 lock (this)
 {
 return ++state;
 }
 }
 }

You can use Interlocked.Increment, which is faster:

c21.indd 584 30-01-2014 20:28:27

Synchronization ❘ 585

 public int State
 {
 get
 {
 return Interlocked.Increment(ref state);
 }
 }

Monitor
The C# compiler resolves the lock statement to use the Monitor class. The following lock statement

 lock (obj)
 {
 // synchronized region for obj
 }

is resolved to invoke the Enter method, which waits until the thread gets the lock of the object. Only one
thread at a time may be the owner of the object lock. As soon as the lock is resolved, the thread can
enter the synchronized section. The Exit method of the Monitor class releases the lock. The compiler puts
the Exit method into a finally handler of a try block so that the lock is also released if an exception
is thrown (code file SynchronizationSamples/Program.cs):

 Monitor.Enter(obj);
 try
 {
 // synchronized region for obj
 }
 finally
 {
 Monitor.Exit(obj);
 }

NOTE Chapter 16, “Errors and Exceptions,” covers the try/finally block.

The Monitor class has a big advantage over the lock statement of C#: you can add a timeout value for
waiting to get the lock. Therefore, instead of endlessly waiting to get the lock, you can use the TryEnter
method shown in the following example, passing a timeout value that defines the maximum amount of time
to wait for the lock. If the lock for obj is acquired, TryEnter sets the Boolean ref parameter to true and
performs synchronized access to the state guarded by the object obj. If obj is locked for more than 500
milliseconds by another thread, TryEnter sets the variable lockTaken to false, and the thread does not
wait any longer but is used to do something else. Maybe later, the thread can try to acquire the lock again.

 bool lockTaken = false;
 Monitor.TryEnter(obj, 500, ref lockTaken);
 if (lockTaken)
 {
 try
 {
 // acquired the lock
 // synchronized region for obj
 }
 finally
 {
 Monitor.Exit(obj);
 }

c21.indd 585 30-01-2014 20:28:27

586 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

 }
 else
 {
 // didn't get the lock, do something else
 }

spinlock
If the overhead on object-based lock objects (Monitor) would be too high because of garbage collection,
the SpinLock struct can be used. Available since .NET 4, SpinLock is useful if you have a large number of
locks (for example, for every node in a list) and hold times are always extremely short. You should avoid
holding more than one SpinLock, and don’t call anything that might block.

Other than the architectural differences, SpinLock is very similar in usage to the Monitor class. You acquiring
the lock with Enter or TryEnter, and release the lock with Exit. SpinLock also offers two properties to
provide information about whether it is currently locked: IsHeld and IsHeldByCurrentThread.

NOTE Be careful when passing SpinLock instances around. Because SpinLock is
defined as a struct, assigning one variable to another creates a copy. Always pass
SpinLock instances by reference.

waitHandle
WaitHandle is an abstract base class that you can use to wait for a signal to be set. You can wait for
different things, because WaitHandle is a base class and some classes are derived from it.

When describing asynchronous delegates earlier in this chapter, the WaitHandle was already in use.
The method BeginInvoke of the asynchronous delegate returns an object that implements the interface
IAsyncResult. Using IAsyncResult, you can access a WaitHandle with the property AsyncWaitHandle.
When you invoke the method WaitOne, the thread waits until a signal is received that is associated with
the wait handle (code file AsyncDelegate/Program.cs):

 static void Main()
 {
 TakesAWhileDelegate d1 = TakesAWhile;

 IAsyncResult ar = d1.BeginInvoke(1, 3000, null, null);
 while (true)
 {
 Console.Write(".");
 if (ar.AsyncWaitHandle.WaitOne(50, false))
 {
 Console.WriteLine("Can get the result now");
 break;
 }
 }
 int result = d1.EndInvoke(ar);
 Console.WriteLine("result: {0}", result);
 }

With WaitHandle, you can wait for one signal to occur (WaitOne), multiple objects that all must be
signaled (WaitAll), or one of multiple objects (WaitAny). WaitAll and WaitAny are static members of the
WaitHandle class and accept an array of WaitHandle parameters.

WaitHandle has a SafeWaitHandle property whereby you can assign a native handle to an operating
system resource and wait for that handle. For example, you can assign a SafeFileHandle to wait for a file
I/O operation to complete, or a custom SafeTransactionHandle as shown in Chapter 25, “Transactions.”

c21.indd 586 30-01-2014 20:28:27

Synchronization ❘ 587

The classes Mutex, EventWaitHandle, and Semaphore are derived from the base class WaitHandle, so you
can use any of these with waits.

Mutex
Mutex (mutual exclusion) is one of the classes of the .NET Framework that offers synchronization across
multiple processes. It is very similar to the Monitor class in that there is just one owner. That is, only one
thread can get a lock on the mutex and access the synchronized code regions that are secured by the mutex.

With the constructor of the Mutex class, you can define whether the mutex should initially be owned by the
calling thread, define a name for the mutex, and determine whether the mutex already exists. In the following
example, the third parameter is defined as an out parameter to receive a Boolean value if the mutex was
newly created. If the value returned is false, the mutex was already defined. The mutex might be defined
in a different process, because a mutex with a name is known to the operating system and is shared among
different processes. If no name is assigned to the mutex, the mutex is unnamed and not shared among different
processes.

 bool createdNew;
 Mutex mutex = new Mutex(false, "ProCSharpMutex", out createdNew);

To open an existing mutex, you can also use the method Mutex.OpenExisting, which doesn’t require the
same .NET privileges as creating the mutex with the constructor.

Because the Mutex class derives from the base class WaitHandle, you can do a WaitOne to acquire the mutex
lock and be the owner of the mutex during that time. The mutex is released by invoking the ReleaseMutex
method:

 if (mutex.WaitOne())
 {
 try
 {
 // synchronized region
 }
 finally
 {
 mutex.ReleaseMutex();
 }
 }
 else
 {
 // some problem happened while waiting
 }

Because a named mutex is known system-wide, you can use it to keep an application from being started
twice. In the following Windows Forms application, the constructor of the Mutex object is invoked. Then it
is verified whether the mutex with the name SingletonWinAppMutex exists already. If it does, the
application exits:

 static class Program
 {
 [STAThread]
 static void Main()
 {
 bool createdNew;
 var mutex = new Mutex(false, “SingletonWinAppMutex”,
 out createdNew);
 if (!createdNew)
 {

c21.indd 587 30-01-2014 20:28:27

588 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

 MessageBox.Show("You can only start one instance " +
 "of the application");
 Application.Exit();
 return;
 }

 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new Form1());
 }
 }

semaphore
A semaphore is very similar to a mutex; but unlike the mutex, the semaphore can be used by multiple
threads at once. A semaphore is a counting mutex, meaning that with a semaphore you can define the
number of threads that are allowed to access the resource guarded by the semaphore simultaneously. This
is useful if you need to limit the number of threads that can access the resources available. For example, if
a system has three physical I/O ports available, three threads can access them simultaneously, but a fourth
thread needs to wait until the resource is released by one of the other threads.

.NET 4.5 provides two classes with semaphore functionality: Semaphore and SemaphoreSlim. Semaphore
can be named, can use system-wide resources, and allows synchronization between different processes.
SemaphoreSlim is a lightweight version that is optimized for shorter wait times.

In the following example application, in the Main method six tasks are created and one semaphore with a
count of 3. In the constructor of the Semaphore class, you can define the count for the number of locks that
can be acquired with the semaphore (the second parameter) and the number of locks that are free initially
(the first parameter). If the first parameter has a lower value than the second parameter, the difference
between the values defines the already allocated semaphore count. As with the mutex, you can also assign a
name to the semaphore to share it among different processes. Here, no name is defined with the semaphore,
so it is used only within this process. After the SemaphoreSlim object is created, six tasks are started, and
they all get the same semaphore:

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Wrox.ProCSharp.Threading
{
 class Program
 {
 static void Main()
 {
 int taskCount = 6;
 int semaphoreCount = 3;
 var semaphore = new SemaphoreSlim(semaphoreCount, semaphoreCount);
 var tasks = new Task[taskCount];

 for (int i = 0; i < taskCount; i++)
 {
 tasks[i] = Task.Run(() => TaskMain(semaphore));
 }

 Task.WaitAll(tasks);

 Console.WriteLine("All tasks finished");
 }

c21.indd 588 30-01-2014 20:28:27

Synchronization ❘ 589

In the task’s main method, TaskMain, the task does a Wait to lock the semaphore. Remember that the
semaphore has a count of 3, so three tasks can acquire the lock. Task 4 must wait; and here the timeout of
600 milliseconds is defined as the maximum wait time. If the lock cannot be acquired after the wait time
has elapsed, the task writes a message to the console and repeats the wait in a loop. As soon as the lock is
acquired, the thread writes a message to the console, sleeps for some time, and releases the lock. Again,
with the release of the lock it is important that the resource be released in all cases. That’s why the Release
method of the Semaphore class is invoked in a finally handler:

 static void TaskMain(SemaphoreSlim semaphore)
 {
 bool isCompleted = false;
 while (!isCompleted)
 {
 if (semaphore.Wait(600))
 {
 try
 {
 Console.WriteLine("Task {0} locks the semaphore", Task.CurrentId);
 Thread.Sleep(2000);
 }
 finally
 {
 Console.WriteLine("Task {0} releases the semaphore", Task.CurrentId);
 semaphore.Release();
 isCompleted = true;
 }
 }
 else
 {
 Console.WriteLine("Timeout for task {0}; wait again",
 Task.CurrentId);
 }
 }
 }
 }
}

When you run the application, you can indeed see that with four threads, the lock is made immediately. The
tasks with Ids 4 and 5 must wait. The wait continues in the loop until one of the other threads releases
the semaphore:

Task 1 locks the semaphore
Task 2 locks the semaphore
Task 3 locks the semaphore
Timeout for task 4; wait again
Timeout for task 4; wait again
Timeout for task 5; wait again
Timeout for task 4; wait again
Task 2 releases the semaphore
Task 5 locks the semaphore
Task 1 releases the semaphore
Task 6 locks the semaphore
Task 3 releases the semaphore
Task 4 locks the semaphore
Task 6 releases the semaphore
Task 5 releases the semaphore
Task 4 releases the semaphore
All tasks finished

c21.indd 589 30-01-2014 20:28:28

590 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

Events
Like mutex and semaphore objects, events are also system-wide synchronization resources. For using
system events from managed code, the .NET Framework offers the classes ManualResetEvent,
AutoResetEvent, ManualResetEventSlim, and CountdownEvent in the namespace System.Threading.
ManualResetEventSlim and CountdownEvent were new with .NET 4.

NOTE The event keyword from C# that is covered in Chapter 8, “Delegates, Lambdas,
and Events” has nothing to do with the event classes from the namespace System.
Threading; the event keyword is based on delegates. However, both event classes are
.NET wrappers to the system-wide native event resource for synchronization.

You can use events to inform other tasks that some data is present, that something is completed, and so on.
An event can be signaled or not signaled. A task can wait for the event to be in a signaled state with the help
of the WaitHandle class, discussed earlier.

A ManualResetEventSlim is signaled by invoking the Set method, and returned to a nonsignaled state
with the Reset method. If multiple threads are waiting for an event to be signaled and the Set method is
invoked, then all threads waiting are released. In addition, if a thread just invokes the WaitOne method but
the event is already signaled, the waiting thread can continue immediately.

An AutoResetEvent is also signaled by invoking the Set method; and you can set it back to a nonsignaled
state with the Reset method. However, if a thread is waiting for an auto-reset event to be signaled, the event
is automatically changed into a nonsignaled state when the wait state of the first thread is finished. This way,
if multiple threads are waiting for the event to be set, only one thread is released from its wait state. It is
not the thread that has been waiting the longest for the event to be signaled, but the thread waiting with the
highest priority.

To demonstrate events with the ManualResetEventSlim class, the following class Calculator defines the
method Calculation, which is the entry point for a task. With this method, the task receives input data for
calculation and writes the result to the variable result that can be accessed from the Result property. As
soon as the result is completed (after a random amount of time), the event is signaled by invoking the Set
method of the ManualResetEventSlim (code file EventSample/Calculator.cs):

 public class Calculator
 {
 private ManualResetEventSlim mEvent;

 public int Result { get; private set; }

 public Calculator(ManualResetEventSlim ev)
 {
 this.mEvent = ev;
 }

 public void Calculation(int x, int y)
 {
 Console.WriteLine("Task {0} starts calculation", Task.Current.Id);
 Thread.Sleep(new Random().Next(3000));
 Result = x + y;

 // signal the event-completed!
 Console.WriteLine("Task {0} is ready", Task.Current.Id);
 mEvent.Set();
 }
 }

c21.indd 590 30-01-2014 20:28:28

Synchronization ❘ 591

The Main method of the program defines arrays of four ManualResetEventSlim objects and four
Calculator objects. Every Calculator is initialized in the constructor with a ManualResetEventSlim
object, so every task gets its own event object to signal when it is completed. Now, the Task class is used to
enable different tasks to run the calculation (code file EventSample/Program.cs):

 class Program
 {
 static void Main()
 {
 const int taskCount = 4;

 var mEvents = new ManualResetEventSlim[taskCount];
 var waitHandles = new WaitHandle[taskCount];
 var calcs = new Calculator[taskCount];

 for (int i = 0; i < taskCount; i++)
 {
 int i1 = i;
 mEvents[i] = new ManualResetEventSlim(false);
 waitHandles[i] = mEvents[i].WaitHandle;
 calcs[i] = new Calculator(mEvents[i]);

 Task.Run(() => calcs[i1].Calculation(i1 + 1, i1 + 3));
 }
 //...

The WaitHandle class is now used to wait for any one of the events in the array. WaitAny waits until any
one of the events is signaled. In contrast to ManualResetEvent, ManualResetEventSlim does not derive
from WaitHandle. That’s why a separate collection of WaitHandle objects is kept, which is filled from the
WaitHandle property of the ManualResetEventSlim class. WaitAny returns an index value that provides
information about the event that was signaled. The returned value matches the index of the event array that
is passed to WaitAny. Using this index, information from the signaled event can be read:

 for (int i = 0; i < taskCount; i++)
 {
 int index = WaitHandle.WaitAny(mEvents);
 if (index == WaitHandle.WaitTimeout)
 {
 Console.WriteLine("Timeout!!");
 }
 else
 {
 mEvents[index].Reset();
 Console.WriteLine("finished task for {0}, result: {1}",
 index, calcs[index].Result);
 }
 }
 }
 }

When starting the application, you can see the tasks doing the calculation and setting the event to inform
the main thread that it can read the result. At random times, depending on whether the build is a debug or
release build and on your hardware, you might see different orders and a different number of tasks
performing calls:

Task 2 starts calculation
Task 3 starts calculation
Task 4 starts calculation
Task 1 starts calculation
Task 1 is ready

c21.indd 591 30-01-2014 20:28:28

592 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

Task 4 is ready
finished task for 0, result: 4
Task 3 is ready
finished task for 3, result: 10
finished task for 1, result: 6
Task 2 is ready
finished task for 2, result: 8

In a scenario like this, to fork some work into multiple tasks and later join the result, the new
CountdownEvent class can be very useful. Instead of creating a separate event object for every task, you
need to create only one. CountdownEvent defines an initial number for all the tasks that set the event, and
after the count is reached, the CountdownEvent is signaled.

The Calculator class is modified to use the CountdownEvent instead of the ManualResetEvent.
Rather than set the signal with the Set method, CountdownEvent defines the Signal method (code file
EventSample/Calculator.cs):

 public class Calculator
 {
 private CountdownEvent cEvent;

 public int Result { get; private set; }

 public Calculator(CountdownEvent ev)
 {
 this.cEvent = ev;
 }

 public void Calculation(int x, int y)
 {
 Console.WriteLine("Task {0} starts calculation", Task.Current.Id);
 Thread.Sleep(new Random().Next(3000));
 Result = x + y;

 // signal the event-completed!
 Console.WriteLine("Task {0} is ready", Task.Current.Id);
 cEvent.Signal();
 }
 }

The Main method can now be simplified so that it’s only necessary to wait for the single event. If you don’t
deal with the results separately as it was done before, this new edition might be all that’s needed:

 const int taskCount = 4;
 var cEvent = new CountdownEvent(taskCount);
 var calcs = new Calculator[taskCount];

 for (int i = 0; i < taskCount; i++)
 {
 calcs[i] = new Calculator(cEvent);

 taskFactory.StartNew(calcs[i].Calculation,
 Tuple.Create(i + 1, i + 3));
 }

 cEvent.Wait();
 Console.WriteLine("all finished");
 for (int i = 0; i < taskCount; i++)
 {
 Console.WriteLine("task for {0}, result: {1}", i, calcs[i].Result);
 }

c21.indd 592 30-01-2014 20:28:28

Synchronization ❘ 593

Barrier
For synchronization, the Barrier class is great for scenarios in which work is forked into multiple tasks and
the work must be joined afterward. Barrier is used for participants that need to be synchronized. While the
job is active, additional participants can be added dynamically — for example, child tasks that are created from
a parent task. Participants can wait until the work is done by all the other participants before continuing.

The following application uses a collection containing 2,000,000 strings. Multiple tasks are used to iterate
through the collection and count the number of strings, starting with a, b, c, and so on.

The method FillData creates a collection and fills it with random strings (code file BarrierSample/
Program.cs):

 public static IEnumerable<string> FillData(int size)
 {
 var data = new List<string>(size);
 var r = new Random();
 for (int i = 0; i < size; i++)
 {
 data.Add(GetString(r));
 }
 return data;
 }
 private static string GetString(Random r)
 {
 var sb = new StringBuilder(6);
 for (int i = 0; i < 6; i++)
 {
 sb.Append((char)(r.Next(26) + 97));
 }
 return sb.ToString();
 }

The CalculationInTask method defines the job performed by a task. With the parameter, a tuple
containing four items is received. The third parameter is a reference to the Barrier instance. When the job
is done by the task, the task removes itself from the barrier with the RemoveParticipant method:

 static int[] CalculationInTask(int jobNumber, int partitionSize,
 Barrier barrier, IList<string> coll)
 {
 List<string> data = new List<string>(coll);

 int start = jobNumber * partitionSize;
 int end = start + partitionSize;
 Console.WriteLine("Task {0}: partition from {1} to {2}",
 Task.Current.Id, start, end);
 int[] charCount = new int[26];
 for (int j = start; j < end; j++)
 {
 char c = data[j][0];
 charCount[c - 97]++;
 }
 Console.WriteLine("Calculation completed from task {0}. {1} " +
 "times a, {2} times z", Task.Current.Id, charCount[0],
 charCount[25]);

 barrier.RemoveParticipant();
 Console.WriteLine("Task {0} removed from barrier, " +
 "remaining participants {1}", Task.Current.Id,
 barrier.ParticipantsRemaining);
 return charCount;
 }

c21.indd 593 30-01-2014 20:28:28

594 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

With the Main method, a Barrier instance is created. In the constructor, you can specify the number of
participants. In the example, this number is 3 (numberTasks + 1) because there are two created tasks, and
the Main method itself is a participant as well. Using Task.Run, two tasks are created to fork the iteration
through the collection into two parts. After starting the tasks, using SignalAndWait, the main method
signals its completion and waits until all remaining participants either signal their completion or remove
themselves as participants from the barrier. As soon as all participants are ready, the results from the tasks
are zipped together with the Zip extension method:

 static void Main()
 {
 const int numberTasks = 2;
 const int partitionSize = 1000000;
 var data = new List<string>(FillData(partitionSize * numberTasks));

 var barrier = new Barrier(numberTasks + 1);

 var tasks = new Task<int[]>[numberTasks];
 for (int i = 0; i < participants; i++)
 {
 int jobNumber = i;
 tasks[i] = Task.Run(() => CalculationInTask(jobNumber, partitionSize,
 barrier, data);

 barrier.SignalAndWait();
 var resultCollection = tasks[0].Result.Zip(tasks[1].Result, (c1, c2) =
 {
 return c1 + c2;
 });

 char ch = 'a';
 int sum = 0;
 foreach (var x in resultCollection)
 {
 Console.WriteLine("{0}, count: {1}", ch++, x);
 sum += x;
 }

 Console.WriteLine("main finished {0}", sum);
 Console.WriteLine("remaining {0}", barrier.ParticipantsRemaining);
 }

Readerwriterlockslim
In order for a locking mechanism to allow multiple readers, but only one writer, for a resource, the class
ReaderWriterLockSlim can be used. This class offers a locking functionality whereby multiple readers can
access the resource if no writer locked it, and only a single writer can lock the resource.

The ReaderWriterLockSlim class has properties to acquire a read lock that are blocking and nonblocking,
such as EnterReadLock and TryEnterReadLock, and to acquire a write lock with EnterWriteLock and
TryEnterWriteLock. If a task reads first and writes afterward, it can acquire an upgradable read lock
with EnterUpgradableReadLock or TryEnterUpgradableReadLock. With this lock, the write lock can be
acquired without releasing the read lock.

Several properties of this class offer information about the held locks, such as CurrentReadCount,
WaitingReadCount, WaitingUpgradableReadCount, and WaitingWriteCount.

The following example creates a collection containing six items and a ReaderWriterLockSlim object. The
method ReaderMethod acquires a read lock to read all items of the list and write them to the console.
The method WriterMethod tries to acquire a write lock to change all values of the collection. In the Main

c21.indd 594 30-01-2014 20:28:28

Synchronization ❘ 595

method, six threads are started that invoke either the method ReaderMethod or the method WriterMethod
(code file ReaderWriterSample/Program.cs):

using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;

namespace Wrox.ProCSharp.Threading
{
 class Program
 {
 private static List<int> items = new List<int>() { 0, 1, 2, 3, 4, 5};
 private static ReaderWriterLockSlim rwl =
 new ReaderWriterLockSlim(LockRecursionPolicy.SupportsRecursion);

 static void ReaderMethod(object reader)
 {
 try
 {
 rwl.EnterReadLock();

 for (int i = 0; i < items.Count; i++)
 {
 Console.WriteLine("reader {0}, loop: {1}, item: {2}",
 reader, i, items[i]);
 Thread.Sleep(40);
 }
 }
 finally
 {
 rwl.ExitReadLock();
 }
 }

 static void WriterMethod(object writer)
 {
 try
 {
 while (!rwl.TryEnterWriteLock(50))
 {
 Console.WriteLine("Writer {0} waiting for the write lock",
 writer);
 Console.WriteLine("current reader count: {0}",
 rwl.CurrentReadCount);
 }
 Console.WriteLine("Writer {0} acquired the lock", writer);
 for (int i = 0; i < items.Count; i++)
 {
 items[i]++;
 Thread.Sleep(50);
 }
 Console.WriteLine("Writer {0} finished", writer);
 }
 finally
 {
 rwl.ExitWriteLock();
 }
 }

 static void Main()

c21.indd 595 30-01-2014 20:28:28

596 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

 {
 var taskFactory = new TaskFactory(TaskCreationOptions.LongRunning,
 TaskContinuationOptions.None);
 var tasks = new Task[6];
 tasks[0] = taskFactory.StartNew(WriterMethod, 1);
 tasks[1] = taskFactory.StartNew(ReaderMethod, 1);
 tasks[2] = taskFactory.StartNew(ReaderMethod, 2);
 tasks[3] = taskFactory.StartNew(WriterMethod, 2);
 tasks[4] = taskFactory.StartNew(ReaderMethod, 3);
 tasks[5] = taskFactory.StartNew(ReaderMethod, 4);

 for (int i = 0; i < 6; i++)
 {
 tasks[i].Wait();
 }
 }
 }
}

Running the application, the following shows that the first writer gets the lock first. The second writer and
all readers need to wait. Next, the readers can work concurrently, while the second writer still waits for the
resource:

Writer 1 acquired the lock
Writer 2 waiting for the write lock
current reader count: 0
Writer 2 waiting for the write lock
current reader count: 0
Writer 2 waiting for the write lock
current reader count: 0
Writer 2 waiting for the write lock
current reader count: 0
Writer 1 finished
reader 4, loop: 0, item: 1
reader 1, loop: 0, item: 1
Writer 2 waiting for the write lock
current reader count: 4
reader 2, loop: 0, item: 1
reader 3, loop: 0, item: 1
reader 4, loop: 1, item: 2
reader 1, loop: 1, item: 2
reader 3, loop: 1, item: 2
reader 2, loop: 1, item: 2
Writer 2 waiting for the write lock
current reader count: 4
reader 4, loop: 2, item: 3
reader 1, loop: 2, item: 3
reader 2, loop: 2, item: 3
reader 3, loop: 2, item: 3
Writer 2 waiting for the write lock
current reader count: 4
reader 4, loop: 3, item: 4
reader 1, loop: 3, item: 4
reader 2, loop: 3, item: 4
reader 3, loop: 3, item: 4
reader 4, loop: 4, item: 5
reader 1, loop: 4, item: 5
Writer 2 waiting for the write lock
current reader count: 4
reader 2, loop: 4, item: 5
reader 3, loop: 4, item: 5

c21.indd 596 30-01-2014 20:28:28

Timers ❘ 597

reader 4, loop: 5, item: 6
reader 1, loop: 5, item: 6
reader 2, loop: 5, item: 6
reader 3, loop: 5, item: 6
Writer 2 waiting for the write lock
current reader count: 4
Writer 2 acquired the lock
Writer 2 finished

TiMERs
The .NET Framework offers several Timer classes that can be used to invoke a method after a given time
interval. The following table lists the Timer classes and their namespaces, as well as their functionality:

NAMEsPACE dEsCRiPTiON

System.Threading The Timer class from the System.Threading namespace offers core
functionality. In the constructor, you can pass a delegate that should be
invoked at the time interval specified.

System.Timers The Timer class from the System.Timers namespace is a component,
because it derives from the Component base class. Therefore, you can
drag-and-drop it from the toolbox to the design surface of a server
application such as a Windows service. This Timer class uses System
.Threading.Timer but provides an event-based mechanism instead
of a delegate.

System.Windows.Forms With the Timer classes from the namespaces System.Threading and
System.Timers, the callback or event methods are invoked from a
different thread than the calling thread. Windows Forms controls are
bound to the creator thread. Calling back into this thread is done by
the Timer class from the System.Windows.Forms namespace.

System.Web.UI The Timer from this namespace is an AJAX Extension that can be used
with web pages.

System.Windows.Threading The DispatcherTimer class from the System.Windows.Threading
namespace is used by WPF applications. DispatcherTimer runs on
the UI thread.

Using the System.Threading.Timer class, you can pass the method to be invoked as the first parameter in
the constructor. This method must fulfill the requirements of the TimerCallback delegate, which defines a
void return type and an object parameter. With the second parameter, you can pass any object, which is
then received with the object argument in the callback method. For example, you can pass an Event object to
signal the caller. The third parameter specifies the time span during which the callback should be invoked
the first time. With the last parameter, you specify the repeating interval for the callback. If the timer should
fire only once, set the fourth parameter to the value –1.

If the time interval should be changed after creating the Timer object, you can pass new values with the
Change method (code file TimerSample/Program.cs):

 private static void ThreadingTimer()
 {
 var t1 = new System.Threading.Timer(TimeAction, null,
 TimeSpan.FromSeconds(2), TimeSpan.FromSeconds(3));

 Thread.Sleep(15000);

 t1.Dispose();

c21.indd 597 30-01-2014 20:28:29

598 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

 }

 static void TimeAction(object o)
 {
 Console.WriteLine("System.Threading.Timer {0:T}", DateTime.Now);
 }

The constructor of the Timer class from the System.Timers namespace requires only a time interval. The
method that should be invoked after the interval is specified by the Elapsed event. This event requires a
 delegate of type ElapsedEventHandler, which requires object and ElapsedEventArgs parameters, as
shown in the following example with the TimeAction method. The AutoReset property specifies whether
the timer should be fired repeatedly. If you set this property to false, the event is fired only once. Calling the
Start method enables the timer to fire the events. Instead of calling the Start method, you can set
the Enabled property to true. Behind the scenes, Start does nothing else. The Stop method sets the
Enabled property to false to stop the timer:

 private static void TimersTimer()
 {
 var t1 = new System.Timers.Timer(1000);
 t1.AutoReset = true;
 t1.Elapsed += TimeAction;
 t1.Start();
 Thread.Sleep(10000);
 t1.Stop();

 t1.Dispose();
 }

 static void TimeAction(object sender, System.Timers.ElapsedEventArgs e)
 {
 Console.WriteLine("System.Timers.Timer {0:T}", e.SignalTime);
 }

dATA FlOw
The Parallel and Task classes, and Parallel LINQ, help a lot with data parallelism. However, these classes
do not directly support dealing with data flow, transform data in parallel. For this Task Parallel Library
Data Flow, or TPL Data Flow, can be used. This library must be installed as a NuGet package. This
package includes the assembly System.Threading.Tasks.DataFlow with the namespace System
.Threading.Tasks.DataFlow.

NOTE Installation of NuGet Packages is discussed in Chapter 17, “Visual Studio 2013.”

using an Action Block
The heart of TPL data Flow are data blocks. These blocks can act as a source to offer some data or a target
to receive data, or both. Let’s start with a simple example, a data block that receives some data and writes
it to the console. The following code snippet defines an ActionBlock that receives a string and writes
information to the console. The Main method reads user input within a while loop, and posts every string
read to the ActionBlock by calling the Post method. The Post method posts an item to the ActionBlock,
which deals with the message asynchronously, writing the information to the console:

c21.indd 598 30-01-2014 20:28:29

Data Flow ❘ 599

 static void Main()
 {
 var processInput = new ActionBlock<string>(s =>
 {
 Console.WriteLine("user input: {0}", s);
 });

 bool exit = false;
 while (!exit)
 {
 string input = Console.ReadLine();
 if (string.Compare(input, "exit", ignoreCase: true) == 0)
 {
 exit = true;
 }
 else
 {
 processInput.Post(input);
 }
 }
 }

source and Target Blocks
When the method assigned to the ActionBlock from the previous example executes, the ActionBlock uses
a task to do the execution in parallel. You could verify this by checking the task and thread identifiers, and
writing these to the console. Every block implements the interface IDataflowBlock, which contains the
property Completion, which returns a Task, and the methods Complete and Fault. Invoking the Complete
method, the block no longer accepts any input or produces any more output. Invoking the Fault method
puts the block into a faulting state.

As mentioned earlier, a block can be either a source or a target, or both. In this case, the ActionBlock
is a target block and thus implements the interface ITargetBlock. ITargetBlock derives from
IDataflowBlock and defines the OfferMessage method, in addition to the members of the IDataBlock
interface. OfferMessage sends a message that can be consumed by the block. An easier to use API than
OfferMessage is the Post method, which is implemented as an extension method for the ITargetBlock
interface. The Post method was also used by the sample application.

The ISourceBlock interface is implemented by blocks that can act as a data source. ISourceBlock offers
methods in addition to the members of the IDataBlock interface to link to a target block and to consume
messages.

The BufferBlock acts both as a source and a target, implementing both ISourceBlock and ITargetBlock.
In the next example, this BufferBlock is used to both post messages and receive messages:

 static BufferBlock<string> buffer = new BufferBlock<string>();

The Producer method reads strings from the console and writes them to the BufferBlock by invoking the
Post method:

 static void Producer()
 {
 bool exit = false;
 while (!exit)
 {
 string input = Console.ReadLine();
 if (string.Compare(input, "exit", ignoreCase: true) == 0)
 {
 exit = true;

c21.indd 599 30-01-2014 20:28:29

600 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

 }
 else
 {
 buffer.Post(input);
 }
 }
 }

The Consumer method contains a loop to receive data from the BufferBlock by invoking the
ReceiveAsync method. ReceiveAsync is an extension method for the ISourceBlock interface:

 static async void Consumer()
 {
 while (true)
 {
 string data = await buffer.ReceiveAsync();
 Console.WriteLine("user input: {0}", data);
 }
 }

Now, you just need to start the producer and consumer. This is done with two independent tasks in the Main
method:

 static void Main()
 {
 Task t1 = Task.Run(() => Producer());
 Task t2 = Task.Run(() => Consumer());
 Task.WaitAll(t1, t2);
 }

Running the application, the producer task reads data from the console, and the consumer receives the data
to write it to the console.

Connecting Blocks
This section creates a pipeline by connecting multiple blocks. First, three methods are created that will be
used by the blocks. The GetFileNames method receives a directory path and yields the filenames that end
with the .cs extension:

 static IEnumerable<string> GetFileNames(string path)
 {
 foreach (var fileName in Directory.EnumerateFiles(path, "*.cs"))
 {
 yield return fileName;
 }
 }

The LoadLines method receives a list of filenames and yields every line of the files:

 static IEnumerable<string> LoadLines(IEnumerable<string> fileNames)
 {
 foreach (var fileName in fileNames)
 {
 using (FileStream stream = File.OpenRead(fileName))
 {
 var reader = new StreamReader(stream);
 string line = null;
 while ((line = reader.ReadLine()) != null)
 {
 // Console.WriteLine("LoadLines {0}", line);

c21.indd 600 30-01-2014 20:28:29

Data Flow ❘ 601

 yield return line;
 }
 }
 }
 }

The third method, GetWords, receives the lines collection and splits it up line by line to yield return a
list of words:

 static IEnumerable<string> GetWords(IEnumerable<string> lines)
 {
 foreach (var line in lines)
 {
 string[] words = line.Split(' ', ';', '(', ')', '{', '}', '.', ',');
 foreach (var word in words)
 {
 if (!string.IsNullOrEmpty(word))
 yield return word;
 }
 }
 }

To create the pipeline, the SetupPipeline method creates three TransformBlock objects. The Transform
Block is a source and target block that transforms the source by using a delegate. The first TransformBlock
is declared to transform a string to IEnumerable<string>. The transformation is done by the
GetFileNames method that is invoked within the Lambda expression passed to the constructor of the first
block. Similarly, the next two TransformBlock objects are used to invoke the LoadLines and GetWords
methods:

 static ITargetBlock<string> SetupPipeline()
 {
 var fileNamesForPath = new TransformBlock<string, IEnumerable<string>>(
 path =>
 {
 return GetFileNames(path);
 });

 var lines = new TransformBlock<IEnumerable<string>, IEnumerable<string>>(
 fileNames =>
 {
 return LoadLines(fileNames);
 });

 var words = new TransformBlock<IEnumerable<string>, IEnumerable<string>>(
 lines2 =>
 {
 return GetWords(lines2);
 });

The last block defined is an ActionBlock. This block has been used before and is just a target block to
receive data:

 var display = new ActionBlock<IEnumerable<string>>(
 coll =>
 {
 foreach (var s in coll)
 {
 Console.WriteLine(s);
 }
 });

c21.indd 601 30-01-2014 20:28:29

602 ❘ CHAPTER 21 Tasks, Threads, and synchronizaTion

Finally, the blocks are connected to each other. fileNamesForPath is linked to the lines block. The result
from fileNamesForPath is passed to the lines block. The lines block links to the words block, and the
words block links to the display block. Last, the block to start the pipeline is returned:

 fileNamesForPath.LinkTo(lines);
 lines.LinkTo(words);
 words.LinkTo(display);

 return fileNamesForPath;
 }

The Main method now just needs to kick off the pipeline. Invoking the Post method to pass a directory, the
pipeline starts and finally writes words from the C# source code to the console. Here, it would be possible to
start multiple requests for the pipeline, passing more than one directory, and doing these tasks in parallel:

 static void Main()
 {
 var target = SetupPipeline();
 target.Post("../..");
 Console.ReadLine();
 }

With this brief introduction to the TPL data Flow library, you’ve seen the principal way to work with
this technology. This library offers a lot more functionality, such as different blocks that deal with data
 differently. The BroadcastBlock allows passing the input source to multiple targets (e.g., writing data to a
file and displaying it), the JoinBlock joins multiple sources to one target, and the BatchBlock batches
input into arrays. Using DataflowBlockOptions options allows configuration of a block, such as the
maximum number of items that are processed within a single task, and passing a cancellation token that
allows canceling a pipeline. With links, messages can be filtered to pass only specified messages, and you can
configure not passing messages to the end of a target source but instead to the beginning for faster processing
of the last messages.

suMMARy
This chapter explored how to code applications that use multiple threads by using the System.Threading
namespace, and multiple tasks by using the System.Threading.Tasks namespace. Using multithreading
in your applications takes careful planning. Too many threads can cause resource issues, and not enough
threads can cause your application to be sluggish and perform poorly. With tasks, you get an abstraction
to threads. This abstraction helps you avoid creating too many threads because threads are reused from
a pool.

You’ve seen various ways to create multiple tasks, such as the Parallel class, which offers both task and
data parallelism with Parallel.Invoke, Parallel.ForEach, and Parallel.For. With the Task class,
you’ve seen how to gain more control over parallel programming. Tasks can run synchronously in the
calling thread, using a thread from a thread pool, and a separate new thread can be created. Tasks also
offer a hierarchical model that enables the creation of child tasks, also providing a way to cancel a complete
hierarchy.

The cancellation framework offers a standard mechanism that can be used in the same manner with
different classes to cancel a task early.

You’ve seen what’s used behind the scenes with tasks, particularly the ThreadPool class and the Thread
class, which you can also use on your own. The Thread class gives you control over threads to define
foreground and background behavior, and to assign priorities to threads.

c21.indd 602 30-01-2014 20:28:29

Summary ❘ 603

The System.Threading namespace in the .NET Framework provides multiple ways to manipulate threads,
although this does not mean that the .NET Framework handles all the difficult tasks of multithreading for
you. You need to consider the thread priority and synchronization issues described in this chapter, and code
for them appropriately in your C# applications as demonstrated. You also looked at the problems associated
with deadlocks and race conditions. Just keep in mind that if you are going to use multithreading in your C#
applications, careful planning must be a major part of your efforts.

Here are some final guidelines regarding threading:

➤➤ Try to keep synchronization requirements to a minimum. Synchronization is complex and blocks
threads. You can avoid it if you try to avoid sharing state. Of course, this is not always possible.

➤➤ Static members of a class should be thread-safe. Usually, this is the case with classes in the .NET
Framework.

➤➤ Instance state does not need to be thread-safe. For best performance, synchronization is best used
outside of the class where it is needed, and not with every member of the class. Instance members of
.NET Framework classes usually are not thread-safe. In the MSdN library, you can find this
information documented for every class of the .NET Framework in the “Thread Safety” section.

The next chapter gives information on another core .NET topic: security.

c21.indd 603 30-01-2014 20:28:30

c21.indd 604 30-01-2014 20:28:30

Security
WHAT’S in THiS CHAPTER?

➤➤ Authentication and authorization
➤➤ Cryptography
➤➤ Access control to resources
➤➤ Code access security

WRoX.Com CodE doWnloAdS FoR THiS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ Authentication Samples
➤➤ Windows Principal
➤➤ Role Based Security
➤➤ Application Services

➤➤ Encryption Samples
➤➤ Signature
➤➤ Secure Transfer

➤➤ File Access Control
➤➤ Code Access Security

➤➤ Permissions

inTRoduCTion
Security has several key elements that you need to consider in order to make your applications secure.
The primary one, of course, is the user of the application. Is the user actually the person authorized to
access the application, or someone posing as the user? How can this user be trusted? As you will see in
this chapter, ensuring the security of an application in regard of the user is a two-part process: First,

22

c22.indd 605 30-01-2014 20:29:04

606 ❘ CHAPTER 22 Security

users need to be authenticated, and then they need to be authorized to verify that they are allowed to use the
requested resources.

What about data that is stored or sent across the network? Is it possible for someone to access this data, for
example, by using a network sniffer? Encryption of data is important in this regard. Some technologies, such
as Windows Communication Foundation (WCF) provide encryption capabilities by simple configuration, so
you can see what’s done behind the scenes.

Yet another aspect is the application itself. If the application is hosted by a web provider, how is the
application restricted from doing harm to the server?

This chapter explores the features available in .NET to help you manage security, demonstrating how
.NET protects you from malicious code, how to administer security policies, and how to access the security
subsystem programmatically.

AuTHEnTiCATion And AuTHoRizATion
Two fundamental pillars of security are authentication and authorization. Authentication is the process of
identifying the user, and authorization occurs afterward to verify that the identified user is allowed to access
a specific resource.

identity and Principal
You can identify the user running the application by using an identity. The WindowsIdentity class
represents a Windows user. If you don’t identify the user with a Windows account, you can use other
classes that implement the interface IIdentity. With this interface you have access to the name of the user,
information about whether the user is authenticated, and the authentication type.

A principal is an object that contains the identity of the user and the roles to which the user belongs. The
interface IPrincipal defines the property Identity, which returns an IIdentity object, and the method
IsInRole with which you can verify that the user is a member of a specific role. A role is a collection of
users who have the same security permissions, and it is the unit of administration for users. Roles can be
Windows groups or just a collection of strings that you define.

The principal classes available with .NET are WindowsPrincipal, GenericPrincipal, and
RolePrinciplal. Beginning with .NET 4.5, these principal types derive from the base class
ClaimsPrinicipal. You can also create a custom principal class that implements the interface IPrincipal
or derives from ClaimsPrincipal.

The following example creates a console application that provides access to the principal in an application
that, in turn, enables you to access the underlying Windows account. You need to import the System
.Security.Principal and System.Security.Claims namespaces. First, you must specify that .NET
should automatically hook up the principal with the underlying Windows account. This must be done
because .NET, by default, only populates the principal with a generic principal. You can do it like this (code
file WindowsPrincipal/Program.cs):

using System;
using System.Security.Claims;
using System.Security.Principal;

namespace Wrox.ProCSharp.Security
{
 class Program
 {
 static void Main()
 {
 AppDomain.CurrentDomain.SetPrincipalPolicy(
 PrincipalPolicy.WindowsPrincipal);

c22.indd 606 30-01-2014 20:29:04

Authentication and Authorization ❘ 607

The SetPrincipalPolicy method specifies that the principal in the current thread should hold a
WindowsIdentity object. Other options that can be specified with SetPrinicpalPolicy are NoPrincipal
and UnauthenticatedPrincipal. All identity classes, such as WindowsIdentity, implement the
IIdentity interface, which contains three properties — AuthenticationType, IsAuthenticated, and
Name — for all derived identity classes to implement.

Add the following code to access the principal’s properties:

 var principal = WindowsPrincipal.Current as WindowsPrincipal;
 var identity = principal.Identity as WindowsIdentity;
 Console.WriteLine("IdentityType: {0}", identity.ToString());
 Console.WriteLine("Name: {0}", identity.Name);
 Console.WriteLine("'Users'?: {0} ",
 principal.IsInRole(WindowsBuiltInRole.User));
 Console.WriteLine("'Administrators'? {0}",
 principal.IsInRole(WindowsBuiltInRole.Administrator));
 Console.WriteLine("Authenticated: {0}", identity.IsAuthenticated);
 Console.WriteLine("AuthType: {0}", identity.AuthenticationType);
 Console.WriteLine("Anonymous? {0}", identity.IsAnonymous);
 Console.WriteLine("Token: {0}", identity.Token);

The output from this console application looks similar to the following; it varies according to your
machine’s configuration and the roles associated with the account under which you are signed in. Here, the
account is a Windows Live account mapped to the Windows 8 account, and thus the AuthType is LiveSSP:

IdentityType: System.Security.Principal.WindowsIdentity
Name: THEOTHERSIDE\Christian
'Users'?: True
'Administrators'? False
Authenticated: True
AuthType: LiveSSP
Anonymous? False
Token: 488

It is enormously beneficial to be able to easily access details about the current users and their roles. With this
information, you can make decisions about what actions should be permitted or denied. The ability to make
use of roles and Windows user groups provides the added benefit that administration can be handled using
standard user administration tools, and you can usually avoid altering the code when user roles change.
The following section looks at roles in more detail.

Roles
Role-based security is especially useful when access to resources is an issue. A primary example is the
finance industry, in which employees’ roles define what information they can access and what actions they
can perform.

Role-based security is also ideal for use in conjunction with Windows accounts, or a custom user directory
to manage access to web-based resources. For example, a web site could restrict access to its content until a
user registers with the site, and then additionally provide access to special content only if the user is a paying
subscriber. In many ways, ASP.NET makes role-based security easier because much of the code is based on
the server.

For example, to implement a Web service that requires authentication, you could use the account subsystem
of Windows and write the web method in such a way that it ensures that the user is a member of a specific
Windows user group before allowing access to the method’s functionality.

Imagine a scenario with an intranet application that relies on Windows accounts. The system has a group
called Manager and a group called Assistant; users are assigned to these groups according to their

c22.indd 607 30-01-2014 20:29:04

608 ❘ CHAPTER 22 Security

role within the organization. Suppose the application contains a feature that displays information about
employees that should be accessed only by users in the Manager group. You can easily use code that checks
whether the current user is a member of the Manager group and therefore permitted or denied access.

However, if you decide later to rearrange the account groups and introduce a group called Personnel that
also has access to employee details, you will have a problem. You will need to go through all the code and
update it to include rules for this new group.

A better solution would be to create a permission called something like ReadEmployeeDetails and assign it
to groups where necessary. If the code applies a check for the ReadEmployeeDetails permission, updating
the application to allow those in the Personnel group access to employee details is simply a matter of
creating the group, placing the users in it, and assigning the ReadEmployeeDetails permission.

declarative Role-Based Security
Just as with code access security, you can implement role-based security requests (“the user must be in the
Administrators group”) using imperative requests by calling the IsInRole() method from the IPrincipal
interface, or using attributes. You can state permission requirements declaratively at the class or method
level using the PrincipalPermission attribute (code file RoleBasedSecurity/Program.cs):

using System;
using System.Security;
using System.Security.Principal;
using System.Security.Permissions;

namespace Wrox.ProCSharp.Security
{
 class Program
 {
 static void Main()
 {
 AppDomain.CurrentDomain.SetPrincipalPolicy(
 PrincipalPolicy.WindowsPrincipal);
 try
 {
 ShowMessage();
 }
 catch (SecurityException exception)
 {
 Console.WriteLine("Security exception caught ({0})",
 exception.Message);
 Console.WriteLine("The current principal must be in the local" +
 "Users group");
 }
 }

 [PrincipalPermission(SecurityAction.Demand, Role = "BUILTIN\\Users")]
 static void ShowMessage()
 {
 Console.WriteLine("The current principal is logged in locally ");
 Console.WriteLine("(member of the local Users group)");
 }
 }
}

The ShowMessage method will throw an exception unless you execute the application in the context of a
user in the Windows local Users group. For a web application, the account under which the ASP.NET code
is running must be in the group, although in a real-world scenario you would certainly avoid adding this
account to the administrators group!

c22.indd 608 30-01-2014 20:29:04

Authentication and Authorization ❘ 609

If you run the preceding code using an account in the local Users group, the output will look like this:

The current principal is logged in locally
(member of the local Users group)

Claims
Instead of using roles, claims can be used to access information about a user. Claims are associated with
an entity and describe the capabilities of the entity. An entity is usually a user, but can be an application as
well. Capabilities describe what the entity is allowed to do. This way, claims are much more flexible than the
role model is.

Since .NET 4.5, all the principal classes derive from the base class ClaimsPrincipal. This way, it’s possible
to access claims from users with the Claims property of a principal object. Using the following code snippet,
information about all claims is written to the console:

 Console.WriteLine();
 Console.WriteLine("Claims");
 foreach (var claim in principal.Claims)
 {
 Console.WriteLine("Subject: {0}", claim.Subject);
 Console.WriteLine("Issuer: {0}", claim.Issuer);
 Console.WriteLine("Type: {0}", claim.Type);
 Console.WriteLine("Value type: {0}", claim.ValueType);
 Console.WriteLine("Value: {0}", claim.Value);
 foreach (var prop in claim.Properties)
 {
 Console.WriteLine("\tProperty: {0} {1}", prop.Key, prop.Value);
 }
 Console.WriteLine();
 }

Here is an extract of the claims from the Windows Live account, which provides information about the
name, the primary ID, and the group identifiers:

Claims
Subject: System.Security.Principal.WindowsIdentity
Issuer: AD AUTHORITY
Type: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
Value type: http://www.w3.org/2001/XMLSchema#string
Value: THEOTHERSIDE\Christian

Subject: System.Security.Principal.WindowsIdentity
Issuer: AD AUTHORITY
Type: http://schemas.microsoft.com/ws/2008/06/identity/claims/primarysid
Value type: http://www.w3.org/2001/XMLSchema#string
Value: S-1-5-21-1413171500-312083878-1364686672-1001
 Property: http://schemas.microsoft.com/ws/2008/06/identity/claims/
 windowssubauthority NTAuthority

Subject: System.Security.Principal.WindowsIdentity
Issuer: AD AUTHORITY
Type: http://schemas.microsoft.com/ws/2008/06/identity/claims/groupsid
Value type: http://www.w3.org/2001/XMLSchema#string
Value: S-1-1-0
 Property: http://schemas.microsoft.com/ws/2008/06/identity/claims/
 windowssubauthority WorldAuthority

Subject: System.Security.Principal.WindowsIdentity
Issuer: AD AUTHORITY
Type: http://schemas.microsoft.com/ws/2008/06/identity/claims/groupsid

c22.indd 609 30-01-2014 20:29:04

610 ❘ CHAPTER 22 Security

Value type: http://www.w3.org/2001/XMLSchema#string
Value: S-1-5-21-1413171500-312083878-1364686672-1008
 Property: http://schemas.microsoft.com/ws/2008/06/identity/claims/
 windowssubauthority NTAuthority

...

Client Application Services
Visual Studio makes it easy to use authentication services that were previously built for ASP.NET web
applications. With this service, it is possible to use the same authentication mechanism with both Windows
and web applications. This is a provider model that is primarily based on the classes Membership and Roles
in the namespace System.Web.Security. With the Membership class you can validate, create, delete, and
find users; change the password; and do other things related to users. With the Roles class you can add and
delete roles, get the roles for a user, and change roles for a user.

Where the roles and users are stored depends on the provider. The
ActiveDirectoryMembershipProvider accesses users and roles in the Active Directory;
the SqlMembershipProvider uses a SQL Server database. With .NET 4.5.1 these providers
exist for client application services ClientFormsAuthenticationMembershipProvider and
ClientWindowsAuthenticationMembershipProvider.

In the next section, you use client application services with Forms authentication. To do this, first you
need to start an application server, and then you can use this service from Windows Forms or Windows
Presentation Foundation (WPF).

Application Services
To use client application services, you can create a WCF service project that offers application services.
The project needs a membership provider. You can use an existing one, but you can also easily create a
custom provider. The following code defines the class SampleMembershipProvider, which is derived from
the base class MembershipProvider, which is defined in the namespace System.Web.Security in the
assembly System.Web.ApplicationServices. You must override all abstract methods from the base class.
For login, the only implementation needed is the method ValidateUser. All other methods can throw a
NotSupportedException, as shown with the property ApplicationName. The sample code here uses
a Dictionary<string, string> that contains usernames and passwords. Of course, you can change it
to your own implementation — for example, to read a username and password from the database (code file
AppServices/SampleMembershipProvider.cs).

using System;
using System.Collections.Generic;
using System.Collections.Specialized;
using System.Web.Security;

namespace Wrox.ProCSharp.Security
{
 public class SampleMembershipProvider: MembershipProvider
 {
 private Dictionary<string, string> users =
 new Dictionary<string, string>();
 internal static string ManagerUserName = "Manager".ToLowerInvariant();
 internal static string EmployeeUserName = "Employee".ToLowerInvariant();

 public override void Initialize(string name, NameValueCollection config)
 {
 users.Add(ManagerUserName, "secret@Pa$$w0rd");
 users.Add(EmployeeUserName, "s0me@Secret");

 base.Initialize(name, config);

c22.indd 610 30-01-2014 20:29:04

Authentication and Authorization ❘ 611

 }

 public override string ApplicationName
 {
 get
 {
 throw new NotImplementedException();
 }
 set
 {
 throw new NotImplementedException();
 }
 }

 // override abstract Membership members
 // ...

 public override bool ValidateUser(string username, string password)
 {
 if (users.ContainsKey(username.ToLowerInvariant()))
 {
 return password.Equals(users[username.ToLowerInvariant()]);
 }
 return false;
 }
 }
}

When using roles, you also need to implement a role provider. The class SampleRoleProvider derives from
the base class RoleProvider and implements the methods GetRolesForUser and IsUserInRole (code
AppServices/SampleRoleProvider.cs):

using System;
using System.Collections.Specialized;
using System.Web.Security;

namespace Wrox.ProCSharp.Security
{
 public class SampleRoleProvider: RoleProvider
 {
 internal static string ManagerRoleName = "Manager".ToLowerInvariant();
 internal static string EmployeeRoleName = "Employee".ToLowerInvariant();

 public override void Initialize(string name, NameValueCollection config)
 {
 base.Initialize(name, config);
 }

 public override void AddUsersToRoles(string[] usernames,
 string[] roleNames)
 {
 throw new NotImplementedException();
 }

 // override abstract RoleProvider members
 // ...

 public override string[] GetRolesForUser(string username)
 {
 if (string.Compare(username, SampleMembershipProvider.ManagerUserName,
 true) == 0)
 {
 return new string[] { ManagerRoleName };

c22.indd 611 30-01-2014 20:29:05

612 ❘ CHAPTER 22 Security

 }
 else if (string.Compare(username,
 SampleMembershipProvider.EmployeeUserName, true) == 0)
 {
 return new string[] { EmployeeRoleName };
 }
 else
 {
 return new string[0];
 }
 }

 public override bool IsUserInRole(string username, string roleName)
 {
 string[] roles = GetRolesForUser(username);
 foreach (var role in roles)
 {
 if (string.Equals(role, roleName))
 {
 return true;
 }
 }
 return false;
 }
 }
}

Authentication services must be configured in the Web.config file. On the production system, it would be
useful from a security standpoint to configure SSL with the server hosting application services (config file
AppServices/web.config):

 <system.web.extensions>
 <scripting>
 <webServices>
 <authenticationService enabled="true" requireSSL="false"/>
 <roleService enabled="true"/>
 </webServices>
 </scripting>
 </system.web.extensions>

Within the <system.web> section, the membership and roleManager elements must be configured to
reference the classes that implement the membership and role provider:

 <system.web>
 <membership defaultProvider="SampleMembershipProvider">
 <providers>
 <add name="SampleMembershipProvider"
 type="Wrox.ProCSharp.Security.SampleMembershipProvider"/>
 </providers>
 </membership>
 <roleManager enabled="true" defaultProvider="SampleRoleProvider">
 <providers>
 <add name="SampleRoleProvider"
 type="Wrox.ProCSharp.Security.SampleRoleProvider"/>
 </providers>
 </roleManager>

For debugging, you can assign a port number and virtual path by selecting the Web tab of project properties.
The sample application uses the port 55555 and the virtual path /AppServices. If you use different values,
you need to change the configuration of the client application accordingly.

c22.indd 612 30-01-2014 20:29:05

Authentication and Authorization ❘ 613

Now the application service can be used from a client application.

Client Application
With the client application, WPF is used. Visual Studio has a project setting named Services that
enables the use of client application services. Here, you can set Forms authentication and the location
of the authentication and roles service to the address defined previously: http://localhost:55555/
AppServices. This project configuration merely references the assemblies System.Web and System.Web
.Extensions, and changes the application’s configuration file to configure membership and role providers
that use the classes ClientAuthenticationMembershipProvider and ClientRoleProvider and the
address of the Web service used by these providers (config file AuthenticationServices/App.config):

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.web>
 <membership defaultProvider="ClientAuthenticationMembershipProvider">
 <providers>
 <add name="ClientAuthenticationMembershipProvider"
 type="System.Web.ClientServices.Providers.
 ClientFormsAuthenticationMembershipProvider,
 System.Web.Extensions, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" serviceUri=
"http://localhost:55555/AppServices/Authentication_JSON_AppService.axd" />
 </providers>
 </membership>
 <roleManager defaultProvider="ClientRoleProvider" enabled="true">
 <providers>
 <add name="ClientRoleProvider"
 type="System.Web.ClientServices.Providers.ClientRoleProvider,
 System.Web.Extensions, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" serviceUri=
 "http://localhost:55555/AppServices/Role_JSON_AppService.axd"
 cacheTimeout="86400" />
 </providers>
 </roleManager>
 </system.web>
</configuration>

The Windows application just uses Label,
TextBox, PasswordBox, and Button controls, as
shown in Figure 22-1. The label with the content
“User Validated” is displayed only when the
logon is successful.

The handler of the Button.Click event
invokes the ValidateUser method of the
Membership class. For the membership API, the
ClientAuthenticationMembershipProvider
is configured. This provider invokes the Web
service and calls the method ValidateUser
of the SampleMembershipProvider class
to verify a successful logon. With success,
the label labelValidatedInfo is made visible; otherwise, a message box is displayed (code file
AuthenticationServices/MainWindow.xaml.cs):

 private void OnLogin(object sender, RoutedEventArgs e)
 {
 try
 {

FiguRE 22-1

c22.indd 613 30-01-2014 20:29:05

614 ❘ CHAPTER 22 Security

 if (Membership.ValidateUser(textUsername.Text,
 textPassword.Password))
 {
 // user validated!
 labelValidatedInfo.Visibility = Visibility.Visible;
 }
 else
 {
 MessageBox.Show("Username or password not valid",
 "Client Authentication Services", MessageBoxButton.OK,
 MessageBoxImage.Warning);
 }
 }
 catch (WebException ex)
 {
 MessageBox.Show(ex.Message, "Client Application Services",
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
 }

EnCRyPTion
Confidential data should be secured so that it cannot be read by unprivileged users. This is valid both
for data that is sent across the network, or stored data. You can encrypt such data with symmetric or
asymmetric encryption keys.

With a symmetric key, the same key can be used for encryption and decryption. With asymmetric
encryption, different keys are used for encryption and decryption: a public key and a private key. Something
encrypted using a public key can be decrypted with the corresponding private key. This also works the other
way around: Something encrypted using a private key can be decrypted by using the corresponding public
key, but not the private key.

Public and private keys are always created as a pair. The public key can be made available to everybody, and
even put on a web site, but the private key must be safely locked away. Following are some examples that
demonstrate how public and private keys are used for encryption.

If Alice sends a message to Bob (see Figure 22-2), and she wants to ensure that no one other than Bob can
read the message, she uses Bob’s public key. The message is encrypted using Bob’s public key. Bob opens the

Alice Bob

Eve

FiguRE 22-2

c22.indd 614 30-01-2014 20:29:07

Encryption ❘ 615

message and can decrypt it using his secretly stored private key. This key exchange guarantees that no one
but Bob can read Alice’s message.

There is one problem, however: Bob can’t be sure that the mail comes from Alice. Eve can use Bob’s public
key to encrypt messages sent to Bob and pretend to be Alice. We can extend this principle using public/
private keys. Let’s start again with Alice sending a message to Bob. Before Alice encrypts the message using
Bob’s public key, she adds her signature and encrypts the signature using her own private key. Then she
encrypts the mail using Bob’s public key. Therefore, it is guaranteed that no one other than Bob can read
the message. When Bob decrypts it, he detects an encrypted signature. The signature can be decrypted using
Alice’s public key. For Bob, it is not a problem to access Alice’s public key because the key is public. After
decrypting the signature, Bob can be sure that it was Alice who sent the message.

The encryption and decryption algorithms using symmetric keys are a lot faster than those using
asymmetric keys. The problem with symmetric keys is that the keys must be exchanged in a safe manner.
With network communication, one way to do this is by using asymmetric keys first for the key exchange and
then symmetric keys for encryption of the data that is sent across the wire.

The .NET Framework contains classes for encryption in the namespace System.Security.Cryptography.
Several symmetric and asymmetric algorithms are implemented. You can find algorithm classes for many
different purposes. Some of the classes have a Cng prefix or suffix. CNG is short for Cryptography Next
Generation, which is a newer version of the native Crypto API. This API makes it possible to write a
program independently of the algorithm by using a provider-based model.

The following table lists encryption classes from the namespace System.Security.Cryptography and
their purpose. The classes without a Cng, Managed, or CryptoServiceProvider suffix are abstract base
classes, such as MD5. The Managed suffix means that this algorithm is implemented with managed code;
other classes might wrap native Windows API calls. The suffix CryptoServiceProvider is used with
classes that implement the abstract base class. The Cng suffix is used with classes that make use of the new
Cryptography CNG API.

CATEgoRy ClASSES dESCRiPTion

Hash MD5,
MD5Cng
SHA1,
SHA1Managed,
SHA1Cng,
SHA256, SHA256Managed, SHA256Cng,
SHA384, SHA384Managed, SHA384Cng,
SHA512, SHA512Managed, SHA512Cng,
RIPEMD160,
RIPEMD160Managed

The purpose of hash algorithms is to create
a fixed-length hash value from binary
strings of arbitrary length. These algorithms
are used with digital signatures and for
data integrity. If the same binary string
is hashed again, the same hash result is
returned. MD5 (Message Digest Algorithm
5), developed at RSA Laboratories, is faster
than SHA1. SHA1 is stronger against brute
force attacks. The SHA algorithms were
designed by the National Security Agency
(NSA). MD5 uses a 128-bit hash size; SHA1
uses 160 bits. The other SHA algorithms
contain the hash size in the name. SHA512
is the strongest of these algorithms, with a
hash size of 512 bits; it is also the slowest.
RIPEDM160 uses a hash size of 160 bits; it is
meant to be a replacement for 128-bit MD4
and MD5. RIPEDM was developed from
an EU project named RIPE (Race Integrity
Primitives Evaluation).

(continues)

c22.indd 615 30-01-2014 20:29:07

616 ❘ CHAPTER 22 Security

CATEgoRy ClASSES dESCRiPTion

Symmetric DES, DESCryptoServiceProvider,
TripleDES
TripleDESCryptoServiceProvider,
Aes, AesCryptoServiceProvider,
AesManaged,
RC2, RC2CryptoServiceProvider,
Rijandel, RijandelManaged

Symmetric key algorithms use the same
key for encryption and decryption of data.
Data Encryption Standard (DES) is now
considered insecure because it uses only
56 bits for the key size and can be broken
in less than 24 hours. Triple-DES is the
successor to DES and has a key length
of 168 bits, but the effective security
it provides is only 112-bit. Advanced
Encryption Standard (AES) has a key size of
128, 192, or 256 bits. Rijandel is very similar
to AES but offers more key size options.
AES is an encryption standard adopted by
the U.S. government.

Asymmetric DSA, DSACryptoServiceProvider,
ECDsa,
ECDsaCng ECDiffieHellman,
ECDiffieHellmanCng RSA,
RSACryptoServiceProvider

Asymmetric algorithms use different keys
for encryption and decryption. The Rivest,
Shamir, Adleman (RSA) algorithm was
the first one used for signing as well as
encryption. This algorithm is widely used
in e-commerce protocols. Digital Signature
Algorithm (DSA) is a United States Federal
Government standard for digital signatures.
Elliptic Curve DSA (ECDSA) and EC Diffie-
Hellman use algorithms based on elliptic
curve groups. These algorithms are more
secure, with shorter key sizes. For example,
having a key size of 1024 bits for DSA is
similar in security to 160 bits for ECDSA. As
a result, ECDSA is much faster. EC Diffie-
Hellman is an algorithm used to exchange
private keys in a secure way over a public
channel.

The following section includes some examples demonstrating how these algorithms can be used
programmatically.

Signature
The first example demonstrates a signature using the ECDSA algorithm, described in the preceding table,
for signing. Alice creates a signature that is encrypted with her private key and can be accessed using her
public key. This way, it is guaranteed that the signature is from Alice.

First, take a look at the major steps in the Main method: Alice’s keys are created, and the string "Alice"
is signed and then verified to be the signature actually from Alice by using the public key. The message
that is signed is converted to a byte array by using the Encoding class. To write the encrypted signature to
the console, the byte array that contains the signature is converted to a string with the method Convert
.ToBase64String (code file SigningDemo/Program.cs):

using System;
using System.Security.Cryptography;
using System.Text;

(continued)

c22.indd 616 30-01-2014 20:29:07

Encryption ❘ 617

namespace Wrox.ProCSharp.Security
{
 class Program
 {
 internal static CngKey aliceKeySignature;
 internal static byte[] alicePubKeyBlob;

 static void Main()
 {
 CreateKeys();

 byte[] aliceData = Encoding.UTF8.GetBytes("Alice");
 byte[] aliceSignature = CreateSignature(aliceData, aliceKeySignature);
 Console.WriteLine("Alice created signature: {0}",
 Convert.ToBase64String(aliceSignature));

 if (VerifySignature(aliceData, aliceSignature, alicePubKeyBlob))
 {
 Console.WriteLine("Alice signature verified successfully");
 }
 }

WARning Never convert encrypted data to a string using the Encoding class. The
Encoding class verifies and converts invalid values that are not allowed with Unicode;
therefore, converting the string back to a byte array yields a different result.

CreateKeys is the method that creates a new key pair for Alice. This key pair is stored in a static field, so it
can be accessed from the other methods. The Create method of CngKey gets the algorithm as an argument
to define a key pair for the algorithm. With the Export method, the public key of the key pair is exported.
This public key can be given to Bob for verification of the signature. Alice keeps the private key. Instead
of creating a key pair with the CngKey class, you can open existing keys that are stored in the key store.
Usually Alice would have a certificate containing a key pair in her private store, and the store could be
accessed with CngKey.Open:

 static void CreateKeys()
 {
 aliceKeySignature = CngKey.Create(CngAlgorithm.ECDsaP256);
 alicePubKeyBlob = aliceKeySignature.Export(
 CngKeyBlobFormat.GenericPublicBlob);
 }

With the key pair, Alice can create the signature using the ECDsaCng class. The constructor of this class
receives the CngKey from Alice that contains both the public and private keys. The private key is used
signing the data with the SignData method:

 static byte[] CreateSignature(byte[] data, CngKey key)
 {
 byte[] signature;
 using (var signingAlg = new ECDsaCng(key))
 {
 signature = signingAlg.SignData(data);
 signingAlg.Clear();
 }
 return signature;
 }

c22.indd 617 30-01-2014 20:29:08

618 ❘ CHAPTER 22 Security

To verify that the signature was really from Alice, Bob checks the signature by using the public key from Alice.
The byte array containing the public key blob can be imported to a CngKey object with the static Import
method. The ECDsaCng class is then used to verify the signature by invoking VerifyData:

 static bool VerifySignature(byte[] data, byte[] signature, byte[] pubKey)
 {
 bool retValue = false;
 using (CngKey key = CngKey.Import(pubKey,
 CngKeyBlobFormat.GenericPublicBlob))
 using (var signingAlg = new ECDsaCng(key))
 {
 retValue = signingAlg.VerifyData(data, signature);
 signingAlg.Clear();
 }
 return retValue;
 }
 }
}

Key Exchange and Secure Transfer
This section uses a more-complex example to demonstrate exchanging a symmetric key for a secure transfer
by using the EC Diffie-Hellman algorithm. The Main method contains the primary functionality. Alice
creates an encrypted message and sends it to Bob. Before the message is created and sent, key pairs are
created for Alice and Bob. Bob has access only to Alice’s public key, and Alice has access only to Bob’s
public key (code file SecureTransfer/Program.cs):

using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
using System.Threading.Tasks;

namespace Wrox.ProCSharp.Security
{
 class Program
 {
 static CngKey aliceKey;
 static CngKey bobKey;
 static byte[] alicePubKeyBlob;
 static byte[] bobPubKeyBlob;

 static void Main()
 {
 Run();
 Console.ReadLine();
 }

 private async static void Run()
 {
 try
 {
 CreateKeys();
 byte[] encrytpedData = await AliceSendsData("secret message");
 await BobReceivesData(encrytpedData);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

c22.indd 618 30-01-2014 20:29:08

Encryption ❘ 619

In the implementation of the CreateKeys method, keys are created to be used with the EC Diffie-Hellman
256 algorithm:

 private static void CreateKeys()
 {
 aliceKey = CngKey.Create(CngAlgorithm.ECDiffieHellmanP256);
 bobKey = CngKey.Create(CngAlgorithm.ECDiffieHellmanP256);
 alicePubKeyBlob = aliceKey.Export(CngKeyBlobFormat.EccPublicBlob);
 bobPubKeyBlob = bobKey.Export(CngKeyBlobFormat.EccPublicBlob);
 }

In the method AliceSendsData, the string that contains text characters is converted to a byte array by
using the Encoding class. An ECDiffieHellmanCng object is created and initialized with the key pair from
Alice. Alice creates a symmetric key by using her key pair and the public key from Bob, calling the method
DeriveKeyMaterial. The returned symmetric key is used with the symmetric algorithm AES to encrypt the
data. AesCryptoServiceProvider requires the key and an initialization vector (IV). The IV is generated
dynamically from the method GenerateIV. The symmetric key is exchanged with the help of the EC Diffie-
Hellman algorithm, but the IV must also be exchanged. From a security standpoint, it is OK to transfer the
IV unencrypted across the network — only the key exchange must be secured. The IV is stored first as content
in the memory stream, followed by the encrypted data where the CryptoStream class uses the encryptor
created by the AesCryptoServiceProvider class. Before the encrypted data is accessed from the memory
stream, the crypto stream must be closed. Otherwise, end bits would be missing from the encrypted data:

 private async static Task<byte[]> AliceSendsData(string message)
 {
 Console.WriteLine("Alice sends message: {0}", message);
 byte[] rawData = Encoding.UTF8.GetBytes(message);
 byte[] encryptedData = null;

 using (var aliceAlgorithm = new ECDiffieHellmanCng(aliceKey))
 using (CngKey bobPubKey = CngKey.Import(bobPubKeyBlob,
 CngKeyBlobFormat.EccPublicBlob))
 {
 byte[] symmKey = aliceAlgorithm.DeriveKeyMaterial(bobPubKey);
 Console.WriteLine("Alice creates this symmetric key with " +
 "Bobs public key information: {0}",
 Convert.ToBase64String(symmKey));

 using (var aes = new AesCryptoServiceProvider())
 {
 aes.Key = symmKey;
 aes.GenerateIV();
 using (ICryptoTransform encryptor = aes.CreateEncryptor())
 using (MemoryStream ms = new MemoryStream())
 {
 // create CryptoStream and encrypt data to send
 var cs = new CryptoStream(ms, encryptor, CryptoStreamMode.Write);

 // write initialization vector not encrypted
 await ms.WriteAsync(aes.IV, 0, aes.IV.Length);
 cs.Write(rawData, 0, rawData.Length);
 cs.Close();
 encryptedData = ms.ToArray();
 }
 aes.Clear();
 }
 }
 Console.WriteLine("Alice: message is encrypted: {0}",
 Convert.ToBase64String(encryptedData));;
 Console.WriteLine();
 return encryptedData;
 }

c22.indd 619 30-01-2014 20:29:08

620 ❘ CHAPTER 22 Security

Bob receives the encrypted data in the argument of the method BobReceivesData(). First, the unencrypted
initialization vector must be read. The BlockSize property of the class AesCryptoServiceProvider
returns the number of bits for a block. The number of bytes can be calculated by dividing by 8, and the
fastest way to do this is by doing a bit shift of 3 bits (shifting by 1 bit is a division by 2, 2 bits by 4, and 3
bits by 8). With the for loop, the first bytes of the raw bytes that contain the IV unencrypted are written to
the array iv. Next, an ECDiffieHellmanCng object is instantiated with the key pair from Bob. Using the
public key from Alice, the symmetric key is returned from the method DeriveKeyMaterial.

Comparing the symmetric keys created from Alice and Bob shows that the same key value is created.
Using this symmetric key and the initialization vector, the message from Alice can be decrypted with the
AesCryptoServiceProvider class:

 private static void BobReceivesData(byte[] encryptedData)
 {
 Console.WriteLine("Bob receives encrypted data");
 byte[] rawData = null;

 var aes = new AesCryptoServiceProvider();

 int nBytes = aes.BlockSize 3;
 byte[] iv = new byte[nBytes];
 for (int i = 0; i < iv.Length; i++)
 iv[i] = encryptedData[i];

 using (var bobAlgorithm = new ECDiffieHellmanCng(bobKey))
 using (CngKey alicePubKey = CngKey.Import(alicePubKeyBlob,
 CngKeyBlobFormat.EccPublicBlob))
 {
 byte[] symmKey = bobAlgorithm.DeriveKeyMaterial(alicePubKey);
 Console.WriteLine("Bob creates this symmetric key with " +
 "Alices public key information: {0}",
 Convert.ToBase64String(symmKey));

 aes.Key = symmKey;
 aes.IV = iv;

 using (ICryptoTransform decryptor = aes.CreateDecryptor())
 using (MemoryStream ms = new MemoryStream())
 {
 var cs = new CryptoStream(ms, decryptor, CryptoStreamMode.Write);
 cs.Write(encryptedData, nBytes, encryptedData.Length - nBytes);
 cs.Close();

 rawData = ms.ToArray();

 Console.WriteLine("Bob decrypts message to: {0}",
 Encoding.UTF8.GetString(rawData));
 }
 aes.Clear();
 }
 }

Running the application returns output similar to the following. The message from Alice is encrypted, and
then decrypted by Bob with the securely exchanged symmetric key.

Alice sends message: secret message
Alice creates this symmetric key with Bobs public key information:
5NWat8AemzFCYo1IIae9S3Vn4AXyai4aL8ATFo41vbw=
Alice: message is encrypted: 3C5U9CpYxnoFTk3Ew2V0T5Po0Jgryc5R7Te8ztau5N0=

c22.indd 620 30-01-2014 20:29:09

Access Control to Resources ❘ 621

Bob receives encrypted message
Bob creates this symmetric key with Alices public key information:
5NWat8AemzFCYo1IIae9S3Vn4AXyai4aL8ATFo41vbw=
Bob decrypts message to: secret message

ACCESS ConTRol To RESouRCES
Operating system resources such as files and registry keys, as well as handles of a named pipe, are secured
by using an access control list (ACL). Figure 22-3 shows the structure mapping this. Associated with the
resource is a security descriptor that contains information about the owner of the resource. It references two
access control lists: a discretionary access control list (DACL) and a system access control list (SACL). The
DACL defines who has access; the SACL defines audit rules for security event logging. An ACL contains a
list of access control entries (ACEs), which contain a type, a security identifier, and rights. With the DACL,
the ACE can be of type access allowed or access denied. Some of the rights that you can set and get with a
file are create, read, write, delete, modify, change permissions, and take ownership.

The classes to read and modify access control are located in the namespace System.Security
.AccessControl. The following program demonstrates reading the access control list from a file.

The FileStream class defines the GetAccessControl method, which returns a FileSecurity object.
FileSecurity is the .NET class that represents a security descriptor for files. FileSecurity derives
from the base classes ObjectSecurity, CommonObjectSecurity, NativeObjectSecurity, and
FileSystemSecurity. Other classes that represent a security descriptor are CryptoKeySecurity,
EventWaitHandleSecurity, MutexSecurity, RegistrySecurity, SemaphoreSecurity, PipeSecurity,
and ActiveDirectorySecurity. All of these objects can be secured using an access control list. In general,
the corresponding .NET class defines the method GetAccessControl to return the corresponding security
class; for example, the Mutex.GetAccessControl method returns a MutexSecurity, and the PipeStream
.GetAccessControl method returns a PipeSecurity.

The FileSecurity class defines methods to read and change the DACL and SACL. The method
GetAccessRules returns the DACL in the form of the class AuthorizationRuleCollection. To access the
SACL, you can use the method GetAuditRules.

With the method GetAccessRules, you can specify whether inherited access rules, and not only access rules
directly defined with the object, should be used. The last parameter defines the type of the security identifier
that should be returned. This type must derive from the base class IdentityReference. Possible types
are NTAccount and SecurityIdentifier. Both of these classes represent users or groups; the NTAccount
class finds the security object by its name and the SecurityIdentifier class finds the security object by a
unique security identifier.

Resource

Security Descriptor

ACE ACE ACE ACEDACL

ACE ACE ACE ACESACL

FiguRE 22-3

c22.indd 621 30-01-2014 20:29:11

622 ❘ CHAPTER 22 Security

The returned AuthorizationRuleCollection contains AuthorizationRule objects. The
AuthorizationRule is the .NET representation of an ACE. In the following example, a file is
accessed, so the AuthorizationRule can be cast to a FileSystemAccessRule. With ACEs of other
resources, different .NET representations exist, such as MutexAccessRule and PipeAccessRule.
With the FileSystemAccessRule class, the properties AccessControlType, FileSystemRights, and
IdentityReference return information about the ACE (code file FileAccessControl/Program.cs).

using System;
using System.IO;
using System.Security.AccessControl;
using System.Security.Principal;

namespace Wrox.ProCSharp.Security
{
 class Program
 {
 static void Main(string[] args)
 {
 string filename = null;
 if (args.Length == 0)
 return;

 filename = args[0];

 using (FileStream stream = File.Open(filename, FileMode.Open))
 {
 FileSecurity securityDescriptor = stream.GetAccessControl();
 AuthorizationRuleCollection rules =
 securityDescriptor.GetAccessRules(true, true,
 typeof(NTAccount));

 foreach (AuthorizationRule rule in rules)
 {
 var fileRule = rule as FileSystemAccessRule;
 Console.WriteLine("Access type: {0}", fileRule.AccessControlType);
 Console.WriteLine("Rights: {0}", fileRule.FileSystemRights);
 Console.WriteLine("Identity: {0}", fileRule.IdentityReference.Value);
 Console.WriteLine();
 }
 }
 }
 }
}

By running the application and passing a filename, you can see the access control list for the file. The
following output lists full control to Administrators and System, modification rights to authenticated users,
and read and execute rights to all users belonging to the group Users:

Access type: Allow
Rights: FullControl
Identity: BUILTIN\Administrators

Access type: Allow
Rights: FullControl
Identity: NT AUTHORITY\SYSTEM

Access type: Allow
Rights: FullControl
Identity: BUILTIN\Administrators

c22.indd 622 30-01-2014 20:29:11

Code Access Security ❘ 623

Access type: Allow
Rights: FullControl
Identity: TheOtherSide\Christian

Setting access rights is very similar to reading access rights. To set access rights, several resource classes
that can be secured offer the SetAccessControl and ModifyAccessControl methods. The following
code modifies the access control list of a file by invoking the SetAccessControl method from the
File class. To this method a FileSecurity object is passed. The FileSecurity object is filled with
FileSystemAccessRule objects. The access rules listed here deny write access to the Sales group, give read
access to the Everyone group, and give full control to the Developers group:

noTE This program runs on your system only if the Windows groups Sales and
Developers are defined. You can change the program to use groups that are available in
your environment.

 private static void WriteAcl(string filename)
 {
 var salesIdentity = new NTAccount("Sales");
 var developersIdentity = new NTAccount("Developers");
 var everyOneIdentity = new NTAccount("Everyone");

 var salesAce = new FileSystemAccessRule(salesIdentity,
 FileSystemRights.Write, AccessControlType.Deny);
 var everyoneAce = new FileSystemAccessRule(everyOneIdentity,
 FileSystemRights.Read, AccessControlType.Allow);
 var developersAce = new FileSystemAccessRule(developersIdentity,
 FileSystemRights.FullControl, AccessControlType.Allow);

 var securityDescriptor = new FileSecurity();
 securityDescriptor.SetAccessRule(everyoneAce);
 securityDescriptor.SetAccessRule(developersAce);
 securityDescriptor.SetAccessRule(salesAce);

 File.SetAccessControl(filename, securityDescriptor);
 }

noTE You can verify the access rules by opening the Properties window and selecting
a file in Windows Explorer. Select the Security tab to see the access control list.

CodE ACCESS SECuRiTy
Similar to role-based security, which enables you to define what the user is allowed to do, code access
security defines what the code is allowed to do. .NET 4 simplified this model by removing the complex
policy configuration that existed prior to .NET 4 and adding the security transparency level 2. Security
transparency level 2 distinguishes between code that is allowed to make privileged calls (such as calling
native code) and code that is not allowed to do so. The code is grouped into three categories:

➤➤ Security-critical — Any code can run. This code cannot be called by transparent code.
➤➤ Safe-critical — Code can be called by transparent code. Security verifications are done with this code.
➤➤ Transparent — Code is very limited in what it can do. This code is allowed to run in a specified

permission set and it runs in a sandbox. It cannot contain unsafe or unverifiable code, and it cannot
call security-critical code.

c22.indd 623 30-01-2014 20:29:12

624 ❘ CHAPTER 22 Security

If you write Windows applications, the restricted code permissions do not apply. Applications running on
the desktop have full trust privileges and can contain any code — if it’s not otherwise defined by the system
administrators. Sandboxing is used with Silverlight applications as well as ASP.NET applications that are
hosted from a web provider, or with custom functionality, such as running add-ins with the Managed
Add-In Framework.

This section discusses how you can apply security transparency level 2, and how you can make use of .NET
permissions as is required with transparent code.

Security Transparency level 2
You can annotate an assembly with the attribute SecurityRules and set the SecurityRuleSet.Level2 for
applying the newer level with .NET 4. (This is the default since .NET 4.) For backward compatibility, set it
to Level1.

[assembly: SecurityRules(SecurityRuleSet.Level2)]

If you set the attribute SecurityTransparent, the entire assembly will not do anything privileged or
unsafe. This assembly can only call other transparent code or safe-critical code. This attribute can be
applied only to the complete assembly:

[assembly: SecurityTransparent()]

The attribute AllowPartiallyTrustedCallers is somewhere between transparent and the other
categories. With this attribute, the code defaults to transparent, but individual types or members can have
other attributes:

[assembly: AllowPartiallyTrustedCallers()]

If none of these attributes are applied, the code is security critical. However, you can apply the attribute
SecuritySafeCritical to individual types and members to make them callable from transparent code:

[assembly: SecurityCritical()]

Permissions
If code runs inside a sandbox, the sandbox can define what the code is allowed to do by defining .NET
permissions. While the full trust applies to applications running on the desktop, applications running
in a sandbox are only allowed to perform the actions defined by the permissions that the host gives to
the sandbox. You can also define permissions for an application domain that is started from a desktop
application. This is done with the Sandbox API.

noTE Application domains are discussed in Chapter 19, “Assemblies.”

Permissions refer to the actions that each code group is allowed to perform (or is prevented from
performing). For example, permissions include “read files from the file system,” “write to the Active
Directory,” and “use sockets to open network connections.” Several predefined permissions exist, but you
can also create your own permissions.

.NET permissions are independent of operating system permissions. .NET permissions are just verified
by the CLR. An assembly demands a permission for a specific operation (for example, the File class
demands the FileIOPermission), and the CLR verifies that the assembly has the permission granted so
that it can continue.

c22.indd 624 30-01-2014 20:29:12

Code Access Security ❘ 625

You can apply a very fine-grained list of permissions to an assembly or a request from code. The following
list describes a few of the code access permissions provided by the CLR; as you can see, you have a lot of
control over what code is or is not permitted to do:

PERmiSSion dESCRiPTion

DirectoryServicesPermission Controls access to Active Directory through the System
.DirectoryServices classes

DnsPermission Controls use of the TCP/IP Domain Name System (DNS)

EnvironmentPermission Controls the use of read and write environment variables

EventLogPermission Controls the ability to read and write to the event log

FileDialogPermission Controls access to files that have been selected by the user
in the Open dialog. This permission is commonly used when
FileIOPermission is not granted in order to maintain
limited access to files.

FileIOPermission Controls the ability to work with files (reading, writing, and
appending to files, as well as creating, altering, and accessing
folders)

IsolatedStorageFilePermission Controls access to private virtual file systems

IsolatedStoragePermission Controls access to isolated storage — storage associated with
an individual user and with some aspect of the code’s identity.
Isolated storage is discussed in Chapter 24, “Manipulating
Files and the Registry.”

MessageQueuePermission Controls the use of message queues through the Microsoft
Message Queue

PerformanceCounterPermission Controls the use of performance counters

PrintingPermission Controls the ability to print

ReflectionPermission Controls the ability to discover information about a type at
runtime by using System.Reflection

RegistryPermission Controls the ability to read, write, create, or delete registry
keys and values

SecurityPermission Controls the ability to execute, assert permissions, call into
unmanaged code, skip verification, and other rights

ServiceControllerPermission Controls the ability to control Windows Services

SQLClientPermission Controls access to SQL Server databases with the .NET data
provider for SQL Server

UIPermission Controls access to the user interface

WebPermission Controls the ability to make or accept connections to or from
the Web

With each of these permission classes, it is often possible to specify an even deeper level of granularity; for
example, the DirectoryServicesPermission enables you to differentiate between read and write access,
and to define which entries in the directory services are allowed or denied access.

Permission Sets
A permission set is a collection of permissions. Using a permission set, it is not necessary to apply every
single permission to code; permissions are grouped into a permission set. For example, an assembly that

c22.indd 625 30-01-2014 20:29:12

626 ❘ CHAPTER 22 Security

has the FullTrust permission set has full access to all resources. With the LocalIntranet permission set,
the assembly is restricted; that is, it is not allowed to write to the file system other than using the isolated
storage. You can create a custom permission set that includes required permissions.

By assigning the permission to code groups, there is no need to deal with every single permission. Instead,
the permissions are applied in blocks, which is why .NET has the concept of permission sets, lists of code
access permissions grouped into a named set. The following list explains the seven named permission sets
included out of the box:

➤➤ FullTrust — No permission restrictions.
➤➤ SkipVerification — Verification is not performed.
➤➤ Execution — Grants the ability to run, but not access, any protected resources.
➤➤ Nothing — Grants no permissions and prevents the code from executing.
➤➤ LocalIntranet — Specifies a subset of the full set of permissions. For example, file I/O is restricted to

read access on the share where the assembly originates. With .NET 3.5 and earlier editions (before
.NET 3.5 SP1), this permission set was used when an application was running from a network share.

➤➤ Internet — Specifies the default policy for code of unknown origin. This is the most restrictive policy.
For example, code executing in this permission set has no file I/O capability, cannot read or write
event logs, and cannot read or write environment variables.

➤➤ Everything — Grants all the permissions listed under this set, except the permission to skip code
verification. The administrator can alter any of the permissions in this permission set. This is useful
when the default policy needs to be tighter.

noTE You can change the definitions of only the Everything permission set; the
other sets are fixed and cannot be changed. Of course, you can also create your own
permission set.

Demanding Permissions Programmatically
An assembly can demand permissions declaratively or programmatically. The following code snippet
demonstrates how permissions can be demanded with the method DemandFileIOPermissions. If you
import the namespace System.Security.Permissions, you can check for permissions by creating a
FileIOPermission object, and calling its Demand method. This verifies whether the caller of the method,
here the caller of the method DemandFileIOPermissions, has the required permissions. In case the Demand
method fails, an exception of type SecurityException is thrown. It’s OK not to catch the exception and let
it be handled by the caller (code file DemandPermissionDemo/DemandPermissions.cs).

using System;
using System.Security;
using System.Security.Permissions;

[assembly: AllowPartiallyTrustedCallers()]

namespace Wrox.ProCSharp.Security
{
 [SecuritySafeCritical]
 public class DemandPermissions
 {
 public void DemandFileIOPermissions(string path)
 {
 var fileIOPermission = new
 FileIOPermission(PermissionState.Unrestricted);

c22.indd 626 30-01-2014 20:29:12

Code Access Security ❘ 627

 fileIOPermission.Demand();

 //...
 }
 }
}

FileIOPermission is contained within the System.Security.Permissions namespace, which is home to
the full set of permissions and also provides classes for declarative permission attributes and enumerations
for the parameters that are used to create permissions objects (for example, creating a FileIOPermission
specifying whether read-only or full access is needed).

To catch exceptions thrown by the CLR when code attempts to act contrary to its granted permissions,
you can catch the exception of the type SecurityException, which provides access to a number of useful
pieces of information, including a human-readable stack trace (SecurityException.StackTrace) and a
reference to the method that threw the exception (SecurityException.TargetSite). SecurityException
even provides you with the SecurityException.PermissionType property, which returns the type of
Permission object that caused the security exception to occur.

If you just use the .NET classes for file I/O, you don’t have to demand the FileIOPermission yourself, as
it is required by the .NET classes doing file I/O. However, you need to make the demand yourself if you
wrap native API calls such as CreateFileTransacted. In addition, you can use this mechanism to demand
custom permissions from the caller.

Using the Sandbox API to Host Unprivileged Code
By default, with a desktop application, the application has full trust. Using the Sandbox API, you can create
an app-domain that doesn’t have full trust.

To see the Sandbox API in action, first create a C# library project named RequireFileIOPermissionsDemo.
This library contains the class RequirePermissionsDemo with the method RequireFilePermissions.
This method returns true or false, depending on whether the code has file permissions. With the
implementation of this code, the File class creates a file whereby the path is passed with the argument
variable path. In case writing the file fails, an exception of type SecurityException is thrown. The File
class checks for the FileIOSecurity as described earlier with the DemandPermissonDemo sample. If the
security check fails, a SecurityException is thrown by the Demand method of the FileIOSecurity class.
Here, the SecurityException is caught to return false from the RequireFilePermissions method (code
file RequireFileIOPermissionDemo/RequirePermissionsDemo.cs):

using System;
using System.IO;
using System.Security;

[assembly: AllowPartiallyTrustedCallers()]

namespace Wrox.ProCSharp.Security
{
 [SecuritySafeCritical]
 public class RequirePermissionsDemo : MarshalByRefObject
 {
 public bool RequireFilePermissions(string path)
 {
 bool accessAllowed = true;

 try
 {
 StreamWriter writer = File.CreateText(path);
 writer.WriteLine("written successfully");

c22.indd 627 30-01-2014 20:29:12

628 ❘ CHAPTER 22 Security

 writer.Close();
 }
 catch (SecurityException)
 {
 accessAllowed = false;
 }

 return accessAllowed;
 }
 }
}

The hosting application where the Sandbox API is used in the project AppDomainHost, a simple C# console
application. The Sandbox API is an overload of the AppDomain.CreateDomain method that creates a
new app-domain in a sandbox. This method requires four parameters, including the name of the
app-domain, the evidence that is taken from the current app-domain, the AppDomainSetup information,
and a permission set. The permission set that is created only contains SecurityPermission with the flag
SecurityPermissionFlag.Execution so that the code is allowed to execute — nothing more. In the new
sandboxed app-domain, the object of type DemandPermissions in the assembly DemandPermission is
instantiated.

Calling across app-domains requires .NET Remoting. That’s why the class RequirePermissionsDemo
needs to derive from the base class MarshalByRefObject. Unwrapping the returned ObjectHandle returns
a transparent proxy to the object in the other app-domain to invoke the method RequireFilePermissions
(code file AppDomainHost/Program.cs):

using System;
using System.Runtime.Remoting;
using System.Security;
using System.Security.Permissions;

namespace Wrox.ProCSharp.Security
{
 class Program
 {
 static void Main()
 {
 var permSet = new PermissionSet(PermissionState.None);
 permSet.AddPermission(new SecurityPermission(
 SecurityPermissionFlag.Execution));

 AppDomainSetup setup = AppDomain.CurrentDomain.SetupInformation;
 AppDomain newDomain = AppDomain.CreateDomain("Sandboxed domain",
 AppDomain.CurrentDomain.Evidence, setup, permSet);
 ObjectHandle oh = newDomain.CreateInstance(
 "RequireFileIOPermissionsDemo",
 "Wrox.ProCSharp.Security.RequirePermissionsDemo");
 object o = oh.Unwrap();
 var io = o as RequirePermissionsDemo;
 string path = @"c:\temp\file.txt";
 Console.WriteLine("has {0}permissions to write to {1}",
 io.RequireFilePermissions(path) ? null : "no ", path);
 }
 }
}

After running the application, you can see from the result that the called assembly doesn’t have the
necessary permissions to create the file. If you add the FileIOPermissionSet to the permission set of the
created app-domain as shown in the following code change, writing the file succeeds:

c22.indd 628 30-01-2014 20:29:13

Distributing Code Using Certificates ❘ 629

 var permSet = new PermissionSet(PermissionState.None);
 permSet.AddPermission(new SecurityPermission(
 SecurityPermissionFlag.Execution));
 permSet.AddPermission(new FileIOPermission(
 FileIOPermissionAccess.AllAccess, "c:/temp"));

Implicit Permissions
When permissions are granted, there is often an implicit understanding that other permissions are also
granted. For example, if you assign the FileIOPermission for C:\, there is an implicit assumption access to
its subdirectories is also allowed.

To check whether a granted permission implicitly allows another permission as a subset, you can do this
(code file ImplicitPermissions/Program.cs):

 class Program
 {
 static void Main()
 {
 CodeAccessPermission permissionA =
 new FileIOPermission(FileIOPermissionAccess.AllAccess, @"C:\");
 CodeAccessPermission permissionB =
 new FileIOPermission(FileIOPermissionAccess.Read, @"C:\temp");
 if (permissionB.IsSubsetOf(permissionA))
 {
 Console.WriteLine("PermissionB is a subset of PermissionA");
 }
 }
 }

The output looks like this:

PermissionB is a subset of PermissionA

diSTRiBuTing CodE uSing CERTiFiCATES
You can make use of digital certificates and sign assemblies so that consumers of the software can verify the
identity of the software publisher. Depending on where the application is used, certificates may be required.
For example, with ClickOnce, the user installing the application can verify the certificate to trust the
publisher. Using Windows Error Reporting, Microsoft uses the certificate to determine which vendor to map
to the error report.

noTE ClickOnce is explained in Chapter 18, “Deployment.”

In a commercial environment, you obtain a certificate from a company such as Verisign or Thawte. The
advantage of buying a certificate from a supplier instead of creating your own is that it provides a high level
of trust in the authenticity of the certificate; the supplier acts as a trusted third party. For test purposes,
however, .NET includes a command-line utility you can use to create a test certificate. The process of
creating certificates and using them for publishing software is complex, but this section walks through a
simple example.

The example code is for a fictitious company called ABC Corporation. The company’s software product
(simple.exe) should be trusted. First, create a test certificate by typing the following command:

>makecert -sv abckey.pvk -r -n "CN=ABC Corporation" abccorptest.cer

c22.indd 629 30-01-2014 20:29:13

630 ❘ CHAPTER 22 Security

The command creates a test certificate under the name ABC Corporation and saves it to a file called
abccorptest.cer. The -sv abckey.pvk argument creates a key file to store the private key. When creating
the key file, you are asked for a password that you should remember.

After creating the certificate, you can create a software publisher test certificate with the Software Publisher
Certificate Test tool (Cert2spc.exe):

>cert2spc abccorptest.cer abccorptest.spc

With a certificate that is stored in an spc file and the key file that is stored in a pvk file, you can create a pfx
file that contains both with the pvk2pfx utility:

>pvk2pfx -pvk abckey.pvk -spc abccorptest.spc -pfx abccorptest.pfx

Now the assembly can be signed with the signtool.exe utility. The sign option is used for signing, -f
specifies the certificate in the pfx file, and -v is for verbose output:

>signtool sign -f abccorptest.pfx -v simple.exe

To establish trust for the certificate, install it with the Trusted Root Certification Authorities and the
Trusted Publishers using the Certificate Manager, certmgr, or the MMC snap-in Certificates. Then you can
verify the successful signing with the signtool:

>signtool verify -v -a simple.exe

SummARy
This chapter covered several aspects of security with .NET applications. Authentication and authorization
with role-based security enable you to programmatically determine which users are allowed to access
application features. Users are represented by identities and principals, classes that implement the interface
IIdentity and IPrincipal. Role verification can be done within the code but also in a simple way using
attributes.

A brief overview of cryptography demonstrated how the signing and encrypting of data enable the exchange
of keys in a secure way. .NET offers both symmetric and asymmetric cryptography algorithms.

With access control lists you can read and modify access to operating system resources such as files.
Programming ACLs is done similarly to the programming of secure pipes, registry keys, Active Directory
entries, and many other operating system resources.

If your applications are used in different regions and with different languages, in the next chapter you can
read about interop with native code.

c22.indd 630 30-01-2014 20:29:13

Interop
WHAT’s IN THIs CHAPTER?

➤➤ COM and .NET technologies
➤➤ Using COM objects from within .NET applications
➤➤ Using .NET components from within COM clients
➤➤ Platform invoke for invoking native methods

WROX.COM CODE DOWNlOADs FOR THIs CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ COMServer
➤➤ DotnetServer
➤➤ PInvokeSample

.NET AND COM
If you have Windows programs written prior to .NET, you probably don’t have the time and resources
to rewrite everything for .NET. Sometimes rewriting code is useful for refactoring or rethinking the
application architecture. A rewrite can also help with productivity in the long term, when adding new
features is easier to do with the new technology. However, there is no reason to rewrite old code just
because a new technology is available. You might have thousands of lines of existing, running code,
which would require too much effort to rewrite just to move it into the managed environment.

The same applies to Microsoft. With the namespace System.DirectoryServices, Microsoft hasn’t
rewritten the COM objects accessing the hierarchical data store; the classes inside this namespace
are wrappers accessing the ADSI COM objects instead. The same thing happens with System.Data
.OleDb, where the OLE DB providers that are used by classes from this namespace do have quite
complex COM interfaces.

23

c23.indd 631 30-01-2014 20:29:54

632 ❘ CHAPTER 23 Interop

The same issue may apply to your own solutions. If you have existing COM objects that should be used
from .NET applications, or the other way around, if you want to write .NET components that should be
used in old COM clients, this chapter is a starter for using COM interoperability (or interop).

If you don’t have existing COM components you want to integrate with your application, or old COM
clients that should use some .NET components, you can skip this chapter.

The major namespace for this chapter is System.Runtime.InteropServices.

COM is the predecessor technology to .NET. COM defines a component model in which components can
be written in different programming languages. A component written with C++ can be used from a Visual
Basic client. Components can also be used locally inside a process, across processes, or across the network.
Does this sound familiar? Of course, .NET has similar goals. However, the way in which these goals are
achieved is different. The COM concepts became increasingly complex to use and turned out not to be
extensible enough. .NET fulfills goals similar to those of COM but introduces new concepts to make your
job easier.

Even today, when using COM interop the prerequisite is to know COM. It doesn’t matter whether .NET
components are used by COM clients or whether COM components are used by .NET applications — you
must know COM. Therefore, this section compares COM and .NET functionality.

If you already have a good grasp of COM technologies, this section may refresh your COM knowledge.
Otherwise, it introduces you to the concepts of COM — which now, using .NET, you happily don’t have to
deal with anymore in your daily work. However, all the problems that existed with COM still apply when
COM technology is integrated into .NET applications.

COM and .NET do have many similar concepts, with very different approaches to using them, including the
following:

➤➤ Metadata
➤➤ Freeing memory
➤➤ Interfaces
➤➤ Method binding
➤➤ Data types
➤➤ Registration
➤➤ Threading
➤➤ Error handling
➤➤ Event handling

These concepts, plus the marshaling mechanism, are covered in the following sections.

Metadata
With COM, all information about the component is stored inside the type library. The type library
includes information such as names and IDs of interfaces, methods, and arguments. With .NET, all this
information can be found inside the assembly itself, as shown in Chapter 15, “Reflection,” and Chapter 19,
“Assemblies.” The problem with COM is that the type library is not extensible. With C++, IDL (Interface
Definition Language) files have been used to describe the interfaces and methods. Some of the IDL modifiers
cannot be found inside the type library, because Visual Basic (and the Visual Basic team was responsible for
the type library) couldn’t use these IDL modifiers. With .NET, this problem doesn’t exist because the .NET
metadata is extensible using custom attributes.

As a result of this behavior, some COM components have a type library and others don’t. When no type
library is available, a C++ header file can be used that describes the interfaces and methods. With .NET, it is
easier to use COM components that do have a type library, but it is also possible to use COM components
without a type library. In that case, it is necessary to redefine the COM interface by using C# code.

c23.indd 632 30-01-2014 20:29:54

.NET and COM ❘ 633

Freeing Memory
With .NET, memory is released by the garbage collector. This is completely different with COM. COM
relies on reference counts. The interface IUnknown, which is the interface required to be implemented by
every COM object, offers three methods. Two of these methods are related to reference counts. The method
AddRef must be called by the client if another interface pointer is needed; this method increments the
reference count. The method Release decrements the reference count, and if the resulting reference count is
0, the object destroys itself to free the memory.

Interfaces
Interfaces are the heart of COM. They distinguish between a contract used between the client and the
object, and the implementation. The interface (the contract) defines the methods that are offered by
the component and that can be used by the client. With .NET, interfaces play an important part, too. COM
distinguishes among three interface types: custom, dispatch, and dual.

Custom Interfaces
Custom interfaces derive from the interface IUnknown. A custom interface
defines the order of the methods in a virtual table (vtable), so that the client
can access the methods of the interface directly. This also means that the
client needs to know the vtable during development time, because binding to
the methods happens by using memory addresses. As a result, custom
interfaces cannot be used by scripting clients. Figure 23-1 shows the vtable of
the custom interface IMath, which provides the methods Add and Sub in
addition to the methods of the IUnknown interface.

Dispatch Interfaces
Because a scripting client (and earlier Visual Basic clients) doesn’t support custom interfaces, a
different interface type is needed. With dispatch interfaces, the interface available for the client is always
IDispatch. IDispatch derives from IUnknown and offers four methods in addition to the IUnknown
methods. The two most important methods are GetIDsOfNames and Invoke. As shown in Figure 23-2, with
a dispatch interface two tables are needed. The first one maps the method or property name to a dispatch
ID; the second one maps the dispatch ID to the implementation of the method or property.

QueryInterface

AddRef

Release

Add

Sub

FIguRE 23-1

FIguRE 23-2

QueryInterface

AddRef

Release

GetTypeInfoCount

GetIDsOfNames

Invoke

"Add"

"Sub"

47

48

47 pAdd

48 pSub

When the client invokes a method in the component, it first calls the method GetIDsOfNames, passing the
name of the method it wants to call. GetIDsOfNames makes a lookup into the name-to-ID table to return
the dispatch ID. This ID is used by the client to call the Invoke method.

c23.indd 633 30-01-2014 20:29:57

634 ❘ CHAPTER 23 Interop

NOTE Usually, the two tables for the IDispatch interface are stored inside the type
library, but this is not a requirement, and some components have the tables in other
places.

Dual Interfaces
As you can imagine, on the one hand, dispatch interfaces are a lot slower than custom interfaces. On the
other hand, custom interfaces cannot be used by scripting clients. A dual interface can solve this dilemma.
As shown in Figure 23-3, a dual interface is derived from IDispatch but provides the additional methods of
the interface directly in the vtable. Scripting clients can use the IDispatch interface to invoke the Add and
Sub methods, whereas clients aware of the vtable can call the Add and Sub methods directly.

FIguRE 23-3

QueryInterface

AddRef

Release

GetTypeInfoCount

GetIDsOfNames

Invoke

Add

Sub

"Add"

"Sub"

47

48

47 pAdd

48 pSub

Casting and QueryInterface
If a .NET class implements multiple interfaces, casts can be done to get one interface or another. With
COM, the interface IUnknown offers a similar mechanism with the method QueryInterface. As discussed
in the previous section, the interface IUnknown is the base interface of every interface, so QueryInterface
is available anyway.

Method Binding
How a client maps to a method is defined with the terms early binding and late binding. Late binding means
that the method to invoke is looked for during runtime. .NET uses the System.Reflection namespace to
make this possible (see Chapter 15). COM uses the IDispatch interface discussed earlier for late binding.
Late binding is possible with dispatch and dual interfaces.

With COM, early binding has two different options. One way of early binding, also known as vtable
binding, is to use the vtable directly — this is possible with custom and dual interfaces. The second option
for early binding is also known as ID binding. Here, the dispatch ID is stored inside the client code, so
during runtime only a call to Invoke is necessary. GetIdsOfNames is called during design time. With such
clients, it is important to remember that the dispatch ID must not be changed.

Data Types
For dual and dispatch interfaces, the data types that can be used with COM are restricted to a list of
automation-compatible data types. The Invoke method of the IDispatch interface accepts an array
of VARIANT data types. The VARIANT is a union of many different data types, such as BYTE, SHORT, LONG,
FLOAT, DOUBLE, BSTR, IUnknown*, IDispatch*, and so on. VARIANTs have been easy to use from Visual
Basic, but it was complex to use them from C++. .NET has the Object class instead of VARIANTs.

c23.indd 634 30-01-2014 20:29:59

.NET and COM ❘ 635

With custom interfaces, all data types available with C++ can be used with COM. However, this also
restricts the clients that can use this component to certain programming languages.

Registration
.NET distinguishes between private and shared assemblies, as discussed in Chapter 19. With COM, all
components are globally available through a registry configuration.

All COM objects have a unique identifier that consists of a 128-bit number, also known as a class ID
(CLSID). The COM API call to create COM objects, CoCreateInstance, just looks into the registry to
find the CLSID and the path to the DLL or EXE to load the DLL or launch the EXE and instantiate the
component.

Because such a 128-bit number cannot be easily remembered, many COM objects also have a ProgID. The
ProgID is an easy-to-remember name, such as Excel.Application, that just maps to the CLSID.

In addition to the CLSID, COM objects also have a unique identifier for each interface (IID) and for the type
library (typelib ID). Information in the registry is discussed in more detail later in the chapter.

Threading
COM uses apartment models to relieve the programmer of having to deal with threading issues. However,
this also adds some more complexity. Different apartment types have been added with different releases of the
operating system. This section discusses the single-threaded apartment and the multithreaded apartment.

NOTE Threading with .NET is discussed in Chapter 21, “Tasks, Threads, and
Synchronization.”

Single-Threaded Apartment
The single-threaded apartment (STA) was introduced with
Windows NT 3.51. With an STA, only one thread
(the thread that created the instance) is allowed to access the
component. However, it is legal to have multiple STAs inside
one process, as shown in Figure 23-4.

In this figure, the inner rectangles with the lollipop
represent COM components. Components and threads
(curved arrows) are surrounded by apartments. The outer
rectangle represents a process.

With STAs, there’s no need to protect instance variables
from multiple-thread access, because this protection is
provided by a COM facility, and only one thread accesses
the component.

A COM object that is not programmed with thread safety
marks the requirements for an STA in the registry with the
registry key ThreadingModel set to Apartment.

Multithreaded Apartment
Windows NT 4.0 introduced the concept of a multithreaded
apartment (MTA). With an MTA, multiple threads can
access the component simultaneously. Figure 23-5 shows a
process with one MTA and two STAs.

Process

STA1

STA2

FIguRE 23-4

c23.indd 635 30-01-2014 20:30:00

636 ❘ CHAPTER 23 Interop

A COM object programmed with thread safety in mind marks the requirement for an MTA in the registry
with the key ThreadingModel set to Free. The value Both is used for thread-safe COM objects that don’t
mind the apartment type.

NOTE Visual Basic 6.0 didn’t offer support for multithreaded apartments. If you’re
using COM objects that have been developed with VB6, it’s important to know that.

NOTE Windows 2000 introduced another apartment model, the Thread Neutral
Apartment (TNA). This apartment model is only used for COM components
configured as COM+ applications. The value Both for the ThreadingModel accepts any
of the three apartments: STA, MTA, and TNA.

Error Handling
With .NET, errors are generated by throwing exceptions. With the older COM technology, errors are
defined by returning HRESULT values with the methods. An HRESULT value of S_OK means that the method
was successful.

If a more detailed error message is offered by the COM component, the COM component implements the
interface ISupportErrorInfo, whereby not only an error message but also a link to a help file and

Process

MTA STA1

STA2

FIguRE 23-5

c23.indd 636 30-01-2014 20:30:01

.NET and COM ❘ 637

the source of the error are returned with an error information object on the return of the method. Objects
that implement ISupportErrorInfo are automatically mapped to more detailed error information with an
exception in .NET.

NOTE How to trace and log errors is discussed in Chapter 20, “Diagnostics.”

Events
.NET offers a callback mechanism with the C# keywords event and delegate (see Chapter 8, “Delegates,
Lambdas, and Events”). Figure 23-6 shows the COM event-handling architecture. With COM events, the
component has to implement the interface IConnectionPointContainer and one or more connection point
objects (CPOs) that implement the interface IConnectionPoint. The component also defines an outgoing
interface — ICompletedEvents in Figure 23-6 — that is invoked by the CPO. The client must implement
this outgoing interface in the sink object, which itself is a COM object. During runtime, the client queries
the server for the interface IConnectionPointContainer. With the help of this interface, the client asks
for a CPO by invoking the method FindConnectionPoint. The method FindConnectionPoint returns a
pointer to IConnectionPoint. This interface pointer is used by the client to call the Advise method, where
a pointer to the sink object is passed to the server. In turn, the component.

Client

Sink

Server

lConnectionPoint

lConnectionPointContainer

lConnectionPoint

lCompletedEvents

CPO

FIguRE 23-6

Later in this chapter, you learn how the .NET events and the COM events can be mapped so that COM
events can be handled by a .NET client and vice versa.

Marshaling
Data passed from .NET to the COM component and the other way around must be converted to the
corresponding representation. This mechanism is known as marshaling. What happens here depends on the
data type of the data that is passed: you have to differentiate between blittable and nonblittable data types.

Blittable data types have a common representation with both .NET and COM, and no conversion is needed.
Simple data types such as byte, short, int, long, and classes and arrays that contain only these simple
data types belong to the blittable data types. Arrays must be one-dimensional to be blittable.

A conversion is needed with nonblittable data types. The following table lists some of the nonblittable COM
data types with their .NET-related data types. Nonblittable types have a higher overhead because of the
conversion.

c23.indd 637 30-01-2014 20:30:03

638 ❘ CHAPTER 23 Interop

usINg A COM COMPONENT FROM A .NET ClIENT
To see how a .NET application can use a COM component, you first have to create a COM component.
Creating COM components is not possible with C# or Visual Basic 2012; you need either Visual Basic
6.0 or C++ (or any other language that supports COM). This chapter uses the Active Template Library
(ATL) and C++ with Visual Studio 2013.

Here we will begin by creating a simple COM component and use this from a runtime callable wrapper
(RCW). We will also use the component with the new C# 4 dynamic language extensions. Threading issues
are discussed, and finally COM connection points are mapped to .NET events.

NOTE A short note about building COM components with Visual Basic 11 and C#:
With Visual Basic 11 and C# 5 it is possible to build .NET components that can be
used as COM objects by using a wrapper that is the real COM component. It would
make no sense for a .NET component that is wrapped from a COM component to be
used by a .NET client with COM interop.

NOTE Because this is not a COM book, it does not discuss all aspects of the code but
only what you need to build the sample.

Creating a COM Component
To create a COM component with ATL and C++, create a new ATL Project. You can find the ATL Project
Wizard within the Visual C++ Projects group when you select File ➪ New Project. Set the name to
COMServer. Within the Application Settings, select Dynamic Link Library and click Finish.

NOTE Because a build step registers the COM component in the registry, which
requires admin privileges, Visual Studio should be started in elevated mode to write
ATL COM objects.

The ATL Project Wizard just creates the foundation for the server. A COM object is still needed. Add a
class in Solution Explorer and select ATL Simple Object. In the dialog that appears, enter COMDemo in the
Short name field. The other fields will be filled in automatically, but change the interface name to IWelcome
and the ProgID to COMServer.COMDemo (see Figure 23-7). Click Finish to create the stub code for the class
and the interface.

COM DATA TyPE .NET DATA TyPE

SAFEARRAY Array

VARIANT Object

BSTR String

IUnknown*
IDispatch*

Object

c23.indd 638 30-01-2014 20:30:03

Using a COM Component from a .NET Client ❘ 639

The COM component offers two interfaces so that you can see how QueryInterface is mapped from .NET,
and just three simple methods so that you can see how the interaction takes place. In class view, select the
interface IWelcome and add the method Greeting (see Figure 23-8) with the following parameters:

HRESULT Greeting([in] BSTR name, [out, retval] BSTR* message);

FIguRE 23-7

FIguRE 23-8

c23.indd 639 30-01-2014 20:30:03

640 ❘ CHAPTER 23 Interop

The IDL file COMServer.idl defines the interface for COM. Your wizard-generated code from the file
COMServer.idl should look similar to the following code. The unique identifiers (uuids) will differ.
The interface IWelcome defines the Greeting method. The brackets before the keyword interface define
some attributes for the interface. uuid defines the interface ID and dual marks the type of the interface
(code file COMServer/COMServer.idl):

[
 object,
 uuid(AF05C6E6-BF95-411F-B2FA-531D911C5C5C),
 dual,
 nonextensible,
 pointer_default(unique)
]
interface IWelcome : IDispatch{
 [id(1)] HRESULT Greeting([in] BSTR name, [out,retval] BSTR* message);
};

The IDL file also defines the content of the type library, which is the COM object (coclass) that implements
the interface IWelcome:

[
 uuid(8FCA0342-FAF3-4481-9D11-3BC613A7F5C6),
 version(1.0),
]
library COMServerLib
{
 importlib("stdole2.tlb");
 [
 uuid(9015EDE5-D106-4005-9998-DE44849EFA3D)
]
 coclass COMDemo
 {
 [default] interface IWelcome;
 };
};

NOTE With custom attributes, you can change the name of the class and interfaces
that are generated by a .NET wrapper class. You just have to add the attribute custom
with the identifier 0F21F359-AB84–41e8–9A78–36D110E6D2F9, and the name under
which it should appear within .NET.

Add the custom attribute with the same identifier and the name Wrox.ProCSharp.Interop.Server
.IWelcome to the header section of the IWelcome interface. Add the same attribute with a corresponding
name to the coclass COMDemo:

[
 object,
 uuid(EB1E5898-4DAB-4184-92E2-BBD8F9341AFD),
 dual,
 nonextensible,
 pointer_default(unique),
 custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9,
 "Wrox.ProCSharp.Interop.Server.IWelcome")
]
interface IWelcome : IDispatch{
 [id(1)] HRESULT Greeting([in] BSTR name, [out,retval] BSTR* message);
};

c23.indd 640 30-01-2014 20:30:03

Using a COM Component from a .NET Client ❘ 641

[
 uuid(8C123EAE-F567-421F-ACBE-E11F89909160),
 version(1.0),
]
library COMServerLib
{
 importlib("stdole2.tlb");
 [
 uuid(ACB04E72-EB08-4D4A-91D3-34A5DB55D4B4),
 custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9,
 "Wrox.ProCSharp.Interop.Server.COMDemo")
]
 coclass COMDemo
 {
 [default] interface IWelcome;
 };
};

Now add a second interface to the file COMServer.idl. You can copy the header section of the IWelcome
interface to the header section of the new IMath interface, but be sure to change the unique identifier that is
defined with the uuid keyword. You can generate such an ID with the guidgen utility. The interface IMath
offers the methods Add and Sub:

// IMath
[
 object,
 uuid(2158751B-896E-461d-9012-EF1680BE0628),
 dual,
 nonextensible,
 pointer_default(unique),
 custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9,
 "Wrox.ProCSharp.Interop.Server.IMath")
]
interface IMath: IDispatch
{
 [id(1)] HRESULT Add([in] LONG val1, [in] LONG val2,
 [out, retval] LONG* result);
 [id(2)] HRESULT Sub([in] LONG val1, [in] LONG val2,
 [out, retval] LONG* result);
};

The coclass COMDemo must also be changed so that it implements both the interfaces IWelcome and Math. The
IWelcome interface is the default interface:

 importlib("stdole2.tlb");
 [
 uuid(ACB04E72-EB08-4D4A-91D3-34A5DB55D4B4),
 helpstring("COMDemo Class"),
 custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9,
 "Wrox.ProCSharp.Interop.Server.COMDemo")
]
 coclass COMDemo
 {
 [default] interface IWelcome;
 interface IMath;
 };

Now, you can set the focus away from the IDL file toward the C++ code. In the file COMDemo.h is the class
definition of the COM object. The class CCOMDemo uses multiple inheritances to derive from the template
classes CComObjectRootEx, CComCoClass, and IDisplatchImpl. The CComObjectRootEx class offers an
implementation of the IUnknown interface functionality such as implementation of the AddRef and Release

c23.indd 641 30-01-2014 20:30:03

642 ❘ CHAPTER 23 Interop

methods. The CComCoClass class creates a factory that instantiates objects of the template argument, which
here is CComDemo. IDispatchImpl offers an implementation of the methods from the IDispatch interface.

With the macros that are surrounded by BEGIN_COM_MAP and END_COM_MAP, a map is created to define all
the COM interfaces that are implemented by the COM class. This map is used by the implementation of the
QueryInterface method (code file COMServer/COMDemo.h):

class ATL_NO_VTABLE CCOMDemo:
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CCOMDemo, &CLSID_COMDemo>,
 public IDispatchImpl<IWelcome, &IID_IWelcome, &LIBID_COMServerLib,
 /*wMajor =*/ 1, /*wMinor =*/ 0>
{
public:
 CCOMDemo()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_COMDEMO)

BEGIN_COM_MAP(CCOMDemo)
 COM_INTERFACE_ENTRY(IWelcome)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

 DECLARE_PROTECT_FINAL_CONSTRUCT()

 HRESULT FinalConstruct()
 {
 return S_OK;
 }

 void FinalRelease()
 {
 }

public:
 STDMETHOD(Greeting)(BSTR name, BSTR* message);
};

OBJECT_ENTRY_AUTO(__uuidof(COMDemo), CCOMDemo)

With this class definition, you have to add the second interface, IMath, as well as the methods that are
defined with the IMath interface:

class ATL_NO_VTABLE CCOMDemo:
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CCOMDemo, &CLSID_COMDemo>,
 public IDispatchImpl<IWelcome, &IID_IWelcome, &LIBID_COMServerLib,
 /*wMajor =*/ 1, /*wMinor =*/ 0>
 public IDispatchImpl<IMath, &IID_IMath, &LIBID_COMServerLib, 1, 0>
{
public:
 CCOMDemo()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_COMDEMO)

c23.indd 642 30-01-2014 20:30:03

Using a COM Component from a .NET Client ❘ 643

BEGIN_COM_MAP(CCOMDemo)
 COM_INTERFACE_ENTRY(IWelcome)
 COM_INTERFACE_ENTRY(IMath)
 COM_INTERFACE_ENTRY2(IDispatch, IWelcome)
END_COM_MAP()

 DECLARE_PROTECT_FINAL_CONSTRUCT()

 HRESULT FinalConstruct()
 {
 return S_OK;
 }

 void FinalRelease()
 {
 }

public:
 STDMETHOD(Greeting)(BSTR name, BSTR* message);
 STDMETHOD(Add)(long val1, long val2, long* result);
 STDMETHOD(Sub)(long val1, long val2, long* result);
};

OBJECT_ENTRY_AUTO(__uuidof(COMDemo), CCOMDemo)

Now you can implement the three methods in the file COMDemo.cpp with the following code. The CComBSTR
is an ATL class that makes it easier to deal with BSTRs. In the Greeting method, only a welcome message is
returned, which adds the name passed in the first argument to the message that is returned. The Add method
just does a simple addition of two values, and the Sub method does a subtraction and returns the result
(code file COMServer/COMDemo.cpp):

STDMETHODIMP CCOMDemo::Greeting(BSTR name, BSTR* message)
{
 CComBSTR tmp("Welcome, ");
 tmp.Append(name);
 *message = tmp;
 return S_OK;
}

STDMETHODIMP CCOMDemo::Add(LONG val1, LONG val2, LONG* result)
{
 *result = val1 + val2;
 return S_OK;
}

STDMETHODIMP CCOMDemo::Sub(LONG val1, LONG val2, LONG* result)
{
 *result = val1 - val2;
 return S_OK;
}

Now you can build the component. The build process also configures the component in the registry.

Creating a Runtime Callable Wrapper
To use the COM component from within .NET, you must create a runtime callable wrapper (RCW). Using
the RCW, the .NET client sees a .NET object instead of the COM component; there is no need to deal
with the COM characteristics because this is done by the wrapper. An RCW hides the IUnknown and
IDispatch interfaces (see Figure 23-9) and deals itself with the reference counts of the COM object.

c23.indd 643 30-01-2014 20:30:04

644 ❘ CHAPTER 23 Interop

The RCW can be created by using the command-line utility tlbimp or by using Visual Studio. Starting the
command:

tlbimp COMServer.dll /out:Interop.COMServer.dll

creates the file Interop.COMServer.dll, which contains a .NET assembly with the wrapper class. In this
generated assembly, you can find the namespace COMWrapper with the class CCOMDemoClass and the
interfaces CCOMDemo, IMath, and IWelcome. The name of the namespace can be changed by using options
of the tlbimp utility. The option /namespace enables you to specify a different namespace, and with
/asmversion you can define the version number of the assembly.

NOTE Another important option of this command-line utility is /keyfile, which is
used to assign a strong name to the generated assembly. Strong names are discussed in
Chapter 19, “Assemblies.”

An RCW can also be created by using Visual Studio. To create a simple sample application, create a C#
console project. In Solution Explorer, add a reference to the COM server by selecting the COM tab in the
Add Reference dialog, and scroll down to the entry COMServerLib. Here are listed all COM objects that
are configured in the registry. Selecting a COM component from the list creates an RCW class. With Visual
Studio 2012, this wrapper class can be created in the main assembly of the project by setting the property
Embed Interop Types to true, which is the default. Setting it to false creates a separate interop assembly
that needs to be deployed with the application.

using the RCW
After creating the wrapper class, you can write the code for the application to instantiate and access the
component. Because of the custom attributes in the C++ file, the generated namespace of the RCW class is
Wrox.ProCSharp.COMInterop.Server. Add this namespace, as well as the namespace System.Runtime
.InteropServices, to the declarations. From the namespace System.Runtime.InteropServices, the
Marshal class will be used to release the COM object (code file DotnetClient/Program.cs):

using System;
using System.Runtime.InteropServices;
using Wrox.ProCSharp.Interop.Server

.NET

Client

COM

Object

RCW

IMath

IDispatch

IUnknown

IWelcome

IMath
IWelcome

FIguRE 23-9

c23.indd 644 30-01-2014 20:30:05

Using a COM Component from a .NET Client ❘ 645

namespace Wrox.ProCSharp.Interop.Client
{
 class Program
 {
 [STAThread]
 static void Main()
 {

Now the COM component can be used similarly to a .NET class. obj is a variable of type COMDemo
. COMDemo is a .NET interface that offers the methods of both the IWelcome and IMath interfaces. However,
it is also possible to cast to a specific interface such as IWelcome. With a variable that is declared as type
IWelcome, the method Greeting can be called:

 var obj = new COMDemo();
 IWelcome welcome = obj;
 Console.WriteLine(welcome.Greeting("Stephanie"));

NOTE Although COMDemo is an interface, you can instantiate new objects of type
COMDemo. Unlike normal interfaces, you can do this with wrapped COM interfaces.

If the object offers multiple interfaces, as it does in this case, a variable of the other interface can
be declared; and by using a simple assignment with the cast operator, the wrapper class does a
QueryInterface with the COM object to return the second interface pointer. With the I Math variable, the
methods of the IMath interface can be called:

 IMath math;
 math = (IMath)welcome;
 int x = math.Add(4, 5);
 Console.WriteLine(x);

If the COM object should be released before the garbage collector cleans up the object, the static method
Marshal.ReleaseComObject invokes the Release method of the component so that the component can
destroy itself and free up memory:

 Marshal.ReleaseComObject(math);
 }
 }
}

NOTE Earlier you learned that the COM object is released as soon as the reference
count is 0. Marshal.ReleaseComObject decrements the reference count by 1 by
 invoking the Release method. Because the RCW makes just one call to AddRef to
increment the reference count, a single call to Marshal.ReleaseComObject is enough
to release the object, regardless of how many references to the RCW you keep.

After releasing the COM object using Marshal.ReleaseComObject, you may not use any variable that
references the object. In the example, the COM object is released by using the variable math. The variable
welcome, which references the same object, cannot be used after releasing the object. Otherwise, you will
get an exception of type InvalidComObjectException.

c23.indd 645 30-01-2014 20:30:05

646 ❘ CHAPTER 23 Interop

NOTE Releasing COM objects when they are no longer needed is extremely important.
COM objects make use of the native memory heap, whereas .NET objects make use of
the managed memory heap. The garbage collector only deals with managed memory.

As you can see, with a runtime callable wrapper, a COM component can be used similarly to a .NET object.

using the COM server with Dynamic language Extensions
Since version 4, C# includes an extension for using dynamic languages from C#. This is also an advantage
for using COM servers that offer the IDispatch interface. As you read earlier in the “Dispatch Interfaces”
section, this interface is resolved at runtime with the methods GetIdsOfNames and Invoke. With the
dynamic keyword and the help of a COM binder that is used behind the scenes, the COM component can
be called without creating an RCW object.

Declaring a variable of type dynamic and assigning a COM object to it uses the COM binder, and you can
invoke the methods of the default interface as shown. You can create an instance of the COM object without
using an RCW by getting the Type object using Type.GetTypeFromProgID, and instantiating the COM object
with the Activator.CreateInstance method. You don’t get IntelliSense with the dynamic keyword, but
you can use the optional parameters that are very common with COM (code file DynamicDotnetClient/
Program.cs):

using System;

namespace Wrox.ProCSharp.Interop
{
 class Program
 {
 static void Main()
 {
 Type t = Type.GetTypeFromProgID("COMServer.COMDemo");
 dynamic o = Activator.CreateInstance(t);
 Console.WriteLine(o.Greeting("Angela"));
 }
 }
}

NOTE The dynamic language extensions of C# are explained in Chapter 12, “Dynamic
Language Extensions.”

Threading Issues
As discussed earlier in this chapter, a COM component marks the apartment (STA or MTA) in which it
should reside, based on whether or not it is implemented as thread-safe. However, the thread has to join an
apartment. What apartment the thread should join can be defined with the [STAThread] and [MTAThread]
attributes, which can be applied to the Main method of an application. The attribute [STAThread] means
that the thread joins an STA, whereas the attribute [MTAThread] means that the thread joins an MTA.
Joining an MTA is the default if no attribute is applied.

It is also possible to set the apartment state programmatically with the ApartmentState property of the
Thread class. The ApartmentState property enable you to set a value from the ApartmentState
enumeration. ApartmentState has the possible values STA and MTA (and Unknown if it wasn’t set). Be aware

c23.indd 646 30-01-2014 20:30:05

Using a COM Component from a .NET Client ❘ 647

that the apartment state of a thread can be set only once. If it is set a second time, the second setting is
ignored.

NOTE What happens if the thread chooses a different apartment from the apartments
supported by the component? The correct apartment for the COM component is
created automatically by the COM runtime, but performance decreases if apartment
boundaries are crossed while calling the methods of a component.

Adding Connection Points
To see how COM events can be handled in a .NET application, the COM component must be extended.
First, you have to add another interface to the interface definition file COMDemo.idl. The interface
_ICompletedEvents is implemented by the client, which is the .NET application, and called by the
component. In this example, the method Completed is called by the component when the calculation is
ready. Such an interface is also known as an outgoing interface. An outgoing interface must be either a
dispatch or a custom interface. Dispatch interfaces are supported by all clients. The custom attribute with
the ID 0F21F359-AB84–41e8–9A78–36D110E6D2F9 defines the name of the interface that will be created
in the RCW. The outgoing interface must also be written to the interfaces supported by the component
inside the coclass section, and marked as a source interface (code file COMServer/COMServer.idl):

library COMServerLib
{
 importlib("stdole2.tlb");
 [
 uuid(5CFF102B-0961–4EC6–8BB4–759A3AB6EF48),
 helpstring("_ICompletedEvents Interface"),
 custom(0F21F359-AB84–41e8–9A78–36D110E6D2F9,
 "Wrox.ProCSharp.Interop.Server.ICompletedEvents"),
]
 dispinterface _ICompletedEvents
 {
 properties:
 methods:
 [id(1)] void Completed(void);
 };
 [
 uuid(ACB04E72-EB08-4D4A-91D3-34A5DB55D4B4),
 helpstring("COMDemo Class")
 custom(0F21F359-AB84–41e8–9A78–36D110E6D2F9,
 "Wrox.ProCSharp.COMInterop.Server.COMDemo")
]
 coclass COMDemo
 {
 [default] interface IWelcome;
 interface IMath;
 [default, source] dispinterface _ICompletedEvents;
 };

You can use a wizard to create an implementation that fires the event back to the client. Open the class view,
select the class CComDemo, open the context menu, and select Add ➪ Add Connection Point ... to start the
Implement Connection Point Wizard (see Figure 23-10). Select the source interface ICompletedEvents
for implementation with the connection point.

c23.indd 647 30-01-2014 20:30:05

648 ❘ CHAPTER 23 Interop

The wizard creates the proxy class CProxy_ICompletedEvents to fire the events to the client, and the class
CCOMDemo is changed. The class now inherits from IConnectionPointContainerImpl and the proxy
class. The interface IConnectionPointContainer is added to the interface map, and a connection point
map is added to the source interface _ICompletedEvents (code file COMServer/COMDemo.h):

class ATL_NO_VTABLE CCOMDemo:
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CCOMDemo, &CLSID_COMDemo>,
 public IDispatchImpl<IWelcome, &IID_IWelcome, &LIBID_COMServerLib,
 /*wMajor =*/ 1, /*wMinor =*/ 0>,
 public IDispatchImpl<IMath, &IID_IMath, &LIBID_COMServerLib, 1, 0>,
 public IConnectionPointContainerImpl<CCOMDemo>,
 public CProxy_ICompletedEvents<CCOMDemo>
{
public:
//...
BEGIN_COM_MAP(CCOMDemo)
 COM_INTERFACE_ENTRY(IWelcome)
 COM_INTERFACE_ENTRY(IMath)
 COM_INTERFACE_ENTRY2(IDispatch, IWelcome)
 COM_INTERFACE_ENTRY(IConnectionPointContainer)
END_COM_MAP()
//...
public:
 BEGIN_CONNECTION_POINT_MAP(CCOMDemo)
 CONNECTION_POINT_ENTRY(__uuidof(_ICompletedEvents))
 END_CONNECTION_POINT_MAP()
};

Finally, the method Fire_Completed from the proxy class can be called inside the methods Add and Sub in
the file COMDemo.cpp:

FIguRE 23-10

c23.indd 648 30-01-2014 20:30:06

Using a .NET Component from a COM Client ❘ 649

STDMETHODIMP CCOMDemo::Add(LONG val1, LONG val2, LONG* result)
{
 *result = val1 + val2;
 Fire_Completed();
 return S_OK;
}

STDMETHODIMP CCOMDemo::Sub(LONG val1, LONG val2, LONG* result)
{
 *result = val1 - val2;
 Fire_Completed();
 return S_OK;
}

After rebuilding the COM DLL, you can change the .NET client to use these COM events just like a normal
.NET event (code file DotnetClient/Program.cs):

 static void Main()
 {
 var obj = new COMDemo();

 IWelcome welcome = obj;
 Console.WriteLine(welcome.Greeting("Stephanie"));

 obj.Completed += () => Console.WriteLine("Calculation completed");

 IMath math = (IMath)welcome;
 int result = math.Add(3, 5);
 Console.WriteLine(result);

 Marshal.ReleaseComObject(math);
 }

As you can see, the RCW offers automatic mapping from COM events to .NET events. COM events can be
used similarly to .NET events in a .NET client.

usINg A .NET COMPONENT FROM A COM ClIENT
So far, you have seen how to access a COM component from a .NET client. Equally interesting is finding a
solution for accessing .NET components on an old COM client that is using Visual Basic 6.0, or C++ with
Microsoft Foundation Classes (MFC) or the Active Template Library (ATL).

In this section, a COM object is defined with .NET code that is used by a COM client with the help of a
COM callable wrapper (CCW). By using the object from a COM client, you will see how to create a type
library from the .NET assembly, use different .NET attributes to specify COM interop behaviors, and
register the .NET assembly as a COM component. Then, a COM client with C++ is created to use the CCW.
Finally, the .NET component is expanded to offer COM connection points.

COM Callable Wrapper
If you want to access a COM component with a .NET client, you have to work with an RCW. To access a
.NET component from a COM client application, you must use a CCW. Figure 23-11 shows the CCW that
wraps a .NET class and offers COM interfaces that a COM client expects to use. The CCW offers interfaces
such as IUnknown, IDispatch, and others. It also offers interfaces such as IConnectionPointContainer and
IConnectionPoint for events. Of course, the CCW also provides the custom interfaces that are defined by the
.NET class such as IWelcome and IMath. A COM client gets what it expects from a COM object — although
a .NET component operates behind the scenes. The wrapper deals with methods such as AddRef, Release,
and QueryInterface from the IUnknown interface, whereas in the .NET object you can count on the
garbage collector without the need to deal with reference counts.

c23.indd 649 30-01-2014 20:30:06

650 ❘ CHAPTER 23 Interop

FIguRE 23-11

CCW
COM

Client

.NET
Object

IUnknown

IDispatch

IMath

IWelcome

IWelcome

IMath

Creating a .NET Component
In the following example, you build the same functionality into a .NET class that you have previously
built into a COM component. Start by creating a C# class library, and name it DotNetServer. Then add
the interfaces IWelcome and IMath, and the class DotNetComponent that implements these interfaces. The
attribute ComVisible(true) makes the class and interfaces available for COM (code file DotnetServer/
DotnetServer.cs):

using System;
using System.Runtime.InteropServices;

namespace Wrox.ProCSharp.Interop.Server
{
 [ComVisible(true)]
 public interface IWelcome
 {
 string Greeting(string name);
 }

 [ComVisible(true)]
 public interface IMath
 {
 int Add(int val1, int val2);
 int Sub(int val1, int val2);
 }

 [ComVisible(true)]
 public class DotnetComponent: IWelcome, IMath
 {
 public DotnetComponent()
 {
 }

 public string Greeting(string name)
 {
 return "Hello " + name;
 }

 public int Add(int val1, int val2)
 {
 return val1 + val2;
 }

 public int Sub(int val1, int val2)
 {

c23.indd 650 30-01-2014 20:30:07

Using a .NET Component from a COM Client ❘ 651

 return val1 - val2;
 }
 }
}

After building the project, you can create a type library.

Creating a Type library
A type library can be created by using the command-line utility tlbexp. The command:

tlbexp DotnetServer.dll

creates the type library DotnetServer.tlb. You can view the type library with the utility OLE/COM
Object Viewer, oleview.exe. This tool is part of the Microsoft SDK, and you can start it from the Visual
Studio 2012 command prompt. Select File ➪ View TypeLib to open the type library. Now you can see the
interface definition, which is very similar to the interfaces created with the COM server earlier.

The name of the type library is created from the name of the assembly. The header of the type library also
defines the full name of the assembly in a custom attribute, and all the interfaces are forward declared
before they are defined:

// Generated .IDL file (by the OLE/COM Object Viewer)
//
// typelib filename: <could not determine filename>

[
 uuid(EEA130ED-40E1-4BF8-B06E-6CCA0FD21788),
 version(1.0),
 custom(90883F05-3D28-11D2-8F17-00A0C9A6186D, "DotnetServer, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=null")
]
library DotnetServer
{
 // TLib : // TLib : mscorlib.dll :
 // {BED7F4EA-1A96-11D2-8F08-00A0C9A6186D}
 importlib("mscorlib.tlb");
 // TLib : OLE Automation : {00020430-0000-0000-c260-000000000046}
 importlib("stdole2.tlb");

 // Forward declare all types defined in this typelib
 interface IWelcome;
 interface IMath;
 interface _DotnetComponent;

In the following generated code, you can see that the interfaces IWelcome and IMath are defined as COM
dual interfaces. All the methods that have been declared in the C# code are listed here in the type library
definition. The parameters changed; the .NET types are mapped to COM types (for example, from the
String class to the BSTR type), and the signature is changed, so that an HRESULT is returned. Because
the interfaces are dual, dispatch IDs are also generated:

 [
 odl,
 uuid(6AE7CB9C-7471-3B6A-9E13-51C2294266F0),
 version(1.0),
 dual,
 oleautomation,
 custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,
 "Wrox.ProCSharp.Interop.Server.IWelcome")
]

c23.indd 651 30-01-2014 20:30:07

652 ❘ CHAPTER 23 Interop

 interface IWelcome : IDispatch {
 [id(0x60020000)]
 HRESULT Greeting(
 [in] BSTR name,
 [out, retval] BSTR* pRetVal);
 };

 [
 odl,
 uuid(AED00E6F-3A60-3EB8-B974-1556096350CB),
 version(1.0),
 dual,
 oleautomation,
 custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,
 "Wrox.ProCSharp.Interop.Server.IMath")

]
 interface IMath : IDispatch {
 [id(0x60020000)]
 HRESULT Add(
 [in] long val1,
 [in] long val2,
 [out, retval] long* pRetVal);
 [id(0x60020001)]
 HRESULT Sub(
 [in] long val1,
 [in] long val2,
 [out, retval] long* pRetVal);
 };

The coclass section marks the COM object itself. The uuid in the header is the CLSID used to instantiate
the object. The class DotnetComponent supports the interfaces _DotnetComponent, _Object, IWelcome,
and IMath. _Object is defined in the file mscorlib.tlb included in an earlier code section and offers the
methods of the base class Object. The default interface of the component is _DotnetComponent, which is
defined after the coclass section as a dispatch interface. In the interface declaration, it is marked as dual,
but because no methods are included, it is a dispatch interface. With this interface, it is possible to access all
methods of the component using late binding:

 [
 uuid(2F1E78D4-1147-33AC-9233-C0F51121DAAA),
 version(1.0),
 custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,
 "Wrox.ProCSharp.Interop.Server.DotnetComponent")
]
 coclass DotnetComponent {
 [default] interface _DotnetComponent;
 interface _Object;
 interface IWelcome;
 interface IMath;
 };

 [
 odl,
 uuid(2B36C1BF-61F7-3E84-87B2-EAB52144046D),
 hidden,
 dual,
 oleautomation,
 custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,
 "Wrox.ProCSharp.Interop.Server.DotnetComponent")
]
 interface _DotnetComponent : IDispatch {
 };
};

c23.indd 652 30-01-2014 20:30:07

Using a .NET Component from a COM Client ❘ 653

There are quite a few defaults for generating the type library. However, often it is advantageous to change
some of the default .NET to COM mappings. This can be done with several attributes in the System
.Runtime.InteropServices namespaces.

COM Interop Attributes
Applying attributes from the namespace System.Runtime.InteropServices to classes, interfaces, or methods
enables you to change the implementation of the CCW. The following table describes these attributes.

ATTRIBuTE DEsCRIPTION

Guid This attribute can be assigned to the assembly, interfaces, and classes. Using the Guid
as an assembly attribute defines the type-library ID, applying it to interfaces defines the
interface ID (IID), and setting the attribute to a class defines the class ID (CLSID). You can
create the unique IDs that must be defined with this attribute with the utility guidgen.
The CLSID and type-library IDs are changed automatically with every build. If you don’t
want that behavior, you can change it by using this attribute. The IID is changed only if
the signature of the interface changes—for example, if a method is added or removed, or
some parameters are changed. Because with COM the IID should change with every new
version of this
interface, this is a very good default behavior, and usually there’s no need to apply the
IID with the Guid attribute. The only time you want to apply a fixed IID for an interface is
when the .NET interface is an exact representation of an existing COM interface and the
COM
client already expects this identifier.

ProgId This attribute can be applied to a class to specify what name should be used when the
object is configured in the registry.

ComVisible In the Assembly Information settings of the Project properties you can configure whether
all the types of the assembly should be visible by COM. The default setting is false, which
is a useful default that makes it necessary to explicitly mark the classes, interfaces, and
delegates with the ComVisible attribute to create a COM representation. If the default
setting is changed to make all types visible by COM, you can set the ComVisible attri-
bute to false for the types for which a COM representation should not be created.

InterfaceType This attribute, if set to a ComInterfaceType enumeration value, enables you
to modify the default dual interface type that is created for .NET interfaces.
ComInterfaceType has the values InterfaceIsDual, InterfaceIsIDispatch, and
InterfaceIsIUnknown. To apply a custom interface type to a .NET interface, set the
attribute like this: InterfaceType(ComInterfaceType.InterfaceIsIUnknown).

ClassInterface This attribute enables you to modify the default dispatch interface that is created for a
class. ClassInterface accepts an argument of a ClassInterfaceType enumeration.
The possible values are AutoDispatch, AutoDual, and None. In the previous example,
the default is AutoDispatch because a dispatch interface is created. If the class
should be accessible only by the defined interfaces, apply the attribute
ClassInterface(ClassInterfaceType.None) to the class.

DispId This attribute can be used with dual and dispatch interfaces to define the DispId of
methods and properties.

In Out With COM the direction of parameter types can be specified. Use the attribute In if the
parameter should be sent to the component. For returning a value from the parameter,
specify Out. For using both directions, use both attributes In, Out.

Optional Parameters of COM methods may be optional. You can mark optional parameters with
the Optional attribute.

c23.indd 653 30-01-2014 20:30:08

654 ❘ CHAPTER 23 Interop

Now you can change the C# code to specify a dual interface type for the IWelcome interface and a custom
interface type for the IMath interface. With the class DotnetComponent, the attribute ClassInterface
with the argument ClassInterfaceType.None specifies that no separate COM interface will be
generated. The attributes ProgId and Guid specify a ProgID and a GUID, respectively (code file
DotnetServer/DotnetServer.cs):

 [InterfaceType(ComInterfaceType.InterfaceIsDual)]
 [ComVisible(true)]
 public interface IWelcome
 {
 [DispId(60040)]
 string Greeting(string name);
 }

 [InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
 [ComVisible(true)]
 public interface IMath
 {
 int Add(int val1, int val2);
 int Sub(int val1, int val2);
 }

 [ClassInterface(ClassInterfaceType.None)]
 [ProgId("Wrox.DotnetComponent")]
 [Guid("77839717-40DD-4876-8297-35B98A8402C7")]
 [ComVisible(true)]
 public class DotnetComponent: IWelcome, IMath
 {
 public DotnetComponent()
 {
 }

Rebuilding the class library and the type library changes the interface definition. You can verify this with
OleView.exe. IWelcome is now a dual interface, IMath a custom interface that derives from IUnknown
instead of IDispatch, and the coclass section no longer has a _DotnetComponent interface.

COM Registration
Before the .NET component can be used as a COM object, it is necessary to configure it in the registry.
Also, if you don’t want to copy the assembly into the same directory as the client application, it is necessary
to install the assembly in the global assembly cache. The global assembly cache itself is discussed in
Chapter 19.

To install the assembly in the global assembly cache, you must sign it with a strong name (using Visual
Studio 2013, you can define a strong name in properties of the solution). Then you can register the assembly
in the global assembly cache:

gacutil -i DotnetServer.dll

Now you can use the regasm utility to configure the component inside the registry. The option /tlb
extracts the type library and configures the type library in the registry:

regasm DotnetServer.dll /tlb

The information for the .NET component that is written to the registry is as follows. The All COM
configuration is in the hive HKEY_CLASSES_ROOT (HKCR). The key of the ProgID (in this example, it is
Wrox.DotnetComponent) is written directly to this hive, along with the CLSID.

c23.indd 654 30-01-2014 20:30:08

Using a .NET Component from a COM Client ❘ 655

The key HKCR\CLSID\{CLSID}\InProcServer32 has the following entries:

➤➤ mscoree.dll — Represents the CCW. This is a real COM object that is responsible for hosting the
.NET component. This COM object accesses the .NET component to offer COM behavior for
the client. The file mscoree.dll is loaded and instantiated from the client via the normal COM
instantiation mechanism.

➤➤ ThreadingModel=Both — This is an attribute of the mscoree.dll COM object. This component is
programmed in a way that offers support both for STA and MTA.

➤➤ Assembly=DotnetServer, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=5cd57c93b4d9c41a — The value of the Assembly stores the assembly full name,
including the version number and the public key token, so that the assembly can be uniquely
identified. The assembly registered here will be loaded by mscoree.dll.

➤➤ Class=Wrox.ProCSharp.Interop.Server.DotnetComponent — The name of the class is also used
by mscoree.dll. This is the class that will be instantiated.

➤➤ RuntimeVersion=v4.0.20826 — The registry entry RuntimeVersion specifies the version of the
.NET runtime that will be used to host the .NET assembly.

In addition to the configurations shown here, all the interfaces and the type library are configured with their
identifiers, too.

NOTE If the .NET component was developed with the platform target Any CPU
(which is the Visual Studio 2013 default setting for libraries), it can be configured as
a 32-bit or 64-bit COM component. Starting regasm from the VS2013 x86 Native
Tools Command Prompt uses regasm from the directory <windows>\Microsoft
.NET\Framework\v4.0.30319. Starting regasm from the VS2013 x64 Native Tools
Command Prompt (in case you have a 64-bit Windows) uses regasm from the directory
<windows>\Microsoft.NET\Framework64\v4.0.30319. Depending on which tool
is used, the component is registered with either HKCR\WOW6432Node\CLSID or HKCR\
CLSID.

Creating a COM Client Application
Now it’s time to create a COM client. Start by creating a simple C++ Win32 Console application project,
and name it COMClient. You can leave the default options selected and click Finish in the Project Wizard.

At the beginning of the file COMClient.cpp, add a preprocessor command to include the <iostream>
header file and to import the type library that you created for the .NET component. The import statement
creates a “smart pointer” class that makes it easier to deal with COM objects. During a build process, the
import statement creates .tlh and .tli files that you can find in the debug directory of your project, which
includes the smart pointer class. Then add using namespace directives to open the namespace std,
which will be used to write output messages to the console, and the namespace DotnetServer that is
created inside the smart pointer class (code file COMClient\COMClient.cpp):

// COMClient.cpp: Defines the entry point for the console application.
//

#include "stdafx.h"
#include <iostream>
#import "./DotNetServer/bin/debug/DotnetServer.tlb" named_guids

using namespace std;
using namespace DotnetServer;

c23.indd 655 30-01-2014 20:30:08

656 ❘ CHAPTER 23 Interop

In the _tmain method, the first thing to do before any other COM call is the initialization of COM with the
API call CoInitialize, which creates and enters an STA for the thread. The variable spWelcome is of type
IWelcomePtr, which is a smart pointer. The smart pointer method CreateInstance accepts the ProgID as
an argument to create the COM object by using the COM API CoCreateInstance. The operator -> is
overridden with the smart pointer so that you can invoke the methods of the COM object, such as
Greeting:

int _tmain(int argc, _TCHAR* argv[])
{
 HRESULT hr;
 hr = CoInitialize(NULL);

 try
 {
 IWelcomePtr spWelcome;

 // CoCreateInstance()
 hr = spWelcome.CreateInstance("Wrox.DotnetComponent");

 cout << spWelcome->Greeting("Bill") << endl;

The second interface supported by your .NET component is IMath, and there is a smart pointer that wraps
the COM interface: IMathPtr. You can directly assign one smart pointer to another, as in spMath =
spWelcome;. In the implementation of the smart pointer (the = operator is overridden), the QueryInterface
method is called. With a reference to the IMath interface, you can call the Add method:

 IMathPtr spMath;
 spMath = spWelcome; // QueryInterface()

 long result = spMath->Add(4, 5);
 cout << "result:" << result << endl;
 }

If an HRESULT error value is returned by the COM object (this is done by the CCW that returns HRESULT
errors if the .NET component generates exceptions), the smart pointer wraps the HRESULT errors and
generates _com_error exceptions instead. Errors are handled in the catch block. At the end of the program,
the COM DLLs are closed and unloaded using CoUninitialize:

 catch (_com_error& e)
 {
 cout << e.ErrorMessage() << endl;
 }

 CoUninitialize();
 return 0;
}

If you run the application, you will get outputs from the Greeting and the Add methods to the console. You
can also try to debug into the smart pointer class, where you can see the COM API calls directly.

NOTE If you get an exception stating that the component cannot be found, check
whether the same version of the assembly that is configured in the registry is installed in
the global assembly cache.

c23.indd 656 30-01-2014 20:30:08

Using a .NET Component from a COM Client ❘ 657

Adding Connection Points
Adding support for COM events to the .NET components requires some changes to the implementation of
your .NET class. Offering COM events is not a simple matter of using the event and delegate keywords; it
is necessary to add some other COM interop attributes.

First, you have to add an interface to the .NET project: IMathEvents. This interface is the source or outgoing
interface for the component, and it will be implemented by the sink object in the client. A source interface
must be either a dispatch interface or a custom interface. A scripting client supports only dispatch interfaces.
Dispatch interfaces are usually preferred as source interfaces (code file DotnetServer/DotnetServer.cs):

 [InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]
 [ComVisible(true)]
 public interface IMathEvents
 {
 [DispId(46200)]
 void CalculationCompleted();
 }

With the class DotnetComponent, a source interface must be specified. This can be done with the attribute
[ComSourceInterfaces]. Add this attribute, and specify the outgoing interface declared earlier. You
can add more than one source interface with different constructors of the attribute class; however, the only
client language that supports more than one source interface is C++. Visual Basic 6.0 clients support
only one source interface:

 [ClassInterface(ClassInterfaceType.None)]
 [ProgId("Wrox.DotnetComponent")]
 [Guid("77839717-40DD-4876-8297-35B98A8402C7")]
 [ComSourceInterfaces(typeof(IMathEvents))]
 [ComVisible(true)]
 public class DotnetComponent : IWelcome, IMath
 {
 public DotnetComponent()
 {
 }

Inside the class DotnetComponent, you have to declare an event for every method of the source interface.
The type of the method must be the name of the delegate, and the name of the event must be exactly the
same as the name of the method inside the source interface. You can add the event calls to the Add and Sub
methods. This step is the normal .NET way to invoke events, as discussed in Chapter 8:

 public event Action CalculationCompleted;

 public int Add(int val1, int val2)
 {
 int result = val1 + val2;
 if (CalculationCompleted != null)
 CalculationCompleted();
 return result;
 }

 public int Sub(int val1, int val2)
 {
 int result = val1 - val2;
 if (CalculationCompleted != null)
 CalculationCompleted();
 return result;
 }
 }

c23.indd 657 30-01-2014 20:30:08

658 ❘ CHAPTER 23 Interop

NOTE The name of the event must be the same as the name of the method inside the
source interface. Otherwise, the events cannot be mapped for COM clients.

Creating a Client with a sink Object
After you’ve built and registered the .NET assembly and installed it into the global assembly cache, you can
build a client application by using the event sources. Implementing a callback or sink object that implements
the IDispatch interface was — using Visual Basic 6.0 — just a matter of adding the With Events keyword,
very similar to how Visual Basic deals with .NET events today. It’s more work with C++, but here the Active
Template Library (ATL) helps.

Open the C++ Console application created in the section “Creating a COM Client Application” and add the
following includes to the file stdafx.h:

#include <atlbase.h>
extern CComModule _Module;
#include <atlcom.h>

The file stdafx.cpp requires an include of the ATL implementation file atlimpl.cpp:

#include <atlimpl.cpp>

Add the new class CEventHandler to the file COMClient.cpp. This class contains the implementation
of the IDispatch interface to be called by the component. The implementation of the IDispatch inter-
face is done by the base class IDispEventImpl. This class reads the type library to match the dispatch
IDs of the methods and the parameters to the methods of the class. The template parameters of the class
IDispatchEventImpl require an ID of the sink object (here the ID 4 is used), the class that implements the
callback methods (CEventHandler), the interface ID of the callback interface (DIID_IMathEvents), the ID
of the type library (LIBID_DotnetComponent), and the version number of the type library. You can find the
named IDs DIID_IMathEvents and LIBID_DotnetComponent in the file dotnetcomponent.tlh that was
created from the #import statement.

The sink map that is surrounded by BEGIN_SINK_MAP and END_SINK_MAP defines the methods that are
implemented by the sink object. SINK_ENTRY_EX maps the method OnCalcCompleted to the dispatch ID
46200. This dispatch ID was defined with the method CalculationCompleted of the IMathEvents inter-
face in the .NET component (code file COMClient/COMClient.cpp):

class CEventHandler: public IDispEventImpl<4, CEventHandler,
 &DIID_IMathEvents, &LIBID_DotnetServer, 1, 0>
{
public:
 BEGIN_SINK_MAP(CEventHandler)
 SINK_ENTRY_EX(4, DIID_IMathEvents, 46200, OnCalcCompleted)
 END_SINK_MAP()

 HRESULT __stdcall OnCalcCompleted()
 {
 cout << "calculation completed" << endl;
 return S_OK;
 }
};

c23.indd 658 30-01-2014 20:30:09

Platform Invoke ❘ 659

The main method now needs a change to advise the component of the existence of the event sink object, so
that the component can call back into the sink. This can be done with the method DispEventAdvise of the
CEventHandler class by passing an IUnknown interface pointer. The method DispEventUnadvise
unregisters the sink object again:

int _tmain(int argc, _TCHAR* argv[])
{
 HRESULT hr;
 hr = CoInitialize(NULL);

 try
 {
 IWelcomePtr spWelcome;
 hr = spWelcome.CreateInstance("Wrox.DotnetComponent");

 IUnknownPtr spUnknown = spWelcome;

 cout << spWelcome->Greeting("Bill") << endl;

 CEventHandler* eventHandler = new CEventHandler();
 hr = eventHandler->DispEventAdvise(spUnknown);

 IMathPtr spMath;
 spMath = spWelcome; // QueryInterface()

 long result = spMath->Add(4, 5);
 cout << "result:" << result << endl;

 eventHandler->DispEventUnadvise(spWelcome.GetInterfacePtr());
 delete eventHandler;
 }
 catch (_com_error& e)
 {
 cout << e.ErrorMessage() << endl;
 }

 CoUninitialize();
 return 0;
}

PlATFORM INvOkE
Not all the features of Windows API calls are available from the .NET Framework. This is true not only
for old Windows API calls but also for very new features from Windows 8.1 or Windows Server 2012 R2.
Maybe you’ve written some DLLs that export unmanaged methods and you would like to use them from C#
as well.

To reuse an unmanaged library that doesn’t contain COM objects, but only exported functions, platform
invoke (p/invoke) can be used. With p/invoke, the CLR loads the DLL that includes the function that should
be called and marshals the parameters.

To use the unmanaged function, first you have to determine the name of the function as it is exported. You
can do this by using the dumpbin tool with the /exports option.

c23.indd 659 30-01-2014 20:30:09

660 ❘ CHAPTER 23 Interop

For example, the command:

dumpbin /exports c:\windows\system32\kernel32.dll | more

lists all exported functions from the DLL kernel32.dll. In the example, you use the CreateHardLink
Windows API function to create a hard link to an existing file. With this API call, you can have several
filenames that reference the same file as long as the filenames are on one hard disk only. This API call is not
available from .NET Framework 4.5.1 so platform invoke must be used.

To call a native function, you have to define a C# external method with the same number of arguments,
and the argument types that are defined with the unmanaged method must have mapped types with
managed code.

The Windows API call CreateHardLink has this definition in C++:

BOOL CreateHardLink(
 LPCTSTR lpFileName,
 LPCTSTR lpExistingFileName,
 LPSECURITY_ATTRIBUTES lpSecurityAttributes);

This definition must be mapped to .NET data types. The return type is a BOOL with unmanaged code; this
simply maps to the bool data type. LPCTSTR defines a long pointer to a const string. The Windows API
uses the Hungarian naming convention for the data type. LP is a long pointer, C is a const, and STR is a
null-terminated string. The T marks the type as a generic type, and the type is resolved to either LPCSTR
(an ANSI string) or LPWSTR (a wide Unicode string), depending on the compiler’s settings. C strings
map to the .NET type String. LPSECURITY_ATTRIBUTES, which is a long pointer to a struct of type
SECURITY_ATTRIBUTES. Because you can pass NULL to this argument, mapping this type to IntPtr is okay.
The C# declaration of this method must be marked with the extern modifier, because there’s no imple-
mentation of this method within the C# code. Instead, the method implementation is found in the DLL
kernel32.dll, which is referenced with the attribute [DllImport]. The return type of the .NET declara-
tion CreateHardLink is of type bool, and the native method CreateHardLink returns a BOOL, so some
additional clarification is useful. Because there are different Boolean data types with C++ (for example, the
native bool and the Windows-defined BOOL, which have different values), the attribute [MarshalAs]
specifies to what native type the .NET type bool should map:

[DllImport("kernel32.dll", SetLastError="true",
 EntryPoint="CreateHardLink", CharSet=CharSet.Unicode)]
[return: MarshalAs(UnmanagedType.Bool)]
public static extern bool CreateHardLink(string newFileName,
 string existingFilename,
 IntPtr securityAttributes);

NOTE The website http://www.pinvoke.net and the tool P/Invoke Interop
Assistant, which can be downloaded from http://www.codeplex.com, are very help-
ful with the conversion from native to managed code.

The settings that you can specify with the attribute [DllImport] are listed in the following table.

c23.indd 660 30-01-2014 20:30:09

Platform Invoke ❘ 661

To make the CreateHardLink method easier to use from a .NET environment, you should follow these
guidelines:

➤➤ Create an internal class named NativeMethods that wraps the platform invoke method calls.
➤➤ Create a public class to offer the native method functionality to .NET applications.
➤➤ Use security attributes to mark the required security.

In the following example (code file PInvokeSample/NativeMethods.cs), the public method
CreateHardLink in the class FileUtility is the method that can be used by .NET applications.
This method has the filename arguments reversed compared to the native Windows API method
CreateHardLink. The first argument is the name of the existing file, and the second argument is the new
file. This is similar to other classes in the framework, such as File.Copy. Because the third argument used
to pass the security attributes for the new filename is not used with this implementation, the public method
has just two parameters. The return type is changed as well. Instead of returning an error by returning the
value false, an exception is thrown. In case of an error, the unmanaged method CreateHardLink sets
the error number with the unmanaged API SetLastError. To read this value from .NET, the [DllImport]
field SetLastError is set to true. Within the managed method CreateHardLink, the error number
is read by calling Marshal.GetLastWin32Error. To create an error message from this number, the
Win32Exception class from the namespace System.ComponentModel is used. This class accepts an error
number with the constructor, and returns a localized error message. In case of an error, an exception of
type IOException is thrown, which has an inner exception of type Win32Exception. The public method
CreateHardLink has the FileIOPermission attribute applied to check whether the caller has the necessary
permission. You can read more about .NET security in Chapter 22.

using System;
using System.ComponentModel;
using System.IO;
using System.Runtime.InteropServices;
using System.Security;
using System.Security.Permissions;

DllIMPORT PROPERTy OR FIElD DEsCRIPTION

EntryPoint You can give the C# declaration of the function a different name than
the one it has with the unmanaged library. The name of the method in
the unmanaged library is defined in the field EntryPoint.

CallingConvention Depending on the compiler or compiler settings that were used to
compile the unmanaged function, different calling conventions can be
used. The calling convention defines how the parameters are handled
and where to put them on the stack. You can define the calling con-
vention by setting
an enumerable value. The Windows API usually uses the StdCall
calling convention on the Windows operating system, and it uses
the Cdecl calling convention on Windows CE. Setting the value to
CallingConvention.Winapi works for the Windows API in both the
Windows and the Windows CE environments.

CharSet String parameters can be either ANSI or Unicode. With the CharSet
setting, you can define how strings are managed. Possible values that
are defined with the CharSet enumeration are Ansi, Unicode, and
Auto. CharSet.Auto uses Unicode on the Windows NT platform, and
ANSI on Windows 98 and Windows ME.

SetLastError If the unmanaged function sets an error by using the Windows API
SetLastError, you can set the SetLastError field to true. This
way, you can read the error number afterward by using Marshal
.GetLastWin32Error.

c23.indd 661 30-01-2014 20:30:09

662 ❘ CHAPTER 23 Interop

namespace Wrox.ProCSharp.Interop
{
 [SecurityCritical]
 internal static class NativeMethods
 {
 [DllImport("kernel32.dll", SetLastError = true,
 EntryPoint = "CreateHardLinkW", CharSet = CharSet.Unicode)]
 [return: MarshalAs(UnmanagedType.Bool)]
 private static extern bool CreateHardLink(
 [In, MarshalAs(UnmanagedType.LPWStr)] string newFileName,
 [In, MarshalAs(UnmanagedType.LPWStr)] string existingFileName,
 IntPtr securityAttributes);

 internal static void CreateHardLink(string oldFileName,
 string newFileName)
 {
 if (!CreateHardLink(newFileName, oldFileName, IntPtr.Zero))
 {
 var ex = new Win32Exception(Marshal.GetLastWin32Error());
 throw new IOException(ex.Message, ex);
 }
 }
 }

 public static class FileUtility
 {
 [FileIOPermission(SecurityAction.LinkDemand, Unrestricted = true)]
 public static void CreateHardLink(string oldFileName,
 string newFileName)
 {
 NativeMethods.CreateHardLink(oldFileName, newFileName);
 }
 }
}

This class can now be used to create hard links very easily (code file PInvokeSample/Program.cs). If the
file passed with the first argument of the program does not exist, you will get an exception with the message
“The system cannot find the file specified.” If the file exists, you get a new filename referencing the original
file. You can easily verify this by changing text in one file; it will show up in the other file as well:

using System;
using System.IO;

namespace Wrox.ProCSharp.Interop
{
 class Program
 {
 static void Main(string[] args)
 {
 if (args.Length != 2)
 {
 Console.WriteLine("usage: PInvokeSample " +
 "existingfilename newfilename");
 return;
 }
 try
 {
 FileUtility.CreateHardLink(args[0], args[1]);
 }
 catch (IOException ex)
 {
 Console.WriteLine(ex.Message);

c23.indd 662 30-01-2014 20:30:09

Summary ❘ 663

 }

 }
 }
}

With native method calls, often you have to use Windows handles. A Window handle is a 32-bit value for
which, depending on the handle types, some values are not allowed. With .NET 1.0 for handles,
usually the IntPtr structure was used because you can set every possible 32-bit value with this structure.
However, with some handle types, this led to security problems and possible threading race conditions
and leaked handles with the finalization phase. That’s why .NET 2.0 introduced the SafeHandle
class. The class SafeHandle is an abstract base class for every Windows handle. Derived classes inside
the Microsoft.Win32.SafeHandles namespace are SafeHandleZeroOrMinusOneIsInvalid and
SafeHandleMinusOneIsInvalid. As the name indicates, these classes do not accept invalid 0 or –1
values. Further derived handle types are SafeFileHandle, SafeWaitHandle, SafeNCryptHandle, and
SafePipeHandle, which can be used by the specific Windows API calls.

For example, to map the Windows API CreateFile, you can use the following declaration to return a
SafeFileHandle. Of course, usually you could use the .NET classes File and FileInfo instead.

 [DllImport("Kernel32.dll", SetLastError = true,
 CharSet = CharSet.Unicode)]
 internal static extern SafeFileHandle CreateFile(
 string fileName,
 [MarshalAs(UnmanagedType.U4)] FileAccess fileAccess,
 [MarshalAs(UnmanagedType.U4)] FileShare fileShare,
 IntPtr securityAttributes,
 [MarshalAs(UnmanagedType.U4)] FileMode creationDisposition,
 int flags,
 SafeFileHandle template);

NOTE In Chapter 25, “Transactions,” you can learn how to create a custom
SafeHandle class to work with the transacted file API from Windows, which has been
available since Windows Vista.

suMMARy
In this chapter, you have seen how the different generations of COM and .NET applications can interact.
Instead of rewriting applications and components, a COM component can be used from a .NET application
just like a .NET class. The tool that makes this possible is tlbimp, which creates a runtime callable wrapper
(RCW) that hides the COM object behind a .NET façade.

Likewise, tlbexp creates a type library from a .NET component that is used by the COM callable wrapper
(CCW). The CCW hides the .NET component behind a COM façade. Using .NET classes as COM
components makes it necessary to use some attributes from the namespace System.Runtime
.InteropServices to define specific COM characteristics that are needed by the COM client.

With platform invoke, you’ve seen how native methods can be invoked using C#. Platform invoke requires
redefining the native method with C# and .NET data types. After defining the mapping, you can invoke the
native method as if it were a C# method.

The next chapter is on accessing the file system with files and streams.

c23.indd 663 30-01-2014 20:30:09

c23.indd 664 30-01-2014 20:30:09

Manipulating Files
and the Registry

WHAT’S iN THiS CHAPTER?

➤➤ Exploring the directory structure
➤➤ Moving, copying, and deleting fi les and folders
➤➤ Reading and writing text in fi les
➤➤ Reading and writing keys in the registry
➤➤ Reading and writing to isolated storage

WRoX.CoM CoDE DoWNloADS FoR THiS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ BinaryFileReader
➤➤ DriveViewer
➤➤ FileProperties
➤➤ FilePropertiesAndMovement
➤➤ MappedMemoryFiles
➤➤ ReadingACLs
➤➤ ReadingACLsFromDirectory
➤➤ ReadingFiles
➤➤ ReadWriteText

FilE AND THE REgiSTRy
This chapter examines how to perform tasks involving reading from and writing to fi les and the C#
system registry. Microsoft has provided very intuitive object models covering these areas, and in this
chapter you learn how to use .NET base classes to perform the listed tasks. In the case of fi le system

24

c24.indd 665 30-01-2014 20:30:41

666 ❘ CHAPTER 24 Manipulating Files and the RegistRy

operations, the relevant classes are almost all found in the System.IO namespace, whereas registry
operations are dealt with by classes in the Microsoft.Win32 namespace.

NoTE The .NET base classes also include a number of classes and interfaces in the
System.Runtime.Serialization namespace. concerned with serialization — that is,
the process of converting data (for example, the contents of a document) into a stream
of bytes for storage. This chapter does not focus on these classes; it focuses on the
classes that give you direct access to files.

Note that security is particularly important when modifying either files or registry entries. Security is
covered entirely in Chapter 22, “Security.” In this chapter, however, we assume that you have sufficient
access rights to run all the examples that modify files or registry entries, which should be the case if you are
running from an account with administrator privileges.

MANAgiNg THE FilE SySTEM
The classes used to browse around the file system and perform operations such as moving, copying, and
deleting files are shown in Figure 24-1.

Object DriveInfo

DirectoryInfo

FileInfo

Directory File Path

MarshalByRefObject

FileSystemInfo

Abstract

Sealed

Sealed

Sealed

Static StaticStatic

Abstract

FiguRE 24-1

The following list explains the function of these classes:

➤➤ System.MarshalByRefObject — The base object class for .NET classes that are remotable; permits
marshaling of data between application domains. The rest of the items in this list are part of the
System.IO namespace.

➤➤ FileSystemInfo — The base class that represents any file system object
➤➤ FileInfo and File — These classes represent a file on the file system.
➤➤ DirectoryInfo and Directory — These classes represent a folder on the file system.
➤➤ Path — This class contains static members that you can use to manipulate pathnames.
➤➤ DriveInfo — This class provides properties and methods that provide information about a selected

drive.

c24.indd 666 30-01-2014 20:30:42

Managing the File System ❘ 667

.NET Classes That Represent Files and Folders
You will notice in the previous list that two classes are used to represent a folder and two classes are used to
represent a file. Which one of these classes you use depends largely on how many times you need to access
that folder or file:

➤➤ Directory and File contain only static methods and are never instantiated. You use these classes by
supplying the path to the appropriate file system object whenever you call a member method. If you
want to do only one operation on a folder or file, using these classes is more efficient because it saves
the overhead of instantiating a .NET class.

➤➤ DirectoryInfo and FileInfo implement roughly the same public methods as Directory and File,
as well as some public properties and constructors, but they are stateful and the members of these
classes are not static. You need to instantiate these classes before each instance is associated with a
particular folder or file. This means that these classes are more efficient if you are performing multiple
operations using the same object. That’s because they read in the authentication and other information
for the appropriate file system object on construction, and then do not need to read that
information again, no matter how many methods and so on you call against each object (class
instance). In comparison, the corresponding stateless classes need to check the details of the file or
folder again with every method you call.

This section mostly uses the FileInfo and DirectoryInfo classes, but it so happens that many (though not
all) of the methods called are also implemented by File and Directory (although in those cases these meth-
ods require an extra parameter — the pathname of the file system object; also, a couple of the methods have
slightly different names). For example,

FileInfo myFile = new FileInfo(@"C:\Program Files\My Program\ReadMe.txt");
myFile.CopyTo(@"D:\Copies\ReadMe.txt");

has the same effect as

File.Copy(@"C:\Program Files\My Program\ReadMe.txt", @"D:\Copies\ReadMe.txt");

The first code snippet takes slightly longer to execute because of the need to instantiate a FileInfo object,
myFile, but it leaves myFile ready for you to perform further actions on the same file. By using the second
example, there is no need to instantiate an object to copy the file.

You can instantiate a FileInfo or DirectoryInfo class by passing to the constructor a string containing
the path to the corresponding file system object. You have just seen the process for a file. For a folder, the
code looks similar:

DirectoryInfo myFolder = new DirectoryInfo(@"C:\Program Files");

If the path represents an object that does not exist, an exception is not thrown at construction, but is instead
thrown the first time you call a method that actually requires the corresponding file system object to be

NoTE In Windows, the objects that contain files and that are used to organize the file
system are termed folders. For example, in the path C:\My Documents\ReadMe.txt,
ReadMe.txt is a file and My Documents is a folder. Folder is a very Windows-specific
term. On virtually every other operating system, the term “directory” is used in place
of folder; and in accordance with Microsoft’s goal to design .NET as a platform-inde-
pendent technology, the corresponding .NET base classes are called Directory and
DirectoryInfo. However, due to the potential for confusion with LDAP directories
and because this is a Windows book, we’ll stick to the term folder in this discussion.

c24.indd 667 30-01-2014 20:30:42

668 ❘ CHAPTER 24 Manipulating Files and the RegistRy

there. You can find out whether the object exists and is of the appropriate type by checking the Exists
property, which is implemented by both of these classes:

FileInfo test = new FileInfo(@"C:\Windows");
Console.WriteLine(test.Exists.ToString());

Note that for this property to return true, the corresponding file system object must be of the appropriate
type. In other words, if you instantiate a FileInfo object, supplying the path of a folder, or you instantiate
a DirectoryInfo object, giving it the path of a file, Exists will have the value false. Most of the proper-
ties and methods of these objects return a value if possible — they won’t necessarily throw an exception just
because the wrong type of object has been called, unless they are asked to do something that is impossible.
For example, the preceding code snippet might first display false (because C:\Windows is a folder), but it
still displays the time the folder was created because a folder has that information. However, if you tried to
open the folder as if it were a file, using the FileInfo.Open method, you’d get an exception.

After you have established whether the corresponding file system object exists, you can (if you are using the
FileInfo or DirectoryInfo class) find out information about it using the properties in the following table:

PRoPERTy DESCRiPTioN

CreationTime Indicates when the file or folder was created

DirectoryName (FileInfo only) Full pathname of the containing folder

Parent (DirectoryInfo only) The parent directory of a specified subdirectory

Exists Specifies whether a file or folder exists

Extension Extension of the file; it returns blank for folders

FullName Full pathname of the file or folder

LastAccessTime Indicates when the file or folder was last accessed

LastWriteTime Indicates when the file or folder was last modified

Name Name of the file or folder

Root (DirectoryInfo only) The root portion of the path

Length (FileInfo only) Size of the file, in bytes

You can also perform actions on the file system object using the methods in the following table:

METHoD DESCRiPTioN

Create() Creates a folder or empty file of the given name. For a FileInfo this also returns a
stream object to let you write to the file. (Streams are covered later in this chapter.)

Delete() Deletes the file or folder. For folders, there is an option for the Delete to be
recursive.

MoveTo() Moves and/or renames the file or folder.

CopyTo() (FileInfo only) Copies the file. Note that there is no copy method for folders.
If you are copying complete directory trees you need to individually copy each
file and create new folders corresponding to the old folders.

GetDirectories() (DirectoryInfo only) Returns an array of DirectoryInfo objects represent-
ing all folders contained in this folder.

GetFiles() (DirectoryInfo only) Returns an array of FileInfo objects representing all
files contained in this folder.

EnumerateFiles() Returns an IEnumerable<string> of filenames. You can act on the items in
the list before the entire list is returned.

GetFileSystemInfos() (DirectoryInfo only) Returns FileInfo and DirectoryInfo objects represent-
ing all objects contained in the folder as an array of FileSystemInfo references.

c24.indd 668 30-01-2014 20:30:42

Managing the File System ❘ 669

Note that these tables list the main properties and methods; they are not intended to be exhaustive.

NoTE The preceding tables do not list most of the properties or methods that allow
you to write to or read the data in files. This is actually done using stream objects,
which are covered later in this chapter. FileInfo also implements a number of meth-
ods, Open, OpenRead, OpenText, OpenWrite, Create, and CreateText, that return
stream objects for this purpose.

Interestingly, the creation time, last access time, and last write time are all writable:

// displays the creation time of a file,
// then changes it and displays it again
FileInfo test = new FileInfo(@"C:\MyFile.txt");
Console.WriteLine(test.Exists.ToString());
Console.WriteLine(test.CreationTime.ToString());
test.CreationTime = new DateTime(2010, 1, 1, 7, 30, 0);
Console.WriteLine(test.CreationTime.ToString());

Running this application produces results similar to the following:

True
2/5/2009 2:59:32 PM
1/1/2010 7:30:00 AM

Being able to manually modify these properties might seem strange at first, but it can be quite useful. For
example, if you have a program that effectively modifies a file by simply reading it in, deleting it, and
creating a new file with the new contents, you would probably want to modify the creation date to match the
original creation date of the old file.

The Path Class
The Path class is not a class that you would instantiate. Rather, it exposes some static methods that make
operations on pathnames easier. For example, suppose that you want to display the full pathname for a file,
ReadMe.txt, in the folder C:\My Documents. You could find the path to the file using the following code:

Console.WriteLine(Path.Combine(@"C:\My Documents", "ReadMe.txt"));

Using the Path class is a lot easier than using separation symbols manually, especially because the Path
class is aware of different formats for pathnames on different operating systems. At the time of this writ-
ing, Windows is the only operating system supported by .NET. However, if .NET is ported to UNIX, Path
would be able to cope with UNIX paths, in which case /, rather than \, would be used as a separator in
pathnames. Path.Combine is the method of this class that you are likely to use most often, but Path also
implements other methods that supply information about the path or the required format for it.

Some of the static fields available to the Path class include those in the following table:

PRoPERTy DESCRiPTioN

AltDirectorySeparatorChar Provides a platform-agnostic way to specify an alternative character to
separate directory levels. In Windows, a / symbol is used, whereas in
UNIX, a \ symbol is used.

DirectorySeparatorChar Provides a platform-agnostic way to specify a character to separate
 directory levels. In Windows, a / symbol is used, whereas in UNIX, a \
symbol is used.

continues

c24.indd 669 30-01-2014 20:30:43

670 ❘ CHAPTER 24 Manipulating Files and the RegistRy

PRoPERTy DESCRiPTioN

PathSeparator Provides a platform-agnostic way to specify path strings that divide
environmental variables. The default value of this setting is a semicolon.

VolumeSeparatorChar Provides a platform-agnostic way to specify a volume separator. The
default value of this setting is a colon.

(continued)

The following example illustrates how to browse directories and view the properties of files.

A FileProperties Sample
This section presents a sample C# application called
FileProperties. This application presents a simple
user interface that enables you to browse the file sys-
tem and view the creation time, last access time, last
write time, and size of files. (You can download the
sample code for this application from the Wrox web-
site at www.wrox.com.)

The FileProperties application works as
follows. You type in the name of a folder or file in the
main text box at the top of the window and click
the Display button. If you type in the path to a folder,
its contents are listed in the list boxes. If you type in
the path to a file, its details are displayed in the text
boxes at the bottom of the form and the contents of
its parent folder are displayed in the list boxes.
Figure 24-2 shows the FileProperties sample
application in action.

The user can very easily navigate around the file sys-
tem by clicking any folder in the right-hand list box to
move down to that folder or by clicking the Up button
to move up to the parent folder. Figure 24-2 shows the
contents of the Users folder. The user can also select a
file by clicking its name in the list box. This displays
the file’s properties in the text boxes at the bottom
of the application (see Figure 24-3).

Note that you can also display the creation time, last
access time, and last modification time for folders
using the DirectoryInfo property. In this case, these
properties are displayed only for a selected file to keep
things simple.

You create the project as a standard C# Windows
application in Visual Studio 2013. Add the various
text boxes and the list box from the Windows Forms
area of the toolbox. You also rename the controls with
the more intuitive names of textBoxInput,
textBoxFolder, buttonDisplay, buttonUp,
listBoxFiles, listBoxFolders, textBoxFileName,
textBoxCreationTime, textBoxLastAccessTime,
textBoxLastWriteTime, and textBoxFileSize.

FiguRE 24-2

FiguRE 24-3

c24.indd 670 30-01-2014 20:30:43

Managing the File System ❘ 671

Next, you need to indicate that you will be using the System.IO namespace:

using System;
using System.IO;
using System.Windows.Forms;

You need to do this for all the file-system–related examples in this chapter, but this part of the code is not
explicitly shown in the remaining examples. You then add a member field to the main form:

 public partial class Form1: Form
 {
 private string currentFolderPath;

currentFolderPath stores the path of the folder whose contents are displayed in the list boxes.

Now you need to add event handlers for the user-generated events. The possible user inputs are as follows:

➤➤ User clicks the Display button — You need to determine whether what the user has typed in the main
text box is the path to a file or folder. If it is a folder, you list the files and subfolders of this folder in
the list boxes. If it is a file, you still do this for the folder containing that file, but you also display the
file properties in the lower text boxes.

➤➤ User clicks a filename in the Files list box — You display the properties of this file in the lower text
boxes.

➤➤ User clicks a folder name in the Folders list box — You clear all the controls and then display the con-
tents of this subfolder in the list boxes.

➤➤ User clicks the Up button — You clear all the controls and then display the contents of the parent of
the currently selected folder.

Before looking at the code for the event handlers, here is the code for the methods that do all the work. First,
you need to clear the contents of all the controls. This method is fairly self-explanatory:

protected void ClearAllFields()
{
 listBoxFolders.Items.Clear();
 listBoxFiles.Items.Clear();
 textBoxFolder.Text = "";
 textBoxFileName.Text = "";
 textBoxCreationTime.Text = "";
 textBoxLastAccessTime.Text = "";
 textBoxLastWriteTime.Text = "";
 textBoxFileSize.Text = "";
}

Next, you define a method, DisplayFileInfo, that handles the process of displaying the information for a
given file in the text boxes. This method takes one parameter, the full pathname of the file as a String, and
then creates a FileInfo object based on this path:

protected void DisplayFileInfo(string fileFullName)
{
 FileInfo theFile = new FileInfo(fileFullName);

 if (!theFile.Exists)
 {
 throw new FileNotFoundException("File not found: " + fileFullName);
 }

 textBoxFileName.Text = theFile.Name;
 textBoxCreationTime.Text = theFile.CreationTime.ToLongTimeString();

c24.indd 671 30-01-2014 20:30:43

672 ❘ CHAPTER 24 Manipulating Files and the RegistRy

 textBoxLastAccessTime.Text = theFile.LastAccessTime.ToLongDateString();
 textBoxLastWriteTime.Text = theFile.LastWriteTime.ToLongDateString();
 textBoxFileSize.Text = theFile.Length.ToString() + " bytes";
}

Note that you take the precaution of throwing an exception if there are any problems locating a file at the
specified location. The exception itself will be handled in the calling routine (one of the event handlers).
Finally, you define a method, DisplayFolderList, which displays the contents of a given folder in the two
list boxes. The full pathname of the folder is passed in as a parameter to this method:

protected void DisplayFolderList(string folderFullName)
{
 DirectoryInfo theFolder = new DirectoryInfo(folderFullName);

 if (!theFolder.Exists)
 {
 throw new DirectoryNotFoundException("Folder not found: " + folderFullName);
 }

 ClearAllFields();
 textBoxFolder.Text = theFolder.FullName;
 currentFolderPath = theFolder.FullName;

 // list all subfolders in folder
 foreach(DirectoryInfo nextFolder in theFolder.GetDirectories())
 listBoxFolders.Items.Add(nextFolder.Name);

 // list all files in folder
 foreach(FileInfo nextFile in theFolder.GetFiles())
 listBoxFiles.Items.Add(nextFile.Name);
}

The event handler that manages the event triggered when the user clicks the Display button is the most com-
plex because it needs to handle three different possibilities for the text the user enters in the text box. For
instance, it could be the pathname of a folder, the pathname of a file, or neither of these:

protected void OnDisplayButtonClick(object sender, EventArgs e)
{
 try
 {
 string folderPath = textBoxInput.Text;
 DirectoryInfo theFolder = new DirectoryInfo(folderPath);

 if (theFolder.Exists)
 {
 DisplayFolderList(theFolder.FullName);
 return;
 }

 FileInfo theFile = new FileInfo(folderPath);

 if (theFile.Exists)
 {
 DisplayFolderList(theFile.Directory.FullName);
 int index = listBoxFiles.Items.IndexOf(theFile.Name);
 listBoxFiles.SetSelected(index, true);
 return;
 }

c24.indd 672 30-01-2014 20:30:43

Managing the File System ❘ 673

 throw new FileNotFoundException("There is no file or folder with "
 + "this name: " + textBoxInput.Text);
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

This code establishes whether the supplied text represents a folder or a file by instantiating DirectoryInfo
and FileInfo instances and examining the Exists property of each object. If neither exists, you throw an
exception. If it’s a folder, you call DisplayFolderList to populate the list boxes. If it’s a file, you need to
populate the list boxes and sort out the text boxes that display the file properties. You handle this case by
first populating the list boxes. You then programmatically select the appropriate filename in the Files list
box. This has exactly the same effect as if the user had selected that item — it raises the item-selected event.
You can then simply exit the current event handler, knowing that the selected item event handler will imme-
diately be called to display the file properties.

The following code is the event handler that is called when an item in the Files list box is selected, either by
the user or, as indicated previously, programmatically. It simply constructs the full pathname of the selected
file, and passes it to the DisplayFileInfo method presented earlier:

protected void OnListBoxFilesSelected(object sender, EventArgs e)
{
 try
 {
 string selectedString = listBoxFiles.SelectedItem.ToString();
 string fullFileName = Path.Combine(currentFolderPath, selectedString);
 DisplayFileInfo(fullFileName);
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

The event handler for the selection of a folder in the Folders list box is implemented in a very similar way,
except that in this case you call DisplayFolderList to update the contents of the list boxes:

protected void OnListBoxFoldersSelected(object sender, EventArgs e)
{
 try
 {
 string selectedString = listBoxFolders.SelectedItem.ToString();
 string fullPathName = Path.Combine(currentFolderPath, selectedString);
 DisplayFolderList(fullPathName);
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

Finally, when the Up button is clicked, DisplayFolderList must also be called, except this time you need
to obtain the path of the parent of the folder currently displayed. This is done with the FileInfo
.DirectoryName property, which returns the parent folder path:

protected void OnUpButtonClick(object sender, EventArgs e)
{
 try

c24.indd 673 30-01-2014 20:30:44

674 ❘ CHAPTER 24 Manipulating Files and the RegistRy

 {
 string folderPath = new FileInfo(currentFolderPath).DirectoryName;
 DisplayFolderList(folderPath);
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

MoviNg, CoPyiNg, AND DElETiNg FilES
As mentioned earlier, moving and deleting files or folders is done by the MoveTo and Delete methods of
the FileInfo and DirectoryInfo classes. The equivalent methods on the File and Directory classes are
Move and Delete. The FileInfo and File classes also implement the methods CopyTo and Copy,
respectively. However, no methods exist to copy complete folders — you need to do that by copying each file
in the folder.

Using all of these methods is quite intuitive — you can find detailed descriptions in the SDK documentation.
This section illustrates their use for the particular cases of calling the static Move, Copy, and Delete
methods on the File class. To do this, you will build on the previous FileProperties example and call its
iteration FilePropertiesAndMovement. This example has the extra feature that whenever the
properties of a file are displayed, the application gives you the options to delete that file or move or copy the
file to another location.

FilePropertiesAndMovement Sample
Figure 24-4 shows the user interface of the new sample
application.

As you can see, FilePropertiesAndMovement is
 similar in appearance to FileProperties, except
for the group of three buttons and a text box at the
bottom of the window. These controls are enabled
only when the example is actually displaying the
properties of a file; at all other times, they are
 disabled. The existing controls are also squashed
a bit to stop the main form from getting too big.
When the properties of a selected file are displayed,
FilePropertiesAndMovement automatically places
the full pathname of that file in the bottom text box
for the user to edit. Users can then click any of the
buttons to perform the appropriate operation. When
they do, a message box is displayed that confirms the
action taken by the user (see Figure 24-5).

When the user clicks the Yes button, the action is
 initiated. Some actions in the form that the user can
take will cause the
display to be incorrect. For instance, if the user moves or deletes a file, you
obviously cannot continue to display the contents of that file in the same
location. In addition, if you change the name of a file in the same folder, your
display will also be out of date. In these cases, FilePropertiesAndMovement
resets its controls to display only the folder where the file resides after the file
operation.

FiguRE 24-4

FiguRE 24-5

c24.indd 674 30-01-2014 20:30:44

Moving, Copying, and Deleting Files ❘ 675

looking at the Code for FilePropertiesAndMovement
To code this process, you need to add the relevant controls, as well as their event handlers, to the code for
the FileProperties sample. The new controls are given the names buttonDelete, buttonCopyTo,
buttonMoveTo, and textBoxNewPath.

First, look at the event handler that is called when the user clicks the Delete button:

protected void OnDeleteButtonClick(object sender, EventArgs e)
{
 try
 {
 string filePath = Path.Combine(currentFolderPath,
 textBoxFileName.Text);
 string query = "Really delete the file\n" + filePath + "?";
 if (MessageBox.Show(query,
 "Delete File?", MessageBoxButtons.YesNo) == DialogResult.Yes)
 {
 File.Delete(filePath);
 DisplayFolderList(currentFolderPath);
 }
 }
 catch(Exception ex)
 {
 MessageBox.Show("Unable to delete file. The following exception"
 + " occurred:\n" + ex.Message, "Failed");
 }
}

The code for this method is contained in a try block because of the obvious risk of an exception being
thrown if, for example, the user doesn’t have permission to delete the file, or the file is moved or locked
by another process after it has been displayed but before the user presses the Delete button. You construct
the path of the file to be deleted from the CurrentParentPath field, which contains the path of the parent
folder, and the text in the textBoxFileName text box, which contains the name of the file.

The methods to move and copy the file are structured in a very similar manner:

protected void OnMoveButtonClick(object sender, EventArgs e)
{
 try
 {
 string filePath = Path.Combine(currentFolderPath,
 textBoxFileName.Text);
 string query = "Really move the file\n" + filePath + "\nto "
 + textBoxNewPath.Text + "?";
 if (MessageBox.Show(query,
 "Move File?", MessageBoxButtons.YesNo) == DialogResult.Yes)
 {
 File.Move(filePath, textBoxNewPath.Text);
 DisplayFolderList(currentFolderPath);
 }
 }
 catch(Exception ex)
 {
 MessageBox.Show("Unable to move file. The following exception"
 + " occurred:\n" + ex.Message, "Failed");
 }
}

protected void OnCopyButtonClick(object sender, EventArgs e)
{
 try

c24.indd 675 30-01-2014 20:30:44

676 ❘ CHAPTER 24 Manipulating Files and the RegistRy

 {
 string filePath = Path.Combine(currentFolderPath,
 textBoxFileName.Text);
 string query = "Really copy the file\n" + filePath + "\nto "
 + textBoxNewPath.Text + "?";
 if (MessageBox.Show(query,
 "Copy File?", MessageBoxButtons.YesNo) == DialogResult.Yes)
 {
 File.Copy(filePath, textBoxNewPath.Text);
 DisplayFolderList(currentFolderPath);
 }
 }
 catch(Exception ex)
 {
 MessageBox.Show("Unable to copy file. The following exception"
 + " occurred:\n" + ex.Message, "Failed");
 }
}

You are not quite done. You also need to ensure that the new buttons and text box are enabled and disabled
at the appropriate times. To enable them when you are displaying the contents of a file, add the following
code to DisplayFileInfo:

protected void DisplayFileInfo(string fileFullName)
{
 FileInfo theFile = new FileInfo(fileFullName);

 if (!theFile.Exists)
 {
 throw new FileNotFoundException("File not found: " + fileFullName);
 }

 textBoxFileName.Text = theFile.Name;
 textBoxCreationTime.Text = theFile.CreationTime.ToLongTimeString();
 textBoxLastAccessTime.Text = theFile.LastAccessTime.ToLongDateString();
 textBoxLastWriteTime.Text = theFile.LastWriteTime.ToLongDateString();
 textBoxFileSize.Text = theFile.Length.ToString() + " bytes";

 // enable move, copy, delete buttons
 textBoxNewPath.Text = theFile.FullName;
 textBoxNewPath.Enabled = true;
 buttonCopyTo.Enabled = true;
 buttonDelete.Enabled = true;
 buttonMoveTo.Enabled = true;
}

You also need to make one change to DisplayFolderList:

protected void DisplayFolderList(string folderFullName)
{
 DirectoryInfo theFolder = new DirectoryInfo(folderFullName);

 if (!theFolder.Exists)
 {
 throw new DirectoryNotFoundException("Folder not found: " + folderFullName);
 }

 ClearAllFields();
 DisableMoveFeatures();
 textBoxFolder.Text = theFolder.FullName;
 currentFolderPath = theFolder.FullName;

 // list all subfolders in folder

c24.indd 676 30-01-2014 20:30:44

Reading and Writing to Files ❘ 677

 foreach(DirectoryInfo nextFolder in theFolder.GetDirectories())
 listBoxFolders.Items.Add(NextFolder.Name);

 // list all files in folder
 foreach(FileInfo nextFile in theFolder.GetFiles())
 listBoxFiles.Items.Add(NextFile.Name);
}

DisableMoveFeatures is a small utility function that disables the new controls:

 void DisableMoveFeatures()
 {
 textBoxNewPath.Text = "";
 textBoxNewPath.Enabled = false;
 buttonCopyTo.Enabled = false;
 buttonDelete.Enabled = false;
 buttonMoveTo.Enabled = false;
 }

Now add extra code to ClearAllFields to clear the extra text box:

 protected void ClearAllFields()
 {
 listBoxFolders.Items.Clear();
 listBoxFiles.Items.Clear();
 textBoxFolder.Text = "";
 textBoxFileName.Text = "";
 textBoxCreationTime.Text = "";
 textBoxLastAccessTime.Text = "";
 textBoxLastWriteTime.Text = "";
 textBoxFileSize.Text = "";
 textBoxNewPath.Text = "";
 }

READiNg AND WRiTiNg To FilES
Reading and writing to files is in principle very simple; however, it is not done through the DirectoryInfo
or FileInfo objects. Instead, using .NET Framework 4.5, you can do it through the File object. Later in
this chapter, you see how to accomplish this using
a number of other classes that represent a generic
concept called a stream.

Before .NET Framework 2.0, it took a bit of wran-
gling to read and write to files. It was possible using
the available classes from the framework, but it
was not straightforward. The .NET Framework 2.0
expanded the File class to make it as simple as just
one line of code to read or write to a file. This same
functionality is also available in version 4.5 of the
.NET Framework.

Reading a File
For an example of reading a file, create a Windows
Forms application that contains a regular text box,
a button, and a multiline text box. When you are
done, your form should appear similar to
Figure 24-6.

FiguRE 24-6

c24.indd 677 30-01-2014 20:30:45

678 ❘ CHAPTER 24 Manipulating Files and the RegistRy

The purpose of this form is to enable end users to enter the path of a specific file in the first text box and
click the Read button. From there, the application will read the specified file and display the file’s contents in
the multiline text box. This is coded in the following example:

using System;
using System.IO;
using System.Windows.Forms;

namespace ReadingFiles
{
 public partial class Form1: Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 textBox2.Text = File.ReadAllText(textBox1.Text);
 }
 }
}

In building this example, the first step is to add
the using statement to bring in the System.IO
namespace. From there, simply use the
button1_Click event for the Send button on
the form to populate the text box with what is
returned from the file. You can now access the file’s
contents by using the File.ReadAllText method.
As you can see, you can read files with a single
statement. The ReadAllText method opens the
specified file, reads the contents, and then closes
the file. The return value of the ReadAllText
method is a string containing the entire contents
of the file specified. The result would be something
similar to what is shown in Figure 24-7.

The File.ReadAllText signature shown in the
preceding example is of the following construction:

File.ReadAllText(FilePath);

The other option is to also specify the encoding of
the file being read:

File.ReadAllText(FilePath, Encoding);

Using this signature enables you to specify the encoding to use when opening and reading the contents of the
file. Therefore, you could do something like the following:

File.ReadAllText(textBox1.Text, Encoding.ASCII);

Some of the other options for opening and working with files include using the ReadAllBytes and the
ReadAllLines methods. The ReadAllBytes method enables you to open a binary file and read the contents

FiguRE 24-7

c24.indd 678 30-01-2014 20:30:45

Reading and Writing to Files ❘ 679

into a byte array. The ReadAllText method shown earlier provides the entire contents of the specified file
in a single string instance. If you are not interested in this, but instead would like to work with what comes
back from the file in a line-by-line fashion, you should use the ReadAllLines method because it allows for
this kind of functionality and will return a string array for you to work with.

Writing to a File
Besides making reading from files an extremely simple process under the .NET Framework umbrella, the
base class library (BCL) has made writing to files just as easy. Just as the base class library gives you
the ReadAllText, ReadAllLines, and ReadAllBytes methods to read files in a few different ways, it also
provides the WriteAllText, WriteAllBytes, and WriteAllLines methods to write files.

For an example of how to write to a file, use the same Windows Forms application, but use the multiline
text box in the form to input data into a file. The code for the button1_Click event handler should appear
as shown here:

private void button1_Click(object sender, EventArgs e)
{
 File.WriteAllText(textBox1.Text, textBox2.Text);
}

Build and start the form, type C:\Testing.txt in the first text box, type some random content in the sec-
ond text box, and then click the button. Nothing will happen visually, but if you look in your root C: drive,
you will see the Testing.txt file with the content you specified.

The WriteAllText method went to the specified location, created a new text file, and provided the specified
contents to the file before saving and closing the file. Not bad for just one line of code!

If you run the application again, and specify the same file (Testing.txt) but with some new content,
pressing the button again will cause the application to perform the same task. This time, though, the new
content is not added to the previous content you specified — instead, the new content completely overrides
the previous content. In fact, WriteAllText, WriteAllBytes, and WriteAllLines all override any
previous files, so be very careful when using these methods.

The WriteAllText method in the previous example uses the following signature:

File.WriteAllText(FilePath, Contents)

You can also specify the encoding of the new file:

File.WriteAllText(FilePath, Contents, Encoding)

The WriteAllBytes method enables you to write content to a file using a byte array, and the
WriteAllLines method enables you to write a string array to a file. An example of this is illustrated in the
following event handler:

private void button1_Click(object sender, EventArgs e)
{
 string[] movies =
 {"Grease",
 "Close Encounters of the Third Kind",
 "The Day After Tomorrow"};

 File.WriteAllLines(@"C:\Testing.txt", movies);
}

c24.indd 679 30-01-2014 20:30:45

680 ❘ CHAPTER 24 Manipulating Files and the RegistRy

Now clicking the button for such an application will give you a Testing.txt file with the following
contents:

Grease
Close Encounters of the Third Kind
The Day After Tomorrow

The WriteAllLines method writes out the string array with each array item occupying its own line in
the file.

Because data may be written not only to disk but to other places as well (such as to named pipes or to
memory), it is also important to understand how to deal with file I/O in .NET using streams as a means
of moving file contents around. This is shown in the following section.

Streams
The idea of a stream has been around for a very long time. A stream is an object used to transfer data. The
data can be transferred in one of two directions:

➤➤ If the data is being transferred from some outside source into your program, it is called reading from
the stream.

➤➤ If the data is being transferred from your program to some outside source, it is called writing to the
stream.

Very often, the outside source will be a file, but that is not always the case. Other possibilities include the
following:

➤➤ Reading or writing data on the network using some network protocol, where the intention is for this
data to be picked up by or sent from another computer

➤➤ Reading from or writing to a named pipe
➤➤ Reading from or writing to an area of memory

Of these examples, Microsoft has supplied a .NET base class for writing to or reading from memory, the
System.IO.MemoryStream object. The System.Net.Sockets.NetworkStream object handles network
data. There are no base stream classes for writing to or reading from pipes, but there is a generic stream
class, System.IO.Stream, from which you would inherit if you wanted to write such a class. Stream does
not make any assumptions about the nature of the external data source.

The outside source might even be a variable within your own code. This might sound paradoxical, but the
technique of using streams to transmit data between variables can be a useful trick for converting data
between data types. The C language used something similar — the sprintf function — to convert between
integer data types and strings or to format strings.

The advantage of having a separate object for the transfer of data, rather than using the FileInfo or
DirectoryInfo classes to do this, is that separating the concept of transferring data from the
particular data source makes it easier to swap data sources. Stream objects themselves contain a lot of
generic code that concerns the movement of data between outside sources and variables in your code. By
keeping this code separate from any concept of a particular data source, you make it easier for this code to
be reused (through inheritance) in different circumstances. For example, the StringReader
and StringWriter classes are part of the same inheritance tree as two classes that you will be using
later to read and write text files. The classes will almost certainly share a substantial amount of code
behind the scenes. Figure 24-8 illustrates the actual hierarchy of stream-related classes in the System.IO
namespace.

c24.indd 680 30-01-2014 20:30:45

Reading and Writing to Files ❘ 681

As far as reading and writing files, the classes that concern us most are as follows:

➤➤ FileStream — This class is intended for reading and writing binary data in a binary file. However,
you can also use it to read from or write to any file.

➤➤ StreamReader and StreamWriter — These classes are designed specifically for reading from and
writing to text files.

You might also find the BinaryReader and BinaryWriter classes useful, although they are not used in the
examples here. These classes do not actually implement streams themselves, but they are able to provide
wrappers around other stream objects. BinaryReader and BinaryWriter provide extra formatting of
binary data, which enables you to directly read or write the contents of C# variables to or from the relevant
stream. Think of the BinaryReader and BinaryWriter as sitting between the stream and your code,
providing extra formatting (see Figure 24-9).

MarshalByRefObject
Abstract

BinaryWriter

Object

BinaryReader

Stream TextReader TextWriter

StringReader StringWriterBufferedStream

MemoryStream StreamReader StreamWriter

FileStream

FiguRE 24-8

BinaryReader

BinaryWriter

underlying
Stream object

Data source
(file, network, etc.)

Code

FiguRE 24-9

The difference between using these classes and directly using the underlying stream objects is that a basic
stream works in bytes. For example, suppose that as part of the process of saving some document you want
to write the contents of a variable of type long to a binary file. Each long occupies 8 bytes, and if you used
an ordinary binary stream you would have to explicitly write each of those 8 bytes of memory.

In C# code, you would have to perform some bitwise operations to extract each of those 8 bytes from the
long value. Using a BinaryWriter instance, you can encapsulate the entire operation in an overload of
the BinaryWriter.Write method, which takes a long as a parameter, and which places those 8 bytes

c24.indd 681 30-01-2014 20:30:48

682 ❘ CHAPTER 24 Manipulating Files and the RegistRy

into the stream (and if the stream is directed to a file, into the file). A corresponding BinaryReader.Read
method will extract 8 bytes from the stream and recover the value of the long. For more information on the
BinaryReader and BinaryWriter classes, refer to the SDK documentation.

Buffered Streams
For performance reasons, when you read or write to or from a file, the output is buffered. This means that
if your program asks for the next 2 bytes of a file stream, and the stream passes the request on to Windows,
then Windows will not connect to the file system and then locate and read the file off the disk, just to get
2 bytes. Instead, Windows retrieves a large block of the file at one time and stores this block in an area of
memory known as a buffer. Subsequent requests for data from the stream are satisfied from the buffer until
the buffer runs out, at which point Windows grabs another block of data from the file.

Writing to files works in the same way. For files, this is done automatically by the operating system, but
you might have to write a stream class to read from some other device that is not buffered. If so, you
can derive your class from BufferedStream, which implements a buffer itself. (Note, however, that
BufferedStream is not designed for the situation in which an application frequently alternates between
reading and writing data.)

Reading and Writing to Binary Files using FileStream
Reading and writing to and from binary files can be done using the FileStream class.

The FileStream Class
A FileStream instance is used to read or write data to or from a file. To construct a FileStream, you need
four pieces of information:

 1. The file you want to access.

 2. The mode, which indicates how you want to open the file. For example, are you intending to create
a new file or open an existing file? If you are opening an existing file, should any write operations be
interpreted as overwriting the contents of the file or appending to the file?

 3. The access, which indicates how you want to access the file. For example, do you want to read from or
write to the file or do both?

 4. The share access, which specifies whether you want exclusive access to the file. Alternately, are you will-
ing to have other streams access the file simultaneously? If so, should other streams have access to read
the file, to write to it, or to do both?

The first piece of information is usually represented by a string that contains the full pathname of the file,
and this chapter considers only those constructors that require a string here. Besides those, however, some
additional constructors take an old Windows-API–style Windows handle to a file instead. The remaining
three pieces of information are represented by three .NET enumerations called FileMode, FileAccess, and
FileShare. The values of these enumerations are listed in the following table and are self-explanatory:

ENuMERATioN vAluES

FileMode Append, Create, CreateNew, Open, OpenOrCreate, or Truncate

FileAccess Read, ReadWrite, or Write

FileShare Delete, Inheritable, None, Read, ReadWrite, or Write

Note that in the case of FileMode, exceptions can be thrown if you request a mode that is inconsistent with
the existing status of the file. Append, Open, and Truncate throw an exception if the file does not already
exist, and CreateNew throws an exception if it does. Create and OpenOrCreate will cope with either
 scenario, but Create deletes any existing file to replace it with a new, initially empty, one. The FileAccess
and FileShare enumerations are bitwise flags, so values can be combined with the C# bitwise OR operator, |.

c24.indd 682 30-01-2014 20:30:48

Reading and Writing to Files ❘ 683

There are a large number of constructors for the FileStream. The three simplest ones work as follows:

 // creates file with read-write access and allows other streams read access
 FileStream fs = new FileStream(@"C:\C# Projects\Project.doc",
 FileMode.Create);
 // as above, but we only get write access to the file
 FileStream fs2 = new FileStream(@"C:\C# Projects\Project2.doc",
 FileMode.Create, FileAccess.Write);
 // as above but other streams don't get access to the file while
 // fs3 is open
 FileStream fs3 = new FileStream(@"C:\C# Projects\Project3.doc",
 FileMode.Create, FileAccess.Write, FileShare.None);

As this code reveals, the overloads of these constructors have the effect of providing default values of
FileAccess.ReadWrite and FileShare.Read to the third and fourth parameters depending upon the
FileMode value. It is also possible to create a file stream from a FileInfo instance in various ways:

 FileInfo myFile4 = new FileInfo(@"C:\C# Projects\Project4.doc");
 FileStream fs4 = myFile4.OpenRead();
 FileInfo myFile5= new FileInfo(@"C:\C# Projects\Project5doc");
 FileStream fs5 = myFile5.OpenWrite();
 FileInfo myFile6= new FileInfo(@"C:\C# Projects\Project6doc");
 FileStream fs6 = myFile6.Open(FileMode.Append, FileAccess.Write,
 FileShare.None);
 FileInfo myFile7 = new FileInfo(@"C:\C# Projects\Project7.doc");
 FileStream fs7 = myFile7.Create();

FileInfo.OpenRead supplies a stream that provides read-only access to an existing file, whereas
FileInfo.OpenWrite provides read-write access. FileInfo.Open enables you to specify the mode, access,
and file share parameters explicitly.

Of course, after finishing with a stream, you should close it:

 fs.Close();

Closing the stream frees up the resources associated with it and allows other applications to set up streams
to the same file. This action also flushes the buffer. In between opening and closing the stream, you should
read data from it and/or write data to it. FileStream implements a number of methods to do this.

ReadByte is the simplest way to read data. It grabs 1 byte from the stream and casts the result to an int
that has a value between 0 and 255. If you have reached the end of the stream, it returns -1:

 int NextByte = fs.ReadByte();

If you prefer to read a number of bytes at a time, you can call the Read method, which reads a specified
number of bytes into an array. Read returns the number of bytes actually read — if this value is 0, you know
that you are at the end of the stream. The following example reads into a byte array called ByteArray:

 int nBytesRead = fs.Read(ByteArray, 0, nBytes);

The second parameter to Read is an offset, which you can use to request that the Read operation start popu-
lating the array at some element other than the first. The third parameter is the number of bytes to read into
the array.

If you want to write data to a file, two parallel methods are available, WriteByte and Write. WriteByte
writes a single byte to the stream:

 byte NextByte = 100;
 fs.WriteByte(NextByte);

c24.indd 683 30-01-2014 20:30:48

684 ❘ CHAPTER 24 Manipulating Files and the RegistRy

Write, however, writes out an array of bytes. For instance, if you initialized the ByteArray mentioned
before with some values, you could use the following code to write out the first nBytes of the array:

 fs.Write(ByteArray, 0, nBytes);

As with Read, the second parameter enables you to start writing from some point other than the beginning
of the array. Both WriteByte and Write return void.

In addition to these methods, FileStream implements various other methods and properties related to
bookkeeping tasks such as determining how many bytes are in the stream, locking the stream, or flushing
the buffer. These other methods are not usually required for basic reading and writing, but if you need them,
full details are in the SDK documentation.

BinaryFileReader Sample
The use of the FileStream class is illustrated by writing a sample, BinaryFileReader, that reads in and
displays any file. Create the project in Visual Studio 2013 as a Windows application. It has one menu item,
which brings up a standard OpenFileDialog asking
what file to read in and then displays the file as binary
code. As you are reading in binary files, you need to
be able to display nonprintable characters. You will
do this by displaying each byte of the file individually,
showing 16 bytes on each line of a multiline text box.
If the byte represents a printable ASCII character, you
will display that character; otherwise, you will display
the value of the byte in a hexadecimal format. In either
case, you pad the displayed text with spaces so that
each byte displayed occupies four columns; this way,
the bytes line up nicely under each other.

Figure 24-10 shows what the BinaryFileReader
application looks like when viewing a text file.
(Because BinaryFileReader can view any file, it can
also be used on text files as well as binary files.) In this
case, the application has read in a basic ASP.NET page
(.aspx).

Clearly, this format is more suited for looking at the
values of individual bytes than for displaying text!
Later in this chapter, when you develop a sample that is specifically designed to read text files, you will see
what this file really says. The advantage of this example is that you can look at the contents of any file.

This example does not demonstrate writing to files because you don’t want to get bogged down in the
complexities of trying to translate the contents of a text box such as the one shown in Figure 24-10 into a
binary stream! You will see how to write to files later when you develop an example that can read or write
only to and from text files.

Here is the code used to get these results. First, you need to ensure that you have brought in the System.IO
namespace through the use of the using statement:

using System.IO;

Next, you add a couple of fields to the main form class — one representing the file dialog and a string that
provides the path of the file currently being viewed:

FiguRE 24-10

c24.indd 684 30-01-2014 20:30:49

Reading and Writing to Files ❘ 685

 partial class Form1: Form

 {
 private readonly OpenFileDialog chooseOpenFileDialog =
 new OpenFileDialog();
 private string chosenFile;
 }

You also need to add some standard Windows Forms code to deal with the handlers for the menu and the
file dialog:

 public Form1()
 {
 InitializeComponent();
 menuFileOpen.Click += OnFileOpen;
 chooseOpenFileDialog.FileOk += OnOpenFileDialogOK;
 }

 void OnFileOpen(object Sender, EventArgs e)
 {
 chooseOpenFileDialog.ShowDialog();
 }

 void OnOpenFileDialogOK(object Sender, CancelEventArgs e)
 {
 chosenFile = chooseOpenFileDialog.FileName;
 this.Text = Path.GetFileName(chosenFile);
 DisplayFile();
 }

As this code demonstrates, when the user clicks OK to select a file in the file dialog, you call the
DisplayFile method, which does the work of reading in the selected file:

 void DisplayFile()
 {
 int nCols = 16;
 FileStream inStream = new FileStream(chosenFile, FileMode.Open,
 FileAccess.Read);
 long nBytesToRead = inStream.Length;
 if (nBytesToRead > 65536/4)
 nBytesToRead = 65536/4;

 int nLines = (int)(nBytesToRead/nCols) + 1;
 string [] lines = new string[nLines];
 int nBytesRead = 0;

 for (int i=0; i<nLines; i++)
 {
 StringBuilder nextLine = new StringBuilder();
 nextLine.Capacity = 4*nCols;

 for (int j = 0; j<nCols; j++)
 {
 int nextByte = inStream.ReadByte();
 nBytesRead++;
 if (nextByte < 0 || nBytesRead > 65536)
 break;
 char nextChar = (char)nextByte;
 if (nextChar < 16)
 nextLine.Append(" x0" + string.Format("{0,1:X}",
 (int)nextChar));
 else if

c24.indd 685 30-01-2014 20:30:49

686 ❘ CHAPTER 24 Manipulating Files and the RegistRy

 (char.IsLetterOrDigit(nextChar) ||
 char.IsPunctuation(nextChar))
 nextLine.Append(" " + nextChar + " ");
 else
 nextLine.Append(" x" + string.Format("{0,2:X}",
 (int)nextChar));
 }
 lines[i] = nextLine.ToString();
 }
 inStream.Close();
 this.textBoxContents.Lines = lines;
 }

There is quite a lot going on in this method, so here is the breakdown. You instantiate a FileStream object
for the selected file, which specifies that you want to open an existing file for reading. You then determine
how many bytes need to be read in and how many lines should be displayed. The number of bytes will
normally be the number of bytes in the file. This example limits the display of the contents in the text box
control to a maximum of only 65,536 characters — with the chosen display format, you are displaying four
characters for every byte in the file.

NoTE You might want to look up the RichTextBox class in the System.Windows
.Forms namespace. RichTextBox is similar to a text box, but it has many more
advanced formatting facilities. TextBox is used here to keep the example simple and
focused on the process of reading in files.

The bulk of the method is given to two nested for loops that construct each line of text to be displayed. You
use a StringBuilder class to construct each line for performance reasons: You are appending suitable text
for each byte to the string that represents each line 16 times. If on each occasion you allocated a new string
and took a copy of the half-constructed line, you would not only spend a lot of time allocating strings but
also waste a lot of memory on the heap. Notice that the definition of printable characters is anything that
is a letter, digit, or punctuation, as indicated by the relevant static System.Char methods. You exclude any
character with a value less than 16 from the printable list, however; this means that you will trap the car-
riage return (13) and line feed (10) as binary characters (a multiline text box isn’t able to display these char-
acters properly if they occur individually within a line).

Furthermore, using the Properties window, you change the Font property for the text box to a fixed-width
font. In this case, you choose Courier New 9pt regular and set the text box to have vertical and horizontal
scrollbars. Upon completion, you close the stream and set the contents of the text box to the array of strings
that you have built.

Reading and Writing to Text Files
Theoretically, it is perfectly possible to use the FileStream class to read in and display text files. You have,
after all, just done that. The format in which the Default.aspx file is displayed in the preceding sample is
not particularly user-friendly, but that has nothing to do with any intrinsic problem with the FileStream
class, only with how you choose to display the results in the text box.

Having said that, if you know that a particular file contains text, you will usually find it more convenient
to read and write it using the StreamReader and StreamWriter classes instead of the FileStream class.
That’s because these classes work at a slightly higher level and are specifically geared to reading and writ-
ing text. The methods that they implement can automatically detect convenient points to stop reading text,
based on the contents of the stream. In particular:

c24.indd 686 30-01-2014 20:30:49

Reading and Writing to Files ❘ 687

➤➤ These classes implement methods to read or write one line of text at a time, StreamReader
.ReadLine and StreamWriter.WriteLine. In the case of reading, this means that the stream
automatically determines where the next carriage return is and stops reading at that point. In the case
of writing, it means that the stream automatically appends the carriage return–line feed combination
to the text that it writes out.

➤➤ By using the StreamReader and StreamWriter classes, you don’t need to worry about the encoding
(the text format) used in the file. Possible encodings include ASCII (1 byte for each character), or any
of the Unicode-based formats, Unicode, UTF7, UTF8, and UTF32. Text files on Windows 9x systems
are always in ASCII because Windows 9x does not support Unicode; however, because Windows NT,
2000, XP, 2003, Vista, Windows Server 2008, Windows 7, and Windows 8 all support Unicode, text
files might theoretically contain Unicode, UTF7, UTF8, or UTF32 data instead of ASCII data. The
convention is such that if the file is in ASCII format, it simply contains the text. If it is in any Unicode
format, this is indicated by the first 2 or 3 bytes of the file, which are set to particular combinations of
values to indicate the format used in the file.

These bytes are known as the byte code markers. When you open a file using any of the standard Windows
applications, such as Notepad or WordPad, you do not need to worry about this because these applications
are aware of the different encoding methods and automatically read the file correctly. This is also true for
the StreamReader class, which correctly reads in a file in any of these formats; and the StreamWriter class
is capable of formatting the text it writes out using whatever encoding technique you request. If you want to
read in and display a text file using the FileStream class, however, you need to handle this yourself.

The StreamReader Class
StreamReader is used to read text files. Constructing a StreamReader is in some ways easier than con-
structing a FileStream instance because some of the FileStream options are not required when using
StreamReader. In particular, the mode and access types are not relevant to StreamReader because the only
thing you can do with a StreamReader is read! Furthermore, there is no direct option to specify the sharing
permissions. However, there are a couple of new options:

➤➤ You need to specify what to do about the different encoding methods. You can instruct the
StreamReader to examine the byte code markers in the beginning of the file to determine the encod-
ing method, or you can simply tell the StreamReader to assume that the file uses a specified encoding
method.

➤➤ Instead of supplying a filename to be read from, you can supply a reference to another stream.

This last option deserves a bit more discussion because it illustrates another advantage of basing the model
for reading and writing data on the concept of streams. Because the StreamReader works at a relatively
high level, you might find it useful when you have another stream that is there to read data from another
source but, you would like to use the facilities provided by StreamReader to process that other stream as
if it contained text. You can do so by simply passing the output from this stream to a StreamReader. In
this way, StreamReader can be used to read and process data from any data source — not only files. This is
essentially the situation discussed earlier with regard to the BinaryReader class. However, in this book you
only use StreamReader to connect directly to files.

The result of these possibilities is that StreamReader has a large number of constructors. Not only that,
but there is another FileInfo method that returns a StreamReader reference: OpenText. The following
examples illustrate just some of the constructors.

The simplest constructor takes only a filename. This StreamReader examines the byte order marks to deter-
mine the encoding:

 StreamReader sr = new StreamReader(@"C:\My Documents\ReadMe.txt");

Alternatively, you can specify that UTF8 encoding should be assumed:

 StreamReader sr = new StreamReader(@"C:\My Documents\ReadMe.txt",
 Encoding.UTF8);

c24.indd 687 30-01-2014 20:30:49

688 ❘ CHAPTER 24 Manipulating Files and the RegistRy

You specify the encoding by using one of several properties on a class, System.Text.Encoding. This class
is an abstract base class, from which a number of classes are derived and which implements methods that
actually perform the text encoding. Each property returns an instance of the appropriate class, and the pos-
sible properties you can use are as follows:

➤➤ ASCII

➤➤ Unicode

➤➤ UTF7

➤➤ UTF8

➤➤ UTF32

➤➤ BigEndianUnicode

The following example demonstrates how to hook up a StreamReader to a FileStream. The advantage of
this is that you can specify whether to create the file and the share permissions, which you cannot do if you
directly attach a StreamReader to the file:

 FileStream fs = new FileStream(@"C:\My Documents\ReadMe.txt",
 FileMode.Open, FileAccess.Read, FileShare.None);
 StreamReader sr = new StreamReader(fs);

For this example, you specify that the StreamReader will look for byte code markers to determine the
encoding method used, as it will do in the following examples, in which the StreamReader is obtained from
a FileInfo instance:

 FileInfo myFile = new FileInfo(@"C:\My Documents\ReadMe.txt");
 StreamReader sr = myFile.OpenText();

Just as with a FileStream, you should always close a StreamReader after use. Otherwise, the file will
remain locked to other processes (unless you used a FileStream to construct the StreamReader and speci-
fied FileShare.ShareReadWrite):

 sr.Close();

Now that you have gone to the trouble of instantiating a StreamReader, you can do something with it. As
with the FileStream, the following examples demonstrate the various ways to read data; other, less
commonly used StreamReader methods are left to the SDK documentation.

Possibly the easiest method to use is ReadLine, which keeps reading until it gets to the end of a line. It does
not include the carriage return–line feed combination that marks the end of the line in the returned string:

 string nextLine = sr.ReadLine();

Alternatively, you can grab the entire remainder of the file (or strictly, the remainder of the stream) in one
string:

 string restOfStream = sr.ReadToEnd();

You can read a single character as follows:

 int nextChar = sr.Read();

This overload of Read casts the returned character to an int. This gives it the option of returning a value of
-1 if the end of the stream has been reached.

Finally, you can read a given number of characters into an array, with an offset:

c24.indd 688 30-01-2014 20:30:49

Reading and Writing to Files ❘ 689

 // to read 100 characters in.

 int nChars = 100;
 char [] charArray = new char[nChars];
 int nCharsRead = sr.Read(charArray, 0, nChars);

nCharsRead will be less than nChars if you have requested to read more characters than remain in the file.

The StreamWriter Class
This works in the same way as the StreamReader, except that you can use StreamWriter only to write to a
file (or to another stream). Possibilities for constructing a StreamWriter include the following:

 StreamWriter sw = new StreamWriter(@"C:\My Documents\ReadMe.txt");

The preceding uses UTF8 encoding, which is regarded by .NET as the default encoding method. If you
want, you can specify alternative encoding:

 StreamWriter sw = new StreamWriter(@"C:\My Documents\ReadMe.txt", true,
 Encoding.ASCII);

In this constructor, the second parameter is a boolean that indicates whether the file should be opened for
appending. There is, oddly, no constructor that takes only a filename and an encoding class.

Of course, you may want to hook up StreamWriter to a file stream to give you more control over the
options for opening the file:

 FileStream fs = new FileStream(@"C:\My Documents\ReadMe.txt",
 FileMode.CreateNew, FileAccess.Write, FileShare.Read);
 StreamWriter sw = new StreamWriter(fs);

FileStream does not implement any methods that return a StreamWriter class.

Alternatively, if you want to create a new file and start writing data to it, you will find this sequence useful:

 FileInfo myFile = new FileInfo(@"C:\My Documents\NewFile.txt");
 StreamWriter sw = myFile.CreateText();

Just as with all other stream classes, it is important to close a StreamWriter class when you are finished with it:

 sw.Close();

Writing to the stream is done using any of 17 overloads of StreamWriter.Write. The simplest writes out a
string:

 string nextLine = "Groovy Line";
 sw.Write(nextLine);

It is also possible to write out a single character:

 char nextChar = 'a';
 sw.Write(nextChar);

And an array of characters:

 char [] charArray = new char[100];

 // initialize these characters

 sw.Write(charArray);

c24.indd 689 30-01-2014 20:30:49

690 ❘ CHAPTER 24 Manipulating Files and the RegistRy

It is even possible to write out a portion of an array of characters:

 int nCharsToWrite = 50;
 int startAtLocation = 25;
 char [] charArray = new char[100];

 // initialize these characters

 sw.Write(charArray, startAtLocation, nCharsToWrite);

ReadWriteText Sample
The ReadWriteText sample displays the use of the StreamReader and StreamWriter classes. It is similar
to the earlier ReadBinaryFile sample, but it assumes that the file to be read in is a text file and displays
it as such. It is also capable of saving the file (with any modifications you have made to the text in the text
box). It will save any file in Unicode format.

The screenshot in Figure 24-11 shows ReadWriteText displaying the same Default.aspx file that you used
earlier. This time, however, you are able to read the contents a bit more easily!

FiguRE 24-11

We don’t cover the details of adding the event handlers for the Open File dialog, because they are basically
the same as those in the earlier BinaryFileReader sample. As with that sample, opening a new file
causes the DisplayFile method to be called. The only real difference between this sample and the previous
one is the implementation of DisplayFile, and you now have the option to save a file. This is represented
by another menu option, Save. The handler for this option calls another method you have added to the code,
SaveFile. (Note that the new file always overwrites the original file; this sample does not have an option to
write to a different file.)

You look at SaveFile first because it is the simplest function. You simply write each line of the text box, in
turn, to a StreamWriter stream, relying on the StreamReader.WriteLine method to append the trailing
carriage return and line feed to the end of each line:

c24.indd 690 30-01-2014 20:30:50

Reading and Writing to Files ❘ 691

 void SaveFile()
 {
 StreamWriter sw = new StreamWriter(chosenFile, false, Encoding.Unicode);

 foreach (string line in textBoxContents.Lines)
 sw.WriteLine(line);

 sw.Close();
 }

chosenFile is a string field of the main form, which contains the name of the file you have read in (just
as for the previous example). Notice that you specify Unicode encoding when you open the stream. If you
want to write files in some other format, you simply need to change the value of this parameter. The second
parameter to this constructor is set to true to append to a file, but you do not in this case. The encoding
must be set at construction time for a StreamWriter. It is subsequently available as a read-only property,
Encoding.

Now you examine how files are read in. The process of reading in is complicated by the fact that you don’t
know how many lines it will contain until you have read in the file. For example, you don’t know how
many (char)13(char)10 sequences are in the file because char(13)char(10) is the carriage return–line
feed combination that occurs at the end of a line. You solve this problem by initially reading the file into an
instance of the StringCollection class, which is in the System.Collections.Specialized namespace.
This class is designed to hold a set of strings that can be dynamically expanded. It implements two methods
that you will be interested in: Add, which adds a string to the collection, and CopyTo, which copies the string
collection into a normal array (a System.Array instance). Each element of the StringCollection object
holds one line of the file.

The DisplayFile method calls another method, ReadFileIntoStringCollection, which actually reads
in the file. After doing this, you now know how many lines there are, so you are in a position to copy the
StringCollection into a normal, fixed-size array and feed it into the text box. Because only the references
to the strings, not the strings themselves, are copied when you actually make the copy, the process is reason-
ably efficient:

 void DisplayFile()
 {
 StringCollection linesCollection = ReadFileIntoStringCollection();
 string [] linesArray = new string[linesCollection.Count];
 linesCollection.CopyTo(linesArray, 0);
 this.textBoxContents.Lines = linesArray;
 }

The second parameter of StringCollection.CopyTo indicates the index within the destination array
where you want the collection to start.

The next example demonstrates the ReadFileIntoStringCollection method. You use a StreamReader to
read in each line. The main complication here is the need to count the characters read in to ensure that you
do not exceed the capacity of the text box:

 StringCollection ReadFileIntoStringCollection()
 {
 const int MaxBytes = 65536;
 StreamReader sr = new StreamReader(chosenFile);
 StringCollection result = new StringCollection();
 int nBytesRead = 0;
 string nextLine;
 while (sr.Peek != 0)
 {
 nextLine = sr.ReadLine()

c24.indd 691 30-01-2014 20:30:50

692 ❘ CHAPTER 24 Manipulating Files and the RegistRy

 nBytesRead += nextLine.Length;
 if (nBytesRead > MaxBytes)
 break;
 result.Add(nextLine);
 }
 sr.Close();
 return result;
 }

That completes the code for this sample.

If you run ReadWriteText, read in the Default.aspx file, and then save it, the file will be in Unicode for-
mat. You would not be able to discern this from any of the usual Windows applications. Notepad, WordPad,
and even the ReadWriteText example will still read the file in and display it correctly under most versions
of Windows, but because Windows 9x doesn’t support Unicode, applications like Notepad won’t be able
to understand the Unicode file on those platforms. (If you download the example from the Wrox Press
website at www.wrox.com, you can try this!) However, if you try to display the file again using the earlier
BinaryFileReader sample, you can see the difference immediately, as shown in Figure 24-12. The two ini-
tial bytes that indicate the file is in Unicode format are visible, and thereafter every character is represented
by 2 bytes. This last fact is obvious because the high-order byte of every character in this particular file is
zero, so every second byte in this file now displays x00.

MAPPED MEMoRy FilES
If you have been working your entire coding life with
only managed code, then mapped-memory files might
be a brand-new concept. .NET Framework 4.5
supplies mapped-memory files as part of your
toolkit for building applications with the System
.IO.MemoryMappedFiles namespace.

It is always possible to use the concept of mapped-
memory files by doing some P/Invokes to the
underlying Windows APIs, but with of the System
.IO.MemoryMappedFiles namespace, you can work
with managed code rather than operate in the
cumbersome P/Invoke world.

Mapped-memory files and the use of this namespace is
ideal when your application requires frequent or
random access to files. Using this approach enables
you to load part or all of the file into a segment
of virtual memory, which then appears to your
 application as if this file is contained within the
primary memory for the application.

Interestingly, you can use this file in memory as a
shared resource among more than one process. Prior
to this, you might have been using Windows Communication Foundation (WCF) or Named Pipes to com-
municate a shared resource between multiple processes, but now you can share a mapped-memory file
between processes using a shared name.

To work with mapped-memory files, you have to work with a couple of objects. The first is a mapped-
memory file instance that loads the file. The second is an accessor object. The following code writes to the
mapped-memory file object and then reads from it. The write is also happening when the object is disposed:

FiguRE 24-12

c24.indd 692 30-01-2014 20:30:50

Reading Drive Information ❘ 693

using System;
using System.IO.MemoryMappedFiles;
using System.Text;

namespace MappedMemoryFiles
{
 class Program
 {
 static void Main(string[] args)
 {
 using (var mmFile = MemoryMappedFile.CreateFromFile(@"c:\users\bill\
 documents\visual studio 11\
 Projects\MappedMemoryFiles\MappedMemoryFiles\TextFile1.txt",
 System.IO.FileMode.Create, "fileHandle", 1024 * 1024))
 {
 string valueToWrite = "Written to the mapped-memory file on " +
 DateTime.Now.ToString();
 var myAccessor = mmFile.CreateViewAccessor();

 myAccessor.WriteArray<byte>(0,
 Encoding.ASCII.GetBytes(valueToWrite), 0,
 valueToWrite.Length);

 var readOut = new byte[valueToWrite.Length];
 myAccessor.ReadArray<byte>(0, readOut, 0, readOut.Length);
 var finalValue = Encoding.ASCII.GetString(readOut);

 Console.WriteLine("Message: " + finalValue);
 Console.ReadLine();
 }
 }
 }
}

In this case, a mapped-memory file is created from a physical file using the CreateFromFile method. In
addition to a mapped-memory file, you then need to create an accessor object to this mapping. That is done
using the following:

var myAccessor = mmFile.CreateViewAccessor();

After the accessor is in place, you can write or read to this mapped-memory location as shown in the code
example.

It is also possible to create multiple accessors to the same mapped-memory location as shown here:

var myAccessor1 = mmFile.CreateViewAccessor();
var myAccessor2 = mmFile.CreateViewAccessor();

READiNg DRivE iNFoRMATioN
In addition to working with files and directories, the .NET Framework includes the capability to read infor-
mation from a specified drive. This is done using the DriveInfo class, which can perform a scan of a system
to provide a list of available drives and then can dig in deeper, providing a large amount of detail about any
of the drives.

To demonstrate using the DriveInfo class, the following example creates a simple Windows Form that will
list all the available drives on a computer and then provide details on a user-selected drive. Your Windows
Form will consist of a simple ListBox and should look like Figure 24-13.

c24.indd 693 30-01-2014 20:30:50

694 ❘ CHAPTER 24 Manipulating Files and the RegistRy

When you have the form all set, the code consists of two events — one
for when the form loads and another for when the end user makes a
drive selection in the list box. The code for this form is shown here:

using System;
using System.IO;
using System.Windows.Forms;

namespace DriveViewer
{
 public partial class Form1: Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 DriveInfo[] di = DriveInfo.GetDrives();

 foreach (DriveInfo itemDrive in di)
 {
 listBox1.Items.Add(itemDrive.Name);
 }
 }

 private void listBox1_SelectedIndexChanged(object sender, EventArgs e)
 {
 DriveInfo di = new DriveInfo(listBox1.SelectedItem.ToString());

 MessageBox.Show("Available Free Space: "
 + di.AvailableFreeSpace + "\n" +
 "Drive Format: " + di.DriveFormat + "\n" +
 "Drive Type: " + di.DriveType + "\n" +
 "Is Ready: " + di.IsReady + "\n" +
 "Name: " + di.Name + "\n" +
 "Root Directory: " + di.RootDirectory + "\n" +
 "ToString() Value: " + di + "\n" +
 "Total Free Space: " + di.TotalFreeSpace + "\n" +
 "Total Size: " + di.TotalSize + "\n" +
 "Volume Label: " + di.VolumeLabel, di.Name +
 " DRIVE INFO");
 }
 }
}

The first step is to bring in the System.IO namespace with the using
keyword. Within the Form1_Load event, you use the DriveInfo class
to get a list of all the available drives on the system. This is done using
an array of DriveInfo objects and populating this array with the
DriveInfo.GetDrives method. Then using a foreach loop, you are
able to iterate through each drive found and populate the list box with
the results. This produces something similar to what is shown in
Figure 24-14.

This form enables the end user to select one of the drives in the list.
After a drive is selected, a message box appears that contains details
about that drive. Figure 29-14 shows a computer with four drives.
Selecting a couple of these drives produces the message boxes
collectively shown in Figure 24-15.

FiguRE 24-13

FiguRE 24-14

c24.indd 694 30-01-2014 20:30:51

File Security ❘ 695

From here, you can see that these message boxes provide details about three entirely different drives. The
first, drive C:\, is a hard drive, and the message box shows its drive type as Fixed. The second drive,
drive D:\, is a CD/DVD drive. The third drive, drive E:\, is a USB pen and is labeled with a
Removable drive type.

FilE SECuRiTy
When the .NET Framework 1.0/1.1 was first introduced, it didn’t provide a way to easily access and work
with access control lists (ACLs) for files, directories, and registry keys. To do such things at that time usu-
ally meant some work with COM interop, thus also requiring a more advanced programming knowledge of
working with ACLs.

That changed considerably after the release of the .NET Framework 2.0, which made the process of working
with ACLs much easier with a namespace — System.Security.AccessControl. With this namespace, it is
possible to manipulate security settings for files, registry keys, network shares, Active Directory objects, and
more.

Reading ACls from a File
For an example of working with System.Security.AccessControl, this section looks at working with the
ACLs for both files and directories. It starts by examining how you review the ACLs for a particular file.
This example is accomplished in a console application and is illustrated here:

using System;
using System.IO;
using System.Security.AccessControl;
using System.Security.Principal;

namespace ReadingACLs
{
 internal class Program
 {
 private static string myFilePath;

 private static void Main()
 {
 Console.Write("Provide full file path: ");
 myFilePath = Console.ReadLine();

 try
 {
 using (FileStream myFile =
 new FileStream(myFilePath, FileMode.Open, FileAccess.Read))

FiguRE 24-15

c24.indd 695 30-01-2014 20:30:51

696 ❘ CHAPTER 24 Manipulating Files and the RegistRy

 {
 FileSecurity fileSec = myFile.GetAccessControl();

 foreach (FileSystemAccessRule fileRule in
 fileSec.GetAccessRules(true, true,
 typeof (NTAccount)))
 {
 Console.WriteLine("{0} {1} {2} access for {3}",
 myFilePath,
 fileRule.AccessControlType ==
 AccessControlType.Allow
 ? "provides": "denies",
 fileRule.FileSystemRights,
 fileRule.IdentityReference);
 }
 }
 }
 catch
 {
 Console.WriteLine("Incorrect file path given!");
 }

 Console.ReadLine();
 }
 }
}

For this example to work, the first step is to refer to the System.Security.AccessControl namespace.
This gives you access to the FileSecurity and FileSystemAccessRule classes later in the program.

After the specified file is retrieved and placed in a FileStream object, the ACLs of the file are grabbed
using the GetAccessControl method now found on the File object. This information from the
GetAccessControl method is then placed in a FileSecurity class, which has access rights to the ref-
erenced item. Each individual access right is then represented by a FileSystemAccessRule object. That
is why a foreach loop is used to iterate through all the access rights found in the created FileSecurity
object.

Running this example with a simple text file in the root directory produces something similar to the follow-
ing results:

Provide full file path: C:\Sample.txt
C:\Sample.txt provides FullControl access for BUILTIN\Administrators
C:\Sample.txt provides FullControl access for NT AUTHORITY\SYSTEM
C:\Sample.txt provides ReadAndExecute, Synchronize access for BUILTIN\Users
C:\Sample.txt provides Modify, Sychronize access for
 NT AUTHORITY\Authenticated Users

Reading ACls from a Directory
Reading ACL information about a directory instead of an actual file is not much different from the preced-
ing example, as shown here:

using System;
using System.IO;
using System.Security.AccessControl;
using System.Security.Principal;

namespace ConsoleApplication1

c24.indd 696 30-01-2014 20:30:51

File Security ❘ 697

{
 internal class Program
 {
 private static string mentionedDir;

 private static void Main()
 {
 Console.Write("Provide full directory path: ");
 mentionedDir = Console.ReadLine();

 try
 {
 DirectoryInfo myDir = new DirectoryInfo(mentionedDir);

 if (myDir.Exists)
 {
 DirectorySecurity myDirSec = myDir.GetAccessControl();

 foreach (FileSystemAccessRule fileRule in
 myDirSec.GetAccessRules(true, true,
 typeof (NTAccount)))
 {
 Console.WriteLine("{0} {1} {2} access for {3}",
 mentionedDir, fileRule.AccessControlType ==
 AccessControlType.Allow
 ? "provides": "denies",
 fileRule.FileSystemRights,
 fileRule.IdentityReference);
 }
 }
 }
 catch
 {
 Console.WriteLine("Incorrect directory provided!");
 }

 Console.ReadLine();
 }
 }
}

The big difference with this example is that it uses the DirectoryInfo class, which now also includes the
GetAccessControl method to pull information about the directory’s ACLs. Running this example produces
the following results when using Windows 8:

Provide full directory path: C:\Test
C:\Test provides FullControl access for BUILTIN\Administrators
C:\Test provides 268435456 access for BUILTIN\Administrators
C:\Test provides FullControl access for NT AUTHORITY\SYSTEM
C:\Test provides 268435456 access for NT AUTHORITY\SYSTEM
C:\Test provides ReadAndExecute, Synchronize access for BUILTIN\Users
C:\Test provides Modify, Synchronize access for
 NT AUTHORITY\Authenticated Users
C:\Test provides -536805376 access for NT AUTHORITY\Authenticated Users

The final thing you will look at when working with ACLs is using the new System.Security
.AccessControl namespace to add and remove items to and from a file’s ACL.

c24.indd 697 30-01-2014 20:30:51

698 ❘ CHAPTER 24 Manipulating Files and the RegistRy

Adding and Removing ACls from a File
It is also possible to manipulate the ACLs of a resource using the same objects that were used in earlier
examples. The following code changes a previous code example in which a file’s ACL information was read.
Here, the ACLs are read for a specified file, changed, and then read again:

try
{
 using (FileStream myFile = new FileStream(myFilePath,
 FileMode.Open, FileAccess.ReadWrite))
 {
 FileSecurity fileSec = myFile.GetAccessControl();

 Console.WriteLine("ACL list before modification:");

 foreach (FileSystemAccessRule fileRule in
 fileSec.GetAccessRules(true, true,
 typeof(System.Security.Principal.NTAccount)))
 {
 Console.WriteLine("{0} {1} {2} access for {3}", myFilePath,
 fileRule.AccessControlType == AccessControlType.Allow ?
 "provides": "denies",
 fileRule.FileSystemRights,
 fileRule.IdentityReference);
 }

 Console.WriteLine();
 Console.WriteLine("ACL list after modification:");

 FileSystemAccessRule newRule = new FileSystemAccessRule(
 new System.Security.Principal.NTAccount(@"PUSHKIN\Tuija"),
 FileSystemRights.FullControl,
 AccessControlType.Allow);

 fileSec.AddAccessRule(newRule);
 File.SetAccessControl(myFilePath, fileSec);

 foreach (FileSystemAccessRule fileRule in
 fileSec.GetAccessRules(true, true,
 typeof(System.Security.Principal.NTAccount)))
 {
 Console.WriteLine("{0} {1} {2} access for {3}", myFilePath,
 fileRule.AccessControlType == AccessControlType.Allow ?
 "provides": "denies",
 fileRule.FileSystemRights,
 fileRule.IdentityReference);
 }
 }

}

In this case, a new access rule is added to the file’s ACL. This is done by using the FileSystemAccessRule
object. The FileSystemAccessRule class is an abstraction access control entry (ACE) instance. The
ACE defines the user account to use, the type of access to which user account applies, and whether this
access is allowed or denied. In creating a new instance of this object, a new NTAccount is created and
given Full Control to the file. Even though a new NTAccount is created, it must still reference an existing
user. Then the AddAccessRule method of the FileSecurity class is used to assign the new rule. From
there, the FileSecurity object reference is used to set the access control to the file in question using the
SetAccessControl method of the File class.

Next, the file’s ACL is listed again. The following is an example of what the preceding code could produce:

c24.indd 698 30-01-2014 20:30:51

Reading and Writing to the Registry ❘ 699

Provide full file path: C:\Users\Bill\Sample.txt
ACL list before modification:
C:\Sample.txt provides FullControl access for NT AUTHORITY\SYSTEM
C:\Sample.txt provides FullControl access for BUILTIN\Administrators
C:\Sample.txt provides FullControl access for PUSHKIN\Bill

ACL list after modification:
C:\Sample.txt provides FullControl access for PUSHKIN\Tuija
C:\Sample.txt provides FullControl access for NT AUTHORITY\SYSTEM
C:\Sample.txt provides FullControl access for BUILTIN\Administrators
C:\Sample.txt provides FullControl access for PUSHKIN\Bill

To remove a rule from the ACL list, not much needs to be done to the code. In the previous code example,
you simply need to change the line

fileSec.AddAccessRule(newRule);

to the following to remove the rule that was just added:

fileSec.RemoveAccessRule(newRule);

READiNg AND WRiTiNg To THE REgiSTRy
In all versions of Windows since Windows 95, the registry has been the central repository for all configura-
tion information relating to Windows setup, user preferences, and installed software and devices. Almost all
commercial software these days uses the registry to store information about itself, and any COM component
must place information about itself in the registry in order to be called by clients. The .NET Framework and
its accompanying concept of zero-impact installation has slightly reduced the significance of the registry for
applications in the sense that assemblies are entirely self-contained; no information about particular assem-
blies needs to be placed in the registry, even for shared assemblies. In addition, the .NET Framework uses
the concept of isolated storage — applications can store information that is particular to each user in files;
and it ensures that data is stored separately for each user registered on a machine.

The fact that applications can now be installed using the Windows Installer also frees developers from
some of the direct manipulation of the registry that used to be involved in installing applications. However,
despite this, the possibility exists that if you distribute any complete application, the application will use the
registry to store information about its configuration. For instance, if you want your application to appear in
the Add/Remove Programs dialog in the control panel, that involves appropriate registry entries. You may
also need to use the registry for backward compatibility with legacy code.

As you would expect from a library as comprehensive as the .NET library, it includes classes that give you
access to the registry. Two classes are concerned with the registry, and both are in the Microsoft.Win32
namespace: Registry and RegistryKey. Before examining these classes, the following section briefly
reviews the registry’s structure itself.

The Registry
The registry has a hierarchical structure much like that of the file system. The usual way to view or modify
the contents of the registry is with one of two utilities: regedit or regedt32. Of these, regedit is standard
with all versions of Windows since Windows 95. regedt32 is included with Windows NT and Windows
2000; it is less user-friendly than regedit but allows access to security information that regedit is unable
to view. Windows Server 2003 merged regedit and regedt32 into a single new editor simply called
regedit. The following example uses regedit from Windows 7, which you can launch by typing regedit in
the Run dialog or at the command prompt.

Figure 24-16 shows the window that appears when you launch regedit for the first time.

c24.indd 699 30-01-2014 20:30:52

700 ❘ CHAPTER 24 Manipulating Files and the RegistRy

regedit has a tree view/list view–style user interface similar to Windows Explorer, which matches the
hierarchical structure of the registry itself. However, you will see some key differences shortly.

FiguRE 24-16

In a file system, the topmost-level nodes can be thought of as being the partitions on your disks, C:\, D:\,
and so on. In the registry, the equivalent to a partition is the registry hive. It is not possible to change the
existing hives — they are fixed, and there are seven of them, although only five are actually visible through
regedit:

➤➤ HKEY_CLASSES_ROOT (HKCR) contains details of types of files on the system (.txt, .doc, and so
on) and which applications are able to open files of each type. It also contains registration informa-
tion for all COM components (this latter area is usually the largest single area of the registry because
Windows now includes a huge number of COM components).

➤➤ HKEY_CURRENT_USER (HKCU) contains details of user preferences for the user currently logged on
to the machine locally. These settings include desktop settings, environment variables, network and
printer connections, and other settings that define the operating environment of the user.

➤➤ HKEY_LOCAL_MACHINE (HKLM) is a huge hive that contains details of all software and hardware
installed on the machine. These settings are not user-specific but for all users that log on to the
machine. This hive also includes the HKCR hive; HKCR is actually not an independent hive in its own
right but simply a convenient mapping onto the registry key HKLM/SOFTWARE/Classes.

➤➤ HKEY_USERS (HKUSR) contains details of user preferences for all users. As you might guess, it also
contains the HKCU hive, which is simply a mapping onto one of the keys in HKEY_USERS.

➤➤ HKEY_CURRENT_CONFIG (HKCF) contains details of hardware on the machine.

The remaining two keys contain information that is temporary and changes frequently:

➤➤ HKEY_DYN_DATA is a general container for any volatile data that needs to be stored somewhere in the
registry.

➤➤ HKEY_PERFORMANCE_DATA contains information concerning the performance of running applications.

Within the hives is a tree structure of registry keys. Each key is in many ways analogous to a folder or file on
the file system. However, there is one very important difference: The file system distinguishes between files
(which are there to contain data) and folders (which are primarily there to contain other files or folders), but
in the registry there are only keys. A key may contain both data and other keys.

If a key contains data, it will be presented as a series of values. Each value has an associated name, data
type, and data. In addition, a key can have a default value, which is unnamed.

c24.indd 700 30-01-2014 20:30:52

Reading and Writing to the Registry ❘ 701

You can see this structure by using regedit to examine registry keys. Figure 24-17 shows the contents of
the key HKCU\Control Panel\Appearance, which contains details about the chosen color scheme of the
currently logged-in user. regedit shows which key is being examined by displaying it with an open folder
icon in the tree view.

FiguRE 24-17

The HKCU\Control Panel\Appearance key has three named values set, although the default value does not
contain any data. The column in the screenshot marked Type details the data type of each value. Registry
entries can be formatted as one of three data types:

➤➤ REG_SZ (which roughly corresponds to a .NET string instance; the matching is not exact because the
registry data types are not .NET data types)

➤➤ REG_DWORD (corresponds roughly to uint)
➤➤ REG_BINARY (array of bytes)

An application that stores data in the registry does so by creating a number of registry keys, usually under
the key HKLM\Software\<CompanyName>. Note that it is not necessary for these keys to contain any data.
Sometimes the very fact that a key exists provides the data that an application needs.

The .NET Registry Classes
Access to the registry is available through two classes in the Microsoft.Win32 namespace: Registry and
RegistryKey. A RegistryKey instance represents a registry key. This class implements methods to browse
child keys, to create new keys, or to read or modify the values in the key — in other words, to do everything you
would normally want to do with a registry key, including setting the security levels for the key. RegistryKey
is the class you will likely use for much of your work with the registry. Registry, by contrast, is a class that
enables singular access to registry keys for simple operations. Another role of the Registry class is simply
to provide you with RegistryKey instances that represent the top-level keys, the different hives, to enable
you to navigate the registry. Registry provides these instances through static properties, of which there are
seven; they are called, respectively, ClassesRoot, CurrentConfig, CurrentUser, DynData, LocalMachine,
PerformanceData, and Users. It should be obvious which property corresponds to which hive.

Therefore, for example, to obtain a RegistryKey instance that represents the HKLM key, you would use the
following:

RegistryKey hklm = Registry.LocalMachine;

c24.indd 701 30-01-2014 20:30:52

702 ❘ CHAPTER 24 Manipulating Files and the RegistRy

The process of obtaining a reference to a RegistryKey object is known as opening the key.

Although you might expect that the methods exposed by RegistryKey would be similar to those
 implemented by DirectoryInfo, given that the registry has a similar hierarchical structure to the file
system, this actually isn’t the case. Often, the way that you access the registry is different from the way that
you would use files and folders, and RegistryKey implements methods that reflect this.

The most obvious difference is how you open a registry key at a given location in the registry. The Registry
class does not have any public constructor that you can use, nor does it have any methods that provide
direct access to a key, given its name. Instead, you are expected to browse down to that key from the top
of the relevant hive. If you want to instantiate a RegistryKey object, the only way is to start off with the
appropriate static property of Registry, and work down from there. For example, to read some data in the
HKLM/Software/Microsoft key, you would get a reference to it like this:

RegistryKey hklm = Registry.LocalMachine;
RegistryKey hkSoftware = hklm.OpenSubKey("Software");
RegistryKey hkMicrosoft = hkSoftware.OpenSubKey("Microsoft");

A registry key accessed in this way gives you read-only access. If you want to write to the key (which
includes writing to its values or creating or deleting direct children of it), you need to use another override
to OpenSubKey, which takes a second parameter, of type bool, that indicates whether you want read-write
access to the key. For example, in order to be able to modify the Microsoft key (and assuming that you are
a system administrator with permission to do this), you would write this:

RegistryKey hklm = Registry.LocalMachine;
RegistryKey hkSoftware = hklm.OpenSubKey("Software");
RegistryKey hkMicrosoft = hkSoftware.OpenSubKey("Microsoft", true);

Incidentally, because this key contains information used by Microsoft’s applications, in most cases you
probably shouldn’t be modifying this particular key.

The OpenSubKey method is the one you call if you are expecting the key to be present. If the key isn’t there,
it returns a null reference. If you want to create a key, you should use the CreateSubKey method (which
automatically gives you read-write access to the key through the reference returned):

RegistryKey hklm = Registry.LocalMachine;
RegistryKey hkSoftware = hklm.OpenSubKey("Software");
RegistryKey hkMine = hkSoftware.CreateSubKey("MyOwnSoftware");

The way that CreateSubKey works is quite interesting. It creates the key if it does not already exist; but if
it does exist, it quietly returns a RegistryKey instance that represents the existing key. The reason why the
method behaves in this manner is related to how you normally use the registry. The registry, overall, con-
tains long-term data such as configuration information for Windows and various applications. It is not very
common, therefore, to find yourself in a situation where you need to explicitly create a key.

What is much more common is for your application to ensure that some data is present in the registry — in
other words, create the relevant keys if they do not already exist, but do nothing when they do.
CreateSubKey fills that need perfectly. Unlike the situation with FileInfo.Open, for example, there is no
chance that CreateSubKey will accidentally remove any data. If deleting registry keys is your intention, you
need to call the RegistryKey.DeleteSubKey method. This makes sense given the importance of the regis-
try to Windows. The last thing you want is to completely break Windows accidentally by deleting a couple
of important keys while you are debugging your C# registry calls!

After you have located the registry key you want to read or modify, you can use the SetValue or GetValue
methods to set or get the data in it. Both methods take a string, giving the name of the value as a parameter,
and SetValue requires an additional object reference containing details about the value. Because the
parameter is defined as an object reference, it can actually be a reference to any class you want. SetValue

c24.indd 702 30-01-2014 20:30:52

Reading and Writing to the Registry ❘ 703

determines from the type of class actually supplied whether to set the value as a REG_SZ, REG_DWORD, or a
REG_BINARY value. For example, the following code sets the key with two values:

RegistryKey hkMine = HkSoftware.CreateSubKey("MyOwnSoftware");
hkMine.SetValue("MyStringValue", "Hello World");
hkMine.SetValue("MyIntValue", 20);

Here, MyStringValue will be of type REG_SZ, and MyIntValue will be of type REG_DWORD. These are the
only two types you will consider here and use in the example presented later.

RegistryKey.GetValue works in much the same way. It is defined to return an object reference, which
means that it is free to actually return a string reference if it detects the value is of type REG_SZ, and an
int if that value is of type REG_DWORD:

string stringValue = (string)hkMine.GetValue("MyStringValue");
int intValue = (int)hkMine.GetValue("MyIntValue");

Finally, after you finish reading or modifying the data, close the key:

hkMine.Close();

RegistryKey implements a large number of methods and properties. The following table describes the most
useful properties:

PRoPERTy DESCRiPTioN

Name Name of the key (read-only)

SubKeyCount The number of children of this key

ValueCount How many values the key contains

The following table describes the most useful methods:

METHoD DESCRiPTioN

Close() Closes the key

CreateSubKey() Creates a subkey of a given name (or opens it if it already exists)

DeleteSubKey() Deletes a given subkey

DeleteSubKeyTree() Recursively deletes a subkey and all its children

DeleteValue() Removes a named value from a key

GetAccessControl() Returns the ACL for a specified registry key. This method was added in .NET
Framework 2.0

GetSubKeyNames() Returns an array of strings containing the names of the subkeys

GetValue() Returns a named value

GetValueKind() Returns a named value whose registry data type is to be retrieved. This
method was added in .NET Framework 2.0

GetValueNames() Returns an array of strings containing the names of all the values of the key

OpenSubKey() Returns a reference to a RegistryKey instance that represents a given subkey

SetAccessControl() Allows you to apply an ACL to a specified registry key

SetValue() Sets a named value

c24.indd 703 30-01-2014 20:30:53

704 ❘ CHAPTER 24 Manipulating Files and the RegistRy

READiNg AND WRiTiNg To iSolATED SToRAgE
In addition to being able to read from and write to the registry, another option is reading and writing values
to and from what is called isolated storage. If you are having issues writing to the registry or to disk in
general, then isolated storage is where you should turn. You can use isolated storage to store application
state or user settings quite easily.

Think of isolated storage as a virtual disk where you can save items that can be shared only by the
application that created them, or with other application instances. There are two access types for isolated
storage. The first is user and assembly.

When accessing isolated storage by user and assembly, there is a single storage location on the machine,
which is accessible via multiple application instances. Access is guaranteed through the user identity and the
application (or assembly) identity. This means that you can have multiple instances of the same application
all working from the same store.

The second type of access for isolated storage is user, assembly, and domain. In this case, each application
instance works off its own isolation store. In this case, the settings that each application instance records
are related only to itself. This is a more fine-grained approach to isolated storage. For an example of using
isolated storage from a Windows Forms application (although you can use this from an ASP.NET applica-
tion just as well), you can use the ReadSettings and SaveSettings methods shown next to read and write
values to isolated storage, rather than doing so directly in the registry.

NoTE The code shown here is only for the ReadSettings and SaveSettings meth-
ods. There is more code to the application, which you can see in the download code file
in the sample titled SelfPlacingWindow.

To start, you need to rework the SaveSettings method. In order for this next bit of code to work, you need
to add the following using directives:

using System.IO;
using System.IO.IsolatedStorage;
using System.Text;

The SaveSettings method is detailed in the following example:

void SaveSettings()
{
 IsolatedStorageFile storFile = IsolatedStorageFile.GetUserStoreForDomain();
 IsolatedStorageFileStream storStream = new
 IsolatedStorageFileStream("SelfPlacingWindow.xml",

 FileMode.Create, FileAccess.Write);

 System.Xml.XmlTextWriter writer = new
 System.Xml.XmlTextWriter(storStream, Encoding.UTF8);
 writer.Formatting = System.Xml.Formatting.Indented;

 writer.WriteStartDocument();
 writer.WriteStartElement("Settings");

 writer.WriteStartElement("BackColor");
 writer.WriteValue(BackColor.ToKnownColor().ToString());
 writer.WriteEndElement();

 writer.WriteStartElement("Red");

c24.indd 704 30-01-2014 20:30:53

Reading and Writing to Isolated Storage ❘ 705

 writer.WriteValue(BackColor.R);
 writer.WriteEndElement();

 writer.WriteStartElement("Green");
 writer.WriteValue(BackColor.G);
 writer.WriteEndElement();

 writer.WriteStartElement("Blue");
 writer.WriteValue(BackColor.B);
 writer.WriteEndElement();

 writer.WriteStartElement("Width");
 writer.WriteValue(Width);
 writer.WriteEndElement();

 writer.WriteStartElement("Height");
 writer.WriteValue(Height);
 writer.WriteEndElement();

 writer.WriteStartElement("X");
 writer.WriteValue(DesktopLocation.X);
 writer.WriteEndElement();

 writer.WriteStartElement("Y");
 writer.WriteValue(DesktopLocation.Y);
 writer.WriteEndElement();

 writer.WriteStartElement("WindowState");
 writer.WriteValue(WindowState.ToString());
 writer.WriteEndElement();

 writer.WriteEndElement();

 writer.Flush();
 writer.Close();

 storStream.Close();
 storFile.Close();
}

It is a bit more code than you might be used to when working with the registry, but that is mainly due to the
code required to build the XML document placed in isolated storage. The first important thing happening
with this code is presented here:

 IsolatedStorageFile storFile = IsolatedStorageFile.GetUserStoreForDomain();
 IsolatedStorageFileStream storStream = new
 IsolatedStorageFileStream("SelfPlacingWindow.xml",
 FileMode.Create, FileAccess.Write);

Here, an instance of an IsolatedStorageFile is created using a user, assembly, and domain type of
access. A stream is created using the IsolatedStorageFileStream object, which creates the virtual
SelfPlacingWindow.xml file.

From there, an XmlTextWriter object is created to build the XML document, and the XML contents are
written to the IsolatedStorageFileStream object instance:

 System.Xml.XmlTextWriter writer = new
 System.Xml.XmlTextWriter(storStream, Encoding.UTF8);

After the XmlTextWriter object is created, all the values are written to the XML document node by node.
When everything is written to the XML document, everything is closed and stored in the isolated storage.

c24.indd 705 30-01-2014 20:30:53

706 ❘ CHAPTER 24 Manipulating Files and the RegistRy

Reading from the storage is done through the ReadSettings method, shown here:

bool ReadSettings()
{
 IsolatedStorageFile storFile = IsolatedStorageFile.GetUserStoreForDomain();
 string[] userFiles = storFile.GetFileNames("SelfPlacingWindow.xml");

 foreach (string userFile in userFiles)
 {
 if(userFile == "SelfPlacingWindow.xml")
 {
 listBoxMessages.Items.Add("Successfully opened file " +
 userFile.ToString());

 StreamReader storStream =
 new StreamReader(new IsolatedStorageFileStream("SelfPlacingWindow.xml",
 FileMode.Open, storFile));
 System.Xml.XmlTextReader reader = new
 System.Xml.XmlTextReader(storStream);

 int redComponent = 0;
 int greenComponent = 0;
 int blueComponent = 0;

 int X = 0;
 int Y = 0;

 while (reader.Read())
 {
 switch (reader.Name)
 {
 case "Red":
 redComponent = int.Parse(reader.ReadString());
 break;
 case "Green":
 greenComponent = int.Parse(reader.ReadString());
 break;
 case "Blue":
 blueComponent = int.Parse(reader.ReadString());
 break;
 case "X":
 X = int.Parse(reader.ReadString());
 break;
 case "Y":
 Y = int.Parse(reader.ReadString());
 break;
 case "Width":
 this.Width = int.Parse(reader.ReadString());
 break;
 case "Height":
 this.Height = int.Parse(reader.ReadString());
 break;
 case "WindowState":
 this.WindowState = (FormWindowState)FormWindowState.Parse
 (WindowState.GetType(), reader.ReadString());
 break;
 default:
 break;
 }
 }

 this.BackColor =

c24.indd 706 30-01-2014 20:30:53

Summary ❘ 707

 Color.FromArgb(redComponent, greenComponent, blueComponent);
 this.DesktopLocation = new Point(X, Y);

 listBoxMessages.Items.Add("Background color: " + BackColor.Name);
 listBoxMessages.Items.Add("Desktop location: " +
 DesktopLocation.ToString());
 listBoxMessages.Items.Add("Size: " + new Size(Width, Height).ToString());
 listBoxMessages.Items.Add("Window State: " + WindowState.ToString());

 storStream.Close();
 storFile.Close();
 }
 }
 return true;
}

Using the GetFileNames method, the SelfPlacingWindow.xml document is pulled from the isolated stor-
age and then placed into a stream and parsed using the XmlTextReader object:

 IsolatedStorageFile storFile = IsolatedStorageFile.GetUserStoreForDomain();
 string[] userFiles = storFile.GetFileNames("SelfPlacingWindow.xml");

 foreach (string userFile in userFiles)
 {
 if(userFile == "SelfPlacingWindow.xml")
 {
 listBoxMessages.Items.Add("Successfully opened file " +
 userFile.ToString());

 StreamReader storStream =
 new StreamReader(new IsolatedStorageFileStream("SelfPlacingWindow.xml",
 FileMode.Open, storFile));

After the XML document is contained within the IsolatedStorageFileStream object, it is parsed using
the XmlTextReader object:

 System.Xml.XmlTextReader reader = new
 System.Xml.XmlTextReader(storStream);

It is pulled from the stream via the XmlTextReader, and the element values are then pushed back into the
application. You will find — as accomplished in the SelfPlacingWindow sample that used the registry to
record and retrieve application state values — that using isolated storage is just as effective as working with
the registry. The application remembers the color, size, and position just as before.

SuMMARy
In this chapter, you examined how to use the .NET base classes to access the file system and registry from
your C# code. You have seen that in both cases the base classes expose simple but powerful object models
that make it very easy to perform almost any kind of action in these areas. For the file system, these actions
are copying files; moving, creating, and deleting files and folders; and reading and writing both binary and
text files. For the registry, these are creating, modifying, or reading keys.

This chapter also reviewed isolated storage and how to use it from your applications to store information in
the application state.

This chapter assumed that you were running your code from an account that has sufficient access rights to
do whatever the code needs to do. Obviously, the question of security is an important one, as discussed in
detail in Chapter 22.

c24.indd 707 30-01-2014 20:30:53

c24.indd 708 30-01-2014 20:30:53

Transactions
wHAT’s iN THis CHAPTER?

➤➤ Transaction phases and ACID properties
➤➤ Traditional transactions
➤➤ Committable transactions
➤➤ Transaction promotions
➤➤ Dependent transactions
➤➤ Ambient transactions
➤➤ Transaction isolation levels
➤➤ Custom resource managers
➤➤ Windows File System Transactions

wROX.COm CODE DOwNlOADs FOR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ Transaction Samples
➤➤ Multithreading Ambient Transactions
➤➤ Custom Resource
➤➤ Windows 8 Transactions

iNTRODuCTiON
All or nothing — this is the main characteristic of a transaction. When writing a few records, either all
are written, or everything will be undone. If there is even one failure when writing one record, all the
other things that are done within the transaction will be rolled back.

25

c25.indd 709 30-01-2014 20:31:30

710 ❘ CHAPTER 25 TransacTions

Transactions are commonly used with databases, but with classes from the namespace System
.Transactions, you can also perform transactions on volatile or in-memory-based objects such as a list of
objects. With a list that supports transactions, if an object is added or removed and the transaction fails, the
list action is automatically undone. Writing to a memory-based list can be done in the same transaction as
writing to a database.

Since Windows Vista, the file system and registry also have transactional support. Writing a file and making
changes within the registry supports transactions.

OvERviEw
In order to understand transactions, consider the ordering of a book from a web site. The book-ordering
process removes the book you want to buy from stock and puts it in your shopping cart, and the cost of your
book is charged to your credit card. With these two actions, either both actions should complete successfully
or neither of these actions should happen. If there is a failure when getting the book from stock, the credit
card should not be charged. Transactions address such scenarios.

The most common use of transactions is writing or updating data within the database. Transactions can
also be performed when writing a message to a message queue, or writing data to a file or the registry.
Multiple actions can be part of a single transaction.

NOTE The classes and architecture of Message Queuing and the System.Messaging
namespace are discussed in Chapter 47.

Figure 25-1 shows the main actors in a transaction. Transactions are managed and coordinated by the
transaction manager, and a resource manager manages every resource that influences the outcome of
the transaction. The transaction manager communicates with resource managers to define the outcome
of the transaction.

FiguRE 25-1

Transaction
Manager

Client Transaction

Resource
Manager

Resource
Manager

c25.indd 710 30-01-2014 20:31:32

Overview ❘ 711

Transaction Phases
The timely phases of a transaction are the active, preparing, and committing phases:

➤➤ Active phase — During the active phase, the transaction is created. Resource managers that manage
the transaction for resources can enlist with the transaction.

➤➤ Preparing phase — During the preparing phase, every resource manager can define the outcome of
the transaction. This phase starts when the creator of the transaction sends a commit to end the
transaction. The transaction manager sends a Prepare message to all resource managers. If the
resource manager can produce the transaction outcome successfully, it sends a Prepared message
to the transaction manager. Resource managers can abort the transaction if they fail to prepare
by forcing a rollback with the transaction manager by sending a Rollback message. After the
Prepared message is sent, the resource managers must guarantee to finish the work successfully in
the committing phase. To make this possible, durable resource managers must write a log with the
information from the prepared state, so that they can continue from there in case of, for example, a
power failure between the prepared and committing phases.

➤➤ Committing phase — The committing phase begins when all resource managers have prepared
successfully. This is when the Prepared message is received from all resource managers. Then the
transaction manager can complete the work by sending a Commit message to all participants. The
resource managers can now finish the work on the transaction and return a Committed message.

ACiD Properties
A transaction has specific requirements; for example, a transaction must result in a valid state, even if the
server has a power failure. The characteristics of transactions can be defined by the term ACID. ACID is a
four-letter acronym for atomicity, consistency, isolation, and durability:

➤➤ Atomicity — Represents one unit of work. With a transaction, either the complete unit of work
succeeds or nothing is changed.

➤➤ Consistency — The state before the transaction was started and after the transaction is completed must
be valid. During the transaction, the state may have interim values.

➤➤ Isolation — Transactions that happen concurrently are isolated from the state, which is changed during
a transaction. Transaction A cannot see the interim state of transaction B until the transaction is
completed.

➤➤ Durability — After the transaction is completed, it must be stored in a durable way. This means that if
the power goes down or the server crashes, the state must be recovered at reboot.

Not every transaction requires all four ACID properties. For example, a memory-based transaction
(for example, writing an entry into a list) may not need to be durable; and complete isolation from the
outside is not always required, as discussed later with transaction isolation levels.

NOTE Transactions and valid state can easily be explained with a wedding ceremony.
A bridal couple is standing before a transaction coordinator. The transaction
coordinator asks the first of the couple: “Do you want to marry this man on your
side?” If the first one agrees, the second is asked: “Do you want to marry this woman?”
If the second one denies, the first receives a rollback. A valid state with this transaction
is only that both are married, or none are. If both agree, the transaction is committed
and both are in the married state. If one denies, the transaction is aborted and both
stay in the unmarried state. An invalid state is that one is married, and the other is not.
The transaction guarantees that the result is never an invalid state.

c25.indd 711 30-01-2014 20:31:32

712 ❘ CHAPTER 25 TransacTions

DATAbAsE AND ENTiTy ClAssEs
The sample database CourseManagement that is used with the transactions in this chapter is defined by the
structure in Figure 25-2. The table Courses contains information about courses: course number and
title. The table CourseDates contains the date of specific courses and is linked to the Courses table. The table
Students contains information about persons attending a course. The table CourseAttendees is
the link between Students and CourseDates. It defines which student is attending what course.

NOTE You can download the database along with the source code for this chapter
from www.wrox.com/go/procsharp.

The sample applications in this chapter use a library with entity and data access classes. The class Student
contains properties to define a student — for example, FirstName, LastName, and Company (code file
DataLib/Student.cs):

using System;

namespace Wrox.ProCSharp.Transactions
{
 [Serializable]
 public class Student
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Company { get; set; }
 public int Id { get; set; }

 public override string ToString()
 {

CourseId

Courses

Number

Title

CourseAttendeesId

CourseAttendees

StudentId

CourseDateId

CourseDateId

CourseDates

CourseId

StartDay

Length

MaxStudentCount

StudentId

Students

FirstName

LastName

Company

FiguRE 25-2

c25.indd 712 30-01-2014 20:31:33

Traditional Transactions ❘ 713

 return String.Format("{0} {1}", FirstName, LastName);
 }
 }
}

Adding student information to the database is done in the method AddStudent of the class StudentData.
Here, an ADO.NET connection is created to connect to the SQL Server database, the SqlCommand object
defines the SQL statement, and the command is executed by invoking ExecuteNonQueryAsync (code file
DataLib/StudentData.cs):

using System.Data.SqlClient;
using System.Threading.Tasks;
using System.Transactions;

namespace Wrox.ProCSharp.Transactions
{
 public class StudentData
 {
 public async Task AddStudentAsync(Student student)
 {
 var connection = new SqlConnection(
 Properties.Settings.Default.CourseManagementConnectionString);
 await connection.OpenAsync();
 try
 {
 SqlCommand command = connection.CreateCommand();

 command.CommandText = "INSERT INTO Students " +
 "(FirstName, LastName, Company) VALUES " +
 "(@FirstName, @LastName, @Company)";
 command.Parameters.AddWithValue("@FirstName", student.FirstName);
 command.Parameters.AddWithValue("@LastName", student.LastName);
 command.Parameters.AddWithValue("@Company", student.Company);

 await command.ExecuteNonQueryAsync();
 }
 finally
 {
 connection.Close();
 }
 }
 }
}

NOTE ADO.NET is covered in detail in Chapter 32, “Core ADO.NET.”

TRADiTiONAl TRANsACTiONs
Before System.Transactions was released, you could create transactions directly with ADO.NET, or
you could do transactions with the help of components, attributes, and the COM+ runtime, which is
covered in the namespace System.EnterpriseServices. Because COM+ usually is no longer used in new
applications, it is not part of this book.

c25.indd 713 30-01-2014 20:31:33

714 ❘ CHAPTER 25 TransacTions

ADO.NET Transactions
Let’s start with traditional ADO.NET transactions. If you don’t create transactions manually, there is
a single transaction with every SQL statement. If multiple statements need to participate with the same
transaction, however, you must create a transaction manually to achieve this.

The following code segment shows how to work with ADO.NET transactions. The SqlConnection
class defines the method BeginTransaction, which returns an object of type SqlTransaction. This
transaction object must then be associated with every command that participates with the transaction. To
associate a command with a transaction, set the Transaction property of the SqlCommand class to the
SqlTransaction instance. For the transaction to be successful, you must invoke the Commit method of
the SqlTransaction object. If there is an error, you must invoke the Rollback method, and every change is
undone. You can check for an error with the help of a try/catch and do the rollback inside the catch (code
file DataLib/CourseData.cs):

using System;
using System.Data.SqlClient;
using System.Diagnostics;
using System.Threading.Tasks;

namespace Wrox.ProCSharp.Transactions
{
 public class CourseData
 {
 public async Task AddCourseAsync(Course course)
 {
 var connection = new SqlConnection(
 Properties.Settings.Default.CourseManagementConnectionString);
 SqlCommand courseCommand = connection.CreateCommand();
 courseCommand.CommandText =
 "INSERT INTO Courses (Number, Title) VALUES (@Number, @Title)";
 await connection.OpenAsync();
 SqlTransaction tx = connection.BeginTransaction();

 try
 {
 courseCommand.Transaction = tx;

 courseCommand.Parameters.AddWithValue("@Number", course.Number);
 courseCommand.Parameters.AddWithValue("@Title", course.Title);
 await courseCommand.ExecuteNonQueryAsync();

 tx.Commit();
 }
 catch (Exception ex)
 {
 Trace.WriteLine("Error: " + ex.Message);
 tx.Rollback();
 throw;
 }
 finally
 {
 connection.Close();
 }
 }
 }
}

If multiple commands should run in the same transaction, every command must be associated with the
transaction. Because the transaction is associated with a connection, every one of these commands must also

c25.indd 714 30-01-2014 20:31:34

Traditional Transactions ❘ 715

be associated with the same connection instance. ADO.NET transactions do not support transactions across
multiple connections; it is always a local transaction associated with one connection.

When you create an object persistence model using multiple objects—for example, classes Course and
CourseDate — that should be persisted inside one transaction, it becomes very difficult using ADO.NET
transactions. In this case, it is necessary to pass the transaction to all the objects participating in the
same transaction.

NOTE ADO.NET transactions are not distributed transactions. In ADO.NET
transactions, it is difficult to have multiple objects working on the same transaction.

system.Enterpriseservices
Enterprise Services provides a lot of services free. One of them is automatic transactions. Enterprise Services
today are mainly replaced by new technologies such as System.Transactions, WCF, and the Windows
App Server. The transactional features of enterprise services influences the functionality of System
.Transactions, and that’s why Enterprise Services is covered here briefly.

Using transactions with System.EnterpriseServices has the advantage that it is not necessary to deal
with transactions explicitly; transactions are automatically created by the runtime. You just have to add the
attribute [Transaction] with the transactional requirements to the class. The [AutoComplete] attribute
marks the method to automatically set the status bit for the transaction: if the method succeeds, the success
bit is set, so the transaction can commit. If an exception happens, the transaction is aborted:

using System;
using System.Data.SqlClient;
using System.EnterpriseServices;
using System.Diagnostics;

namespace Wrox.ProCSharp.Transactions
{
 [Transaction(TransactionOption.Required)]
 public class CourseData: ServicedComponent
 {
 [AutoComplete]
 public void AddCourse(Course course)
 {
 var connection = new SqlConnection(
 Properties.Settings.Default.CourseManagementConnectionString);
 SqlCommand courseCommand = connection.CreateCommand();
 courseCommand.CommandText =
 "INSERT INTO Courses (Number, Title) VALUES (@Number, @Title)";
 connection.Open();
 try
 {
 courseCommand.Parameters.AddWithValue("@Number", course.Number);
 courseCommand.Parameters.AddWithValue("@Title", course.Title);
 courseCommand.ExecuteNonQuery();
 }
 finally
 {
 connection.Close();
 }
 }
 }
}

c25.indd 715 30-01-2014 20:31:34

716 ❘ CHAPTER 25 TransacTions

A big advantage of creating transactions with System.EnterpriseServices is that multiple objects can
easily run within the same transaction, and transactions are automatically enlisted. The disadvantages are
that it requires the COM+ hosting model, and the class using the features of this technology must be derived
from the base class ServicedComponent.

sysTEm.TRANsACTiONs
The namespace System.Transactions became available with .NET 2.0 and brought a modern transaction
programming model to .NET applications.

This namespace offers a few dependent TransactionXXX classes. Transaction is the base class of all
transaction classes and defines properties, methods, and events available with all transaction classes.
CommittableTransaction is the only transaction class that supports committing. This class has a Commit
method; all other transaction classes can perform only a rollback. The class DependentTransaction is
used with transactions that are dependent on another transaction. A dependent transaction can depend on a
transaction created from the committable transaction. Then the dependent transaction adds to the outcome
of the committable transaction, whether or not it is successful. The class SubordinateTransaction is used
in conjunction with the Distributed Transaction Coordinator (DTC). This class represents a transaction that
is not a root transaction but can be managed by the DTC.

The following table describes the properties and methods of the Transaction class:

TRANsACTiON ClAss mEmbER DEsCRiPTiON

Current The property Current is a static property that doesn’t require
an instance. Transaction.Current returns an ambient
transaction if one exists. Ambient transactions are discussed
later in this chapter.

IsolationLevel The IsolationLevel property returns an object of type
IsolationLevel. IsolationLevel is an enumeration that
defines what access other transactions have to the interim
results of the transaction. This reflects the “I” in ACID; not all
transactions are isolated.

TransactionInformation The TransactionInformation property returns a
TransactionInformation object, which provides information
about the current state of the transaction, the time when the
transaction was created, and transaction identifiers.

EnlistVolatile EnlistDurable
EnlistPromotableSinglePhase

With these enlist methods, you can enlist custom resource
managers that participate with the transaction.

Rollback With the Rollback method, you can abort a transaction and
undo everything, setting all results to the state before the
transaction.

DependentClone With the DependentClone method, you can create a transaction
that depends on the current transaction.

TransactionCompleted TransactionCompleted is an event that is fired when
the transaction is completed — either successfully or
unsuccessfully. With an event handler object of type
TransactionCompletedEventHandler, you can access the
Transaction object and read its status.

To demonstrate the features of System.Transactions, the following example class Utilities inside a
separate assembly offers some static methods. The method AbortTx returns true or false depending on
the input from the user. The method DisplayTransactionInformation gets a TransactionInformation

c25.indd 716 30-01-2014 20:31:34

System.Transactions ❘ 717

object as parameter and displays all the information from the transaction: creation time, status, local, and
distributed identifiers (code file Utilities/Utilities.cs):

 public static class Utilities
 {
 public static bool AbortTx()
 {
 Console.Write("Abort the Transaction (y/n)?");
 return Console.ReadLine().ToLower().Equals("y");
 }

 public static void DisplayTransactionInformation(string title,
 TransactionInformation ti)
 {
 Contract.Requires<ArgumentNullException>(ti != null);

 Console.WriteLine(title);
 Console.WriteLine("Creation Time: {0:T}", ti.CreationTime);
 Console.WriteLine("Status: {0}", ti.Status);
 Console.WriteLine("Local ID: {0}", ti.LocalIdentifier);
 Console.WriteLine("Distributed ID: {0}", ti.DistributedIdentifier);
 Console.WriteLine();
 }
 }

Committable Transactions
The Transaction class cannot be committed programmatically; it does not have a method to commit the
transaction. The base class Transaction just supports aborting the transaction. The only transaction
class that supports a commit is the class CommittableTransaction.

With ADO.NET, a transaction can be enlisted with the connection. To make this possible, an
AddStudentAsync method is added to the class StudentData that accepts a System.Transactions
.Transaction object as second parameter. The object tx is enlisted with the connection by calling
the method EnlistTransaction of the SqlConnection class. This way, the ADO.NET connection is
associated with the transaction (code file DataLib/StudentData.cs):

 public async Task AddStudentAsync(Student student, Transaction tx)
 {
 Contract.Requires<ArgumentNullException>(student != null);

 var connection = new SqlConnection(
 Properties.Settings.Default.CourseManagementConnectionString);
 await connection.OpenAsync();
 try
 {
 if (tx != null)
 connection.EnlistTransaction(tx);
 SqlCommand command = connection.CreateCommand();

 command.CommandText = "INSERT INTO Students (FirstName, " +
 "LastName, Company)" +
 "VALUES (@FirstName, @LastName, @Company)";
 command.Parameters.AddWithValue("@FirstName", student.FirstName);
 command.Parameters.AddWithValue("@LastName", student.LastName);
 command.Parameters.AddWithValue("@Company", student.Company);

 await command.ExecuteNonQueryAsync();
 }
 finally

c25.indd 717 30-01-2014 20:31:34

718 ❘ CHAPTER 25 TransacTions

 {
 connection.Close();
 }
 }

In the CommittableTransaction method of the console application TransactionSamples, first a transaction
of type CommittableTransaction is created, and information is shown on the console. Then a Student
object is created, which is written to the database from the AddStudent method. If you verify the record
in the database from outside the transaction, you cannot see the student added until the transaction is
completed. If the transaction fails, there is a rollback and the student is not written to the database.

After the AddStudentAsync method is invoked, the helper method Utilities.AbortTx is called
to ask the user whether the transaction should be aborted. If the user aborts, an exception of type
ApplicationException is thrown and, in the catch block, a rollback of the transaction is performed by
calling the method Rollback of the Transaction class. The record is not written to the database. If the
user does not abort, the Commit method commits the transaction, and the final state of the transaction is
committed (code file TransactionSamples/Program.cs):

 static async Task CommittableTransactionAsync()
 {
 var tx = new CommittableTransaction();
 Utilities.DisplayTransactionInformation("TX created",
 tx.TransactionInformation);

 try
 {
 var s1 = new Student
 {
 FirstName = "Stephanie",
 LastName = "Nagel",
 Company = "CN innovation"
 };
 var db = new StudentData();
 await db.AddStudentAsync(s1, tx);

 if (Utilities.AbortTx())
 {
 throw new ApplicationException("transaction abort");
 }

 tx.Commit();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine();
 tx.Rollback();
 }

 Utilities.DisplayTransactionInformation("TX completed",
 tx.TransactionInformation);

 }

As shown in the following output of the application, the transaction is active and has a local identifier. In
addition, the user has chosen to abort the transaction. After the transaction is finished, you can see the
aborted state:

TX created
Creation Time: 7:30:49 PM
Status: Active

c25.indd 718 30-01-2014 20:31:34

System.Transactions ❘ 719

Local ID: bdcf1cdc-a67e-4ccc-9a5c-cbdfe0fe9177:1
Distributed ID: 00000000-0000-0000-0000-000000000000

Abort the Transaction (y/n)? y
Transaction abort

TX completed
Creation Time: 7:30:49 PM
Status: Aborted
Local ID: bdcf1cdc-a67e-4ccc-9a5c-cbdfe0fe9177:1
Distributed ID: 00000000-0000-0000-0000-000000000000

With the second output of the application that follows, the transaction is not aborted by the user. The
transaction has the status committed, and the data is written to the database:

TX Created
Creation Time: 7:33:04 PM
Status: Active
Local ID: 708bda71-fa24-46a9-86b4-18b83120f6af:1
Distributed ID: 00000000-0000-0000-0000-000000000000

Abort the Transaction (y/n)? n

TX completed
Creation Time: 7:33:04 PM
Status: Committed
Local ID: 708bda71-fa24-46a9-86b4-18b83120f6af:1
Distributed ID: 00000000-0000-0000-0000-000000000000

Transaction Promotion
System.Transactions supports promotable transactions. Depending on the resources that participate with
the transaction, either a local or a distributed transaction is created. SQL Server has supported promotable
transactions since SQL Server 2005. So far, you have seen only local transactions. With all the previous
examples, the distributed transaction ID was always set to 0, and only the local ID was assigned. With a
resource that does not support promotable transactions, a distributed transaction is created. If multiple
resources are added to the transaction, the transaction may start as a local transaction and be promoted
to a distributed transaction as required. Such a promotion happens when multiple SQL Server database
connections are added to the transaction. The transaction starts as a local transaction and then is promoted
to a distributed transaction.

The console application is now changed to add a second student by using the same transaction object tx.
Because every AddStudent method opens a new connection, two connections are associated with the
transaction after the second student is added (code file TransactionSamples/Program.cs):

 static void TransactionPromotion()
 {
 var tx = new CommittableTransaction();
 Utilities.DisplayTransactionInformation("TX created",
 tx.TransactionInformation);

 try
 {
 var s1 = new Student
 {
 FirstName = "Matthias",
 LastName = "Nagel",
 Company = "CN innovation"
 };

c25.indd 719 30-01-2014 20:31:34

720 ❘ CHAPTER 25 TransacTions

 var db = new StudentData();
 db.AddStudent(s1, tx);

 var s2 = new Student
 {
 FirstName = "Stephanie",
 LastName = "Nagel",
 Company = "CN innovation"
 };
 db.AddStudent(s2, tx);

 Utilities.DisplayTransactionInformation(
 "2nd connection enlisted", tx.TransactionInformation);

 if (Utilities.AbortTx())
 {
 throw new ApplicationException("transaction abort");
 }

 tx.Commit();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine();
 tx.Rollback();
 }

 Utilities.DisplayTransactionInformation("TX finished",
 tx.TransactionInformation);
 }

Running the application now, you can see that with the first student added the distributed identifier is 0, but
with the second student added the transaction was promoted, so a distributed identifier is associated with
the transaction:

TX created
Creation Time: 7:56:24 PM
Status: Active
Local ID: 0d2f5ada-32aa-40eb-b9d7-cc6aa9a2a554:1
Distributed ID: 00000000-0000-0000-0000-0000000000

2nd connection enlisted
Creation Time: 7:56:24 PM
Status: Active
Local ID: 0d2f5ada-32aa-40eb-b9d7-cc6aa9a2a554:1
Distributed ID: 501abd91-e512-47f3-95d5-f0488743293d

Abort the Transaction (y/n)?

Transaction promotion requires the DTC to be started. If promoting transactions fails with your system,
verify that the DTC service is started. Starting the Component Services MMC snap-in, you can see the
actual status of all DTC transactions running on your system.

By selecting Transaction List on the tree view, you can see all active transactions. Figure 25-3 shows a
transaction active with the same distributed identifier that was shown in the console output earlier. If you
verify the output on your system, ensure that the transaction has a timeout, and aborts if the timeout is
reached. After the timeout, you cannot see the transaction in the transaction list anymore. You can also
verify the transaction statistics with the same tool. Transaction Statistics shows the number of committed
and aborted transactions.

c25.indd 720 30-01-2014 20:31:34

Dependent Transactions ❘ 721

DEPENDENT TRANsACTiONs
With dependent transactions, you can influence one transaction among multiple tasks or threads. A
dependent transaction depends on another transaction and influences the outcome of the transaction.

The sample application DependentTransactions creates a dependent transaction for a new
task. TxTask is the method of the new task, in which a DependentTransaction object is passed
as a parameter. Information about the dependent transaction is shown with the helper method
DisplayTransactionInformation. Before the task exits, the Complete method of the dependent
transaction is invoked to define the outcome of the transaction. A dependent transaction can define the
outcome of the transaction by calling either the Complete or the Rollback method. The Complete method
sets the success bit. If the root transaction finishes, and if all dependent transactions have set the success
bit to true, the transaction commits. If any of the dependent transactions set the abort bit by invoking the
Rollback method, then the entire transaction aborts:

 static void TxTask(object obj)
 {
 var tx = obj as DependentTransaction;
 Utilities.DisplayTransactionInformation("Dependent Transaction",
 tx.TransactionInformation);

 Thread.Sleep(3000);

 tx.Complete();

 Utilities.DisplayTransactionInformation("Dependent TX Complete",
 tx.TransactionInformation);
 }

With the DependentTransaction method, first a root transaction is created by instantiating the
class CommittableTransaction, and the transaction information is shown. Next, the method
tx.DependentClone creates a dependent transaction. This dependent transaction is passed to the method
TxTask, which is defined as the entry point of a new task.

The method DependentClone requires an argument of type DependentCloneOption, which is an
enumeration with the values BlockCommitUntilComplete and RollbackIfNotComplete. This
option is important if the root transaction completes before the dependent transaction. Setting the
option to RollbackIfNotComplete, the transaction aborts if the dependent transaction didn’t
invoke the Complete method before the Commit method of the root transaction. Setting the option to
BlockCommitUntilComplete, the method Commit waits until the outcome is defined by all dependent
transactions.

FiguRE 25-3

c25.indd 721 30-01-2014 20:31:35

722 ❘ CHAPTER 25 TransacTions

Next, the Commit method of the CommittableTransaction class is invoked if the user does not abort the
transaction:

NOTE Chapter 21, “Tasks, Threads, and Synchronization” covers threading.

 static void DependentTransaction()
 {
 var tx = new CommittableTransaction();
 Utilities.DisplayTransactionInformation("Root TX created",
 tx.TransactionInformation);

 try
 {
 Task.Factory.StartNew(TxTask, tx.DependentClone(
 DependentCloneOption.BlockCommitUntilComplete));

 if (Utilities.AbortTx())
 {
 throw new ApplicationException("transaction abort");
 }

 tx.Commit();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 tx.Rollback();
 }

 Utilities.DisplayTransactionInformation("TX finished",
 tx.TransactionInformation);
 }

The following output of the application shows the root transaction and its identifier. Because of the option
DependentCloneOption.BlockCommitUntilComplete, the root transaction waits in the Commit method
until the outcome of the dependent transaction is defined. As soon as the dependent transaction is finished,
the transaction is committed:

Root TX created
Creation Time: 8:35:25 PM
Status: Active
Local ID: 50126e07-cd28-4e0f-a21f-a81a8e14a1a8:1
Distributed ID: 00000000-0000-0000-0000-0000000000

Abort the Transaction (y/n)? n

Dependent Transaction
Creation Time: 8:35:25 PM
Status: Active
Local ID: 50126e07-cd28-4e0f-a21f-a81a8e14a1a8:1
Distributed ID: 00000000-0000-0000-0000-0000000000

Dependent TX Complete
Root TX finished
Creation Time: 8:35:25 PM

c25.indd 722 30-01-2014 20:31:35

Dependent Transactions ❘ 723

Status: Committed
Local ID: 50126e07-cd28-4e0f-a21f-a81a8e14a1a8:1
Distributed ID: 00000000-0000-0000-0000-0000000000

Creation Time: 8:35:25 PM
Status: Committed
Local ID: 50126e07-cd28-4e0f-a21f-a81a8e14a1a8:1
Distributed ID: 00000000-0000-0000-0000-0000000000

Ambient Transactions
The biggest advantage of the classes in the System.Transactions namespace is the ambient transactions
feature. With ambient transactions, there is no need to manually enlist a connection with a transaction; this
is done automatically from the resources supporting ambient transactions.

An ambient transaction is associated with the current thread. You can get and set the ambient transaction
with the static property Transaction.Current. APIs supporting ambient transactions check this property
to get an ambient transaction and enlist with the transaction. ADO.NET connections support ambient
transactions.

You can create a CommittableTransaction object and assign it to the property Transaction
.Current to initialize the ambient transaction. Another way to create ambient transactions is with the
TransactionScope class. The constructor of the TransactionScope creates an ambient transaction.

Important methods of the TransactionScope class are Complete and Dispose. The Complete method
sets the happy bit for the scope, and the Dispose method finishes the scope and commits or rolls back the
transaction if the scope is a root scope.

Because the TransactionScope class implements the IDisposable interface, you can define the scope
with the using statement. The default constructor creates a new transaction. Immediately after creating
the TransactionScope instance, the transaction is accessed with the get accessor of the property
Transaction.Current to display the transaction information on the console.

To get the information when the transaction is completed, the method OnTransactionCompleted is set to
the TransactionCompleted event of the ambient transaction.

Then a new Student object is created and written to the database by calling the StudentData.AddStudent
method. With ambient transactions, it is not necessary to pass a Transaction object to this method because
the SqlConnection class supports ambient transactions and automatically enlists it with the connection.
Then the Complete method of the TransactionScope class sets the success bit. With the end of the using
statement, the TransactionScope is disposed, and a commit is done. If the Complete method is not
invoked, the Dispose method aborts the transaction:

NOTE If an ADO.NET connection should not enlist with an ambient transaction, you
can set the value Enlist=false with the connection string.

 static void TransactionScope()
 {
 using (var scope = new TransactionScope())
 {
 Transaction.Current.TransactionCompleted +=
 OnTransactionCompleted;

 Utilities.DisplayTransactionInformation("Ambient TX created",

c25.indd 723 30-01-2014 20:31:35

724 ❘ CHAPTER 25 TransacTions

 Transaction.Current.TransactionInformation);

 var s1 = new Student
 {
 FirstName = "Angela",
 LastName = "Nagel",
 Company = "Kantine M101"
 };
 var db = new StudentData();
 db.AddStudent(s1);

 if (!Utilities.AbortTx())
 scope.Complete();
 else
 Console.WriteLine("transaction will be aborted");

 } // scope.Dispose()
 }

 static void OnTransactionCompleted(object sender,
 TransactionEventArgs e)
 {
 Utilities.DisplayTransactionInformation("TX completed",
 e.Transaction.TransactionInformation);
 }

Running the application, you can see an active ambient transaction after an instance of the
TransactionScope class is created. The last output of the application is the output from
the TransactionCompleted event handler to display the finished transaction state:

Ambient TX created
Creation Time: 9:55:40 PM
Status: Active
Local ID: a06df6fb-7266-435e-b90e-f024f1d6966e:1
Distributed ID: 00000000-0000-0000-0000-0000000000

Abort the Transaction (y/n)? n

TX completed
Creation Time: 9:55:40 PM
Status: Committed
Local ID: a06df6fb-7266-435e-b90e-f024f1d6966e:1
Distributed ID: 00000000-0000-0000-0000-0000000000

Using Nested Scopes with Ambient Transactions
With the TransactionScope class you can also nest scopes. The nested scope can be directly inside the
outer scope or within a method that is invoked from a scope. A nested scope can use the same transaction
as the outer scope, suppress the transaction, or create a new transaction that is independent from the outer
scope. The requirement for the scope is defined with a TransactionScopeOption enumeration that is
passed to the constructor of the TransactionScope class.

The following table describes the values and corresponding functionality available with the
TransactionScopeOption enumeration.

c25.indd 724 30-01-2014 20:31:35

Dependent Transactions ❘ 725

The next example defines two scopes. The inner scope is configured to require a new transaction with the
option TransactionScopeOption.RequiresNew:

 using (var scope = new TransactionScope())
 {
 Transaction.Current.TransactionCompleted +=
 OnTransactionCompleted;

 Utilities.DisplayTransactionInformation("Ambient TX created",
 Transaction.Current.TransactionInformation);

 using (var scope2 =
 new TransactionScope(TransactionScopeOption.RequiresNew))
 {
 Transaction.Current.TransactionCompleted +=
 OnTransactionCompleted;

 Utilities.DisplayTransactionInformation(
 "Inner Transaction Scope",
 Transaction.Current.TransactionInformation);

 scope2.Complete();
 }
 scope.Complete();
 }

Running the application, you can see from the following that both scopes have different transaction
identifiers, although the same thread is used. With one thread but different ambient transaction identifiers,
the transaction identifier just differs in the last number following the GUID.

TRANsACTiONsCOPEOPTiON mEmbER DEsCRiPTiON

Required Required defines that the scope requires a transaction. If the
outer scope already contains an ambient transaction, the inner
scope uses the existing transaction. If an ambient transaction
does not exist, a new transaction is created. If both scopes share
the same transaction, every scope influences the outcome of
the transaction. Only if all scopes set the success bit can the
transaction commit. If one scope does not invoke the Complete
method before the root scope is disposed of, the transaction is
aborted.

RequiresNew RequiresNew always creates a new transaction. If the outer
scope already defines a transaction, the transaction from the
inner scope is completely independent. Both transactions can
commit or abort independently.

Suppress With Suppress, the scope does not contain an ambient
transaction, whether or not the outer scope contains a
transaction.

NOTE A GUID is a globally unique identifier consisting of a 128-bit unique value.

Ambient TX created
Creation Time: 11:01:09 PM
Status: Active
Local ID: 54ac1276-5c2d-4159-84ab-36b0217c9c84:1

c25.indd 725 30-01-2014 20:31:35

726 ❘ CHAPTER 25 TransacTions

Distributed ID: 00000000-0000-0000-0000-0000000000

Inner Transaction Scope
Creation Time: 11:01:09 PM
Status: Active
Local ID: 54ac1276-5c2d-4159-84ab-36b0217c9c84:2
Distributed ID: 00000000-0000-0000-0000-0000000000

TX completed
Creation Time: 11:01:09 PM
Status: Committed
Local ID: 54ac1276-5c2d-4159-84ab-36b0217c9c84:2
Distributed ID: 00000000-0000-0000-0000-0000000000

TX completed
Creation Time: 11:01:09 PM
Status: Committed
Local ID: 54ac1276-5c2d-4159-84ab-36b0217c9c84:1
Distributed ID: 00000000-0000-0000-0000-0000000000

If you change the inner scope to the setting TransactionScopeOption.Required, you will find that both
scopes use the same transaction, and both scopes influence the outcome of the transaction.

Multithreading with Ambient Transactions
If multiple threads should use the same ambient transaction, you need to do some extra work. An ambient
transaction is bound to a thread, so if a new thread is created, it does not have the ambient transaction
from the starter thread.

This behavior is demonstrated in the next example. In the Main method, a TransactionScope is created.
Within this transaction scope, a new task is started. The main method of the new thread, TaskMethod,
creates a new transaction scope. With the creation of the scope, no parameters are passed; therefore, the
default option TransactionScopeOption.Required comes into play. If an ambient transaction exists, the
existing transaction is used. Otherwise, a new transaction is created (code file MultiThreadingAmbientTx/
Program.cs):

using System;
using System.Threading.Tasks;
using System.Transactions;

namespace Wrox.ProCSharp.Transactions
{
 class Program
 {
 static void Main()
 {
 try
 {
 using (var scope = new TransactionScope())
 {
 Transaction.Current.TransactionCompleted +=
 TransactionCompleted;

 Utilities.DisplayTransactionInformation("Main task TX",
 Transaction.Current.TransactionInformation);

 Task.Factory.StartNew(TaskMethod);

 scope.Complete();
 }
 }
 catch (TransactionAbortedException ex)

c25.indd 726 30-01-2014 20:31:36

Dependent Transactions ❘ 727

 {
 Console.WriteLine("Main—Transaction was aborted, {0}",
 ex.Message);
 }
 }

 static void TransactionCompleted(object sender,
 TransactionEventArgs e)
 {
 Utilities.DisplayTransactionInformation("TX completed",
 e.Transaction.TransactionInformation);
 }

 static void TaskMethod()
 {
 try
 {
 using (var scope = new TransactionScope())
 {
 Transaction.Current.TransactionCompleted +=
 TransactionCompleted;

 Utilities.DisplayTransactionInformation("Task TX",
 Transaction.Current.TransactionInformation);
 scope.Complete();
 }
 }
 catch (TransactionAbortedException ex)
 {
 Console.WriteLine("TaskMethod—Transaction was aborted, {0}",
 ex.Message);
 }
 }
 }
}

As shown in the following output, after starting the application, the transactions from the two threads
are completely independent. The transaction from the new thread has a different transaction ID. The
transaction ID differs by the number that is added to the GUID. You’ve seen this already with nested scopes:

Main task TX
Creation Time: 21:41:25
Status: Active
Local ID: f1e736ae-84ab-4540-b71e-3de272ffc476:1
Distributed ID: 00000000-0000-0000-0000-000000000000

TX completed
Creation Time: 21:41:25
Status: Committed
Local ID: f1e736ae-84ab-4540-b71e-3de272ffc476:1
Distributed ID: 00000000-0000-0000-0000-000000000000

Task TX
Creation Time: 21:41:25
Status: Active
Local ID: f1e736ae-84ab-4540-b71e-3de272ffc476:2
Distributed ID: 00000000-0000-0000-0000-000000000000

TX completed
Creation Time: 21:41:25
Status: Committed
Local ID: f1e736ae-84ab-4540-b71e-3de272ffc476:2
Distributed ID: 00000000-0000-0000-0000-000000000000

c25.indd 727 30-01-2014 20:31:36

728 ❘ CHAPTER 25 TransacTions

To use the same ambient transaction in another thread, you need the help of dependent transactions. In
the next example, a dependent transaction is passed to the new task. The dependent transaction is created
from the ambient transaction by calling the DependentClone method on the ambient transaction. With
this method, the setting DependentCloneOption.BlockCommitUntilComplete is used so that the calling
thread waits until the new task is completed before committing the transaction:

 class Program
 {
 static void Main()
 {
 try
 {
 using (var scope = new TransactionScope())
 {
 Transaction.Current.TransactionCompleted +=
 TransactionCompleted;

 Utilities.DisplayTransactionInformation("Main thread TX",
 Transaction.Current.TransactionInformation);

 Task.Factory.StartNew(TaskMethod,
 Transaction.Current.DependentClone(
 DependentCloneOption.BlockCommitUntilComplete));

 scope.Complete();
 }
 }
 catch (TransactionAbortedException ex)
 {
 Console.WriteLine("Main—Transaction was aborted, {0}",
 ex.Message);
 }
 }

In the method of the thread, the dependent transaction that is passed is assigned to the ambient transaction
by using the set accessor of the Transaction.Current property. Now the transaction scope is using
the same transaction by using the dependent transaction. When you are finished using the dependent
transaction, you need to invoke the Complete method of the DependentTransaction object:

 static void TaskMethod(object dependentTx)
 {
 var dTx = dependentTx as DependentTransaction;

 try
 {
 Transaction.Current = dTx;

 using (var scope = new TransactionScope())
 {
 Transaction.Current.TransactionCompleted +=
 TransactionCompleted;

 Utilities.DisplayTransactionInformation("Task TX",
 Transaction.Current.TransactionInformation);
 scope.Complete();
 }
 }
 catch (TransactionAbortedException ex)
 {
 Console.WriteLine("TaskMethod — Transaction was aborted, {0}",
 ex.Message);
 }

c25.indd 728 30-01-2014 20:31:36

Isolation Level ❘ 729

 finally
 {
 if (dTx != null)
 {
 dTx.Complete();
 }
 }
 }

 static void TransactionCompleted(object sender,
 TransactionEventArgs e)
 {
 Utilities.DisplayTransactionInformation("TX completed",
 e.Transaction.TransactionInformation);
 }
 }

Running the application now, you can see that the main thread and the newly created thread are using, and
influencing, the same transaction. The transaction listed by the threads has the same identifier. If with one
thread the success bit is not set by calling the Complete method, the entire transaction aborts:

Main task TX
Creation Time: 23:00:57
Status: Active
Local ID: 2fb1b54d-61f5-4d4e-a55e-f4a9e04778be:1
Distributed ID: 00000000-0000-0000-0000-000000000000

Task TX
Creation Time: 23:00:57
Status: Active
Local ID: 2fb1b54d-61f5-4d4e-a55e-f4a9e04778be:1
Distributed ID: 00000000-0000-0000-0000-000000000000

TX completed
Creation Time: 23:00:57
Status: Committed
Local ID: 2fb1b54d-61f5-4d4e-a55e-f4a9e04778be:1
Distributed ID: 00000000-0000-0000-0000-000000000000

TX completed
Creation Time: 23:00:57
Status: Committed
Local ID: 2fb1b54d-61f5-4d4e-a55e-f4a9e04778be:1
Distributed ID: 00000000-0000-0000-0000-000000000000

isOlATiON lEvEl
The beginning of this chapter mentioned the ACID properties that describe successful transactions. The letter
I (Isolation) in ACID is not always fully required. For performance reasons, you might reduce the isolation
requirements, but you must be aware of the issues that you may encounter if you change the isolation level.

Problems that you can encounter if you don’t completely isolate the scope outside the transaction can be
divided into three categories:

➤➤ Dirty reads — Another transaction can read records that are changed within the transaction. Because
the data that is changed within the transaction might roll back to its original state, reading this
intermediate state from another transaction is considered “dirty” — the data has not been committed.
You can avoid this by locking the records to be changed.

➤➤ Nonrepeatable reads — When data is read inside a transaction, and while the transaction is running,
another transaction changes the same records. If the record is read once more inside the transaction,
the result is different — nonrepeatable. You can avoid this by locking the read records.

c25.indd 729 30-01-2014 20:31:36

730 ❘ CHAPTER 25 TransacTions

➤➤ Phantom reads — When a range of data is read, for example, with a WHERE clause, another transaction
can add a new record belonging to the range that is read within the transaction. A new read with
the same WHERE clause returns a different number of rows. Phantom reads typically occur during an
UPDATE of a range of rows. For example, UPDATE Addresses SET Zip=4711 WHERE (Zip=2315)
updates the zip code of all records from 2315 to 4711. After doing the update, there may still be
records with a zip code of 2315 if another user added a new record with zip 2315 while the update
was running. You can avoid this by doing a range lock.

When defining the isolation requirements, you can set the isolation level using an IsolationLevel enumeration
that is configured when the transaction is created (either with the constructor of the CommittableTransaction
class or with the constructor of the TransactionScope class). The IsolationLevel defines the locking
behavior. The following table lists the values of the IsolationLevel enumeration.

isOlATiON lEvEl DEsCRiPTiON

ReadUncommitted Transactions are not isolated from each other. With this level, there is no wait
for locked records from other transactions. This way, uncommitted data can
be read from other transactions — dirty reads. This level is usually used only for
reading records for which it does not matter if you read interim changes (e.g.,
reports).

ReadCommitted Waits for records with a write-lock from other transactions. This way, a dirty
read cannot happen. This level sets a read-lock for the current record read and
a write-lock for the records being written until the transaction is completed.
During the reading of a sequence of records, with every new record that
is read, the prior record is unlocked. That’s why nonrepeatable reads can
happen.

RepeatableRead Holds the lock for the records read until the transaction is completed. This way,
the problem of nonrepeatable reads is avoided. Phantom reads can still occur.

Serializable Holds a range lock. While the transaction is running, it is not possible to add a
new record that belongs to the same range from which the data is being read.

Snapshot With this level a snapshot is done from the actual data. This level reduces the
locks as modified rows are copied. That way, other transactions can still read
the old data without needing to wait for releasing of the lock.

Unspecified Indicates that the provider is using an isolation level value that is different from
the values defined by the IsolationLevel enumeration

Chaos This level is similar to ReadUncommitted, but in addition to performing the
actions of the ReadUncommitted value, Chaos does not lock updated records.

isOlATiON lEvEl DiRTy READs

NONREPEATAblE

READs PHANTOm READs

Read Uncommitted Y Y Y

Read Committed N Y Y

Repeatable Read N N Y

Serializable N N N

The following table summarizes the problems that can occur as a result of setting the most commonly used
transaction isolation levels:

The following code segment shows how the isolation level can be set with the TransactionScope
class. With the constructor of TransactionScope, you can set the TransactionScopeOption that was
discussed earlier and the TransactionOptions. The TransactionOptions class allows you to define the
IsolationLevel and the Timeout.

c25.indd 730 30-01-2014 20:31:36

Custom Resource Managers ❘ 731

 var options = new TransactionOptions
 {
 IsolationLevel = IsolationLevel.ReadUncommitted,
 Timeout = TimeSpan.FromSeconds(90)
 };
 using (var scope = new TransactionScope(
 TransactionScopeOption.Required, options))
 {
 // Read data without waiting for locks from other transactions,
 // dirty reads are possible.
 }

CusTOm REsOuRCE mANAgERs
One of the biggest advantages of the functionality offered by the classes in the System.Transactions
namespace is that it is relatively easy to create custom resource managers that participate in the transaction.
A resource manager can manage not only durable resources but volatile or in-memory resources — for
example, a simple int and a generic list.

Figure 25-4 shows the relationship between a resource manager and transaction classes. The resource
manager implements the interface IEnlistmentNotification, which defines the methods Prepare,
InDoubt, Commit, and Rollback. This interface manages the transaction for a resource. To be part
of a transaction, the resource manager must enlist with the Transaction class. Volatile resource
managers invoke the method EnlistVolatile; durable resource managers invoke EnlistDurable.
Depending on the transaction’s outcome, the transaction manager invokes the methods from the interface
IEnlistmentNotification with the resource manager.

FiguRE 25-4

TransactionManager

Transaction
ResourceManager

EnlistVolatile()
EnlistDurable()

Prepare()
InDoubt()
Commit()
Rollback()

Resource

IEnlistmentNotification

The next table explains the methods of the IEnlistmentNotification interface that you must implement
with resource managers. As you review the table, recall the active, prepared, and committing phases
explained earlier in this chapter in the “Transaction Phases” section.

iENlisTmENTNOTiFiCATiON mEmbER DEsCRiPTiON

Prepare The transaction manager invokes the Prepare method for
preparation of the transaction. The resource manager completes
the preparation by invoking the Prepared method of the
PreparingEnlistment parameter, which is passed to the
Prepare method. If the work cannot be done successfully, the
resource manager informs the transaction manager by invoking
the method ForceRollback. A durable resource manager must
write a log so that it can finish the transaction successfully after
the prepare phase.

(continues)

c25.indd 731 30-01-2014 20:31:37

732 ❘ CHAPTER 25 TransacTions

iENlisTmENTNOTiFiCATiON mEmbER DEsCRiPTiON

Commit When all resource managers have successfully prepared for
the transaction, the transaction manager invokes the Commit
method. The resource manager can then complete the work
to make it visible outside the transaction and invoke the Done
method of the Enlistment parameter.

Rollback If one of the resources could not successfully prepare for the
transaction, the transaction manager invokes the Rollback
method with all resource managers. After the state is returned to
the state prior to the transaction, the resource manager invokes
the Done method of the Enlistment parameter.

InDoubt If there is a problem after the transaction manager invokes the
Commit method (and the resources don’t return completion
information with the Done method), the transaction manager
invokes the InDoubt method.

Transactional Resources
A transactional resource must keep the live value and a temporary value. The live value is read from outside
the transaction and defines the valid state when the transaction rolls back. The temporary value defines the
valid state of the transaction when the transaction commits.

To make nontransactional types transactional, the generic sample class Transactional<T> wraps a
nongeneric type, so you can use it like this:

var txInt = new Transactional<int>();
var txString = new Transactional<string>();

The following example demonstrates implementation of the class Transactional<T>. The live value of the
managed resource has the variable liveValue; the temporary value that is associated with a transaction
is stored within the ResourceManager<T>. The variable enlistedTransaction is associated with the
ambient transaction if there is one (code file CustomResource/Transactional.cs):

using System.Diagnostics;
using System.Transactions;

namespace Wrox.ProCSharp.Transactions
{
 public partial class Transactional<T>
 {
 private T liveValue;
 private ResourceManager<T> enlistment;
 private Transaction enlistedTransaction;

With the Transactional constructor, the live value is set to the variable liveValue. If the constructor
is invoked from within an ambient transaction, the GetEnlistment helper method is invoked. It first
checks whether there is an ambient transaction and asserts if there is none. If the transaction is not already
enlisted, the ResourceManager<T> helper class is instantiated, and the resource manager is enlisted with the
transaction by invoking the method EnlistVolatile. Also, the variable enlistedTransaction is set to
the ambient transaction.

If the ambient transaction is different from the enlisted transaction, an exception is thrown. The
implementation does not support changing the same value from within two different transactions. If you

(continued)

c25.indd 732 30-01-2014 20:31:38

Custom Resource Managers ❘ 733

have this requirement, you can create a lock and wait for the lock to be released from one transaction before
changing it within another transaction:

 public Transactional(T value)
 {
 if (Transaction.Current == null)
 {
 this.liveValue = value;
 }
 else
 {
 this.liveValue = default(T);
 GetEnlistment().Value = value;
 }
 }

 public Transactional()
 : this(default(T)) {}

 private ResourceManager<T> GetEnlistment()
 {
 Transaction tx = Transaction.Current;
 Trace.Assert(tx != null,
 "Must be invoked with ambient transaction");

 if (enlistedTransaction == null)
 {
 enlistment = new ResourceManager<T>(this, tx);
 tx.EnlistVolatile(enlistment, EnlistmentOptions.None);
 enlistedTransaction = tx;
 return enlistment;
 }
 else if (enlistedTransaction == Transaction.Current)
 {
 return enlistment;
 }
 else
 {
 throw new TransactionException(
 "This class only supports enlisting with one transaction");
 }
 }

The property Value returns the value of the contained class and sets it. However, with transactions, you
cannot just set and return the liveValue variable. This would be the case only if the object were outside
a transaction. To make the code more readable, the property Value uses the methods GetValue and
SetValue in the implementation:

 public T Value
 {
 get { return GetValue(); }
 set { SetValue(value); }
 }

The method GetValue checks whether an ambient transaction exists. If one doesn’t exist, the liveValue is
returned. If there is an ambient transaction, the GetEnlistment method shown earlier returns the resource
manager, and with the Value property, the temporary value for the contained object within the transaction
is returned.

c25.indd 733 30-01-2014 20:31:38

734 ❘ CHAPTER 25 TransacTions

The method SetValue is very similar to GetValue; the difference is that it changes the live or temporary
value:

 protected virtual T GetValue()
 {
 if (Transaction.Current == null)
 {
 return liveValue;
 }
 else
 {
 return GetEnlistment().Value;
 }
 }

 protected virtual void SetValue(T value)
 {
 if (Transaction.Current == null)
 {
 liveValue = value;
 }
 else
 {
 GetEnlistment().Value = value;
 }
 }

The Commit and Rollback methods that are implemented in the class Transactional<T> are invoked from
the resource manager. The Commit method sets the live value from the temporary value received with the
first argument and nullifies the variable enlistedTransaction as the transaction is completed. With
the Rollback method, the transaction is completed as well, but here the temporary value is ignored, and the
live value is kept in use:

 internal void Commit(T value, Transaction tx)
 {
 liveValue = value;
 enlistedTransaction = null;
 }

 internal void Rollback(Transaction tx)
 {
 enlistedTransaction = null;
 }
 }

Because the resource manager that is used by the class Transactional<T> is used only within the
Transactional<T> class itself, it is implemented as an inner class. With the constructor, the parent variable
is set to have an association with the transactional wrapper class. The temporary value used within the
transaction is copied from the live value. Remember the isolation requirements with transactions (code file
CustomResource/ResourceManager.cs):

using System;
using System.Diagnostics;
using System.IO;
using System.Runtime.Serialization.Formatters.Binary;
using System.Transactions;

namespace Wrox.ProCSharp.Transactions
{
 public partial class Transactional<T>
 {
 internal class ResourceManager<T1>: IEnlistmentNotification

c25.indd 734 30-01-2014 20:31:38

Custom Resource Managers ❘ 735

 {
 private Transactional<T1> parent;
 private Transaction currentTransaction;

 internal ResourceManager(Transactional<T1> parent, Transaction tx)
 {
 this.parent = parent;
 Value = DeepCopy(parent.liveValue);
 currentTransaction = tx;
 }

 public T1 Value { get; set; }

Because the temporary value may change within the transaction, the live value of the wrapper class may
not be changed within the transaction. When creating a copy with some classes, it is possible to invoke the
Clone method that is defined with the ICloneable interface. However, as the Clone method is defined,
it allows implementations to create either a shallow or a deep copy. If type T contains reference types and
implements a shallow copy, changing the temporary value would also change the original value. This would
be in conflict with the isolation and consistency features of transactions. Here, a deep copy is required.

To do a deep copy, the method DeepCopy serializes and deserializes the object to and from a stream.
Because in C# 5 it is not possible to define a constraint to the type T, indicating that serialization is required,
the static constructor of the class Transactional<T> checks whether the type is serializable by checking the
property IsSerializable of the Type object:

 static ResourceManager()
 {
 Type t = typeof(T1);
 Trace.Assert(t.IsSerializable, "Type " + t.Name +
 " is not serializable");
 }

 private T1 DeepCopy(T1 value)
 {
 using (var stream = new MemoryStream())
 {
 var formatter = new BinaryFormatter();
 formatter.Serialize(stream, value);
 stream.Flush();
 stream.Seek(0, SeekOrigin.Begin);

 return (T1)formatter.Deserialize(stream);
 }
 }

The interface IEnlistmentNotification is implemented by the class ResourceManager<T>. This is the
requirement for enlisting with transactions.

The implementation of the Prepare method answers by invoking Prepared with preparingEnlistment.
There should not be a problem assigning the temporary value to the live value, so the Prepare method
succeeds. With the implementation of the Commit method, the Commit method of the parent is invoked,
where the variable liveValue is set to the value of the ResourceManager that is used within the
transaction. The Rollback method just completes the work and leaves the live value where it was. With a
volatile resource, there is not a lot you can do in the InDoubt method. Writing a log entry could be useful:

 public void Prepare(PreparingEnlistment preparingEnlistment)
 {
 preparingEnlistment.Prepared();
 }

 public void Commit(Enlistment enlistment)

c25.indd 735 30-01-2014 20:31:38

736 ❘ CHAPTER 25 TransacTions

 {
 parent.Commit(Value, currentTransaction);
 enlistment.Done();
 }

 public void Rollback(Enlistment enlistment)
 {
 parent.Rollback(currentTransaction);
 enlistment.Done();
 }

 public void InDoubt(Enlistment enlistment)
 {
 enlistment.Done();
 }
 }
 }
}

The class Transactional<T> can now be used to make nontransactional classes transactional — for
example, int and string but also more complex classes such as Student — as long as the type is
serializable (code file CustomResource/Program.cs):

using System;
using System.Transactions;

namespace Wrox.ProCSharp.Transactions
{
 class Program
 {
 static void Main()
 {
 var intVal = new Transactional<int>(1);
 var student1 = new Transactional<Student>(new Student());
 student1.Value.FirstName = "Andrew";
 student1.Value.LastName = "Wilson";

 Console.WriteLine("before the transaction, value: {0}",
 intVal.Value);
 Console.WriteLine("before the transaction, student: {0}",
 student1.Value);

 using (var scope = new TransactionScope())
 {
 intVal.Value = 2;
 Console.WriteLine("inside transaction, value: {0}",
 intVal.Value);

 student1.Value.FirstName = "Ten";
 student1.Value.LastName = "SixtyNine";

 if (!Utilities.AbortTx())
 scope.Complete();
 }
 Console.WriteLine("outside of transaction, value: {0}",
 intVal.Value);
 Console.WriteLine("outside of transaction, student: {0}",
 student1.Value);
 }
 }
}

c25.indd 736 30-01-2014 20:31:38

File System Transactions ❘ 737

The following console output shows a run of the application with a committed transaction:

before the transaction, value: 1
before the transaction: student: Andrew Wilson
inside transaction, value: 2

Abort the Transaction (y/n)? n

outside of transaction, value: 2
outside of transaction, student: Ten SixtyNine

FilE sysTEm TRANsACTiONs
You can write a custom durable resource manager that works with the File and Registry classes. A
file-based durable resource manager can copy the original file and write changes to the temporary file inside
a temporary directory to make the changes persistent. When committing the transaction, the original file
is replaced by the temporary file. Writing custom durable resource managers for files and the registry isn’t
necessary since Windows Vista and Windows Server 2008. With these and subsequent operating systems,
native transactions with the file system and the registry are supported. For this, there are Windows API
calls such as CreateFileTransacted, CreateHardLinkTransacted, CreateSymbolicLinkTransacted,
CopyFileTransacted, and so on. What these API calls have in common is that they require a handle to a
transaction passed as an argument; they do not support ambient transactions. The transactional API calls
are not available from .NET 4.5.1 but you can create a custom wrapper by using Platform Invoke.

NOTE Platform Invoke is discussed in more detail in Chapter 23, “Interop.”

The sample application wraps the native method CreateFileTransacted for creating transactional file
streams from .NET applications.

When invoking native methods, the parameters of the native methods must be mapped to .NET data types.
Because of security issues, the base class SafeHandle is used to map a native HANDLE type. SafeHandle is
an abstract type that wraps operating system handles and supports critical finalization of handle resources.
Depending on the allowed values of a handle, the derived classes SafeHandleMinusOneIsInvalid and
SafeHandleZeroOrMinusOneIsInvalid can be used to wrap native handles. SafeFileHandle itself
derives from SafeHandleZeroOrMinusOneIsInvalid. To map a handle to a transaction, the class
SafeTransactionHandle is defined (code file FileSystemTransactions/SafeTransactionHandle.cs):

using System;
using System.Runtime.Versioning;
using System.Security.Permissions;
using Microsoft.Win32.SafeHandles;

namespace Wrox.ProCSharp.Transactions
{
 [SecurityCritical]
 internal sealed class SafeTransactionHandle:
 SafeHandleZeroOrMinusOneIsInvalid
 {
 private SafeTransactionHandle()
 : base(true) { }

 public SafeTransactionHandle(IntPtr preexistingHandle,
 bool ownsHandle)
 : base(ownsHandle)

c25.indd 737 30-01-2014 20:31:38

738 ❘ CHAPTER 25 TransacTions

 {
 SetHandle(preexistingHandle);
 }

 [ResourceExposure(ResourceScope.Machine)]
 [ResourceConsumption(ResourceScope.Machine)]
 protected override bool ReleaseHandle()
 {
 return NativeMethods.CloseHandle(handle);
 }
 }
}

All native methods used from .NET are defined with the class NativeMethods shown here. With the
sample, the native APIs needed are CreateFileTransacted and CloseHandle, which are defined as static
members of the class. The methods are declared extern because there is no C# implementation. Instead,
the implementation is found in the native DLL as defined by the attribute DllImport. Both of these
methods can be found in the native DLL Kernel32.dll. With the method declaration, the parameters
defined with the Windows API call are mapped to .NET data types. The parameter txHandle represents
a handle to a transaction and is of the previously defined type SafeTransactionHandle (code file
FileSystemTransactions/NativeMethods.cs):

using System;
using System.Runtime.ConstrainedExecution;
using System.Runtime.InteropServices;
using System.Runtime.Versioning;
using Microsoft.Win32.SafeHandles;

namespace Wrox.ProCSharp.Transactions
{
 internal static class NativeMethods
 {
 [DllImport("Kernel32.dll",
 CallingConvention = CallingConvention.StdCall,
 CharSet = CharSet.Unicode)]
 internal static extern SafeFileHandle CreateFileTransacted(
 String lpFileName,
 uint dwDesiredAccess,
 uint dwShareMode,
 IntPtr lpSecurityAttributes,
 uint dwCreationDisposition,
 int dwFlagsAndAttributes,
 IntPtr hTemplateFile,
 SafeTransactionHandle txHandle,
 IntPtr miniVersion,
 IntPtr extendedParameter);

 [DllImport("Kernel32.dll", SetLastError = true)]
 [ResourceExposure(ResourceScope.Machine)]
 [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
 [return: MarshalAs(UnmanagedType.Bool)]
 internal static extern bool CloseHandle(IntPtr handle);

 }
}

The interface IKernelTransaction is used to get a transaction handle and pass it to the transacted
Windows API calls. This is a COM interface and must be wrapped to .NET by using COM interop
attributes as shown. The attribute GUID must have exactly the identifier as used here with the interface
definition, because this is the identifier used with the definition of the COM interface (code file
FileSystemTransactions/IKernelTransaction.cs):

c25.indd 738 30-01-2014 20:31:38

File System Transactions ❘ 739

using System;
using System.Runtime.InteropServices;

namespace Wrox.ProCSharp.Transactions
{
 [ComImport]
 [Guid("79427A2B-F895-40e0-BE79-B57DC82ED231")]
 [InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
 internal interface IKernelTransaction
 {
 void GetHandle(out SafeTransactionHandle ktmHandle);
 }
}

Finally, the class TransactedFile is the class that will be used by .NET applications. This class defines the
method GetTransactedFileStream, which requires a filename as parameter and returns a System
.IO.FileStream. The returned stream is a normal .NET stream; it just references a transacted file.

With the implementation, TransactionInterop.GetDtcTransaction creates an interface pointer of the
IKernelTransaction to the ambient transaction that is passed as an argument to GetDtcTransaction.
Using the interface IKernelTransaction, a handle of type SafeTransactionHandle is created. This
handle is then passed to the wrapped API called NativeMethods.CreateFileTransacted. With
the returned file handle, a new FileStream instance is created and returned to the caller (code file
FileSystemTransactions/TransactedFile.cs):

using System;
using System.IO;
using System.Security.Permissions;
using System.Transactions;
using Microsoft.Win32.SafeHandles;

namespace Wrox.ProCSharp.Transactions
{
 public static class TransactedFile
 {
 internal const short FILE_ATTRIBUTE_NORMAL = 0x80;
 internal const short INVALID_HANDLE_VALUE = -1;
 internal const uint GENERIC_READ = 0x80000000;
 internal const uint GENERIC_WRITE = 0x40000000;
 internal const uint CREATE_NEW = 1;
 internal const uint CREATE_ALWAYS = 2;
 internal const uint OPEN_EXISTING = 3;

 [FileIOPermission(SecurityAction.Demand, Unrestricted=true)]
 public static FileStream GetTransactedFileStream(string fileName)
 {
 IKernelTransaction ktx = (IKernelTransaction)
 TransactionInterop.GetDtcTransaction(Transaction.Current);

 SafeTransactionHandle txHandle;
 ktx.GetHandle(out txHandle);

 SafeFileHandle fileHandle = NativeMethods.CreateFileTransacted(
 fileName, GENERIC_WRITE, 0,
 IntPtr.Zero, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL,
 IntPtr.Zero,
 txHandle, IntPtr.Zero, IntPtr.Zero);

 return new FileStream(fileHandle, FileAccess.Write);
 }
 }

c25.indd 739 30-01-2014 20:31:39

740 ❘ CHAPTER 25 TransacTions

Now it is very easy to use the transactional API from .NET code. You can create an ambient transaction
with the TransactionScope class and use the TransactedFile class within the context of the ambient
transaction scope. If the transaction is aborted, the file is not written. If the transaction is committed, you
can find the file in the temp directory (code file Windows8Transactions/Program.cs):

using System;
using System.IO;
using System.Transactions;

namespace Wrox.ProCSharp.Transactions
{
 class Program
 {
 static void Main()
 {
 using (var scope = new TransactionScope())
 {
 FileStream stream = TransactedFile.GetTransactedFileStream(
 "sample.txt");

 var writer = new StreamWriter(stream);
 writer.WriteLine("Write a transactional file");
 writer.Close();

 if (!Utilities.AbortTx())
 scope.Complete();
 }
 }
 }
}

Now you can use databases, volatile resources, and files within the same transaction.

summARy
In this chapter, you learned the attributes of transactions and how you can create and manage transactions
with the classes from the System.Transactions namespace.

Transactions are described with ACID properties: atomicity, consistency, isolation, and durability. Not all of
these properties are always required, as you have seen with volatile resources that don’t support durability
but have isolation options.

The easiest way to deal with transactions is by creating ambient transactions and using the
TransactionScope class. Ambient transactions are very useful for working with the ADO.NET data
adapter and the ADO.NET Entity Framework, for which you usually do not open and close database
connections explicitly. ADO.NET is covered in Chapter 32. The Entity Framework is explained in Chapter
33, “ADO.NET Entity Framework.”

Using the same transaction across multiple threads, you can use the DependentTransaction class to
create a dependency on another transaction. By enlisting a resource manager that implements the interface
IEnlistmentNotification, you can create custom resources that participate with transactions.

Finally, you have seen how to use file system transactions with the .NET Framework and C#.

In the next chapter, you can learn how communication between different systems can be achieved with the
System.Net namespace.

c25.indd 740 30-01-2014 20:31:39

26
Networking

WHAT’s in THis CHAPTER?

 ➤ Using HttpClient
 ➤ Using the WebBrowser control in a Windows Forms application
 ➤ Manipulating IP addresses and performing DNS lookups
 ➤ Socket programming with TCP, UDP, and socket classes

WROX.COM CODE DOWnlOADs FOR THis CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/go/procsharp
on the Download Code tab. The code for this chapter is divided into the following major examples:

 ➤ HttpClient
 ➤ Browser
 ➤ DnsLookup
 ➤ SocketClient
 ➤ SocketServer
 ➤ TcpSend
 ➤ TcpReceive
 ➤ ViewHeaders
 ➤ WebSocketSample

nETWORKing
This chapter takes a fairly practical approach to networking, mixing examples with a discussion of
the relevant theory and networking concepts as appropriate. This chapter is not a guide to computer
networking but an introduction to using the .NET Framework for network communication.

You will learn how to use the WebBrowser control in a Windows Forms environment, and why it can
make some specifi c Internet access tasks easier to accomplish. However, the chapter starts with the
simplest case: sending a request to a server and storing the information sent back in the response.

c26.indd 741 30-01-2014 20:32:44

742 ❘ CHAPTER 26 NetworkiNg

This chapter covers facilities provided through the .NET base classes for using various network protocols,
particularly HTTP and TCP, to access networks and the Internet as a client. It covers some of the lower-
level means of getting at these protocols through the .NET Framework. You will also find other means of
communicating via these items using technologies such as Windows Communication Foundation (WCF).

The two namespaces of most interest for networking are System.Net and System.Net.Sockets. The
System.Net namespace is generally concerned with higher-level operations, such as downloading and
uploading files, and making web requests using HTTP and other protocols, whereas System.Net.Sockets
contains classes to perform lower-level operations. You will find these classes useful when you want to work
directly with sockets or protocols, such as TCP/IP. The methods in these classes closely mimic the Windows
socket (Winsock) API functions derived from the Berkeley sockets interface. You will also find that some of
the objects that this chapter works with are found in the System.IO namespace.

Later chapters discuss how you can use C# to write powerful, efficient, and dynamic web pages using
ASP.NET. For the most part, the clients accessing ASP.NET pages will be users running Internet Explorer
or other web browsers such as Chrome, Opera, or Firefox. However, you might want to add web-browsing
features to your own application, or you might need your applications to programmatically obtain
information from a website. In this latter case, it is usually better for the site to implement a web service.
However, when you are accessing public Internet sites, you might not have any control over how the site is
implemented.

THE HTTPCliEnT ClAss
The HttpClient class is used to send an HTTP request and receive the response from the request. It is in
the System.Net.Http namespace. The classes in the System.Net.Http namespace help make it easy to
consume web services for both clients and server.

The HttpClient class is derived from the System.Net.Http.HttpMessageInvoker class. This class is
responsible for the SendAsync method. The SendAsync method is the workhorse of the HttpClient class.
As we’ll see later in this section, there are several derivatives of this method to use. As the name implies, the
SendAsync method call is asynchronous. This allows you to write a fully asynchronous system for calling
web services.

Asynchronous Web Service Call
In the download code examples for this chapter is HttpClientExample. It will call a web service
asynchronously:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Net.Http;

namespace HttpClientExample
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("In main before call to GetData!");
 GetData();
 Console.WriteLine("Back in main after call to GetData!");
 Console.ReadKey();
 }

 private static async void GetData()

c26.indd 742 30-01-2014 20:32:44

The HttpClient Class ❘ 743

 {
 HttpClient httpClient = new HttpClient();
 HttpResponseMessage response = null;
 response = await httpClient.GetAsync(
 "http://services.odata.org/Northwind/Northwind.svc/Regions");
 if(response.IsSuccessStatusCode)
 {
 Console.WriteLine("Response Status Code: "
 + response.StatusCode
 + " " + response.ReasonPhrase);
 string responseBodyAsText = response
 .Content
 .ReadAsStringAsync()
 .Result;
 Console.WriteLine("Received payload of "
 + responseBodyAsText.Length
 + " characters");
 //Console.WriteLine(responseBodyAsText);
 }
 }
 }
}

Executing this code should produce the following output:

In main before call to GetData!
Back in main after call to GetData!
Response Status Code: OK OK
Received payload of 1551 characters

Because the HttpClient class used the GetAsync method call and we used the await keyword, the Main
method was able to finish execution while the GetAsync method made the call to the web service. That’s
why the messages we output to the screen in the Main method are displayed before the data in the GetData
call is displayed.

The GetData method is where the work is done. First thing is to instantiate an HttpClient object. The
HttpClient object is thread-safe, so a single HttpClient object can be used to handle multiple requests.
Each instance of HttpClient maintains its own thread pool, so requests between HttpClient instances are
isolated.

Next is the call to GetAsync. We pass in the address of the method we’re going to call. The GetAsync call
will take either a string or a URI object. In our example we’re calling into Microsoft’s Odata sample site, but
you could alter that address to call any number of REST web services.

The call to GetAsync returns an HttpResponseMessage object. The HttpResponseMessage class
represents a response including headers, status, and content. Checking the IsSuccessfulStatusCode
property of the response will tell us if the request was successful.

Headers
We didn’t set or change any of the headers when we made the request, but the DefaultRequestHeaders
property on HttpClient would allow us to do just that. You can add headers to the collection using the Add
method. After you set a header value, the header and header value will be sent with every request that this
instance of HttpClient sends.

As an example of this, by default the response content will be in XML format. We can change this by adding
an Accept header to the request to use JSON. Add the following line just before the call to GetAsync and the
content will be returned in JSON format:

httpClient.DefaultRequestHeaders.Add("Accept",
 "application/json;odata=verbose");

c26.indd 743 30-01-2014 20:32:44

744 ❘ CHAPTER 26 NetworkiNg

Uncommenting the last line in the GetData method will display the data in the content of the response.
Adding and removing the header and running the example will show the content in XML and JSON formats.

The HttpRequestHeaders object returned from the DefaultHeaders property has several helper properties
to many of the standard headers. You can read the values of the headers from these properties but they are
read only. To set a value you need to use the Add method.

The HttpClientHeadersExample project shows how to iterate through the headers in a response and a
request. Here’s what the GetData code looks like:

private static void GetData()
{
 HttpClient httpClient = new HttpClient();
 HttpResponseMessage response = null;
 //uncomment to see Accept Header in request
 //httpClient.DefaultRequestHeaders.Add("Accept",
 "application/json;odata=verbose");
 Console.WriteLine("Request Headers:");
 EnumerateHeaders(httpClient.DefaultRequestHeaders);
 Console.WriteLine();
 response = httpClient.GetAsync(
 "http://services.odata.org/Northwind/Northwind.svc/Regions").Result;
 if (response.IsSuccessStatusCode)
 {
 Console.WriteLine("Response Headers:");
 EnumerateHeaders(response.Headers);
 }
}

It starts out similar to the previous example. The EnumerateHeaders method was added, taking an
HttpHeaders object as a parameter. HttpHeaders is the base class for HttpRequestHeaders and
HttpResponseHeaders. The specialized classes both add helper properties to access headers directly. The
HttpHeader object is defined as a KeyValuePair<string, IEnumerable<string>>. This means that each
header can have more than one value in the collection. Because of this, it’s important that if you want to
change a value in a header, you need to remove the original value and add the new value.

The EnumerateHeader function is pretty simple:

private static void EnumerateHeaders(HttpHeaders headers)
{
 foreach (var header in headers)
 {
 var value = "";

 foreach (var val in header.Value)
 {
 value = val + " ";
 }
 Console.WriteLine("Header: " + header.Key + " Value: " + value);
 }
}

Because the header value can have multiple values, the value part of the header must be iterated over as well.
So there is a loop inside of a loop to enumerate all the values found.

Running this code will not display any headers for the request.

If the Accept header is added like it was in the previous example, it will show up in the output if the code is
executed again. Here is the output with the Accept header added:

Request Headers:
Header: Accept Value: application/json; odata=verbose

Response Headers:

c26.indd 744 30-01-2014 20:32:44

The HttpClient Class ❘ 745

Header: Connection Value: Keep-Alive
Header: Vary Value: *
Header: X-Content-Type-Options Value: nosniff
Header: DataServiceVersion Value: 2.0;
Header: Access-Control-Allow-Origin Value: *
Header: Access-Control-Allow-Methods Value: GET
Header: Access-Control-Allow-Headers Value: Accept, Origin, Content-Type, MaxDataServiceVersion
Header: Access-Control-Expose-Headers Value: DataServiceVersion
Header: Cache-Control Value: private
Header: Date Value: Tue, 10 Dec 2013 00:47:07 GMT
Header: Server Value: Microsoft-IIS/7.5
Header: X-AspNet-Version Value: 4.0.30319
Header: X-Powered-By Value: ASP.NET

HttpContent
The Content property in the response returns an HttpContent object. In order to get the data
from the HttpContent object you’ll need to use one of the methods supplied. In the example, the
ReadAsStringAsync method was used. It returns a string representation of the content. As the name
implies, this is an async call, even though in this example we didn’t take advantage of that. Calling the
Result method blocks the call until it’s finished and then continues on with execution.

Other methods to get the data from the HttpContent object are ReadAsByteArrayAsync, which would
return a byte array of the data and ReadAsStreamAsync, which will return a stream. You can also load the
content into a memory buffer using LoadIntoBufferAsync.

The Headers property returns the HttpContentHeaders object. This works exactly the same way the
request and response headers do in the previous example.

HttpMessageHandler
The HttpClient class can take an HttpMessageHandler as a parameter to its constructor. This allows you
to customize the request. By default a WebRequestHandler object is used. There are numerous properties
that can be set for things such as ClientCertificates, Pipelining, CachePolicy, ImpersonationLevel
and so on.

The HttpClientMessageHandlerRequest project is a very simple example of how to add a custom handler.
Once again we use GetData, and this time it looks like this:

private static void GetData()
{
 HttpClient httpClient = new HttpClient(new MessageHandler("error"));
 HttpResponseMessage response = null;
 Console.WriteLine();
 response = httpClient.GetAsync(
 "http://services.odata.org/Northwind/Northwind.svc/Regions").Result;
 Console.WriteLine(response.StatusCode);
}

Notice that the call to create the HttpClient object has a parameter passed in — a MessageHandler object.
The purpose of this handler is to take a string as a parameter and either display it in the console, or, if the
message is "error" to set the response’s status code to Bad Request. The parameter in the constructor is
part of the sample implementation. The HttpClientHandler doesn’t require a parameter to be set. Here is
the MessageHandler code:

public class MessageHandler : HttpClientHandler
{
 string displayMessage = "";
 public MessageHandler (string message)
 {
 displayMessage = message;

c26.indd 745 30-01-2014 20:32:44

746 ❘ CHAPTER 26 NetworkiNg

 }

 protected override Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request,
 System.Threading.CancellationToken cancellationToken)
 {
 Console.WriteLine("In DisplayMessageHandler " + displayMessage);
 if(displayMessage == "error")
 {
 var response = new HttpResponseMessage(
 System.Net.HttpStatusCode.BadRequest);
 var tsc = new TaskCompletionSource<HttpResponseMessage>();
 tsc.SetResult(response);
 return tsc.Task;
 }
 return base.SendAsync(request, cancellationToken);
 }
}

The interesting part of the handler is after we check to see if displayMessage is
"error". If it is "error", we create the response to return and set the status to Bad
Request. The next couple of lines just create the Task to return. Notice that the
response is set in the HttpResponseMessage task through the SetResult method.

There are many reasons to add a custom handler. The handler pipeline is
set so that multiple handlers can be added. Besides the default, there is the
DelegatingHandler, which executes some code and then “delegates” the call back
to the inner or next handler. The HttpClientHandler is the last handler in line
and will send the request to the addressee. Figure 26-1 shows the pipeline. Each
DelegatingHandler added would call the next or inner handler finally ending at
the HttpClientHandler-based handler.

DisPlAying OuTPuT As An HTMl PAgE
The examples so far in this chapter show how the .NET base classes make it very
easy to download and process data from the Web. However, up until now you have
displayed files only as plain text. Quite often, you will want to view an HTML file
in an Internet Explorer–style interface in which the rendered HTML allows you
to see what the web document actually looks like. Unfortunately, there is no .NET
version of Microsoft’s Internet Explorer, but you can still accomplish this task.

Before the release of the .NET Framework 2.0, you could make reference to a
Component Object Model (COM) object that was an encapsulation of Internet Explorer and use the
.NET-interop capabilities to have aspects of your application work as a browser. Beginning with the
.NET Framework 2.0, you can use the built-in WebBrowser control available for your Windows Forms
applications.

The WebBrowser control encapsulates the COM object even further for you, making tasks that were
once more complicated even easier. In addition to the WebBrowser control, another option is to use the
programmatic capability to call Internet Explorer instances from your code.

When not using the new WebBrowser control, you can programmatically start an Internet Explorer process
and navigate to a web page using the Process class in the System.Diagnostics namespace:

Process myProcess = new Process();
myProcess.StartInfo.FileName = "iexplore.exe";
myProcess.StartInfo.Arguments = "http://www.wrox.com";
myProcess.Start();

However, the preceding code launches Internet Explorer as a separate window. Your application has no
connection to the new window and therefore cannot control the browser.

FiguRE 26-1

HttpClient

SendAsync

DelegatingHandler

SendAsync

DelegatingHandler

SendAsync

HttpClientHandler
WebRequestHandler

SendAsync

c26.indd 746 30-01-2014 20:32:46

Displaying Output as an HTML Page ❘ 747

Using the WebBrowser control, however, you can display and control the browser as an integrated part of your
application. This control is quite sophisticated, featuring a large number of methods, properties, and events.

Allowing simple Web Browsing from your Applications
For the sake of simplicity, start by creating a Windows Forms application that simply has a TextBox control
and a WebBrowser control. You will build the application so that the end user simply enters a URL into
the text box and presses Enter, and the WebBrowser control does all the work of fetching the web page and
displaying the resulting document.

In the Visual Studio 2013 designer, your application should look like Figure 26-2. With this application,
when the end user types a URL and presses Enter, this key-press registers with the application. Then the
WebBrowser control will retrieve the requested page, subsequently displaying it in the control itself.

FiguRE 26-2

The code behind this application is shown here:

using System;
using System.Windows.Forms;

namespace Browser
{
 partial class Form1: Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void textBox1_KeyPress(object sender, KeyPressEventArgs e)
 {
 if (e.KeyChar == (char)13)
 {
 webBrowser1.Navigate(textBox1.Text);
 }
 }
 }
}

From this example, you can see that each key press made by the end user in the text box is captured by the
textBox1_KeyPress event. If the character input is a carriage return (a press of the Enter key, which is (char)13),

c26.indd 747 30-01-2014 20:32:46

748 ❘ CHAPTER 26 NetworkiNg

then you take action with the WebBrowser control. Using the WebBrowser control’s Navigate method, you specify
the URI (as a string) using the textBox1.Text property. The end result is shown in Figure 26-3.

FiguRE 26-3

launching internet Explorer instances
It might be that you are not interested in hosting a browser inside your application, as shown in the previous
section, but instead are only interested in allowing the user to find your website in a typical browser (for
example, by clicking a link inside your application). For an example of this task, create a Windows Forms
application that has a LinkLabel control on it. For instance, you can have a form that has a LinkLabel
control on it that states, “Visit our company website!”

When you have this control in place, use the following code to launch your company’s website in an
independent browser as opposed to being directly in the form of your application:

private void linkLabel1_LinkClicked(object sender, LinkLabelLinkClickedEventArgs e)
{
 WebBrowser wb = new WebBrowser();
 wb.Navigate("http://www.wrox.com", true);
}

In this example, when the LinkLabel control is clicked by the user, a new instance of the WebBrowser class
is created. Then, using the WebBrowser class’s Navigate method, the code specifies the location of the web
page as well as a Boolean value that specifies whether this endpoint should be opened within the Windows
Forms application (a false value) or from within an independent browser (using a true value). By default,
this is set to false. With the preceding construct, when the end user clicks the link found in the Windows
application, a browser instance is instantiated, and the Wrox website at www.wrox.com is launched.

giving your Application More iE-Type Features
In the previous example, in which you used the WebBrowser control directly in the Windows Forms
application, you may notice that when you click the links contained in the page, the text within the TextBox

c26.indd 748 30-01-2014 20:32:46

Displaying Output as an HTML Page ❘ 749

control is not updated to show the URL of the exact location where you are in the browsing process. You
can fix this by listening for events coming from the WebBrowser control and adding handlers to the control.

Updating the form’s title with the title of the HTML page is easy. You just need to use the Navigated event
and update the Text property of the form:

private void webBrowser1_Navigated(object sender, EventArgs e)
{
 this.Text = webBrowser1.DocumentTitle.ToString();
}

In this case, when the WebBrowser control moves onto another page, the Navigated event fires, which
causes the form’s title to change to the title of the page being viewed. In some instances when working
with pages on the Web, even though you have typed in a specific address, you are going to be redirected to
another page altogether. You are most likely going to want to reflect this in the text box (address bar) of the
form, which you do by changing the form’s text box based on the complete URL of the page being viewed.
To accomplish this task, you can use the WebBrowser control’s Navigated event as well:

private void webBrowser1_Navigated(object sender, WebBrowserNavigatedEventArgs e)
{
 textBox1.Text = webBrowser1.Url.ToString();
 this.Text = webBrowser1.DocumentTitle.ToString();
}

Here, when the requested page has finished downloading in the WebBrowser control, the Navigated event
is fired. In this case, you simply update the Text value of the textBox1 control to the URL of the page. This
means that after a page is loaded in the WebBrowser control’s HTML container, and if the URL changes in
this process (for instance, there is a redirect), the new URL will be shown in the text box. If you employ these
steps and navigate to the Wrox website (www.wrox.com), you will notice that the page’s URL immediately
changes to www.wrox.com/WileyCDA/. This process also means that if the end user clicks one of the links
contained within the HTML view, then the URL of the newly requested page is also shown in the text box.

If you now run the application with the preceding changes in place, the form’s title and address bar work as
they do in Microsoft’s Internet Explorer, as demonstrated in Figure 26-4.

FiguRE 26-4

c26.indd 749 30-01-2014 20:32:47

750 ❘ CHAPTER 26 NetworkiNg

The next step is to create an IE-like toolbar that enables the end user to control the WebBrowser control a
little better. This means incorporating buttons such as Back, Forward, Stop, Home, and Refresh.

Rather than use the ToolBar control, you will just add a set of Button controls at the top of the form where
you currently have the address bar. Add five buttons to the top of the control, as illustrated in Figure 26-5.

FiguRE 26-5

In this example, the text on the button face is changed to indicate the function of the button. Of course, you
can even use a screen capture utility to “borrow” button images from IE and use those. Name the buttons
buttonBack, buttonForward, buttonStop, buttonRefresh, and buttonHome. To get the resizing to work
properly, ensure that you set the Anchor property of the three buttons on the right to Top, Right.

On startup, buttonBack, buttonForward, and buttonStop should be disabled because these buttons serve
no purpose if no initial page is loaded in the WebBrowser control. You will later tell the application when to
enable and disable the Back and Forward buttons yourself, depending on where the user is in the page stack.
In addition, when a page is being loaded, you need to enable the Stop button — but you also need to disable
the Stop button when the page has finished being loaded. Finally, a Submit button on the page will allow
for the submission of the URL being requested.

First, however, add the functionality behind the buttons. The WebBrowser class itself has all the methods
that you need, so this is all very straightforward:

using System;
using System.Windows.Forms;

namespace Browser
{
 partial class Form1: Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void textBox1_KeyPress(object sender, KeyPressEventArgs e)
 {
 if (e.KeyChar == (char)13)

c26.indd 750 30-01-2014 20:32:47

Displaying Output as an HTML Page ❘ 751

 {
 webBrowser1.Navigate(textBox1.Text);
 }
 }

 private void webBrowser1_Navigated(object sender,
 WebBrowserNavigatedEventArgs e)
 {
 textBox1.Text = webBrowser1.Url.ToString();
 this.Text = webBrowser1.DocumentTitle.ToString();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 buttonBack.Enabled = false;
 buttonForward.Enabled = false;
 buttonStop.Enabled = false;

 this.webBrowser1.CanGoBackChanged +=
 new EventHandler(webBrowser1_CanGoBackChanged);
 this.webBrowser1.CanGoForwardChanged +=
 new EventHandler(webBrowser1_CanGoForwardChanged);
 this.webBrowser1.DocumentTitleChanged +=
 new EventHandler(webBrowser1_DocumentTitleChanged);
 }

 private void buttonBack_Click(object sender, EventArgs e)
 {
 webBrowser1.GoBack();
 textBox1.Text = webBrowser1.Url.ToString();
 }

 private void buttonForward_Click(object sender, EventArgs e)
 {
 webBrowser1.GoForward();
 textBox1.Text = webBrowser1.Url.ToString();
 }

 private void buttonStop_Click(object sender, EventArgs e)
 {
 webBrowser1.Stop();
 }

 private void buttonHome_Click(object sender, EventArgs e)
 {
 webBrowser1.GoHome();
 textBox1.Text = webBrowser1.Url.ToString();
 }

 private void buttonRefresh_Click(object sender, EventArgs e)
 {
 webBrowser1.Refresh();
 }

 private void buttonSubmit_Click(object sender, EventArgs e)
 {
 webBrowser1.Navigate(textBox1.Text);
 }

 private void webBrowser1_Navigating(object sender,
 WebBrowserNavigatingEventArgs e)
 {

c26.indd 751 30-01-2014 20:32:47

752 ❘ CHAPTER 26 NetworkiNg

 buttonStop.Enabled = true;
 }

 private void webBrowser1_DocumentCompleted(object sender,
 WebBrowserDocumentCompletedEventArgs e)
 {
 buttonStop.Enabled = false;
 if (webBrowser1.CanGoBack)
 {
 buttonBack.Enabled = true;
 }
 else
 {
 buttonBack.Enabled = false;
 }
 if (webBrowser1.CanGoForward)
 {
 buttonForward.Enabled = true;
 }
 else
 {
 buttonForward.Enabled = false;
 }
 }
 }
}

Many different activities are occurring in this example because there are many options for the end user
using this application. For each of the button-click events, a specific WebBrowser class method is assigned
as the action to initiate. For instance, for the Back button on the form, you simply use the WebBrowser
control’s GoBack method; for the Forward button you have the GoForward method; and for the others, you
have methods such as Stop, Refresh, and GoHome. This makes it fairly simple and straightforward to create
a toolbar that provides actions similar to that of Microsoft’s Internet Explorer.

When the form is first loaded, the Form1_Load event disables the appropriate buttons. From there, the end user
can enter a URL into the text box and click the Submit button to have the application retrieve the desired page.

To manage the enabling and disabling of the buttons, you must key in to a couple of events. As mentioned
before, whenever downloading begins, you need to enable the Stop button. For this, you simply added an
event handler for the Navigating event to enable the Stop button:

 private void webBrowser1_Navigating(object sender,
 WebBrowserNavigatingEventArgs e)
 {
 buttonStop.Enabled = true;
 }

Then, the Stop button is again disabled when the document has finished loading:

 private void webBrowser1_DocumentCompleted(object sender,
 WebBrowserDocumentCompletedEventArgs e)
 {
 buttonStop.Enabled = false;
 }

Enabling and disabling the appropriate Back and Forward buttons depends on the capability to go
backward or forward in the page stack. This is achieved by using both the CanGoForwardChanged and the
CanGoBackChanged events:

 private void webBrowser1_CanGoBackChanged(object sender, EventArgs e)
 {
 if (webBrowser1.CanGoBack)

c26.indd 752 30-01-2014 20:32:47

Displaying Output as an HTML Page ❘ 753

 {
 buttonBack.Enabled = true;
 }
 else
 {
 buttonBack.Enabled = false;
 }
 }

 private void webBrowser1_CanGoForwardChanged(object sender, EventArgs e)
 {
 if (webBrowser1.CanGoForward)
 {
 buttonForward.Enabled = true;
 }
 else
 {
 buttonForward.Enabled = false;
 }
 }

Run the project now, visit a web page, and click through a few links. You should also be able to use the
toolbar to enhance your browsing experience. The end product is shown in Figure 26-6.

FiguRE 26-6

Printing using the WebBrowser Control
Not only can users use the WebBrowser control to view pages and documents, they can also use the control
to send these pages and documents to the printer for printing. To print the page or document being viewed
in the control, simply use the following construct:

webBrowser1.Print();

c26.indd 753 30-01-2014 20:32:48

754 ❘ CHAPTER 26 NetworkiNg

As before, you do not need to view the page or document to print it. For instance, you can use the
WebBrowser class to load an HTML document and print it without even displaying the loaded document.
You can accomplish that as shown here:

WebBrowser wb = new WebBrowser();
wb.Navigate("http://www.wrox.com");
wb.Print();

Displaying the Code of a Requested Page
In the beginning of this chapter, you used the WebRequest and the Stream classes to access a remote page to
display the code of the requested page. You used the following code to accomplish this task:

public Form1()
{
 InitializeComponent();
 System.Net.WebClient Client = new WebClient();
 Stream strm = Client.OpenRead("http://www.reuters.com");
 StreamReader sr = new StreamReader(strm);
 string line;

 while ((line=sr.ReadLine()) != null)
 {
 listBox1.Items.Add(line);
 }

 strm.Close();
}

Using the WebBrowser control, it is quite easy to accomplish the same results. To do so, change the browser
application that you have been working on thus far in this chapter by simply adding a single line to the
Document_Completed event, as illustrated here:

private void webBrowser1_DocumentCompleted(object sender,
 WebBrowserDocumentCompletedEventArgs e)
{
 buttonStop.Enabled = false;
 textBox2.Text = webBrowser1.DocumentText;
}

In the application itself, add another TextBox control below the WebBrowser control. The idea is that when
the end user requests a page, you display not only the visual aspect of the page but also the code for the
page, in the TextBox control. The code of the page is displayed simply by using the DocumentText property
of the WebBrowser control, which provides the entire page’s content as a String. The other option is to get
the contents of the page as a Stream using the DocumentStream property. The result of adding the second
TextBox to display the contents of the page as a String is shown in Figure 26-7.

The WebRequest and WebResponse Classes Hierarchy
This section takes a closer look at the underlying architecture of the WebRequest and WebResponse classes.
Figure 26-8 illustrates the inheritance hierarchy of the classes involved.

The hierarchy contains more than just the two classes you have used in your code. You should also know
that the WebRequest and WebResponse classes are both abstract and cannot be instantiated. These base
classes provide general functionality for dealing with web requests and responses independent of the
protocol used for a given operation. Requests are made using a particular protocol (HTTP, FTP, SMTP, and
so on), and a derived class written for the given protocol handles the request. Microsoft refers to this scheme
as pluggable protocols.

In the code you examined earlier in the “WebRequest and WebResponse Classes Hierarchy” section, your
variables are defined as references to the base classes. However, WebRequest.Create actually gives you an

c26.indd 754 30-01-2014 20:32:48

Displaying Output as an HTML Page ❘ 755

FiguRE 26-7

System.MarshallByRefObject

System.Object

Third-Party Web
Request Classes

Third-Party Web
Response Classes

System.Net.WebRequest System.Net.WebResponse

System.Net.HttpWebRequest

System.Net.FileWebRequest

System.Net.FtpWebRequest

System.Net.HttpWebResponse

System.Net.FileWebResponse

System.Net.FtpWebResponse

FiguRE 26-8

HttpWebRequest object, and the GetResponse method actually returns an HttpWebResponse object. This
factory-based mechanism hides many of the details from the client code, allowing support for a variety of
protocols from the same code base.

The fact that you need an object specifically capable of dealing with the HTTP protocol is clear from the
URI that you supply to WebRequest.Create. WebRequest.Create examines the protocol specifier in
the URI to instantiate and return an object of the appropriate class. This keeps your code free from having

c26.indd 755 30-01-2014 20:32:50

756 ❘ CHAPTER 26 NetworkiNg

to know anything about the derived classes or specific protocol used. When you need to access specific
features of a protocol, you might need the properties and methods of the derived class, in which case you
can cast your WebRequest or WebResponse reference to the derived class.

With this architecture, you should be able to send requests using any of the common protocols. However,
Microsoft currently provides derived classes to cover only the HTTP, HTTPS, FTP, and FILE protocols. The
FTP option is the most recent option provided by the .NET Framework (available since the release of the
.NET Framework 2.0). If you want to utilize other protocols, such as SMTP, then you need to use Windows
Communication Foundation, revert to using the Windows API, or use the SmtpClient object.

uTiliTy ClAssEs
This section covers a couple of utility classes to make web programming easier when dealing with URIs and
IP addresses.

uRis
Uri and UriBuilder are two classes in the System (not System.Net) namespace, and both are intended to
represent a URI. UriBuilder enables you to build a URI given the strings for the component parts, and Uri
enables you to parse, combine, and compare URIs.

For the Uri class, the constructor requires a complete URI string:

Uri MSPage = new

Uri("http://www.Microsoft.com/SomeFolder/SomeFile.htm?Order=true");

This class exposes a large number of read-only properties. A Uri object is not intended to be modified after
it has been constructed:

string Query = MSPage.Query; // ?Order=true;
string AbsolutePath = MSPage.AbsolutePath; // /SomeFolder/SomeFile.htm
string Scheme = MSPage.Scheme; // http
int Port = MSPage.Port; // 80 (the default for http)
string Host = MSPage.Host; // www.microsoft.com
bool IsDefaultPort = MSPage.IsDefaultPort; // true since 80 is default

UriBuilder, however, implements fewer properties, just enough to enable you to build a complete URI.
These properties are read-write.

You can supply the components to build a URI to the constructor:

UriBuilder MSPage = new
 UriBuilder("http", "www.microsoft.com", 80, "SomeFolder/SomeFile.htm");

Or, you can build the components by assigning values to the properties:

UriBuilder MSPage = new UriBuilder();
MSPage.Scheme ="http";
MSPage.Host = "www.microsoft.com";
MSPage.Port = 80;
MSPage.Path = "SomeFolder/SomeFile.htm";

After you have completed initializing the UriBuilder, you can obtain the corresponding Uri object with
the Uri property:

Uri CompletedUri = MSPage.Uri;

iP Addresses and Dns names
On the Internet, you identify servers as well as clients by IP address or host name (also referred to as a
DNS name). Generally speaking, the host name is the human-friendly name that you type in a web browser

c26.indd 756 30-01-2014 20:32:50

Utility Classes ❘ 757

window, such as www.wrox.com or www.microsoft.com. An IP address is the identifier that computers use
to recognize each other. IP addresses are the identifiers used to ensure that web requests and responses reach
the appropriate machines. It is even possible for a computer to have more than one IP address.

Today, an IP address is typically a 32-bit value. An example of a 32-bit IP address is 192.168.1.100. This
format of IP address is referred to as Internet Protocol version 4. Because there are now so many computers
and other devices vying for a spot on the Internet, a newer type of address was developed — Internet Protocol
version 6. IPv6 provides a 64-bit IP address. IPv6 can potentially provide a maximum number of about
3 × 1028 unique addresses. The .NET Framework enables your applications to work with both IPv4 and IPv6.

For host names to work, you must first send a network request to translate the host name into an IP address,
a task carried out by one or more DNS servers. A DNS server stores a table that maps host names to IP
addresses for all the computers it knows about, as well as the IP addresses of other DNS servers to look up
host names it does not know about. Your local computer should always know about at least one DNS server.
Network administrators configure this information when a computer is set up.

Before sending out a request, your computer first asks the DNS server to give it the IP address corresponding
to the host name you have typed in. When it is armed with the correct IP address, the computer can address
the request and send it over the network. All this work normally happens behind the scenes while the user is
browsing the web.

.NET Classes for IP Addresses
The .NET Framework supplies a number of classes that are able to assist with the process of looking up IP
addresses and finding information about host computers.

IPAddress

IPAddress represents an IP address. The address itself is available as the GetAddressBytes property and
may be converted to a dotted decimal format with the ToString method. IPAddress also implements a
static Parse method that effectively performs the reverse conversion of ToString — converting from a
dotted decimal string to an IPAddress:

IPAddress ipAddress = IPAddress.Parse("234.56.78.9");
byte[] address = ipAddress.GetAddressBytes();
string ipString = ipAddress.ToString();

In this example, the byte integer address is assigned a binary representation of the IP address, and the
string ipString is assigned the text "234.56.78.9".

IPAddress also provides a number of constant static fields to return special addresses. For example, the
Loopback address enables a machine to send messages to itself, whereas the Broadcast address enables
multicasting to the local network:

// The following line will set loopback to "127.0.0.1".
// the loopback address indicates the local host.
string loopback = IPAddress.Loopback.ToString();

// The following line will set broadcast address to "255.255.255.255".
// the broadcast address is used to send a message to all machines on
// the local network.
string broadcast = IPAddress.Broadcast.ToString();

IPHostEntry

The IPHostEntry class encapsulates information related to a particular host computer. This class makes
the host name available via the HostName property (which returns a string), and the AddressList property
returns an array of IPAddress objects. You are going to use the IPHostEntry class in the next example:
DNSLookupResolver.

c26.indd 757 30-01-2014 20:32:50

758 ❘ CHAPTER 26 NetworkiNg

Dns

The Dns class can communicate with your default DNS server to retrieve IP addresses. The two important
(static) methods are Resolve, which uses the DNS server to obtain details about a host with a given host
name, and GetHostByAddress, which also returns host details but this time using the IP address. Both
methods return an IPHostEntry object:

IPHostEntry wroxHost = Dns.Resolve("www.wrox.com");
IPHostEntry wroxHostCopy = Dns.GetHostByAddress("208.215.179.178");

In this code, both IPHostEntry objects will contain details about the wrox.com servers.

The Dns class differs from the IPAddress and IPHostEntry classes in that it is capable of actually
communicating with servers to obtain information. In contrast, IPAddress and IPHostEntry are more
along the lines of simple data structures with convenient properties to allow access to the underlying
data.

The DnsLookup Example
The DNS and IP-related classes are illustrated with an example
that looks up DNS names: DnsLookup (see Figure 26-9). This
sample application simply invites the user to type in a DNS
name using the main text box. When the user clicks the Resolve
button, the sample uses the Dns.Resolve method to retrieve
an IPHostEntry reference and display the host name and IP
addresses. Note that the host name displayed may be different
from the name typed in. This can occur if one DNS name
simply acts as a proxy for another DNS name.

The DnsLookup application is a standard C# Windows
application. The controls are added as shown in Figure
26-9, giving them the names txtBoxInput, btnResolve,
txtBoxHostName, and listBoxIPs, respectively. Then, you
simply add the following method to the Form1 class as the
event handler for the buttonResolve Click event:

void btnResolve_Click (object sender, EventArgs e)
{
 try
 {
 IPHostEntry iphost = Dns.GetHostEntry(txtBoxInput.Text);
 foreach (IPAddress ip in iphost.AddressList)
 {
 string ipaddress = ip.AddressFamily.ToString();
 listBoxIPs.Items.Add(ipaddress);
 listBoxIPs.Items.Add(" " + ip.ToString());
 }
 txtBoxHostName.Text = iphost.HostName;
 }
 catch(Exception ex)
 {
 MessageBox.Show("Unable to process the request because " +
 "the following problem occurred:\n" +
 ex.Message, "Exception occurred");
 }
}

Notice that this code is careful to trap any exceptions. An exception might occur if the user types an invalid
DNS name or the network is down.

FiguRE 26-9

c26.indd 758 30-01-2014 20:32:50

Lower-level Protocols ❘ 759

After retrieving the IPHostEntry instance, you use the AddressList property to obtain an array
containing the IP addresses, which you then iterate through with a foreach loop. For each entry, you
display the IP address as an integer and as a string, using the IPAddress.AddressFamily.ToString
method.

lOWER-lEvEl PROTOCOls
This section briefly discusses some of the .NET classes used to communicate at a lower level. The System
.Net.Sockets namespace contains the relevant classes. These classes, for example, enable you to directly
send TCP network requests or listen to TCP network requests on a particular port. The following table
describes the main classes.

ClAss DEsCRiPTiOn

Socket Deals with managing connections. Classes such as WebRequest,
TcpClient, and UdpClient use this class internally.

NetworkStream Derived from Stream. Represents a stream of data from the network.

SmtpClient Enables you to send messages (mail) through the Simple Mail Transfer
Protocol.

TcpClient Enables you to create and use TCP connections.

TcpListener Enables you to listen for incoming TCP connection requests.

UdpClient Enables you to create connections for UDP (User Datagram Protocol) clients.
(UDP is an alternative protocol to TCP but much less widely used, mostly on
local networks.)

Network communications work on several different levels. The classes described in this chapter so far
work at the highest level — the level at which specific commands are processed. It is probably easiest to
understand this concept if you think of file transfer using FTP. Although today’s GUI applications hide
many of the FTP details, it was not so long ago that you executed FTP from a command-line prompt. In
this environment, you explicitly typed commands to send to the server for downloading, uploading, and
listing files.

FTP is not the only high-level protocol relying on textual commands. HTTP, SMTP, POP, and other
protocols are based on a similar type of behavior. Again, many modern graphical tools hide the
transmission of commands from the user, so you are generally not aware of them. For example, when
you type a URL into a web browser, and the web request is sent to a server, the browser is actually
sending a (plain text) GET command to the server, which fulfills a similar purpose as the FTP get
command. It can also send a POST command, which indicates that the browser has attached other data
to the request.

These protocols, however, are not sufficient by themselves to achieve communication between computers.
Even if both the client and the server understand, for example, the HTTP protocol, it still won’t be
possible for them to understand each other unless there is also agreement about exactly how to transmit
the characters — what binary format will be used? Moreover, getting down to the lowest level, what
voltages will be used to represent 0s and 1s in the binary data? Because there are so many items to
configure and agree upon, developers and hardware engineers in the networking field often refer to a
protocol stack. When you list all the various protocols and mechanisms required for communication
between two hosts, you create a protocol stack — with high-level protocols on the top and low-level
protocols on the bottom. This approach results in a modular and layered approach to achieving efficient
communication.

c26.indd 759 30-01-2014 20:32:50

760 ❘ CHAPTER 26 NetworkiNg

Luckily, for most development work, you do not need to go far down the stack or work with voltage levels.
If you are writing code that requires efficient communication between computers, then it’s not unusual to
write code that works directly at the level of sending binary data packets between computers. This is the
realm of protocols such as TCP, and Microsoft provides several classes that enable you to conveniently work
with binary data at this level.

using smtpClient
The SmtpClient object enables you to send mail messages through the Simple Mail Transfer Protocol. A
simple example of using the SmtpClient object is illustrated here:

SmtpClient sc = new SmtpClient("mail.mySmtpHost.com");
sc.Send("evjen@yahoo.com", "editor@wrox.com",
 "The latest chapter", "Here is the latest.");

In its most basic form, you work from an instance of the SmtpClient object. In this case, the instantiation
also provided the host of the SMTP server that is used to send the mail messages over the Internet. You
could have achieved the same task by using the Host property:

SmtpClient sc = new SmtpClient();
sc.Host = "mail.mySmtpHost.com";
sc.Send("evjen@yahoo.com", "editor@wrox.com",
 "The latest chapter", "Here is the latest.");

When you have the SmtpClient in place, it is simply a matter of calling the Send method and providing the
From address, the To address, and the Subject, followed by the Body of the mail message.

In many cases you will have mail messages that are more complex than this. To handle this possibility, you
can also pass a MailMessage object into the Send method:

SmtpClient sc = new SmtpClient();
sc.Host = "mail.mySmtpHost.com";
MailMessage mm = new MailMessage();
mm.Sender = new MailAddress("evjen@yahoo.com", "Bill Evjen");
mm.To.Add(new MailAddress("editor@wrox.com", "Paul Reese"));
mm.To.Add(new MailAddress("marketing@wrox.com", "Wrox Marketing"));
mm.CC.Add(new MailAddress("publisher@wrox.com", "Barry Pruett"));
mm.Subject = "The latest chapter";
mm.Body = "Here you can put a long message";
mm.IsBodyHtml = true;
mm.Priority = MailPriority.High;
sc.Send(mm);

Using MailMessage enables you to greatly fine-tune how you build your mail messages. You can send
HTML messages, add as many To and CC recipients as you want, change the message priority, work with
the message encodings, and add attachments. The capability to add attachments is defined in the following
code snippet:

SmtpClient sc = new SmtpClient();
sc.Host = "mail.mySmtpHost.com";
MailMessage mm = new MailMessage();
mm.Sender = new MailAddress("evjen@yahoo.com", "Bill Evjen");
mm.To.Add(new MailAddress("editor@wrox.com", "Paul Reese"));
mm.To.Add(new MailAddress("marketing@wrox.com", "Wrox Marketing"));
mm.CC.Add(new MailAddress("publisher@wrox.com", "Barry Pruett"));
mm.Subject = "The latest chapter";
mm.Body = "Here you can put a long message";
mm.IsBodyHtml = true;
mm.Priority = MailPriority.High;
Attachment att = new Attachment("myExcelResults.zip",
 MediaTypeNames.Application.Zip);
mm.Attachments.Add(att);
sc.Send(mm);

c26.indd 760 30-01-2014 20:32:51

Lower-level Protocols ❘ 761

In this case, an Attachment object is created and added using the Add method to the MailMessage object
before the Send method is called.

using the TCP Classes
The Transmission Control Protocol (TCP) classes offer simple methods for connecting and sending data
between two endpoints. An endpoint is the combination of an IP address and a port number. Existing protocols
have well-defined port numbers — for example, HTTP uses port 80, whereas SMTP uses port 25. The Internet
Assigned Numbers Authority, IANA (www.iana.org), assigns port numbers to these well-known services.
Unless you are implementing a well-known service, you should select a port number higher than 1,024.

TCP traffic makes up the majority of traffic on the Internet today. It is often the protocol of choice because
it offers guaranteed delivery, error correction, and buffering. The TcpClient class encapsulates a TCP
connection and provides a number of properties to regulate the connection, including buffering, buffer
size, and timeouts. Reading and writing is accomplished by requesting a NetworkStream object via the
GetStream method.

The TcpListener class listens for incoming TCP connections with the Start method. When a connection
request arrives, you can use the AcceptSocket method to return a socket for communication with the remote
machine, or use the AcceptTcpClient method to use a higher-level
TcpClient object for communication. The easiest way to see how the
TcpListener and TcpClient classes work together is to go through
an example.

The Tcpsend and TcpReceive Examples
To demonstrate how these classes work, you need to build two
applications. Figure 26-10 shows the first application, TcpSend.
This application opens a TCP connection to a server and sends
the C# source code for itself.

As before, create a C# Windows application. The form consists of two text boxes (txtHost and txtPort)
for the host name and port, respectively, as well as a button (btnSend) to click and start a connection. First,
you ensure that you include the relevant namespaces:

using System;
using System.IO;
using System.Net.Sockets;
using System.Windows.Forms;

The following code shows the event handler for the button’s Click event:

private void btnSend_Click(object sender, System.EventArgs e)
{
 TcpClient tcpClient = new TcpClient(txtHost.Text, Int32.Parse(txtPort.Text));
 NetworkStream ns = tcpClient.GetStream();
 FileStream fs = File.Open("form1.cs", FileMode.Open);

 int data = fs.ReadByte();

 while(data != -1)
 {
 ns.WriteByte((byte)data);
 data = fs.ReadByte();
 }

 fs.Close();
 ns.Close();
 tcpClient.Close();
}

FiguRE 26-10

c26.indd 761 30-01-2014 20:32:51

762 ❘ CHAPTER 26 NetworkiNg

This example creates the TcpClient using a host name and a port number. Alternatively, if you have an
instance of the IPEndPoint class, you can pass the instance to the TcpClient constructor. After retrieving
an instance of the NetworkStream class, you open the source-code file and begin to read bytes. As with
many of the binary streams, you need to check for the end of the stream by comparing the return value
of the ReadByte method to -1. After your loop has read all the bytes and sent them along to the network
stream, you must close all the open files, connections, and streams.

On the other side of the connection, the TcpReceive application displays the received file after the
transmission is finished (see Figure 26-11).

FiguRE 26-11

The form consists of a single TextBox control named txtDisplay. The TcpReceive application uses a
TcpListener to wait for the incoming connection. To prevent freezing the application interface, you use
a background thread to wait for and then read from the connection. Thus, you need to include the System
.Threading namespace as well these other namespaces:

using System;
using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Threading;
using System.Windows.Forms;

Inside the form’s constructor, you spin up a background thread:

public Form1()
{
 InitializeComponent();
 Thread thread = new Thread(new ThreadStart(Listen));
 thread.Start();
}

c26.indd 762 30-01-2014 20:32:51

Lower-level Protocols ❘ 763

The remaining important code is as follows:

public void Listen()
{
 IPAddress localAddr = IPAddress.Parse("127.0.0.1");
 Int32 port = 2112;
 TcpListener tcpListener = new TcpListener(localAddr, port);
 tcpListener.Start();

 TcpClient tcpClient = tcpListener.AcceptTcpClient();

 NetworkStream ns = tcpClient.GetStream();
 StreamReader sr = new StreamReader(ns);
 string result = sr.ReadToEnd();
 Invoke(new UpdateDisplayDelegate(UpdateDisplay),new object[] {result});
 tcpClient.Close();
 tcpListener.Stop();
}

public void UpdateDisplay(string text)
{
 txtDisplay.Text= text;
}

protected delegate void UpdateDisplayDelegate(string text);

The thread begins execution in the Listen method and allows you to make the blocking call to
AcceptTcpClient without halting the interface. Notice that the IP address (127.0.0.1) and the port number
(2112) are hard-coded into the application, so you need to enter the same port number from the client application.

You use the TcpClient object returned by AcceptTcpClient to open a new stream for reading. As in the
earlier example, you create a StreamReader to convert the incoming network data into a string. Before
closing the client and stopping the listener, you update the form’s text box. You do not want to access the
text box directly from your background thread, so you use the form’s Invoke method with a delegate and
pass the result string as the first element in an array of object parameters. Invoke ensures that your call is
correctly marshalled into the thread that owns the control handles in the user interface.

TCP versus uDP
The other protocol covered in this section is UDP (User Datagram Protocol). UDP is a simple protocol
with few features and little overhead. Developers often use UDP in applications for which the speed and
performance requirements outweigh the reliability requirements — for example, video streaming. In
contrast, TCP offers a number of features to confirm the delivery of data. TCP provides error correction and
retransmission in the case of lost or corrupted packets. Last, but hardly least, TCP buffers incoming and
outgoing data and guarantees that a sequence of packets scrambled in transmission is reassembled before
delivery to the application. Even with the extra overhead, TCP is the most widely used protocol across the
Internet because of its high reliability.

The uDP Class
As you might expect, the UdpClient class features a smaller and simpler interface than TcpClient. This
reflects the relatively simpler nature of the protocol. Although both TCP and UDP classes use a socket beneath
the covers, the UdpClient class does not contain a method to return a network stream for reading and writing.
Instead, the member function Send accepts an array of bytes as a parameter, and the Receive function
returns an array of bytes. Also, because UDP is a connectionless protocol, you can wait to specify the endpoint
for the communication as a parameter to the Send and Receive methods, rather than specify it earlier in a
constructor or Connect method. You can also change the endpoint on each subsequent send or receive.

c26.indd 763 30-01-2014 20:32:51

764 ❘ CHAPTER 26 NetworkiNg

The following code fragment uses the UdpClient class to send a message to an echo service. A server with
an echo service running accepts TCP or UDP connections on port 7. The echo service simply echoes any
data sent to the server back to the client. This service is useful for diagnostics and testing, although many
system administrators disable echo services for security reasons:

using System;
using System.Text;
using System.Net;
using System.Net.Sockets;
namespace Wrox.ProCSharp.InternetAccess.UdpExample
{

 class Class1
 {
 [STAThread]
 static void Main(string[] args)
 {
 UdpClient udpClient = new UdpClient();
 string sendMsg = "Hello Echo Server";
 byte [] sendBytes = Encoding.ASCII.GetBytes(sendMsg);
 udpClient.Send(sendBytes, sendBytes.Length, "SomeEchoServer.net", 7);
 IPEndPoint endPoint = new IPEndPoint(0,0);
 byte [] rcvBytes = udpClient.Receive(ref endPoint);
 string rcvMessage = Encoding.ASCII.GetString(rcvBytes,
 0,
 rcvBytes.Length);
 // should print out "Hello Echo Server"
 Console.WriteLine(rcvMessage);
 }
 }
}

Here, you make heavy use of the Encoding.ASCII class to translate strings into arrays of byte and vice
versa. Also note that you pass an IPEndPoint by reference into the Receive method. Because UDP is not
a connection-oriented protocol, each call to Receive might pick up data from a different endpoint, so
Receive populates this parameter with the IP address and port of the sending host. Both UdpClient and
TcpClient offer a layer of abstraction over the lowest of the low-level classes: Socket.

The socket Class
The Socket class offers the highest level of control in network programming. One of the easiest ways to
demonstrate the class is to rewrite the TcpReceive application with the Socket class. The updated Listen
method is shown in this example:

public void Listen()
{
 Socket listener = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);
 listener.Bind(new IPEndPoint(IPAddress.Any, 2112));
 listener.Listen(0);
 Socket socket = listener.Accept();
 Stream netStream = new NetworkStream(socket);
 StreamReader reader = new StreamReader(netStream);

 string result = reader.ReadToEnd();
 Invoke(new UpdateDisplayDelegate(UpdateDisplay),
 new object[] {result});
 socket.Close();
 listener.Close();
}

c26.indd 764 30-01-2014 20:32:52

Lower-level Protocols ❘ 765

The Socket class requires a few more lines of code to complete the same task. For starters, the constructor
arguments need to specify an IP addressing scheme for a streaming socket with the TCP protocol. These
arguments are just one of the many combinations available to the Socket class. The TcpClient class can
configure these settings for you. You then bind the listener socket to a port and begin to listen for incoming
connections. When an incoming request arrives, you can use the Accept method to create a new socket to
handle the connection. You ultimately attach a StreamReader instance to the socket to read the incoming
data, in much the same fashion as before.

The Socket class also contains a number of methods for asynchronously accepting, connecting,
sending, and receiving. You can use these methods with callback delegates in the same way you used the
asynchronous page requests with the WebRequest class. If you really need to dig into the internals of the
socket, the GetSocketOption and SetSocketOption methods are available. These methods enable you to
see and configure options, including timeout, time-to-live, and other low-level options.

Building a Server Console Application
Looking further into the Socket class, the following example creates a console application that acts as a
server for incoming socket requests. A second example is created in parallel (another console application),
which sends a message to the server console application.

The first application to build is the console application that acts as a server. This application will open a
socket on a specific TCP port and listen for any incoming messages. The code for this console application is
presented in its entirety here:

using System;
using System.Net;
using System.Net.Sockets;
using System.Text;

namespace SocketConsole
{
 class Program
 {
 static void Main()
 {
 Console.WriteLine("Starting: Creating Socket object");
 Socket listener = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);
 listener.Bind(new IPEndPoint(IPAddress.Any, 2112));
 listener.Listen(10);

 while (true)
 {
 Console.WriteLine("Waiting for connection on port 2112");
 Socket socket = listener.Accept();
 string receivedValue = string.Empty;

 while (true)
 {
 byte[] receivedBytes = new byte[1024];
 int numBytes = socket.Receive(receivedBytes);
 Console.WriteLine("Receiving .");
 receivedValue += Encoding.ASCII.GetString(receivedBytes,
 0, numBytes);
 if (receivedValue.IndexOf("[FINAL]") > -1)
 {
 break;
 }

c26.indd 765 30-01-2014 20:32:52

766 ❘ CHAPTER 26 NetworkiNg

 }

 Console.WriteLine("Received value: {0}", receivedValue);
 string replyValue = "Message successfully received.";
 byte[] replyMessage = Encoding.ASCII.GetBytes(replyValue);
 socket.Send(replyMessage);
 socket.Shutdown(SocketShutdown.Both);
 socket.Close();
 }
 listener.Close();
 }
 }
}

This example sets up a socket using the Socket class. The socket created uses the TCP protocol and is set
up to receive incoming messages from any IP address using port 2112. Values received through the open
socket are written to the console screen. This consuming application will continue to receive bytes until the
[FINAL] string is received. This [FINAL] string signifies the end of the incoming message, which can then be
interpreted.

After the end of the message is received from a client, a reply message is sent to the same client. From there,
the socket is closed using the Close method, and the console application remains up until a new message is
received.

Building the Client Application
The next step is to build a client application that will send a message to the first console application. The
client will be able to send any message that it wants to the server console application as long as it follows
some rules that were established by this application. The first of these rules is that the server console
application is listening only on a particular protocol. In the case of this server application, it is listening
using the TCP protocol. The next rule is that the server application is listening only on a particular
port — in this case, port 2112. The last rule stipulates that for any message that is being sent, the last bits of
the message need to end with the string [FINAL].

The following client console application follows all these rules:

using System;
using System.Net;
using System.Net.Sockets;
using System.Text;

namespace SocketConsoleClient
{
 class Program
 {
 static void Main()
 {
 byte[] receivedBytes = new byte[1024];
 IPHostEntry ipHost = Dns.Resolve("127.0.0.1");
 IPAddress ipAddress = ipHost.AddressList[0];
 IPEndPoint ipEndPoint = new IPEndPoint(ipAddress, 2112);
 Console.WriteLine("Starting: Creating Socket object");

 Socket sender = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);
 sender.Connect(ipEndPoint);
 Console.WriteLine("Successfully connected to {0}",
 sender.RemoteEndPoint);
 string sendingMessage = "Hello World Socket Test";

c26.indd 766 30-01-2014 20:32:52

Lower-level Protocols ❘ 767

 Console.WriteLine("Creating message: Hello World Socket Test");
 byte[] forwardMessage = Encoding.ASCII.GetBytes(sendingMessage
 + "[FINAL]");
 sender.Send(forwardMessage);
 int totalBytesReceived = sender.Receive(receivedBytes);
 Console.WriteLine("Message provided from server: {0}",
 Encoding.ASCII.GetString(receivedBytes,
 0, totalBytesReceived));
 sender.Shutdown(SocketShutdown.Both);
 sender.Close();
 Console.ReadLine();
 }
 }
}

In this example, an IPEndPoint object is created using the IP address of localhost as well as port 2112
as required by the server console application. In this case, a socket is created and the Connect method is
called. After the socket is opened and connected to the server console application socket instance, a string
of text is sent to the server application using the Send method. Because the server application is going
to return a message, the Receive method is used to grab this message (placing it in a byte array). From
there, the byte array is converted into a string and displayed in the console application before the socket is
shut down.

Running this application produces the results shown in Figure 26-12.

FiguRE 26-12

Reviewing the two console applications in the figure, you can see that the server application opens and
awaits incoming messages. The incoming message is sent from the client application, and the string sent is
then displayed by the server application. The server application waits for other messages to come in, even
after the first message is received and displayed. To confirm this, try shutting down the client application
and rerunning the server application. You will see that the server application again displays the message
received.

c26.indd 767 30-01-2014 20:32:52

768 ❘ CHAPTER 26 NetworkiNg

Websockets
The WebSocket protocol is used for full duplex, bidirectional communication. Typically this communication
would be between a browser and a web server, but just about any client could support the use of
WebSockets. The WebSocket API is being standardized by the W3C and the protocol has been standardized
by the IETF (Internet Engineering Task Force) in RFC 6455.

Unlike the request/response model that is used by browsers and web servers, WebSockets maintain an open
connection. Whereas TCP sends a stream of bytes, WebSockets sends messages back and forth between the
server and clients.

Not all browsers and web servers support the WebSocket protocol. Currently, Firefox 11.0 (MozWebSocket),
Google Chrome 16, and Internet Explorer 10 provide such browser support. For servers, IIS 8 with
ASP.NET 4.5 offers low-level WebSocket support.

Chat Example
The WebSocket endpoint can be created using any type of handler or module. The following example uses
an .ashx handler as the endpoint. The example is a simple chat program using the browser and web server.
Each client or user connects to the web server, supplies their name to “register” with the chat server, and can
then send simple text messages to the other users registered with the server.

First, here’s the code for the browser. This is a very simple HTML page using jQuery to set up the
WebSocket. jQuery provides an easy way to handle the WebSocket events on the page.

<!doctype html>
<head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge" />
 <script src="Scripts/jquery-1.7.2.min.js" type="text/javascript"></script>
 <title>WroxChat</title>
 <script type="text/javascript">
 $(document).ready(function () {
 var name = prompt('what is your name?:');
 var url = 'ws://localhost/ws.ashx?name=' + name;
 ws = new WebSocket(url);
 ws.onopen = function () {
 $('#messages').prepend('Connected
');
 $('#cmdSend').click(function () {
 ws.send($('#txtMessage').val());
 $('#txtMessage').val('');
 });
 };
 ws.onmessage = function (e) {
 $('#chatMessages').prepend(e.data + '
');
 };
 $('#cmdLeave').click(function () {
 ws.close();
 });
 ws.onclose = function () {
 $('#chatMessages').prepend('Closed
');
 };
 ws.onerror = function (e) {
 $('#chatMessages').prepend('Oops something went wrong
');
 };
 });
 </script>
</head>
<body>

c26.indd 768 30-01-2014 20:32:52

Lower-level Protocols ❘ 769

<input id="txtMessage" />
<input id="cmdSend" type="button" value="Send" />
<input id="cmdLeave" type="button" value="Leave" />

<div id="chatMessages" />
</body>

This example is hosted on localhost. The url variable can be changed to any valid URL that would be
hosting the example.

The line ws = new WebSocket(url); establishes the connection between the browser and the server. When
the onopen event is fired by the WebSocket class, the event handler for the cmdSend click event is defined. It
calls the Send method of the WebSocket object.

The other WebSocket events handled in this example are onmessage, onclose, and onerror. onmessage
is called when a message is sent to the browser; onclose is called when the WebSocket connection is
terminated; and onerror is called if an exception happens.

On the server things are a little more complicated. For this example you need to create a simple ChatUser
object. For each user who registers with the server, a ChatUser object is placed in an IList<ChatUser>.
When a message is sent to the server, it is broadcasted to each user in the IList<ChatUser> list.

The IHttpHandler does this work. When the ProcessRequest method is handled it creates the new user
and adds that user to the list. Finally, it calls the ChatUser's HandleWebSocket method. This finishes
establishing the connection between the browser and the server.

First, here’s the code in the ProcessRequest method of the IHttpHandler class ws.ashx:

 public void ProcessRequest(HttpContext context)
 {
 if (context.IsWebSocketRequest)
 {
 var chatuser = new ChatUser();
 chatuser.UserName = context.Request.QueryString["name"];
 ChatApp.AddUser(chatuser);
 context.AcceptWebSocketRequest(chatuser.HandleWebSocket);
 }
 }

As shown here, the new ChatUser is created; the name is set from the query parameter sent in from the
browser; the user is added to the list; and the HandleWebSocket method is called.

The HandleWebSocket method is where the messages are processed. Here is what the code looks like:

public async Task HandleWebSocket(WebSocketContext wsContext)
{
 _context = wsContext;
 const int maxMessageSize = 1024;
 byte[] receiveBuffer = new byte[maxMessageSize];
 WebSocket socket = _context.WebSocket;
 while (socket.State == WebSocketState.Open)
 {
 WebSocketReceiveResult receiveResult =
 await socket.ReceiveAsync(new ArraySegment<byte>(receiveBuffer),
 CancellationToken.None);
 if (receiveResult.MessageType == WebSocketMessageType.Close)
 {
 await socket.CloseAsync(WebSocketCloseStatus.NormalClosure,
 string.Empty,
 CancellationToken.None);

c26.indd 769 30-01-2014 20:32:52

770 ❘ CHAPTER 26 NetworkiNg

 }
 else if (receiveResult.MessageType == WebSocketMessageType.Binary)
 {
 await socket.CloseAsync(WebSocketCloseStatus.InvalidMessageType,
 "Cannot accept binary frame",
 CancellationToken.None);
 }
 else
 {
 var receivedString = Encoding.UTF8.GetString(receiveBuffer,
 0,
 receiveResult.Count);
 var echoString = string.Concat(UserName,
 " said: ",
 receivedString);
 ArraySegment<byte> outputBuffer =
 new ArraySegment<byte>(Encoding.UTF8.GetBytes(echoString));
 ChatApp.BroadcastMessage(echoString);
 }
 }
}

When the request arrives, you first need to ensure that the socket connection is open. You get the socket
from the WebSocketContext object that’s passed in and check the State property.

Next, the ReceiveAsync method is called, returning the WebSocketReceiveResult object. From this you
can determine whether the message is a close message or a binary message. If a close message was sent, then
the connection is closed — and in this example only text can be sent.

One of the parameters in the ReceiveAsync call is the receiveBuffer. This is a byte array that will be
filled with the message data. In a more fully featured chat program, you want to ensure that the message
doesn’t exceed the maximum size limit.

Now it’s time to handle the message. Because this is a byte array, you need to get the data into textual
format. You do this by using the Encoding.UTF8.GetString method, which takes the byte array and
returns a string of your message. You concatenate the name of the user who sent the message and call
the Broadcast method of the ChatApp class.

The Broadcast method iterates through all the ChatUser objects and calls the SendMessage method,
which looks like this:

public async Task SendMessage(string message)
{
 if (_context != null && _context.WebSocket.State == WebSocketState.Open)
 {
 var outputBuffer = new ArraySegment<byte>(
 Encoding.UTF8.GetBytes(message));
 await _context.WebSocket.SendAsync(
 outputBuffer,
 WebSocketMessageType.Text,
 true,
 CancellationToken.None);
 }
}

The SendMessage method stakes the message string and puts it back into a byte array. This byte array
is then sent as a parameter to the SendAsync method. The _context variable is the WebSocketContext
created when the user first registered with the chat program, so the message is sent back on the active
connection. Because the JavaScript in the page is listening to the onMessage event of the WebSocket object
in the DOM, the message is received and displayed on the page.

c26.indd 770 30-01-2014 20:32:53

Summary ❘ 771

suMMARy
This chapter described the .NET Framework classes available in the System.Net namespace for
communication across networks. You have seen some of the .NET base classes that deal with opening
client connections on the network and Internet, and how to send requests to, and receive responses from,
servers (the most obvious use of this being to receive HTML pages). By taking advantage of the WebBrowser
control, you can easily make use of Internet Explorer from your desktop applications.

As a rule of thumb, when programming with classes in the System.Net namespace, you should always try
to use the most generic class possible. For instance, using the TcpClient class instead of the Socket class
isolates your code from many of the lower-level socket details. Moving one step higher, the WebRequest
class enables you to take advantage of the pluggable protocol architecture of the .NET Framework. Your
code will be ready to take advantage of new application-level protocols as Microsoft and other third-party
developers introduce new functionality.

Finally, you learned how to use the asynchronous capabilities in the networking classes, which give a
Windows Forms application the professional touch of a responsive user interface.

c26.indd 771 30-01-2014 20:32:53

c26.indd 772 30-01-2014 20:32:53

Windows Services
WHAT’s iN THis CHAPTER?

➤➤ The architecture of a Windows service
➤➤ Windows services installation programs
➤➤ Windows services control programs
➤➤ Troubleshooting Windows services

WROX.COm COdE dOWNlOAds FOR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code is in the chapter 27 download and individually named according to the
names throughout the chapter.

➤➤ Quote Server
➤➤ Quote Client
➤➤ Quote Service
➤➤ Service Control

WHAT is A WiNdOWs sERviCE?
Windows Services are programs that can be started automatically at boot time without the need for
anyone to log on to the machine. If you need to startup programs without user interaction or need to
run under a different user than the interactive user, which can be a user with more privileges, you can
create a Windows Service. Some examples could be a WCF host (if you can’t use IIS for some reason),
a program that caches data from a network server, or a program that re-organizes local disk data in
the background.

This chapter starts with looking at the architecture of Windows Services, creates a Windows Service
that hosts a networking server, and gives you information to start, monitor, control, and troubleshoot
your Windows Services.

27

c27.indd 773 30-01-2014 20:33:33

774 ❘ CHAPTER 27 WindoWs services

As previously mentioned, Windows Services are applications that can be automatically started when the
operating system boots. These applications can run without having an interactive user logged on to
the system, and can do some processing in the background.

For example, on a Windows Server, system networking services should be accessible from the client without
a user logging on to the server; and on the client system, services enable you to do things such as get a new
software version online or perform some file cleanup on the local disk.

You can configure a Windows Service to run from a specially configured user account or from the system
user account — a user account that has even more privileges than that of the system administrator.

NOTE Unless otherwise noted, when we refer to a service, we are referring to a
Windows Service.

Here are a few examples of services:

➤➤ Simple TCP/IP Services is a service program that hosts some small TCP/IP servers: echo, daytime,
quote, and others.

➤➤ World Wide Web Publishing Service is a service of Internet Information Services (IIS).
➤➤ Event Log is a service to log messages to the event log system.
➤➤ Windows Search is a service that creates indexes of data on the disk.
➤➤ SuperFetch is a service that preloads commonly used applications and libraries into memory, thus

improving the startup time of these applications.

You can use the Services administration tool, shown in Figure 27-1, to see all the services on a system. This
program can be found by selecting Administrative Tools from the control panel.

FiguRE 27-1

c27.indd 774 30-01-2014 20:33:34

Windows Services Architecture ❘ 775

WiNdOWs sERviCEs ARCHiTECTuRE
Three program types are necessary to operate a Windows Service:

➤➤ A service program
➤➤ A service control program
➤➤ A service configuration program

The service program is the implementation of the service. With a service control program, it is possible to
send control requests to a service, such as start, stop, pause, and continue. With a service configuration
program, a service can be installed; it is copied to the file system, and information about the service needs
to be written to the registry. This registry information is used by the service control manager (SCM) to
start and stop the service. Although .NET components can be installed simply with an xcopy — because they
don’t need to write information to the registry — installation for services requires registry configuration. A
service configuration program can also be used to change the configuration of that service at a later point.
These three ingredients of a Windows Service are discussed in the following subsections.

service Program
In order to put the .NET implementation of a service in perspective, this section takes a brief look at the
Windows architecture of services in general, and the inner functionality of a service.

The service program implements the functionality of the service. It needs three parts:

➤➤ A main function
➤➤ A service-main function
➤➤ A handler

Before discussing these parts, however, it would be useful to digress for a moment for a short introduction
to the service control manager (SCM), which plays an important role for services — sending requests to your
service to start it and stop it.

Service Control Manager
The SCM is the part of the operating system
that communicates with the service. Using a
sequence diagram, Figure 27-2 illustrates how
this communication works.

At boot time, each process for which a service
is set to start automatically is started, and so
the main function of this process is called.
The service is responsible for registering the
service-main function for each of its services. The
main function is the entry point of the service
program, and in this function the entry points
for the service-main functions must be registered
with the SCM.

Main Function, Service-Main, and Handlers
The main function of the service is the normal
entry point of a program, the Main method.
The main function of the service might register
more than one service-main function. The service-
main function contains the actual functionality

SCM

Service
start service process

service-main

register handler

register service-mains

FiguRE 27-2

c27.indd 775 30-01-2014 20:33:35

776 ❘ CHAPTER 27 WindoWs services

of the service, which must register a service-main function for each service it provides. A service program
can provide a lot of services in a single program; for example, <windows>\system32\services.exe is the
service program that includes Alerter, Application Management, Computer Browser, and DHCP Client,
among other items.

The SCM calls the service-main function for each service that should be started. One important task of the
service-main function is registering a handler with the SCM.

The handler function is the third part of a service program. The handler must respond to events from the
SCM. Services can be stopped, suspended, and resumed, and the handler must react to these events.

After a handler has been registered with the SCM, the service control program can post requests to the
SCM to stop, suspend, and resume the service. The service control program is independent of the SCM and
the service itself. The operating system contains many service control programs, such as the MMC Services
snap-in shown earlier. You can also write your own service control program; a good example of this is the
SQL Server Configuration Manager shown in Figure 27-3.

FiguRE 27-3

service Control Program
As the self-explanatory name suggests, with a service control program you can stop, suspend, and resume
the service. To do so, you can send control codes to the service, and the handler should react to these events.
It is also possible to ask the service about its actual status (if the service is running or suspended, or in some
faulted state) and to implement a custom handler that responds to custom control codes.

service Configuration Program
Because services must be configured in the registry, you can’t use xcopy installation with services. The
registry contains the startup type of the service, which can be set to automatic, manual, or disabled. You
also need to configure the user of the service program and dependencies of the service — for example, any
services that must be started before the current one can start. All these configurations are made within
a service configuration program. The installation program can use the service configuration program to
configure the service, but this program can also be used later to change service configuration parameters.

Classes for Windows services
In the .NET Framework, you can find service classes in the System.ServiceProcess namespace that
implement the three parts of a service:

c27.indd 776 30-01-2014 20:33:35

Creating a Windows Service Program ❘ 777

➤➤ You must inherit from the ServiceBase class to implement a service. The ServiceBase class is used
to register the service and to answer start and stop requests.

➤➤ The ServiceController class is used to implement a service control program. With this class, you
can send requests to services.

➤➤ The ServiceProcessInstaller and ServiceInstaller classes are, as their names suggest, classes
to install and configure service programs.

Now you are ready to create a new service.

CREATiNg A WiNdOWs sERviCE PROgRAm
The service that you create in this chapter hosts a quote server. With every request that is made from a
client, the quote server returns a random quote from a quote file. The first part of the solution uses three
assemblies, one for the client and two for the server. Figure 27-4 provides an overview of the solution.
The assembly QuoteServer holds the actual functionality. The service reads the quote file in a memory
cache, and answers requests for quotes with the help of a socket server. The QuoteClient is a WPF
rich–client application. This application creates a client socket to communicate with the QuoteServer.
The third assembly is the actual service. The QuoteService starts and stops the QuoteServer; the service
controls the server.

FiguRE 27-4

Socket Server

communicates

Windows Service

ServerClient

Windows Forms Application
and Socket client

«assembly»
QuoteClient

«assembly»
QuoteServer

«assembly»
QuoteService

Before creating the service part of your program, create a simple socket server in an extra C# class library
that will be used from your service process. How this can be done is discussed in the following section.

Creating Core Functionality for the service
You can build any functionality in a Windows Service, such as scanning for files to do a backup or a virus
check or starting a WCF server. However, all service programs share some similarities. The program must
be able to start (and to return to the caller), stop, and suspend. This section looks at such an implementation
using a socket server.

c27.indd 777 30-01-2014 20:33:37

778 ❘ CHAPTER 27 WindoWs services

With Windows 8, the Simple TCP/IP Services can be installed as part of the Windows components. Part of
the Simple TCP/IP Services is a “quote of the day,” or qotd, TCP/IP server. This simple service listens to port
17 and answers every request with a random message from the file <windows>\system32\drivers\etc\
quotes. With the sample service, a similar server will be built. The sample server returns a Unicode string,
in contrast to the qotd server, which returns an ASCII string.

First, create a class library called QuoteServer and implement the code for the server. The following walks
through the source code of your QuoteServer class in the file QuoteServer.cs:

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Net;
using System.Net.Sockets;
using System.Text;
using System.Threading.Tasks;

namespace Wrox.ProCSharp.WinServices
{
 public class QuoteServer
 {
 private TcpListener listener;
 private int port;
 private string filename;
 private List<string> quotes;
 private Random random;
 private Task listenerTask;

The constructor QuoteServer is overloaded so that a filename and a port can be passed to the call. The
constructor where just the file name is passed uses the default port 7890 for the server. The default constructor
defines the default filename for the quotes as quotes.txt:

 public QuoteServer()
 : this ("quotes.txt")
 {
 }
 public QuoteServer(string filename)
 : this(filename, 7890)
 {
 }
 public QuoteServer(string filename, int port)
 {
 Contract.Requires<ArgumentNullException>(filename != null);
 Contract.Requires<ArgumentException>(port >= IPEndpoint.MinPort &&
 port <= IPEndPoint.MaxPort);

 this.filename = filename;
 this.port = port;
 }

ReadQuotes is a helper method that reads all the quotes from a file that was specified in the constructor. All
the quotes are added to the List<string> quotes. In addition, you are creating an instance of the Random
class that will be used to return random quotes:

 protected void ReadQuotes()
 {
 try

c27.indd 778 30-01-2014 20:33:37

Creating a Windows Service Program ❘ 779

 {
 quotes = File.ReadAllLines(filename).ToList();
 if (quotes.Count == 0)
 {
 throw new QuoteException("quotes file is empty");
 }
 random = new Random();
 }
 catch (IOException ex)
 {
 throw new QuoteException("I/O Error", ex);
 }
 }

Another helper method is GetRandomQuoteOfTheDay. This method returns a random quote from the quotes
collection:

 protected string GetRandomQuoteOfTheDay()
 {
 int index = random.Next(0, quotes.Count);
 return quotes[index];
 }

In the Start method, the complete file containing the quotes is read in the List<string> quotes by using
the helper method ReadQuotes. After this, a new thread is started, which immediately calls the Listener
method — similarly to the TcpReceive example in Chapter 26, “Networking.”

Here, a task is used because the Start method cannot block and wait for a client; it must return
immediately to the caller (SCM). The SCM would assume that the start failed if the method didn’t return
to the caller in a timely fashion (30 seconds). The listener task is a long-running background thread. The
application can exit without stopping this thread:

 public void Start()
 {
 ReadQuotes();

 listenerTask = Task.Factory.StartNew(Listener,
 TaskCreationOptions.LongRunning);
 }

The task function Listener creates a TcpListener instance. The AcceptSocket method waits for
a client to connect. As soon as a client connects, AcceptSocket returns with a socket associated with the
client. Next, GetRandomQuoteOfTheDay is called to send the returned random quote to the client using
socket.Send:

 protected void Listener()
 {
 try
 {
 IPAddress ipAddress = IPAddress.Any;
 listener = new TcpListener(ipAddress, port);
 listener.Start();
 while (true)
 {
 Socket clientSocket = listener.AcceptSocket();
 string message = GetRandomQuoteOfTheDay();
 var encoder = new UnicodeEncoding();
 byte[] buffer = encoder.GetBytes(message);
 clientSocket.Send(buffer, buffer.Length, 0);

c27.indd 779 30-01-2014 20:33:37

780 ❘ CHAPTER 27 WindoWs services

 clientSocket.Close();
 }
 }
 catch (SocketException ex)
 {
 Trace.TraceError(String.Format("QuoteServer {0}", ex.Message));
 throw new QuoteException("socket error", ex);
 }
 }

In addition to the Start method, the following methods, Stop, Suspend, and Resume, are needed to control
the service:

 public void Stop()
 {
 listener.Stop();
 }
 public void Suspend()
 {
 listener.Stop();
 }
 public void Resume()
 {
 Start();
 }

Another method that will be publicly available is RefreshQuotes. If the file containing the quotes changes,
the file is reread with this method:

 public void RefreshQuotes()
 {
 ReadQuotes();
 }
 }
}

Before building a service around the server, it is useful to build a test program that creates just an instance
of the QuoteServer and calls Start. This way, you can test the functionality without the need to handle
service-specific issues. This test server must be started manually, and you can easily walk through the code
with a debugger.

The test program is a C# console application, TestQuoteServer. You need to reference the assembly of the
QuoteServer class. The file containing the quotes must be copied to the directory C:\ProCSharp\Services
(or you can change the argument in the constructor to specify where you have copied the file). After calling
the constructor, the Start method of the QuoteServer instance is called. Start returns immediately
after having created a thread, so the console application keeps running until Return is pressed (code file
TestQuoteServer/Program.cs):

 static void Main()
 {
 var qs = new QuoteServer("quotes.txt", 4567);
 qs.Start();
 Console.WriteLine("Hit return to exit");
 Console.ReadLine();
 qs.Stop();
 }

c27.indd 780 30-01-2014 20:33:37

Creating a Windows Service Program ❘ 781

Note that QuoteServer will be running on port 4567 on localhost using this program — you will have to
use these settings in the client later.

QuoteClient Example
The client is a simple WPF Windows application in which you can request quotes from the server. This
application uses the TcpClient class to connect to the running server, and receives the returned message,
displaying it in a text box. The user interface contains two controls: a Button and a TextBlock. Clicking
the button requests the quote from the server, and the quote is displayed.

With the Button control, the Click event is assigned to the method OnGetQuote, which requests the quote
from the server, and the IsEnabled property is bound to the EnableRequest method to disable the button
while a request is active. With the TextBlock control, the Text property is bound to the Quote property to
display the quote that is set:

 <Button Margin="3" VerticalAlignment="Stretch" Grid.Row="0"
 IsEnabled="{Binding EnableRequest}" Click="OnGetQuote">
 Get Quote</Button>
 <TextBlock Margin="6" Grid.Row="1" TextWrapping="Wrap"
 Text="{Binding Quote}" />

The information that is bound in the user interface, the properties EnableRequest and Quote, are defined
within the class QuoteInformation. This class implements the interface INotifyPropertyChanged to
enable WPF to receive changes in the property values:

using System.Collections.Generic;
using System.ComponentModel;
using System.Runtime.CompilerServices;

namespace Wrox.ProCSharp.WinServices
{
 public class QuoteInformation : INotifyPropertyChanged
 {
 public QuoteInformation()
 {
 EnableRequest = true;
 }
 private string quote;
 public string Quote
 {
 get
 {
 return quote;
 }
 internal set
 {
 SetProperty(ref quote, value);
 }
 }

 private bool enableRequest;
 public bool EnableRequest
 {
 get
 {
 return enableRequest;
 }
 internal set
 {

c27.indd 781 30-01-2014 20:33:37

782 ❘ CHAPTER 27 WindoWs services

 SetProperty(ref enableRequest, value);
 }
 }

 private void SetProperty<T>(ref T field, T value,
 [CallerMemberName] string propertyName = "")
 {
 if (!EqualityComparer<T>.Default.Equals(field, value))
 {
 field = value;
 var handler = PropertyChanged;
 if (handler != null)
 {
 handler(this, new PropertyChangedEventArgs(propertyName));
 }
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;
 }
}

NOTE Implementation of the interface INotifyPropertyChanged makes use of the
attribute CallerMemberNameAttribute. This attribute is explained in Chapter 16,
“Errors and Exceptions.”

An instance of the class QuoteInformation is assigned to the DataContext of the Window class
QuoteClientWindow to allow direct data binding to it (code file QuoteClient/MainWindow.xaml.cs):

using System;
using System.Net.Sockets;
using System.Text;
using System.Windows;
using System.Windows.Input;

namespace Wrox.ProCSharp.WinServices
{
 public partial class QuoteClientWindow : Window
 {
 private QuoteInformation quoteInfo = new QuoteInformation();

 public QuoteClientWindow()
 {
 InitializeComponent();
 this.DataContext = quoteInfo;
 }

You can configure server and port information to connect to the server from the Settings tab inside the
properties of the project (see Figure 27-5). Here, you can define default values for the ServerName and
PortNumber settings. With the Scope set to User, the settings can be placed in user-specific configuration
files, so every user of the application can have different settings. This Settings feature of Visual Studio also
creates a Settings class so that the settings can be read and written with a strongly typed class.

c27.indd 782 30-01-2014 20:33:37

Creating a Windows Service Program ❘ 783

The major functionality of the client lies in the handler for the Click event of the Get Quote button:

 protected async void OnGetQuote(object sender, RoutedEventArgs e)
 {
 const int bufferSize = 1024;
 Cursor currentCursor = this.Cursor;
 this.Cursor = Cursors.Wait;
 quoteInfo.EnableRequest = false;

 string serverName = Properties.Settings.Default.ServerName;
 int port = Properties.Settings.Default.PortNumber;

 var client = new TcpClient();
 NetworkStream stream = null;
 try
 {
 await client.ConnectAsync(serverName, port);
 stream = client.GetStream();
 byte[] buffer = new byte[bufferSize];
 int received = await stream.ReadAsync(buffer, 0, bufferSize);
 if (received <= 0)
 {
 return;
 }
 quoteInfo.Quote = Encoding.Unicode.GetString(buffer).Trim('\0');
 }
 catch (SocketException ex)
 {
 MessageBox.Show(ex.Message, "Error Quote of the day",
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
 finally
 {
 if (stream != null)
 {
 stream.Close();
 }

 if (client.Connected)
 {
 client.Close();
 }

FiguRE 27-5

c27.indd 783 30-01-2014 20:33:38

784 ❘ CHAPTER 27 WindoWs services

 }
 this.Cursor = currentCursor;
 quoteInfo.EnableRequest = true;
 }

After starting the test server and this Windows application client, you
can test the functionality. Figure 27-6 shows a successful run of this
application.

At this point, you need to implement the service functionality in the
server. The program is already running, so now you want to ensure that
the server program starts automatically at boot time without anyone
logged on to the system. You can do that by creating a service program,
which is discussed next.

Windows service Program
Using the C# Windows Service template from the Add New Project dialog, you can now create a Windows
Service program. For the new service, use the name QuoteService.

After you click the OK button to create the Windows Service program, the designer surface appears but you
can’t insert any UI components because the application cannot directly display anything on the screen. The
designer surface is used later in this chapter to add components such as installation objects, performance
counters, and event logging.

Selecting the properties of this service opens the Properties dialog, where you can configure the following
values:

➤➤ AutoLog — Specifies that events are automatically written to the event log for starting and stopping
the service.

➤➤ CanPauseAndContinue, CanShutdown, and CanStop — Specify pause, continue, shut down, and stop
requests.

➤➤ ServiceName — The name of the service written to the registry, and used to control the service.
➤➤ CanHandleSessionChangeEvent — Defines whether the service can handle change events from a

terminal server session.
➤➤ CanHandlePowerEvent — This is a very useful option for services running on a laptop or mobile

devices. If this option is enabled, the service can react to low-power events and change the behavior of
the service accordingly. Examples of power events include battery low, power status change (because
of a switch from or to A/C power), and change to suspend.

FiguRE 27-6

NOTE The default service name is Service1, regardless of what the project is called.
You can install only one Service1 service. If you get installation errors during your
testing process, you might already have installed a Service1 service. Therefore, ensure
that you change the name of the service in the Properties dialog to a more suitable name
at the beginning of the service’s development.

Changing these properties within the Properties dialog sets the values of your ServiceBase-derived class in
the InitalizeComponent method. You already know this method from Windows Forms applications. It is
used in a similar way with services.

A wizard generates the code but changes the filename to QuoteService.cs, the name of the namespace to
Wrox.ProCSharp.WinServices, and the class name to QuoteService. The code of the service is discussed
in detail shortly.

c27.indd 784 30-01-2014 20:33:38

Creating a Windows Service Program ❘ 785

The ServiceBase Class
The ServiceBase class is the base class for all Windows Services developed with the .NET Framework. The
class QuoteService is derived from ServiceBase; this class communicates with the SCM using an
undocumented helper class, System.ServiceProcess.NativeMethods, which is just a wrapper class to the
Windows API calls. The NativeMethods class is internal, so it cannot be used in your code.

The sequence diagram in Figure 27-7 shows the interaction of the SCM, the class QuoteService, and the
classes from the System.ServiceProcess namespace. You can see the lifelines of objects vertically and
the communication going on horizontally. The communication is time-ordered from top to bottom.

SCM QuoteService :ServiceBase :NativeMethods

StartServiceCtrlDispatcher()

RegisterServiceCtrlHandlen{Ex}()

OnStart()

on a
stop

request
for the
service

ServiceMainCallback()

Run()

Main()

OnStop()

ServiceCommandCallback()

FiguRE 27-7

The SCM starts the process of a service that should be started. At startup, the Main method is called. In the
Main method of the sample service, the Run method of the base class ServiceBase is called. Run registers
the method ServiceMainCallback using NativeMethods.StartServiceCtrlDispatcher in the SCM
and writes an entry to the event log.

Next, the SCM calls the registered method ServiceMainCallback in the service program.
ServiceMainCallback itself registers the handler in the SCM using NativeMethods.
RegisterServiceCtrlHandler[Ex] and sets the status of the service in the SCM. Then the OnStart
method is called. In OnStart, you need to implement the startup code. If OnStart is successful, the string
“Service started successfully” is written to the event log.

The handler is implemented in the ServiceCommandCallback method. The SCM calls this method when
changes are requested from the service. The ServiceCommandCallback method routes the requests further
to OnPause, OnContinue, OnStop, OnCustomCommand, and OnPowerEvent.

Main Function
This section looks into the application template–generated main function of the service process. In the main
function, an array of ServiceBase classes, ServicesToRun, is declared. One instance of the QuoteService
class is created and passed as the first element to the ServicesToRun array. If more than one service should
run inside this service process, it is necessary to add more instances of the specific service classes to the
array. This array is then passed to the static Run method of the ServiceBase class. With the Run method of
ServiceBase, you are giving the SCM references to the entry points of your services. The main thread of
your service process is now blocked and waits for the service to terminate.

c27.indd 785 30-01-2014 20:33:39

786 ❘ CHAPTER 27 WindoWs services

Here is the automatically generated code (code file QuoteService/Program.cs):

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 static void Main()
 {
 ServiceBase[] ServicesToRun;
 ServicesToRun = new ServiceBase[]
 {
 new QuoteService()
 };
 ServiceBase.Run(ServicesToRun);
 }

If there is only a single service in the process, the array can be removed; the Run method accepts a single
object derived from the class ServiceBase, so the Main method can be reduced to this:

 ServiceBase.Run(new QuoteService());

The service program Services.exe includes multiple services. If you have a similar service, where more
than one service is running in a single process in which you must initialize some shared state for multiple
services, the shared initialization must be done before the Run method. With the Run method, the main
thread is blocked until the service process is stopped, and any subsequent instructions are not reached before
the end of the service.

The initialization shouldn’t take longer than 30 seconds. If the initialization code were to take longer than
this, the SCM would assume that the service startup failed. You need to take into account the slowest
machines where this service should run within the 30-second limit. If the initialization takes longer, you
could start the initialization in a different thread so that the main thread calls Run in time. An event object
can then be used to signal that the thread has completed its work.

Service Start
At service start, the OnStart method is called. In this method, you can start the previously created socket
server. You must reference the QuoteServer assembly for the use of the QuoteService. The thread calling
OnStart cannot be blocked; this method must return to the caller, which is the ServiceMainCallback
method of the ServiceBase class. The ServiceBase class registers the handler and informs the SCM that
the service started successfully after calling OnStart (code file QuoteService/QuoteService.cs):

 protected override void OnStart(string[] args)
 {
 quoteServer = new QuoteServer(Path.Combine(
 AppDomain.CurrentDomain.BaseDirectory, “quotes.txt”),
 5678);
 quoteServer.Start();
 }

The quoteServer variable is declared as a private member in the class:

namespace Wrox.ProCSharp.WinServices
{
 public partial class QuoteService: ServiceBase
 {
 private QuoteServer quoteServer;

c27.indd 786 30-01-2014 20:33:40

Creating a Windows Service Program ❘ 787

Handler Methods
When the service is stopped, the OnStop method is called. You should stop the service functionality in this
method:

 protected override void OnStop()
 {
 quoteServer.Stop();
 }

In addition to OnStart and OnStop, you can override the following handlers in the service class:

➤➤ OnPause — Called when the service should be paused.
➤➤ OnContinue — Called when the service should return to normal operation after being paused.

To make it possible for the overridden methods OnPause and OnContinue to be called, the
CanPauseAndContinue property must be set to true.

➤➤ OnShutdown — Called when Windows is undergoing system shutdown. Normally, the behavior of
this method should be similar to the OnStop implementation; if more time is needed for a shutdown,
you can request more. Similarly to OnPause and OnContinue, a property must be set to enable this
behavior: CanShutdown must be set to true.

➤➤ OnPowerEvent — Called when the power status of the system changes. Information about the change
of the power status is in the argument of type PowerBroadcastStatus. PowerBroadcastStatus is
an enumeration with values such as Battery Low and PowerStatusChange. Here, you will also get
information if the system would like to suspend (QuerySuspend), which you can approve or deny. You
can read more about power events later in this chapter.

➤➤ OnCustomCommand — This is a handler that can serve custom commands sent by a service control
program. The method signature of OnCustomCommand has an int argument where you retrieve the
custom command number. The value can be in the range from 128 to 256; values below 128 are
system-reserved values. In your service, you are rereading the quotes file with the custom
command 128:

 protected override void OnPause()
 {
 quoteServer.Suspend();
 }

 protected override void OnContinue()
 {
 quoteServer.Resume();
 }

 public const int commandRefresh = 128;
 protected override void OnCustomCommand(int command)
 {
 switch (command)
 {
 case commandRefresh:
 quoteServer.RefreshQuotes();
 break;

 default:
 break;
 }
 }

c27.indd 787 30-01-2014 20:33:40

788 ❘ CHAPTER 27 WindoWs services

Threading and services
As stated earlier in this chapter, the SCM assumes that the service failed if the initialization takes too long.
To deal with this, you need to create a thread.

The OnStart method in your service class must return in time. If you call a blocking method such as
AcceptSocket from the TcpListener class, you need to start a thread to do so. With a networking server
that deals with multiple clients, a thread pool is also very useful. AcceptSocket should receive the call and
hand the processing off to another thread from the pool. This way, no one waits for the execution of code
and the system seems responsive.

service installation
Services must be configured in the registry. All services are found in HKEY_LOCAL_MACHINE\System\
CurrentControlSet\Services. You can view the registry entries by using regedit. Found here are the
type of the service, the display name, the path to the executable, the startup configuration, and so on.
Figure 27-8 shows the registry configuration of the W3SVC service.

FiguRE 27-8

This configuration can be done by using the installer classes from the System.ServiceProcess namespace,
as discussed in the following section.

installation Program
You can add an installation program to the service by switching to the design view with Visual Studio and
then selecting the Add Installer option from the context menu. With this option, a new ProjectInstaller
class is created, along with a ServiceInstaller instance and a ServiceProcessInstaller instance.

Figure 27-9 shows the class diagram of the installer classes for services.

Keep this diagram in mind as we go through the source code in the file ProjectInstaller.cs that was
created with the Add Installer option.

c27.indd 788 30-01-2014 20:33:40

Creating a Windows Service Program ❘ 789

The Installer Class
The class ProjectInstaller is derived from System.Configuration.Install.Installer. This is the
base class for all custom installers. With the Installer class, it is possible to build transaction-based
installations. With a transaction-based installation, you can roll back to the previous state if the installation
fails, and any changes made by this installation up to that point will be undone. As shown earlier in
Figure 27-9, the Installer class has Install, Uninstall, Commit, and Rollback methods, and they are
called from installation programs.

The attribute [RunInstaller(true)] means that the class ProjectInstaller should be invoked when
installing an assembly. Custom action installers, as well as installutil.exe (which is used later in this
chapter), check for this attribute.

InitializeComponent is called inside the constructor of the ProjectInstaller class:

using System.ComponentModel;
using System.Configuration.Install;

namespace Wrox.ProCSharp.WinServices
{
 [RunInstaller(true)]
 public partial class ProjectInstaller: Installer
 {
 public ProjectInstaller()
 {
 InitializeComponent();
 }
 }
}

FiguRE 27-9

Installer

Componentlnstaller

ServiceInstaller

ProjectInstaller
ServiceProcessInstaller

Username
Password

StartType
DisplayName
ServiceName
ServiceDependentOn

Install()
Uninstall()
Commit()
Rollback()

c27.indd 789 30-01-2014 20:33:42

790 ❘ CHAPTER 27 WindoWs services

Now let’s move to the other installers of the installation program that are invoked by the project installer.

Process Installer and Service Installer
Within the implementation of InitializeComponent, instances of the ServiceProcessInstaller class
and the ServiceInstaller class are created. Both of these classes derive from the ComponentInstaller
class, which itself derives from Installer.

Classes derived from ComponentInstaller can be used with an installation process. Remember that a
service process can include more than one service. The ServiceProcessInstaller class is used for the
configuration of the process that defines values for all services in this process, and the ServiceInstaller
class is for the configuration of the service, so one instance of ServiceInstaller is required for each
service. If three services are inside the process, you need to add three ServiceInstaller objects:

 partial class ProjectInstaller
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.IContainer components = null;

 /// <summary>
 /// Required method for Designer supportdo not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.serviceProcessInstaller1 =
 new System.ServiceProcess.ServiceProcessInstaller();
 this.serviceInstaller1 =
 new System.ServiceProcess.ServiceInstaller();
 //
 // serviceProcessInstaller1
 //
 this.serviceProcessInstaller1.Password = null;
 this.serviceProcessInstaller1.Username = null;
 //
 // serviceInstaller1
 //
 this.serviceInstaller1.ServiceName = "QuoteService";
 //
 // ProjectInstaller
 //
 this.Installers.AddRange(
 new System.Configuration.Install.Installer[]
 {this.serviceProcessInstaller1,
 this.serviceInstaller1});
 }

 private System.ServiceProcess.ServiceProcessInstaller
 serviceProcessInstaller1;
 private System.ServiceProcess.ServiceInstaller serviceInstaller1;

 }

ServiceProcessInstaller installs an executable that implements the class ServiceBase.Service
ProcessInstaller has properties for the complete process. The following table describes the properties
shared by all the services inside the process.

c27.indd 790 30-01-2014 20:33:42

Creating a Windows Service Program ❘ 791

PROPERTy dEsCRiPTiON

Username, Password indicates the user account under which the service runs if the Account property
is set to ServiceAccount.User.

Account With this property, you can specify the account type of the service.

HelpText A read-only property that returns the help text for setting the username and
password.

vAluE dEsCRiPTiON

LocalSystem setting this value specifies that the service uses a highly privileged user account on
the local system, and acts as the computer on the network.

NetworkService similarly to LocalSystem, this value specifies that the computer’s credentials
are passed to remote servers; but unlike LocalSystem, such a service acts as a
nonprivileged user on the local system. As the name implies, this account should be
used only for services that need resources from the network.

LocalService This account type presents anonymous credentials to any remote server and has the
same privileges locally as NetworkService.

User setting the Account property to ServiceAccount.User means that you can
define the account that should be used from the service.

The process that is used to run the service can be specified with the Account property of the
ServiceProcessInstaller class using the ServiceAccount enumeration. The following table describes
the different values of the Account property.

ServiceInstaller is the class needed for every service; it has the following properties for each service
inside a process: StartType, DisplayName, ServiceName, and ServicesDependentOn, as described in the
following table.

PROPERTy dEsCRiPTiON

StartTypev The StartType property indicates whether the service is manually or
automatically started. Possible values are ServiceStartMode.Automatic,
ServiceStartMode.Manual, and ServiceStartMode.Disabled. With
the last one, the service cannot be started. This option is useful for services
that shouldn’t be started on a system. You might want to set the option to
Disabled if, for example, a required hardware controller is not
available.

DelayedAutoStart This property is ignored if the StartType is not set to Automatic. Here,
you can specify that the service should not be started immediately when the
system boots but afterward.

continues

c27.indd 791 30-01-2014 20:33:42

792 ❘ CHAPTER 27 WindoWs services

PROPERTy dEsCRiPTiON

DisplayName DisplayName is the friendly name of the service that is displayed to the user.
This name is also used by management tools that control and monitor the
service.

ServiceName ServiceName is the name of the service. This value must be identical to the
ServiceName property of the ServiceBase class in the service program.
This name associates the configuration of the ServiceInstaller to the
required service program.

ServicesDependentOn specifies an array of services that must be started before this service can be
started. When the service is started, all these dependent services are started
automatically, and then your service will start.

(continued)

NOTE If you change the name of the service in the ServiceBase-derived class, be sure
to also change the ServiceName property in the ServiceInstaller object!

NOTE In the testing phases, set StartType to Manual. This way, if you can’t stop the
service (for example, when it has a bug), you still have the possibility to reboot
the system; but if you have StartType set to Automatic, the service would be started
automatically with the reboot! You can change this configuration later when you are
sure that it works.

The ServiceInstallerDialog Class
Another installer class in the System.ServiceProcess.Design
namespace is ServiceInstallerDialog. This class can be used
if you want the system administrator to enter the account that the
service should use by assigning the username and password during
the installation.

If you set the Account property of the class
ServiceProcessInstaller to ServiceAccount.User and the
Username and Password properties to null, you will see the Set
Service Login dialog at installation time (see Figure 27-10). You can also cancel the installation at this point.

installutil
After adding the installer classes to the project, you can use the installutil.exe utility to install and
uninstall the service. This utility can be used to install any assembly that has an Installer class. The
installutil.exe utility calls the method Install of the class that derives from the Installer class
for installation, and Uninstall for the uninstallation.

FiguRE 27-10

c27.indd 792 30-01-2014 20:33:42

Monitoring and Controlling Windows Services ❘ 793

The command-line inputs for the installation and uninstallation of our example service are as follows:

installutil quoteservice.exe
installutil /u quoteservice.exe

NOTE If the installation fails, be sure to check the installation log files, InstallUtil
.InstallLog and <servicename>.InstallLog. Often, you can find very useful
information, such as “The specified service already exists.”

FiguRE 27-11

After the service has been successfully installed, you can start the service manually from the Services MMC
(see the next section for details), and then you can start the client application.

mONiTORiNg ANd CONTROlliNg WiNdOWs sERviCEs
To monitor and control Windows Services, you can use the Services Microsoft Management Console
(MMC) snap-in that is part of the Computer Management administration tool. Every Windows system
also has a command-line utility, net.exe, which enables you to control services. Another Windows
command-line utility is sc.exe. This utility has much more functionality than net.exe. You can also
control services directly from the Visual Studio Server Explorer. In this section, you also create a small
Windows application that makes use of the System.ServiceProcess.ServiceController class to
monitor and control services.

mmC snap-in
Using the Services snap-in to the MMC, you can view the status of all services (see Figure 27-11). It is also
possible to send control requests to services to stop, enable, or disable them, as well as to change their
configuration. The Services snap-in is a service control program as well as a service configuration
program.

c27.indd 793 30-01-2014 20:33:43

794 ❘ CHAPTER 27 WindoWs services

Double-click QuoteService to get the Properties dialog
shown in Figure 27-12. From here you can view the
service name, the description, the path to the executable,
the startup type, and the status. The service is currently
started. The account for the service process can be
changed by selecting the Log On tab in this dialog.

net.exe utility
The Services snap-in is easy to use, but system
administrators cannot automate it because it is not usable
within an administrative script. To control services with a
tool that can be automated with a script, you can use the
command-line utility net.exe. The net start command
shows all running services, net start servicename
starts a service, and net stop servicename sends a stop
request to the service. It is also possible to pause and to
continue a service with net pause and net continue
(if the service allows it, of course).

sc.exe utility
Another little-known utility delivered as part of the operating system is sc.exe. This is a great tool for
working with services. Much more can be done with sc.exe than with the net.exe utility. With sc.exe,
you can check the actual status of a service, or configure, remove, and add services. This tool also facilitates
the uninstallation of the service if it fails to function correctly.

visual studio server Explorer
To control services using the Server Explorer within Visual Studio, select Servers from the tree view, and
then select your computer, then the Services element and the desired service. By selecting a service and
opening the context menu, you can start or stop a service. This context menu can also be used to add a
ServiceController class to the project.

To control a specific service in your application, drag-and-drop a service from the Server Explorer to the
designer: a ServiceController instance is added to the application. The properties of this object are
automatically set to access the selected service, and the assembly
System.ServiceProcess is referenced. You can use this instance to
control a service in the same way that you can with the application
developed in the next section.

Writing a Custom service Controller
In this section, you create a small Windows application that uses the
ServiceController class to monitor and control Windows Services.

Create a WPF application with a user interface as shown in
Figure 27-13. The main window of this application has a list box to
display all services, four text boxes to show the display name, status,
type, and name of the service, and six buttons. Four buttons are used
to send control events, one button is used for a refresh of the list, and
one button is used to exit the application.

FiguRE 27-12

FiguRE 27-13

c27.indd 794 30-01-2014 20:33:43

Monitoring and Controlling Windows Services ❘ 795

NOTE You can read more about WPF in Chapter 35, “Core WPF.”

Monitoring the Service
With the ServiceController class, you can get information about each service. The following table shows
the properties of the ServiceController class:

PROPERTy dEsCRiPTiON

CanPauseAndContinue returns true if pause and continue requests can be sent to the service.

CanShutdown returns true if the service has a handler for a system shutdown.

CanStop returns true if the service is stoppable.

DependentServices returns a collection of dependent services. if the service is stopped, then
all dependent services are stopped beforehand.

ServicesDependentOn returns a collection of the services on which this service depends.

DisplayName specifies the name that should be displayed for this service.

MachineName specifies the name of the machine on which the service runs.

ServiceName specifies the name of the service.

ServiceType specifies the type of the service. The service can be run inside a
shared process, whereby more than one service uses the same process
(Win32ShareProcess), or run in such a way that there is just one service
in a process (Win32OwnProcess). if the service can interact with the
desktop, the type is InteractiveProcess.

Status specifies the service’s status, which can be running, stopped,
paused, or in some intermediate mode such as start pending, stop
pending, and so on. The status values are defined in the enumeration
ServiceControllerStatus.

In the sample application, the properties DisplayName, ServiceName, ServiceType, and Status are used
to display the service information. CanPauseAndContinue and CanStop are used to enable or disable the
Pause, Continue, and Stop buttons.

To get all the needed information for the user interface, the class ServiceControllerInfo is created. This
class can be used for data binding and offers status information, the name of the service, the service type,
and information about which buttons to control the service should be enabled or disabled.

NOTE Because the class System.ServiceProcess.ServiceController is used, you
must reference the assembly System.ServiceProcess.

c27.indd 795 30-01-2014 20:33:43

796 ❘ CHAPTER 27 WindoWs services

ServiceControllerInfo contains an embedded ServiceController that is set with the constructor of
the ServiceControllerInfo class. There is also a read-only property Controller to access the embedded
ServiceController (code file ServiceControl/ServiceControllerInfo.cs):

 public class ServiceControllerInfo
 {
 private readonly ServiceController controller;

 public ServiceControllerInfo(ServiceController controller)
 {
 this.controller = controller;
 }

 public ServiceController Controller
 {
 get { return controller; }
 }

To display current information about the service, the ServiceControllerInfo class has the read-only
properties DisplayName, ServiceName, ServiceTypeName, and ServiceStatusName. The implementation
of the properties DisplayName and ServiceName just accesses the properties of those names of the
underlying ServiceController class. With the implementation of the properties ServiceTypeName and
ServiceStatusName, more work is needed — the status and type of the service cannot be returned that
easily because a string should be displayed instead of a number, which is what the ServiceController
class returns. The property ServiceTypeName returns a string that represents the type of the service.
The ServiceType you get from the property ServiceController.ServiceType represents a set of flags
that can be combined by using the bitwise OR operator. The InteractiveProcess bit can be set together
with Win32OwnProcess and Win32ShareProcess. Therefore, the first check determines whether the
InteractiveProcess bit is set before continuing to check for the other values. With services, the string
returned will be "Win32 Service Process" or "Win32 Shared Process":

 public string ServiceTypeName
 {
 get
 {
 ServiceType type = controller.ServiceType;
 string serviceTypeName = "";
 if ((type & ServiceType.InteractiveProcess) != 0)
 {
 serviceTypeName = "Interactive ";
 type -= ServiceType.InteractiveProcess;
 }
 switch (type)
 {
 case ServiceType.Adapter:
 serviceTypeName += "Adapter";
 break;

 case ServiceType.FileSystemDriver:
 case ServiceType.KernelDriver:
 case ServiceType.RecognizerDriver:
 serviceTypeName += "Driver";
 break;

 case ServiceType.Win32OwnProcess:
 serviceTypeName += "Win32 Service Process";
 break;

 case ServiceType.Win32ShareProcess:

c27.indd 796 30-01-2014 20:33:43

Monitoring and Controlling Windows Services ❘ 797

 serviceTypeName += "Win32 Shared Process";
 break;

 default:
 serviceTypeName += "unknown type " + type.ToString();
 break;
 }
 return serviceTypeName;
 }
 }

 public string ServiceStatusName
 {
 get
 {
 switch (controller.Status)
 {
 case ServiceControllerStatus.ContinuePending:
 return "Continue Pending";
 case ServiceControllerStatus.Paused:
 return "Paused";
 case ServiceControllerStatus.PausePending:
 return "Pause Pending";
 case ServiceControllerStatus.StartPending:
 return "Start Pending";
 case ServiceControllerStatus.Running:
 return "Running";
 case ServiceControllerStatus.Stopped:
 return "Stopped";
 case ServiceControllerStatus.StopPending:
 return "Stop Pending";
 default:
 return "Unknown status";
 }
 }
 }

 public string DisplayName
 {
 get { return controller.DisplayName; }
 }

 public string ServiceName
 {
 get { return controller.ServiceName; }
 }

The ServiceControllerInfo class has some other properties to enable the Start, Stop, Pause, and
Continue buttons: EnableStart, EnableStop, EnablePause, and EnableContinue. These properties
return a Boolean value according to the current status of the service:

 public bool EnableStart
 {
 get
 {
 return controller.Status == ServiceControllerStatus.Stopped;
 }
 }

 public bool EnableStop
 {

c27.indd 797 30-01-2014 20:33:43

798 ❘ CHAPTER 27 WindoWs services

 get
 {
 return controller.Status == ServiceControllerStatus.Running;
 }
 }

 public bool EnablePause
 {
 get
 {
 return controller.Status == ServiceControllerStatus.Running &&
 controller.CanPauseAndContinue;
 }
 }

 public bool EnableContinue
 {
 get
 {
 return controller.Status == ServiceControllerStatus.Paused;
 }
 }
 }

In the ServiceControlWindow class, the method RefreshServiceList gets all the services using
ServiceController.GetServices for display in the list box. The GetServices method returns an array
of ServiceController instances representing all Windows Services installed on the operating system.
The ServiceController class also has the static method GetDevices that returns a ServiceController
array representing all device drivers. The returned array is sorted with the help of the extension
method OrderBy. The sort is done by the DisplayName as defined with the Lambda expression that
is passed to the OrderBy method. Using Select, the ServiceController instances are converted to
the type ServiceControllerInfo. In the following code, a Lambda expression is passed that invokes
the ServiceControllerInfo constructor for every ServiceController object. Last, the result is
assigned to the DataContext property of the window for data binding (code file ServiceControl/
ServiceControlWindow.xaml.cs):

 protected void RefreshServiceList()
 {
 this.DataContext = ServiceController.GetServices().
 OrderBy(sc => sc.DisplayName).
 Select(sc => new ServiceControllerInfo(sc));
 }

The method RefreshServiceList, to get all the services in the list box, is called within the constructor of
the class ServiceControlWindow. The constructor also defines the event handler for the Click event of the
buttons:

 public ServiceControlWindow()
 {
 InitializeComponent();

 RefreshServiceList();
 }

Now, you can define the XAML code to bind the information to the controls. First, a DataTemplate
is defined for the information that is shown inside the ListBox. The ListBox will contain a Label in
which the Content is bound to the DisplayName property of the data source. As you bind an array of

c27.indd 798 30-01-2014 20:33:43

Monitoring and Controlling Windows Services ❘ 799

ServiceControllerInfo objects, the property DisplayName is defined with the ServiceControllerInfo
class:

 <Window.Resources>
 <DataTemplate x:Key="listTemplate">
 <Label Content="{Binding DisplayName}"/>
 </DataTemplate>
 </Window.Resources>

The ListBox that is placed in the left side of the window sets the ItemsSource property to {Binding}.
This way, the data that is shown in the list is received from the DataContext property that was set in the
RefreshServiceList method. The ItemTemplate property references the resource listTemplate that
is defined with the DataTemplate shown earlier. The property IsSynchronizedWithCurrentItem is set
to True so that the TextBox and Button controls inside the same window are bound to the current item
selected with the ListBox:

 <ListBox Grid.Row="0" Grid.Column="0" HorizontalAlignment="Left"
 Name="listBoxServices" VerticalAlignment="Top"
 ItemsSource="{Binding}"
 ItemTemplate="{StaticResource listTemplate}"
 IsSynchronizedWithCurrentItem="True">
 </ListBox>

To differentiate the Button controls to start/stop/pause/continue the service, the following enumeration is
defined (code file ServiceControl/ButtonState.cs):

 public enum ButtonState
 {
 Start,
 Stop,
 Pause,
 Continue
 }

With the TextBlock controls, the Text property is bound to the corresponding property of the
ServiceControllerInfo instance. Whether the Button controls are enabled or disabled is also defined
from the data binding by binding the IsEnabled property to the corresponding properties of the
ServiceControllerInfo instance that return a Boolean value. The Tag property of the buttons is assigned
to a value of the ButtonState enumeration defined earlier to differentiate the button within the same
handler method OnServiceCommand:

 <TextBlock Grid.Row="0" Grid.ColumnSpan="2"
 Text="{Binding /DisplayName, Mode=OneTime}" />
 <TextBlock Grid.Row="1" Grid.ColumnSpan="2"
 Text="{Binding /ServiceStatusName, Mode=OneTime}" />
 <TextBlock Grid.Row="2" Grid.ColumnSpan="2"
 Text="{Binding /ServiceTypeName, Mode=OneTime}" />
 <TextBlock Grid.Row="3" Grid.ColumnSpan="2"
 Text="{Binding /ServiceName, Mode=OneTime}" />
 <Button Grid.Row="4" Grid.Column="0" Content="Start"
 IsEnabled="{Binding /EnableStart, Mode=OneTime}"
 Tag="{x:Static local:ButtonState.Start}"
 Click="OnServiceCommand" />
 <Button Grid.Row="4" Grid.Column="1" Name="buttonStop" Content="Stop"
 IsEnabled="{Binding /EnableStop, Mode=OneTime}"
 Tag="{x:Static local:ButtonState.Stop}"
 Click="OnServiceCommand" />
 <Button Grid.Row="5" Grid.Column="0" Name="buttonPause" Content="Pause"

c27.indd 799 30-01-2014 20:33:44

800 ❘ CHAPTER 27 WindoWs services

 IsEnabled="{Binding /EnablePause, Mode=OneTime}"
 Tag="{x:Static local:ButtonState.Pause}"
 Click="OnServiceCommand" />
 <Button Grid.Row="5" Grid.Column="1" Name="buttonContinue"
 Content="Continue"
 IsEnabled="{Binding /EnableContinue,
 Tag="{x:Static local:ButtonState.Continue}"
 Mode=OneTime}" Click="OnServiceCommand" />
 <Button Grid.Row="6" Grid.Column="0" Name="buttonRefresh"
 Content="Refresh"
 Click="OnRefresh" />
 <Button Grid.Row="6" Grid.Column="1" Name="buttonExit"
 Content="Exit" Click="OnExit" />

Controlling the Service
With the ServiceController class, you can also send control requests to the service. The following table
describes the methods that can be applied:

mETHOd dEsCRiPTiON

Start Tells the scM that the service should be started. in the example service program,
OnStart is called.

Stop calls OnStop in the example service program with the help of the scM if the
property CanStop is true in the service class.

Pause calls OnPause if the property CanPauseAndContinue is true.

Continue calls OnContinue if the property CanPauseAndContinue is true.

ExecuteCommand enables sending a custom command to the service.

The following code controls the services. Because the code for starting, stopping, suspending, and pausing is
similar, only one handler is used for the four buttons:

 protected void OnServiceCommand(object sender, RoutedEventArgs e)
 {
 Cursor oldCursor = this.Cursor;
 try
 {
 this.Cursor = Cursors.Wait;
 ButtonState currentButtonState = (ButtonState)(sender as Button).Tag;

 var si = listBoxServices.SelectedItem as ServiceControllerInfo;
 if (currentButtonState == ButtonState.Start)
 {
 si.Controller.Start();
 si.Controller.WaitForStatus(ServiceControllerStatus.Running,
 TimeSpan.FromSeconds(10));
 }
 else if (currentButtonState == ButtonState.Stop)
 {
 si.Controller.Stop();
 si.Controller.WaitForStatus(ServiceControllerStatus.Stopped,
 TimeSpan.FromSeconds(10));
 }

c27.indd 800 30-01-2014 20:33:44

Monitoring and Controlling Windows Services ❘ 801

 else if (currentButtonState == ButtonState.Pause)
 {
 si.Controller.Pause();
 si.Controller.WaitForStatus(ServiceControllerStatus.Paused,
 TimeSpan.FromSeconds(10));
 }
 else if (currentButtonState == ButtonState.Continue)
 {
 si.Controller.Continue();
 si.Controller.WaitForStatus(ServiceControllerStatus.Running,
 TimeSpan.FromSeconds(10));
 }
 int index = listBoxServices.SelectedIndex;
 RefreshServiceList();
 listBoxServices.SelectedIndex = index;
 }
 catch (System.ServiceProcess.TimeoutException ex)
 {
 MessageBox.Show(ex.Message, "Timout Service Controller",
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
 catch (InvalidOperationException ex)
 {
 MessageBox.Show(String.Format("{0} {1}", ex.Message,
 ex.InnerException != null ? ex.InnerException.Message :
 String.Empty), MessageBoxButton.OK, MessageBoxImage.Error);
 }
 finally
 {
 this.Cursor = oldCursor;
 }
 }

 protected void OnExit(object sender, RoutedEventArgs e)
 {
 Application.Current.Shutdown();
 }

 protected void OnRefresh_Click(object sender, RoutedEventArgs e)
 {
 RefreshServiceList();
 }

Because the action of controlling the services can take some time, the cursor is switched to the wait cursor
in the first statement. Then a ServiceController method is called depending on the pressed button. With
the WaitForStatus method, you are waiting to confirm that the service changes the status to the requested
value, but the wait maximum is only 10 seconds. After that, the information in the ListBox is refreshed,
and the selected index is set to the same value as it was before. The new status of this service is then
displayed.

Because the application requires administrative privileges, just as most services require that for starting and
stopping, an application manifest with the requestedExecutionLevel set to requireAdministrator is
added to the project (application manifest file ServiceControl/app.manifest):

<?xml version="1.0" encoding="utf-8"?>
<asmv1:assembly manifestVersion="1.0"
 xmlns="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv1="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv2="urn:schemas-microsoft-com:asm.v2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <assemblyIdentity version="1.0.0.0" name="MyApplication.app"/>

c27.indd 801 30-01-2014 20:33:44

802 ❘ CHAPTER 27 WindoWs services

 <trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
 <security>
 <requestedPrivileges xmlns="urn:schemas-microsoft-com:asm.v3">
 <requestedExecutionLevel level="requireAdministrator"
 uiAccess="false" />
 </requestedPrivileges>
 </security>
 </trustInfo>
</asmv1:assembly>

Figure 27-14 shows the completed, running
application.

TROublEsHOOTiNg ANd EvENT
lOggiNg

Troubleshooting services is different from
troubleshooting other types of applications.
This section touches on some service issues,
problems specific to interactive services, and
event logging.

The best way to start building a service is to
create an assembly with the functionality you
want and a test client, before the service is actually created. Here, you can do normal debugging and error
handling. As soon as the application is running, you can build a service by using this assembly. Of course,
there might still be problems with the service:

➤➤ Don’t display errors in a message box from the service (except for interactive services that are running
on the client system). Instead, use the event logging service to write errors to the event log. Of course,
in the client application that uses the service, you can display a message box to inform the user about
errors.

➤➤ The service cannot be started from within a debugger, but a debugger can be attached to the
running service process. Open the solution with the source code of the service and set breakpoints.
From the Visual Studio Debug menu, select Processes and attach the running process of the
service.

➤➤ Performance Monitor can be used to
monitor the activity of services, and you
can add your own performance objects
to the service. This can add some useful
information for debugging. For example,
with the Quote service, you could set up
an object to provide the total number
of quotes returned, the time it takes to
initialize, and so on.

Services can report errors and other information
by adding events to the event log. A service class
derived from ServiceBase automatically logs
events when the AutoLog property is set to true.
The ServiceBase class checks this property
and writes a log entry at start, stop, pause, and
continue requests.

Figure 27-15 shows an example of a log entry
from a service.

FiguRE 27-14

FiguRE 27-15

c27.indd 802 30-01-2014 20:33:44

Summary ❘ 803

summARy
In this chapter, you have seen the architecture of Windows Services and how you can create them with the
.NET Framework. Applications can start automatically at boot time with Windows Services, and you can
use a privileged system account as the user of the service. Windows Services are built from a main function,
a service-main function, and a handler; and you looked at other relevant programs in regard to Windows
Services, such as a service control program and a service installation program.

The .NET Framework has great support for Windows Services. All the plumbing code that is necessary for
building, controlling, and installing services is built into the .NET Framework classes in the
System.ServiceProcess namespace. By deriving a class from ServiceBase, you can override methods
that are invoked when the service is paused, resumed, or stopped. For installation of services, the classes
ServiceProcessInstaller and ServiceInstaller deal with all registry configurations needed for
services. You can also control and monitor services by using ServiceController.

In the next chapter you can read about globalization and localization features of .NET, which are useful if
your applications are used in different regions and with different languages.

NOTE You can read more about event logging and how to write custom events in
Chapter 20, “Diagnostics.”

c27.indd 803 30-01-2014 20:33:44

c27.indd 804 30-01-2014 20:33:44

Localization
WHAT’s iN THis CHAPTER?

➤➤ Formatting of numbers and dates
➤➤ Using resources for localized content
➤➤ Creating and using satellite assemblies
➤➤ Localizing Desktop Applications
➤➤ Localizing Web Applications
➤➤ Localizing Windows Store apps
➤➤ Creating custom resource readers
➤➤ Creating custom cultures

WRox.Com CodE doWNloAds FoR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ NumberAndDateFormatting

➤➤ CreateResource

➤➤ CultureDemo

➤➤ BookOfTheDay

➤➤ DatabaseResourceReader

➤➤ CustomCultures

GlobAl mARKETs
NASA’s Mars Climate Orbiter was lost on September 23, 1999, at a cost of $125 million, because one
engineering team used metric units while another one used inches for a key spacecraft operation. When
writing applications for international distribution, different cultures and regions must be kept in mind.

Different cultures have diverging calendars and use different number and date formats; and sorting
strings may lead to various results because the order of A–Z is defi ned differently based on the cul-
ture. To make usable applications for global markets, you have to globalize and localize them.

28

c28.indd 805 30-01-2014 20:34:29

806 ❘ CHAPTER 28 LocaLization

This chapter covers the globalization and localization of .NET applications. Globalization is about interna-
tionalizing applications: preparing applications for international markets. With globalization, the applica-
tion supports number and date formats that vary according to culture, calendars, and so on. Localization is
about translating applications for specific cultures. For translations of strings, you can use resources such as
.NET resources or WPF resource dictionaries.

.NET supports the globalization and localization of Windows and web applications. To globalize an appli-
cation, you can use classes from the namespace System.Globalization; to localize an application, you can
use resources supported by the namespace System.Resources.

NAmEsPACE sysTEm.GlobAlizATioN
The System.Globalization namespace holds all the culture and region classes necessary to support differ-
ent date formats, different number formats, and even different calendars that are represented in classes such
as GregorianCalendar, HebrewCalendar, JapaneseCalendar, and so on. By using these classes, you can
display different representations according to the user’s locale.

This section looks at the following issues and considerations when using the System.Globalization
namespace:

➤➤ Unicode issues

➤➤ Cultures and regions

➤➤ An example showing all cultures and their characteristics

➤➤ Sorting

Unicode issues
A Unicode character has 16 bits, so there is room for 65,536 characters. Is this enough for all languages cur-
rently used in information technology? In the case of the Chinese language, for example, more than 80,000
characters are needed. Fortunately, Unicode has been designed to deal with this issue. With Unicode you
have to differentiate between base characters and combining characters. You can add multiple combining
characters to a base character to build a single display character or a text element.

Take, for example, the Icelandic character Ogonek. Ogonek can be combined by using the base character
0x006F (Latin small letter o), and the combining characters 0x0328 (combining Ogonek), and 0x0304
(combining Macron), as shown in Figure 28-1. Combining characters are defined within ranges from
0x0300 to 0x0345. For American and European markets, predefined characters exist to facilitate dealing
with special characters. The character Ogonek is also defined by the predefined character 0x01ED.

For Asian markets, where more than 80,000 characters are necessary for Chinese alone, such predefined
characters do not exist. In Asian languages, you always have to deal with combining characters. The prob-
lem is getting the right number of display characters or text ele-
ments, and getting to the base characters instead of the combined
characters. The namespace System.Globalization offers the class
StringInfo, which you can use to deal with this issue.

The following table lists the static methods of the class StringInfo
that help in dealing with combined characters.

mETHod dEsCRiPTioN

GetNextTextElement Returns the first text element (base character and all combining charac-
ters) of a specified string

GetTextElementEnumerator Returns a TextElementEnumerator object that allows iterating all text
elements of a string

ParseCombiningCharacters Returns an integer array referencing all base characters of a string

FiGURE 28-1

Q O .
– –= + +

0×01ED 0×006F 0×0928 0×0904

c28.indd 806 30-01-2014 20:34:30

Namespace System.Globalization ❘ 807

NoTE A single display character can contain multiple Unicode characters. To address
this issue, when you write applications that support international markets, don’t use
the data type char; use string instead. A string can hold a text element that contains
both base characters and combining characters, whereas a char cannot.

Cultures and Regions
The world is divided into multiple cultures and regions, and applications have to be aware of these cultural
and regional differences. A culture is a set of preferences based on a user’s language and cultural habits.
RFC 1766 (http://www.ietf.org/rfc/rfc1766.txt) defines culture names that are used worldwide,
depending on a language and a country or region. Some examples are en-AU, en-CA, en-GB, and en-US for
the English language in Australia, Canada, the United Kingdom, and the United States, respectively.

Possibly the most important class in the System.Globalization namespace is CultureInfo. CultureInfo
represents a culture and defines calendars, formatting of numbers and dates, and sorting strings used with
the culture.

The class RegionInfo represents regional settings (such as the currency) and indicates whether the region
uses the metric system. Some regions can use multiple languages. One example is the region of Spain, which
has Basque (eu-ES), Catalan (ca-ES), Spanish (es-ES), and Galician (gl-ES) cultures. Similar to one region
having multiple languages, one language can be spoken in different regions; for example, Spanish is spoken
in Mexico, Spain, Guatemala, Argentina, and Peru, to name only a few countries.

Later in this chapter is a sample application that demonstrates these characteristics of cultures and regions.

Specific, Neutral, and Invariant Cultures
When using cultures in the .NET Framework, you have to differentiate
between three types: specific, neutral, and invariant cultures. A specific
culture is associated with a real, existing culture defined with RFC 1766,
as described in the preceding section. A specific culture can be mapped
to a neutral culture. For example, de is the neutral culture of the spe-
cific cultures de-AT, de-DE, de-CH, and others. de is shorthand for the
German language (Deutsch); AT, DE, and CH are shorthand for the
countries Austria, Germany, and Switzerland, respectively.

When translating applications, it is typically not necessary to do transla-
tions for every region; not much difference exists between the German
language in the countries Austria and Germany. Instead of using specific
cultures, you can use a neutral culture to localize applications.

The invariant culture is independent of a real culture. When storing
 formatted numbers or dates in files, or sending them across a network
to a server, using a culture that is independent of any user settings is the
best option.

Figure 28-2 shows how the culture types relate to each other.

CurrentCulture and CurrentUICulture
When you set cultures, you need to differentiate between a culture for the user interface and a culture for
the number and date formats. Cultures are associated with a thread, and with these two culture types,
two culture settings can be applied to a thread. The Thread class has the properties CurrentCulture and
CurrentUICulture. The property CurrentCulture is for setting the culture that is used with formatting
and sort options, whereas the property CurrentUICulture is used for the language of the user interface.

FiGURE 28-2

Invariant

de-AT

de-DE

de-CH

de

en

c28.indd 807 30-01-2014 20:34:32

808 ❘ CHAPTER 28 LocaLization

Users can change the default setting of the
CurrentCulture by using the Region and Language
options in the Windows control panel
(see Figure 28-3). With this configuration, it is also
possible to change the defaults for the number format,
the time format, and the date format for the culture.

The CurrentUICulture does not depend on this
configuration. The CurrentUICulture setting
varies according to the language of the operating
system. Other languages can be added from the Add
Languages setting in the control panel, as shown in
Figure 28-4.

These settings provide a very good default, and in
many cases you won’t need to change the default
behavior. If the culture should be changed, you
can easily do this by changing both cultures of the
thread to, say, the Spanish culture, as shown in this
code snippet (using the namespaces
System.Globalization and System.Threading):

var ci = new CultureInfo("es-ES");
Thread.CurrentThread.CurrentCulture = ci;
Thread.CurrentThread.CurrentUICulture = ci;

Now that you know how to set the culture, the fol-
lowing sections discuss number and date formatting,
which are influenced by the CurrentCulture setting.

FiGURE 28-3

FiGURE 28-4

c28.indd 808 30-01-2014 20:34:32

Namespace System.Globalization ❘ 809

Number Formatting
The number structures Int16, Int32, Int64, and so on in the System namespace have an overloaded
ToString method. This method can be used to create a different representation of the number, depending
on the locale. For the Int32 structure, ToString is overloaded with the following four versions:

public string ToString();
public string ToString(IFormatProvider);
public string ToString(string);
public string ToString(string, IFormatProvider);

ToString without arguments returns a string without format options. You can also pass a string and a class
that implements IFormatProvider.

The string specifies the format of the representation. The format can be a standard numeric formatting
string or a picture numeric formatting string. For standard numeric formatting, strings are predefined in
which C specifies the currency notation, D creates a decimal output, E creates scientific output, F creates
fixed-point output, G creates general output, N creates number output, and X creates hexadecimal output.
With a picture numeric formatting string, it is possible to specify the number of digits, section and group
separators, percent notation, and so on. The picture numeric format string ###,### means two 3-digit
blocks separated by a group separator.

The IFormatProvider interface is implemented by the NumberFormatInfo, DateTimeFormatInfo, and
CultureInfo classes. This interface defines a single method, GetFormat, that returns a format object.

NumberFormatInfo can be used to define custom formats for numbers. With the default construc-
tor of NumberFormatInfo, a culture-independent or invariant object is created. Using the properties of
NumberFormatInfo, it is possible to change all the formatting options, such as a positive sign, a percent
symbol, a number group separator, a currency symbol, and a lot more. A read-only, culture-independent
NumberFormatInfo object is returned from the static property InvariantInfo. A NumberFormatInfo
object in which the format values are based on the CultureInfo of the current thread is returned from the
static property CurrentInfo.

To create the next example, you can start with a simple console project. In this code, the first example
shows a number displayed in the format of the culture of the thread (here: English-US, the setting of the
operating system). The second example uses the ToString method with the IFormatProvider argument.
CultureInfo implements IFormatProvider, so create a CultureInfo object using the French culture. The
third example changes the culture of the thread. The culture is changed to German by using the property
CurrentCulture of the Thread instance (code file NumberAndDateFormatting\Program.cs):

using System;
using System.Globalization;
using System.Threading;

namespace NumberAndDateFormatting
{
 class Program
 {
 static void Main()
 {
 NumberFormatDemo();
 }

 private static void NumberFormatDemo()
 {
 int val = 1234567890;

 // culture of the current thread
 Console.WriteLine(val.ToString("N"));

 // use IFormatProvider

c28.indd 809 30-01-2014 20:34:33

810 ❘ CHAPTER 28 LocaLization

 Console.WriteLine(val.ToString("N", new CultureInfo("fr-FR")));

 // change the culture of the thread
 Thread.CurrentThread.CurrentCulture = new CultureInfo("de-DE");
 Console.WriteLine(val.ToString("N"));
 }
 }
}

You can compare the following different output for U.S. English, French, and German, respectively, shown
here:

1,234,567,890.00
1 234 567 890,00
1.234.567.890,00

Date Formatting
The same support for numbers is available for dates. The DateTime structure has some methods for
date-to-string conversions. The public instance methods ToLongDateString, ToLongTimeString,
ToShortDateString, and ToShortTimeString create string representations using the current culture. You
can use the ToString method to assign a different culture:

public string ToString();
public string ToString(IFormatProvider);
public string ToString(string);
public string ToString(string, IFormatProvider);

With the string argument of the ToString method, you can specify a predefined format character or a
custom format string for converting the date to a string. The class DateTimeFormatInfo specifies the pos-
sible values. With DateTimeFormatInfo, the case of the format strings has a different meaning. D defines
a long date format, d a short date format. Other examples of possible formats are ddd for the abbreviated
day of the week, dddd for the full day of the week, yyyy for the year, T for a long time, and t for a short
time format. With the IFormatProvider argument, you can specify the culture. Using an overloaded
method without the IFormatProvider argument implies that the culture of the current thread is used:

 DateTime d = new DateTime(2013, 09, 27);

 // current culture
 Console.WriteLine(d.ToLongDateString());

 // use IFormatProvider
 Console.WriteLine(d.ToString("D", new CultureInfo("fr-FR")));

 // use culture of thread
 CultureInfo ci = Thread.CurrentThread.CurrentCulture;
 Console.WriteLine("{0}: {1}", ci.ToString(), d.ToString("D"));

 ci = new CultureInfo("es-ES");
 Thread.CurrentThread.CurrentCulture = ci;
 Console.WriteLine("{0}: {1}", ci.ToString(), d.ToString("D"));

The output of this example program shows ToLongDateString with the current culture of the thread, a
French version where a CultureInfo instance is passed to the ToString method, and a Spanish version
where the CurrentCulture property of the thread is changed to es-ES:

Friday, September 27, 2013
vendredi 27 septembre 2013
en-US: Friday, September 27, 2013
es-ES: viernes, 27 de septiembre de 2013

c28.indd 810 30-01-2014 20:34:33

Namespace System.Globalization ❘ 811

Cultures in Action
To see all cultures in action, you can use a sample Windows Presentation Foundation (WPF) application that
lists all cultures and demonstrates different characteristics of culture properties. Figure 28-5 shows the user
interface of the application in the Visual Studio 2013 WPF Designer.

FiGURE 28-5

During initialization of the application, all available cultures are added to the TreeView control that is
placed on the left side of the application. This initialization happens in the method SetupCultures, which
is called in the constructor of the CultureDemoWindow class CultureDemoWindow (code file CultureDemo/
MainWindow.xaml.cs):

 public CultureDemoWindow()
 {
 InitializeComponent();

 SetupCultures();
 }

For the data that is shown in the user interface, the custom class CultureData is created. This class can
be bound to a TreeView control, as it has a property SubCultures that contains a list of CultureData.
Therefore, the TreeView control enables walking through this tree. Other than the subcultures,
CultureData contains the CultureInfo type and sample values for a number, a date, and a time. The num-
ber returns a string in the number format for the specific culture, and the date and time return strings in the
specific culture formats as well. CultureData contains a RegionInfo class to display regions. With some
neutral cultures (e.g., English), creating a RegionInfo throws an exception, as there are regions only with
specific cultures. However, with other neutral cultures (e.g., German), creating a RegionInfo succeeds and
is mapped to a default region. The exception thrown here is handled:

 public class CultureData
 {
 public CultureInfo CultureInfo { get; set; }
 public List<CultureData> SubCultures { get; set; }
 double numberSample = 9876543.21;
 public string NumberSample
 {
 get { return numberSample.ToString("N", CultureInfo); }
 }

c28.indd 811 30-01-2014 20:34:33

812 ❘ CHAPTER 28 LocaLization

 public string DateSample
 {
 get { return DateTime.Today.ToString("D", CultureInfo); }
 }
 public string TimeSample
 {
 get { return DateTime.Now.ToString("T", CultureInfo); }
 }
 public RegionInfo RegionInfo
 {
 get
 {
 RegionInfo ri;
 try
 {
 ri = new RegionInfo(CultureInfo.Name);
 }
 catch (ArgumentException)
 {
 // with some neutral cultures regions are not available
 return null;
 }
 return ri;
 }
 }
 }

In the method SetupCultures, you get all cultures from the static method CultureInfo.GetCultures.
Passing CultureTypes.AllCultures to this method returns an unsorted array of all available cultures.
The result is sorted by the name of the culture. With the result of the sorted cultures, a collection of
CultureData objects is created and the CultureInfo and SubCultures properties are assigned. With the
result of this, a dictionary is created to enable fast access to the culture name.

For the data that should be bound, a list of CultureData objects is created that contains all the root cul-
tures for the tree view after the foreach statement is completed. Root cultures can be verified to determine
whether they have the invariant culture as their parent. The invariant culture has the Locale Identifier
(LCID) 127. Every culture has its own unique identifier that can be used for a fast verification. In the code
snippet, root cultures are added to the rootCultures collection within the block of the if statement. If a
culture has the invariant culture as its parent, it is a root culture.

If the culture does not have a parent culture, it is added to the root nodes of the tree. To find parent cultures,
all cultures are remembered inside a dictionary. (See Chapter 10, “Collections,” for more information about
dictionaries, and Chapter 8, “Delegates, Lambdas, and Events,” for details about Lambda expressions.) If
the culture iterated is not a root culture, it is added to the SubCultures collection of the parent culture.
The parent culture can be quickly found by using the dictionary. In the last step, the root cultures are made
available to the UI by assigning them to the DataContext of the Window:

 private void SetupCultures()
 {
 var cultureDataDict = CultureInfo.GetCultures(CultureTypes.AllCultures)
 .OrderBy(c => c.Name)
 .Select(c => new CultureData
 {
 CultureInfo = c,
 SubCultures = new List<CultureData>()
 })
 .ToDictionary(c => c.CultureInfo.Name);
 var rootCultures = new List<CultureData>();
 foreach (var cd in cultureDataDict.Values)
 {
 if (cd.CultureInfo.Parent.LCID == 127)

c28.indd 812 30-01-2014 20:34:33

Namespace System.Globalization ❘ 813

 {
 rootCultures.Add(cd);
 }
 else
 {
 CultureData parentCultureData;
 if (cultureDataDict.TryGetValue(cd.CultureInfo.Parent.Name,
 out parentCultureData))
 {
 parentCultureData.SubCultures.Add(cd);
 }
 else
 {
 throw new ParentCultureException(
 "unexpected error - parent culture not found");
 }
 }
 }
 this.DataContext = rootCultures.OrderBy(cd =>
 cd.CultureInfo.EnglishName);
 }

When the user selects a node inside the tree, the handler of the SelectedItemChanged event
of the TreeView is called. Here, the handler is implemented in the method treeCultures_
SelectedItemChanged. Within this method, the DataContext of a Grid control is set to the selected
CultureData object. In the XAML logical tree, this Grid is the parent of all controls that display informa-
tion about the selected culture information:

 private void treeCultures_SelectedItemChanged(object sender,
 RoutedPropertyChangedEventArgs<object> e)
 {
 CultureData cd = e.NewValue as CultureData;
 if (cd != null)
 {
 itemGrid.DataContext = cd;
 }
 }

Now let’s get into the XAML code for the display. A TreeView is used to display all the cultures (code
file CultureDemo/MainWindow.xaml). For the display of items inside the TreeView, an item template is
used. This template uses a TextBlock that is bound to the EnglishName property of the CultureInfo
class. For binding the items of the tree view, a HierarchicalDataTemplate is used to bind the property
SubCultures of the CultureData type recursively:

 <TreeView SelectedItemChanged="treeCultures_SelectedItemChanged" Margin="5"
 ItemsSource="{Binding}" >
 <TreeView.ItemTemplate>
 <HierarchicalDataTemplate DataType="{x:Type local:CultureData}"
 ItemsSource="{Binding SubCultures}">
 <TextBlock Text="{Binding Path=CultureInfo.EnglishName}" />
 </HierarchicalDataTemplate>
 </TreeView.ItemTemplate>
 </TreeView>

To display the values of the selected item, several TextBlock controls are used. These bind to the
CultureInfo property of the CultureData class and in turn to properties of the CultureInfo type that is
returned from CultureInfo, such as Name, IsNeutralCulture, EnglishName, NativeName, and so on. To
convert a Boolean value, as returned from the IsNeutralCulture property, to a Visibility enumeration
value, and to display calendar names, converters are used:

 <TextBlock Grid.Row="0" Grid.Column="0" Text="Culture Name:" />
 <TextBlock Grid.Row="0" Grid.Column="1" Text="{Binding CultureInfo.Name}"

c28.indd 813 30-01-2014 20:34:33

814 ❘ CHAPTER 28 LocaLization

 Width="100" />
 <TextBlock Grid.Row="0" Grid.Column="2" Text="Neutral Culture"
 Visibility="{Binding CultureInfo.IsNeutralCulture,
 Converter={StaticResource boolToVisiblity}}" />
 <TextBlock Grid.Row="1" Grid.Column="0" Text="English Name:" />
 <TextBlock Grid.Row="1" Grid.Column="1" Grid.ColumnSpan="2"
 Text="{Binding CultureInfo.EnglishName}" />
 <TextBlock Grid.Row="2" Grid.Column="0" Text="Native Name:" />
 <TextBlock Grid.Row="2" Grid.Column="1" Grid.ColumnSpan="2"
 Text="{Binding CultureInfo.NativeName}" />
 <TextBlock Grid.Row="3" Grid.Column="0" Text="Default Calendar:" />
 <TextBlock Grid.Row="3" Grid.Column="1" Grid.ColumnSpan="2"
 Text="{Binding CultureInfo.Calendar,
 Converter={StaticResource calendarConverter}}" />
 <TextBlock Grid.Row="4" Grid.Column="0" Text="Optional Calendars:" />
 <ListBox Grid.Row="4" Grid.Column="1" Grid.ColumnSpan="2"
 ItemsSource="{Binding CultureInfo.OptionalCalendars}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding
 Converter={StaticResource calendarConverter}}" />
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

The converter to convert a Boolean value to the Visibility enumeration is defined in the class
BooleanToVisibilityConverter (code file Converters\BooleanToVisiblityConverter.cs):

 using System;
 using System.Globalization;
 using System.Windows;
 using System.Windows.Data;
 namespace CultureDemo.Converters
 {
 public class BooleanToVisibilityConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 bool b = (bool)value;
 if (b)
 return Visibility.Visible;
 else
 return Visibility.Collapsed;
 }
 public object ConvertBack(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
 }

The converter for the calendar text to display is just a little bit more complex. Here is the implementation of
the Convert method in the class CalendarTypeToCalendarInformationConverter. The implementation
uses the class name and calendar type name to return a useful value for the calendar:

 public object Convert(object value, Type targetType, object parameter,
 CultureInfo culture)
 {

c28.indd 814 30-01-2014 20:34:34

Namespace System.Globalization ❘ 815

 Calendar c = value as Calendar;
 if (c == null) return null;
 StringBuilder calText = new StringBuilder(50);
 calText.Append(c.ToString());
 calText.Remove(0, 21); // remove the namespace
 calText.Replace("Calendar", "");
 GregorianCalendar gregCal = c as GregorianCalendar;
 if (gregCal != null)
 {
 calText.AppendFormat(" {0}", gregCal.CalendarType.ToString());
 }
 return calText.ToString();
 }

The CultureData class contains properties to display sample information for number, date, and time
 formats. These properties are bound with the following TextBlock elements:

 <TextBlock Grid.Row="0" Grid.Column="0" Text="Number" />
 <TextBlock Grid.Row="0" Grid.Column="1"
 Text="{Binding NumberSample}" />
 <TextBlock Grid.Row="1" Grid.Column="0" Text="Full Date" />
 <TextBlock Grid.Row="1" Grid.Column="1"
 Text="{Binding DateSample}" />
 <TextBlock Grid.Row="2" Grid.Column="0" Text="Time" />
 <TextBlock Grid.Row="2" Grid.Column="1"
 Text="{Binding TimeSample}" />

The information about the region is shown with the last part of the XAML code. The complete
GroupBox is hidden if the RegionInfo is not available. The TextBlock elements bind the DisplayName,
CurrencySymbol, ISOCurrencySymbol, and IsMetric properties of the RegionInfo type:

 <GroupBox x:Name="groupRegion" Header="Region Information" Grid.Row="6"
 Grid.Column="0" Grid.ColumnSpan="3" Visibility="{Binding RegionInfo,
 Converter={StaticResource nullToVisibility}}">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Row="0" Grid.Column="0" Text="Region" />
 <TextBlock Grid.Row="0" Grid.Column="1" Grid.ColumnSpan="2"
 Text="{Binding RegionInfo.DisplayName}" />
 <TextBlock Grid.Row="1" Grid.Column="0" Text="Currency" />
 <TextBlock Grid.Row="1" Grid.Column="1"
 Text="{Binding RegionInfo.CurrencySymbol}" />
 <TextBlock Grid.Row="1" Grid.Column="2"
 Text="{Binding RegionInfo.ISOCurrencySymbol}" />
 <TextBlock Grid.Row="2" Grid.Column="1" Text="Is Metric"
 Visibility="{Binding RegionInfo.IsMetric,
 Converter={StaticResource boolToVisiblity}}" />
 </Grid>

When you start the application, you can see all available cultures in the tree view, and selecting a culture
lists its characteristics, as shown in Figure 28-6.

c28.indd 815 30-01-2014 20:34:34

816 ❘ CHAPTER 28 LocaLization

sorting
Sorting strings varies according to the culture. The algorithms that compare strings for sorting by default
are culture-specific. For example, in Finnish the characters V and W are treated the same. To demonstrate
this behavior with a Finnish sort, the following code creates a small sample console application in which
some U.S. states are stored unsorted inside an array. You are going to use classes from the namespaces
System.Collections.Generic, System.Threading, and System.Globalization, so these namespaces
must be declared. The method DisplayNames shown here is used to display all elements of an array or a
collection on the console (code file SortingDemo/Program.cs):

 static void DisplayNames(string title, IEnumerable<string> e)
 {
 Console.WriteLine(title);
 foreach (string s in e)
 {
 Console.Write(s + "-");
 }
 Console.WriteLine();
 Console.WriteLine();
 }

In the Main method, after creating the array with some of the U.S. states, the thread property
CurrentCulture is set to the Finnish culture so that the following Array.Sort uses the Finnish sort order.
Calling the method DisplayNames displays all the states on the console:

 static void Main()
 {
 string[] names = {"Alabama", "Texas", "Washington",
 "Virginia", "Wisconsin", "Wyoming",
 "Kentucky", "Missouri", "Utah", "Hawaii",
 "Kansas", "Louisiana", "Alaska", "Arizona"};

 Thread.CurrentThread.CurrentCulture = new CultureInfo("fi-FI");

 Array.Sort(names);
 DisplayNames("Sorted using the Finnish culture", names);

FiGURE 28-6

c28.indd 816 30-01-2014 20:34:34

Resources ❘ 817

After the first display of some U.S. states in the Finnish sort order, the array is sorted once again. If you
want a sort that is independent of the users’ culture, which would be useful when the sorted array is sent to
a server or stored somewhere, you can use the invariant culture.

You can do this by passing a second argument to Array.Sort. The Sort method expects an object imple-
menting IComparer with the second argument. The Comparer class from the System.Collections
namespace implements IComparer. Comparer.DefaultInvariant returns a Comparer object that uses the
invariant culture for comparing the array values for a culture-independent sort:

 // sort using the invariant culture
 Array.Sort(names, System.Collections.Comparer.DefaultInvariant);
 DisplayNames("Sorted using the invariant culture", names);
 }

The program output shows different sort results with the Finnish and culture-independent cultures—
Virginia is before Washington when using the invariant sort order, and vice versa when using Finnish:

Sorted using the Finnish culture
Alabama-Alaska-Arizona-Hawaii-Kansas-Kentucky-Louisiana-Missouri-Texas-Utah-
Washington-Virginia-Wisconsin-Wyoming -

Sorted using the invariant culture
Alabama-Alaska-Arizona-Hawaii-Kansas-Kentucky-Louisiana-Missouri-Texas-Utah-
Virginia-Washington-Wisconsin-Wyoming -

NoTE If sorting a collection should be independent of a culture, the collection must be
sorted with the invariant culture. This can be particularly useful when sending the sort
result to a server or storing it inside a file.

In addition to a locale-dependent formatting and measurement system, text and pictures may differ depend-
ing on the culture. This is where resources come into play.

REsoURCEs
Resources such as pictures or string tables can be put into resource files or satellite assemblies. Such
resources can be very helpful when localizing applications, and .NET has built-in support to search for
localized resources. Before you see how to use resources to localize applications, the following sections
explain how resources can be created and read without looking at language aspects.

Creating Resource Files
Resource files can contain items such as pictures and string tables. A resource file is created by using either a
normal text file or a.resX file that uses XML. This section starts with a simple text file.

A resource that embeds a string table can be created by using a normal text file. The text file just assigns
strings to keys. The key is the name that can be used from a program to get the value. Spaces are allowed in
both keys and values.

This example shows a simple string table in the file Wrox.ProCSharp.Localization.MyResources.txt:

Title = Professional C#
Chapter = Localization
Author = Christian Nagel
Publisher = Wrox Press

c28.indd 817 30-01-2014 20:34:34

818 ❘ CHAPTER 28 LocaLization

NoTE When saving text files with Unicode characters, you must save the file with the
proper encoding. To select the Unicode encoding, use the Save dialog.

Resource File Generator
The Resource File Generator (Resgen.exe) utility can be used to create a resource file out of Wrox
.ProCSharp.Localization.MyResources.txt. Typing the line,

resgen Wrox.ProCSharp.Localization.MyResources.txt

creates the file Wrox.ProCSharp.Localization.MyResources.resources. The resulting resource file can
either be added to an assembly as an external file or embedded into the DLL or EXE. Resgen also supports
the creation of XML-based .resX resource files. One easy way to build an XML file is by using Resgen
itself:

resgen Wrox.ProCSharp.Localization.MyResources.txt
 Wrox.ProCSharp.Localization.MyResources.resX

This command creates the XML resource file Wrox.ProCSharp.LocalizationMyResources.resX. You’ll
see how to work with XML resource files in the section “Windows Forms Localization Using Visual Studio”
later in this chapter.

Resgen supports strongly typed resources. A strongly typed resource is represented by a class that accesses
the resource. The class can be created with the /str option of the Resgen utility:

resgen /str:C#,Wrox.ProCSharp.Localization,MyResources,MyResources.cs
Wrox.ProCSharp.Localization.MyResources.resX

With the /str option, the language, namespace, class name, and filename for the source code are defined, in
that order.

The Resgen utility does not support adding pictures. The .NET Framework SDK includes a ResXGen sam-
ple with the tutorials. With ResXGen, it is possible to reference pictures in a .resX file. You can also add
pictures programmatically by using the ResourceWriter or ResXResourceWriter classes, as shown next.

ResourceWriter
Instead of using the Resgen utility to build resource files, it’s a simple task to write a program to create
resources. The class ResourceWriter from the namespace System.Resources can be used to write binary
resource files; ResXResourceWriter writes XML-based resource files. Both of these classes support pic-
tures and any other object that is serializable. When you use the class ResXResourceWriter, the assembly
System.Windows.Forms must be referenced.

In the following code example, you create a ResXResourceWriter object, rw, using a constructor with the
filename Demo.resx. After creating an instance, you can add a number of resources up to 2GB in total size
by using the AddResource method of the ResXResourceWriter class. The first argument of AddResource
specifies the name of the resource, and the second argument specifies the value. A picture resource can
be added using an instance of the Image class. To use the Image class, you have to reference the assembly
System.Drawing. You also add the using directive to open the namespace System.Drawing.

Create an Image object by opening the file logo.gif. You have to copy the picture to the directory of the
executable or specify the full path to the picture in the method argument of Image.ToFile. The using
statement specifies that the image resource should automatically be disposed of at the end of the using
block. Additional simple string resources are added to the ResXResourceWriter object. The Close method
of the ResXResourceWriter class automatically calls ResXResourceWriter.Generate to write the
resources to the file Demo.resx (code file CreateResource\Program.cs):

c28.indd 818 30-01-2014 20:34:35

Resources ❘ 819

using System;
using System.Resources;
using System.Drawing;

class Program
{
 static void Main()
 {
 var rw = new ResXResourceWriter("Demo.resx");
 using (Image image = Image.FromFile("logo.gif"))
 {
 rw.AddResource("WroxLogo", image);
 rw.AddResource("Title", "Professional C#");
 rw.AddResource("Chapter", "Localization");
 rw.AddResource("Author", "Christian Nagel");
 rw.AddResource("Publisher", "Wrox Press");
 rw.Close();
 }
 }
}

Starting this small program creates the resource file Demo.resx, which embeds the image logo.gif. In the
next example, the resources are used with a Windows application.

Using Resource Files
You can add resource files to assemblies with the command-
line C# compiler csc.exe by using the /resource option, or
directly with Visual Studio. To see how resource files can be
used with Visual Studio, create a console application and name
it ResourceDemo.

Use the context menu of Solution Explorer (Add ➪ Existing
Item) to add the previously created resource file Demo.resx to
this project. By default, the Build Action of this resource is set to
Embedded Resource so that the resource is embedded into the
output assembly.

In the project settings (Application ➪ Assembly informa-
tion), set the Neutral Language setting of the application to
the main language—for example, English (United States)—as
shown in Figure 28-7. Changing this setting adds the attribute
[NeutralResourceLanguageAttribute] to the file
assemblyinfo.cs, as shown here:

 [assembly: NeutralResourcesLanguageAttribute("en-US")]

Setting this option improves performance with the ResourceManager because it more quickly finds the
resources for en-US that are also used as a default fallback. With this attribute, you can also specify the
location of the default resource by using the second parameter with the constructor. With the enumeration
UltimateResourceFallbackLocation, you can specify that the default resource is to be stored in the main
assembly or in a satellite assembly (values MainAssembly and Satellite).

After building the project, you can check the generated assembly with ildasm to see the attribute
.mresource in the manifest (see Figure 28-8). This attribute declares the name of the resource in the assem-
bly. If .mresource is declared as public (as in the example), the resource is exported from the assembly and
can be used from classes in other assemblies. .mresource private means that the resource is not exported
and is available only within the assembly.

FiGURE 28-7

c28.indd 819 30-01-2014 20:34:35

820 ❘ CHAPTER 28 LocaLization

To access the embedded resource, use the ResourceManager class from the System.Resources
namespace. You can pass the assembly that has the resources as an argument to the constructor of the
ResourceManager class. In this example, the resources are embedded in the executing assembly, so pass
the result of Assembly.GetExecutingAssembly as the second argument. The first argument is the root
name of the resource. The root name consists of the namespace and the name of the resource file, but with-
out the resources extension. As shown earlier, ildasm specifies the name. You only need to remove the file
extension resources from the name shown. You can also get the name programmatically by using the
GetManifestResourceNames method of the System.Reflection.Assembly class:

using System;
using System.Drawing;
using System.Reflection;
using System.Resources;

namespace Wrox.ProCSharp.Localization
{
 class Program
 {
 static void Main()
 {
 var rm = new ResourceManager("Wrox.ProCSharp.Localization.Demo",
 Assembly.GetExecutingAssembly());

Using the ResourceManager instance rm, you can get all the resources by specifying the key to the methods
GetObject and GetString:

 Console.WriteLine(rm.GetString("Title"));
 Console.WriteLine(rm.GetString("Chapter"));
 Console.WriteLine(rm.GetString("Author"));
 using (Image logo = (Image)rm.GetObject("WroxLogo"))
 {
 logo.Save("logo.bmp");
 }
 }
 }
}

With strongly typed resources, the code written earlier can be simplified; there is no need to instantiate
the ResourceManager and access the resources using indexers. Instead, you can access the names of the
resources with properties:

FiGURE 28-8

c28.indd 820 30-01-2014 20:34:35

Resources ❘ 821

 private static void StronglyTypedResources()
 {
 Console.WriteLine(Demo.Title);
 Console.WriteLine(Demo.Chapter);
 Console.WriteLine(Demo.Author);
 using (Bitmap logo = Demo.WroxLogo)
 {
 logo.Save("logo.bmp");
 }
 }

To create a strongly typed resource with the Managed Resources Editor, reset the Access Modifier option
from No Code Generation to Public or Internal. With Public, the generated class has a public access modi-
fier and is available from other assemblies. With Internal, the generated class has an internal access modifier
and can be accessed only from within the assembly.

When you set this option, the class Demo (it has the same name as the resource) is created. This class has
static properties for all the resources to provide a strongly typed resource name. With the implementation of
the static properties, a ResourceManager object is used, instantiated on first access and then cached (code
file ResourceDemo\Demo.Designer.cs):

//---
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:4.0.30319.33440
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//--

namespace Wrox.ProCSharp.Localization
{
 using System;

 /// <summary>
 /// A strongly-typed resource class, for looking up localized strings, etc.
 /// </summary>
 // This class was auto-generated by the StronglyTypedResourceBuilder
 // class via a tool like ResGen or Visual Studio.
 // To add or remove a member, edit your .ResX file then rerun ResGen
 // with the /str option, or rebuild your VS project.
 [global::System.CodeDom.Compiler.GeneratedCodeAttribute(
 "System.Resources.Tools.StronglyTypedResourceBuilder", "4.0.0.0")]
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]
 internal class Demo
 {
 private static global::System.Resources.ResourceManager resourceMan;

 private static global::System.Globalization.CultureInfo resourceCulture;

 [global::System.Diagnostics.CodeAnalysis.SuppressMessageAttribute(
 "Microsoft.Performance", "CA1811:AvoidUncalledPrivateCode")]
 internal Demo()
 {
 }

 /// <summary>

c28.indd 821 30-01-2014 20:34:35

822 ❘ CHAPTER 28 LocaLization

 /// Returns the cached ResourceManager instance used by this class.
 /// </summary>
 [global::System.ComponentModel.EditorBrowsableAttribute(
 global::System.ComponentModel.EditorBrowsableState.Advanced)]
 internal static global::System.Resources.ResourceManager ResourceManager
 {
 get
 {
 if (object.ReferenceEquals(resourceMan, null))
 {
 global::System.Resources.ResourceManager temp =
 new global::System.Resources.ResourceManager(
 "Wrox.ProCSharp.Localization.Demo", typeof(Demo).Assembly);
 resourceMan = temp;
 }
 return resourceMan;
 }
 }

 /// <summary>
 /// Overrides the current thread's CurrentUICulture property for all
 /// resource lookups using this strongly typed resource class.
 /// </summary>
 [global::System.ComponentModel.EditorBrowsableAttribute(
 global::System.ComponentModel.EditorBrowsableState.Advanced)]
 internal static global::System.Globalization.CultureInfo Culture
 {
 get
 {
 return resourceCulture;
 }
 set
 {
 resourceCulture = value;
 }
 }

 /// <summary>
 /// Looks up a localized string similar to Chapter.
 /// </summary>
 internal static string Chapter
 {
 get
 {
 return ResourceManager.GetString("Chapter", resourceCulture);
 }
 }

 //...

 internal static System.Drawing.Bitmap WroxLogo
 {
 get
 {
 object obj = ResourceManager.GetObject("WroxLogo", resourceCulture);
 return ((System.Drawing.Bitmap)(obj));
 }
 }
 }
}

c28.indd 822 30-01-2014 20:34:35

Windows Forms Localization Using Visual Studio ❘ 823

The system.Resources Namespace
Before moving on to the next example, this section concludes with a review of the classes contained in the
System.Resources namespace that deal with resources:

➤➤ ResourceManager — Can be used to get resources for the current culture from assemblies or
resource files. Using the ResourceManager, you can also get a ResourceSet for a particular culture.

➤➤ ResourceSet — Represents the resources for a particular culture. When a ResourceSet instance
is created, it enumerates over a class, implementing the interface IResourceReader, and it stores all
resources in a Hashtable.

➤➤ IResourceReader — This interface is used from the ResourceSet to enumerate resources. The class
ResourceReader implements this interface.

➤➤ ResourceWriter — This class is used to create a resource file. ResourceWriter implements the
interface IResourceWriter.

➤➤ ResXResourceSet, ResXResourceReader, and ResXResourceWriter — These are similar to
ResourceSet, ResourceReader, and ResourceWriter, but they are used to create an XML-based
resource file, .resX, instead of a binary file. You can use ResXFileRef to make a link to a resource
instead of embedding it inside an XML file.

➤➤ System.Resources.Tools — This namespace contains the class
StronglyTypedResourceBuilder to create a class from a resource.

WiNdoWs FoRms loCAlizATioN UsiNG VisUAl sTUdio
In this section, you create a simple Windows Forms applica-
tion that demonstrates how to use Visual Studio 2012 for
localization. This application does not use complex Windows
Forms or have any real inner functionality because the key
feature it is intended to demonstrate here is localization.
In the automatically generated source code, change the
namespace to Wrox.ProCSharp.Localization and the class
name to BookOfTheDayForm. The namespace is changed not
only in the source file BookOfTheDayForm.cs but also in the
project settings, enabling all generated resource files to share
this namespace, too. You can change the namespace for all
new items that are created by selecting Common Properties
from the Project ➪ Properties menu.

To demonstrate various aspects of localization, this program
has an image, some text, a date, and a number. The image
shows a flag that is also localized. Figure 28-9 shows this
form of the application as it appears in the Windows Forms
Designer.

The following table lists the values for the Name and Text
properties of the Windows Forms elements:

NAmE TExT

labelBookOfTheDay Book of the day

labelItemsSold Books sold

textDate Date

textTitle Professional C# 5

textItemsSold 30000

pictureFlag

FiGURE 28-9

c28.indd 823 30-01-2014 20:34:36

824 ❘ CHAPTER 28 LocaLization

In addition to this form, you might want a message box that displays a welcome message; this message
might vary according to the current time of day. The following example demonstrates that localization for
dynamically created dialogs must be done differently. In the method WelcomeMessage, you display a mes-
sage box using MessageBox.Show. Then you call the method WelcomeMessage in the constructor of the
form class BookOfTheDayForm, before the call to InitializeComponent.

Here is the code for the method WelcomeMessage:

 public void WelcomeMessage()
 {
 DateTime now = DateTime.Now;
 string message;
 if (now.Hour <= 12)
 {
 message = "Good Morning";
 }
 else if (now.Hour <= 19)
 {
 message = "Good Afternoon";
 }
 else
 {
 message = "Good Evening";
 }
 MessageBox.Show(String.Format("{0}\nThis is a localization sample",
 message));
 }

The number and date in the form should be set by using formatting options. The following adds a new
method, SetDateAndNumber, to set the values with the format option. In a real application, these values
could be received from a web service or a database, but this example focuses on localization. The date is
formatted using the D option (to display the long-date name). The number is displayed using the picture
number format string ###,###,###, where # represents a digit and “,” is the group separator (code file
BookOfTheDay/BookOfTheDayForm.cs):

 public void SetDateAndNumber()
 {
 DateTime today = DateTime.Today;
 textDate.Text = today.ToString("D");
 int itemsSold = 327444;
 textItemsSold.Text = itemsSold.ToString("###,###,###");
 }

In the constructor of the BookOfTheDayForm class, both the WelcomeMessage and SetDateAndNumber
methods are called:

 public BookOfTheDayForm()
 {
 WelcomeMessage();

 InitializeComponent();

 SetDateAndNumber();
 }

A magical feature of the Windows Forms Designer is started when you reset the Localizable property of
the form from false to true. It results in the creation of an XML-based resource file for the dialog that
stores all resource strings, properties (including the location and size of Windows Forms elements), embed-
ded pictures, and so on. In addition, the implementation of the InitializeComponent method is changed;
an instance of the class System.Resources.ResourceManager is created, and to get to the values and

c28.indd 824 30-01-2014 20:34:36

Windows Forms Localization Using Visual Studio ❘ 825

positions of the text fields and pictures, the GetObject method is used instead of writing the values directly
into the code. GetObject uses the CurrentUICulture property of the current thread to find the correct
localization of the resources.

Here is part of InitializeComponent from the file BookOfTheDayForm.Designer.cs before the
Localizable property is set to true, where all properties of textboxTitle are set:

 private void InitializeComponent()
 {
 //...
 this.textTitle = new System.Windows.Forms.TextBox();
 //
 // textTitle
 //
 this.textTitle.Anchor = ((System.Windows.Forms.AnchorStyles)
 (((System.Windows.Forms.AnchorStyles.Top
 | System.Windows.Forms.AnchorStyles.Left)
 | System.Windows.Forms.AnchorStyles.Right)));
 this.textTitle.Location = new System.Drawing.Point(29, 164);
 this.textTitle.Name = "textTitle";
 this.textTitle.Size = new System.Drawing.Size(231, 20);
 this.textTitle.TabIndex = 3;

The code for the IntializeComponent method is automatically changed by setting the Localizable prop-
erty to true:

 private void InitializeComponent()
 {
 System.ComponentModel.ComponentResourceManager resources =
 new System.ComponentModel.ComponentResourceManager(
 typeof(BookOfTheDayForm));
 //...
 this.textTitle = new System.Windows.Forms.TextBox();
 //
 // textTitle
 //
 resources.ApplyResources(this.textTitle, "textTitle");
 this.textTitle.Name = "textTitle";

From where does the resource manager get the data? When the Localizable property is set to true, the
resource file BookOfTheDay.resX is generated. In this file, you can find the scheme of the XML resource,
followed by all elements in the form: Type, Text, Location, TabIndex, and so on.

The class ComponentResourceManager is derived from ResourceManager and offers the method
ApplyResources. With ApplyResources, the resources defined with the second argument are applied to
the object in the first argument.

The following XML segment shows a few of the properties of textBoxTitle: the Location property has a
value of 29, 164; the Size property has a value of 231, 20; the Text property is set to Professional C# 5;
and so on. For every value, the type of the value is stored as well. For example, the Location property is of
type System.Drawing.Point, and this class can be found in the assembly System.Drawing.

Why are the locations and sizes stored in this XML file? With translations, many strings have completely
different sizes and no longer fit into the original positions. When the locations and sizes are all stored inside
the resource file, everything needed for localization is stored in this file, separate from the C# code (code file
BookOfTheDay/BookOfTheDayForm.resx):

 <data name="textTitle.Anchor" type=
 "System.Windows.Forms.AnchorStyles, System.Windows.Forms">
 <value>Top, Left, Right</value>
 </data>
 <data name="textTitle.Location" type="System.Drawing.Point, System.Drawing">

c28.indd 825 30-01-2014 20:34:36

826 ❘ CHAPTER 28 LocaLization

 <value>29, 164</value>
 </data>
 <data name="textTitle.Size" type="System.Drawing.Size, System.Drawing">
 <value>231, 20</value>
 </data>
 <data name="textTitle.TabIndex" type="System.Int32, mscorlib">
 <value>3</value>
 </data>
 <data name="textTitle.Text" xml:space="preserve">
 <value>Professional C# 2012</value>
 </data>
 <data name=">>textTitle.Name" xml:space="preserve">
 <value>textTitle</value>
 </data>
 <data name=">>textTitle.Type" xml:space="preserve">
 <value>System.Windows.Forms.TextBox, System.Windows.Forms, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
 </data>
 <data name=">>textTitle.Parent" xml:space="preserve">
 <value>$this</value>
 </data>
 <data name=">>textTitle.ZOrder" xml:space="preserve">
 <value>2</value>
 </data>

When changing some of these resource values, it is not necessary to work directly with the XML code. You
can change these resources right in the Visual Studio Designer. Whenever you change the Language prop-
erty of the form and the properties of some form elements, a new resource file is generated for the specified
language. Create a German version of the form by setting the Language property to German, and a French
version by setting it to French, and so on. For each language, you get a resource file with the changed prop-
erties: in this case, BookOfTheDayForm.de.resX and BookOfTheDayForm.fr.resX.

The following table shows the changes needed for the German version:

GERmAN NAmE VAlUE

$this.Text (title of the form) Buch des Tages

labelItemsSold.Text Bücher verkauft:

labelBookOfTheDay.Text Buch des Tages:

The next table shows the changes for the French version:

FRENCH NAmE VAlUE

$this.Text (title of the form) Le livre du jour

labelItemsSold.Text Des livres vendus:

labelBookOfTheDay.Text Le livre du jour:

By default, images are not moved to satellite assemblies. However, in the sample application, the flag should
vary according to the country. To achieve this, you have to add the image of the American flag to the file
Resources.resx. You can find this file in the Properties section of the Visual Studio Solution Explorer.
With the resource editor, select the Images category, as shown in Figure 28-10, and add the file
americanflag.bmp. To make localization with images possible, the image must have the same name in all
languages. Here, the image in the file Resources.resx has the name “Flag.” You can rename the image in
the properties editor. Within the properties editor, you can also specify whether the image should be linked
or embedded. For best performance with resources, images are linked by default. With linked images, the
image file must be delivered together with the application. If you want to embed the image within the assem-
bly, you can change the Persistence property to Embedded.

c28.indd 826 30-01-2014 20:34:36

Windows Forms Localization Using Visual Studio ❘ 827

You can add the localized versions of the flags by copying the file Resource.resx to Resource.de.resx
and Resource.fr.resx and replacing the flags with GermanFlag.bmp and FranceFlag.bmp. Because a
strongly typed resource class is needed only with the neutral resource, the property CustomTool can be
cleared with the resource files of all specific languages.

Compiling the project now creates a satellite assembly for each language. Inside the debug directory (or the
release, depending on your active configuration), language subdirectories such as de and fr are created.
In such a subdirectory, you will find the file BookOfTheDay.resources.dll. Such a file is a satellite assem-
bly that includes only localized resources. Opening this assembly with ildasm, you’ll see a manifest with
the embedded resources and a defined locale. For example, the assembly has the locale de in the assembly
attributes, so it can be found in the de subdirectory. You can also see the name of the resource with
.mresource; it is prefixed with the namespace Wrox.ProCSharp.Localization, followed by the class
name BookOfTheDayForm and the language code de.

Changing the Culture Programmatically
After translating the resources and building the satellite assemblies, you will get the correct translations
according to the configured culture for the user. The welcome message is not translated at this time. This
needs to be done in a different way, as you’ll see shortly.

In addition to the system configuration, it should be possible to send the language code as a command-
line argument to your application for testing purposes. In the following example, the BookOfTheDayForm
constructor (in the code file BookOfTheDay\BookOfTheDayForm.cs) is changed to enable the passing of a
culture string, and the setting of the culture according to this string. A CultureInfo instance is created to
pass it to the CurrentCulture and CurrentUICulture properties of the current thread. Remember that the
CurrentCulture is used for formatting, and the CurrentUICulture is used for loading resources:

 public BookOfTheDayForm(string culture)
 {
 if (!String.IsNullOrEmpty(culture))
 {
 var ci = new CultureInfo(culture);
 // set culture for formatting
 Thread.CurrentThread.CurrentCulture = ci;
 // set culture for resources
 Thread.CurrentThread.CurrentUICulture = ci;
 }

 WelcomeMessage();

 InitializeComponent();
 SetDateAndNumber();
 }

FiGURE 28-10

c28.indd 827 30-01-2014 20:34:36

828 ❘ CHAPTER 28 LocaLization

The BookOfTheDayForm is instantiated in the Main method, which can be found in the file Program.cs. In
this method, you pass the culture string to the BookOfTheDayForm constructor:

 [STAThread]
 static void Main(string[] args)
 {
 string culture = String.Empty;
 if (args.Length == 1)
 {
 culture = args[0];
 }

 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new BookOfTheDayForm(culture));
 }

Now you can start the application by using command-line options. Running the application, you can see the
formatting options and the resources that were generated from the Windows Forms Designer. Figure 28-11
and Figure 28-12 show the two localizations in which the application is started with the command-line
options de-DE and fr-FR, respectively.

FiGURE 28-11 FiGURE 28-12

There is still a problem with the welcome message box: the strings are hard-coded inside the program.
Because these strings are not properties of elements inside the form, the Forms Designer does not extract
XML resources as it does from the properties for Windows controls when changing the Localizable prop-
erty of the form. You have to change this code yourself.

Using Custom Resource messages
For the welcome message, you have to translate the hard-coded strings. The following table shows the
translations for German and French. You can write custom resource messages directly in the file Resources
.resx and the language-specific derivations. Of course, you can also create a new resource file.

NAmE ENGlisH GERmAN FRENCH

GoodMorning Good Morning Guten Morgen Bonjour

GoodAfternoon Good Afternoon Guten Tag Bonjour

GoodEvening Good Evening Guten Abend Bonsoir

Message1 This is a localization
sample.

Das ist ein Beispiel mit
Lokalisierung.

C’est un exemple avec la
localisation.

c28.indd 828 30-01-2014 20:34:37

Windows Forms Localization Using Visual Studio ❘ 829

The source code of the method WelcomeMessage must also be changed to use the resources. With strongly
typed resources, it isn’t necessary to instantiate the ResourceManager class. Instead, the properties of the
strongly typed resource can be used:

 public static void WelcomeMessage()
 {
 DateTime now = DateTime.Now;
 string message;
 if (now.Hour <= 12)
 {
 message = Properties.Resources.GoodMorning;
 }
 else if (now.Hour <= 19)
 {
 message = Properties.Resources.GoodAfternoon;
 }
 else
 {
 message = Properties.Resources.GoodEvening;
 }
 MessageBox.Show(String.Format("{0}\n{1}", message,
 Properties.Resources.Message1);
 }

When the program is started using English, German, or French, a message box with the appropriate lan-
guage will appear.

Automatic Fallback for Resources
For the French and German versions in the example, all the resources are located inside the satellite assem-
blies. If you are not using these versions, then all the values of labels or text boxes are changed; this is not
a problem at all. You must have only the values that change in the satellite assembly; the other values are
taken from the parent assembly. For example, for de-AT (Austria), you could change the value for the Good
Afternoon resource to Grüß Gott while leaving the other values intact. During runtime, when looking for
the value of the resource Good Morning, which is not located in the de-at satellite assembly, the parent
assembly would be searched. The parent for de-AT is de. In cases where the de assembly does not have this
resource either, the value would be searched for in the parent assembly of de, the neutral assembly. The neu-
tral assembly does not have a culture code.

NoTE Keep in mind that the culture code of the main assembly shouldn’t define any
culture!

outsourcing Translations
It is an easy task to outsource translations using resource files. It is not necessary to install Visual Studio to
translate these files; a simple XML editor will suffice. The disadvantage of using an XML editor is that it
doesn’t provide a way to rearrange Windows Forms elements and change their size if the translated text does
not fit into the original borders of a label or button. Using a Windows Forms Designer to do translations is a
natural choice.

Microsoft provides a tool as part of the .NET Framework SDK that fulfills all these requirements: the
Windows Resource Localization Editor, winres.exe (see Figure 28-13). Users working with this tool do
not need access to the C# source files; only binary or XML-based resource files are needed for translations.
After these translations are completed, you can import the resource files to the Visual Studio project to build
satellite assemblies.

c28.indd 829 30-01-2014 20:34:37

830 ❘ CHAPTER 28 LocaLization

If you don’t want your translation bureau to change the size and location of labels and buttons, and they
cannot deal with XML files, you can send a simple text-based file. With the command-line utility resgen
.exe, you can create a text file from an XML file:

resgen myresource.resX myresource.txt

After you have received the translation from the translation bureau, you can create an XML file from the
returned text file. Remember to add the culture name to the filename:

resgen myresource.es.txt myresource.es.resX

loCAlizATioN WiTH AsP.NET WEb FoRms
With ASP.NET Web Forms applications, localization happens in a similar way to Windows applications.
Chapter 41, “ASP.NET Web Forms,” discusses the functionality of ASP.NET Web Forms applications; this
section discusses the localization of ASP.NET applications. ASP.NET 4.5 and Visual Studio 2013 have
many features to support localization. The basic concepts of localization and globalization are the same as
discussed before, but some specific issues are associated with ASP.NET.

As you have already learned, you have to differentiate between the user interface culture and the culture
used for formatting. This is the same with ASP.NET. Both of these cultures can be defined at the Web and
page level, as well as programmatically.

To be independent of the web server’s operating system, the culture and user interface culture can be defined
with the <globalization> element in the configuration file web.config:

<configuration>
 <system.web>
 <globalization culture="en-US" uiCulture="en-US" />
 </system.web>
</configuration>

FiGURE 28-13

c28.indd 830 30-01-2014 20:34:37

Localization with ASP.NET Web Forms ❘ 831

If the configuration should be different for specific web pages, the Page directive enables you to assign the
culture:

<%Page Language="C#" Culture="en-US" UICulture="en-US" %>

Users can configure the language with the browser. With Internet Explorer 11 and Windows 8.1, this set-
ting is taken from the operating system. The configuration within IE takes you to the Language settings, as
shown in Figure 28-14.

FiGURE 28-14

If the page language should be set according to the language setting of the client, the culture of the thread
can be set programmatically to the language setting received from the client. ASP.NET has an automatic set-
ting that does just that. Setting the culture to the value Auto sets the culture of the thread according to the
client’s settings:

<%Page Language="C#" Culture="Auto" UICulture="Auto" %>

In dealing with resources, ASP.NET differentiates between resources that are used for the complete website
and resources that are needed only within a page.

To create a resource used within a page, select Tools ➪ Generate Local Resource from the Visual Studio
menu in the design view. This creates the subdirectory App_LocalResources, where a resource file for
every page is stored. These resources can be localized similarly to how they are localized in Windows
applications. The association between the web controls and the local resource files is achieved by using
a meta:resourcekey attribute, as shown in the following example with the ASP.NET Label control.
Label1Resource1 is the name of the resource that can be changed in the local resource file:

<asp:Label ID="Label1" Runat="server" Text="English Text"
 meta:resourcekey="Label1Resource1"></asp:Label>

For resources that should be shared between multiple pages, you have to create an ASP.NET folder,
Appl_GlobalResources. Here you can add resource files, such as Messages.resx and its resources. To
associate the web controls with these resources, you can use Expressions in the property editor. To do so,
click the Expressions button to open the Expressions dialog (see Figure 28-15). Here, select the expres-
sion type Resources, set the name of the ClassKey (which is the name of the resource file — in this case,
a strongly typed resource file is generated), and the name of the ResourceKey, which is the name of the
resource.

c28.indd 831 30-01-2014 20:34:37

832 ❘ CHAPTER 28 LocaLization

In the ASPX file, you can see the association to the resource with the binding expressions syntax <%$:

<asp:Label ID="Label2" Runat="server"
 Text="<%$ Resources:Messages, String1 %>">
</asp:Label>

loCAlizATioN WiTH WPF
Visual Studio 2013 does not have great support for the localization of WPF applications, but you can still
localize your WPF application. WPF has built-in localization support. With WPF, you can either use .NET
resources, similar to what you’ve seen with Windows Forms and ASP.NET applications, or use an XAML
(XML for Applications Markup Language) resource dictionary.

These options are discussed next. You can read more about WPF and XAML in Chapter 35, “Core WPF,”
and Chapter 36, “Business Applications with WPF.” To demonstrate the use of resources with a WPF appli-
cation, create a simple WPF application containing just one button, as shown in Figure 28-16.

FiGURE 28-15

FiGURE 28-16

c28.indd 832 30-01-2014 20:34:38

Localization with WPF ❘ 833

The XAML code for this application is shown here (code file WPFApplicationUsingResources\
MainWindow.xaml):

<Window x:Class="Wrox.ProCSharp.Localization.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="WPF Sample" Height="240" Width="500">
 <Grid>
 <Button Name="button1" Margin="30,20,30,20" Click="Button_Click"
 Content="English Button" />
 </Grid>
</Window>

With the handler code for the Click event of the button, only a message box containing a sample message
pops up (code file WPFApplicationUsingResources\MainWindow.xaml.cs):

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 MessageBox.Show("English Message");
 }

.NET Resources with WPF
You add .NET resources to a WPF application similarly to how you do so with other applications. Define
the resources named Button1Text and Button1Message in the file Resources.resx. By default, this
resource file has an Internal access modifier to create the Resources class. To use it from within XAML,
you must change this to Public within the Managed Resources Editor.

To use the generated resource class, you need to change the XAML code. Add an XML namespace alias to
reference the .NET namespace Wrox.ProCSharp.Localization.Properties as shown in the following
code. Here, the alias is set to the value props. From XAML elements, properties of this class can be used
with the x:Static markup extension. The Content property of the Button is set to the Button1Text
property of the Resources class (code file WPFApplicationUsingResources\MainWindow.xaml):

<Window x:Class="Wrox.ProCSharp.Localization.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:props="clr-namespace:Wrox.ProCSharp.Localization.Properties"
 Title="WPF Sample" Height="300" Width="300">
 <Grid>
 <Button Name="button1" Margin="30,20,30,20" Click="Button_Click"
 Content="{x:Static props:Resources.Button1Text}" />
 </Grid>
</Window>

To use the .NET resource from code-behind, just access the Button1Message property directly, in the
same way you do with Windows Forms applications (code file WPFApplicationUsingResources\
MainWindow.xaml.cs):

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 MessageBox.Show(Properties.Resources.Button1Message);
 }

Now the resources can be localized as before.

Using .NET resources for localization of WPF applications offers two main advantages:

➤➤ .NET resources can be easily managed.

➤➤ x:Static bindings are checked by the compiler.

c28.indd 833 30-01-2014 20:34:38

834 ❘ CHAPTER 28 LocaLization

Of course, there are also disadvantages:

➤➤ You need to add the x:Static bindings to the XAML file, and there’s no designer support for this.

➤➤ Binding is done to the generated resource classes that use the ResourceManager. You need to do some
additional plumbing to support other resource managers, such as the DatabaseResourceManager,
discussed later in this chapter.

➤➤ There’s no type-converter support that can be used with other XAML elements.

xAml Resource dictionaries
Instead of using .NET resources for localization of WPF applications, you can work directly with XAML to
create localized content. This has its own advantages and disadvantages. The steps for a localization process
can be described by these actions:

 1. Create a satellite assembly from the main content.

 2. Use resource dictionaries for localizable content.

 3. Add x:Uid attributes to elements that should be localized.

 4. Extract localization content from an assembly.

 5. Translate the content.

 6. Create satellite assemblies for every language.

These steps are described in the following sections.

Creating Satellite Assemblies
When compiling a WPF application, the XAML code is compiled to a binary format, BAML, that is stored
into an assembly. To move the BAML code from the main assembly to a separate satellite assembly, you
can change the .csproj build file by adding a <UICulture> element as a child to the <PropertyGroup>
element, as shown in the following example. The culture, here en-US, defines the default culture of the
project. Building the project with this build setting creates a subdirectory en-US and a satellite assembly
containing BAML code for the default language (project file WPFApplicationUsingXAMLDictionaries/
WPFApplicationUsingXAMLDictionaries.csproj):

 <UICulture>en-US</UICulture>

NoTE The easiest way to modify project settings that are not available from the UI is
to unload the project. To do so, select the project in Solution Explorer, select Unload
Project from the context menu, and click Edit Project-File from the context menu.
After the project file is changed, the project can be loaded again.

When separating the BAML into a satellite assembly, you should also apply the NeutralResources
Language attribute and supply the resource fallback location to a satellite assembly. If you decide to keep
BAML in the main assembly (by not defining the <UICulture> to the .csproj file), the Ultimate
ResourceFallbackLocation should be set to MainAssembly (code file
WPFApplicationUsingXAMLDictionaries/AssemblyInfo.cs):

[assembly: NeutralResourcesLanguage("en-US",
UltimateResourceFallbackLocation.Satellite)]

Adding a Resource Dictionary
For code-behind content that needs to be localized, a resource dictionary can be added. Using XAML, you
can define resources within the <ResourceDictionary> element, as shown in the following code. With
Visual Studio, you can create a new resource dictionary by adding a new resource dictionary item and

c28.indd 834 30-01-2014 20:34:38

Localization with WPF ❘ 835

defining the filename. In the example here, the resource dictionary contains one string item. To get access to
the String type from the System namespace, an XML namespace alias needs to be defined. Here, the alias
system is set to the clr-namespace System in the assembly mscorlib. The string that is defined can be
accessed with the key message1. This resource dictionary is defined in the file LocalizedStrings.xaml:

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:system="clr-namespace:System;assembly=mscorlib">
 <system:String x:Key="Message1">English Message</system:String>
</ResourceDictionary>

To make the resource dictionary available with the application, it must be added to the resources. If the
resource dictionary is required only within a window or a specific WPF element, it can be added to the
resources collection of the specific window or WPF element. If the same resource dictionary is needed by
multiple windows, it can be added to the file App.xaml within the <Application> element, making it avail-
able to the complete application. Here, the resource dictionary is added within the resources of the main
window (code file WPFApplicationUsingXAMLDictionaries/MainWindow.xaml):

 <Window.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="LocalizationStrings.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Window.Resources>

To use the XAML resource dictionary from code-behind, you can use the indexer of the Resources
property, the FindResource method, or the TryFindResource method. Because the resource is defined
with the window, the indexer of the Resources property of the Window class can be used to access the
resource. FindResource does a hierarchical search for a resource. If you use the FindResource method of
the Button and it is not found with the Button resources, then resources are searched in the Grid. If the
resource is not there, a lookup to the Window resources is done before the Application resources are con-
sulted (code file WPFApplicationUsingXAMLDictionaries/MainWindow.xaml.cs):

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 MessageBox.Show(this.Resources["Message1"] as string);
 MessageBox.Show(this.FindResource("Message1") as string);
 }

Uid Attributes for Localization
With the custom resource dictionary file, you can reference the text from the code that should be localized.
To localize XAML code with WPF elements, the x:Uid attribute is used as a unique identifier for the ele-
ments that need localization. You don’t have to apply this attribute manually to the XAML content; instead,
you can use the msbuild command with this option:

msbuild /t:updateuid

When you call this command in the directory where the project file is located, the XAML files of the project
are modified to add an x:Uid attribute with a unique identifier to every element. If the control already has
a Name or x:Name attribute applied, the x:Uid has the same value; otherwise, a new value is generated. The
same XAML shown earlier now has the new attributes applied:

<Window x:Uid="Window_1"
 x:Class="WPFApplicationUsingXAMLDictionaries.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Main Window" Height="240" Width="500">
 <Window.Resources>
 <ResourceDictionary x:Uid="ResourceDictionary_1">
 <ResourceDictionary.MergedDictionaries>

c28.indd 835 30-01-2014 20:34:38

836 ❘ CHAPTER 28 LocaLization

 <ResourceDictionary x:Uid="ResourceDictionary_2"
 Source="LocalizationStrings.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Window.Resources>
 <Grid x:Uid="Grid_1">
 <Button x:Uid="button1" Name="button1" Margin="30,20,30,20"
 Click="Button_Click" Content="English Button" />
 </Grid>
</Window>

If you change the XAML file after x:Uid attributes have been added, you can verify the correctness of the
x:Uid attributes with the option /t:checkuid. Now you can compile the project to create BAML code con-
taining the x:Uid attributes and use a tool to extract this information.

Using the LocBaml Tool for Localization
Compiling the project creates a satellite assembly containing the BAML code. From this satellite assem-
bly, you can extract the content that needs to be localized with classes from the System.Windows.Markup
.Localizer namespace. Included with the Windows SDK is the sample program LocBaml, a tool that can
be used to extract localization content from BAML. You need to copy the executable, the satellite assembly
with the default content, and LocBaml.exe to one directory and start the sample program to produce a
.csv file with the localization content:

LocBaml /parse WPFApplicationUsingXAMLDictionaries.resources.dll /out: trans.csv

NoTE To use the LocBaml tool with a WPF application that is built with .NET 4.5,
the tool also must be built with .NET 4.0 or a newer version. If you have an old version
of the LocBaml tool that was built with .NET 2.0, it cannot load the .NET 4 assem-
blies. The Windows SDK contains the source of the tool, so you can rebuild it with the
newest version of .NET.

You can use Microsoft Excel to open the .csv file and translate its content. An extract from the .csv file
that lists the content of the button and the message from the resource dictionary is shown here:

WPFandXAMLResources.g.en-US.resources:localizationstrings.baml,
system:String_1:System.String.$Content,None,True,True,,English Message
WPFandXAMLResources.g.en-US.resources:window1.baml,
button1:System.Windows.Controls.ContentControl.Content,Button,True,True,,
English Button

This file contains the following fields:

➤➤ The name of the BAML

➤➤ The identifier of the resource

➤➤ The category of the resource that provides the type of the content

➤➤ A Boolean value if the resource is visible for translation (readable)

➤➤ A Boolean value if the resource can be modified for the translation (modifiable)

➤➤ Localization comments

➤➤ The value of the resource

After localization of the resource, you can create a new directory for the new language (for example, de for
German). The directory structure follows the same convention that was shown earlier in this chapter with
satellite assemblies. With the LocBaml tool, you can create satellite assemblies with the translated content:

c28.indd 836 30-01-2014 20:34:38

A Custom Resource Reader ❘ 837

LocBaml /generate WPFandXAMLResources.resources.dll /trans:trans_de.csv
 /out: ./de /cul:de-DE

Now, the same rules for setting the culture of the thread and finding satellite assemblies that were shown
with Windows Forms applications apply here.

As you’ve seen, it’s quite a chore to perform the localization with XAML dictionaries. This is one of the dis-
advantages. Luckily, it’s not necessary to do this on a daily basis. What are the advantages?

➤➤ You can delay the localization process within the XAML file until the application is completed.
There’s no special markup or resource-mapping syntax needed. The localization process can be sepa-
rated from the development process.

➤➤ Using XAML resource dictionaries is very efficient at runtime.

➤➤ Localization can be done easily with a CSV editor.

The disadvantages are as follows:

➤➤ LocBaml is an unsupported tool found in the samples of the SDK.

➤➤ Localization is a one-time process. It’s hard to make changes to the configured localization.

A CUsTom REsoURCE REAdER
Using the resource readers that are part of .NET Framework 4.5, you can read resources from resource files
and satellite assemblies. If you want to put the resources into a different store (such as a database), you can
use a custom resource reader to read these resources.

To use a custom resource reader, you also need to create a custom resource set and a custom resource man-
ager. However, doing this is not a difficult task, because you can derive the custom classes from existing
classes.

For the sample application, you need to create a simple database with just one table for storing messages; it
should have one column for every supported language. The following table lists the columns and their cor-
responding values:

KEy dEFAUlT dE Es FR iT

Welcome Welcome Willkommen Bienvenido Bienvenue Benvenuto

GoodMorning Good morning Guten Morgen Buenos días Bonjour Buona mattina

GoodEvening Good evening Guten Abend Buenos noches Bonsoir Buona sera

ThankYou Thank you Danke Gracias Merci Grazie

Goodbye Goodbye Auf Wiedersehen Adiós Au revoir Arrivederci

For the custom resource reader, you will create a component library with three classes:
DatabaseResourceReader, DatabaseResourceSet, and DatabaseResourceManager.

Creating a databaseResourceReader
With the class DatabaseResourceReader, you define two fields: the connection string that is needed to
access the database and the language that should be returned by the reader. These fields are filled inside
the constructor of this class. The field language is set to the name of the culture that is passed with the
CultureInfo object to the constructor (code file DatabaseResourceReader\DatabaseResource
Reader.cs):

 public class DatabaseResourceReader: IResourceReader
 {

c28.indd 837 30-01-2014 20:34:39

838 ❘ CHAPTER 28 LocaLization

 private string connectionString;
 private string language;

 public DatabaseResourceReader(string connectionString,
 CultureInfo culture)
 {
 this.connectionString = connectionString;
 this.language = culture.Name;
 }

A resource reader has to implement the interface IResourceReader. This interface defines the methods Close
and GetEnumerator to return an IDictionaryEnumerator that returns keys and values for the resources. In
the implementation of GetEnumerator, you create a Hashtable where all keys and values for a specific language
are stored. Next, you can use the SqlConnection class in the namespace System.Data.SqlClient to access
the database in SQL Server. Connection.CreateCommand creates a SqlCommand object that you use to specify
the SQL SELECT statement to access the data in the database. If the language is set to de, the SELECT statement is
SELECT [key], [de] FROM Messages. Then you use a SqlDataReader object to read all values from the data-
base and put them into a Hashtable. Finally, the enumerator of the Hashtable is returned:

NoTE For more information about accessing data with ADO.NET, see Chapter 32,
“Core ADO.NET.”

 public System.Collections.IDictionaryEnumerator GetEnumerator()
 {
 var dict = new Dictionary<string, string>();

 var connection = new SqlConnection(connectionString);
 SqlCommand command = connection.CreateCommand();
 if (string.IsNullOrEmpty(language))
 {
 language = "Default";
 }

 command.CommandText = "SELECT [key], [" + language + "] " +
 "FROM Messages";

 try
 {
 connection.Open();

 SqlDataReader reader = command.ExecuteReader();
 while (reader.Read())
 {
 if (reader.GetValue(1) != System.DBNull.Value)
 {
 dict.Add(reader.GetString(0).Trim(), reader.GetString(1));
 }
 }

 reader.Close();
 }
 catch (SqlException ex)
 {
 if (ex.Number != 207) // ignore missing columns in the database
 throw; // rethrow all other exceptions
 }
 finally
 {
 connection.Close();

c28.indd 838 30-01-2014 20:34:39

A Custom Resource Reader ❘ 839

 }
 return dict.GetEnumerator();
 }

 public void Close()
 {
 }

Because the interface IResourceReader is derived from IEnumerable and IDisposable, the methods
GetEnumerator, which returns an IEnumerator interface, and Dispose must be implemented, too:

 IEnumerator IEnumerable.GetEnumerator()
 {
 return this.GetEnumerator();
 }

 void IDisposable.Dispose()
 {
 }
 }

Creating a databaseResourceset
The class DatabaseResourceSet can use nearly all implementations of the base class ResourceSet.
You just need a different constructor that initializes the base class with your own resource reader,
DatabaseResourceReader. The constructor of ResourceSet allows passing an object by imple-
menting IResourceReader; this requirement is fulfilled by DatabaseResourceReader (code file
DatabaseResourceReader\DatabaseResourceSet.cs):

 public class DatabaseResourceSet: ResourceSet
 {
 internal DatabaseResourceSet(string connectionString, CultureInfo culture)
 : base(new DatabaseResourceReader(connectionString, culture))
 {
 }

 public override Type GetDefaultReader()
 {
 return typeof(DatabaseResourceReader);
 }
 }

Creating a databaseResourcemanager
The third class you have to create is the custom resource manager. DatabaseResourceManager is derived
from the class ResourceManager, and you only have to implement a new constructor and override the
method InternalGetResourceSet.

In the constructor, create a new Dictionary<string, DatabaseResourceSet> to store all
queried resource sets and set it in the field ResourceSets defined by the base class (code file
DatabaseResourceReader/DatabaseResoureManager.cs):

 public class DatabaseResourceManager: ResourceManager
 {
 private string connectionString;
 private Dictionary<string, DatabaseResourceSet> resourceSets;

 public DatabaseResourceManager(string connectionString)
 {
 this.connectionString = connectionString;
 resourceSets = new Dictionary<string, DatabaseResourceSet>();
 }

c28.indd 839 30-01-2014 20:34:39

840 ❘ CHAPTER 28 LocaLization

The methods of the ResourceManager class that you can use to access resources (such as GetString and
GetObject) invoke the method InternalGetResourceSet to access a resource set where the appropriate
values can be returned.

In the implementation of InternalGetResourceSet, you first check whether the resource set for the culture
queried for a resource is already in the hash table; if so, you return it to the caller. If the resource set is not
available, you create a new DatabaseResourceSet object with the queried culture, add it to the dictionary,
and return it to the caller:

 protected override ResourceSet InternalGetResourceSet(
 CultureInfo culture, bool createIfNotExists, bool tryParents)
 {
 DatabaseResourceSet rs = null;

 if (resourceSets.ContainsKey(culture.Name))
 {
 rs = resourceSets[culture.Name];
 }
 else
 {
 rs = new DatabaseResourceSet(connectionString, culture);
 resourceSets.Add(culture.Name, rs);
 }
 return rs;
 }
 }

Client Application for databaseResourceReader
The way in which the class ResourceManager is used from the client application here does not differ
much from the earlier use of the ResourceManager class. The only difference is that the custom class
DatabaseResourceManager is used instead of the class ResourceManager. The following code snippet
demonstrates how you can use your own resource manager.

A new DatabaseResourceManager object is created by passing the database connection string to the con-
structor. Then, you can invoke the GetString method that is implemented in the base class as you did
earlier, passing the key and an optional object of type CultureInfo to specify a culture. In turn, you get a
resource value from the database because this resource manager is using the classes DatabaseResourceSet
and DatabaseResourceReader (code file DatabaseResourceReaderClient\Program.cs):

 var rm = new DatabaseResourceManager(
 @"server=(local)\sqlexpress;database=LocalizationDemo;" +
 "trusted_connection=true");

 string spanishWelcome = rm.GetString("Welcome", new CultureInfo("es-ES"));
 string italianThankyou = rm.GetString("ThankYou", new CultureInfo("it"));
 string threadDefaultGoodMorning = rm.GetString("GoodMorning");

CREATiNG CUsTom CUlTUREs
Over time, more and more languages have become supported by the .NET Framework. However, not all
languages of the world are available with .NET, and for these you can create a custom culture. For example,
creating a custom culture can be useful to support a minority within a region or to create subcultures for
different dialects.

Custom cultures and regions can be created with the class CultureAndRegionInfoBuilder in the
namespace System.Globalization. This class is located in the assembly sysglobl.

With the constructor of the class CultureAndRegionInfoBuilder, you can pass the culture’s name. The
second argument of the constructor requires an enumeration of type CultureAndRegionModifiers.

c28.indd 840 30-01-2014 20:34:39

Creating Custom Cultures ❘ 841

This enumeration allows one of three values: Neutral for a neutral culture, Replacement if an existing
Framework culture should be replaced, or None.

After the CultureAndRegionInfoBuilder object is instantiated, you can configure the culture by set-
ting properties. With the properties of this class, you can define all the cultural and regional informa-
tion, such as name, calendar, number format, metric information, and so on. If the culture should be
based on existing cultures and regions, you can set the properties of the instance using the methods
LoadDataFromCultureInfo and LoadDataFromRegionInfo, changing the values that are different by set-
ting the properties afterward.

Calling the method Register registers the new culture with the operating system. Indeed, you can find the
file that describes the culture in the directory <windows>\Globalization. Look for files with the extension
.nlp (code file CustomCultures\Program.cs):

using System;
using System.Globalization;

namespace CustomCultures
{
 class Program
 {
 static void Main()
 {
 try
 {
 // Create a Styria culture
 var styria = new CultureAndRegionInfoBuilder("de-AT-ST",
 CultureAndRegionModifiers.None);
 var cultureParent = new CultureInfo("de-AT");
 styria.LoadDataFromCultureInfo(cultureParent);
 styria.LoadDataFromRegionInfo(new RegionInfo("AT"));
 styria.Parent = cultureParent;
 styria.RegionNativeName = "Steiermark";
 styria.RegionEnglishName = "Styria";
 styria.CultureEnglishName = "Styria (Austria)";
 styria.CultureNativeName = "Steirisch";

 styria.Register();
 }
 catch (UnauthorizedAccessException ex)
 {
 Console.WriteLine(ex.Message);
 }
 }
 }
}

Because registering custom languages on the system requires administrative privileges, an application mani-
fest file is required that specifies the requested execution rights. In the project properties, the manifest file
needs to be set in the Application settings:

<?xml version="1.0" encoding="utf-8"?>
<asmv1:assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1"
xmlsn:asmv1="urn:schemas-microsoft-com:asm.v1" xmlns:asmv2="urn:schemas-microsoft-
com:asm.v2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <assemblyIdentity version="1.0.0.0" name="MyApplication.app"/>
 <trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
 <security>
 <requestedPrivileges xmlns="urn:schemas-microsoft-com:asm.v3">
 <requestedExecutionLevel level="requireAdministrator"

c28.indd 841 30-01-2014 20:34:39

842 ❘ CHAPTER 28 LocaLization

 uiAccess="false" />
 </requestedPrivileges>
 </security>
 </trustInfo>
</asmv1:assembly>

The newly created culture can now be used like other cultures:

 var ci = new CultureInfo("de-AT-ST");
 Thread.CurrentThread.CurrentCulture = ci;
 Thread.CurrentThread.CurrentUICulture = ci;

You can use the culture for formatting and for resources. If you start the Cultures In Action application that
was written earlier in this chapter again, you can see the custom culture as well.

loCAlizATioN WiTH WiNdoWs sToRE APPs
Localization with Windows Store apps is based on the concepts you’ve learned so far but brings some
fresh ideas, as you will see here. For the best experience, you need to install the Multilingual App Toolkit
(http://msdn.microsoft.com/en-us/windows/apps/bg127574.aspx).

The concepts of cultures, regions, and resources are the same, but because Windows Store apps can be
written with C# and XAML, C++ and XAML, and JavaScript and HTML, these concepts need to be
available with all languages. Only Windows Runtime is available with all these programming languages
and Windows Store apps. Therefore, new namespaces for globalization and resources are available with
Windows Runtime: Windows.Globalization and Windows.ApplicationModel.Resources. With the glo-
balization namespaces you can find a Calendar, GeographicRegion (compare with the .NET RegionInfo)
and a Language class. With subnamespaces, there are also classes for number and date formatting that vary
according to the language. With C# and Windows Store apps you can still use the .NET classes for cultures
and regions.

Let’s get into an example so you can see localization with Windows Store apps in action. Create a small
application using the Blank App (XAML) Visual Studio project template, but replace the generated page
MainPage.xaml with a Basic Page template. Add two TextBlock and one TextBox controls to the page.

Within the OnNavigatedTo method of the code file you can assign a date with the current format to the
Text property of the text1 control. The DateTime structure can be used in a way very similar to before.
Just note that a few methods are not available with Windows Store apps—for example, you cannot use the
method ToLongDateString, but ToString with the same format is available:

 private void navigationHelper_LoadState(object sender, LoadStateEventArgs e)
 {
 text1.Text = DateTime.Today.ToString("D");
 }

Using Resources
With Windows Store apps you can create resource files with the file extension resw instead of resx. Behind
the scenes, the same XML format is used with resw files, and you can use the same Visual Studio resource
editor to create and modify these files. The following example uses the structure shown in Figure 28-17.
The subfolder Messages contains a subdirectory, en-us, in which two resource files Errors.resw and
Messages.resw are created. In the folder Strings\en-us, the resource file Resources.resw is
created.

The Messages.resw file contains some English text resources, Hello with a value of Hello World, and
resources named GoodDay, GoodEvening, and GoodMorning. The file Resources.resw contains the
resources Text3.Text and Text3.Width, with the values "This is a sample message for Text 4"
and a value of "300".

c28.indd 842 30-01-2014 20:34:39

Localization with Windows Store Apps ❘ 843

With the code, resources can be accessed with the help of the ResourceLoader class from the namespace
Windows.ApplicationModel.Resources. Here we use the string "Messages" with the method
GetForCurrentView. Thus, the resource file Messages.resw is being used. Invoking the method
GetString retrieves the resource with the key "Hello":

 var resourceLoader = ResourceLoader.GetForCurrentView("Messages");
 text2.Text = resourceLoader.GetString("Hello");

With Windows Store apps it is also easy to use the resources directly from XAML code. With the following
TextBox, the x:Uid attribute is assigned the value Text3. This way, a resource named Text3 with exten-
sions is searched for in the resource file Resources.resw. This resource file contains value for the keys
Text3.Text and Text3.Width. The values are retrieved, and both the Text and Width properties are set:

 <TextBox x:Uid="Text3" HorizontalAlignment="Left" Margin="50"
 TextWrapping="Wrap" Text="TextBox" VerticalAlignment="Top"/>

localization with the multilingual App Toolkit
To localize Windows Store apps you can download the previously mentioned Multilingual App Toolkit. This
toolkit integrates with Visual Studio 2013. After installing the toolkit you can enable it with the Windows
Store apps via Tools ➪ Enable Multilingual Toolkit. This adds a build command to the project file and adds
one more option to the context menu in Solution Explorer. Select the option Add Translation Languages…
to invoke the dialog shown in Figure 28-18, where you can choose which languages should be trans-
lated. The sample uses Pseudo Language, French, German, and Spanish. For these languages, a Microsoft
Translator is available. This tool now creates a MultilingualResources subdirectory that contains .xlf
files for the selected languages. The .xlf files are defined with the XLIFF (XML Localisation Interchange
File Format) standard, a Microsoft-independent standard for localization.

FiGURE 28-17

c28.indd 843 30-01-2014 20:34:40

844 ❘ CHAPTER 28 LocaLization

The next time you start the build process for the project, the XLIFF files are filled with content from all the
resources. Selecting the XLIFF files in Solution Explorer, you can send these directly to translation. To do
so, select Send For Translation…, which opens e-mail and attaches the XLIFF files.

Because you have the Multilingual Toolkit on the system, you can also start the translation process by
opening the Multilingual Editor, shown in Figure 28-19. Clicking the Translate button makes use of the
Microsoft Translation Service to translate all the resource values automatically.

FiGURE 28-18

FiGURE 28-19

c28.indd 844 30-01-2014 20:34:40

Summary ❘ 845

Don’t use the translation without a manual review. The tool shows a status for every resource that is trans-
lated. After the automatic translation, the status is set to Needs Review. You have probably seen applications
with automatic translations that are incorrect and sometimes really funny.

sUmmARy
This chapter demonstrated how to globalize and localize .NET applications. For the globalization
of applications, you learned about using the namespace System.Globalization to format culture-
dependent numbers and dates. Furthermore, you learned that sorting strings by default varies according
to the culture, and you looked at using the invariant culture for a culture-independent sort. Using the
CultureAndRegionInfoBuilder class, you’ve learned how to create a custom culture.

Localizing an application is accomplished by using resources, which you can pack into files, satellite assem-
blies, or a custom store such as a database. The classes used with localization are in the namespace System
.Resources. To read resources from other places, such as satellite assemblies or resource files, you can cre-
ate a custom resource reader.

You also learned how to localize Windows Forms, WPF, ASP.NET, and Windows Store apps, and some
important vocabulary in different languages.

The next chapter provides information about XAML. XAML is used with WPF, Silverlight, XPS, Windows
Workflow Foundation, and Windows Store apps, so it provides a foundation for many technologies.

c28.indd 845 30-01-2014 20:34:40

c28.indd 846 30-01-2014 20:34:40

29
Core XAML

WHAT’s in THis CHAPTER?

 ➤ XAML syntax
 ➤ Dependency properties
 ➤ Attached properties
 ➤ Markup extensions
 ➤ Loading XAML dynamically

WRoX.CoM CodE doWnLoAds FoR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

 ➤ Code Intro
 ➤ XAML Intro
 ➤ XAML Syntax
 ➤ Dependency Objects
 ➤ Bubble Demo
 ➤ Attached Properties
 ➤ Markup Extensions

usEs oF XAML
When writing a .NET application, usually C# is not the only syntax you need to know. If you write
Windows Presentation Foundation (WPF) applications, use Windows Workfl ow Foundation (WF),
create XPS documents, or write Silverlight or Windows Store apps, you also need XAML. XAML
(eXtensible Application Markup Language) is a declarative XML syntax that’s usually needed with
these applications. This chapter describes the syntax of XAML and the extensibility mechanisms that
are available with this markup language.

c29.indd 847 30-01-2014 20:35:28

848 ❘ CHAPTER 29 Core XAML

XAML FoundATion
XAML code is declared using textual XML. You can use designers to create XAML code or write XAML
code by hand. Visual Studio contains designers to write XAML code for WPF, Silverlight, WF, or
Windows Store apps. Other tools are also available to create XAML, such as Microsoft Expression Design
and Microsoft Expression Blend.

XAML is used with several technologies, but there are differences among the various technologies. With the
XML namespace http://schemas.microsoft.com/winfx/2006/xaml/presentation, which is mapped
as the default with WPF and Windows Store apps, WPF extensions to XAML are defined. WPF makes use
of dependency properties, attached properties, and several WPF-specific markup extensions. WF 4 uses the
XML namespace http://schemas.microsoft.com/netfx/2009/xaml/activities for the definition
of the workflow activities. The XML namespace http://schemas.microsoft.com/winfx/2006/xaml
usually is mapped to the x prefix and defines features that are common to all XAML vocabularies.

With WPF applications, a XAML element maps to a .NET class. That’s not a strict requirement for
XAML. With Silverlight 1.0, .NET was not available with the plugin and the XAML code was interpreted
and could be accessed programmatically just with JavaScript. This changed with Silverlight 2.0, in which
a smaller version of the .NET Framework is part of the Silverlight plugin. With WPF, every XAML element
has a class behind it. That’s also the case with Windows Workflow Foundation—for example, the DoWhile
XAML element is a looping activity backed by the DoWhile class in the namespace System.Activities
.Statements. The Button XAML element is the same as the Button class in the System.Windows
.Controls namespace. With Windows 8 applications, every XAML element maps to either a .NET class or
a Windows Runtime class.

It’s also possible to use custom .NET classes within XML by mapping the .NET namespace to an XML
alias, which is explained in the section Using Custom .NET Classes. With .NET 4, XAML’s syntax was
enhanced, and the newer version is known as XAML 2009. (The first version of XAML is XAML 2006,
defined in the XML namespace http://schemas.microsoft.com/winfx/2006/xaml). The newest version
of XAML supports enhancements, like generics within XAML code. However, the WPF, WF, and
Windows Store apps designers available with the release of Visual Studio 2013 are still based on XAML
2006. You can use XAML 2009 by using it directly from within your applications to load XAML. This
chapter gives you the information on changes of XAML 2009.

What happens with XAML code on a build process? To compile a WPF project, MSBuild tasks are defined
in the assembly PresentationBuildTasks named MarkupCompilePass1 and MarkupCompilePass2.
These MSBuild tasks create a binary representation of the markup code named BAML (Binary Application
Markup Language) that is added to the .NET resources of an assembly. During runtime the binary
representation is used.

You can read and write XAML and BAML with readers and writers. In the namespace System.Xaml,
classes for core XAML features are available, such as abstract XamlReader and XamlWriter classes,
and concrete implementations to read and write objects and XAML XML formats. The namespace
System.Windows.Markup also contains some features that are available for all technologies using
XAML from the assembly System.Xaml. Classes from this namespace but that are found in the assembly
PresentationFramework are WPF-specific extensions. For example, there you can find other XamlReader
and XamlWriter classes that are optimized for WPF features.

How Elements Map to .nET objects
As mentioned earlier, usually a XAML element maps to a .NET class. In this section you’ll begin by creating
a Button object inside a Window programmatically with a C# console project. To compile the following
code, whereby a Button object is instantiated with the Content property set to a string, a Window is defined
with Title and Content properties set, and the assemblies PresentationFramework, PresentationCore,
WindowsBase, and System.Xaml need to be referenced (code file CodeIntro/Program.cs).

c29.indd 848 30-01-2014 20:35:29

XAML Foundation ❘ 849

using System;
using System.Windows;
using System.Windows.Controls;
namespace Wrox.ProCSharp.XAML
{
 class Program
 {
 [STAThread]
 static void Main()
 {
 var b = new Button
 {
 Content = "Click Me!"
 };
 var w = new Window
 {
 Title = "Code Demo",
 Content = b
 };

 var app = new Application();
 app.Run(w);
 }
 }
}

A similar UI can be created by using XAML code. As before, a Window element is created that contains
a Button element. The Window element has the Title attribute set in addition to its content (XAML file
XAMLIntro/MainWindow.xaml):

<Window x:Class="Wrox.ProCSharp.XAML.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="XAML Demo" Height="350" Width="525">
 <Button Content="Click Me!" />
</Window>

Of course, the Application instance in the last code example is missing. This can be defined with XAML
as well. In the Application element, the StartupUri attribute is set, which links to the XAML file that
contains the main window (XAML file XAMLIntro/App.xaml):

<Application x:Class="Wrox.ProCSharp.XAML.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri=”MainWindow.xaml">
 <Application.Resources>
 </Application.Resources>
</Application>

using Custom .nET Classes
To use custom .NET classes within XAML code, only the .NET namespace needs to be declared within
XAML, and an XML alias must be defined. To demonstrate this, a simple Person class with the FirstName
and LastName properties is defined as shown here (code file DemoLib/Person.cs):

namespace Wrox.ProCSharp.XAML
{
 public class Person
 {

c29.indd 849 30-01-2014 20:35:29

850 ❘ CHAPTER 29 Core XAML

 public string FirstName { get; set; }
 public string LastName { get; set; }
 public override string ToString()
 {
 return string.Format("{0} {1}", FirstName, LastName);
 }
 }
}

In XAML, an XML namespace alias named local is defined that maps to the .NET namespace
Wrox.ProCSharp.XAML. Now it’s possible to use all classes from this namespace with the alias. With
WPF, the clr-namespace keyword maps to a .NET namespace, whereas with Windows 8 apps the using
keyword is used to map to either a .NET or a Windows Runtime namespace.

In the XAML code, a ListBox is added that contains items of type Person. Using XAML attributes, the
values of the properties FirstName and LastName are set. When you run the application, the output of
the ToString method is shown inside the ListBox (XAML file XAMLIntro/MainWindow.xaml):

<Window x:Class="Wrox.ProCSharp.XAML.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local=”clr-namespace:Wrox.ProCSharp.XAML”
 Title="XAML Demo" Height="350" Width="525">
 <StackPanel>
 <Button Content="Click Me!" />
 <ListBox>
 <local:Person FirstName=”Stephanie” LastName=”Nagel” />
 <local:Person FirstName=”Matthias” LastName=”Nagel” />
 </ListBox>
 </StackPanel>
</Window>

noTE If the .NET namespace is not in the same assembly as the XAML code, the
assembly name must also be included with the XML namespace alias—for example,
xmlns:local="clr-namespace:Wrox.ProCSharp.XAML;assembly=XAMLIntro".
Both private and shared assemblies can be used with the reference here. With a shared
assembly the full name, including the version number, culture, and key token of
the assembly, needs to be specified here. More information about shared assemblies is
found in Chapter 19, “Assemblies”.

To map a .NET namespace to an XML namespace, you can use the assembly attribute XmlnsDefinition.
One argument of this attribute defines the XML namespace, the other the .NET namespace. Using this
attribute, it is also possible to map multiple .NET namespaces to a single XML namespace (code file
DemoLib/AssemblyInfo.cs):

 [assembly: XmlnsDefinition("http://www.wrox.com/Schemas/2010", "Wrox.ProCSharp.XAML")]

With this attribute in place, the namespace declaration in the XAML code can be changed to map to the
XML namespace (XAML file XAMLIntro/MainWindow.xaml):

<Window x:Class="Wrox.ProCSharp.XAML.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local=”http://www.wrox.com/Schemas/2010"
 Title="XAML Demo" Height="350" Width="525">
 <StackPanel>
 <Button Content="Click Me!" />
 <ListBox>
 <local:Person FirstName="Stephanie" LastName="Nagel" />

c29.indd 850 30-01-2014 20:35:29

XAML Foundation ❘ 851

 <local:Person FirstName="Matthias" LastName="Nagel" />
 </ListBox>
 </StackPanel>
</Window>

Properties as Attributes
You can set properties as attributes as long as the property type can be represented as a string or there is a
conversion from a string to the property type. The following code snippet sets the Content and Background
properties of the Button element with attributes. The Content property is of type object and thus accepts
a string. The Background property is of type Brush. The Brush type defines the BrushConverter class as a
converter type with the attribute TypeConverter, with which the class is annotated. BrushConverter uses
a list of colors to return a SolidColorBrush from the ConvertFromString method:

 <Button Content="Click Me!" Background="LightGoldenrodYellow" />

noTE A type converter derives from the base class TypeConverter in the System
.ComponentModel namespace. The type of the class that needs conversion defines
the type converter with the TypeConverter attribute. WPF uses many type
converters to convert XML attributes to a specific type, including ColorConverter,
FontFamilyConverter, PathFigureCollectionConverter, ThicknessConverter,
and GeometryConverter, to name just a few.

Properties as Elements
It’s always also possible to use the element syntax to supply the value for properties. The Background
property of the Button class can be set with the child element Button.Background. This way, more
complex brushes can be applied to this property, such as a LinearGradientBrush, as shown in the
example.

When setting the content in the sample, neither the Content attribute nor a Button.Content
element is used to write the content; instead, the content is written directly as a child value to the
Button element. That’s possible because with a base class of the Button class (ContentControl),
the ContentProperty attribute is applied, which marks the Content property as a ContentProperty:
[ContentProperty("Content")]. With such a marked property, the value of the property can be written
as a child element (XAML file XAMLSyntax/MainWindow.xaml):

 <Button>
 Click Me!
 <Button.Background>
 <LinearGradientBrush StartPoint="0.5,0.0" EndPoint="0.5, 1.0">
 <GradientStop Offset="0" Color="Yellow" />
 <GradientStop Offset="0.3" Color="Orange" />
 <GradientStop Offset="0.7" Color="Red" />
 <GradientStop Offset="1" Color="DarkRed" />
 </LinearGradientBrush>
 </Button.Background>
 </Button>

Essential .nET Types
In XAML 2006, core .NET types need to be referenced from an XML namespace like all other .NET
classes—for example, with the String with the sys alias as shown here:

<sys:String xmlns:sys="clr-namespace:System;assembly=mscorlib>Simple String</sys:String>

c29.indd 851 30-01-2014 20:35:29

852 ❘ CHAPTER 29 Core XAML

XAML 2009 defines types such as String, Boolean, Object, Decimal, Double, Int32 and others with the
x alias:

<x:String>Simple String</x:String>

using Collections with XAML
In the ListBox that contains Person elements, you’ve already seen a collection within XAML. In the
ListBox, the items have been directly defined as child elements. In addition, the LinearGradientBrush
contained a collection of GradientStop elements. This is possible because the base class ItemsControl has
the attribute ContentProperty set to the Items property of the class, and the GradientBrush base class
sets the attribute ContentProperty to GradientStops.

The following example shows a longer version that defines the background by directly setting the
GradientStops property and defining the GradientStopCollection element as its child:

 <Button Click="OnButtonClick">
 Click Me!
 <Button.Background>
 <LinearGradientBrush StartPoint="0.5,0.0" EndPoint="0.5, 1.0">
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop Offset="0" Color="Yellow" />
 <GradientStop Offset="0.3" Color="Orange" />
 <GradientStop Offset="0.7" Color="Red" />
 <GradientStop Offset="1" Color="DarkRed" />
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Button.Background>
 </Button>

To define an array, the x:Array extension can be used. The x:Array extension has a Type property that
enables you to specify the type of the array’s items:

<x:Array Type="local:Person">
 <local:Person FirstName="Stephanie" LastName="Nagel" />
 <local:Person FirstName="Matthias" LastName="Nagel" />
</x:Array>

noTE The x:Array extension is not supported with Windows Store apps.

XAML 2006 does not support generics, so to use a generic collection class from XAML you need to define
a nongeneric class that derives from the generic class and use that instead. In XAML 2009, generics are
directly supported in XAML with the x:TypeArguments attribute to define the generic type, as shown
here with ObservableCollection<T>:

<ObservableCollection x:TypeArguments="local:Person">
 <local:Person FirstName="Stephanie" LastName="Nagel" />
 <local:Person FirstName="Matthias" LastName="Nagel" />
</ObservableCollection>

Calling Constructors with XAML Code
If a class doesn’t have a default constructor it cannot be used with XAML 2006. With XAML 2009 you
can use x:Arguments to invoke a constructor with parameters. Here is the Person class instantiated with
a constructor that requires two String arguments:

c29.indd 852 30-01-2014 20:35:29

Dependency Properties ❘ 853

<local:Person>
 <x:Arguments>
 <x:String>Stephanie</x:String>
 <x:String>Nagel</x:String>
 </x:Arguments>
</local:Person>

dEPEndEnCy PRoPERTiEs
WPF uses dependency properties for data binding, animations, property change notification, styling, and so
forth. For data binding, the property of the UI element that is bound to the source of a .NET property must
be a dependency property.

From the outside, a dependency property looks like a normal .NET property. However, with a normal
.NET property you usually also define the data member that is accessed by the get and set accessors of the
property:

 private int val;
 public int Value
 {
 get
 {
 return val;
 }
 set
 {
 val = value;
 }
 }

That’s not the case with dependency properties. A dependency property usually has a get and set accessor
of a property as well. This is common with normal properties. However, with the implementation of the
get and set accessors, the methods GetValue and SetValue are invoked. GetValue and SetValue are
members of the base class DependencyObject, which also stipulates a requirement for dependency
objects—that they must be implemented in a class that derives from DependencyObject.

With a dependency property, the data member is kept inside an internal collection that is managed
by the base class and only allocates data if the value changes. With unchanged values the data can be
shared between different instances or base classes. The GetValue and SetValue methods require a
DependencyProperty argument. This argument is defined by a static member of the class that has the same
name as the property appended to the term Property. With the property Value, the static member has
the name ValueProperty. DependencyProperty.Register is a helper method that registers the property
in the dependency property system. In the following code snippet, the Register method is used with three
arguments to define the name of the property, the type of the property, and the type of the owner—that is,
the class MyDependencyObject (code file DependencyObjectDemo/MyDependencyObject.cs):

 public int Value
 {
 get { return (int)GetValue(ValueProperty); }
 set { SetValue(ValueProperty, value); }
 }
 public static readonly DependencyProperty ValueProperty =
 DependencyProperty.Register("Value", typeof(int), typeof(MyDependencyObject));

Creating a dependency Property
This section looks at an example that defines not one but three dependency properties. The class
MyDependencyObject defines the dependency properties Value, Minimum, and Maximum. All of these

c29.indd 853 30-01-2014 20:35:29

854 ❘ CHAPTER 29 Core XAML

properties are dependency properties that are registered with the method DependencyProperty.Register.
The methods GetValue and SetValue are members of the base class DependencyObject. For the Minimum
and Maximum properties, default values are defined that can be set with the DependencyProperty
.Register method and a fourth argument to set the PropertyMetadata. Using a constructor with one
parameter, PropertyMetadata, the Minimum property is set to 0, and the Maximum property is set to 100:

using System;
using System.Windows;
namespace Wrox.ProCSharp.XAML
{
 class MyDependencyObject : DependencyObject
 {
 public int Value
 {
 get { return (int)GetValue(ValueProperty); }
 set { SetValue(ValueProperty, value); }
 }
 public static readonly DependencyProperty ValueProperty =
 DependencyProperty.Register("Value", typeof(int), typeof(MyDependencyObject));
 public int Minimum
 {
 get { return (int)GetValue(MinimumProperty); }
 set { SetValue(MinimumProperty, value); }
 }
 public static readonly DependencyProperty MinimumProperty =
 DependencyProperty.Register("Minimum", typeof(int), typeof(MyDependencyObject),
 new PropertyMetadata(0));
 public int Maximum
 {
 get { return (int)GetValue(MaximumProperty); }
 set { SetValue(MaximumProperty, value); }
 }
 public static readonly DependencyProperty MaximumProperty =
 DependencyProperty.Register("Maximum", typeof(int), typeof(MyDependencyObject),
 new PropertyMetadata(100));
 }
}

noTE Within the implementation of the get and set property accessors, you should
not do anything other than invoke the GetValue and SetValue methods. Using the
dependency properties, the property values can be accessed from the outside with
the GetValue and SetValue methods, which is also done from WPF; therefore, the
strongly typed property accessors might not be invoked at all. They are just here for
convenience, so you can use the normal property syntax from your custom code.

Coerce Value Callback
Dependency properties support coercion. Using coercion, the value of a property can be checked to see if
it is valid—for example, that it falls within a valid range. That’s why the Minimum and Maximum properties
are included in the sample. Now the registration of the Value property is changed to pass the event handler
method CoerceValue to the constructor of PropertyMetadata, which is passed as an argument to the
DependencyProperty.Register method. The CoerceValue method is invoked with every change of
the property value from the implementation of the SetValue method. Within CoerceValue(), the set value
is checked to determine whether it falls within the specified minimum and maximum range; if not, the
value is set accordingly (code file DependencyObjectDemo/MyDependencyObject.cs).

c29.indd 854 30-01-2014 20:35:30

Dependency Properties ❘ 855

using System;
using System.Windows;
namespace Wrox.ProCSharp.XAML
{
 class MyDependencyObject : DependencyObject
 {
 public int Value
 {
 get { return (int)GetValue(ValueProperty); }
 set { SetValue(ValueProperty, value); }
 }
 public static readonly DependencyProperty ValueProperty =
 DependencyProperty.Register(“Value”, typeof(int), typeof(MyDependencyObject));
 new PropertyMetadata(0, null, CoerceValue));
 public int Minimum
 {
 get { return (int)GetValue(MinimumProperty); }
 set { SetValue(MinimumProperty, value); }
 }
 public static readonly DependencyProperty MinimumProperty =
 DependencyProperty.Register("Minimum", typeof(int), typeof(MyDependencyObject),
 new PropertyMetadata(0));
 public int Maximum
 {
 get { return (int)GetValue(MaximumProperty); }
 set { SetValue(MaximumProperty, value); }
 }
 public static readonly DependencyProperty MaximumProperty =
 DependencyProperty.Register("Maximum", typeof(int), typeof(MyDependencyObject),
 new PropertyMetadata(100));
 private static object CoerceValue(DependencyObject element, object value)
 {
 int newValue = (int)value;
 MyDependencyObject control = (MyDependencyObject)element;

 newValue = Math.Max(control.Minimum, Math.Min(control.Maximum, newValue));
 return newValue;
 }
 }
}

Value Changed Callbacks and Events
To get some information on value changes, dependency properties also support value change callbacks.
You can add a DependencyPropertyChanged event handler to the DependencyProperty.Register
method that is invoked when the property value changes. In the sample code, the handler method
OnValueChanged is assigned to the PropertyChangedCallback of the PropertyMetadata object.
In the OnValueChanged method, you can access the old and new values of the property with the
DependencyPropertyChangedEventArgs argument:

using System;
using System.Windows;
namespace Wrox.ProCSharp.XAML
{
 class MyDependencyObject : DependencyObject
 {
 public int Value
 {
 get { return (int)GetValue(ValueProperty); }
 set { SetValue(ValueProperty, value); }
 }

c29.indd 855 30-01-2014 20:35:30

856 ❘ CHAPTER 29 Core XAML

 public static readonly DependencyProperty ValueProperty =
 DependencyProperty.Register("Value", typeof(int), typeof(MyDependencyObject),
 new PropertyMetadata(0, OnValueChanged, CoerceValue));
 //...
 private static void OnValueChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 int oldValue = (int)args.OldValue;
 int newValue = (int)args.NewValue;
 //...
 }
 }
}

BuBBLing And TunnELing EVEnTs
Elements can be contained in other elements. With XAML and WPF, you can define that a Button contains
a ListBox; and the ListBox can contain items that are Button controls. When you click on an inner
Button control, the Click event should go all the way up to the controls that contain the inner control.
The Click event is a bubbling event. The PreviewMouseMove event is a tunneling event that tunnels from
the outside to the inside. First the outer controls receive the event followed by the inner controls. The
MouseMove event follows the PreviewMouseMove event and is a bubbling event that bubbles from the inside
to the outside. WPF supports these bubbling and tunneling events, which are often used in pairs.

noTE Core information about .NET events is explained in Chapter 8, “Delegates,
Lambdas, and Events.”

To demonstrate bubbling, the following XAML code contains four Button controls whereby
the surrounding StackPanel defines an event handler for the Button.Click event named
OnOuterButtonClick. button2 contains a ListBox that has two Button controls as its children and the
Click event handler OnButton2. Both of the inner buttons also have an event handler associated with
the Click event (XAML file BubbleDemo/MainWindow.xaml):

<Window x:Class=" Wrox.ProCSharp.XAML.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <StackPanel x:Name="stackPanel1" Button.Click="OnOuterButtonClick">
 <Button x:Name="button1" Content="Button 1" Margin="5" />
 <Button x:Name="button2" Margin="5" Click="OnButton2" >
 <ListBox x:Name="listBox1">
 <Button x:Name="innerButton1" Content="Inner Button 1" Margin="4" Padding="4"
 Click="OnInner1" />
 <Button x:Name="innerButton2" Content="Inner Button 2" Margin="4" Padding="4"
 Click="OnInner2" />
 </ListBox>
 </Button>
 <ListBox ItemsSource="{Binding}" />
 </StackPanel>
</Window>

The event handler methods are implemented in the code-behind. The second argument of the handler
methods is of type RoutedEventArgs, which provides information about the Source of the event and the
OriginalSource. When you click button1, the handler method OnOuterButtonClick is invoked, although
there’s no Click event directly associated with this button; the event is bubbled to the container element. In
that case both Source and OriginalSource properties are set to button1. If you click button2 first, the

c29.indd 856 30-01-2014 20:35:30

Bubbling and Tunneling Events ❘ 857

event handler OnButton2 is invoked, followed by OnOuterButtonClick. The handler OnButton2 changes
the Source property, so with OnOuterButtonClick you see a different Source in the handler than
before. The Source property of an event can be changed; the OriginalSource is readonly. Clicking the
button innerButton1 invokes the OnInner1 event handler followed by OnButton2 and OnOuterButtonClick.
The event bubbles. When you click innerButton2 only the handler OnInner2 is invoked because the Handled
property there is set to true. Bubbling stops here (code file BubbleDemo/MainWindow.xaml.cs):

using System;
using System.Collections.ObjectModel;
using System.Windows;
namespace BubbleDemo
{
 public partial class MainWindow : Window
 {
 private ObservableCollection<string> messages = new ObservableCollection<string>();
 public MainWindow()
 {
 InitializeComponent();
 this.DataContext = messages;
 }
 private void AddMessage(string message, object sender, RoutedEventArgs e)
 {
 messages.Add(String.Format("{0}, sender: {1}; source: {2}; original source: {3}",
 message, (sender as FrameworkElement).Name,
 (e.Source as FrameworkElement).Name,
 (e.OriginalSource as FrameworkElement).Name));
 }
 private void OnOuterButtonClick(object sender, RoutedEventArgs e)
 {
 AddMessage("outer event", sender, e);
 }
 private void OnInner1(object sender, RoutedEventArgs e)
 {
 AddMessage("inner1", sender, e);
 }
 private void OnInner2(object sender, RoutedEventArgs e)
 {
 AddMessage("inner2", sender, e);
 e.Handled = true;
 }
 private void OnButton2(object sender, RoutedEventArgs e)
 {
 AddMessage("button2", sender, e);
 e.Source = sender;
 }
 }
}

noTE Changing both the source and the event type is very common. For example,
the Button class reacts to the mouse down and up events, handles these, and creates
a button Click event instead.

noTE If the implementation of different handlers is very similar (for example, multiple
buttons in a container), writing just one event handler in a container control and
reacting to bubbling events is very beneficial. In the implementation, you just need to
differentiate the sender or source.

c29.indd 857 30-01-2014 20:35:30

858 ❘ CHAPTER 29 Core XAML

To define bubbling and tunneling events in custom classes, the MyDependencyObject is changed to
support an event on a value change. For bubbling and tunneling event support, the class must derive from
UIElement instead of DependencyObject because this class defines AddHandler and RemoveHandler
methods for events.

To enable the caller of the MyDependencyObject to receive information about value changes, the class
defines the ValueChanged event. The event is declared with explicit add and remove handlers, where the
AddHandler and RemoveHandler methods of the base class are invoked. These methods require a type
RoutedEvent and the delegate as parameters. The routed event named ValueChangedEvent is declared very
similarly to a dependency property. It is declared as a static member and registered by calling the method
EventManager.RegisterRoutedEvent. This method requires the name of the event, the routing strategy
(which can be Bubble, Tunnel, or Direct), the type of the handler, and the type of the owner class. The
EventManager class also enables you to register static events and get information about the events registered
(code file DependecnyObjectDemo/MyDependencyObject.cs):

using System;
using System.Windows;
namespace Wrox.ProCSharp.XAML
{
 class MyDependencyObject : UIElement
 {
 public int Value
 {
 get { return (int)GetValue(ValueProperty); }
 set { SetValue(ValueProperty, value); }
 }
 public static readonly DependencyProperty ValueProperty =
 DependencyProperty.Register("Value", typeof(int), typeof(MyDependencyObject),
 new PropertyMetadata(0, OnValueChanged, CoerceValue));
 //...
 private static void OnValueChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 MyDependencyObject control = (MyDependencyObject)obj;
 var e = new RoutedPropertyChangedEventArgs<int>((int)args.OldValue,
 (int)args.NewValue, ValueChangedEvent);
 control.OnValueChanged(e);
 }
 public static readonly RoutedEvent ValueChangedEvent =
 EventManager.RegisterRoutedEvent(“ValueChanged”, RoutingStrategy.Bubble,
 typeof(RoutedPropertyChangedEventHandler<int>), typeof(MyDependencyObject));
 public event RoutedPropertyChangedEventHandler<int> ValueChanged
 {
 add
 {
 AddHandler(ValueChangedEvent, value);
 }
 remove
 {
 RemoveHandler(ValueChangedEvent, value);
 }
 }
 protected virtual void OnValueChanged(RoutedPropertyChangedEventArgs<int> args)
 {
 RaiseEvent(args);
 }
 }
}

Now you can use this with bubbling functionality in the same way that you’ve seen it used before with the
button Click event.

c29.indd 858 30-01-2014 20:35:30

Attached Properties ❘ 859

ATTACHEd PRoPERTiEs
Whereas dependency properties are properties available with a specific type, with an attached property you
can define properties for other types. Some container controls define attached properties for their children;
for example, if the DockPanel control is used, a Dock property is available for its children. The Grid control
defines Row and Column properties.

The following code snippet demonstrates how this looks in XAML. The Button class doesn’t have the
property Dock, but it’s attached from the DockPanel:

<DockPanel>
 <Button Content="Top" DockPanel.Dock=”Top" Background="Yellow" />
 <Button Content="Left" DockPanel.Dock=”Left” Background="Blue" />
</DockPanel>

Attached properties are defined very similarly to dependency properties, as shown in the next example.
The class that defines the attached properties must derive from the base class DependencyObject and
defines a normal property, where the get and set accessors invoke the methods GetValue and SetValue
of the base class. This is where the similarities end. Instead of invoking the method Register with the
DependencyProperty class, now RegisterAttached is invoked, which registers an attached property that
is now available with every element (code file AttachedPropertyDemo/MyAttachedProperyProvider.cs):

using System.Windows;
namespace Wrox.ProCSharp.XAML
{
 class MyAttachedPropertyProvider : DependencyObject
 {
 public int MyProperty
 {
 get { return (int)GetValue(MyPropertyProperty); }
 set { SetValue(MyPropertyProperty, value); }
 }
 public static readonly DependencyProperty MyPropertyProperty =
 DependencyProperty.RegisterAttached("MyProperty", typeof(int),
 typeof(MyAttachedPropertyProvider));
 public static void SetMyProperty(UIElement element, int value)
 {
 element.SetValue(MyPropertyProperty, value);
 }
 public static int GetMyProperty(UIElement element)
 {
 return (int)element.GetValue(MyPropertyProperty);
 }
 }
}

noTE You might assume that DockPanel.Dock can only be added to elements within
a DockPanel. In reality, attached properties can be added to any element. However, no
one would use this property value. The DockPanel is aware of this property and reads
it from its children elements to arrange them.

In the XAML code, the attached property can now be attached to any elements. The second Button control,
named button2, has the property MyAttachedPropertyProvider.MyProperty attached to it and the value
5 assigned (XAML file AttachedPropertyDemo/MainWindow.xaml):

<Window x:Class="Wrox.ProCSharp.XAML.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

c29.indd 859 30-01-2014 20:35:30

860 ❘ CHAPTER 29 Core XAML

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Wrox.ProCSharp.XAML"
 Title="MainWindow" Height="350" Width="525">
 <Grid x:Name="grid1">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Button Grid.Row=”0” x:Name=”button1” Content=”Button 1” />
 <Button Grid.Row=”1” x:Name=”button2” Content=”Button 2”
 local:MyAttachedPropertyProvider.MyProperty=”5” />
 <ListBox Grid.Row="2" x:Name="list1" />
 </Grid>
</Window>

Doing the same in code-behind it is necessary to invoke the static method SetMyProperty of the class
MyAttachedPropertyProvider. It’s not possible to extend the class Button with a property. The method
SetProperty gets a UIElement instance that should be extended by the property and the value. In the
following code snippet, the property is attached to button1 and the value is set to 44.

The foreach loop that follows the property setting retrieves the values from the attached properties from
all child elements of the Grid element grid1. The values are retrieved with the GetProperty method of the
class MyAttachedPropertyProvider. This is done from the DockPanel and the Grid control to retrieve
the settings from its children in order to arrange them (code file AttachedPropertyDemo/MainWindow
.xaml.cs):

using System;
using System.Windows;
namespace Wrox.ProCSharp.XAML
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 MyAttachedPropertyProvider.SetMyProperty(button1, 44);
 foreach (object item in LogicalTreeHelper.GetChildren(grid1))
 {
 FrameworkElement e = item as FrameworkElement;
 if (e != null)
 list1.Items.Add(String.Format(“{0}: {1}”, e.Name,
 MyAttachedPropertyProvider.GetMyProperty(e)));
 }
 }
 }
}

noTE Some mechanisms are available to extend classes later. Extension methods can
be used to extend any class with methods. Extension methods only support extending
classes with methods, not properties. They are explained in Chapter 3, “Objects and
Types.” The ExpandoObject class allows the extension of types with methods and
properties. To use this feature, the class must derive from ExpandoObject
.ExpandoObject; dynamic types are explained in Chapter 12, “Dynamic Language
Extensions.”

c29.indd 860 30-01-2014 20:35:31

Markup Extensions ❘ 861

noTE Chapters 35, “Core WPF,” and 36, “Business Applications with WPF,” show
many different attached properties in action—for example, attached properties from
container controls such as Canvas, DockPanel, Grid, but also the ErrorTemplate
property from the Validation class.

MARkuP EXTEnsions
With markup extensions you can extend XAML, with either element or attribute syntax. If an XML
attribute contains curly brackets, that’s a sign of a markup extension. Often markup extensions with
attributes are used as shorthand notation instead of using elements.

One example of such a markup extension is StaticResourceExtension, which finds resources. Here’s a
resource of a linear gradient brush with the key gradientBrush1 (XAML file MarkupExtensionDemo/
MainWindow.xaml):

 <Window.Resources>
 <LinearGradientBrush x:Key="gradientBrush1" StartPoint="0.5,0.0" EndPoint="0.5, 1.0">
 <GradientStop Offset="0" Color="Yellow" />
 <GradientStop Offset="0.3" Color="Orange" />
 <GradientStop Offset="0.7" Color="Red" />
 <GradientStop Offset="1" Color="DarkRed" />
 </LinearGradientBrush>
 </Window.Resources>

This resource can be referenced by using the StaticResourceExtension with attribute syntax to set
the Background property of a TextBlock. Attribute syntax is defined by curly brackets and the name
of the extension class without the Extension suffix:

 <TextBlock Text="Test" Background="{StaticResource gradientBrush1}" />

The longer form of the attribute shorthand notation uses element syntax, as the next code snippet
demonstrates. StaticResourceExtension is defined as a child element of the TextBlock.Background
element. The property ResourceKey is set with an attribute to gradientBrush1. In the previous example,
the resource key is not set with the property ResourceKey (which would be possible as well) but with
a constructor overload where the resource key can be set:

 <TextBlock Text="Test">
 <TextBlock.Background>
 <StaticResourceExtension ResourceKey="gradientBrush1" />
 </TextBlock.Background>
 </TextBlock>

Creating Custom Markup Extensions
A markup extension is created by defining a class that derives from the base class MarkupExtension. Most
markup extensions have the Extension suffix (this naming convention is similar to the Attribute suffix
with attributes, which you can read about in Chapter 15, “Reflection”). With a custom markup extension,
you only need to override the method ProvideValue, which returns the value from the extension. The
type that is returned is annotated to the class with the attribute MarkupExtensionReturnType. With the
method ProvideValue, an IServiceProvider object is passed. With this interface you can query for
different services, such as IProvideValueTarget or IXamlTypeResolver. IProvideValueTarget can be
used to access the control and property to which the markup extension is applied with the TargetObject
and TargetProperty properties. IXamlTypeResolver can be used to resolve XAML element names to
CLR objects. The custom markup extension class CalculatorExtension defines the properties X and Y of

c29.indd 861 30-01-2014 20:35:31

862 ❘ CHAPTER 29 Core XAML

type double and an Operation property that is defined by an enumeration. Depending on the value of the
Operation property, different calculations are done on the X and Y input properties, and a string is returned
(code file MarkupExtensionDemo/CalculatorExtension.cs):

using System;
using System.Windows;
using System.Windows.Markup;
namespace Wrox.ProCSharp.XAML
{
 public enum Operation
 {
 Add,
 Subtract,
 Multiply,
 Divide
 }
 [MarkupExtensionReturnType(typeof(string))]
 public class CalculatorExtension : MarkupExtension
 {
 public CalculatorExtension()
 {
 }
 public double X { get; set; }
 public double Y { get; set; }
 public Operation Operation { get; set; }
 public override object ProvideValue(IServiceProvider serviceProvider)
 {
 IProvideValueTarget provideValue =
 serviceProvider.GetService(typeof(IProvideValueTarget))
 as IProvideValueTarget;
 if (provideValue != null)
 {
 var host = provideValue.TargetObject as FrameworkElement;
 var prop = provideValue.TargetProperty as DependencyProperty;
 }
 double result = 0;
 switch (Operation)
 {
 case Operation.Add:
 result = X + Y;
 break;
 case Operation.Subtract:
 result = X - Y;
 break;
 case Operation.Multiply:
 result = X * Y;
 break;
 case Operation.Divide:
 result = X / Y;
 break;
 default:
 throw new ArgumentException("invalid operation");
 }
 return result.ToString();
 }
 }
}

The markup extension can now be used with an attribute syntax in the first TextBlock to add the values
3 and 4, or with the element syntax with the second TextBlock (XAML file MarkupExtensionDemo/
MainWindow.xaml).

c29.indd 862 30-01-2014 20:35:31

Reading and Writing XAML ❘ 863

<Window x:Class="Wrox.ProCSharp.XAML.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Wrox.ProCSharp.XAML"
 Title="MainWindow" Height="350" Width="525">
 <StackPanel>
 <TextBlock Text="{local:Calculator Operation=Add, X=3, Y=4}" />
 <TextBlock>
 <TextBlock.Text>
 <local:CalculatorExtension>
 <local:CalculatorExtension.Operation>
 <local:Operation>Multiply</local:Operation>
 </local:CalculatorExtension.Operation>
 <local:CalculatorExtension.X>7</local:CalculatorExtension.X>
 <local:CalculatorExtension.Y>11</local:CalculatorExtension.Y>
 </local:CalculatorExtension>
 </TextBlock.Text>
 </TextBlock>
 </StackPanel>
</Window>

XAML-defined Markup Extensions
Markup extensions provide a lot of capabilities, and indeed XAML-defined markup extensions have already
been used in this chapter. x:Array, which was shown in the “Collections” section, is defined as the markup
extension class ArrayExtension. With this markup extension, using the attribute syntax is not possible
because it would be difficult to define a list of elements.

Other markup extensions that are defined with XAML are the TypeExtension (x:Type), which returns the
type based on string input; NullExtension (x:Null), which can be used to set values to null in XAML; and
StaticExtension (x:Static), which is used to invoke static members of a class.

WPF, WF, and WCF define markup extensions that are specific to these technologies. WPF uses markup
extensions to access resources, for data binding, and for color conversion; WF uses markup extensions with
activities; and WCF defines markup extensions for endpoint definitions.

REAding And WRiTing XAML
Several APIs exist for reading and writing XAML. There are high-level APIs that are easy to use but have
less functionality, and low-level APIs with more features. Technology-specific APIs that make use of specific
WPF or WF features are also available. XAML can be read from a textual XML form, from BAML, or
from object trees, and written to XML or object trees.

Generic high-level APIs are available in the namespace System.Xaml. The class XamlServices allows
loading, parsing, saving, and transforming XAML. XamlServices.Load can load XAML code from a file,
a stream, or a reader, or by using a XamlReader object. XamlReader (in the namespace System.Xaml) is
an abstract base class that has several concrete implementations. XamlObjectReader reads an object tree,
XamlXmlReader reads XAML from an XML file, and Baml2006Reader reads the binary form of XAML.
XamlDebuggerXmlReader, from the namespace System.Activities.Debugger, is a special reader for WF
with special debugging support.

When passing XAML code in a string to XamlServices, the Parse method can be used. XamlServices
.Save can be used to save XAML code. With the Save method you can use data sources similar to
those used with the Load method. The object passed can be saved to a string, a stream, a TextWriter, a
XamlWriter, or an XmlWriter. XamlWriter is an abstract base class. Classes that derive from XamlWriter
are XamlObjectWriter and XamlXmlWriter.

c29.indd 863 30-01-2014 20:35:31

864 ❘ CHAPTER 29 Core XAML

When converting XAML from one format in another, you can use XamlServices.Transform. With the
Transform method, you pass a XamlReader and a XamlWriter so that you can convert any format that is
supported by specific readers and writers.

Instead of using the high-level API XamlServices class, you can use generic low-level APIs directly, which
means using specific XamlReader and XamlWriter classes. With a reader, you can read node by node from
a XAML tree with the Read method.

The generic XamlServices class doesn’t support specific WPF features such as dependency properties or
freezable objects. To read and write WPF XAML, you can use the classes XamlReader and XamlWriter
from the namespace System.Windows.Markup that is defined in the assembly PresentationFramework,
and thus has access to the WPF features. The names of these classes might be confusing, as the same class
names are used with classes from different namespaces. System.Xaml.XamlReader is the abstract base class
for readers; System.Windows.Markup.XamlReader is the WPF class to read XAML. This can be even more
confusing when using the Load method of the WPF XamlReader class that accepts a System.Xaml
.XamlReader as argument.

An optimized version to read XAML for WF is WorkflowXamlServices in the namespace System
.Activities. This class is used to create dynamic activities during runtime.

noTE Dynamic activities and Windows Workflow Foundation are explained in
Chapter 45, “Windows Workflow Foundation.”

The following simple example loads XAML dynamically from a file to create an object tree and to attach
the object tree to a container element, such as a StackPanel:

 FileStream stream = File.OpenRead("Demo1.xaml");
 object tree = System.Windows.Markup.XamlReader.Load(stream);
 container1.Children.Add(tree as UIElement);

suMMARy
In this chapter, you’ve seen the core functionality of XAML and some specific characteristics such as
dependency properties, attached properties, bubbling and tunneling events, and markup extensions.
With these features, you’ve not only seen the foundation of XAML based technologies, but also ways
how C# and .NET features like properties and events can be adapted to extended use cases. Properties
have been enhanced to support change notification and validation (dependency properties), and ways on
adding properties to controls that don’t really offer such properties (attached properties). Events have been
enhanced with bubbling and tunneling functionality.

All these features facilitate the foundation for different XAML technologies, such as WPF, WF, and
Windows 8 applications.

You can read more about XAML and see XAML in action in a lot of chapters in this book. In particular,
you should read Chapters 35 and 36 for WPF, Chapter 37 for XPS, Chapter 38 and 39 for Windows Store
apps and Chapter 45 for Windows Workflow Foundation.

The next chapter is about the Managed Extensibility Framework (MEF).

c29.indd 864 30-01-2014 20:35:31

Managed Extensibility
Framework

WHAT’s iN THis CHAPTER?

➤➤ Architecture of the Managed Extensibility Framework
➤➤ MEF using Attributes
➤➤ Convention-based Registration
➤➤ Contracts
➤➤ Exports and imports of parts
➤➤ Containers used by hosting applications
➤➤ Catalogs for fi nding parts

WRox.CoM CoDE DoWNLoADs FoR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ Attribute-Based Sample
➤➤ Convention-Based Sample
➤➤ WPFCalculator

iNTRoDuCTioN
Add-ins (or plugins) enable you to add functionality to an existing application. You can create a
hosting application that gains more and more functionality over time — such functionality might be
written by your team of developers, but different vendors can also extend your application by creating
add-ins.

Today, add-ins are used with many different applications, such as Internet Explorer and Visual Studio.
Internet Explorer is a hosting application that offers an add-in framework that is used by many
companies to provide extensions when viewing web pages. The Shockwave Flash Object enables you
to view web pages with Flash content. The Google toolbar offers specifi c Google features that can be

30

c30.indd 865 30-01-2014 20:58:47

866 ❘ CHAPTER 30 Managed extensibility FraMework

accessed quickly from Internet Explorer. Visual Studio also has an add-in model that enables you to extend
Visual Studio with different levels of extensions.

For your custom applications, it has always been possible to create an add-in model to dynamically load and
use functionality from assemblies. However, all the issues associated with finding and using add-ins need
to be resolved. You can accomplish that automatically using the Managed Extensibility Framework (MEF).
The MEF can also be used on a smaller scale. For creating boundaries, MEF helps remove dependencies
between parts and the clients or callers that make use of the parts. Such dependencies can also be removed
just by using interfaces or delegates. However, MEF also helps in finding the parts by using catalogs, and
connecting callers and parts in turn.

The major namespace covered in this chapter is System.ComponentModel.Composition.

MEF ARCHiTECTuRE
The .NET 4.5 Framework offers two technologies for writing flexible applications that load add-ins
dynamically. One is the Managed Extensibility Framework (MEF), which is covered in this chapter. Another
technology that has been available since .NET 3.5 is the Managed Add-in Framework (MAF). MAF uses
a pipeline for communication between the add-in and the host application that makes the development
process more complex but offers separation of add-ins via app-domains or even different processes. In that
regard, MEF is the simpler of these two technologies. MAF and MEF can be combined to get the advantage
of each, but it doubles the work.

MEF is built with parts and containers, as shown in Figure 30-1. A container finds parts from a catalog;
and the catalog finds parts within an assembly or a directory. The container connects imports to exports,
thereby making parts available to the hosting application.

Host
Application

[Import]

[Export]
Part

Container
Uses

Catalog

finds partsmaps imports

connects

Uses

Uses

FiguRE 30-1

Here’s the full picture of how parts are loaded. As mentioned, parts are found within a catalog. The catalog
uses exports to find its parts. An export provider accesses the catalog to offer the exports from the catalog.
Multiple export providers can be connected in chains for customizing exports — for example, with a custom
export provider to only allow parts for specific users or roles. The container uses export providers to
connect imports to exports and is itself an export provider.

c30.indd 866 30-01-2014 20:58:49

MEF Architecture ❘ 867

MEF consists of three large categories: classes for hosting, primitives, and classes for the attribute-based
mechanism. Hosting classes include catalogs and containers. Primitive classes can be used as base classes to
extend the MEF architecture to use other techniques to connect exports and imports. Of course, the classes
that make up the implementation of the attribute-based mechanism with reflection, such as the Export and
Import attributes, and classes that offer extension methods that make it easier to work with attribute-based
parts are also part of MEF.

NoTE The MEF implementation is based on attributes that specify what parts should
be exported and then map these to the imports. However, the technology is flexible
and allows for other mechanisms to be implemented by using the abstract base class
ComposablePart and extension methods with reflection-based mechanisms from the
class ReflectionModelServices.

MEF using Attributes
Let’s start with a simple example to demonstrate the MEF architecture. The hosting application can
dynamically load add-ins. With MEF, an add-in is referred to as a part. Parts are defined as exports and are loaded
into a container that imports parts. The container finds parts by using a catalog; and the catalog lists parts.

In this example, a simple console application is created to host calculator add-ins from a library. To
create independence from the host and the calculator add-in, three assemblies are required. One assembly,
CalculatorContract, holds the contracts that are used by both the add-in assembly and the hosting
executable. The add-in assembly SimpleCalculator implements the contract defined by the contract assem-
bly. The host uses the contract assembly to invoke the add-in.

The contracts in the assembly CalculatorContract are defined by two interfaces, ICalculator and
IOperation. The ICalculator interface defines the methods GetOperations and Operate. The
GetOperations method returns a list of all operations that the add-in calculator supports, and with the
Operate method an operation is invoked. This interface is flexible in that the calculator can support
different operations. If the interface defined Add and Subtract methods instead of the flexible Operate
method, a new version of the interface would be required to support Divide and Multiply methods.
With the ICalculator interface as it is defined in this example, however, the calculator can offer any num-
ber of operations with any number of operands (code file AttributeBasedSample/CalculatorContract/
ICalculator.cs):

using System.Collections.Generic;
namespace Wrox.ProCSharp.MEF
{
 public interface ICalculator
 {
 IList<IOperation> GetOperations();
 double Operate(IOperation operation, double[] operands);
 }
}

The ICalculator interface uses the IOperation interface to return the list of operations and to invoke an
operation. The IOperation interface defines the read-only properties Name and NumberOperands (code file
AttributeBasedSample/CalculatorContract/IOperation.cs):

namespace Wrox.ProCSharp.MEF
{
 public interface IOperation

c30.indd 867 30-01-2014 20:58:49

868 ❘ CHAPTER 30 Managed extensibility FraMework

 {
 string Name { get; }
 int NumberOperands { get; }
 }
}

The CalculatorContract assembly doesn’t require any reference to MEF assemblies. Only simple .NET
interfaces are contained within it.

The add-in assembly SimpleCalculator contains classes that implement the interfaces defined by the
contracts. The class Operation implements the interface IOperation. This class contains just two
 properties as defined by the interface. The interface defines get accessors of the properties; internal set
accessors are used to set the properties from within the assembly (code file AttributeBasedSample/
SimpleCalculator/Operation.cs):

namespace Wrox.ProCSharp.MEF
{
 public class Operation : IOperation
 {
 public string Name { get; internal set; }
 public int NumberOperands { get; internal set; }
 }
}

The Calculator class provides the functionality of this add-in by implementing the ICalculator
interface. The Calculator class is exported as a part as defined by the Export attribute. This attribute is
defined in the System.ComponentModel.Composition namespace in the System.ComponentModel
.Composition assembly (code file AttributeBasedSample/SimpleCalculator/Calculator.cs):

using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;
namespace Wrox.ProCSharp.MEF
{
 [Export(typeof(ICalculator))]
 public class Calculator : ICalculator
 {
 public IList<IOperation> GetOperations()
 {
 return new List<IOperation>()
 {
 new Operation { Name="+", NumberOperands=2},
 new Operation { Name="-", NumberOperands=2},
 new Operation { Name="/", NumberOperands=2},
 new Operation { Name="*", NumberOperands=2}
 };
 }
 public double Operate(IOperation operation, double[] operands)
 {
 double result = 0;
 switch (operation.Name)
 {
 case "+":
 result = operands[0] + operands[1];
 break;
 case "-":
 result = operands[0] - operands[1];
 break;
 case "/":
 result = operands[0] / operands[1];

c30.indd 868 30-01-2014 20:58:49

MEF Architecture ❘ 869

 break;
 case "*":
 result = operands[0] * operands[1];
 break;
 default:
 throw new InvalidOperationException(String.Format(
 "invalid operation {0}", operation.Name));
 }
 return result;
 }
 }
}

The hosting application is a simple console application. The add-in uses an Export attribute to define what
is exported; with the hosting application, the Import attribute defines what is used. Here, the Import
attribute annotates the Calculator property that sets and gets an object implementing ICalculator.
Therefore, any calculator add-in that implements this interface can be used here (code file
AttributeBasedSample/SimpleHost/Program.cs):

using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using Wrox.ProCSharp.MEF.Properties;
namespace Wrox.ProCSharp.MEF
{
 class Program
 {
 [Import]
 public ICalculator Calculator { get; set; }

In the entry method Main of the console application, a new instance of the Program class is created, and
then the Run method invoked. In the Run method, a DirectoryCatalog is created that is initialized
with the AddInDirectory, which is configured in the application configuration file. Settings.Default
.AddInDirectory makes use of the project property Settings to use a strongly typed class to access a
custom configuration.

The CompositionContainer class is a repository of parts. This container is initialized with the
DirectoryCatalog to get the parts from the directory that is served by this catalog. ComposeParts
is an extension method that extends the class CompositionContainer and is defined with the class
AttributedModelServices. This method requires parts with an Import attribute passed with the
arguments. Because the Program class has an Import attribute with the property Calculator, the instance
of the Program class can be passed to this method. With the implementation for the imports, exports are
searched and mapped. After a successful call of this method, exports mapped to the imports can be used.
If not all imports can be mapped to exports, an exception of type ChangeRejectedException is thrown,
which is caught to write the error message and to exit from the Run method:

 static void Main()
 {
 var p = new Program();
 p.Run();
 }
 public void Run()
 {
 var catalog = new DirectoryCatalog(Settings.Default.AddInDirectory);
 var container = new CompositionContainer(catalog);
 try
 {
 container.ComposeParts(this);
 }

c30.indd 869 30-01-2014 20:58:49

870 ❘ CHAPTER 30 Managed extensibility FraMework

 catch (ChangeRejectedException ex)
 {
 Console.WriteLine(ex.Message);
 return;
 }

With the Calculator property, the methods from the interface ICalculator can be used. GetOperations
invokes the methods of the previously created add-in, which returns four operations. After asking the user
what operation should be invoked and requesting the operand values, the add-in method Operate is called:

 var operations = Calculator.GetOperations();
 var operationsDict = new SortedList<string, IOperation>();
 foreach (var item in operations)
 {
 Console.WriteLine("Name: {0}, number operands: {1}", item.Name,
 item.NumberOperands);
 operationsDict.Add(item.Name, item);
 }
 Console.WriteLine();
 string selectedOp = null;
 do
 {
 try
 {
 Console.Write("Operation? ");
 selectedOp = Console.ReadLine();
 if (selectedOp.ToLower() == "exit" || !operationsDict.ContainsKey(selectedOp))
 continue;
 var operation = operationsDict[selectedOp];
 double[] operands = new double[operation.NumberOperands];
 for (int i = 0; i < operation.NumberOperands; i++)
 {
 Console.Write("\t operand {0}? ", i + 1);
 string selectedOperand = Console.ReadLine();
 operands[i] = double.Parse(selectedOperand);
 }
 Console.WriteLine("calling calculator");
 double result = Calculator.Operate(operation, operands);
 Console.WriteLine("result: {0}", result);
 }
 catch (FormatException ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine();
 continue;
 }
 } while (selectedOp != "exit");
 }
 }
}

The output of one sample run of the application is shown here:

Name: +, number operands: 2
Name: -, number operands: 2
Name: /, number operands: 2
Name: *, number operands: 2
Operation? +
 operand 1? 3
 operand 2? 5
calling calculator

c30.indd 870 30-01-2014 20:58:49

MEF Architecture ❘ 871

result: 8
Operation? -
 operand 1? 7
 operand 2? 2
calling calculator
result: 5
Operation? exit

Without recompiling the host application, it is possible to use a completely different add-in library. The
assembly AdvCalculator defines a different implementation for the Calculator class to offer more
 operations. This calculator can be used in place of the other one by copying the assembly to the directory
that is specified by the DirectoryCatalog in the hosting application (code file AttributeBasedSample/
SimpleCalculator/Calculator.cs):

using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;
namespace Wrox.ProCSharp.MEF
{
 [Export(typeof(ICalculator))]
 public class Calculator : ICalculator
 {
 public IList<IOperation> GetOperations()
 {
 return new List<IOperation>()
 {
 new Operation { Name="+", NumberOperands=2},
 new Operation { Name="-", NumberOperands=2},
 new Operation { Name="/", NumberOperands=2},
 new Operation { Name="*", NumberOperands=2},
 new Operation { Name=”%”, NumberOperands=2},
 new Operation { Name=”++”, NumberOperands=1},
 new Operation { Name=”--”, NumberOperands=1}
 };
 }
 public double Operate(IOperation operation, double[] operands)
 {
 double result = 0;
 switch (operation.Name)
 {
 case "+":
 result = operands[0] + operands[1];
 break;
 case "-":
 result = operands[0] - operands[1];
 break;
 case "/":
 result = operands[0] / operands[1];
 break;
 case "*":
 result = operands[0] * operands[1];
 break;
 case “%”:
 result = operands[0] % operands[1];
 break;
 case “++”:
 result = ++operands[0];
 break;
 case “--”:
 result = --operands[0];
 break;

c30.indd 871 30-01-2014 20:58:49

872 ❘ CHAPTER 30 Managed extensibility FraMework

 default:
 throw new InvalidOperationException(
 String.Format("invalid operation {0}", operation.Name));
 }
 return result;
 }
 }
}

Now you’ve seen imports, exports, and catalogs from the MEF architecture. The next section takes a look
at a new feature of .NET 4.5: convention-based part registration.

Convention-Based Part Registration
A new feature of MEF with .NET 4.5 is convention-based part registration. It’s no longer required to use
attributes with the exported parts. One scenario in which this is useful is when you don’t have access to the
source code of classes that should be used as parts to add attributes. Another scenario is when you want
to remove the need for a user of your library to deal with attributes for imports. ASP.NET MVC 4 makes
use of MEF with convention-based registration. This technology is based on the Model View Controller
(MVC) pattern, and uses controller classes with the suffix Controller, which is a naming convention to find
controllers.

NoTE ASP.NET MVC is discussed in Chapter 42, “ASP.NET MVC.”

NoTE Convention-based part registration requires an additional reference to the
assembly System.ComponentModel.Composition.Registration.

This introduction to convention-based part registration builds the same example code shown previously
using attributes, but attributes are no longer needed; therefore, the same code is not repeated here. The same
contract interfaces ICalculator and IOperation are implemented, and nearly the same part with the class
Calculator. The difference with the Calculator class is that it doesn’t have the Export attribute applied
to it.

Creating the host application, all this becomes more interesting. Similar to before, a property of type
ICalculator is created as shown in the following code snippet — it just doesn’t have an Import attribute
applied to it. In the Main method, a new instance of Program is created because the Calculator property is
an instance property of the Program class (code file ConventionBasedSample/SimpleHost/Program.cs):

using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Registration;

namespace Wrox.ProCSharp.MEF
{
 public class Program
 {
 public ICalculator Calculator { get; set; }

c30.indd 872 30-01-2014 20:58:50

Defining Contracts ❘ 873

 static void Main()
 {
 var p = new Program();
 p.Run();
 }

Within the Run method, a new RegistrationBuilder instance is created. This type is needed to define
conventions for export and import. With the sample code, an export is defined for all the types that derive
from the interface type ICalculator, and the export is of type ICalculator by calling the method
conventions.ForTypesDerivedFrom<ICalculator>.Export<ICalculator>. This is similar to applying
the attribute Export[typeof(ICalculator)] to all types that implement the interface ICalculator. For
mapping the exported type to the Calculator property, ForType<Program> specifies a convention for the
type Program, and the ImportProperty<ICalculator> method maps an import to the specified property.
Similar to the previous sample, a DirectoryCatalog is created to find the parts in a specific directory. The
constructor of the DirectoryCatalog allows passing the RegistrationBuilder to provide information
about the conventions. The search in the directory starts by invoking the SatisfyImportOnce method of
the CompositionSerivce. With this method invocation, the property Calculator is assigned, and now the
methods of the Calculator can be invoked:

 public void Run()
 {
 var conventions = new RegistrationBuilder();
 conventions.ForTypesDerivedFrom<ICalculator>().Export<ICalculator>();
 conventions.ForType<Program>().ImportProperty<ICalculator>(p => p.Calculator);

 var catalog = new DirectoryCatalog(
 Properties.Settings.Default.AddInDirectory, conventions);

 using (CompositionService service = catalog.CreateCompositionService())
 {
 service.SatisfyImportsOnce(this, conventions);
 }

 CalculatorLoop();
 }

As you’ve seen, the RegistrationBuilder is the heart of convention-based part registration and MEF.
It uses a fluent API and offers all the flexibility you’ll see with attributes as well. Conventions can be
applied to a specific type with ForType; or for types that derive from a base class or implement an
interface, ForTypesDerivedFrom. ForTypesMatching enables specifying a flexible predicate. For example,
ForTypesMatching(t => t.Name.EndsWith("Controller")) applies a convention to all types that end
with the name Controller.

The methods to select the type return a PartBuilder. With the PartBuilder, exports and imports can be
defined, as well as metadata applied. The PartBuilder offers several methods to define exports: Export
to export a specific type, ExportInterfaces to export a list of interfaces, and ExportProperties to
export properties. Using the export methods to export multiple interfaces or properties, a predicate can
be applied to further define a selection. The same applies to importing properties or constructors with
ImportProperty, ImportProperties, and SelectConstructors.

Having briefly looked at the two ways of using MEF with attributes and conventions, the next section digs
into the details by using a WPF application to host add-ins.

DEFiNiNg CoNTRACTs
The following sample application extends the first one. The hosting application is a WPF application that
loads calculator add-ins for calculation functionality, and other add-ins that bring their own user interface
into the host.

c30.indd 873 30-01-2014 20:58:50

874 ❘ CHAPTER 30 Managed extensibility FraMework

NoTE For more information about writing WPF applications, see Chapter 35, “Core
WPF,” and Chapter 36, “Business Applications with WPF.”

For the calculation, the same contracts that were defined earlier are used: ICalculator and IOperation.
Added to this example is another contract, ICalculatorExtension. This interface defines the UI property
that can be used by the hosting application. The get accessor of this property returns a FrameworkElement.
This enables the add-in to return any WPF element that derives from FrameworkElement to be shown as the
user interface within the host application (code file WPFCalculator/CalculatorContract/ICalculator.cs):

using System.Windows;
namespace Wrox.ProCSharp.MEF
{
 public interface ICalculatorExtension
 {
 FrameworkElement UI { get; }
 }
}

.NET interfaces are used to remove the dependency between one that implements the interface and one
that uses it. This way, a .NET interface is also a good contract for MEF to remove a dependency between
the hosting application and the add-in. If the interface is defined in a separate assembly, as with the
CalculatorContract assembly, the hosting application and the add-in don’t have a direct dependency.
Instead, the hosting application and the add-in just reference the contract assembly.

From a MEF standpoint, an interface contract is not required at all. The contract can be a simple string. To
avoid conflicts with other contracts, the name of the string should contain a namespace name — for exam-
ple, Wrox.ProCSharp.MEF.SampleContract, as shown in the following code snippet. Here, the class Foo is
exported by using the Export attribute, and a string passed to the attribute instead of the interface:

 [Export(“Wrox.ProCSharp.MEF.SampleContract”)]
 public class Foo
 {
 public string Bar()
 {
 return "Foo.Bar";
 }
 }

The problem with using a contract as a string is that the methods, properties, and events provided by the
type are not strongly defined. Either the caller needs a reference to the type Foo to use it, or .NET reflection
can be used to access its members. The C# 4 dynamic keyword makes reflection easier to use and can be
very helpful in such scenarios.

The hosting application can use the dynamic type to import a contract with the name Wrox.ProCSharp
.MEF.SampleContract:

 [Import("Wrox.ProCSharp.MEF.SampleContract")]
 public dynamic Foo { get; set; }

With the dynamic keyword, the Foo property can now be used to access the Bar method directly. The call to
this method is resolved during runtime:

 string s = Foo.Bar();

c30.indd 874 30-01-2014 20:58:50

Exporting Parts ❘ 875

Contract names and interfaces can also be used in conjunction to define that the contract is used only if
both the interface and the contract name are the same. This way, you can use the same interface for different
contracts.

NoTE The dynamic type is explained in Chapter 12, “Dynamic Language
Extensions.”

ExPoRTiNg PARTs
The previous example showed the part SimpleCalculator, which exports the type Calculator with
all its methods and properties. The following example contains the SimpleCalculator as well, with the
same implementation that was shown previously; and two more parts, TemperatureConversion and
FuelEconomy, are exported. These parts offer a UI for the hosting application.

Creating Parts
The WPF User Control library named TemperatureConversion
defines a user interface as shown in Figure 30-2. This control
provides conversion between Celsius, Fahrenheit, and Kelvin
scales. With the first and second combo box, the conversion
source and target can be selected. The Calculate button starts
the calculation to do the conversion.

The user control has a simple implementation for temperature
conversion. The enumeration TempConversionType defines
the different conversions that are possible with that control.
The enumeration values are shown in the two combo boxes by
setting the DataContext property of the user control in the
 constructor. The method ToCelsiusFrom converts the argument
t from its original value to Celsius. The temperature source type
is defined with the second argument, TempConversionType. The
method FromCelsiusTo converts a Celsius value to the selected
temperature scale. The method OnCalculate is the handler of
the Button.Click event and invokes the ToCelsiusFrom and
FromCelsiusTo methods to do the conversion according to the user’s selected conversion type (code file
WPFCalculator/TemperatureConversion/TemperatureConversion.xaml.cs):

using System;
using System.Windows;
using System.Windows.Controls;
namespace Wrox.ProCSharp.MEF
{
 public enum TempConversionType
 {
 Celsius,
 Fahrenheit,
 Kelvin
 }
 public partial class TemperatureConversion : UserControl
 {
 public TemperatureConversion()
 {
 InitializeComponent();
 this.DataContext = Enum.GetNames(typeof(TempConversionType));
 }

FiguRE 30-2

c30.indd 875 30-01-2014 20:58:50

876 ❘ CHAPTER 30 Managed extensibility FraMework

 private double ToCelsiusFrom(double t, TempConversionType conv)
 {
 switch (conv)
 {
 case TempConversionType.Celsius:
 return t;
 case TempConversionType.Fahrenheit:
 return (t - 32) / 1.8;
 case TempConversionType.Kelvin:
 return (t - 273.15);
 default:
 throw new ArgumentException("invalid enumeration value");
 }
 }
 private double FromCelsiusTo(double t, TempConversionType conv)
 {
 switch (conv)
 {
 case TempConversionType.Celsius:
 return t;
 case TempConversionType.Fahrenheit:
 return (t * 1.8) + 32;
 case TempConversionType.Kelvin:
 return t + 273.15;
 default:
 throw new ArgumentException("invalid enumeration value");
 }
 }
 private void OnCalculate(object sender, System.Windows.RoutedEventArgs e)
 {
 try
 {
 TempConversionType from;
 TempConversionType to;
 if (Enum.TryParse<TempConversionType>(
 (string)comboFrom.SelectedValue, out from) &&
 Enum.TryParse<TempConversionType>(
 (string)comboTo.SelectedValue, out to))
 {
 double result = FromCelsiusTo(
 ToCelsiusFrom(double.Parse(textInput.Text), from), to);
 textOutput.Text = result.ToString();
 }
 }
 catch (FormatException ex)
 {
 MessageBox.Show(ex.Message);
 }
 }
 }
}

So far, this control is just a simple WPF user control. To create a MEF part, the class
TemperatureCalculatorExtension is exported by using the Export attribute. The class implements the
interface ICalculatorExtension to return the user control TemperatureConversion from the UI
property (code file WPFCalculator/TemperatureConversion/TemperatureCalculatorExtension.cs):

using System.ComponentModel.Composition;
using System.Windows;
namespace Wrox.ProCSharp.MEF

c30.indd 876 30-01-2014 20:58:50

Exporting Parts ❘ 877

{
 [Export(typeof(ICalculatorExtension))]
 public class TemperatureCalculatorExtension : ICalculatorExtension
 {
 private TemperatureConversion control;
 public FrameworkElement UI
 {
 get
 {
 return control ?? (control = new TemperatureConversion());
 }
 }
 }
}

The second user control that implements the interface
ICalculatorExtension is FuelEconomy. With this control,
either miles per gallon or liters per 100 km can be calculated.
The user interface is shown in Figure 30-3.

The next code snippet shows the class FuelEconomyViewModel,
which defines several properties that are bound from the user
interface, such as a list of FuelEcoTypes that enables the user to
select between miles and kilometers, and the Fuel and Distance
properties, which are filled by the user:

using System.Collections.Generic;

namespace Wrox.ProCSharp.MEF
{
 public class FuelEconomyViewModel : BindableBase
 {
 public FuelEconomyViewModel()
 {
 InitializeFuelEcoTypes();
 }

 private List<FuelEconomyType> fuelEcoTypes;
 public List<FuelEconomyType> FuelEcoTypes
 {
 get
 {
 return fuelEcoTypes;
 }
 }

 private void InitializeFuelEcoTypes()
 {
 var t1 = new FuelEconomyType
 {
 Id = "lpk",
 Text = "L/100 km",
 DistanceText = "Distance (kilometers)",
 FuelText = "Fuel used (liters)"
 };
 var t2 = new FuelEconomyType
 {
 Id = "mpg",
 Text = "Miles per gallon",

FiguRE 30-3

c30.indd 877 30-01-2014 20:58:50

878 ❘ CHAPTER 30 Managed extensibility FraMework

 DistanceText = "Distance (miles)",
 FuelText = "Fuel used (gallons)"
 };
 fuelEcoTypes = new List<FuelEconomyType>() { t1, t2 };
 }

 private FuelEconomyType selectedFuelEcoType;

 public FuelEconomyType SelectedFuelEcoType
 {
 get { return selectedFuelEcoType; }
 set { SetProperty(ref selectedFuelEcoType, value); }
 }

 private string fuel;
 public string Fuel
 {
 get { return fuel; }
 set { SetProperty(ref fuel, value); }
 }

 private string distance;
 public string Distance
 {
 get { return distance; }
 set { SetProperty(ref distance, value); }
 }

 private string result;
 public string Result
 {
 get { return result; }
 set { SetProperty(ref result, value); }
 }
 }
}

NoTE The base class BindableBase that is used with the sample code just offers an
implementation of the interface INotifyPropertyChanged. This class is found in the
CalculatorUtils assembly.

The calculation is within the OnCalculate method. OnCalculate is the handler for the Click event of the
Calculate button (code file WPFCalculator/FuelEconomy/FuelEconomyUC.xaml.cs):

 private void OnCalculate(object sender, RoutedEventArgs e)
 {
 double fuel = double.Parse(viewModel.Fuel);
 double distance = double.Parse(viewModel.Distance);
 FuelEconomyType ecoType = viewModel.SelectedFuelEcoType;
 double result = 0;
 switch (ecoType.Id)
 {
 case "lpk":
 result = fuel / (distance / 100);
 break;
 case "mpg":
 result = distance / fuel;
 break;

c30.indd 878 30-01-2014 20:58:51

Exporting Parts ❘ 879

 default:
 break;
 }
 viewModel.Result = result.ToString();
 }

Again, the interface ICalculatorExtension is implemented and exported with the Export attribute (code
file WPFCalculator/FuelEconomy/FuelCalculatorExtension.cs):

using System.ComponentModel.Composition;
using System.Windows;

namespace Wrox.ProCSharp.MEF
{
 [Export(typeof(ICalculatorExtension))]
 public class FuelCalculatorExtension : ICalculatorExtension
 {
 private FrameworkElement control;
 public FrameworkElement UI
 {
 get
 {
 return control ?? (control = new FuelEconomyUC());
 }
 }
 }
}

Before continuing the WPF calculator example to import the user controls, let’s take a look at what other
options you have with exports. With exports, you can export not only complete types, but also properties
and methods, and you can add metadata information to the exports.

Exporting Properties and Methods
Instead of exporting complete classes with properties, methods, and events, it is possible to export just
properties or methods. Exporting properties makes it possible to use classes where you can’t change the
source code by adding the Export attribute to them (for example, classes from the .NET Framework or
third-party libraries). For this, you just have to define a property of the specific type and export the property.

Exporting methods provides a finer degree of control than using types. The caller doesn’t need to know
about the type. Methods are exported with the help of delegates. The following code snippet defines the Add
and Subtract methods with exports. The type of the export is the delegate Func<double, double,
double>, which is a delegate that accepts two double parameters and a double return type. For methods
without return types, the Action<T> delegate can be used (code file WPFCalculator/Operations/
Operations.cs):

using System;
using System.ComponentModel.Composition;
namespace Wrox.ProCSharp.MEF
{
 public class Operations
 {
 [Export(“Add”, typeof(Func<double, double, double>))]
 public double Add(double x, double y)
 {
 return x + y;
 }
 [Export(“Subtract”, typeof(Func<double, double, double>))]
 public double Subtract(double x, double y)

c30.indd 879 30-01-2014 20:58:51

880 ❘ CHAPTER 30 Managed extensibility FraMework

 {
 return x - y;
 }
 }
}

NoTE You can read about the Func<T> and Action<T> delegates in Chapter 8,
“Delegates, Lambdas, and Events.”

NoTE SimpleCalculator itself is a part that exports the ICalculator interface and
consists of parts that are imported.

The exported methods are imported from the SimpleCalculator add-in. A part itself can use other
parts. To use the exported methods, delegates are declared with the attribute Import. This attribute
contains the same name and delegate type that was declared with the export (code file WPFCalculator/
SimpleCalculator/Calculator.cs):

 [Export(typeof(ICalculator))]
 public class Calculator : ICalculator
 {
 [Import(“Add”, typeof(Func<double, double, double>))]
 public Func<double, double, double> Add { get; set; }

 [Import(“Subtract”, typeof(Func<double, double, double>))]
 public Func<double, double, double> Subtract { get; set; }

The imported methods that are represented by the Add and Subtract delegates are invoked via these del-
egates in the Operate method:

 public double Operate(IOperation operation, double[] operands)
 {
 double result = 0;
 switch (operation.Name)
 {
 case "+":
 result = Add(operands[0], operands[1]);
 break;
 case "-":
 result = Subtract(operands[0], operands[1]);
 break;
 case "/":
 result = operands[0] / operands[1];
 break;
 case "*":
 result = operands[0] * operands[1];
 break;
 default:
 throw new InvalidOperationException(
 String.Format("invalid operation {0}", operation.Name));
 }
 return result;
 }

c30.indd 880 30-01-2014 20:58:51

Exporting Parts ❘ 881

Exporting Metadata
With exports, you can also attach metadata information. Metadata enables you to provide information in
addition to a name and a type. This can be used to add capability information and to determine, on the
import side, which of the exports should be used.

The exported Add method is now changed to add speed capabilities with the attribute ExportMetadata
(code file WPFCalculator/Operations/Operation.cs):

 [Export("Add", typeof(Func<double, double, double>))]
 [ExportMetadata(“speed”, “fast”)]
 public double Add(double x, double y)
 {
 return x + y;
 }

To have the option to choose from another implementation of the Add method, another method with
different speed capabilities but the same delegate type and name is implemented (code file WPFCalculator/
Operations/Operation2.cs):

 public class Operations2
 {
 [Export("Add", typeof(Func<double, double, double>))]
 [ExportMetadata("speed", "slow")]
 public double Add(double x, double y)
 {
 Thread.Sleep(3000);
 return x + y;
 }
 }

Because more than one exported Add method is available, the import definition must be changed. The
attribute ImportMany is used if more than one export of the same name and type is available. This attribute
is applied to an array or IEnumeration<T> interface. ImportMany is explained with more detail in the next
section. For accessing metadata, an array of Lazy<T, TMetadata> can be used. The class Lazy<T> is used
to support lazy initialization of types on first use. Lazy<T, TMetadata> derives from Lazy<T> and supports,
in addition to the base class, access to metadata information with the Metadata property. In the example,
the method is referenced by the delegate Func<double, double, double>, which is the first generic
parameter of Lazy<T, TMetadata>. The second generic parameter is IDictionary<string, object> for
the metadata collection. The ExportMetadata attribute can be used multiple times to add more than one
capability, and it always consists of a key of type string and a value of type object
(code file WPFCalculator/SimpleCalculator/Calculator.cs):

 [ImportMany("Add", typeof(Func<double, double, double>))]
 public Lazy<Func<double, double, double>, IDictionary<string, object>>[]
 AddMethods { get; set; }
 //[Import("Add", typeof(Func<double, double, double>))]
 //public Func<double, double, double> Add { get; set; }

The call to the Add method is now changed to iterate through the collection of Lazy<Func<double,
double, double>, IDictionary<string, object>> elements. With the Metadata property, the key for
the capability is checked; if the speed capability has the value fast, the operation is invoked by using the
Value property of Lazy<T> to get to the delegate:

 case "+":
 // result = Add(operands[0], operands[1]);
 foreach (var addMethod in AddMethods)

c30.indd 881 30-01-2014 20:58:51

882 ❘ CHAPTER 30 Managed extensibility FraMework

 {
 if (addMethod.Metadata.ContainsKey("speed") &&
 (string)addMethod.Metadata["speed"] == "fast")
 result = addMethod.Value(operands[0], operands[1]);
 }
 // result = operands[0] + operands[1];
 break;

Instead of using the attribute ExportMetadata, you can create a custom export attribute class that derives
from ExportAttribute. The class SpeedExportAttribute defines an additional Speed property that is of
type Speed (code file WPFCalculator/CalculatorUtils/SpeedExportAttribute.cs):

using System;
using System.ComponentModel.Composition;
namespace Wrox.ProCSharp.MEF
{
 public enum Speed
 {
 Fast,
 Slow
 }
 [MetadataAttribute]
 [AttributeUsage(AttributeTargets.Method | AttributeTargets.Class)]
 public class SpeedExportAttribute : ExportAttribute
 {
 public SpeedExportAttribute(string contractName, Type contractType)
 : base(contractName, contractType) { }
 public Speed Speed { get; set; }
 }
}

NoTE For more information about how to create custom attributes, read Chapter 15,
“Reflection.”

With the exported Add method, now the SpeedExport attribute can be used instead of the Export and
ExportMetadata attributes (code file WPFCalculator/Operations/Operations.cs):

 [SpeedExport(“Add”, typeof(Func<double, double, double>), Speed=Speed.Fast)]
 public double Add(double x, double y)
 {
 return x + y;
 }

For the import, an interface with all the metadata is required. This makes it possible to access the strongly
typed capabilities. The attribute SpeedExport just defines a single capability: speed. The interface
ISpeedCapabilities defines the property Speed by using the same enumeration type Speed that was used
with the SpeedExport attribute (code file WPFCalculator/CalculatorUtils/ISpeedCapabilities.cs):

namespace Wrox.ProCSharp.MEF
{
 public interface ISpeedCapabilities
 {
 Speed Speed { get; }
 }
}

c30.indd 882 30-01-2014 20:58:51

Exporting Parts ❘ 883

Now it’s possible to change the definition of the import by using the interface ISpeedCapabilities instead
of the dictionary defined earlier (code file WPFCalculator/SimpleCalculator/Calculator.cs):

 [ImportMany("Add", typeof(Func<double, double, double>))]
 public Lazy<Func<double, double, double>, ISpeedCapabilities>[]
 AddMethods { get; set; }

Using the imports, the Speed property of the interface, ISpeedCapabilities can now be used directly:

 foreach (var addMethod in AddMethods)
 {
 if (addMethod.Metadata.Speed == Speed.Fast)
 result = addMethod.Value(operands[0], operands[1]);
 }

using Metadata for Lazy Loading
MEF metadata is not only useful for selecting parts based on metadata information. Another great use is
providing information to the host application about the part before the part is instantiated.

The following example is implemented to offer a title, a description, and a link to an image for the calculator
extensions FuelEconomy and TemperatureConversion (code file WPFCalculator/CalculatorContract/
ICalculatorExtensionMetadata.cs):

 public interface ICalculatorExtensionMetadata
 {
 string Title { get; }
 string Description { get; }

 string ImageUri { get; }
 }

For easy usage, an export attribute named CalculatorExtensionExport is created, as shown in the
following code snippet. The implementation is very similar to the SpeedExport attribute shown earlier
(code file WPFCalculator/CalculatorUtils/CalculatorExtensionAttribute.cs):

using System;
using System.ComponentModel.Composition;

namespace Wrox.ProCSharp.MEF
{
 [MetadataAttribute]
 [AttributeUsage(AttributeTargets.Method | AttributeTargets.Class)]
 public class CalculatorExtensionExportAttribute : ExportAttribute
 {
 public CalculatorExtensionExportAttribute(Type contractType)
 : base(contractType) { }

 public string Title { get; set; }
 public string Description { get; set; }

 public string ImageUri { get; set; }
 }
}

The exports of the parts can now be changed. In the next two code snippets the
CalculatorExtensionExport attribute is applied with the parts FuelEconomy and
TemperatureConversion. These two parts also use two images, Fuel.png and Temperature.png, which are

c30.indd 883 30-01-2014 20:58:51

884 ❘ CHAPTER 30 Managed extensibility FraMework

copied to the add-in directory during the build process. These images can be used from the host application
as well to display information before the parts are instantiated (code files WPFCalculator/FuelEconomy/
FuelCalculatorExtension.cs and TemperatureConversionExtension.cs):

 [CalculatorExtensionExport(typeof(ICalculatorExtension),
 Title = "Fuel Economy",
 Description = "Calculate fuel economy",
 ImageUri = "Fuel.png")]
 public class FuelCalculatorExtension : ICalculatorExtension
 [CalculatorExtensionExport(typeof(ICalculatorExtension),
 Title = "Temperature Conversion",
 Description="Convert Celsius to Fahrenheit and Fahrenheit to Celsius",
 ImageUri = "Temperature.png")]
 public class TemperatureCalculatorExtension : ICalculatorExtension

iMPoRTiNg PARTs
Now let’s take a look at using the WPF user controls
with a WPF hosting application. The design view of
the hosting application is shown in Figure 30-4. The
application Calculator is a WPF application that loads
the functional calculator add-in, which implements the
interfaces ICalculator and IOperation, and
add-ins with user interfaces that implement the
interface ICalculatorExtension. To connect to the
exports of the parts, you need imports.

The calculator host application uses the class
CalculatorViewModel to bind input and result data
to the user interface. The property CalcExtensions
contains a list of all available extension add-ins; the
property ActivatedExtensions contains a list of
the extensions that are loaded (code file
WPFCalculator/
Calculator/CalculatorViewModel.cs):

using System;
using System.Collections.ObjectModel;

namespace Wrox.ProCSharp.MEF
{
 public class CalculatorViewModel : BindableBase
 {
 private string status;

 public string Status
 {
 get { return status; }
 set { SetProperty(ref status, value); }
 }

 private string input;
 public string Input
 {
 get { return input; }
 set { SetProperty(ref input, value); }
 }

FiguRE 30-4

c30.indd 884 30-01-2014 20:58:51

Importing Parts ❘ 885

 private string result;
 public string Result
 {
 get { return result; }
 set { SetProperty(ref result, value); }
 }

 private string fullInputText;
 public string FullInputText
 {
 get { return fullInputText; }
 set { fullInputText = value; }
 }

 private readonly ObservableCollection<IOperation> calcAddInOperators =
 new ObservableCollection<IOperation>();
 public object syncCalcAddInOperators = new object();
 public ObservableCollection<IOperation> CalcAddInOperators
 {
 get
 {
 return calcAddInOperators;
 }
 }

 private readonly ObservableCollection<Lazy<ICalculatorExtension>>
 calcExtensions = new ObservableCollection<Lazy<ICalculatorExtension>>();
 public ObservableCollection<Lazy<ICalculatorExtension>> CalcExtensions
 {
 get
 {
 return calcExtensions;
 }
 }

 private readonly ObservableCollection<Lazy<ICalculatorExtension>>
 activatedExtensions = new ObservableCollection<Lazy<ICalculatorExtension>>();
 public object syncActivatedExtensions = new object();
 public ObservableCollection<Lazy<ICalculatorExtension>> ActivatedExtensions
 {
 get
 {
 return activatedExtensions;
 }
 }
 }
}

importing Collections
An import connects to an export. When using exported parts, an import is needed to make the connection.
With the Import attribute, it’s possible to connect to a single export. If more than one add-in should be
loaded, the ImportMany attribute is required and needs to be defined as an array type or IEnumerable<T>.
Because the hosting calculator application allows many calculator extensions that implement the interface
ICalculatorExtension to be loaded, the class CalculatorExtensionImport defines the property
CalculatorExtensions of type IEnumerable<ICalculatorExtension> to access all the calculator
extension parts (code file WPFCalculator/Calculator/CalculatorExtensionImport.cs):

using System.Collections.Generic;
using System.ComponentModel.Composition;

c30.indd 885 30-01-2014 20:58:52

886 ❘ CHAPTER 30 Managed extensibility FraMework

namespace Wrox.ProCSharp.MEF
{
 public class CalculatorExtensionImport
 {
 [ImportMany(AllowRecomposition=true)]
 public IEnumerable<ICalculatorExtension> CalculatorExtensions { get; set; }
 }
}

The Import and ImportMany attributes enable the use of ContractName and ContractType to map the
import to an export. Other properties that can be set with these attributes are AllowRecomposition and
RequiredCreationPolicy. AllowRecomposition enables dynamic mapping to new exports while the
application is running, and the unloading of exports. With RequiredCreationPolicy, you can specify
whether the parts should be shared (CreationPolicy.Shared) or not shared (CreationPolicy
.NonShared) between requestors, or whether the policy should be defined by the container
(CreationPolicy.Any).

You can get a confirmation that all imports are successful (or errors in case they are not), you can
implement the interface IPartImportsSatisfiedNotification. This interface just defines a single
method, OnImportsSatifsifed, which is called when all imports of the class are successful. In the
CalculatorImport class, the method fires an ImportsSatisfied event (code file WPFCalculator/
Calculator/CalculatorImport.cs):

using System;
using System.ComponentModel.Composition;
using System.Windows.Controls;
namespace Wrox.ProCSharp.MEF
{
 public class CalculatorImport : IPartImportsSatisfiedNotification
 {
 public event EventHandler<ImportEventArgs> ImportsSatisfied;
 [Import(typeof(ICalculator))]
 public ICalculator Calculator { get; set; }

 public void OnImportsSatisfied()
 {
 if (ImportsSatisfied != null)
 ImportsSatisfied(this, new ImportEventArgs {
 StatusMessage = “ICalculator import successful” });
 }
 }
}

The event of the CalculatorImport is connected to an event handler on creation of the CalculatorImport
to write a message to a Status property that is bound in the UI for displaying status information (code file
WPFCalculator/CalculatorManager/MainWindow.xaml.cs):

 public sealed class CalculatorManager : IDisposable
 {
 private DirectoryCatalog catalog;
 private CompositionContainer container;
 private CalculatorImport calcImport;
 private CalculatorExtensionImport calcExtensionImport;
 private CalculatorViewModel vm;

 public CalculatorManager(CalculatorViewModel vm)
 {
 this.vm = vm;
 }

c30.indd 886 30-01-2014 20:58:52

Importing Parts ❘ 887

 public async void InitializeContainer()
 {
 catalog = new DirectoryCatalog(Properties.Settings.Default.AddInDirectory);
 container = new CompositionContainer(catalog);

 calcImport = new CalculatorImport();

 calcImport.ImportsSatisfied += (sender, e) =>
 {
 vm.Status += string.Format(“{0}\n”, e.StatusMessage);
 };

 await Task.Run(() =>
 {
 container.ComposeParts(calcImport);
 });

 await InitializeOperationsAsync();
 }

Lazy Loading of Parts
By default, parts are loaded from the container — for example, by calling the extension method
ComposeParts on the CompositionContainer. With the help of the Lazy<T> class, the parts can be loaded
on first access. The type Lazy<T> enables the late instantiation of any type T and defines the properties
IsValueCreated and Value. IsValueCreated is a Boolean that returns the information if the contained
type T is already instantiated. Value initializes the contained type T on first access and returns the instance.

The import of an add-in can be declared to be of type Lazy<T>, as shown in the Lazy<ICalculator>
example (code file WPFCalculator/Calculator/CalculatorImport.cs):

 [Import(typeof(ICalculator))]
 public Lazy<ICalculator> Calculator { get; set; }

Calling the imported property also requires some changes to access the Value property of the Lazy<T>
type. calcImport is a variable of type CalculatorImport. The Calculator property returns
Lazy<ICalculator>. The Value property instantiates the imported type lazily and returns the
ICalculator interface, enabling the GetOperations method to be invoked in order to get all supported
operations from the calculator add-in (code file WPFCalculator/Calculator/CalculatorManager.cs):

 public Task InitializeOperationsAsync()
 {
 Contract.Requires(calcImport != null);
 Contract.Requires(calcImport.Calculator != null);
 return Task.Run(() =>
 {
 var operators = calcImport.Calculator.Value.GetOperations();
 lock (vm.syncCalcAddInOperators)
 {
 vm.CalcAddInOperators.Clear();

 foreach (var op in operators)
 {
 vm.CalcAddInOperators.Add(op);
 }
 }
 });
 }

c30.indd 887 30-01-2014 20:58:52

888 ❘ CHAPTER 30 Managed extensibility FraMework

Reading Metadata with Lazyily instantiated Parts
The parts FuelEconomy and TemperatureConversion — all the parts that implement the interface
ICalculatorExtension — are lazy loaded as well. As you’ve seen earlier, a collection can be imported
with a property of IEnumerable<T>. Instantiating the parts lazily, the property can be of type
IEnumerable<Lazy<T>>. Information about these parts is needed before instantiation in order to display
information to the user about what can be expected with these parts. These parts offer additional information
using metadata, as shown earlier. Metadata information can be accessed using a Lazy type with two generic
type parameters. Using Lazy<ICalculatorExtension, ICalculatorExtensionMetadata>, the first
generic parameter, ICalculatorExtension, is used to access the members of the instantiated type; the
second generic parameter, ICalculatorExtensionMetadata, is used to access metadata information (code
file WPFCalculator/Calculator/CalculatorExtensionImport.cs):

 public class CalculatorExtensionImport : IPartImportsSatisfiedNotification
 {
 public event EventHandler<ImportEventArgs> ImportsSatisfied;

 [ImportMany(AllowRecomposition = true)]
 public IEnumerable<Lazy<ICalculatorExtension, ICalculatorExtensionMetadata>>
 CalculatorExtensions { get; set; }

 public void OnImportsSatisfied()
 {
 if (ImportsSatisfied != null)
 ImportsSatisfied(this, new ImportEventArgs
 { StatusMessage = "ICalculatorExtension imports successful" });
 }
 }

The method RefreshExtensions imports the calculator extension parts based on their Lazy type and adds
the lazy types to the collection CalcExtensions shown earlier (code file WPFCalculator/Calculator/
CalculatorManager.cs):

 public void RefreshExensions()
 {
 catalog.Refresh();
 calcExtensionImport = new CalculatorExtensionImport();
 calcExtensionImport.ImportsSatisfied += (sender, e) =>
 {
 vm.Status += String.Format("{0}\n", e.StatusMessage);
 };

 container.ComposeParts(calcExtensionImport);
 vm.CalcExtensions.Clear();
 foreach (var extension in calcExtensionImport.CalculatorExtensions)
 {
 vm.CalcExtensions.Add(extension);
 }
 }

Within the XAML code, metadata information is bound. The Lazy type has a Metadata property that
returns ICalculatorExtensionMetadata. This way, Description, Title, and ImageUri can be accessed
for data binding without instantiating the add-ins (XAML file WPFCalculator/Calculator/MainWindow
.xaml):

 <RibbonGroup Header="Addins" ItemsSource=”{Binding CalcExtensions}”>
 <RibbonGroup.ItemTemplate>
 <DataTemplate>
 <RibbonButton ToolTip=”{Binding Metadata.Description}”
 Label=”{Binding Metadata.Title}” Tag="{Binding}"

c30.indd 888 30-01-2014 20:58:52

Containers and Export Providers ❘ 889

 LargeImageSource=”{Binding Metadata.ImageUri,
 Converter={StaticResource bitmapConverter}}”
 Command="local:CalculatorCommands.ActivateExtension" />
 </DataTemplate>
 </RibbonGroup.ItemTemplate>
 </RibbonGroup>

To get an image from the link that is returned from the ImageUri property, a value converter is imple-
mented that returns a BitmapImage (code file WPFCalculator/Calculator/UriToBitmapConverter.cs):

 public class UriToBitmapConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 BitmapImage image = null;
 string uri = value.ToString();
 if (!string.IsNullOrEmpty(uri))
 {
 var stream = File.OpenRead(Path.Combine(
 Properties.Settings.Default.AddInDirectory, uri));
 image = new BitmapImage();
 image.BeginInit();
 image.StreamSource = stream;
 image.EndInit();
 return image;
 }
 else
 {
 return null;
 }
 }

 public object ConvertBack(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }

NoTE WPF value converters are discussed in Chapter 36.

Figure 30-5 shows the running application where
metadata from the calculator extensions is read — it
includes the image, the title, and the description.

CoNTAiNERs AND ExPoRT
PRoviDERs

The import of parts is facilitated with the help
of a container. The types for hosting
parts are defined in the namespace System
.ComponentModel.Composition.Hosting. The
class CompositionContainer is the container
for parts. In the constructor of this class, multiple
ExportProvider objects can be assigned, as well as

FiguRE 30-5

c30.indd 889 30-01-2014 20:58:52

890 ❘ CHAPTER 30 Managed extensibility FraMework

a ComposablePartCatalog. Catalogs are sources of parts and are discussed in the next section. Export
providers enable you to access all exports programmatically with overloaded GetExport<T> methods. An
export provider is used to access the catalog, and the CompositionContainer itself is an export provider.
This makes it possible to nest containers in other containers.

Parts are loaded when the Compose method is invoked (if they are not lazy loaded). So far, the exam-
ples have used the ComposeParts method, as shown in the InitializeContainer method (code file
WPFCalculator/Calculator/CalculatorManager.cs):

 public async void InitializeContainer()
 {
 catalog = new DirectoryCatalog(
 Properties.Settings.Default.AddInDirectory);
 container = new CompositionContainer(catalog);
 calcImport = new CalculatorImport();
 calcImport.ImportsSatisfied += (sender, e) =>
 {
 textStatus.Text += String.Format("{0}\n", e.StatusMessage);
 };
 await Task.Run(() =>
 {
 container.ComposeParts(calcImport);
 });
 await InitializeOperationsAsync();
 }

ComposeParts is an extension method defined with the class AttributedModelServices, which provides
methods that use attributes and .NET reflection to access part information and add parts to the container.
Instead of using this extension method, you can use the Compose method of CompositionContainer.
The Compose method works with the class CompositionBatch. A CompositionBatch can be used
to define which parts should be added or removed from the container. The methods AddPart and
RemovePart have overloads whereby either an attributed part can be added (calcImport is an instance
of the CalculatorImport class and contains Import attributes) or a part that derives from the base class
ComposablePart:

 var batch = new CompositionBatch();
 batch.AddPart(calcImport);
 container.Compose(batch);

Both kinds of parts used with the Calculator hosting application are searched in the same way. The part that
implements the interface ICalculator is instantiated immediately when the application is launched. The
ICalculatorExtension parts are instantiated only when the user clicks the part information in the ribbon
control. Clicking on the buttons of the ribbon controls invokes the OnActivateExtension handler method.
Within the implementation of this method, the selected ICalculatorExtension part is instantiated by
using the Value property of the Lazy<T> type. A reference is then added to the ActivatedExtensions col-
lection (code file WPFCalculator/Calculator/MainWindow.xaml.cs):

 private void OnActivateExtension(object sender, ExecutedRoutedEventArgs e)
 {
 var button = e.OriginalSource as RibbonButton;
 if (button != null)
 {
 Lazy<ICalculatorExtension> control = button.Tag as
 Lazy<ICalculatorExtension>;
 FrameworkElement el = control.Value.UI;
 viewModel.ActivatedExtensions.Add(control);
 }
 }

c30.indd 890 30-01-2014 20:58:52

Containers and Export Providers ❘ 891

All the activated ICalculatorExtension parts are shown as TabItem within the TabControl element,
as the TabControl is bound to the ActivatedExtensions property. For the TabItem controls, both an
ItemTemplate and a ContentTemplate are defined. The ItemTemplate defines a header to show the title
and a button to close the part; the ContentTemplate accesses the user interface of the part by using the UI
property (XAML file WPFCalculator/Calculator/MainWindow.xaml):

 <TabControl Grid.Row="1" Grid.Column="1" Margin="2"
 ItemsSource="{Binding ActivatedExtensions}">
 <TabControl.ContentTemplate>
 <DataTemplate>
 <ContentPresenter Content="{Binding Value.UI}" />
 </DataTemplate>
 </TabControl.ContentTemplate>
 <TabControl.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal" Margin="0">
 <TextBlock Text="{Binding Metadata.Title}" Margin="0" />
 <Button Content="X" Margin="5,1"
 Command="local:CalculatorCommands.CloseExtension"
 Tag="{Binding}" />
 </StackPanel>
 </DataTemplate>
 </TabControl.ItemTemplate>
 </TabControl>

The close button within the ItemTemplate activates the CloseExtension command. This invokes the
OnCloseExtension handler method whereby the part is removed from the ActivatedExtensions collec-
tion (code file WPFCalculator/Calculator/MainWindow.xaml.cs):

 private void OnCloseExtension(object sender, ExecutedRoutedEventArgs e)
 {
 Button b = e.OriginalSource as Button;
 if (b != null)
 {
 Lazy<ICalculatorExtension> ext = b.Tag as Lazy<ICalculatorExtension>;
 if (ext != null)
 {
 viewModel.ActivatedExtensions.Remove(ext);
 }
 }
 }

With an export provider, you can get information on exports added and removed by implementing a han-
dler to the ExportsChanged event. The parameter e of type ExportsChangedEventArgs contains a list
of added exports and removed exports that are written to a Status property (code file WPFCalculator/
Calculator/CalculatorManager.cs):

 container = new CompositionContainer(catalog);
 container.ExportsChanged += (sender, e) =>
 {
 var sb = new StringBuilder();

 foreach (var item in e.AddedExports)
 {
 sb.AppendFormat("added export {0}\n", item.ContractName);
 }
 foreach (var item in e.RemovedExports)

c30.indd 891 30-01-2014 20:58:53

892 ❘ CHAPTER 30 Managed extensibility FraMework

 {
 sb.AppendFormat("removed export {0}\n", item.ContractName);
 }
 vm.Status += sb.ToString();
 };

CATALogs
A catalog defines where MEF searches for requested parts. The sample application uses a
DirectoryCatalog to load the assemblies with parts from a specified directory. With the
DirectoryCatalog, you can get change information with the Changed event and iterate through all added
and removed definitions. The DirectoryCatalog does not itself register to file system changes. Instead,
you need to invoke the Refresh method of the DirectoryCatalog; and if changes were made since the
last read, the Changing and Changed events are fired (code file WPFCalculator/Calculator/
CalculatorManager.cs):

 public async void InitializeContainer()
 {
 catalog = new DirectoryCatalog(Properties.Settings.Default.AddInDirectory);

 catalog.Changed += (sender, e) =>
 {
 var sb = new StringBuilder();

 foreach (var definition in e.AddedDefinitions)
 {
 foreach (var metadata in definition.Metadata)
 {
 sb.AppendFormat("added definition with metadata - key: {0}, " +
 "value: {1}\n", metadata.Key, metadata.Value);
 }
 }

 foreach (var definition in e.RemovedDefinitions)
 {
 foreach (var metadata in definition.Metadata)
 {
 sb.AppendFormat("removed definition with metadata - key: {0}, " +
 "value: {1}\n", metadata.Key, metadata.Value);
 }
 }

 vm.Status += sb.ToString();
 };

 container = new CompositionContainer(catalog);

 //...

 }

NoTE To get immediate notification of new add-ins loaded to a directory, you can use
the System.IO.FileSystemWatcher to register for changes to the add-in directory,
and invoke the Refresh method of the DirectoryCatalog with the Changed event of
the FileSystemWatcher.

c30.indd 892 30-01-2014 20:58:53

Summary ❘ 893

The CompositionContainer just needs a ComposablePartCatalog to find parts. DirectoryCatalog
derives from ComposablePartCatalog. Other catalogs are AssemblyCatalog, TypeCatalog, and
AggregateCatalog. Here’s a brief description of these catalogs:

➤➤ DirectoryCatalog — Searches parts within a directory.
➤➤ The AssemblyCatalog — Searches for parts directly within a referenced assembly. Unlike the

DirectoryCatalog, whereby assemblies might change in the directory during runtime, the
AssemblyCatalog is immutable and parts cannot change.

➤➤ The TypeCatalog — Searches for imports within a list of types. IEnumerable<Type> can be passed
to the constructor of this catalog.

➤➤ The AggregateCatalog — A catalog of catalogs. This catalog can be created from multiple
ComposablePartCatalog objects, and it searches in all these catalogs. For example, you can create
an AssemblyCatalog to search for imports within an assembly, two DirectoryCatalog objects to
search in two different directories, and an AggregateCatalog that combines the three catalogs for
import searches.

When running the sample application (see
Figure 30-6), the SimpleCalculator add-in is loaded,
and you can do some calculations with operations
supported by the add-in. From the AddIns menu,
you can start add-ins that implement the interface
ICalculatorExtension and see the user interface
from these add-ins in the tab control. Information
about exports and changes in the directory catalog is
shown with the status information at the bottom. You
can also remove an ICalculatorExtension add-in
from the add-in directory (while the application is not
running), copy the add-in to the directory while the
application is running, and do a refresh of the add-ins
to see the new add-ins during runtime.

suMMARy
In this chapter, you learned about the parts, containers, and catalogs of the Managed Extensibility
Framework (MEF). You’ve learned how an application can be built up with complete independency of its
parts and dynamically load parts that can come from
different catalogs such as an assembly or directory catalog.

The MEF implementation uses attributes or conventions to find and connect add-ins. You’ve seen the new
convention-based parts registration that allows exporting parts without the need of attributes. This allows
using parts where you can’t change the source code to add attributes, and also gives the option to create a
framework based on MEF that doesn’t require the user of your framework to add attributes for importing
the parts.

You’ve also learned how parts can be lazy loaded to instantiate them only when they are needed.
Parts can offer metadata that can give enough information for the client to decide if the part should be
instantiated or not.

The next chapter covers the basics of the Windows Runtime to create Windows Store apps.

FiguRE 30-6

c30.indd 893 30-01-2014 20:58:53

c30.indd 894 30-01-2014 20:58:53

Windows Runtime
WHAT’s iN THis CHAPTER?

➤➤ Windows Runtime overview
➤➤ Understanding Language projection
➤➤ Using Windows Runtime components
➤➤ Handling the life cycle of applications
➤➤ Storing application settings
➤➤ Defi ning and using capabilities

WRoX.Com CodE doWNLoAds FoR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ Language Projections

➤➤ Lifecycle Management

➤➤ App Settings

oVERViEW
Starting with Windows 8, Microsoft offers a new runtime for writing Windows applications with
a new modern style: Windows Runtime (WinRT). It contains classes with properties, methods, and
events, and it uses delegates — so it looks like .NET but it’s a native library. This chapter explains the
core fundamentals of Windows Runtime, demonstrating how it differs from .NET and how you can
integrate the two to begin writing Windows Store apps.

Windows 8 includes version 1.0 of this runtime: Windows 8.1 version 2.0.

31

c31.indd 895 30-01-2014 20:36:55

896 ❘ CHAPTER 31 WindoWs Runtime

Windows Runtime is easily accessible from C#, C++, and JavaScript. Although .NET has previously enabled
other languages to use the framework, it required the languages to adapt. If you are familiar with JScript.
NET, then you know that this is a JavaScript language for programming with .NET. In this case, JavaScript
code can be used to directly access methods and properties from .NET classes.

Conversely, Windows Runtime adapts to different languages, enabling developers to work within an envi-
ronment with which they are familiar, whether it is C#, JavaScript, or C++. Using Windows Runtime from
.NET languages like C# and Visual Basic, Windows Runtime looks like .NET. Using it from C++, it con-
tains methods that conform to the methods of the C++ Standard Library. Using Windows Runtime from
JavaScript, the methods have names and cases shared with JavaScript libraries.

Windows Runtime primarily is a replacement for the Windows API. The .NET Framework is in large part
a wrapper to the Windows API. It provides managed classes that can be used from C# to access operating
system features. Windows Runtime is a native API. It’s just as easy to use as the .NET Framework classes.
The .NET Framework is independent of the operating system. You can use .NET 4.5 on Windows Vista,
Windows 7, Windows 8, and Windows 8.1. It is bound to a specific version of the operating system.

Windows Runtime 2.0 is available only with Windows 8.1. This behavior is very similar to the Windows
API. Compatibility with future versions is also available. Applications written with Windows Runtime
for Windows 8 run on Windows 8.1 as well, but the reverse is not true If applications are written using
Windows 8.1, they cannot run on Windows 8. Some APIs of Windows 8.0 are obsolete with Windows 8.1,
but are still available. These APIs might not be available with a future version of Windows.

Comparing .NET and Windows Runtime
With C# Windows Store apps you can use both Windows Runtime as well as the .NET Framework.
However, not all classes and namespaces are available from the .NET Framework, and sometimes only some
methods of classes are available. Windows Runtime is a sandboxed API that wraps new UI classes and parts
of the Windows API.

Namespaces unavailable with the .NET subset for Windows Store apps are replaced by a corresponding
WinRT namespace, as shown in the following table:

.NET NAmEsPACE WiNRT NAmEsPACE

System.Net.Sockets Windows.Networking.Sockets

System.Net.WebClient Windows.Networking.BackgroundTransfer and
System.Net.HttpClient

System.Resources Windows.ApplicationModel.Resources

System.Security.IsolatedStorage Windows.Storage

System.Windows Windows.UI.Xaml

Namespaces
The best way to see what’s offered by Windows Runtime is to look at the namespaces. The classes from
Windows Runtime are grouped within namespaces, similarly to the .NET Framework. Whereas the .NET
Framework starts with the System namespace, Windows Runtime starts with the Windows namespace.
In addition, whereas a part of the .NET Framework is a public standard and can be implemented for
other platforms (see Mono at http://www.go-mono.org), Windows Runtime is meant for use only with
Windows.

Some of the major namespaces are shown in Figure 31-1. An explanation is given in the following table:

c31.indd 896 30-01-2014 20:36:55

Overview ❘ 897

WiNdoWs RuNTimE NAmEsPACE dEsCRiPTioN

Windows.System The Windows.System namespace and its subnamespaces contain a
Launcher class for launching applications, classes with information about
a remote desktop, a ThreadPool and ThreadPoolTimer for working
with background tasks, and more.

Windows.Foundation The Windows.Foundation namespace contains subnamespaces for col-
lections, diagnostics, and metadata.

Windows.ApplicationModel Windows.ApplicationModel has subnamespaces to manage licensing
with the store, to open the search with the Charms bar, to share data with
other apps, to work with contacts, and to create background tasks.

Windows.Globalization Windows.Globalization defines calendars, regions, languages, date,
and number formats.

Windows.Graphics Windows.Graphics is for images and printing.

Windows.Media Windows.Media enables accessing audio and video, using the camera,
and making use of the PlayTo standard to play videos to other devices.

Windows.Data Windows.Data contains classes for XML, HTML, JSON, Text, and PDF.

FiGuRE 31-1

continues

c31.indd 897 30-01-2014 20:36:55

898 ❘ CHAPTER 31 WindoWs Runtime

WiNdoWs RuNTimE NAmEsPACE dEsCRiPTioN

Windows.Devices Windows.Devices enables interacting with devices and sensors,
e.g., using Accelerometer, Compass, Gyrometer, Inclinometer,
LightSensor, OrientationSensor, sending SMS, using geo-location,
accessing Point of Service (POS) devices, smart cards, connect to Wi-Fi
Direct devices, and much more.

Windows.Storage For reading and writing files, the Windows.Storage namespace
contains classes such as StorageFile and StorageFolder, but also
contains streams, file pickers, and classes for compression and decom-
pression with the algorithms Mszip, Lzms, Xpress, and XpressHuff.

Windows.Security This namespace contains subnamespaces for security with authentication,
credentials, and cryptography.

Windows.Networking Windows.Networking is for client socket programming. There’s also a
way to start a background transfer that continues when the application
goes out of scope for the user.

For XAML there’s the subnamespace Windows.UI.Xaml, which contains several other namespaces, as
shown in Figure 31-2. Here you find shapes
(Shapes namespace); XAML documents
(Documents); data binding (Data); bitmaps,
brushes, paths, transformations (Media);
touch, mouse, and keyboard input (Input); a
XAML reader (Markup); printing of XAML
elements (Printing); and more.

Clearly, the namespaces for Windows Runtime
offer a lot of possibilities. Of course, the .NET
Framework is huge compared to Windows
Runtime, but the latter is primarily meant for
Windows Store apps; therefore, some parts of
the .NET Framework are not required.

You can use a subset of the .NET Framework
together with Windows Runtime, although some categories of classes are not offered for Windows Store
apps. For example, server-side code is not required for Windows Store apps. There’s no ASP.NET and no
hosting part of WCF. The client-side part for WCF is available with Windows Store apps. Doing communi-
cation with a WCF service running on a server is possible with WCF client classes.

Other categories where classes are not available in the subset are removing duplicates, and doing some clean
ups. Classes that are available with Windows Runtime are not duplicated with the .NET Framework for
Windows Store apps. Windows Runtime already contains an XmlDocument class that deals with the DOM
of XML in the namespace Windows.Data.Xml.Dom, so there’s no need for another one in the namespace
System.Xml. Clean ups are done with obsolete and unsafe APIs. These are not available anymore, and also
classes that directly access the Windows API are missing. That’s the role of Windows Runtime.

 (continued)

FiGuRE 31-2

c31.indd 898 30-01-2014 20:36:56

Overview ❘ 899

metadata
Accessing metadata information is possible in the same way with .NET applications as it is with Windows
Runtime. The metadata format is the same. The metadata information defined for .NET is specified by an
ECMA standard (ECMA 335), and the same standard has been used with Windows Runtime.

You can use ildasm to read the metadata of Windows Runtime libraries with the file extension .winmd.
You can find the metadata information for Windows Runtime in the directory <windows>\system32\
WinMetadata. There you will find the files that can be opened using ildasm to read metadata information.
However, it’s easier to use the Visual Studio Object Browser (see Figure 31-3), which makes use of the meta-
data information as well.

FiGuRE 31-3

Using the Object Browser it’s easy to look at the classes from Windows Runtime by selecting Windows as
the browsing scope, and the subset of .NET classes available by selecting .NET for Windows Store apps as
the browsing scope. Windows uses the Windows.winmd file from the directory <Program Files (x86)>\
Windows Kits\8.1\References\CommonConfiguration\Neutral, and the .NET subset can be found at
<Program Files (x86)>\Reference Assemblies\Microsoft\Framework\.NETCore\v4.5.1. These
files contain only metadata information that defines what is available.

Language Projections
The metadata information is used to create different projections that vary according to the programming
language. Windows Runtime looks different when using it from C++, C#, and JavaScript. This section cre-
ates two sample Windows Store apps to demonstrate the differences between JavaScript and C#. The appli-
cations contain a button and an image. Clicking the button starts a file picker that enables the user to select
an image, which is then displayed.

The first application built uses JavaScript. To begin, select the JavaScript Windows Store Blank App tem-
plate. The generated HTML file, default.html, is modified to contain button and img elements as shown
in the following code snippet (code file ProjectionWithJavaScript/default.html):

 <button id="selectImageButton">Select an Image</button>
 <p />

c31.indd 899 30-01-2014 20:36:56

900 ❘ CHAPTER 31 WindoWs Runtime

The JavaScript file, default.js, is also created from the Visual Studio template. This file contains an event
handler that is added to the onactivated event of the app. As the name suggests, this event handler is
invoked when the application is activated. You just add functionality after the call to setPromise. Promise
objects (one is returned from setPromise) and the then and done functions are the JavaScript variants of
asynchronous programming. With C#, the async and await keywords are used instead. The WinJS
.UI.processAll function processes all elements of the page and manages binding. This example focuses on
the code that happens after that — the done function invokes the function that is passed as a parameter as
soon as processing is completed. With the implementation of this function, a click event handler is added
to the selectImageButton. The function that is passed to the addEventListener function is invoked as
soon as the button is clicked.

Now we are getting into Windows Runtime code. A FileOpenPicker from the namespace Windows
.Storage.Pickers is instantiated. This picker requests a file from the user. To specify a preferred direc-
tory, the suggestedStartLocation is set to Windows.Storage.Pickers.PickerLocationId.picture-
sLibrary. Then file extensions are added to the file type filter list. fileTypeFilter is a property from the
FileOpenPicker. This property returns an IVector<string> collection; and with JavaScript, to add items
to the collection the append function is invoked. Calling the function pickSingleFileAsync the user is
asked for a file to open. As soon as the result is retrieved, the then function defines what should be done
next. The file argument is used to create a BLOB object that is assigned to the src attribute of the image
element, enabling the selected image file to be shown in the UI. The following code shows how to accom-
plish all this (code file ProjectionWithJavaScript/js/default.js):

(function () {
 "use strict";

 var app = WinJS.Application;
 var activation = Windows.ApplicationModel.Activation;

 app.onactivated = function (args) {
 if (args.detail.kind === activation.ActivationKind.launch) {
 if (args.detail.previousExecutionState !==
 activation.ApplicationExecutionState.terminated) {
 // TODO: This application has been newly launched. Initialize
 // your application here.
 } else {
 // TODO: This application has been reactivated from suspension.
 // Restore application state here.
 }
 args.setPromise(WinJS.UI.processAll().done(function () {
 document.getElementById("selectImageButton").addEventListener(
 "click", function () {
 var picker = new Windows.Storage.Pickers.FileOpenPicker();
 picker.suggestedStartLocation =
 Windows.Storage.Pickers.PickerLocationId.picturesLibrary;
 picker.fileTypeFilter.append(".jpg");
 picker.fileTypeFilter.append(".png");
 picker.pickSingleFileAsync().then(function (file) {
 if (file) {
 var imageBlob = URL.createObjectURL(file);
 document.getElementById("image1").src = imageBlob;
 }
 });
 });
 }));
 }
 };

Now, let’s do the same with XAML and C#. This project makes use of the Windows Store Blank App
(XAML) template. As before, a Button element and an Image element are created, but this time XAML
code is used instead of HTML (code file ProjectionWithCSharp/MainPage.xaml):

c31.indd 900 30-01-2014 20:36:56

Overview ❘ 901

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Button Grid.Row="0" Click="OnOpenImage">Select an Image</Button>
 <Image Grid.Row="1" x:Name="image1" />
 </Grid>

It’s after the OnOpenImage handler method is assigned to the Click event of the button that things get
interesting. Similar to before, a FileOpenPicker object is created. However, immediately after that,
in the next line, an interesting difference can be seen. SuggestedStartLocation is of the type of the
PickerLocationId enumeration. The enumeration values are written with uppercase notation as you’re
used to with C#. The FileTypeFilter does not return IVector<string>, but instead IList<string>.
With this the Add method is invoked to pass a few file extensions. Working with JavaScript, it’s more com-
mon to use an append function instead of the Add method. Using the await keyword, you can wait until
the StorageFile is returned. Finally, a BitmapImage object is assigned to the XAML Image element. The
BitmapImage itself receives a random access stream to load the image (code file ProjectionWithCSharp/
MainPage.xaml.cs):

 private async void OnOpenImage(object sender, RoutedEventArgs e)
 {
 var picker = new FileOpenPicker();
 picker.SuggestedStartLocation = PickerLocationId.PicturesLibrary;
 picker.FileTypeFilter.Add(".jpg");
 picker.FileTypeFilter.Add(".png");
 StorageFile file = await picker.PickSingleFileAsync();
 var image = new BitmapImage();
 image.SetSource(await file.OpenReadAsync());
 image1.Source = image;
 }

The same classes have been used with these two examples, but the methods look different depending on the
programming language used. With .NET, the convention is to use PascalCase with types, methods, proper-
ties, and events. With JavaScript, the convention is to use PascalCase for the types, camelCase with methods
and properties, and lowercase with events. This conversion for the languages is handled by language projec-
tion, which changes not only uppercase and lowercase, but also data types and method names. More details
about this are provided in subsequent sections.

Windows Runtime Types
This section looks at Windows Runtime types, including how they are categorized and how they compare
to .NET types. An important aspect of the types defined by Windows Runtime is their interaction with
various languages. For example, when passing a .NET string to a Windows Runtime method, it shouldn’t
be necessary to create a new string with every method call just because there are two different technolo-
gies. Passing data here is known as marshalling, which is discussed in more detail in Chapter 23, “Interop”.
Understanding Windows Runtime types is important not only when using classes and methods from the
runtime, but also when creating types with C# that should be used from other languages, such as C++ and
JavaScript.

Let’s look at categories of Windows Runtime types:

➤➤ Strings — With Windows Runtime, strings are defined as handles, HSTRING. A handle is a reference to
a string that just references the first character of the string The HSTRING is added to the buffer of the
.NET String type to address the rest of the string inside. With .NET, strings are immutable and can-
not be changed. WinRT always assumes that the string buffer is immutable and null-terminated which
is the case with .NET strings. A .NET String type simply maps to HSTRING.

c31.indd 901 30-01-2014 20:36:56

902 ❘ CHAPTER 31 WindoWs Runtime

➤➤ Basic data types — These types, such as Int16, Int32, Int64, Single, and Double, map directly to
.NET representatives. The WinRT DateTime maps to a .NET DateTimeOffset.

➤➤ Arrays — Simple arrays such as Int32[] can be used for basic collections.

➤➤ Enums — These map easily to the C# enum. It’s also possible to use flag and non-flag enums.

➤➤ Structs — These are available with WinRT as well, but they are different from .NET struct types. A
struct can contain only basic data types and strings. Whereas a .NET struct can implement interfaces,
this is not possible with WinRT; a struct is just a simple data holder.

➤➤ Interfaces — These are the heart of Windows Runtime. Chapter 23 discusses COM interfaces
such as IUnknown. The classes offered by Windows Runtime are COM objects, the new genera-
tion. In addition to IUnknown, they also implement the interface IInspectible. Unlike IUnknown,
IInspectible provides information about the implemented interfaces and the name of a class.

➤➤ Generic interfaces — Windows Runtime supports these as well. IIterable<T> enables you to enu-
merate a collection, and IVector<T> represents a random-access collection of elements. These inter-
faces map to IEnumerable<T> and IList<T>, respectively.

➤➤ Runtime classes — This includes classes such as Windows.Storage.StorageFile. Runtime classes
implement interfaces; for example, StorageFile implements IStorageFile, IStorageFileItem,
IRandomAccessStreamReference, IInputStreamReference, and IStorageItemProperties (in
addition to IUnknown and IInspectible). With .NET applications you typically work only with the
runtime classes, not with the interfaces directly.

WiNdoWs RuNTimE ComPoNENTs
Although you have seen that there are differences between Windows Runtime and .NET in terms of
types, many of them map easily. For example, the HSTRING directly maps to a String. The differences
are extremely important if you create Windows Runtime components with .NET. Visual Studio offers a
Windows Runtime Component template with the application templates. Using this, you can create a compo-
nent that is available for other languages using Windows Runtime, such as C++ and JavaScript. This differs
from the Portable class library whereby you can create classes that are available with other .NET variants,
such as applications using the full .NET Framework (e.g., WPF), Silverlight, or Windows Phone. A third
type of library is the Class Library (Windows Store apps). This library can only be used with Windows
Store apps, but it has the advantage of allowing you to use classes from Windows Runtime.

When creating Windows Runtime components, the public classes offered must be sealed. Only sealed types
are supported — with the exception of UI components, for which sealing is not that strict. The following
sections take a closer look at both the automatic mappings and the sometimes not so automatic mappings.

Collections
Windows Runtime defines collection interfaces that automatically map to .NET collection interfaces as
shown in the following table:

WiNdoWs RuNTimE .NET

IIterable<T> IEnumerable<T>

IIterator<T> IEnumerator<T>

IVector<T> IList<T>

IVectorView<T> IReadOnlyList<T>

IMap<K, V> IDictionary<K, V>

IMapView<K, V> IReadOnlyDictionary<K, V>

c31.indd 902 30-01-2014 20:36:57

Windows Runtime Components ❘ 903

When creating a Windows Runtime component, you need to return an interface, such as IList<string>
shown in the following code snippet. Returning List<string> directly is not possible. IList<string>
automatically maps to IVector<T>. Similarly, you can use IList<T> as a parameter with methods:

 public IList<string> GetStringList()
 {
 return new List<string> { "one", "two" };
 }

streams
Streams differ from collections. The foundation for working with Windows Runtime streams are, of
course, interfaces. The Windows.Storage.Streams namespace also offers concrete stream classes, such
as FileInputStream, FileOutputStream, and RandomAccessStream, and reader and writer classes
using streams such as DataReader and DataWriter. All these classes are based on the interfaces. .NET
doesn’t use interfaces for streams. Public signatures of Windows Runtime components always require
interfaces for streams such as IInputStream, IOutputStream, and IRandomAccessStream. Mapping
these interfaces to .NET types and vice versa is done with extension methods defined within the
WindowsRuntimeStreamExtensions class. As shown in the following code snippet, AsStreamForRead cre-
ates a Stream object from an IInputStream:

 public void StreamSample(IInputStream inputStream)
 {
 var reader = new StreamReader(inputStream.AsStreamForRead());
 //...
 }

Other extension methods defined are AsStreamForWrite to create a Stream object from an IOutputStream
and AsStream to create a Stream from an IRandomAccessStream. To create a Windows Runtime stream
from a .NET stream, the method AsInputStream can be used to create an IInputStream from a Stream,
and AsOutputStream can be used to create an IOuputStream from a Stream, and AsRandomAccessStream
to create an IRandomAccessStream from a Stream.

The following code shows one example using only Windows Runtime classes. First, a StorageFolder object
is created that references the local folder to which the application is allowed to write. ApplicationData
.Current returns the current instance of the ApplicationData class, which defines properties for local,
roaming, and temporary folders to read and write data. The content of the roaming folder is copied to the
different systems into which the user logs in to. The roaming folder has size limitations (quotas). At the
time of this writing the size is limited to 100KB per application. With the sample code, in the local folder
a new file is created. The method CreateFileAsync returns a StorageFile object. StorageFile is a
Windows Runtime object and thus returns an object implementing the IRandomAccessStream interface
on calling OpenAsync. The IRandomAccessStream can be passed to the constructor of Windows Runtime
DataWriter class, which is used to write a string to the file:

 StorageFolder folder = ApplicationData.Current.LocalFolder;
 StorageFile file = await folder.CreateFileAsync("demo1.txt");
 IRandomAccessStream stream = await file.OpenAsync(FileAccessMode.ReadWrite);
 using (var writer = new DataWriter(stream))
 {
 writer.WriteString("Hello, WinRT");
 await writer.FlushAsync();
 }

The preceding example is purely Windows Runtime code. Now let’s look at a mixed variant with
Windows Runtime and .NET. As before, the StorageFolder is created. With the StorageFolder, the
extension method OpenStreamForWriteAsync is used. OpenStreamForWriteAsync is an extension
method defined with the WindowsRuntimeStorageExtensions class that returns a .NET Stream object.
This enables all the .NET classes using streams to write to the file, such as the StreamWriter class.

c31.indd 903 30-01-2014 20:36:57

904 ❘ CHAPTER 31 WindoWs Runtime

WindowsRuntimeStorageExtension is defined in the .NET assembly System.Runtime.WindowsRuntime
in the namespace System.IO:

 StorageFolder folder = ApplicationData.Current.LocalFolder;
 Stream stream = await folder.OpenStreamForWriteAsync("demo2.text",
 CreationCollisionOption.ReplaceExisting);
 using (var writer = new StreamWriter(stream))
 {
 await writer.WriteLineAsync("Hello, .NET");
 await writer.FlushAsync();
 }

With streams, byte[] often comes into play as well. For a byte[], Windows Runtime defines the interface
IBuffer. With byte arrays, there’s a similar mix-and-match just like streams. With the Create method of
the WindowsRuntimeBuffer class (namespace System.Runtime.InteropServices.WindowsRuntime), an
object implementing IBuffer is returned from a byte[]. The WindowsRuntimeBufferExtensions class
offers methods to get IBuffer from byte[] (AsBuffer method), to copy byte[] to IBuffer or vice versa
(CopyTo), and to create a byte[] from IBuffer (ToArray).

delegates and Events
Programming delegates and events looks very similar to .NET and Windows Runtime, but behind the scenes
the implementation is different. Windows Runtime events can only be of a Windows Runtime delegate type
(or a type that matches a Windows Runtime delegate type). An event cannot be of type EventHandler, but
using the type EventHandler<object> is OK.

For Windows Runtime implementation of events, the WindowsRuntimeMarshal class is used. This class
offers the methods AddEventHandler and RemoveEventHandler to add or remove handlers from events.

Async
For async operations with .NET, Task objects are used. An async method that does not have a return value
returns Task, and an async method with a return value returns Task<T>. Async methods with Windows
Runtime are based on the interfaces IAsyncAction and IAsyncOperation<T>.

Async Windows Runtime methods can be used in the same way as async .NET methods, with the key-
words async and await. The following code snippet makes use of Windows Runtime XmlDocument
class from the namespace Windows.Data.Xml.Dom. The method LoadFromUriAsync returns
IAsyncOperation<XmlDocument>. This can be used in the same way as a method that returns
Task<XmlDocument>:

 private async Task<string> XmlDemo()
 {
 Uri uri = new Uri("http://www.cninnovation.com/downloads/Racers.xml");
 XmlDocument doc = await XmlDocument.LoadFromUriAsync(uri);
 return doc.GetXml();
 }
 private async void OnXml(object sender, RoutedEventArgs e)
 {
 text1.Text = await XmlDemo();
 }

If you create a Windows Runtime component, a public async method cannot return Task. Such a method
needs to be written as shown in the following two code snippets. If the method does not return a value,
it needs to return IAsyncAction. A Task is converted to IAsyncAction with the extension method
AsAsyncAction. The extension methods for tasks are defined in the WindowsRuntimeSystemExtensions
class:

c31.indd 904 30-01-2014 20:36:57

Windows Store Apps ❘ 905

 public IAsyncAction TaskSample()
 {
 return Task.Run(async () =>
 {
 await Task.Delay(3000);
 }).AsAsyncAction();
 }

With an async method that returns a value, IAsyncOperation<T> needs to be returned. The extension
method AsAsyncOperation converts a Task<T> to IAsyncOperation<T>:

 public IAsyncOperation<int> TaskWithReturn(int x, int y)
 {
 return Task<int>.Run<int>(async () =>
 {
 await Task.Delay(3000);
 return x + y;
 }).AsAsyncOperation();
 }

WiNdoWs sToRE APPs
Visual Studio offers several templates for creating Windows Store apps, as shown in Figure 31-4. The Blank
App template is the most rudimentary, containing just a single empty page. The Grid App template con-
tains three pages that display grouped grid information. The Hub App contains three pages like the Grid
App template does, but the Hub App makes use of the new Hub control. The Split App template contains
two pages to navigate with an item list. A Class Library template is a .NET library that you can reuse with
different Windows Store app projects created with C# or Visual Basic. A Windows Runtime Component
Library template creates a library that can be reused with various Windows Store app projects from other
languages, such as C++ and JavaScript. Windows Runtime Component Library template restricts you to
define public signatures of methods that must match Windows Runtime types as explained in the previous
section.

FiGuRE 31-4

c31.indd 905 30-01-2014 20:36:57

906 ❘ CHAPTER 31 WindoWs Runtime

For the sample application, the Blank App template is used. With a Windows Store project, in addition to
the usual project settings, there’s also a configuration for the deployment package. The deployment pack-
age can be configured by clicking the file Package.appxmanifest in Solution Explorer. Clicking this file
opens the Manifest Designer, shown in Figure 31-5. Using this designer you can configure application set-
tings such as which images are used for the logo, names, rotation information, and colors. The second tab,
Capabilities, enables you to define which capabilities are included with the application, and what it needs
permissions to access (e.g., directories such as the documents library or the music library, and devices such
as the microphone or webcam). The Declarations tab defines what the application needs to access (e.g.,
camera settings, registering a file type association, availability as a share target). The Packaging tab enables
you to define the application logo, a certificate and version number, and other options that describe your
deployed app.

FiGuRE 31-5

The Manifest Designer creates an XML file like the one shown here containing all the configured values:

<?xml version="1.0" encoding="utf-8"?>
<Package xmlns="http://schemas.microsoft.com/appx/2010/manifest"
 xmlns:m2="http://schemas.microsoft.com/appx/2013/manifest">
 <Identity Name="920e63ef-9344-4925-a408-86f056314f31" Publisher="CN=Christian"
 Version="1.0.0.0" />
 <Properties>
 <DisplayName>Win8AppSample</DisplayName>
 <PublisherDisplayName>CN innovation</PublisherDisplayName>
 <Logo>Assets\StoreLogo.png</Logo>
 </Properties>
 <Prerequisites>
 <OSMinVersion>6.3.0</OSMinVersion>
 <OSMaxVersionTested>6.3.0</OSMaxVersionTested>
 </Prerequisites>
 <Resources>

c31.indd 906 30-01-2014 20:36:58

The Life Cycle of Applications ❘ 907

 <Resource Language="x-generate" />
 </Resources>
 <Applications>
 <Application Id="App" Executable="$targetnametoken$.exe"
 EntryPoint="Win8AppSample.App">
 <m2:VisualElements
 DisplayName="Win8AppSample"
 Square150x150Logo="Assets\Logo.png"
 Square30x30Logo="Assets\SmallLogo.png"
 Description="Win8AppSample"
 ForegroundText="light"
 BackgroundColor="#464646">
 <m2:SplashScreen Image="Assets\SplashScreen.png" />
 </m2:VisualElements>
 </Application>
 </Applications>
 <Capabilities>
 <Capability Name="internetClient" />
 </Capabilities>
</Package>

Building the project with Visual Studio and starting it automatically deploys it on the system. You can also
create an app package for deployment in the Windows Store or for the sideloading of business applications.

NoTE The deployment of Windows Store app packages is discussed in Chapter 18,
“Deployment.”

THE LiFE CyCLE oF APPLiCATioNs
The life cycle of desktop applications is different from the life cycle of Windows Store apps. With desktop
applications, the user is in control of starting and stopping the application. Sometimes the Task Manager is
needed to kill a hanging application, but usually the user decides how many applications should run concur-
rently. For example, it wouldn’t be unusual to keep multiple instances of Visual Studio, Outlook, several
Internet Explorer windows, and some tools open at the same time. On the contrary, other users start and
end one application before opening the next. This is completely different than the new way Windows Store
apps work.

With Windows Store apps, the user typically does not stop the application. The usual way to start an appli-
cation is by clicking its tile. Of course, this is very similar to desktop applications. The big differences are
just following. When the user starts an application it is in running mode. As soon as another application is
started and the previous application is no longer visible, it changes to suspended mode. In suspended mode,
battery consumption is reduced if applicable. The application stays in memory but is no longer allowed to
consume CPU, disk, or network resources. All threads are suspended. Before the application moves to
suspended mode, the application gets a chance to react. Here, the application should save the state.

When the user switches back to the first application it is instantly resumed from suspend (as it is still stored
in memory) and brought to the foreground. The mode is now running again. Switching from suspended to
running usually requires no action on behalf of the application, as all application data is still in memory;
therefore, the application only needs reactivation.

In case memory resources are low, Windows can terminate suspended applications. To terminate applica-
tions the process is killed. No information is sent to the application, so it cannot react to this event. That’s
why an application should act on the suspended event and save its state there. Upon termination it is too
late.

c31.indd 907 30-01-2014 20:36:58

908 ❘ CHAPTER 31 WindoWs Runtime

Application Execution states
States of the application are defined with the ApplicationExecutionState enumeration. This enumera-
tion defines the states NotRunning, Running, Suspended, Terminated, and ClosedByUser. The application
needs to be aware of and store its state, as users returning to the application expect to continue where they
left it previously.

With the OnLaunched method in the App class, you can get the previous execution state of the application
with the PreviousExecutionState property of the LauchActivatedEventArgs argument. The previous
execution state is NotRunning if the application is being started for the first time after installing it, or after
a reboot, or when the user stopped the process from the Task Manager. The application is in the Running
state if it was already running when the user activated it from a second tile or it’s activated by one of the
activation contracts. The PreviousExecutionState property returns Suspended when the application was
suspended previously. Usually there’s no need to do anything special in that case as the state is still available
in memory. While in a suspended state, the app doesn’t use any CPU cycles, and there’s no disk access.

There’s an important difference between Windows 8 and Windows 8.1 in what happens when the user stops
an app. When the user stopped an app running on Windows 8, the app was terminated after 10 seconds. 10
seconds was the time available for the app to store its state, so it can reuse the state with the next start. With
Windows 8.1, when the user closes the app, it is removed from the screen and the application switch list, but
it stays in memory. However, you can decide to switch to the old behavior by setting the property Windows
.UI.ViewManagement.ApplicationView.TerminateAppOnFinalViewClose. This setting should only be
used for programs migrating from Windows 8 that depend on a real close of the app (e.g., to clean up incon-
sistent state) before it is started again.

NoTE The application can implement one or more activation contracts and can then
be activated with one of these. A few examples of these contracts are search and share.
Without starting the application first, the user can search for some terms in the appli-
cation. This is when the application is started. Also, the user can share some data
from another application, and start a Windows Store app by using it as a share target.
Application contracts are discussed in Chapter 38, “Windows Store Apps: User Interface.”

The sample application to demonstrate the life cycle of Windows Store apps (LifecycleSample) is started
with the Blank App template. After creation of the project, a new Basic Page named MainPage is added to
replace the originally created MainPage from the project. The Visual Studio item template Basic Page adds
several files to the Common directory. One of these files is SuspensionManager.cs, which contains the class
SuspensionManager. This class greatly assists with state management.

To demonstrate navigation state, the application contains the basic pages Page1 and Page2 in addition to the
MainPage. Each of these pages contains a button for navigation. The button of the MainPage has a Click
event handler that navigates to Page2, as shown in the following code snippet (file MainPage.xaml.cs):

 private void OnGotoPage2(object sender, RoutedEventArgs e)
 {
 Frame.Navigate(typeof(Page2));
 }

The other handlers are similar. The goal is to enable users to return to the page they had open in case the
application was terminated in between.

suspension manager
The SuspensionManager class (code file LifecycleSample/Common/SuspensionManager.cs) contains
a SaveAsync method that saves both frame navigation state and session state. For navigation state, the
method sets it with all registered frames in the method SaveFrameNavigationState. In the following

c31.indd 908 30-01-2014 20:36:58

The Life Cycle of Applications ❘ 909

example, the frame state is added to the session state to save them together. Session state is written first to
a MemoryStream with the help of the DataContractSerializer, and afterward is written to the XML file
_sessionState.xml:

 private static Dictionary<string, object> _sessionState =
 new Dictionary<string, object>();
 private static List<Type> _knownTypes = new List<Type>();
 private const string sessionStateFilename = "_sessionState.xml";

 public static async Task SaveAsync()
 {
 try
 {
 // Save the navigation state for all registered frames
 foreach (var weakFrameReference in _registeredFrames)
 {
 Frame frame;
 if (weakFrameReference.TryGetTarget(out frame))
 {
 SaveFrameNavigationState(frame);
 }
 }
 // Serialize the session state synchronously to avoid
 // asynchronous access to shared state
 MemoryStream sessionData = new MemoryStream();
 DataContractSerializer serializer =
 new DataContractSerializer(typeof(Dictionary<string, object>),
 _knownTypes);
 serializer.WriteObject(sessionData, _sessionState);
 // Get an output stream for the SessionState file and write the
 // state asynchronously
 StorageFile file = await
 ApplicationData.Current.LocalFolder.CreateFileAsync(
 sessionStateFilename, CreationCollisionOption.ReplaceExisting);
 using (Stream fileStream = await file.OpenStreamForWriteAsync())
 {
 sessionData.Seek(0, SeekOrigin.Begin);
 await sessionData.CopyToAsync(fileStream);
 }
 }
 catch (Exception e)
 {
 throw new SuspensionManagerException(e);
 }
 }

 private static void SaveFrameNavigationState(Frame frame)
 {
 var frameState = SessionStateForFrame(frame);
 frameState["Navigation"] = frame.GetNavigationState();
 }

For a restore of the data, the method RestoreAsync is available. This method opens a StorageFile and
reads data using the DataContractSerializer:

 public static async Task RestoreAsync()
 {
 _sessionState = new Dictionary<String, Object>();

 try
 {
 // Get the input stream for the SessionState file
 StorageFile file =
 await ApplicationData.Current.LocalFolder.GetFileAsync(

c31.indd 909 30-01-2014 20:36:58

910 ❘ CHAPTER 31 WindoWs Runtime

 sessionStateFilename);
 using (IInputStream inStream =
 await file.OpenSequentialReadAsync())
 {
 // Deserialize the Session State
 DataContractSerializer serializer = new DataContractSerializer(
 typeof(Dictionary<string, object>), _knownTypes);
 _sessionState =
 (Dictionary<string, object>)serializer.ReadObject(
 inStream.AsStreamForRead());
 }
 // Restore any registered frames to their saved state
 foreach (var weakFrameReference in _registeredFrames)
 {
 Frame frame;
 if (weakFrameReference.TryGetTarget(out frame))
 {
 frame.ClearValue(FrameSessionStateProperty);
 RestoreFrameNavigationState(frame);
 }
 }
 }
 catch (Exception e)
 {
 throw new SuspensionManagerException(e);
 }
 }

In the next section you’ll add some code to make use of the SuspensionManager to save the navigation
state.

Navigation state
To save state on suspending of the application, the Suspending event of the App class is set in the
OnSuspending event handler. The event is fired when the application moves into suspended mode.
With the argument SuspendingEventArgs, the SuspendingOperation object can be accessed with
the SuspendingOperation property. The GetDeferral property enables suspension of the appli-
cation to be delayed, giving it some time to finish before it is suspended. GetDeferral returns a
SuspendingDeferral that is used to inform the runtime of completion of the suspending state by invok-
ing the Complete method. The maximum amount of time that can be used is defined by the Deadline
property of SuspendingOperation. This property provides information about the time remaining before
the application is suspended. After getting the SuspendingDeferral, the SaveAsync method of the
SuspensionManager is invoked to save the application state:

 private async void OnSuspending(object sender, SuspendingEventArgs e)
 {
 var deferral = e.SuspendingOperation.GetDeferral();
 await SuspensionManager.SaveAsync();
 deferral.Complete();
 }

To remember navigation information, the frame needs to be registered with the SuspensionManager. The
OnLaunched method of the Application class is overridden, and after the Frame object is created it is reg-
istered with the SuspensionManager class. This way, the frame navigation information is saved on suspen-
sion, and the variable is filled when its state is restored. If the application was launched again after it was
terminated previously (which is checked with the PreviousExecutionState property), the RestoreAsync
method of the SuspensionManager is invoked to retrieve the navigation data from the frame. Before naviga-
tion to the MainPage, the Content property of the frame is checked to confirm that it is not null. If that’s
the case, the content is already filled from the restore. If a restore was not done, then navigation to the
MainPage is initiated (code file LifecycleSample/App.xaml.cs):

c31.indd 910 30-01-2014 20:36:58

The Life Cycle of Applications ❘ 911

 protected async override void OnLaunched(LaunchActivatedEventArgs args)
 {
 Frame rootFrame = Window.Current.Content as Frame;

 // Do not repeat app initialization when the Window already has content,
 // just ensure that the window is active
 if (rootFrame == null)
 {
 // Create a Frame to act as the navigation context and navigate to the first page
 rootFrame = new Frame();
 // Set the default language
 rootFrame.Language = Windows.Globalization.ApplicationLanguages.Languages[0];

 SuspensionManager.RegisterFrame(rootFrame, "appFrame");

 if (e.PreviousExecutionState == ApplicationExecutionState.Terminated)
 {
 await SuspensionManager.RestoreAsync();
 }

 Window.Current.Content = rootFrame;
 }

 if (rootFrame.Content == null)
 {
 if (!rootFrame.Navigate(typeof(MainPage), e.Arguments))
 {
 throw new Exception("Failed to create initial page");
 }
 }

Testing suspension
Now you can start the application, navigate to another page, and then open other applications to wait until
the application is terminated. With the Task Manager, you can see the suspended applications with the
More details view if the Status Values option is set to “Show suspended status.” This is not an easy way to
test suspension (because it can take a long time before the termination happens), however, and it would be
nice to debug the different states.

Using the debugger, everything works differently. If the application would be suspended as soon as it doesn’t
have a focus, it would be suspended every time a breakpoint is reached. That’s why suspension is disabled
while running under the debugger. So the normal suspension mechanism doesn’t apply. However, it’s easy
to simulate. If you open the Debug Location toolbar, there are three buttons for Suspend, Resume, and
Suspend and shutdown. If you select Suspend and shutdown, and then start the application again, it con-
tinues from the previous state of ApplicationExecutionState.Terminated, and thus opens the page the
user opened previously.

Page state
Any data that was input by the user should be restored as well. For this demonstration, on page 2 an input
field is created. The data representation of this input field is a simple Page2Data class with a Data property,
as shown in the following code snippet (code file LifecycleSample/DataModel/Page2Data.cs):

[DataContract]
public class Page2Data : BindableBase
 {
 private string data;

 [DataMember]
 public string Data
 {

c31.indd 911 30-01-2014 20:36:58

912 ❘ CHAPTER 31 WindoWs Runtime

 get { return data; }
 set { SetProperty(ref data, value); }
 }
 }

The base class BindableBase implements the interface INotifyPropertyChanged for notification when a
property value changes (code file LifecylceSample/Utilities/BindableBase.cs):

[DataContract]
public class BindableBase : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;

 protected void OnPropertyChanged(
 [CallerMemberName] string propertyName = null)
 {
 PropertyChangedEventHandler handler = PropertyChanged;
 if (handler != null)
 {
 handler(this, new PropertyChangedEventArgs(propertyName));
 }
 }

 protected void SetProperty<T>(ref T item, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (!EqualityComparer<T>.Default.Equals(item, value))
 {
 item = value;
 OnPropertyChanged(propertyName);
 }
 }
 }

The data is bound to a TextBox element (file Page2.xaml):

 <StackPanel Grid.Row="1" DataContext="{Binding Page2Data}">
 <TextBox Text="{Binding Data, Mode=TwoWay}" />
 <Button Content="Goto Page 3" Click="OnGotoPage3" />
 </StackPanel>

In the Page2 class, a variable of the Page2Data is defined to bind it to the UI element:

 public sealed partial class Page2 : Page
 {
 private Page2Data data;

Assigning the variable data to bind it to the UI can be done within the navigationHelper_LoadState
method. This method is the event handler on the LoadState event of the NavigationHelper class. With
the implementation, the PageState is used to verify whether the dictionary already contains the key for
the data specific to Page2. If so, the value is accessed and assigned to the data variable. If the data is not yet
there, a new Page2Data object is created:

 protected void navigationHelper_LoadState(object sender,
 LoadStateEventArgs e)
 {
 if (pageState != null && pageState.ContainsKey("Page2"))
 {
 data = pageState["Page2"] as Page2Data;
 }
 else
 {
 data = new Page2Data() { Data = "initital data" };
 }
 this.DefaultViewModel["Page2Data"] = data;
 }

c31.indd 912 30-01-2014 20:36:59

Application Settings ❘ 913

On leaving the page, the method navigationHelper_SaveState is invoked. As before, this
method is invoked by the SaveState event of the NavigationHelper class. The implemen-
tation just needs to add the page state:

 protected void navigationHelper_SaveState(object sender,
 SaveStateEventArgs e)
 {
 e.PageState.Add("Page2", data);
 }

Because the sample not only writes simple data types, but the custom type Page2Data, this
type needs to be added to the known types for serialization (code file LifecycleSample/
DataModel/App.xaml.cs):

 SuspensionManager.KnownTypes.Add(typeof(Page2Data));

Run the application once more to test suspension and termination. The state of the input
field will be set to the value from the previous session.

APPLiCATioN sETTiNGs
Windows Store app settings should not be handled by adding controls directly to a page and
allowing the user to change their values. Instead, Windows Store apps have a predefined area
for application settings. These settings can be opened from the Charms bar. You can open
the Charms bar with touch by swiping from the right, or with the mouse by moving it to the
top-right corner. In the Charms bar, selecting the Settings command (see Figure 31-6) opens
the settings specific to the application.

All you need to do with the application to register with the settings is add a command han-
dler to the CommandsRequested event with the SettingsPane class, as shown in the follow-
ing code snippet (code file AppSettingsSample/App.xaml.cs). InitSettings is invoked
with the OnLaunched method:

 private void InitSettings()
 {
 SettingsPane.GetForCurrentView().CommandsRequested +=
 AppCommandsRequested;
 }

The SettingsPane class also offers a static Show method that enables opening the settings directly con-
trolled by the application. Opening the Settings pane is a good option if the application needs some initial
configuration when the user starts it for the first time.

The command handler AppCommandsRequests is invoked as soon as the user opens the settings. The
handler just needs to add commands to the SettingsPaneCommandRequest object. This object is
accessed with the Request property of the SettingsPaneCommandsRequestEventArgs argument.
ApplicationCommands returns an IList of SettingsCommand that enables adding commands, including
defining an ID, a label that is shown in the UI, and an event handler. The event handler is invoked when the
user clicks the command. The following code creates two commands and adds these to the Settings pane:

 void AppCommandsRequested(SettingsPane sender,
 SettingsPaneCommandsRequestedEventArgs args)
 {
 var command1 = new SettingsCommand("command1", "Command 1",
 new UICommandInvokedHandler(Command1));
 args.Request.ApplicationCommands.Add(command1);
 var command2 = new SettingsCommand("command2", "Command 2",
 new UICommandInvokedHandler(Command2));
 args.Request.ApplicationCommands.Add(command2);
 }

FiGuRE 31-6

c31.indd 913 30-01-2014 20:36:59

914 ❘ CHAPTER 31 WindoWs Runtime

When the user clicks Settings, the commands shown in Figure 31-7 are displayed. In addition to these com-
mands, the Permissions command is available with all Windows Store apps. This command displays all
permissions requested by the application with respect to its capabilities. If the app is available in the store,
another command is displayed: Rate and Review.

FiGuRE 31-7

c31.indd 914 30-01-2014 20:36:59

Application Settings ❘ 915

Clicking a command invokes the event handler of the application, enabling you to react to and adjust set-
tings as needed. The Command1 event handler opens the web browser using the Launcher class:

 private async void Command1(IUICommand command)
 {
 await Launcher.LaunchUriAsync(
 new Uri("http://www.cninnovation.com"));
 }

If more information is needed from the user, a pop-up window can be shown in the event handler. Visual
Studio 2013 offers the Settings Flyout template for creating the UI for settings. The following code snippet
shows the XAML code to define input controls (code file SettingsDemo/SettingsFlyout1.xaml):

<SettingsFlyout
 x:Class="AppSettingsSample.SettingsFlyout1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:AppSettingsSample"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 IconSource="Assets/SmallLogo.png"
 Title="SettingsFlyout1"
 d:DesignWidth="346">

 <StackPanel VerticalAlignment="Stretch" HorizontalAlignment="Stretch" >
 <StackPanel Style="{StaticResource SettingsFlyoutSectionStyle}">
 <TextBlock Style="{StaticResource TitleTextBlockStyle}"
 Text="Sample Header" />
 <TextBox Margin="0,0,0,25" Header="Text1"
 Text="{Binding Text1, Mode=TwoWay}" />

 </StackPanel>
 </StackPanel>
</SettingsFlyout>

The flyout is opened from the Command2 event handler by calling the Show method (code file
AppSettingsSample/App.xaml.cs):

 private void Command2(IUICommand command)
 {
 var flyout = new SettingsFlyout1();
 flyout.Show();
 }

User data can be saved easily using the ApplicationData class. The LocalSettings property is for storing
settings locally on the PC, whereas the RoamingSettings saves data to the roaming storage associated with
the Microsoft account of the user. The helper class RoamingSettings offers the methods GetValue and
SetValue that makes use of the RoamingSettings property (code file AppSettingsSample/Utilities/
RoamingSettings.cs):

 static class RoamingSettings
 {
 public static T GetValue<T>(T defaultValue = default(T),
 [CallerMemberName] string propertyName = null)
 {
 return (T)(ApplicationData.Current.RoamingSettings.Values[propertyName]
 ?? defaultValue);
 }

 public static void SetValue<T>(T value,
 [CallerMemberName] string propertyName = null)
 {

c31.indd 915 30-01-2014 20:36:59

916 ❘ CHAPTER 31 WindoWs Runtime

 ApplicationData.Current.RoamingSettings.Values[propertyName] = value;
 }
 }

The Text1 property of the flyout makes use of the RoamingSettings type to retrieve and store settings
(code file AppSettingsSample/SettingsFlyout1.xaml.cs):

 public string Text1
 {
 get { return RoamingSettings.GetValue(String.Empty); }
 set { RoamingSettings.SetValue(value); }
 }

summARy
In this chapter, you’ve seen the core features of Windows Runtime and how it differs from .NET applica-
tions. Language projection enables an application to use Windows Runtime in a way that’s compatible with
the programming language used. With language projection you’ve seen how the native API can be used eas-
ily writing .NET code.

You saw how interfaces are used with Windows Runtime components, how the interfaces map automatically
to .NET interfaces (collections), and when it is necessary to work with different types and convert these by
using extension methods.

With Windows Runtime you’ve been introduced to core concepts on writing Windows Store apps, including
their life cycle and application settings, as well as defining and using capabilities.

For more information on writing Windows Store apps, see Chapter 38, which covers the user interface
aspects of writing these applications with XAML, including features such as the app bar and specific
Windows Store layout controls, and Chapter 39, “Windows Store Apps: Contracts and Devices,” which
covers using sensors and devices.

Having covered the core functionality of .NET and now Windows Runtime, the next chapter begins our
look at data access. Regarding Windows Store apps, you cannot use ADO.NET directly from these apps,
but ADO.NET is important with services — and of course Windows Store apps communicate with services.
The next chapter is also important for Windows desktop applications.

c31.indd 916 30-01-2014 20:36:59

PART IV
Data

➤ CHAPTER 32: Core ADO.NET

➤ CHAPTER 33: ADO.NET Entity Framework

➤ CHAPTER 34: Manipulating XML

c32.indd 917 30-01-2014 20:38:28

c32.indd 918 30-01-2014 20:38:28

Core ADO.NET
WHAT’s iN THis CHAPTER?

➤➤ Connecting to the database
➤➤ Executing commands
➤➤ Calling stored procedures
➤➤ The ADO.NET object model
➤➤ Using XML and XML schemas

WRox.Com CoDE DoWNloADs foR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ ExecutingCommands
➤➤ StoredProcs
➤➤ DataReader
➤➤ IndexerTesting
➤➤ AsyncDataReaders
➤➤ SimpleDataset
➤➤ ManufacturedDataset
➤➤ DataAdapter
➤➤ DataAdapterUpdate
➤➤ Auditing

ADo.NET ovERviEW
This chapter discusses how to access data from your C# programs using ADO.NET. It shows you how to
use the SqlConnection and OleDbConnection classes to connect to and disconnect from the database.
You learn the various command object options and see how commands can be used for each of the
options presented by the Sql and OleDB classes; how to call stored procedures with command objects;
and how the results of those stored procedures can be integrated into the data cached on the client.

32

c32.indd 919 30-01-2014 20:38:31

920 ❘ CHAPTER 32 Core ADo.NeT

The ADO.NET object model is significantly different from the objects available with ADO. This chapter
covers the DataSet, DataTable, DataRow, and DataColumn classes as well as the relationships between
tables and constraints that are part of DataSet. The class hierarchy has changed significantly since the
release of the .NET Framework 2.0, and some of these changes are also described. Finally, you examine the
XML framework on which ADO.NET is built.

The chapter begins with a brief tour of ADO.NET.

ADO.NET is more than just a thin veneer over an existing API. The similarity to ADO is fairly
minimal — the classes and methods for accessing data are quite a bit different.

ADO (ActiveX Data Objects) is a library of COM components that has had many incarnations over the
past few years. ADO consists primarily of the Connection, Command, Recordset, and Field objects. Using
ADO, a connection is opened to the database and data is selected and placed into a record set consisting of
fields; that data is then manipulated and updated on the database server, and the connection is closed. ADO
also introduced what is termed a disconnected record set, which is used when keeping the connection open
for long periods of time is not desirable.

There were several problems that ADO did not address satisfactorily, most notably the unwieldiness
(in physical size) of a disconnected record set. Support for disconnected scenarios was more necessary than
ever with the evolution of web-centric computing, so a fresh approach was required. Migrating to
ADO.NET from ADO should not be too difficult because there are some similarities between the two.
Moreover, if you are using SQL Server, there is a fantastic set of managed classes that are tuned to squeeze
maximum performance out of the database. This alone should be reason enough to migrate to ADO.NET.

ADO.NET ships with three database client namespaces: one for SQL Server, another for Open Database
Connectivity (ODBC) data sources, and a third for any database exposed through OLE DB. If your database
of choice is not SQL Server, search online for a dedicated .NET provider, and if one cannot be found use the
OLE DB route unless you have no other choice than to use ODBC. If you are using Oracle as your database,
you can visit the Oracle .NET Developer site and get their .NET provider, ODP.NET, at http://www
.oracle.com/technetwork/topics/dotnet/whatsnew/index.html.

Namespaces
All the examples in this chapter access data in one way or another. The namespaces in the following table
expose the classes and interfaces used in .NET data access.

NAmEsPACE BRiEf DEsCRiPTioN

System.Data All generic data access classes

System.Data.Common Classes shared (or overridden) by individual data providers

System.Data.EntityClient Entity Framework classes

System.Data.Linq.SqlClient LINQ to SQL provider classes

System.Data.Odbc ODBC provider classes

System.Data.OleDb OLE DB provider classes

System.Data.ProviderBase New base classes and connection factory classes

System.Data.Sql New generic interfaces and classes for SQL Server data access

System.Data.SqlClient SQL Server provider classes

System.Data.SqlTypes SQL Server data types

The main classes in ADO.NET are listed in the following subsections.

c32.indd 920 30-01-2014 20:38:31

ADO.NET Overview ❘ 921

shared Classes
ADO.NET contains a number of classes that are used regardless of whether you are using the SQL Server
classes or the OLE DB classes. The following table lists the classes contained in the System.Data namespace:

ClAss DEsCRiPTioN

DataSet This object is designed for disconnected use and can contain a set of
DataTables and relationships between these tables.

DataTable A container of data that consists of one or more DataColumns and, when
populated, will have one or more DataRows containing data.

DataRow A number of values, akin to a row from a database table or a row from a
spreadsheet.

DataColumn This object contains the definition of a column, such as the name and data
type.

DataRelation A link between two DataTable classes within a DataSet class; used for
foreign key and master/detail relationships.

Constraint This class defines a rule for a DataColumn class (or set of data columns), such
as unique values.

DataColumnMapping Maps the name of a column from the database to the name of a column within
a DataTable.

DataTableMapping Maps a table name from the database to a DataTable within a DataSet.

Database-specific Classes
In addition to the shared classes introduced in the previous section, ADO.NET contains a number of
database-specific classes. These classes implement a set of standard interfaces defined within the System
.Data namespace, enabling the classes to be used in a generic manner if necessary. For example, both the
SqlConnection and OleDbConnection classes derive from the DbConnection class, which implements the
IDbConnection interface. The following table lists the database-specific classes:

ClAssEs DEsCRiPTioN

SqlCommand, OleDbCommand, and
ODBCCommand

Used as wrappers for SQL statements or stored procedure
calls. Examples for the SqlCommand class are shown later in the
chapter.

SqlCommandBuilder,
OleDbCommandBuilder, and
ODBCCommandBuilder

Used to generate SQL commands (such as INSERT, UPDATE,
and DELETE statements) from a SELECT statement.

SqlConnection, OleDbConnection,
and ODBCConnection

Used to connect to the database, this is similar to an ADO
connection. Examples are shown later in the chapter.

SqlDataAdapter, OleDbDataAdapter,
and ODBCDataAdapter

Used to hold select, insert, update, and delete
commands, which are then used to populate a DataSet and
update the database. Examples of the SqlDataAdapter are
presented in this chapter.

SqlDataReader, OleDbDataReader,
and ODBCDataReader

Used as a forward-only connected data reader. Some examples
of the SqlDataReader are shown in this chapter.

SqlParameter, OleDbParameter,
and ODBCParameter

Used to define a parameter to a stored procedure. Examples of
how to use the SqlParameter class are shown in this chapter.

SqlTransaction, OleDbTransaction,
and ODBCTransaction

Used for a database transaction, wrapped in an object.

c32.indd 921 30-01-2014 20:38:32

922 ❘ CHAPTER 32 Core ADo.NeT

The most important feature of the ADO.NET classes is that they are designed to work in a disconnected
manner, which is important in today’s highly web-centric world. It is now common practice to design a
service (such as an online bookshop) to connect to a server, retrieve some data, and then work on that data
on the client before reconnecting and passing the data back for processing. The disconnected nature of
ADO.NET enables this type of behavior.

Classic ADO 2.1 introduced the disconnected record set, which permits data to be retrieved from a
database, passed to the client for processing, and then reattached to the server. This used to be cumbersome
to use because disconnected behavior was not part of the original design. The ADO.NET classes are
different — in all but one case (the [provider]DataReader), they are designed for use offline from the
database.

UsiNg DATABAsE CoNNECTioNs
To access the database, you need to provide connection parameters, such as the machine on which the
database is running and possibly your login credentials. Anyone who has worked with ADO will be familiar
with the .NET connection classes: OleDbConnection and SqlConnection. Figure 32-1 shows two of the
connection classes and includes the class hierarchy.

figURE 32-1

NoTE The classes and interfaces used for data access in the .NET Framework are
introduced in the course of this chapter. The focus is mainly on the SQL Server classes
used when connecting to the database because the Framework SDK samples install a
SQL Server Express database (SQL Server). In most cases, the OLE DB and ODBC
classes mimic the SQL Server code exactly.

The examples in this chapter use the Northwind database, which you can find online by searching for
Northwind and pubs Sample Databases for SQL Server. The following code snippet illustrates how to
create, open, and close a connection to the Northwind database:

using System.Data.SqlClient;

string source = "server=(local);" +
 "integrated security=SSPI;" +
 "database=Northwind";
SqlConnection conn = new SqlConnection(source);
conn.Open();

// Do something useful

conn.Close();

c32.indd 922 30-01-2014 20:38:32

Using Database Connections ❘ 923

The connection string should be very familiar to you if you have used ADO or OLE DB before — indeed, you
should be able to cut and paste from your old code if you use the OleDb provider. In the example connection
string, the parameters used are as follows (the parameters are delimited by a semicolon in the connection string):

➤➤ server=(local) — This denotes the database server to connect to. SQL Server permits a number of
separate database server instances to be running on the same machine. Here, you are connecting to
the default SQL Server instance. If you are using SQL Express, change the server part to server=./
sqlexpress.

➤➤ integrated security=SSPI — This uses Windows Authentication to connect to the database,
which is highly recommended over using a username and password within the source code.

➤➤ database=Northwind — This describes the database instance to connect to; each SQL Server process
can expose several database instances.

NoTE In case you forget the format of database connection strings (as many of us do
now and then), the following URL is very handy: http://www.connectionstrings
.com.

The Northwind example opens a database connection using the defined connection string and then closes
that connection. Once the connection has been opened, you can issue commands against the data source;
and when you are finished, the connection can be closed.

SQL Server has another mode of authentication: It can use Windows integrated security, so that the
credentials supplied at logon are passed to SQL Server. This is accomplished by removing the uid and pwd
portions of the connection string and adding Integrated Security=SSPI.

In the download code available for this chapter is the file login.cs, which simplifies the examples in this
chapter. It is linked to all the sample code and includes database connection information used for the examples;
you can alter this to supply your own server name, user, and password as appropriate. This, by default, uses
Windows integrated security; however, you can change the username and password as appropriate.

managing Connection strings
In the initial release of .NET, it was up to the developer to manage the database connection strings, which
was often done by storing a connection string in the application configuration file or, more commonly,
hard-coding it somewhere within the application itself.

Beginning with .NET 2.0, you have a predefined way to store connection strings and even use database
connections in a type-agnostic manner — for example, you can write an application and then plug in various
database providers, all without altering the main application.

To define a database connection string, you should use the <connectionStrings> section of the
configuration file. Here, you can specify a name for the connection and the actual database connection
string parameters; in addition, you can specify the provider for the connection type. Here is an example:

<configuration>
 ...
 <connectionStrings>
 <add name="Northwind"
 providerName="System.Data.SqlClient"
 connectionString="server=(local);integrated security=SSPI;database=Northwind" />
 </connectionStrings>
</configuration>

You use this same connection string in the other examples in this chapter.

Once the database connection information has been defined within the configuration file, you need to utilize
it within the application. You will most likely want to create a method such as the following to retrieve a
database connection based on the name of the connection:

c32.indd 923 30-01-2014 20:38:32

924 ❘ CHAPTER 32 Core ADo.NeT

private DbConnection GetDatabaseConnection (string name)
{
 ConnectionStringSettings settings =
 ConfigurationManager.ConnectionStrings[name];

 DbProviderFactory factory = DbProviderFactories.GetFactory
 (settings.ProviderName);

 DbConnection conn = factory.CreateConnection ();
 conn.ConnectionString = settings.ConnectionString;

 return conn;
}

This code reads the named connection string section (using the ConnectionStringSettings class), and
then requests a provider factory from the base DbProviderFactories class. This uses the ProviderName
property, which was set to "System.Data.SqlClient" in the application configuration file. You might be
wondering how this maps to the actual factory class used to generate a database connection for SQL
Server — in this case, it should utilize the SqlClientFactory class from System.Data.SqlClient.
You need to add a reference to the System.Configuration assembly in order to resolve the
ConfigurationManager class used in the preceding code.

This may seem like a lot of unnecessary work to obtain a database connection, and indeed it is if your
application is never going to run on any database other than the one for which it was designed. If, however,
you use the preceding factory method and also use the generic Db* classes (such as DbConnection,
DbCommand, and DbDataReader), you will future-proof the application, ensuring that any move later to
another database system will be fairly simple.

Using Connections Efficiently
In general, when using scarce resources in .NET such as database connections, windows, or graphics
objects, it is good practice to ensure that each resource is closed after use. Although the designers of .NET
have implemented automatic garbage collection which will tidy up eventually, it is necessary to release
resources as early as possible to avoid resource starvation.

This is all too apparent when writing code that accesses a database because keeping a connection open for
slightly longer than necessary can affect other sessions. In extreme circumstances, not closing a connection
can lock other users out of an entire set of tables, hurting application performance considerably. Closing
database connections should be considered mandatory, so this section shows how to structure your code to
minimize the risk of leaving a resource open. You have two main ways to ensure that database connections
and the like are released after use, as described in the following sections.

Option One: try . . . catch . . . finally
The first option to ensure that resources are cleaned up is to use try...catch...finally blocks, closing
any open connections within the finally block. Here is a short example:

try
{
 // Open the connection
 conn.Open();
 // Do something useful
}
catch (SqlException ex)
{
 // Log the exception
}
finally
{
 // Ensure that the connection is freed
 conn.Close ();
}

c32.indd 924 30-01-2014 20:38:32

Using Database Connections ❘ 925

Within the finally block, you can release any resources you have used. The only trouble with this method
is that you have to ensure that you close the connection — it is all too easy to forget to add the finally
clause, so something less prone to vagaries in coding style might be worthwhile.

In addition, you might open a number of resources (for example, two database connections and a file) within
a given method, so the cascade of try...catch...finally blocks can sometimes become less easy to read.
There is, however, another way to guarantee resource cleanup: the using statement.

Option Two: The using Block Statement
During development of C#, the debate about how .NET uses nondeterministic destruction became very
heated. In C++, as soon as an object goes out of scope, its destructor is automatically called. This was great
news for designers of resource-based classes because the destructor was the ideal place to close the resource
if the user had forgotten to do so. A C++ destructor is called whenever an object goes out of scope — so, for
instance, if an exception were raised and not caught, all destructors would be called.

With C# and the other managed languages, there is no concept of automatic, deterministic destruction.
Instead, there is the garbage collector, which disposes of resources at some point in the future. What makes
this nondeterministic is that you have little say over when this process actually happens. Forgetting to close
a database connection could cause all sorts of problems for a .NET executable. Luckily, help is on hand.
The following code demonstrates how to use the using clause to ensure that objects that implement the
IDisposable interface (see Chapter 14, “Memory Management and Pointers”) are cleared up immediately
after the block exits:

string source = "server=(local);" +
 "integrated security=SSPI;" +
 "database=Northwind";

using (SqlConnection conn = new SqlConnection (source))
{
 // Open the connection
 conn.Open ();

 // Do something useful
}

In this instance, the using clause ensures that the database connection is closed, regardless of how the block
is exited.

Looking at the IL code for the Dispose method of the connection classes, you can see that all of them check
the current state of the connection object; if it is open, the Close method is called. A great tool for browsing
.NET assemblies is Reflector (available at http://www.reflector.net). This tool enables you to view the
IL code for any .NET method and will also reverse-engineer the IL into C# source code, so you can easily
see what a given method is doing.

When programming, you should use at least one of these methods, and probably both. Wherever you
acquire resources, it is good practice to use the using statement; even though we all mean to write the
Close statement, sometimes we forget, and in the case of mistakes the using clause does the right thing.
There is no substitute for good exception handling either, so in most cases it is best to use both methods
together, as in the following example:

try
{
 using (SqlConnection conn = new SqlConnection (source))
 {
 // Open the connection
 conn.Open ();

 // Do something useful

c32.indd 925 30-01-2014 20:38:33

926 ❘ CHAPTER 32 Core ADo.NeT

 // Close it myself
 conn.Close ();
 }
}
catch (SqlException e)
{
 // Log the exception & rethrow
 throw;
}

Note that this example called Close, which is not strictly necessary, because the using clause handles that
anyway. However, you should ensure that any resources such as this are released as soon as possible — you
might have more code in the rest of the block, so there is no point locking a resource unnecessarily.

In addition, if an exception is raised within the using block, the IDisposable.Dispose method will
be called on the resource guarded by the using clause, which, in this example, ensures that the database
connection is always closed. This produces easier-to-read code, rather than ensuring you close a connection
within an exception clause. Note also that the exception is defined as a SqlException, rather than the
catch-all Exception type — always try to catch as specific an exception as possible, and let all others that
are not explicitly handled rise up the execution stack. You really should catch this exception only if your
specific data class can handle the error and do something with it.

In conclusion, if you are writing a class that wraps a resource, whatever that resource may be, always
implement the IDisposable interface to close the resource. That way, anyone coding with your class can
use the using()statement and guarantee that the resource will be cleared up.

Transactions
Often, when more than one update needs to be made to the database, these updates must be performed
within the scope of a transaction. It is common in code to find a transaction object being passed around
to many methods that update the database; however, since the release of .NET Framework 2.0, the
TransactionScope class has been available. This class, found within the System.Transactions assembly,
vastly simplifies writing transactional code because you can compose several transactional methods within a
transaction scope and the transaction will flow to each of these methods as necessary.

The following sequence of code initiates a transaction on a SQL Server connection:

string source = "server=(local);" +
 "integrated security=SSPI;" +
 "database=Northwind";

using (TransactionScope scope = new
 TransactionScope(TransactionScopeOption.Required))
{
 using (SqlConnection conn = new SqlConnection(source))
 {
 // Do something in SQL
 .

 // Then mark complete
 scope.Complete();
 }
}

Here, the transaction is explicitly marked as complete by using the scope.Complete method. In the absence
of this call, the transaction will be rolled back so that no changes are made to the database.

When you use a transaction scope, you can choose the isolation level for commands executed within that
transaction. The level determines how changes made in one database session are viewed by another. Not all
database engines support all of the four levels described in the following table:

c32.indd 926 30-01-2014 20:38:33

Commands ❘ 927

The SQL Server default isolation level, ReadCommitted, is a good compromise between data coherence
and data availability because fewer locks are required on data than in RepeatableRead or Serializable
modes. However, in some situations the isolation level should be increased, and so within .NET you can
begin a transaction with a level other than the default. There are no fixed rules as to which levels to
pick — that comes with experience.

isolATioN lEvEl DEsCRiPTioN

ReadCommitted This is the default for SQL Server. This level ensures that data written by one
transaction will be accessible in a second transaction only after the first transaction
is committed.

ReadUncommitted This permits your transaction to read data within the database, even data that has
not yet been committed by another transaction. For example, if two users were
accessing the same database and the first inserted some data without concluding
the transaction (by means of a Commit or Rollback), the second user with an
isolation level set to ReadUncommitted could read the data.

RepeatableRead This level, which extends the ReadCommitted level, ensures that if the same
statement is issued within the transaction, regardless of other potential updates
made to the database, the same data will always be returned. This level requires
extra locks to be held on the data, which could adversely affect performance.
This level guarantees that for each row in the initial query, no changes can be
made to that data. It does, however, permit “phantom” rows to show up — these
are completely new rows that another transaction might have inserted while your
transaction was running.

Serializable This is the most “exclusive” transaction level, which, in effect, serializes access to data
within the database. With this isolation level, phantom rows can never appear, so a
SQL statement issued within a serializable transaction always retrieves the same data.
The negative performance impact of a Serializable transaction should not be
underestimated — if you don’t absolutely need to use this level of isolation, avoid it.

WARNiNg If you are currently using a database that does not support transactions, it
is well worth changing to a database that does. One of the authors worked as a trusted
employee with complete access to the bug database. He thought he typed delete from
bug where id=99999, but in fact had typed a < rather than an =, thereby deleting the
entire database of bugs (except for the desired one!). Luckily, the IS team backed up the
database on a nightly basis and could restore this, but a rollback command would have
been much easier.

CommANDs
The “Using Database Connections” section briefly touched on the idea of issuing commands against
a database. A command is, in its simplest form, a string of text containing SQL statements to be issued
to the database. A command could also be a stored procedure or the name of a table that will return all
columns and all rows from that table (in other words, a SELECT *–style clause).

A command can be constructed by passing the SQL clause as a parameter to the constructor of the Command
class, as shown in this example:

string source = "server=(local);" +
 "integrated security=SSPI;" +
 "database=Northwind";

c32.indd 927 30-01-2014 20:38:33

928 ❘ CHAPTER 32 Core ADo.NeT

string select = "SELECT ContactName,CompanyName FROM Customers";
SqlConnection conn = new SqlConnection(source);
conn.Open();
SqlCommand cmd = new SqlCommand(select, conn);

The <provider>Command classes have a property called CommandType, which is used to define whether the
command is a SQL clause, a call to a stored procedure, or a full table statement (which simply selects
all columns and rows from a given table). The following table summarizes the CommandType enumeration:

CommANDTyPE ExAmPlE

Text (default) String select = "SELECT ContactName FROM Customers";SqlCommand
cmd = new SqlCommand(select, conn);

StoredProcedure SqlCommand cmd = new SqlCommand("CustOrderHist", conn);
cmd.CommandType = CommandType.StoredProcedure;cmd.Parameters
.AddWithValue("@CustomerID", "QUICK");

TableDirect OleDbCommand cmd = new OleDbCommand("Categories", conn);
cmd.CommandType = CommandType.TableDirect;

When executing a stored procedure, it might be necessary to pass parameters to that procedure. The
previous example sets the @CustomerID parameter directly although there are other methods to set
the parameter value. Note that since .NET 2.0, the AddWithValue method is included in the command
parameters collection, and the Add(name, value) member was attributed as Obsolete. If you have used
this original method of constructing parameters for calling a stored procedure, you will receive compiler
warnings when you recompile your code. We suggest altering your code now because Microsoft will most
likely remove the older method in a subsequent release of .NET.

NoTE The TableDirect command type is valid only for the OleDb provider; other
providers throw an exception if you attempt to use this command type with them.

Executing Commands
After you have defined the command, you need to execute it. There are several ways to issue the statement,
depending on what, if anything, you expect to be returned from that command. The <provider>Command
classes provide the following execute methods:

➤➤ ExecuteNonQuery — Executes the command but does not return any output
➤➤ ExecuteReader — Executes the command and returns a typed IDataReader
➤➤ ExecuteScalar — Executes the command and returns the value from the first column of the first row

of any result set

In addition to these methods, the SqlCommand class exposes the following method:

➤➤ ExecuteXmlReader — Executes the command and returns an XmlReader object, which can be used
to traverse the XML fragment returned from the database

ExecuteNonQuery()
The ExecuteNonQuery method is commonly used for UPDATE, INSERT, or DELETE statements, for which the
only returned value is the number of records affected. This method can, however, return results if you call a
stored procedure that has output parameters:

c32.indd 928 30-01-2014 20:38:33

Commands ❘ 929

static void ExecuteNonQuery()
{
 string select = "UPDATE Customers " +
 "SET ContactName = 'Bob' " +
 "WHERE ContactName = 'Bill'";
 SqlConnection conn = new SqlConnection(GetDatabaseConnection());
 conn.Open();
 SqlCommand cmd = new SqlCommand(select, conn);
 int rowsReturned = cmd.ExecuteNonQuery();
 Console.WriteLine("{0} rows returned.", rowsReturned);
 conn.Close();
}

ExecuteNonQuery returns the number of rows affected by the command as an int.

ExecuteReader()
The ExecuteReader method executes the command and returns a typed data reader object, depending
on the provider in use. The object returned can be used to iterate through the record(s) returned, as
shown in the following code:

static void ExecuteReader()
{
 string select = "SELECT ContactName,CompanyName FROM Customers";
 SqlConnection conn = new SqlConnection(GetDatabaseConnection());
 conn.Open();
 SqlCommand cmd = new SqlCommand(select, conn);
 SqlDataReader reader = cmd.ExecuteReader();
 while (reader.Read())
 {
 Console.WriteLine("Contact: {0,-20} Company: {1}",
 reader[0], reader[1]);
 }
}

Figure 32-2 shows the output of this code.

figURE 32-2

The <provider>DataReader objects are discussed in the section entitled “Fast Data Access: The Data
Reader.”

c32.indd 929 30-01-2014 20:38:33

930 ❘ CHAPTER 32 Core ADo.NeT

ExecuteScalar()
On many occasions it is necessary to return a single result from a SQL statement, such as the count of
records in a given table or the current date/time on the server. The ExecuteScalar method can be used in
such situations:

static void ExecuteScalar()
{
 string select = "SELECT COUNT(*) FROM Customers";
 SqlConnection conn = new SqlConnection(GetDatabaseConnection());
 conn.Open();
 SqlCommand cmd = new SqlCommand(select, conn);
 object o = cmd.ExecuteScalar();
 Console.WriteLine(o);
}

The method returns an object, which you can cast to the appropriate type if required. If the SQL you are
calling returns only one column, it is preferable to use ExecuteScalar over any other method of retrieving
that column. That also applies to stored procedures that return a single value.

ExecuteXmlReader() (SqlClient Provider Only)
As its name implies, the ExecuteXmlReader method executes a SQL statement and returns an XmlReader
object to the caller. SQL Server permits a SQL SELECT statement to be extended with a FOR XML clause.
This clause can include one of three options:

➤➤ FOR XML AUTO — Builds a tree based on the tables in the FROM clause
➤➤ FOR XML RAW — Maps result set rows to elements with columns mapped to attributes
➤➤ FOR XML EXPLICIT — Requires that you specify the shape of the XML tree to be returned

This example uses AUTO:

static void ExecuteXmlReader()
{
 string select = "SELECT ContactName,CompanyName " +
 "FROM Customers FOR XML AUTO";
 SqlConnection conn = new SqlConnection(GetDatabaseConnection());
 conn.Open();
 SqlCommand cmd = new SqlCommand(select, conn);
 XmlReader xr = cmd.ExecuteXmlReader();
 xr.Read();
 string data;
 do
 {
 data = xr.ReadOuterXml();
 if (!string.IsNullOrEmpty(data))
 Console.WriteLine(data);
 } while (!string.IsNullOrEmpty(data));
 conn.Close();

}

Note that you have to import the System.Xml namespace in order to output the returned XML.
This namespace and other XML capabilities of the .NET Framework are explored in more detail in
Chapter 34, “Manipulating XML.” Here, you include the FOR XML AUTO clause in the SQL statement, then
call the ExecuteXmlReader method. Figure 32-3 shows the output of this code.

c32.indd 930 30-01-2014 20:38:34

Commands ❘ 931

The SQL clause specified FROM Customers, so an element of type Customers is shown in the output. To
this are added attributes, one for each column selected from the database. This builds an XML fragment for
each row selected from the database.

Calling stored Procedures
Calling a stored procedure with a command object is just a matter of defining the name of the stored
procedure, adding a definition for each parameter of the procedure, and then executing the command with
one of the methods presented in the previous section.

To make the examples in this section more useful, a set of stored procedures has been defined that can be
used to insert, update, and delete records from the Region table in the Northwind sample database. Despite
its small size, the Region table is a good candidate for an example because it can be used to define examples
for each of the types of stored procedures you will commonly write.

Calling a Stored Procedure That Returns Nothing
The simplest examples of calling a stored procedure are ones that do not need to return anything to the
caller. Two such procedures are defined in the following subsections: one for updating a preexisting Region
record and one for deleting a given Region record.

Record Update

Updating a Region record is fairly trivial because only one column can be modified (assuming primary keys
cannot be updated). The stored procedures used in this example are inserted into the database by the code,
an example being the RegionUpdate procedure shown next. The stored procedures are defined as a string
resource, which can be found in the Strings.resx file of the 02_StoredProcs project.

CREATE PROCEDURE RegionUpdate (@RegionID INTEGER,
 @RegionDescription NCHAR(50)) AS
 SET NOCOUNT OFF
 UPDATE Region
 SET RegionDescription = @RegionDescription
 WHERE RegionID = @RegionID
GO

An update command on a real-world table might need to reselect and return the updated record in its
entirety. This stored procedure takes two input parameters (@RegionID and @RegionDescription), and
issues an UPDATE statement against the database.

figURE 32-3

c32.indd 931 30-01-2014 20:38:34

932 ❘ CHAPTER 32 Core ADo.NeT

To run this stored procedure from within .NET code, you need to define a SQL command and execute it:

SqlCommand cmd = new SqlCommand("RegionUpdate", conn);

cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.AddWithValue ("@RegionID", 23);
cmd.Parameters.AddWithValue ("@RegionDescription", "Something");

This code creates a new SqlCommand object named aCommand and defines it as a stored procedure. You
then add each parameter in turn using the AddWithValue method. This constructs a parameter and sets
its value — you can also manually construct SqlParameter instances and add these to the Parameters
collection if appropriate.

The stored procedure takes two parameters: the unique primary key of the Region record being updated
and the new description to be given to this record. After the command has been created, you can execute it
by issuing the following command:

cmd.ExecuteNonQuery();

Because the procedure returns nothing, ExecuteNonQuery will suffice. Command parameters can be set
directly, using the AddWithValue method, or by constructing SqlParameter instances. Note that the
parameter collection is indexable by position or parameter name.

Record Deletion

The next stored procedure required is one that can be used to delete a Region record from the database:

CREATE PROCEDURE RegionDelete (@RegionID INTEGER) AS
 SET NOCOUNT OFF
 DELETE FROM Region
 WHERE RegionID = @RegionID
GO

This procedure requires only the primary key value of the record. The code uses a SqlCommand object to call
this stored procedure as follows:

SqlCommand cmd = new SqlCommand("RegionDelete", conn);
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.Add(new SqlParameter("@RegionID", SqlDbType.Int, 0,
 "RegionID"));
cmd.UpdatedRowSource = UpdateRowSource.None;

This command accepts only a single parameter, as shown in the following code, which executes the
RegionDelete stored procedure; here, you see an example of setting the parameter by name. If you have
many similar calls to make to the same stored procedure, constructing SqlParameter instances and setting
the values as shown in the following code may lead to better performance than reconstructing the entire
SqlCommand for each call:

cmd.Parameters["@RegionID"].Value= 999;
cmd.ExecuteNonQuery();

Calling a Stored Procedure That Returns Output Parameters
Both of the previous examples execute stored procedures that return nothing. If a stored procedure includes
output parameters, they need to be defined within the .NET client so that they can be filled when the
procedure returns. The following example shows how to insert a record into the database and return the
primary key of that record to the caller.

The Region table consists of only a primary key (RegionID) and a description field (RegionDescription).
To insert a record, this numeric primary key must be generated and then a new row needs to be inserted into

c32.indd 932 30-01-2014 20:38:34

Commands ❘ 933

the database. The primary key generation in this example has been simplified by creating a key within the
stored procedure. The method used is exceedingly crude, which is why there is a section on key generation
later in this chapter. For now, this primitive example will suffice:

CREATE PROCEDURE RegionInsert(@RegionDescription NCHAR(50),
 @RegionID INTEGER OUTPUT)AS
 SET NOCOUNT OFF
 SELECT @RegionID = MAX(RegionID)+ 1
 FROM Region
 INSERT INTO Region(RegionID, RegionDescription)
 VALUES(@RegionID, @RegionDescription)
GO

The insert procedure creates a new Region record. Because the primary key value is generated by the
database itself, this value is returned as an output parameter from the procedure (@RegionID). This is
sufficient for this simple example; for a more complex table (especially one with default values), it is more
common not to use output parameters and instead to select the entire inserted row and return this to
the caller. The .NET classes can handle either scenario. The code below shows how we would call the
RegionInsert stored procedure:

SqlCommand cmd = new SqlCommand("RegionInsert", conn);
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.Add(new SqlParameter("@RegionDescription",
 SqlDbType.NChar,
 50,
 "RegionDescription"));
cmd.Parameters.Add(new SqlParameter("@RegionID",
 SqlDbType.Int,
 0,
 ParameterDirection.Output,
 false,
 0,
 0,
 "RegionID",
 DataRowVersion.Default,
 null));
cmd.UpdatedRowSource = UpdateRowSource.OutputParameters;

Here, the definition of the parameters is much more complex. The second parameter, @RegionID, is defined
to include its parameter direction, which in this example is Output. In addition to this direction flag, on the
last line of the code the UpdateRowSource enumeration is used to indicate that data will be returned from
this stored procedure via output parameters. This parameter is mainly used when issuing stored procedure
calls from a DataTable.

Calling this stored procedure is similar to the previous examples, except in this instance the output
parameter is read after executing the procedure:

cmd.Parameters.AddWithValue("@RegionDescription","South West");
cmd.ExecuteNonQuery();
int newRegionID = (int) cmd.Parameters["@RegionID"].Value;

After executing the command, the value of the @RegionID parameter is read and cast to an integer. A
shorthand version of the preceding is the ExecuteScalar method, which will return (as an object) the first
value returned from the stored procedure.

You might be wondering what to do if the stored procedure you call returns output parameters and a set
of rows. In that case, define the parameters as appropriate and, rather than call ExecuteNonQuery, call
one of the other methods (such as ExecuteReader) that permit you to traverse any record(s) returned.

c32.indd 933 30-01-2014 20:38:34

934 ❘ CHAPTER 32 Core ADo.NeT

fAsT DATA ACCEss: THE DATA READER
A data reader is the simplest and fastest way to select data from a data source, but it is also the least
capable. You cannot directly instantiate a data reader object — an instance is returned from the appropriate
database’s command object (such as SqlCommand) after having called the ExecuteReader method.

The following code demonstrates how to select data from the Customers table in the Northwind
database. The example connects to the database, selects a number of records, loops through these selected
records, and outputs them to the console.

This example uses the OLE DB provider, as a brief respite from the SQL provider. In most cases, the classes
have a one-to-one correspondence with their SqlClient cousins; for example, the OleDbConnection object
is similar to the SqlConnection object used in the previous examples.

To execute commands against an OLE DB data source, the OleDbCommand class is used. The following
code shows an example of executing a simple SQL statement and reading the records by returning an
OleDbDataReader object. Note the second using directive, which makes the OleDb classes available.

using System;
using System.Data.OleDb;

Most of the data providers currently available are shipped within the same assembly, so it is only necessary
to reference the System.Data.dll assembly to import all classes used in this section.

The following code includes many familiar aspects of C# already covered in this chapter:

public class DataReaderExample
{
 public static void Main(string[] args)
 {
 string source = "Provider=SQLOLEDB;" +
 "server=(local);" +
 "integrated security=SSPI;" +
 "database=northwind";
 string select = "SELECT ContactName,CompanyName FROM Customers";
 OleDbConnection conn = new OleDbConnection(source);
 conn.Open();
 OleDbCommand cmd = new OleDbCommand(select, conn);
 OleDbDataReader aReader = cmd.ExecuteReader();
 while(aReader.Read())
 Console.WriteLine("'{0}' from {1}",
 aReader.GetString(0), aReader.GetString(1));
 aReader.Close();
 conn.Close();
 }
}

These three lines from the example create a new OLE DB .NET database connection, based on the source
connection string:

OleDbConnection conn = new OleDbConnection(source);
conn.Open();
OleDbCommand cmd = new OleDbCommand(select, conn);

The third line in the previous code creates a new OleDbCommand object based on a particular SELECT
statement and the database connection to be used when the command is executed. When you have a valid
command, you need to execute it, which returns an initialized OleDbDataReader:

OleDbDataReader aReader = cmd.ExecuteReader();

An OleDbDataReader is a forward-only “connected” reader. That is, you can traverse the records returned
in one direction only and the database connection used is kept open until the data reader is closed.

c32.indd 934 30-01-2014 20:38:34

Fast Data Access: The Data Reader ❘ 935

The OleDbDataReader class cannot be instantiated directly — it is always returned by a call to the
ExecuteReader method of the OleDbCommand class. Once you have an open data reader, there are various
ways to access the data contained within it.

When the OleDbDataReader object is closed (via an explicit call to Close or the object being garbage
collected), the underlying connection may also be closed, depending on which of the ExecuteReader
methods is called. If you call ExecuteReader and pass CommandBehavior.CloseConnection, you can
force the connection to be closed when the reader is closed.

The OleDbDataReader class has an indexer that permits access (although not type-safe access) to any field
using the familiar array style syntax:

 object o = aReader[0];
or
 object o = aReader["CategoryID"];

Assuming that the CategoryID field was the first in the SELECT statement used to populate the reader,
these two lines are functionally equivalent, although the second is slower than the first; to verify this, a
test application was written that performs one million iterations of accessing the same column from an
open data reader, just to get some numbers that were big enough to read. You probably don’t read the same
column one million times in a tight loop, but every (micro) second counts, so you should write code that is
as optimal as possible.

There is one other option when accessing data from a DataReader — you can use the type-safe GetInt32,
GetDouble, or other similar methods. When the first edition of this book was written, GetInt32 was the
fastest way to read an integer from an open data reader object. On a six-core AMD box, the figures are now
as follows:

NoTE An OleDbDataReader keeps the database connection open until it is explicitly
closed.

ACCEss mETHoD TimE foR 1 millioN iTERATioNs

Numeric indexer – reader[0] 23 ms

String indexer – reader["field"] 109 ms

Method call – reader.GetInt32) 177 ms

These figures are surprising. In previous versions of this code (on older framework versions), GetInt32 has
always beaten the other versions hands down (by a factor of nearly 10).

In the current version, however, Microsoft has definitely made some optimizations, as now it’s the
slowest of the three methods — most probably due to better JIT compilation, function inlining, and better
optimizations by the x64 processor. Even if you spent a good deal of time looking at the IL code emitted in
each case to see if you could spot an obvious reason for this about-face, you probably couldn’t find one.

The following example is almost the same as the previous one, except that in this instance the OLE DB
provider and all references to OLE DB classes have been replaced with their SQL counterparts. The example
is located in the 04_DataReaderSql project on this book’s website:

using System;
using System.Data.SqlClient;

public class DataReaderSql
{

c32.indd 935 30-01-2014 20:38:35

936 ❘ CHAPTER 32 Core ADo.NeT

 public static int Main(string[] args)
 {
 string source = "server=(local);" +
 "integrated security=SSPI;" +
 "database=northwind";
 string select = "SELECT ContactName,CompanyName FROM Customers";
 SqlConnection conn = new SqlConnection(source);
 conn.Open();
 SqlCommand cmd = new SqlCommand(select, conn);
 SqlDataReader aReader = cmd.ExecuteReader();
 while(aReader.Read())
 Console.WriteLine("'{0}' from {1}", aReader.GetString(0),
 aReader.GetString(1));
 aReader.Close();
 conn.Close();
 return 0;
 }
}

Notice the difference? If you’re typing this, do a global replace on OleDb with Sql, change the data source
string, and recompile. It’s that easy!

The same performance tests were run on the indexers for the SQL provider, and this time GetInt32 was the
fastest method — the results are shown in the following table:

ACCEss mETHoD TimE To ComPlETE 1 millioN iTERATioNs

Numeric indexer — reader[0] 59 ms

String indexer — reader["field"] 153 ms

Method call — reader.GetInt32) 38 ms

This suggests that you should use the type-safe GetXXX methods when using a SqlDataReader and the
numeric indexer when using an OleDbDataReader.

AsyNCHRoNoUs DATA ACCEss: UsiNg TAsk AND AWAiT
Now that you’ve seen the most performant methods for accessing individual parts of a data reader, it’s time
to move on to tuning another aspect of the data access — making it asynchronous.

When accessing data you are almost always going out of process for that data, and most of the time you’ll be
accessing data on another machine, so it makes sense to limit the amount of data being passed across these
boundaries; and, to provide the illusion that the system is responsive, you’ll probably want to make data
access asynchronous, too.

The primary way you can asynchronously request data is by using the SqlCommand (or OleDbCommand)
classes, as these classes contain methods that use the Asynchronous Programming Model (APM), which
exposes methods such as BeginExecuteReader and EndExecuteReader, and that use the IAsyncResult
interface. These methods have been available in .NET since version 1.0, but with .NET 4.0 Microsoft added
the Task class and updated the APIs for many of the inbuilt classes. Using the Task class makes accessing
data asynchronously much easier than before.

To use the Task class to access data, you’ll typically write code as shown in the following example function:

public static Task<int> GetEmployeeCount()
{
 using (SqlConnection conn = new SqlConnection(GetDatabaseConnection()))
 {

c32.indd 936 30-01-2014 20:38:35

Asynchronous Data Access: Using Task and await ❘ 937

 SqlCommand cmd = new SqlCommand("WAITFOR DELAY '0:0:02';select count(*) from
 employees", conn);
 conn.Open();

 return cmd.ExecuteScalarAsync().ContinueWith(t => Convert.ToInt32(t.Result));
 }
}

This code creates a Task object that can then be waited upon by a caller; and, you could, for example,
construct tasks that read data from different tables and execute these as separate tasks. The syntax here may
seem strange at first but it shows some of the power of the Task class. After creating a SqlCommand that
runs slowly (by using a 2-second delay in the SQL code), it uses ExecuteScalarAsync to call this command.
This returns an object, so ContinueWith is used to convert the return value of the first task to an integer.
Therefore, the code now contains two tasks: one selecting an object and the second one converting that
object to an integer.

While this pattern may seem odd at first it comes into its own when using a method such as
ExecuteReaderAsync which returns a SqlDataReader object, as in the continuation task you can convert
this to a list of object instances constructed from the data returned from the data reader.

A fairly common use for asynchronous tasks is fork and join, which forks the flow off to a set of
asynchronous tasks, and then joins back together at the end of all the tasks. In .NET, this is accomplished
using the Task class. You can fork calls off to several methods, like in the preceding example, which return
tasks; then join the results together by calling Task.WaitAll and passing the set of tasks to the method. The
example code for this section can be found in the 06_AsyncDataReaders project on this book’s website.

var t1 = GetEmployeeCount();
var t2 = GetOrderCount();

Task.WaitAll(t1, t2);

Added to C# in .NET version 4.5 are the async and await keywords, which can be used to simplify
executing tasks asynchronously. You can update the preceding example by adding the async modifier on the
function declaration and adding await to the code, like this:

public async static Task<int> GetEmployeeCount()
{
 using (SqlConnection conn = new SqlConnection(GetDatabaseConnection()))
 {
 SqlCommand cmd = new SqlCommand("WAITFOR DELAY '0:0:02';select count(*) from
 employees", conn);
 conn.Open();

 return await cmd.ExecuteScalarAsync().ContinueWith(t => Convert.ToInt32(t.Result));
 }
}

In the calling code you can now simply write the following in order to call the async methods:

public async static Task GetEmployeesAndOrders()
{
 int employees = await GetEmployeeCount();
 int orders = await GetOrderCount();

 Console.WriteLine("Number of employes: {0}, Number of orders: {1}", employees, orders);
}

You must indicate that this is an asynchronous method (one that uses await) by adding the async keyword
to the method declaration. Then you can call the other asynchronous methods using await; the code looks
like you’re calling simple methods but the compiler is constructing all of the asynchronous coordination
code for you.

c32.indd 937 30-01-2014 20:38:35

938 ❘ CHAPTER 32 Core ADo.NeT

Note in the preceding example that the two await calls will effectively run the two tasks after each other, so
if you want to truly asynchronously call these methods, you will need to drop down a level and use the Task
class directly.

mANAgiNg DATA AND RElATioNsHiPs: THE DATAsET ClAss
The DataSet class has been designed as an offline container of data. It has no notion of database connections.
In fact, the data held within a DataSet does not necessarily need to have come from a database — it could just
as easily be records from a CSV file, an XML file, or points read from a measuring device.

A DataSet class consists of a set of data tables, each of which has a set of data columns and data rows
(see Figure 32-4). In addition to defining the data, you can also define links between tables within the
DataSet class. One common scenario is defining a parent-child relationship (commonly known as master/
detail). One record in a table (say Order) links to many records in another table (say Order_Details). This
relationship can be defined and navigated within the DataSet.

figURE 32-4

It is important to remember that, basically, the DataSet class is an in-memory database that includes all
the tables, relationships, and constraints. The following sections describe the classes that are used with a
DataSet class.

NoTE The DataSet and related classes have largely been replaced with the Entity
Framework. The classes are presented here for background only.

Data Tables
A data table is very similar to a physical database table. It consists of a set of columns with particular
properties and might have zero or more rows of data. A data table might also define a primary key, which
can be one or more columns, and it might contain constraints on columns. The generic term for this
information used throughout the rest of the chapter is schema.

c32.indd 938 30-01-2014 20:38:35

Managing Data and Relationships: The DataSet Class ❘ 939

Several ways exist to define the schema for a particular data table (and indeed the DataSet class as a whole).
These are discussed after introducing data columns and data rows. Figure 32-5 shows some of the objects
that are accessible through the data table.

figURE 32-5

A DataTable (or DataColumn) object has an arbitrary number of extended properties associated with it.
This collection can be populated with any user-defined information pertaining to the object. For example,
a given column might have an input mask used to validate the contents of that column; a typical example
is the U.S. Social Security number. Extended properties are especially useful when the data is constructed
within a middle tier and returned to the client for processing. You could, for example, store validation
criteria (such as min and max) for numeric columns in extended properties and use this in the UI tier when
validating user input.

When a data table has been populated — by selecting data from a database, reading data from a file, or
manually populating it within code — the Rows collection will contain this retrieved data.

The Columns collection contains DataColumn instances that have been added to this table. These define the
schema of the data, such as the data type, nullability, default values, and so on. The Constraints collection
can be populated with either unique or primary key constraints.

One example of when the schema information for a data table is used is when displaying that data in a
DataGrid. The DataGrid control uses properties such as the data type of the column to determine which
control to use for each column. A bit field within the database will be displayed as a check box within
the DataGrid. If a column is defined within the database schema as NOT NULL, this fact is stored within the
DataColumn so that it can be tested when the user attempts to move off a row.

Data Columns
A DataColumn object defines properties of a column within the DataTable, such as the data type of that
column, whether the column is read-only, and various other facts. A column can be created in code or it can
be automatically generated at runtime.

When creating a column, it is useful to give it a name; otherwise, the runtime generates a name for you in
the form Columnn, where n is an incrementing number.

The data type of the column can be set either by supplying it in the constructor or by setting the DataType
property. Once you have loaded data into a data table, you cannot alter the type of a column — doing so
will result in an ArgumentException.

c32.indd 939 30-01-2014 20:38:35

940 ❘ CHAPTER 32 Core ADo.NeT

Data columns can be created to hold the following .NET Framework data types:

Boolean Decimal

Int64 TimeSpan

Byte Double

Sbyte UInt16

Char Int16

Single UInt32

DateTime Int32

String UInt64

Once a DataColumn object is created, the next thing to do with it is set up other properties, such as the
nullability of the column or the default value. The following code fragment shows a few of the more
common options that can be set on a DataColumn object:

DataColumn customerID = new DataColumn("CustomerID", typeof(int));
customerID.AllowDBNull = false;
customerID.ReadOnly = false;
customerID.AutoIncrement = true;
customerID.AutoIncrementSeed = 1000;
DataColumn name = new DataColumn("Name", typeof(string));
name.AllowDBNull = false;
name.Unique = true;

The following table describes the properties that can be set on a DataColumn object:

PRoPERTy DEsCRiPTioN

AllowDBNull If true, permits the column to be set to DBNull

AutoIncrement Indicates that the column value is automatically generated as an incrementing
number

AutoIncrementSeed Defines the initial seed value for an AutoIncrement column

AutoIncrementStep Defines the step between automatically generated column values, with a default
of one

Caption Can be used for displaying the name of the column onscreen

ColumnMapping Defines how a column is mapped into XML when a DataSet class is saved by
calling DataSet.WriteXml

ColumnName The name of the column; auto-generated by the runtime if not set in the constructor

DataType Defines the System.Type value of the column

DefaultValue Can define a default value for a column

Expression Defines the expression to be used in a computed column

Data Rows
This class makes up the other part of the DataTable class. The columns within a data table are defined in
terms of the DataColumn class. The actual data within the table is accessed by using the DataRow object.
The following example shows how to access rows within a data table. First, the connection details:

c32.indd 940 30-01-2014 20:38:36

Managing Data and Relationships: The DataSet Class ❘ 941

string source = "server=(local);" +
 " integrated security=SSPI;" +
 "database=northwind";
string select = "SELECT ContactName,CompanyName FROM Customers";
SqlConnection conn = new SqlConnection(source);

The following code introduces the SqlDataAdapter class, which is used to place data into a DataSet class.
SqlDataAdapter issues the SQL clause and fills a table in the DataSet class called Customers with the
output of the following query. (For more details on the SqlDataAdapter class, see the section “Populating a
DataSet” later in this chapter.)

SqlDataAdapter da = new SqlDataAdapter(select, conn);
DataSet ds = new DataSet();
da.Fill(ds, "Customers");

In the following code, you might notice the use of the DataRow indexer to access values from within that
row. The value for a given column can be retrieved by using one of the several overloaded indexers. These
permit you to retrieve a value knowing the column number, name, or DataColumn:

foreach(DataRow row in ds.Tables["Customers"].Rows)
 Console.WriteLine("'{0}' from {1}", row[0],row[1]);

One of the most appealing aspects of DataRow is that it is versioned. This enables you to receive various
values for a given column in a particular row. These versions are described in the following table:

DATARoW vERsioN vAlUE DEsCRiPTioN

Current The value existing at present within the column. If no edit has occurred, this
will be the same as the original value. If an edit (or edits) has occurred, the
value will be the last valid value entered.

Default The default value (in other words, any default set up for the column).

Original The value of the column when originally selected from the database. If the
DataRow’s AcceptChanges method is called, this value will update to
the Current value.

Proposed When changes are in progress for a row, it is possible to retrieve this modified
value. If you call BeginEdit on the row and make changes, each column will
have a proposed value until either EndEdit or CancelEdit is called.

The version of a given column could be used in many ways. One example is when updating rows within the
database, in which case it is common to issue a SQL statement such as the following:

UPDATE Products
SET Name = Column.Current
WHERE ProductID = xxx
AND Name = Column.Original;

Obviously, this code would never compile, but it shows one use for original and current values of a column
within a row.

To retrieve a versioned value from the DataRow indexer, use one of the indexer methods that accepts a
DataRowVersion value as a parameter. The following snippet shows how to obtain all values of each
column in a DataTable object:

foreach (DataRow row in ds.Tables["Customers"].Rows)
{
 foreach (DataColumn dc in ds.Tables["Customers"].Columns)
 {
 Console.WriteLine ("{0} Current = {1}", dc.ColumnName,
 row[dc,DataRowVersion.Current]);

c32.indd 941 30-01-2014 20:38:36

942 ❘ CHAPTER 32 Core ADo.NeT

 Console.WriteLine (" Default = {0}", row[dc,DataRowVersion.Default]);
 Console.WriteLine (" Original = {0}",
 row[dc,DataRowVersion.Original]);
 }
}

The whole row has a state flag called RowState, which can be used to determine what operation is needed
on the row when it is persisted back to the database. The RowState property is set to keep track of all
changes made to the DataTable, such as adding new rows, deleting existing rows, and changing columns
within the table. When the data is reconciled with the database, the row state flag is used to determine what
SQL operations should occur. The following table provides an overview of the flags that are defined by the
DataRowState enumeration:

DATARoWsTATE vAlUE DEsCRiPTioN

Added Indicates that the row has been newly added to a DataTable’s Rows collection.
All rows created on the client are set to this value and will ultimately issue SQL
INSERT statements when reconciled with the database.

Deleted Indicates that the row has been marked as deleted from the DataTable by means of
the DataRow.Delete method. The row still exists within the DataTable but will not
normally be viewable onscreen (unless a DataView has been explicitly set up). Rows
marked as deleted in the DataTable are deleted from the database when reconciled.

Detached Indicates that a row is in this state immediately after it is created, and can also be
returned to this state by calling DataRow.Remove. A detached row is not considered
to be part of any data table, thus, no SQL for rows in this state will be issued.

Modified Indicates that a row will be Modified if the value in any column has been changed.

Unchanged Indicates that the row has not been changed since the last call to AcceptChanges.

The state of the row also depends on what methods have been called on the row. The AcceptChanges
method is generally called after successfully updating the data source — that is, after persisting changes to
the database.

The most common way to alter data in a DataRow is to use the indexer; however, if you have a number of
changes to make, you should also consider the BeginEdit and EndEdit methods.

When an alteration is made to a column within a DataRow, the ColumnChanging event is raised
on the row’s DataTable. That enables you to override the ProposedValue property of the
DataColumnChangeEventArgs class and change it as required. This is one way of performing some data
validation on column values. If you call BeginEdit before making changes, the ColumnChanging event will
not be raised, enabling you to make multiple changes and then call EndEdit to persist those changes. If you
want to revert to the original values, call CancelEdit.

A DataRow can be linked in some way to other rows of data. This enables the creation of navigable links
between rows, which is common in master/detail scenarios. The DataRow contains a GetChildRows method
that will return an array of associated rows from another table in the same DataSet as the current row.
These are discussed in the “Data Relationships” section later in this chapter.

Schema Generation
You can create the schema for a DataTable in three ways:

➤➤ Let the runtime do it for you.
➤➤ Write code to create the table(s).
➤➤ Use the XML schema generator.

The following sections describe these three alternatives.

c32.indd 942 30-01-2014 20:38:36

Managing Data and Relationships: The DataSet Class ❘ 943

Runtime Schema Generation

The DataRow example shown earlier presented the following code for selecting data from a database and
populating a DataSet class:

SqlDataAdapter da = new SqlDataAdapter(select, conn);
DataSet ds = new DataSet();
da.Fill(ds, "Customers");

This is easy to use but has a few drawbacks. For example, you have to make do with the default column
names, which might work for you; but in certain instances, you might want to rename a physical database
column (for example, PKID) to something more user-friendly. To work around this, you could alias columns
within your SQL clause, as in SELECT PID AS PersonID FROM PersonTable; it’s best to not rename
columns within SQL, though, because a column only really needs to have a “pretty” name onscreen.

Another potential problem with automated DataTable/DataColumn generation is that you have no control
over the column types that the runtime chooses for your data. It does a fairly good job of deciding the
correct data type for you but, as usual, there are scenarios in which you need more control. For example,
you might have defined an enumerated type for a given column to simplify user code written against your
class. If you accept the default column types that the runtime
generates, the column will likely be an integer with a 32-bit
range, as opposed to an enum with your predefined options.

The last, and probably most problematic, drawback is that
when using automated table generation, you have no type-
safe access to the data within the DataTable — you are at
the mercy of indexers, which return instances of object
rather than derived data types. If you like sprinkling your
code with typecast expressions, skip the following sections.

Hand-Coded Schema

Generating the code to create a DataTable, replete with
associated DataColumns, is fairly easy. The examples in this
section access the Products table, shown in Figure 32-6,
from the Northwind database.

The following code manufactures a DataTable that
corresponds to the schema shown in Figure 32-6
(but does not cover the nullability of columns):

public static void ManufactureProductDataTable(DataSet ds)
{
 DataTable products = new DataTable("Products");
 products.Columns.Add(new DataColumn("ProductID", typeof(int)));
 products.Columns.Add(new DataColumn("ProductName", typeof(string)));
 products.Columns.Add(new DataColumn("SupplierID", typeof(int)));
 products.Columns.Add(new DataColumn("CategoryID", typeof(int)));
 products.Columns.Add(new DataColumn("QuantityPerUnit", typeof(string)));
 products.Columns.Add(new DataColumn("UnitPrice", typeof(decimal)));
 products.Columns.Add(new DataColumn("UnitsInStock", typeof(short)));
 products.Columns.Add(new DataColumn("UnitsOnOrder", typeof(short)));
 products.Columns.Add(new DataColumn("ReorderLevel", typeof(short)));
 products.Columns.Add(new DataColumn("Discontinued", typeof(bool)));
 ds.Tables.Add(products);
}

You can alter the code in the DataRow example to use this newly generated table definition as follows:

string source = "server=(local);" +
 "integrated security=sspi;" +
 "database=Northwind";

figURE 32-6

c32.indd 943 30-01-2014 20:38:36

944 ❘ CHAPTER 32 Core ADo.NeT

string select = "SELECT * FROM Products";
SqlConnection conn = new SqlConnection(source);
SqlDataAdapter cmd = new SqlDataAdapter(select, conn);
DataSet ds = new DataSet();
ManufactureProductDataTable(ds);
cmd.Fill(ds, "Products");
foreach(DataRow row in ds.Tables["Products"].Rows)
 Console.WriteLine("'{0}' from {1}", row[0], row[1]);

The ManufactureProductDataTable method creates a new DataTable, adds each column in turn, and
appends the table to the list of tables within the DataSet. The DataSet has an indexer that takes the name
of the table and returns that DataTable to the caller.

The previous example is still not type-safe because indexers are being used on columns to retrieve the data.
What would be better is a class (or set of classes) derived from DataSet, DataTable, and DataRow that
defines type-safe accessors for tables, rows, and columns. You can generate this code yourself; it is not
particularly tedious and you end up with type-safe data access classes.

If you don’t like generating these type-safe classes yourself, help is at hand. The .NET Framework
includes support for the third method listed at the start of this section: using XML schemas to define a
DataSet class, a DataTable class, and the other classes that we have described here. (For more details on
this method, see the section “XML Schemas: Generating Code with XSD” later in this chapter.)

Data Relationships
When writing an application, it is often necessary to obtain and cache various tables of information. The
DataSet class is the container for this information. With regular OLE DB, it was necessary to provide a
strange SQL dialect to enforce hierarchical data relationships, and the provider itself was not without its
own subtle quirks.

The DataSet class, however, has been designed from the start to easily establish relationships between
data tables. The code in this section shows how to generate data manually and populate two tables with data.
Therefore, if you don’t have access to SQL Server or the Northwind database, you can run this example anyway:

DataSet ds = new DataSet("Relationships");
ds.Tables.Add(CreateBuildingTable());
ds.Tables.Add(CreateRoomTable());
ds.Relations.Add("Rooms",
 ds.Tables["Building"].Columns["BuildingID"],
 ds.Tables["Room"].Columns["BuildingID"]);

The tables used in this example are shown in Figure 32-7. They contain a primary key and a name field,
with the Room table having BuildingID as a foreign key.

figURE 32-7

These tables have been kept simple deliberately. The following code shows how to iterate through the rows
in the Building table and traverse the relationship to list all the child rows from the Room table:

foreach(DataRow theBuilding in ds.Tables["Building"].Rows)
{
 DataRow[] children = theBuilding.GetChildRows("Rooms");
 int roomCount = children.Length;
 Console.WriteLine("Building {0} contains {1} room{2}",

c32.indd 944 30-01-2014 20:38:37

Managing Data and Relationships: The DataSet Class ❘ 945

 theBuilding["Name"],
 roomCount,
 roomCount > 1 ? "s": "");
 // Loop through the rooms
 foreach(DataRow theRoom in children)
 Console.WriteLine("Room: {0}", theRoom["Name"]);
}

The key difference between the DataSet class and the old-style hierarchical Recordset object is the way the
relationship is presented. In a hierarchical Recordset object, the relationship was presented as a pseudo-
column within the row. This column itself was a Recordset object that could be iterated through. Under
ADO.NET, however, a relationship is traversed simply by calling the GetChildRows method:

DataRow[] children = theBuilding.GetChildRows("Rooms");

This method has a number of forms but the preceding simple example uses just the name of the relationship
to traverse between parent and child rows. It returns an array of rows that can be updated as appropriate
by using the indexers, as shown in earlier examples.

What’s more interesting with data relationships is that they can be traversed both ways. Not only
can you go from a parent to the child rows, but you can also find a parent row (or rows) from a child
record simply by using the ParentRelations property on the DataTable class. This property returns
a DataRelationCollection, which can be indexed by using the [] array syntax (for example,
ParentRelations["Rooms"]); or, alternatively, the GetParentRows method can be called, as shown here:

foreach(DataRow theRoom in ds.Tables["Room"].Rows)
{
 DataRow[] parents = theRoom.GetParentRows("Rooms");
 foreach(DataRow theBuilding in parents)
 Console.WriteLine("Room {0} is contained in building {1}",
 theRoom["Name"],
 theBuilding["Name"]);
}

Two methods with various overrides are available for retrieving the parent row(s): GetParentRows
(which returns an array of zero or more rows) and GetParentRow (which retrieves a single parent row,
given a relationship).

Data Constraints
Changing the data type of columns created on the client is not the only thing for which a DataTable is well
suited. ADO.NET enables you to create a set of constraints on a column (or columns), which are then used
to enforce rules within the data.

The following table lists the constraint types that are currently supported by the runtime, embodied as
classes in the System.Data namespace.

CoNsTRAiNT DEsCRiPTioN

ForeignKeyConstraint Enforces a link between two DataTables within a DataSet

UniqueConstraint Ensures that entries in a given column are unique

setting a Primary key
As is common with a table in a relational database, you can supply a primary key, which can be based on
one or more columns from the DataTable.

The following code creates a primary key for the Products table, whose schema was constructed by hand
earlier. Note that a primary key on a table is just one form of constraint. When a primary key is added to a

c32.indd 945 30-01-2014 20:38:37

946 ❘ CHAPTER 32 Core ADo.NeT

DataTable, the runtime also generates a unique constraint over the key column(s). This is because there isn’t
actually a constraint type of PrimaryKey — a primary key is simply a unique constraint over one or more
columns.

public static void ManufacturePrimaryKey(DataTable dt)
{
 DataColumn[] pk = new DataColumn[1];
 pk[0] = dt.Columns["ProductID"];
 dt.PrimaryKey = pk;
}

Because a primary key can contain several columns, it is typed as an array of DataColumns. A table’s
primary key can be set to those columns simply by assigning an array of columns to the property.

To check the constraints for a table, you can iterate through the ConstraintCollection. For the
auto-generated constraint produced by the preceding code, the name of the constraint is Constraint1.
That’s not a very useful name, so to avoid this problem it is always best to create the constraint in code first,
then define which column(s) make up the primary key.

The following code names the constraint before creating the primary key:

DataColumn[] pk = new DataColumn[1];
pk[0] = dt.Columns["ProductID"];
dt.Constraints.Add(new UniqueConstraint("PK_Products", pk[0]));
dt.PrimaryKey = pk;

Unique constraints can be applied to as many columns as you want.

Setting a Foreign Key
In addition to unique constraints, a DataTable class can also contain foreign key constraints. These are
primarily used to enforce master/detail relationships but can also be used to replicate columns between
tables if you set up the constraint correctly. A master/detail relationship is one in which there is commonly
one parent record (an order, for example) and many child records (order lines), linked by the primary key of
the parent record.

A foreign key constraint can operate only over tables within the same DataSet, so the following example
uses the Categories table from the Northwind database (as shown in Figure 32-8), and assigns a constraint
between it and the Products table.

figURE 32-8

c32.indd 946 30-01-2014 20:38:37

Managing Data and Relationships: The DataSet Class ❘ 947

The first step is to generate a new data table for the Categories table:

DataTable categories = new DataTable("Categories");
categories.Columns.Add(new DataColumn("CategoryID", typeof(int)));
categories.Columns.Add(new DataColumn("CategoryName", typeof(string)));
categories.Columns.Add(new DataColumn("Description", typeof(string)));
categories.Constraints.Add(new UniqueConstraint("PK_Categories",
 categories.Columns["CategoryID"]));
categories.PrimaryKey = new DataColumn[1]
 {categories.Columns["CategoryID"]};

The last line of this code creates the primary key for the Categories table. The primary key in this instance
is a single column; however, it is possible to generate a key over multiple columns using the array syntax
shown.

Now the constraint can be created between the two tables:

DataColumn parent = ds.Tables["Categories"].Columns["CategoryID"];
DataColumn child = ds.Tables["Products"].Columns["CategoryID"];
ForeignKeyConstraint fk =
 new ForeignKeyConstraint("FK_Product_CategoryID", parent, child);
fk.UpdateRule = Rule.Cascade;
fk.DeleteRule = Rule.SetNull;
ds.Tables["Products"].Constraints.Add(fk);

This constraint applies to the link between Categories.CategoryID and Products.CategoryID. There
are four different ForeignKeyConstraints — use a constructor that permits you to name the constraint.

Setting Update and Delete Constraints
In addition to defining that there is some type of constraint between parent and child tables, you can define
what should happen when a column in the constraint is updated.

The previous example sets the update rule and the delete rule. These rules are used when an action occurs
to a column (or row) within the parent table, and the rule is used to determine what should happen to the
row(s) within the child table that could be affected. Four different rules can be applied through the Rule
enumeration:

➤➤ Cascade — If the parent key has been updated, it copies the new key value to all child records. If the
parent record has been deleted, it also deletes the child records. This is the default option.

➤➤ None — Takes no action whatsoever. This option leaves orphaned rows within the child data table.
➤➤ SetDefault — Each child record affected has the foreign key column(s) set to its default value, if one

has been defined.
➤➤ SetNull — All child rows have the key column(s) set to DBNull. (Following the naming convention

that Microsoft uses, this should really be SetDBNull.)

NoTE Constraints are enforced within a DataSet class only if the EnforceConstraints
property of the DataSet is true.

This section has covered the main classes that make up the constituent parts of the DataSet class and has
shown how to manually generate each of these classes in code. You can also define a DataTable, DataRow,
DataColumn, DataRelation, and Constraint using the XML schema file(s) and the XSD tool that ships
with .NET. The following section describes how to set up a simple schema and generate type-safe classes to
access your data.

c32.indd 947 30-01-2014 20:38:37

948 ❘ CHAPTER 32 Core ADo.NeT

xml sCHEmAs: gENERATiNg CoDE WiTH xsD
XML is firmly entrenched in ADO.NET — indeed, the remoting format for passing data between objects
is now XML. With the .NET runtime, it is possible to describe a DataTable class within an XML schema
definition (XSD) file. What’s more, you can define an entire DataSet class, with a number of DataTable
classes, and a set of relationships between these tables; and you can include various other details to fully
describe the data.

When you have defined an XSD file, there is a tool in the runtime that will convert this schema to
the corresponding data access class(es), such as the type-safe product DataTable class shown earlier. The
following example starts with a simple XSD file (Products.xsd) that describes the same information as
the Products sample discussed earlier, and then extends it to include some extra functionality:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="Products" targetNamespace="http://tempuri.org/XMLSchema1.xsd"
 xmlns:mstns="http://tempuri.org/XMLSchema1.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="Product">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ProductID" msdata:ReadOnly="true"
 msdata:AutoIncrement="true" type="xs:int" />
 <xs:element name="ProductName" type="xs:string" />
 <xs:element name="SupplierID" type="xs:int" minOccurs="0" />
 <xs:element name="CategoryID" type="xs:int" minOccurs="0" />
 <xs:element name="QuantityPerUnit" type="xs:string" minOccurs="0" />
 <xs:element name="UnitPrice" type="xs:decimal" minOccurs="0" />
 <xs:element name="UnitsInStock" type="xs:short" minOccurs="0" />
 <xs:element name="UnitsOnOrder" type="xs:short" minOccurs="0" />
 <xs:element name="ReorderLevel" type="xs:short" minOccurs="0" />
 <xs:element name="Discontinued" type="xs:boolean" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

These options are covered in detail in Chapter 34; for now, this file basically defines a schema with the id
attribute set to Products. A complex type called Product is defined, which contains a number of elements,
one for each of the fields within the Products table.

These items map to data classes as follows:

➤➤ The Products schema maps to a class derived from DataSet.
➤➤ The Product complex type maps to a class derived from DataTable.
➤➤ Each sub-element maps to a class derived from DataColumn.
➤➤ The collection of all columns maps to a class derived from DataRow.

Thankfully, a tool within the .NET Framework produces the code for these classes with the help of the input
XSD file. Because its sole job is to perform various functions on XSD files, the tool itself is called XSD.EXE.

Assuming that you saved the preceding file as Product.xsd, you would convert the file into code by issuing
the following command in a command prompt:

xsd Product.xsd /d

This creates the file Product.cs.

Various switches can be used with XSD to alter the output generated. Some of the more commonly used
switches are described in the following table:

c32.indd 948 30-01-2014 20:38:37

XML Schemas: Generating Code with XSD ❘ 949

The following is an abridged version of the output from XSD for the Products schema. The output has
been altered slightly to fit into a format appropriate for this book. To see the complete output, run XSD.EXE
on the Products schema (or another schema of your own making) and look at the .cs file generated. The
example includes the entire source code plus the Product.xsd file:

//--
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:2.0.50727.5456
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//--

//
// This source code was auto-generated by xsd, Version=2.0.50727.3238.
//

/// <summary>
///Represents a strongly typed in-memory cache of data.
///</summary>
[global::System.CodeDom.Compiler.GeneratedCodeAttribute("System.Data.Design.
TypedDataSetGenerator", "2.0.0.0")]
[global::System.Serializable()]
[global::System.ComponentModel.DesignerCategoryAttribute("code")]
[global::System.ComponentModel.ToolboxItem(true)]
[global::System.Xml.Serialization.XmlSchemaProviderAttribute("GetTypedDataSetSchema")]
[global::System.Xml.Serialization.XmlRootAttribute("Products")]
[global::System.ComponentModel.Design.HelpKeywordAttribute("vs.data.DataSet")]
public partial class Products : global::System.Data.DataSet {

 private ProductDataTable tableProduct;

 private global::System.Data.SchemaSerializationMode _schemaSerializationMode =
global::System.Data.SchemaSerializationMode.IncludeSchema;

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public Products() {
 this.BeginInit();
 this.InitClass();
 global::System.ComponentModel.CollectionChangeEventHandler schemaChangedHandler = new
global::System.ComponentModel.CollectionChangeEventHandler(this.SchemaChanged);
 base.Tables.CollectionChanged += schemaChangedHandler;
 base.Relations.CollectionChanged += schemaChangedHandler;
 this.EndInit();
 }

sWiTCH DEsCRiPTioN

/dataset (/d) Enables you to generate classes derived from DataSet, DataTable, and
DataRow.

/language:<language> Enables you to choose the language in which the output file will be written.
C# is the default, but you can choose VB for a Visual Basic .NET file.

/namespace:<namespace> Enables you to define the namespace that the generated code should
reside within. The default is no namespace.

c32.indd 949 30-01-2014 20:38:38

950 ❘ CHAPTER 32 Core ADo.NeT

All private and protected members have been removed in order to concentrate on the public interface. The
ProductDataTable and ProductRow definitions show the positions of two nested classes, which will be
implemented next. You review the code for these classes after a brief explanation of the DataSet-derived class.

The Products constructor calls a private method, InitClass, which constructs an instance of the
DataTable-derived class ProductDataTable, and adds the table to the Tables collection of the DataSet
class. The Products data table can be accessed by the following code:

DataSet ds = new Products();
DataTable products = ds.Tables["Products"];

Alternatively, you can simply use the property Product, available on the derived DataSet object:

DataTable products = ds.Product;

Because the Product property is strongly typed, you could use ProductDataTable rather than the
DataTable reference shown in the previous code.

The ProductDataTable class includes far more code (note that this is an abridged version):

[global::System.CodeDom.Compiler.GeneratedCodeAttribute("System.Data.Design.
TypedDataSetGenerator", "2.0.0.0")]
[global::System.Serializable()]
[global::System.Xml.Serialization.XmlSchemaProviderAttribute("GetTypedTableSchema")]
public partial class ProductDataTable : global::System.Data.DataTable, global::System.
Collections.IEnumerable {

 private global::System.Data.DataColumn columnProductID;

 private global::System.Data.DataColumn columnProductName;

 private global::System.Data.DataColumn columnSupplierID;

 private global::System.Data.DataColumn columnCategoryID;

 private global::System.Data.DataColumn columnQuantityPerUnit;

 private global::System.Data.DataColumn columnUnitPrice;

 private global::System.Data.DataColumn columnUnitsInStock;

 private global::System.Data.DataColumn columnUnitsOnOrder;

 private global::System.Data.DataColumn columnReorderLevel;

 private global::System.Data.DataColumn columnDiscontinued;

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public ProductDataTable() {
 this.TableName = "Product";
 this.BeginInit();
 this.InitClass();
 this.EndInit();
 }

The ProductDataTable class, derived from DataTable and implementing the IEnumerable interface,
defines a private DataColumn instance for each of the columns within the table. These are initialized again
from the constructor by calling the private InitClass member. Each column is used by the DataRow class
(which is described shortly):

[global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
[global::System.ComponentModel.Browsable(false)]
public int Count {

c32.indd 950 30-01-2014 20:38:38

XML Schemas: Generating Code with XSD ❘ 951

 get {
 return this.Rows.Count;
 }
}

// Other row accessors removed for clarity — there is one for each column

Adding rows to the table is handled by the two overloaded (and significantly different) AddProductRow
methods. The first takes an already-constructed DataRow and returns a void. The second takes a set of
values, one for each of the columns in the DataTable, constructs a new row, sets the values within this
new row, adds the row to the DataTable object, and returns the row to the caller. Such widely different
functions shouldn’t really have the same name!

[global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
public ProductRow AddProductRow(string ProductName, int SupplierID, int CategoryID, string
QuantityPerUnit, decimal UnitPrice, short UnitsInStock, short UnitsOnOrder, short ReorderLevel,
bool Discontinued) {
 ProductRow rowProductRow = ((ProductRow)(this.NewRow()));
 object[] columnValuesArray = new object[] {
 null,
 ProductName,
 SupplierID,
 CategoryID,
 QuantityPerUnit,
 UnitPrice,
 UnitsInStock,
 UnitsOnOrder,
 ReorderLevel,
 Discontinued};
 rowProductRow.ItemArray = columnValuesArray;
 this.Rows.Add(rowProductRow);
 return rowProductRow;
}

Just like the InitClass member in the DataSet-derived class, which added the table to the DataSet
class, the InitClass member in ProductDataTable adds columns to the DataTable class. Each column’s
properties are set as appropriate, and the column is then appended to the columns collection:

[global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
private void InitClass() {
 this.columnProductID = new global::System.Data.DataColumn("ProductID", typeof(int), null,
global::System.Data.MappingType.Element);
 base.Columns.Add(this.columnProductID);
 this.columnProductName = new global::System.Data.DataColumn("ProductName", typeof(string),
null, global::System.Data.MappingType.Element);
 base.Columns.Add(this.columnProductName);
 this.columnSupplierID = new global::System.Data.DataColumn("SupplierID", typeof(int), null,
global::System.Data.MappingType.Element);
 base.Columns.Add(this.columnSupplierID);
 this.columnCategoryID = new global::System.Data.DataColumn("CategoryID", typeof(int), null,
global::System.Data.MappingType.Element);
 base.Columns.Add(this.columnCategoryID);
 this.columnQuantityPerUnit = new global::System.Data.DataColumn("QuantityPerUnit",
typeof(string), null, global::System.Data.MappingType.Element);
 base.Columns.Add(this.columnQuantityPerUnit);
 this.columnUnitPrice = new global::System.Data.DataColumn("UnitPrice", typeof(decimal),
null, global::System.Data.MappingType.Element);
 base.Columns.Add(this.columnUnitPrice);
 this.columnUnitsInStock = new global::System.Data.DataColumn("UnitsInStock", typeof(short),
null, global::System.Data.MappingType.Element);
 base.Columns.Add(this.columnUnitsInStock);
 this.columnUnitsOnOrder = new global::System.Data.DataColumn("UnitsOnOrder", typeof(short),
null, global::System.Data.MappingType.Element);

c32.indd 951 30-01-2014 20:38:38

952 ❘ CHAPTER 32 Core ADo.NeT

 base.Columns.Add(this.columnUnitsOnOrder);
 this.columnReorderLevel = new global::System.Data.DataColumn("ReorderLevel", typeof(short),
null, global::System.Data.MappingType.Element);
 base.Columns.Add(this.columnReorderLevel);
 this.columnDiscontinued = new global::System.Data.DataColumn("Discontinued", typeof(bool),
null, global::System.Data.MappingType.Element);
 base.Columns.Add(this.columnDiscontinued);
 this.columnProductID.AutoIncrement = true;
 this.columnProductID.AllowDBNull = false;
 this.columnProductID.ReadOnly = true;
 this.columnProductName.AllowDBNull = false;
 this.columnDiscontinued.AllowDBNull = false;
}

NewRowFromBuilder is called internally from the DataTable class’s NewRow method. Here, it creates a new
strongly typed row. The DataRowBuilder instance is created by the DataTable class, and its members are
accessible only within the System.Data assembly:

[global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
protected override global::System.Data.DataRow NewRowFromBuilder(global::System.Data.
DataRowBuilder builder) {
 return new ProductRow(builder);
}

The last class to discuss is the ProductRow class, derived from DataRow. This class is used to provide type-
safe access to all fields in the data table. It wraps the storage for a particular row, and provides members to
read (and write) each of the fields in the table.

In addition, for each nullable field, there are functions to set the field to null and to check if the field is
null. The following example shows the functions for the SupplierID column:

[global::System.CodeDom.Compiler.GeneratedCodeAttribute("System.Data.Design.
TypedDataSetGenerator", "2.0.0.0")]
public partial class ProductRow : global::System.Data.DataRow {

 private ProductDataTable tableProduct;

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 internal ProductRow(global::System.Data.DataRowBuilder rb) :
 base(rb) {
 this.tableProduct = ((ProductDataTable)(this.Table));
 }

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 public int ProductID {
 get {
 return ((int)(this[this.tableProduct.ProductIDColumn]));
 }
 set {
 this[this.tableProduct.ProductIDColumn] = value;
 }
 }

The following code uses this class’s output from the XSD tool to retrieve data from the Products table and
display that data to the console:

using System;
using System.Data.SqlClient;

namespace _10_XSDDataset
{
 class Program
 {
 static void Main(string[] args)
 {

c32.indd 952 30-01-2014 20:38:38

Populating a DataSet ❘ 953

 string select = "SELECT * FROM Products";

 using (SqlConnection conn = new SqlConnection(GetDatabaseConnection()))
 {
 SqlDataAdapter da = new SqlDataAdapter(select, conn);

 Products ds = new Products();

 da.Fill(ds, "Product");

 foreach (Products.ProductRow row in ds.Product)
 Console.WriteLine("'{0}' from {1}",
 row.ProductID,
 row.ProductName);

 conn.Close();
 }
 }

 private static string GetDatabaseConnection()
 {
 return "server=(local);" +
 "integrated security=SSPI;" +
 "database=Northwind";
 }
 }
}

The output of the XSD file contains a class derived from DataSet called Products, which is created and
then filled using the data adapter. The foreach statement uses the strongly typed ProductRow and the
Product property, which returns the Product data table.

To compile the .XSD used in this example, issue the following command in a Visual Studio command
prompt:

xsd product.xsd /d

This converts the .XSD to code so that it can be accessed more easily within Visual Studio.

PoPUlATiNg A DATAsET
After defining the schema of your data set (replete with DataTable and DataColumn), Constraint classes,
and whatever else is necessary, you need to be able to populate the DataSet class with information. You
have two main methods of reading data from an external source and inserting it into the DataSet class:

➤➤ Use a data adapter
➤➤ Read XML into the DataSet class

The following sections discuss both of these methods.

Populating a Dataset Class with a Data Adapter
The section on data rows briefly introduced the SqlDataAdapter class, as shown in the following code:

string select = "SELECT ContactName,CompanyName FROM Customers";
SqlConnection conn = new SqlConnection(source);
SqlDataAdapter da = new SqlDataAdapter(select, conn);
DataSet ds = new DataSet();
da.Fill(ds, "Customers");

The bold line shows the SqlDataAdapter class in use; the other data adapter classes are again virtually
identical in functionality to the SQL Server equivalent.

c32.indd 953 30-01-2014 20:38:38

954 ❘ CHAPTER 32 Core ADo.NeT

To retrieve data into a DataSet, it is necessary to execute a command to select that data. The command
in question could be a SQL SELECT statement, a call to a stored procedure, or, for the OLE DB provider, a
TableDirect command. The preceding example uses one of the constructors available on SqlDataAdapter
that converts the passed SQL SELECT statement into a SqlCommand, and issues this select statement when
the Fill method is called on the adapter.

The stored procedures example earlier in this chapter, defined the INSERT, UPDATE, and DELETE
procedures but did not cover the SELECT procedure. That knowledge gap is covered in the next section,
which also covers how to call a stored procedure from a SqlDataAdapter class to populate data in a
DataSet class.

Using a Stored Procedure in a Data Adapter
The first step in this example is to define the stored procedure. The stored procedure to SELECT data is as follows:

CREATE PROCEDURE RegionSelect AS
 SET NOCOUNT OFF
 SELECT * FROM Region
GO

This stored procedure is created within the database by the InitialiseDatabase method in the code.

Next, you need to define the SqlCommand that executes this stored procedure. Again, the code is very simple,
and most of it was presented presented earlier:

private static SqlCommand GenerateSelectCommand(SqlConnection conn)
{
 SqlCommand aCommand = new SqlCommand("RegionSelect", conn);
 aCommand.CommandType = CommandType.StoredProcedure;
 aCommand.UpdatedRowSource = UpdateRowSource.None;
 return aCommand;
}

This method generates the SqlCommand that calls the RegionSelect procedure when executed. All that
remains is to hook this command up to a SqlDataAdapter class and call the Fill method:

DataSet ds = new DataSet();
// Create a data adapter to fill the DataSet
SqlDataAdapter da = new SqlDataAdapter();
// Set the data adapter's select command
da.SelectCommand = GenerateSelectCommand (conn);
da.Fill(ds, "Region");

Here, the SqlDataAdapter class is created and the generated SqlCommand is assigned to the SelectCommand
property of the data adapter. Subsequently, Fill is called, which executes the stored procedure and inserts
all rows returned into the Region DataTable (which, in this instance, is generated by the runtime).

There is more to a data adapter than just selecting data by issuing a command, as discussed shortly in the
“Persisting DataSet Changes” section.

Populating a Dataset from xml
In addition to generating the schema for a given DataSet, associated tables, and so on, a DataSet class can
read and write data in native XML, such as files on a disk, a stream, or a text reader.

To load XML into a DataSet class, simply call one of the ReadXML methods to read data from a disk file, as
shown in this example:

DataSet ds = new DataSet();
ds.ReadXml(".\\MyData.xml");

The ReadXml method attempts to load any inline schema information from the input XML. If a schema is
found, the method uses this schema in the validation of any data loaded from that file. If no inline schema is

c32.indd 954 30-01-2014 20:38:38

Persisting DataSet Changes ❘ 955

found, the DataSet will extend its internal structure as data is loaded. This is similar to the behavior of Fill
in the previous example, which retrieves the data and constructs a DataTable based on the data selected.

PERsisTiNg DATAsET CHANgEs
After editing data within a DataSet, it is usually necessary to persist these changes. The most common
example is selecting data from a database, displaying it to the user, and returning those updates to the database.

In a less “connected” application, changes might be persisted to an XML file, transported to a middle-tier
application server, and then processed to update several data sources.

You can use a DataSet class for either of these examples; it’s easy to do.

Updating with Data Adapters
In addition to the SelectCommand that a SqlDataAdapter most likely includes, you can also define an
InsertCommand, UpdateCommand, and DeleteCommand. As the names imply, these objects are instances of
the command object appropriate for your provider, such as SqlCommand and OleDbCommand.

With this level of flexibility, you are free to tune the application by judicious use of stored procedures for
frequently used commands (such as SELECT and INSERT), and use straight SQL code for less commonly used
commands (such as DELETE). In general, it is recommended to provide stored procedures for all database
interaction because they are faster and easier to tune.

This example uses the stored procedure code from the “Calling Stored Procedures” section for inserting,
updating, and deleting Region records, as well as using the RegionSelect procedure written previously
in the section on Using a Stored Procedure in a Data Adaptor, which produces an example that uses each of
these commands to retrieve and update data in a DataSet class. The main body of the code for this task is
shown in the following section.

Inserting a New Row
You can add a new row to a DataTable in one of two ways. The first way is to call the NewRow method,
which returns a blank row that you then populate and add to the Rows collection, as follows:

DataRow r = ds.Tables["Region"].NewRow();
r["RegionID"]=999;
r["RegionDescription"]="North West";
ds.Tables["Region"].Rows.Add(r);

The second way to add a new row is to pass an array of data to the Rows.Add method as shown in the
following code:

DataRow r = ds.Tables["Region"].Rows.Add
 (new object [] { 999, "North West" });

Each new row within the DataTable will have its RowState set to Added. The example dumps out the
records before each change is made to the database, so after adding a row to the DataTable (using either
method), the rows will look something like the following. Note that the column on the right shows the
row’s state:

New row pending inserting into database
 1 Eastern Unchanged
 2 Western Unchanged
 3 Northern Unchanged
 4 Southern Unchanged
 999 North West Added

To update the database from the DataAdapter, call one of the Update methods as shown here:

da.Update(ds, "Region");

c32.indd 955 30-01-2014 20:38:39

956 ❘ CHAPTER 32 Core ADo.NeT

For the new row within the DataTable, this executes the stored procedure (in this instance RegionInsert).
The example then dumps the state of the data, so you can see that changes have been made to the database:

New row updated and new RegionID assigned by database
 1 Eastern Unchanged
 2 Western Unchanged
 3 Northern Unchanged
 4 Southern Unchanged
 5 North West Unchanged

Note the last row in the DataTable. The RegionID had been set in code to 999, but after executing the
RegionInsert stored procedure, the value has been changed to 5. This is intentional — the database often
generates primary keys for you and the updated data in the DataTable appears because the SqlCommand
definition within the source code has the UpdatedRowSource property set to UpdateRowSource
.OutputParameters:

SqlCommand aCommand = new SqlCommand("RegionInsert", conn);

aCommand.CommandType = CommandType.StoredProcedure;
aCommand.Parameters.Add(new SqlParameter("@RegionDescription",
 SqlDbType.NChar,
 50,
 "RegionDescription"));
aCommand.Parameters.Add(new SqlParameter("@RegionID",
 SqlDbType.Int,
 0,
 ParameterDirection.Output,
 false,
 0,
 0,
 "RegionID", // Defines the SOURCE column
 DataRowVersion.Default,
 null));
aCommand.UpdatedRowSource = UpdateRowSource.OutputParameters;

This means that whenever a data adapter issues this command, the output parameters should be mapped to
the source of the row, which in this instance was a row in a DataTable. The flag specifies what data should
be updated — in this case, the stored procedure has an output parameter that is mapped to the DataRow. The
column it applies to is RegionID; this is defined within the command definition.

The following table describes the values for UpdateRowSource:

UPDATERoWsoURCE vAlUE DEsCRiPTioN

Both This indicates that a stored procedure has returned both output parameters
and a complete database record. Both of these data sources are used to
update the source row.

FirstReturnedRecord This indicates that the command returns a single record and that the contents
of that record should be merged into the original source DataRow. This is
useful where a given table has a number of default (or computed) columns,
because after an INSERT statement these need to be synchronized with the
DataRow on the client. An example might be “INSERT (columns) INTO
(table) WITH (primarykey),” then “SELECT (columns) FROM (table) WHERE
(primarykey).” The returned record would then be merged into the original
row.

None All data returned from the command is discarded.

OutputParameters Any output parameters from the command are mapped onto the
appropriate column(s) in the DataRow.

c32.indd 956 30-01-2014 20:38:39

Persisting DataSet Changes ❘ 957

Updating an Existing Row
Updating an existing row within the DataTable is just a case of using the DataRow class’s indexer with
either a column name or a column number, as shown in the following code:

r["RegionDescription"]="North West England";
r[1] = "North West England";

Both of the preceding statements are equivalent (in this example):

Changed RegionID 5 description
 1 Eastern Unchanged
 2 Western Unchanged
 3 Northern Unchanged
 4 Southern Unchanged
 5 North West England Modified

Prior to updating the database, the row you are updating has its state set to Modified, as shown above.
When the changes are persisted to the database this state will then revert to Unchanged.

Deleting a Row
Deleting a row is a matter of calling the Delete method:

r.Delete();

A deleted row has its row state set to Deleted, but you cannot read columns from the deleted DataRow
because they are no longer valid. When the adapter’s Update method is called, all deleted rows will use the
DeleteCommand, which in this instance executes the RegionDelete stored procedure.

Writing xml output
As you have seen already, the DataSet class provides great support for defining its schema in XML; and,
just as you can read data from an XML document, you can also write data to an XML document.

The DataSet.WriteXml method enables you to output various parts of the data stored within the
DataSet. You can elect to output just the data or to include the data and the schema. The following code
demonstrates an example of both for the Region example shown earlier:

ds.WriteXml(".\\WithoutSchema.xml");
ds.WriteXml(".\\WithSchema.xml", XmlWriteMode.WriteSchema);

The first file, WithoutSchema.xml, is shown here:

<?xml version="1.0" standalone="yes"?>
<NewDataSet>
 <Region>
 <RegionID>1</RegionID>
 <RegionDescription>Eastern</RegionDescription>
 </Region>
 <Region>
 <RegionID>2</RegionID>
 <RegionDescription>Western</RegionDescription>
 </Region>
 <Region>
 <RegionID>3</RegionID>
 <RegionDescription>Northern</RegionDescription>
 </Region>
 <Region>
 <RegionID>4</RegionID>
 <RegionDescription>Southern</RegionDescription>
 </Region>
</NewDataSet>

c32.indd 957 30-01-2014 20:38:39

958 ❘ CHAPTER 32 Core ADo.NeT

The closing tag on RegionDescription is over to the right of the page because the database column is
defined as NCHAR(50), which is a 50-character string padded with spaces.

The output produced in the WithSchema.xml file includes the XML schema for the DataSet as well as the
data itself:

<?xml version="1.0" standalone="yes"?>
<NewDataSet>
 <xs:schema id="NewDataSet" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="NewDataSet" msdata:IsDataSet="true"
 msdata:UseCurrentLocale="true">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="Region">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="RegionID" msdata:AutoIncrement="true"
 msdata:AutoIncrementSeed="1" type="xs:int" />
 <xs:element name="RegionDescription" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 <Region>
 <RegionID>1</RegionID>
 <RegionDescription>Eastern</RegionDescription>
 </Region>
 <Region>
 <RegionID>2</RegionID>
 <RegionDescription>Western</RegionDescription>
 </Region>
 <Region>
 <RegionID>3</RegionID>
 <RegionDescription>Northern</RegionDescription>
 </Region>
 <Region>
 <RegionID>4</RegionID>
 <RegionDescription>Southern</RegionDescription>
 </Region>
</NewDataSet>

Note the use of the msdata schema in this file, which defines extra attributes for columns within a DataSet,
such as AutoIncrement and AutoIncrementSeed — these attributes correspond directly to the properties
definable on a DataColumn class.

WoRkiNg WiTH ADo.NET
This section addresses some common scenarios when developing data access applications with ADO.NET
such as how to use ADO.NET in an application that is delivered using multiple tiers, and how to generate
SQL Keys efficiently. The topics covered here don’t naturally fit into other sections of this chapter.

c32.indd 958 30-01-2014 20:38:39

Working with ADO.NET ❘ 959

Tiered Development
Producing an application that interacts with data is often done by splitting up the application into tiers. A common
model is to have an application tier (the front end), a data services tier, and the database itself (the back end).

One of the difficulties with this model is deciding what data to transport between your tiers, as well as
figuring out the format in which the data should be transported. With ADO.NET, these wrinkles have been
ironed out and support for this style of architecture is part of the design.

One of the things that are much better in ADO.NET than OLE DB is ADO.NET’s support for copying an
entire record set. In .NET, it is easy to copy a DataSet; simply use the following code:

DataSet source = {some dataset};
DataSet dest = source.Copy();

This creates an exact copy of the source DataSet. Each DataTable, DataColumn, DataRow, and Relation
will be copied and all the data will be in exactly the same state as it was in the source. If the only part you
want to copy is the schema of the DataSet, you can use the following code:

DataSet source = {some dataset};
DataSet dest = source.Clone();

This copies all tables, relations, and so on, but each copied DataTable will be empty. This process really
could not be more straightforward.

A common requirement when writing a tiered system, whether based on a Windows client application or on
the web, is to be able to ship as little data as possible between tiers. This reduces the amount of resources
consumed in transmitting the data set.

To handle this requirement, the DataSet class uses the GetChanges method. This simple method performs
a huge amount of work and returns a DataSet with only the changed rows from the source data set. This is
ideal for passing data between tiers because it only passes the essential set of data along.

The following example shows how to generate a DataSet consisting of just the changes:

DataSet source = {some dataset};
DataSet dest = source.GetChanges();

Again, this is trivial, but if you delve deeper you’ll find things that are a little more interesting.

There are two overloads of the GetChanges method. One overload takes a value of the DataRowState
enumeration and returns only rows that correspond to that state (or states). GetChanges simply calls
GetChanges(Deleted | Modified | Added) and ensures that there really are changes by calling
HasChanges. If no changes have been made, null is returned to the requestor immediately.

The next operation is to clone the current DataSet. Once this is done, the new DataSet is set up to ignore
constraint violations (EnforceConstraints = false), and then each changed row for every table is copied
into the new DataSet.

When you have a DataSet that contains just changes, you can then move these off to the data services tier
for processing. After the data has been updated in the database, the “changes” DataSet can be returned to
the requestor; for example, there might be some output parameters from the stored procedures that have
updated values in the columns. These changes can then be merged into the original DataSet using the Merge
method. Figure 32-9 depicts this sequence of operations.

figURE 32-9

c32.indd 959 30-01-2014 20:38:39

960 ❘ CHAPTER 32 Core ADo.NeT

key generation with sQl server
The RegionInsert stored procedure presented earlier in this chapter is one example of generating a primary
key value on insertion into the database. The method for generating the key in that particular example
is fairly crude and wouldn’t scale well, so for a real application you should use some other strategy for
generating keys.

Your first instinct might be to define an identity column and return the @@IDENTITY value from the stored
procedure. The following stored procedure shows how this might be defined for the Categories table in the
Northwind example database from earlier in this chapter. Type this stored procedure into the SQL Query
Analyzer or run the StoredProcs.sql file that is part of the code download for this chapter:

CREATE PROCEDURE CategoryInsert(@CategoryName NVARCHAR(15),
 @Description NTEXT,
 @CategoryID INTEGER OUTPUT) AS
 SET NOCOUNT OFF
 INSERT INTO Categories (CategoryName, Description)
 VALUES(@CategoryName, @Description)
 SELECT @CategoryID = @@IDENTITY
GO

This inserts a new row into the Category table and returns the generated primary key (the value of the
CategoryID column) to the caller. You can test the procedure by typing the following in the SQL Query Analyzer:

DECLARE @CatID int;
EXECUTE CategoryInsert 'Pasties', 'Heaven Sent Food', @CatID OUTPUT;
PRINT @CatID;

When executed as a batch of commands, this inserts a new row into the Categories table and returns the
identity of the new record, which is then displayed to the user.

Suppose that some months down the line, someone decides to add a simple audit trail which will record all
insertions and modifications made to the category name. In that case, you need to define a table similar to
the one shown in Figure 32-10, which will record the old and new values of the category.

figURE 32-10

The script for this table is included in the StoredProcs.sql file on this book’s website. The AuditID
column is defined as an IDENTITY column. You then construct a couple of database triggers that will record
changes to the CategoryName field using the following code:

CREATE TRIGGER CategoryInsertTrigger
 ON Categories
 AFTER UPDATE
AS
 INSERT INTO CategoryAudit(CategoryID, OldName, NewName)
 SELECT old.CategoryID, old.CategoryName, new.CategoryName
 FROM Deleted AS old,
 Categories AS new
 WHERE old.CategoryID = new.CategoryID;
GO

c32.indd 960 30-01-2014 20:38:40

Working with ADO.NET ❘ 961

The insert trigger is an in-memory table called Inserted, and for deletes and updates the old rows are
available within the Deleted table. The CategoryInsertTrigger retrieves the CategoryID of the record(s)
affected and stores this information together with the old and new value of the CategoryName column.

When you call your original stored procedure to insert a new CategoryID, you receive an identity value;
however, this is no longer the identity value from the row inserted into the Categories table — it is now the
new value generated for the row in the CategoryAudit table.

To view the problem firsthand, open a copy of SQL Server Enterprise Manager and look at the contents of
the Categories table (see Figure 32-11). This lists all the categories in the Northwind database.

NoTE If you are used to Oracle stored procedures, you should remember that SQL
Server doesn’t exactly have the concept of OLD and NEW rows; instead, for an insert
trigger there is an in-memory table called Inserted, and for deletes and updates the
old rows are available within the Deleted table.

figURE 32-11

The next identity value for the Categories table should be 9, so a new row can be inserted by executing the
following code, to see what ID is returned:

DECLARE @CatID int;
EXECUTE CategoryInsert 'Pasties', 'Heaven Sent Food', @CatID OUTPUT;
PRINT @CatID;

The output value of this on a test PC was 1. If you look at the
CategoryAudit table shown in Figure 32-12, you will find that this is
the identity of the newly inserted audit record, not the identity of the
category record created.

The problem lies in the way that @@IDENTITY actually works. It returns
the LAST identity value created by your session so, as shown in Figure 32-12, it isn’t completely reliable.

Two other identity functions can be used instead of @@IDENTITY, but neither is free from problems. The
first, SCOPE_IDENTITY, returns the last identity value created within the current scope. SQL Server defines
scope as a stored procedure, trigger, or function. This may work most of the time, but if for, some reason,
someone adds another INSERT statement to the stored procedure, you can receive this other value rather
than the one you expected.

The other identity function, IDENT_CURRENT, returns the last identity value generated for a given table
in any scope. For example, if two users were accessing SQL Server at exactly the same time, it might be
possible to receive the other user’s generated identity value.

As you might imagine, tracking down a problem of this nature is not easy. The moral of the story is to
beware when using IDENTITY columns in SQL Server.

figURE 32-12

c32.indd 961 30-01-2014 20:38:40

962 ❘ CHAPTER 32 Core ADo.NeT

Naming Conventions
The following tips and conventions are not directly .NET-related, but they are worth sharing and following,
especially when naming constraints. Feel free to skip this section if you already have your own views on this
subject.

Conventions for Database Tables
➤➤ Use singular, rather than plural, names — For example, use Product rather than Products.

This recommendation stems from explaining a database schema to customers; it is much better
grammatically to say, “the Product table contains products” than “the Products table contains
products.” Check out the Northwind database to see an example of how not to do this.

➤➤ Adopt some form of naming convention for the fields of a table — An obvious one is <Table>_Id
for the primary key of a table (assuming that the primary key is a single column), Name for the field
considered to be the user-friendly name of the record, and Description for any textual information
about the record itself. Having a good table convention means that you can look at virtually any table
in the database and easily understand what the fields are used for.

Conventions for Database Columns
➤➤ Use singular, rather than plural, names — See the explanation in the previous section.
➤➤ Any columns that link to another table should be given the same name as the primary key of that

table — For example, a link to the Product table would be Product_Id, and one to the Sample table
Sample_Id. This is not always possible, however, especially if one table has multiple references to
another. In that case, use your own judgment.

➤➤ Date fields should have a suffix of _On — Examples include Modified_On and Created_On. This
makes it easy to read SQL output and infer what a column means just by its name.

➤➤ Fields that record activities from the user should have a suffix of _By — Examples include
Modified_By and Created_By. This promotes comprehension.

Conventions for Constraints
➤➤ If possible, include the name of the constraint, the table, and column name — One example would

be CK_<Table>_<Field>. You would then use CK_Person_Sex for a check constraint on the Sex
column of the Person table. A foreign key example would be FK_Product_Supplier_Id, for the
foreign key relationship between product and supplier.

➤➤ Show the type of constraint with a prefix — For example, use CK for a check constraint or FK for a
foreign key constraint. Feel free to be more specific, as in CK_Person_Age_GT0 for a constraint on the
age column indicating that the age should be greater than zero.

➤➤ If you have to trim the length of the constraint, do so on the table name part rather than the column
name — When you get a constraint violation, it is usually easy to infer which table was in error, but
sometimes it’s not so easy to check which column caused the problem. Oracle has a 30-character limit
on names, which is easy to surpass.

Stored Procedures
Just like the obsession many have developed over the past few years with putting a C in front of each and
every class they declare (you know you have!), many SQL Server developers feel compelled to prefix every
stored procedure with sp_ or something similar. This is not a good idea.

SQL Server uses the sp_ prefix for nearly all system stored procedures. Therefore, you risk confusing users
into thinking that sp_widget is something included as standard with SQL Server. In addition, when looking
for a stored procedure, SQL Server treats procedures with the sp_ prefix differently from those without it.

c32.indd 962 30-01-2014 20:38:40

Summary ❘ 963

If you use this prefix and do not qualify the database/owner of the stored procedure, SQL Server looks in the
current scope and then jumps into the master database to search for the stored procedure there. Without
the sp_ prefix, your users would get an error a little earlier. Even worse is creating a local stored procedure
(one within your database) that has the same name and parameters as a system stored procedure. Avoid this
at all costs. When in doubt, do not prefix.

When calling stored procedures, always prefix them with the owner of the procedure, as in dbo
.selectWidgets. This is slightly faster than not using the prefix, because SQL Server has less work to do to
find the stored procedure. Something like this is not likely to have a huge impact on the execution speed of
your application, but it is a free tuning trick.

Above all, when naming entities, whether within the database or within code, be consistent.

sUmmARy
Data access is an extensive subject — especially in .NET, which has an abundance of material to cover. This
chapter has provided an outline of the main classes in the ADO.NET namespaces and has demonstrated
how to use the classes when manipulating data from a data source.

You first looked at the Connection object using both SqlConnection (SQL Server–specific) and
OleDbConnection (for any OLE DB data sources). The programming model for these two classes is so
similar that one can normally be substituted for the other and the code will continue to run.

This chapter also explained how to use connections properly so that they can be closed as early as possible,
preserving valuable resources. All the connection classes implement the IDisposable interface, called when
the object is placed within a using clause. If there is one thing you should take away from this chapter, it
is the importance of closing database connections as early as possible.

In addition, this chapter discussed database commands using both examples that executed with no returned
data and examples that called stored procedures with input and output parameters. It described various
execute methods, including the ExecuteXmlReader method available only on the SQL Server provider. This
vastly simplifies the selection and manipulation of XML-based data.

The generic classes within the System.Data namespace were described in detail, from the DataSet class
through DataTable, DataColumn, DataRow, including relationships and constraints. The DataSet class is
an excellent data container and various methods make it ideal for cross-tier data flow. The data within a
DataSet is represented in XML for transport and methods are available that pass a minimal amount of data
between tiers. The capability to have many tables of data within a single DataSet can greatly increase its
usability.

Having the schema stored within a DataSet is useful, but .NET also includes the data adapter that, along
with various Command objects, can be used to select data for a DataSet and subsequently update data in the
data store. One of the beneficial aspects of a data adapter is that a distinct command can be defined for each
of the four actions: SELECT, INSERT, UPDATE, and DELETE. The system can create a default set of commands
based on database schema information and a SELECT statement. For the best performance, however, a set of
stored procedures can be used that have the DataAdapter’s commands defined appropriately to pass only
the necessary information to these stored procedures.

The XSD tool (XSD.EXE) was also described, using an example that showed how to work with classes based
on an XML schema from within .NET. The classes produced using this tool are ready to be used within an
application and their automatic generation can save many hours of laborious typing.

Finally, this chapter discussed some best practices and naming conventions for database development.
Further information about accessing SQL Server databases is provided in Chapter 33 “ADO.NET
Entity Framework.”

c32.indd 963 30-01-2014 20:38:40

c32.indd 964 30-01-2014 20:38:40

33
ADO.NET Entity Framework

wHAT’s iN THis CHAPTER?

➤➤ Programming Models
➤➤ Mapping
➤➤ Entity classes
➤➤ Object contexts
➤➤ Relationships
➤➤ Querying data
➤➤ Updates
➤➤ Code First

wRox.Com CoDE DowNLoADs FoR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ Books Demo
➤➤ Payments Demo
➤➤ Formula 1 Demo
➤➤ Code First Demo
➤➤ Code First Migrations

PRogRAmmiNg wiTH THE ENTiTy FRAmEwoRk
The ADO.NET Entity Framework is an object-relational mapping framework that offers an
abstraction of ADO.NET to get an object model based on the referential databases. You can use
different programming models with the Entity Framework: Model First, Database First, and Code
First. Both Model First and Database First provide mapping information with a mapping fi le. Using
Code First, mapping information is all done via C# code. This chapter provides information about all
these programming models.

c33.indd 965 30-01-2014 20:39:36

966 ❘ CHAPTER 33 ADO.NET ENTiTy FrAmEwOrk

You will learn about the mappings between the database and the entity classes using the Conceptual Schema
Definition Language (CSDL), the Storage Schema Definition Language (SSDL), and the Mapping Schema
Language (MSL). Different relationships between entities are covered, such as one table per hierarchy of
objects, one table per type, and n-to-n relationships.

This chapter also describes different ways to access the database from the code directly with the EntityClient
provider, using Entity SQL or helper methods that create Entity SQL, and using LINQ to Entities. Also
described are object tracking and how the data context holds change information for updating data. Finally,
you’ll learn how POCO (Plain Old CLR Objects) can be used with the Entity Framework, and how to use
the Code First programming model.

NoTE This chapter uses the Books and Formula1 databases. These databases are
included with the download of the code samples at http://www.wrox.com.

The ADO.NET Entity Framework provides a mapping from the relational database schema to objects.
Relational databases and object-oriented languages define associations differently. For example, the sample
database Formula1 contains the Racers and RaceResults tables. To access all the RaceResults rows for a
racer, you need to do a SQL join statement. With object-oriented languages, it is more common to define a
Racer class and a RaceResult class and access the race results of a racer by using a RaceResults property
from the Racer class.

For object-relational mapping before using the Entity Framework, it has been possible to use the DataSet
class and typed data sets. Data sets are very similar to the structure of a database containing DataTable,
DataRow, DataColumn, and DataRelation classes instead of offering object-support. The ADO.NET Entity
Framework supports directly defining entity classes that are completely independent of a database structure
and mapping them to tables and associations of the database. Using objects with the application, the
application is shielded from changes in the database.

The ADO.NET Entity Framework offers Entity SQL to define entity-based queries to the store (an extension
to T-SQL). LINQ to Entities makes it possible to use the LINQ syntax to query data. An object context acts
as a bridge regarding entities that are changed, retaining information for when the entities should be written
back to the store.

Microsoft moves more and more parts of the core framework into NuGet packages, which means that it
is not necessary to wait for an update of the complete .NET Framework to deliver new features. With the
latest versions of the Entity Framework, more and more parts moved out into a NuGet package. As of
Entity Framework 6 (which is discussed in this book), the framework is now completely in a NuGet
package. To not get in conflict with previous versions, some parts now have new namespaces, but the
classes and members remain the same.

The namespaces that contain classes from the ADO.NET Entity Framework are listed in the following
table:

NAmEsPACE DEsCRiPTioN

System.Data A main namespace for ADO.NET. With the ADO.NET Entity
Framework, this namespace contains exception classes related to
entities — for example, MappingException and QueryException.

System.Data.Core.Common Contains classes shared by .NET data providers. The class
DbProviderServices is an abstract base class that must be
implemented by an ADO.NET Entity Framework provider.

c33.indd 966 30-01-2014 20:39:36

Entity Framework Mapping ❘ 967

System.Data.Core.Common
.CommandTrees

Contains classes to build an expression tree.

System.Data.Entity Contains classes for the Code First development model.

System.Data.Entity.Design Contains classes used by the designer to create Entity Data Model
(EDM) files.

System.Data.Entity.Core.
EntityClient

Specifies classes for the .NET Framework Data Provider to
access the Entity Framework. EntityConnection,
EntityCommand, and EntityDataReader can be used to
access the Entity Framework.

ENTiTy FRAmEwoRk mAPPiNg
With Model First and Database First, the ADO.NET Entity Framework offers several layers to map
database tables to objects. With Database First you can start with a database schema and use a Visual
Studio item template to create the complete mapping. You can also start designing entity classes with the
designer (Model First) and map it to the database such that the tables and the associations between the
tables can have a very different structure.

The layers that need to be defined are as follows:

➤➤ Logical: Defines the relational data.
➤➤ Conceptual: Defines the .NET entity classes.
➤➤ Mapping: Defines the mapping from .NET classes to relational tables and associations.

FigURE 33-1

Figure 33-1 shows a simple database schema, with the tables Books and Authors, and an association table
BookAuthors that maps the authors to books.

NoTE Code First uses programmatic mapping that is discussed later in section “Using
the Code First Programming Model.”

c33.indd 967 30-01-2014 20:39:36

968 ❘ CHAPTER 33 ADO.NET ENTiTy FrAmEwOrk

Logical Layer
The logical layer is defined by the Store Schema Definition Language (SSDL) and describes the structure of
the database tables and their relationships.

The following code uses SSDL to describe the three tables: Books, Authors, and BooksAuthors.
The EntityContainer element describes all the tables with EntitySet elements, and associations
with AssociationSet elements. The parts of a table are defined with the EntityType element. With
EntityType Books you can see the columns Id, Title, Publisher, and ISBN defined by the Property
element. The Property element contains XML attributes to define the data type. The Key element
defines the primary key of the table. You can find the following code in the code file BooksDemo/
BooksModel.edmx:

 <edmx:StorageModels>
 <Schema Namespace="BooksModel.Store"
 Provider="System.Data.SqlClient" ProviderManifestToken="2008"
 Alias="Self"
 xmlns="http://schemas.microsoft.com/ado/2009/11/edm/ssdl">
 <EntityType Name="Authors">
 <Key>
 <PropertyRef Name="Id" />
 </Key>
 <Property Name="Id" Type="int" StoreGeneratedPattern="Identity"
 Nullable="false" />
 <Property Name="FirstName" Type="nvarchar" MaxLength="50"
 Nullable="false" />
 <Property Name="LastName" Type="nvarchar" MaxLength="50"
 Nullable="false" />
 </EntityType>
 <EntityType Name="Books">
 <Key>
 <PropertyRef Name="Id" />
 </Key>
 <Property Name="Id" Type="int" StoreGeneratedPattern="Identity"
 Nullable="false" />
 <Property Name="Title" Type="nvarchar" MaxLength="50"
 Nullable="false" />
 <Property Name="Publisher" Type="nvarchar" MaxLength="50"
 Nullable="false" />
 <Property Name="Isbn" Type="nvarchar" MaxLength="50"
 Nullable="false" />
 </EntityType>
 <EntityType Name="BooksAuthors">
 <Key>
 <PropertyRef Name="Authors_Id" />
 <PropertyRef Name="Books_Id" />
 </Key>
 <Property Name="Authors_Id" Type="int" Nullable="false" />
 <Property Name="Books_Id" Type="int" Nullable="false" />
 </EntityType>
 <Association Name="FK_BooksAuthors_ToAuthors">
 <End Role="Authors" Type="Self.Authors" Multiplicity="1" />
 <End Role="BooksAuthors" Type="Self.BooksAuthors"
 Multiplicity="*" />
 <ReferentialConstraint>
 <Principal Role="Authors">
 <PropertyRef Name="Id" />
 </Principal>

c33.indd 968 30-01-2014 20:39:36

Entity Framework Mapping ❘ 969

 <Dependent Role="BooksAuthors">
 <PropertyRef Name="Authors_Id" />
 </Dependent>
 </ReferentialConstraint>
 </Association>
 <Association Name="FK_BooksAuthors_ToBooks">
 <End Role="Books" Type="Self.Books" Multiplicity="1" />
 <End Role="BooksAuthors" Type="Self.BooksAuthors"
 Multiplicity="*" />
 <ReferentialConstraint>
 <Principal Role="Books">
 <PropertyRef Name="Id" />
 </Principal>
 <Dependent Role="BooksAuthors">
 <PropertyRef Name="Books_Id" />
 </Dependent>
 </ReferentialConstraint>
 </Association>
 <EntityContainer Name="BooksModelStoreContainer">
 <EntitySet Name="Authors" EntityType="Self.Authors" Schema="dbo"
 p3:Type="Tables" xmlns:p3=
"http://schemas.microsoft.com/ado/2007/12/edm/EntityStoreSchemaGenerator" />
 <EntitySet Name="Books" EntityType="Self.Books" Schema="dbo"
 p3:Type="Tables" xmlns:p3=
"http://schemas.microsoft.com/ado/2007/12/edm/EntityStoreSchemaGenerator" />
 <EntitySet Name="BooksAuthors" EntityType="Self.BooksAuthors"
 Schema="dbo" p3:Type="Tables" xmlns:p3=
"http://schemas.microsoft.com/ado/2007/12/edm/EntityStoreSchemaGenerator" />
 <AssociationSet Name="FK_BooksAuthors_ToAuthors"
 Association="Self.FK_BooksAuthors_ToAuthors">
 <End Role="Authors" EntitySet="Authors" />
 <End Role="BooksAuthors" EntitySet="BooksAuthors" />
 </AssociationSet>
 <AssociationSet Name="FK_BooksAuthors_ToBooks"
 Association="Self.FK_BooksAuthors_ToBooks">
 <End Role="Books" EntitySet="Books" />
 <End Role="BooksAuthors" EntitySet="BooksAuthors" />
 </AssociationSet>
 </EntityContainer>
 </Schema>
 </edmx:StorageModels>

NoTE The file BooksModel.edmx contains SSDL, CSDL, and MSL. You can open this
file with an XML editor to see its contents.

Conceptual Layer
The conceptual layer defines .NET entity classes. This layer is created with the Conceptual Schema
Definition Language (CSDL).

Figure 33-2 shows the entities Author and Book defined with the ADO.NET Entity Data Model
Designer.

c33.indd 969 30-01-2014 20:39:36

970 ❘ CHAPTER 33 ADO.NET ENTiTy FrAmEwOrk

The following code (found in code file BooksDemo/BooksModel.edmx) is the CSDL content that defines the
entity types Book and Author. This was created from the Books database:

 <edmx:ConceptualModels>
 <Schema Namespace="BooksModel" Alias="Self"
 annotation:UseStrongSpatialTypes="false" xmlns:annotation=
 "http://schemas.microsoft.com/ado/2009/02/edm/annotation"
 xmlns="http://schemas.microsoft.com/ado/2009/11/edm">
 <EntityType Name="Author">
 <Key>
 <PropertyRef Name="Id" />
 </Key>
 <Property Name="Id" Type="Int32" Nullable="false"
 annotation:StoreGeneratedPattern="Identity" />
 <Property Name="FirstName" Type="String" Nullable="false"
 MaxLength="50" Unicode="true" FixedLength="false" />
 <Property Name="LastName" Type="String" Nullable="false"
 MaxLength="50" Unicode="true" FixedLength="false" />
 <NavigationProperty Name="Books"
 Relationship="Self.BooksAuthors"
 FromRole="Authors" ToRole="Books" />
 </EntityType>
 <EntityType Name="Book">
 <Key>
 <PropertyRef Name="Id" />
 </Key>
 <Property Name="Id" Type="Int32" Nullable="false"
 annotation:StoreGeneratedPattern="Identity" />
 <Property Name="Title" Type="String" Nullable="false"
 MaxLength="50" Unicode="true" FixedLength="false" />
 <Property Name="Publisher" Type="String" Nullable="false"
 MaxLength="50" Unicode="true" FixedLength="false" />
 <Property Name="Isbn" Type="String" MaxLength="18" Unicode="true"
 FixedLength="true" />
 <NavigationProperty Name="Authors"
 Relationship="Self.BooksAuthors"
 FromRole="Books" ToRole="Authors" />
 </EntityType>
 <Association Name="BooksAuthors">
 <End Role="Authors" Type="Self.Author" Multiplicity="*" />
 <End Role="Books" Type="Self.Book" Multiplicity="*" />
 </Association>
 <EntityContainer Name="BooksEntities"
 annotation:LazyLoadingEnabled="true">
 <EntitySet Name="Authors" EntityType="Self.Author" />

FigURE 33-2

c33.indd 970 30-01-2014 20:39:37

Entity Framework Mapping ❘ 971

 <EntitySet Name="Books" EntityType="Self.Book" />
 <AssociationSet Name="BooksAuthors"
 Association="Self.BooksAuthors">
 <End Role="Authors" EntitySet="Authors" />
 <End Role="Books" EntitySet="Books" />
 </AssociationSet>
 </EntityContainer>
 </Schema>
 </edmx:ConceptualModels>

The entity is defined by an EntityType element, which contains Key, Property, and NavigationProperty
elements to describe the properties of the created class. The Property element contains attributes
to describe the name and type of the .NET properties of the classes generated by the designer. The
Association element connects the types Author and Book. Multiplicity="*" means that one Author can
write multiple Books, and one Book can be written by multiple Authors.

mapping Layer
The mapping layer maps the entity type definition from the CSDL to the SSDL using the Mapping
Specification Language (MSL). The following specification (code file BooksDemo/BooksModel.edmx)
includes a Mapping element that contains the EntityTypeMapping element to reference the Book type
of the CSDL and it defines the MappingFragment to reference the Authors table from the SSDL. The
ScalarProperty maps the property of the .NET class with the Name attribute to the column of the database
table with the ColumnName attribute:

 <edmx:Mappings>
 <Mapping Space="C-S"
 xmlns="http://schemas.microsoft.com/ado/2009/11/mapping/cs">
 <EntityContainerMapping
 StorageEntityContainer="BooksModelStoreContainer"
 CdmEntityContainer="BooksEntities">
 <EntitySetMapping Name="Authors">
 <EntityTypeMapping TypeName="BooksModel.Author">
 <MappingFragment StoreEntitySet="Authors">
 <ScalarProperty Name="Id" ColumnName="Id" />
 <ScalarProperty Name="FirstName" ColumnName="FirstName" />
 <ScalarProperty Name="LastName" ColumnName="LastName" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>
 <EntitySetMapping Name="Books">
 <EntityTypeMapping TypeName="BooksModel.Book">
 <MappingFragment StoreEntitySet="Books">
 <ScalarProperty Name="Id" ColumnName="Id" />
 <ScalarProperty Name="Title" ColumnName="Title" />
 <ScalarProperty Name="Publisher" ColumnName="Publisher" />
 <ScalarProperty Name="Isbn" ColumnName="Isbn" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>
 <AssociationSetMapping Name="BooksAuthors" TypeName=
 "BooksModel.BooksAuthors" StoreEntitySet="BooksAuthors">
 <EndProperty Name="Authors">
 <ScalarProperty Name="Id" ColumnName="AuthorId" />
 </EndProperty>
 <EndProperty Name="Books">
 <ScalarProperty Name="Id" ColumnName="BookId" />
 </EndProperty>
 </AssociationSetMapping>
 </EntityContainerMapping>
 </Mapping>
 </edmx:Mappings>

c33.indd 971 30-01-2014 20:39:37

972 ❘ CHAPTER 33 ADO.NET ENTiTy FrAmEwOrk

Connection string
Using the designer, the connection string is stored in the configuration file. The connection string is
required for EDM and is different from the normal ADO.NET connection string because mapping
information is required. The mapping is defined with the keyword metadata. The connection string
requires three parts:

➤➤ A metadata keyword with delimited list of mapping files
➤➤ A provider for the invariant provider name to access the data source
➤➤ A provider connection string to assign the provider-dependent connection string

The following code snippet shows a sample connection string. With the metadata keyword, the
delimited list of mapping files references the files BooksModel.csdl, BooksModel.ssdl, and
BooksModel.msl, which are contained within resources in the assembly as defined with the res:prefix.
In Visual Studio, the designer uses just one file, BooksModel.edmx, which contains CSDL, SSDL, and
MSL. Setting the property Custom Tool to EntityModelCodeGenerator creates three files that are
contained in resources.

Within the provider connection string setting you can find the connection string to the database
with the connection string setting. This part is the same as a simple ADO.NET connection string
discussed in Chapter 32, “Core ADO.NET,” and varies according to the provider that is set with the
provider setting:

 <connectionStrings>
 <add name="BooksEntities"
 connectionString=
 "metadata=res://*/BooksModel.csdl|res://*/BooksModel.ssdl|
 res://*/BooksModel.msl;provider=System.Data.SqlClient;
 provider connection string="Data Source=(localdb\v11.0);
 Initial Catalog=Books;Integrated Security=True;Pooling=False;
 MultipleActiveResultSets=True""
 providerName="System.Data.EntityClient" />
 </connectionStrings>

NoTE With the connection string, you can also specify CSDL, SSDL, and MSL files
that are not contained as a resource in the assembly. This is useful if you want to change
the content of these files after deployment of the project.

ENTiTiEs
Entity classes are created with T4 templates that are associated with the designer. These types are simple
POCO types, as shown with the Book class in the code that follows (code file BooksDemo/BooksModel/
BooksModel.tt/Book.cs).

NoTE T4 is the shorthand notation for Text Template Transformation Toolkit. This is
a toolkit that allows creating source code from text files. With the Entity Framework,
the text files that are used to create the code files are the XML files that define the
mapping.

c33.indd 972 30-01-2014 20:39:37

Data Context ❘ 973

NoTE POCO is the shorthand notation for Plain Old CLR Objects. POCO objects
are just simple .NET classes with properties, no need to derive from a specific base
class. The term plain old has its origin with POTS (Plain Old Telephone service), and
later POX (Plain Old XML).

NoTE The Authors property is of type ICollection<Author> to allow accessing the
collection of authors from the Book:

 public partial class Book
 {
 public Book()
 {
 this.Authors = new HashSet<Author>();
 }

 public int Id { get; set; }
 public string Title { get; set; }
 public string Publisher { get; set; }
 public string Isbn { get; set; }

 public virtual ICollection<Author> Authors { get; set; }
 }

The Book entity class can easily be accessed by using the data context class BooksEntities. The Books
property returns a collection of Book objects that can be iterated (code file BooksDemo/Program.cs):

 using (var data = new BooksEntities())
 {
 foreach (var book in data.Books)
 {
 Console.WriteLine("{0}, {1}", book.Title, book.Publisher);
 }
 }

DATA CoNTExT
To retrieve data from the database, the DbContext class is needed. This class defines the mapping from the
entity objects to the database. With core ADO.NET, you can compare this class to the data adapter that fills
a DataSet.

The BooksEntities class created by the designer derives from the base class DbContext. This class adds
constructors to pass a connection string. With the default constructor, the connection string is read from
the configuration file. The connection string name that can be found in the configuration file is passed to the
constructor of the base class.

The created class defines Books and Authors properties, which return a DbSet<TEntity>.
DbSet<TEntity> derives from DbQuery<TEntity> (code file BooksDemo/BooksModel/BooksModel
.Context.cs):

 public partial class BooksEntities : DbContext
 {
 public BooksEntities() : base("name=BooksEntities")
 {
 }

c33.indd 973 30-01-2014 20:39:37

974 ❘ CHAPTER 33 ADO.NET ENTiTy FrAmEwOrk

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 throw new UnintentionalCodeFirstException();
 }

 public DbSet<Author> Authors { get; set; }
 public DbSet<Book> Books { get; set; }
 }

The DbContext class provides several services to the caller:

➤➤ It keeps track of entity objects that are already retrieved. If the object is queried again, it is taken from
the object context.

➤➤ It keeps state information about the entities. You can get information about added, modified, and
deleted objects.

➤➤ You can update the entities from the object context to write the changes to the underlying store.

Methods and properties of the DbContext class are listed in the following table:

mETHoD oR PRoPERTy DEsCRiPTioN

Database This property returns a Database object that is associated
with the data context. With this object, SQL queries can be
done directly to the database, transactions can be created,
and it is also possible to create the database dynamically.

Configuration This property returns a DbContextConfiguration object
that can be used to configure the data context.

ChangeTracker This property returns a DbChangeTracker. The
DbChangeTracker keeps track of entity objects retrieved
and object changes in the object context.

Set() This method returns a DbSet object. The Books and
Authors properties shown earlier are strongly typed
properties that return DbSet as well.

Entry() This method receives an entity object as a parameter and
returns a DbEntityEntry. With the DbEntityEntry,
information that is kept via the data context for the entity can
be retrieved, and the actual data from the database can be
retrieved again.

SaveChanges()
SaveChangesAsync()

Adding, modifying, and deleting objects from the data
context does not change the object from the underlying
store. Use the SaveChanges method to persist the changes
to the store. The SaveChangesAsync is new with Entity
Framework 6 and allows starting the save method without
blocking the thread.

Methods and properties of the DbSet class are listed in the following table:

mETHoD oR PRoPERTy DEsCRiPTioN

Add()
AddRange()

Add and AddRange add an object or a list of objects to
the set.

Attach() Attach adds an object to the set. An attached object is
tracked with change information.

c33.indd 974 30-01-2014 20:39:37

Relationships ❘ 975

Create() Create creates a new object that can be attached later on.
This method is preferable for creating a new object instead
of using the new operator. Behind the scenes, Create can
create an object that derives from the entity class.

Find()
FindAsync()

Find and FindAsync looks for an object in the data context.
If the object is not already in the context, it is retrieved from
the database.

Remove() The Remove method removes an object from the context.

AsNoTracking() The AsNoTracking method can be added to a query to not
track the retrieved objects with the context.

NoTE SaveAsync and FindAsync are new methods with Entity Framework 6. More
asynchronous options are added to this library. However, you cannot call multiple
asynchronous methods in parallel (using multiple threads or tasks) using the same
data context. The data context is not thread-safe. Depending on the machine you’re
using, sooner or later you’ll run into exceptions. You either need to use multiple data
context objects or need to use await before calling the next asynchronous method.
Asynchronous programming is discussed in Chapter 13, “Asynchronous Programming.”

RELATioNsHiPs
The entity types Book and Author are related to each other. A book can be written by one or more authors,
and an author can write one or more books. Relationships are based on the count of types they relate and
the multiplicity. The ADO.NET Entity Framework supports several kinds of relationships, some of which
are described here, including table-per-hierarchy (TPH) and table-per-type (TPT). Multiplicity can be one-
to-one, one-to-many, or many-to-many.

Table-per-Hierarchy
With TPH, there’s one table in the database that corresponds
to a hierarchy of entity classes. For example, the database
table Payments shown in Figure 33-3 contains columns for a
hierarchy of entity types. Some of the columns are common to
all entities in the hierarchy, such as Id and Amount. The Number
column is used only by a credit card payment and a check
payment.

The entity classes that all map to the same Payments table
are shown in Figure 33-4. Payment is an abstract base
class containing properties common to all types in the
hierarchy. Concrete classes that derive from Payment are
CreditCardPayment, CashPayment, and CheckPayment. CreditCardPayment has a CreditCard property
in addition to the properties of the base class; ChequePayment has BankName and BankAccount properties.

This mapping can be defined with the designer. The mapping details can be configured with the Mapping
Details dialog shown in Figure 33-5. Selection of the concrete class type is done based on a Condition
element as defined with the option Maps to Payments When Type = CREDITCARD. The type is selected
based on the value of the Type column. Other options to select the type are also possible; for example, you
can verify whether a column is not null.

FigURE 33-3

c33.indd 975 30-01-2014 20:39:38

976 ❘ CHAPTER 33 ADO.NET ENTiTy FrAmEwOrk

Now it’s possible to iterate the data from the Payments table, and different types are returned based on the
mapping (code file PaymentsDemo/Program.cs):

 using (var data = new PaymentsEntities())
 {
 foreach (var p in data.Payments)
 {
 Console.WriteLine("{0}, {1} - {2:C}", p.GetType().Name, p.Name,
 p.Amount);
 }
 }

Running the application returns two CashPayment and one CreditCardPayment objects from the database:

CreditCardPayment, Gladstone - $22.00
CashPayment, Donald - $0.50
CashPayment, Scrooge - $80,000.00

Using the OfType method offers an easy way to get the result from a specific type:

 foreach (var p in data.Payments.OfType<CreditcardPayment>())
 {
 Console.WriteLine("{0} {1} {2}", p.Name, p.Amount, p.CreditCard);
 }

FigURE 33-4

FigURE 33-5

c33.indd 976 30-01-2014 20:39:38

Relationships ❘ 977

The T-SQL statement that’s generated from this query is very efficient to filter the type with the WHERE clause
because it is defined from the model:

SELECT
'0X0X' AS [C1],
[Extent1].[Id] AS [Id],
[Extent1].[Amount] AS [Amount],
[Extent1].[Name] AS [Name],
[Extent1].[Number] AS [Number]
FROM [dbo].[Payments] AS [Extent1]
WHERE [Extent1].[Type] = N'CREDITCARD'

Table-per-Type
With TPT, one table maps to one type. The Formula1 database has a schema with the tables Racers,
RaceResults, Races, and Circuits. The RaceResults table has a relationship with the Racers
table with the foreign key RacerId; the Races table relates to the Circuits table with the foreign key
CircuitId.

Figure 33-6 shows the entity types Racer, RaceResult, Race, and Circuit. There are several one-to-many
relationships.

FigURE 33-6

You access the customers and their orders with two iterations shown in the next code block
(Formula1Sample/Program.cs). First, the Racer objects are accessed, and the values of the FirstName and
LastName properties are written to the console. Then all race results are accessed by using the RaceResults

c33.indd 977 30-01-2014 20:39:38

978 ❘ CHAPTER 33 ADO.NET ENTiTy FrAmEwOrk

property of the Racer class. The related orders are lazy loaded to access the property because with the
DbContext, the data.ConfigurationOptions.LazyLoadingEnabled property is set to true:

 using (var data = new Formula1Entities())
 {
 foreach (var racer in data.Racers)
 {
 Console.WriteLine("{0} {1}", racer.FirstName, racer.LastName);
 foreach (var raceResult in racer.RaceResults)
 {
 Console.WriteLine("\t{0} {1:d} {2}",
 raceResult.Race.Circuit.Name,
 raceResult.Race.Date, raceResult.Position);
 }
 }
 }

The SQL statements that are sent to the database can be easily verified by different methods:

➤➤ IntelliTrace: With IntelliTrace, ADO.NET logs every SQL statement that is sent. This requires Visual
Studio Ultimate.

➤➤ SQL Server Profiler: This is part of SQL Server and is not part of SQL Server Express.
➤➤ Logging with the Entity Framework.

Entity Framework 6 offers simple logging by assigning an Action<string> to the DbContext.Database
.Log property. For example:

 data.Database.Log = Console.Write;

With this feature, the SQL statements can be written anywhere you want. Assigning the Console.Write
method to the Log property writes log information to the console. Similarly you can write log information
to a trace source, or any other facility.

How does lazy loading work behind the scenes? The property RaceResults is declared of type
ICollection<RaceResult>:

public virtual ICollection<RaceResult> RaceResults { get; set; }

The instance of the RaceResults type is created within the constructor of the Racer type, and is a simple
HashSet<T>:

 public Racer()
 {
 this.RaceResults = new HashSet<RaceResult>();
 }

NoTE A HashSet<T> contains a list of distinct elements that is unordered. The
HashSet<T> class is covered in Chapter 10, “Collections.”

The magic behind lazy loading is that the RaceResults property is declared virtual. Behind the scenes,
a proxy class is created that derives from the base class Racer, which overrides the RaceResults property.
With this implementation, the race results are queried from the database when the collection of the
RaceResults property is iterated first.

Lazy, Explicit, and Eager Loading
With the designer’s default setting, relationships are lazy loaded on request. The designer sets the property
LazyLoadingEnabled from the DbContext.Configuration to true. You have other options as well.
Relationships can also be eager loaded or explicitly loaded.

c33.indd 978 30-01-2014 20:39:38

Relationships ❘ 979

Eager loading means that the relationship is loaded at the same time the parent objects are loaded. The
race results, the associated race with the race result, and the associated circuit with the race are loaded
immediately with the first iteration after adding a call to the Include method to the query. The Include
method is available with DbSet<TEntity> types (the Racers property is of type DbSet<Racer>), and
receives the relationship name. Accessing the RaceResults property in the foreach loop you can see that
all the information up to the circuit information is shown:

 foreach (var racer in data.Racers.Include("RaceResults.Race.Circuit"))
 {
 Console.WriteLine("{0} {1}", racer.FirstName, racer.LastName);
 foreach (var raceResult in racer.RaceResults)
 {
 Console.WriteLine("\t{0} {1:d} {2}",
 raceResult.Race.Circuit.Name,
 raceResult.Race.Date, raceResult.Position);
 }
 }

Eager loading has the advantage that if all related objects are needed, then fewer requests to the database are
made. Of course, if not all related objects are needed, lazy or explicit loading is preferred.

NoTE The DbSet class defines an Include method with a string parameter to define
the relation that should be eager loaded. Entity Framework 6 offers an extension
method Include that extends IQueryable<T>. This extension method accepts a
parameter of type Func<T, TProperty>, which allows passing a lambda expression
instead of a string in case just one property relation is accessed. The advantage of this is
type safety — the compiler already can check the relation. For example, Include(r =>
r.RaceResults)can be used instead of Include(“RaceResults”). This extension
method is defined in the namespace System.Data.Entity.

Explicit loading needs an explicit call to the Load method. This code snippet invokes the Load method of the
DbSet<RaceResult> to get all race results from the database. Loading is done immediately:

 data.RaceResults.Load();

To load the related race results for one racer, you can use the Load method of a DbCollectionEntry. To
get a DbEntityEntry, invoke the Entry method of the DbSet. The DbEntityEntry offers a Collection
method where an association name can be passed that has an ICollection property type. With this, the
IsLoaded property is used to verify if the collection is already loaded. If the collection is not already loaded,
the Load method is called to explicitly load the associated objects:

 DbCollectionEntry entry =
 data.Entry(racer).Collection("RaceResults");
 if (!entry.IsLoaded)
 {
 entry.Load();
 }

Instead of passing a string that can be error prone, the Collection method offers an overload to pass a
Lambda expression:

 DbCollectionEntry<Racer, RaceResult> entry =
 data.Entry(racer).Collection(r => r.RaceResults);
 if (!entry.IsLoaded)
 {
 entry.Load();
 }

c33.indd 979 30-01-2014 20:39:39

980 ❘ CHAPTER 33 ADO.NET ENTiTy FrAmEwOrk

QUERyiNg DATA
The Entity Framework offers several ways to query the data: Entity SQL, which is an extension to
T-SQL; using helper methods to create Entity SQL; and LINQ. All of these variants are discussed in this
section.

Entity sQL
Entity SQL enhances T-SQL by adding types. This syntax doesn’t require joins because associations of
entities can be used instead. You can use EntityClient, a low-level API to access the Entity Framework. This
API is implemented as an ADO.NET provider. EntityClient offers EntityConnection, EntityCommand,
EntityParameter, and EntityDataReader classes that derive from the base classes DbConnection,
DbCommand, DbParameter, and DbDataReader.

You can use these classes in the same way that you would use the ADO.NET classes described in Chapter
32, except that a special connection string is required and Entity SQL is used instead of T-SQL to access the
EDM.

The connection to the database is done with the EntityConnection, which requires an entity connection
string. This string is read from the configuration file with the help of the ConfigurationManager class
from the System.Configuration namespace. The CreateCommand method of the EntityConnection
class returns an EntityCommand. The command text for the EntityCommand is assigned with the
CommandText property and requires Entity SQL syntax. Formula1Entities.Racers is defined within the
EntityContainer element in the Formula1Entities CSDL definition, and the Racers EntitySet gets all
racers from the Racers table. Command.ExecuteReader returns a data reader that reads row by row (code
file Formula1Sample/Program.cs):

 string connectionString =
 ConfigurationManager.ConnectionStrings["Formula1Entities"]
 .ConnectionString;
 var connection = new EntityConnection(connectionString);
 await connection.OpenAsync();
 EntityCommand command = connection.CreateCommand();
 command.CommandText = "[Formula1Entities].[Racers]";
 DbDataReader reader = await command.ExecuteReaderAsync(
 CommandBehavior.SequentialAccess | CommandBehavior.CloseConnection);
 while (await reader.ReadAsync())
 {
 Console.WriteLine("{0} {1}", reader["FirstName"], reader["LastName"]);
 }
 reader.Close();

NoTE The previous sample makes use of the ConfigurationManager class to read the
connection string from the configuration file. To use this class, not only the namespace
System.Configuration needs to be imported, but also the assembly System
.Configuration must be referenced.

Let’s look at a few more Entity SQL syntax options. Here, just a few are shown to help you get started with
Entity SQL. In the MSDN documentation you can find the complete reference.

The preceding example showed how Entity SQL uses definitions from the CSDL in the
EntityContainer and EntitySet — for example, Formula1Entities.Racers to get all the racers
from the table Racers.

c33.indd 980 30-01-2014 20:39:39

Querying Data ❘ 981

Instead of retrieving all columns, you can also use the Property elements of an EntityType. This looks
very similar to the T-SQL queries used in the previous chapter:

 EntityCommand command = connection.CreateCommand();
 command.CommandText =
 "SELECT Racers.FirstName, Racers.LastName FROM Formula1Entities.Racers";
 DbDataReader reader = await command.ExecuteReaderAsync(
 CommandBehavior.SequentialAccess | CommandBehavior.CloseConnection);
 while (await reader.ReadAsync())
 {
 Console.WriteLine("{0} {1}", reader.GetString(0), reader.GetString(1));
 }
 reader.Close();

There’s no SELECT * with Entity SQL. All the columns were retrieved earlier by requesting the EntitySet.
Using SELECT VALUE you can also get all the columns, as shown in the next snippet. This code uses a filter
with WHERE to retrieve only specific publishers with the query. Note that the CommandText specifies the
parameter with the @ character — however, the parameter that is added to the Parameters collection does
not use the @ character to write a value to the same parameter:

 EntityCommand command = connection.CreateCommand();
 command.CommandText =
 "SELECT VALUE it FROM [Formula1Entities].[Racers] AS it " +
 "WHERE it.Nationality = @Country";
 command.Parameters.AddWithValue("Country", "Austria");

Now let’s change to the data context and the mapping functionality.

Using DbsqlQuery
You can define SQL query statements using the DbSqlQuery<T> class. The SqlQuery method allows passing
a SQL statement with the first parameter. The second parameter is of type params object[]that allows
passing any number of parameters to the SQL statement. These parameters can be of type SqlParameter,
as shown in the following code snippet:

 DbSqlQuery<Racer> racers = data.Racers.SqlQuery(
 "SELECT * FROM Racers WHERE nationality = @country",
 new SqlParameter("country", country));

Instead of passing SqlParameter objects as parameters, simple variables can be assigned as well — if you
follow the convention naming the parameters @p#:

 DbSqlQuery<Racer> racers = data.Racers.SqlQuery(
 "SELECT * FROM Racers WHERE nationality = @p0", country);

The resulting objects that are returned from the SqlQuery method are tracked with the data context. If the
objects should not be tracked, you can use the method AsNoTracking:

 DbSqlQuery<Racer> racers = data.Racers.SqlQuery(
 "SELECT * FROM Racers WHERE nationality = @p0", country)
 .AsNoTracking();

LiNQ to Entities
In several chapters of this book, you’ve seen LINQ to Query objects, databases, and XML. Of course,
LINQ is also available to query entities. With LINQ to Entities, the source for the LINQ query is
DbQuery<T>. Because DbQuery<T> implements the interface IQueryable, the extension methods selected for
the query are defined with the class Queryable from the namespace System.Linq. The extension methods
defined with this class have a parameter Expression<T>; that’s why the compiler writes an expression tree
to the assembly. You can read more about expression trees in Chapter 11, “Language Integrated Query.”
The expression tree is then resolved from the DbQuery<T> class to the SQL query.

c33.indd 981 30-01-2014 20:39:39

982 ❘ CHAPTER 33 ADO.NET ENTiTy FrAmEwOrk

As shown in the following example (code file QueryDemo/Program.cs), you can use a simple LINQ query to
return the racers who won more than 40 races:

 using (var data = new Formula1Entities())
 {
 var racers = from r in data.Racers
 where r.Wins > 40
 orderby r.Wins descending
 select r;
 foreach (Racer r in racers)
 {
 Console.WriteLine("{0} {1}", r.FirstName, r.LastName);
 }
 }

This is the result of accessing the Formula1 database:

Michael Schumacher
Alain Prost
Ayrton Senna

You can also define a LINQ query to access relationships, as shown in the next example. Variable r
references racers, variable rr references all race results. The filter is defined with the where clause to retrieve
only racers from Switzerland who had a race position on the podium. To get the podium finishes, the result
is grouped, and the podium count calculated. Sorting is done based on the podium finishes:

 using (var data = new Formula1Entities())
 {
 var query = from r in data.Racers
 from rr in r.RaceResults
 where rr.Position <= 3 && rr.Position >= 1 &&
 r.Nationality == "Switzerland"
 group r by r.Id into g
 let podium = g.Count()
 orderby podium descending
 select new
 {
 Racer = g.FirstOrDefault(),
 Podiums = podium
 };
 foreach (var r in query)
 {
 Console.WriteLine("{0} {1} {2}", r.Racer.FirstName, r.Racer.LastName,
 r.Podiums);
 }
 }

The names of three racers from Switzerland are returned when you run the application:

Clay Regazzoni 28
Jo Siffert 6
Rudi Fischer 2

wRiTiNg DATA To THE DATAbAsE
Reading, searching, and filtering data from the store are just one part of the work that usually needs to be
done with data-intensive applications. Writing changed data back to the store is the other part you need to
know. This section covers object tracking, a service and foundation of the object context, how the object
context knows about changes of the objects, how to attach and detach objects from the context, and how
the object context makes use of the state of objects to save entity objects.

c33.indd 982 30-01-2014 20:39:39

Writing Data to the Database ❘ 983

object Tracking
To enable data read from the store to be modified and saved, the entities must be tracked after they are
loaded. This also requires that the object context be aware of whether an entity has already been loaded
from the store. If multiple queries are accessing the same records, the object context needs to return already
loaded entities. The DbChangeTracker is used by the object context to keep track of entities that are loaded
into the context.

The following example demonstrates that indeed if two different queries return the same record from the
database, the state manager is aware of that and does not create a new entity. Instead, the same entity is
returned.

Two different queries are used to return an entity object. The first query gets the first racer from the country
Austria with the last name Lauda. The second query asks for the racers from Austria, sorts the racers by
the number of races won, and gets the first result. As a matter of fact, that’s the same racer. To verify that
the same entity object is returned, the method Object.ReferenceEquals is used to verify whether the two
object references indeed reference the same instance (code file Formula1Sample/Program.cs):

 private static void TrackingDemo()
 {
 using (var data = new Formula1Entities())
 {
 Racer niki1 = (from r in data.Racers
 where r.Nationality == "Austria" && r.LastName == "Lauda"
 select r).First();
 Racer niki2 = (from r in data.Racers
 where r.Nationality == "Austria"
 orderby r.Wins descending
 select r).First();
 if (Object.ReferenceEquals(niki1, niki2))
 {
 Console.WriteLine("the same object");
 }
 }
 }
 private static void ObjectStateManager_ObjectStateManagerChanged(
 object sender, CollectionChangeEventArgs e)
 {
 Console.WriteLine("Object State change — action: {0}", e.Action);
 Racer r = e.Element as Racer;
 if (r != null)
 Console.WriteLine("Racer {0}", r.LastName);
 }

Running the application, you can see that the references niki1 and niki2 are indeed the same:

The same object

Change information
The data context is aware of changes with the entities. The following example adds and modifies a racer
from the data context and gets information about the change. First, a new racer is added with the Add
method of the DbSet<T> class. This method adds a new entity with the EntityState.Added information.
Next, a racer with the Lastname Alonso is queried. With this entity class, the Starts and Wins properties
are incremented and thus the entity is marked with the information EntityState.Modified.

To get all added or modified entity objects, you can invoke the Entries method of the DbChangeTracker.
This method returns a list of all objects that are tracked, and with these objects the state can be checked via
the State property.

c33.indd 983 30-01-2014 20:39:39

984 ❘ CHAPTER 33 ADO.NET ENTiTy FrAmEwOrk

In the sample code, for objects that are of state EntityState.Modified, the original and current values
are retrieved using the OriginalValues and CurrentValues properties (code file Formula1Demo/
Program.cs):

 private static void ChangeInformation()
 {
 using (var data = new Formula1Entities())
 {
 var esteban = data.Racers.Create();
 esteban.FirstName = "Esteban";
 esteban.LastName = "Gutierrez";
 esteban.Nationality = "Mexico";
 esteban.Starts = 0;
 data.Racers.Add(esteban);

 Racer fernando = data.Racers.Where(
 r => r.LastName == "Alonso").First();
 fernando.Wins++;
 fernando.Starts++;

 foreach (DbEntityEntry<Racer> entry in
 data.ChangeTracker.Entries<Racer>())
 {
 Console.WriteLine("{0}, state: {1}", entry.Entity, entry.State);
 if (entry.State == EntityState.Modified)
 {
 Console.WriteLine("Original values");
 DbPropertyValues values = entry.OriginalValues;
 foreach (string propName in values.PropertyNames)
 {
 Console.WriteLine("{0} {1}", propName, values[propName]);
 }
 Console.WriteLine();
 Console.WriteLine("Current values");

 values = entry.CurrentValues;
 foreach (string propName in values.PropertyNames)
 {
 Console.WriteLine("{0} {1}", propName, values[propName]);
 }
 }
 }

When you run the application, the added and modified racers are displayed, and the changed properties are
shown with their original and current values:

Esteban Gutierrez, state: Added
Fernando Alonso, state: Modified
Original values
Id 28
FirstName Fernando
LastName Alonso
Nationality Spain
Starts 208
Wins 32
Points
DateOfBirth 81/29/7
DateOfDeath

Current values
Id 28
FirstName Fernando

c33.indd 984 30-01-2014 20:39:39

Writing Data to the Database ❘ 985

LastName Alonso
Nationality Spain
Starts 209
Wins 33
Points
DateOfBirth 81/29/7
DateOfDeath
current: 182

Attaching and Detaching Entities
When returning entity data to the caller, it might be important to detach the objects from the data context.
This is necessary, for example, if an entity object is returned from a web service. In this case, if the entity
object is changed on the client, the data context is not aware of the change.

With the sample code, one racer is retrieved from the database, but it is not tracked with the context by
using the AsNoTracking method on retrieving the object. Changing properties of the object, the data
context is not aware that object properties have changed, and writing entity changes via the context to the
database doesn’t have any effect:

 using (var data = new Formula1Entities())
 {
 IQueryable<Racer> racers = data.Racers.Where(
 r => r.LastName == "Alonso").AsNoTracking();
 Racer fernando = racers.First();

 // Racer is detached and can be changed independent of the
 // data context
 fernando.Starts++;

Later on, the object can be attached to the context using the Attach method. However, just attaching it, the
state tracker doesn’t know anything about the state change. The state can be set manually to the required
state by setting the state with the help of the DbEntityEntry:

 data.Racers.Attach(fernando);
 data.Entry<Racer>(fernando).State = EntityState.Modified;

writing Entity Changes with Last one wins
Based on all the change information provided with the help of the state tracker, the added, deleted, and
modified entity objects can be written to the store with the SaveChanges method of the DbContext class.
SaveChanges returns the number of entity objects that have been written.

What happens if the records in the database that are represented by the entity classes have been changed
after reading the record? To simulate this, a method is created that contains a time delay between reading
and writing data. The data access code is encapsulated within a try/catch statement to deal with the
DbUpdateConcurrency exception:

 private async static Task UserSaveObjectLastWins(string user, int delay, int starts)
 {
 using (var data = new Formula1Entities())
 {
 int changes = 0;
 try
 {
 Racer r1 = data.Racers.Where(r => r.LastName == "Alonso").First();
 r1.Starts = starts;
 await Task.Delay(delay);
 changes = data.SaveChanges();
 }
 catch (DbUpdateConcurrencyException ex)
 {

c33.indd 985 30-01-2014 20:39:40

986 ❘ CHAPTER 33 ADO.NET ENTiTy FrAmEwOrk

 Console.WriteLine("{0} error: {1}", user, ex.Message);
 }
 Console.WriteLine("{0} changed {1} record(s)", user, changes);
 }
 }

You can run the same update method simultaneously by starting two different tasks that have different
delays. After both tasks are completed, the record is read again from the database:

 private async static Task SaveObjectsLastWins()
 {
 Task t1 = Task.Run(() => UserSaveObjectLastWins("A", 1000, 200));
 Task t2 = Task.Run(() => UserSaveObjectLastWins("B", 2000, 220));
 await Task.WhenAll(t1, t2);
 ReadRecord();
 }

The result is shown here. The second update happened no matter that the same record was already modified
before from the first user. The second update happened no matter what information is currently in the
database. This behavior is known as last one wins:

A changed 1 record(s)
B changed 1 record(s)
After the update, the new value is 220

writing Entity Changes with First one wins
Next let’s change the result of concurrency to not let the last one win. The second update should result
in an error. This can be done by remembering the original data that was read and verifying this data
with the actual data in the database. If the data from the database is not the same anymore, the update
should fail.

You can easily do this by changing the ConcurrencyMode property in the designer. With every property
of an entity object, you can configure the ConcurrencyMode to Fixed or None. The value Fixed means
that the property is validated at write time to confirm that the value was not changed in the meantime.
None, which is the default, ignores any change. If some properties are configured to the Fixed mode,
and data changed between reading and writing the entity objects, an DbUpdateConcurrencyException
occurs.

Just with this simple change on the property Starts of the Racer object, the new outcome is as follows:

A changed 1 record(s)
B error: Store update, insert, or delete statement affected an unexpected
Number of rows (0). Entities may have been modified or deleted since
entities were loaded. Refresh ObjectStateManager entries.
B changed 0 record(s)
after the update, the new value is 190

writing Entity Changes with Conflict Handling
Instead of just using a first-wins or last-wins scenario, in case of an update conflict, you can read the actual
values from the database and let the user decide between the data the user entered and the data currently
in the database. Of course, before doing such an implementation you should ask how many times such a
scenario might happen, and if it is worth the time needed for the implementation. The implementation might
not be as simple as stated here because dealing with relations can also be a necessity in your update scenario.
Also, for the user it might not be clear how to answer such a question. Probably the user just clicks OK to
get rid of this dialog without reading its content.

Anyway, let’s look how this can be solved. An automatic solver could also be possible this way — for
example, if different properties have been changed, or a mechanism of a point deduction system is used with
the updated fields.

c33.indd 986 30-01-2014 20:39:40

Using the Code First Programming Model ❘ 987

The code snippet makes the update as before, but the exception case is handled differently. In case of a
DbUpdateConcurrencyException, the ex.Entries properties contains all failing entries. With each
DbEntityEntry, the current values of the object (including the ones the user changed) are accessed with
the CurrentValues property. In case you need the values that have been retrieved with the current data
context, the OriginalValues property comes to use. To get the current database values, you can invoke the
method GetDatabaseValues. With this information the conflict can be resolved. As mentioned previously,
one option is to ask the user and offer this information, and get resolved values from the user. As a default
resolver here, the values from the database are cloned. As a result of the resolver, the original and current
values need to be set, so SaveChanges can be successful the next time:

 using (var data = new Formula1Entities())
 {
 int changes = 0;
 bool saveFailed = false;

 do
 {
 try
 {
 saveFailed = false;
 Racer r1 = data.Racers.Where(r => r.LastName == "Alonso").First();
 r1.Starts = starts;
 await Task.Delay(delay);
 changes = data.SaveChanges();
 }
 catch (DbUpdateConcurrencyException ex)
 {
 saveFailed = true;

 Console.WriteLine("{0} error {1}", user, ex.Message);
 foreach (var entry in ex.Entries)
 {
 DbPropertyValues currentValues = entry.CurrentValues;
 DbPropertyValues databaseValues = entry.GetDatabaseValues();
 DbPropertyValues resolvedValues = databaseValues.Clone();

 AskUser(currentValues, databaseValues, resolvedValues);

 entry.OriginalValues.SetValues(databaseValues);
 entry.CurrentValues.SetValues(resolvedValues);
 }
 }
 }
 while (saveFailed);

 Console.WriteLine("{0} changed {1} record(s)", user, changes);

UsiNg THE CoDE FiRsT PRogRAmmiNg moDEL
Instead of using the model designer, you can also create entity types that define the complete mapping
with code. With Code First there’s no mapping definition consisting of CSDL, SSDL, and MSL at all.
A convention-based mapping can be used. Code First uses convention based programming similar to
ASP.NET MVC. With convention-based programming, conventions are used before configuration. For
example, instead of using attributes or a configuration file to define a primary key, a property just needs to
be named with Id, or the name needs to end with Id, e.g., BooksId. Such a property automatically maps to
a primary key.

This section discusses defining entity types for Code First, creating an object context, and customizing the
created database mapping.

c33.indd 987 30-01-2014 20:39:40

988 ❘ CHAPTER 33 ADO.NET ENTiTy FrAmEwOrk

Defining Entity Types
For this example, two entity types are defined,
Menu and MenuCard, as shown in Figure 33-7.
A Menu is associated with one MenuCard, and a
MenuCard contains references to all Menus within
the card.

The definition of the Menu class is shown
in the following code snippet (code file
CodeFirstSample/Menu.cs). There’s no specific
mapping to database keys or any other database-
specific definition. It’s just a convention. Because
one property has the name Id, a primary key is created from this property. Naming the property MenuId
would work as well. The MenuCard property is of type MenuCard. This is going to be a relationship:

 public class Menu
 {
 public int Id { get; set; }
 public string Text { get; set; }
 public decimal Price { get; set; }
 public DateTime? Day { get; set; }
 public MenuCard MenuCard { get; set; }
 public int MenuCardId { get; set; }
 }

The MenuCard class looks very similar and has a Menus property that enables access to Menu objects
associated with the MenuCard (code file CodeFirstSample/MenuCard.cs):

 public class MenuCard
 {
 public int Id { get; set; }
 public string Text { get; set; }
 public virtual ICollection<Menu> Menus { get; set; }
 }

Creating the Data Context
Now a data context is needed. The MenuContext derives from the base class DbContext and defines
properties for the tables in the same way shown earlier with POCO objects (code file CodeFirst/
MenuContext.cs):

 public class MenuContext : DbContext
 {
 public MenuContext()
 {
 }
 public DbSet<Menu> Menus { get; set; }
 public DbSet<MenuCard> MenuCards { get; set; }
 }

Creating the Database and storing Entities
Now, the data context can be used. The following example code (code file CodeFirst/Program.cs) adds
objects: one MenuCard and two menu entries. Then the SaveChanges method of the DbContext is called to
write the entries to the database:

 using (var data = new MenuContext())
 {
 MenuCard card = data.MenuCards.Create();
 card.Text = "Soups";
 data.MenuCards.Add(card);

 Menu m = data.Menus.Create();

FigURE 33-7

c33.indd 988 30-01-2014 20:39:40

Using the Code First Programming Model ❘ 989

 m.Text = "Baked Potato Soup";
 m.Price = 4.80M;
 m.Day = new DateTime(2012, 9, 20);
 m.MenuCard = card;
 data.Menus.Add(m);
 Menu m2 = data.Menus.Create();
 m2.Text = "Cheddar Broccoli Soup";
 m2.Price = 4.50M;
 m2.Day = new DateTime(2012, 9, 21);
 m2.MenuCard = card;
 data.Menus.Add(m2);
 try
 {
 data.SaveChanges();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }
 }

NoTE For the previous code, a connection string was never specified, nor was a data-
base created. If the database doesn’t exist, it is created.

The Database
If the database doesn’t exist, it is created. By default, the database is created with the server name — for
example, in SQL Express LocalDB, it would
be (localdb)\v11.0. The database is
assigned the name of the
data context, including the namespace.
With the sample application the database has
the name CodeFirstDemo.MenuContext.
The created tables, with their properties and
relationships, are shown in Figure 33-8. For
the “*-to-1” relationship between Menus and
MenuCards, a foreign key MenuCardId is
created in the Menus table. The Day column
in the Menus table is defined to allow nulls because the entity type Menu defines this property to be nullable.
The Text column is created with nvarchar(max) and allows null, as string is a reference type. The Price is
a database float type and doesn’t allow null. Value types are required; if nullable value types are used, they
are optional.

Query Data
The following example (code file CodeFirstSample/Program.cs) demonstrates reading the data from
the database. After the context is created, menu cards are accessed in the outer foreach loop, and the
inner foreach loop queries menus. Of course, you can also access the data using LINQ queries, which are
translated to T-SQL by the context:

 using (var data = new MenuContext())
 {
 foreach (var card in data.MenuCards)
 {

FigURE 33-8

c33.indd 989 30-01-2014 20:39:40

990 ❘ CHAPTER 33 ADO.NET ENTiTy FrAmEwOrk

 Console.WriteLine("{0}", card.Text);
 foreach (var menu in card.Menus)
 {
 Console.WriteLine("\t{0} {1:d}", menu.Text, menu.Day);
 }
 }
 }

The DbContext has lazy loading enabled by default. Thus, first the menu cards are queried; and then with
every request for the menus of the menu card, the SELECT statement to retrieve the menus is created. Similar
to what you’ve seen before, you can do eager loading as well:

 data.Configuration.LazyLoadingEnabled = false;
 foreach (var card in data.MenuCards.Include("Menus"))
 {
 Console.WriteLine("{0}", card.Text);
 foreach (var menu in card.Menus)
 {
 Console.WriteLine("\t{0} {1:d}", menu.Text, menu.Day);
 }
 }

Customizing Database generation
You can perform some simple customizations to generate the database, such as defining the database
connection string. In the following code (code file CodeFirstSample/MenuContext.cs), the database
connection string is assigned in the MenuContext class to a constructor of the base class DbContext. To
define a connection string, the database with the specified name is created:

 public class MenuContext : DbContext
 {
 private const string connectionString =
 @"server=(localdb)\v11.0;database=WroxMenus;" +
 "trusted_connection=true";
 public MenuContext()
 : base(connectionString){ }

Data Annotations
To customize the generated tables, some attributes from the namespace System.ComponentModel
.DataAnnotations can be used. The following example code (code file CodeFirst/Menu.cs) makes use of the
StringLengthAttribute type. This way, the generated column type is nvarchar(50)instead of nvarchar(max):

 public class Menu
 {
 public int Id { get; set; }
 [StringLength(50)] public string Text { get; set; }
 public double Price { get; set; }
 public DateTime? Day { get; set; }
 public MenuCard MenuCard { get; set; }
 }

Other attributes that can be used to customize entities are:

➤➤ Key: to define other columns that don’t have the Id in their name,
➤➤ Timestamp: to define the property as a row-version column,
➤➤ ConcurrencyCheck: to use the property for optimistic concurrency,
➤➤ Association: to mark the property for a relationship

Model Builder
Using only attributes to customize the generated tables and columns, you reach the limitations fast. There’s a
much more flexible option: using the model builder. The model builder offers a fluid API to customize tables,
columns, and relationships.

c33.indd 990 30-01-2014 20:39:40

Using the Code First Programming Model ❘ 991

Using the Code First development model you can get access to the model builder features with the
DbModelBuilder class. With a context class deriving from DbContext you can override the method
OnModelCreating. The method is invoked on creation of the database model. With this method, a model
builder of type DbModelBuilder is received. With the model builder you can rename properties, change
property types, define constraints, build relations, and do a lot more customization.

In the following code snippet (code file CodeFirst/MenuContext.cs), for the Menus table the Price
column is changed to be of type money, the Day column of type date. The Text column is changed to have
a maximum string length of 40, and it is set to required. The model builder uses a fluent API. The method
Entity returns an EntityTypeConfiguration. Using the result of the Entity method, other methods
of the EntityTypeConfiguration can be used. Using the Price property as a result of the Lambda
expression with the Property method, this method returns a DecimalPropertyConfiguration. Using
this, you can invoke the HasColumnType method, which sets the type for the database column to money.
The HasColumnType method again returns a DecimalPropertyConfiguration, and it would be possible to
continue there and invoke other methods for configuring the column.

As shown earlier for the MenuCard property in the Menu class, by default a foreign key named MenuCard_Id
was created. Now the Menu class is extended by adding the property MenuCardId of type int. To use this
property as a foreign key, the HasForeignKey method is used to assign the foreign key to the MenuCardId
property. The last statement in the method OnModelCreating sets a cascading delete on the MenuCards
table. If a row in the MenuCards table is deleted, all the menus with this ID should be deleted:

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Menu>().Property(m => m.Price).HasColumnType("money");
 modelBuilder.Entity<Menu>().Property(m => m.Day).HasColumnType("date");
 modelBuilder.Entity<Menu>().Property(m => m.Text).HasMaxLength(40)
 .IsRequired();
 modelBuilder.Entity<Menu>().HasRequired(m => m.MenuCard)
 .WithMany(c => c.Menus).HasForeignKey(m => m.MenuCardId);

 modelBuilder.Entity<MenuCard>().Property(c => c.Text).HasMaxLength(30)
 .IsRequired();
 modelBuilder.Entity<MenuCard>().HasMany(c => c.Menus).WithRequired()
 .WillCascadeOnDelete();
 }

Automatic Filling of a Database
Using Code First, a database can be automatically created, and it can also be automatically filled with
data. For this you only need an initializer that feeds the database data. A database initializer implements
the interface IDatabaseInitializer<TContext>. This interface is implemented by the classes
CreateDatabaseIfNotExists, DropCreateDatabaseAlways, and DropCreateDatabaseIfModelChanges.
As the names of these classes make clear, these database initializers behave differently on dropping and
creating databases. To define your data for the database, the Seed method of one of these base classes needs
to be overridden.

With the code snippet, The MenuCardsInitalizer derives from the base class
DropCreateDatabaseAlways, so that every time the initializer is invoked, the database is newly created and
filled. No matter how the users change the data, it will be in an initial state afterward:

 public class MenuCardsInitializer : DropCreateDatabaseAlways<MenuContext>
 {
 protected override void Seed(MenuContext context)
 {
 var menuCards = new List<MenuCard>()
 {
 new MenuCard{
 Text = "Soups",
 Menus = new List<Menu> {

c33.indd 991 30-01-2014 20:39:41

992 ❘ CHAPTER 33 ADO.NET ENTiTy FrAmEwOrk

 new Menu {
 Text = "Baked Potato Soup",
 Price = 4.8M,
 Day = DateTime.Parse("8/14/2013", CultureInfo.InvariantCulture)
 },
 new Menu {
 Text = "Cheddar Broccoli Soup",
 Price = 4.5M,
 Day = DateTime.Parse("8/15/2013", CultureInfo.InvariantCulture)
 }
 }
 },
 new MenuCard{
 Text = "Steaks",
 Menus = new List<Menu> {
 new Menu {
 Text = "New York Sirloin Steak",
 Price = 18.8M,
 Day = DateTime.Parse("8/16/2013", CultureInfo.InvariantCulture)
 },
 new Menu {
 Text = "Rib Eye Steak",
 Price = 14.8M,
 Day = DateTime.Parse("8/17/2013", CultureInfo.InvariantCulture)
 }
 }
 }
 };

 menuCards.ForEach(c => context.MenuCards.Add(c));
 }
 }

To activate the initializer, the static member SetInitializer of the Database class defines the initializer
to use:

 Database.SetInitializer<MenuContext>(new MenuCardsInitializer());

Connection Resiliency
If databases from a different network are used (e.g., using SQL Azure), network issues can occur and it is a
good idea to retry operations—depending on the exception that happened.

Using Entity Framework 6, there’s an easy way to do this—without changing the data access code, just by
changing the configuration. With configurations, it’s a good idea not to write too much in the configuration
file. Having a code-based configuration is another nice feature of Entity Framework 6.

To change connection resiliency, with a class that derives from DbConfiguration, invoking the method
SetExecutionStrategy changes the execution strategy. The first parameter defines the provider name — in
the sample code (code file CodeFirstSample/MyDatabaseConfiguration.cs) System.Data.SqlClient
for accessing SQL Server, the second parameter is of type Func<IDbExecutionStrategy> to assign a
lambda expression that returns an object implementing the interface IDbExecutionStrategy:

class MyDatabaseConfiguration : DbConfiguration
{
 public MyDatabaseConfiguration()
 {
 SetExecutionStrategy("System.Data.SqlClient",
 () => new SqlAzureExecutionStrategy());
 }
}

c33.indd 992 30-01-2014 20:39:41

Using the Code First Programming Model ❘ 993

The class MyDatabaseConfiguration is automatically instantiated. The Entity Framework runtime looks
for a class that derives from DbConfiguration within the same assembly where the data context resides.
This class gets instantiated, and in the constructor implementation configuration is done. Besides setting the
execution strategy, database initializers, log formatters, pluralization services, and interceptors can be added
or removed.

Entity Framework comes with some execution strategies out of the box: DefaultExecutionStrategy
is used for any database other than SQL Server. This execution strategy does not do any retries.
DefaultSqlExecutionStrategy is used with SQL Server and does not do any retries as well.
However, it wraps exceptions to give information about when it’s useful to enable connection resiliency.
SqlAzureExecutionStrategy can be used with SQL Azure and retries on exceptions that are known to be
transient with SQL Azure.

To customize connection resiliency, the constructor of SqlAzureExecutionStrategy allows specifying the
retry count and maximum delay between retries. For more customization, a custom execution strategy can
be defined with a class that derives from DbExecutionStrategy (or SqlAzureExecutionStrategy if you
want to use functionality from this class). The base class defines the virtual method ShouldRetryOn where
you can decide based on the exception that occurred, if a retry should be done. The second method that
can be overridden is GetNextDelay. With this the delay times can be defined. For example, delays can be
increased in case a retry was not successful.

schema migrations
Probably you do not want to drop and re-create the database with every schema change. Using Code First,
there’s a simple way to change the database schema dynamically: migrations.

A great part of code for migration of the database schema can be created by tools from the Entity
Framework. All this can be done from the Package Manager Console.

To define the configuration for the database, with the Package Manager Console (be sure to select the right
project with the Default project settings in the console), enter the command Enable-Migrations. Use
Tools ➪➤Library Package Manager ➪➤Package Manager Console to access the Package Manager Console.
Enabling migrations adds the directory Migrations to the project with the code file Configuration.cs.
This file contains the Configuration class as shown in the following code snippet. This class derives from
the base class DbMigrationsConfiguration. DbMigrationsConfiguration is defined in the namespace
System.Data.Entity.Migrations, this is the namespace for all the migration types. You can use the Seed
method to fill automatic data, as was shown in the Seed method of the previous section:

 internal sealed class Configuration :
 DbMigrationsConfiguration<Wrox.ProCSharp.Entities.MenuContext>
 {
 public Configuration()
 {
 AutomaticMigrationsEnabled = false;
 }

 protected override void Seed(MenuContext context)
 {
 }
 }

Now you need to define the initial schema either by setting AutomaticMigrationsEnabled to true and
invoking the application for the first time, or by using the Package Manager Console. Add-Migration
<ClassName> creates the code for defining the database. Specifying Add-Migration InitialSchema
creates the InitialSchema class that derives from DbMigration as shown. The Up method defines what
needs to be done in creating the database, the Down method drops the database:

 public partial class InitialSchema : DbMigration
 {
 public override void Up()

c33.indd 993 30-01-2014 20:39:41

994 ❘ CHAPTER 33 ADO.NET ENTiTy FrAmEwOrk

 {
 CreateTable(
 "dbo.MenuCards",
 c => new
 {
 Id = c.Int(nullable: false, identity: true),
 Text = c.String(nullable: false, maxLength: 30),
 })
 .PrimaryKey(t => t.Id);

 CreateTable(
 "dbo.Menus",
 c => new
 {
 Id = c.Int(nullable: false, identity: true),
 Text = c.String(nullable: false, maxLength: 40),
 Price = c.Decimal(nullable: false, storeType: "money"),
 Day = c.DateTime(storeType: "date"),
 MenuCardId = c.Int(nullable: false),
 })
 .PrimaryKey(t => t.Id)
 .ForeignKey("dbo.MenuCards", t => t.MenuCardId, cascadeDelete: true)
 .Index(t => t.MenuCardId);

 }

 public override void Down()
 {
 DropForeignKey("dbo.Menus", "MenuCardId", "dbo.MenuCards");
 DropIndex("dbo.Menus", new[] { "MenuCardId" });
 DropTable("dbo.Menus");
 DropTable("dbo.MenuCards");
 }
 }

Invoking the Update-Database command invokes the Up method, and then you can use the code to write
and read data.

Now, if something changes with the entity types — for example, the Menu type gets an additional Subtitle
property as shown — the database schema needs to be updated as well.

 [StringLength(120)]
 public string Subtitle { get; set; }

Add-Migration MenuSubtitle creates the migration type to add the Subtitle column to the Menus table:

 public partial class MenuSubtitle : DbMigration
 {
 public override void Up()
 {
 AddColumn("dbo.Menus", "Subtitle", c => c.String(maxLength: 120));
 }

 public override void Down()
 {
 DropColumn("dbo.Menus", "Subtitle");
 }
 }

Now all that needs to be done is to invoke the Update-Database command to migrate the database to the
latest changes (or to enable automatic migrations).

c33.indd 994 30-01-2014 20:39:41

Summary ❘ 995

sUmmARy
This chapter introduced you to the features of the ADO.NET Entity Framework, which is based on mapping
that is defined by CSDL, MSL, and SSDL — XML information that describes the entities, the mapping, and
the database schema. Using this mapping technique, you can create different relation types to map entity
classes to database tables.

You’ve learned how the object context keeps knowledge about entities retrieved and updated, and how
changes can be written to the store. You’ve also seen how using POCO objects enables you to use an existing
object library to map the objects to the database, and how Code First enables a database to be created on
the fly, with mapping information based on conventions.

LINQ to Entities is a facet of the ADO.NET Entity Framework that enables you to use the new query
syntax to access entities.

Entity Framework Code First utilizes the database without creating a model for entities. You’ve seen Code
First in action not only to create the database dynamically based on code conventions for the entity and
context types, and a fluent API to have more control over creation of the database, but also classes to seed
initial data, and migrations to change the database schema dynamically with different versions of the
applications.

The next chapter covers using XML as a data source, and creating and querying XML with LINQ to XML.

c33.indd 995 30-01-2014 20:39:41

c33.indd 996 30-01-2014 20:39:41

Manipulating XML
WHAT’S iN THiS CHAPTER?

➤➤ XML standards
➤➤ XmlReader and XmlWriter
➤➤ XmlDocument
➤➤ XPathDocument
➤➤ XmlNavigator
➤➤ LINQ to XML
➤➤ Working with objects in the System.Xml.Linq namespace
➤➤ Querying XML documents using LINQ
➤➤ Using LINQ to SQL and LINQ to XML together

WROX.COM COdE dOWNLOAdS FOR THiS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ XmlReaderSample
➤➤ ConsoleApplication1
➤➤ XmlSample
➤➤ XmlSample01

XML
XML plays a signifi cant role in the .NET Framework. Not only does the .NET Framework allow you
to use XML in your application, the .NET Framework itself uses XML for confi guration fi les and
source code documentation, as do SOAP, web services, and ADO.NET, to name just a few.

To accommodate this extensive use of XML, the .NET Framework includes the System.Xml
namespace. This namespace is loaded with classes that can be used for the processing of XML, and
many of these classes are discussed in this chapter.

34

c34.indd 997 30-01-2014 20:40:08

998 ❘ CHAPTER 34 Manipulating XMl

This chapter discusses how to use the XmlDocument class, which is the implementation of the Document
Object Model (DOM), as well as what .NET offers as a replacement for SAX (the XmlReader and
XmlWriter classes). It also discusses the class implementations of XPath and XSLT and demonstrates how
XML and ADO.NET work together, as well as how easy it is to transform one to the other. You also learn
how you can serialize your objects to XML and create an object from (or deserialize) an XML document
by using classes in the System.Xml.Serialization namespace. More to the point, you learn how you can
incorporate XML into your C# applications.

Note that the XML namespace enables you to get similar results in a number of different ways. It is impossible
to include all these variations in one chapter, so while exploring one possible way to do something, we’ll try
our best to mention alternatives that will yield the same or similar results.

Because it’s beyond the scope of this book to teach you XML from scratch, we assume that you are already
somewhat familiar with it. For example, you should be familiar with elements, attributes, and nodes, and
you should understand what is meant by a well-formed document. Similarly, you should be familiar with
SAX and DOM.

NOTE If you want to learn more about XML, Wrox’s Professional XML (Wiley, 2007)
is a great place to start.

In addition to general XML usage, the .NET Framework also includes the capability to work with XML by
using LINQ to XML. This can be a good alternative to using XPath for searching in an XML document.

The discussion begins with a brief overview of the current status of XML standards.

XML STANdARdS SuPPORT iN .NET
The World Wide Web Consortium (W3C) has developed a set of standards that give XML its power and
potential. Without these standards, XML would not have the impact on the development world that it does.
The W3C website (www.w3.org) is a valuable source for all things XML.

The .NET Framework supports the following W3C standards:

➤➤ XML 1.0 (www.w3.org/TR/1998/REC-xml-19980210), including DTD support
➤➤ XML namespaces (www.w3.org/TR/REC-xml-names), both stream level and DOM
➤➤ XML schemas (www.w3.org/2001/XMLSchema)
➤➤ XPath expressions (www.w3.org/TR/xpath)
➤➤ XSLT transformations (www.w3.org/TR/xslt)
➤➤ DOM Level 1 Core (www.w3.org/TR/REC-DOM-Level-1)
➤➤ DOM Level 2 Core (www.w3.org/TR/DOM-Level-2-Core)
➤➤ SOAP 1.1 (www.w3.org/TR/SOAP)

The level of standards support will change as the framework matures and the W3C updates the
recommended standards. Therefore, you need to make sure that you stay up to date with the standards and
the level of support provided by Microsoft.

iNTROduCiNg THE SySTEM.XML NAMESPACE
Support for processing XML is provided by the classes in the System.Xml namespace in .NET. This section
looks (in no particular order) at some of the more important classes that the System.Xml namespace
provides. The following table lists the main XML reader and writer classes.

c34.indd 998 30-01-2014 20:40:08

Using System.Xml Classes ❘ 999

CLASS NAME dESCRiPTiON

XmlReader An abstract reader class that provides fast, noncached XML data. XmlReader is
forward-only, like the SAX parser.

XmlWriter An abstract writer class that provides fast, noncached XML data in stream or file
format

XmlTextReader Extends XmlReader and provides fast forward-only stream access to XML data

XmlTextWriter Extends XmlWriter and provides fast forward-only generation of XML streams.

The following table lists some other useful classes for handling XML.

CLASS NAME dESCRiPTiON

XmlNode An abstract class that represents a single node in an XML document. It is the base
class for several classes in the XML namespace.

XmlDocument Extends XmlNode. This is the W3C DOM implementation. It provides a tree repre-
sentation in memory of an XML document, enabling navigation and editing.

XmlDataDocument Extends XmlDocument. This is a document that can be loaded from XML data or
from relational data in an ADO.NET DataSet. It enables the mixing of XML and rela-
tional data in the same view.

XmlResolver An abstract class that resolves external XML-based resources such as DTD and
schema references. Also used to process <xsl:include> and <xsl:import>
elements.

XmlNodeList A list of XmlNodes that can be iterated through

XmlUrlResolver Extends XmlResolver. Resolves external resources named by a uniform resource
identifier (URI).

Many of the classes in the System.Xml namespace provide a means to manage XML documents and
streams, whereas others (such as the XmlDataDocument class) provide a bridge between XML data stores
and the relational data stored in DataSets.

NOTE The XML namespace is available to any language that is part of the .NET fam-
ily. This means that all the examples in this chapter could also be written in Visual
Basic .NET, managed C++, and so on.

uSiNg SySTEM.XML CLASSES
The following examples use books.xml as the source of data. You can download this file and the other code
samples for this chapter from the Wrox website (www.wrox.com), but it is also included in several examples
in the .NET SDK. The books.xml file is a book catalog for an imaginary bookstore. It includes book infor-
mation such as genre, author name, price, and ISBN number.

This is what the books.xml file looks like:

<?xml version='1.0'?>
<!-–This file represents a fragment of a book store inventory database-–>
<bookstore>
 <book genre="autobiography" publicationdate="1991" ISBN="1-861003-11-0">
 <title>The Autobiography of Benjamin Franklin</title>
 <author>
 <first-name>Benjamin</first-name>

c34.indd 999 30-01-2014 20:40:08

1000 ❘ CHAPTER 34 Manipulating XMl

 <last-name>Franklin</last-name>
 </author>
 <price>8.99</price>
 </book>
 <book genre="novel" publicationdate="1967" ISBN="0-201-63361-2">
 <title>The Confidence Man</title>
 <author>
 <first-name>Herman</first-name>
 <last-name>Melville</last-name>
 </author>
 <price>11.99</price>
 </book>
 <book genre="philosophy" publicationdate="1991" ISBN="1-861001-57-6">
 <title>The Gorgias</title>
 <author>
 <name>Plato</name>
 </author>
 <price>9.99</price>
 </book>
</bookstore>

REAdiNg ANd WRiTiNg STREAMEd XML
The XmlReader and XmlWriter classes will feel familiar if you have ever used SAX. XmlReader-based
classes provide a very fast, forward-only, read-only cursor that streams the XML data for processing.
Because it is a streaming model, the memory requirements are not very demanding. However, you don’t
have the navigation flexibility and the read or write capabilities that would be available from a DOM-
based model. XmlWriter-based classes produce an XML document that conforms to the W3C’s XML 1.0
Namespace Recommendations.

XmlReader and XmlWriter are both abstract classes. The following classes are derived from XmlReader:

➤➤ XmlNodeReader

➤➤ XmlTextReader

➤➤ XmlValidatingReader

The following classes are derived from XmlWriter:

➤➤ XmlTextWriter

➤➤ XmlQueryOutput

XmlTextReader and XmlTextWriter work with either a stream-based object from the System.IO
namespace or TextReader/TextWriter objects. XmlNodeReader uses an XmlNode as its source, rather than
a stream. The XmlValidatingReader adds DTD and schema validation and therefore offers data
validation. You look at these a bit more closely later in this chapter.

using the XmlReader Class
XmlReader is a lot like SAX in the MSXML SDK. One of the biggest differences, however, is that whereas
SAX is a push type of model (that is, it pushes data out to the application, and the developer has to be ready
to accept it), the XmlReader is a pull model, whereby data is pulled into an application requesting it. This
provides an easier and more intuitive programming model. Another advantage to this is that a pull model
can be selective about the data that is sent to the application: it isn’t necessary to process any data you don’t
need. In a push model, all the XML data has to be processed by the application, whether it is needed or not.

The following is a very simple example of reading XML data; later you will take a closer look at the
XmlReader class. You’ll find the code in the XmlReaderSample folder. Here is the code for reading in the
books.xml document. As each node is read, the NodeType property is checked. If the node is a text node,
the value is appended to the text box (code file XMLReaderSample.sln):

c34.indd 1000 30-01-2014 20:40:09

Reading and Writing Streamed XML ❘ 1001

using System.Xml;

private void button3_Click(object sender, EventArgs e)
{
 richTextBox1.Clear();
 XmlReader rdr = XmlReader.Create("books.xml");
 while (rdr.Read())
 {
 if (rdr.NodeType == XmlNodeType.Text)
 richTextBox1.AppendText(rdr.Value + "\r\n");
 }
}

As previously discussed, XmlReader is an abstract class. Therefore, in order to use the XmlReader class
directly, a Create static method has been added. The Create method returns an XmlReader object. The
overload list for the Create method contains nine entries. In the preceding example, a string that represents
the filename of the XmlDocument is passed in as a parameter. Stream-based objects and TextReader-based
objects can also be passed in.

An XmlReaderSettings object can also be used. XmlReaderSettings specifies the features of the
reader. For example, a schema can be used to validate the stream. Set the Schemas property to a valid
XmlSchemaSet object, which is a cache of XSD schemas. Then the XsdValidate property on the
XmlReaderSettings object can be set to true.

You can use several Ignore properties to control the way the reader processes certain nodes and values.
These properties include IgnoreComments, IgnoreIdentityConstraints, IgnoreInlineSchema,
IgnoreProcessingInstructions, IgnoreSchemaLocation, and IgnoreWhitespace. You can use these
properties to strip certain items from the document.

Read Methods
Several ways exist to move through the document. As shown in the previous example, Read takes you to
the next node. You can then verify whether the node has a value (HasValue) or, as you will see shortly,
whether the node has any attributes (HasAttributes). You can also use the ReadStartElement method,
which verifies whether the current node is the start element and then positions you on the next node. If
you are not on the start element, an XmlException is raised. Calling this method is the same as calling the
IsStartElement method followed by a Read method.

ReadElementString is similar to ReadString, except that you can optionally pass in the name of an
element. If the next content node is not a start tag, or if the Name parameter does not match the current node
Name, an exception is raised.

Here is an example showing how ReadElementString can be used. Notice that it uses FileStreams,
so you need to ensure that you include the System.IO namespace via a using statement (code file
XMLReaderSample.sln):

private void button6_Click(object sender, EventArgs e)
{
 richTextBox1.Clear();
 XmlReader rdr = XmlReader.Create("books.xml");
 while (!rdr.EOF)
 {
 //if we hit an element type, try and load it in the listbox
 if (rdr.MoveToContent() == XmlNodeType.Element && rdr.Name == "title")
 {
 richTextBox1.AppendText(rdr.ReadElementString() + "\r\n");
 }
 else
 {
 //otherwise move on

c34.indd 1001 30-01-2014 20:40:09

1002 ❘ CHAPTER 34 Manipulating XMl

 rdr.Read();
 }
 }
}

In the while loop, you use MoveToContent to find each node of type XmlNodeType.Element with the name
title. You use the EOF property of the XmlTextReader as the loop condition. If the node is not of type
Element or not named title, the else clause will issue a Read method to move to the next node. When
you find a node that matches the criteria, you add the result of a ReadElementString to the list box. This
should leave you with just the book titles in the list box. Note that you don’t have to issue a Read call after
a successful ReadElementString because ReadElementString consumes the entire Element and positions
you on the next node.

If you remove && rdr.Name=="title" from the if clause, you have to catch the XmlException
when it is thrown. Looking at the data file, the first element that MoveToContent will find is the
<bookstore> element. Because it is an element, it will pass the check in the if statement. However, because
it does not contain a simple text type, it will cause ReadElementString to raise an XmlException. One
way to work around this is to put the ReadElementString call in a function of its own. Then, if the call to
ReadElementString fails inside this function, you can deal with the error and return to the calling function.

Go ahead and do that; call this new method LoadTextBox and pass in the XmlTextReader as a parameter.
This is what the LoadTextBox method looks like with these changes:

private void LoadTextBox(XmlReader reader)
{
 try
 {
 richTextBox1.AppendText (reader.ReadElementString() + "\r\n");
 }
 // if an XmlException is raised, ignore it.
 catch(XmlException er){}
}

The following section from the previous example,

if (tr.MoveToContent() == XmlNodeType.Element && tr.Name == "title")
{
 richTextBox1.AppendText(tr.ReadElementString() + "\r\n");
}
else
{
 //otherwise move on
 tr.Read();
}

will have to be changed to this:

if (tr.MoveToContent() == XmlNodeType.Element)
{
 LoadTextBox(tr);
}
else
{
 //otherwise move on
 tr.Read();
}

After running this example, the results should be the same as before. What this demonstrates is that
there is more than one way to accomplish the same goal. This is where the flexibility of the classes in the
System.Xml namespace starts to become apparent.

c34.indd 1002 30-01-2014 20:40:09

Reading and Writing Streamed XML ❘ 1003

The XmlReader can also read strongly typed data. There are several ReadElementContentAs methods, such
as ReadElementContentAsDouble, ReadElementContentAsBoolean, and so on. The following example
shows how to read in the values as a decimal and do some math on the value. In this case, the value from the
price element is increased by 25 percent:

private void button5_Click(object sender, EventArgs e)
{
 richTextBox1.Clear();
 XmlReader rdr = XmlReader.Create("books.xml");
 while (rdr.Read())
 {
 if (rdr.NodeType == XmlNodeType.Element)
 {
 if (rdr.Name == "price")
 {
 decimal price = rdr.ReadElementContentAsDecimal();
 richTextBox1.AppendText("Current Price = " + price + "\r\n");
 price += price * (decimal).25;
 richTextBox1.AppendText("New Price = " + price + "\r\n\r\n");
 }
 else if(rdr.Name== "title")
 richTextBox1.AppendText(rdr.ReadElementContentAsString() + "\r\n");
 }
 }
}

If the value cannot be converted to a decimal value, a FormatException is raised. This is a much more
efficient method than reading the value as a string and casting it to the proper data type.

Retrieving Attribute Data
As you play with the sample code, you might notice that when the nodes are read in, you don’t see any
attributes. This is because attributes are not considered part of a document’s structure. When you are on an
element node, you can check for the existence of attributes and optionally retrieve the attribute values.

For example, the HasAttributes property returns true if there are any attributes; otherwise, it returns
false. The AttributeCount property tells you how many attributes there are, and the GetAttribute
method gets an attribute by name or by index. If you want to iterate through the attributes one at a time,
you can use the MoveToFirstAttribute and MoveToNextAttribute methods.

The following example iterates through the attributes of the books.xml document:

private void button7_Click(object sender, EventArgs e)
{
 richTextBox1.Clear();
 XmlReader tr = XmlReader.Create("books.xml");
 //Read in node at a time
 while (tr.Read())
 {
 //check to see if it's a NodeType element
 if (tr.NodeType == XmlNodeType.Element)
 {
 //if it's an element, then let's look at the attributes.
 for (int i = 0; i < tr.AttributeCount; i++)
 {
 richTextBox1.AppendText(tr.GetAttribute(i) + "\r\n");
 }
 }
 }
}

c34.indd 1003 30-01-2014 20:40:09

1004 ❘ CHAPTER 34 Manipulating XMl

This time you are looking for element nodes. When you find one, you loop through all the attributes and,
using the GetAttribute method, load the value of the attribute into the list box. In the preceding example,
those attributes would be genre, publicationdate, and ISBN.

Validating with XmlReader
Sometimes it’s important to know not only that the document is well formed but also that it is valid. An
XmlReader can validate the XML according to an XSD schema by using the XmlReaderSettings class.
The XSD schema is added to the XmlSchemaSet that is exposed through the Schemas property. The
XsdValidate property must also be set to true; the default for this property is false.

The following example demonstrates the use of the XmlReaderSettings class. It is the XSD schema that
will be used to validate the books.xml document (code file books.xsd):

<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified"
 elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="bookstore">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" name="book">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="title" type="xs:string" />
 <xs:element name="author">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="name"
 type="xs:string" />
 <xs:element minOccurs="0" name="first-name"
 type="xs:string" />
 <xs:element minOccurs="0" name="last-name"
 type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="price" type="xs:decimal" />
 </xs:sequence>
 <xs:attribute name="genre" type="xs:string" use="required" />
 <!-–<xs:attribute name="publicationdate"
 type="xs:unsignedShort" use="required" />-–>
 <xs:attribute name="ISBN" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

This schema was generated from books.xml in Visual Studio. Notice that the publicationdate attribute
has been commented out. This will cause the validation to fail.

The following code uses the schema to validate the books.xml document: (Code file XMLReaderSample.sln)

private void button8_Click(object sender, EventArgs e)
{

 richTextBox1.Clear();
 XmlReaderSettings settings = new XmlReaderSettings();
 settings.Schemas.Add(null, "books.xsd");

c34.indd 1004 30-01-2014 20:40:09

Reading and Writing Streamed XML ❘ 1005

 settings.ValidationType = ValidationType.Schema;
 settings.ValidationEventHandler +=
 new System.Xml.Schema.ValidationEventHandler(settings_ValidationEventHandler);
 XmlReader rdr = XmlReader.Create("books.xml", settings);
 while (rdr.Read())
 {
 if (rdr.NodeType == XmlNodeType.Text)
 richTextBox1.AppendText(rdr.Value + "\r\n");
 }
}

After the XmlReaderSettings object setting is created, the schema books.xsd is added to the
XmlSchemaSet object. The Add method for XmlSchemaSet has four overloads. One takes an XmlSchema
object. The XmlSchema object can be used to create a schema on the fly, without having to create the schema
file on disk. Another overload takes another XmlSchemaSet object as a parameter. The third overload
takes two string values: the target namespace and the URL for the XSD document. If the target namespace
parameter is null, the targetNamespace of the schema will be used. The last overload takes the
targetNamespace as the first parameter as well, but it uses an XmlReader-based object to read in the
schema. The XmlSchemaSet preprocesses the schema before the document to be validated is processed.

After the schema is referenced, the XsdValidate property is set to one of the ValidationType enumeration
values. These valid values are DTD, Schema, or None. If the value selected is set to None, then no validation
will occur.

Because the XmlReader object is being used, if there is a validation problem with the document, it will not
be found until that attribute or element is read by the reader. When the validation failure does occur, an
XmlSchemaValidationException is raised. This exception can be handled in a catch block; however,
handling exceptions can make controlling the flow of the data difficult. To help with this, a
ValidationEvent is available in the XmlReaderSettings class. This way, the validation failure can be
handled without your having to use exception handling. The event is also raised by validation warnings,
which do not raise an exception. The ValidationEvent passes in a ValidationEventArgs object that
contains a Severity property. This property determines whether the event was raised by an error or a
warning. If the event was raised by an error, the exception that caused the event to be raised is passed in as
well. There is also a message property. In the example, the message is displayed in a MessageBox.

using the XmlWriter Class
The XmlWriter class allows you to write XML to a stream, a file, a StringBuilder, a TextWriter,
or another XmlWriter object. Like XmlTextReader, it does so in a forward-only, noncached manner.
XmlWriter is highly configurable, enabling you to specify such things as whether or not to indent content,
the amount to indent, what quote character to use in attribute values, and whether namespaces are
supported. Like the XmlReader, this configuration is done using an XmlWriterSettings object.

Here’s a simple example that shows how the XmlTextWriter class can be used:

private void button9_Click(object sender, EventArgs e)
{
 XmlWriterSettings settings = new XmlWriterSettings();
 settings.Indent = true;
 settings.NewLineOnAttributes = true;
 XmlWriter writer = XmlWriter.Create("newbook.xml", settings);
 writer.WriteStartDocument();
 //Start creating elements and attributes
 writer.WriteStartElement("book");
 writer.WriteAttributeString("genre", "Mystery");
 writer.WriteAttributeString("publicationdate", "2001");
 writer.WriteAttributeString("ISBN", "123456789");
 writer.WriteElementString("title", "Case of the Missing Cookie");

c34.indd 1005 30-01-2014 20:40:09

1006 ❘ CHAPTER 34 Manipulating XMl

 writer.WriteStartElement("author");
 writer.WriteElementString("name", "Cookie Monster");
 writer.WriteEndElement();
 writer.WriteElementString("price", "9.99");
 writer.WriteEndElement();
 writer.WriteEndDocument();
 //clean up
 writer.Flush();
 writer.Close();
}

Here, you are writing to a new XML file called newbook.xml, adding the data for a new book. Note that
XmlWriter overwrites an existing file with a new one. You will look at inserting a new element or node into
an existing document later in this chapter. You are instantiating the XmlWriter object by using the Create
static method. In this example, a string representing a filename is passed as a parameter, along with an
instance of an XmlWriterSetting class.

The XmlWriterSettings class has properties that control how the XML is generated. The
CheckedCharacters property is a Boolean that raises an exception if a character in the XML does not
conform to the W3C XML 1.0 recommendation. The Encoding class sets the encoding used for the XML
being generated; the default is Encoding.UTF8. The Indent property is a Boolean value that determines
whether elements should be indented. The IndentChars property is set to the character string that it is
used to indent. The default is two spaces. The NewLine property is used to determine the characters for line
breaks. In the preceding example, the NewLineOnAttribute is set to true. This will put each attribute in a
separate line, which can make the XML generated a little easier to read.

WriteStartDocument adds the document declaration. Now you start writing data. First is the book
element; next, you add the genre, publicationdate, and ISBN attributes. Then you write the title,
author, and price elements. Note that the author element has a child element name.

When you click the button, you produce the booknew.xml file, which looks like this:

<?xml version="1.0" encoding="utf-8"?>
<book
 genre="Mystery"
 publicationdate="2001"
 ISBN="123456789">
 <title>Case of the Missing Cookie</title>
 <author>
 <name>Cookie Monster</name>
 </author>
 <price>9.99</price>
</book>

The nesting of elements is controlled by paying attention to when you start and finish writing elements and
attributes. You can see this when you add the name child element to the authors element. Note how the
WriteStartElement and WriteEndElement method calls are arranged and how that arrangement produces
the nested elements in the output file.

Along with the WriteElementString and WriteAttributeString methods, there are several other
specialized write methods. WriteCData outputs a CData section (<!CDATA[.]]>), writing out the text it
takes as a parameter. WriteComment writes out a comment in proper XML format. WriteChars writes out
the contents of a char buffer. This works in a similar fashion to the ReadChars method shown earlier; they
both use the same type of parameters. WriteChars needs a buffer (an array of characters), the starting
position for writing (an integer), and the number of characters to write (an integer).

Reading and writing XML using the XmlReader- and XmlWriter-based classes are surprisingly flexible and
simple to do. Next, you’ll learn how the DOM is implemented in the System.Xml namespace through the
XmlDocument and XmlNode classes.

c34.indd 1006 30-01-2014 20:40:10

Using the DOM in .NET ❘ 1007

uSiNg THE dOM iN .NET
The DOM implementation in .NET supports the W3C DOM Level 1 and Core DOM Level 2 specifications. The
DOM is implemented through the XmlNode class, which is an abstract class that represents a node of an
XML document.

There is also an XmlNodeList class, which is an ordered list of nodes. This is a live list of nodes, and any
changes to any node are immediately reflected in the list. XmlNodeList supports indexed access or iterative
access.

The XmlNode and XmlNodeList classes make up the core of the DOM implementation in the .NET
Framework. The following table lists some of the classes that are based on XmlNode.

CLASS NAME dESCRiPTiON

XmlLinkedNode Returns the node immediately before or after the current node. Adds
NextSibling and PreviousSibling properties to XmlNode.

XmlDocument Represents the entire document. Implements the DOM Level 1 and Level 2
specifications.

XmlDocumentFragment Represents a fragment of the document tree

XmlAttribute Represents an attribute object of an XmlElement object

XmlEntity Represents a parsed or unparsed entity node

XmlNotation Contains a notation declared in a DTD or schema

The following table lists classes that extend XmlCharacterData.

CLASS NAME dESCRiPTiON

XmlCDataSection Represents a CData section of a document

XmlComment Represents an XML comment object

XmlSignificantWhitespace Represents a node with whitespace. Nodes are created only if the
PreserveWhiteSpace flag is true.

XmlWhitespace Represents whitespace in element content. Nodes are created only if the
PreserveWhiteSpace flag is true.

XmlText Represents the textual content of an element or attribute

The following table lists classes that extend the XmlLinkedNode.

CLASS NAME dESCRiPTiON

XmlDeclaration Represents the declaration node (e.g., <?xml version=‘1.0'.>)

XmlDocumentType Represents data relating to the document type declaration

XmlElement Represents an XML element object

XmlEntityReferenceNode Represents an entity reference node

XmlProcessingInstruction Contains an XML processing instruction

As you can see, .NET makes available a class to fit just about any XML type that you might encounter,
which means you end up with a very flexible and powerful tool set. This section can’t look at every class in
detail, but you will see several examples to give you an idea of what you can accomplish.

c34.indd 1007 30-01-2014 20:40:10

1008 ❘ CHAPTER 34 Manipulating XMl

using the Xmldocument Class
XmlDocument and its derived class XmlDataDocument (discussed later in this chapter) are the classes that
you will be using to represent the DOM in .NET. Unlike XmlReader and XmlWriter, XmlDocument provides
read and write capabilities as well as random access to the DOM tree. XmlDocument resembles the DOM
implementation in MSXML. If you have experience programming with MSXML, you will feel comfortable
using XmlDocument.

This example introduced in this section creates an XmlDocument object, loads a document from disk, and
loads a text box with data from the title elements. This is similar to one of the examples that you constructed
in the section, “Using the XmlReader Class.” The difference here is that you will be selecting the nodes you
want to work with, instead of going through the entire document as in the XmlReader-based example.

Here is the code to create an XmlDocument object. Note how simple it looks in comparison to the
XmlReader example (code file frmXMLDOM.cs):

private void button1_Click(object sender, System.EventArgs e)
{
 //doc is declared at the module level
 //change path to match your path structure
 _doc.Load("books.xml");
 //get only the nodes that we want.
 XmlNodeList nodeLst = _doc.GetElementsByTagName("title");
 //iterate through the XmlNodeList
 textBox1.Text = "";
 foreach (XmlNode node in nodeLst)
 {
 textBox1.Text += node.OuterXml + "\r\n";
 }
}

You also add the following declaration at the module level for the examples in this section:

private XmlDocument doc=new XmlDocument();

If this is all that you wanted to do, using the XmlReader would have been a much more efficient way to
load the text box, because you just go through the document once and then you are finished with it. This
is exactly the type of work that XmlReader was designed for. However, if you want to revisit a node, using
XmlDocument is a better way.

Here is an example of using the XPath syntax to retrieve a set of nodes from the document:

private void button2_Click(object sender, EventArgs e)
{
 //doc is declared at the module level
 //change path to match your path structure
 doc.Load("books.xml");
 //get only the nodes that we want.
 XmlNodeList nodeLst = _doc.SelectNodes("/bookstore/book/title");
 textBox1.Text = "";
 //iterate through the XmlNodeList
 foreach (XmlNode node in nodeLst)
 {
 textBox1.Text += node.OuterXml + "\r\n";
 }
}

SelectNodes returns a NodeList, or a collection of XmlNodes. The list contains only nodes that match the
XPath statement passed in as the parameter SelectNodes. In this example, all you want to see are the title
nodes. If you had made the call to SelectSingleNode, then you would have received a single node object
that contained the first node in the XmlDocument that matched the XPath criteria.

c34.indd 1008 30-01-2014 20:40:10

Using the DOM in .NET ❘ 1009

A quick comment regarding the SelectSingleNode method: this is an XPath implementation in the
XmlDocument class. Both the SelectSingleNode and SelectNodes methods are defined in XmlNode,
which XmlDocument is based on. SelectSingleNode returns an XmlNode, and SelectNodes returns an
XmlNodeList. However, the System.Xml.XPath namespace contains a richer XPath implementation, which
you will look at later in the chapter.

Inserting Nodes
Earlier, you looked at an example using XmlTextWriter that created a new document. The limitation was
that it would not insert a node into a current document. With the XmlDocument class, you can do just that.
Change the button1_Click event handler from the last example to the following:

private void button4_Click(object sender, System.EventArgs e)
{
 //change path to match your structure
 _doc.Load("books.xml");
 //create a new 'book' element
 XmlElement newBook = _doc.CreateElement("book");
 //set some attributes
 newBook.SetAttribute("genre", "Mystery");
 newBook.SetAttribute("publicationdate", "2001");
 newBook.SetAttribute("ISBN", "123456789");
 //create a new 'title' element
 XmlElement newTitle = _doc.CreateElement("title");
 newTitle.InnerText = "Case of the Missing Cookie";
 newBook.AppendChild(newTitle);
 //create new author element
 XmlElement newAuthor = _doc.CreateElement("author");
 newBook.AppendChild(newAuthor);
 //create new name element
 XmlElement newName = _doc.CreateElement("name");
 newName.InnerText = "Cookie Monster";
 newAuthor.AppendChild(newName);
 //create new price element
 XmlElement newPrice = _doc.CreateElement("price");
 newPrice.InnerText = "9.95";
 newBook.AppendChild(newPrice);
 //add to the current document
 _doc.DocumentElement.AppendChild(newBook);
 //write out the doc to disk
 XmlTextWriter tr = new XmlTextWriter("booksEdit.xml", null);
 tr.Formatting = Formatting.Indented;
 _doc.WriteContentTo(tr);
 tr.Close();
 //load listBox1 with all of the titles, including new one
 XmlNodeList nodeLst = _doc.GetElementsByTagName("title");
 textBox1.Text = "";
 foreach (XmlNode node in nodeLst)
 {
 textBox1.Text += node.OuterXml + "\r\n";
 }
}

After executing this code, you end up with the same functionality as in the previous example, but there
is one additional book in the text box, The Case of the Missing Cookie (a soon-to-be classic). If you look
closely at the code, you can see that this is actually a fairly simple process. The first thing that you do is
create a new book element:

XmlElement newBook = doc.CreateElement("book");

c34.indd 1009 30-01-2014 20:40:10

1010 ❘ CHAPTER 34 Manipulating XMl

CreateElement has three overloads that enable you to specify the following:

➤➤ The element name
➤➤ The name and namespace URI
➤➤ The prefix, localname, and namespace

Once the element is created, you need to add attributes:

newBook.SetAttribute("genre","Mystery");
newBook.SetAttribute("publicationdate","2001");
newBook.SetAttribute("ISBN","123456789");

Now that you have the attributes created, you need to add the other elements of a book:

XmlElement newTitle = doc.CreateElement("title");
newTitle.InnerText = "The Case of the Missing Cookie";
newBook.AppendChild(newTitle);

Again, you create a new XmlElement-based object (newTitle). Then you set the InnerText property to the
title of our new classic and append the element as a child to the book element. You repeat this for the rest
of the elements in this book element. Note that you add the name element as a child to the author element.
This will give you the proper nesting relationship, as in the other book elements.

Finally, you append the newBook element to the doc.DocumentElement node. This is the same level as all of
the other book elements. You have now updated an existing document with a new element.

The last thing to do is write the new XML document to disk. In this example, you create a new
XmlTextWriter and pass it to the WriteContentTo method. WriteContentTo and WriteTo both take
an XmlTextWriter as a parameter. WriteContentTo saves the current node and all of its children to the
XmlTextWriter, whereas WriteTo just saves the current node. Because doc is an XmlDocument-based
object, it represents the entire document, so that is what is saved. You could also use the Save method. It
will always save the entire document. Save has four overloads. You can specify a string with the filename
and path, a Stream-based object, a TextWriter-based object, or an XmlWriter-based object.

You also call the Close method on XmlTextWriter to flush the internal buffers and close the file.
Figure 34-1 shows what you get when you run this example. Notice the new entry at the bottom of the list.

Earlier in the chapter, you saw how to create a
 document using the XmlTextWriter class. You can
also use XmlDocument. Why would you use one in
preference to the other? If the data that you want
streamed to XML is available and ready to write, then
the XmlTextWriter class is the best choice. However,
if you need to build the XML document a little at a
time, inserting nodes into various places, then creating
the document with XmlDocument might be the better
choice. You can accomplish this by changing the line,

 doc.Load("books.xml");

to the following:

 //create the declaration section
 XmlDeclaration newDec = doc.CreateXmlDeclaration("1.0",null,null);
 doc.AppendChild(newDec);
 //create the new root element
 XmlElement newRoot = doc.CreateElement("newBookstore");
 doc.AppendChild(newRoot);

FiguRE 34-1

c34.indd 1010 30-01-2014 20:40:10

Using XPathNavigators ❘ 1011

First, you create a new XmlDeclaration. The parameters are the version (always 1.0 for now), the
 encoding, and the standalone flag. The encoding parameter should be set to a string that is part of
the System.Text.Encoding class if null is not used (null defaults to UTF-8). The standalone flag can be
either yes, no, or null. If it is null, the attribute is not used and will not be included in the document.

The next element that is created will become the DocumentElement. In this case, it is called newBookstore
so that you can see the difference. The rest of the code is the same as in the previous example and works in
the same way. This is booksEdit.xml, which is generated from the following code:

<?xml version="1.0"?>
<newBookstore>
 <book genre="Mystery" publicationdate="2001" ISBN="123456789">
 <title>The Case of the Missing Cookie</title>
 <author>
 <name>C. Monster</name>
 </author>
 <price>9.95</price>
 </book>
</newBookstore>

You should use the XmlDocument class when you want to have random access to the document. Use the
XmlReader-based classes when you want a streaming-type model instead. Remember that there is a cost
for the flexibility of the XmlNode-based XmlDocument class — memory requirements are higher and the
 performance of reading the document is not as good as when using XmlReader. There is another way to
traverse an XML document: the XPathNavigator.

uSiNg XPATHNAVigATORS
An XPathNavigator is used to select, iterate through, and sometimes edit data from an XML document.
An XPathNavigator can be created from an XmlDocument to allow editing capabilities or from an
XPathDocument for read-only use. Because the XPathDocument is read-only, it performs very well. Unlike the
XmlReader, the XPathNavigator is not a streaming model, so the document is read and parsed only once.

The XPathNavigaor is part of the System.Xml.XPath namespace. XPath is a query language used to select
specific nodes or elements from an XML document for processing.

The System.Xml.XPath Namespace
The System.Xml.XPath namespace is built for speed. It provides a read-only view of your XML documents,
so there are no editing capabilities. Classes in this namespace are built for fast iteration and selections on the
XML document in a cursory fashion.

The following table lists the key classes in System.Xml.XPath and gives a short description of the purpose
of each class.

CLASS NAME dESCRiPTiON

XPathDocument Provides a view of the entire XML document. Read-only.

XPathNavigator Provides the navigational capabilities to an XPathDocument

XPathNodeIterator Provides iteration capabilities to a node set

XPathExpression Represents a compiled XPath expression. Used by SelectNodes, SelectSingle
Nodes, Evaluate, and Matches.

XPathException An XPath exception class

c34.indd 1011 30-01-2014 20:40:11

1012 ❘ CHAPTER 34 Manipulating XMl

XPathDocument
XPathDocument does not offer any of the functionality of the XmlDocument class. Its sole purpose is to
create XPathNavigators. In fact, that is the only method available on the XPathDocument class (other than
those provided by Object).

You can create an XPathDocument in a number of different ways. You can pass in an XmlReader, a filename
of an XML document, or a Stream-based object to the constructor. This provides a great deal of flexibility.
For example, you can use the XmlValidatingReader to validate the XML and then use that same object to
create the XPathDocument.

XPathNavigator
XPathNavigator contains all the methods for moving and selecting elements that you need. The following
table lists some of the “move” methods defined in this class.

METHOd NAME dESCRiPTiON

MoveTo() Takes XPathNavigator as a parameter. Moves the current position to be
the same as that passed in to XPathNavigator.

MoveToAttribute() Moves to the named attribute. Takes the attribute name and namespace as
parameters.

MoveToFirstAttribute() Moves to the first attribute in the current element. Returns true if successful.

MoveToNextAttribute() Moves to the next attribute in the current element. Returns true if successful.

MoveToFirst() Moves to the first sibling in the current node. Returns true if successful.

MoveToLast() Moves to the last sibling in the current node. Returns true if successful.

MoveToNext() Moves to the next sibling in the current node. Returns true if successful.

MoveToPrevious() Moves to the previous sibling in the current node. Returns true if successful.

MoveToFirstChild() Moves to the first child of the current element. Returns true if successful.

MoveToId() Moves to the element with the ID supplied as a parameter. There must be a
schema for the document, and the data type for the element must be of type ID.

MoveToParent() Moves to the parent of the current node. Returns true if successful.

MoveToRoot() Moves to the root node of the document

To select a subset of the document, you can use one of the Select methods listed in the following table.

METHOd NAME dESCRiPTiON

Select() Selects a node set using an XPath expression

SelectAncestors() Selects all the ancestors of the current node based on an XPath expression

SelectChildren() Selects all the children of the current node based on an XPath expression

SelectDescendants() Selects all the descendants of the current node based on an XPath expression

SelectSingleNode() Selects one node based on an XPath expression

If the XPathNavigator was created from an XPathDocument, it is read-only. If it is created from an
XmlDocument, the XPathNavigator can be used to edit the document. This can be verified by checking the
CanEdit property. If it is true, you can use one of the Insert methods. InsertBefore and InsertAfter
will create a new node either before or after the current node, respectively. The source of the new node can
be an XmlReader or a string. Optionally, an XmlWriter can be returned and used to write the new node
information.

Strongly typed values can be read from the nodes by using the ValueAs properties. Notice that this is different
from XmlReader, which uses ReadValue methods.

c34.indd 1012 30-01-2014 20:40:11

Using XPathNavigators ❘ 1013

XPathNodeIterator
XPathNodeIterator can be thought of as the equivalent of a NodeList or a NodeSet in XPath. This object
has two properties and three methods:

➤➤ Clone() — Creates a new copy of itself
➤➤ Count — Specifies the number of nodes in the XPathNodeIterator object
➤➤ Current — Returns an XPathNavigator pointing to the current node
➤➤ CurrentPosition() — Returns an integer with the current position
➤➤ MoveNext() — Moves to the next node that matches the XPath expression that created the

XPathNodeIterator

The XPathNodeIterator is returned by the XPathNavigator Select methods. You use it to iterate over
the set of nodes returned by a Select method of the XPathNavigator. Using the MoveNext method of the
XPathNodeIterator does not change the location of the XPathNavigator that created it.

Using Classes from the XPath Namespace
The best way to see how these classes are used is to look at some code that iterates through the books.xml
document. This will enable you to see how the navigation works. In order to use the examples, first add a
reference to the System.Xml.Xsl and System.Xml.XPath namespaces:

using System.Xml.XPath;
using System.Xml.Xsl;

For this example, you use the file booksxpath.xml. It is similar to the books.xml file that you have been
using, except that a couple of extra books are added. Here’s the form code, which is part of the XmlSample
project (code file frmNavigator.cs):

private void button1_Click(object sender, EventArgs e)
{
 //modify to match your path structure
 XPathDocument doc = new XPathDocument("books.xml");
 //create the XPath navigator
 XPathNavigator nav = ((IXPathNavigable)doc).CreateNavigator();
 //create the XPathNodeIterator of book nodes
 // that have genre attribute value of novel
 XPathNodeIterator iter = nav.Select("/bookstore/book[@genre='novel']");
 textBox1.Text = "";
 while (iter.MoveNext())
 {
 XPathNodeIterator newIter =
 iter.Current.SelectDescendants(XPathNodeType.Element, false);
 while (newIter.MoveNext())
 {
 textBox1.Text += newIter.Current.Name + ": " +
 newIter.Current.Value + "\r\n";
 }
 }
}

The first thing you do in the button1_Click method is create the XPathDocument (called doc), passing in
the file and path string of the document you want opened. The next line creates the XPathNavigator:

XPathNavigator nav = doc.CreateNavigator();

In this example, you use the Select method to retrieve a set of nodes that all have novel as the value of the
genre attribute. You then use the MoveNext method to iterate through all the novels in the book list.

c34.indd 1013 30-01-2014 20:40:11

1014 ❘ CHAPTER 34 Manipulating XMl

To load the data into the list box, you use the XPathNodeIterator.Current property. This creates a new
XPathNavigator object based on just the node to which the XPathNodeIterator is pointing. In this case,
you are creating an XPathNavigator for one book node in the document.

The next loop takes this XPathNavigator and creates another XPathNodeIterator by issuing another type
of select method, the SelectDescendants method. This gives you an XPathNodeIterator of all of the
child nodes and children of the child nodes of the book node.

Then, you do another MoveNext loop on the XPathNodeIterator and load the text box with the element
names and element values. Figure 34-2 shows what the screen looks like after running the code. Note that
the novel is the only book listed.

What if you wanted to add up the cost of these books? XPathNavigator includes the Evaluate method
for just this reason. Evaluate has three overloads. The first one contains a string that is the XPath
 function call. The second overload uses the XPathExpression object as a parameter, and the third uses
XPathExpression and an XPathNodeIterator as parameters. The following code is similar to the previous
example, except that this time all the nodes in the document are iterated through. The Evaluate method
call at the end totals the cost of all the books:

private void button2_Click(object sender, EventArgs e)
{
 //modify to match your path structure
 XPathDocument doc = new XPathDocument("books.xml");
 //create the XPath navigator
 XPathNavigator nav = ((IXPathNavigable)doc).CreateNavigator();
 //create the XPathNodeIterator of book nodes
 XPathNodeIterator iter = nav.Select("/bookstore/book");
 textBox1.Text = "";
 while (iter.MoveNext())
 {
 XPathNodeIterator newIter =
 iter.Current.SelectDescendants(XPathNodeType.Element, false);
 while (newIter.MoveNext())
 {
 textBox1.Text += newIter.Current.Name + ": " + newIter.Current.Value +
 "\r\n";
 }
 }
 textBox1.Text += "=========================" + "\r\n";
 textBox1.Text += "Total Cost = " + nav.Evaluate("sum(/bookstore/book/price)");
}

This time, you see the total cost of the books evaluated in the
text box (see Figure 34-3).

Now let’s say that you need to add a node for discount. You can
use the InsertAfter method to do this fairly easily. Here is the
code:

private void button3_Click(object sender, EventArgs e)
{
 XmlDocument doc = new XmlDocument();
 doc.Load("books.xml");
 XPathNavigator nav = doc.CreateNavigator();

 if (nav.CanEdit)
 {
 XPathNodeIterator iter = nav.Select("/bookstore/book/price");
 while (iter.MoveNext())
 {

FiguRE 34-2

c34.indd 1014 30-01-2014 20:40:11

Using XPathNavigators ❘ 1015

 iter.Current.InsertAfter("<disc>5</disc>");
 }
 }
 doc.Save("newbooks.xml");
}

Here, you have added the <disc>5</disc> element after the price elements. First, all the price nodes are
selected. The XPathNodeIterator is used to iterate over the nodes, and the new node is inserted. The
modified document is saved with a new name, newbooks.xml. The new version looks as follows:

<?xml version="1.0"?>
<!-–This file represents a fragment of a book store inventory database-–>
<bookstore>
 <book genre="autobiography" publicationdate="1991" ISBN="1-861003-11-0">
 <title>The Autobiography of Benjamin Franklin</title>
 <author>
 <first-name>Benjamin</first-name>
 <last-name>Franklin</last-name>
 </author>
 <price>8.99</price>
 <disc>5</disc>
 </book>
 <book genre="novel" publicationdate="1967" ISBN="0-201-63361-2">
 <title>The Confidence Man</title>
 <author>
 <first-name>Herman</first-name>
 <last-name>Melville</last-name>
 </author>
 <price>11.99</price>
 <disc>5</disc>
 </book>
 <book genre="philosophy" publicationdate="1991" ISBN="1-861001-57-6">
 <title>The Gorgias</title>
 <author>
 <name>Plato</name>
 </author>
 <price>9.99</price>
 <disc>5</disc>
 </book>
</bookstore>

Nodes can be inserted before or after a selected node. Nodes
can also be changed and deleted. If you need to change a large
numbers of nodes, using the XPathNavigator created from an
XmlDocument may be your best choice.

The System.Xml.Xsl Namespace
The System.Xml.Xsl namespace contains the classes that the
.NET Framework uses to support XSL transforms. The contents
of this namespace are available to any store whose classes
implement the IXPathNavigable interface. In the .NET
Framework, that would currently include XmlDocument, XmlDataDocument, and XPathDocument. As with
XPath, use the store that makes the most sense. If you plan to create a custom store, such as one using the
file system, and you want to be able to do transforms, be sure to implement the IXPathNavigable interface
in your class.

XSLT is based on a streaming pull model. Therefore, you can chain several transforms together. You could
even apply a custom reader between transforms if needed. This provides a great deal of design flexibility.

FiguRE 34-3

c34.indd 1015 30-01-2014 20:40:12

1016 ❘ CHAPTER 34 Manipulating XMl

Transforming XML
The first example you will look at takes the books.xml document and transforms it into a simple HTML
document for display, using the XSLT file books.xsl. (This code is in the XSLSample01 folder.) You need to
add the following using statements:

using System.IO;
using System.Xml.Xsl;
using System.Xml.XPath;

Here is the code to perform the transform (code file XslSample01.sln):

private void button1_Click(object sender, EventArgs e)
{
 XslCompiledTransform trans = new XslCompiledTransform();
 trans.Load("books.xsl");
 trans.Transform("books.xml", "out.html");
 webBrowser1.Navigate(AppDomain.CurrentDomain.BaseDirectory + "out.html");
}

A transform doesn’t get any simpler than this. First, a new XmlCompiledTransform object is created. It
loads the books.xsl transform document and then performs the transform. In this example, a string with
the filename is used as the input. The output is out.html. This file is then loaded into the web browser
control used on the form. Instead of using the filename books.xml as the input document, you can use an
IXPathNavigable-based object. This would be any object that can create an XPathNavigator.

After the XmlCompiledTransform object is created and the stylesheet is loaded, the transform is performed.
The Transform method can take just about any combination of IXPathNavigable objects, Streams,
TextWriters, XmlWriters, and URIs as parameters. This gives you a great deal of flexibility for transform
flow. You can pass the output of one transform as the input to the next transform.

XsltArgumentLists and XmlResolver objects are also included in the parameter options. You will look at
the XsltArgumentList object in the next section. XmlResolver-based objects are used to resolve items that
are external to the current document. This could include schemas, credentials, or, of course, stylesheets.

The books.xsl document is a fairly straightforward stylesheet. It looks like this:

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
 <html>
 <head>
 <title>Price List</title>
 </head>
 <body>
 <table>
 <xsl:apply-templates/>
 </table>
 </body>
 </html>
 </xsl:template>
 <xsl:template match="bookstore">
 <xsl:apply-templates select="book"/>
 </xsl:template>
 <xsl:template match="book">
 <tr><td>
 <xsl:value-of select="title"/>
 </td><td>
 <xsl:value-of select="price"/>
 </td></tr>
 </xsl:template>
</xsl:stylesheet>

c34.indd 1016 30-01-2014 20:40:12

Using XPathNavigators ❘ 1017

Using XsltArgumentList

XsltArgumentList provides a way to bind an object with methods to a namespace. Once this is done, you
can invoke the methods during the transform. Here is an example:

private void button3_Click(object sender, EventArgs e)
{
 //new XPathDocument
 XPathDocument doc = new XPathDocument("books.xml");
 //new XslTransform
 XslCompiledTransform trans = new XslCompiledTransform();
 trans.Load("booksarg.xsl");
 //new XmlTextWriter since we are creating a new xml document
 XmlWriter xw = new XmlTextWriter("argSample.xml", null);
 //create the XslArgumentList and new BookUtils object
 XsltArgumentList argBook = new XsltArgumentList();
 BookUtils bu = new BookUtils();
 //this tells the argumentlist about BookUtils
 argBook.AddExtensionObject("urn:XslSample", bu);
 //new XPathNavigator
 XPathNavigator nav = doc.CreateNavigator();
 //do the transform
 trans.Transform(nav, argBook, xw);
 xw.Close();
 webBrowser1.Navigate(AppDomain.CurrentDomain.BaseDirectory + "argSample.xml");
}

The following is the code for the BooksUtils class, which is the class that will be called from the transform
(code file BookUtils.cs):

class BookUtils
{
 public BookUtils() { }

 public string ShowText()
 {
 return "This came from the ShowText method!";
 }
}

Here is the output of the transform, formatted for easier viewing (code file argSample.xml):

<books>
 <discbook>
 <booktitle>The Autobiography of Benjamin Franklin</booktitle>
 <showtext>This came from the ShowText method!</showtext>
 </discbook>
 <discbook>
 <booktitle>The Confidence Man</booktitle>
 <showtext>This came from the ShowText method!</showtext>
 </discbook>
 <discbook>
 <booktitle>The Gorgias</booktitle>
 <showtext>This came from the ShowText method!</showtext>
 </discbook>
 <discbook>
 <booktitle>The Great Cookie Caper</booktitle>
 <showtext>This came from the ShowText method!</showtext>
 </discbook>
 <discbook>

c34.indd 1017 30-01-2014 20:40:12

1018 ❘ CHAPTER 34 Manipulating XMl

 <booktitle>A Really Great Book</booktitle>
 <showtext>This came from the ShowText method!</showtext>
 </discbook>
</books>

In this example, you define a new class, BookUtils, which has one rather useless method that returns
the string This came from the ShowText method! In the button3_Click event, you create the
XPathDocument and XslTransform objects. In a previous example, you loaded the XML document
and the transform document directly into the XslCompiledTransform object. This time, you use the
XPathNavigator to load the documents.

Next, you need to write the following:

XsltArgumentList argBook=new XsltArgumentList();
BookUtils bu=new BookUtils();
argBook.AddExtensionObject("urn:XslSample",bu);

This is where you create the XsltArgumentList object. You create an instance of the BookUtils object,
and when you call the AddExtensionObject method, you pass in a namespace for your extension and the
object from which you want to be able to call methods. When you make the Transform call, you pass in
the XsltArgumentList (argBook), along with the XPathNavigator and the XmlWriter object you made.

The following is the booksarg.xsl document (based on books.xsl):

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:bookUtil="urn:XslSample">
 <xsl:output method="xml" indent="yes"/>
 <xsl:template match="/">
 <xsl:element name="books">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>
 <xsl:template match="bookstore">
 <xsl:apply-templates select="book"/>
 </xsl:template>
 <xsl:template match="book">
 <xsl:element name="discbook">
 <xsl:element name="booktitle">
 <xsl:value-of select="title"/>
 </xsl:element>
 <xsl:element name="showtext">
 <xsl:value-of select="bookUtil:ShowText()"/>
 </xsl:element>
 </xsl:element>
 </xsl:template>
</xsl:stylesheet>

The two important new lines are highlighted. First, you add the namespace that you created when you
added the object to XsltArgumentList. Then, when you want to make the method call, you use standard
XSLT namespace-prefixing syntax and make the method call.

Another way you could have accomplished this is with XSLT scripting. You can include C#, Visual
Basic, and JavaScript code in the stylesheet. The great thing about this is that unlike current non-.NET
 implementations, the script is compiled at the XslTransform.Load call; this way, you are executing already
compiled scripts.

Go ahead and modify the previous XSLT file in this way. First, you add the script to the stylesheet. You can
see the following changes in booksscript.xsl:

c34.indd 1018 30-01-2014 20:40:12

Using XPathNavigators ❘ 1019

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"
 xmlns:user="http://wrox.com">
 <msxsl:script language="C#" implements-prefix="user">
 string ShowText()
 {
 return "This came from the ShowText method!";
 }
 </msxsl:script>
 <xsl:output method="xml" indent="yes"/>
 <xsl:template match="/">
 <xsl:element name="books">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>
 <xsl:template match="bookstore">
 <xsl:apply-templates select="book"/>
 </xsl:template>
 <xsl:template match="book">
 <xsl:element name="discbook">
 <xsl:element name="booktitle">
 <xsl:value-of select="title"/>
 </xsl:element>
 <xsl:element name="showtext">
 <xsl:value-of select="user:ShowText()"/>
 </xsl:element>
 </xsl:element>
 </xsl:template>
</xsl:stylesheet>

As before, the changes are highlighted. You set the scripting namespace, add the code (which was copied
and pasted in from the Visual Studio .NET IDE), and make the call in the stylesheet. The output is the same
as that of the previous example.

Debugging XSLT
Visual Studio 2013 has the capability to debug transforms. You can actually step through a transform line
by line, inspect variables, access the call stack, and set breakpoints just as if you were debugging C# source
code. You can debug a transform in two ways: by just using the stylesheet and input XML file or by running
the application to which the transform belongs.

Debugging without the Application

When you first start creating the transforms, sometimes you don’t want to run through the entire
application. You may just want to get a stylesheet working. Visual Studio 2013 enables you to do this using
the XSLT editor.

Load the books.xsl stylesheet into the Visual Studio 2013 XSLT editor. Set a breakpoint on the following
line:

<xsl:value-of select="title"/>

Next, select the XML menu and then Debug XSLT. You will be asked for the input XML document. This is
the XML that you want transformed. Under the default configuration, the next thing you will see is shown
in Figure 34-4.

c34.indd 1019 30-01-2014 20:40:12

1020 ❘ CHAPTER 34 Manipulating XMl

Now that the transform has been paused, you can explore almost all the same debug information you can
when debugging source code. Notice that the debugger is displaying the XSLT, the input document with
the current element highlighted, and the output of the transform. Now you can step through the transform
line by line. If your XSLT had any scripting, you could also set breakpoints in the scripts and have the same
debugging experience.

Debugging with the Application

If you want to debug a transform and the application at the same time, then you have to make one small change
when you create the XslCompiledTransform object. The constructor has an overload that takes a Boolean as
a parameter. This parameter is enableDebug. The default is false, which means that even if you have a break-
point set in the transform, if you run the application code that calls the transform, it will not break. If you set the
parameter to true, the debug information for the XSLT is generated and the breakpoint will be hit. Therefore, in
the previous example, the line of code that created the XslCompiledTransform would change to this:

XslCompiledTransform trans = new XslCompiledTransform(true);

Now when the application is run in debug mode, even the XSLT will have debug information and you again
have the full Visual Studio debugging experience in your stylesheets.

To summarize, the key thing to keep in mind when performing transforms is to remember to use the proper
XML data store. Use XPathDocument if you do not need editing capabilities, XmlDataDocument if you are
getting your data from ADO.NET, and XmlDocument if you need to be able to edit the data. In each case,
you are dealing with the same process.

XML ANd AdO.NET
XML is the glue that binds ADO.NET to the rest of the world. ADO.NET was designed from the ground up
to work within the XML environment. XML is used to transfer the data to and from the data store and the
application or web page. Because ADO.NET uses XML as the transport in remoting scenarios, data can be

FiguRE 34-4

c34.indd 1020 30-01-2014 20:40:13

XML and ADO.NET ❘ 1021

exchanged with applications and systems that are not even aware of ADO.NET. Because of the importance of
XML in ADO.NET, some powerful features in ADO.NET allow the reading and writing of XML documents.
The System.Xml namespace also contains classes that can consume or utilize ADO.NET relational data.

The database used for the examples is from the AdventureWorksLT sample application. The sample
database can be downloaded from codeplex.com/SqlServerSamples. Note that there are several versions
of the AdventureWorks database. Most will work, but the LT version is simplified and more than adequate
for the purposes of this chapter.

Converting AdO.NET data to XML
The first example uses ADO.NET, streams, and XML to pull some data from the database into a DataSet,
load an XmlDocument object with the XML from the DataSet, and load the XML into a text box. To run
the next few examples, you need to add the following using statements:

using System.Data;
using System.Xml;
using System.Data.SqlClient;
using System.IO;

The connection string is defined as a module-level variable:

string _connectString = "Server=.\\SQLExpress;
 Database=adventureworkslt;Trusted_Connection=Yes";

The ADO.NET samples have a DataGrid object added to the forms. This enables you to see the data in the
ADO.NET DataSet because it is bound to the grid, as well as the data from the generated XML documents
that you load in the text box. The code for the first example follows. The first step in the examples is to
create the standard ADO.NET objects to produce a DataSet object. After the data set has been created, it is
bound to the grid (frmADOXML.cs):

private void button1_Click(object sender, EventArgs e)
{
 XmlDocument doc = new XmlDocument();
 DataSet ds = new DataSet("XMLProducts");
 SqlConnection conn = new SqlConnection(_connectString);
 SqlDataAdapter da = new SqlDataAdapter
 ("SELECT Name, StandardCost FROM SalesLT.Product", conn);
 //fill the dataset
 da.Fill(ds, "Products");
 //load data into grid
 dataGridView1.DataSource = ds.Tables["Products"];

After you create the ADO.NET objects and bind to the grid, you instantiate a MemoryStream object, a
StreamReader object, and a StreamWriter object. The StreamReader and StreamWriter objects will use
the MemoryStream to move the XML around:

 MemoryStream memStrm=new MemoryStream();
 StreamReader strmRead=new StreamReader(memStrm);
 StreamWriter strmWrite=new StreamWriter(memStrm);

You use a MemoryStream so that you don’t have to write anything to disk; however, you could have used any
object that was based on the Stream class, such as FileStream.

This next step is where the XML is generated. You call the WriteXml method from the DataSet class. This
method generates an XML document. WriteXml has two overloads: one takes a string with the file path

c34.indd 1021 30-01-2014 20:40:13

1022 ❘ CHAPTER 34 Manipulating XMl

and name, and the other adds a mode parameter. This mode is an enumeration, with the following possible
values:

➤➤ IgnoreSchema

➤➤ WriteSchema

➤➤ DiffGram

IgnoreSchema is used if you do not want WriteXml to write an inline schema at the start of your XML file;
use the WriteSchema parameter if you do want one. A DiffGram shows the data before and after an edit in
a DataSet.

//write the xml from the dataset to the memory stream
 ds.WriteXml(strmWrite, XmlWriteMode.IgnoreSchema);
 memStrm.Seek(0, SeekOrigin.Begin);
 //read from the memory stream to a XmlDocument object
 doc.Load(strmRead);
 //get all of the products elements
 XmlNodeList nodeLst = doc.SelectNodes("//XMLProducts/Products");
 textBox1.Text = "";

 foreach (XmlNode node in nodeLst)
 {
 textBox1.Text += node.InnerXml + "\r\n";
 }

Figure 34-5 shows the data in the list as well
as the bound data grid.

Had you wanted only the schema, you could
have called WriteXmlSchema instead of
WriteXml. This method has four overloads.
One takes a string, which is the path and file-
name of the location to which the XML docu-
ment is written. The second overload uses an
object that is based on the XmlWriter class.
The third
overload uses an object based on the
TextWriter class. The fourth overload is
derived from the Stream class.

In addition, if you wanted to persist the XML
document to disk, you would have used
 something like this:

string file = "c:\\test\\product.xml";
ds.WriteXml(file);

This would give you a well-formed XML
document on disk that could be read in by
another stream or by a DataSet or used
by another application or website. Because no XmlMode parameter is specified, this XmlDocument would
include the schema. In this example, you use the stream as a parameter to the XmlDocument.Load method.

You now have two views of the data, but more important, you can manipulate the data using two different
models. You can use the System.Data namespace to use the data, or you can use the System.Xml
namespace on the data. This enables very flexible designs in your applications, because now you are not
tied to programming with just one object model. This is the real power of the ADO.NET and System.Xml
 combination. You have multiple views of the same data and multiple ways to access the data.

FiguRE 34-5

c34.indd 1022 30-01-2014 20:40:13

XML and ADO.NET ❘ 1023

The following example simplifies the process by eliminating the three streams and using some of the ADO
capabilities built into the System.Xml namespace. You need to change the module-level line of code,

private XmlDocument doc = new XmlDocument();

to:

private XmlDataDocument doc;

You need this because you are now using the XmlDataDocument. Here is the code:

private void button3_Click(object sender, EventArgs e)
{
 XmlDataDocument doc;
 //create a dataset
 DataSet ds = new DataSet("XMLProducts");
 //connect to the northwind database and
 //select all of the rows from products table
 SqlConnection conn = new SqlConnection(_connectString);
 SqlDataAdapter da = new SqlDataAdapter
 ("SELECT Name, StandardCost FROM SalesLT.Product", conn);
 //fill the dataset
 da.Fill(ds, "Products");
 ds.WriteXml("sample.xml", XmlWriteMode.WriteSchema);
 //load data into grid
 dataGridView1.DataSource = ds.Tables[0];
 doc = new XmlDataDocument(ds);
 //get all of the products elements
 XmlNodeList nodeLst = doc.GetElementsByTagName("Products");
 textBox1.Text = "";
 foreach (XmlNode node in nodeLst)
 {
 textBox1.Text += node.InnerXml + "\r\n";
 }
}

As you can see, the code to load the DataSet object into the XML document has been simplified. Instead of
using the XmlDocument class, you are using the XmlDataDocument class. This class was built specifically for
using data with a DataSet object.

The XmlDataDocument is based on the XmlDocument class, so it has all the functionality of the
XmlDocument class. One of the main differences is the overloaded constructor of XmlDataDocument. Note
the line of code that instantiates XmlDataDocument (doc):

doc = new XmlDataDocument(ds);

It passes in the DataSet object that you created, ds, as a parameter. This creates the XML document
from the DataSet, and you do not have to use the Load method. In fact, if you instantiate a new
XmlDataDocument object without passing in a DataSet as the parameter, it will contain a DataSet with
the name NewDataSet that has no DataTables in the tables collection. There is also a DataSet property,
which you can set after an XmlDataDocument-based object is created.

Suppose that you add the following line of code after the DataSet.Fill call:

 ds.WriteXml("c:\\test\\sample.xml", XmlWriteMode.WriteSchema);

In this case, the following XML file, sample.xml, is produced in the folder c:\test:

<?xml version="1.0" standalone="yes"?>
<XMLProducts>
 <xs:schema id="XMLProducts" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

c34.indd 1023 30-01-2014 20:40:13

1024 ❘ CHAPTER 34 Manipulating XMl

 <xs:element name="XMLProducts" msdata:IsDataSet="true"
 msdata:UseCurrentLocale="true">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="Products">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string" minOccurs="0" />
 <xs:element name="StandardCost" type="xs:decimal" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 <Products>
 <Name>HL Road Frame-Black, 58</Name>
 <StandardCost>1059.3100</StandardCost>
 </Products>
 <Products>
 <Name>HL Road Frame-Red, 58</Name>
 <StandardCost>1059.3100</StandardCost>
 </Products>
 <Products>
 <Name>Sport-100 Helmet, Red</Name>
 <StandardCost>13.0863</StandardCost>
 </Products>
</XMLProducts>

Only the first couple of Products elements are shown. The actual XML file would contain all the products
in the Products table of the Northwind database.

Converting Relational Data
That looks simple enough for a single table, but what about relational data, such as multiple DataTables
and Relations in the DataSet? It all still works the same way. Here is an example using two related tables
(code file frmADOXML.cs):

private void button5_Click(object sender, EventArgs e)
{
 XmlDocument doc = new XmlDocument();
 DataSet ds = new DataSet("XMLProducts");
 SqlConnection conn = new SqlConnection(_connectString);
 SqlDataAdapter daProduct = new SqlDataAdapter
 ("SELECT Name, StandardCost, ProductCategoryID FROM SalesLT.Product", conn);
 SqlDataAdapter daCategory = new SqlDataAdapter
 ("SELECT ProductCategoryID, Name from SalesLT.ProductCategory", conn);
 //Fill DataSet from both SqlAdapters
 daProduct.Fill(ds, "Products");
 daCategory.Fill(ds, "Categories");
 //Add the relation
 ds.Relations.Add(ds.Tables["Categories"].Columns["ProductCategoryID"],
 ds.Tables["Products"].Columns["ProductCategoryID"]);
 //Write the Xml to a file so we can look at it later
 ds.WriteXml("Products.xml", XmlWriteMode.WriteSchema);
 //load data into grid
 dataGridView1.DataSource = ds.Tables[0];
 //create the XmlDataDocument
 doc = new XmlDataDocument(ds);
 //Select the productname elements and load them in the grid

c34.indd 1024 30-01-2014 20:40:13

XML and ADO.NET ❘ 1025

 XmlNodeList nodeLst = doc.SelectNodes("//XMLProducts/Products");
 textBox1.Text = "";
 foreach (XmlNode node in nodeLst)
 {
 textBox1.Text += node.InnerXml + "\r\n";
 }
}

In the sample you are creating, there are two DataTables in the XMLProducts DataSet: Products and
Categories. You create a new relation on the ProductCategoryID column in both tables.

By using the same WriteXml method call that you did in the previous example, you get the following XML
file (code file SuppProd.xml):

<?xml version="1.0" standalone="yes"?>
<XMLProducts>
 <xs:schema id="XMLProducts" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="XMLProducts" msdata:IsDataSet="true"
 msdata:UseCurrentLocale="true">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="Products">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string" minOccurs="0" />
 <xs:element name="StandardCost" type="xs:decimal" minOccurs="0" />
 <xs:element name="ProductCategoryID" type="xs:int" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Categories">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ProductCategoryID" type="xs:int" minOccurs="0" />
 <xs:element name="Name" type="xs:string" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 <xs:unique name="Constraint1">
 <xs:selector xpath=".//Categories" />
 <xs:field xpath="ProductCategoryID" />
 </xs:unique>
 <xs:keyref name="Relation1" refer="Constraint1">
 <xs:selector xpath=".//Products" />
 <xs:field xpath="ProductCategoryID" />
 </xs:keyref>
 </xs:element>
 </xs:schema>
 <Products>
 <Name>HL Road Frame-Black, 58</Name>
 <StandardCost>1059.3100</StandardCost>
 <ProductCategoryID>18</ProductCategoryID>
 </Products>
 <Products>
 <Name>HL Road Frame-Red, 58</Name>
 <StandardCost>1059.3100</StandardCost>
 <ProductCategoryID>18</ProductCategoryID>
 </Products>
</XMLProducts>

c34.indd 1025 30-01-2014 20:40:13

1026 ❘ CHAPTER 34 Manipulating XMl

The schema includes both DataTables that were in the DataSet. In addition, the data includes all the
data from both tables. For the sake of brevity, only the first Products and ProductCategory records
are shown here. As before, you could have saved just the schema or just the data by passing in the correct
XmlWriteMode parameter.

Converting XML to AdO.NET data
Suppose that you have an XML document that you would like to convert into an ADO.NET DataSet. You
might want to do this so that you could load the XML into a database, or perhaps bind the data to a .NET
data control such as a DataGrid. This way, you could actually use the XML document as your data store
and eliminate the overhead of the database altogether. If your data is reasonably small, this is an attractive
possibility. Here is some code to get you started:

private void button7_Click(object sender, EventArgs e)
{
 //create the DataSet
 DataSet ds = new DataSet("XMLProducts");

 //read in the xml document
 ds.ReadXml("Products.xml");

 //load data into grid
 dataGridView1.DataSource = ds.Tables[0];

 textBox1.Text = "";

 foreach (DataTable dt in ds.Tables)
 {
 textBox1.Text += dt.TableName + "\r\n";
 foreach (DataColumn col in dt.Columns)
 {
 textBox1.Text += "\t" + col.ColumnName + "-" + col.DataType.FullName +
 "\r\n";
 }
 }
}

It’s that easy. In this example, you instantiate a new DataSet object. From there, you call the ReadXml method
and you have XML in a DataTable in your DataSet. As with the WriteXml methods, ReadXml has an
XmlReadMode parameter. ReadXml has a few more options in the XmlReadMode, as shown in the following table.

VALuE dESCRiPTiON

Auto Sets the XmlReadMode to the most appropriate setting. If the data is in DiffGram for-
mat, DiffGram is selected. If a schema has already been read, or an inline schema is
detected, then ReadSchema is selected. If no schema has been assigned to the DataSet
and none is detected inline, then IgnoreSchema is selected.

DiffGram Reads in the DiffGram and applies the changes to the DataSet.

Fragment Reads documents that contain XDR schema fragments, such as the type created by SQL
Server.

IgnoreSchema Ignores any inline schema that may be found. Reads data into the current DataSet
schema. If data does not match DataSet schema, it is discarded.

InferSchema Ignores any inline schema. Creates the schema based on data in the XML document. If a
schema exists in the DataSet, that schema is used, and extended with additional columns
and tables if needed. An exception is thrown if a column exists but is of a different data type.

ReadSchema Reads the inline schema and loads the data. Will not overwrite a schema in the DataSet
but will throw an exception if a table in the inline schema already exists in the DataSet.

c34.indd 1026 30-01-2014 20:40:14

Serializing Objects in XML ❘ 1027

There is also a ReadXmlSchema method. This
reads in a standalone schema and creates the
tables, columns, and relations. You use this
if your schema is not inline with your data.
ReadXmlSchema has the same four overloads:
a string with filename and pathname, a
Stream-based object, a TextReader-based
object, and an XmlReader-based object.

To confirm that the data tables are being cre-
ated properly, you can iterate through the
tables and columns and display the names in
the text box, and then compare this to the
database to verify that all is well. The last
foreach loops perform this task. Figure 34-6
shows the output.

Looking at the list box, you can confirm that
in the data tables that were created, all the col-
umns have the correct names and data types.

Something else you might want to note is
that, because the previous two examples did
not transfer any data to or from a database,
no SqlDataAdapter or SqlConnection was
defined. This shows the real flexibility of both the System.Xml namespace and ADO.NET: you can look
at the same data in multiple formats. Whether you need to do a transform and show the data in HTML
format, or whether you need to bind the data to a grid, you can take the same data and, with just a method
call, have it in the required format.

SERiALiziNg ObjECTS iN XML
Serializing is the process of persisting an object to disk. Another part of your application, or even a separate
application, can deserialize the object, and it will be in the same state it was in prior to serialization. The
.NET Framework includes a couple of ways to do this.

This section looks at the System.Xml.Serialization namespace, which contains classes used to serialize
objects into XML documents or streams. This means that an object’s public properties and public fields are
converted into XML elements, attributes, or both.

The most important class in the System.Xml.Serialization namespace is XmlSerializer. To serialize an
object, you first need to instantiate an XmlSerializer object, specifying the type of the object to serialize. Then
you need to instantiate a stream/writer object to write the file to a stream/document. The final step is to call the
Serialize method on the XMLSerializer, passing it the stream/writer object and the object to serialize.

Data that can be serialized can be primitive types, fields, arrays, and embedded XML in the form of
XmlElement and XmlAttribute objects. To deserialize an object from an XML document, you reverse the
process in the previous example. You create a stream/reader and an XmlSerializer object and then pass
the stream/reader to the Deserialize method. This method returns the deserialized object, although it
needs to be cast to the correct type.

NOTE The XML serializer cannot convert private data, only public data, and it cannot
serialize object graphs. However, these are not serious limitations; by carefully designing
your classes, you should be able to easily avoid these issues. If you do need to be able
to serialize public and private data as well as an object graph containing many nested
objects, use the System.Runtime.Serialization.Formatters.Binary namespace.

FiguRE 34-6

c34.indd 1027 30-01-2014 20:40:14

1028 ❘ CHAPTER 34 Manipulating XMl

Some of the other tasks that you can accomplish with System.Xml.Serialization classes are as follows:

➤➤ Determine whether the data should be an attribute or element
➤➤ Specify the namespace
➤➤ Change the attribute or element name

The links between your object and the XML document are the custom C# attributes that annotate your
classes. These attributes are what are used to determine how the serializer writes out the data. The xsd.exe
tool, which is included with the .NET Framework, can help create these attributes for you. xsd.exe can do
the following:

➤➤ Generate an XML schema from an XDR schema file
➤➤ Generate an XML schema from an XML file
➤➤ Generate DataSet classes from an XSD schema file
➤➤ Generate runtime classes that have the custom attributes for XmlSerialization
➤➤ Generate an XSD file from classes that you have already developed
➤➤ Limit which elements are created in code
➤➤ Determine the programming language of the generated code (C#, Visual Basic .NET, or JScript .NET)
➤➤ Create schemas from types in compiled assemblies

See the .NET Framework documentation for details about command-line options for xsd.exe.

Despite these capabilities, you don’t have to use xsd.exe to create the classes for serialization. The process
is quite simple. The following is a simple application that serializes a class. At the beginning of the example,
you have very simple code that creates a new Product object, pd, and fills it with some data (code file
frmSerial.cs):

private void button1_Click(object sender, EventArgs e)
{
 //new products object
 Product pd = new Product();
 //set some properties
 pd.ProductID = 200;
 pd.CategoryID = 100;
 pd.Discontinued = false;
 pd.ProductName = "Serialize Objects";
 pd.QuantityPerUnit = "6";
 pd.ReorderLevel = 1;
 pd.SupplierID = 1;
 pd.UnitPrice = 1000;
 pd.UnitsInStock = 10;
 pd.UnitsOnOrder = 0;

}

The Serialize method of the XmlSerializer class actually performs the serialization, and it has nine
overloads. One of the parameters required is a stream to which the data should be written. It can be a
Stream, a TextWriter, or an XmlWriter parameter. In the example, you create a TextWriter-based object,
tr. Next, you create the XmlSerializer-based object, sr. The XmlSerializer needs to know type
information for the object that it is serializing, so you use the typeof keyword with the type that is to be
serialized. After the sr object is created, you call the Serialize method, passing in the tr (Stream-based
object) and the object that you want serialized, in this case pd. Be sure to close the stream when you are
finished with it:

 //new TextWriter and XmlSerializer
 TextWriter tr = new StreamWriter("serialprod.xml");
 XmlSerializer sr = new XmlSerializer(typeof(Product));

c34.indd 1028 30-01-2014 20:40:14

Serializing Objects in XML ❘ 1029

 //serialize object
 sr.Serialize(tr, pd);
 tr.Close();
 webBrowser1.Navigate(AppDomain.CurrentDomain.BaseDirectory + "serialprod.xml");

Next is the Product class, the class to be serialized. The only differences between this and any other
class that you may write are the C# attributes that have been added. The XmlRootAttribute and
XmlElementAttribute classes in the attributes inherit from the System.Attribute class. Don’t confuse
these attributes with the attributes in an XML document. A C# attribute is simply some declarative
information that can be retrieved at runtime by the CLR. In this case, the attributes describe how the object
should be serialized:

//class that will be serialized.
//attributes determine how object is serialized
[System.Xml.Serialization.XmlRootAttribute()]
 public class Product {
 private int prodId;
 private string prodName;
 private int suppId;
 private int catId;
 private string qtyPerUnit;
 private Decimal unitPrice;
 private short unitsInStock;
 private short unitsOnOrder;
 private short reorderLvl;
 private bool discont;
 private int disc;
 //added the Discount attribute
 [XmlAttributeAttribute(AttributeName="Discount")]
 public int Discount {
 get {return disc;}
 set {disc=value;}
 }
 [XmlElementAttribute()]
 public int ProductID {
 get {return prodId;}
 set {prodId=value;}
 }
 [XmlElementAttribute()]
 public string ProductName {
 get {return prodName;}
 set {prodName=value;}
 }
 [XmlElementAttribute()]
 public int SupplierID {
 get {return suppId;}
 set {suppId=value;}
 }
 [XmlElementAttribute()]
 public int CategoryID {
 get {return catId;}
 set {catId=value;}
 }
 [XmlElementAttribute()]
 public string QuantityPerUnit {
 get {return qtyPerUnit;}
 set {qtyPerUnit=value;}
 }
 [XmlElementAttribute()]
 public Decimal UnitPrice {
 get {return unitPrice;}

c34.indd 1029 30-01-2014 20:40:14

1030 ❘ CHAPTER 34 Manipulating XMl

 set {unitPrice=value;}
 }
 [XmlElementAttribute()]
 public short UnitsInStock {
 get {return unitsInStock;}
 set {unitsInStock=value;}
 }
 [XmlElementAttribute()]
 public short UnitsOnOrder {
 get {return unitsOnOrder;}
 set {unitsOnOrder=value;}
 }
 [XmlElementAttribute()]
 public short ReorderLevel {
 get {return reorderLvl;}
 set {reorderLvl=value;}
 }
 [XmlElementAttribute()]
 public bool Discontinued {
 get {return discont;}
 set {discont=value;}
 }
 public override string ToString()
 {
 StringBuilder outText = new StringBuilder();
 outText.Append(prodId);
 outText.Append(" ");
 outText.Append(prodName);
 outText.Append(" ");
 outText.Append(unitPrice);
 return outText.ToString();
 }
 }

The XmlRootAttribute invocation in the attribute above the Products class definition identifies
this class as a root element (in the XML file produced upon serialization). The attribute containing
XmlElementAttribute indicates that the member below the attribute represents an XML element.

Notice that the ToString method has been overridden. This provides the string that the message box will
show when you run the deserialize example.

If you look at the XML document created during serialization, you will see that it looks like any other XML
document that you might have created, which is the point of the exercise:

<?xml version="1.0" encoding="utf-8"?>
<Products xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 Discount="0">
 <ProductID>200</ProductID>
 <ProductName>Serialize Objects</ProductName>
 <SupplierID>1</SupplierID>
 <CategoryID>100</CategoryID>
 <QuantityPerUnit>6</QuantityPerUnit>
 <UnitPrice>1000</UnitPrice>
 <UnitsInStock>10</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>1</ReorderLevel>
 <Discontinued>false</Discontinued>
</Products>

There is nothing out of the ordinary here. You could use this any way that you would use an XML
document — transform it and display it as HTML, load it into a DataSet using ADO.NET, load an

c34.indd 1030 30-01-2014 20:40:15

Serializing Objects in XML ❘ 1031

XmlDocument with it, or, as shown in the example, deserialize it and create an object in the same state that
pd was in prior to serializing it (which is exactly what you’re doing with the second button).

Next, you add another button event handler to deserialize a new Products-based object, newPd. This time
you use a FileStream object to read in the XML:

private void button2_Click(object sender, EventArgs e)
 {
 //create a reference to product type
 Product newPd;
 //new filestream to open serialized object
 FileStream f = new FileStream("serialprod.xml", FileMode.Open);

Again, you create a new XmlSerializer, passing in the type information of Product. You can then make
the call to the Deserialize method. Note that you still need to do an explicit cast when you create the
newPd object. At this point, newPd is in exactly the same state that pd was:

//new serializer
 XmlSerializer newSr = new XmlSerializer(typeof(Product));
 //deserialize the object
 newPd = (Product)newSr.Deserialize(f);
 f.Close();
 MessageBox.Show(newPd.ToString());
 }

The message box should display the product ID, the product name, and the unit price of the object you just
deserialized. This results from the ToString override that you implemented in the Product class.

What about situations in which you have derived classes and possibly properties that return an array?
XmlSerializer has that covered as well. Here’s a slightly more complex example that deals with these
issues.

First, you define three new classes, Product, BookProduct (derived from Product), and Inventory (which
contains both of the other classes). Notice that again you have overridden the ToString method. This time
you’re just going to list the items in the Inventory class:

public class BookProduct: Product
{
 private string isbnNum;
 public BookProduct() {}
 public string ISBN
 {
 get {return isbnNum;}
 set {isbnNum=value;}
 }
}

public class Inventory
{
 private Product[] stuff;
 public Inventory() {}
 //need to have an attribute entry for each data type
 [XmlArrayItem("Prod",typeof(Product)),
 XmlArrayItem("Book",typeof(BookProduct))]
 public Product[] InventoryItems
 {
 get {return stuff;}
 set {stuff=value;}
 }
 public override string ToString()

c34.indd 1031 30-01-2014 20:40:15

1032 ❘ CHAPTER 34 Manipulating XMl

 {
 StringBuilder outText = new StringBuilder();
 foreach (Product prod in stuff)
 {
 outText.Append(prod.ProductName);
 outText.Append("\r\n");
 }
 return outText.ToString();
 }
}

The Inventory class is the one of interest here. To serialize this class, you need to insert an attribute
containing XmlArrayItem constructors for each type that can be added to the array. Note that
XmlArrayItem is the name of the .NET attribute represented by the XmlArrayItemAttribute class.

The first parameter supplied to these constructors is what you would like the element name to be in the
XML document that is created during serialization. If you omit the ElementName parameter, the elements
will be given the same name as the object type (Product and BookProduct in this case). The second
parameter that must be specified is the type of the object.

There is also an XmlArrayAttribute class that you would use if the property were returning an
array of objects or primitive types. Because you are returning different types in the array, you use
XmlArrayItemAttribute, which enables the higher level of control.

In the button4_Click event handler, you create a new Product object and a new BookProduct object
(newProd and newBook). You add data to the various properties of each object, and add the objects to a
Product array. You next create a new Inventory object and pass in the array as a parameter. You can then
serialize the Inventory object to re-create it later:

private void button4_Click(object sender, EventArgs e)
{
 //create the XmlAttributes object
 XmlAttributes attrs = new XmlAttributes();
 //add the types of the objects that will be serialized
 attrs.XmlElements.Add(new XmlElementAttribute("Book", typeof(BookProduct)));
 attrs.XmlElements.Add(new XmlElementAttribute("Product", typeof(Product)));
 XmlAttributeOverrides attrOver = new XmlAttributeOverrides();
 //add to the attributes collection
 attrOver.Add(typeof(Inventory), "InventoryItems", attrs);
 //create the Product and Book objects
 Product newProd = new Product();
 BookProduct newBook = new BookProduct();
 newProd.ProductID = 100;
 newProd.ProductName = "Product Thing";
 newProd.SupplierID = 10;
 newBook.ProductID = 101;
 newBook.ProductName = "How to Use Your New Product Thing";
 newBook.SupplierID = 10;
 newBook.ISBN = "123456789";
 Product[] addProd ={ newProd, newBook };
 Inventory inv = new Inventory();
 inv.InventoryItems = addProd;
 TextWriter tr = new StreamWriter("inventory.xml");
 XmlSerializer sr = new XmlSerializer(typeof(Inventory), attrOver);
 sr.Serialize(tr, inv);
 tr.Close();
 webBrowser1.Navigate(AppDomain.CurrentDomain.BaseDirectory + "inventory.xml");
}

The XML document looks like this:

c34.indd 1032 30-01-2014 20:40:15

Serializing Objects in XML ❘ 1033

<?xml version="1.0" encoding="utf-8"?>
<Inventory xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Product Discount="0">
 <ProductID>100</ProductID>
 <ProductName>Product Thing</ProductName>
 <SupplierID>10</SupplierID>
 <CategoryID>0</CategoryID>
 <UnitPrice>0</UnitPrice>
 <UnitsInStock>0</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>0</ReorderLevel>
 <Discontinued>false</Discontinued>
 </Product>
 <Book Discount="0">
 <ProductID>101</ProductID>
 <ProductName>How to Use Your New Product Thing</ProductName>
 <SupplierID>10</SupplierID>
 <CategoryID>0</CategoryID>
 <UnitPrice>0</UnitPrice>
 <UnitsInStock>0</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>0</ReorderLevel>
 <Discontinued>false</Discontinued>
 <ISBN>123456789</ISBN>
 </Book>
</Inventory>

The button2_Click event handler implements deserialization of the Inventory object. Note that you
iterate through the array in the newly created newInv object to show that it is the same data:

private void button2_Click(object sender, System.EventArgs e)
{
 Inventory newInv;
 FileStream f=new FileStream("order.xml",FileMode.Open);
 XmlSerializer newSr=new XmlSerializer(typeof(Inventory));
 newInv=(Inventory)newSr.Deserialize(f);
 foreach(Product prod in newInv.InventoryItems)
 listBox1.Items.Add(prod.ProductName);
 f.Close();
}

Serialization without Source Code Access
Well, this all works great, but what if you don’t have access to the source code for the types that are being
serialized? You can’t add the attribute if you don’t have the source. There is another way: You can use the
XmlAttributes class and the XmlAttributeOverrides class. Together these classes enable you to
accomplish exactly what you just did, but without adding the attributes. This section demonstrates how
this works.

For this example, imagine that the Inventory, Product, and derived BookProduct classes are in a separate
DLL and that you do not have the source. The Product and BookProduct classes are the same as in the
previous example, but note that now no attributes are added to the Inventory class:

public class Inventory
{
 private Product[] stuff;
 public Inventory() {}
 public Product[] InventoryItems
 {

c34.indd 1033 30-01-2014 20:40:15

1034 ❘ CHAPTER 34 Manipulating XMl

 get {return stuff;}
 set {stuff=value;}
 }
}

Next, you deal with the serialization in the button1_Click event handler:

private void button1_Click(object sender, System.EventArgs e)
{

The first step in the serialization process is to create an XmlAttributes object and an
XmlElementAttribute object for each data type that you will be overriding:

 XmlAttributes attrs=new XmlAttributes();
 attrs.XmlElements.Add(new XmlElementAttribute("Book",typeof(BookProduct)));
 attrs.XmlElements.Add(new XmlElementAttribute("Product",typeof(Product)));

Here you can see that you are adding new XmlElementAttribute objects to the XmlElements collection
of the XmlAttributes class. The XmlAttributes class has properties that correspond to the attributes
that can be applied; XmlArray and XmlArrayItems, which you looked at in the previous example, are just
a couple of these. You now have an XmlAttributes object with two XmlElementAttribute-based objects
added to the XmlElements collection.

Now you create an XmlAttributeOverrides object:

 XmlAttributeOverrides attrOver=new XmlAttributeOverrides();
 attrOver.Add(typeof(Inventory),"InventoryItems",attrs);

The Add method of this class has two overloads. The first one takes the type information of the object to
override and the XmlAttributes object that you created earlier. The other overload, which is the one you
are using, also takes a string value that is the member in the overridden object. In this case, you want to
override the InventoryItems member in the Inventory class.

When you create the XmlSerializer object, you add the XmlAttributeOverrides object as a parameter.
Now the XmlSerializer knows which types you want to override and what you need to return for those
types:

//create the Product and Book objects
 Product newProd=new Product();
 BookProduct newBook=new BookProduct();
 newProd.ProductID=100;
 newProd.ProductName="Product Thing";
 newProd.SupplierID=10;
 newBook.ProductID=101;
 newBook.ProductName="How to Use Your New Product Thing";
 newBook.SupplierID=10;
 newBook.ISBN="123456789";
 Product[] addProd={newProd,newBook};

 Inventory inv=new Inventory();
 inv.InventoryItems=addProd;
 TextWriter tr=new StreamWriter("inventory.xml");
 XmlSerializer sr=new XmlSerializer(typeof(Inventory),attrOver);
 sr.Serialize(tr,inv);
 tr.Close();
}

If you execute the Serialize method, you get the following XML output:

c34.indd 1034 30-01-2014 20:40:15

Serializing Objects in XML ❘ 1035

<?xml version="1.0" encoding="utf-8"?>
<Inventory xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Product Discount="0">
 <ProductID>100</ProductID>
 <ProductName>Product Thing</ProductName>
 <SupplierID>10</SupplierID>
 <CategoryID>0</CategoryID>
 <UnitPrice>0</UnitPrice>
 <UnitsInStock>0</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>0</ReorderLevel>
 <Discontinued>false</Discontinued>
 </Product>
 <Book Discount="0">
 <ProductID>101</ProductID>
 <ProductName>How to Use Your New Product Thing</ProductName>
 <SupplierID>10</SupplierID>
 <CategoryID>0</CategoryID>
 <UnitPrice>0</UnitPrice>
 <UnitsInStock>0</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>0</ReorderLevel>
 <Discontinued>false</Discontinued>
 <ISBN>123456789</ISBN>
 </Book>
</Inventory>

As you can see, you get the same XML you did with the earlier example. To deserialize this object
and re-create the Inventory-based object that you started out with, you need to create all the same
XmlAttributes, XmlElementAttribute, and XmlAttributeOverrides objects that you created when you
serialized the object. After you do that, you can read in the XML and re-create the Inventory object just as
you did before. Here is the code to deserialize the Inventory object:

private void button2_Click(object sender, System.EventArgs e)
{
 //create the new XmlAttributes collection
 XmlAttributes attrs=new XmlAttributes();
 //add the type information to the elements collection
 attrs.XmlElements.Add(new XmlElementAttribute("Book",typeof(BookProduct)));
 attrs.XmlElements.Add(new XmlElementAttribute("Product",typeof(Product)));

 XmlAttributeOverrides attrOver=new XmlAttributeOverrides();
 //add to the Attributes collection
 attrOver.Add(typeof(Inventory),"InventoryItems",attrs);

 //need a new Inventory object to deserialize to
 Inventory newInv;

 //deserialize and load data into the listbox from deserialized object
 FileStream f=new FileStream(".\\.\\.\\inventory.xml",FileMode.Open);
 XmlSerializer newSr=new XmlSerializer(typeof(Inventory),attrOver);

 newInv=(Inventory)newSr.Deserialize(f);
 if(newInv!=null)
 {
 foreach(Product prod in newInv.InventoryItems)
 {
 listBox1.Items.Add(prod.ProductName);
 }
 }
 f.Close();
}

c34.indd 1035 30-01-2014 20:40:15

1036 ❘ CHAPTER 34 Manipulating XMl

Note that the first few lines of code are identical to the code you used to serialize the object.

The System.Xml.XmlSerialization namespace provides a very powerful toolset for serializing objects to
XML. By serializing and deserializing objects to XML instead of to binary format, you have the option
to do something else with this XML, greatly adding to the flexibility of your designs.

LiNQ TO XML ANd .NET
With the introduction of LINQ to the .NET Framework, the focus was on easy access to the data that you
want to use in your applications. One of the main data stores in the application space is XML, so it was a
natural evolution to create the LINQ to XML implementation.

Prior to the LINQ to XML release, working with XML using System.Xml was not an easy task. With the
inclusion of System.Xml.Linq, you now have a set of capabilities that make the process of working with
XML in your code much easier.

Many developers previously turned to the XmlDocument object to create XML within their application code.
This object enables you to create XML documents that allow you to append elements, attributes, and other
items in a hierarchical fashion. With LINQ to XML and the inclusion of the System.Xml.Linq namespace,
you have the tools that make the creation of XML documents a much simpler process.

WORkiNg WiTH diFFERENT XML ObjECTS
In addition to the LINQ querying ability included in .NET 4.5, the .NET Framework includes XML objects
that work so well they can stand on their own outside of LINQ. You can use these objects in place of
working directly with the DOM. The System.Xml.Linq namespace includes a series of LINQ to XML
helper objects that make working with an XML document in memory much easier.

The following sections describe the objects that are available within this namespace.

NOTE Many of the examples in this chapter use a file called Hamlet.xml, which you
can find at http://metalab.unc.edu/bosak/xml/eg/shaks200.zip. It includes all
of Shakespeare’s plays as XML files.

Xdocument
The XDocument is a replacement for the XmlDocument object from the pre-.NET 3.5 world; it is easier to
work with in dealing with XML documents. The XDocument object works with the other new objects in this
space, such as the XNamespace, XComment, XElement, and XAttribute objects.

One of the more important members of the XDocument object is the Load method:

XDocument xdoc = XDocument.Load(@"C:\Hamlet.xml");

This operation loads the Hamlet.xml contents as an in-memory XDocument object. You can also pass a
TextReader or XmlReader object into the Load method. From here, you can programmatically work with
the XML (code file ConsoleApplication1.sln):

XDocument xdoc = XDocument.Load(@"C:\Hamlet.xml");
Console.WriteLine(xdoc.Root.Name.ToString());
Console.WriteLine(xdoc.Root.HasAttributes.ToString());

This produces the following results:

c34.indd 1036 30-01-2014 20:40:15

Working with Different XML Objects ❘ 1037

PLAY
False

Another important member to be aware of is the Save method, which, like the Load method, allows you to
save to a physical disk location or to a TextWriter or XmlWriter object:

XDocument xdoc = XDocument.Load(@"C:\Hamlet.xml");

xdoc.Save(@"C:\CopyOfHamlet.xml");

XElement
One object that you will work with frequently is the XElement object. With XElement objects, you can
easily create single-element objects that are XML documents themselves, as well as fragments of XML.
For instance, here is an example of writing an XML element with a corresponding value:

XElement xe = new XElement("Company", "Lipper");
Console.WriteLine(xe.ToString());

In the creation of a XElement object, you can define the name of the element as well as the value used in the
element. In this case, the name of the element will be <Company>, and the value of the <Company> element
will be Lipper. Running this in a console application with a System.Xml.Linq reference produces the
following result:

<Company>Lipper</Company>

You can create an even more complete XML document using multiple XElement objects, as shown in the
following example:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main()
 {
 XElement xe = new XElement("Company",
 new XElement("CompanyName", "Lipper"),
 new XElement("CompanyAddress",
 new XElement("Address", "123 Main Street"),
 new XElement("City", "St. Louis"),
 new XElement("State", "MO"),
 new XElement("Country", "USA")));

 Console.WriteLine(xe.ToString());

 Console.ReadLine();
 }
 }
}

Running this application produces the results shown in Figure 34-7.

c34.indd 1037 30-01-2014 20:40:16

1038 ❘ CHAPTER 34 Manipulating XMl

XNamespace
The XNamespace is an object that represents an XML namespace, and it is easily applied to elements within
your document. For instance, you can take the previous example and easily apply a namespace to the root
element:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main()
 {
 XNamespace ns = "http://www.lipperweb.com/ns/1";

 XElement xe = new XElement(ns + "Company",
 new XElement("CompanyName", "Lipper"),
 new XElement("CompanyAddress",
 new XElement("Address", "123 Main Street"),
 new XElement("City", "St. Louis"),
 new XElement("State", "MO"),
 new XElement("Country", "USA")));

 Console.WriteLine(xe.ToString());

 Console.ReadLine();
 }
 }
}

In this case, an XNamespace object is created by assigning it a value of http://www.lipperweb.com/ns/1.
From there, it is actually used in the root element <Company> with the instantiation of the XElement
object:

XElement xe = new XElement(ns + "Company", // .

FiguRE 34-7

c34.indd 1038 30-01-2014 20:40:16

Working with Different XML Objects ❘ 1039

This produces the results shown in Figure 34-8.

FiguRE 34-8

In addition to dealing with only the root element, you can also apply namespaces to all your elements, as
shown in the following example:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main()
 {
 XNamespace ns1 = "http://www.lipperweb.com/ns/root";
 XNamespace ns2 = "http://www.lipperweb.com/ns/sub";

 XElement xe = new XElement(ns1 + "Company",
 new XElement(ns2 + "CompanyName", "Lipper"),
 new XElement(ns2 + "CompanyAddress",
 new XElement(ns2 + "Address", "123 Main Street"),
 new XElement(ns2 + "City", "St. Louis"),
 new XElement(ns2 + "State", "MO"),
 new XElement(ns2 + "Country", "USA")));

 Console.WriteLine(xe.ToString());

 Console.ReadLine();
 }
 }
}

This produces the results shown in Figure 34-9.

c34.indd 1039 30-01-2014 20:40:16

1040 ❘ CHAPTER 34 Manipulating XMl

In this case, you can see that the subnamespace was applied to everything you specified except for the
<Address>, <City>, <State>, and the <Country> elements because they inherit from their parent,
<CompanyAddress>, which has the namespace declaration.

XComment
The XComment object enables you to easily add XML comments to your XML documents. The following
example shows the addition of a comment to the top of the document:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main(string[] args)
 {
 XDocument xdoc = new XDocument();

 XComment xc = new XComment("Here is a comment.");
 xdoc.Add(xc);

 XElement xe = new XElement("Company",
 new XElement("CompanyName", "Lipper"),
 new XElement("CompanyAddress",
 new XComment("Here is another comment."),
 new XElement("Address", "123 Main Street"),
 new XElement("City", "St. Louis"),
 new XElement("State", "MO"),
 new XElement("Country", "USA")));
 xdoc.Add(xe);

 Console.WriteLine(xdoc.ToString());

 Console.ReadLine();
 }
 }
}

FiguRE 34-9

c34.indd 1040 30-01-2014 20:40:16

Working with Different XML Objects ❘ 1041

Here, an XDocument object that contains two XML comments is written to the console, one at the top of the
document and another within the <CompanyAddress> element. The output of this is presented in
Figure 34-10.

FiguRE 34-10

XAttribute
In addition to elements, another important factor of XML is attributes. Adding and working with attributes
is done through the use of the XAttribute object. The following example shows the addition of an attribute
to the root <Company> node:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main()
 {
 XElement xe = new XElement("Company",
 new XAttribute("MyAttribute", "MyAttributeValue"),
 new XElement("CompanyName", "Lipper"),
 new XElement("CompanyAddress",
 new XElement("Address", "123 Main Street"),
 new XElement("City", "St. Louis"),
 new XElement("State", "MO"),
 new XElement("Country", "USA")));

 Console.WriteLine(xe.ToString());

 Console.ReadLine();
 }
 }
}

Here, the attribute MyAttribute with a value of MyAttributeValue is added to the root element of the
XML document, producing the results shown in Figure 34-11.

c34.indd 1041 30-01-2014 20:40:17

1042 ❘ CHAPTER 34 Manipulating XMl

uSiNg LiNQ TO QuERy XML dOCuMENTS
Now that you can get your XML documents into an XDocument object and work with the various parts of
this document, you can also use LINQ to XML to query your XML documents and work with the results.

Querying Static XML documents
You will notice that querying a static XML document using LINQ to XML takes almost no work at all. The
following example makes use of the hamlet.xml file and queries to get all the players (actors) who appear in
the play. Each of these players is defined in the XML document with the <PERSONA> element:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main(string[] args)
 {
 XDocument xdoc = XDocument.Load(@"C:\hamlet.xml");

 var query = from people in xdoc.Descendants("PERSONA")
 select people.Value;

 Console.WriteLine("{0} Players Found", query.Count());
 Console.WriteLine();

 foreach (var item in query)
 {
 Console.WriteLine(item);
 }

 Console.ReadLine();
 }
 }
}

In this case, an XDocument object loads up a physical XML file (hamlet.xml) and then performs a LINQ
query over the contents of the document:

FiguRE 34-11

c34.indd 1042 30-01-2014 20:40:17

Using LINQ to Query XML Documents ❘ 1043

var query = from people in xdoc.Descendants("PERSONA")
 select people.Value;

The people object is a representation of all the <PERSONA> elements found in the document. Then the
select statement gets the values of these elements. From there, a Console.WriteLine method is used
to write out a count of all the players found using query.Count. Next, each of the items is written to the
screen in a foreach loop. The results you should see are presented here:

26 Players Found

CLAUDIUS, king of Denmark.
HAMLET, son to the late king, and nephew to the present king.
POLONIUS, lord chamberlain.
HORATIO, friend to Hamlet.
LAERTES, son to Polonius.
LUCIANUS, nephew to the king.
VOLTIMAND
CORNELIUS
ROSENCRANTZ
GUILDENSTERN
OSRIC
A Gentleman
A Priest.
MARCELLUS
BERNARDO
FRANCISCO, a soldier.
REYNALDO, servant to Polonius.
Players.
Two Clowns, grave-diggers.
FORTINBRAS, prince of Norway.
A Captain.
English Ambassadors.
GERTRUDE, queen of Denmark, and mother to Hamlet.
OPHELIA, daughter to Polonius.
Lords, Ladies, Officers, Soldiers, Sailors, Messengers, and other Attendants.
Ghost of Hamlet's Father.

Querying dynamic XML documents
A lot of dynamic XML documents are available online these days. You will find blog feeds, podcast feeds,
and more that provide an XML document by sending a request to a specific URL endpoint. These feeds can
be viewed either in the browser, through an RSS-aggregator, or as pure XML. This example demonstrates
how to work with an RSS feed directly from your code:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main()
 {
 XDocument xdoc =
 XDocument.Load(@"http://geekswithblogs.net/evjen/Rss.aspx");

 var query = from rssFeed in xdoc.Descendants("channel")
 select new
 {

c34.indd 1043 30-01-2014 20:40:17

1044 ❘ CHAPTER 34 Manipulating XMl

 Title = rssFeed.Element("title").Value,
 Description = rssFeed.Element("description").Value,
 Link = rssFeed.Element("link").Value,
 };

 foreach (var item in query)
 {
 Console.WriteLine("TITLE: " + item.Title);
 Console.WriteLine("DESCRIPTION: " + item.Description);
 Console.WriteLine("LINK: " + item.Link);
 }

 Console.WriteLine();

 var queryPosts = from myPosts in xdoc.Descendants("item")
 select new
 {
 Title = myPosts.Element("title").Value,
 Published =
 DateTime.Parse(
 myPosts.Element("pubDate").Value),
 Description =
 myPosts.Element("description").Value,
 Url = myPosts.Element("link").Value,
 Comments = myPosts.Element("comments").Value
 };

 foreach (var item in queryPosts)
 {
 Console.WriteLine(item.Title);
 }

 Console.ReadLine();
 }
 }
}

Here, you can see that the Load method of the XDocument object points to a URL where the XML is
retrieved. The first query pulls out all the main sub-elements of the <channel> element in the feed and
creates new objects called Title, Description, and Link to get the values of these sub-elements. From
there, a foreach statement is run to iterate through all the items found in the query.

The results are as follows:

TITLE: Bill Evjen's Blog
DESCRIPTION: Code, Life and Community
LINK: http://geekswithblogs.net/evjen/Default.aspx

The second query works through all the <item> elements and the various sub-elements it finds (these are
all the blog entries found in the blog). Although a lot of the items found are rolled up into properties, in the
foreach loop, only the Title property is used. You will see something similar to the following results from
this query:

AJAX Control Toolkit Controls Grayed Out-HOW TO FIX
Welcome .NET 4.5!
Visual Studio
IIS 7.0 Rocks the House!
Word Issue-Couldn't Select Text
Microsoft Releases XML Schema Designer CTP1
Silverlight Book

c34.indd 1044 30-01-2014 20:40:17

More Query Techniques for XML Documents ❘ 1045

Microsoft Tafiti as a beta
ReSharper on Visual Studio
Windows Vista Updates for Performance and Reliability Issues
First Review of Professional XML
Go to MIX07 for free!
Microsoft Surface and the Future of Home Computing?
Alas my friends-I'm *not* TechEd bound

MORE QuERy TECHNiQuES FOR XML dOCuMENTS
If you have been working with the XML document hamlet.xml, you will notice that it is quite large. So far,
you’ve seen a couple of ways to query into the XML document in this chapter; this section takes a look at
reading and writing to the XML document.

Reading from an XML document
Earlier you saw just how easy it is to query into an XML document using the LINQ query statements, as
shown here:

var query = from people in xdoc.Descendants("PERSONA")
 select people.Value;

This query returns all the players found in the document. Using the Element method of the XDocument
object, you can also access specific values of the XML document that you are working with. For instance,
the following XML fragment shows you how the title is represented in the hamlet.xml document:

<?xml version="1.0"?>

<PLAY>
 <TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE>

 <!-XML removed for clarity->

</PLAY>

As you can see, the <TITLE> element is a nested element of the <PLAY> element. You can easily get the title
by using the following bit of code in your console application:

XDocument xdoc = XDocument.Load(@"C:\hamlet.xml");

Console.WriteLine(xdoc.Element("PLAY").Element("TITLE").Value);

This bit of code will output the title, The Tragedy of Hamlet, Prince of Denmark, to the console screen. In
the code, you were able to work down the hierarchy of the XML document by using two Element method
calls — first calling the <PLAY> element and then the <TITLE> element found nested within the <PLAY>
element.

Looking again at the hamlet.xml document, you will see a large list of players who are defined with the use
of the <PERSONA> element:

<?xml version="1.0"?>

<PLAY>
 <TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE>

 <!-–XML removed for clarity-–>

 <PERSONAE>

c34.indd 1045 30-01-2014 20:40:17

1046 ❘ CHAPTER 34 Manipulating XMl

 <TITLE>Dramatis Personae</TITLE>

 <PERSONA>CLAUDIUS, king of Denmark.</PERSONA>
 <PERSONA>HAMLET, son to the late king,
 and nephew to the present king.</PERSONA>
 <PERSONA>POLONIUS, lord chamberlain.</PERSONA>
 <PERSONA>HORATIO, friend to Hamlet.</PERSONA>
 <PERSONA>LAERTES, son to Polonius.</PERSONA>
 <PERSONA>LUCIANUS, nephew to the king.</PERSONA>

 <!-–XML removed for clarity-–>

 </PERSONAE>

</PLAY>

Now look at this C# query:

XDocument xdoc = XDocument.Load(@"C:\hamlet.xml");

Console.WriteLine(
 xdoc.Element("PLAY").Element("PERSONAE").Element("PERSONA").Value);

This bit of code starts at <PLAY>, works down to the <PERSONAE> element, and then makes use of the
<PERSONA> element. However, using this produces the following results:

CLAUDIUS, king of Denmark

The reason for this is that although there is a collection of <PERSONA> elements, you are dealing only with
the first one that is encountered using the Element().Value call.

Writing to an XML document
In addition to reading from an XML document, you can write to the document just as easily. For instance, if
you wanted to change the name of the first player of the Hamlet play file, you could use the following code:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main()
 {
 XDocument xdoc = XDocument.Load(@"C:\hamlet.xml");

 xdoc.Element("PLAY").Element("PERSONAE").
 Element("PERSONA").SetValue("Bill Evjen, king of Denmark");

 Console.WriteLine(xdoc.Element("PLAY").
 Element("PERSONAE").Element("PERSONA").Value);

 Console.ReadLine();
 }
 }
}

c34.indd 1046 30-01-2014 20:40:17

More Query Techniques for XML Documents ❘ 1047

In this case, the first instance of the <PERSONA> element is overwritten with the value of Bill Evjen, king
of Denmark using the SetValue method of the Element object. After the SetValue is called and the value
is applied to the XML document, the value is then retrieved using the same approach as before. When you
run this bit of code, you can indeed see that the value of the first <PERSONA> element has been changed.

Another way to change the document, by adding items to it in this example, is to create the elements you
want as XElement objects and then add them to the document:

using System;
using System.Linq;
using System.Xml.Linq;

namespace ConsoleApplication1
{
 class Class1
 {
 static void Main()
 {
 XDocument xdoc = XDocument.Load(@"C:\hamlet.xml");

 XElement xe = new XElement("PERSONA",
 "Bill Evjen, king of Denmark");

 xdoc.Element("PLAY").Element("PERSONAE").Add(xe);

 var query = from people in xdoc.Descendants("PERSONA")
 select people.Value;

 Console.WriteLine("{0} Players Found", query.Count());
 Console.WriteLine();

 foreach (var item in query)
 {
 Console.WriteLine(item);
 }

 Console.ReadLine();
 }
 }
}

In this case, an XElement document is created called xe. The construction of xe will produce the following
XML output:

<PERSONA>Bill Evjen, king of Denmark</PERSONA>

Then using the Element().Add method from the XDocument object, you are able to add the created element:

xdoc.Element("PLAY").Element("PERSONAE").Add(xe);

Now when you query all the players, you will find that instead of 26 as before, you now have 27, with
the new one at the bottom of the list. In addition to Add, you can also use AddFirst, which does just
that — adds it to the beginning of the list instead of the end (which is the default).

c34.indd 1047 30-01-2014 20:40:18

1048 ❘ CHAPTER 34 Manipulating XMl

SuMMARy
This chapter explored many aspects of the System.Xml namespace of the .NET Framework. You looked at
how to read and write XML documents using the very fast XmlReader- and XmlWriter-based classes. You
saw how the DOM is implemented in .NET and how to use the power of DOM, and you saw that XML and
ADO.NET are indeed very closely related. A DataSet and an XML document are just two different views
of the same underlying architecture. In addition, you visited XPath, XSL transforms, and the debugging
features added to Visual Studio. Finally, you serialized objects to XML and were able to bring them back
with just a couple of method calls.

XML will be an important part of your application development for years to come. The .NET Framework
has made available a very rich and powerful toolset for working with XML.

This chapter also focused on using LINQ to XML and some of the options available to you in reading and
writing from XML files and XML sources, whether the source is static or dynamic.

Using LINQ to XML, you can have a strongly typed set of operations for performing CRUD operations
against your XML files and sources. However, you can still use your XmlReader and XmlWriter code along
with the LINQ to XML capabilities.

This chapter also introduced the LINQ to XML helper objects XDocument, XElement, XNamespace,
XAttribute, and XComment. You will find these to be outstanding objects that make working with XML
easier than ever before.

c34.indd 1048 30-01-2014 20:40:18

PART V
Presentation

 ➤ CHAPTER 35: Core WPF

 ➤ CHAPTER 36: Business Applications with WPF

 ➤ CHAPTER 37: Creating Documents with WPF

 ➤ CHAPTER 38: Windows Store Apps: User Interface

 ➤ CHAPTER 39: Windows Store Apps: Contracts and Devices

 ➤ CHAPTER 40: Core ASP.NET

 ➤ CHAPTER 41: ASP.NET Web Forms

 ➤ CHAPTER 42: ASP.NET MVC

c35.indd 1049 30-01-2014 20:41:42

c35.indd 1050 30-01-2014 20:41:42

Core WPF
WHAT’s in THis CHAPTER?

➤➤ Shapes and geometry as the base drawing elements
➤➤ Scaling, rotating, and skewing with transformations
➤➤ Brushes to fi ll backgrounds
➤➤ WPF controls and their features
➤➤ Defi ning a layout with WPF panels
➤➤ Styles, templates, and resources
➤➤ Triggers and the Visual State Manager
➤➤ Animations
➤➤ 3-D

WRoX.Com CodE doWnloAds FoR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ Shapes Demo
➤➤ Geometry Demo
➤➤ Transformation Demo
➤➤ Brushes Demo
➤➤ Decorations Demo
➤➤ Layout Demo
➤➤ Styles and Resources
➤➤ Trigger Demo
➤➤ Template Demo
➤➤ Animation Demo
➤➤ Visual State Demo
➤➤ 3D Demo

35

c35.indd 1051 30-01-2014 20:41:45

1052 ❘ CHAPTER 35 Core WPF

UndERsTAnding WPF
Windows Presentation Foundation (WPF) is a library to create the UI for smart client applications. This
chapter gives you broad information on the important concepts of WPF. It covers a large number of different
controls and their categories, including how to arrange the controls with panels, customize the appearance
using styles, resources, and templates, add some dynamic behavior with triggers and animations, and create
3-D with WPF.

One of the main advantages of WPF is that work can be easily separated between designers and developers.
The outcome from the designer’s work can directly be used by the developer. To make this possible, you
need to understand eXtensible Application Markup Language, or XAML. Readers unfamiliar with XAML
can read Chapter 29, “Core XAML,” for information about its syntax.

The first topic of this chapter provides an overview of the class hierarchy and categories of classes that are
used with WPF, including additional information to understand the principles of XAML. WPF consists of
several assemblies containing thousands of classes. To help you navigate within this vast number of classes
and find what you need, this section explains the class hierarchy and namespaces in WPF.

namespaces
Classes from Windows Forms and WPF can easily be confused. The Windows Forms classes are located
in the System.Windows.Forms namespace, and the WPF classes are located inside the namespace System
.Windows and subnamespaces thereof, with the exception of System.Windows.Forms. For example, the
Button class for Windows Forms has the full name System.Windows.Forms.Button, and the Button class
for WPF has the full name System.Windows.Controls.Button.

Namespaces and their functionality within WPF are described in the following table.

nAmEsPACE dEsCRiPTion

System.Windows The core namespace of WPF. Here you can find core classes from WPF such as
the Application class; classes for dependency objects, DependencyObject
and DependencyProperty; and the base class for all WPF elements,
FrameworkElement.

System.Windows
.Annotations

Classes from this namespace are used for user-created annotations and
notes on application data that are stored separately from the document. The
namespace System.Windows.Annotations.Storage contains classes for
storing annotations.

System.Windows
.Automation

This namespace can be used for automation of WPF applications. Several sub-
namespaces are available. System.Windows.Automation .Peers exposes
WPF elements to automation — for example, ButtonAutomationPeer and
CheckBoxAutomationPeer. The namespace System.Windows
.Automation.Provider is needed if you create a custom automation
provider.

System.Windows
.Baml2006

This namespace contains the Baml2006Reader class, which is used to read
binary markup language and produces XAML.

System.Windows
.Controls

This namespace contains all the WPF controls, such as Button, Border,
Canvas, ComboBox, Expander, Slider, ToolTip, TreeView, and the like.
In the namespace System.Windows .Controls.Primitives, you can
find classes to be used within complex controls, such as Popup, ScrollBar,
StatusBar, TabPanel, and so on.

c35.indd 1052 30-01-2014 20:41:45

Understanding WPF ❘ 1053

System.Windows
.Converters

This namespace contains classes for data conversion. Don’t expect to find all
converter classes in this namespace; core converter classes are defined in the
namespace System.Windows.

System.Windows.Data This namespace is used by WPF data binding. An important class in this
namespace is the Binding class, which is used to define the binding between
a WPF target element and a CLR source. Data binding is covered in Chapter
36, “Business Applications with WPF.”

System.Windows
.Documents

When working with documents, you can find many helpful classes in this
namespace. FixedDocument and FlowDocument are content elements
that can contain other elements from this namespace. With classes from the
namespace System.Windows.Documents.Serialization you can write
documents to disk. The classes from this namespace are explained in Chapter
37, “Creating Documents with WPF.”

System.Windows.Ink With the increasingly popular Windows Tablet PC and Ultra Mobile PCs, ink
can be used for user input. The namespace System.Windows.Ink contains
classes to deal with ink input.

System.Windows
.Input

Contains several classes for command handling, keyboard inputs, working with
a stylus, and so on

System.Windows
.Interop

For integration of WPF with native Window handles from the Windows API and
Windows Forms, you can find classes in this namespace.

System.Windows
.Markup

Helper classes for XAML markup code are located in this namespace.

System.Windows
.Media

To work with images, audio, and video content, you can use classes in this
namespace.

System.Windows
.Navigation

Contains classes for navigation between windows

System.Windows
.Resources

Contains supporting classes for resources

System.Windows
.Shapes

Core classes for the UI are located in this namespace: Line, Ellipse,
Rectangle, and the like.

System.Windows
.Threading

WPF elements are bound to a single thread. In this namespace, you can find
classes to deal with multiple threads — for example, the Dispatcher class
belongs to this namespace.

System.Windows.Xps XML Paper Specification (XPS) is a document specification that is also sup-
ported by Microsoft Word. In the namespaces System .Windows.Xps,
System
.Windows.Xps.Packaging and System.Windows.Xps.Serialization,
you can find classes to create and stream XPS documents.

Class Hierarchy
WPF consists of thousands of classes within a deep hierarchy. For an overview of the relationships between
the classes, see Figure 35-1. Some classes and their functionality are described in the following table.

c35.indd 1053 30-01-2014 20:41:45

1054 ❘ CHAPTER 35 Core WPF

ClAss dEsCRiPTion

DispatcherObject An abstract base class for classes that are bound to one thread. WPF controls
require that methods and properties be invoked only from the creator thread.
Classes derived from DispatcherObject have an associated Dispatcher
object that can be used to switch the thread.

Application In a WPF application, one instance of the Application class is created. This
class implements a singleton pattern for access to the application windows,
resources, and properties.

DependencyObject This is the base class for all classes that support dependency properties.
Dependency properties are discussed in Chapter 29.

Visual The base class for all visual elements. This class includes features for hit testing
and transformation.

UIElement The abstract base class for all WPF elements that need basic presentation
features. This class provides tunneling and bubbling events for mouse moves,
drag and drop, and key clicks. It exposes virtual methods for rendering that
can be overridden by derived classes, and it provides methods for layout. As
WPF does not use Window handles, you can consider this class equivalent to
Window handles.

FigURE 35-1

c35.indd 1054 30-01-2014 20:41:46

Shapes ❘ 1055

ClAss dEsCRiPTion

FrameworkElement FrameworkElement is derived from the base class UIElement and imple-
ments the default behavior of the methods defined by the base class.

Shape Base class for all shape elements, such as Line, Ellipse, Polygon, and
Rectangle

Control Control derives from FrameworkElement and is the base class for all user-
interactive elements.

ContentControl Base class for all controls that have a single content (for example, Label,
Button). The default style of a content control may be limited, but it is possible
to change the look by using templates.

ItemsControl Base class for all controls that contain a collection of items as content (for
example, ListBox, ComboBox)

Panel This class derives from FrameworkElement and is the abstract base class for
all panels. Panel has a Children property for all UI elements within the panel
and defines methods for arranging the child controls. Classes derived from
Panel define different behavior regarding how the children are organized — for
example, WrapPanel, StackPanel, Canvas, and Grid.

As this brief introduction demonstrates, WPF classes have a deep hierarchy. This chapter and the next few
chapters cover their core functionality, but it is not possible to provide comprehensive coverage all the WPF
features in this book.

sHAPEs
Shapes are the core elements of WPF. With shapes you can draw two-dimensional graphics using rectangles,
lines, ellipses, paths, polygons, and polylines that are represented by classes derived from the abstract base
class Shape. Shapes are defined in the namespace System.Windows.Shapes.

The following XAML example (code file ShapesDemo/MainWindow.xaml) draws a yellow face consisting
of an ellipse for the face, two ellipses for the eyes, two ellipses for the pupils in the eyes, and a path for the
mouth:

<Window x:Class="ShapesDemo.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="300" Width="300">
 <Canvas>
 <Ellipse Canvas.Left="10" Canvas.Top="10" Width="100" Height="100"
 Stroke="Blue" StrokeThickness="4" Fill="Yellow" />
 <Ellipse Canvas.Left="30" Canvas.Top="12" Width="60" Height="30">
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint="0.5,0" EndPoint="0.5, 1">
 <GradientStop Offset="0.1" Color="DarkGreen" />
 <GradientStop Offset="0.7" Color="Transparent" />
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <Ellipse Canvas.Left="30" Canvas.Top="35" Width="25" Height="20" Stroke="Blue"
 StrokeThickness="3" Fill="White" />
 <Ellipse Canvas.Left="40" Canvas.Top="43" Width="6" Height="5" Fill="Black" />

c35.indd 1055 30-01-2014 20:41:46

1056 ❘ CHAPTER 35 Core WPF

 <Ellipse Canvas.Left="65" Canvas.Top="35" Width="25" Height="20" Stroke="Blue"
 StrokeThickness="3" Fill="White" />
 <Ellipse Canvas.Left="75" Canvas.Top="43" Width="6" Height="5" Fill="Black" />
 <Path Name="mouth" Stroke="Blue" StrokeThickness="4"
 Data="M 40,74 Q 57,95 80,74 " />
 </Canvas>

</Window>

Figure 35-2 shows the result of the XAML code.

All these WPF elements can be accessed programmatically, even if they are buttons or
shapes, such as lines or rectangles. Setting the Name or x:Name property with the Path
element to mouth enables you to access this element programmatically with the variable
name mouth:

 <Path Name="mouth" Stroke="Blue" StrokeThickness="4"
 Data="M 40,74 Q 57,95 80,74 " />

In the code-behind Data property of the Path element (code file ShapesDemo/MainWindow
.xaml.cs), mouth is set to a new geometry. For setting the path, the Path class supports
PathGeometry with path markup syntax. The letter M defines the starting point for the
path; the letter Q specifies a control point and an endpoint for a quadratic Bézier curve.
Running the application results in the image shown in Figure 35-3.

 public MainWindow()
 {
 InitializeComponent();
 mouth.Data = Geometry.Parse("M 40,92 Q 57,75 80,92");
 }

The following table describes the shapes available in the namespace System.Windows.Shapes.

sHAPE ClAss dEsCRiPTion

Line You can draw a line from the coordinates X1.Y1 to X2.Y2.

Rectangle Enables drawing a rectangle by specifying Width and Height

Ellipse With the Ellipse class, you can draw an ellipse.

Path You can use the Path class to draw a series of lines and curves. The Data property is a
Geometry type. You can do the drawing by using classes that derive from the base class
Geometry, or you can use the path markup syntax to define geometry.

Polygon Enables drawing a closed shape formed by connected lines with the Polygon class. The
polygon is defined by a series of Point objects assigned to the Points property.

Polyline Similar to the Polygon class, you can draw connected lines with Polyline. The differ-
ence is that the polyline does not need to be a closed shape.

gEomETRy
One of the shapes, Path, uses Geometry for its drawing. Geometry elements can also be used in other
places, such as with a DrawingBrush.

FigURE 35-2

FigURE 35-3

c35.indd 1056 30-01-2014 20:41:46

Geometry ❘ 1057

In some ways, geometry elements are very similar to shapes. Just as there are Line, Ellipse, and
Rectangle shapes, there are also geometry elements for these drawings: LineGeometry, EllipseGeometry,
and RectangleGeometry. There are also big differences between shapes and geometries. A Shape
is a FrameworkElement and can be used with any class that supports UIElement as its children.
FrameworkElement derives from UIElement. Shapes participate with the layout system and render them-
selves. The Geometry class can’t render itself and has fewer features and less overhead than Shape. The
Geometry class derives from the Freezable base class and can be shared from multiple threads.

The Path class uses Geometry for its drawing. The geometry can be set with the Data property of the Path.
Simple geometry elements that can be set are EllipseGeometry for drawing an ellipse, LineGeometry for
drawing a line, and RectangleGeometry for drawing a rectangle. Combining multiple geometries, as dem-
onstrated in the next example, can be done with CombinedGeometry.

CombinedGeometry has the properties Geometry1 and Geometry2 and allows them to combine with
GeometryCombineMode to form a Union, Intersect, Xor, and Exclude. Union merges the two geom-
etries. With Intersect, only the area that is covered with both geometries is visible. Xor contrasts with
Intersect by showing the area that is covered by one of the geometries but not showing the area covered
by both. Exclude shows the area of the first geometry minus the area of the second geometry.

The following example (code file GeometryDemo/MainWindow.xaml) combines
an EllipseGeometry and a RectangleGeometry to form a union, as shown in
Figure 35-4.

 <Path Canvas.Top="0" Canvas.Left="250" Fill="Blue" Stroke="Black" >
 <Path.Data>
 <CombinedGeometry GeometryCombineMode="Union">
 <CombinedGeometry.Geometry1>
 <EllipseGeometry Center="80,60" RadiusX="80" RadiusY="40" />
 </CombinedGeometry.Geometry1>
 <CombinedGeometry.Geometry2>
 <RectangleGeometry Rect="30,60 105 50" />
 </CombinedGeometry.Geometry2>
 </CombinedGeometry>
 </Path.Data>
 </Path>

Geometries can also be created by using segments. The geometry class PathGeometry uses segments for its
drawing. The following code segment uses the BezierSegment and LineSegment elements to build one
red and one green figure, as shown in Figure 35-5. The first BezierSegment draws a Bézier curve
between the points 70,40, which is the starting point of the figure, and 150,63 with control points 90,37
and 130,46. The following LineSegment uses the ending point of the Bézier curve and draws a line
to 120,110:

 <Path Canvas.Left="0" Canvas.Top="0" Fill="Red" Stroke="Blue"
 StrokeThickness="2.5">
 <Path.Data>
 <GeometryGroup>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint="70,40" IsClosed="True">
 <PathFigure.Segments>
 <BezierSegment Point1="90,37" Point2="130,46" Point3="150,63" />
 <LineSegment Point="120,110" />
 <BezierSegment Point1="100,95" Point2="70,90" Point3="45,91" />
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>

FigURE 35-4

c35.indd 1057 30-01-2014 20:41:46

1058 ❘ CHAPTER 35 Core WPF

 </PathGeometry>
 </GeometryGroup>
 </Path.Data>
 </Path>

 <Path Canvas.Left="0" Canvas.Top="0" Fill="Green" Stroke="Blue"
 StrokeThickness="2.5">
 <Path.Data>
 <GeometryGroup>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint="160,70">
 <PathFigure.Segments>
 <BezierSegment Point1="175,85" Point2="200,99"
 Point3="215,100" />
 <LineSegment Point="195,148" />
 <BezierSegment Point1="174,150" Point2="142,140"
 Point3="129,115" />
 <LineSegment Point="160,70" />
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </GeometryGroup>
 </Path.Data>
 </Path>

Other than the BezierSegment and LineSegment elements, you can use ArcSegment to draw an elliptical
arc between two points. With PolyLineSegment you can define a set of lines: PolyBezierSegment consists
of multiple Bézier curves, QuadraticBezierSegment creates a quadratic Bézier
curve, and PolyQuadraticBezierSegment consists of multiple quadratic Bézier
curves.

A speedy drawing can be created with StreamGeometry. Programmatically, the
figure can be defined by creating lines, Bézier curves, and arcs with members of
the StreamGeometryContext class. With XAML, path markup syntax can be
used. You can use path markup syntax with the Data property of the Path class
to define StreamGeometry. Special characters define how the points are
connected. In the following example, M marks the start point, L is a line
command to the point specified, and Z is the Close command to close the figure.
Figure 35-6 shows the result. The path markup syntax allows more commands
such as horizontal lines (H), vertical lines (V), cubic Bézier curves (C), quadratic
Bézier curves (Q), smooth cubic Bézier curves (S), smooth quadratic Bézier
curves (T), and elliptical arcs (A):

 <Path Canvas.Left="0" Canvas.Top="200" Fill="Yellow" Stroke="Blue"
 StrokeThickness="2.5"
 Data="M 120,5 L 128,80 L 220,50 L 160,130 L 190,220 L 100,150
 L 80,230 L 60,140 L0,110 L70,80 Z" StrokeLineJoin="Round">
 </Path>

TRAnsFoRmATion
Because WPF is vector-based, you can resize every element. In the next example, the vector-based graph-
ics are now scaled, rotated, and skewed. Hit testing (for example, with mouse moves and mouse clicks) still
works but without the need for manual position calculation.

FigURE 35-6

FigURE 35-5

c35.indd 1058 30-01-2014 20:41:47

Transformation ❘ 1059

Adding the ScaleTransform element to the LayoutTransform property of the Canvas element, as shown
here (code file TransformationDemo/MainWindow.xaml), resizes the content of the complete canvas by 1.5
in the x and y axes:

 <Canvas.LayoutTransform>
 <ScaleTransform ScaleX="1.5" ScaleY="1.5" />
 </Canvas.LayoutTransform>

Rotation can be done in a similar way as scaling. Using the RotateTransform element you can define the
Angle for the rotation:

 <Canvas.LayoutTransform>
 <RotateTransform Angle="40" />
 </Canvas.LayoutTransform>

For skewing, you can use the SkewTransform element. With skewing you can assign angles for the x and y
axes:

 <Canvas.LayoutTransform>
 <SkewTransform AngleX="20" AngleY="25" />
 </Canvas.LayoutTransform>

To rotate and skew together, it is possible to define a TransformGroup that contains both
RotateTransform and SkewTransform. You can also define a MatrixTransform whereby the Matrix
element specifies the properties M11 and M22 for stretch and M12 and M21 for skew:

 <Canvas.LayoutTransform>
 <MatrixTransform>
 <MatrixTransform.Matrix>
 <Matrix M11="0.8" M22="1.6" M12="1.3" M21="0.4" />
 </MatrixTransform.Matrix>
 </MatrixTransform>
 </Canvas.LayoutTransform>

Figure 35-7 shows the result of all these transformations. The figures are placed inside a StackPanel.
Starting from the left, the first image is resized, the second image is rotated, the third image is skewed,
and the fourth image uses a matrix for its transformation. To highlight the differences between these four
images, the Background property of the Canvas elements is set to different colors.

FigURE 35-7

c35.indd 1059 30-01-2014 20:41:47

1060 ❘ CHAPTER 35 Core WPF

noTE In addition to LayerTransform there’s also a RenderTransform.
LayerTransform happens before the layout phase and RenderTransform happens
after.

BRUsHEs
This section demonstrates how to use the
brushes that WPF offers for drawing back-
grounds and foregrounds. The examples in this
section reference Figure 35-8, which shows the
effects of using various brushes within a Path
and the Background of Button elements.

solidColorBrush
The first button in Figure 35-8 uses the
SolidColorBrush, which, as the name suggests,
uses a solid color. The complete area is drawn
with the same color.

You can define a solid color just by setting the Background attribute to a string that defines a solid color.
The string is converted to a SolidColorBrush element with the help of the BrushValueSerializer:

<Button Height="30" Background="PapayaWhip">Solid Color</Button>

Of course, you will get the same effect by setting the Background child element and adding a
SolidColorBrush element as its content (code file BrushesDemo/MainWindow.xaml). The first button in
the application is using PapayaWhip as the solid background color:

 <Button Content="Solid Color" Margin="10">
 <Button.Background>
 <SolidColorBrush Color="PapayaWhip" />
 </Button.Background>
 </Button>

lineargradientBrush
For a smooth color change, you can use the LinearGradientBrush, as the second button shows. This
brush defines the StartPoint and EndPoint properties. With this, you can assign two-dimensional
coordinates for the linear gradient. The default gradient is diagonal linear from 0,0 to 1,1. By defining
different values, the gradient can take different directions. For example, with a StartPoint of 0,0 and an
EndPoint of 0,1, you get a vertical gradient. The StartPoint and EndPoint value of 1,0 creates a
horizontal gradient.

With the content of this brush, you can define the color values at the specified offsets with the
GradientStop element. Between the stops, the colors are smoothed (code file BrushesDemo/MainWindow
.xaml):

 <Button Content="Linear Gradient Brush" Margin="10">
 <Button.Background>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="LightGreen" />
 <GradientStop Offset="0.4" Color="Green" />
 <GradientStop Offset="1" Color="DarkGreen" />

FigURE 35-8

c35.indd 1060 30-01-2014 20:41:47

Brushes ❘ 1061

 </LinearGradientBrush>
 </Button.Background>
 </Button>

RadialgradientBrush
With the RadialGradientBrush you can smooth the color in a radial way. In Figure 35-8, the third element
is a Path that uses RadialGradientBrush. This brush defines the color start with the GradientOrigin
point (code file BrushesDemo/MainWindow.xaml):

 <Canvas Width="200" Height="150">
 <Path Canvas.Top="0" Canvas.Left="20" Stroke="Black" >
 <Path.Fill>
 <RadialGradientBrush GradientOrigin="0.2,0.2">
 <GradientStop Offset="0" Color="LightBlue" />
 <GradientStop Offset="0.6" Color="Blue" />
 <GradientStop Offset="1.0" Color="DarkBlue" />
 </RadialGradientBrush>
 </Path.Fill>
 <Path.Data>
 <CombinedGeometry GeometryCombineMode="Union">
 <CombinedGeometry.Geometry1>
 <EllipseGeometry Center="80,60" RadiusX="80" RadiusY="40" />
 </CombinedGeometry.Geometry1>
 <CombinedGeometry.Geometry2>
 <RectangleGeometry Rect="30,60 105 50" />
 </CombinedGeometry.Geometry2>
 </CombinedGeometry>
 </Path.Data>
 </Path>
 </Canvas>

drawingBrush
The DrawingBrush enables you to define a drawing that is created with the brush. The drawing that is
shown with the brush is defined within a GeometryDrawing element. The GeometryGroup, which you can
see within the Geometry property, consists of the Geometry elements discussed earlier in this chapter (code
file BrushesDemo/MainWindow.xaml):

 <Button Content="Drawing Brush" Margin="10" Padding="10">
 <Button.Background>
 <DrawingBrush>
 <DrawingBrush.Drawing>
 <GeometryDrawing Brush="Red">
 <GeometryDrawing.Pen>
 <Pen>
 <Pen.Brush>
 <SolidColorBrush>Blue</SolidColorBrush>
 </Pen.Brush>
 </Pen>
 </GeometryDrawing.Pen>
 <GeometryDrawing.Geometry>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint="70,40">
 <PathFigure.Segments>
 <BezierSegment Point1="90,37" Point2="130,46"
 Point3="150,63" />
 <LineSegment Point="120,110" />
 <BezierSegment Point1="100,95" Point2="70,90"
 Point3="45,91" />
 <LineSegment Point="70,40" />

c35.indd 1061 30-01-2014 20:41:47

1062 ❘ CHAPTER 35 Core WPF

 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </GeometryDrawing.Geometry>
 </GeometryDrawing>
 </DrawingBrush.Drawing>
 </DrawingBrush>
 </Button.Background>
 </Button>

imageBrush
To load an image into a brush, you can use the ImageBrush element. With this element, the image defined
by the ImageSource property is displayed. The image can be accessed from the file system or from a
resource within the assembly. In the example (code file BrushesDemo/MainWindow.xaml), the image is
added as a resource to the assembly and referenced with the assembly and resource names:

 <Button Content="Image Brush" Width="100" Height="80" Margin="5"
 Foreground="White">
 <Button.Background>
 <ImageBrush ImageSource="/BrushesDemo;component/Budapest.jpg" />
 </Button.Background>
 </Button>

VisualBrush
The VisualBrush enables you to use other WPF elements in a brush. The following example (code file
BrushesDemo/MainWindow.xaml) adds a WPF element to the Visual property. The sixth element in
Figure 35-8 contains a Rectangle and a Button:

 <Button Content="Visual Brush" Width="100" Height="80">
 <Button.Background>
 <VisualBrush>
 <VisualBrush.Visual>
 <StackPanel Background="White">
 <Rectangle Width="25" Height="25" Fill="Blue" />
 <Button Content="Drawing Button" Background="Red" />
 </StackPanel>
 </VisualBrush.Visual>
 </VisualBrush>
 </Button.Background>
 </Button>

You can add any UIElement to the VisualBrush. For example, you can play a video by using the
MediaElement:

 <Button Content="Visual Brush with Media" Width="200" Height="150"
 Foreground="White">
 <Button.Background>
 <VisualBrush>
 <VisualBrush.Visual>
 <MediaElement Source="./Stephanie.wmv" />
 </VisualBrush.Visual>
 </VisualBrush>
 </Button.Background>
 </Button>

You can also use the VisualBrush to create interesting effects such as reflection. The button coded in
the following example contains a StackPanel that itself contains a MediaElement playing a video and a
Border. The Border contains a Rectangle that is filled with a VisualBrush. This brush defines an opacity

c35.indd 1062 30-01-2014 20:41:47

Controls ❘ 1063

value and a transformation. The Visual property is bound to the Border element. The transformation is
achieved by setting the RelativeTransform property of the VisualBrush. This transformation uses
relative coordinates. By setting ScaleY to -1, a reflection in the y axis is done. TranslateTransform moves
the transformation in the y axis so that the reflection is below the original object. You can see the result
in the eighth element in Figure 35-8.

noTE Data binding and the Binding element used here are explained in detail in
Chapter 36.

 <Button Width="200" Height="200" Foreground="White">
 <StackPanel>
 <MediaElement x:Name="reflected" Source="./Stephanie.wmv" />
 <Border Height="100">
 <Rectangle>
 <Rectangle.Fill>
 <VisualBrush Opacity="0.35" Stretch="None"
 Visual="{Binding ElementName=reflected}">
 <VisualBrush.RelativeTransform>
 <TransformGroup>
 <ScaleTransform ScaleX="1" ScaleY="-1" />
 <TranslateTransform Y="1" />
 </TransformGroup>
 </VisualBrush.RelativeTransform>
 </VisualBrush>
 </Rectangle.Fill>
 </Rectangle>
 </Border>
 </StackPanel>
 </Button>

ConTRols
Because you can use hundreds of controls with WPF, they are categorized into the following groups, each of
which is described in the following sections.

simple Controls
Simple controls are controls that don’t have a Content property. With the Button class, you have seen that
the Button can contain any shape, or any element you like. This is not possible with simple controls. The
following table describes the simple controls.

simPlE ConTRol dEsCRiPTion

PasswordBox This control is used to enter a password and has specific properties for password
input, such as PasswordChar, to define the character that should be displayed as
the user enters the password, or Password, to access the password entered. The
PasswordChanged event is invoked as soon as the password is changed.

ScrollBar This control contains a Thumb that enables the user to select a value. A scrollbar can
be used, for example, if a document doesn’t fit on the screen. Some controls contain
scrollbars that are displayed if the content is too big.

continues

c35.indd 1063 30-01-2014 20:41:48

1064 ❘ CHAPTER 35 Core WPF

noTE Although simple controls do not have a Content property, you can completely
customize the look of a control by defining a template. Templates are discussed later in
this chapter in the section Templates.

Content Controls
A ContentControl has a Content property, with which you can add any content to the control. The
Button class derives from the base class ContentControl, so you can add any content to this control. In a
previous example, you saw a Canvas control within the Button. Content controls are described in the fol-
lowing table.

ConTEnTConTRol

ConTRols

dEsCRiPTion

ButtonRepeat
ButtonToggle
ButtonCheckBox
RadioButton

The classes Button, RepeatButton, ToggleButton, and
GridViewColumnHeader are derived from the same base class,
ButtonBase. All buttons react to the Click event. The RepeatButton
raises the Click event repeatedly until the button is released.
ToggleButton is the base class for CheckBox and RadioButton.
These buttons have an on and off state. The CheckBox can be selected
and cleared by the user; the RadioButton can be selected by the user.
Clearing the RadioButton must be done programmatically.

Label The Label class represents the text label for a control. This class also
has support for access keys — for example, a menu command.

Frame The Frame control supports navigation. You can navigate to a page’s
content with the Navigate method. If the content is a web page, then
the WebBrowser control is used for display.

ListBoxItem An item inside a ListBox control

StatusBarItem An item inside a StatusBar control

ScrollViewer A content control that includes scrollbars. You can put any content in this
control; the scrollbars are displayed as needed.

ToolTip Creates a pop-up window to display additional information for a control.

ProgressBar Indicates the progress of a lengthy operation.

Slider Enables users to select a range of values by moving a Thumb. ScrollBar,
ProgressBar, and Slider are derived from the same base class, RangeBase.

TextBox Used to display simple, unformatted text

RichTextBox Supports rich text with the help of the FlowDocument class. RichTextBox and
TextBox are derived from the same base class, TextBoxBase.

Calendar Displays a month, year, or decade. The user can select a date or range of dates.

DatePicker Opens a calendar onscreen for date selection by the user

continued

c35.indd 1064 30-01-2014 20:41:48

Controls ❘ 1065

ConTEnTConTRol ConTRols dEsCRiPTion

UserControl Using this class as a base class provides a simple way to create
custom controls. However, the UserControl base class does not sup-
port templates.

Window This class enables you to create windows and dialogs. It includes a frame
with minimize/maximize/close buttons and a system menu. When show-
ing a dialog, you can use the ShowDialog method; the Show method
opens a window.

NavigationWindow This class derives from the Window class and supports content
navigation.

Only a Frame control is contained within the Window of the following XAML code (code file FrameDemo/
MainWindow.xaml). The Source property is set to http://www.cninnovation.com, so the Frame control
navigates to this website, as shown in Figure 35-9.

FigURE 35-9

<Window x:Class="FrameDemo.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Frames Demo" Height="240" Width="500">
 <Frame Source="http://www.cninnovation.com" />
</Window>

Headered Content Controls
Content controls with a header are derived from the base class HeaderedContentControl, which itself is
derived from the base class ContentControl. The HeaderedContentControl class has a property Header
to define the content of the header and HeaderTemplate for complete customization of the header. The
controls derived from the base class HeaderedContentControl are listed in the following table.

c35.indd 1065 30-01-2014 20:41:48

1066 ❘ CHAPTER 35 Core WPF

HEAdEREdConTEnTConTRol dEsCRiPTion

Expander This control enables you to create an “advanced” mode with a dialog
that, by default, does not show all information but can be expanded
by the user for additional details. In the unexpanded mode, header
information is shown. In expanded mode, the content is visible.

GroupBox Provides a border and a header to group controls

TabItem These controls are items within the class TabControl. The Header
property of the TabItem defines the content of the header shown
with the tabs of the TabControl.

A simple use of the Expander control is shown in the next example. The Expander control has the property
Header set to Click for more. This text is displayed for expansion. The content of this control is shown
only if the control is expanded. Figure 35-10 shows the application with a collapsed Expander control,
and Figure 35-11 shows the same application with an expanded Expander control. The code (code file
ExpanderDemo/MainWindow.xaml) is as follows:

<Window x:Class="ExpanderDemo.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Expander Demo" Height="240" Width="500">
 <StackPanel>
 <TextBlock>Short information</TextBlock>
 <Expander Header="Additional Information">
 <Border Height="200" Width="200" Background="Yellow">
 <TextBlock HorizontalAlignment="Center" VerticalAlignment="Center">
 More information here!
 </TextBlock>
 </Border>
 </Expander>
 </StackPanel>

</Window>

noTE To make the header text of the Expander control change when the control is
expanded, you can create a trigger. Triggers are explained later in this chapter in the
section Triggers.

FigURE 35-10 FigURE 35-11

items Controls
The ItemsControl class contains a list of items that can be accessed with the Items property. Classes
derived from ItemsControl are shown in the following table.

c35.indd 1066 30-01-2014 20:41:48

Controls ❘ 1067

iTEmsConTRol dEsCRiPTion

Menu and
ContextMenu

These classes are derived from the abstract base class MenuBase. You can offer
menus to the user by placing MenuItem elements in the items list and associating
commands.

StatusBar This control is usually shown at the bottom of an application to give status infor-
mation to the user. You can put StatusBarItem elements inside a StatusBar
list.

TreeView Use this control for a hierarchical display of items.

ListBox
ComboBox
TabControl

These have the same abstract base class, Selector. This base class makes it
possible to select items from a list. The ListBox displays the items from a list.
The ComboBox has an additional Button control to display the items only if the
button is clicked. With TabControl, content can be arranged in tabular form.

DataGrid This control is a customizable grid that displays data. It is discussed in detail in
the next chapter.

Headered items Controls
HeaderedItemsControl is the base class of controls that include items but also have a header. The
class HeaderedItemsControl is derived from ItemsControl.

Classes derived from HeaderedItemsControl are listed in the following table.

HEAdEREdiTEmsConTRol dEsCRiPTion

MenuItem The menu classes Menu and ContextMenu include items of the MenuItem
type. Menu items can be connected to commands, as the MenuItem class
implements the interface ICommandSource.

TreeViewItem This class can include items of type TreeViewItem.

ToolBar This control is a container for a group of controls, usually Button and
Separator elements. You can place the ToolBar inside a ToolBarTray
that handles the rearranging of ToolBar controls.

decoration
You can add decorations to a single element with the Decorator class. Decorator is a base class that has
derivations such as Border, Viewbox, and BulletDecorator. Theme elements such as ButtonChrome and
ListBoxChrome are also decorators.

The following example (code file DecorationsDemo/MainWindow.xaml)
demonstrates a Border, Viewbox, and BulletDecorator, as shown in
Figure 35-12. The Border class decorates the Children element by adding
a border around it. You can define a brush and the thickness of the border,
the background, the radius of the corner, and the padding of its children:

 <Border BorderBrush="Violet" BorderThickness="5.5">
 <Label>Label with a border</Label>
 </Border> FigURE 35-12

c35.indd 1067 30-01-2014 20:41:49

1068 ❘ CHAPTER 35 Core WPF

The Viewbox stretches and scales its child to the available space. The StretchDirection and Stretch
properties are specific to the functionality of the Viewbox. These properties enable specifying whether the
child is stretched in both directions, and whether the aspect ratio is preserved:

 <Viewbox StretchDirection="Both" Stretch="Uniform">
 <Label>Label with a viewbox</Label>
 </Viewbox>

The BulletDecorator class decorates its child with a bullet. The child can be any element (in this example,
a TextBlock). Similarly, the bullet can also be any element. The example uses an Image, but you can use
any UIElement:

 <BulletDecorator>
 <BulletDecorator.Bullet>
 <Image Width="25" Height="25" Margin="5" HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Source="/DecorationsDemo;component/images/apple1.jpg" />
 </BulletDecorator.Bullet>
 <BulletDecorator.Child>
 <TextBlock VerticalAlignment="Center" Padding="8">Granny Smith</TextBlock>
 </BulletDecorator.Child>
 </BulletDecorator>

lAyoUT
To define the layout of the application, you can use a class that derives from the Panel base class. A layout
container needs to do two main tasks: measure and arrange. With measuring, the container asks its children
for the preferred sizes. Because the full size requested by the controls might not be available, the container
determines the available sizes and arranges the positions of its children accordingly. This section discusses
several available layout containers.

stackPanel
The Window can contain just a single element as content, but if you want more than one element inside it,
you can use a StackPanel as a child of the Window, and add elements to the content of the StackPanel. The
StackPanel is a simple container control that just shows one element after the other. The orientation of the
StackPanel can be horizontal or vertical. The class ToolBarPanel is derived from StackPanel (code file
LayoutDemo/StackPanelWindow.xaml):

<Window x:Class="LayoutDemo.StackPanelWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="StackPanelWindow" Height="300" Width="300">
 <StackPanel Orientation="Vertical">
 <Label>Label</Label>
 <TextBox>TextBox</TextBox>
 <CheckBox>CheckBox</CheckBox>
 <CheckBox>CheckBox</CheckBox>
 <ListBox>
 <ListBoxItem>ListBoxItem One</ListBoxItem>
 <ListBoxItem>ListBoxItem Two</ListBoxItem>
 </ListBox>
 <Button>Button</Button>
 </StackPanel>
</Window>

Figure 35-13 shows the child controls of the StackPanel organized
vertically.

FigURE 35-13

c35.indd 1068 30-01-2014 20:41:49

Layout ❘ 1069

WrapPanel
The WrapPanel positions the children from left to right, one after the other, as long as they fit into the
line, and then continues with the next line. The panel’s orientation can be horizontal or vertical (code file
LayoutDemo/WrapPanelWindow.xaml):

<Window x:Class="LayoutDemo.WrapPanelWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="WrapPanelWindow" Height="300" Width="300">
 <WrapPanel>
 <Button Width="100" Margin="5">Button</Button>
 <Button Width="100" Margin="5">Button</Button>
 <Button Width="100" Margin="5">Button</Button>
 <Button Width="100" Margin="5">Button</Button>
 <Button Width="100" Margin="5">Button</Button>
 <Button Width="100" Margin="5">Button</Button>
 <Button Width="100" Margin="5">Button</Button>
 <Button Width="100" Margin="5">Button</Button>
 </WrapPanel>
</Window>

Figure 35-14 shows the output of the panel. If you resize the
application, the buttons will be rearranged accordingly so
that they fit into a line.

Canvas
Canvas is a panel that enables you to explicitly posi-
tion controls. Canvas defines the attached properties
Left, Right, Top, and Bottom that can be used by the children for positioning within the panel (code file
LayoutDemo/CanvasWindow.xaml):

<Window x:Class="LayoutDemo.CanvasWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="CanvasWindow" Height="300" Width="300">
 <Canvas Background="LightBlue">
 <Label Canvas.Top="30" Canvas.Left="20">Enter here:</Label>
 <TextBox Canvas.Top="30" Canvas.Left="120" Width="100" />
 <Button Canvas.Top="70" Canvas.Left="130" Content="Click Me!" Padding="5" />
 </Canvas>
</Window>

Figure 35-15 shows the output of the Canvas panel with the positioned
children Label, TextBox, and Button.

dockPanel
The DockPanel is very similar to the Windows Forms docking func-
tionality. Here, you can specify the area in which child controls should
be arranged. DockPanel defines the attached property Dock, which you
can set in the children of the controls to the values Left, Right, Top,
and Bottom. Figure 35-16 shows the outcome of text blocks with borders that are arranged in the dock

FigURE 35-14

FigURE 35-15

c35.indd 1069 30-01-2014 20:41:49

1070 ❘ CHAPTER 35 Core WPF

panel. For easier differentiation, different colors are specified for the various areas (code file LayoutDemo/
DockPanelWindow.xaml):

<Window x:Class="LayoutDemo.DockPanelWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="DockPanelWindow" Height="300" Width="300">
 <DockPanel>
 <Border Height="25" Background="AliceBlue" DockPanel.Dock="Top">
 <TextBlock>Menu</TextBlock>
 </Border>
 <Border Height="25" Background="Aqua" DockPanel.Dock="Top">
 <TextBlock>Ribbon</TextBlock>
 </Border>
 <Border Height="30" Background="LightSteelBlue" DockPanel.Dock="Bottom">
 <TextBlock>Status</TextBlock>
 </Border>
 <Border Height="80" Background="Azure" DockPanel.Dock="Left">
 <TextBlock>Left Side</TextBlock>
 </Border>
 <Border Background="HotPink">
 <TextBlock>Remaining Part</TextBlock>
 </Border>
 </DockPanel>
</Window>

grid
Using the Grid, you can arrange your controls with rows and columns.
For every column, you can specify a ColumnDefinition. For every
row, you can specify a RowDefinition. The following example code
(code file LayoutDemo/GridWindow.xaml) lists two columns and three
rows. With each column and row, you can specify the width or height.
ColumnDefinition has a Width dependency property; RowDefinition
has a Height dependency property. You can define the height and width
in pixels, centimeters, inches, or points, or set it to Auto to determine
the size depending on the content. The grid also allows star sizing, whereby the space for the rows and col-
umns is calculated according to the available space and relative to other rows and columns. When providing
the available space for a column, you can set the Width property to *. To have the size doubled for another
column, you specify 2*. The sample code, which defines two columns and three rows, doesn’t define addi-
tional settings with the column and row definitions; the default is the star sizing.

The grid contains several Label and TextBox controls. Because the parent of these controls is a grid, you
can set the attached properties Column, ColumnSpan, Row, and RowSpan:

<Window x:Class="LayoutDemo.GridWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="GridWindow" Height="300" Width="300">
 <Grid ShowGridLines="True">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />

FigURE 35-16

c35.indd 1070 30-01-2014 20:41:49

Styles and Resources ❘ 1071

 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Label Grid.Column="0" Grid.ColumnSpan="2" Grid.Row="0"
 VerticalAlignment="Center" HorizontalAlignment="Center" Content="Title"
 />
 <Label Grid.Column="0" Grid.Row="1" VerticalAlignment="Center"
 Content="Firstname:" Margin="10" />
 <TextBox Grid.Column="1" Grid.Row="1" Width="100" Height="30" />
 <Label Grid.Column="0" Grid.Row="2" VerticalAlignment="Center"
 Content="Lastname:" Margin="10" />
 <TextBox Grid.Column="1" Grid.Row="2" Width="100" Height="30" />
 </Grid>
</Window>

The outcome of arranging controls in a grid is shown in Figure 35-17. For easier viewing of the columns and
rows, the property ShowGridLines is set to true.

FigURE 35-17

noTE For a grid in which every cell is the same size, you can use the UniformGrid
class.

sTylEs And REsoURCEs
You can define the look and feel of the WPF elements by setting properties, such as FontSize and
Background, with the Button element (code file StylesAndResources/MainWindow.xaml):

 <Button Width="150" FontSize="12" Background="AliceBlue" Content="Click Me!" />

Instead of defining the look and feel with every element, you can define styles that are stored with resources.
To completely customize the look of controls, you can use templates and add them to resources.

c35.indd 1071 30-01-2014 20:41:50

1072 ❘ CHAPTER 35 Core WPF

styles
The Style property of a control can be assigned to a Style element that has setters associated with it. A
Setter element defines the Property and Value properties and sets a specified property to a value. In the
following example (code file StylesAndResources/MainWindow.xaml), the Background, FontSize, and
FontWeight properties are set. The Style is set to the TargetType Button, so that the properties of the
Button can be directly accessed. If the TargetType of the style is not set, the properties can be accessed via
Button.Background, Button.FontSize. This is especially important if you need to set properties of differ-
ent element types:

 <Button Width="150" Content="Click Me!">
 <Button.Style>
 <Style TargetType="Button">
 <Setter Property="Background" Value="Yellow" />
 <Setter Property="FontSize" Value="14" />
 <Setter Property="FontWeight" Value="Bold" />
 </Style>
 </Button.Style>
 </Button>

Setting the Style directly with the Button element doesn’t really help a lot in regard to style sharing. Styles
can be put into resources. Within the resources you can assign styles to specific elements, assign a style to all
elements of a type, or use a key for the style. To assign a style to all elements of a type, use the TargetType
property of the Style and assign it to a Button by specifying the x:Type markup extension {x:Type
Button}. To define a style that needs to be referenced, x:Key must be set:

 <Window.Resources>
 <Style TargetType="{x:Type Button}">
 <Setter Property="Background" Value="LemonChiffon" />
 <Setter Property="FontSize" Value="18" />
 </Style>
 <Style x:Key="ButtonStyle">
 <Setter Property="Button.Background" Value="Red" />
 <Setter Property="Button.Foreground" Value="White" />
 <Setter Property="Button.FontSize" Value="18" />
 </Style>
 </Window.Resources>

In the following XAML code the first button — which doesn’t have a style defined with the element prop-
erties — gets the style that is defined for the Button type. With the next button, the Style property is set
with the StaticResource markup extension to {StaticResource ButtonStyle}, whereas ButtonStyle
specifies the key value of the style resource defined earlier, so this button has a red background and a white
foreground:

 <Button Width="200" Content="Uses named style"
 Style="{StaticResource ButtonStyle}" Margin="3" />

Rather than set the Background of a button to just a single value, you can also do more. You can set the
Background property to a LinearGradientBrush with a gradient color definition:

 <Style x:Key="FancyButtonStyle">
 <Setter Property="Button.FontSize" Value="22" />
 <Setter Property="Button.Foreground" Value="White" />
 <Setter Property="Button.Background">
 <Setter.Value>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0.0" Color="LightCyan" />
 <GradientStop Offset="0.14" Color="Cyan" />

c35.indd 1072 30-01-2014 20:41:50

Styles and Resources ❘ 1073

 <GradientStop Offset="0.7" Color="DarkCyan" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>

The next button in this example has a fancy style with cyan applied as the linear gradient:

 <Button Width="200" Content="Fancy button style"
 Style="{StaticResource FancyButtonStyle}" Margin="3" />

Styles offer a kind of inheritance. One style can be based on another one. The style AnotherButtonStyle
is based on the style FancyButtonStyle. It uses all the settings defined by the base style (referenced by the
BasedOn property), except the Foreground property — which is set to LinearGradientBrush:

 <Style x:Key="AnotherButtonStyle" BasedOn="{StaticResource FancyButtonStyle}"
 TargetType="Button">
 <Setter Property="Foreground">
 <Setter.Value>
 <LinearGradientBrush>
 <GradientStop Offset="0.2" Color="White" />
 <GradientStop Offset="0.5" Color="LightYellow" />
 <GradientStop Offset="0.9" Color="Orange" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>

The last button has the AnotherButtonStyle applied:

 <Button Width="200" Content="Style inheritance"
 Style="{StaticResource AnotherButtonStyle}" Margin="3" />

The result of all these buttons after styling is shown in Figure 35-18.

Resources
As you have seen with the styles sample, usually styles are stored within resources.
You can define any freezable element within a resource. For example, the brush created earlier for the
background style of the button can itself be defined as a resource, so you can use it everywhere a brush is
required.

The following example (code file StylesAndResources/ResourceDemo.xaml) defines a
LinearGradientBrush with the key name MyGradientBrush inside the StackPanel resources.
button1 assigns the Background property by using a StaticResource markup extension to the resource
MyGradientBrush. Figure 35-19 shows the output from this XAML code:

 <StackPanel x:Name="myContainer">
 <StackPanel.Resources>
 <LinearGradientBrush x:Key="MyGradientBrush" StartPoint="0,0"
 EndPoint="0.3,1">
 <GradientStop Offset="0.0" Color="LightCyan" />
 <GradientStop Offset="0.14" Color="Cyan" />
 <GradientStop Offset="0.7" Color="DarkCyan" />
 </LinearGradientBrush>
 </StackPanel.Resources>
 <Button Width="200" Height="50" Foreground="White" Margin="5"
 Background="{StaticResource MyGradientBrush}" Content="Click Me!" />
 </StackPanel>

FigURE 35-18

FigURE 35-19

c35.indd 1073 30-01-2014 20:41:50

1074 ❘ CHAPTER 35 Core WPF

Here, the resources have been defined with the StackPanel. In the previous example, the resources were
defined with the Window element. The base class FrameworkElement defines the property Resources of
type ResourceDictionary. That’s why resources can be defined with every class that is derived from the
FrameworkElement — any WPF element.

Resources are searched hierarchically. If you define the resource with the Window, it applies to every child
element of the Window. If the Window contains a Grid, and the Grid contains a StackPanel, and you define
the resource with the StackPanel, then the resource applies to every control within the StackPanel. If the
StackPanel contains a Button, and you define the resource just with the Button, then this style is valid
only for the Button.

noTE In regard to hierarchies, you need to pay attention if you use the TargetType
without a Key for styles. If you define a resource with the Canvas element and set the
TargetType for the style to apply to TextBox elements, then the style applies to all
TextBox elements within the Canvas. The style even applies to TextBox elements that
are contained in a ListBox when the ListBox is in the Canvas.

If you need the same style for more than one window, then you can define the style with the application. In
a Visual Studio WPF project, the file App.xaml is created for defining global resources of the application.
The application styles are valid for every window of the application. Every element can access resources
that are defined with the application. If resources are not found with the parent window, then the search for
resources continues with the Application (code file StylesAndResources/App.xaml):

<Application x:Class="StylesAndResources.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>

 </Application.Resources>
</Application>

system Resources
Some system-wide resources for colors and fonts are available for all applications. These resources are
defined with the classes SystemColors, SystemFonts, and SystemParameters:

➤➤ SystemColors — Provides the color settings for borders, controls, the desktop, and windows, such as
ActiveBorderColor, ControlBrush, DesktopColor, WindowColor, WindowBrush, and so on.

➤➤ SystemFonts — Returns the settings for the fonts of the menu, status bar, and message box. These
include CaptionFont, DialogFont, MenuFont, MessageBoxFont, StatusFont, and so on.

➤➤ SystemParameters — Provides settings for sizes of menu buttons, cursors, icons, borders, captions,
timing information, and keyboard settings, such as BorderWidth, CaptionHeight, CaptionWidth,
MenuButtonWidth, MenuPopupAnimation, MenuShowDelay, SmallIconHeight, SmallIconWidth,
and so on.

Accessing Resources from Code
To access resources from code-behind, the base class FrameworkElement implements the method
FindResource, so you can invoke this method with every WPF object. To do this, button1 doesn’t
have a background specified, but the Click event is assigned to the method button1_Click (code file
StylesAndResources/ResourceDemo.xaml):

c35.indd 1074 30-01-2014 20:41:50

Styles and Resources ❘ 1075

 <Button Name="button1" Width="220" Height="50" Margin="5"
 Click="button1_Click" Content="Apply Resource Programmatically" />

With the implementation of button1_Click, the FindResource method is used on the Button that was
clicked. Then a search for the resource MyGradientBrush happens hierarchically, and the brush is applied
to the Background property of the control. The resource MyGradientBrush was created previously in the
resources of the StackPanel (code file StylesAndResources/ResourceDemo.xaml.cs):

 public void button1_Click(object sender, RoutedEventArgs e)
 {
 Control ctrl = sender as Control;
 ctrl.Background = ctrl.FindResource("MyGradientBrush") as Brush;
 }

noTE If FindResource does not find the resource key, then an exception is thrown.
If you aren’t certain whether the resource is available, then you can instead use the
method TryFindResource, which returns null if the resource is not found.

dynamic Resources
With the StaticResource markup extension, resources are searched at load time. If the resource changes
while the program is running, then you should use the DynamicResource markup extension instead.

The next example (code file StylesAndResources/ResourceDemo.xaml) is using the same resource defined
previously. The earlier example used StaticResource. This button uses DynamicResource with the
DynamicResource markup extension. The event handler of this button changes the resource programmati-
cally. The handler method button2_Click is assigned to the Click event handler:

 <Button Name="button2" Width="200" Height="50" Foreground="White" Margin="5"
 Background="{DynamicResource MyGradientBrush}" Content="Change Resource"
 Click="button2_Click" />

The implementation of button2_Click clears the resources of the StackPanel and adds a new resource
with the same name, MyGradientBrush. This new resource is very similar to the resource defined in XAML
code; it just defines different colors (code file StylesAndResources/ResourceDemo.xaml.cs):

 private void button2_Click(object sender, RoutedEventArgs e)
 {
 myContainer.Resources.Clear();
 var brush = new LinearGradientBrush
 {
 StartPoint = new Point(0, 0),
 EndPoint = new Point(0, 1)
 };

 brush.GradientStops = new GradientStopCollection()
 {
 new GradientStop(Colors.White, 0.0),
 new GradientStop(Colors.Yellow, 0.14),
 new GradientStop(Colors.YellowGreen, 0.7)
 };
 myContainer.Resources.Add("MyGradientBrush", brush);
 }

c35.indd 1075 30-01-2014 20:41:50

1076 ❘ CHAPTER 35 Core WPF

When running the application, the resource changes dynamically by clicking the Change Resource but-
ton. Using the button with DynamicResource gets the dynamically created resource; the button with
StaticResource looks the same as before.

Resource dictionaries
If the same resources are used with different applications, it’s useful to put the resource in a resource dic-
tionary. Using resource dictionaries, the files can be shared between multiple applications, or the resource
dictionary can be put into an assembly and shared by the applications.

To share a resource dictionary in an assembly, create a library. A resource dictionary file, here
Dictionary1.xaml, can be added to the assembly. The build action for this file must be set to Resource so
that it is added as a resource to the assembly.

Dictionary1.xaml defines two resources: LinearGradientBrush with the CyanGradientBrush key,
and a style for a Button that can be referenced with the PinkButtonStyle key (code file download
ResourcesLib/Dictionary1.xaml):

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <LinearGradientBrush x:Key="CyanGradientBrush" StartPoint="0,0"
 EndPoint="0.3,1">
 <GradientStop Offset="0.0" Color="LightCyan" />
 <GradientStop Offset="0.14" Color="Cyan" />
 <GradientStop Offset="0.7" Color="DarkCyan" />
 </LinearGradientBrush>

 <Style x:Key="PinkButtonStyle" TargetType="Button">
 <Setter Property="FontSize" Value="22" />
 <Setter Property="Foreground" Value="White" />
 <Setter Property="Background">
 <Setter.Value>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0.0" Color="Pink" />
 <GradientStop Offset="0.3" Color="DeepPink" />
 <GradientStop Offset="0.9" Color="DarkOrchid" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>
</ResourceDictionary>

With the target project, the library needs to be referenced, and the resource dictionary added to the
dictionaries. You can use multiple resource dictionary files that can be added with the Merged
Dictionaries property of the ResourceDictionary. A list of resource dictionaries can be added to the
merged dictionaries. With the Source property of ResourceDictionary, a dictionary can be referenced.
For the reference, the pack URI syntax is used. The pack URI can be assigned as absolute, whereby the URI
begins with pack://, or as relative, as it is used in this example. With relative syntax, the referenced
assembly ResourceLib, which includes the dictionary, is first after the / followed by ;component
. Component means that the dictionary is included as a resource in the assembly. After that, the name of the
dictionary file Dictionary1.xaml is added. If the dictionary is added into a subfolder, the folder name must
be declared as well (code file StylesAndResources/App.xaml):

<Application x:Class="StylesAndResources.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml">

c35.indd 1076 30-01-2014 20:41:51

Triggers ❘ 1077

 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="/ResourceLib;component/Dictionary1.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>
</Application>

Now it is possible to use the resources from the referenced assembly in the same way as local resources (code
file StylesAndResources/ResourceDemo.xaml):

 <Button Width="300" Height="50" Style="{StaticResource PinkButtonStyle}"
 Content="Referenced Resource" />

TRiggERs
With triggers you can change the look and feel of your controls dynamically based on certain events or
property value changes. For example, when the user moves the mouse over a button, the button can change
its look. Usually, you need to do this with the C# code. With WPF, you can also do this with XAML, as
long as only the UI is influenced.

There are several triggers with XAML. Property triggers are activated as soon as a property value changes.
Multi-triggers are based on multiple property values. Event triggers fire when an event occurs. Data triggers
happen when data that is bound is changed. This section discusses property triggers, multi-triggers, and
data triggers. Event triggers are explained later with animations.

Property Triggers
The Style class has a Triggers property whereby you can assign property triggers. The following example
(code file TriggerDemo/PropertyTriggerWindow.xaml) includes a Button element inside a Grid panel.
With the Window resources, a default style for Button elements is defined. This style specifies that the
Background is set to LightBlue and the FontSize to 17. This is the style of the Button elements when
the application is started. Using triggers, the style of the controls change. The triggers are defined within the
Style.Triggers element, using the Trigger element. One trigger is assigned to the property IsMouseOver;
the other trigger is assigned to the property IsPressed. Both of these properties are defined with the
Button class to which the style applies. If IsMouseOver has a value of true, then the trigger fires and sets
the Foreground property to Red and the FontSize property to 22. If the Button is pressed, then the prop-
erty IsPressed is true, and the second trigger fires and sets the Foreground property of the TextBox to
Yellow:

noTE If the IsPressed property is set to true, the IsMouseOver property will
be true as well. Pressing the button also requires the mouse to be over the button.
Pressing the button triggers it to fire and changes the properties accordingly. Here, the
order of triggers is important. If the IsPressed property trigger is moved before the
IsMouseOver property trigger, the IsMouseOver property trigger overwrites the values
that the first trigger set.

<Window x:Class="TriggerDemo.PropertyTriggerWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="PropertyTriggerWindow" Height="300" Width="300">
 <Window.Resources>

c35.indd 1077 30-01-2014 20:41:51

1078 ❘ CHAPTER 35 Core WPF

 <Style TargetType="Button">
 <Setter Property="Background" Value="LightBlue" />
 <Setter Property="FontSize" Value="17" />
 <Style.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter Property="Foreground" Value="Red" />
 <Setter Property="FontSize" Value="22" />
 </Trigger>
 <Trigger Property="IsPressed" Value="True">
 <Setter Property="Foreground" Value="Yellow" />
 <Setter Property="FontSize" Value="22" />
 </Trigger>
 </Style.Triggers>
 </Style>
 </Window.Resources>
 <Grid>
 <Button Width="200" Height="30" Content="Click me!" />
 </Grid>
</Window>

You don’t need to reset the property values to the original values when the reason for the trigger is not valid
anymore. For example, you don’t need to define a trigger for IsMouseOver=true and IsMouseOver=false.
As soon as the reason for the trigger is no longer valid, the changes made by the trigger action are reset to
the original values automatically.

Figure 35-20 shows the trigger sample application in which the foreground and
font size of the button are changed from their original values when the button has
the focus.

noTE When using property triggers, it is extremely easy to change the look of con-
trols, fonts, colors, opacity, and the like. When the mouse moves over them, the key-
board sets the focus — not a single line of programming code is required.

The Trigger class defines the following properties to specify the trigger action.

TRiggER PRoPERTy dEsCRiPTion

Property
Value

With property triggers, the Property and Value properties are used to
specify when the trigger should fire — for example, Property="IsMouseOver"
Value="True".

Setters As soon as the trigger fires, you can use Setters to define a collection of
Setter elements to change values for properties. The Setter class defines
the properties Property, TargetName, and Value for the object properties to
change.

EnterActions
ExitActions

Instead of defining setters, you can define EnterActions and ExitActions.
With both of these properties, you can define a collection of TriggerAction
elements. EnterActions fires when the trigger starts (with a property trigger,
when the Property/Value combination applies); ExitActions fires before
it ends (just at the moment when the Property/Value combination no lon-
ger applies).Trigger actions that you can specify with these actions are derived
from the base class TriggerAction, such as, SoundPlayerAction and
BeginStoryboard. With SoundPlayerAction, you can start the playing of
sound. BeginStoryboard is used with animation, discussed later in this chapter.

FigURE 35-20

c35.indd 1078 30-01-2014 20:41:51

Triggers ❘ 1079

multiTrigger
A property trigger fires when a value of a property changes. If you need to set a trigger because two or more
properties have a specific value, you can use MultiTrigger.

MultiTrigger has a Conditions property whereby valid values of properties can be specified. It also has
a Setters property that enables you to specify the properties that need to be set. In the following example
(code file TriggerDemo/MultiTriggerWindow.xaml), a style is defined for TextBox elements such that the
trigger applies if the IsEnabled property is True and the Text property has the value Test. If both apply,
the Foreground property of the TextBox is set to Red:

<Window x:Class="TriggerDemo.MultiTriggerWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MultiTriggerWindow" Height="300" Width="300">
 <Window.Resources>
 <Style TargetType="TextBox">
 <Style.Triggers>
 <MultiTrigger>
 <MultiTrigger.Conditions>
 <Condition Property="IsEnabled" Value="True" />
 <Condition Property="Text" Value="Test" />
 </MultiTrigger.Conditions>
 <MultiTrigger.Setters>
 <Setter Property="Foreground" Value="Red" />
 </MultiTrigger.Setters>
 </MultiTrigger>
 </Style.Triggers>
 </Style>
 </Window.Resources>
 <Grid>
 <TextBox />
 </Grid>
</Window>

data Triggers
Data triggers fire if bound data to a control fulfills specific conditions. In the following example (code file
TriggerDemo/Book.cs), a Book class is used that has different displays depending on the publisher of the
book.

The Book class defines the properties Title and Publisher and has an overload of the ToString method:

 public class Book
 {
 public string Title { get; set; }
 public string Publisher { get; set; }

 public override string ToString()
 {
 return Title;
 }
 }

In the XAML code, a style is defined for ListBoxItem elements. The style contains DataTrigger ele-
ments that are bound to the Publisher property of the class that is used with the items. If the value of the
Publisher property is Wrox Press, the Background is set to Red. With the publishers Dummies and Wiley,
the Background is set to Yellow and DarkGray, respectively (code file TriggerDemo/DataTriggerWindow
.xaml):

c35.indd 1079 30-01-2014 20:41:51

1080 ❘ CHAPTER 35 Core WPF

<Window x:Class="TriggerDemo.DataTriggerWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Data Trigger Window" Height="300" Width="300">
 <Window.Resources>
 <Style TargetType="ListBoxItem">
 <Style.Triggers>
 <DataTrigger Binding="{Binding Publisher}" Value="Wrox Press">
 <Setter Property="Background" Value="Red" />
 </DataTrigger>
 <DataTrigger Binding="{Binding Publisher}" Value="Dummies">
 <Setter Property="Background" Value="Yellow" />
 </DataTrigger>
 <DataTrigger Binding="{Binding Publisher}" Value="Wiley">
 <Setter Property="Background" Value="DarkGray" />
 </DataTrigger>
 </Style.Triggers>
 </Style>
 </Window.Resources>
 <Grid>
 <ListBox x:Name="list1" />
 </Grid>
</Window>

In the code-behind (code file TriggerDemo/DataTriggerWindow.xaml.cs), the list with the name list1 is
initialized to contain several Book objects:

 public DataTriggerWindow()
 {
 InitializeComponent();
 list1.Items.Add(new Book
 {
 Title = "Professional C# 4.0 and .NET 4",
 Publisher = "Wrox Press"
 });
 list1.Items.Add(new Book
 {
 Title = "C# 2010 for Dummies",
 Publisher = "For Dummies"
 });
 list1.Items.Add(new Book
 {
 Title = "HTML and CSS: Design and Build Websites",
 Publisher = "Wiley"
 });
 }

Running the application, you can see in Figure 35-21 the ListBoxItem
elements that are formatted according to the publisher value.

With DataTrigger, multiple properties must be set for
MultiDataTrigger (similar to Trigger and MultiTrigger).

TEmPlATEs
In this chapter, you have already seen that a Button control can contain any content. The content can be
simple text, but you can also add a Canvas element, which can contain shapes; a Grid; or a video. In fact,
you can do even more than that with a button!

FigURE 35-21

c35.indd 1080 30-01-2014 20:41:51

Templates ❘ 1081

In WPF, the functionality of controls is completely separate from their look and feel. A button has a default
look, but you can completely customize that look as you like with templates.

WPF provides several template types that derive from the base class FrameworkTemplate.

TEmPlATE TyPE dEsCRiPTion

ControlTemplate Enables you to specify the visual structure of a control and over-
ride its look

ItemsPanelTemplate For an ItemsControl you can specify the layout of its items
by assigning an ItemsPanelTemplate. Each ItemsControl
has a default ItemsPanelTemplate. For the MenuItem, it is a
WrapPanel. The StatusBar uses a DockPanel, and the ListBox
uses a VirtualizingStackPanel.

DataTemplate These are very useful for graphical representations of objects.
When styling a ListBox, by default the items of the ListBox
are shown according to the output of the ToString method. By
applying a DataTemplate you can override this behavior and
define a custom presentation of the items.

HierarchicalDataTemplate Used for arranging a tree of objects. This control supports
HeaderedItemsControls, such as TreeViewItem and
MenuItem.

Control Templates
Previously in this chapter you’ve seen how the properties of a control can be styled. If setting simple prop-
erties of the controls doesn’t give you the look you want, you can change the Template property. With
the Template property, you can customize the complete look of the control. The next example demon-
strates customizing buttons; and later in the following sections (“Data Templates,” “Styling a ListBox,”
“ItemTemplate,” and “Control Templates for ListBox Elements”), list boxes are customized step by step, so
you can see the intermediate results of the changes.

You customize the Button type in a separate resource dictionary file, Styles.xaml. Here, a style with the
key name RoundedGelButton is defined. The style GelButton sets the properties Background, Height,
Foreground, and Margin, and the Template. The Template is the most interesting aspect with this style.
The Template specifies a Grid with just one row and one column.

Inside this cell, you can find an ellipse with the name GelBackground. This ellipse has a linear gradient
brush for the stroke. The stroke that surrounds the rectangle is very thin because the StrokeThickness is
set to 0.5.

The second ellipse, GelShine, is a small ellipse whose size is defined by the Margin property and so is visible
within the first ellipse. The stroke is transparent, so there is no line surrounding the ellipse. This ellipse uses
a linear gradient fill brush, which transitions from a light, partly transparent color to full transparency. This
gives the ellipse a shimmering effect (code file TemplateDemo/Styles.xaml):

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Style x:Key="RoundedGelButton" TargetType="Button">
 <Setter Property="Width" Value="100" />
 <Setter Property="Height" Value="100" />
 <Setter Property="Foreground" Value="White" />

c35.indd 1081 30-01-2014 20:41:51

1082 ❘ CHAPTER 35 Core WPF

 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <Grid>
 <Ellipse Name="GelBackground" StrokeThickness="0.5" Fill="Black">
 <Ellipse.Stroke>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#ff7e7e7e" />
 <GradientStop Offset="1" Color="Black" />
 </LinearGradientBrush>
 </Ellipse.Stroke>
 </Ellipse>
 <Ellipse Margin="15,5,15,50">
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#aaffffff" />
 <GradientStop Offset="1" Color="Transparent" />
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</ResourceDictionary>

From the app.xaml file, the resource dictionary is referenced as shown here (code file TemplateDemo/
App.xaml):

<Application x:Class="TemplateDemo.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>
 <ResourceDictionary Source="Styles.xaml" />
 </Application.Resources
</Application>

Now a Button control can be associated with the style. The new look of the button is
shown in Figure 35-22 and uses code file TemplateDemo/StyledButtonWindow.xaml:

 <Button Style="{StaticResource RoundedGelButton}" Content="Click Me!" />

The button now has a completely different look. However, the content that is defined with the button itself
is missing. The template created previously must be extended to get the content of the Button into the new
look. What needs to be added is a ContentPresenter. The ContentPresenter is the placeholder for the
control’s content, and it defines the place where the content should be positioned. In the code that follows
(code file TemplateDemo/StyledButtonWindow.xaml), the content is placed in the first row of the Grid, as
are the Ellipse elements. The Content property of the ContentPresenter defines what the content should
be. The content is set to a TemplateBinding markup expression. TemplateBinding binds the template
parent, which is the Button element in this case. {TemplateBinding Content} specifies that the value of
the Content property of the Button control should be placed inside the placeholder as content. Figure 35-23
shows the result with the content shown in the here:

 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">

FigURE 35-22

c35.indd 1082 30-01-2014 20:41:52

Templates ❘ 1083

 <Grid>
 <Ellipse Name="GelBackground" StrokeThickness="0.5" Fill="Black">
 <Ellipse.Stroke>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#ff7e7e7e" />
 <GradientStop Offset="1" Color="Black" />
 </LinearGradientBrush>
 </Ellipse.Stroke>
 </Ellipse>
 <Ellipse Margin="15,5,15,50">
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#aaffffff" />
 <GradientStop Offset="1" Color="Transparent" />
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <ContentPresenter Name="GelButtonContent"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"
 Content="{TemplateBinding Content}" />
 </Grid>
 </ControlTemplate>
 </Setter.Value>

Such a styled button now looks very fancy on the screen, but there’s still a problem: There
is no action if
the mouse is clicked or the mouse moves over the button. This isn’t the typical experience a user has with a
button. This can be solved, however. With a template-styled button, you must have triggers that enable
the button to look differently in response to mouse moves and mouse clicks.

Using property triggers (discussed previously), this can be done easily. The triggers just need to be added to
the Triggers collection of the ControlTemplate as shown next. Here, two triggers are defined. One prop-
erty trigger is active when the IsMouseOver property of the button is true. Then the Fill property of the
Ellipse with the name GelBackground is changed to a RadialGradientBrush with values from Lime to
DarkGreen. With the IsPressed property, other colors are specified for the RadialGradientBrush:

 <ControlTemplate.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter Property="Ellipse.Fill" TargetName="GelBackground">
 <Setter.Value>
 <RadialGradientBrush>
 <GradientStop Offset="0" Color="Lime" />
 <GradientStop Offset="1" Color="DarkGreen" />
 </RadialGradientBrush>
 </Setter.Value>
 </Setter>
 </Trigger>
 <Trigger Property="IsPressed" Value="True">
 <Setter Property="Ellipse.Fill" TargetName="GelBackground">
 <Setter.Value>
 <RadialGradientBrush>
 <GradientStop Offset="0" Color="#ffcc34" />
 <GradientStop Offset="1" Color="#cc9900" />
 </RadialGradientBrush>
 </Setter.Value>
 </Setter>
 </Trigger>

 </ControlTemplate.Triggers>

FigURE 35-23

c35.indd 1083 30-01-2014 20:41:52

1084 ❘ CHAPTER 35 Core WPF

Now run the application and you should see visual feedback from the button as soon as the mouse hovers
over it or the mouse is clicked.

data Templates
The content of ContentControl elements can be any content — not only WPF elements but also .NET
objects. For example, an object of the Country type can be assigned to the content of a Button class. In
the following example (code file TemplateDemo/Country.cs), the Country class is created to represent the
name and flag with a path to an image. This class defines the Name and ImagePath properties, and it has an
overridden ToString method for a default string representation:

 public class Country
 {
 public string Name { get; set; }
 public string ImagePath { get; set; }

 public override string ToString()
 {
 return Name;
 }
 }

How does this content look within a Button or any other ContentControl? By default, the ToString
method is invoked, and the string representation of the object is shown. For a custom look you can also
create a DataTemplate for the Country type.

Here, within the resources of the Window, a DataTemplate is created. This DataTemplate doesn’t have a
key assigned and thus is a default for the Country. src type — it is also the alias of the XML namespace
 referencing the .NET assembly and .NET namespace. Within the DataTemplate the main elements are a
TextBox with the Text property bound to the Name property of the Country, and an Image with the
Source property bound to the ImagePath property of the Country. The Grid, Border, and Rectangle
elements define the layout and visual appearance (code file TemplateDemo/StyledButtonWindow.xaml):

 <Window.Resources>
 <DataTemplate DataType="{x:Type src:Country}">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="60" />
 </Grid.RowDefinitions>
 <TextBlock FontSize="16" VerticalAlignment="Center" Margin="5"
 Text="{Binding Name}" FontWeight="Bold" Grid.Column="0" />
 <Border Margin="4,0" Grid.Column="1" BorderThickness="2"
 CornerRadius="4">
 <Border.BorderBrush>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#aaa" />
 <GradientStop Offset="1" Color="#222" />
 </LinearGradientBrush>
 </Border.BorderBrush>
 <Grid>
 <Rectangle>
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#444" />
 <GradientStop Offset="1" Color="#fff" />

c35.indd 1084 30-01-2014 20:41:52

Templates ❘ 1085

 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <Image Width="48" Margin="2,2,2,1" Source="{Binding ImagePath}" />
 </Grid>
 </Border>
 </Grid>
 </DataTemplate>
 </Window.Resources>

With the XAML code, a simple Button element with the name button1 is defined:

 <Button Grid.Row="1" x:Name="button1" Margin="10" />

Within the code-behind (code file TemplateDemo/StyledButtonWindow.xaml.cs), a new Country object
is instantiated that is assigned to the Content property of button1:

 public StyledButtonWindow()
 {
 InitializeComponent();
 button1.Content = new Country
 {
 Name = "Austria",
 ImagePath = "images/Austria.bmp"
 };
 }

After running the application, you can see that the DataTemplate is
applied to the Button because the Country data type has a default
template, shown in Figure 35-24.

Of course, you can also create a control template and use a data
template from within.

styling a listBox
Changing a style of a button or a label is a simple task, such as changing the style of an element that con-
tains a list of elements. For example, how about changing a ListBox? Again, a list box has behavior and a
look. It can display a list of elements, and you can select one or more elements from the list. For the behav-
ior, the ListBox class defines methods, properties, and events. The look of the ListBox is separate from its
behavior. It has a default look, but you can change this look by creating a template.

With a ListBox, the ControlTemplate defines how the complete control looks, an ItemTemplate defines
how an item looks, and a DataTemplate defines the type that might be within an item.To fill a ListBox
with some items, the static class Countries returns a list of a few countries that will be displayed (code file
TemplateDemo/Countries.cs):

 public class Countries
 {
 public static IEnumerable<Country> GetCountries()
 {
 return new List<Country>
 {
 new Country { Name = "Austria", ImagePath = "Images/Austria.bmp" },
 new Country { Name = "Germany", ImagePath = "Images/Germany.bmp" },
 new Country { Name = "Norway", ImagePath = "Images/Norway.bmp" },
 new Country { Name = "USA", ImagePath = "Images/USA.bmp" }
 };
 }
 }

FigURE 35-24

c35.indd 1085 30-01-2014 20:41:52

1086 ❘ CHAPTER 35 Core WPF

Inside the code-behind file (code file TemplateDemo/StyledListBoxWindow1.xaml.cs) in the constructor
of the StyledListBoxWindow1 class, the DataContext property of the StyledListBoxWindow1 instance is
set to the list of countries returned from the method Countries.GetCountries. (The DataContext prop-
erty is a data binding feature discussed in the next chapter.)

 public partial class StyledListBoxWindow1 : Window
 {
 public StyledListBoxWindow1()
 {
 InitializeComponent();
 this.DataContext = Countries.GetCountries();
 }
 }

Within the XAML code (code file TemplateDemo/StyledListBoxWindow.xaml), the ListBox named
countryList1 is defined. countryList1 doesn’t have a different style. It uses the default look from the
ListBox element. The property ItemsSource is set to the Binding markup extension, which is used by
data binding. From the code-behind, you have seen that the binding is done to an array of Country objects.
Figure 35-25 shows the default look of the ListBox. By default, only the names of the countries returned by
the ToString method are displayed in a simple list:

<Window x:Class="TemplateDemo.StyledListBoxWindow1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:src="clr-namespace:TemplateDemo"
 Title="StyledListBoxWindow1" Height="300" Width="300">
 <Grid>
 <ListBox ItemsSource="{Binding}" Margin="10" />
 </Grid>
</Window>

itemTemplate
The Country objects contain both the name and the flag. Of course, you can display both values in the list
box. To do this, you need to define a template.

The ListBox element contains ListBoxItem elements. You can define the content for an item with the
ItemTemplate. The style ListBoxStyle1 defines an ItemTemplate with a value of a DataTemplate.
A DataTemplate is used to bind data to elements. You can use the Binding markup extension with
DataTemplate elements.

The DataTemplate contains a grid with three columns. The first column contains the string Country: The
second column contains the name of the country. The third column contains the flag for the country.
Because the country names are of different lengths but the view should be the same size for every country
name, the SharedSizeGroup property is set with the second column definition. This shared size
information for the column is used only because the property Grid.IsSharedSizeScope is also set.

After the column and row definitions, you can see two TextBlock elements. The first TextBlock element
contains the text Country:. The second TextBlock element binds to the Name property defined in the
Country class.

The content for the third column is a Border element containing a Grid. The
Grid contains a Rectangle with a linear gradient brush and an Image
element that is bound to the ImagePath property of the Country class.
Figure 35-26 shows the countries in a ListBox with completely different
output than before (code file TemplateDemo/Styles.xaml):

FigURE 35-25

FigURE 35-26

c35.indd 1086 30-01-2014 20:41:53

Templates ❘ 1087

 <Style x:Key="ListBoxStyle1" TargetType="{x:Type ListBox}" >
 <Setter Property="ItemTemplate">
 <Setter.Value>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" SharedSizeGroup="MiddleColumn" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="60" />
 </Grid.RowDefinitions>
 <TextBlock FontSize="16" VerticalAlignment="Center" Margin="5"
 FontStyle="Italic" Grid.Column="0" Text="Country:" />
 <TextBlock FontSize="16" VerticalAlignment="Center" Margin="5"
 Text="{Binding Name}" FontWeight="Bold" Grid.Column="1" />
 <Border Margin="4,0" Grid.Column="2" BorderThickness="2"
 CornerRadius="4">
 <Border.BorderBrush>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#aaa" />
 <GradientStop Offset="1" Color="#222" />
 </LinearGradientBrush>
 </Border.BorderBrush>
 <Grid>
 <Rectangle>
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#444" />
 <GradientStop Offset="1" Color="#fff" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <Image Width="48" Margin="2,2,2,1" Source="{Binding ImagePath}" />
 </Grid>
 </Border>
 </Grid>
 </DataTemplate>
 </Setter.Value>
 </Setter>
 <Setter Property="Grid.IsSharedSizeScope" Value="True" />
 </Style>

Control Templates for listBox Elements
It is not necessary for a ListBox to have items that follow vertically, one after the other. You can give the
user a different view with the same functionality. The next style, ListBoxStyle2, defines a template in
which the items are shown horizontally with a scrollbar.

In the previous example, only an ItemTemplate was created to define how the items should look in
the default ListBox. In the following code (code file TemplateDemo/Styles.xaml), a template is cre-
ated to define a different ListBox. The template contains a ControlTemplate element to define the ele-
ments of the ListBox. The element is now a ScrollViewer — a view with a scrollbar — that contains a
StackPanel. Because the items should now be listed horizontally, the Orientation of the StackPanel is
set to Horizontal. The stack panel will contain the items defined with the ItemsTemplate. As a result, the
IsItemsHost of the StackPanel element is set to true. IsItemsHost is a property that is available with
every Panel element that can contain a list of items.

c35.indd 1087 30-01-2014 20:41:53

1088 ❘ CHAPTER 35 Core WPF

The ItemTemplate that defines the look for the items in the stack panel is taken from the style
ListBoxStyle1 where ListBoxStyle2 is based.

Figure 35-27 shows the ListBox styled with ListBoxStyle2, whereby the scrollbar appears automatically
when the view is too small to display all items in the list:

 <Style x:Key="ListBoxStyle2" TargetType="{x:Type ListBox}"
 BasedOn="{StaticResource ListBoxStyle1}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ListBox}">
 <ScrollViewer HorizontalScrollBarVisibility="Auto">
 <StackPanel Name="StackPanel1" IsItemsHost="True"
 Orientation="Horizontal" />
 </ScrollViewer>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 <Setter Property="VerticalAlignment" Value="Center" />
 </Style>

Certainly you see the advantages of separating the look
of the controls from their behavior. You may already
have many ideas about how you can display your items
in a list that best fits the requirements of
your application. Perhaps you just want to display as
many items as will fit in the window, position them
horizontally, and then continue to the next line vertically. That’s where a WrapPanel comes in; and, of course,
you can have a WrapPanel inside a template for a ListBox, as shown in ListBoxStyle3. Figure 35-28 shows
the result of using the WrapPanel:

 <Style x:Key="ListBoxStyle3" TargetType="{x:Type ListBox}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ListBox}">
 <ScrollViewer VerticalScrollBarVisibility="Auto"
 HorizontalScrollBarVisibility="Disabled">
 <WrapPanel IsItemsHost="True" />
 </ScrollViewer>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 <Setter Property="ItemTemplate">
 <Setter.Value>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="140" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="60" />
 <RowDefinition Height="30" />
 </Grid.RowDefinitions>
 <Image Grid.Row="0" Width="48" Margin="2,2,2,1"
 Source="{Binding ImagePath}" />
 <TextBlock Grid.Row="1" FontSize="14"
 HorizontalAlignment="Center" Margin="5" Text="{Binding Name}" />

FigURE 35-27

c35.indd 1088 30-01-2014 20:41:53

Animations ❘ 1089

 </Grid>
 </DataTemplate>
 </Setter.Value>
 </Setter>
 </Style>

AnimATions
Using animations you can make a smooth
transition between images by using moving elements,
color changes, transforms, and so on. WPF makes it easy to create animations. You can animate the value
of any dependency property. Different animation classes exist to animate the values of different properties,
depending on their type.

The major elements of animations are as follows:

➤➤ Timeline — Defines how a value changes over time. Different kinds of timelines are available for
changing different types of values. The base class for all timelines is Timeline. To animate a double,
the class DoubleAnimation can be used. Int32Animation is the animation class for int values.
PointAnimation is used to animate points, and ColorAnimation is used to animate colors.

➤➤ Storyboard — Used to combine animations. The Storyboard class itself is derived from the base class
TimelineGroup, which derives from Timeline. With DoubleAnimation you can animate a double
value; with Storyboard you combine all the animations that belong together.

➤➤ Triggers — Used to start and stop animations. You’ve seen property triggers previously, which fire
when a property value changes. You can also create an event trigger. An event trigger fires when an
event occurs.

noTE The namespace for animation classes is System.Windows.Media.Animation.

Timeline
A Timeline defines how a value changes over time. The following example animates the size of an ellipse.
In the code that follows (code file AnimationDemo/EllipseWindow.xaml), a DoubleAnimation time-
line changes to a double value. The Triggers property of the Ellipse class is set to an EventTrigger.
The event trigger is fired when the ellipse is loaded as defined with the RoutedEvent property of the
EventTrigger. BeginStoryboard is a trigger action that begins the storyboard. With the storyboard, a
DoubleAnimation element is used to animate the Width property of the Ellipse class. The animation
changes the width of the ellipse from 100 to 300 within three seconds, and reverses the animation after
three seconds. The animation ColorAnimation animates the color from the ellipseBrush which is used to
fill the ellipse:

 <Ellipse Height="50" Width="100">
 <Ellipse.Fill>
 <SolidColorBrush x:Name="ellipseBrush" Color="Yellow" />
 </Ellipse.Fill>
 <Ellipse.Triggers>
 <EventTrigger RoutedEvent="Ellipse.Loaded" >
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard Duration="00:00:06" RepeatBehavior="Forever">
 <DoubleAnimation Storyboard.TargetProperty="(Ellipse.Width)"

FigURE 35-28

c35.indd 1089 30-01-2014 20:41:53

1090 ❘ CHAPTER 35 Core WPF

 Duration="0:0:3" AutoReverse="True" FillBehavior="Stop"
 RepeatBehavior="Forever" AccelerationRatio="0.9"
 DecelerationRatio="0.1" From="100" To="300" />
 <ColorAnimation Storyboard.TargetName="ellipseBrush"
 Storyboard.TargetProperty="(SolidColorBrush.Color)"
 Duration="0:0:3" AutoReverse="True"
 FillBehavior="Stop" RepeatBehavior="Forever"
 From="Yellow" To="Red" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </Ellipse.Triggers>
 </Ellipse>

Figures 35-29 and 35-30 show two states from the animated ellipse.

Animations are far more than typical window-dressing animation that
appears onscreen constantly and immediately. You can add animation
to business applications that make the user interface more responsive.

The following example (code file AnimationDemo/
ButtonAnimationWindow.xaml) demonstrates a decent animation
and shows how the animation can be defined in a style. Within the Window resources you can see the style
AnimatedButtonStyle for buttons. In the template, a rectangle-named outline is defined. This template has
a thin stroke with the thickness set to 0.4.

The template defines a property trigger for the IsMouseOver property. The
EnterActions property of this trigger applies as soon as the mouse is moved over
the button. The action to start is BeginStoryboard, which is a trigger action that
can contain and thus start Storyboard elements. The Storyboard element defines
a DoubleAnimation to animate a double value. The property value that is changed
in this animation is the Rectangle.StrokeThickness of the Rectangle element
with the name outline. The value is changed in a smooth way by 1.2, as the
By property specifies, for a time length of 0.3 seconds as specified by the Duration
property. At the end of the animation, the stroke thickness is reset to its original
value because AutoReverse="True". To summarize: As soon as the mouse moves
over the button, the thickness of the outline is incremented by 1.2 for 0.3 seconds.
Figure 35-31 shows the button without animation, and Figure 35-32 shows the
button 0.3 seconds after the mouse moved over it. (Unfortunately, it’s not possible
to show the intermediate appearance of the smooth animation in a print medium.)

<Window x:Class="AnimationDemo.ButtonAnimationWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="ButtonAnimationWindow" Height="300" Width="300">
 <Window.Resources>
 <Style x:Key="AnimatedButtonStyle" TargetType="{x:Type Button}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <Grid>
 <Rectangle Name="outline" RadiusX="9" RadiusY="9"
 Stroke="Black" Fill="{TemplateBinding Background}"
 StrokeThickness="1.6">
 </Rectangle>
 <ContentPresenter VerticalAlignment="Center"
 HorizontalAlignment="Center" />
 </Grid>
 <ControlTemplate.Triggers>

FigURE 35-29

FigURE 35-30

FigURE 35-31

FigURE 35-32

c35.indd 1090 30-01-2014 20:41:53

Animations ❘ 1091

 <Trigger Property="IsMouseOver" Value="True">
 <Trigger.EnterActions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:0.3" AutoReverse="True"
 Storyboard.TargetProperty="(Rectangle.StrokeThickness)"
 Storyboard.TargetName="outline" By="1.2" />
 </Storyboard>
 </BeginStoryboard>
 </Trigger.EnterActions>
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </Window.Resources>
 <Grid>
 <Button Style="{StaticResource AnimatedButtonStyle}" Width="200"
 Height="100" Content="Click Me!" />
 </Grid>
</Window>

The following table describes what you can do with a timeline.

TimElinE PRoPERTiEs dEsCRiPTion

AutoReverse Use this property to specify whether the value that is animated should return
to its original value after the animation.

SpeedRatio Use this property to transform the speed at which an animation moves. You
can define the relation in regard to the parent. The default value is 1; setting
the ratio to a smaller value makes the animation move slower; setting the
value greater than 1 makes it move faster.

BeginTime Use this to specify the time span from the start of the trigger event until the
moment the animation starts. You can specify days, hours, minutes, seconds,
and fractions of seconds. This might not be real time, depending on the
speed ratio. For example, if the speed ratio is set to 2, and the beginning time
is set to six seconds, the animation will start after three seconds.

AccelerationRatio
DecelerationRatio

An animation’s values need not be changed in a linear way. You can specify
an AccelerationRatio and DecelerationRatio to define the impact of
acceleration and deceleration. The sum of both values must not be greater
than 1.

Duration Use this property to specify the length of time for one iteration of the
animation.

RepeatBehavior Assigning a RepeatBehavior struct to the RepeatBehavior property
enables you to define how many times or for how long the animation should
be repeated.

FillBehavior This property is important if the parent timeline has a different duration.
For example, if the parent timeline is shorter than the duration of the actual
animation, setting FillBehavior to Stop means that the actual animation
stops. If the parent timeline is longer than the duration of the actual anima-
tion, HoldEnd keeps the actual animation active before resetting it to its
original value (if AutoReverse is set).

c35.indd 1091 30-01-2014 20:41:54

1092 ❘ CHAPTER 35 Core WPF

Depending on the type of the Timeline class, more properties may be available. For example, with
DoubleAnimation you can specify From and To properties for the start and end of the animation. An
 alternative is to specify the By property, whereby the animation starts with the current value of the Bound
property and is incremented by the value specified by By.

nonlinear Animations
One way to define nonlinear animations is by setting the speed of AccelerationRatio and
DecelerationRatio animation at the beginning and at the end. .NET 4.5 has more flexible possibilities
than that.

Several animation classes have an EasingFunction property. This property accepts an object that
implements the interface IEasingFunction. With this interface, an easing function object can define
how the value should be animated over time. Several easing functions are available to create a nonlinear
animation. Examples include ExponentialEase, which uses an exponential formula for animations;
QuadraticEase, CubicEase, QuarticEase, and QuinticEase, with powers of 2, 3, 4, or 5; and
PowerEase, with a power level that is configurable. Of special interest are SineEase, which uses a sinusoid
curve, BounceEase, which creates a bouncing effect, and ElasticEase, which resembles animation values
of a spring oscillating back and forth.

Such an ease can be specified in XAML by adding the ease to the EasingFunction property of the
 animation as shown in the following code (code file AnimationDemo/EllipseWindow.xaml). Adding
 different ease functions results in very interesting animation effects:

 <DoubleAnimation Storyboard.TargetProperty="(Ellipse.Width)"
 Duration="0:0:3" AutoReverse="True"
 FillBehavior=" RepeatBehavior="Forever"
 From="100" To="300">
 <DoubleAnimation.EasingFunction>
 <BounceEase EasingMode="EaseInOut" />
 </DoubleAnimation.EasingFunction>
 </DoubleAnimation>

Event Triggers
Instead of having a property trigger, you can define an event trigger to start the animation. The property
trigger fires when a property changes its value; the event trigger fires when an event occurs. Examples of
such events are the Load event from a control, the Click event from a Button, and the MouseMove event.

The next example creates an animation for the face that was created earlier with shapes. It is now animated
so that the eye moves as soon as a Click event from a button is fired.

Inside the Window element, a DockPanel element is defined to arrange the face and buttons to control the
animation. A StackPanel that contains three buttons is docked at the top. The Canvas element that
contains the face gets the remaining part of the DockPanel.

The first button is used to start the animation of the eye; the second button stops the animation. A third
button is used to start another animation to resize the face.

The animation is defined within the DockPanel.Triggers section. Instead of a property trigger, an event
trigger is used. The first event trigger is fired as soon as the Click event occurs with the buttonBeginMove-
Eyes button defined by the RoutedEvent and SourceName properties. The trigger action is defined by the
BeginStoryboard element that starts the containing Storyboard. BeginStoryboard has a name defined
because a name is needed to control the storyboard with pause, continue, and stop actions. The Storyboard
element contains four animations. The first two animate the left eye; the last two animate the right eye. The
first and third animation change the Canvas.Left position for the eyes, and the second and fourth
animation change Canvas.Top. The animations in the x and y axes have different time values that make the
eye movement very interesting using the defined repeated behavior.

c35.indd 1092 30-01-2014 20:41:54

Animations ❘ 1093

The second event trigger is fired as soon as the Click event of the buttonStopMoveEyes button occurs.
Here, the storyboard is stopped with the StopStoryboard element, which references the started storyboard
beginMoveEye.

The third event trigger is fired by clicking the buttonResize button. With this animation, the transfor-
mation of the Canvas element is changed. Because this animation doesn’t run endlessly, there’s no stop.
This storyboard also makes use of the EaseFunction explained previously (code file AnimationDemo/
EventTriggerWindow.xaml):

<Window x:Class="AnimationDemo.EventTriggerWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="EventTriggerWindow" Height="300" Width="300">
 <DockPanel>
 <DockPanel.Triggers>
 <EventTrigger RoutedEvent="Button.Click" SourceName="buttonBeginMoveEyes">
 <BeginStoryboard x:Name="beginMoveEyes">
 <Storyboard>
 <DoubleAnimation RepeatBehavior="Forever" DecelerationRatio=".8"
 AutoReverse="True" By="6" Duration="0:0:1"
 Storyboard.TargetName="eyeLeft"
 Storyboard.TargetProperty="(Canvas.Left)" />
 <DoubleAnimation RepeatBehavior="Forever" AutoReverse="True"
 By="6" Duration="0:0:5"
 Storyboard.TargetName="eyeLeft"
 Storyboard.TargetProperty="(Canvas.Top)" />
 <DoubleAnimation RepeatBehavior="Forever" DecelerationRatio=".8"
 AutoReverse="True" By="-6" Duration="0:0:3"
 Storyboard.TargetName="eyeRight"
 Storyboard.TargetProperty="(Canvas.Left)" />
 <DoubleAnimation RepeatBehavior="Forever" AutoReverse="True"
 By="6" Duration="0:0:6"
 Storyboard.TargetName="eyeRight"
 Storyboard.TargetProperty="(Canvas.Top)" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 <EventTrigger RoutedEvent="Button.Click" SourceName="buttonStopMoveEyes">
 <StopStoryboard BeginStoryboardName="beginMoveEyes" />
 </EventTrigger>
 <EventTrigger RoutedEvent="Button.Click" SourceName="buttonResize">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation RepeatBehavior="2" AutoReverse="True"
 Storyboard.TargetName="scale1"
 Storyboard.TargetProperty="(ScaleTransform.ScaleX)"
 From="0.1" To="3" Duration="0:0:5">
 <DoubleAnimation.EasingFunction>
 <ElasticEase />
 </DoubleAnimation.EasingFunction>
 </DoubleAnimation>
 <DoubleAnimation RepeatBehavior="2" AutoReverse="True"
 Storyboard.TargetName="scale1"
 Storyboard.TargetProperty="(ScaleTransform.ScaleY)"
 From="0.1" To="3" Duration="0:0:5">
 <DoubleAnimation.EasingFunction>
 <BounceEase />
 </DoubleAnimation.EasingFunction>
 </DoubleAnimation>
 </Storyboard>
 </BeginStoryboard>

c35.indd 1093 30-01-2014 20:41:54

1094 ❘ CHAPTER 35 Core WPF

 </EventTrigger>
 </DockPanel.Triggers>
 <StackPanel Orientation="Vertical" DockPanel.Dock="Top">
 <Button x:Name="buttonBeginMoveEyes" Content="Start Move Eyes" Margin="5" />
 <Button x:Name="buttonStopMoveEyes" Content="Stop Move Eyes" Margin="5" />
 <Button x:Name="buttonResize" Content="Resize" Margin="5" />
 </StackPanel>
 <Canvas>
 <Canvas.LayoutTransform>
 <ScaleTransform x:Name="scale1" ScaleX="1" ScaleY="1" />
 </Canvas.LayoutTransform>
 <Ellipse Canvas.Left="10" Canvas.Top="10" Width="100" Height="100"
 Stroke="Blue" StrokeThickness="4" Fill="Yellow" />
 <Ellipse Canvas.Left="30" Canvas.Top="12" Width="60" Height="30">
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint="0.5,0" EndPoint="0.5, 1">
 <GradientStop Offset="0.1" Color="DarkGreen" />
 <GradientStop Offset="0.7" Color="Transparent" />
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <Ellipse Canvas.Left="30" Canvas.Top="35" Width="25" Height="20"
 Stroke="Blue" StrokeThickness="3" Fill="White" />
 <Ellipse x:Name="eyeLeft" Canvas.Left="40" Canvas.Top="43" Width="6"
 Height="5" Fill="Black" />
 <Ellipse Canvas.Left="65" Canvas.Top="35" Width="25" Height="20"
 Stroke="Blue" StrokeThickness="3" Fill="White" />
 <Ellipse x:Name="eyeRight" Canvas.Left="75" Canvas.Top="43" Width="6"
 Height="5" Fill="Black" />
 <Path Name="mouth" Stroke="Blue" StrokeThickness="4"
 Data="M 40,74 Q 57,95 80,74 " />
 </Canvas>
 </DockPanel>
</Window>

Figure 35-33 shows the output after running the
application.

Rather than start and stop the animation directly from
event triggers in XAML, you can easily control the
animation from code-behind. You just need to assign a
name to the Storyboard and invoke the Begin, Stop,
Pause, and Resume methods.

Keyframe Animations
With acceleration and deceleration ratio as well as the
ease functions, you’ve seen how animations can be built
in a nonlinear fashion. If you need to specify several
values for an animation, you can use keyframe
animations. Like normal animations, keyframe
animations are various animation types that exist
to animate properties of different types.

DoubleAnimationUsingKeyFrames is the keyframe animation for double types. Other
keyframe animation types are Int32AnimationUsingKeyFrames, PointAnimationUsingKeyFrames,
ColorAnimationUsingKeyFrames, SizeAnimationUsingKeyFrames, and
ObjectAnimationUsingKeyFrames.

FigURE 35-33

c35.indd 1094 30-01-2014 20:41:54

Visual State Manager ❘ 1095

The following example XAML code (code file AnimationDemo/KeyFrameWindow.xaml) animates the
position of an ellipse by animating the X and Y values of a TranslateTransform element. The animation
starts when the ellipse is loaded by defining an EventTrigger to the RoutedEvent Ellipse.Loaded.
The event trigger starts a Storyboard with the BeginStoryboard element. The Storyboard contains
two keyframe animations of type DoubleAnimationUsingKeyFrame. A keyframe animation consists of
frame elements. The first keyframe animation uses a LinearKeyFrame, a DiscreteDoubleKeyFrame,
and a SplineDoubleKeyFrame; the second animation is an EasingDoubleKeyFrame. The
LinearDoubleKeyFrame makes a linear change of the value. The KeyTime property defines when in the
animation the value of the Value property should be reached.

Here, the LinearDoubleKeyFrame has three seconds to move the property X to the value
30. DiscreteDoubleKeyFrame makes an immediate change to the new value after four seconds.
SplineDoubleKeyFrame uses a Bézier curve whereby two control points are specified by the KeySpline
property. EasingDoubleKeyFrame is a frame class that supports setting an easing function such as
BounceEase to control the animation value:

 <Canvas>
 <Ellipse Fill="Red" Canvas.Left="20" Canvas.Top="20" Width="25" Height="25">
 <Ellipse.RenderTransform>
 <TranslateTransform X="50" Y="50" x:Name="ellipseMove" />
 </Ellipse.RenderTransform>
 <Ellipse.Triggers>
 <EventTrigger RoutedEvent="Ellipse.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="X"
 Storyboard.TargetName="ellipseMove">
 <LinearDoubleKeyFrame KeyTime="0:0:2" Value="30" />
 <DiscreteDoubleKeyFrame KeyTime="0:0:4" Value="80" />
 <SplineDoubleKeyFrame KeySpline="0.5,0.0 0.9,0.0"
 KeyTime="0:0:10" Value="300" />
 <LinearDoubleKeyFrame KeyTime="0:0:20" Value="150" />
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="Y"
 Storyboard.TargetName="ellipseMove">
 <SplineDoubleKeyFrame KeySpline="0.5,0.0 0.9,0.0"
 KeyTime="0:0:2" Value="50" />
 <EasingDoubleKeyFrame KeyTime="0:0:20" Value="300">
 <EasingDoubleKeyFrame.EasingFunction>
 <BounceEase />
 </EasingDoubleKeyFrame.EasingFunction>
 </EasingDoubleKeyFrame>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Ellipse.Triggers>
 </Ellipse>
 </Canvas>

VisUAl sTATE mAnAgER
Beginning with .NET 4, Visual State Manager offers an alternative way to control animations. Controls
can have specific states. The state defines a look that is applied to controls when the state is reached. A state
transition defines what happens when one state changes to another one.

With a data grid you can use Read, Selected, and Edit states to define different looks for a row, depending
on user selection. MouseOver and IsPressed are states that replace the triggers, which have been discussed
earlier.

c35.indd 1095 30-01-2014 20:41:54

1096 ❘ CHAPTER 35 Core WPF

The following example (code file VisualStateDemo/Style.xaml) creates a custom template for the Button
type whereby visual states are used instead of the triggers used earlier. The XAML code in this snippet
defines a template for the Button type that consists of Ellipse elements with gradient brushes. As the code
stands here, nothing happens when the user moves the mouse over a button or clicks it. This is going to be
changed using visual states.

 <Style TargetType="Button">
 <Setter Property="Width" Value="100" />
 <Setter Property="Height" Value="100" />
 <Setter Property="Foreground" Value="White" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <Grid>
 <Ellipse Name="GelBackground" StrokeThickness="0.5">
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="Black" />
 <GradientStop Offset="1" Color="Black" />
 </LinearGradientBrush>
 </Ellipse.Fill>
 <Ellipse.Stroke>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#ff7e7e7e" />
 <GradientStop Offset="1" Color="Black" />
 </LinearGradientBrush>
 </Ellipse.Stroke>
 </Ellipse>
 <Ellipse Margin="15,5,15,50">
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="#aaffffff" />
 <GradientStop Offset="1" Color="Transparent" />
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <ContentPresenter Name="GelButtonContent" VerticalAlignment="Center"
 HorizontalAlignment="Center"
 Content="{TemplateBinding Content}" />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>

Visual states
The Button type defines several state groups and states. The state group CommonStates defines the states
Normal, MouseOver, and Pressed. The state group FocusedStates defines Focused and Unfocused. As
shown in the following example (code file VisualStateDemo/Style.xaml), the implementation of the
Button class changes the states using the VisualStateManager — you just have to define a look for these
states.

For defining a different appearance for the controls using visual states, the attached property
VisualStateManager.VisualStateGroups is defined within the template. The first group defined is
CommonStates. Within this group, looks for the MouseOver and Pressed states are defined. Within the
MouseOver state, a key frame color animation changes the fill color of the ellipse to a gradient color from
lime to dark green. The Pressed state has a similar implementation: the fill color changes to a new range
from ffcc34 to cc9900:

c35.indd 1096 30-01-2014 20:41:55

Visual State Manager ❘ 1097

 <ContentPresenter Name="GelButtonContent" VerticalAlignment="Center"
 HorizontalAlignment="Center"
 Content="{TemplateBinding Content}" />
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup Name="CommonStates">
 <VisualState Name="Normal" />
 <VisualState Name="MouseOver">
 <Storyboard>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetProperty=
 "(Shape.Fill).(GradientBrush.GradientStops)[0].
 (GradientStop.Color)"
 Storyboard.TargetName="GelBackground">
 <EasingColorKeyFrame KeyTime="0" Value="Lime"/>
 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetProperty=
 "(Shape.Fill).(GradientBrush.GradientStops)[1].
 (GradientStop.Color)"
 Storyboard.TargetName="GelBackground">
 <EasingColorKeyFrame KeyTime="0" Value="DarkGreen"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 <VisualState Name="Pressed">
 <Storyboard>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetProperty=
 "(Shape.Fill).(GradientBrush.GradientStops)[0].
 (GradientStop.Color)"
 Storyboard.TargetName="GelBackground">
 <EasingColorKeyFrame KeyTime="0" Value="#ffcc34"/>
 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetProperty=
 "(Shape.Fill).(GradientBrush.GradientStops)[1].
 (GradientStop.Color)"
 Storyboard.TargetName="GelBackground">
 <EasingColorKeyFrame KeyTime="0" Value="#cc9900"/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 <VisualStateGroup Name="FocusedStates">
 <VisualState Name="Focused" />
 <VisualState Name="Unfocused" />
 </VisualStateGroup>

 </VisualStateManager.VisualStateGroups>

The state change is already evident. Moving the mouse over a Button or clicking the Button changes its
user interface. Next, an animation between state transitions is added.

Transitions
With state transitions you can define what should happen when a change into a state occurs. Transitions are
added by using VisualStateGroup.Transitions. In the following example (code file VisualStateDemo/
Style.xaml), the first transition is a global transition specifying that the state change should take 0.2 sec-
onds, and a QuadraticEase function should be used for the animation. The second defined transition is
specified if the state changes into the MouseOver state. With the implementation of this state transition, the

c35.indd 1097 30-01-2014 20:41:55

1098 ❘ CHAPTER 35 Core WPF

thickness of the ellipse Gelbackground is changed by adding 2 within 0.5 seconds, and after the animation
is completed it reverts to its original value:

 <ContentPresenter Name="GelButtonContent" VerticalAlignment="Center"
 HorizontalAlignment="Center"
 Content="{TemplateBinding Content}" />
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup Name="CommonStates">
 <!-- ... -->
 <VisualStateGroup.Transitions>
 <VisualTransition GeneratedDuration="0:0:0.2" >
 <VisualTransition.GeneratedEasingFunction>
 <QuadraticEase EasingMode="EaseOut" />
 </VisualTransition.GeneratedEasingFunction>
 </VisualTransition>
 <VisualTransition GeneratedDuration="0:0:0.5" To="MouseOver">
 <Storyboard>
 <DoubleAnimation By="2" Duration="0:0:0.5"
 AutoReverse="True"
 Storyboard.TargetProperty="(Shape.StrokeThickness)"
 Storyboard.TargetName="GelBackground" />
 </Storyboard>
 </VisualTransition>
 </VisualStateGroup.Transitions>
 </VisualStateGroup>
 <VisualStateGroup Name="FocusedStates">
 <VisualState Name="Focused" />
 <VisualState Name="Unfocused" />
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

noTE Using custom states, you can easily change the state with the VisualState
Manager class, invoking the method GoToElementState.

3-d
This last section of a long chapter introduces the 3-D features of WPF. Here you’ll find the information you
need to get started.

noTE The namespace for 3-D with WPF is System.Windows.Media.Media3D.

To understand 3-D with WPF it is important to know the difference between the coordinate systems.
Figure 35-34 shows the WPF 3-D coordinate system. The origin is placed in the center. The x-axis has
positive values to the right and negative values to the left. The y-axis is vertical with positive values up and
negative values down. The z-axis defines positive values in direction to the viewer of the scene.

The most important concepts to understand in order to understand 3-D with WPF are that of model, cam-
era, and lights. The model defines what is shown using triangles. The camera defines the point at which and
how we look at the model, and without light the model is dark. The light defines how the complete scene is
illuminated. The following sections provide details about how to define the model, camera, and light with
WPF and what different options are available. Also covered is how the scene can be animated.

c35.indd 1098 30-01-2014 20:41:55

3-D ❘ 1099

model
This section creates a model that has the 3-D look of a
book. A 3-D model is made up of triangles, so the sim-
plest model is just one triangle. More complex models are
made from multiple triangles. Rectangles can be made
from two triangles, and balls are made from a multiplic-
ity of triangles. The more triangles used, the rounder the
ball.

With the book model, each side is a rectangle, which
could be made from only two triangles. However,
because the front cover has three different materials, six
triangles are used.

A triangle is defined by the Positions property of the
MeshGeometry3D. This example uses just a part of
the front side of the book. The MeshGeometry3D defines
two triangles. You can count five coordinates for the
points because the third point of the first triangle is also
the first point of the second triangle. This can be
done for optimization to reduce the size of the model.
All the points use the same z coordinate, 0, and x/y coordinates 0 0, 10 0, 0 10, 10 10, and 10 0. The
property TriangleIndices indicates the order of the positions. The first triangle is defined clockwise, the
second triangle counterclockwise. With this property you define which side of the triangle is visible. One
side of the triangle shows the color defined with the Material property of the GeometryModel3D class, and
the other side shows the BackMaterial property.

The rendering surface for 3-D is ModelVisual3D, which surrounds the models as shown (code file 3DDemo/
MainWindow.xaml):

 <ModelVisual3D>
 <ModelVisual3D.Content>
 <Model3DGroup>

 <!-- front -->
 <GeometryModel3D>
 <GeometryModel3D.Geometry>
 <MeshGeometry3D
 Positions="0 0 0, 10 0 0, 0 10 0, 10 10 0, 10 0 0"
 TriangleIndices="0, 1, 2, 2, 4, 3" />
 </GeometryModel3D.Geometry>

The Material property of the GeometryModel defines what material is used by the model. Depending on
the viewpoint, the Material or BackMaterial property is important.

WPF offers different material types: DiffuseMaterial, EmissiveMaterial, and SpecularMaterial.
The material influences the look of the model, together with the light that is used to illuminate the scene.
EmmisiveMaterial and the color applied to the brush of the material are part of the calculations to define
the light to show the model. SpecularMaterial adds illuminated highlight reflections when specular high-
light reflections occur. The example code makes use of DiffuseMaterial and references a brush from the
resource named mainCover:

 <GeometryModel3D.Material>
 <DiffuseMaterial Brush="{StaticResource mainCover}" />
 </GeometryModel3D.Material>
 </GeometryModel3D>

+y

–y

+x–x

–z

+z

FigURE 35-34

c35.indd 1099 30-01-2014 20:41:56

1100 ❘ CHAPTER 35 Core WPF

The brush for the main cover is a VisualBrush. The VisualBrush has a Border with a Grid that consists
of two Label elements. One Label element defines the text “Professional C# 4” and is written to the cover:

 <VisualBrush x:Key="mainCover">
 <VisualBrush.Visual>
 <Border Background="Red">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="30" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Label Grid.Row="0"
HorizontalAlignment="Center">
 Professional C# 5</Label>
 <Label Grid.Row="1"></Label>
 </Grid>
 </Border>
 </VisualBrush.Visual>
 </VisualBrush>

Because a brush is defined by a 2-D coordinate system
and the model has a 3-D coordinate system, a translation
between them needs to be done. This translation is done by the
TextureCoordinates property of the MeshGeometry3D. This
property specifies every point of the triangle and shows how it
maps to 2-D. The first point, 0 0 0, maps to 0 1, the second point,
10 0 0, maps to 1 1, and so on. Be aware that y has a different
direction in the 3-D and 2-D coordinate systems. Figure 35-35
shows the coordinate system for 2-D:

 <MeshGeometry3D Positions="0 0 0, 10 0 0, 0 10 0, 10 10 0, 10 0 0"
 TriangleIndices="0, 1, 2, 2, 4, 3"
 TextureCoordinates="0 1, 1 1, 0 0, 1 0, 1 1" />

Cameras
A camera is needed with a 3-D model in order to see something. The following example (code file 3DDemo/
MainWindow.xaml) uses the PerspectiveCamera, which has a position and a direction. Changing the
camera position to the left moves the model to the right and vice versa. Changing the y position of
the camera, the model appears larger or smaller. With this camera, the further away the model is, the
smaller it becomes:

 <Viewport3D.Camera>
 <PerspectiveCamera Position="0,0,25" LookDirection="15,6,-50" />
 </Viewport3D.Camera>

WPF also has an OrtographicCamera that doesn’t have a horizon on the scene, so the size of the ele-
ment doesn’t change if it is further away. With MatrixCamera, the behavior of the camera can be exactly
specified.

lights
Without any light specified it is dark. A 3-D scene requires a light source to make the model visible.
Different lights can be used. The AmbientLight lights the scene uniformly. DirectionalLight is a light
that shines in one direction, similar to sunlight. PointLight has a position in space and lights in all
directions. SpotLight has a position as well but uses a cone for its lighting.

The following example code uses a SpotLight with a position, a direction, and cone angles:

FigURE 35-35

y

x

1

10/0

c35.indd 1100 30-01-2014 20:41:58

3-D ❘ 1101

 <ModelVisual3D>
 <ModelVisual3D.Content>
 <SpotLight Color="White" InnerConeAngle="20" OuterConeAngle="60"
 Direction="15,6,-50" Position="0,0,25" />
 </ModelVisual3D.Content>
 </ModelVisual3D>

Rotation
To get a 3-D look from the model, it should be able to be rotated. For rotation, the RotateTransform3D
element is used to define the center of the rotation and the rotation angle:

 <Model3DGroup.Transform>
 <RotateTransform3D CenterX="0" CenterY="0" CenterZ="0">
 <RotateTransform3D.Rotation>
 <AxisAngleRotation3D x:Name="angle" Axis="-1,-1,-1" Angle="70" />
 </RotateTransform3D.Rotation>
 </RotateTransform3D>
 </Model3DGroup.Transform>

To run a rotation from the completed model, an animation is started by an event trigger. The animation
changes the Angle property of the AxisAngleRotation3D element continuously:

 <Window.Triggers>
 <EventTrigger RoutedEvent=f"Window.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation From="0" To="360" Duration="00:00:10"
 Storyboard.TargetName="angle"
 Storyboard.TargetProperty="Angle"
 RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Window.Triggers>

Running the application results in the output shown in Figure 35-36.

FigURE 35-36

c35.indd 1101 30-01-2014 20:41:58

1102 ❘ CHAPTER 35 Core WPF

sUmmARy
In this chapter you have taken a brief tour through many of the features of WPF. WPF makes it easy to sepa-
rate the work of developers and designers. All UI features can be created with XAML, and the functionality
can be created by using code-behind.

You have seen many controls and containers, all of which are based on vector-based graphics. Vector-based
graphics enable WPF elements to be scaled, sheared, and rotated. Because content controls offer great con-
tent flexibility, the event-handling mechanism is based on bubbling and tunneling events.

Different kinds of brushes are available to paint the background and foreground of elements. You can use
not only solid brushes, and linear or radial gradient brushes, but also visual brushes to do reflections or
show videos.

Styling and templates enable you to customize the look of controls; and triggers enable you to change prop-
erties of WPF elements dynamically. Animations can be done easily by animating a property value from a
WPF control. The next chapter continues with WPF, covering data binding, commands, navigation, and
several more features.

c35.indd 1102 30-01-2014 20:41:58

36
Business Applications with WPF

wHAT’s in THis CHAPTER?

➤➤ Menu and ribbon controls
➤➤ Using commanding for input handling
➤➤ Data binding to elements, objects, lists, and XML
➤➤ Value conversions and validation
➤➤ Using the TreeView to display hierarchical data
➤➤ Displaying and grouping data with the DataGrid
➤➤ Live shaping with the Collection View Source

wRoX.CoM CodE downloAds FoR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ Books Demo
➤➤ Multi Binding Demo
➤➤ Priority Binding Demo
➤➤ XML Binding Demo
➤➤ Validation Demo
➤➤ Formula 1 Demo
➤➤ Live Shaping

inTRoduCTion
In the previous chapter you read about some of the core functionality of WPF. This chapter continues
the journey through WPF. Here you read about important aspects for creating complete applications,
such as data binding and command handling, and about the DataGrid control. Data binding is an
important concept for bringing data from .NET classes into the user interface, and allowing the user
to change data. WPF not only allows binding to simple entities or lists, but also offers binding of one

c36.indd 1103 30-01-2014 20:42:46

1104 ❘ CHAPTER 36 Business ApplicAtions with wpF

UI property to multiple properties of possible different types with multi binding and priority binding that
you’ll learn here as well. Along with data binding it is also important to validate data entered by a user.
Here, you can read about different ways for validation including the interface INotifyDataErrorInfo that
is new since .NET 4.5. Also covered in this chapter is commanding, which enables mapping events from the
UI to code. In contrast to the event model, this provides a better separation between XAML and code. You
will learn about using predefined commands and creating custom commands.

The TreeView and DataGrid controls are UI controls to display bound data. You will see the TreeView
control to display data in the tree where data is loaded dynamically depending on the selection of the user.
With the DataGrid control you will learn how to using filtering, sorting, and grouping, as well as one new
.NET 4.5 feature named live shaping that allows changing sorting or filtering options to change in real time.

To begin let’s start with the Menu and the Ribbon controls. The Ribbon control made it into the release
of .NET 4.5.

MEnu And Ribbon ConTRols
Many data-driven applications contain menus and toolbars or ribbon controls to enable users to control
actions. With WPF 4.5, ribbon controls are now available as well, so both menu and ribbon controls are
covered here.

In this section, you create a new WPF application named BooksDemo to use throughout this chapter — not
only with menu and ribbon controls but also with commanding and data binding. This application displays
a single book, a list of books, and a grid of books. Actions are started from menu or ribbon controls to
which commands associated.

Menu Controls
Menus can easily be created with WPF using the Menu and MenuItem elements, as shown in the following
code snippet containing two main menu items, File and Edit, and a list of submenu entries. The _ in front
of the characters marks the special character that can be used to access the menu item easily without
using the mouse. Using the Alt key makes these characters visible and enables access to the menu with this
character. Some of these menu items have a command assigned, as discussed in the next section (XAML file
BooksDemo/MainWindow.xaml):

<Window x:Class="Wrox.ProCSharp.WPF.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Wrox.ProCSharp.WPF"
 Title="Books Demo App" Height="400" Width="600">
 <DockPanel>
 <Menu DockPanel.Dock="Top">
 <MenuItem Header="_File">
 <MenuItem Header="Show _Book" />
 <MenuItem Header="Show Book_s" />
 <Separator />
 <MenuItem Header="E_xit" />
 </MenuItem>
 <MenuItem Header="_Edit">
 <MenuItem Header="Undo" Command="Undo" />
 <Separator />
 <MenuItem Header="Cut" Command="Cut" />
 <MenuItem Header="Copy" Command="Copy" />
 <MenuItem Header="Paste" Command="Paste" />
 </MenuItem>
 </Menu>
 </DockPanel>
</Window>

c36.indd 1104 30-01-2014 20:42:46

Menu and Ribbon Controls ❘ 1105

Running the application results in the menus shown in Figure 36-1. The menus are not active yet because
commands are not active.

FiguRE 36-1

Ribbon Controls
Microsoft Office was the first application released with Microsoft’s newly invented ribbon control. Shortly
after its introduction, many users of previous versions of Office complained that they could not find the
actions they wanted with the new UI. New Office users who had no experience with the previous user
interface had a better experience with the new UI, easily finding actions that users of previous versions
found hard to detect.

Of course, nowadays the ribbon control is very common in many applications. With Windows 8, the ribbon
can be found in tools delivered with the operating system, e.g., Windows Explorer, Paint, and WordPad.

The WPF ribbon control is in the namespace System.Windows.Controls.Ribbon and requires referencing
the assembly system.windows.controls.ribbon.

Figure 36-2 shows the ribbon control of the sample application. In the topmost line left of the title is the
quick access toolbar. The leftmost item in the second line is the application menu, followed by two ribbon
tabs: Home and Ribbon Controls. The Home tab, which is selected, shows two groups: Clipboard and
Show. Both of these groups contain some button controls.

ribbon groups

ribbon tabs

quick access toolbar

application
menu

FiguRE 36-2

The Ribbon control is defined in the following code snippet. The first children of the Ribbon
element are defined by the QuickAccessToolBar property. This toolbar contains two RibbonButton

c36.indd 1105 30-01-2014 20:42:48

1106 ❘ CHAPTER 36 Business ApplicAtions with wpF

controls with small images referenced. These buttons provide users with direct access to quickly and
easily fulfill actions:

 <Ribbon DockPanel.Dock="Top">
 <Ribbon.QuickAccessToolBar>
 <RibbonQuickAccessToolBar>
 <RibbonButton SmallImageSource="Images/one.png" />
 <RibbonButton SmallImageSource="Images/list.png" />
 </RibbonQuickAccessToolBar>
 </Ribbon.QuickAccessToolBar>

To get these buttons from the quick access toolbar directly to the chrome of the Window, the base
class needs to be changed to the RibbonWindow class instead of the Window class (code file BooksDemo/
MainWindow.xaml.cs):

 public partial class MainWindow : RibbonWindow
 {

Changing the base class with the code-behind also requires a change in the XAML code to use the
RibbonWindow element:

<RibbonWindow x:Class="Wrox.ProCSharp.WPF.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Wrox.ProCSharp.WPF"
 Title="Books Demo App" Height="400" Width="600">

The application menu is defined by using the ApplicationMenu property. The application menu defines two
menu entries — the first one to show a book, the second one to close the application:

 <Ribbon.ApplicationMenu>
 <RibbonApplicationMenu SmallImageSource="Images/books.png" >
 <RibbonApplicationMenuItem Header="Show _Book" />
 <RibbonSeparator />
 <RibbonApplicationMenuItem Header="Exit" Command="Close" />
 </RibbonApplicationMenu>
 </Ribbon.ApplicationMenu>

After the application menu, the content of the Ribbon control is defined by using RibbonTab elements.
The title of the tab is defined with the Header property. The RibbonTab contains two RibbonGroup
elements. Each of the RibbonGroup elements contains RibbonButton elements. With the buttons, a Label
can be set to display a text and either SmallImageSource or LargeImageSource properties for displaying
an image:

 <RibbonTab Header="Home">
 <RibbonGroup Header="Clipboard">
 <RibbonButton Command="Paste" Label="Paste"
 LargeImageSource="Images/paste.png" />
 <RibbonButton Command="Cut" SmallImageSource="Images/cut.png" />
 <RibbonButton Command="Copy" SmallImageSource="Images/copy.png" />
 <RibbonButton Command="Undo" LargeImageSource="Images/undo.png" />
 </RibbonGroup>
 <RibbonGroup Header="Show">
 <RibbonButton LargeImageSource="Images/one.png" Label="Book" />
 <RibbonButton LargeImageSource="Images/list.png" Label="Book List" />
 <RibbonButton LargeImageSource="Images/grid.png" Label="Book Grid" />
 </RibbonGroup>
 </RibbonTab>

c36.indd 1106 30-01-2014 20:42:48

Commanding ❘ 1107

The second RibbonTab is just used to demonstrate different controls
that can be used within a ribbon control, for example, text box, check
box, combo box, split button, and gallery elements. Figure 36-3 shows
this tab open.

 <RibbonTab Header="Ribbon Controls">
 <RibbonGroup Header="Sample">
 <RibbonButton Label="Button" />
 <RibbonCheckBox Label="Checkbox" />
 <RibbonComboBox Label="Combo1">
 <Label>One</Label>
 <Label>Two</Label>
 </RibbonComboBox>
 <RibbonTextBox>Text Box </RibbonTextBox>
 <RibbonSplitButton Label="Split Button">
 <RibbonMenuItem Header="One" />
 <RibbonMenuItem Header="Two" />
 </RibbonSplitButton>
 <RibbonComboBox Label="Combo2" IsEditable="False">
 <RibbonGallery SelectedValuePath="Content" MaxColumnCount="1"
 SelectedValue="Green">
 <RibbonGalleryCategory>
 <RibbonGalleryItem Content="Red" Foreground="Red" />
 <RibbonGalleryItem Content="Green" Foreground="Green" />
 <RibbonGalleryItem Content="Blue" Foreground="Blue" />
 </RibbonGalleryCategory>
 </RibbonGallery>
 </RibbonComboBox>
 </RibbonGroup>
 </RibbonTab>

noTE For additional information about the Ribbon control, read Chapter 30,
“Managed Extensibility Framework,” in which ribbon items are built dynamically.

CoMMAnding
Commanding is a WPF concept that creates a loose coupling between the source of an action (for example,
a button) and the target that does the work (for example, a handler method). This concept is based on
the Command pattern from the Gang of Four. Events are strongly coupled (at least with XAML 2006).
Compiling the XAML code that includes references to events requires that the code-behind have a handler
implemented and available at compile time. With commands, the coupling is loose.

The action that is executed is defined by a command object. Commands implement the interface
ICommand. Command classes that are used by WPF are RoutedCommand and a class that derives from it,
RoutedUICommand. RoutedUICommand defines an additional Text property that is not defined by ICommand.
This property can be used as textual information in the UI. ICommand defines the methods Execute and
CanExecute, which are executed on a target object.

The command source is an object that invokes the command. Command sources implement the interface
ICommandSource. Examples of such command sources are button classes that derive from ButtonBase,
Hyperlink, and InputBinding. KeyBinding and MouseBinding are examples of InputBinding derived
classes. Command sources have a Command property whereby a command object implementing ICommand
can be assigned. This fires the command when the control is used, such as with the click of a button.

The command target is an object that implements a handler to perform the action. With command binding,
a mapping is defined to map the handler to a command. Command bindings define what handler is invoked
on a command. Command bindings are defined by the CommandBinding property that is implemented in
the UIElement class. Thus, every class that derives from UIElement has the CommandBinding property.

FiguRE 36-3

c36.indd 1107 30-01-2014 20:42:48

1108 ❘ CHAPTER 36 Business ApplicAtions with wpF

This makes finding the mapped handler a hierarchical process. For example, a button that is defined within
a StackPanel that is inside a ListBox — which itself is inside a Grid — can fire a command. The handler
is specified with command bindings somewhere up the tree — such as with command bindings of a Window.
The next section changes the implementation of the BooksDemo project to use commands.

defining Commands
.NET gives you classes that return predefined commands. The ApplicationCommands class defines
the static properties New, Open, Close, Print, Cut, Copy, Paste, and others. These properties return
RoutedUICommand objects that can be used for a specific purpose. Other classes offering commands are
NavigationCommands and MediaCommands. NavigationCommands is self-explanatory, providing commands
that are common for navigation such as GoToPage, NextPage, and PreviousPage. MediaCommands are
useful for running a media player, with Play, Pause, Stop, Rewind, and Record.

It’s not hard to define custom commands that fulfill application domain–specific actions. For this, the
BooksCommands class is created, which returns RoutedUICommands with the ShowBook and ShowBooksList
properties. You can also assign an input gesture to a command, such as KeyGesture or MouseGesture.
In the following example, a KeyGesture is assigned that defines the key B with the Alt modifier. An
input gesture is a command source, so clicking the Alt+B combination invokes the command (code file
BooksDemo/BooksCommands.cs):

 public static class BooksCommands
 {
 private static RoutedUICommand showBook;
 public static ICommand ShowBook
 {
 get
 {
 return showBook ?? (showBook = new RoutedUICommand("Show Book",
 "ShowBook", typeof(BooksCommands)));
 }
 }

 private static RoutedUICommand showBooksList;
 public static ICommand ShowBooksList
 {
 get
 {
 if (showBooksList == null)
 {
 showBooksList = new RoutedUICommand("Show Books", "ShowBooks",
 typeof(BooksCommands));
 showBook.InputGestures.Add(new KeyGesture(Key.B, ModifierKeys.Alt));
 }
 return showBooksList;
 }
 }
 }

defining Command sources
Every class that implements the ICommandSource interface can be a source of commands, such as Button
and MenuItem. Inside the Ribbon control created earlier, the Command property is assigned to several
RibbonButton elements, e.g., in the quick access toolbar, as shown in the following code snippet (XAML
file BooksDemo/MainWindow.xaml):

 <Ribbon.QuickAccessToolBar>
 <RibbonQuickAccessToolBar>
 <RibbonButton SmallImageSource="Images/one.png"

c36.indd 1108 30-01-2014 20:42:49

Data Binding ❘ 1109

 Command="local:BooksCommands.ShowBook" />
 <RibbonButton SmallImageSource="Images/list.png"
 Command="local:BooksCommands.ShowBooksList" />
 </RibbonQuickAccessToolBar>
 </Ribbon.QuickAccessToolBar>

Predefined commands such as ApplicationCommands.Cut, Copy, and Paste are assigned to the Command
property of RibbonButton elements as well. With the predefined commands the shorthand notation is used:

 <RibbonGroup Header="Clipboard">
 <RibbonButton Command="Paste" Label="Paste"
 LargeImageSource="Images/paste.png" />
 <RibbonButton Command="Cut" SmallImageSource="Images/cut.png" />
 <RibbonButton Command="Copy" SmallImageSource="Images/copy.png" />
 <RibbonButton Command="Undo" LargeImageSource="Images/undo.png" />
 </RibbonGroup>

Command bindings
Command bindings need to be added to connect them to handler methods. In the following example, the
command bindings are defined within the Window element so these bindings are available to all elements
within the window. When the command ApplicationCommands.Close is executed, the OnClose method is
invoked. When the command BooksCommands.ShowBooks is executed, the OnShowBooks method is called:

 <Window.CommandBindings>
 <CommandBinding Command="Close" Executed="OnClose" />
 <CommandBinding Command="local:BooksCommands.ShowBooksList"
 Executed="OnShowBooksList" />
 </Window.CommandBindings>

With command binding you can also specify the CanExecute property, whereby a method is invoked to
verify whether the command is available. For example, if a file is not changed, the ApplicationCommands
.Save command could be unavailable.

The handler needs to be defined with an object parameter, for the sender, and ExecutedRoutedEventArgs,
where information about the command can be accessed (code file BooksDemo/MainWindow.xaml.cs):

 private void OnClose(object sender, ExecutedRoutedEventArgs e)
 {
 Application.Current.Shutdown();
 }

noTE You can also pass parameters with a command. You can do this by specifying
the CommandParameter property with a command source, such as the MenuItem. To
access the parameter, use the Parameter property of ExecutedRoutedEventArgs.

Command bindings can also be defined by controls. The TextBox control defines bindings for
ApplicationCommands.Cut, ApplicationCommands.Copy, ApplicationCommands.Paste, and
ApplicationCommands.Undo. This way, you only need to specify the command source and use the existing
functionality within the TextBox control.

dATA binding
WPF data binding takes another huge step forward compared with previous technologies. Data binding gets
data from .NET objects for the UI or the other way around. Simple objects can be bound to UI elements,
lists of objects, and XAML elements themselves. With WPF data binding, the target can be any dependency

c36.indd 1109 30-01-2014 20:42:49

1110 ❘ CHAPTER 36 Business ApplicAtions with wpF

property of a WPF element, and every property of a CLR object can be the source. Because a WPF element
is implemented as a .NET class, every WPF element can be the source as well. Figure 36-4 shows the
connection between the source and the target. The Binding object defines the connection.

Dependency Object

Dependency
Property

Target

CLR Object

PropertyBinding

Source

FiguRE 36-4

Binding supports several binding modes between the target and source. With one-way binding, the source
information goes to the target but if the user changes information in the user interface, the source is not
updated. For updates to the source, two-way binding is required.

The following table shows the binding modes and their requirements.

binding ModE dEsCRiPTion

One-time Binding goes from the source to the target and occurs only once when the application
is started or the data context changes. Here, you get a snapshot of the data.

One-way Binding goes from the source to the target. This is useful for read-only data, because it
is not possible to change the data from the user interface. To get updates to the user
interface, the source must implement the interface INotifyPropertyChanged.

Two-way With two-way binding, the user can make changes to the data from the UI. Binding
occurs in both directions — from the source to the target and from the target to the
source. The source needs to implement read/write properties so that changes can be
updated from the UI to the source.

One-way-to-
source

With one-way-to-source binding, if the target property changes, the source object is
updated.

WPF data binding involves many facets besides the binding modes. This section provides details on binding
to XAML elements, binding to simple .NET objects, and binding to lists. Using change notifications, the UI
is updated with changes in the bound objects. The material presented here discusses getting the data from
object data providers and directly from the code. Multibinding and priority binding demonstrate different
binding possibilities other than the default binding. This section also describes dynamically selecting data
templates, and validation of binding values.

Let’s start with the BooksDemo sample application.

booksdemo Application Content
In the previous sections, a ribbon and commands have been defined with the BooksDemo application. Now
content is added. Change the XAML file MainWindow.xaml by adding a ListBox, a Hyperlink, and a
TabControl (XAML file BooksDemo/MainWindow.xaml):

 <ListBox DockPanel.Dock="Left" Margin="5" MinWidth="120">
 <Hyperlink Click="OnShowBook">Show Book</Hyperlink>
 </ListBox>
 <TabControl Margin="5" x:Name="tabControl1">
 </TabControl>

c36.indd 1110 30-01-2014 20:42:50

Data Binding ❘ 1111

Now add a WPF user control named BookUC. This user control contains a DockPanel, a Grid with several
rows and columns, a Label, and TextBox controls (XAML file BooksDemo/BookUC.xaml):

<UserControl x:Class="Wrox.ProCSharp.WPF.BookUC"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <DockPanel>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Label Content="Title" Grid.Row="0" Grid.Column="0" Margin="10,0,5,0"
 HorizontalAlignment="Left" VerticalAlignment="Center" />
 <Label Content="Publisher" Grid.Row="1" Grid.Column="0"
 Margin="10,0,5,0" HorizontalAlignment="Left"
 VerticalAlignment="Center" />
 <Label Content="Isbn" Grid.Row="2" Grid.Column="0"
 Margin="10,0,5,0" HorizontalAlignment="Left"
 VerticalAlignment="Center" />
 <TextBox Grid.Row="0" Grid.Column="1" Margin="5" />
 <TextBox Grid.Row="1" Grid.Column="1" Margin="5" />
 <TextBox Grid.Row="2" Grid.Column="1" Margin="5" />
 <StackPanel Grid.Row="3" Grid.Column="0" Grid.ColumnSpan="2">
 <Button Content="Show Book" Margin="5" Click="OnShowBook" />
 </StackPanel>
 </Grid>
 </DockPanel>
</UserControl>

Within the OnShowBook handler in the MainWindow.xaml.cs, create a new instance of the user control
BookUC and add a new TabItem to the TabControl. Then change the SelectedIndex property of the
TabControl to open the new tab (code file BooksDemo/MainWindow.xaml.cs):

 private void OnShowBook(object sender, ExecutedRoutedEventArgs e)
 {
 var bookUI = new BookUC();
 this.tabControl1.SelectedIndex = this.tabControl1.Items.Add(
 new TabItem { Header = "Book", Content = bookUI });
 }

After building the project you can start the application and open the user control within the TabControl by
clicking the hyperlink.

binding with XAMl
In addition to being the target for data binding, a WPF element can also be the source. You can bind the
source property of one WPF element to the target of another WPF element.

In the following code example, data binding is used to resize the controls within the user control with a
slider. You add a StackPanel control to the user control BookUC, which contains a Label and a Slider

c36.indd 1111 30-01-2014 20:42:51

1112 ❘ CHAPTER 36 Business ApplicAtions with wpF

control. The Slider control defines Minimum and Maximum values that define the scale, and an initial value
of 1 is assigned to the Value property (XAML file BooksDemo/BooksUC.xaml):

 <DockPanel>
 <StackPanel DockPanel.Dock="Bottom" Orientation="Horizontal"
 HorizontalAlignment="Right">
 <Label Content="Resize" />
 <Slider x:Name="slider1" Value="1" Minimum="0.4" Maximum="3"
 Width="150" HorizontalAlignment="Right" />
 </StackPanel>

Now you set the LayoutTransform property of the Grid control and add a ScaleTransform element. With
the ScaleTransform element, the ScaleX and ScaleY properties are data bound. Both properties are set
with the Binding markup extension. In the Binding markup extension, the ElementName is set to slider1
to reference the previously created Slider control. The Path property is set to the Value property to get the
value of the slider:

 <Grid>
 <Grid.LayoutTransform>
 <ScaleTransform x:Name="scale1"
 ScaleX="{Binding Path=Value, ElementName=slider1}"
 ScaleY="{Binding Path=Value, ElementName=slider1}" />
 </Grid.LayoutTransform>

When running the application, you can move the slider and thus resize the controls within the Grid, as
shown in Figures 36-5 and 36-6.

FiguRE 36-5 FiguRE 36-6

Rather than define the binding information with XAML code, as shown in the preceding code with
the Binding metadata extension, you can do it with code-behind. With code-behind you have to create
a new Binding object and set the Path and Source properties. The Source property must be set to
the source object; here, it is the WPF object slider1. The Path is set to a PropertyPath instance
that is initialized with the name of the property of the source object, Value. With controls that derive
from FrameworkElement, you can invoke the method SetBinding to define the binding. However,
ScaleTransform does not derive from FrameworkElement but from the Freezable base class instead.
Use the helper class BindingOperations to bind such controls. The SetBinding method of the
BindingOperations class requires a DependencyObject — which is the ScaleTransform instance in the
example. With the second and third argument, the SetBinding method requires the dependency property
of the target (which should be bound), and the Binding object:

 var binding = new Binding
 {
 Path = new PropertyPath("Value"),
 Source = slider1

c36.indd 1112 30-01-2014 20:42:51

Data Binding ❘ 1113

 };
 BindingOperations.SetBinding(scale1, ScaleTransform.ScaleXProperty,
 binding);
 BindingOperations.SetBinding(scale1, ScaleTransform.ScaleYProperty,
 binding);

noTE Remember that all classes that derive from DependencyObject can have
dependency properties. You can learn more about dependency properties in Chapter
29, “Core XAML.”

You can configure a number of binding options with the Binding class, as described in the following table:

binding ClAss MEMbERs dEsCRiPTion

Source Use this property to define the source object for data binding.

RelativeSource Specify the source in relation to the target object. This is useful to display error
messages when the source of the error comes from the same control.

ElementName If the source is a WPF element, you can specify the source with the
ElementName property.

Path Use this property to specify the path to the source object. This can be the
property of the source object, but indexers and properties of child elements
are also supported.

XPath With an XML data source, you can define an XPath query expression to get the
data for binding.

Mode The mode defines the direction for the binding. The Mode property is of type
BindingMode. BindingMode is an enumeration with the following values:
Default, OneTime, OneWay, TwoWay, and OneWayToSource. The default
mode depends on the target: with a TextBox, two-way binding is the default;
with a Label that is read-only, the default is one-way. OneTime means that the
data is only init loaded from the source; OneWay updates from the source to
the target. With TwoWay binding, changes from the WPF elements are written
back to the source. OneWayToSource means that the data is never read but
always written from the target to the source.

Converter Use this property to specify a converter class that converts the data
for the UI and back. The converter class must implement the interface
IValueConverter, which defines the methods Convert and
ConvertBack. You can pass parameters to the converter methods with the
ConverterParameter property. The converter can be culture-sensitive; and
the culture can be set with the ConverterCulture property.

FallbackValue Use this property to define a default value that is used if binding doesn’t return
a value.

ValidationRules Using this property, you can define a collection of ValidationRule
objects that are checked before the source is updated from the WPF target
elements. The class ExceptionValidationRule is derived from the class
ValidationRule and checks for exceptions.

Delay This property is new with WPF 4.5. It enables you to specify an amount of time
to wait before the binding source is updated. This can be used in scenarios
where you want to give the user some time to enter more characters before
starting a validation.

c36.indd 1113 30-01-2014 20:42:51

1114 ❘ CHAPTER 36 Business ApplicAtions with wpF

simple object binding
To bind to CLR objects, with the .NET classes you just have to define properties, as shown in the Book class
example and the properties Title, Publisher, Isbn, and Authors. This class is in the Data folder of the
BooksDemo project (code file BooksDemo/Data/Book.cs).

using System.Collections.Generic;

namespace Wrox.ProCSharp.WPF.Data
{
 public class Book
 {
 public Book(string title, string publisher, string isbn,
 params string[] authors)
 {
 this.Title = title;
 this.Publisher = publisher;
 this.Isbn = isbn;
 this.authors.AddRange(authors);
 }
 public Book()
 : this("unknown", "unknown", "unknown")
 {
 }
 public string Title { get; set; }
 public string Publisher { get; set; }
 public string Isbn { get; set; }

 private readonly List<string> authors = new List<string>();
 public string[] Authors
 {
 get
 {
 return authors.ToArray();
 }
 }

 public override string ToString()
 {
 return Title;
 }
 }
}

In the XAML code of the user control BookUC, several labels and TextBox controls are defined to
display book information. Using Binding markup extensions, the TextBox controls are bound to the
properties of the Book class. With the Binding markup extension, nothing more than the Path property is
defined to bind it to the property of the Book class. There’s no need to define a source because the source
is defined by assigning the DataContext, as shown in the code-behind that follows. The mode is defined
by its default with the TextBox element, and this is two-way binding (XAML file BooksDemo/
BookUC.xaml):

 <TextBox Text="{Binding Title}" Grid.Row="0" Grid.Column="1" Margin="5" />
 <TextBox Text="{Binding Publisher}" Grid.Row="1" Grid.Column="1" Margin="5" />
 <TextBox Text="{Binding Isbn}" Grid.Row="2" Grid.Column="1" Margin="5" />

With the code-behind, a new Book object is created, and the book is assigned to the DataContext
property of the user control. DataContext is a dependency property that is defined with the base class
FrameworkElement. Assigning the DataContext with the user control means that every element in the user
control has a default binding to the same data context (code file BooksDemo/MainWindow.xaml.cs):

c36.indd 1114 30-01-2014 20:42:52

Data Binding ❘ 1115

 private void OnShowBook(object sender, ExecutedRoutedEventArgs e)
 {
 var bookUI = new BookUC();
 bookUI.DataContext = new Book
 {
 Title = "Professional C# 4 and .NET 4",
 Publisher = "Wrox Press",
 Isbn = "978-0-470-50225-9"
 };
 this.tabControl1.SelectedIndex =
 this.tabControl1.Items.Add(
 new TabItem { Header = "Book", Content = bookUI });
 }

After starting the application, you can see the bound
data, as shown in Figure 36-7.

To see two-way binding in action (changes
to the input of the WPF element are reflected inside
the CLR object), the Click event handler of the button
in the user control, the OnShowBook method,
is implemented. When implemented, a message box
pops up to show the current title and ISBN number of
the book1 object. Figure 36-8 shows the output
from the message box after a change to the input was
made during runtime (code file BooksDemo/BookUC
.xaml.cs):

 private void OnShowBook(object sender, RoutedEventArgs e)
 {
 Book theBook = this.DataContext as Book;
 if (theBook != null)
 MessageBox.Show(theBook.Title, theBook.Isbn);
 }

Change notification
With the current two-way binding, the data is read from the object and written back. However, if data is
not changed by the user, but is instead changed directly from the code, the UI does not receive the change
information. You can easily verify this by adding a button to the user control and implementing the Click
event handler OnChangeBook (XAML file BooksDemo/BookUC.xaml):

 <StackPanel Grid.Row="3" Grid.Column="0" Grid.ColumnSpan="2"
 Orientation="Horizontal" HorizontalAlignment="Center">
 <Button Content="Show Book" Margin="5" Click="OnShowBook" />
 <Button Content="Change Book" Margin="5" Click="OnChangeBook" />
 </StackPanel>

Within the implementation of the handler, the book inside the data context is changed but the user interface
doesn’t show the change (code file BooksDemo/BookUC.xaml.cs):

 private void OnChangeBook(object sender, RoutedEventArgs e)
 {
 Book theBook = this.DataContext as Book;
 if (theBook != null)
 {
 theBook.Title = "Professional C# 5";
 theBook.Isbn = "978-0-470-31442-5";
 }
 }

FiguRE 36-7

FiguRE 36-8

c36.indd 1115 30-01-2014 20:42:52

1116 ❘ CHAPTER 36 Business ApplicAtions with wpF

To get change information to the user interface, the entity class must implement the interface
INotifyPropertyChanged. Instead of having an implementation with every class that needs
this interface, the abstract base class BindableObject is created. This base class implements the interface
INotifyPropertyChanged. The interface defines the event PropertyChanged, which is fired from the
OnPropertyChanged method. As a convenience for firing the event from the property setters from
the derived classes, the method SetProperty makes the change of the property and invokes the method
OnPropertyChanged to fire the event. This method makes use of the caller information feature from C# using
the attribute CallerMemberName. Defining the parameter propertyName as an optional parameter with this
attribute, the C# compiler passes the name of the property with this parameter, so it’s not necessary to add a
hard-coded string to the code (code file BooksDemo/Data/BindableObject.cs):

using System.Collections.Generic;
using System.ComponentModel;
using System.Runtime.CompilerServices;

namespace Wrox.ProCSharp.WPF.Data
{
 public abstract class BindableObject : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;
 protected void OnPropertyChanged(string propertyName)
 {
 var propertyChanged = PropertyChanged;
 if (propertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }

 protected void SetProperty<T>(ref T item, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (!EqualityComparer<T>.Default.Equals(item, value))
 {
 item = value;
 OnPropertyChanged(propertyName);
 }
 }
 }
}

noTE Caller information is covered in Chapter 16, “Errors and Exceptions.”

The class Book is now changed to derive from the base class BindableObject in order to inherit the
implementation of the interface INotifyPropertyChanged. The property setters are changed to invoke
the SetProperty method, as shown here (code file BooksDemo/Data/Book.cs):

using System.ComponentModel;
using System.Collections.Generic;

namespace Wrox.ProCSharp.WPF.Data
{
 public class Book : BindableObject
 {
 public Book(string title, string publisher, string isbn,
 params string[] authors)

c36.indd 1116 30-01-2014 20:42:52

Data Binding ❘ 1117

 {
 this.title = title;
 this.publisher = publisher;
 this.isbn = isbn;
 this.authors.AddRange(authors);
 }
 public Book()
 : this("unknown", "unknown", "unknown")
 {
 }

 private string title;
 public string Title {
 get
 {
 return title;
 }
 set
 {
 SetProperty(ref title, value);
 }
 }

 private string publisher;
 public string Publisher
 {
 get
 {
 return publisher;
 }
 set
 {
 SetProperty(ref publisher, value);
 }
 }
 private string isbn;
 public string Isbn
 {
 get
 {
 return isbn;
 }
 set
 {
 SetProperty(ref isbn, value);
 }
 }

 private readonly List<string> authors = new List<string>();
 public string[] Authors
 {
 get
 {
 return authors.ToArray();
 }
 }

 public override string ToString()
 {
 return this.title;
 }
 }
}

c36.indd 1117 30-01-2014 20:42:52

1118 ❘ CHAPTER 36 Business ApplicAtions with wpF

With this change, the application can be started again to verify that the user interface is updated following a
change notification in the event handler.

object data Provider
Instead of instantiating the object in code-behind, you can do this with XAML. To reference a class from
code-behind within XAML, you have to reference the namespace with the namespace declarations in the
XML root element. The XML attribute xmlns:local="clr-namespace:Wrox.ProCsharp.WPF" assigns
the .NET namespace Wrox.ProCSharp.WPF to the XML namespace alias local.

One object of the Book class is now defined with the Book element inside the DockPanel resources. By
assigning values to the XML attributes Title, Publisher, and Isbn, you set the values of the properties
from the Book class. x:Key="theBook" defines the identifier for the resource so that you can reference the
book object (XAML file BooksDemo/BookUC.xaml):

<UserControl x:Class="Wrox.ProCSharp.WPF.BookUC"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:local="clr-namespace:Wrox.ProCSharp.WPF.Data"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <DockPanel>
 <DockPanel.Resources>
 <local:Book x:Key="theBook" Title="Professional C# 4 and .NET 4"
 Publisher="Wrox Press" Isbn="978-0-470-50225-9" />
 </DockPanel.Resources>

noTE If the .NET namespace to reference is in a different assembly, you have to add
the assembly to the XML declaration:

xmlsn:sys="clr-namespace:System;assembly=mscorlib"

In the TextBox element, the Source is defined with the Binding markup extension that references the
theBook resource:

 <TextBox Text="{Binding Path=Title, Source={StaticResource theBook}}"
 Grid.Row="0" Grid.Column="1" Margin="5" />
 <TextBox Text="{Binding Path=Publisher, Source={StaticResource theBook}}"
 Grid.Row="1" Grid.Column="1" Margin="5" />
 <TextBox Text="{Binding Path=Isbn, Source={StaticResource theBook}}"
 Grid.Row="2" Grid.Column="1" Margin="5" />

Because all these TextBox elements are contained within the same control, it is possible to assign the
DataContext property with a parent control and set the Path property with the TextBox binding
elements. Because the Path property is a default, you can also reduce the Binding markup extension to
the following code:

 <Grid x:Name="grid1" DataContext="{StaticResource theBook}">
 <!-- ... -->
 <TextBox Text="{Binding Title}" Grid.Row="0" Grid.Column="1"
 Margin="5" />
 <TextBox Text="{Binding Publisher}" Grid.Row="1" Grid.Column="1"
 Margin="5" />
 <TextBox Text="{Binding Isbn}" Grid.Row="2" Grid.Column="1"
 Margin="5" />

c36.indd 1118 30-01-2014 20:42:52

Data Binding ❘ 1119

Instead of defining the object instance directly within XAML code, you can define an object data provider
that references a class to invoke a method. For use by the ObjectDataProvider, it’s best to create a factory
class that returns the object to display, as shown with the BookFactory class (code file BooksDemo/Data/
BookFactory.cs):

using System.Collections.Generic;

namespace Wrox.ProCSharp.WPF.Data
{
 public class BookFactory
 {
 private List<Book> books = new List<Book>();

 public BookFactory()
 {
 books.Add(new Book
 {
 Title = "Professional C# 4 and .NET 4",
 Publisher = "Wrox Press",
 Isbn = "978-0-470-50225-9"
 });
 }

 public Book GetTheBook()
 {
 return books[0];
 }
 }
}

The ObjectDataProvider element can be defined in the resources section. The XML attribute ObjectType
defines the name of the class; with MethodName you specify the name of the method that is invoked to get
the book object (XAML file BooksDemo/BookUC.xaml):

 <DockPanel.Resources>
 <ObjectDataProvider x:Key="theBook" ObjectType="local:BookFactory"
 MethodName="GetTheBook" />
 </DockPanel.Resources>

The properties you can specify with the ObjectDataProvider class are listed in the following table:

objECTdATAPRovidER PRoPERTy dEsCRiPTion

ObjectType Defines the type to create an instance.

ConstructorParameters Using the ConstructorParameters collection, you can add
parameters to the class to create an instance.

MethodName Defines the name of the method that is invoked by the object data
provider.

MethodParameters Using this property, you can assign parameters to the method
defined with the MethodName property.

ObjectInstance Using this property, you can get and set the object that is
used by the ObjectDataProvider class. For example, you
can assign an existing object programmatically rather than
define the ObjectType so that an object is instantiated by
ObjectDataProvider.

Data Enables you to access the underlying object that is used for data
binding. If the MethodName is defined, with the Data property
you can access the object that is returned from the method
defined.

c36.indd 1119 30-01-2014 20:42:52

1120 ❘ CHAPTER 36 Business ApplicAtions with wpF

list binding
Binding to a list is more frequently done than binding to simple objects. Binding to a list is very similar to
binding to a simple object. You can assign the complete list to the DataContext from code-behind, or you
can use an ObjectDataProvider that accesses an object factory that returns a list. With elements that
support binding to a list (for example, a ListBox), the complete list is bound. With elements that support
binding to just one object (for example, a TextBox), the current item is bound.

With the BookFactory class, now a list of Book objects is returned (code file BooksDemo/Data/
BookFactory.cs):

 public class BookFactory
 {
 private List<Book> books = new List<Book>();

 public BookFactory()
 {
 books.Add(new Book("Professional C# 4 with .NET 4", "Wrox Press",
 "978-0-470-50225-9", "Christian Nagel", "Bill Evjen",
 "Jay Glynn", "Karli Watson", "Morgan Skinner"));
 books.Add(new Book("Professional C# 2008", "Wrox Press",
 "978–0-470-19137-8", "Christian Nagel", "Bill Evjen",
 "Jay Glynn", "Karli Watson", "Morgan Skinner"));
 books.Add(new Book("Beginning Visual C# 2010", "Wrox Press",
 "978-0-470-50226-6", "Karli Watson", "Christian Nagel",
 "Jacob Hammer Pedersen", "Jon D. Reid",
 "Morgan Skinner", "Eric White"));
 books.Add(new Book("Windows 7 Secrets", "Wiley", "978-0-470-50841-1",
 "Paul Thurrott", "Rafael Rivera"));
 books.Add(new Book("C# 2008 for Dummies", "For Dummies",
 "978-0-470-19109-5", "Stephen Randy Davis",
 "Chuck Sphar"));
 }

 public IEnumerable<Book> GetBooks()
 {
 return books;
 }
 }

To use the list, create a new BooksUC user control. The XAML code for this control contains Label and
TextBox controls that display the values of a single book, as well as a ListBox control that displays a book
list. The ObjectDataProvider invokes the GetBooks method of the BookFactory, and this provider is used
to assign the DataContext of the DockPanel. The DockPanel has the bound ListBox and TextBox as its
children (XAML file BooksDemo/BooksUC.xaml):

<UserControl x:Class="Wrox.ProCSharp.WPF.BooksUC"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:local="clr-namespace:Wrox.ProCSharp.WPF.Data"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <UserControl.Resources>
 <ObjectDataProvider x:Key="books" ObjectType="local:BookFactory"
 MethodName="GetBooks" />
 </UserControl.Resources>
 <DockPanel DataContext="{StaticResource books}">
 <ListBox DockPanel.Dock="Left" ItemsSource="{Binding}" Margin="5"
 MinWidth="120" />

c36.indd 1120 30-01-2014 20:42:53

Data Binding ❘ 1121

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Label Content="Title" Grid.Row="0" Grid.Column="0" Margin="10,0,5,0"
 HorizontalAlignment="Left" VerticalAlignment="Center" />
 <Label Content="Publisher" Grid.Row="1" Grid.Column="0" Margin="10,0,5,0"
 HorizontalAlignment="Left" VerticalAlignment="Center" />
 <Label Content="Isbn" Grid.Row="2" Grid.Column="0" Margin="10,0,5,0"
 HorizontalAlignment="Left" VerticalAlignment="Center" />
 <TextBox Text="{Binding Title}" Grid.Row="0" Grid.Column="1" Margin="5" />
 <TextBox Text="{Binding Publisher}" Grid.Row="1" Grid.Column="1"
 Margin="5" />
 <TextBox Text="{Binding Isbn}" Grid.Row="2" Grid.Column="1" Margin="5" />
 </Grid>
 </DockPanel>
</UserControl>

The new user control is started by adding a Hyperlink to MainWindow.xaml. It uses the Command property
to assign the ShowBooks command. The command binding must be specified as well to invoke the event
handler OnShowBooksList. (XAML file BooksDemo/BooksUC.xaml):

 <ListBox DockPanel.Dock="Left" Margin="5" MinWidth="120">
 <ListBoxItem>
 <Hyperlink Command="local:BooksCommands.ShowBook">Show Book</Hyperlink>
 </ListBoxItem>
 <ListBoxItem>
 <Hyperlink Command="local:ShowCommands.ShowBooksList">
 Show Books List</Hyperlink>
 </ListBoxItem>
 </ListBox>

 The implementation of the event handler adds a new TabItem control to the TabControl, assigns the
Content to the user control BooksUC and sets the selection of the TabControl to the newly created TabItem
(code file BooksDemo/BooksUC.xaml.cs):

 private void OnShowBooks(object sender, ExecutedRoutedEventArgs e)
 {
 var booksUI = new BooksUC();
 this.tabControl1.SelectedIndex =
 this.tabControl1.Items.Add(
 new TabItem { Header="Books List", Content=booksUI});
 }

Because the DockPanel has the Book array
assigned to the DataContext, and the ListBox is
placed within the DockPanel, the ListBox shows all
books with the default template, as illustrated in
Figure 36-9.

For a more flexible layout of the ListBox, you have to
define a template, as discussed in the previous chapter
for ListBox styling. The ItemTemplate of the ListBox
defines a DataTemplate with a Label element. The
content of the label is bound to the Title. The item

FiguRE 36-9

c36.indd 1121 30-01-2014 20:42:53

1122 ❘ CHAPTER 36 Business ApplicAtions with wpF

template is repeated for every item in the list. Of course, you can also add the item template to a style within
resources (XAML file BooksDemo/BooksUC.xaml):

 <ListBox DockPanel.Dock="Left" ItemsSource="{Binding}" Margin="5"
 MinWidth="120">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Label Content="{Binding Title}" />
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

Master details binding
Instead of just showing all the elements inside a list, you might want or need to show detail information
about the selected item. It doesn’t require a lot of work to do this. The Label and TextBox controls are
already defined; currently, they only show the first element in the list.

There’s one important change you have to make to the ListBox. By default, the labels are bound to just the
first element of the list. By setting the ListBox property IsSynchronizedWithCurrentItem="True",
the selection of the list box is set to the current item (XAML file BooksDemo/BooksUC.xaml):

 <ListBox DockPanel.Dock="Left" ItemsSource="{Binding}" Margin="5"
 MinWidth="120" IsSynchronizedWithCurrentItem="True">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Label Content="{Binding Title}" />
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

Figure 36-10 shows the result; details about the selected
item are shown on the right.

Multibinding
Binding is one of the classes that can be used for data
binding. BindingBase is the abstract base class of
all bindings and has different concrete implementations.
Besides Binding, there’s also MultiBinding and
PriorityBinding. MultiBinding enables you to bind one WPF element to multiple sources. For example,
with a Person class that has LastName and FirstName properties, it is interesting to bind both properties to
a single WPF element (code file MultiBindingDemo/Person.cs):

 public class Person
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 }

For MultiBinding, a markup extension is not available — therefore, the binding must be specified with
XAML element syntax. The child elements of MultiBinding are Binding elements that specify the binding
to the various properties. In the following example, the FirstName and LastName properties are used. The
data context is set with the Grid element to reference the person1 resource.

To connect the properties, MultiBinding uses a Converter to convert multiple values to one. This
converter uses a parameter that allows for different conversions based on the parameter (XAML file
MultiBindingDemo/MainWindow.xaml):

<Window x:Class="Wrox.ProCSharp.WPF.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

FiguRE 36-10

c36.indd 1122 30-01-2014 20:42:53

Data Binding ❘ 1123

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:system="clr-namespace:System;assembly=mscorlib"
 xmlns:local="clr-namespace:Wrox.ProCSharp.WPF"
 Title="MainWindow" Height="240" Width="500">
 <Window.Resources>
 <local:Person x:Key="person1" FirstName="Tom" LastName="Turbo" />
 <local:PersonNameConverter x:Key="personNameConverter" />
 </Window.Resources>
 <Grid DataContext="{StaticResource person1}">
 <TextBox>
 <TextBox.Text>
 <MultiBinding Converter="{StaticResource personNameConverter}" >
 <MultiBinding.ConverterParameter>
 <system:String>FirstLast</system:String>
 </MultiBinding.ConverterParameter>
 <Binding Path="FirstName" />
 <Binding Path="LastName" />
 </MultiBinding>
 </TextBox.Text>
 </TextBox>
 </Grid>
</Window>

The multi-value converter implements the interface IMultiValueConverter. This interface defines two
methods, Convert and ConvertBack. Convert receives multiple values with the first argument from the
data source and returns one value to the target. With the implementation, depending on whether
the parameter has a value of FirstLast or LastFirst, the result varies (code file MultiBindingDemo/
PersonNameConverter.cs):

using System;
using System.Globalization;
using System.Windows.Data;

namespace Wrox.ProCSharp.WPF
{
 public class PersonNameConverter : IMultiValueConverter
 {
 public object Convert(object[] values, Type targetType, object parameter,
 CultureInfo culture)
 {
 switch (parameter as string)
 {
 case "FirstLast":
 return values[0] + " " + values[1];
 case "LastFirst":
 return values[1] + ", " + values[0];
 default:
 throw new ArgumentException(String.Format(
 "invalid argument {0}", parameter));
 }
 }

 public object[] ConvertBack(object value, Type[] targetTypes,
 object parameter, CultureInfo culture)
 {
 throw new NotSupportedException();
 }
 }
}

In such simple scenarios, just combining some strings with a MultiBinding doesn’t require an
implementation of IMultiValueConverter. Instead, a definition for a format string is adequate,

c36.indd 1123 30-01-2014 20:42:53

1124 ❘ CHAPTER 36 Business ApplicAtions with wpF

as shown in the following XAML code snippet. The string format defined with the MultiBinding
first needs a {} prefix. With XAML the curly brackets usually define a markup expression. Using {}
as a prefix escapes this and defines that no markup expression, but instead a normal string, follows.
The sample specifies that both Binding elements are separated by a comma and a blank (XAML file
MultiBindingDemo/MainWindow.xaml):

 <TextBox>
 <TextBox.Text>
 <MultiBinding StringFormat="{}{0}, {1}">
 <Binding Path="LastName" />
 <Binding Path="FirstName" />
 </MultiBinding>
 </TextBox.Text>
 </TextBox>

Priority binding
PriorityBinding makes it easy to bind to data that is not readily available. If you need time to
get the result with PriorityBinding, you can inform users about the progress so they are aware of
the wait.

To illustrate priority binding, use the PriorityBindingDemo project to create the Data class. Accessing the
ProcessSomeData property requires some time, which is simulated by calling the Thread.Sleep method
(code file PriorityBindingDemo/Data.cs):

 public class Data
 {
 public string ProcessSomeData
 {
 get
 {
 Thread.Sleep(8000);
 return "the final result is here";
 }
 }
 }

The Information class provides information to the user. The information from property Info1 is returned
immediately, whereas Info2 returns information after five seconds. With a real implementation, this
class could be associated with the processing class to get an estimated time frame for the user (code file
PriorityBindingDemo/Information.cs):

 public class Information
 {
 public string Info1
 {
 get
 {
 return "please wait...";
 }
 }
 public string Info2
 {
 get
 {
 Thread.Sleep(5000);
 return "please wait a little more";
 }
 }
 }

c36.indd 1124 30-01-2014 20:42:53

Data Binding ❘ 1125

In the MainWindow.xaml file, the Data and Information classes are referenced and initiated within the
resources of the Window (XAML file PriorityBindingDemo/MainWindow.xaml):

 <Window.Resources>
 <local:Data x:Key="data1" />
 <local:Information x:Key="info" />
 </Window.Resources>

PriorityBinding is done in place of normal binding within the Content property of a Label. It consists
of multiple Binding elements whereby all but the last one have the IsAsync property set to True. Because of
this, if the first binding expression result is not immediately available, the binding process chooses the next
one. The first binding references the ProcessSomeData property of the Data class, which needs some
time. Because of this, the next binding comes into play and references the Info2 property of the
Information class. Info2 does not return a result immediately; and because IsAsync is set, the binding
process does not wait but continues to the next binding. The last binding uses the Info1 property. If it
doesn’t immediately return a result, you would wait for the result because IsAsync is set to the default,
False:

 <Label>
 <Label.Content>
 <PriorityBinding>
 <Binding Path="ProcessSomeData" Source="{StaticResource data1}"
 IsAsync="True" />
 <Binding Path="Info2" Source="{StaticResource info}"
 IsAsync="True" />
 <Binding Path="Info1" Source="{StaticResource info}"
 IsAsync="False" />
 </PriorityBinding>
 </Label.Content>
 </Label>

When the application starts, you can see the message “please wait…” in the user interface. After a few
seconds the result from the Info2 property is returned as “please wait a little more.” It replaces the output
from Info1. Finally, the result from ProcessSomeData replaces the output again.

value Conversion
Returning to the BooksDemo application, the authors of the book are still missing in the user interface. If
you bind the Authors property to a Label element, the ToString method of the Array class is invoked,
which returns the name of the type. One solution to this is to bind the Authors property to a ListBox. For
the ListBox, you can define a template for a specific view. Another solution is to convert the string array
returned by the Authors property to a string and use the string for binding.

The class StringArrayConverter converts a string array to a string. WPF converter classes must
implement the interface IValueConverter from the namespace System.Windows.Data. This interface
defines the methods Convert and ConvertBack. With the StringArrayConverter, the Convert method
converts the string array from the variable value to a string by using the String.Join method. The
separator parameter of the Join is taken from the variable parameter received with the Convert method
(code file BooksDemo/Utilities/StringArrayConverter.cs):

using System;
using System.Diagnostics.Contracts;
using System.Globalization;
using System.Windows.Data;

namespace Wrox.ProCSharp.WPF.Utilities

{
 [ValueConversion(typeof(string[]), typeof(string))]
 class StringArrayConverter : IValueConverter

c36.indd 1125 30-01-2014 20:42:54

1126 ❘ CHAPTER 36 Business ApplicAtions with wpF

 {
 public object Convert(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 if (value == null) return null;

 string[] stringCollection = (string[])value;
 string separator = parameter == null;

 return String.Join(separator, stringCollection);
 }

 public object ConvertBack(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
}

noTE You can read more about the methods of the String classes in Chapter 9,
“Strings and Regular Expressions.”

In the XAML code, the StringArrayConverter class can be declared as a resource.This resource can be
referenced from the Binding markup extension (XAML file BooksDemo/BooksUC.xaml):

<UserControl x:Class="Wrox.ProCSharp.WPF.BooksUC"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:local="clr-namespace:Wrox.ProCSharp.WPF.Data"
 xmlns:utils="clr-namespace:Wrox.ProCSharp.WPF.Utilities"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <UserControl.Resources>
 <utils:StringArrayConverter x:Key="stringArrayConverter" />
 <ObjectDataProvider x:Key="books" ObjectType="local:BookFactory"
 MethodName="GetBooks" />
 </UserControl.Resources>
 <!-- -->

For multiline output, a TextBlock element is declared with the TextWrapping property set to Wrap to
make it possible to display multiple authors. In the Binding markup extension, the Path is set to Authors,
which is defined as a property returning a string array. The string array is converted from the resource
stringArrayConverter as defined by the Converter property. The Convert method of the converter
implementation receives the ConverterParameter=', ' as input to separate the authors:

 <TextBlock Text="{Binding Authors,
 Converter={StaticResource stringArrayConverter},
 ConverterParameter=', '}"
 Grid.Row="3" Grid.Column="1" Margin="5"
 VerticalAlignment="Center" TextWrapping="Wrap" />

Figure 36-11 shows the book details, including authors.

c36.indd 1126 30-01-2014 20:42:54

Data Binding ❘ 1127

Adding list items dynamically
If list items are added dynamically, the WPF element must be notified of elements added to the list.

In the XAML code of the WPF application, a Button element is added inside a StackPanel. The Click
event is assigned to the method OnAddBook (XAML file BooksDemo/BooksUC.xaml):

 <StackPanel Orientation="Horizontal" DockPanel.Dock="Bottom"
 HorizontalAlignment="Center">
 <Button Margin="5" Padding="4" Content="Add Book" Click="OnAddBook" />
 </StackPanel>

In the method OnAddBook, a new Book object is added to the list. If you test the application with the
BookFactory as it is implemented now, there’s no notification to the WPF elements that a new object has
been added to the list (code file BooksDemo/BooksUC.xaml.cs):

 private void OnAddBook(object sender, RoutedEventArgs e)
 {
 ((this.FindResource("books") as ObjectDataProvider).Data as IList<Book>).
 Add(new Book("HTML and CSS: Design and Build Websites",
 "Wiley", "978-1118-00818-8"));
 }

The object that is assigned to the DataContext must implement the interface INotifyCollectionChanged.
This interface defines the CollectionChanged event that is used by the WPF application. Instead of
implementing this interface on your own with a custom collection class, you can use the generic collection
class ObservableCollection<T> that is defined with the namespace System.Collections.ObjectModel
in the assembly WindowsBase. Now, as a new item is added to the collection, the new item immediately
appears in the ListBox (code file BooksDemo/Data/BookFactory.cs):

 public class BookFactory
 {
 private ObservableCollection<Book> books = new ObservableCollection<Book>();
 // ...

 public IEnumerable<Book> GetBooks()
 {
 return books;
 }
 }

FiguRE 36-11

c36.indd 1127 30-01-2014 20:42:54

1128 ❘ CHAPTER 36 Business ApplicAtions with wpF

Adding Tab items dynamically
Adding items dynamically to a list is in principle the same scenario as adding user controls to the tab
control dynamically. Until now, the tab items have been added dynamically using the Add method of
the Items property from the TabControl class. In the following example, the TabControl is directly
referenced from code-behind. Using data binding instead, information about the tab item can be added to an
ObservableCollection<T>.

The code from the BookSample application is now changed to use data binding with the TabControl.
First, the class UIControlInfo is defined. This class contains properties that are used with data binding
within the TabControl. The Title property is used to show heading information within tab items, and the
Content property is used for the content of the tab items:

using System.Windows.Controls;

namespace Wrox.ProCSharp.WPF
{
 public class UIControlInfo
 {
 public string Title { get; set; }
 public UserControl Content { get; set; }
 }
}

Now an observable collection is needed to allow the tab control to refresh the information of its tab items.
userControls is a member variable of the MainWindow class. The property Controls — used for data
binding — returns the collection (code file BooksDemo/MainWindow.xaml.cs):

 private ObservableCollection<UIControlInfo> userControls =
 new ObservableCollection<UIControlInfo>();
 public IEnumerable<UIControlInfo> Controls
 {
 get { return userControls; }
 }

With the XAML code the TabControl is changed. The ItemsSource property is bound to the Controls
property. Now, two templates need to be specified. One template, ItemTemplate, defines the heading
of the item controls. The DataTemplate specified with the ItemTemplate just uses a TextBlock
element to display the value from the Text property in the heading of the tab item. The other template is
ContentTemplate. This template specifies using the ContentPresenter that binds to the Content property
of the bound items (XAML file BooksDemo/MainWindow.xaml):

 <TabControl Margin="5" x:Name="tabControl1" ItemsSource="{Binding Controls}">
 <TabControl.ContentTemplate>
 <DataTemplate>
 <ContentPresenter Content="{Binding Content}" />
 </DataTemplate>
 </TabControl.ContentTemplate>
 <TabControl.ItemTemplate>
 <DataTemplate>
 <StackPanel Margin="0">
 <TextBlock Text="{Binding Title}" Margin="0" />
 </StackPanel>
 </DataTemplate>
 </TabControl.ItemTemplate>
 </TabControl>

Now the event handlers can be modified to create new UIControlInfo objects and add them to the
observable collection instead of creating TabItem controls. Changing the item and content templates is
a much easier way to customize the look, instead of doing this with code-behind.

c36.indd 1128 30-01-2014 20:42:54

Data Binding ❘ 1129

 private void OnShowBooksList(object sender, ExecutedRoutedEventArgs e)
 {
 var booksUI = new BooksUC();
 userControls.Add(new UIControlInfo
 {
 Title = "Books List",
 Content = booksUI
 });
 }

data Template selector
The previous chapter described how you can customize controls with templates. You also saw how to create
a data template that defines a display for specific data types. A data template selector can create different
data templates dynamically for the same data type. It is implemented in a class that derives from the base
class DataTemplateSelector.

The following example implements a data template selector by selecting a different template based on the
publisher. These templates are defined within the user control resources. One template can be accessed by
the key name wroxTemplate; the other template has the key name dummiesTemplate, and the third one is
bookTemplate (XAML file BooksDemo/BooksUC.xaml):

 <DataTemplate x:Key="wroxTemplate" DataType="{x:Type local:Book}">
 <Border Background="Red" Margin="10" Padding="10">
 <StackPanel>
 <Label Content="{Binding Title}" />
 <Label Content="{Binding Publisher}" />
 </StackPanel>
 </Border>
 </DataTemplate>

 <DataTemplate x:Key="dummiesTemplate" DataType="{x:Type local:Book}">
 <Border Background="Yellow" Margin="10" Padding="10">
 <StackPanel>
 <Label Content="{Binding Title}" />
 <Label Content="{Binding Publisher}" />
 </StackPanel>
 </Border>
 </DataTemplate>

 <DataTemplate x:Key="bookTemplate" DataType="{x:Type local:Book}">
 <Border Background="LightBlue" Margin="10" Padding="10">
 <StackPanel>
 <Label Content="{Binding Title}" />
 <Label Content="{Binding Publisher}" />
 </StackPanel>
 </Border>
 </DataTemplate>

For selecting the template, the class BookDataTemplateSelector overrides the method SelectTemplate
from the base class DataTemplateSelector. The implementation selects the template based on the
Publisher property from the Book class (code file BooksDemo/Utilities/BookTemplateSelector.cs):

using System.Windows;
using System.Windows.Controls;
using Wrox.ProCSharp.WPF.Data;

namespace Wrox.ProCSharp.WPF.Utilities
{
 public class BookTemplateSelector : DataTemplateSelector
 {
 public override DataTemplate SelectTemplate(object item,

c36.indd 1129 30-01-2014 20:42:54

1130 ❘ CHAPTER 36 Business ApplicAtions with wpF

 DependencyObject container)
 {
 if (item != null && item is Book)
 {
 var book = item as Book;
 switch (book.Publisher)
 {
 case "Wrox Press":
 return (container as FrameworkElement).FindResource(
 "wroxTemplate") as DataTemplate;
 case "For Dummies":
 return (container as FrameworkElement).FindResource(
 "dummiesTemplate") as DataTemplate;
 default:
 return (container as FrameworkElement).FindResource(
 "bookTemplate") as DataTemplate;
 }
 }
 return null;
 }
 }
}

For accessing the class BookDataTemplateSelector from XAML code, the class is defined within the
Window resources (XAML file BooksDemo/BooksUC.xaml):

 <src:BookDataTemplateSelector x:Key="bookTemplateSelector" />

Now the selector class can be assigned to the ItemTemplateSelector property of the ListBox:

 <ListBox DockPanel.Dock="Left" ItemsSource="{Binding}" Margin="5"
 MinWidth="120" IsSynchronizedWithCurrentItem="True"
 ItemTemplateSelector="{StaticResource bookTemplateSelector}">

Running the application, you can see different data templates based on the publisher, as shown in
Figure 36-12.

FiguRE 36-12

c36.indd 1130 30-01-2014 20:42:54

Data Binding ❘ 1131

binding to XMl
WPF data binding has special support for binding to XML data. You can use XmlDataProvider as a data
source and bind the elements by using XPath expressions. For a hierarchical display, you can use the
TreeView control and create the view for the items by using the HierarchicalDataTemplate.

The following XML file containing Book elements is used as a source in the next examples (XML file
XmlBindingDemo/Books.xml):

<?xml version="1.0" encoding="utf-8" ?>
<Books>
 <Book isbn="978-1-118-31442-5">
 <Title>Professional C# 2012</Title>
 <Publisher>Wrox Press</Publisher>
 <Author>Christian Nagel</Author>
 <Author>Jay Glynn</Author>
 <Author>Morgan Skinner</Author>
 </Book>
 <Book isbn="978-0-470-50226-6">
 <Title>Beginning Visual C# 2010</Title>
 <Publisher>Wrox Press</Publisher>
 <Author>Karli Watson</Author>
 <Author>Christian Nagel</Author>
 <Author>Jacob Hammer Pedersen</Author>
 <Author>John D. Reid</Author>
 <Author>Morgan Skinner</Author>
 </Book>
</Books>

Similarly to defining an object data provider, you can define an XML data provider. Both
ObjectDataProvider and XmlDataProvider are derived from the same base class, DataSourceProvider.
With the XmlDataProvider in the example, the Source property is set to reference the XML file books
.xml. The XPath property defines an XPath expression to reference the XML root element Books. The Grid
element references the XML data source with the DataContext property. With the data context for the grid,
all Book elements are required for a list binding, so the XPath expression is set to Book. Inside the grid, you
can find the ListBox element that binds to the default data context and uses the DataTemplate to include
the title in TextBlock elements as items of the ListBox. You can also see three Label elements with data
binding set to XPath expressions to display the title, publisher, and ISBN numbers:

<Window x:Class="XmlBindingDemo.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Main Window" Height="240" Width="500">
 <Window.Resources>
 <XmlDataProvider x:Key="books" Source="Books.xml" XPath="Books" />
 <DataTemplate x:Key="listTemplate">
 <TextBlock Text="{Binding XPath=Title}" />
 </DataTemplate>

 <Style x:Key="labelStyle" TargetType="{x:Type Label}">
 <Setter Property="Width" Value="190" />
 <Setter Property="Height" Value="40" />
 <Setter Property="Margin" Value="5" />
 </Style>
 </Window.Resources>

 <Grid DataContext="{Binding Source={StaticResource books}, XPath=Book}">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>

c36.indd 1131 30-01-2014 20:42:55

1132 ❘ CHAPTER 36 Business ApplicAtions with wpF

 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <ListBox IsSynchronizedWithCurrentItem="True" Margin="5"
 Grid.Column="0" Grid.RowSpan="4" ItemsSource="{Binding}"
 ItemTemplate="{StaticResource listTemplate}" />

 <Label Style="{StaticResource labelStyle}" Content="{Binding XPath=Title}"
 Grid.Row="0" Grid.Column="1" />
 <Label Style="{StaticResource labelStyle}"
 Content="{Binding XPath=Publisher}" Grid.Row="1" Grid.Column="1" />
 <Label Style="{StaticResource labelStyle}"
 Content="{Binding XPath=@isbn}" Grid.Row="2" Grid.Column="1" />
 </Grid>
</Window>

Figure 36-13 shows the result of the XML binding.

FiguRE 36-13

noTE If XML data should be shown hierarchically, you can use the TreeView control.

binding validation and Error Handling
Several options are available to validate data from the user before it is used with the .NET objects:

➤➤ Handling exceptions
➤➤ Handling data error information errors
➤➤ Handling notify data error information errors
➤➤ Defining custom validation rules

Handling Exceptions
The first option demonstrated here reflects the fact that the .NET class throws an exception if an invalid
value is set, as shown in the class SomeData. The property Value1 accepts values only larger than or equal
to 5 and smaller than 12 (code file ValidationDemo/SomeData.cs):

 public class SomeData
 {
 private int value1;
 public int Value1 {
 get { return value1; }
 set

c36.indd 1132 30-01-2014 20:42:55

Data Binding ❘ 1133

 {
 if (value < 5 || value > 12)
 {
 throw new ArgumentException(
 "value must not be less than 5 or greater than 12");
 }
 value1 = value;
 }
 }
 }

In the constructor of the MainWindow class, a new object of the class SomeData is initialized and passed to
the DataContext for data binding (code file ValidationDemo/MainWindow.xaml.cs):

 public partial class MainWindow: Window
 {
 private SomeData p1 = new SomeData { Value1 = 11 };

 public MainWindow()
 {
 InitializeComponent();
 this.DataContext = p1;

 }

The event handler method OnShowValue displays a message box to show the actual value of the SomeData
instance:

 private void OnShowValue(object sender, RoutedEventArgs e)
 {
 MessageBox.Show(p1.Value1.ToString());
 }
 }

With simple data binding, the following shows the Text property of a TextBox bound to the Value1
property. If you run the application now and try to change the value to an invalid one, you can verify that
the value never changed by clicking the Submit button. WPF catches and ignores the exception thrown
by the set accessor of the property Value1 (XAML file ValidationDemo/MainWindow.xaml):

 <Label Margin="5" Grid.Row="0" Grid.Column="0" >Value1:</Label>
 <TextBox Margin="5" Grid.Row="0" Grid.Column="1"
 Text="{Binding Path=Value1}" />

To display an error as soon as the context of the input field changes, you can set
the ValidatesOnException property of the Binding markup extension to True.
With an invalid value (as soon as the exception is thrown when the value should
be set), the TextBox is surrounded by a red line. The application showing the error
rectangle is shown in Figure 36-14.

 <Label Margin="5" Grid.Row="0" Grid.Column="0" >Value1:</Label>
 <TextBox Margin="5" Grid.Row="0" Grid.Column="1"
 Text="{Binding Path=Value1, ValidatesOnExceptions=True}" />

To return the error information in a different way to the user, you can assign the attached property
ErrorTemplate that is defined by the Validation class to a template defining the UI for errors. The new
template to mark the error is shown as follows with the key validationTemplate. The ControlTemplate
puts a red exclamation point in front of the existing control content:

 <ControlTemplate x:Key="validationTemplate">
 <DockPanel>
 <TextBlock Foreground="Red" FontSize="40">!</TextBlock>
 <AdornedElementPlaceholder/>
 </DockPanel>
 </ControlTemplate>

FiguRE 36-14

c36.indd 1133 30-01-2014 20:42:55

1134 ❘ CHAPTER 36 Business ApplicAtions with wpF

Setting the validationTemplate with the Validation.ErrorTemplate attached
property activates the template with the TextBox:

 <Label Margin="5" Grid.Row="0" Grid.Column="0" >Value1:</Label>
 <TextBox Margin="5" Grid.Row="0" Grid.Column="1"
 Text="{Binding Path=Value1, ValidatesOnExceptions=True}"
 Validation.ErrorTemplate="{StaticResource validationTemplate}" />

The new look of the application is shown in Figure 36-15.

noTE Another option for a custom error message is to register to the Error event of
the Validation class. In this case, the property NotifyOnValidationError must be
set to true.

The error information itself can be accessed from the Errors collection of the Validation class. To
display the error information in the ToolTip of the TextBox you can create a property trigger as shown
next. The trigger is activated as soon as the HasError property of the Validation class is set to True. The
trigger sets the ToolTip property of the TextBox:

 <Style TargetType="{x:Type TextBox}">
 <Style.Triggers>
 <Trigger Property="Validation.HasError" Value="True">
 <Setter Property="ToolTip"
 Value="{Binding RelativeSource={x:Static RelativeSource.Self},
 Path=(Validation.Errors)[0].ErrorContent}" />
 </Trigger>
 </Style.Triggers>
 </Style>

Data Error Information
Another way to deal with errors is when the .NET object implements the interface IDataErrorInfo. The
class SomeData is now changed to implement this interface, which defines the property Error and an
indexer with a string argument. With WPF validation during data binding, the indexer is called and the
name of the property to validate is passed as the columnName argument. With the implementation,
the value is verified as valid; if it isn’t, an error string is passed. Here, the validation is done on the property
Value2, which is implemented by using the C# automatic property notation (code file ValiationDemo/
SomeData.cs):

 public class SomeData: IDataErrorInfo
 {
 //...

 public int Value2 { get; set; }

 string IDataErrorInfo.Error
 {
 get
 {
 return null;
 }
 }

 string IDataErrorInfo.this[string columnName]

FiguRE 36-15

c36.indd 1134 30-01-2014 20:42:55

Data Binding ❘ 1135

 {
 get
 {
 if (columnName == "Value2")
 {
 if (this.Value2 < 0 || this.Value2 > 80)
 return "age must not be less than 0 or greater than 80";

 }
 return null;
 }
 }
 }

noTE With a .NET object, it would not be clear what an indexer would return; for
example, what would you expect from an object of type Person calling an indexer?
That’s why it is best to do an explicit implementation of the interface IDataErrorInfo.
This way, the indexer can be accessed only by using the interface, and the .NET class
could use a different implementation for other purposes.

If you set the property ValidatesOnDataErrors of the Binding class to true, the interface
IDataErrorInfo is used during binding. In the following code, when the TextBox is changed the binding
mechanism invokes the indexer of the interface and passes Value2 to the columnName variable (XAML file
ValidationDemo/MainWindow.xaml):

 <Label Margin="5" Grid.Row="1" Grid.Column="0" >Value2:</Label>
 <TextBox Margin="5" Grid.Row="1" Grid.Column="1"
 Text="{Binding Path=Value2, ValidatesOnDataErrors=True}" />

Notify Data Error Info
Besides supporting validation with exceptions and the IDataErrorInfo interface, WPF with .NET
4.5 supports validation with the interface INotifyDataErrorInfo as well. Unlike the interface
IDataErrorInfo, whereby the indexer to a property can return one error, with INotifyDataErrorInfo
multiple errors can be associated with a single property. These errors can be accessed using the GetErrors
method. The HasErrors property returns true if the entity has any error. Another great feature of this
interface is the notification of errors with the event ErrorsChanged. This way, errors can be retrieved
asynchronously on the client — for example, a Web service can be invoked to verify the input from the user.
In this case, the user can continue working with the input form while the result is retrieved, and can be
informed asynchronously about any mismatch.

Let’s get into an example in which validation is done using INotifyDataErrorInfo. The base class
NotifyDataErrorInfoBase is defined, which implements the interface INotifyDataErrorInfo.
This class derives from the base class BindableObject to get an implementation for the interface
INotifyPropertyChanged that you’ve seen earlier in this chapter. NotifyDataErrorInfoBase uses a
dictionary named errors that contains a list for every property to store error information. The property
HasErrors returns true if any property has an error; the method GetErrors returns the error list for
a single property; and the event ErrorsChanged is fired every time error information is changed. In
addition to the members of the interface INotifyDataErrorInfo, the base class implements the methods
SetError, ClearErrors, and ClearAllErrors to make it easier to deal with setting errors (code file
ValidationDemo/NotifyDataErrorInfoBase.cs):

using System;
using System.Collections;
using System.Collections.Generic;

c36.indd 1135 30-01-2014 20:42:55

1136 ❘ CHAPTER 36 Business ApplicAtions with wpF

using System.ComponentModel;
using System.Runtime.CompilerServices;

namespace ValidationDemo
{
 public abstract class NotifyDataErrorInfoBase : BindableObject,
 INotifyDataErrorInfo
 {
 public void SetError(string errorMessage,
 [CallerMemberName] string propertyName = null)
 {
 List<string> errorList;
 if (errors.TryGetValue(propertyName, out errorList))
 {
 errorList.Add(errorMessage);
 }
 else
 {
 errorList = new List<string> { errorMessage };
 errors.Add(propertyName, errorList);
 }
 HasErrors = true;
 OnErrorsChanged(propertyName);
 }

 public void ClearErrors([CallerMemberName] string propertyName = null)
 {
 if (hasErrors)
 {
 List<string> errorList;
 if (errors.TryGetValue(propertyName, out errorList))
 {
 errors.Remove(propertyName);
 }
 if (errors.Count == 0)
 {
 HasErrors = false;
 }
 OnErrorsChanged(propertyName);
 }
 }

 public void ClearAllErrors()
 {
 if (HasErrors)
 {
 errors.Clear();
 HasErrors = false;
 OnErrorsChanged(null);
 }
 }

 public event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;

 private Dictionary<string, List<string>> errors =
 new Dictionary<string, List<string>>();
 public IEnumerable GetErrors(string propertyName)
 {
 List<string> errorsForProperty;
 bool err = errors.TryGetValue(propertyName, out errorsForProperty);
 if (!err) return null;

c36.indd 1136 30-01-2014 20:42:56

Data Binding ❘ 1137

 return errorsForProperty;
 }

 private bool hasErrors = false;
 public bool HasErrors
 {
 get { return hasErrors; }
 protected set {
 if (SetProperty(ref hasErrors, value))
 {
 OnErrorsChanged(propertyName: null);
 }
 }
 }

 protected void OnErrorsChanged([CallerMemberName] string propertyName = null)
 {
 var errorsChanged = ErrorsChanged;
 if (errorsChanged != null)
 {
 errorsChanged(this, new DataErrorsChangedEventArgs(propertyName));
 }
 }
 }
}

The class SomeDataWithNotifications is the data object that is bound to the XAML code.
This class derives from the base class NotifyDataErrorInfoBase to inherit the implementation of the
interface INotifyDataErrorInfo. The property Val1 is validated asynchronously. For the validation,
the method CheckVal1 is invoked after the property is set. This method makes an asynchronous call to
the method ValidationSimulator.Validate. After invoking the method, the UI thread can return
to handle other events; and as soon as the result is returned, the SetError method of the base class is
invoked if an error was returned. You can easily change the async invocation to call a Web service or
perform another async activity (code file ValidationDemo/SomeDataWithNotifications.cs):

using System.Runtime.CompilerServices;
using System.Threading.Tasks;

namespace ValidationDemo
{
 public class SomeDataWithNotifications : NotifyDataErrorInfoBase
 {
 private int val1;
 public int Val1
 {
 get { return val1; }
 set
 {
 SetProperty(ref val1, value);
 CheckVal1(val1, value);
 }
 }

 private async void CheckVal1(int oldValue, int newValue,
 [CallerMemberName] string propertyName = null)
 {
 ClearErrors(propertyName);

 string result = await ValidationSimulator.Validate(newValue, propertyName);
 if (result != null)

c36.indd 1137 30-01-2014 20:42:56

1138 ❘ CHAPTER 36 Business ApplicAtions with wpF

 {
 SetError(result, propertyName);
 }
 }
 }

The Validate method of the ValidationSimilator has a delay of three seconds before checking the value,
and returns an error message if the value is larger than 50:

 public static class ValidationSimulator
 {
 public static Task<string> Validate(int val,
 [CallerMemberName] string propertyName = null)
 {
 return Task<string>.Run(async () =>
 {
 await Task.Delay(3000);
 if (val > 50) return "bad value";
 else return null;
 });
 }
 }

With data binding, just the ValidatesOnNotifyDataErrors property must be set to True to make
use of the async validation of the interface INotifyDataErrorInfo (XAML file ValidationDemo/
NotificationWindow.xaml):

 <TextBox Grid.Row="0" Grid.Column="1"
 Text="{Binding Val1, ValidatesOnNotifyDataErrors=True}" Margin="8" />

Running the application, you can see the text box surrounded by the default red rectangle three seconds
after wrong input was entered. Showing error information in a different way can be done in the same way
you’ve seen it before — with error templates and triggers accessing validation errors.

Custom Validation Rules
To get more control of the validation you can implement a custom validation rule. A class implementing
a custom validation rule needs to derive from the base class ValidationRule. In the previous
two examples, validation rules have been used as well. Two classes that derive from the abstract
base class ValidationRule are DataErrorValidationRule and ExceptionValidationRule.
DataErrorValidationRule is activated by setting the property ValidatesOnDataErrors and uses the
interface IDataErrorInfo; ExceptionValidationRule deals with exceptions and is activated by setting
the property ValidatesOnException.

In the following example, a validation rule is implemented to verify a regular expression. The class
RegularExpressionValidationRule derives from the base class ValidationRule and overrides the
abstract method Validate that is defined by the base class. With the implementation, the RegEx class
from the namespace System.Text.RegularExpressions is used to validate the expression defined by the
Expression property:

 public class RegularExpressionValidationRule : ValidationRule
 {
 public string Expression { get; set; }
 public string ErrorMessage { get; set; }

 public override ValidationResult Validate(object value,
 CultureInfo cultureInfo)
 {
 ValidationResult result = null;
 if (value != null)
 {

c36.indd 1138 30-01-2014 20:42:56

TreeView ❘ 1139

 var regEx = new Regex(Expression);
 bool isMatch = regEx.IsMatch(value.ToString());
 result = new ValidationResult(isMatch, isMatch ?
 null: ErrorMessage);
 }
 return result;
 }
 }

noTE Regular expressions are explained in Chapter 9

Instead of using the Binding markup extension, now the binding is done as a child of the TextBox.Text
element. The bound object defines an Email property that is implemented with the simple property syntax.
The UpdateSourceTrigger property defines when the source should be updated. Possible options for
updating the source are as follows:

➤➤ When the property value changes, which is every character typed by the user
➤➤ When the focus is lost
➤➤ Explicitly

ValidationRules is a property of the Binding class that contains ValidationRule elements. Here, the
validation rule used is the custom class RegularExpressionValidationRule, where the Expression
property is set to a regular expression that verifies whether the input is a valid e-mail address; and the
ErrorMessage property, which outputs the error message if the data entered in the TextBox is invalid:

 <Label Margin="5" Grid.Row="2" Grid.Column="0">Email:</Label>
 <TextBox Margin="5" Grid.Row="2" Grid.Column="1">
 <TextBox.Text>
 <Binding Path="Email" UpdateSourceTrigger="LostFocus">
 <Binding.ValidationRules>
 <src:RegularExpressionValidationRule
 Expression="^([\w-\.]+)@((\[[0–9]{1,3}\.[0–9]{1,3}\.
 [0–9]{1,3}\.)|(([\w-]+\.)+))([a-zA-Z]{2,4}|
 [0–9]{1,3})(\]?)$"
 ErrorMessage="Email is not valid" />
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
 </TextBox>

TREEviEw
The TreeView control is used to display hierarchical data. Binding to a TreeView is very similar
to the binding you’ve seen with the ListBox. What’s different is the hierarchical data display — a
HierarchicalDataTemplate can be used.

The next example uses hierarchical displays and the DataGrid control. The Formula1 sample database is
accessed with the ADO.NET Entity Framework. The mapping used is shown in Figure 36-16. The Race
class contains information about the date of the race and is associated with the Circuit class. The Circuit
class has information about the Country and the name of the race circuit. Race also has an association with
RaceResult. A RaceResult contains information about the Racer and the Team.

c36.indd 1139 30-01-2014 20:42:56

1140 ❘ CHAPTER 36 Business ApplicAtions with wpF

FiguRE 36-16

noTE The ADO.NET Entity Framework is covered in Chapter 33, “ADO.NET
Entity Framework.”

With the XAML code a TreeView is declared. TreeView derives from the base class ItemsControl,
where binding to a list can be done with the ItemsSource property. ItemsSource is bound to the
data context. The data context is assigned in the code-behind, as you will see next. Of course, this
could also be done with an ObjectDataProvider. To define a custom display for the hierarchical data,
HierarchicalDataTemplate elements are defined. The data templates here are defined for specific
data types with the DataType property. The first HierarchicalDataTemplate is the template for the
Championship class and binds the Year property of this class to the Text property of a TextBlock. The
ItemsSource property defines the binding for the data template itself to specify the next level in the data
hierarchy. If the Races property of the Championship class returns a collection, you bind the ItemsSource
property directly to Races. However, because this property returns a Lazy<T> object, binding is done to
Races.Value. The advantages of the Lazy<T> class are discussed later in this chapter.

The second HierarchicalDataTemplate element defines the template for the F1Race class and binds the
Country and Date properties of this class. With the Date property a StringFormat is defined with
the binding. The next level of the hierarchy is defined binding the ItemsSource to Results.Value.

The class F1RaceResult doesn’t have a children collection, so the hierarchy stops here. For this data
type, a normal DataTemplate is defined to bind the Position, Racer, and Car properties (XAML file
Formula1Demo/TreeUC.xaml):

<UserControl x:Class="Formula1Demo.TreeUC"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

c36.indd 1140 30-01-2014 20:42:56

TreeView ❘ 1141

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:local="clr-namespace:Formula1Demo"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <Grid>
 <TreeView ItemsSource="{Binding}" >
 <TreeView.Resources>
 <HierarchicalDataTemplate DataType="{x:Type local:Championship}"
 ItemsSource="{Binding Races.Value}">
 <TextBlock Text="{Binding Year}" />
 </HierarchicalDataTemplate>

 <HierarchicalDataTemplate DataType="{x:Type local:F1Race}"
 ItemsSource="{Binding Results.Value}">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Country}" Margin="5,0,5,0" />
 <TextBlock Text="{Binding Date, StringFormat=d}" Margin="5,0,5,0" />
 </StackPanel>
 </HierarchicalDataTemplate>

 <DataTemplate DataType="{x:Type local:F1RaceResult}">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Position}" Margin="5,0,5,0" />
 <TextBlock Text="{Binding Racer}" Margin="5,0,0,0" />
 <TextBlock Text=", " />
 <TextBlock Text="{Binding Car}" />
 </StackPanel>
 </DataTemplate>
 </TreeView.Resources>
 </TreeView>
 </Grid>
</UserControl>

Now for the code that fills the hierarchical control. In the code-behind file of the XAML code,
DataContext is assigned to the Years property. The Years property uses a LINQ query, instead of the
ADO.NET Entity Framework data context, to get all the years of the Formula-1 races in the database and
to create a new Championship object for every year. With the instance of the Championship class, the Year
property is set. This class also has a Races property to return the races of the year, but this information is
not yet filled in (code file Formula1Demo/TreeUC.xaml.cs):

noTE LINQ is discussed in Chapter 11, “Language Integrated Query,” and Chapter 33.

using System.Collections.Generic;
using System.Linq;
using System.Windows.Controls;

namespace Formula1Demo
{
 public partial class TreeUC : UserControl
 {
 private Formula1Entities data = new Formula1Entities();

 public TreeUC()
 {
 InitializeComponent();

c36.indd 1141 30-01-2014 20:42:56

1142 ❘ CHAPTER 36 Business ApplicAtions with wpF

 this.DataContext = Years;
 }

 public IEnumerable<Championship> Years
 {
 get
 {
 F1DataContext.Data = data;
 return data.Races.Select(r => new Championship
 {
 Year = r.Date.Year
 }).Distinct().OrderBy(c => c.Year);
 }
 }
 }
}

The Championship class has a simple automatic property for the year. The Races property is of type
Lazy<IEnumerable<F1Race>>. The Lazy<T> class was introduced with .NET 4 for lazy initialization. With
a TreeView control, this class comes in very handy. If the data behind the tree is large and you do not want
to load the full tree in advance, but only when a user makes a selection, lazy loading can be used. With the
constructor of the Lazy<T> class, a delegate Func<IEnumerable<F1Race>> is used. With this delegate,
IEnumerable<F1Race> needs to be returned. The implementation of the Lambda expression, assigned to
the delegate, uses a LINQ query to create a list of F1Race objects that have the Date and Country property
assigned (code file Formula1Demo/Championship.cs):

 public class Championship
 {
 public int Year { get; set; }
 public Lazy<IEnumerable<F1Race>> Races
 {
 get
 {
 return new Lazy<IEnumerable<F1Race>>(() =>
 {
 return (from r in F1DataContext.Data.Races
 where r.Data.Year == Year
 orderby r.Data
 select new F1Race
 {
 Date = r.Date,
 Country = r.Circuit.Country
 }).ToList();
 });
 }
 }
 }

The F1Race class again defines the Results property that uses the Lazy<T> type to return a list of
F1RaceResult objects (code file Formula1Demo/F1Race.cs):

 public class F1Race
 {
 public string Country { get; set; }
 public DateTime Date { get; set; }
 public Lazy<IEnumerable<F1RaceResult>> Results
 {
 get
 {
 return new Lazy<IEnumerable<F1RaceResult>>(() =>
 {
 return (from rr in F1DataContext.Data.RaceResults

c36.indd 1142 30-01-2014 20:42:57

DataGrid ❘ 1143

 where rr.Race.Date == this.Date
 select new F1RaceResult
 {
 rr.Position,
 Racer = rr.Racer.FirstName + " " + rr.Racer.LastName,
 Car = rr.Team.Name
 }).ToList();
 });
 }
 }
 }

The final class of the hierarchy is F1RaceResult, which is a simple data holder for Position, Racer, and
Car (code file Formula1Demo/Championship.cs):

 public class F1RaceResult
 {
 public int Position { get; set; }
 public string Racer { get; set; }
 public string Car { get; set; }
 }

When you run the application, you can see at first all the years of the championships in the tree view.
Because of binding, the next level is already accessed — every Championship object already has the F1Race
objects associated. The user doesn’t need to wait for the first level after the year or an open year with the
default appearance of a small triangle. As shown in Figure 36-17, the year 1984 is open. As soon as the user
clicks a year to see the second-level binding, the third level is done and the race results are retrieved.

FiguRE 36-17

Of course, you can also customize the TreeView control and define different styles for the complete template
or the items in the view.

dATAgRid
To display and edit data using rows and columns, the DataGrid control can be used. The DataGrid control
is an ItemsControl and defines the ItemsSource property that is bound to a collection. The XAML code
of this user interface also defines two RepeatButton controls that are used for paging functionality. Instead of
loading all the race information at once, paging is used so users can step through pages. In a simple scenario,

c36.indd 1143 30-01-2014 20:42:57

1144 ❘ CHAPTER 36 Business ApplicAtions with wpF

only the ItemsSource property of the DataGrid needs to be assigned. By default, the DataGrid creates
columns based on the properties of the bound data (XAML file Formula1Demo/GridUC.xaml):

<UserControl x:Class="Formula1Demo.GridUC"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <Grid>
 <Grid.RowDefinitions>
 <RepeatButton Margin="5" Click="OnPrevious">Previous</RepeatButton>
 <RepeatButton Margin="5" Click="OnNext">Next</RepeatButton>
 </Grid.RowDefinitions>
 <StackPanel Orientation="Horizontal" Grid.Row="0">
 <Button Click="OnPrevious">Previous</Button>
 <Button Click="OnNext">Next</Button>
 </StackPanel>
 <DataGrid Grid.Row="1" ItemsSource="{Binding}" />
 </Grid>
</UserControl>

The code-behind uses the same Formula1 database as the previous TreeView example. The DataContext
of the UserControl is set to the Races property. This property returns IEnumerable<object>. Instead of
assigning a strongly typed enumeration, an object is used to make it possible to create an anonymous
class with the LINQ query. The LINQ query creates the anonymous class with Year, Country, Position,
Racer, and Car properties and uses a compound to access Races and RaceResults. It also accesses other
associations of Races to get country, racer, and team information. With the Skip and Take methods, paging
functionality is implemented. The size of a page is fixed to 50 items, and the current page changes with the
OnNext and OnPrevious handlers (code file Formula1Demo/GridUC.xaml.cs):

using System.Collections.Generic;
using System.Linq;
using System.Windows;
using System.Windows.Controls;

namespace Formula1Demo
{
 public partial class GridUC : UserControl
 {
 private int currentPage = 0;
 private int pageSize = 50;
 private Formula1Entities data = new Formula1Entities();
 public GridUC()
 {
 InitializeComponent();
 this.DataContext = Races;
 }

 public IEnumerable<object> Races
 {
 get
 {
 var q = (from r in data.Races
 from rr in r.RaceResults
 orderby r.Date ascending
 select new
 {
 r.Date.Year,
 r.Circuit.Country,
 rr.Position,

c36.indd 1144 30-01-2014 20:42:57

DataGrid ❘ 1145

Racer = rr.Racer.FirstName + " " + rr.Racer.LastName,
 Car = rr.Team.Name
 }).Skip(currentPage * pageSize).Take(pageSize);
return q.ToList();

 }
 }

 private void OnPrevious(object sender, RoutedEventArgs e)
 {
 if (currentPage > 0)
 {
 currentPage--;
 this.DataContext = Races;
 }
 }

 private void OnNext(object sender, RoutedEventArgs e)
 {
 currentPage++;
 this.DataContext = Races;
 }
 }
}

Figure 36-18 shows the running application with the default grid styles and headers.

FiguRE 36-18

In the next DataGrid example, the grid is customized with custom columns and grouping.

Custom Columns
Setting the property AutoGenerateColumns of the DataGrid to False doesn’t generate default columns.
You can create custom columns with the Columns property. You can also specify elements that derive from
DataGridColumn. You can use predefined classes, and DataGridTextColumn can be used to read and edit
text. DataGridHyperlinkColumn is for displaying hyperlinks. DataGridCheckBoxColumn displays a check
box for Boolean data. For a list of items in a column, you can use the DataGridComboBoxColumn. More
DataGridColumn types will be available in the future, but if you need a different representation now, you
can use the DataGridTemplateColumn to define and bind any elements you want.

c36.indd 1145 30-01-2014 20:42:57

1146 ❘ CHAPTER 36 Business ApplicAtions with wpF

The example code uses DataGridTextColumn elements that are bound to the Position and Racer
properties. The Header property is set to a string for display. Of course, you can also use a template to
define a complete custom header for the column (XAML file Formula1Demo/GridUC.xaml.cs):

 <DataGrid ItemsSource="{Binding}" AutoGenerateColumns="False">
 <DataGrid.Columns>
 <DataGridTextColumn Binding="{Binding Position, Mode=OneWay}"
 Header="Position" />
 <DataGridTextColumn Binding="{Binding Racer, Mode=OneWay}"
 Header="Racer" />
 </DataGrid.Columns>

Row details
When a row is selected, the DataGrid can display additional information for the row. This is done
by specifying a RowDetailsTemplate with the DataGrid. A DataTemplate is assigned to the
RowDetailsTemplate, which contains several TextBlock elements that display the car and points (XAML
file Formula1Demo/GridUC.xaml.cs):

 <DataGrid.RowDetailsTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="Car:" Margin="5,0,0,0" />
 <TextBlock Text="{Binding Car}" Margin="5,0,0,0" />
 <TextBlock Text="Points:" Margin="5,0,0,0" />
 <TextBlock Text="{Binding Points}" />
 </StackPanel>
 </DataTemplate>
 </DataGrid.RowDetailsTemplate>

grouping with the datagrid
The Formula-1 races have several rows that contain the same information, such as the year and the country.
For such data, grouping can be helpful to organize the information for the user.

For grouping, the CollectionViewSource can be used in XAML code. It also supports sorting and
filtering. With code-behind you can also use the ListCollectionView class, which is used only by the
CollectionViewSource.

CollectionViewSource is defined within a Resources collection. The source of CollectionViewSource
is the result from an ObjectDataProvider. The ObjectDataProvider invokes the GetRaces method of
the F1Races type. This method has two int parameters that are assigned from the MethodParameters
collection. The CollectionViewSource uses two descriptions for grouping—first by the Year property and
then by the Country property (XAML file Formula1Demo/GridGroupingUC.xaml):

 <Grid.Resources>
 <ObjectDataProvider x:Key="races" ObjectType="{x:Type local:F1Races}"
 MethodName="GetRaces">
 <ObjectDataProvider.MethodParameters>
 <sys:Int32>0</sys:Int32>
 <sys:Int32>20</sys:Int32>
 </ObjectDataProvider.MethodParameters>
 </ObjectDataProvider>
 <CollectionViewSource x:Key="viewSource"
 Source="{StaticResource races}">
 <CollectionViewSource.GroupDescriptions>
 <PropertyGroupDescription PropertyName="Year" />
 <PropertyGroupDescription PropertyName="Country" />
 </CollectionViewSource.GroupDescriptions>
 </CollectionViewSource>
 </Grid.Resources>

c36.indd 1146 30-01-2014 20:42:57

DataGrid ❘ 1147

How the group is displayed is defined with the DataGrid GroupStyle property. With the GroupStyle
element you need to customize the ContainerStyle as well as the HeaderTemplate and the complete
panel. To dynamically select the GroupStyle and HeaderStyle, you can also write a container style
selector and a header template selector. It is very similar in functionality to the data template selector
described earlier.

The GroupStyle in the example sets the ContainerStyle property of the GroupStyle. With this style,
the GroupItem is customized with a template. The GroupItem appears as the root element of a group
when grouping is used. Displayed within the group is the name, using the Name property, and the number
of items, using the ItemCount property. The third column of the Grid contains all the normal items using
the ItemsPresenter. If the rows are grouped by country, the labels of the Name property would all have a
different width, which doesn’t look good. Therefore, the SharedSizeGroup property is set with the second
column of the grid to ensure all items are the same size. The shared size scope needs to be set for all elements
that have the same size. This is done in the DataGrid setting Grid.IsSharedSizeScope="True":

 <DataGrid.GroupStyle>
 <GroupStyle>
 <GroupStyle.ContainerStyle>
 <Style TargetType="{x:Type GroupItem}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate >
 <StackPanel Orientation="Horizontal" >
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition SharedSizeGroup="LeftColumn" />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Label Grid.Column="0" Background="Yellow"
 Content="{Binding Name}" />
 <Label Grid.Column="1" Content="{Binding ItemCount}" />
 <Grid Grid.Column="2" HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <ItemsPresenter/>
 </Grid>
 </Grid>
 </StackPanel>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </GroupStyle.ContainerStyle>
 </GroupStyle>
 </DataGrid.GroupStyle>

The class F1Races that is used by the ObjectDataProvider uses LINQ to access the Formula1 database
and returns a list of anonymous types with Year, Country, Position, Racer, Car, and Points properties.
The Skip and Take methods are used to access part of the data (code file Formula1Demo/F1Races.cs):

using System.Collections.Generic;
using System.Linq;

namespace Formula1Demo
{
 public class F1Races
 {
 private int lastpageSearched = -1;
 private IEnumerable<object> cache = null;
 private Formula1Entities data = new Formula1Entities();

 public IEnumerable<object> GetRaces(int page, int pageSize)

c36.indd 1147 30-01-2014 20:42:58

1148 ❘ CHAPTER 36 Business ApplicAtions with wpF

 {
 if (lastpageSearched == page)
 return cache;
 lastpageSearched = page;

 var q = (from r in data.Races
 from rr in r.RaceResults
 orderby r.Date ascending
 select new
 {
 Year = r.Date.Year,
 Country = r.Circuit.Country,
 Position = rr.Position,
 Racer = rr.Racer.Firstname + " " + rr.Racer.Lastname,
 Car = rr.Team.Name,
 Points = rr.Points
 }).Skip(page * pageSize).Take(pageSize);
 cache - q.ToList();
 return cache;
 }
 }
}

Now all that’s left is for the user to set the page number and change the parameter of the ObjectDataProvider.
In the user interface, a TextBox and a Button are defined (XAML file Formula1Demo/GridGroupingUC.xaml):

 <StackPanel Orientation="Horizontal" Grid.Row="0">
 <TextBlock Margin="5" Padding="4" VerticalAlignment="Center">
 Page:
 </TextBlock>
 <TextBox Margin="5" Padding="4" VerticalAlignment="Center"
 x:Name="textPageNumber" Text="0" />
 <Button Click="OnGetPage">Get Page</Button>
 </StackPanel>

The OnGetPage handler of the button in the code-behind accesses the ObjectDataProvider and changes
the first parameter of the method. It then invokes the Refresh method so the ObjectDataProvider
requests the new page (code file Formula1Demo/GridGroupingUC.xaml.cs):

 private void OnGetPage(object sender, RoutedEventArgs e)
 {
 int page = int.Parse(textPageNumber.Text);
 var odp = (sender as FrameworkElement).FindResource("races")
 as ObjectDataProvider;
 odp.MethodParameters[0] = page;
 odp.Refresh();
 }

Running the application, you can see grouping and row
detail information, as shown in Figure 36-19.

live shaping
A new feature since WPF 4.5 is live shaping.
You’ve seen the collection view source with its
support for sorting, filtering, and grouping.
However, if the collection changes over time
in that sorting, filtering, or grouping returns
different results, the CollectionViewSource
didn’t help — until now. For live shaping, a new
interface, ICollectionViewLiveShaping, is FiguRE 36-19

c36.indd 1148 30-01-2014 20:42:58

DataGrid ❘ 1149

used. This interface defines the properties CanChangeLiveFiltering, CanChangeLiveGrouping,
and CanChangeLiveSorting to check the data source if these live shaping features are available.
The properties IsLiveFiltering, IsLiveGrouping, and IsLiveSorting enable turning on the live
shaping features — if available. With LiveFilteringProperties, LiveGroupingProperties, and
LiveSortingProperties, you can define the properties of the source that should be used for live
filtering, grouping, and sorting.

The sample application shows how the results of a Formula 1 race — this time the race from Barcelona in
2012 — change lap by lap.

A racer is represented by the Racer class. This type has the simple properties Name, Team, and Number.
These properties are implemented using auto properties, as the values of this type don’t change when the
application is run (code file LiveShaping/Racer.cs):

 public class Racer
 {
 public string Name { get; set; }
 public string Team { get; set; }
 public int Number { get; set; }

 public override string ToString()
 {
 return Name;
 }
 }

The class Formula1 returns a list of all racers who competed at the Barcelona race 2012 (code file
LiveShaping/Formula1.cs):

 public class Formula1
 {
 private List<Racer> racers;
 public IEnumerable<Racer> Racers
 {
 get
 {
 return racers ?? (racers = GetRacers());
 }
 }

 private List<Racer> GetRacers()
 {
 return new List<Racer>()
 {
 new Racer { Name="Sebastian Vettel", Team="Red Bull Racing", Number=1 },
 new Racer { Name="Mark Webber", Team="Red Bull Racing", Number=2 },
 new Racer { Name="Jenson Button", Team="McLaren", Number=3 },
 new Racer { Name="Lewis Hamilton", Team="McLaren", Number=4 },
 new Racer { Name="Fernando Alonso", Team="Ferrari", Number=5 },
 new Racer { Name="Felipe Massa", Team="Ferrari", Number=6 },
 new Racer { Name="Michael Schumacher", Team="Mercedes", Number=7 },
 new Racer { Name="Nico Rosberg", Team="Mercedes", Number=8 },
 new Racer { Name="Kimi Raikkonen", Team="Lotus", Number=9 },
 new Racer { Name="Romain Grosjean", Team="Lotus", Number=10 },
 new Racer { Name="Paul di Resta", Team="Force India", Number=11 },
 new Racer { Name="Nico Hülkenberg", Team="Force India", Number=12 },
 new Racer { Name="Kamui Kobayashi", Team="Sauber", Number=14 },
 new Racer { Name="Sergio Perez", Team="Sauber", Number=15 },
 new Racer { Name="Daniel Riccardio", Team="Toro Rosso", Number=16 },
 new Racer { Name="Jean-Eric Vergne", Team="Toro Rosso", Number=17 },

c36.indd 1149 30-01-2014 20:42:58

1150 ❘ CHAPTER 36 Business ApplicAtions with wpF

 new Racer { Name="Pastor Maldonado", Team="Williams", Number=18 },

 //... more racers in the source code download
 };
 }
 }

Now it gets more interesting. The LapRacerInfo class is the type that is shown in the DataGrid
control. The class derives from the base class BindableObject to get an implementation of
INotifyPropertyChanged as you’ve seen earlier. The properties Lap, Position, and PositionChange
change over time. Lap gives the current lap number, Position gives the position in the race in the specified
lap, and PositionChange provides information about how the position changed from the previous lap. If
the position did not change, the state is None; if the position is lower than in the previous lap, it is Up; if it is
higher, then it is Down; and if the racer is out of the race, the PositionChange is Out. This information can
be used within the UI for a different representation (code file LiveShaping/LapRacerInfo.cs):

 public enum PositionChange
 {
 None,
 Up,
 Down,
 Out
 }

 public class LapRacerInfo : BindableObject
 {
 public Racer Racer { get; set; }
 private int lap;
 public int Lap
 {
 get { return lap; }
 set { SetProperty(ref lap, value); }
 }
 private int position;
 public int Position
 {
 get { return position; }
 set { SetProperty(ref position, value); }
 }
 private PositionChange positionChange;
 public PositionChange PositionChange
 {
 get { return positionChange; }
 set { SetProperty(ref positionChange, value); }
 }
 }

The class LapChart contains all the information about all laps and racers. This class could be changed to
access a live Web service to retrieve this information, and then the application could show the current live
results from an active race.

The method SetLapInfoForStart creates the initial list of LapRacerInfo items and fills the position to
the grid position. The grid position is the first number of the List<int> collection that is added to the
positions dictionary. Then, with every invocation of the NextLap method, the items inside the lapInfo
collection change to a new position and set the PositionChange state information (code file LiveShaping/
LapChart.cs):

 public class LapChart
 {
 private Formula1 f1 = new Formula1();
 private List<LapRacerInfo> lapInfo;
 private int currentLap = 0;

c36.indd 1150 30-01-2014 20:42:58

DataGrid ❘ 1151

 private const int PostionOut = 999;
 private int maxLaps;
 public LapChart()
 {
 FillPositions();
 SetLapInfoForStart();
 }

 private Dictionary<int, List<int>> positions =
 new Dictionary<int, List<int>>();
 private void FillPositions()
 {
 positions.Add(18, new List<int> { 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2,
 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1 });
 positions.Add(5, new List<int> { 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 2, 2, 2, 2, 1, 1, 1, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2 });
 positions.Add(10, new List<int> { 3, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 9, 7, 6,
 6, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
 4, 4, 4, 4, 4 });
 // more position information with the code download

 maxLaps = positions.Select(p => p.Value.Count).Max() - 1;
 }

 private void SetLapInfoForStart()
 {
 lapInfo = positions.Select(x => new LapRacerInfo
 {
 Racer = f1.Racers.Where(r => r.Number == x.Key).Single(),
 Lap = 0,
 Position = x.Value.First(),
 PositionChange = PositionChange.None
 }).ToList();
 }

 public IEnumerable<LapRacerInfo> GetLapInfo()
 {
 return lapInfo;
 }

 public bool NextLap()
 {
 currentLap++;
 if (currentLap > maxLaps) return false;

 foreach (var info in lapInfo)
 {
 int lastPosition = info.Position;
 var racerInfo = positions.Where(x => x.Key == info.Racer.Number).Single();

 if (racerInfo.Value.Count > currentLap)
 {
 info.Position = racerInfo.Value[currentLap];
 }
 else
 {
 info.Position = lastPosition;

c36.indd 1151 30-01-2014 20:42:58

1152 ❘ CHAPTER 36 Business ApplicAtions with wpF

 }
 info.PositionChange = GetPositionChange(lastPosition, info.Position);

 info.Lap = currentLap;
 }
 return true;
 }

 private PositionChange GetPositionChange(int oldPosition, int newPosition)
 {
 if (oldPosition == PositionOut ||| newPosition == PositionOut)
 return PositionChange.Out;
 else if (oldPosition == newPosition)
 return PositionChange.None;
 else if (oldPosition < newPosition)
 return PositionChange.Down;
 else
 return PositionChange.Up;
 }
 }

In the main window, the DataGrid is specified and contains some DataGridTextColumn elements that
are bound to properties of the LapRacerInfo class that is returned from the collection shown previously.
DataTrigger elements are used to define a different background color for the row depending on whether
the racer has a better or worse position compared to the previous lap by using the enumeration value
from the PositionChange property (XAML file LiveShaping/MainWindow.xaml):

 <DataGrid IsReadOnly="True" ItemsSource="{Binding}"
 DataContext="{StaticResource cvs}" AutoGenerateColumns="False">
 <DataGrid.CellStyle>
 <Style TargetType="DataGridCell">
 <Style.Triggers>
 <Trigger Property="IsSelected" Value="True">
 <Setter Property="Background" Value="{x:Null}" />
 <Setter Property="BorderBrush" Value="{x:Null}" />
 </Trigger>
 </Style.Triggers>
 </Style>
 </DataGrid.CellStyle>
 <DataGrid.RowStyle>
 <Style TargetType="DataGridRow">
 <Style.Triggers>
 <Trigger Property="IsSelected" Value="True">
 <Setter Property="Background" Value="{x:Null}" />
 <Setter Property="BorderBrush" Value="{x:Null}" />
 </Trigger>
 <DataTrigger Binding="{Binding PositionChange}" Value="None">
 <Setter Property="Background" Value="LightGray" />
 </DataTrigger>
 <DataTrigger Binding="{Binding PositionChange}" Value="Up">
 <Setter Property="Background" Value="LightGreen" />
 </DataTrigger>
 <DataTrigger Binding="{Binding PositionChange}" Value="Down">
 <Setter Property="Background" Value="Yellow" />
 </DataTrigger>
 <DataTrigger Binding="{Binding PositionChange}" Value="Out">
 <Setter Property="Background" Value="Red" />
 </DataTrigger>
 </Style.Triggers>
 </Style>
 </DataGrid.RowStyle>
 <DataGrid.Columns>

c36.indd 1152 30-01-2014 20:42:58

DataGrid ❘ 1153

 <DataGridTextColumn Binding="{Binding Position}" />
 <DataGridTextColumn Binding="{Binding Racer.Number}" />
 <DataGridTextColumn Binding="{Binding Racer.Name}" />
 <DataGridTextColumn Binding="{Binding Racer.Team}" />
 <DataGridTextColumn Binding="{Binding Lap}" />
 </DataGrid.Columns>
 </DataGrid>

noTE Data triggers are explained in Chapter 35, “Core WPF.”

The data context specified with the DataGrid control is found in the resources of the window with the
CollectionViewSource. The collection view source is bound to the data context that you’ll see soon is
specified with the code-behind. The important property set here is IsLiveSortingRequested. The value
is set to true to change the order of the elements in the user interface. The property used for sorting is
Position. As the position changes, the items are reordered in real time:

 <Window.Resources>
 <CollectionViewSource x:Key="cvs" Source="{Binding}"
 IsLiveSortingRequested="True">
 <CollectionViewSource.SortDescriptions>
 <scm:SortDescription PropertyName="Position" />
 </CollectionViewSource.SortDescriptions>
 </CollectionViewSource>
 </Window.Resources>

Now, you just need to get to the code-behind source code where the data context is set and the live values
are changed dynamically. In the constructor of the main window, the DataContext property is set to the
initial collection of type LapRacerInfo. Next, a background task invokes the NextLap method every
three seconds to change the values in the UI with the new positions. The background task makes use of an
async Lambda expression. The implementation could
be changed to get live data from a Web service (code file
LiveShaping/MainWindow.xaml.cs).

 public partial class MainWindow : Window
 {
 private LapChart lapChart = new LapChart();
 public MainWindow()
 {
 InitializeComponent();
 this.DataContext = lapChart.GetLapInfo();

 Task.Run(async () =>
 {
 bool raceContinues = true;
 while (raceContinues)
 {
 await Task.Delay(3000);
 raceContinues = lapChart.NextLap();
 }
 });
 }
 }

Figure 36-20 shows a run of the application while in lap
14, with a leading Fernando Alonso driving a Ferrari.

FiguRE 36-20

c36.indd 1153 30-01-2014 20:42:59

1154 ❘ CHAPTER 36 Business ApplicAtions with wpF

suMMARy
This chapter covered some features of WPF that are extremely important for business applications. For clear
and easy interaction with data, WPF data binding provides a leap forward. You can bind any property of a
.NET class to a property of a WPF element. The binding mode defines the direction of the binding. You can
bind .NET objects and lists, and define a data template to create a default look for a .NET class.

Command binding makes it possible to map handler code to menus and toolbars. You’ve also seen how
easy it is to copy and paste with WPF because a command handler for this technology is already included
in the TextBox control. You’ve also seen many more WPF features, such as using a DataGrid, the
CollectionViewSource for sorting and grouping, and all this with live shaping as well.

The next chapter goes into another facet of WPF: working with documents.

c36.indd 1154 30-01-2014 20:42:59

Creating Documents with WPF
wHAT’s in THis CHAPTER?

➤➤ Creating fl ow documents
➤➤ Creating fi xed documents
➤➤ Creating XPS documents
➤➤ Printing documents

wRox.Com CoDE DownloADs FoR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ Show Fonts
➤➤ Text Effects
➤➤ Table
➤➤ Flow Documents
➤➤ Create XPS
➤➤ Printing

inTRoDuCTion
Creating documents is a large part of WPF. The namespace System.Windows.Documents supports
creating both fl ow documents and fi xed documents. This namespace contains elements with which
you can have a rich Word-like experience with fl ow documents, and create WYSIWYG fi xed
documents.

Flow documents are geared toward screen reading; the content of the document is arranged based
on the size of the window and the fl ow of the document changes if the window is resized. Fixed
documents are mainly used for printing and page-oriented content and the content is always arranged
in the same way.

This chapter teaches you how to create and print fl ow documents and fi xed documents, and covers the
namespaces System.Windows.Documents, System.Windows.Xps, and System.IO.Packaging.

37

c37.indd 1155 30-01-2014 20:43:36

1156 ❘ CHAPTER 37 Creating DoCuments with wPF

TExT ElEmEnTs
To build the content of documents, you need document elements. The base class of these elements is
TextElement. This class defines common properties for font settings, foreground and background, and text
effects. TextElement is the base class for the classes Block and Inline, whose functionality is explored in
the following sections.

Fonts
An important aspect of text is how it looks, and thus the importance of the font. With the TextElement,
the font can be specified with the properties FontWeight, FontStyle, FontStretch, FontSize, and
FontFamily:

➤➤ FontWeight — Predefined values are specified by the FontWeights class, which offers values such as
UltraLight, Light, Medium, Normal, Bold, UltraBold, and Heavy.

➤➤ FontStyle — Values are defined by the FontStyles class, which offers Normal, Italic, and
Oblique.

➤➤ FontStretch — Enables you to specify the degrees to stretch the font compared to the normal aspect
ratio. FrontStretch defines predefined stretches that range from 50% (UltraCondensed) to 200%
(UltraExpanded). Predefined values in between the range are ExtraCondensed (62.5%), Condensed
(75%), SemiCondensed (87.5%), Normal (100%), SemiExpanded (112.5%), Expanded (125%), and
ExtraExpanded (150%).

➤➤ FontSize — This is of type double and enables you to specify the size of the font in device-indepen-
dent units, inches, centimeters, and points.

➤➤ FontFamily — Use this to define the name of the preferred font-family, e.g., Arial or Times New
Roman. With this property you can specify a list of font family names so if one font is not available,
the next one in the list is used. (If neither the selected font nor the alternate font are available, a flow
document falls back to the default MessageFontFamily.) You can also reference a font family from a
resource or use a URI to reference a font from a server. With fixed documents there’s no fallback on a
font not available because the font is available with the document.

To give you a feel for the look of different fonts, the following sample WPF application includes a ListBox.
The ListBox defines an ItemTemplate for every item in the list. This template uses four TextBlock
elements whereby the FontFamily is bound to the Source property of a FontFamily object. With different
TextBlock elements, FontWeight and FontStyle are set (XAML file ShowFonts/ShowFontsWindow
.xaml):

 <ListBox ItemsSource="{Binding}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal" >
 <TextBlock Margin="3, 0, 3, 0" FontFamily="{Binding Path=Source}"
 FontSize="18" Text="{Binding Path=Source}" />
 <TextBlock Margin="3, 0, 3, 0" FontFamily="{Binding Path=Source}"
 FontSize="18" FontStyle="Italic" Text="Italic" />
 <TextBlock Margin="3, 0, 3, 0" FontFamily="{Binding Path=Source}"
 FontSize="18" FontWeight="UltraBold" Text="UltraBold" />
 <TextBlock Margin="3, 0, 3, 0" FontFamily="{Binding Path=Source}"
 FontSize="18" FontWeight="UltraLight" Text="UltraLight" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

In the code-behind, the data context is set to the result of the SystemFontFamilies property of
the System.Windows.Media.Font class. This returns all the available fonts (code file ShowFonts/
ShowFontsWindow.xaml.cs):

c37.indd 1156 30-01-2014 20:43:36

Text Elements ❘ 1157

 public partial class ShowFontsWindow : Window
 {
 public ShowFontsWindow()
 {
 InitializeComponent();

 this.DataContext = Fonts.SystemFontFamilies;
 }
 }

Running the application, you get a large list of
system font families with italic, bold, ultrabold,
and ultralight characteristics, as shown in Figure
37-1.

TextEffect
Now let’s have a look into TextEffect, as
it is also common to all document elements.
TextEffect is defined in the namespace
System.Windows.Media and derives from the
base class Animatable, which enables the
animation of text.

TextEffect enables you to animate a clipping region, the foreground brush, and a transformation. With the
properties PositionStart and PositionCount you specify the position in the text to which the animation
applies.

For applying the text effects, the TextEffects property of a Run element is set. The TextEffect
element specified within the property defines a foreground and a transformation. For the foreground, a
SolidColorBrush with the name brush1 is used that is animated with a ColorAnimation element. The
transformation makes use of a ScaleTransformation with the name scale1, which is animated from two
DoubleAnimation elements (XAML file TextEffectsDemo/MainWindow.xaml):

 <TextBlock>
 <TextBlock.Triggers>
 <EventTrigger RoutedEvent="TextBlock.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <ColorAnimation AutoReverse="True" RepeatBehavior="Forever"
 From="Blue" To="Red" Duration="0:0:16"
 Storyboard.TargetName="brush1"
 Storyboard.TargetProperty="Color" />
 <DoubleAnimation AutoReverse="True"
 RepeatBehavior="Forever"
 From="0.2" To="12" Duration="0:0:16"
 Storyboard.TargetName="scale1"
 Storyboard.TargetProperty="ScaleX" />
 <DoubleAnimation AutoReverse="True"
 RepeatBehavior="Forever"
 From="0.2" To="12" Duration="0:0:16"
 Storyboard.TargetName="scale1"
 Storyboard.TargetProperty="ScaleY" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </TextBlock.Triggers>
 <Run FontFamily="Segoe UI">
 cn|elements

FiguRE 37-1

c37.indd 1157 30-01-2014 20:43:36

1158 ❘ CHAPTER 37 Creating DoCuments with wPF

 <Run.TextEffects>
 <TextEffect PositionStart="0" PositionCount="30">
 <TextEffect.Foreground>
 <SolidColorBrush x:Name="brush1" Color="Blue" />
 </TextEffect.Foreground>
 <TextEffect.Transform>
 <ScaleTransform x:Name="scale1" ScaleX="3" ScaleY="3" />
 </TextEffect.Transform>
 </TextEffect>
 </Run.TextEffects>
 </Run>
 </TextBlock>

Running the application, you can see the changes in size and color as shown in Figures 37-2 and 37-3.

FiguRE 37-2

FiguRE 37-3

inline
The base class for all inline flow content elements is Inline. You can use Inline elements within a para-
graph of a flow document. Because within a paragraph one Inline element can follow another, the Inline
class provides the PreviousInline and NextInline properties to navigate from one element to another.
You can also get a collection of all peer inlines with SiblingInlines.

The Run element that was used earlier to write some text is an Inline element for formatted or unformatted
text, but there are many more. A new line after a Run element can be done with the LineBreak element.

The Span element derives from the Inline class and enables the grouping of Inline elements. Only Inline
elements are allowed within the content of Span. The self-explanatory Bold, Hyperlink, Italic, and
Underline classes all derive from Span and thus have the same functionality to enable Inline elements
as its content, but to act on these elements differently. The following XAML code demonstrates using

c37.indd 1158 30-01-2014 20:43:36

Text Elements ❘ 1159

Bold, Italic, Underline, and LineBreak, as shown in Figure 37-4 (XAML file FlowDocumentsDemo/
FlowDocument1.xaml):

 <Paragraph FontWeight="Normal">

 Normal
 <Bold>Bold</Bold>
 <Italic>Italic</Italic>
 <LineBreak />
 <Underline>Underline</Underline>

 </Paragraph>

AnchoredBlock is an abstract class that derives from Inline and is used to anchor
Block elements to flow content. Figure and Floater are concrete classes that derive
from AnchoredBlock. Because these two inline elements become interesting in relation to
blocks, these elements are discussed later in this chapter.

Another Inline element that maps UI elements that have been used in previous chap-
ters is InlineUIContainer. InlineUIContainer enables adding all UIElement objects (for example,
a Button) to the document. The following code segment adds an InlineUIContainer with ComboBox,
RadioButton, and TextBox elements to the document (the result is shown in Figure 37-5) (XAML file
FlowDocumentsDemo/FlowDocument2.xaml):

FiguRE 37-4

noTE Of course, you can also style the UI elements as shown in Chapter 35, “Core
WPF.”

 <Paragraph TextAlignment="Center">

 <Italic>cn|elements</Italic>

 <LineBreak />
 <LineBreak />
 <InlineUIContainer>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <ComboBox Width="40" Margin="3" Grid.Row="0">
 <ComboBoxItem>Filet Mignon</ComboBoxItem>
 <ComboBoxItem>Rib Eye</ComboBoxItem>
 <ComboBoxItem>Sirloin</ComboBoxItem>
 </ComboBox>
 <StackPanel Grid.Row="0" Grid.RowSpan="2" Grid.Column="1">
 <RadioButton>Raw</RadioButton>
 <RadioButton>Medium</RadioButton>
 <RadioButton>Well done</RadioButton>
 </StackPanel>
 <TextBox Grid.Row="1" Grid.Column="0" Width="140"></TextBox>
 </Grid>
 </InlineUIContainer>
 </Paragraph>

c37.indd 1159 30-01-2014 20:43:37

1160 ❘ CHAPTER 37 Creating DoCuments with wPF

Block
Block is an abstract base class for block-level elements. Blocks enable
grouping elements contained to specific views. Common to all blocks are
the properties PreviousBlock, NextBlock, and SiblingBlocks that
enable you to navigate from block to block. Setting BreakPageBefore
and BreakColumnBefore page and column breaks are done before the
block starts. A Block also defines a border with the BorderBrush and
BorderThickness properties.

Classes that derive from Block are Paragraph, Section, List, Table,
and BlockUIContainer. BlockUIContainer is similar to InlineUIContainer in that you can add
elements that derive from UIElement.

Paragraph and Section are simple blocks; Paragraph contains inline elements, and Section is used to
group other Block elements. With the Paragraph block you can determine whether a page or column break
is allowed within the paragraph or between paragraphs. KeepTogether can be used to disallow breaking
within the paragraph; KeepWithNext tries to keep one paragraph and the next together. If a paragraph is
broken by a page or column break, MinWidowLines defines the minimum number of lines that are placed
after the break; MinOrphanLines defines the minimum number of lines before the break.

The Paragraph block also enables decorating the text within the paragraph with TextDecoration
elements. Predefined text decorations are defined by TextDecorations: Baseline, Overline,
Strikethrough, and Underline.

The following XAML code shows multiple Paragraph elements. One Paragraph element with a title
follows another with the content belonging to this title. These two paragraphs are connected with the
attribute KeepWithNext. It’s also assured that the paragraph with the content is not broken by setting
KeepTogether to True (XAML file FlowDocumentsDemo/ParagraphDemo.xaml):

<FlowDocument xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 ColumnWidth="300" FontSize="16" FontFamily="Georgia">
 <Paragraph FontSize="36">
 <Run>Lyrics</Run>
 </Paragraph>
 <Paragraph TextIndent="10" FontSize="24" KeepWithNext="True">
 <Bold>
 <Run>Mary had a little lamb</Run>
 </Bold>
 </Paragraph>
 <Paragraph KeepTogether="True">
 <Run>Mary had a little lamb,</Run>
 <LineBreak />
 <Run>little lamb, little lamb,</Run>
 <LineBreak />
 <Run>Mary had a little lamb,</Run>
 <LineBreak />
 <Run>whose fleece was white as snow.</Run>
 <LineBreak />
 <Run>And everywhere that Mary went,</Run>
 <LineBreak />
 <Run>Mary went, Mary went,</Run>
 <LineBreak />
 <Run>and everywhere that Mary went,</Run>
 <LineBreak />
 <Run>the lamb was sure to go.</Run>
 </Paragraph>
 <Paragraph TextIndent="10" FontSize="24" KeepWithNext="True">
 <Bold>
 <Run>Humpty Dumpty</Run>

FiguRE 37-5

c37.indd 1160 30-01-2014 20:43:37

Text Elements ❘ 1161

 </Bold>
 </Paragraph>
 <Paragraph KeepTogether="True">
 <Run>Humpty dumpty sat on a wall</Run>
 <LineBreak />
 <Run>Humpty dumpty had a great fall</Run>
 <LineBreak />
 <Run>All the King's horses</Run>
 <LineBreak />
 <Run>And all the King's men</Run>
 <LineBreak />
 <Run>Couldn't put Humpty together again</Run>
 </Paragraph>
</FlowDocument>

The result is shown in Figure 37-6.

FiguRE 37-6

lists
The List class is used to create textual unordered or ordered lists. List defines the bullet style of its items
by setting the MarkerStyle property. MarkerStyle is of type TextMarkerStyle and can be a number
(Decimal), a letter (LowerLatin and UpperLatin), a roman numeral (LowerRoman and UpperRoman), or a
graphic (Disc, Circle, Square, Box). List can only contain ListItem elements, which in turn can only
contain Block elements.

Defining the following list with XAML results in the output shown in Figure 37-7 (XAML file
FlowDocumentsDemo/ListDemo.xaml):

 <List MarkerStyle="Square">
 <ListItem>
 <Paragraph>Monday</Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph>Tuesday</Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph>Wednesday</Paragraph>
 </ListItem>
 </List>

c37.indd 1161 30-01-2014 20:43:37

1162 ❘ CHAPTER 37 Creating DoCuments with wPF

Tables
The Table class is very similar to the Grid class presented in Chapter 35 to define rows
and columns. The following example demonstrates creating a FlowDocument with a
Table. To create tables you can add TableColumn objects to the Columns property.
With TableColumn you can specify the width and background.

The Table also contains TableRowGroup objects. The TableRowGroup has a Rows property whereby
TableRow objects can be added. The TableRow class defines a Cells property that enables adding
TableCell objects. TableCell objects can contain any Block element. Here, a Paragraph is used that
contains the Inline element Run (code file TableDemo/MainWindow.xaml.cs):

 var doc = new FlowDocument();
 var t1 = new Table();
 t1.Columns.Add(new TableColumn
 { Width = new GridLength(50, GridUnitType.Pixel) });
 t1.Columns.Add(new TableColumn
 { Width = new GridLength(1, GridUnitType.Auto) });
 t1.Columns.Add(new TableColumn
 { Width = new GridLength(1, GridUnitType.Auto) });

 var titleRow = new TableRow { Background = Brushes.LightBlue };
 var titleCell = new TableCell
 { ColumnSpan = 3, TextAlignment = TextAlignment.Center };
 titleCell.Blocks.Add(
 new Paragraph(new Run("Formula 1 Championship 2011")
 { FontSize=24, FontWeight = FontWeights.Bold }));
 titleRow.Cells.Add(titleCell);

 var headerRow = new TableRow
 { Background = Brushes.LightGoldenrodYellow };
 headerRow.Cells.Add(new TableCell(new Paragraph(new Run("Pos"))
 { FontSize = 14, FontWeight=FontWeights.Bold}));
 headerRow.Cells.Add(new TableCell(new Paragraph(new Run("Name"))
 { FontSize = 14, FontWeight = FontWeights.Bold }));
 headerRow.Cells.Add(new TableCell(new Paragraph(new Run("Points"))
 { FontSize = 14, FontWeight = FontWeights.Bold }));

 var rowGroup = new TableRowGroup();
 rowGroup.Rows.Add(titleRow);
 rowGroup.Rows.Add(headerRow);

 string[][] results = new string[][]
 {
 new string[] { "1.", "Sebastian Vettel", "392" },
 new string[] { "2.", "Jenson Button", "270" },
 new string[] { "3.", "Mark Webber", "258" },
 new string[] { "4.", "Fernando Alonso", "257" },
 new string[] { "5.", "Lewis Hamilton", "227"}
 };

 List<TableRow> rows = results.Select(row =>
 {
 var tr = new TableRow();
 foreach (var cell in row)
 {
 tr.Cells.Add(new TableCell(new Paragraph(new Run(cell))));
 }
 return tr;
 }).ToList();

FiguRE 37-7

c37.indd 1162 30-01-2014 20:43:37

Text Elements ❘ 1163

 rows.ForEach(r => rowGroup.Rows.Add(r));

 t1.RowGroups.Add(rowGroup);
 doc.Blocks.Add(t1);

 reader.Document = doc;

Running the application, you can see the nicely formatted
table as shown in Figure 37-8.

Anchor to Blocks
Now that you’ve learned about the Inline and Block elements,
you can combine the two by using the Inline elements of type
AnchoredBlock. AnchoredBlock is an abstract base class with two
concrete implementations, Figure and Floater.

The Floater displays its content parallel to the main content with the
properties HorizontalAlignment and Width.

Starting with the earlier example, a new paragraph is added that
contains a Floater. This Floater is aligned to the left
and has a width of 120. As shown in Figure 37-9, the next
 paragraph flows around it (XAML file FlowDocumentsDemo/
ParagraphKeepTogether.xaml):

 <Paragraph TextIndent="10" FontSize="24" KeepWithNext="True">
 <Bold>
 <Run>Mary had a little lamb</Run>
 </Bold>
 </Paragraph>
 <Paragraph>
 <Floater HorizontalAlignment="Left" Width="120">
 <Paragraph Background="LightGray">
 <Run>Sarah Josepha Hale</Run>
 </Paragraph>
 </Floater>
 </Paragraph>
 <Paragraph KeepTogether="True">
 <Run>Mary had a little lamb</Run>
 <LineBreak />
 <!-- ... -->
 </Paragraph>

A Figure aligns horizontally and vertically and can be anchored to the page, content, a column, or a
 paragraph. The Figure in the following code is anchored to the page center but with a horizontal and vertical
offset. The WrapDirection is set so that both left and right columns wrap around the figure. Figure 37-10
shows the result of the wrap (XAML file FlowDocumentsDemo/FigureAlignment.xaml):

 <Paragraph>
 <Figure HorizontalAnchor="PageCenter" HorizontalOffset="20"
 VerticalAnchor="PageCenter" VerticalOffset="20" WrapDirection="Both" >
 <Paragraph Background="LightGray" FontSize="24">
 <Run>Lyrics Samples</Run>
 </Paragraph>
 </Figure>
 </Paragraph>

FiguRE 37-9

FiguRE 37-8

c37.indd 1163 30-01-2014 20:43:38

1164 ❘ CHAPTER 37 Creating DoCuments with wPF

Floater and Figure are both used to add content that is not in the main flow. Although these two features
seem similar, the characteristics of these elements are quite different. The following table explains the differ-
ences between Floater and Figure:

FiguRE 37-10

CHARACTERisTiC FloATER FiguRE

Position A floater cannot be positioned. It is
rendered where space is available.

A figure can be positioned with horizontal
and vertical anchors. It can be docked
relative to the page, content, column, or
paragraph.

Width A floater can be placed only within
one column. If the width is set larger
than the column’s size, it is ignored.

A figure can be sized across multiple
columns. The width of a figure can be set to
0.5 pages or two columns.

Pagination If a floater is larger than a column’s
height, the floater breaks and pagi-
nates to the next column or page.

If a figure is larger than a column’s height,
only the part of the figure that fits in the
column is rendered; the other content is lost.

Flow DoCumEnTs
With all the Inline and Block elements, now you know what should be put into a flow document. The
class FlowDocument can contain Block elements, and the Block elements can contain Block or Inline ele-
ments, depending on the type of the Block.

A major functionality of the FlowDocument class is that it is used to break up the flow into multiple pages.
This is done via the IDocumentPaginatorSource interface, which is implemented by FlowDocument.

Other options with a FlowDocument are to set up the default font and foreground and background brushes,
and to configure the page and column sizes.

The following XAML code for the FlowDocument defines a default font and font size, a column width, and
a ruler between columns:

<FlowDocument xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 ColumnWidth="300" FontSize="16" FontFamily="Georgia"
 ColumnRuleWidth="3" ColumnRuleBrush="Violet">

Now you just need a way to view the documents. The following list describes several viewers:

c37.indd 1164 30-01-2014 20:43:38

Flow Documents ❘ 1165

➤➤ RichTextBox — A simple viewer that also allows editing (as long as the IsReadOnly property is not
set to true). The RichTextBox doesn’t display the document with multiple columns but instead in
scroll mode. This is similar to the Web layout in Microsoft Word. The scrollbar can be enabled by set-
ting the HorizontalScrollbarVisibility to ScrollbarVisibility.Auto.

➤➤ FlowDocumentScrollViewer — A reader that is meant only to read but not edit documents.
This reader enables zooming into the document. There’s also a toolbar with a slider for zooming
that can be enabled with the property IsToolbarEnabled. Settings such as CanIncreaseZoom,
CanDecreaseZoom, MinZoom, and MaxZoom enable setting the zoom features.

➤➤ FlowDocumentPageViewer — A viewer that paginates the document. With this viewer you not only
have a toolbar to zoom into the document, you can also switch from page to page.

➤➤ FlowDocumentReader — A viewer that combines the functionality of FlowDocumentScrollViewer
and FlowDocumentPageViewer. This viewer supports different viewing modes that can be set from
the toolbar or with the property ViewingMode that is of type FlowDocumentReaderViewingMode.
This enumeration has the possible values Page, TwoPage, and Scroll. The viewing modes can also be
disabled according to your needs.

The sample application to demonstrate flow documents defines several readers such that one reader can
be chosen dynamically. Within the Grid element you can find the FlowDocumentReader, RichTextBox,
FlowDocumentScrollViewer, and FlowDocumentPageViewer. With all the readers the Visibility prop-
erty is set to Collapsed, so on startup none of the readers appear. The ComboBox that is the first child ele-
ment within the grid enables the user to select the active reader. The ItemsSource property of the ComboBox
is bound to the Readers property to display the list of readers. On selection of a reader, the method
OnReaderSelectionChanged is invoked (XAML file FlowDocumentsDemo/MainWindow.xaml):

 <Grid x:Name="grid1">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <ComboBox ItemsSource="{Binding Readers}" Grid.Row="0" Grid.Column="0"
 Margin="4" SelectionChanged="OnReaderSelectionChanged"
 SelectedIndex="0">
 <ComboBox.ItemTemplate>
 <DataTemplate>
 <StackPanel>
 <TextBlock Text="{Binding Name}" />
 </StackPanel>
 </DataTemplate>
 </ComboBox.ItemTemplate>
 </ComboBox>
 <Button Grid.Column="1" Margin="4" Padding="3" Click="OnOpenDocument">
 Open Document</Button>
 <FlowDocumentReader ViewingMode="TwoPage" Grid.Row="1"
 Visibility="Collapsed" Grid.ColumnSpan="2" />
 <RichTextBox IsDocumentEnabled="True" HorizontalScrollBarVisibility="Auto"
 VerticalScrollBarVisibility="Auto" Visibility="Collapsed"
 Grid.Row="1" Grid.ColumnSpan="2" />
 <FlowDocumentScrollViewer Visibility="Collapsed" Grid.Row="1"
 Grid.ColumnSpan="2" />
 <FlowDocumentPageViewer Visibility="Collapsed" Grid.Row="1"
 Grid.ColumnSpan="2" />
 </Grid>

The Readers property of the MainWindow class invokes the GetReaders method to return to return the
readers to the ComboBox data binding. The GetReaders method returns the list assigned to the variable
documentReaders. In case documentReaders was not yet assigned, the LogicalTreeHelper class is used

c37.indd 1165 30-01-2014 20:43:38

1166 ❘ CHAPTER 37 Creating DoCuments with wPF

to get all the flow document readers within the grid grid1. As there is not a base class for a flow document
reader nor an interface implemented by all readers, the LogialTreeHelper looks for all elements of type
FrameworkElement that have a property Document. The Document property is common to all flow
document readers. With every reader a new anonymous object is created with the properties Name and
Instance. The Name property is used to appear in the ComboBox to enable the user to select the active
reader, and the Instance property holds a reference to the reader to show the reader if it should be active
(code file FlowDocumentsDemo/MainWindow.xaml.cs):

 public IEnumerable<object> Readers
 {
 get
 {
 return GetReaders();
 }
 }

 private List<object> documentReaders = null;
 private IEnumerable<object> GetReaders()
 {
 return documentReaders ?? (documentReaders =
 LogicalTreeHelper.GetChildren(grid1).OfType<FrameworkElement>()
 .Where(el => el.GetType().GetProperties()
 .Where(pi => pi.Name == "Document").Count() > 0)
 .Select(el => new
 {
 Name = el.GetType().Name,
 Instance = el
 }).Cast<object>().ToList());
 }

When the user selects a flow document reader, the method OnReaderSelectionChanged is invoked. The
XAML code that references this method was shown earlier. Within this method the previously selected flow
document reader is made invisible by setting it to collapsed, and the variable activeDocumentReader is set
to the selected reader:

 private void OnReaderSelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 dynamic item = (sender as ComboBox).SelectedItem;

 if (activedocumentReader != null)
 {
 activedocumentReader.Visibility = Visibility.Collapsed;
 }
 activedocumentReader = item.Instance;
 }

 private dynamic activedocumentReader = null;

noTE The sample code makes use of the dynamic keyword — the variable
 activeDocumentReader is declared as dynamic type. The dynamic keyword is used
because the SelectedItem from the ComboBox either returns a FlowDocumentReader,
a FlowDocumentScrollViewer, a FlowDocumentPageViewer, or a RichTextBox.
All these types are flow document readers that offer a Document property of type
FlowDocument. However, there’s no common base class or interface defining this prop-
erty. The dynamic keyword allows accessing these different types from the same vari-
able and using the Document property. The dynamic keyword is explained in detail in
Chapter 12, “Dynamic Language Extensions.”

c37.indd 1166 30-01-2014 20:43:38

Flow Documents ❘ 1167

When the user clicks the button to open a document, the method OnOpenDocument is invoked. With this
method the XamlReader class is used to load the selected XAML file. If the reader returns a FlowDocument
(which is the case when the root element of the XAML is the FlowDocument element), the Document
property of the activeDocumentReader is assigned, and the Visibility is set to visible:

 private void OnOpenDocument(object sender, RoutedEventArgs e)
 {
 try
 {
 var dlg = new OpenFileDialog();
 dlg.DefaultExt = "*.xaml";
 dlg.InitialDirectory = Environment.CurrentDirectory;
 if (dlg.ShowDialog() == true)
 {
 using (FileStream xamlFile = File.OpenRead(dlg.FileName))
 {
 var doc = XamlReader.Load(xamlFile) as FlowDocument;
 if (doc != null)
 {
 activedocumentReader.Document = doc;
 activedocumentReader.Visibility = Visibility.Visible;
 }
 }
 }
 }
 catch (XamlParseException ex)
 {
 MessageBox.Show(string.Format("Check content for a Flow document, {0}",
 ex.Message));
 }
 }

The running application is shown in Figure 37-11. This figure shows a flow document with the
FlowDocumentReader in TwoPage mode.

FiguRE 37-11

c37.indd 1167 30-01-2014 20:43:38

1168 ❘ CHAPTER 37 Creating DoCuments with wPF

FixED DoCumEnTs
Fixed documents always define the same look, the same pagination, and use the same fonts — no matter
where the document is copied or used. WPF defines the class FixedDocument to create fixed documents, and
the class DocumentViewer to view fixed documents.

This section uses a sample application to create a fixed document programmatically by requesting user input
for a menu plan. The data for the menu plan is the content of the fixed document. Figure 37-12 shows the
main user interface of this application, where the user can select a day with the DatePicker class, enter
menus for a week in a DataGrid, and click the Create Doc button to create a new FixedDocument. This
application uses Page objects that are navigated within a NavigationWindow. Clicking the Create Doc but-
ton navigates to a new page that contains the fixed document.

FiguRE 37-12

The event handler for the Create Doc button, OnCreateDoc, navigates to a new page. To do this, the
handler instantiates the new page, DocumentPage. This page includes a handler, NavigationService_
LoadCompleted, that is assigned to the LoadCompleted event of the NavigationService. Within
this handler the new page can access the content that is passed to the page. Then the navigation is
done by invoking the Navigate method to page2. The new page receives the object menus that con-
tains all the menu information needed to build the fixed page. menus is a readonly variable of type
ObservableCollection<MenuEntry> (code file CreateXps/MenuPlannerPage.xaml.cs):

 private void OnCreateDoc(object sender, RoutedEventArgs e)
 {
 if (menus.Count == 0)
 {
 MessageBox.Show("Select a date first", "Menu Planner",
 MessageBoxButton.OK);
 return;
 }
 var page2 = new DocumentPage();
 NavigationService.LoadCompleted +=
 page2.NavigationService_LoadCompleted;
 NavigationService.Navigate(page2, menus);
 }

c37.indd 1168 30-01-2014 20:43:39

Fixed Documents ❘ 1169

Within the DocumentPage, a DocumentViewer is used to provide read access to the fixed document. The
fixed document is created in the method NavigationService_LoadCompleted. With the event handler, the
data that is passed from the first page is received with the ExtraData property of NavigationEventArgs.

The received ObservableCollection<MenuEntry> is assigned to a menus variable that is used to build the
fixed page (code file CreateXps/DocumentPage.xaml.cs):

 internal void NavigationService_LoadCompleted(object sender,
 NavigationEventArgs e)
 {
 menus = e.ExtraData as ObservableCollection<MenuEntry>;
 fixedDocument = new FixedDocument();
 var pageContent1 = new PageContent();
 fixedDocument.Pages.Add(pageContent1);
 var page1 = new FixedPage();
 pageContent1.Child = page1;
 page1.Children.Add(GetHeaderContent());
 page1.Children.Add(GetLogoContent());
 page1.Children.Add(GetDateContent());
 page1.Children.Add(GetMenuContent());
 viewer.Document = fixedDocument;
 NavigationService.LoadCompleted -= NavigationService_LoadCompleted;
 }

Fixed documents are created with the FixedDocument class. The FixedDocument element only contains
PageContent elements that are accessible via the Pages property. The PageContent elements must be
added to the document in the order in which they should appear on the page. PageContent defines the
content of a single page.

PageContent has a Child property such that a FixedPage can be associated with it. To the FixedPage you
can add elements of type UIElement to the Children collection. This is where you can add all the elements
you’ve learned about in the last two chapters, including a TextBlock element that itself can contain Inline
and Block elements.

In the sample code, the children to the FixedPage are created with helper methods GetHeaderContent,
GetLogoContent, GetDateContent, and GetMenuContent.

The method GetHeaderContent creates a TextBlock that is returned. The TextBlock has the Inline ele-
ment Bold added, which in turn has the Run element added. The Run element then contains the header text
for the document. With FixedPage.SetLeft and FixedPage.SetTop the position of the TextBox within
the fixed page is defined:

 private static UIElement GetHeaderContent()
 {
 var text1 = new TextBlock
 {
 FontFamily = new FontFamily("Segoe UI"),
 FontSize = 34,
 HorizontalAlignment = HorizontalAlignment.Center
 };
 text1.Inlines.Add(new Bold(new Run("cn|elements")));
 FixedPage.SetLeft(text1, 170);
 FixedPage.SetTop(text1, 40);
 return text1;
 }

c37.indd 1169 30-01-2014 20:43:39

1170 ❘ CHAPTER 37 Creating DoCuments with wPF

The method GetLogoContent adds a logo in the form of an Ellipse with a RadialGradientBrush to the
fixed document:

 private static UIElement GetLogoContent()
 {
 var ellipse = new Ellipse
 {
 Width = 90,
 Height = 40,
 Fill = new RadialGradientBrush(Colors.Yellow, Colors.DarkRed)
 };
 FixedPage.SetLeft(ellipse, 500);
 FixedPage.SetTop(ellipse, 50);
 return ellipse;
 }

The method GetDateContent accesses the menus collection to add a date range to the document:

 private UIElement GetDateContent()
 {
 Contract.Requires(menus != null);
 Contract.Requires(menus.Count > 0);

 string dateString = String.Format("{0:d} to {1:d}",
 menus[0].Day, menus[menus.Count - 1].Day);
 var text1 = new TextBlock
 {
 FontSize = 24,
 HorizontalAlignment = HorizontalAlignment.Center
 };
 text1.Inlines.Add(new Bold(new Run(dateString)));
 FixedPage.SetLeft(text1, 130);
 FixedPage.SetTop(text1, 90);
 return text1;
 }

Finally, the method GetMenuContent creates and returns a Grid control. This grid contains columns and
rows that contain the date, menu, and price information:

 private UIElement GetMenuContent()
 {
 var grid1 = new Grid { ShowGridLines = true };

 grid1.ColumnDefinitions.Add(new ColumnDefinition
 { Width= new GridLength(50)});
 grid1.ColumnDefinitions.Add(new ColumnDefinition
 { Width = new GridLength(300)});
 grid1.ColumnDefinitions.Add(new ColumnDefinition
 { Width = new GridLength(70) });
 for (int i = 0; i < menus.Count; i++)
 {
 grid1.RowDefinitions.Add(new RowDefinition
 { Height = new GridLength(40) });
 var t1 = new TextBlock(new Run(String.Format(
 "{0:ddd}", menus[i].Day)));
 var t2 = new TextBlock(new Run(menus[i].Menu));
 var t3 = new TextBlock(new Run(menus[i].Price.ToString()));
 var textBlocks = new TextBlock[] { t1, t2, t3 };

 for (int column = 0; column < textBlocks.Length; column++)

c37.indd 1170 30-01-2014 20:43:39

XPS Documents ❘ 1171

 {
 textBlocks[column].VerticalAlignment = VerticalAlignment.Center;
 textBlocks[column].Margin = new Thickness(5, 2, 5, 2);
 Grid.SetColumn(textBlocks[column], column);
 Grid.SetRow(textBlocks[column], i);
 grid1.Children.Add(textBlocks[column]);
 }
 }
 FixedPage.SetLeft(grid1, 100);
 FixedPage.SetTop(grid1, 140);
 return grid1;
 }

Run the application to see the created fixed document shown in Figure 37-13.

xPs DoCumEnTs
With Microsoft Word you can save a document as a PDF or a XPS file. XPS is the XML Paper Specification,
a subset of WPF. Windows includes an XPS reader.

.NET includes classes and interfaces to read and write XPS documents with the namespaces System

.Windows.Xps, System.Windows.Xps.Packaging, and System.IO.Packaging.

XPS is packaged in the zip file format, so you can easily analyze an XPS document by renaming a file with
an .xps extension to .zip and opening the archive.

FiguRE 37-13

c37.indd 1171 30-01-2014 20:43:39

1172 ❘ CHAPTER 37 Creating DoCuments with wPF

An XPS file requires a specific structure in the zipped document that is defined by the XML Paper
Specifications (which you can download from http://www.microsoft.com/whdc/xps/xpsspec.mspx).
The structure is based on the Open Packaging Convention (OPC) that Word documents (OOXML or Office
Open XML) are based on as well. Within such a file you can find different folders for metadata, resources
(such as fonts and pictures), and the document itself. Within the document folder of an XPS document is the
XAML code representing the XPS subset of XAML.

To create an XPS document, you use the XpsDocument class from the namespace System.Windows.Xps
.Packaging. To use this class, you need to reference the assembly ReachFramework as well. With this class
you can add a thumbnail (AddThumbnail) and fixed document sequences (AddFixedDocumentSequence)
to the document, as well as digitally sign the document. A fixed document sequence is written by using the
interface IXpsFixedDocumentSequenceWriter, which in turn uses an IXpsFixedDocumentWriter to write
the document within the sequence.

If a FixedDocument already exists, there’s an easier way to write the XPS document. Instead of adding every
resource and every document page, you can use the class XpsDocumentWriter from the namespace System
.Windows.Xps. For this class the assembly System.Printing must be referenced.

With the following code snippet you can see the handler to create the XPS document. First, a filename for
the menu plan is created that uses a week number in addition to the name menuplan. The week number
is calculated with the help of the GregorianCalendar class. Then the SaveFileDialog is opened to
enable the user overwrite the created filename and select the directory where the file should be stored. The
SaveFileDialog class is defined in the namespace Microsoft.Win32 and wraps the native file dialog. Then
a new XpsDocument is created whose filename is passed to the constructor. Recall that the XPS file uses a
.zip format to compress the content. With the CompressionOption you can specify whether the compres-
sion should be optimized for time or space.

Next, an XpsDocumentWriter is created with the help of the static method XpsDocument
.CreateXpsDocumentWriter. The Write method of the XpsDocumentWriter is overloaded to accept
different content or content parts to write the document. Examples of acceptable options with the Write
method are FixedDocumentSequence, FixedDocument, FixedPage, string, and a DocumentPaginator.
In the sample code, only the fixedDocument that was created earlier is passed:

 private void OnCreateXPS(object sender, RoutedEventArgs e)
 {
 var c = new GregorianCalendar();
 int weekNumber = c.GetWeekOfYear(menus[0].Day,
 CalendarWeekRule.FirstFourDayWeek, DayOfWeek.Monday);
 string fileName = String.Format("menuplan{0}", weekNumber);
 var dlg = new SaveFileDialog
 {
 FileName = fileName,
 DefaultExt = "xps",
 Filter = "XPS Documents|*.xps|All Files|*.*",
 AddExtension = true
 };
 if (dlg.ShowDialog() == true)
 {
 var doc = new XpsDocument(dlg.FileName, FileAccess.Write,
 CompressionOption.Fast);
 XpsDocumentWriter writer = XpsDocument.CreateXpsDocumentWriter(doc);
 writer.Write(fixedDocument);
 doc.Close();
 }
 }

By running the application to store the XPS document, you can view the document with an XPS viewer, as
shown in Figure 37-14.

c37.indd 1172 30-01-2014 20:43:39

Printing ❘ 1173

To one overload of the Write method of the XpsDocumentWriter you can also pass a Visual, which is the
base class of UIElement, and thus you can pass any UIElement to the writer to create an XPS document
easily. This functionality is used in the following printing example.

PRinTing
The simplest way to print a FixedDocument that is shown onscreen with the DocumentViewer is to
invoke the Print method of the DocumentViewer with which the document is associated. This is all that
needs to be done with the menu planner application in an OnPrint handler. The Print method of the
DocumentViewer opens the PrintDialog and sends the associated FixedDocument to the selected printer
(code file CreateXPS/DocumentPage.xaml.cs):

 private void OnPrint(object sender, RoutedEventArgs e)
 {
 viewer.Print();
 }

Printing with the PrintDialog
If you want more control over the printing process, the PrintDialog can be instantiated, and the document
printed with the PrintDocument method. The PrintDocument method requires a DocumentPaginator
with the first argument. The FixedDocument returns a DocumentPaginator object with the
DocumentPaginator property. The second argument defines the string that appears with the current printer
and in the printer dialogs for the print job:

 var dlg = new PrintDialog();
 if (dlg.ShowDialog() == true)
 {
 dlg.PrintDocument(fixedDocument.DocumentPaginator, "Menu Plan");
 }

FiguRE 37-14

c37.indd 1173 30-01-2014 20:43:40

1174 ❘ CHAPTER 37 Creating DoCuments with wPF

Printing Visuals
It’s also simple to create UIElement objects. The following XAML code defines an Ellipse, a Rectangle,
and a Button that is visually represented with two Ellipse elements. With the Button, there’s a Click
handler OnPrint that starts the print job of the visual elements (XAML file PrintingDemo/MainWindow
.xaml):

 <Canvas x:Name="canvas1">
 <Ellipse Canvas.Left="10" Canvas.Top="20" Width="180" Height="60"
 Stroke="Red" StrokeThickness="3" >
 <Ellipse.Fill>
 <RadialGradientBrush>
 <GradientStop Offset="0" Color="LightBlue" />
 <GradientStop Offset="1" Color="DarkBlue" />
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <Rectangle Width="180" Height="90" Canvas.Left="50" Canvas.Top="50">
 <Rectangle.LayoutTransform>
 <RotateTransform Angle="30" />
 </Rectangle.LayoutTransform>
 <Rectangle.Fill>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Aquamarine" />
 <GradientStop Offset="1" Color="ForestGreen" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 <Rectangle.Stroke>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="LawnGreen" />
 <GradientStop Offset="1" Color="SeaGreen" />
 </LinearGradientBrush>
 </Rectangle.Stroke>
 </Rectangle>
 <Button Canvas.Left="90" Canvas.Top="190" Content="Print" Click="OnPrint">
 <Button.Template>
 <ControlTemplate TargetType="Button">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Ellipse Grid.Row="0" Grid.RowSpan="2" Width="60"
 Height="40" Fill="Yellow" />
 <Ellipse Grid.Row="0" Width="52" Height="20"
 HorizontalAlignment="Center">
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint="0.5,0" EndPoint="0.5,1">
 <GradientStop Color="White" Offset="0" />
 <GradientStop Color="Transparent" Offset="0.9" />
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <ContentPresenter Grid.Row="0" Grid.RowSpan="2"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>
 </ControlTemplate>
 </Button.Template>
 </Button>
 </Canvas>

c37.indd 1174 30-01-2014 20:43:40

Summary ❘ 1175

In the OnPrint handler, the print job can be started by invoking the PrintVisual method of the
PrintDialog. PrintVisual accepts any object that derives from the base class Visual (code file
PrintingDemo/MainWindow.xaml.cs):

 private void OnPrint(object sender, RoutedEventArgs e)
 {
 var dlg = new PrintDialog();
 if (dlg.ShowDialog() == true)
 {
 dlg.PrintVisual(canvas1, "Print Demo");

 }
 }

To programmatically print without user intervention, the PrintDialog classes from the namespace System
.Printing can be used to create a print job and adjust print settings. The class LocalPrintServer provides
information about print queues and returns the default PrintQueue with the DefaultPrintQueue property.
You can configure the print job with a PrintTicket. PrintQueue.DefaultPrintTicket returns a default
PrintTicket that is associated with the queue. The PrintQueue method GetPrintCapabilities returns
the capabilities of a printer, and depending on those you can configure the PrintTicket as shown in the
following code segment. After configuration of the print ticket is complete, the static method PrintQueue
.CreateXpsDocumentWriter returns an XpsDocumentWriter object. The XpsDocumentWriter class was
used previously to create an XPS document. You can also use it to start a print job. The Write method of
the XpsDocumentWriter accepts not only a Visual or FixedDocument as the first argument but also a
PrintTicket as the second argument. If a PrintTicket is passed with the second argument, the target of
the writer is the printer associated with the ticket and thus the writer sends the print job to the printer:

 var printServer = new LocalPrintServer();
 PrintQueue queue = printServer.DefaultPrintQueue;
 PrintTicket ticket = queue.DefaultPrintTicket;
 PrintCapabilities capabilities =
 queue.GetPrintCapabilities(ticket);
 if (capabilities.DuplexingCapability.Contains(
 Duplexing.TwoSidedLongEdge))
 ticket.Duplexing = Duplexing.TwoSidedLongEdge;
 if (capabilities.InputBinCapability.Contains(InputBin.AutoSelect))
 ticket.InputBin = InputBin.AutoSelect;
 if (capabilities.MaxCopyCount > 3)
 ticket.CopyCount = 3;
 if (capabilities.PageOrientationCapability.Contains(
 PageOrientation.Landscape))
 ticket.PageOrientation = PageOrientation.Landscape;
 if (capabilities.PagesPerSheetCapability.Contains(2))
 ticket.PagesPerSheet = 2;
 if (capabilities.StaplingCapability.Contains(Stapling.StapleBottomLeft))
 ticket.Stapling = Stapling.StapleBottomLeft;
 XpsDocumentWriter writer = PrintQueue.CreateXpsDocumentWriter(queue);
 writer.Write(canvas1, ticket);

summARy
In this chapter you learned how WPF capabilities can be used with documents, how to create flow docu-
ments that adjust automatically depending on the screen sizes, and fixed documents that always look the
same. You’ve also seen how to print documents and how to send visual elements to the printer.

The next chapter continues with XAML, showing how it can be used with Windows Store apps.

c37.indd 1175 30-01-2014 20:43:40

c37.indd 1176 30-01-2014 20:43:40

Windows Store Apps:
User Interface

WHAT’s in THis CHAPTER?

 ➤ How Windows Store apps differ from Windows desktop apps
 ➤ Defi ning app bars
 ➤ Navigating between pages
 ➤ Reacting to layout changes
 ➤ Using storage and pickers
 ➤ Creating tiles

WRoX.CoM CodE doWnloAds foR THis CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/go/procsharp
on the Download Code tab. The code for this chapter contains one big sample that shows the various
aspects of this chapter:

 ➤ Menu Card

ovERviEW
If you read Chapter 31, Windows Runtime, then you are now familiar with the foundations of
Windows Store apps and how the Windows Runtime relates to .NET. Knowing the basics covered
in Chapter 31 will enable you to begin writing Windows Store apps. This chapter covers the design
principles and special XAML features that are not available with WPF, and demonstrates several
aspects of working with Windows Store apps, such as reacting to layout changes, reading and writing
fi les with the Windows Runtime storage API and fi le pickers, and using contracts to communicate
with other applications.

In addition to Chapter 31, you should also be familiar with the basic information about XAML
already covered in Chapters 29, 35, and 36. Only those features specifi c to Windows Store apps are
covered here.

38

c38.indd 1177 30-01-2014 20:44:19

1178 ❘ CHAPTER 38 WindoWs store Apps: User interfAce

MiCRosofT ModERn dEsign
One of the first things you notice about Windows Store apps is that they look different than desktop
applications. There’s a big emphasis on the UI design, based on the belief that users should feel comfortable
with and enjoy working with the application. This focus on design in Windows Store apps is derived from
some principles that are not new. One is Swiss graphic design, developed in the 1950s, which emphasizes
cleanliness (lack of clutter) and readability. For example, signs in airports and train stations are based on
this concept, enabling users to process information as quickly as possible.

Another foundation of the modern UI design is the famous Bauhaus school in Germany, which was extremely
influential between 1919 and 1933. The objective of this school was to unify arts, crafts, and technology, with
design based on functionality, not decoration — no unnecessary squiggles if it doesn’t serve the functionality.

The third foundation is motion as defined by cinematography. Animation is an important tool for bringing
your application to life. The Windows Runtime provides a rich set of animation features to provide users
with a realistic experience that both conveys information and makes it enjoyable to use your application.

Content, not Chrome
The guiding principle of designing Windows Store apps is focusing on the content, which means presenting
users with only the information they need at any given moment, and not distracting them with anything
they don’t need — that is, the chrome menus, toolbar, and so on. When users open Internet Explorer, the
content gets the complete view. Menus are hidden unless they are explicitly enabled by the user.

For example, web pages occupy the entire screen, enabling users to quickly zero in on the content they need,
without the clutter of various menus and toolbars. Figure 38-1 shows the main view of a weather application.
Note how the large graphics make it easy to quickly focus on the desired information.

figURE 38-1

Of course, users can also change settings and use commands from within the application. To modify
settings, the new Charms bar comes into play. Users can activate the Charm bars by swiping from the right
edge of the screen, invoking the controls needed to change application settings.

Commands, which are placed in an app bar at the top or the bottom edge of the screen, are similarly
activated by the user, who can open them by swiping from the bottom edge or top edge of the
screen. Figure 38-2 shows the Windows Store command bar. In this case, the commands are located on top.
Navigational commands should be put in the top app bar.

c38.indd 1178 30-01-2014 20:44:21

Microsoft Modern Design ❘ 1179

figURE 38-2

figURE 38-3

fast and fluid
Fast and fluid is another important principle with Windows Store apps. When using the mouse with a
traditional user interface, users are accustomed to a slight delay. Similarly, when clicking a button or moving
some objects around the screen, we are used to some delay. Such a delay is unacceptable with touch. If
something doesn’t happen immediately, or if the UI blocks, the user experience is very poor.

The new Windows Runtime specifies that if a method might take longer than 50ms, it is only available
asynchronously. With the .NET framework many API calls are both available synchronously and
asynchronously. Because synchronous programming has been easier to create compared to async, typically
the synchronous version of the API was used. Using the new async features from C# 5.0, with the async and
await keywords, the async API calls are very easy to use. Chapter 13, “Asynchronous Programming,” has
all the details about these new keywords. Besides using async APIs, you should also create async APIs with
your application for tasks that can take a long time.

The Weather application, shown in Figure 38-3, has commands on top and bottom. Navigation commands
are on top, action commands on bottom.

c38.indd 1179 30-01-2014 20:44:22

1180 ❘ CHAPTER 38 WindoWs store Apps: User interfAce

Async programming is just one part of the principle of fast and fluid. As previously mentioned, animations
are also strongly supported in Windows Store apps, as they tie the user experience together in a natural,
realistic way, but without causing distractions. The built-in controls already have animation, enabling you to
program smooth transitions, rather than jarring changes. Using these built-in controls, it’s not necessary to
define custom animations, although you can also do that if desired.

Readability
Readability is critical to any application, and Microsoft provides a comprehensive set of style application
guidelines. These guidelines cover all typographic aspects of the user’s experience, including readable fonts,
color, and letter spacing. For example, the Segoe UI font should be used for UI elements (buttons, date
pickers), Calibri for text that the user reads and writes, and Cambria for larger text blocks.

sAMPlE APPliCATion CoRE fUnCTionAliTy
The example Windows Store app developed in this section is used to create menu cards. The menus and
pictures you will see are from my wife’s restaurant in the center of Vienna, http://www.kantine.at.
You’re welcome to visit this restaurant.

With the application, a restaurant can create menu cards e.g., a breakfast and a dinner card, a soup card,
and so on. With this functionality, the application makes use of XAML with C# to get information from the
user to write data, deal with images for the menu cards, and any other tasks associated with the application.

Creating the sample app starts with the Blank App (XAML) template from the Windows Store category, as
shown in Figure 38-4.

figURE 38-4

files and directories
With the project created from the template, the solution consists of a few directories and some files. The
Assets directory contains images for the tile of the application and a splash screen. If you add other
Windows Store Visual Studio items to the project, the Common directory will be created. This directory is
for standard styles and utility classes. With the Blank App (XAML) template, the Common directory doesn’t
exist yet. As you continue with the progress of the app, you will see the directory being created and filled.

c38.indd 1180 30-01-2014 20:44:22

Sample Application Core Functionality ❘ 1181

The most important files with the project are App.xaml with its code-file App.xaml.cs, and MainPage
.xaml with its code-file MainPage.xaml.cs, and Package.appxmanifest. The XAML and code-file are
very similar to the structure you’ve seen with WPF in Chapter 35.

Package.appxmanifest is an XML file that describes packaging and capabilities of the application. Opening
this file with Visual Studio opens the Manifest Designer, shown in Figure 38-5. Here, the name of the
application and images for the logos and splash screen are defined. When you click the Visual Assets tab, you
can see all the different options for the logos. The pixel sizes required for the images are shown in this editor.
A square logo with the size 150 × 150 pixels is mandatory. Smaller and larger square logos and a wide logo are
optional. With every logo size, it is also possible to specify different sizes that are used depending on the scale
of the system. A Microsoft Surface device with a resolution of 1920 × 1080 and a screen size of 10.6 inches
uses the 140-percent scale. The same resolution with a screen size of 23 inches uses the 100-percent scale. You
can easily test different resolutions and scales running the app with the Simulator in Visual Studio. The splash
screen needs 620 × 300 pixels. You can add either PNG or JPG files for the tiles and the splash screen.

figURE 38-5

The entry point of the application is the App class. From there the main page is instantiated. Other than the
definition of the UI, capabilities and declarations can also be specified with this package. From the Capabilities
tab, the application specifies whether it wants access to devices such as the microphone or the webcam.
Upon installation of the application from the Windows Store, the user is informed about the application’s

c38.indd 1181 30-01-2014 20:44:23

1182 ❘ CHAPTER 38 WindoWs store Apps: User interfAce

requirements. The application cannot use these devices if it doesn’t declare its use. From the Declarations tab,
the application declares features it supports; for example, whether it is available for searching from the system,
or whether it offers a share target that allows other applications to offer some data to it.

Let’s add some pages to the application.

Application Pages
Now let’s add some UI pages to the application. The first page that is added from the template is MainPage
.xaml. With the Blank App (XAML) template, the page doesn’t offer any structure, and content can be
completely customized. If you don’t create a Windows Store game or some other application that needs
a specific layout, it’s best to make use of a standard format and style, and put the application name in an
exactly defined position by the Windows Store app style guidelines. As you begin to run different Windows
Store apps, you’ll find many similarities. Rather than re-create the wheel, you can directly use predefined
styles by using a Visual Studio item template, as shown in Figure 38-6.

figURE 38-6

With the sample application, the main page created previously is replaced with an Items Page template.
Other pages that are created with the application are a Basic Page named AddMenuCardPage and an Items
Page named MenuItemsPage.

The Basic Page offers a layout to put the application name in the top-most position where users are
accustomed to seeing it. A Split Page divides a page in two, with a list in one half and details in the other.
An Items Page contains a GridView control to display a list of items within a grid. For using groups of
items, the templates Grouped Items Page, Group Detail Page, and Item Detail Page can be used. The
Grouped Items Page is used to show the different groups of items and uses a ListView with GroupStyle
settings, as well as a CollectionViewSource with grouping. The Group Detail Page shows a single group
with detail information and uses a GridView for this task. The Item Detail Page displays the details of one
item. The Hub Page is a new page with Windows 8.1 and offers several sections on a single page that can all
look very different.

c38.indd 1182 30-01-2014 20:44:23

Sample Application Core Functionality ❘ 1183

noTE Of course, you can always start with a Blank Page and add controls and define
the layout as needed. However, using the predefined templates and then adapting the
XAML code to your needs saves a lot of time and effort.

Using these templates adds some more classes to the Common directory in the project: NavigationHelper
helps with state management on navigation to and from pages. ObservableDictionary implements
IObservableMap and can be used as an untyped view model. RelayCommand is used to delegate commands
to methods with the help of Action and Func delegates. Finally, the SuspensionManager is used to store
and load state for the application when it is suspended.

Main Page
The main page of the application is shown in Figure 38-7. It shows the title of each menu card as well as an
image.

figURE 38-7

To achieve this, only some small adjustments to the XAML code (code file MainPage.xaml) are required, as
shown in the following code snippet. From the Items Page template, the XAML code contains a GridView
as a child element. What has changed is an ItemClick event handler to act when items are clicked:

 <GridView
 x:Name="itemGridView"
 AutomationProperties.AutomationId="ItemsGridView"
 AutomationProperties.Name="Items"
 TabIndex="1"
 Grid.RowSpan="2"
 Padding="116,136,116,46"
 ItemsSource="{Binding Source={StaticResource itemsViewSource}}"
 SelectionMode="None"
 IsItemClickEnabled="True"
 ItemClick="OnMenuCardClick">

c38.indd 1183 30-01-2014 20:44:24

1184 ❘ CHAPTER 38 WindoWs store Apps: User interfAce

noTE XAML templates and item templates are explained in Chapters 35 and 36.

The source for the GridView is defined with the ItemsSource property, which references a static resource
named itemsViewSource. itemsViewSource is a simple CollectionViewSource specified within the page
resources that just binds to the Items property:

 <CollectionViewSource
 x:Name="itemsViewSource"
 Source="{Binding Items}"/>

The item template for the menu cards is defined as DataTemplate directly within the GridView. Unlike the
default template, where an item is built using two columns, here the items are made from two rows. The size
is larger, and it binds to the Image and Title properties. Remember that the MenuCard class defined earlier
implements these properties:

 <GridView.ItemTemplate>
 <DataTemplate>
 <Grid Margin="6">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Border Background=
 "{StaticResource
 ListViewItemPlaceholderBackgroundThemeBrush}"
 Width="450" Height="450">
 <Image Source="{Binding Image}" Stretch="UniformToFill"/>
 </Border>
 <StackPanel Grid.Column="1" Margin="10,0,0,0">
 <TextBlock Text="{Binding Title}"
 Style="{StaticResource TitleTextBlockStyle}"
 MaxHeight="40"/>
 </StackPanel>
 </Grid>
 </DataTemplate>
 </GridView.ItemTemplate>

The collection view source defined earlier binds to the Items collection. The value for the Items collection
is assigned in the navigationHelper_LoadState method of the MainPage class (code file MenuCard/
MainPage.xaml.cs). The implementation of the method assigns the DefaultViewModel property of the
base class LayoutAwarePage. This property returns IObservableMap<string, object>, where any data
object can be assigned to a key name. The key name is used within XAML to reference data:

 private async void navigationHelper_LoadState(object sender,
 LoadStateEventArgs e)
 {
 var storage = new MenuCardStorage();
 MenuCardFactory.Instance.InitMenuCards(
 new ObservableCollection<MenuCard>(
 await storage.ReadMenuCardsAsync()));
 this.DefaultViewModel["Items"] = MenuCardRepository.Instance.Cards;
 }

noTE The code makes use of a custom MenuCardStorage class that is used to read
data from, and write data to, the roaming storage. This class is shown later in the
chapter.

c38.indd 1184 30-01-2014 20:44:24

Sample Application Core Functionality ❘ 1185

Add Menu Card Page
For adding new menu cards, AddMenuCardPage has been added. The template used here was just the Basic
Page template. However, there’s not a lot to define here. The user just needs to assign a title, a description,
and an image to a menu card. The UI is shown in Figure 38-8. Only two TextBox, one Button, and one
Image controls are needed.

figURE 38-8

The XAML code to define the main controls from the file AddMenuCard.xaml is shown in the following
code snippet. Note two important points here: Controls bind to the Image, Title, and Description
properties, and the data context assigned to a parent control (the Grid) is set to the Item property:

 <Grid Grid.Row="1" DataContext="{Binding Item}">
 <Grid.RowDefinitions>
 <RowDefinition Height="100" />
 <RowDefinition Height="300" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Border Grid.Row="0" Grid.RowSpan="3" Grid.Column="0" Grid.ColumnSpan="2">
 <Image Source="{Binding Image, Mode=OneWay}" Stretch="UniformToFill" />
 </Border>
 <TextBlock Text="Name:" Style="{StaticResource TitleTextStyle}" Margin="20"
 VerticalAlignment="Center" HorizontalAlignment="Right" />
 <TextBox Grid.Column="1" Text="{Binding Title, Mode=TwoWay}" Margin="20"
 VerticalAlignment="Center" />
 <TextBlock Grid.Row="1" Text="Description:"
 Style="{StaticResource TitleTextStyle}" Margin="20"
 VerticalAlignment="Center"
 HorizontalAlignment="Right" />
 <TextBox Grid.Row="1" Grid.Column="1"
 Text="{Binding Description, Mode=TwoWay}"
 Margin="20" MaxHeight="100" VerticalAlignment="Center" />

c38.indd 1185 30-01-2014 20:44:25

1186 ❘ CHAPTER 38 WindoWs store Apps: User interfAce

 <Button HorizontalAlignment="Center" VerticalAlignment="Center"
 Visibility="{Binding ImageUploaded,
 Converter={StaticResource visibilityConverter}}" Content="Upload Image"
 Grid.Row="2" Grid.Column="0" Grid.ColumnSpan="2"
 Style="{StaticResource TextButtonStyle}" Click="OnUploadImage"
 Padding="10" Margin="20" />
 </Grid>

In the code file, the Item property is assigned to an object of type AddMenuCardInfo (the XAML code
defines the binding to the properties of AddMenuCardInfo) in the navigationHelper_LoadState method
(code file AddMenuCardPage.xaml.cs):

 private AddMenuCardInfo info = new AddMenuCardInfo();
 private void navigationHelper_LoadState(object sender,
 LoadStateEventArgs e)
 {
 this.DefaultViewModel["Item"] = info;
 }

Menu Items Page
The third page of the application is the MenuItemsPage, shown in Figure 38-9. This page displays the menu
items of one menu card and allows for changing the data.

figURE 38-9

This page again is based on the Items Page template and binds to a list of menu items within the
navigationHelper_LoadState method (code file MenuItemsPage.xaml.cs):

 private void navigationHelper_LoadState(object sender,
 LoadStateEventArgs e)
 {
 card = navigationParameter as MenuCard;
 if (card != null)
 {
 this.DefaultViewModel["Items"] = card.MenuItems;
 }
 }

Now that three pages exist, you are ready to get into navigating with Windows Store apps.

c38.indd 1186 30-01-2014 20:44:26

App Bars ❘ 1187

APP BARs
Although putting content before chrome is an important design aspect of Windows Store apps, obviously
users need a way to interact with the UI. This is now provided by the new app bar. Unlike previous versions
of Windows, which display commands by default, users can choose when they want to view application
commands.

Using touch, the app bar shows up when the user swipes from the bottom or top edge of the screen. Using
a mouse, the app bar is invoked by clicking the right mouse button. Using a keyboard, users can click the
context menu button.

You can define the app bar within the BottomAppBar and the TopAppBar properties of the page. The top
app bar is used for navigation; the bottom app bar is for actions. Both app bars are displayed at the same
time, with the same gesture. Use the right mouse click or swipe from top or bottom with a touch device.

Within the TopAppBar property of the page, you can use an AppBar element. New with the Windows
Runtime 2.0 is the CommandBar. This element can be used with the BottomAppBar and already defines the
layout — so it’s not necessary to define a Grid with columns because it’s already done by the CommandBar.

The following code snippet (code file MenuCard/MainPage.xaml) defines a CommandBar element within the
BottomAppBar property of the page. Within the CommandBar, some easy-to-use app bar elements can be
used, such as the AppBarButton, AppBarSeparator, and AppBarToggleButton. In the sample code, two
AppBarButton controls are added that make use of a predefined icon. The Command property is bound to the
AddCommand property that makes use of the RelayCommand type:

 <Page.BottomAppBar>
 <CommandBar>
 <AppBarButton Tag="Add" Icon="Add" Label="Add"
 Command="{Binding Commands.AddCommand}" />
 <AppBarButton Tag="Delete" Icon="Delete" Label="Delete"
 Command="{Binding Commands.DeleteCommand}" />
 </CommandBar>
 </Page.BottomAppBar>

To define the symbol used with the AppBarButton, there are different options. The Icon property of
the AppBarButton is of type IconElement. Here it’s possible to assign a named constant of the Symbol
enumeration (the enumeration defines several constants such as Add, Cancel, Accept, Setting), a
SymbolIcon (which uses a glyph from the Segoe UI Symbol font), a FontIcon (which can use any font), or a
PathIcon (which uses the Path shape). For creating shapes with the Path element, read Chapter 35.

For binding the commands to actions, the view model with name Commands is set to the instance of the
page (code file MenuCard/MainPage.xaml.cs):

 private async void navigationHelper_LoadState(object sender,
 LoadStateEventArgs e)
 {
 this.DefaultViewModel["Commands"] = this;

 //...
 }

The commands are defined using properties that return a RelayCommand. With the AddCommand, the
RelayCommand references the OnAdd method (code file MenuCard/MainPage.xaml.cs):

private RelayCommand addCommand;
public RelayCommand AddCommand
{
 get
 {
 return addCommand ?? (addCommand = new RelayCommand(OnAdd));
 }
}

c38.indd 1187 30-01-2014 20:44:26

1188 ❘ CHAPTER 38 WindoWs store Apps: User interfAce

The implementation of the OnAdd method navigates to the page AddMenuCardPage:

private void OnAdd()
{
 Frame.Navigate(typeof(AddMenuCardPage));
}

Figure 38-10 shows the application with the app bar displayed.

figURE 38-10

The CommandBar also allows for secondary commands. The primary commands are shown on the right, and
the secondary commands are shown on the left. In case the screen size gets too small, and there’s not enough
space to show all the commands, only the primary commands are shown. Secondary commands can be
defined by assigning the SecondaryCommands property (code file MenuCard/MenuItemsPage.xaml):

 <Page.BottomAppBar>
 <CommandBar>
 <AppBarButton Tag="Add" Icon="Add" Label="Add"
 Command="{Binding Commands.AddCommand}" />
 <AppBarButton Tag="Delete" Icon="Delete" Label="Delete"
 Command="{Binding Commands.DeleteCommand}" />
 <CommandBar.SecondaryCommands>
 <AppBarButton Tag="Save" Icon="Save" Label="Save"
 Command="{Binding Commands.SaveCommand}" />
 <AppBarButton Tag="Download" Icon="Download" Label="Download"
 Command="{Binding Commands.DownloadCommand}" />
 </CommandBar.SecondaryCommands>
 </CommandBar>
 </Page.BottomAppBar>

lAUnCHing And nAvigATion
To enable navigation between the pages, first the MainPage is shown. The MainPage is activated within the
App class in the OnLaunched method (code file App.xaml.cs):

c38.indd 1188 30-01-2014 20:44:27

Launching and Navigation ❘ 1189

 protected override async void OnLaunched(LaunchActivatedEventArgs args)
 {
 Frame rootFrame = Window.Current.Content as Frame;

 // Do not repeat app initialization when the window already has content,
 // just ensure that the window is active
 if (rootFrame == null)
 {
 rootFrame = new Frame();

 rootFrame.Language = ApplicationLanguages.Languages[0];

 rootFrame.NavigationFailed += OnNavigationFailed;

 if (e.PreviousExecutionState == ApplicationExecutionState.Terminated)
 {
 }

 Window.Current.Content = rootFrame;
 }

 if (rootFrame.Content == null)
 {
 rootFrame.Navigate(typeof(MainPage), e.Arguments);
 }
 Window.Current.Activate();
 }

OnLaunched is invoked at different times when the application is launched. For example, the application
could have been suspended previously, or it may be invoked for sharing data from another application. The
LaunchActivatedEventArgs argument provides details about the reason for the launch and the previous
state of the application. LaunchActivatedEventArgs defines a Kind property of type ActivationKind
whereby you can read the reason for the launch. Some examples of the enumeration values that you
can use here are Launch (a normal start of the application by clicking on a tile), Search (starting the
application by using search from Windows), File, FileOpenPicker, and FileSavePicker (starting
the application by selecting a file). The tile that started the application can be read with the TileId
property of LaunchActivatedEventArgs. Applications can offer multiple tiles as a starting action for
cases in which different information or behavior is offered. For example, weather applications make
use of this feature to enable users to add different tiles to show the weather for different cities. With the
LaunchActivatedEventArgs argument, the application can then show the weather for a specific city
in the main page. Previous execution state is read with the PreviousExecutionState property of type
ApplicationExecutionState. Possible values are NotRunning, Running, Suspended, Terminated, and
ClosedByUser.

noTE How suspension can be dealt with is explained in Chapter 31, “Windows
Runtime”.

With the OnLaunched method, a new Frame is created that acts as navigation context:

 rootFrame = new Frame();
 //...
 rootFrame.Navigate(typeof(MainPage), e.Arguments);

Navigation is done with the Frame class, and with the help of the NavigationHelper class.
The MainPage.xaml contains a Go Back button that makes use of the NavigationHelper type to
navigate back:

 <Button x:Name="backButton" Command=
 "{Binding NavigationHelper.GoBackCommand, ElementName=pageRoot}"
 Style="{StaticResource NavigationBackButtonNormalStyle}"/>

c38.indd 1189 30-01-2014 20:44:27

1190 ❘ CHAPTER 38 WindoWs store Apps: User interfAce

Every page has an associated NavigationHelper object that is instantiated in the constructor of the page.
Here, also the LoadState event is assigned to the navigationHelper_LoadState method. This event is
fired after the page is instantiated, and allows passing an initialization value to the page:

public MainPage()
{
 this.InitializeComponent();
 this.navigationHelper = new NavigationHelper(this);
 this.navigationHelper.LoadState += navigationHelper_LoadState;
}

The NavigationHelper offers GoBack and GoForward methods to navigate within the frames history, and
CanGoBack and CanGoForward methods that give information if the corresponding navigation is possible.
The GoBackCommand that is bound to the Back button just invokes the GoBack method, and uses CanGoBack
to define if the command is available.

Navigation starts by calling the Navigate method. The first argument of the Navigate method defines the
type of the page where the navigation should terminate. With a second argument it is possible to send some
data to the navigated page. In the sample code (code file MenuCard/App.xaml.cs), no data is sent to the
MainPage. Instead, the MainPage gets the menu card data on its own request.

One way to navigate away from the main page is by clicking the Add button in the app bar. This button has
the Click event associated with the OnAddMenuCard handler method (code file MainPage.xaml.cs) where a
simple navigation to the AddMenuCardPage is done:

 private void OnAddMenuCard(object sender, RoutedEventArgs e)
 {
 this.Frame.Navigate(typeof(AddMenuCardPage));
 }

Another way to navigate away from the MainPage can occur by clicking within an item of the GridView
control. Here, the ItemClick event is assigned to the handler method OnMenuCardClick, which is shown in
the following code snippet (code file MainPage.xaml.cs). Navigation is sent to the MenuItemsPage. Data is
passed with the second parameter of the Navigate method. e.ClickedItem represents a MenuCard instance
that is bound to the GridView:

 private void OnMenuCardClick(object sender, ItemClickEventArgs e)
 {
 this.Frame.Navigate(typeof(MenuItemsPage), e.ClickedItem);
 }

lAyoUT CHAngEs
A Windows Store app must support different sizes and layouts. An application can occupy the full screen
with a horizontal or vertical display, or it can occupy just a part of the screen. Windows 8.1 also allows
having multiple apps concurrently on the screen. For this, the app needs to support a minimum of either
320 pixels or 500 pixels. This size needs to be set with the package manifest. Support for landscape and/or
portrait mode must be defined there as well.

Using the Visual Studio simulator you can easily check the look of the application with different resolutions.
Figure 38-11 shows the application with a resolution setting of 2560 × 1440 pixels and a 27-inch screen.
Here, the grid switches to two rows instead of one. The simulator allows setting screen sizes from 1024
× 768 up to 2560 × 1440, with screen sizes from 7 inches to 27 inches. Depending on the resolution and
screen sizes, scaling happens. For example with 2560 × 1440 and a 27-inch device, scaling is at 100 percent.
Using the same resolution with a 10-inch device, 180 percent scaling is done to allow the user read things on
this small device.

c38.indd 1190 30-01-2014 20:44:28

Layout Changes ❘ 1191

You can read the current layout with the help of the ApplicationView class. ApplicationView
.GetForCurrentView returns an ApplicationView instance. This is an important change for Windows 8.1
whereas Windows 8 used a static Value property to return the ApplicationView. With this new version,
the modern UI supports multiple screens, and they can also have different resolutions and scaling.

The Orientation property of the ApplicationView returns the ApplicationViewOrientation
that can be either Landscape or Portrait. The properties AdjacentToLeftDisplayEdge and
AdjacentToRightDisplayEdge can be checked to verify if the app is shown left or right. Remember, a user
can have multiple apps on one screen (up to four depending on the resolutions and scaling factors), and the
app might be neither left nor right.

All this information can be used to dynamically change behaviors of controls. A good way to change the
behavior of controls is by using the VisualStateManager. Read Chapter 35 for information on how to
work with this control. Using this control is very similar to WPF.

Application data
For the data that is used from the UI, the application defines a few types in the subdirectory Model.

One type that is used as a base class implements the interface INotifiyPropertyChanged for change
notifications to the UI, and also offers an IsDirty property that will be used with saving the items in case
they change (code file MenuCard/Extensions/BindableBase.cs). The method SetProperty will be called
by derived types with property setters:

public class BindableBase : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void OnPropertyChanged(
 [CallerMemberName] string propertyName = null)
 {
 PropertyChangedEventHandler handler = PropertyChanged;

figURE 38-11

c38.indd 1191 30-01-2014 20:44:28

1192 ❘ CHAPTER 38 WindoWs store Apps: User interfAce

 if (handler != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }

 protected virtual bool SetProperty<T>(ref T property, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (!EqualityComparer<T>.Default.Equals(property, value))
 {
 property = value;
 IsDirty = true;
 OnPropertyChanged(propertyName);
 return true;
 }
 return false;
 }

 public bool IsDirty { get; private set; }

 public void ClearDirty()
 {
 IsDirty = false;
 }
}

The class MenuCard (code file MenuCard/Model/MenuCard.cs) represents a menu card that contains the
major data of the application. This class defines the properties Title, Description, and Image to be used
for display. Like all the classes used for data binding, it derives from the base class BindingBase:

using System.Collections.Generic;
using System.Collections.ObjectModel;
using Windows.UI.Xaml.Media;
using Wrox.ProCSharp.Extensions;
namespace Wrox.ProCSharp.Model
{
 public class MenuCard : BindableBase
 {
 private string title;
 public string Title
 {
 get { return title; }
 set { SetProperty(ref title, value); }
 }
 private string description;
 public string Description
 {
 get { return description; }
 set { SetProperty(ref description, value); }
 }
 private ImageSource image;
 public ImageSource Image
 {
 get { return image; }
 set { SetProperty(ref image, value); }
 }
 private string imagePath;
 public string ImagePath
 {
 get { return imagePath; }
 set { imagePath = value; }
 }
 private readonly ICollection<MenuItem> menuItems =

c38.indd 1192 30-01-2014 20:44:28

Layout Changes ❘ 1193

 new ObservableCollection<MenuItem>();
 public ICollection<MenuItem> MenuItems
 {
 get { return menuItems; }
 }
 public void RestoreReferences()
 {
 foreach (var menuItem in MenuItems)
 {
 menuItem.MenuCard = this;
 }
 }
 public override string ToString()
 {
 return Title;
 }
 }
}

The class MenuItem (code file MenuCard/Model/MenuItem.cs) that is contained within MenuCard defines
simple properties with a change notification as well:

using Wrox.ProCSharp.Common;
namespace Wrox.ProCSharp.Model
{
 public class MenuItem : BindableBase
 {
 private string text;
 public string Text
 {
 get { return text; }
 set { SetProperty(ref text, value); }
 }
 private double price;
 public double Price
 {
 get { return price; }
 set { SetProperty(ref price, value); }
 }
 public MenuCard MenuCard { get; set; }
 }
}

The class AddMenuCardInfo (code file MenuCard/DataModel/AddMenuCardInfo.cs) will be used to create
new menu cards. This class is also a simple type used for data binding:

using Windows.UI.Xaml.Media;
using Wrox.ProCSharp.Extensions;
namespace Wrox.ProCSharp.Model
{
 public class AddMenuCardInfo : BindableBase
 {
 private string title;
 public string Title
 {
 get { return title; }
 set { SetProperty(ref title, value); }
 }
 private string description;
 public string Description
 {
 get { return description; }
 set { SetProperty(ref description, value); }
 }

c38.indd 1193 30-01-2014 20:44:28

1194 ❘ CHAPTER 38 WindoWs store Apps: User interfAce

 private ImageSource image;
 public ImageSource Image
 {
 get { return image; }
 set { SetProperty(ref image, value); }
 }
 private string imageFileName;
 public string ImageFileName
 {
 get { return imageFileName; }
 set { SetProperty(ref imageFileName, value); }
 }
 }
}

The class MenuCardRepository (in the code file MenuCard/Repositories/MenuCardRepository.cs) acts
as singleton to return a list of menu cards. The method InitMenuCards is used to initialize the collection
and assign an ObservableCollection<MenuCard> to the cards variable:

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
namespace Wrox.ProCSharp.Model
{
 public class MenuCardRepository
 {
 private ICollection<MenuCard> cards;
 public ICollection<MenuCard> Cards
 {
 get
 {
 return cards;
 }
 }
 public void InitMenuCards(IEnumerable<MenuCard> menuCards)
 {
 cards = new ObservableCollection<MenuCard>(menuCards);
 }
 private MenuCardRepository() { }
 public static MenuCardRepository Instance = new MenuCardRepository();
 }
}

noTE The class ObservableCollection<T> is used to bind collections to the UI as
it implements the interface INotifyCollectionChanged. This class is explained in
Chapter 10, “Collections.”

Although the application will be used to create menu cards, when it is started for the first time it
would be nice to show some initial menu cards to the user. To create the sample data, the method
GetSampleMenuCards in the class MenuCardRepository returns a list of menu cards filled with some
menus. Images for the sample menu cards are stored in the Assets folder and referenced from there, as
shown with Breakfast.jpg. The ms-appx URI prefix is the scheme used to reference files in the app
package:

 public static ObservableCollection<MenuCard> GetSampleMenuCards()
 {
 Uri baseUri = new Uri("ms-appx:///");
 var cards = new ObservableCollection<MenuCard>();
 var card1 = new MenuCard
 {

c38.indd 1194 30-01-2014 20:44:28

Storage ❘ 1195

 Title = "Breakfast"
 };
 card1.MenuItems.Add(new MenuItem
 {
 Text = "Spezialfrühstück",
 Price = 5.4,
 MenuCard = card1
 });
 card1.MenuItems.Add(new MenuItem
 {
 Text = "Wiener Frühstück",
 Price = 4.4,
 MenuCard = card1
 });
 card1.MenuItems.Add(new MenuItem
 {
 Text = "Schinken mit 3 Eiern",
 Price = 4.4,
 MenuCard = card1
 });
 card1.ImagePath = string.Format("{0}{1}", baseUri, "Assets/Breakfast.jpg");
 cards.Add(card1);
 //... more menu cards in the code download

sToRAgE
Let’s get into the storage API, reading and writing files. Typical Windows Store apps don’t have access to
the full file system without user interaction. However, there are some specific directories from which the
application can read data and to which data can be written, and there’s also the option to ask the user for a
file. Asking users for files is done using pickers, which are discussed in the section “Pickers.” First, however,
this section takes a look at the file system and how to program with it.

The sample application needs to read and write menu cards, including both items and images. The
functionality to store the textual information for the menus and the images is separated, to enable the
option to later store images with blogs inside Windows Azure Storage, and the textual information inside
either SQL Azure or Windows Azure Table Storage. However, here just local storage is used. With a cloud
solution, local storage could be used for caching.

defining a data Contract
The data that should be stored is defined in separate classes within the Storage folder. This enables defining
attributes needed for serialization independent of the classes that are used to bind them to the UI elements.
For serialization of objects, both the XML Serializer and the data contract serializer are available with
Windows Store apps. In this chapter, serialization is done using the data contract, so the DataContract
and DataMember attributes are applied to the MenuCardData class (code file MenuCard/Storage/
MenuCardData.cs). With this class, only simple properties like Title, Description, and ImagePath are
defined for serialization, as well as a collection of MenuItemData. The class also enables easy conversion
from and to the MenuCard class by implementing a constructor that accepts a MenuCard as an argument,
and a ToMenuCard method that returns a MenuCard:

using System.Collections.Generic;
using System.Runtime.Serialization;
using Wrox.Win8.DataModel;
namespace Wrox.Win8.Storage
{
 [DataContract(Name="MenuCard")]
 public class MenuCardData
 {
 public MenuCardData() { }
 public MenuCardData(MenuCard menuCard)

c38.indd 1195 30-01-2014 20:44:28

1196 ❘ CHAPTER 38 WindoWs store Apps: User interfAce

 {
 this.Title = menuCard.Title;
 this.Description = menuCard.Description;
 this.ImagePath = menuCard.ImagePath;
 MenuItems = new List<MenuItemData>();
 foreach (var item in menuCard.MenuItems)
 {
 MenuItems.Add(new MenuItemData(item));
 }
 }
 public MenuCard ToMenuCard()
 {
 var menuCard = new MenuCard
 {
 Title = this.Title,
 Description = this.Description,
 ImagePath = this.ImagePath
 };
 foreach (MenuItemData item in this.MenuItems)
 {
 menuCard.MenuItems.Add(item.ToMenuItem());
 }
 menuCard.ClearDirty();
 return menuCard;
 }
 [DataMember]
 public string Title { get; set; }
 [DataMember]
 public string Description { get; set; }
 [DataMember]
 public string ImagePath { get; set; }
 [DataMember]
 public List<MenuItemData> MenuItems { get; set; }
 }
}

The class MenuItemData (code file MenuCard/Storage/MenuItemData.cs) represents menu items within a
menu card and requires data contract attributes as well:

using System.Runtime.Serialization;
using Wrox.ProCSharp.Model;
namespace Wrox.ProCSharp.Storage
{
 [DataContract(Name="MenuItem")]
 public class MenuItemData
 {
 public MenuItemData() { }
 public MenuItemData(MenuItem item)
 {
 if (item != null)
 {
 this.Text = item.Text;
 this.Price = item.Price;
 }
 }
 public MenuItem ToMenuItem()
 {
 return new MenuItem
 {
 Text = this.Text,
 Price = this.Price
 };
 }
 [DataMember]

c38.indd 1196 30-01-2014 20:44:28

Storage ❘ 1197

 public string Text { get; set; }
 [DataMember]
 public double Price { get; set; }
 }
}

Writing Roaming data
Now you can create a method to write a MenuCard object. There are some predefined folders to which
the application can write its data. The folders can be accessed with the ApplicationData class.
ApplicationData.Current returns an instance of the ApplicationData singleton object. From there you
can access the LocalFolder and RoamingFolder. With the LocalFolder property an application-specific
folder that is only available on the local system is returned; RoamingFolder returns a folder where (after the
data is written locally) the data is written to a cloud service, enabling users to access this data with every
system on which they use the same live account.

The sample application makes use of the roaming folder so that users have the data available with all their
Windows 8.1 systems and later. The method WriteMenuCardAsync (code file Storage\MenuCardStorage)
receives a MenuCard with the parameter menuCard and accesses the roaming folder in the first line.
Next, it is determined whether the MenuCard object contains any changes since it was last written. The
MenuCard has a dirty flag that is changed with every property change. A file is created by invoking the
CreateFileAsync method on the StorageFolder. The name for the file contains the title of the menu
card. With the second argument on the CreateFileAsync method, it can be specified what should
happen if the file already exists. Possible options are to throw an exception or open the existing file. Here
the existing file is just overwritten. The opened file and the menu card are then passed to the method
WriteMenuCardToFileAsync:

 public async Task WriteMenuCardAsync(MenuCard menuCard)
 {
 StorageFolder folder = ApplicationData.Current.RoamingFolder;
 if (menuCard.IsDirty)
 {
 StorageFile storageFile = await folder.CreateFileAsync(
 string.Format("MenuCards{0}.xml", menuCard.Title),
 CreationCollisionOption.ReplaceExisting);
 await WriteMenuCardToFileAsync(menuCard, storageFile);
 menuCard.ClearDirty();
 }
 }

The method WriteMenuCardToFileAsync finally writes the data with the help of the data contract
serializer. The StorageFile class offers several methods that return streams to read and write
data — for example, OpenAsync returns an IRandomAccessStream, OpenTransactedWriteAsync
returns a StorageStreamTransaction. These streams are all Windows Runtime streams. For the data
contract serialization, a .NET stream is required. The extension method OpenStreamForWriteAsync
that is defined within the class WindowsRuntimeStorageExtensions directly returns a .NET Stream.
The stream returned from this method gets a copy of the MemoryStream that is filled earlier with the
DataContractSerializer:

 public async Task WriteMenuCardToFileAsync(MenuCard menuCard,
 StorageFile storageFile)
 {
 var menuCardData = new MenuCardData(menuCard);
 var knownTypes = new Type[]
 {
 typeof(MenuItemData)
 };
 var cardStream = new MemoryStream();
 var serializer = new DataContractSerializer(typeof(MenuCardData), knownTypes);
 serializer.WriteObject(cardStream, menuCardData);
 using (Stream fileStream = await storageFile.OpenStreamForWriteAsync())

c38.indd 1197 30-01-2014 20:44:29

1198 ❘ CHAPTER 38 WindoWs store Apps: User interfAce

 {
 cardStream.Seek(0, SeekOrigin.Begin);
 await cardStream.CopyToAsync(fileStream);
 await fileStream.FlushAsync();
 }
 }

noTE Reading and writing .NET streams with Windows Store applications is not different
from other applications. See Chapter 24 for more information on .NET files and streams.

Now you just need to connect the code to save the menu card with the UI. One point at which saving takes
place is when a new menu card is created in the AddMenuCardPage. Upon leaving the page (e.g., clicking
the back button), the navigationHelper_SaveState method (code file MenuCard/AddMenuCardPage
.xaml.cs) is invoked. navigationHelper_SaveState is invoked on firing the SaveState event of the
NavigationHelper. This event is fired on leaving the page. With the implementation here, a new MenuCard
is created from the information that is bound to the UI, and then WriteMenuCardsAsync is invoked to write
all dirty menu cards to the roaming storage:

 protected async void navigationHelper_SaveState(object sender,
 SaveStateEventArgs e)
 {
 var mc = new MenuCard
 {
 Title = info.Title,
 Description = info.Description,
 Image = info.Image,
 ImagePath = info.ImageFileName
 };

 MenuCardRepository.Instance.Cards.Add(mc);
 var storage = new MenuCardStorage();
 await storage.WriteMenuCardsAsync(
 MenuCardRepository.Instance.Cards.ToList());
 }

After writing data to the storage, the next step is to read it again.

Reading data
To read the menu cards, the method ReadMenuCardsAsync (code file MenuCard/Storage/
MenuCardsStorage.cs) reads all menu card files from the roaming application folder, fills MenuCard
objects, and returns a list. Before reading all the files, a list of XML files from the roaming folder is created.
The method CreateFileQuery from the StorageFolder class enables defining a query to search files. The
query defined here specifies not to use the indexer, to just read this directory and not subdirectories, and to
search for XML files. With the QueryOptions class it is also possible to use the Advanced Query Syntax
(AQS) to search for files by using keywords and properties. The files returned from the query are read by
using a .NET stream that is returned from the extension method OpenStreamForReadAsync. Next, the
deserialization is performed using the data contract serializer:

 public async Task<IEnumerable<MenuCard>> ReadMenuCardsAsync()
 {
 var menuCards = new List<MenuCard>();
 StorageFolder folder = ApplicationData.Current.RoamingFolder;
 StorageFileQueryResult result = folder.CreateFileQuery();
 var queryOptions = new QueryOptions();
 queryOptions.IndexerOption = IndexerOption.DoNotUseIndexer;
 queryOptions.FolderDepth = FolderDepth.Shallow;
 queryOptions.FileTypeFilter.Add(".xml");
 result.ApplyNewQueryOptions(queryOptions);

c38.indd 1198 30-01-2014 20:44:29

Storage ❘ 1199

 IReadOnlyList<StorageFile> files = await result.GetFilesAsync();
 foreach (var file in files)
 {
 using (Stream stream = await file.OpenStreamForReadAsync())
 {
 try
 {
 var serializer = new DataContractSerializer(typeof(MenuCardData));
 object data = await Task<object>.Run(() => serializer.ReadObject(stream));

 MenuCard menuCard = (data as MenuCardData).ToMenuCard();
 menuCard.RestoreReferences();
 menuCards.Add(menuCard);
 }
 catch (Exception)
 {
 // log exception
 }
 }
 }
 return menuCards;
 }

Whereas the StoreState method can be used to write application state, the LoadState method is used to
read application state. The following code snippet shows the LoadState method from the MainPage. This
method is invoked upon navigating to the page. Here, the method ReadMenuCardsAsync is invoked to get a
collection of MenuCard objects. This collection is put into an ObservableCollection, and then put into the
view model to use the menu cards for data binding with the UI:

 protected override async void LoadState(Object navigationParameter,
 Dictionary<String, Object> pageState)
 {
 var storage = new MenuCardStorage();
 MenuCardFactory.Instance.InitMenuCards(
 new ObservableCollection<MenuCard>(
 await storage.ReadMenuCardsAsync()));
 this.DefaultViewModel["Items"] = MenuCardFactory.Instance.Cards;
 }

Reading and writing menu cards is now implemented, but the images are not saved yet.

Writing images
Writing images needs some special handling. With the sample application, the user can upload images to be
used with the menu cards. With images and videos, you need to pay attention to their size. Users can upload
images with huge pixel densities that are not really needed when they are just being displayed on the screen.
The issue here is that the roaming folder used can have some quotas associated with it; and for data stored
in the cloud, charges are based on data sizes stored, and transferring larger images across the network takes
more time. With this in mind, you want to store only the image size required.

With the Windows Runtime, resizing images is already part of the framework. The BitmapDecoder class
can deal with image resizing, as demonstrated in the following example in the method WriteImageAsync
(code file Storage\MenuCardImageStorage.cs). An image is received with the IRandomAccessStream
argument. The BitmapDecoder accesses the received image stream and here the pixel height and width can
be read. When resizing the image, some calculations are performed to maintain the ratio, the new width and
height are passed to the BitmapTransform object, and this is then used upon saving the image with the help
of the StorageFile object:

 public async Task WriteImageAsync(IRandomAccessStream sourceStream,
 string filename)
 {
 BitmapDecoder decoder = await BitmapDecoder.CreateAsync(sourceStream);

c38.indd 1199 30-01-2014 20:44:29

1200 ❘ CHAPTER 38 WindoWs store Apps: User interfAce

 uint scaledWidth = 0;
 uint scaledHeight = 0;
 if (decoder.PixelWidth > decoder.PixelHeight)
 {
 scaledWidth = 600;
 double relation = (double)decoder.PixelHeight / decoder.PixelWidth;
 scaledHeight = Convert.ToUInt32(relation * scaledWidth);
 }
 else
 {
 scaledHeight = 600;
 double relation = decoder.PixelWidth / decoder.PixelHeight;
 scaledWidth = Convert.ToUInt32(relation * scaledHeight);
 }
 var transform = new BitmapTransform()
 { ScaledWidth = scaledWidth, ScaledHeight = scaledHeight };
 PixelDataProvider pixelData = await decoder.GetPixelDataAsync(
 BitmapPixelFormat.Rgba8,
 BitmapAlphaMode.Straight,
 transform,
 ExifOrientationMode.RespectExifOrientation,
 ColorManagementMode.DoNotColorManage);
 var folder = ApplicationData.Current.RoamingFolder;
 StorageFile destinationFile = await folder.CreateFileAsync(filename);
 using (var destinationStream = await destinationFile.OpenAsync(
 FileAccessMode.ReadWrite))
 {
 BitmapEncoder encoder = await BitmapEncoder.CreateAsync(
 BitmapEncoder.PngEncoderId, destinationStream);
 encoder.SetPixelData(BitmapPixelFormat.Rgba8,
 BitmapAlphaMode.Premultiplied,
 scaledWidth, scaledHeight, 96, 96, pixelData.DetachPixelData());
 await encoder.FlushAsync();
 }
 }

As discussed earlier in the chapter, the application includes some sample data. This provides the user with a
good starting point and helps to demonstrate how the application can be used. The predefined text content
for the menus was created with code to fill the menu cards. The images are stored in the Assets folder
alongside the logos needed by the application. When first starting the application, it is useful to write the
menu cards and the images to the roaming folder, which enables dealing with them in the same way as the
content created by the user.

The implementation for the first start of the application is defined in the App class within the method
InitSampleDataAsync (code file App.xaml.cs). This method itself is invoked from the OnLaunched
handler method in the same class. The method first verifies whether the roaming folder is empty. If it is
not empty, the menu cards have been written already. The method GetSampleMenuCards returns menu
cards that are filled with sample data, including links to the images from the Assets folder. These images
can be retrieved using RandomAccessStreamReference, and creating such an object can be achieved with
the CreateFromUri method. CreateFromFile and CreateFromStream are other options used to create
RandomAccessStreamReference objects. With the RandomAccessStreamReference object, the method
OpenReadAsync is invoked to get a Windows Runtime stream. This is the stream type needed to write the
image with the WriteImageAsync method:

 private static async Task InitSampleDataAsync()
 {
 var storage = new MenuCardStorage();
 var imageStorage = new MenuCardImageStorage();
 if (await storage.IsRoamingFolderEmpty())
 {
 List<MenuCard> menuCards = MenuCardFactory.GetSampleMenuCards().ToList();
 foreach (var card in menuCards)

c38.indd 1200 30-01-2014 20:44:29

Pickers ❘ 1201

 {
 RandomAccessStreamReference streamRef =
 RandomAccessStreamReference.CreateFromUri(new Uri(card.ImagePath));
 using (IRandomAccessStreamWithContentType stream =
 await streamRef.OpenReadAsync())
 {
 card.ImagePath = string.Format("{0}.png", Guid.NewGuid());
 await imageStorage.WriteImageAsync(stream, card.ImagePath);
 }
 }
 await storage.WriteMenuCardsAsync(menuCards);
 }
 }

Reading images
Compared to writing images, reading images is the simpler task. Within the method ReadImageAsync
(code file MenuCard/Storage/MenuCardImageStorage.cs), first a file is opened to create an
IRandomAccessStreamWithContentType, and this stream is passed to the BitmapImage. The image is
returned before reading of the image is completed, as this all happens asynchronously. To get success or
failure information, you can add event handlers to the ImageOpened and ImageFailed events. In case the
path to the image is not correct or another failure happens, these two events are very helpful:

 public async Task<ImageSource> ReadImageAsync(string filename)
 {
 StorageFolder folder = ApplicationData.Current.RoamingFolder;
 StorageFile file = await folder.CreateFileAsync(filename,
 CreationCollisionOption.OpenIfExists);
 var image = new BitmapImage();
 image.SetSource(await file.OpenReadAsync());
 image.ImageOpened += (sender1, e1) =>
 {
 };
 image.ImageFailed += (sender1, e1) =>
 {
 };
 return image;
 }

PiCkERs
For security reasons, a Windows 8 application cannot read from or write to any location without user
interaction. For such tasks, pickers can be used. With storage, the FileOpenPicker can be used to open a
single or multiple files; the FileSavePicker is used to select a filename, folder, and file extension for saving
a file; and the FolderPicker is used to select a folder.

The method OnUploadImage from the class AddMenuCardPage (code file MenuCard/AddMenuCardPage.xaml
.cs) makes use of the FileOpenPicker to enable users to select a file for upload. The PickSingleFileAsync
method returns a single file. If the user should select multiple files, PickMultipleFilesAync can be used
instead. The picker is configured by defining the start location (here the pictures library) and which file
extensions can be selected. The StorageFile that is returned from the picker is then read to write the image
to the menu card. Earlier, in the discussion on writing images, you saw how the BitmapDecoder can be used
to resize images. With the BitmapImage it is also possible — and easier — to define the decoding as shown in
the ImageOpened event handler that is implemented as a lambda expression:

 private async void OnUploadImage(object sender, RoutedEventArgs e)
 {
 var filePicker = new FileOpenPicker();
 filePicker.SuggestedStartLocation = PickerLocationId.PicturesLibrary;
 filePicker.FileTypeFilter.Add(".jpg");
 filePicker.FileTypeFilter.Add(".png");

c38.indd 1201 30-01-2014 20:44:29

1202 ❘ CHAPTER 38 WindoWs store Apps: User interfAce

 StorageFile file = await filePicker.PickSingleFileAsync();
 if (file == null) return;
 var stream = await file.OpenAsync(FileAccessMode.Read);
 var image = new BitmapImage();
 image.SetSource(stream);
 image.ImageOpened += async (sender1, e1) =>
 {
 if (image.PixelHeight > image.PixelWidth)
 {
 image.DecodePixelHeight = 900;
 }
 else
 {
 image.DecodePixelWidth = 900;
 }
 stream.Seek(0);
 MenuCardImageStorage imageStorage = new MenuCardImageStorage();
 MenuCardStorage storage = new MenuCardStorage();
 info.ImageFileName = string.Format("{0}.jpg", Guid.NewGuid().ToString());
 await imageStorage.WriteImageAsync(stream, info.ImageFileName);
 };
 image.ImageFailed += (sender1, e1) =>
 {
 // log error
 };
 info.Image = image;
 }

The FileOpenPicker is shown in Figure 38-12. This picker provides a preview of images from the selected
folder.

figURE 38-12

livE TilEs
Because tiles are the first entry point of the application, they should be designed to catch the user’s attention.
Using the Manifest Designer (see Figure 38-13) you can specify several sizes for logo tiles: a small logo
(70 × 70 pixels), which doesn’t have a live tile variant, two square logos (150 × 150 and 310 × 310 pixels),

c38.indd 1202 30-01-2014 20:44:30

Live Tiles ❘ 1203

and a wide logo (310 × 150 pixels). The tile can display a name in addition to the image. If the name should
be shown, it can be configured independently for the normal and wide logos, and the foreground and
background color can be specified as well.

figURE 38-13

To support all the different device resolutions and scales, it’s best to offer different sizes for the tiles.
Automatic scaling might not look that good — depending on the image. The number of pixels needed for
all the different scales is shown in the Manifest Designer. Having the same image available for different
scales, there’s a file naming convention: scale-xxx in the middle of the filename before the file extension.
For example the filename WideLogo.scale-100.png is the 100-percent scale image for WideLogo.png;
WideLogo.scale-180.png is the 180-percent scale image.

The tile can also be changed dynamically within the application. Some sample code to update the
tile is shown in the following code snippet with the method UpdateTile (code file Notifications/
TileUpdate.cs). To update the tile, an XML definition needs to be created that defines the tile and an
optional notification that defines the expiration time of the tile, and then the tile is updated by using the
TileUpdater class:

 public static void UpdateTile()
 {
 TileTemplateType tileTemplate = TileTemplateType.TileWide310x150ImageAndText01;
 XmlDocument tileXml = TileUpdateManager.GetTemplateContent(tileTemplate);
 XmlNodeList tileImageAttributes = tileXml.GetElementsByTagName("image");
 ((XmlElement)tileImageAttributes[0]).SetAttribute("src",
 "ms-appx:///Assets/breakfast400.jpg");
 ((XmlElement)tileImageAttributes[0]).SetAttribute("alt", "Breakfast");
 var textElements = tileXml.GetElementsByTagName("text");
 ((XmlElement)textElements[0]).InnerText = "MENU card";
 TileNotification notification = new TileNotification(tileXml);
 notification.ExpirationTime = DateTimeOffset.Now.AddMinutes(60);
 TileUpdater tileUpdater = TileUpdateManager.CreateTileUpdaterForApplication();
 tileUpdater.Update(notification);
 }

c38.indd 1203 30-01-2014 20:44:30

1204 ❘ CHAPTER 38 WindoWs store Apps: User interfAce

Let’s look at this in more detail. If you’ve noticed that many tiles of different applications look very similar,
there’s a good reason. The TileTemplateType defines several templates for tiles that can be customized.
The template that is used in the sample is TileWide310x150ImageAndText01. As the name suggests, this
template shows a wide tile with image and text. Other templates can be used for text only or images only,
square blocks, or a collection of images. TileWide310x150ImageAndText01 contains an image and text
whereby the text may be wrapped over a maximum of two lines, TileWide310x150ImageAndText02
contains an image and two text lines whereby the text is not wrapped. Using XML classes from the
namespace Windows.Data.Xml.Dom, the XML content is modified to add an image from the Assets folder
and some text. The final XML code for the tile is shown here:

<tile>
 <visual>
 <binding template="TileWideImageAndText01">
 <image id="1" src="ms-appx:///Assets/breakfast400.jpg" alt="Breakfast"/>
 <text id="1">MENU card</text>
 </binding>
 </visual>
</tile>

With the XML content, a TileNotification is created. The ExpirationTime defines that the tile is reset
after 60 minutes. Last, with the TileUpdater, the update is done. The TileUpdater is created from the
CreateTileUpdaterForApplication method. Because an application can have multiple tiles, other tiles
can be updated with CreateTileUpdaterForSecondaryTile.

Instead of doing the update just once, it is also possible to specify periodic updates. The
StartPeriodicUpdate method enables specifying a URL to a server that is invoked repeatedly with a
time interval. The time interval is specified with an enumeration that defines values ranging from every
half-hour to daily. The server needs to return the XML code for the tile. The periodic update runs
without the application being active. Starting the TileUpdater instructs Windows to perform the tile
update.

Windows 8.1 offers an easy option to update the tile with a link from a server. Using the Manifest Editor,
you can add a URI Template link to the Tile Update setting. A recurrence setting in the range from half an
hour to daily specifies how often Windows should consult the server to update the tile. All the server needs
to do is to return the required XML format for the tile. Such an implementation can be done easily with the
ASP.NET Web API that is covered in Chapter 44. For the tile to be updated this way, the app doesn’t need to
run. Windows itself requests the URL update to change the content of the tile.

sUMMARy
This chapter provided an introduction to many different aspects of programming Windows Store apps.
You’ve seen how XAML is very similar to programming WPF applications as described in previous chapters.
Data binding has been used with content controls and items controls. The Visual State Manager was shown
in action for dealing with different layout changes. You’ve also seen the Windows Runtime in action for
accessing storage to read and write data and images, using roaming storage. Using the FileOpenPicker,
files were uploaded with interaction from the user. Finally, you looked at tiles, the important first entry
point of the application to the user.

Of course, there’s a lot more to know when designing Windows Store apps. Also available are more
pickers (for example, a contact picker); contracts to offer the application for the file open picker; enhanced
search capabilities that enable the application to give information to users using toasts; and much more.
Unfortunately, space doesn’t allow comprehensive coverage of all these topics. Nonetheless, you now have
enough knowledge to get started.

The next chapter gives more information on Windows Store apps with contracts and devices.

c38.indd 1204 30-01-2014 20:44:30

Windows Store Apps: Contracts
and Devices

WHAT’S in THiS CHAPTER?

 ➤ Searching
 ➤ Sharing
 ➤ Camera
 ➤ Geolocation
 ➤ Sensors

WROX.COm CODE DOWnlOADS FOR THiS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/go/procsharp
on the Download Code tab. The code for this chapter contains one big sample that shows the various
aspects of this chapter:

 ➤ Menu Card
 ➤ Camera Sample
 ➤ Geolocation Sample
 ➤ Sensor Sample
 ➤ Rolling Marble

OVERViEW
The previous chapter introduced you to UI elements for Windows Store apps, and used the API of the
Windows Runtime to read and write data. This chapter continues from there to add search features,
allows integration of different apps by using share contracts, and makes use of many different devices
such as the camera to take pictures and record videos, get the location information from the user, and
get information about how the user moves the device by using several sensors such as accelerometer
and inclinometer.

Let’s start with searching that changed a lot between Windows 8 and Windows 8.1.

39

c39.indd 1205 30-01-2014 20:47:46

1206 ❘ CHAPTER 39 WindoWs store Apps: ContrACts And deviCes

SEARCHing
With Windows 8, search for Windows Store apps was usually done with the Search contract. Searching
in apps was started by opening the Charms bar. The issue with that was users had a hard finding out if
the app supports searching. Windows 8.1 changed this in that apps that support searching time use a new
SearchBox control on the UI.

The sample app from the previous chapter, Menu Card, is extended with search functionality. From the
main page, the user can search for menu items. If a menu item is found, the menu card page that includes
this menu item is opened.

First, a SearchBox is added to the main page (code file MenuCard/MainPage.xaml):

<SearchBox
 QuerySubmitted="OnSearchQuery"
 SuggestionsRequested="OnSuggestionRequested" />

Two event handlers are added. The event QuerySubmitted is fired as soon as the user completes the query
input. Before that, suggestions can be offered for the user. The user doesn’t need to complete the query, but
can select one of the suggestions. For adding suggestions, an event handler to the SuggestionsRequested
event must be added.

For having a list of words the user can search for, a lookup list of words mapping to menu cards is created
using a LINQ query. The LINQ query iterates all menu items within the menu cards, splits words from the
text of the menu items, excluding fill words, and creates a Lookup table containing the word mapping to a
MenuCard object (code file MenuCard/MainPage.xaml.cs):

private ILookup<string, MenuCard> GetSearchWords()
{
 string[] fillWords = { "der", "die", "mit", "und", "im", "auf" };

 return cards.SelectMany(card => card.MenuItems).
 SelectMany(mi => mi.Text.Split(),
 (mi, word) => new { MenuItem = mi, Word = word }).
 Where(item => !fillWords.Contains(item.Word)).
 ToLookup(item => item.Word, item => item.MenuItem.MenuCard);
}

nOTE LINQ including the compound from statement (or the SelectMany method) is
explained in Chapter 11, “Language Integrated Query.”

The properties WordsLookup and Keys make use of the method GetSearchWords and allow for an easy
access to the suggestions:

private ILookup<string, MenuCard> wordsLookup;
public ILookup<string, MenuCard> WordsLookup
{
 get
 {
 return wordsLookup ?? (wordsLookup = GetSearchWords());
 }
}

public IEnumerable<string> Keys
{
 get
 {
 return WordsLookup.Select(w => w.Key);
 }
}

The SuggestionRequested event is fired as soon as the SearchBox is used. With the event handler of this
event, OnSuggestionRequested, the SearchBoxSuggestionsRequestedEventArgs holds information

c39.indd 1206 30-01-2014 20:47:47

Searching ❘ 1207

about the query entered by the user (property QueryText), and here it’s also possible to pass the suggestions
(property SearchSuggestionCollection).

In case the query text is still empty (the SuggestionRequested event is fired before the user enters the first
character), the event handler just returns. When text is entered, it is verified if the entered text can be found
within the keys of the word lookup. If they are found, suggestions are added, and the user can easily select
one of these instead of continuing writing text:

private void OnSuggestionRequested(SearchBox sender,
 SearchBoxSuggestionsRequestedEventArgs args)
{
 if (string.IsNullOrEmpty(args.QueryText))
 return;

 string query = args.QueryText;
 var suggestions = this.Keys.Where(k => k.StartsWith(query)).ToList();
 args.Request.SearchSuggestionCollection.AppendQuerySuggestions(
 suggestions);
}

When the user clicks the search button or selects one of the suggestions, the SearchQuery event is fired.
The event handler receives SearchBoxQuerySubmittedEventArgs to read the QueryText. From here,
navigation to the MenuItemsPage is done to open the found MenuCard that includes the search term:

private async void OnSearchQuery(SearchBox sender,
 SearchBoxQuerySubmittedEventArgs args)
{
 string query = args.QueryText;
 var cards = WordsLookup[query];
 MenuCard card = cards.FirstOrDefault();
 if (card != null)
 {
 this.Frame.Navigate(typeof(MenuItemsPage), card);
 }
 else
 {
 MessageDialog dlg = new MessageDialog("Word not found");
 await dlg.ShowAsync();
 }
}

Figure 39-1 shows the Menu Card app with suggestions in the Search Box.

FiguRE 39-1

c39.indd 1207 30-01-2014 20:47:48

1208 ❘ CHAPTER 39 WindoWs store Apps: ContrACts And deviCes

SHARing COnTRACT
Your app is more useful when it offers interaction with other applications. Instead of doing copy and paste,
as you’re doing with desktop apps, the menu card app could offer data that is directly used with e-mail or
an application that posts the information to a website. The application could also receive some information
from other applications — for example, pictures for the menu card.

Such communication is done with Windows Store apps by using a contract. The following sections first turn
the sample application into a sharing source, and then a sharing target as well.

Sharing Source
The first consideration in terms of sharing is determining what data should be shared in what format. It’s
possible to share simple text, rich text, HTML, and images, but also a custom type. Of course, all these
types must be known and used from other applications, the sharing targets. Sharing custom types can
only be done with other applications that know the type and are a share target for the type. The sample
application only offers HTML code for a menu card.

The HTML code for the menu card is created as an extension method for the MenuCard type
from the ToHtml method in the class MenuCardExtensions (code file MenuCard/Extensions/
MenuCardExtensions.cs). Here, LINQ to XML is used to create HTML content from the Text and Price
properties of the MenuItem objects contained within the menu card:

 static class MenuCardExtensions
 {
 public static string ToHtml(this MenuCard card)
 {
 return
 new XElement("table",
 new XElement("thead",
 new XElement("td", "Text"),
 new XElement("td", "Price"),
 card.MenuItems.Select(mi =>
 new XElement("tr",
 new XElement("td", mi.Text),
 new XElement("td", mi.Price.ToString("C")))))).ToString();
 }
 }

nOTE LINQ to XML is covered in Chapter 34, “Manipulating XML.”

Sharing will be offered from the Menu Card when the Menu items page is opened — to share a single
menu card. The heart of sharing data is the DataTransferManager. The DataRequested event is fired as
soon as the user opens the Charms bar to request sharing. In the Menu items page (code file MenuCard/
MenuItemsPage.xaml.cs), the event handler is registered in the InNavigatedTo method, and unregistered
in OnNavigatedFrom:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 DataTransferManager.GetForCurrentView().DataRequested +=
 OnShareDataRequested;

 navigationHelper.OnNavigatedTo(e);
}

protected override void OnNavigatedFrom(NavigationEventArgs e)
{

c39.indd 1208 30-01-2014 20:47:48

Sharing Contract ❘ 1209

 navigationHelper.OnNavigatedFrom(e);

 DataTransferManager.GetForCurrentView().DataRequested -=
 OnShareDataRequested;
}

When the event is fired, the OnShareDataRequested method is invoked. This method receives the
DataTransferManager as the first argument, and DataRequestedEventArgs as the second. On sharing
data, the DataPackage referenced by args.Request.Data needs to be filled. The Title, Description, and
Thumbnail properties can be used to give information to the user interface. The data that should be shared
must be passed with one of the SetXXX methods. The sample code shares HTML code, thus the method
SetHtmlFormat is used. The HtmlFormatHelper class helps creating the surrounding HTML code needed
for sharing. The HTML code for the menu card is created with the extension method ToHtml that was
shown earlier:

private void OnShareDataRequested(DataTransferManager sender,
 DataRequestedEventArgs args)
{
 Uri baseUri = new Uri("ms-appx:///");
 DataPackage package = args.Request.Data;
 package.Properties.Title = string.Format("MENU card {0}", card.Title);
 if (card.Description != null)
 {
 package.Properties.Description = card.Description;
 }
 package.Properties.Thumbnail = RandomAccessStreamReference.CreateFromUri(
 new Uri(baseUri, "Assets/Logo.png"));
 package.SetHtmlFormat(HtmlFormatHelper.CreateHtmlFormat(
 card.ToHtml()));
}

Instead of offering HTML code, other methods like SetBitmap, SetRtf,
and SetUri enable offering other data formats.

In case you need the information when the sharing operating is
completed — for example, to remove the data from the source
application — the DataPackage class fires OperationCompleted and
Destroyed events.

Figure 39-2 shows the activation of sharing from the Charms bar. Here,
the Mail application is the only sharing target that accepts HTML
content.

Selecting the Mail application, the DataRequested event is fired
and the Menu card application passes menu card information to the
DataPackage, which in turn is received from the Mail application.
Figure 39-3 shows how the Mail application formats the received HTML
content, and here it is possible to send the data directly by e-mail.

If the user selects to share with the app from a page that doesn’t
offer sharing, an error would be displayed that the app doesn’t support
sharing. To give more information to the user about what he needs to do
for sharing, it’s best to implement sharing with other pages as well and
show a message by invoking the FailWithDisplayText
method on the DataRequest object as shown (code file MenuCard/
MainPage.xaml.cs):

private void OnShareDataRequested(DataTransferManager sender,
 DataRequestedEventArgs args)
{
 args.Request.FailWithDisplayText("Open a menu card before
sharing");
}

FiguRE 39-2

c39.indd 1209 30-01-2014 20:47:48

1210 ❘ CHAPTER 39 WindoWs store Apps: ContrACts And deviCes

FiguRE 39-3

Sharing Target
Now let’s have a look at the recipient of sharing. If an application should receive information from a sharing
source, it needs to be declared as a share target. Figure 39-4 shows the Manifest Designer’s Declarations
page within Visual Studio, where you can define share targets. Here is where you add the Share Target
declaration, which must include at least one data format. Possible data formats are Text, URI, Bitmap,
HTML, StorageItems, or RTF. You can also specify which file types should be supported by adding the
appropriate file extensions.

The information in the package manifest is used upon registration of the application. This tells Windows
which applications are available as a share target. Users can configure this information from the Share
dialog of the PC settings (see Figure 39-5).

You can use a Visual Studio item template Share Target Contract to create the code foundation needed for
share targets. When a share source offers data to share, and the available share target is selected by the user,
the method OnShareTargetActivated is invoked in the App class. On activation of the share target, it is
not the OnLaunched method we’ve used until now that is invoked but rather OnShareTargetActivated.
With the implementation, the page that should be shown for the sharing request is activated. This page is
displayed by the Charms bar for sharing:

 protected override void OnShareTargetActivated(
 ShareTargetActivatedEventArgs e)
 {
 var shareTargetPage = new ShareTargetApp.ShareTargetPage();
 shareTargetPage.Activate(e);
 }

c39.indd 1210 30-01-2014 20:47:48

Sharing Contract ❘ 1211

FiguRE 39-4

FiguRE 39-5

The Activate method within the ShareTargetPage class receives activation information with the
ShareTargetActivatedEventArgs object. The ShareOperation property returns a ShareOperation
object that contains a DataPackageView. This view information gives information about the available data.
The available data can be retrieved with the AvailableFormats property, and the data can be accessed
with appropriate methods depending on the format, e.g., GetTextAsync and GetBitmapAsync:

 public async void Activate(ShareTargetActivatedEventArgs args)
 {
 this._shareOperation = args.ShareOperation;

 var shareProperties = this._shareOperation.Data.Properties;

c39.indd 1211 30-01-2014 20:47:49

1212 ❘ CHAPTER 39 WindoWs store Apps: ContrACts And deviCes

 if (sharedProperties == null) return;
 var thumbnailImage = new BitmapImage();
 this.DefaultViewModel["Title"] = shareProperties.Title;
 this.DefaultViewModel["Description"] = shareProperties.Description;
 this.DefaultViewModel["Image"] = thumbnailImage;
 this.DefaultViewModel["Sharing"] = false;
 this.DefaultViewModel["ShowImage"] = false;
 this.DefaultViewModel["Comment"] = String.Empty;
 this.DefaultViewModel["SupportsComment"] = true;
 Window.Current.Content = this;
 Window.Current.Activate();

 // Update the shared content's thumbnail image in the background
 if (shareProperties.Thumbnail != null)
 {
 var stream = await shareProperties.Thumbnail.OpenReadAsync();
 thumbnailImage.SetSource(stream);
 this.DefaultViewModel["ShowImage"] = true;
 }
 }

When data is retrieved, this must be communicated with the ReportStarted and ReportCompleted
methods:

 private void ShareButton_Click(object sender, RoutedEventArgs e)
 {
 this.DefaultViewModel["Sharing"] = true;
 this._shareOperation.ReportStarted();
 // TODO: Perform work appropriate to your sharing scenario using
 // this._shareOperation.Data, typically with additional information
 // captured through custom user interface elements added to this page
 // such as this.DefaultViewModel["Comment"]
 this._shareOperation.ReportCompleted();
 }

nOTE The best way to test sharing with all the formats you would like to support is
by using the sample apps Sharing content source app sample and Sharing content target
app sample. Both sample apps are available at http://code.msdn.microsoft.com/
windowsapps/. In case you have an app as sharing source, use the sample target app,
and vice versa.

CAmERA
As apps are becoming more and more visual, and more devices offer one or two cameras built-in, using this
feature is becoming a more and more important aspect of apps — and it is easy to do with the Windows
Runtime.

nOTE Using the camera requires the Webcam capability configured in the Manifest
Editor. For recording videos, the Microphone capability needs to be configured as well.

Photos and videos can be captured with the CameraCaptureUI class (in the namespace Windows.Media
.Capture). First, the photo- and video-settings need to be configured to use the CaptureFileAsync
method next. The first code snippet (code file CameraSample/MainPage.xaml.cs) captures a photo.
After instantiating of the CameraCaptureUI class, PhotoSettings are applied. Possible photo formats

c39.indd 1212 30-01-2014 20:47:49

Geolocation ❘ 1213

are JPG, JPGXR, and PNG. It is also possible to define cropping where the UI for the camera capture
directly asks the user to select a clipping from the complete picture based on the cropping size. For
cropping, you can either define a pixel size with the property CroppedSizeInPixels or just a ratio
with CroppedAspectRatio. After taking the photo, the sample code uses the returned StorageFile
from the method CaptureFileAsync to store it as a file inside a user-selected folder with the help of the
FolderPicker:

private async void OnTakePhoto(object sender, RoutedEventArgs e)
{
 var cam = new CameraCaptureUI();
 cam.PhotoSettings.AllowCropping = true;
 cam.PhotoSettings.Format = CameraCaptureUIPhotoFormat.Png;
 cam.PhotoSettings.CroppedSizeInPixels = new Size(300, 300);
 StorageFile file = await cam.CaptureFileAsync(CameraCaptureUIMode.Photo);

 if (file != null)
 {
 var picker = new FolderPicker();
 picker.SuggestedStartLocation = PickerLocationId.PicturesLibrary;
 picker.FileTypeFilter.Add(".png");
 StorageFolder folder = await picker.PickSingleFolderAsync();
 await file.CopyAsync(folder);
 }
}

The second code snippet is used to record a video. Similar to before, first the configuration needs to be
done. Besides the PhotoSettings property, the CameraCaptureUI type defines the VideoSettings
property. You can restrict the video recording based on the maximum resolution (using the enumeration
value CameraCaptureUIMaxVideoResolution. HighestAvailable allows the user to select any available
resolution), and the maximum duration. Possible video formats are WMV and MP4:

 private async void OnRecordVideo(object sender, RoutedEventArgs e)
 {
 var cam = new CameraCaptureUI();
 cam.VideoSettings.AllowTrimming = true;
 cam.VideoSettings.MaxResolution =
 CameraCaptureUIMaxVideoResolution.StandardDefinition;
 cam.VideoSettings.Format = CameraCaptureUIVideoFormat.Wmv;
 cam.VideoSettings.MaxDurationInSeconds = 5;
 StorageFile file = await cam.CaptureFileAsync(
 CameraCaptureUIMode.Video);

 if (file != null)
 {
 var picker = new FolderPicker();
 picker.SuggestedStartLocation = PickerLocationId.VideosLibrary;
 picker.FileTypeFilter.Add(".wmv");
 StorageFolder folder = await picker.PickSingleFolderAsync();
 await file.CopyAsync(folder);
 }
 }

In case the user should be offered to capture either a video or a photo, the parameter
CameraCaptureUIMode.PhotoOrVideo can be passed to the method CaptureFileAsync.

gEOlOCATiOn
Knowing the location of the user is an important aspect of apps. This can be apps to show a map, but there
are many other scenarios as well. For example an app that shows the weather of the area of the user, or you
need to decide in what nearest cloud center the data of the user should be saved.

c39.indd 1213 30-01-2014 20:47:49

1214 ❘ CHAPTER 39 WindoWs store Apps: ContrACts And deviCes

With the help of the Geolocator (namespace Windows.Devices.Geolocation), retrieving the position of
the user is very easy. The sample application just contains a Button to request the location when the button
is clicked, and a TextBlock element (code file GeolocationSample/MainPage.xaml) that is bound to the
result of the result of the geo request:

<TextBlock Grid.Row="0" Grid.Column="1" Margin="20"
 Text="{Binding GeoResult, Mode=OneWay}"
 Style="{StaticResource BodyTextBlockStyle}" />

Clicking the button, the event handler method OnGetLocation gets invoked (code file
GeolocationSample/MainPage.xaml.cs). In the implementation, a Geolocator object is instantiated,
and the GetGeopositionAsync method invoked. With the locator, the desired accuracy can be configured
by setting the property DesiredAccuracy. Default and High are the two possible values of the
PositionAccuracy enumeration. It is also possible to specify the desired accuracy in meters by setting the
property DesiredAccuracyInMeters. You shouldn’t set the accuracy to High (or a small number of meters)
if the accuracy isn’t required by the app. The device can use different facilities to get the position, and these
might increase the battery consumption. For example, if the device supports GPS, this will be turned on
with a required high accuracy:

private async void OnGetLocation(object sender, RoutedEventArgs e)
{
 bool hasError = false;
 try
 {
 var locator = new Geolocator();
 locator.DesiredAccuracy = PositionAccuracy.High;
 Geoposition position = await locator.GetGeopositionAsync();

 DefaultViewModel["GeoResult"] = GetGeoInfo(position);
 }
 catch (UnauthorizedAccessException)
 {
 hasError = true;
 }
 if (hasError)
 {
 var dlg = new MessageDialog("Geolocation permission required");
 await dlg.ShowAsync();
 }
}

The result from the Geoposition object that is returned from the GetGeoPositionAsync method is
analyzed and written to a result string by the method GetGeoInfo. Information that is written are the
latitude, longitude, and altitude. An altitude value is not returned from every device. Expect a 0 value here.
The PositionSource property returns the information where the location information is coming from.
Depending on the support from your device, you might get different sources depending if the accuracy is set
to Default or High. Possible sources for the location are the IP address of the device, the wireless network,
cellular network data, or satellite information (with GPS). The Accuracy property returns information
about how good the result is; accuracy is in meters:

private string GetGeoInfo(Geoposition position)
{
 StringBuilder result = new StringBuilder();
 result.AppendFormat("latitude: {0}\n",
 position.Coordinate.Point.Position.Latitude);
 result.AppendFormat("longitude: {0}\n",
 position.Coordinate.Point.Position.Longitude);
 result.AppendFormat("altitude: {0}\n",
 position.Coordinate.Point.Position.Altitude);
 result.AppendFormat("source: {0}\n", position.Coordinate.PositionSource);
 result.AppendFormat("accuracy: {0} m\n", position.Coordinate.Accuracy);
 return result.ToString();
}

c39.indd 1214 30-01-2014 20:47:49

Geolocation ❘ 1215

nOTE The Geoposition object has some more interesting properties other than
the one listed. For example, it contains a CivicAddress with the properties City,
Postalcode, State, and Country. However, only the Country property is filled, and
this is not taken from the geocoordinates but instead user settings. Filling the civic
address requires a civic address provider. However, there doesn’t seem to be a lot of
interest in writing such providers. So to get the civic address, other libraries such as the
Bing Map API are needed.

Instead of getting the location just once, the location can also be retrieved based on a time interval or the
movement of the user. With the Geolocator, the ReportInterval property can be set to a minimum time
interval in milliseconds between location updates. Updates can still happen more often, e.g., if another app
requested geoinformation with a smaller time interval. Instead of using a time interval, the movement of the user
can be specified to fire location information. The property MovementThreshold specifies the movement in meters.

After setting the time interval, or movement threshold, the PositionChanged event is fired every time a
position update occurs:

private GeoLocator locator;
private void OnGetContinuousLocation(object sender, RoutedEventArgs e)
{
 locator = new Geolocator();
 locator.DesiredAccuracy = PositionAccuracy.High;
 // locator.ReportInterval = 1000;
 locator.MovementThreshold = 10;
 locator.PositionChanged += (sender1, e1) =>
 {
 DefaultViewModel["GeoResult"] = GetGeoInfo(e1.Position);
 };
 locator.StatusChanged += (sender1, e1) =>
 {
 DefaultViewModel["StatusChanged"] = e1.Status;
 };
}

Figure 39-6 shows the sample app showing latitude, longitude, source, and accuracy.

FiguRE 39-6

c39.indd 1215 30-01-2014 20:47:50

1216 ❘ CHAPTER 39 WindoWs store Apps: ContrACts And deviCes

nOTE Debugging apps with position changes does not require that you now get into a
car and debug your app while on the road. Instead, the simulator is a helpful tool.

SEnSORS
For a wide range of sensors, the Windows Runtime offers direct access. The namespace Windows.Devices
.Sensors contains classes for several sensors that can be available with different devices.

Before stepping into the code, let’s get an overview of the different sensors and what they can be used
for with the following table. Some sensors are very clear with their functionality, but others need some
explanations.

SEnSOR FEATuRES

Light The light sensor returns the light in lux. This information is used by Windows itself to
set the screen brightness.

Compass The compass gives information about how many degrees the device is directed to the
north using a magnetometer. This sensor differentiates magnetic and geographic north.

Accelerometer The accelerometer measures G-force values along x, y, and z device axes. This could be
used by an app that shows a marble rolling across the screen.

Gyrometer The gyrometer measures angular velocities along x, y, and z device axes. If the app
cares about device rotation, this is the sensor that can be used. However, moving the
device also influences the gyrometer values. It might be necessary to compensate the
gyrometer values using accelerometer values to remove moving of the device and just
work with the real angular velocities.

Inclinometer The inclinometer gives number of degrees as the device rotates across the x-axis (pitch),
y-axis (roll), and z-axis (yaw). An example of when this could be used is an app showing
an airplane that matches yaw, pitch, and roll.

Orientation The orientation uses data from accelerometer, gyrometer, and magnetometer, and
offers the values both in a quaternion and a rotation matrix.

An important aspect of the sensor data is that sensors return information based on coordinates using
device orientation. This is contrary to the display orientation. For example, a Surface Pro that is by default
positioned horizontally with the Windows button on bottom, the x-axis goes to right, y-axis to top, and the
z-axis away from the user.

The sample app for using the sensors shows the results of all sensors with a one-shot but also continuously
using events. You can use this app to see what sensor data is available with your device, and also see what
data is returned as you move the device.

Let’s start with the light sensor.

light
As soon as you know how to work with one sensor, the other ones are very similar. Let’s start with the
LightSensor. First, an object is accessed invoking the static method GetDefault. Getting the actual
value of the sensor can be done calling the method GetCurrentReading. With the LightSensor,
GetCurrentReading returns a LightSensorReading object. This reading object defines the
IlluminanceInLux property that returns the luminance in lux (code file SensorSample/MainPage
.xaml.cs):

 private void OnGetLight(object sender, RoutedEventArgs e)
 {
 LightSensor sensor = LightSensor.GetDefault();

c39.indd 1216 30-01-2014 20:47:50

Sensors ❘ 1217

 if (sensor != null)
 {
 LightSensorReading reading = sensor.GetCurrentReading();
 this.DefaultViewModel["LightResult"] =
 string.Format("Illuminance: {0} Lux", reading.IlluminanceInLux);
 }
 else
 {
 this.DefaultViewModel["LightResult"] = "Light sensor not found";
 }
 }

For getting continuous updated values, the ReadingChanged event is fired. Specifying the
ReportInterval property specifies the time interval that should be used to fire the event. It may
not be lower than MinimumReportInterval. With the event, the second parameter e1 is of type
LightSensorReadingChangedEventArgs and specifies the LightSensorReading with the Reading
property:

private LightSensor sensor;
private void OnGetLight2(object sender, RoutedEventArgs e)
{
 sensor = LightSensor.GetDefault();
 sensor.ReportInterval = sensor.MinimumReportInterval;
 sensor.ReadingChanged += (sender1, e1) =>
 {
 this.DefaultViewModel["LightResult"] = string.Format(
 "{0:T}\tIlluminance: {1} Lux",
 e1.Reading.Timestamp, e1.Reading.IlluminanceInLux);
 };
}

Compass
The compass can be used very similarly. The GetDefault method returns the Compass object,
GetCurrentReading retrieves the CompassReading representing the current values of the compass.
CompassReading defines the properties HeadingAccuracy, HeadingMagneticNorth, and
HeadingTrueNorth.

In case HeadingAccuracy returns MagnometerAccuracy.Unknown, or Unreliable, the compass needs to
be calibrated:

private void OnGetCompass(object sender, RoutedEventArgs e)
{
 Compass compass = Compass.GetDefault();
 CompassReading reading = compass.GetCurrentReading();

 this.DefaultViewModel["CompassResult"] = GetCompassResult(reading);
}

private string GetCompassResult(CompassReading reading)
{
 var sb = new StringBuilder();
 sb.AppendFormat("heading accuracy: {0}\n", reading.HeadingAccuracy);
 sb.AppendFormat("magnetic north: {0}\n", reading.HeadingMagneticNorth);
 sb.AppendFormat("true north: {0}\n", reading.HeadingTrueNorth);
 return sb.ToString();
}

Continuous updates are available with the compass as well:

private Compass compass;
private void OnGetCompass2(object sender, RoutedEventArgs e)
{
 compass = Compass.GetDefault();

c39.indd 1217 30-01-2014 20:47:50

1218 ❘ CHAPTER 39 WindoWs store Apps: ContrACts And deviCes

 compass.ReportInterval = compass.MinimumReportInterval;
 compass.ReadingChanged += (sender1, e1) =>
 {
 this.DefaultViewModel["CompassResult"] =
 GetCompassResult(e1.Reading);
 };
}

Accelerometer
The accelerometer gives information about the g-force values along x-, y-, and z-axes of the device. With a
landscape device, the x-axis is horizontal, the y-axis vertically, and the z-axis oriented in direction from the
user. In case the device stands face to the front on the table with the Windows button on bottom, the x has a
value of -1. In case you turn the device around to have the Windows button on top, x will have a
value of +1.

Similar to the other sensors you’ve seen so far, the static method GetDefault returns the Accelerometer,
GetCurrentReading gives the actual accelerometer values with the AccerometerReading object.
AccelerationX, AccelerationY, and AccererationZ are the values that can be read:

private void OnGetAccelerometer(object sender, RoutedEventArgs e)
{
 Accelerometer accelerometer = Accelerometer.GetDefault();
 AccelerometerReading reading = accelerometer.GetCurrentReading();
 this.DefaultViewModel["AccelerometerResult"] =
 GetAccelerometerResult(reading);
}

private string GetAccelerometerResult(AccelerometerReading reading)
{
 var sb = new StringBuilder();
 sb.AppendFormat("x: {0}\n", reading.AccelerationX);
 sb.AppendFormat("y: {0}\n", reading.AccelerationY);
 sb.AppendFormat("z: {0}\n", reading.AccelerationZ);
 return sb.ToString();
}

Getting continuous values from the accelerometer is, similar to the other sensors, by assigning an event
handler to the ReadingChanged event. As this is exactly the same as with the other sensors that have been
covered so far, the code snippet is not shown in the book. However, you will get this functionality with
the code download of this chapter. You can test your device and move it continuously while reading the
accelerometer values.

inclinometer
The inclinometer is for advanced orientation, it gives yaw, pitch, and roll values in degrees with respect to
gravity. The resulting values are specified by the properties PitchDegrees, RollDegrees, and YawDegrees:

private void OnGetInclinometer(object sender, RoutedEventArgs e)
{
 Inclinometer inclinometer = Inclinometer.GetDefault();
 InclinometerReading reading = inclinometer.GetCurrentReading();
 this.DefaultViewModel["InclinometerResult"] =
 GetInclinometerResult(reading);
}

private string GetInclinometerResult(InclinometerReading reading)
{
 var sb = new StringBuilder();
 sb.AppendFormat("pitch {0} degrees\n", reading.PitchDegrees);
 sb.AppendFormat("roll {0} degrees\n", reading.RollDegrees);

c39.indd 1218 30-01-2014 20:47:50

Sensors ❘ 1219

 sb.AppendFormat("yaw accuracy {0}\n", reading.YawAccuracy);
 sb.AppendFormat("yaw {0} degrees\n", reading.YawDegrees);
 return sb.ToString();
}

gyrometer
The Gyrometer gives angular velocity values for x-, y-, and z- device axes:

private void OnGetGyrometer(object sender, RoutedEventArgs e)
{
 Gyrometer gyrometer = Gyrometer.GetDefault();
 GyrometerReading reading = gyrometer.GetCurrentReading();
 this.DefaultViewModel["GyrometerResult"] = GetGyrometerResult(reading);
}

private string GetGyrometerResult(GyrometerReading reading)
{
 var sb = new StringBuilder();
 sb.AppendFormat("x {0}\n", reading.AngularVelocityX);
 sb.AppendFormat("y {0}\n", reading.AngularVelocityY);
 sb.AppendFormat("z {0}\n", reading.AngularVelocityZ);
 return sb.ToString();
}

Orientation
The OrientationSensor is the most complex that takes values from the accelerometer, gyrometer, and
magnetometer. You get all the values either in a quaternion represented by the Quaternion property, or a
rotation matrix (RotationMatrix property).

Just try the sample app to see the values and how you move the device:

private void OnGetOrientation(object sender, RoutedEventArgs e)
{
 OrientationSensor orientation = OrientationSensor.GetDefault();
 OrientationSensorReading reading = orientation.GetCurrentReading();

 this.DefaultViewModel["OrientationSensorResult"] =
 GetOrientationSensorResult(reading);
}

private string GetOrientationSensorResult(OrientationSensorReading reading)
{
 var sb = new StringBuilder();
 sb.AppendFormat("quaternion w: {0}, x: {1}, y: {2}, z: {3}\n",
 reading.Quaternion.W, reading.Quaternion.X,
 reading.Quaternion.Y, reading.Quaternion.Z);
 sb.AppendFormat("{0,10:0.000}{1,10:0.000}{2,10:0.000}\n" +
 "{3,10:0.000}{4,10:0.000}{5,10:0.000}\n" +
 "{6,10:0.000}{7,10:0.000}{8,10:0.000}\n",
 reading.RotationMatrix.M11, reading.RotationMatrix.M12,
 reading.RotationMatrix.M13, reading.RotationMatrix.M21,
 reading.RotationMatrix.M22, reading.RotationMatrix.M23,
 reading.RotationMatrix.M31, reading.RotationMatrix.M32,
 reading.RotationMatrix.M33);
 sb.AppendFormat("yaw accuracy: {0}\n", reading.YawAccuracy);
 return sb.ToString();
}

Rolling marble Sample
For seeing sensor values in action not only with result values in a TextBlock element, a simple sample app
that rolls a marble across the screen is done making use of the Accelerometer.

c39.indd 1219 30-01-2014 20:47:50

1220 ❘ CHAPTER 39 WindoWs store Apps: ContrACts And deviCes

The marble is represented by a red ellipse (code file RollingMarble/MainPage.xaml). Having an Ellipse
element positioned within a Canvas element allows moving the Ellipse with an attached property:

 <Canvas Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Ellipse Fill="Red" Width="100" Height="100" Canvas.Left="550"
 Canvas.Top="400" x:Name="ell1" />
 </Canvas>

nOTE Attached properties are explained in Chapter 29, “Core XAML.” More infor-
mation about the Canvas element is in Chapter 35, “Core WPF.”

The constructor of the MainPage initializes the Accelerometer and requests continuous reading with the
minimum interval. To know the boundaries of the window, with the LayoutUpdated event of the page,
MaxX and MaxY are set to the width and height of the window (minus the size of the ellipse):

public sealed partial class MainPage : Page
{
 private Accelerometer accelerometer;
 private double MinX = 0;
 private double MinY = 0;
 private double MaxX = 1000;
 private double MaxY = 600;
 private double currentX = 0;
 private double currentY = 0;

 public MainPage()
 {
 this.InitializeComponent();
 accelerometer = Accelerometer.GetDefault();
 accelerometer.ReportInterval = accelerometer.MinimumReportInterval;
 accelerometer.ReadingChanged += OnAccelerometerReading;
 this.DataContext = this;

 this.LayoutUpdated += (sender, e) =>
 {
 MaxX = this.ActualWidth - 100;
 MaxY = this.ActualHeight - 100;
 };
 }

With every value received from the accelerometer, the ellipse is moved within the Canvas element in the
event handler method OnAccelerometerReading. Before the value is set, it is checked according to the
boundaries of the window:

private async void OnAccelerometerReading(Accelerometer sender,
 AccelerometerReadingChangedEventArgs args)
{
 currentX += args.Reading.AccelerationX * 80;
 if (currentX < MinX) currentX = MinX;
 if (currentX > MaxX) currentX = MaxX;

 currentY += -args.Reading.AccelerationY * 80;
 if (currentY < MinY) currentY = MinY;
 if (currentY > MaxY) currentY = MaxY;

 await this.Dispatcher.RunAsync(CoreDispatcherPriority.High, () =>
 {

c39.indd 1220 30-01-2014 20:47:51

Summary ❘ 1221

 Canvas.SetLeft(ell1, currentX);
 Canvas.SetTop(ell1, currentY);
 });
}

Now you run the app and move the device to get the marble rolling as shown in Figure 39-7.

FiguRE 39-7

SummARy
This chapter provided more information on writing Windows Store apps. You’ve seen how easy search
functionality can be integrated by using the SearchBox.

Interaction with other apps was covered by using share contracts. The DataTransferManager was
used to offer HTML data for other apps. Implementing a Share Target contract allows receiving data from
other apps.

Another main part of this chapter covered several devices, starting with a camera to take pictures and
record videos, getting the location of the user, and to use a bunch of different sensors to get information
about how the device moves.

The next chapter is the first of three chapters covering how to write web applications and provides you with
a foundation for working with ASP.NET.

c39.indd 1221 30-01-2014 20:47:51

c39.indd 1222 30-01-2014 20:47:51

Core ASP.NET
WHAT’S iN THiS CHAPTER?

 ➤ Introduction to ASP.NET technologies
 ➤ Creating handlers and modules
 ➤ Confi guring applications
 ➤ State management
 ➤ Membership and roles

WRoX.CoM CodE doWNloAdS FoR THiS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

 ➤ Handlers and Modules

 ➤ State Management

 ➤ Authorization Sample

.NET FRAMEWoRKS FoR WEb APPliCATioNS
Part of the .NET Framework, ASP.NET is a technology that enables the dynamic creation of docu-
ments on a web server when they are requested via HTTP. Unlike WPF, which requires the .NET
Framework on the client, an ASP.NET client only needs a browser. Here, .NET code is running on the
server, and thus the Framework is required on the server. The client just needs support for HTML and
JavaScript.

With the .NET Framework and Visual Studio 2013 you have different frameworks for creating Web
applications that are together under the umbrella of One ASP.NET. ASP.NET Web Forms is the older
of these technologies, ASP.NET MVC is the newer one. Every one of these technologies has its use and
advantages and disadvantages.

This chapter takes a detailed look at the foundation of ASP.NET, including how it works, what you
can do with it, and what ASP.NET Web Forms and ASP.NET MVC share in common.

ASP.NET offers different frameworks to create web applications: ASP.NET Web Forms, ASP.NET
Web Pages, and ASP.NET MVC. ASP.NET Web Forms is the oldest of these technologies, available

40

c40.indd 1223 30-01-2014 20:48:18

1224 ❘ CHAPTER 40 Core ASP.NeT

since .NET 1.0. The other technologies are newer and based on newer concepts. The following sections look
at these options for returning HTML to the client.

ASP.NET Web Forms
ASP.NET Web Forms, which have been in existence since 2002 with the inception of .NET, is now available
in version 4.5. The goal of ASP.NET Web Forms is that Windows Forms developers should feel at home.
This framework offers server-side controls that have properties and methods very similar to Windows Forms
controls. The developer using this framework doesn’t need to know HTML and JavaScript because the
controls themselves create HTML and JavaScript to be returned to the client.

It’s very easy to use this framework without any knowledge of HTML, JavaScript, or HTTP requests that
are sent across the network. However, it’s always useful to know something about these technologies other-
wise you run the risk of sending unnecessary data across the network within a view state. The view state is
used by the server-side controls to make event handling on the server side possible. Chapter 41,
“ASP.NET Web Forms,” provides more details on the view state as it is used with ASP.NET server-side con-
trols. Sometimes the generated HTML code is not the code wanted. Server-side controls often provide an
option to define the HTML code with a custom template.

For small websites, ASP.NET Web Forms is extremely easy to use, with results quickly achieved. With big-
ger and more complex websites, it’s important to pay attention to the postbacks that are done from the cli-
ent to the server and the view state that is sent across the network; otherwise, the application could easily
become slow. ASP.NET Web Forms provides numerous options to affect this, making it fast and fluent, but
this cancels out the advantage of using Web Forms and other frameworks that might lead to better results.
Making Web Forms fast and fluid means not using some of the available controls and writing custom code
instead. So the advantage of not writing custom code with Web Forms is gone.

ASP.NET Web Pages
ASP.NET Web Pages is a new technology for those new to Microsoft .NET. This technology offers easier
control of HTML and JavaScript. Indeed, in developing with this technology it’s necessary to write HTML
and JavaScript. .NET code can be added to the same pages as HTML code. Rendering code and functional-
ity is mixed within the same file. This actually has a big disadvantage when writing unit tests, but it provides
HTML and JavaScript developers with an easier way to start using .NET.

ASP.NET Web Pages provides helper classes that enable using specific functionality with just a few lines of
code, such as reading data from the database, as the following code snippet demonstrates:

@{
 var db = Database.OpenConnectionString(
 "server=(local)\sqlexpress;database=Formula1;trusted_connection=true");
}
//...
 @foreach (row in db.Query("SELECT * FROM Racers") {
 //...

NoTE For creating ASP.NET Web Pages you can use the free tool WebMatrix, which
can be downloaded from Microsoft: http://www.microsoft.com/web/webmatrix/.
This tool offers several templates for predefined web pages and numerous features for
writing web applications with ASP.NET Web Pages.

The Database class is part of the WebMatrix assembly. It enables querying the database with just a few
lines of code. With this, database code and UI code are mixed within the same file. While this is not a rec-
ommended practice for maintainable code, it does offer a good way to begin programming simple websites.

c40.indd 1224 30-01-2014 20:48:18

Web Technologies ❘ 1225

After starting with ASP.NET Web Pages, users can easily move to ASP.NET MVC from there. Creating
websites is simple with both ASP.NET MVC and ASP.NET Web Pages, and it’s easy to move code from
within the page to the controller that’s used with ASP.NET MVC.

With ASP.NET Web Pages, code is hard to reuse and hard to test. Because this book is targeted for profes-
sional programmers, this chapter does not discuss ASP.NET Web Pages. Instead, it focuses on ASP.NET
Web Forms and ASP.NET MVC.

ASP.NET MVC
ASP.NET MVC is based on the MVC pattern:
Model-View-Controller. Shown in Figure 40-1,
this standard pattern (a pattern documented in the
Design Patterns book by the GOF) defines a model
that implements data entities and data access, a
view that represents the information shown to the
user, and a controller that makes use of the model
and sends data to the view. The controller receives
a request from the browser and returns a response.
To build the response, the controller can make use
of a model to provide some data, and a view to
define the HTML that is returned.

With ASP.NET MVC, the controller and model
are typically created with C# and .NET code that
is all run server-side. The view is HTML code with JavaScript and just a little C# code to access server-side
information.

The big advantage of this separation with the MVC pattern is that unit tests can easily test the
functionality. The controller just contains methods with parameters and return values that can be covered
easily with unit tests.

NoTE You can read more about unit tests in Chapter 17, “Visual Studio 2013.”
ASP.NET MVC is covered in Chapter 42, “ASP.NET MVC.”

WEb TECHNologiES
Before getting into the foundations of ASP.NET, this section describes core web technologies that are impor-
tant to know when creating web applications: HTML, CSS, JavaScript, and jQuery.

HTMl
HTML is the markup language that is interpreted by web browsers. It defines elements to display various
headings, tables, lists, and input elements such as text and combo boxes.

The W3C recommendations for HTML 4.01 were released in December 1999. HTML5, still in draft at the
time of this writing (2013), is already in use. By using a restricted subset of HTML5, it can be used in older
browsers. It is also increasingly adopted because several new features make it unnecessary to use Flash and
Silverlight, so browser add-ins are not required. Some browsers, such as Internet Explorer in Windows 8 or
Safari on the iPad, don’t support add-ins.

HTML5 adds new semantic elements that can better be used by search engines to analyze the site. A can-
vas element enables the dynamic use of 2D shapes and images, and video and audio elements make the
object element obsolete.

FigURE 40-1

Controller

Response

Request Model

View

c40.indd 1225 30-01-2014 20:48:19

1226 ❘ CHAPTER 40 Core ASP.NeT

HTML5 also defines APIs for drag-and-drop, storage, web sockets, and much more.

With ASP.NET Web Forms, server-side controls generate HTML. With ASP.NET MVC, the programmer
has more responsibility to write HTML code.

CSS
Whereas HTML defines the content of web pages, CSS defines the look. In the earlier days of HTML, for
example, the list item tag defined whether list elements should be displayed with a circle, a disc, or a
square. Nowadays such information is completely removed from HTML and is instead put into a cascading
style sheet (CSS).

With CSS styles, HTML elements can be selected using flexible selectors, and styles can be defined for these
elements. An element can be selected via its ID or its name, and you can define CSS classes that can be ref-
erenced from within the HTML code. With newer versions of CSS, quite complex rules can be defined to
select specific HTML elements.

As of Visual Studio 2013, the Web project templates make use of Twitter Bootstrap. This is a collection
of CSS and HTML conventions, and you can easily adapt different looks and download ready-to-use tem-
plates. Visit www.getbootstrap.com for documentation and basic templates.

JavaScript and jQuery
Not all platforms and browsers can use .NET code, but nearly every browser understands JavaScript. One
common misconception about JavaScript is that it has something to do with Java. In fact, only the name is
similar because it uses some of the same naming conventions, and both Java and JavaScript have the same
roots (the C programming language), which is also true for C#. JavaScript is a functional programming lan-
guage that is not object-oriented, although object-oriented capabilities have been added to it.

JavaScript enables accessing the DOM from the HTML page and thus it is possible to change elements
dynamically on the client. In addition to JavaScript, Internet Explorer enables the use of VBScript for access-
ing the DOM. However, as other browsers don’t support VBScript, JavaScript is the only real option to
write client-side code that should run everywhere.

Supporting web pages with JavaScript across different browsers is still a nightmare, as many implementa-
tions are handled differently, not only between different browser vendors but also from a single vendor
using different browser versions. One solution for this is a JavaScript library, such as jQuery (http://
www.jquery.org). Using just a few lines of code, jQuery makes it easy to do things that required a lot of
JavaScript code, and it assumes the responsibility for dealing with different browser engines, abstracting this
work away from the JavaScript programmer.

ASP.NET Web Projects include the jQuery library, and Visual Studio 2013 also supports IntelliSense and
debugging JavaScript code.

NoTE Styling web applications and writing JavaScript code is not part of this book.
You can read more about HTML and styles in HTML and CSS: Design and Build
Websites by John Ducket (Wiley, 2011); and get up to speed with JavaScript with
Professional JavaScript for Web Developers by Nicholas C. Zakas (Wrox, 2005).

HoSTiNg ANd CoNFigURATioN
A web application needs a host on which it can run. Usually, Internet Information Services (IIS) is the host
used for production sites. On the developer system it’s not necessary to install IIS. Visual Studio 2013
includes IIS Express. Using IIS Express is very similar to the full IIS — only the management features are
missing.

c40.indd 1226 30-01-2014 20:48:19

Hosting and Configuration ❘ 1227

Configure the server for your web project from the Web tab in the project settings, as shown in Figure 40-2.

Visual Studio 2013 also offers external hosts to run the web application. This new hosting model is based
on the OWIN (Open Web Interface for .NET) architecture. With this technology you can easily create your
own custom host. To use the OwinHost that is available from Microsoft, you need to add the NuGet pack-
age OwinHost, and then you can configure the OwinHost server with the Web tab in the Project settings, as
shown in Figure 40-3.

FigURE 40-2

FigURE 40-3

c40.indd 1227 30-01-2014 20:48:20

1228 ❘ CHAPTER 40 Core ASP.NeT

To configure web applications, application configuration files come into play. The first configuration file that
is used by all .NET applications (not only web applications) is the file machine.config, which can be found
in the directory <windir>\Microsoft.NET\Framework\v4.0.30319. For web applications, configuration
is necessary for membership and role providers. These providers can also be used from other .NET applica-
tions, so it is useful to have this configuration within machine.config.

The web.config file in the same directory is used for specific ASP.NET configurations. The configurations
here are exclusively for web applications. You will find default settings for trust levels and fully trusted
assemblies (see Chapter 22, “Security” for more information on permissions for assemblies), compiler con-
figurations that are used for compilation of C# code on first use of a website, referenced assemblies, health
monitoring, event log and profile providers, HTTP handlers and modules, configured protocols for WCF,
site maps, and Web Part configurations.

Other configuration files to define browser-specific capabilities are found in the subdirectory Browsers.
Here you can find the files Default.browser, ie.browser, opera.browser, and iphone.browser,
firefox.browser, among others, that define all the capabilities of the specified browser. These capabilities
can be used—and are used—from server-side controls to influence the HTML and JavaScript code returned,
depending on the capabilities of the caller.

NoTE Browser capabilities are based on a browser identifier string that is sent from
the browser. The browser can lie and send a wrong string for identification, e.g., the
Opera browser to send Internet Explorer as its identification string. Some browsers
allow the user to define the identifier string that should be used. Because of this, many
web applications nowadays use JavaScript to verify whether a capability is truly avail-
able. One JavaScript library to check for browser capabilities is Modernizr. This library
can be installed by using the NuGet packages.

Running the web application with Internet Information Services (IIS), the next configuration file is in the
directory inetpub\wwwroot, if settings from the global Web.config file are overridden. Every web applica-
tion and even subdirectories create other Web.config files that override parent settings. Using the Internet
Information Services (IIS) Manager tool, you can change a configuration using a graphical UI, as shown in
Figure 40-4.

FigURE 40-4

c40.indd 1228 30-01-2014 20:48:20

Handlers and Modules ❘ 1229

HANdlERS ANd ModUlES
This section examines what happens when the client makes a request to the web server. First, the web server
tries to find a handler suitable for the request type. IIS includes a large number of handlers, as shown in
Figure 40-5, such as a handler for .aspx files that instantiates a page class through a PageHandlerFactory,
or a handler for .svc files that is used by WCF.

FigURE 40-5

NoTE WCF is covered in Chapter 43, “Windows Communication Foundation.”

With each handler that is invoked, several modules come into play. There’s a module to deal with security,
to authenticate the user, to handle authorization, to create the session state, and so on. Figure 40-6 shows
the Modules dialog and how they can be configured with IIS.

FigURE 40-6

c40.indd 1229 30-01-2014 20:48:21

1230 ❘ CHAPTER 40 Core ASP.NeT

Creating a Custom Handler
A custom handler can be created by creating a class that implements the interface IHttpHandler. The
following example (code file HandlerSample/SampleHandler.cs) creates a library that references the
System.Web assembly and defines the class SampleHandler, which implements the interface IHttpHandler.
This interface defines a property IsReusable and a method ProcessRequest. IsReusable returns true
if the handler instance can be reused across different requests. The ProcessRequest method receives
an HttpContext with the argument. The HttpContext enables receiving request information from the
caller and sends a response back. The sample code defines an HTML string that is returned. From the
HttpRequest object, the UserAgent property is used to send the result from this property back with the
response:

using System.Web;
namespace Wrox.ProCSharp.ASPNETCore
{
 public class SampleHandler : IHttpHandler
 {
 private string responseString = @"
<!DOCTYPE HTML>
<html>
<head>
 <meta charset=""UTF-8"">
 <title>Sample Handler</title>
</head>
<body>
 <h1>Hello from the custom handler</h1>
 <div>{0}</div>
</body>
</html>";
 public bool IsReusable
 {
 get { return true; }
 }
 public void ProcessRequest(HttpContext context)
 {
 HttpRequest request = context.Request;
 HttpResponse response = context.Response;
 response.ContentType = "text/html";
 response.Write(string.Format(responseString, request.UserAgent));
 }
 }
}

With a web application, the assembly from the handler is referenced, and the handler is added to the han-
dlers section in the Web.config file. A handler is defined by specifying a name that can be used to reference
it programmatically, a verb that specifies the HTTP method (GET, POST, HEAD, etc.), a path that specifies
the link that is used by the user, and the type identifying the class implementing IHttpHandler. The path
also enables specifying file extensions, e.g., *.aspx to invoke the handler with every request to an aspx file:

 <system.webServer>
 <handlers>
 <add name="SampleHandler" verb="*" path="CallSampleHandler"
 type="Wrox.ProCSharp.ASPNETCore.SampleHandler, HandlerSample" />
 </handlers>
 </system.webServer>

Requesting the link /CallSampleHandler, the handler is invoked to return the user agent string from the
client. The user agent information from Internet Explorer 11 is shown in Figure 40-7.

c40.indd 1230 30-01-2014 20:48:21

Handlers and Modules ❘ 1231

ASP.NET Handlers
For ASP.NET Web Forms applications, a handler named PageHandlerFactory is configured for the file
extension aspx. The type responsible for this handler is System.Web.UI.PageHandlerFactory. This type
implements the interface IHttpHandlerFactory, which is a factory for IHttpHandler objects. This inter-
face defines GetHandler and ReleaseHandler methods to return and release Web Form pages, respectively.
The Web Form base class Page implements the interface IHttpHandler and serves as a handler.

For files that shouldn’t be served to the user (e.g., files with the extension .cshtml), the type
HttpForbiddenHandler answers the request with HTTP 403 errors to deny access.

For ASP.NET MVC, an ExtensionlessUrlHandler is configured for the path *. The type dealing with
these requests is System.Web.Handlers.TransferRequestHandler. For using routes as they are used by
ASP.NET MVC, the UrlRoutingModule class takes action to transfer the request MvcRouteHandler. This
handler creates an MvcHandler for a specific route. The MvcHandler searches for a controller to take the
request.

With a web application it’s possible to create generic handlers. A generic handler has the file extension ashx
and is indirectly invoked from the SimpleHandlerFactory type. Generic handlers implement the interface
IHttpHandler in the same way as shown earlier, but it’s not necessary to configure them. Because of the
file extension, the SimpleHandlerFactory is invoked, which searches for the requested file to transfer the
handler request.

Creating a Custom Module
To create a custom module, the class needs to implement the interface IHttpModule. This interface defines
Init and Dispose methods.

The following code snippet (code file WebApp/ModuleSample/SampleModule.cs) shows a module that veri-
fies whether the request is coming from a predefined list of IP addresses, denying access if not. The Init
method is invoked with the start of the web application. The parameter is of type HttpContext. However,
not a lot can be done in this method because many of the HttpContext parameters are not filled yet, as the
method is invoked before the first request is created. It is possible to add event handlers to events such as
BeginRequest, EndRequest, AuthorizeRequest, AuthenticateRequest, PreRequestHandlerExecute,
and so on. The sample code adds event handlers to the BeginRequest and PreRequestHandlerExecute
events. With the BeginRequest method, a file is loaded to a list collection that contains all allowed IP
addresses. The PreRequestExecute method verifies whether the IP address of the caller is in the list of
allowed IP addresses by using the UserHostAddress property of the HttpRequest object. If it isn’t, it
throws an exception of type HttpException with an HTTP error code 403:

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Web;

FigURE 40-7

c40.indd 1231 30-01-2014 20:48:21

1232 ❘ CHAPTER 40 Core ASP.NeT

namespace Wrox.ProCSharp.ASPNETCore
{
 public class SampleModule : IHttpModule
 {
 private const string allowedAddressesFile = "AllowedAddresses.txt";
 private List<string> allowedAddresses;
 public void Dispose()
 {
 }
 public void Init(HttpApplication context)
 {
 context.LogRequest += new EventHandler(OnLogRequest);
 context.BeginRequest += BeginRequest;
 context.PreRequestHandlerExecute += PreRequestHandlerExecute;
 }
 private void BeginRequest(object sender, EventArgs e)
 {
 LoadAddresses((sender as HttpApplication).Context);
 }
 private void LoadAddresses(HttpContext context)
 {
 if (allowedAddresses == null)
 {
 string path = context.Server.MapPath(allowedAddressesFile);
 allowedAddresses = File.ReadAllLines(path).ToList();
 }
 }
 private void PreRequestHandlerExecute(object sender, EventArgs e)
 {
 HttpApplication app = sender as HttpApplication;
 HttpRequest req = app.Context.Request;
 if (!allowedAddresses.Contains(req.UserHostAddress))
 {
 throw new HttpException(403, "IP address denied");
 }
 }
 public void OnLogRequest(Object source, EventArgs e)
 {
 //custom logging logic can go here
 }
 }
}

The file AllowedAddresses.txt contains a list of allowed IP addresses. In case you’re using IPv6, you
should also add an IPv6 address to allow communication between the client and the server, as shown here:

127.0.0.1
10.0.0.22
::1

The module is configured in the section system.webServer in the file Web.config. The configuration is
similar to the handlers; only here it needs to be within modules:

 <system.webServer>
 <modules>
 <add name="SampleModule"
 type="Wrox.ProCSharp.ASPNETCore.SampleModule, ModuleSample" />
 </modules>
 </system.webServer>

Common Modules
With every request, several modules are invoked. The following code snippet is from the InfoHandler
.cs file of the HandlerSample project. It shows the loaded modules. HttpContext.ApplicationInstance

c40.indd 1232 30-01-2014 20:48:21

Global Application Class ❘ 1233

returns the HttpApplication, and this type defines a Modules property, which returns a collection of all
the loaded modules:

 public void ProcessRequest(HttpContext context)
 {
 var sb = new StringBuilder();
 sb.Append("");
 foreach (var module in context.ApplicationInstance.Modules)
 {
 sb.AppendFormat("{0}", module);
 }
 sb.Append("");
 context.Response.ContentType = "text/html";
 context.Response.Write(string.Format(responseString, sb.ToString()));
 }

Figure 40-8 shows the output of the configured handler. Common modules include OutputCache, to cache
responses; Session, which deals with remembering memory state for a client; various authentication and
authorization modules such as WindowsAuthentication, FormsAuthentication, FileAuthorization,
and UrlAuthorization; Profile, for persistent user-based storage; and ServiceModule, for WCF.

FigURE 40-8

In addition to dealing with common functionality globally by using handlers and modules, another way is to
use the global application class, discussed next.

globAl APPliCATioN ClASS
The global application class is available globally for the web application to deal with events independent of
the pages. Here you can add initialization code for the web application, and code that is invoked with every
request. An Application object is created when an application is started for the first time, which is when
the first HTTP request arrives. Also at this time, the Application_Start event is triggered, and a pool of

c40.indd 1233 30-01-2014 20:48:21

1234 ❘ CHAPTER 40 Core ASP.NeT

HttpApplication instances is created. Each incoming request receives one of these instances, which per-
forms request processing. Note that this means HttpApplication objects do not need to cope with concur-
rent access, unlike the global Application object. When all HttpApplication instances finish their work,
the Application_End event fires and the application terminates, destroying the Application object.

The event handlers for the events mentioned earlier (along with handlers for all other events discussed in
this chapter) can be defined in a global.asax file, which you can add to any website project (it is listed as
Global Application Class in the templates that appear when you add a new item to a web application). The
generated file contains blanks for you to fill in, as shown in this example:

 void Application_Start(Object sender, EventArgs e)
 {
 // Code that runs on application startup
 }

When an individual user accesses the web application, a session is started. Similar to the application, this
involves the creation of a user-specific Session object, along with the triggering of a Session_Start event.
Within a session, individual requests trigger Application_BeginRequest and Application_EndRequest
events. These can occur several times during the scope of a session as different resources within the applica-
tion are accessed. Individual sessions can be terminated manually or they will time out if no further requests
are received. Session termination triggers a Session_End event and the destruction of the Session object.

Against the background of this process, you can do several things to streamline your application. If all
instances of your application use a single, resource-heavy object, for example, then you might consider
instantiating it at the application level. This can improve performance and reduce memory usage with mul-
tiple users because, in most requests, no such instantiation will be required.

Another technique you can use is to store session-level information for use by individual users across
requests. This might include user-specific information that is extracted from a data store when the user first
connects (in the Session_Start event handler), and which is made available until the session is terminated
(through a timeout or user request).

WARNiNg Be aware that the HttpContext is not available with Session_End and
Application_End events. Nor can you be sure that Application_End is called. This
event might not be fired when the worker process needs to be fired immediately.

REQUEST ANd RESPoNSE
In the handler example shown earlier, you saw how a request from a client is answered with a response.
Information from the request can be accessed directly by using an HttpRequest object, and defining what
to return is wrapped with an HttpResponse. The following sections examine these objects.

Using the HttpRequest object
The HttpRequest object can be accessed by using the Request property of the class or the HttpContext.
One feature of the HttpRequest is to receive browser information including the capabilities of the browser.
The Browser property of HttpRequest returns an HttpBrowserCapabilities object that provides
access to the capabilities of the browser. With this object you can check the JavaScript version, whether the
browser supports cookies and frames, and so on.

The following code snippet uses the Browser property of the HttpRequest object to get information
about the browser capabilities. You can use strongly typed access to check for various features, e.g.,
CanInitiateVoiceCall to check whether voice calls can be made, or CanSendMail to check whether
e-mail can be sent. The following code snippet directly accesses a dictionary by using the Capabilities
property:

c40.indd 1234 30-01-2014 20:48:22

Request and Response ❘ 1235

 HttpBrowserCapabilities browserCapabilities = Request.Browser;
 Response.Write("");
 foreach (var key in browserCapabilities.Capabilities.Keys)
 {
 Response.Write("");
 Response.Write(string.Format("{0}: {1}", key,
 browserCapabilities.Capabilities[key]));
 Response.Write("");
 }
 Response.Write("");

Figure 40-9 shows the capabilities as returned from IE11.

FigURE 40-9

All the capabilities information is taken from the browser configuration files, as discussed earlier in the con-
figuration section. The Browsers property of the HttpBrowserCapabilities object provides information
about how the capabilities are retrieved. IE11 returns default, mozilla, ie, ie6plus, and ie10plus with
this property, which specifies exactly from what configurations the capabilities are created.

The Headers property of the HttpRequest object returns all HTTP header information. The following
code snippet gets all header information from the browser. The result is shown in Figure 40-10:

 NameValueCollection headers = Request.Headers;
 Response.Write("");
 foreach (var key in headers.Keys)
 {
 foreach (var value in headers.GetValues(key.ToString()))
 {
 Response.Write("");
 Response.Write(string.Format("{0}: {1}", key, value));
 Response.Write("");
 }
 }
 Response.Write("");

c40.indd 1235 30-01-2014 20:48:22

1236 ❘ CHAPTER 40 Core ASP.NeT

In case cookies are returned from the client, the HTTP header includes them. However, to retrieve cookies,
an easier form of access than using the Headers property is to use the Cookies property. This is discussed
later in the section “Cookies.” User information and the data that is sent from the client within the HTML
Form can also be accessed using the request object.

FigURE 40-10

Using the HttpResponse object
The HttpResponse object enables sending data back to the client. The Response property of the Page (and
the HttpContext) returns the current HttpResponse object.

You’ve already seen how the HttpResponse object was used to return data back to the client (with the
Write method). Just as HTTP headers and cookie information can be accessed with the HttpRequest
object, the header and cookies returned to the client are influenced by the HttpResponse object.
HttpResponse defines Headers and Cookies properties as well.

Instead of sending content to the client, the response object can also send a redirect. Redirect sends
an HTTP 302 status code with the information to the client that it should use another URL instead.
RedirectPermanent sends an HTTP 301 status code instructing the caller to use the new URL permanently.
RedirectToRoute uses the route table to find a matching route for building a redirect request to the client.

STATE MANAgEMENT
The HTTP protocol is stateless. Every new page request can be a new connection. However, it’s often neces-
sary to remember user information. State can be remembered on either the client or the server. This section
discusses the different options to do that and how to program them. The samples make use of
ASP.NET Web Form pages and use simple TextBox, Label, and Button controls with equally simple event
handlers to demonstrate the different state features. Properties of the Page class are used to access features
for state management, e.g., the HttpSessionState object can be directly accessed from the Page class
with the Session property. Outside of the Page class, the same can be achieved using the HttpContext.
HttpContext.Current returns the active HttpContext object, and this class has a Session property as
well to return the HttpSessionState. In other words, all the state management features can be achieved
easily both from ASP.NET Web Forms and from ASP.NET MVC.

To keep state on the client, ASP.NET gives different options: view state, cookies, and parameters. Because
of security issues there are some restrictions with this state. Keeping state on the server is done with session
objects, global application state, cache, and user profiles. All these different options are covered in the fol-
lowing subsections.

View State
View state is valid only within a page. As long as the user stays on the same page, view state can be used. View
state creates a hidden HTML field in the page that is sent to the server because it is within the <form> tag.

c40.indd 1236 30-01-2014 20:48:22

State Management ❘ 1237

View state can be accessed by using the ViewState property of the Page. The ViewState property returns
a StateBag object. Passing a key value to the indexer, data can be read and written with the view state. The
following example reads data from the view state with the key state1, and writes the value from the Text
property of TextBox1 to the same view state object:

 protected void Button1_Click(object sender, EventArgs e)
 {
 Label1.Text = string.Format("TextBox1.Text: {0}", TextBox1.Text);
 Label2.Text = string.Format("ViewState[\"state1\"] {0}",
 ViewState["state1"]);
 ViewState["state1"] = TextBox1.Text;
 }

Opening the sample page ViewState1.aspx for the first time, the Button1_Click method was not yet
invoked, and thus both labels show the initial value Label.

If you write one to the text box control and click the button, a postback to the server is done and the
Button1_Click method invoked for the first time. Here the TextBox1.Text property returns the entered
data, and thus the Text property of the first label is filled with this data. The second label only shows the
first part of the message, the ViewState["state1"] returns null. In the last line of the method, view state is
initialized to the value from the text box.

Writing two to the text box and clicking the button for the second time, another postback to the server is
done. ViewState["state1"] now returns the previous entered data one, and TextBox1.Text returns the
new string two.

View state is stored with a hidden field in the page:

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE" value=
 "XSLM3n7Gl3EVtL9CN4jAYfe3T5x/Lr26ORPT4+MEsapcFdvlu0Ooc9uiyOGku2IKOyEgv3WyR0
 0iUNUKM0kBaVN1nMVm/W8c8Ilx2cyeHO+zVbzAfZCYVUPD1gIIlup2ZLW9fpfYZ+d8S+uBM/Vg
 WbCmsYBHW5RGaINY2QsSxep2kMfeoueD4YHND36J29XcRMV9K86Bzw4/OcX9uc7WwA==" />

Using a hidden field has the advantage that there’s no timeout. As long as the user keeps the page open,
the hidden field is there and sent to the server the next time. If the user closes the page, the state is gone.
The state is also gone if the user switches to a different page. Two disadvantages of view state is that the
state must be represented in a string, and all the view state data is always sent across the network. This can
involve transfer of large amounts of data, slowing performance.

NoTE ASP.NET server-side controls make use of view state. The server-side event
model is based on this state model. When sending form content to the server, the form
contains the previous value from the text box in the view state and the current value in
the text box. This way, the event mechanism can determine whether the change event
should be fired, and the corresponding handler methods invoked.

Cookies
Cookies are stored on the client, either just in the memory of the browser (session cookie) or on disk (persis-
tent cookie). They are part of the HTTP protocol and sent within the HTTP header. Every time a user visits
a website, the cookies from this site are sent to the server. If a path is set with the cookie, they are sent only
if the path is the same.

With ASP.NET, cookies can be sent to the client with the HttpResponse class (Response property of the
Page). HttpResponse has a SetCookie method (code file StateSample/CookieWrite.aspx.cs) to pass an
HttpCookie. The constructor of the HttpCookie enables setting the name and value of the cookie. Other
than that, the HttpCookie class defines the properties Domain and Path to associate and send the cookie to
the server only if files within a specific directory are requested. The sample code sends a single value with

c40.indd 1237 30-01-2014 20:48:22

1238 ❘ CHAPTER 40 Core ASP.NeT

the cookie named cookieState. A single cookie can also contain a list of values that can be assigned
with the Values property. If the Expires property is set to a date, the cookie is a persistent cookie;
otherwise, it’s just a temporary cookie that is lost as soon as the browser is closed. The following code cre-
ates a persistent cookie if a check box is selected. Setting the Secure property of the cookie to true sends
the cookie only if the HTTPS protocol is used:

 protected void Button1_Click(object sender, EventArgs e)
 {
 var cookie = new HttpCookie("cookieState", TextBox1.Text);
 if (CheckBox1.Checked)
 {
 cookie.Expires = DateTime.Now.AddYears(1);
 }
 Response.SetCookie(cookie);
 }

The browser sends the cookies to the server. Of course the browser does not send all cookies to all servers,
but only cookies to the server with the same domain name and path (if the path was specified). Retrieving
the cookie is done with the Cookies property of the HttpRequest object. Just pass in the name to the
indexer, and the HttpCookie is retrieved (code file StateSample/CookieRead.aspx.cs):

 protected void Page_Load(object sender, EventArgs e)
 {
 HttpCookie cookie = Request.Cookies["cookieState"];
 if (cookie != null)
 {
 Label1.Text = cookie.Value;
 }
 }

Using the developer tools from Internet Explorer (press the F12 key), cookies that are sent across can be eas-
ily seen when network profiling is done. Figure 40-11 shows the cookies information with the sample page
CookieWrite.aspx.

FigURE 40-11

c40.indd 1238 30-01-2014 20:48:23

State Management ❘ 1239

Cookies have some limitations. The user can turn off persistent cookies with browser settings, so there’s no
guarantee that they work at all. You should always expect that cookies might be deleted on the client. Some
users delete cookies from time to time. The browser itself can also delete cookies. There’s a limit to the size
of the cookie (4,096 bytes), the number of cookies the browser stores by the domain (50 cookies), and a
limited number of cookies the browser stores overall (3,000 cookies). If the limit is reached, the cookies can
be deleted by the browser without user interaction. Browsers must support the specified cookie numbers at
least, but could also use higher limits instead. With the limitations in mind, cookies are usually used just to
set some identifier on the client that is used to map it to the real user data on the server.

Session
You can remember state for a user session by using the HttpSessionState object that is returned from the
Session property of the Page. It’s simple to write an object using a key to the session that is remembered
on the server (code file StateSample/SessionWrite.aspx.cs). Any serializable object can be added to the
session state:

 protected void Button1_Click(object sender, EventArgs e)
 {
 Session["state1"] = TextBox1.Text;
 }

For reading the data, the get accessor of the indexer can be used. You should always check whether the
indexer did return anything:

 protected void Page_Load(object sender, EventArgs e)
 {
 object state1 = Session["state1"];
 if (state1 != null)
 {
 Label1.Text = state1.ToString();
 }
 }

Sessions are started when the user opens a page on the server and a session didn’t exist previously. As the
user browses different files from the same website, the same session is used. The session ends with a timeout
(when the user does not request another page before the timeout occurs), or if the session is prematurely
ended by invoking the Abandon method of the HttpSessionState. To globally handle session start and ses-
sion end events, the Global.asax.cs file defines a Session_Start and a Session_End event handler:

 protected void Session_Start(object sender, EventArgs e)
 {
 }
 protected void Session_End(object sender, EventArgs e)
 {
 }

The user can use multiple windows of IE to use the same session. Selecting File ➪ New Window in IE opens
a new window that uses the same session. Selecting File ➪ New Session creates a new session. This enables
two sessions to the same website from two different windows.

Session Identifiers
With session state on the server, the client needs to be identified somehow to map the session to the client.
By default, this is done using a temporary cookie named ASP.NET_SessionId, as shown in Figure 40-12.

Session state can be configured in various ways. URLs can also be used to identify sessions if cookies are not
used. This can be done by defining the sessionState within the system.web configuration, and setting the
cookieless attribute to UseUri:

 <sessionState cookieless="UseUri" />

c40.indd 1239 30-01-2014 20:48:23

1240 ❘ CHAPTER 40 Core ASP.NeT

Figure 40-13 shows a session identifier with the URL string, as created with the UseUri configuration. Using
the URL with identifiers in the link is not as nice as omitting them, but it has the advantage that sessions
work without cookies.

FigURE 40-12

FigURE 40-13

The cookieless attribute enables settings of UseCookies (which is the default), UseUri,
UseDeviceProfile, and AutoDetect. With UseDeviceProfile the capabilities of the browser are taken
from the configuration files; and if the browser supports cookies, cookies are used. This setting doesn’t
detect whether the user turns cookies off with the browser. Automatic detection is done by the setting
AutoDetect. Automatic detection sends a detection cookie to the client, which uses any detected cookies
returned for the session; otherwise URIs are used.

Session Storage
By default, session information is just stored in memory within the ASP.NET process. This is not practical in
a web farm when the user might reach different servers on different requests, and session state is lost when
the ASP.NET process is recycled. Storing session state in different places than the process is just a matter of
configuration.

Using the StateServer mode, sessions can be stored in a separate process. The ASP.NET State Service is
installed on every system running ASP.NET. It just needs to be started with the local services. With the
session configuration, the mode needs to be set to StateServer, and the stateConnectionString to the
server name and port of the state service. By default, that’s port 42424:

 <sessionState mode="StateServer"
 stateConnectionString="tcpip=127.0.0.1:42424"
 cookieless="UseCookies"
 timeout="20" />

Using the state server is greatly helpful with the recycling of ASP.NET processes, but it doesn’t help in a
web farm scenario. If the web farm is used for reliability issues to serve the clients with answers even if one
system from the web farm breaks, the reliability from the complete web farm does not help in case the state

c40.indd 1240 30-01-2014 20:48:23

State Management ❘ 1241

service is not accessible. Here, it helps if the session state is stored in a SQL Server database cluster. The
mode needs to be set to SQLServer:

 <sessionState mode="SQLServer"
 sqlConnectionString="Integrated Security=SSPI;database=StateServer;" />

The database for the state service can be configured with the aspnet_regsql tool.

Session state can also be stored in custom state providers. Custom session state providers need to derive from
the base class SessionStateProviderBase and implement the abstract methods accordingly. The configura-
tion of a custom state provider is shown here to use the DistributedCacheSessionStateStoreProvider,
which makes use of distributed memory with Windows Azure:

 <sessionState mode="Custom" customProvider="DistributedSessionProvider">
 <providers>
 <add name="DistributedSessionProvider"
 type=
 "Microsoft.Web.DistributedCache.DistributedCacheSessionStateStoreProvider,
 Microsoft.Web.DistributedCache" cacheName="default"
 applicationName="AzureSampleApp"
 useBlobMode="true" />
 </providers>
 </sessionState>

NoTE With all the different providers, programming session state is always the same.
Just be aware that when using in-process session state, any objects can be passed to the
session. With other providers, the types put into the session must be serializable. It’s
best to ensure that all the objects put into the session are serializable, even if you’re just
using in-process session state.

Application
Session state is a per-user, server-side state. Application state is a global server-side state; it is shared among
all users.

In the following code snippet (code file StateSample/Global.asax.cs), the Application property returns
an HttpApplicationState object. This can be used very similarly to the HttpSessionState object.
However, as application state is shared among all users, it needs to be locked before changing values. When
Using Application.Lock and Application.UnLock, care must be taken to perform the unlock. To be on
the safe side, a try/finally is used. The amount of time between locking and unlocking should be very
short—you should only use memory access within this timespan—as long locking periods can degrade
performance because only one thread can hold the lock; all others have to wait until it is released, with the
Lock method:

 {
 Application["UserCount"] = 0;
 }
 protected void Session_Start(object sender, EventArgs e)
 {
 try
 {
 Application.Lock();
 int userCount = (int)Application["UserCount"];
 Application["UserCount"] = ++userCount;
 }
 finally
 {
 Application.UnLock();
 }

c40.indd 1241 30-01-2014 20:48:24

1242 ❘ CHAPTER 40 Core ASP.NeT

 }

With the code file StateSample/ApplicationStateRead.aspx.cs the application state is read:

 protected void Page_Load(object sender, EventArgs e)
 {
 int userCount = (int)Application["UserCount"];
 Label1.Text = userCount.ToString();
 }

Cache
Cache is very similar to application state in that it is shared among multiple users, but more control can
be exercised over the lifetime of the cache object. The following code snippet (code file StateSample/
CacheWrite.aspx.cs) shows how an object can be added to the cache. Cache is a property of the Page
class, which returns a Cache object from the System.Web.Caching namespace:

 protected void Button1_Click(object sender, EventArgs e)
 {
 Cache.Add(key: "cache1", value: TextBox1.Text, dependencies: null,
 absoluteExpiration: Cache.NoAbsoluteExpiration,
 slidingExpiration: TimeSpan.FromMinutes(30),
 priority: CacheItemPriority.Normal, onRemoveCallback: null);
 }

The Add method of the Cache class enables flexible control of the cache object added. The first and second
parameters define the key and the value of the object.

Cache Dependency
The third parameter is of type CacheDependency. The dependency can define when the cache object is
invalidated. Besides passing a CacheDependency, any type that derives from the class CacheDependency
can be added, such as SqlCacheDependency and AggregateCacheDependency. With such a dependency,
it is possible to load the content of a file to the cache and create a dependency on the file—when the file
changes, the cache object is invalidated.

Time
The fourth and fifth parameter define when the cache should be invalidated. With the absoluteExpiration
parameter, a DateTime can be specified that indicates an absolute time when the cache should be invali-
dated. The slidingExpiration parameter allows a TimeSpan. Only one of these two values can be set.
If the slidingExpiration is used, the absolute time must be set to Cache.NoAbsoluteExpiration.
Conversely, if the absoluteExpiration is used, the TimeSpan must be set to Cache.
NoSlidingExpiration.

Priority
Another parameter enables you to specify the priority of an object. When there’s not enough memory avail-
able for the web application, the ASP.NET runtime removes cache objects. Cache objects with a lower prior-
ity are removed before objects with a higher priority. The priority is defined with an enumeration of type
CacheItemPriority. The values are Low, BelowNormal, Normal, AboveNormal, High, and NotRemovable.

Callback Method
With the last parameter, a callback method of type CacheItemRemovedCallback can be defined. This
method is invoked when the cache item is removed. The reason for removing the cache item is found in the
CachItemRemovedReason enumeration. DependencyChanged, Expired, Removed, and Underused are the
possible values. With the callback handler you can decide—for example, if the cache consists of file content
loaded—to reload the cache if the dependency changed. Of course, the cache item shouldn’t be re-created
immediately if the reason for removing the cache item is low memory.

c40.indd 1242 30-01-2014 20:48:24

State Management ❘ 1243

Profiles
If you’ve ever done any shopping online, then you are familiar with websites whose shopping-cart func-
tionality fails to hold the selected items during the session. This creates a very bad user experience. When
users take a break during their online shopping and a timeout occurs, they should not lose the items already
selected. Otherwise, users must waste time retracing their steps and filling their baskets again. Companies
who design their site this way can expect to lose sales. Instead, shopping cart items should be put into a
database. ASP.NET profiles make this an easy task.

Profile Provider
The Profile API is based on a provider model. Providers are used with many features of ASP.NET—
for example, you’ve already seen providers for session state. A provider derives from the base class
ProviderBase in the namespace System.Configuration.Provider. Profile providers derive from the
base class ProfileProvider, which itself derives from SettingsProvider. The one profile provider that
is included with the .NET Framework is SqlProfileProvider. This provider stores profile information in
the SQL Server database. The default provider is configured with machine.config and uses the SQL Server
database defined with the connection string LocalSqlServer as shown:

 <profile>
 <providers>
 <add name="AspNetSqlProfileProvider"
 connectionStringName="LocalSqlServer" applicationName="/"
 type="System.Web.Profile.SqlProfileProvider, System.Web,
 Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 </providers>
 </profile>

Creating the Database
The database can be created on the fly. The first time the Profile API is used (or the Membership API
that is discussed later), a new database is created. This is because the machine.config file contains the
LocalSqlServer connection string that references an aspnetdb.mdf database file in the DataDirectory
(App_data). The connection string named LocalSqlServer is by default used by the profile provider:

 <connectionStrings>
 <add name="LocalSqlServer" connectionString="data source=.\SQLEXPRESS;
 Integrated Security=SSPI;AttachDBFilename=|DataDirectory|aspnetdb.mdf;
 User Instance=true" providerName="System.Data.SqlClient" />
 </connectionStrings>

With Visual Studio 2013, the connection string could be changed to use LocalDb instead, as shown in the
Web.config file:

 <connectionStrings>
 <clear/>
 <add name="LocalSqlServer" connectionString="data source=(localdb)\v11.0;
 Integrated Security=SSPI;AttachDBFilename=|DataDirectory|aspnetdb.mdf;"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

Instead of automatically creating a database on the first request, with the sample application a database is
created in advance. You can create an ASP.NET SQL Server database that includes all the tables needed for
the different ASP.NET services using the aspnet_regsql tool (located in the directory of the .NET Runtime).
Starting aspnet_regsql without options starts the ASP.NET SQL Server Setup Wizard, shown in Figure 40-14.

When configuring the database, you can define the database name or use the default (aspnetdb) (see
Figure 40-15).

Running the wizard creates a database with all tables needed for profiles, membership, roles, personaliza-
tion, and so on. If you need only a subset of the ASP.NET features and want a database with fewer tables,
you can use the command-line version of the aspnet_reqsql tool and create tables with only selected features.

c40.indd 1243 30-01-2014 20:48:24

1244 ❘ CHAPTER 40 Core ASP.NeT

FigURE 40-14

FigURE 40-15

The Web.config file now references the newly created database:

 <connectionStrings>
 <clear/>
 <add name="LocalSqlServer" connectionString=
 "data source=(local);Database=aspnetdb;Integrated Security=SSPI;"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

Profile Settings
With the default profile provider, profile information can be defined with Web.config within the system
.web element. You can save profile information for both users logged on to the system and anonymous

c40.indd 1244 30-01-2014 20:48:24

State Management ❘ 1245

users. If the user is not logged in, with anonymous identification enabled, an anonymous user ID is created.
To map the user to the anonymous user in subsequent sessions, a persistent cookie is used. This way, the
settings are always mapped to the same anonymous user. All the properties that should be stored for anony-
mous users must be marked with the allowAnonymous attribute. Profile properties are defined within the
profile/properties. To add properties, use the add element. Profile properties are described by a name
and a type. The type is used to hold the value for the property. How the type is serialized in the database
is defined by the serializeAs attribute. Serialization can be handled as a string, using the binary or XML
serializer, or with a custom class that handles serialization. To group profile state information, properties
can be put into group elements:

 <anonymousIdentification enabled="true" />
 <profile>
 <properties>
 <add allowAnonymous="true" name="Color" type="System.String"
 serializeAs="Xml" />
 <add allowAnonymous="true" name="ShoppingCart"
 type="StateSample.ShoppingCart" serializeAs="Binary" />
 <group name="UserInfo">
 <add name="Name" type="String" serializeAs="Binary" />
 </group>
 </properties>
 </profile>

Using Custom Types
The sample profile makes use of the ShoppingCart type, which is defined to be binary serialized. This type
(code file StateSample/ShoppingCart.cs) contains a list of items that are serialized:

 [Serializable]
 public class ShoppingCart
 {
 private List<Item> items = new List<Item>();
 public IList<Item> Items
 {
 get
 {
 return items;
 }
 }
 public decimal TotalCost
 {
 get
 {
 return items.Sum(item => item.Cost);
 }
 }
 }
 [Serializable]
 public class Item
 {
 public string Description { get; set; }
 public decimal Cost { get; set; }
 }

Writing Profile Data
With this setup it’s easy to write user profile data. The HttpContext defines a Profile property that
returns ProfileBase. With ProfileBase, the indexer can be used to write and read profile properties. The
configuration done earlier defines a profile property named Color; it is used here with the indexer:

 this.Context.Profile["Color"] = "Blue";
 this.Context.Profile.Save();

c40.indd 1245 30-01-2014 20:48:24

1246 ❘ CHAPTER 40 Core ASP.NeT

In case you’re using Visual Studio websites instead of web projects, the Page class defines a Profile prop-
erty that returns a dynamically created ProfileCommon class. ProfileCommon derives from the base class
ProfileBase and offers the properties defined with the configuration type as properties for strongly typed
access. With web projects, the Profile property of the Page is not available. The ProfileCommon class
is created in a similar way. Using the dynamic keyword, programming code looks better than using the
indexer (code file StateSample/ProfileWrite.aspx.cs). The Save method writes the property names and
values to the database:

 dynamic p = this.Context.Profile;
 p.Color = "Red";
 p.UserInfo.Name = "Christian";
 var cart = new ShoppingCart();
 cart.Items.Add(new Item { Description = "Sample1", Cost = 20.30M });
 cart.Items.Add(new Item { Description = "Sample2", Cost = 14.30M });
 p.ShoppingCart = cart;
 p.Save();

NoTE The dynamic keyword is explained in Chapter 12, “Dynamic Language
Extensions.”

After saving the profile, you can see a new row in the aspnet_Profile table, with the property names and val-
ues shown in Figure 40-16. If the user were an anonymous user, a new user with a unique user ID would be
created as well.

FigURE 40-16

Reading Profile Data
Reading profile data can be done in a similar way to access the Profile property from the HttpContext.
The following example code accesses the Color profile property as well as the profile property that
is defined within the group UserInfo, and the custom type ShoppingCart (code file StateSample/
ProfileRead.aspx.cs):

 dynamic profile = Context.Profile;
 Response.Write(string.Format("Color: {0}", profile.Color));
 Response.Write("
");
 Response.Write(string.Format("Name: {0}", profile.UserInfo.Name));
 Response.Write("
");
 ShoppingCart shoppingCart = profile.ShoppingCart;
 foreach (var item in shoppingCart.Items)
 {
 Response.Write(string.Format("{0} {1}", item.Description, item.Cost));
 Response.Write("
");
 }
 Response.Write(shoppingCart.TotalCost);
 Response.Write("
");

c40.indd 1246 30-01-2014 20:48:25

ASP.NET Identity System ❘ 1247

Profile Manager
When profile state is used with anonymous users, over time “debris” accumulates. If an anonymous user
deletes his cookies, next time another user with a new anonymous user ID is created. The old one cannot be
mapped to the original user anymore.

There’s an API available that can manage all the profiles. The ProfileManager from the System.Web
.Profile namespace offers simple methods to retrieve all the profiles (GetAllProfiles), including the
inactive profiles (GetAllInactiveProfiles). The following code snippet returns all profiles from anony-
mous users that have been inactive over the last year:

 var inactiveProfiles = ProfileManager.GetAllInactiveProfiles(
 ProfileAuthenticationOption.Anonymous, DateTime.Now.AddYears(-1));

Inactive profiles can also be directly deleted with the method DeleteInactiveProfiles.

ASP.NET idENTiTy SySTEM
Authentication and authorization are important aspects of web applications. If a website or parts of it
should not be public, users must be authorized. For authentication of users, different options are available
when creating an ASP.NET Web Application (see Figure 40-17): no authentication, individual user accounts,
organizational accounts, and Windows authentication.

FigURE 40-17

Select Windows Authentication to define the authentication mode to Windows and deny access to users that
are not authorized:

 <authentication mode="Windows" />
 <authorization>
 <deny users="?" />
 </authorization>

This authentication mode is done by IIS and verifies if the user is a Windows user. Using the authorization
section, you can add a list of allowed or denied users. The deny entry for ? users specifies that anonymous
users are not allowed, and all users need to be authenticated.

The Organizational Accounts option makes use of Active Directory, either on-premise or hosted from
Windows Azure or Office 365.

ASP.NET now offers a new identity system: the ASP.NET Identity System. You can use ASP.NET Identity
with Web Forms, ASP.NET MVC, and the ASP.NET Web API. This system is based on the OWIN

c40.indd 1247 30-01-2014 20:48:25

1248 ❘ CHAPTER 40 Core ASP.NeT

architecture that allows easy custom hosting. With the OWIN architecture, a pipeline is built, and authenti-
cation is one component in the pipeline.

You can select the ASP.NET Identity System with the option Individual User Accounts. Using this setting,
the web application can either store users in a custom database, or use users from OAuth providers such as
Facebook, Twitter, or a Microsoft account. Let’s get into more details with this variant.

The sample application AuthenticationSample is a Web Forms project created with Individual User
Accounts. This template adds the NuGet package Microsoft ASP.NET Identity Core. Thus, this NuGet
package is also needed in case you start with an empty web application.

Foundation
The most important interfaces and classes used with the ASP.NET Identity System are listed in the following
table.

TyPE dESCRiPTioN

IUser This interface defines a unique key for the user along with a username.

IdentityUser This type implements the interface IUser and defines the members of
the interface collections for logins, claims, and roles.

IdentityDbContext This type is a data context to map user and role info to the database.

UserManager<TUser> This is a generic type and helps manage users by creating, updating,
deleting, and finding users, as well as adding and changing passwords
and claims.

IAuthenticationManager This interface allows sign in and sign out of the user. It’s implemented by
authentication middleware in the OWIN pipeline and can be accessed
from the HTTP context.

Storing and Retrieving User information
For user management, user information needs to be added to a store. The type IdentityUser (namespace
Microsoft.AspNet.Identity.EntityFramework) defines a name and lists roles, logins, and claims.
With the Visual Studio template, an ApplicationUser type is created that derives from the base class
IdentityUser. The ApplicationUser class is by default empty, but you can add information you need
from the user (code file AuthenticationSample/Models/IdentityModels.cs):

 public class ApplicationUser : IdentityUser
 {
 }

NoTE Profile Providers, which are discussed earlier in this chapter in the “Profiles”
section, don’t support the ASP.NET Identity System; they are based on the Membership
Providers. With the ASP.NET Identity System you can add extra information about
users to the ApplicationUser type.

The connection to the database is done via the IdentityDbContext<TUser> type. This is a generic class
that derives from the base class DbContext and thus makes use of the Entity Framework Code First pro-
gramming model. The IdentityDbContext<TUser> type defines properties Roles and Users of type
IDbSet<TEntity>. The IDbSet<T> defines the mapping to the database tables. For convenience, the
type ApplicationDbContext is created to define the ApplicationUser type as the generic type for the
IdentityDbContext class:

c40.indd 1248 30-01-2014 20:48:25

ASP.NET Identity System ❘ 1249

 public class ApplicationDbContext : IdentityDbContext<ApplicationUser>
 {
 public ApplicationDbContext()
 : base("DefaultConnection")
 {
 }
 }

NoTE The Entity Framework Code First programming model is discussed in Chapter
33, “ADO.NET Entity Framework.”

In addition to the entity type and the data context type, helper classes are created. The UserManager class
derives from the generic UserManager<TUser> from the namespace Microsoft.AspNet.Identity. This
helper class offers virtual methods to create the user (and thus write it to the database via the data context);
update, delete, and find users; and deal with the roles of the user:

 public class UserManager : UserManager<ApplicationUser>
 {
 public UserManager()
 : base(new UserStore<ApplicationUser>(new ApplicationDbContext()))
 {
 }
 }

Security Startup
The authentication providers are configured on startup in the ConfigureAuth method (code file
AuthenticationSample/App_Start/Startup.Auth.cs). UseCookieAuthentication is an extension
method for the IAppBuilder interface. This method is configured to redirect the user to /Account/Login
in case the user has not gotten the authentication cookie yet:

 public partial class Startup
 {
 public void ConfigureAuth(IAppBuilder app)
 {
 app.UseCookieAuthentication(new CookieAuthenticationOptions
 {
 AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie,
 LoginPath = new PathString("/Account/Login")
 });
 app.UseExternalSignInCookie(DefaultAuthenticationTypes.
 ExternalCookie);

 }
 }

The template-generated method also contains commented code to authenticate the user with a Microsoft,
Twitter, Facebook, or Google account. You just need to uncomment the corresponding code lines and supply
the client ID and secret:

 //app.UseMicrosoftAccountAuthentication(
 // clientId: "",
 // clientSecret: "");

 //app.UseTwitterAuthentication(
 // consumerKey: "",
 // consumerSecret: "");

c40.indd 1249 30-01-2014 20:48:25

1250 ❘ CHAPTER 40 Core ASP.NeT

User Registration and Authentication
The user is registered in the Register.aspx.cs file with the Create method of the UserManager class.
After registration, the user signs in, calling the SignIn method of the IdentityHelper:

 var manager = new UserManager();
 var user = new ApplicationUser() { UserName = UserName.Text };
 IdentityResult result = manager.Create(user, Password.Text);
 if (result.Succeeded)
 {
 IdentityHelper.SignIn(manager, user, isPersistent: false);
 IdentityHelper.RedirectToReturnUrl(
 Request.QueryString["ReturnUrl"], Response);
 }
 else
 {
 ErrorMessage.Text = result.Errors.FirstOrDefault();
 }

The IdentityHelper is a simple helper class that makes it easier to work with the IAuthenticationManager
from the authentication middleware in the pipeline. The SignIn method of the IdentityHelper invokes the
SignIn method of the IAuthenticationManager after retrieving the authentication manager via the HTTP
context:

 public static void SignIn(UserManager manager, ApplicationUser user,
 bool isPersistent)
 {
 IAuthenticationManager authenticationManager =
 HttpContext.Current.GetOwinContext().Authentication;
 authenticationManager.SignOut(
 DefaultAuthenticationTypes.ExternalCookie);
 var identity = manager.CreateIdentity(user,
 DefaultAuthenticationTypes.ApplicationCookie);
 authenticationManager.SignIn(new AuthenticationProperties()
 { IsPersistent = isPersistent }, identity);
 }

If the user is already registered, and the user makes the login to the local database (and not one of the exter-
nal providers), the login happens in the LogIn event handler of the Login.aspx.cs file. User information
is retrieved from the database with the help of UserManager, passing username and password, and the next
sign-in is done with IdentityHelper:

 protected void LogIn(object sender, EventArgs e)
 {
 if (IsValid)
 {
 // Validate the user password
 var manager = new UserManager();
 ApplicationUser user = manager.Find(UserName.Text, Password.Text);
 if (user != null)
 {
 IdentityHelper.SignIn(manager, user, RememberMe.Checked);
 IdentityHelper.RedirectToReturnUrl(
 Request.QueryString["ReturnUrl"], Response);
 }
 else
 {
 FailureText.Text = "Invalid username or password.";
 ErrorMessage.Visible = true;
 }
 }
 }

c40.indd 1250 30-01-2014 20:48:25

Summary ❘ 1251

You can read more information about the ASP.NET Identity System and the authorization part, and the dif-
ferences of Web Forms and ASP.NET MVC, in the Chapters 41 and 42.

SUMMARy
This chapter provided you with core information about ASP.NET, including the parts of ASP.NET that are
shared with ASP.NET Web Forms and ASP.NET MVC. You looked behind the scenes at handlers and mod-
ules, which can also be used to create specific functionality that is invoked with every request. This chapter
also covered requests and responses with web applications, state management, as well as some providers
such as membership and roles.

You’ve learned how to create handlers and modules as well as the foundation of both ASP.NET Web Forms
and ASP.NET MVC. You can create custom handlers and modules even if you’re creating web applications
with non .NET technologies.

You’ve seen the different variants of state management, dealing with state on the client and state on the
server. Client-side state view state is bound to single pages; cookies can be temporary as long as the browser
session is alive, or persistent. With server-side state, you’ve seen different options with session, application,
cache, and profiles. Session state is based on user sessions that can be configured to be stored in-process, in
a state server, or in the database. Application state is shared between all users, and you need to pay attention
to locking issues. Cache is stored just in memory mainly for reference data not to consult the database with
every request. Profiles you’ve seen act as a persistent store to keep user data.

The next chapter is on ASP.NET Web Forms, the ASP.NET technology in existence since .NET 1.0.

c40.indd 1251 30-01-2014 20:48:25

c40.indd 1252 30-01-2014 20:48:25

41
ASP.NET Web Forms

WHAT’S IN THIS CHAPTER?

 ➤ Server-side controls
 ➤ Master pages
 ➤ Site navigation
 ➤ Validating user input
 ➤ Data access
 ➤ Security
 ➤ ASP.NET AJAX

WRoX.CoM CodE doWNloAdS FoR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/go/procsharp
on the Download Code tab. The code for this chapter is divided into the following major examples:

 ➤ ProCSharpSample

 ➤ ProCSharpAjaxSample

ovERvIEW
In this chapter you look at some of the techniques that ASP.NET Web Forms supplies to enhance your
web applications. These techniques make it easier for you to create websites and applications, make it
possible for you to add advanced functionality, and improve the user experience.

You start by looking into the page model from ASP.NET Web Forms, checking the page events and
postbacks, and then take a detailed look at the <% syntax variants for encoding, data binding, and
expressions.

The chapter also covers master pages, a technique that enables you to provide templates for your web-
sites. Using master pages you can implement complex layouts on web pages throughout a website with
a great deal of code reuse. You also see how you can use the navigation web server controls in combi-
nation with a master page to provide consistent navigation across a website.

c41.indd 1253 30-01-2014 20:49:05

1254 ❘ CHAPTER 41 ASP.NET WEb FormS

Site navigation can be made user-specific, such that only certain users (those who are registered with the site,
or site administrators, for example) can access certain sections. You also look at site security and how to log
in to web applications—something that is made extremely easy via the login web server controls.

Finally, you look at ASP.NET AJAX, a powerful set of technologies that provides a way to enhance the user
experience. It enables websites and applications to become more responsive by updating sections of a page
independently, and streamlines the process of adding client-side functionality.

ASPX PAgE ModEl
When the client makes an HTTP request to a Web Forms application, a page object is instantiated and
creates the response. To see the page and its model in action, create an ASP.NET Web Application named
ProCSharpSample, select the Empty template and add Web Forms to the folders and core references selec-
tion. After creating this project add a Web Form named ShowMeetingRooms.aspx.

The first line of the ASPX page contains a Page directive, as shown in the following code snippet (code
file ProCSharpSample/PageModel/ShowMeetingRooms.aspx). This directive defines attributes for the
ASP.NET page parser and compiler, as well as for Visual Studio. The Language attribute is used by
the compiler during runtime to compile the statements within the ASPX page. The ASPX statements are
surrounded with <% %>. The AutoEventWireup attribute is set to true, which means that the event
handlers for the page events are automatically wired. It’s only necessary to define the methods with the
correct name and signature to activate the event handlers for the page. The CodeBehind attribute is not
used during runtime; this informs Visual Studio that the file ShowMeetingRooms.aspx.cs belongs to the
ShowMeetingRooms.aspx page and thus they will be displayed in relation to each other within Solution
Explorer. What’s important for the ASPX engine is the Inherits attribute. From the ASPX page, a class is
created that derives from the base class as defined by the Inherits attribute:

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="ShowMeetingRooms.aspx.cs"
 Inherits="ProCSharpSample.PageModel.ShowMeetingRooms" %>

The file ShowMeetingRooms.aspx.cs contains the code-behind. By default, just the handler method
Page_Load for the Load event of the Page is implemented. Mapping to this handler is done because of the
AutoEventWireup attribute:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ProCSharpSample.PageModel
{
 public partial class ShowMeetingRooms : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 }
 }
}

Adding Controls
Controls are added to the page by dropping them from the toolbox to either the designer or the source code
view in the editor. The first page of the application will show a drop-down for selecting a meeting room. For
this, the page contains a DropDownList, a Label, and a Button control. In the designer view, clicking the
smart tag of the DropDownList control opens the DropDownList tasks, which includes the menu entry Edit
Items. Selecting this opens the ListItem Collection Editor shown in Figure 41-1.

c41.indd 1254 30-01-2014 20:49:06

ASPX Page Model ❘ 1255

This editor can be used to add some meeting room names to the DropDownList control. The resulting code
from the page ShowMeetingRooms.aspx is as follows:

<body>
 <form id="form1" runat="server">
 <div>
 <asp:DropDownList ID="DropDownListMeetingRooms" runat="server" Width="165px">
 <asp:ListItem>Sacher</asp:ListItem>
 <asp:ListItem>Hawelka</asp:ListItem>
 <asp:ListItem>Hummel</asp:ListItem>
 <asp:ListItem>Prückel</asp:ListItem>
 <asp:ListItem>Landtmann</asp:ListItem>
 <asp:ListItem>Sperl</asp:ListItem>
 <asp:ListItem>Alt Wien</asp:ListItem>
 <asp:ListItem>Eiles</asp:ListItem>
 </asp:DropDownList>

 <asp:Label ID="LabelSelectedRoom" runat="server" Text=""></asp:Label>

 <asp:Button ID="Button1" runat="server" Text="Submit" />
 </div>
 </form>
</body>

DropDownList, Label, and Button are server-side controls, as indicated by the runat="server"
attribute. These controls are programmable with server-side C# code and return HTML and JavaScript code
to the client. The code-behind file is a partial class. The designer creates another partial class file for the

FIgURE 41-1

c41.indd 1255 30-01-2014 20:49:06

1256 ❘ CHAPTER 41 ASP.NET WEb FormS

same type that contains only member variables of the server-side controls named within the ASPX file. This
way, it’s possible to access all the controls from the code-behind file, as the code-behind file is the same class.

Using Events
Now you’ll add an event handler to the controls. With ASPX, event handlers can be added directly from
within the ASPX code editor or from the Properties window. For the DropDownList control in the sample
page, the OnRoomSelection method is assigned to the event OnSelectedIndexChanged. If the user changes
the selection, server-side code should take over:

 protected void OnRoomSelection(object sender, EventArgs e)
 {
 this.LabelSelectedRoom.Text = DropDownListMeetingRooms.SelectedItem.Value;
 }

Working with Postbacks
You can try that out by starting the page from Visual Studio. The drop-down list contains all the meeting
rooms, and the generated HTML code is shown in the following code snippet. This code does not contain
any server-side code. The attribute runat="server" is also stripped out:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>
</title></head>
<body>
 <form method="post" action="ShowMeetingRooms.aspx" id="form1">
 <div class="aspNetHidden">
 <input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
 value="ulPYwDLRsU6bWhjWCNAUuO+9ETPHK9DCpZyJxKTHikrAh/ghb3nUb81ZP06x2
 sDPdBHpJ4ObOMGKB8reZ2yNJqg42ep+xM6cgmks2irc7+ZrY5bnMtGj22CfjGOW5otD" />
 </div>
 <div class="aspNetHidden">
 <input type="hidden" name="__EVENTVALIDATION" id="__EVENTVALIDATION"
 value="AIZNlXgDjsO7fINvnNT9WSFZZfkci1pv28cSbIIvwKCAGjBtX9ZDzL+NL4+S
 LcTF2t7XXvjezChHhEHzRI08UHIfPpQ1AfRlc81+s3If0l9+FPdZg4d8ByuVtUu9nIL
 0mZEaiwn3Ab8KrkuYaHm6KaXqksh4/BJrp4SV5BjetsYgC/F5+JFdFi70Uy/yORSlzr
 8XJGOmHEmjxXf3XILwf1MEkBifAF9KAc/05a9h7Ih5HSFh6/8nODcbHCsywcvpWnoW1
 kCCe3DeAD74aIoert/JOR+9cjwqBcvS+uRE7Vs=" />
 </div>
 <div>
 <select name="DropDownListMeetingRooms" id="DropDownListMeetingRooms"
 style="width:165px;">
 <option selected="selected" value="Sacher">Sacher</option>
 <option value="Hawelka">Hawelka</option>
 <option value="Hummel">Hummel</option>
 <option value="Prückel">Prückel</option>
 <option value="Landtmann">Landtmann</option>
 <option value="Sperl">Sperl</option>
 <option value="Alt Wien">Alt Wien</option>
 <option value="Eiles">Eiles</option>
 </select>

 <input type="submit" name="Button1" value="Submit" id="Button1" />
 </div>
 </form>
</body>
</html>

c41.indd 1256 30-01-2014 20:49:06

ASPX Page Model ❘ 1257

There’s an issue, however: The event handler is not invoked when the selection is changed. Only when the
Submit button is clicked is the event handler invoked on the server side. The ASPX page model is based on
postbacks. As the C# compiled code is running on the server, the client needs to send a request to the server
to call the event handler. This happens upon clicking the Submit button, sending all the state information
from the controls within the form element with the HTTP POST request to the server. This also includes
the view state information. ASPX controls make use of view state to manage event handling functions.
When sending the page to the client, the view state contains information about the actual control state, e.g.,
what is selected with the DropDownList control. This state information remains unchanged when the user
changes a value in the DropDownList control. When posting the data to the server, the view state still con-
tains the original information, and the state that is passed with the DropDownList within the view contains
the current information. On the server side, now a change can be detected between the original state infor-
mation and the current state, which fires the event OnSelectedIndexChanged and therefore invokes the
event handler.

Using Auto-postbacks
Sometimes it’s necessary to do a postback to the server immediately following a change to the
DropDownList control. Because of the selection it might be necessary to change some other parts of the
page. You can do this by setting the AutoPostBack="true" property with the DropDownList control. With
HTML, this cannot be achieved without JavaScript code, but the DropDownList control automatically cre-
ates the JavaScript code that does a form postback on the onchange event of the select element.

doing Postbacks to other Pages
Until now you’ve seen postbacks that always request the same page. In case a different page needs to be
returned to the client after the postback is done, there are several ways to do this. Invoking the Response
.Redirect method, the client receives an HTTP redirect request to request another page. This method
requires an extra round-trip to the server. Invoking the Server.Transfer method, another page is invoked
on the server side. This doesn’t require another round-trip, but the URL that is seen by the client is just the
original page and not the new page. ASPX supports another way: cross-page postbacks.

Now a second page named MeetingRoomInformation.aspx is created. This page includes a Label control
that should display the selected meeting room.

In the page ShowMeetingRooms.aspx, the Submit button is modified to set the PostBackUrl property to
the new page. With this information, the HTML code generated contains a JavaScript onclick event to the
Button control, which changes the postback of the form to the new page:

 <asp:Button ID="Button1" runat="server" Text="Submit"
 PostBackUrl="~/MeetingRoomInformation.aspx" />

NoTE The tilde that is used with the URL in the previous code snippet maps to the
virtual application root directory.

The Page_Load event handler of the MeetingRoomInformation.aspx page can access page values from
the previous page. The PreviousPage property contains the information from the previous page in case of
a cross-page postback. To handle that behavior, the previous page has the IsCrossPagePostback property
set to true. With the previous page, all the controls and their state that are set, and the values passed from
the client can be accessed. The controls can be found with the FindControl method of the page, passing the
name. In the following code snippet, the selected value from the DropDownList control is assigned to the
Text property of the Label within the current page:

 protected void Page_Load(object sender, EventArgs e)
 {
 if (this.PreviousPage != null)
 {

c41.indd 1257 30-01-2014 20:49:06

1258 ❘ CHAPTER 41 ASP.NET WEb FormS

 DropDownList meetingRoomSelection = this.PreviousPage.FindControl(
 "DropDownListMeetingRooms") as DropDownList;
 if (meetingRoomSelection != null)
 {
 this.Label1.Text = meetingRoomSelection.SelectedItem.Value;
 }
 }
 }

To test this, open the ShowMeetingRooms.aspx page in the browser now and click the Submit button. This
should result in a cross-page postback and open the second page.

defining Strongly Typed Cross-page Postbacks
ASPX also offers strongly typed access to a previous page. To take advantage of this, a read-only property
SelectedMeetingRoom is added to the MeetingRooms class. This property accesses the selected value from
the DropDownList control:

 public string SelectedMeetingRoom
 {
 get
 {
 return DropDownListMeetingRooms.SelectedItem.Value;
 }
 }

In the MeetingRoomInformation.aspx file, the PreviousPageType directive is added following the Page
directive. The previous page is specified with the VirtualPath attribute:

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="MeetingRoomInformation.aspx.cs"
 Inherits="Meetingroom.MeetingRoomInformation" %>
<%@ PreviousPageType VirtualPath="~/ShowMeetingRooms.aspx" %>

NoTE In the example code, the previous page is always ShowMeetingRooms.aspx. In
case more than one page should be used as a previous page, a class that derives from
the Page class can be created that itself is the Page class for all the previous page types.
Then you can specify the TypeName attribute with the PreviousPageType directive
instead of the VirtualPath attribute.

Now you can simplify the implementation of the Page_Load method to directly access the
SelectedMeetingRoom property:

 protected void Page_Load(object sender, EventArgs e)
 {
 if (this.PreviousPage != null)
 {
 this.Label1.Text = this.PreviousPage.SelectedMeetingRoom;
 }
 }

Using Page Events
With the ShowMeetingRooms.aspx page, you’ve seen load and change events of the page. There are many
more page events. Before the page is rendered, these Page events are fired on a first request: PreInit, Init,
InitComplete, PreLoad, Load, LoadComplete, PreRender, Render, and RenderComplete. Many of these
events are defined with three steps: PreXX, XX, and XXComplete. In the case of a postback to a page, some
additional events are fired to take care of the view state and the HTTP POST data to fill the values of the
controls and to fire change and action events.

c41.indd 1258 30-01-2014 20:49:07

ASPX Page Model ❘ 1259

The first step in the life cycle of the Page is initialization. The PreInit event is fired before the initializa-
tion takes place. Here it’s possible to change the master page, and themes. After this event, these properties
cannot be set again. It’s also possible to create controls dynamically with this event. The Init event is fired
after all controls of the page have been initialized. Initialization values for the controls in the page can be set
with the Page_Init event handler. The InitComplete event is fired after the initialization of the page and
all controls has been completed.

After the initialization stage, the loading stage takes place. PreLoad is fired after the view state is loaded for the
page and its controls, and postback data of the form is assigned to the controls of the page. When the Load event
is fired, the page has been restored and all the controls are set to their previous state (based on the view state).
Validation can be done here, as well as dynamically creating new controls that are not based on view state initial-
ization from postbacks. Change and action events are fired in this state—such as the OnSelectedIndexChanged
event of the DropDownList control, and the OnClick event of a Button control. Change events are fired before
action events. The end of the loading stage is marked with the LoadComplete event.

After the loading stage, the rendering stage takes place. With a handler on the PreRender event, some final
changes to the page or its controls can be done. This event is fired before any view state is saved. This is
the last point in time when property values can be changed before the information goes to the view state.
SaveStateComplete is fired next when the view state is saved. Then you are ready for rendering the content
and generating HTML and JavaScript for the client. The Render method is called here. After the rendering
is completed, the page is unloaded, and the UnLoad event is fired. Cleanup can be done here to release all the
resources needed to build the page.

To analyze the page events and to see what happens when, it’s a good idea to turn on ASP.NET web trac-
ing. Tracing can be enabled in the web.config file with the trace element. This element is defined as a
child of system.web. The example configuration in the next code snippet enables tracing and defines some
trace configurations. The trace information should not be shown in the requested page itself (pageOutput),
but the trace.axd URL can be used instead. requestLimit specifies that only the 10 most recent requests
should be remembered, with older ones discarded. Setting mostRecent to true specifies that the request
limit should apply to the most recent pages, and not the first requested pages since the application was
started. The localOnly attribute specifies that trace information should be shown only from a client on the
same system as the server. This is restricted for security reasons. The traceMode is set to sort the traces by
time. Sorting by category is the alternate option:

 <trace enabled="true" pageOutput="false" mostRecent="true"
 requestLimit="10" localOnly="true" traceMode="SortByTime"/>

Starting the application after tracing has been enabled, the traces are filled and can be viewed by open-
ing trace.axd from within the browser. The output is shown in Figure 41-2. With this application trace,
ShowMeetingRooms.aspx was opened with a GET request, an item in the DropDownList was selected that
caused a POST request to the same page, then the Submit button was clicked which resulted in a POST request
to the page MeetingRoomInformation.aspx.

FIgURE 41-2

c41.indd 1259 30-01-2014 20:49:07

1260 ❘ CHAPTER 41 ASP.NET WEb FormS

Clicking a View Details link on the page provides a plethora of additional information. Figure 41-3 shows
request details for the session identifier, and trace information about what events occurred on the page,
including timing information. Here you can easily see how much time an event handler needed, so you might
find code that needs some tweaking for better performance. You can write your own custom messages to
this trace information by invoking the Write and Warn methods of the TraceContext class. This class can
be accessed by using the Trace property from the page, or the Trace property from HttpContext.Current.

FIgURE 41-3

ASPX Code
Server-side controls can be accessed from the code-behind code by using the ID of the variable. A code file
with a partial class that is hidden by default contains all the members of the page that are defined with the
ASPX file. The following sections look at the different options for accessing code from within ASPX.

Writing to the Response Stream
Using the syntax <% %> defines a code block within the ASPX page. Multiple statements can be used within
this code block, and each of them must end with the semicolon. The following code snippet does some cal-
culation and writes the result to the response using Response.Write:

 <div>
 <%
 int a = 3;
 int b = 4;
 int c = a + b;
 Response.Write(c);
 %>
 </div>

Getting Results
To get the result of a method or property directly to the response stream, <%= can be used. The following
code snippet invokes the method GetText1 from the page and writes the result directly to the content of the
div element:

 <div>
 <%= GetText1() %>
 </div>

c41.indd 1260 30-01-2014 20:49:08

ASPX Page Model ❘ 1261

The GetText1 method just returns a simple string to be called from the ASPX page:

 public string GetText1()
 {
 return "Hello from the Page";
 }

Encoding
Using <%= can be potentially dangerous, in particular if the content that is written to the UI comes from
users without any validation of their input. To see how this could happen, a simple script is added to the
return string of the GetText2 method. Calling this method as shown previously, the script is invoked in the
browser. The alert function just opens a message box on the client, but it would be possible to access the
complete DOM model, and redirect the user to other pages:

 public string GetText2()
 {
 return @"<script>alert(""Hello"");</script>";
 }

To avoid such scripting attacks, output should be encoded. Server.HtmlEncode encodes the input string
and returns an HTML-encoded string that enables the browser to display the script as text:

 <div>
 <%= Server.HtmlEncode(GetText2()) %>
 </div>

Because encoding should be used in so many places, a nice shorthand notation for Server.HtmlEncode
and <%= is available:

 <div>
 <%: GetText2() %>
 </div>

Data Binding
To bind the result of methods or properties, <%# is used. The following code snippet binds the result of the
GetText1 method to the Text property of the Button control:

 <asp:Button ID="Button1" runat="server" Text="<%# GetText1() %>" />

Merely defining the binding does not mean something happens. The DataBind method must be invoked.
Here it’s done in the Page_Load event handler method:

 protected void Page_Load(object sender, EventArgs e)
 {
 this.Button1.DataBind();
 }

Instead of invoking DataBind on the control, the DataBind method can also be invoked on the Page. This
in turn invokes DataBind on all the controls associated with the Page.

Expressions
<%$ is the syntax for using an expression builder. The following code snippet uses the resources expression
to access the result from the resource named SampleResources, and the key Message1:

 <asp:Button ID="Button2" runat="server"
 Text="<%$ Resources:SampleResources, Message1 %>" />

A resources expression starts with <%$ Resources:. Resources are covered in detail in Chapter 28,
“Localization.”

ASP.NET comes with several expression types. AppSettings expressions read application configuration val-
ues from the configuration file, ConnectionString expressions read connection strings from the configura-
tion file, and RouteUrl and RouteValue expressions use the URL link to get values from the route.

c41.indd 1261 30-01-2014 20:49:08

1262 ❘ CHAPTER 41 ASP.NET WEb FormS

To edit expressions of the various types, select the Properties window from the design editor, and then open
the Expressions editor, shown in Figure 41-4.

FIgURE 41-4

Server-side Controls
So far, you have seen two web server controls: DropDownList and Button. There are many more, of course,
and they are grouped in the toolbar within categories. Most of these categories are covered in this chapter.

The Standard category in the toolbar contains not only simple controls such as Button, Label,
DropDownList, CheckBox, and ListBox, which are easily represented in HTML, but also controls with
more complex HTML, such as Table, Calendar, MultiView, and Wizard. MultiView enables defining dif-
ferent views that can be selected based on different options (e.g., different views depending on whether the
user is logged in), and the Wizard enables the user to complete a process step by step.

The Data category contains controls to both display data (Repeater, FormView, GridView) and access data
(EntityDataSource, ObjectDataSource, SiteMapDataSource).

The Validation category contains validator controls that enable checking user input for both client-side and
server-side code. The RequiredFieldValidator requires user input, the RangeValidator checks user
information from a specified range of values, and the CompareValidator not only checks whether a newly
entered password matches the one in another field, but also verifies whether the input conforms to a date or
a currency value. With the RegularExpressionValidator, regular expressions can be specified to validate
user input.

The Navigation category contains Menu, SiteMapPath, and Tree controls that enable creating a navigation
structure for the user.

The Login category contains controls for security-related tasks. The Login control enables entering the
username and password, and makes use of the Membership API. A user can register with the CreateUserWizard
control, change and recover the password with ChangePassword and PasswordRecovery, and display the
state of authentication with LoginName, LoginStatus, and LoginView controls.

c41.indd 1262 30-01-2014 20:49:08

Master Pages ❘ 1263

The WebParts category contains controls for building dynamic web applications. With controls from this
category, users can select what Web Parts should be displayed, and move Web Parts between different zones.

The AJAX Extensions category contains controls that make it easy, with the server-side controls model of
ASP.NET Web Forms, to use AJAX features without the need to write JavaScript code. ScriptManager,
UpdatePanel, and Timer controls belong to this category.

Finally, the HTML category contains controls that by default do not have any server-side functionality.
Simple HTML controls are in this category such as Input (Button), Input (Text), and Textarea. There’s
also a way to use these controls from server-side code by applying the attribute runat="server". With
server-side functionality, the types for these controls are defined in the namespace System.Web
.UI.HtmlControls. Unlike the web server controls (namespace System.Web.UI.WebControls), these con-
trols have server-side properties and names that conform to the functions of client-side scripting code access-
ing the HTML DOM.

MASTER PAgES
Many web applications contain some parts that are shared across all of the pages. With ASP.NET Web
Forms, master pages can be used to handle this behavior. Using master pages, the content pages do not
return the complete HTML code. Content pages only define the parts of the page that should be placed
within the master page. A master page defines the places where a content page should dock into using con-
tent placeholders. With these content placeholders, the master page can also define defaults if the content
page doesn’t supply content.

Creating a Master Page
This section adds a Web Forms Master Page named Company.Master to the sample web application. The
Visual Studio 2013 template creates a master page with one ContentPlaceHolder control in the head sec-
tion, and one ContentPlaceHolder control in the body section. The content placeholder in the head section
enables the content page to add scripting code or style sheets to the page. With the code snippet shown next,
multiple ContentPlaceHolder controls are added to the body section, along with some HTML code.

Looking at the code of the master page in the example, note that a master page starts with the Master direc-
tive. This is very similar to the Page directive used with web pages. However, master pages with the .Master
file extension are never requested by the client. Indeed, a forbidden handler is defined with the handler map-
pings if a master file is requested. Instead, the client requests an ASPX page, and the ASPX page handler
uses a master page to generate the HTML code for the client. The <html> root element, including head,
body, and form, are defined within the master page, not with content pages that use a master page. You can
add HTML and web server controls to master pages in the same way that you do with web pages.

What’s special about the content of master pages are the ContentPlaceHolder controls. The example code
defines ContentPlaceHolder controls with the IDs topContent, leftContent, and mainContent. These
are the parts that can be replaced by content pages. The master page can also supply default content. This
is shown with the ContentPlaceHolder control named leftContent. Here, a nav element is defined with
a list of navigation items. This list is shown in content pages if the content page doesn’t add its own content
for this content placeholder:

<%@ Master Language="C#" AutoEventWireup="true" CodeBehind="Company.master.cs"
 Inherits="ProCSharpSample.Company" %>
<!DOCTYPE html>
<html>
<head runat="server">
 <link rel="stylesheet" type="text/css" href="Company.css" />
 <title></title>
 <asp:ContentPlaceHolder ID="head" runat="server">
 </asp:ContentPlaceHolder>
</head>

c41.indd 1263 30-01-2014 20:49:08

1264 ❘ CHAPTER 41 ASP.NET WEb FormS

<body>
 <form id="form1" runat="server">
 <div class="top">
 <h1>Professional C# 5 Demo Web Application</h1>
 </div>
 <div class="top2">
 <asp:ContentPlaceHolder ID="topContent" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 <div class="left">
 <!-- Navigation Controls -->
 <asp:ContentPlaceHolder ID="leftContent" runat="server">
 <nav>

 Home

 Reserve Room
 Show Rooms

 About

 </nav>
 </asp:ContentPlaceHolder>
 </div>
 <div class="main">
 <asp:ContentPlaceHolder ID="mainContent" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 <div class="bottom">
 <div>CN innovation</div>
 <div>http://www.cninnovation.com</div>
 </div>
 </form>
</body>
</html>

As shown in Figure 41-5, the Design view of Visual Studio shows the look of the page, along with the CSS
file that is applied to the master page.

FIgURE 41-5

c41.indd 1264 30-01-2014 20:49:09

Master Pages ❘ 1265

Using Master Pages
To use a master page, Visual Studio 2013 includes the template Web Form with Master Page. With this item
template, a master page can be selected upon creating the page. The Page directive of the generated page
just defines the additional attribute MasterPageFile to reference the selected master page. Other than the
Page directive, the page only contains Content controls. The Content controls define what is replaced
from the master page. With the ContentPlaceHolderId property, the Content control references the
ContentPlaceHolder control to define the content to replace:

<%@ Page Title="" Language="C#" MasterPageFile="~/Company.Master"
 AutoEventWireup="true" CodeBehind="ReserveRoom.aspx.cs"
 Inherits="Meetingroom.ReserveRoom" %>
<asp:Content ID="Content1" ContentPlaceHolderID="head" runat="server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="topContent" runat="server">
</asp:Content>
<asp:Content ID="Content4" ContentPlaceHolderID="mainContent" runat="server">
</asp:Content>

NoTE The sample page uses the master page by applying the MasterPageFile attri-
bute with the Page directive. Other options to reference a master page include defining
it globally in the configuration file, or programmatically within a page event. In the
web.config configuration file, the page element uses the MasterPageFile attribute
to indicate where a master page can be set globally. This setting can be overridden
with the Page directive in the page, or using code-behind. Using code-behind, a master
page can be set in the Page_PreLoad event handler (this is the latest point at which
the MasterPageFile property can be set). Applying this setting programmatically, it
is possible to use different master page files depending on some requirements, such as
different partners and different contracts, or offering a different master page for mobile
devices.

By default, Content controls are created for all these placeholders where the master page doesn’t create
default content. To replace the default content, you can access the design view of the web page to use the
smart tags from the controls to replace content.

With the sample web page, the content of the mainContent is replaced with a DropDownList as it has been
used in a previous example:

<asp:Content ID="Content4" contentplaceholderid="mainContent" runat="server">
 <div>
 <asp:DropDownList ID="DropDownListMeetingRooms" runat="server"
 OnSelectedIndexChanged="OnRoomSelection" Width="165px" AutoPostBack="True">
 <asp:ListItem>Sacher</asp:ListItem>
 <asp:ListItem>Hawelka</asp:ListItem>
 <asp:ListItem>Hummel</asp:ListItem>
 <asp:ListItem>Prückel</asp:ListItem>
 <asp:ListItem>Landtmann</asp:ListItem>
 <asp:ListItem>Sperl</asp:ListItem>
 <asp:ListItem>Alt Wien</asp:ListItem>
 <asp:ListItem>Eiles</asp:ListItem>
 </asp:DropDownList>

 <asp:Label ID="LabelSelectedRoom" runat="server" Text=""></asp:Label>

 <asp:Button ID="Button1" runat="server" Text="Submit" />
 </div>
</asp:Content>

c41.indd 1265 30-01-2014 20:49:09

1266 ❘ CHAPTER 41 ASP.NET WEb FormS

Running the application, the HTML code is merged with the master and content pages, as shown in
Figure 41-6.

FIgURE 41-6

defining Master Page Content from Content Pages
Using placeholders and content controls to define the content for pages is a very powerful option. However,
sometimes you only need to replace a few items in the master page, or change some content. You can access
a master page from a content page by using the Master property of the page object.

The following code snippet accesses the Label control named LabelBottom from the master page by using
the Master property of the Page, which returns a MasterPage object, and then the FindControl method to
determine where the content should be set:

 protected void Page_Load(object sender, EventArgs e)
 {
 Label label = Master.FindControl("LabelBottom") as Label;
 if (label != null)
 {
 label.Text = "Hello from the content page";
 }
 }

Similar to what you’ve seen with strongly typed access to cross-page postback, strongly typed access to mas-
ter pages is also possible. Next, with the master page code-behind file Company.Master.cs, the property
LabelBottomText is defined to allow read/write access to the Text property of the LabelBottom control:

 public string LabelBottomText
 {
 get
 {
 return LabelBottom.Text;
 }
 set
 {
 LabelBottom.Text = value;
 }
 }

c41.indd 1266 30-01-2014 20:49:09

Navigation ❘ 1267

To define a strongly typed master page, the MasterType directive can be applied with the content page:

<%@ Page Title="" Language="C#" MasterPageFile="~/Company.Master"
 AutoEventWireup="true" CodeBehind="ReserveRoom.aspx.cs"
 Inherits="Meetingroom.ReserveRoom" %>
<%@ MasterType VirtualPath="~/Company.Master" %>

Now the code accessing the master page can be simplified to directly use the property defined:

 protected void Page_Load(object sender, EventArgs e)
 {
 Master.LabelBottomText = "Hello from the content page";
 }

NoTE If multiple master pages should be used with a content page, strongly typed
access to the master page is also possible. For this, a custom base class that derives from
the MasterPage class can define the properties needed from the content pages. With
the MasterType directive to reference the master page for strongly typed access, the
TypeName attribute can be used instead of VirtualPath.

NAvIgATIoN
Let’s add some navigation content to navigate within different pages of the web application. ASP.NET offers
a site map that can be used with Menu and MenuPath controls.

Site Map
The structure of the web application can be described in a site map file. To create site maps, Visual Studio
2013 offers a Site Map item template that creates a file with the name Web.sitemap. A sample site map file
is shown in the following code. siteMap is the root element, which can contain a hierarchy of siteMap-
Node elements. A siteMapNode defines attributes for the url that it accesses, a title that is displayed with
menus, and a description that is used with a tooltip:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="~/Default.aspx" title="Home"
 description="Professional C# 5 Demo Web Application">
 <siteMapNode url="MeetingRooms.aspx" title="Meeting Rooms" description="" >
 <siteMapNode url="~/ReserveRoom.aspx" title="Reserve a Room" />
 <siteMapNode url="~/CancelRoom.aspx" title="Cancel a Room" />
 </siteMapNode>
 <siteMapNode url="~/Accounts.aspx" title="Accounts">
 <siteMapNode url="~/RegisterUser.aspx" title="Register User"
 description="" />
 </siteMapNode>
 </siteMapNode>
</siteMap>

Other than the attributes used with the example, the siteMapNode also offers localization and support for
roles. For localization, a resourceKey is used to specify resources to be used for menu titles and tooltips.
The roles attribute is used to specify access only to users who belong to the specified roles.

NoTE Resources for localization are explained in Chapter 28.

c41.indd 1267 30-01-2014 20:49:09

1268 ❘ CHAPTER 41 ASP.NET WEb FormS

NoTE The ASP.NET site map is different from the XML site map that is used by
crawlers to find links of a website. The ASP.NET site map is a data source used by
navigation controls, and it fits well with some features of ASP.NET like data binding. It
cannot be directly accessed from the client. Conversely, the XML site map is accessible
from the client, and it uses a different syntax for crawlers that is explained at http://
www.sitemaps.org.

Menu Control
The website map is used by a Menu control. All you need to do to fill the content for the Menu control is add
a SiteMapDataSource. By default, the SiteMapDataSource uses the site map file named Web.sitemap. The
Menu control references the data source with the DataSourceID property (code file Company.Master):

 <div class="left">
 <asp:ContentPlaceHolder ID="leftContent" runat="server">
 <asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1" >
 </asp:Menu>
 <asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server" />
 </asp:ContentPlaceHolder>
 </div>

NoTE The site map is provider-based, similar to Membership, Roles, and
Profiles. You can also create a custom provider that derives from the base class
SiteMapProvider. XmlSiteMapProvider is the only concrete site map provider that
is part of the .NET Framework. XmlSiteMapProvider derives from the base class
StaticSiteMapProvider, which in turn derives from SiteMapProvider. You can read
more about the provider-based model with ASP.NET in Chapter 40, “Core ASP.NET.”

The Menu control is shown in Figure 41-7. By default, the control creates HTML list content with ul, li,
and a elements. The outcome is completely customizable. The RenderingMode property can be set to List
or Table to create list or table elements, respectively; items can be displayed statically or dynamically;
horizontal or vertical displays can be configured with the Orientation property; and colors, styles, and
CSS classes can be set.

Menu Path
The SiteMapPath control is a breadcrumb control that indicates its current position, along
with information about how to go back in the tree:

 <div class="top2">
 <asp:ContentPlaceHolder ID="topContent" runat="server">
 <asp:SiteMapPath ID="SiteMapPath1" runat="server"></asp:SiteMapPath>
 </asp:ContentPlaceHolder>
 </div>

Figure 41-8 shows the SiteMapPath control on the web page
Reserve a Room.

vAlIdATINg USER INPUT
ASP.NET Web Forms contains several validation controls that offer validation on both the client and the
server. Validating input on the client is just done for convenience of the user, as he sees the validation result
faster without the need to send data to the server. However, you can never trust input from the client, and
you need to verify the data on the server again.

FIgURE 41-7

FIgURE 41-8

c41.indd 1268 30-01-2014 20:49:10

Validating User Input ❘ 1269

Using validation Controls
To show validation in action, this section creates the ValidationDemo.aspx page. At first, this page
contains two Labelcontrols, two TextBox controls (named textName and textEmail), and a Button
control. Users are required to enter their name and e-mail address, and the latter should be validated.
Validation controls that can be used for this scenario are the RequiredFieldValidator and the
RegularExpressionValidator.

All the validator controls derive from the base class BaseValidator and thus have the properties
ControlToValidate, which needs to be set to the TextBox control that is covered by the validation control;
and ErrorMessage, which defines the text that is displayed in case of invalid input. The
following code snippets show the validator controls con-
nected to the TextBox controls, and the ErrorMessage
properties set. The TextBox control named TextEmail has
two validation controls: a RequiredFieldValidator and
an associated RegularExpressionValidator. With the
RegularExpressionValidator, the ValidationExpression
property is set, to verify that the e-mail address is valid. The
Regular Expression Editor, shown in Figure 41-9, contains a list
of predefined regular expressions, one of which is the Internet
e-mail address. Of course, you can also add a custom regular
expression:

 <table class="auto-style1">
 <tr>
 <td>Name:</td>
 <td>
 <asp:TextBox ID="TextName" runat="server"></asp:TextBox>
 <asp:RequiredFieldValidator ID="RequiredFieldValidator1"
 runat="server" ControlToValidate="TextName"
 ErrorMessage="Name required"></asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td>Email:</td>
 <td>
 <asp:TextBox ID="TextEmail" runat="server"></asp:TextBox>
 <asp:RequiredFieldValidator ID="RequiredFieldValidator2"
 runat="server" ControlToValidate="TextEmail" Display="Dynamic"
 ErrorMessage="Email required"></asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID="RegularExpressionValidator1"
 runat="server" ControlToValidate="TextEmail" Display="Dynamic"
 ErrorMessage="Please enter an email"
 ValidationExpression="\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">
 </asp:RegularExpressionValidator>
 </td>
 </tr>
 <tr>
 <td>
 <asp:Button ID="Button1" runat="server" Text="Register" />
 </td>
 <td> </td>
 </tr>
 </table>

In Figure 41-10, the name is not entered and the e-mail address is invalid. Therefore, two validation controls
apply: the RequiredFieldValidator with the TextName control and the RegularExpressionValidator
with the TextEmail control. The error messages from these two validation controls are shown. With the
RequiredFieldValidator that is connected to the TextEmail control, the Display property is set to
Dynamic. This is necessary to arrange the error message from the RequiredFieldValidator in the position
of the RequiredFieldValidator. Otherwise the space would be empty.

FIgURE 41-9

c41.indd 1269 30-01-2014 20:49:10

1270 ❘ CHAPTER 41 ASP.NET WEb FormS

Since version 4.5, ASP.NET by default
makes use of unobtrusive JavaScript
validation. Unobtrusive JavaScript separates
the behavior of the page (JavaScript) from
the content (HTML). With the validation
controls, ASP.NET Web Forms makes use of
jQuery. In case the jQuery library is not yet
added to the project, you can do this via a
NuGet package. After the jQuery library is
added, you need to add a jquery definition
to the ScriptManager, which can be done in
global.asax.cs:

 protected void Application_Start(object sender, EventArgs e)
 {
 ScriptManager.ScriptResourceMapping.AddDefinition("jquery",
 new ScriptResourceDefinition
 {
 Path = "~/scripts/jquery-2.0.3.min.js",
 DebugPath = "~/scripts/jquery-2.0.3.js",
 CdnPath = "http://ajax.microsoft.com/ajax/jQuery/jquery-2.0.3.min.js",
 CdnDebugPath = "http://ajax.microsoft.com/ajax/jQuery/jquery-2.0.3.js"
 });
 }

Instead of adding jQuery, you can also turn off unobtrusive JavaScript validation by adding this setting to
the web.config file:

<add key="ValidationSettings:UnobtrusiveValidationMode" value="None" />

Using a validation Summary
If error messages shouldn’t be displayed with the input
controls but instead with summary information on the
page, all you need to do is add a ValidationSummary
control; and with the validation controls, the Text
property should be set to a string that is shown in case
of an error. With the sample page, the Text properties
are set to *, and the ErrorMessage properties keep the
value from the previous code snippet.

The result is shown in Figure 41-11. Here, both
RequiredFieldValidator validation controls apply,
and thus the values for the ErrorMessage properties
are shown in the ValidationSummary control. With
each of the failing validation controls, the value of
the Text property is displayed.

validation groups
If the page contains multiple submit-type buttons
with different areas of validation, validation groups
can be assigned. If validation groups are not used,
with every postback all the controls are verified to
be correct. With the page shown in Figure 41-12, if
the user clicks the Register button, only the controls
that belong to this part should be validated; and
if the user clicks the Submit button, only these

FIgURE 41-10

FIgURE 41-11

FIgURE 41-12

c41.indd 1270 30-01-2014 20:49:10

Accessing Data ❘ 1271

controls should be validated. This issue is solved by setting the ValidationGroup property of the first group
of validation controls as well as the Button control to "Register", and the second group of validation con-
trols to "Event". Clicking the button belonging to the ValidationGroup "Event" validates only the valida-
tion controls from the same group.

ACCESSINg dATA
Data access can be very simple using data controls from ASP.NET. A lot is possible without writing a single
line of C# code. Controls in the category Data belong to two different groups: data sources and UI controls.
Data sources are used to access data, such as by using the ADO.NET Entity Framework or DataSets. UI
controls define different looks, such as the GridView and the DetailsView.

The following table describes the data source controls.

dATA SoURCE CoNTRol dESCRIPTIoN

EntityDataSource Makes use of the ADO.NET Entity Framework to read and write data. This control
is based on old Entity Framework ObjectContext instead of DbContext.

LinqDataSource Used to access LINQ to SQL. This mapping tool has been mostly replaced by the
ADO.NET Entity Framework.

ObjectDataSource This can be used to access custom objects with static or instance members to
return a list of objects, and offers methods to add and update objects.

SiteMapDataSource Reads the Web.sitemap file and is used for navigation. This data source was
shown previously in the chapter.

SqlDataSource Makes use of either a DataReader or a DataSet. These types are explained in
Chapter 32, “Core ADO.NET.”

XmlDataSource Used to access XML data, either from a file or an XML object. XML manipulation is
explained in Chapter 34, “Manipulating XML.”

The next table contains information about controls for the UI.

WEb SERvER dATA CoNTRol dESCRIPTIoN

ListView A powerful control for showing data in a grid style. It enables selecting, sorting,
deleting, editing, and inserting records. The UI is customized with templates.

DataList This control can be bound to a data source to show data in a grid-style format.
The UI can be customized with templates. This control also supports selecting
and editing data.

DataPager This can be used in conjunction with another control (e.g., the ListView) to
add paging functionality.

GridView Uses a table to show bound data. Selecting, sorting, and editing are possible.

Repeater Unlike the other UI controls, the Repeater requires a custom layout using tem-
plates in order to have useful output. Many other controls can use templates,
but without them there is already output.

DetailsView Shows a single record and allows editing, deleting, and inserting records.

FormView Like the DetailsView, the FormView is used to display a single record. For-
mView requires a user-defined template, and enables more customization than
the DetailsView.

Clearly, many controls can be used to display grids. Over the years, ASP.NET Web Forms has continued to
add grid controls with more features. Usually a good option is to use the ListView control. This control
is only available since .NET 3.5 and offers features found in the other controls and more. GridView has

c41.indd 1271 30-01-2014 20:49:10

1272 ❘ CHAPTER 41 ASP.NET WEb FormS

been available since .NET 2.0, and DataList since .NET 1.1.
Knowing the availability of these controls helps in deciding
which one to use and which one offers more “modern” features.

Using the Entity Framework
Although the ADO.NET Entity Framework is covered in detail
in Chapter 33, “ADO.NET Entity Framework,” this section
describes how to define access code using it.

The sample database contains two tables, Reservations and
MeetingRooms, and these tables are mapped to the types
MeetingRoom and Reservation as shown in Figure 41-13. The model can be created easily by adding a new
item of type ADO.NET Entity Data Model, and selecting the existing database. You can download the data-
base along with the sample code.

The designer creates entity types MeetingRoom and Reservation that contain all the properties defined in
the database schema. In addition to the entity objects, an object context named RoomReservationEntities
is created. This context defines properties for every table to return DbSet<MeetingRoom> and
DbSet<Reservation> objects. This class manages the connection to the database.

Creating a Repository
For using an ObjectDataSource, a repository is created. The class RoomReservationRepository defines
methods to return all meeting rooms and reservations, and also methods to add, update, and delete
reservations:

 public class RoomReservationRepository
 {
 public IEnumerable<MeetingRoom> GetMeetingRooms()
 {
 using (var data = new RoomReservationEntities())
 {
 return data.MeetingRooms.AsNoTracking().ToList();
 }
 }

 public IEnumerable<Reservation> GetReservationsByRoom(int roomId)
 {
 using (var data = new RoomReservationEntities())
 {
 return data.Reservations.AsNoTracking().Where(
 r => r.RoomId == roomId).ToList();
 }
 }

 public void AddReservation(Reservation reservation)
 {
 using (var data = new RoomReservationEntities())
 {
 data.Reservations.Add(reservation);
 data.SaveChanges();
 }
 }

 public void UpdateReservation(Reservation reservation)
 {
 using (var data = new RoomReservationEntities())
 {
 data.Reservations.Attach(reservation);

FIgURE 41-13

c41.indd 1272 30-01-2014 20:49:11

Accessing Data ❘ 1273

 data.Entry(reservation).State = EntityState.Modified;
 data.SaveChanges();
 }
 }

 public void DeleteReservation(Reservation reservation)
 {
 using (var data = new RoomReservationEntities())
 {
 data.Reservations.Remove(reservation);
 data.SaveChanges();
 }
 }
 }

Using the object data Source
With the first page, the meeting rooms should be shown in a DropDownList, and a GridView should display
the reservations for a room.

The first two controls on the page ShowReservations.aspx are a DropDownList and an
ObjectDataSource control. Using the smart tag, you can configure the data source to use the type
RoomReservationRepository that itself accesses the data model. Figure 41-14 shows the selection of the
RoomReservationRepository type with the ObjectDataSource. The dialog from Figure 41-15 opens when
you click the Next button. Here you can select methods for selecting, inserting, updating, and deleting entities
by clicking the tab on top of the dialog and choosing the appropriate method. As the rooms are only displayed
and not edited, only the SELECT operation applies here and just the method GetMeetingRooms is selected.

After configuring the data source, the UI control can be configured to reference the data source control.
For this, you can use the Data Source Configuration Wizard, shown in Figure 41-16. For the display in the
DropDownList, the RoomName property is used; for the identification of the data field, the Id property is used.

FIgURE 41-14

c41.indd 1273 30-01-2014 20:49:11

1274 ❘ CHAPTER 41 ASP.NET WEb FormS

FIgURE 41-15

FIgURE 41-16

c41.indd 1274 30-01-2014 20:49:11

Accessing Data ❘ 1275

Opening the page, the rooms from the database are displayed. The next step is to display the reservations
based on the selection. For this activity, a GridView and one more ObjectDataSource control are added to
the page. The second data source control is configured to again access the RoomReservationRepository,
but this time the methods GetReservationsByRoom, AddReservation, UpdateReservation, and
DeleteReservation are mapped.

The method GetReservationsByRoom requires a parameter: the room ID. The value of the parameter is
taken directly from the SelectedValue property of the DropDownList (Figure 41-17). This selection
is directly available from the Expression Editor.

FIgURE 41-17

In the example code, the source of the parameter is the DropDownList control. With the Expression
Editor you can also see other source types available. Cookie, Form, Profile, QueryString, Session, and
RouteData are other parameter source options. There’s really a lot that can be done just by configura-
tion of some properties. With the GridView control, only the DataSourceId needs to be set to the second
EntityDataSource control.

So far, the code-behind is empty, and the DropDownList, EntityDataSource, and GridView controls are
configured as follows:

 <asp:DropDownList ID="DropDownList1" runat="server" AutoPostBack="True"
 DataSourceID="ObjectDataSource1" DataTextField="RoomName"
 DataValueField="Id" Height="22px" Width="150px">
 </asp:DropDownList>

 <asp:ObjectDataSource ID="ObjectDataSource1" runat="server"
 SelectMethod="GetMeetingRooms"
 TypeName="ProCSharpSample.DataAccess.RoomReservationRepository"
 </asp:ObjectDataSource>

c41.indd 1275 30-01-2014 20:49:12

1276 ❘ CHAPTER 41 ASP.NET WEb FormS

 <asp:GridView ID="GridView1" runat="server"
 AutoGenerateColumns="False"
 DataSourceID="ObjectDataSource2">
 <Columns>
 <asp:BoundField DataField="Id" HeaderText="Id"
 SortExpression="Id" />
 <asp:BoundField DataField="ReservationFrom"
 HeaderText="ReservationFrom" SortExpression="ReservationFrom" />
 <asp:BoundField DataField="ReservationTo"
 HeaderText="ReservationTo" SortExpression="ReservationTo" />
 <asp:BoundField DataField="Contact" HeaderText="Contact"
 SortExpression="Contact" />
 <asp:BoundField DataField="RoomId" HeaderText="RoomId"
 SortExpression="RoomId" />
 </Columns>
 </asp:GridView>

 <asp:ObjectDataSource ID="ObjectDataSource2" runat="server"
 DataObjectTypeName="ProCSharp.Models.Reservation"
 TypeName="ProCSharpSample.DataAccess.RoomReservationRepository"
 SelectMethod="GetReservationsByRoom"
 InsertMethod="AddReservation"
 DeleteMethod="DeleteReservation"
 UpdateMethod="UpdateReservation">
 <SelectParameters>
 <asp:ControlParameter ControlID="DropDownList1" Name="roomId"
 PropertyName="SelectedValue" Type="Int32" />
 </SelectParameters>
 </asp:ObjectDataSource>

The page can now be opened in the browser to select room reservations, as shown in Figure 41-18.

FIgURE 41-18

FIgURE 41-19

Editing
Out of the box, the GridView supports paging, editing, deleting,
and selection, depending on the capabilities of the data source.
For example, if insert/update/delete operations are supplied to the
ObjectDataSource, the appropriate commands are available with
the GridView. When this is selected, editing and deleting can be
enabled with the GridView (see Figure 41-19).

c41.indd 1276 30-01-2014 20:49:12

Accessing Data ❘ 1277

Setting these options with the GridView sets the property AllowPaging, and adds a CommandField column
with Delete, Edit, and Select buttons:

 <asp:GridView ID="GridView1" runat="server"
 AutoGenerateColumns="False"
 AllowPaging="True"
 DataSourceID="ObjectDataSource2">
 <Columns>
 <asp:CommandField ShowDeleteButton="True" ShowEditButton="True"
 ShowSelectButton="True" />
 <asp:BoundField DataField="Id" HeaderText="Id"
 SortExpression="Id" />
 <asp:BoundField DataField="ReservationFrom"
 HeaderText="ReservationFrom" SortExpression="ReservationFrom" />
 <asp:BoundField DataField="ReservationTo"
 HeaderText="ReservationTo" SortExpression="ReservationTo" />
 <asp:BoundField DataField="Contact" HeaderText="Contact"
 SortExpression="Contact" />
 <asp:BoundField DataField="RoomId" HeaderText="RoomId"
 SortExpression="RoomId" />
 </Columns>
 </asp:GridView>

The GridView just uses the name of the properties in the heading (Id, ReservedFrom, ReservedTo, Contact),
and uses Label controls in read mode, and TextBox controls in edit mode, as shown in Figure 41-20. When
the Edit button is clicked, the row changes to edit mode. In edit mode, TextBox controls are bound to the
data. Changing the values there also changes the entities in the Entity Framework object context. Clicking
Update invokes the SaveChanges method of the object context and writes the changes to the database.

FIgURE 41-20

Customizing Columns
By default, the designer creates bound fields for all the properties. You can change all of this. At least the
heading should be changed, and the Id column should remain read-only in edit mode. Such customization is
easy by opening the Fields editor, shown in Figure 41-21.

You can select the fields that should be displayed. You can configure many aspects of these fields, includ-
ing heading information and images for the headings, footer text, a default display for null values, a format
string, and styles for the control, header, footer, and item elements. The content of the GridView is now
changed to BoundField objects, as shown in the following code snippet:

 <asp:GridView ID="GridView1" runat="server" DataSourceID="ObjectDataSource2"
 AllowPaging="True" AutoGenerateColumns="False">
 <Columns>
 <asp:CommandField ShowDeleteButton="True" ShowEditButton="True"
 ShowSelectButton="True" />
 <asp:BoundField DataField="Id" HeaderText="Id" ReadOnly="True"
 SortExpression="Id" />
 <asp:BoundField DataField="Contact" HeaderText="Contact"
 SortExpression="Contact" />
 <asp:BoundField DataField="ReservedFrom" HeaderText="From"
 SortExpression="ReservedFrom" />
 <asp:BoundField DataField="ReservedTo" HeaderText="To"
 SortExpression="ReservedTo" />
 </Columns>
 </asp:GridView>

c41.indd 1277 30-01-2014 20:49:12

1278 ❘ CHAPTER 41 ASP.NET WEb FormS

Using Templates with the grid
For more customization, you can use templates. With the Fields editor, columns can be converted to
templates. When the Contact field is changed to templates, a TemplateField instead of a BoundField is
used, as shown in the following code snippet. With template fields, you can create different user inter-
faces, such as ItemTemplate, EditItemTemplate, AlternatingItemTemplate, HeaderTemplate,
FooterTemplate, and more.

The default ItemTemplate makes use of a Label, and the EditItemTemplate uses a TextBox. With both
of these, the Text property is bound to the Contact property of the bound object:

 <asp:TemplateField HeaderText="Contact" SortExpression="Contact">
 <EditItemTemplate>
 <asp:TextBox ID="TextBox2" runat="server"
 Text='<%# Bind("Contact") %>'></asp:TextBox>
 </EditItemTemplate>
 <ItemTemplate>
 <asp:Label ID="Label2" runat="server"
 Text='<%# Bind("Contact") %>'></asp:Label>
 </ItemTemplate>
 </asp:TemplateField>

Using the Template Editor (see Figure 41-22), any ASP.NET con-
trols can be added to the different template modes. The sample
adds a template for the MeetingRoom column, and replaces a
TextBox in edit mode by a DropDownList control. With the
DropDownList control, the data source is selected to be the
first entity data source control that returns the meeting rooms.
Properties of the DropDownList control can be bound by using
the DataBindings editor, shown in Figure 41-23.

FIgURE 41-21

FIgURE 41-22

c41.indd 1278 30-01-2014 20:49:13

Accessing Data ❘ 1279

FIgURE 41-23

The resulting ASPX code now uses a DropDownList in the EditItemTemplate, and a Label in the
ItemTemplate:

 <asp:TemplateField HeaderText="MeetingRoom"
 ConvertEmptyStringToNull="False" SortExpression="MeetingRoom">
 <EditItemTemplate>
 <asp:DropDownList ID="DropDownList2" runat="server"
 DataTextField="RoomName" DataValueField="Id"
 Width="146px" Height="16px"
 SelectedValue='<%# Bind("RoomId") %>'
 DataSourceID="ObjectDataSource1">
 </asp:DropDownList>
 </EditItemTemplate>
 <ItemTemplate>
 <asp:Label ID="Label1" runat="server" Text='<%#
 Bind("MeetingRoom.RoomName") %>'></asp:Label>
 </ItemTemplate>
 </asp:TemplateField>

Figure 41-24 shows the opened page with the DropDownList in the edit mode. Meeting rooms are retrieved
from the first data source, while the grid itself is bound to the second data source.

FIgURE 41-24

c41.indd 1279 30-01-2014 20:49:13

1280 ❘ CHAPTER 41 ASP.NET WEb FormS

SECURITy
Another important aspect of ASP.NET web applications is using authentication and authorization. With
.NET 4.5.1, ASP.NET switches to a new framework for authentication and authorization. Previously, the
Membership API has been used. However, the Membership API is not designed for claims-based authen-
tication. The new ASP.NET Identity framework is flexible with that, and also supports authentication via
Twitter, Facebook, and Microsoft accounts.

In Chapter 40, the ASP.NET Identity is introduced. In this section you see how to add authentication and
authorization to an empty Web Forms project.

Setting Up the ASP.NET Identity
The empty template that has been used with the application sample didn’t allow selecting an authentication
option. However, there’s an easy way to change this later on. To have your own store of user data, just add
the Microsoft ASP.NET Identity EntityFramework NuGet package. This package also installs the dependent
package Microsoft ASP.NET Identity Core.

When you use the ASP.NET Identity Framework to create users, a database is created automatically. For
defining the database name, you need to add this connection string to the web.config file:

 <connectionStrings>
 <add name="DefaultConnection" connectionString=
 "Data Source=(LocalDb)\v11.0;AttachDbFilename=
 |DataDirectory|\Authentication.mdf;Initial Catalog=
 Authentication;Integrated Security=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

User Registration
To allow user registration, a Web Form is created that asks the user about a username and password. The
Register button defines the OnRegister handler method to be invoked on submitting the form:

 <form id="form1" runat="server">
 <div>
 <asp:Label Text="Username:" AssociatedControlID="textUsername"
 runat="server" />
 <asp:TextBox ID="textUsername" runat="server" />

 <asp:Label Text="Password:" AssociatedControlID="textPassword"
 runat="server" />
 <asp:TextBox TextMode="Password" ID="textPassword" runat="server" />

 <asp:Button Text="Register" OnClick="OnRegister" runat="server" />

 </div>
 <asp:Label ID="StatusText" runat="server"></asp:Label>
 </form>

The OnRegister method first creates a new UserStore object with the generic parameter IdentityUser.
The UserStore class wraps a DbContext to create and connect to the database. The data stored is defined
by the IdentityUser type. The UserManager class can be used to create and update user information. The
Create method creates a new user. The sample code passes username and password:

 protected void OnRegister(object sender, EventArgs e)
 {
 string username = this.textUsername.Text;
 string password = this.textPassword.Text;

 var userStore = new UserStore<IdentityUser>();

c41.indd 1280 30-01-2014 20:49:13

Security ❘ 1281

 var manager = new UserManager<IdentityUser>(userStore);

 var user = new IdentityUser() { UserName = username };
 IdentityResult result = manager.Create(user, password);

 if (result.Succeeded)
 {
 StatusText.Text = string.Format(
 "User {0} was created successfully!", user.UserName);
 }
 else
 {
 StatusText.Text = result.Errors.FirstOrDefault();
 }
 }

User Authentication
Until now just the user information was added to the database. To authenticate the user, two more NuGet
packages need to be added to the project. The new authentication code makes use of Open Web Interface
for .NET (OWIN). To manage and configure the OWIN authentication code, extension classes are available
with the package Microsoft ASP.NET Identity Owin. To have the startup code for the IIS pipeline, the
package Microsoft.Owin.Host.SystemWeb is required.

After these packages are installed with the project, you can configure authentication startup
with Project ➪ Add New Item and selecting the OWIN Startup Class. Then you can invoke the
UseCookieAuthentication method with the IAppBuilder (code file ProCSharpSample/Startup/
AuthenticationStartup.cs):

[assembly: OwinStartup(typeof(
 ProCSharpSample.Startup.AuthenticationStartup))]

 public class AuthenticationStartup
 {
 public void Configuration(IAppBuilder app)
 {
 app.UseCookieAuthentication(new CookieAuthenticationOptions
 {
 AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie,
 LoginPath = new PathString("/Account/Login.aspx")
 });
 }
 }

For the login, another Web Form named Login.aspx is created. This allows for entering username and
password:

 <form id="form1" runat="server">
 <div>
 <asp:Label Text="Username:" AssociatedControlID="textUsername"
 runat="server" />
 <asp:TextBox ID="textUsername" runat="server" />

 <asp:Label Text="Password:" AssociatedControlID="textPassword"
 runat="server" />
 <asp:TextBox TextMode="Password" ID="textPassword" runat="server" />

 <asp:Button Text="Login" OnClick="OnLogin" runat="server" />

 </div>
 <asp:Label ID="StatusText" runat="server"></asp:Label>
 </form>

c41.indd 1281 30-01-2014 20:49:14

1282 ❘ CHAPTER 41 ASP.NET WEb FormS

Within the OnLogin handler method, username and password can be verified by using the Find method of
the UserManager. If username and password do match, an IdentityUser is returned, otherwise null. With
this user a ClaimsIdentity is created. The authentication manager that is needed for login of the user is
retrieved from the HTTP context using the GetOwinContext extension method. This method is defined
in the namespace System.Web in the assembly Microsoft.Owin.Host.SystemWeb. After retrieving the
authentication manager that implements the interface IAuthenticationManager, the user login is done
calling the SignIn method. This method sets the authentication cookie for the user:

 protected void OnLogin(object sender, EventArgs e)
 {
 string username = this.textUsername.Text;
 string password = this.textPassword.Text;

 var userStore = new UserStore<IdentityUser>();
 var userManager = new UserManager<IdentityUser>(userStore);
 IdentityUser user = userManager.Find(username,password);

 if (user != null)
 {
 ClaimsIdentity userIdentity = userManager.CreateIdentity(user,
 DefaultAuthenticationTypes.ApplicationCookie);

 IAuthenticationManager authenticationManager =
 HttpContext.Current.GetOwinContext().Authentication;

 authenticationManager.SignIn(new AuthenticationProperties()
 { IsPersistent = false }, userIdentity);
 Response.Redirect(Request.QueryString["ReturnUrl"]);
 }
 else
 {
 StatusText.Text = "Invalid username or password.";
 }
 }

User Authorization
As the user is authenticated, you can define what users are allowed to access pages with authorization. This
can be done either programmatically or using configuration.

With the web.config file, in the authorization section you can define what users or user roles are allowed
access. The sample configuration defines a deny to users ?. This setting denies access to all unauthenticated
users. Instead of denying access, you can allow access with the allow element and define a list of users
allowed:

<?xml version="1.0"?>
<configuration>
 <system.web>
 <authorization>
 <deny users="?"/>
 </authorization>
 </system.web>
</configuration>

If web.config files are used in subdirectories, the authorization section of the root web.config file is over-
ridden. This way you can have different authorization rules based on directories. It is also possible to define
authorization rules based on files. To do this, you can define the files with the path attribute of the loca-
tion element, and define the system.web configuration within the location.

Checking access programmatically, you can verify if the user is authenticated using the User.Identity
.IsAuthenticated property from the HTTP context. User.Identity.GetUserName() returns the name of
the user.

c41.indd 1282 30-01-2014 20:49:14

Ajax ❘ 1283

AjAX
Ajax enables you to enhance the user interfaces of web applications by means of asynchronous postbacks
and dynamic client-side web page manipulation. The term Ajax was invented by Jesse James Garrett and is
shorthand for Asynchronous JavaScript and XML.

NoTE Ajax is not an acronym, which is why it is not capitalized as AJAX. However, it
is capitalized in the product name ASP.NET AJAX, which is Microsoft’s implementa-
tion of Ajax, as described in the section “What is ASP.NET AJAX?”

By definition, Ajax involves both JavaScript and XML. However, Ajax programming requires the use
of other technologies as well, such as HTML, CSS, and the document object model (DOM). Nowadays,
XML is not always used with Ajax for transferring data between the client and the server. Instead, JSON
(JavaScript Object Notation) is used as an alternative. It has less overhead compared to XML.

Of course, the most important part of Ajax is the XMLHttpRequest. Since Internet Explorer 5, IE has sup-
ported the XMLHttpRequest API as a means of performing asynchronous communication between the cli-
ent and server. This was originally introduced by Microsoft as a technology to access e-mail stored in an
Exchange server over the Internet, in a product known as Outlook Web Access. Since then, it has become
the standard way to perform asynchronous communications in web applications, and it is a core technology
of Ajax-enabled web applications. Microsoft’s implementation of this API is known as XMLHTTP, which
communicates over what is often called the XMLHTTP Protocol.

Ajax also requires server-side code to handle both partial-page postbacks and full-page postbacks. This can
include both event handlers for server-control events and web services. Figure 41-25 shows how these tech-
nologies fit together in the Ajax web browser model, in contrast to the “traditional” web browser model.

Prior to Ajax, the first four technologies listed in the preceding table (HTML, CSS, the DOM, and
JavaScript) were used to create what was known as Dynamic HTML (DHTML) web applications. These
applications were notable for two reasons: they provided a much better user interface and they generally
worked on only one type of web browser.

FIgURE 41-25

Web Browser Web Server HTTP Request

HTTP Response

Web Browser Web Server

XMLHttp Request Ajax
Client-Side

Code

Ajax
Server-Side

Code

“Traditional” Web Browser Model

Ajax Web Browser Model

JavaScript

CSS

DOM

(X)HTML

HTML
Document

c41.indd 1283 30-01-2014 20:49:15

1284 ❘ CHAPTER 41 ASP.NET WEb FormS

Since DHTML, standards have improved, along with the level of adherence to standards in web browsers.
However, there are still differences, and an Ajax solution must take them into account. This has meant that
most developers have been quite slow to implement Ajax solutions. Only with the advent of more abstracted
Ajax frameworks (such as ASP.NET AJAX) has Ajax-enabled website creation become a viable option for
enterprise-level development.

What Is ASP.NET AjAX?
ASP.NET AJAX is Microsoft’s implementation of the Ajax framework, and it is specifically targeted
at ASP.NET Web Forms developers. It is part of the core ASP.NET Web Forms functionality. The website
dedicated to ASP.NET AJAX is www.asp.net/ajax, where you can find documentation, forums, and
sample code that you may find useful for whichever version of ASP.NET you are using.

ASP.NET AJAX provides the following functionality:

 ➤ A server-side framework that enables ASP.NET web pages to respond to partial-page postback
operations

 ➤ ASP.NET server controls that make the implementation of Ajax functionality easy

 ➤ An HTTP handler that enables ASP.NET web services to communicate with client-side code by using
JSON serialization in partial-page postback operations

 ➤ Web services that enable client-side code to gain access to ASP.NET application services, including
authentication and personalization services

 ➤ A website template for creating ASP.NET AJAX-enabled web applications

 ➤ A client-side JavaScript library that provides a number of enhancements to JavaScript syntax, as well
as code to simplify the implementation of Ajax functionality

These server controls and the server-side framework that makes them possible are collectively known as the
ASP.NET Extensions. The client-side part of ASP.NET AJAX is known as the AJAX Library. The ASP.NET
AJAX Control Toolkit is not part of the Visual Studio 2012 installation. This toolkit can be installed from
a NuGet Package. At the time of this writing, the most current version is 4.1.60623, which is used with the
examples. This toolkit contains a lot of server controls that are available as shared sources.

Together these downloads provide a richly featured framework that you can use to add Ajax functionality
to your ASP.NET web applications. In the following sections, you learn more about the various component
parts of ASP.NET AJAX. Its core functionality is contained in two parts: the AJAX Extensions and the
AJAX Library.

ASP.NET AJAX Extensions
ASP.NET AJAX extensions are contained in two assemblies that are installed in the GAC:

 ➤ System.Web.Extensions.dll—This assembly contains the ASP.NET AJAX functionality, includ-
ing the AJAX Extensions and the AJAX Library JavaScript files, which are available through the
ScriptManager component (described shortly).

 ➤ System.Web.Extensions.Design.dll—This assembly contains ASP.NET Designer components
for the AJAX Extensions server controls. This is used by the ASP.NET Designer in Visual Studio or
Visual Web Developer.

Much of the AJAX Extensions component of ASP.NET AJAX is concerned with enabling partial-page post-
backs and JSON serialization for web services. This includes various HTTP handler components and exten-
sions to the existing ASP.NET Framework. All this functionality can be configured through the web.config
file for a site. There are also classes and attributes that you can use for additional configuration. However,
most of this configuration is transparent, and you will rarely need to change the defaults.

Your main interaction with AJAX Extensions will be using server controls to add Ajax functionality to your
web applications. There are several of these, which you can use to enhance your applications in various

c41.indd 1284 30-01-2014 20:49:15

Ajax ❘ 1285

ways. The following table shows a selection of the server-side components. These components are demon-
strated later in this chapter.

CoNTRol dESCRIPTIoN

ScriptManager This control, central to ASP.NET AJAX functionality, is required on every page
that uses partial-page postbacks. Its main purpose is to manage client-side ref-
erences to the AJAX Library JavaScript files, which are served from the ASP.NET
AJAX assembly. The AJAX Library is used extensively by the AJAX Extensions
server controls, which all generate their own client-side code. This control is also
responsible for the configuration of web services that you intend to access from
client-side code. By supplying web service information to the ScriptManager
control, you can generate client-side and server-side classes to manage asyn-
chronous communication with web services transparently. You can also use the
ScriptManager control to maintain references to your own JavaScript files.

UpdatePanel This extremely useful control may be the ASP.NET AJAX control that you will
use most often. It acts like a standard ASP.NET placeholder and can contain any
other controls. More important, it also marks a section of a page as a region
that can be updated independently of the rest of the page, in a partial-page
postback. Any controls contained by an UpdatePanel control that cause a
postback (a Button control, for example) will not cause full-page postbacks.
Instead, they cause partial-page postbacks that update only the contents of the
UpdatePanel. In many situations, this control is all you need to implement Ajax
functionality. For example, you can place a GridView control in an Update-
Panel control, and any pagination, sorting, and other postback functionality of
the control will take place in a partial-page postback.

UpdateProgress This control enables you to provide feedback to users when a partial-page
postback is in progress. You can supply a template for this control that will be
displayed when an UpdatePanel is updating. For example, you could use a
floating <div> control to display a message such as “Updating...” so that the
user is aware that the application is busy. Note that partial-page postbacks do
not interfere with the rest of a web page, which will remain responsive.

Timer The ASP.NET AJAX control provides a way to cause an UpdatePanel to update
periodically. You can configure this control to trigger postbacks at regular
intervals. If the Timer control is contained in an UpdatePanel control, then
the UpdatePanel is updated every time the Timer control is triggered. This
control also has an associated event so that you can carry out periodic server-
side processing.

AsyncPostBackTrigger You can use this control to trigger UpdatePanel updates from controls that
aren’t contained in the UpdatePanel. For example, you can enable a drop-
down list elsewhere on a web page to cause an UpdatePanel containing a
GridView control to update.

The AJAX Extensions also include the ExtenderControl abstract base class for extending existing
ASP.NET server controls. This is used, for example, by various classes in the ASP.NET AJAX Control
Toolkit, as you will see shortly.

AJAX Library
The AJAX Library consists of JavaScript files that are used by client-side code in ASP.NET AJAX-enabled
web applications. A lot of functionality is included in these JavaScript files, some of which is general code that
enhances the JavaScript language and some of which is specific to Ajax functionality. The AJAX Library con-
tains layers of functionality that are built on top of each other, as described in the following table.

c41.indd 1285 30-01-2014 20:49:16

1286 ❘ CHAPTER 41 ASP.NET WEb FormS

lAyER dESCRIPTIoN

Browser
compatibility

The lowest-level code in the AJAX Library consists of code that maps various JavaScript
functionality according to the client web browser. This is necessary because browsers dif-
fer in terms of how they implement JavaScript. By providing this layer, JavaScript code in
other layers does not have any browser compatibility issues, and you can write browser-
neutral code that will work in all client environments.

Core services This layer contains the enhancements to the JavaScript language, in particular OOP
functionality. By using the code in this layer you can define namespaces, classes, derived
classes, and interfaces using JavaScript script files. This is of particular interest to C# de-
velopers, because it makes writing JavaScript code much more like writing .NET code (by
using C# and encouraging reusability).

Base class library The client base class library (BCL) includes many JavaScript classes that provide low-level
functionality to classes further down the AJAX Library hierarchy. Most of these classes are
not intended to be used directly.

Networking Classes in the networking layer enable client-side code to call server-side code asynchro-
nously. This layer includes the basic framework for making a call to a URL and responding
to the result in a callback function. For the most part, this is functionality that you will not
use directly; instead, you will use classes that wrap this functionality. This layer also con-
tains classes for JSON serialization and deserialization. You will find most of the network-
ing classes on the client-side Sys.Net namespace.

User interface This layer contains classes that abstract user interface elements such as HTML elements
and DOM events. You can use the properties and methods of this layer to write language-
neutral JavaScript code to manipulate web pages from the client. User interface classes
are contained in the Sys.UI namespace.

Controls The final layer of the AJAX Library contains the highest-level code, which provides Ajax
behaviors and server control functionality. This includes dynamically generated code that
you can use, for example, to call web services from client-side JavaScript code.

You can use the AJAX Library to extend and customize the behavior of ASP.NET AJAX-enabled web
applications, but it is important to note that it isn’t necessary. You can go a long way without using any
additional JavaScript in your applications—it becomes a requirement only when you need more advanced
functionality. If you do write additional client-side code, however, you will find that it is much easier using
the functionality that the AJAX Library offers.

ASP.NET AJAX Control Toolkit
The AJAX Control Toolkit is a collection of additional server controls, including extender controls, that
have been written by the ASP.NET AJAX community. Extender controls are controls that enable you to add
functionality to an existing ASP.NET server control, typically by associating a client-side behavior with
it. For example, one of the extenders in the AJAX Control Toolkit extends the TextBox control by placing
“watermark” text in the TextBox, which appears when the user hasn’t yet added any content to the text
box. This extender control is implemented in a server control called TextBoxWatermark.

Using the AJAX Control Toolkit, you can add quite a lot more functionality to your sites beyond what is pro-
vided in the core download. These controls are also interesting simply to browse, and they will probably give
you plenty of ideas about enhancing your web applications. However, because the AJAX Control Toolkit is
separate from the core download, you should not expect the same level of support for these controls.

ASP.NET AjAX Website Example
Now that you have seen the component parts of ASP.NET AJAX, it is time to start looking at how to use
them to enhance your websites. This section demonstrates how web applications that use ASP.NET AJAX

c41.indd 1286 30-01-2014 20:49:16

Ajax ❘ 1287

work, and how to use the various aspects of functionality that ASP.NET AJAX includes. You start by exam-
ining a simple application, and then add functionality in subsequent sections.

The ASP.NET Web Site template includes all the ASP.NET AJAX core functionality. You can also use the
AJAX Control Toolkit Web Site template (after it is installed) to include controls from the AJAX Control
Toolkit. For the purposes of this example, you can create a new ASP.NET Emtpy Web Application template
called ProCSharpAjaxSample.

Add a web form called Default.aspx and modify its code as follows:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"
 Inherits="ProCSharpAjaxSample.Default" %>
<!DOCTYPE html>
<html>
<head runat="server">
 <title>Professional C# ASP.NET AJAX Sample</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <h1>Professional C# ASP.NET AJAX Sample</h1>
 This sample obtains a list of primes up to a maximum value.

 Maximum:
 <asp:TextBox runat="server" ID="MaxValue" Text="2500" />

 Result:
 <asp:UpdatePanel runat="server" ID="ResultPanel">
 <ContentTemplate>
 <asp:Button runat="server" ID="GoButton" Text="Calculate" />

 <asp:Label runat="server" ID="ResultLabel" />

 <small>Panel render time: <%= DateTime.Now.ToLongTimeString() %>
 </small>
 </ContentTemplate>
 </asp:UpdatePanel>
 <asp:UpdateProgress runat="server" ID="UpdateProgress1">
 <ProgressTemplate>
 <div style="position: absolute; left: 100px; top: 200px;
 padding: 40px 60px 40px 60px; background-color: lightyellow;
 border: black 1px solid; font-weight: bold; font-size: larger;
 filter: alpha(opacity=80);">
 Updating.
 </div>
 </ProgressTemplate>
 </asp:UpdateProgress>
 <small>Page render time: <%= DateTime.Now.ToLongTimeString() %></small>
 </div>
 </form>
</body>
</html>

Switch to design view (note that the ASP.NET AJAX controls such as UpdatePanel and UpdateProgress
have visual designer components) and double-click the Calculate button to add an event handler. Modify the
code as follows (code file ProCSharpAjaxSample/Default.aspx.cs):

 protected void GoButton_Click(object sender, EventArgs e)
 {
 int maxValue = 0;
 var resultText = new StringBuilder();
 if (int.TryParse(MaxValue.Text, out maxValue))

c41.indd 1287 30-01-2014 20:49:16

1288 ❘ CHAPTER 41 ASP.NET WEb FormS

 {
 for (int trial = 2; trial <= maxValue; trial++)
 {
 bool isPrime = true;
 for (int divisor = 2; divisor <= Math.Sqrt(trial); divisor++)
 {
 if (trial % divisor == 0)
 {
 isPrime = false;
 break;
 }
 }
 if (isPrime)
 {
 resultText.AppendFormat("{0} ", trial);
 }
 }
 }
 else
 {
 resultText.Append("Unable to parse maximum value.");
 }
 ResultLabel.Text = resultText.ToString();
 }
 }

Save your modifications and press F5 to run the project. If prompted, enable debugging in web.config.

FIgURE 41-26

When the web page appears, as shown in Figure 41-26, note that the two render times shown are the same.

Click the Calculate button to display prime numbers less than or equal to 2,500. Unless you are running on
a slow machine, this should be almost instantaneous. Note that the render times are now different—only the
one in the UpdatePanel has changed.

Finally, add some zeros to the maximum value to introduce a processing delay (about three more should
be enough on a fast PC) and click the Calculate button again. This time, before the result is displayed, the
UpdateProgress control displays a partially transparent feedback message, as shown in Figure 41-27.

While the application updates, the page remains responsive. You can, for example, scroll through the page.
Close the browser to return to Visual Studio.

c41.indd 1288 30-01-2014 20:49:16

Ajax ❘ 1289

NoTE When the update completes, the scroll position of the browser is set to the point
it was at before Calculate was clicked. In most cases, when partial-page updates are
quick to execute, this is great for usability.

Close the browser to return to Visual Studio.

ASP.NET AjAX-enabled Website Configuration
Most of the configuration required for ASP.NET AJAX is supplied for you by default; you only need to add
to web.config if you want to change these defaults. For example, you can add a <system.web.exten-
sions> section to provide additional configuration. Most of the configuration that you can add with this
section concerns web services and is contained in an element called <webServices>, which in turn is placed
in a <scripting> element. First, you can add a section to enable access to the ASP.NET authentication ser-
vice through a web service (you can choose to enforce SSL here if you wish):

 <system.web.extensions>
 <scripting>
 <webServices>
 <authenticationService enabled="true" requireSSL="true"/>

Next, you can enable and configure access to ASP.NET personalization functionality through the profile
web service:

 <profileService enabled="true"
 readAccessProperties="propertyname1,propertyname2"
 writeAccessProperties="propertyname1,propertyname2" />

The last setting related to web services is for enabling and configuring access to ASP.NET role functionality
through the role web service:

 <roleService enabled="true"/>
 </webServices>

FIgURE 41-27

c41.indd 1289 30-01-2014 20:49:16

1290 ❘ CHAPTER 41 ASP.NET WEb FormS

Finally, the <system.web.extensions> section can contain an element that enables you to configure
compression and caching for asynchronous communications:

 <scriptResourceHandler enableCompression="true" enableCaching="true" />
 </scripting>
 </system.web.extensions>

Additional Configuration for the AJAX Control Toolkit
Installing the AJAX Control Toolkit using NuGet adds the following configuration to web.config:

 <pages>
 <controls>
 <add tagPrefix="ajaxToolkit" assembly="AjaxControlToolkit"
 namespace="AjaxControlToolkit" />
 </controls>
 </pages>

This maps the toolkit controls to the ajaxToolkit tag prefix. These controls are contained in the
AjaxControlToolkit.dll assembly, which should be in the /bin directory for the web application.

Alternatively, you could register the controls individually on web pages using the <%@ Register %>
directive:

<%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit"
 TagPrefix="ajaxToolkit" %>

Adding ASP.NET AjAX Functionality
The first step in adding Ajax functionality to a website is to add a ScriptManager control to your web
pages. Then you add server controls such as UpdatePanel controls to enable partial-page rendering, and
dynamic controls such as those supplied in the AJAX Control Toolkit to add usability and glitz to your
application. You may also add client-side code, and you can use the AJAX Library for further assistance in
customizing and enhancing your application’s functionality. This section describes the functionality you can
add using server controls. Later in this chapter you look at client-side techniques.

The ScriptManager Control
As mentioned earlier in the chapter, the ScriptManager control must be included on all pages that use
partial-page postbacks and several other aspects of ASP.NET AJAX functionality.

NoTE A great way to ensure that all the pages in your web application contain the
ScriptManager control is to add this control to the master page (or master pages) that
your application uses.

As well as enabling ASP.NET AJAX functionality, you can also use properties to configure this control. The
simplest of these properties is EnablePartialRendering, which is true by default. Setting this property to
false disables all asynchronous postback processing, such as that provided by UpdatePanel controls. This
can be useful, for example, if you want to compare your AJAX-enabled website with a traditional website—
perhaps if you were giving a demonstration to a manager.

You can use the ScriptManager control for several reasons, including the following common scenarios:

 ➤ To determine whether server-side code is being called as a result of a partial-page postback

 ➤ To add references to additional client-side JavaScript files

 ➤ To reference web services

 ➤ To return error messages to the client

These configuration options are covered in the following sections.

c41.indd 1290 30-01-2014 20:49:17

Ajax ❘ 1291

Detecting Partial-page Postbacks

The ScriptManager control includes a Boolean property called IsInAsyncPostBack. You can use
this property in server-side code to detect whether a partial-page postback is in progress. Note that the
ScriptManager for a page may actually be on a master page. Rather than access this control through
the master page, you can obtain a reference to the current ScriptManager instance by using the static
GetCurrent method, for example:

ScriptManager scriptManager = ScriptManager.GetCurrent(this);
if (scriptManager != null && scriptManager.IsInAsyncPostBack)
{
 // Code to execute for partial-page postbacks.
}

You must pass a reference to a Page control to the GetCurrent method. For example, if you use this method
in a Page_Load event handler for an ASP.NET web page, you can use this as your Page reference. Also,
remember to check for a null reference to avoid exceptions.

Client-side JavaScript References

Rather than add code to the HTML page header, or in <script> elements on the page, you can use the
Scripts property of the ScriptManager class. This centralizes your script references and makes it easier to
maintain them. To do this declaratively, first add a child <Scripts> element to the <UpdatePanel> control
element, and then add <asp:ScriptReference> child control elements to <Scripts>. You use the Path
property of a ScriptReference control to reference a custom script.

The following example shows how to add references to a custom script file called MyScript.js in the root
folder of the web application:

<asp:ScriptManager runat="server" ID="ScriptManager1">
 <Scripts>
 <asp:ScriptReference Path="~/MyScript.js" />
 </Scripts>
</asp:ScriptManager>

Web Service References

To access web services from client-side JavaScript code, ASP.NET AJAX must generate a proxy
class. To control this behavior, you use the Services property of the ScriptManager class. As with
Scripts, you can specify this property declaratively, this time with a <Services> element. You add
<asp:ServiceReference> controls to this element. For each ServiceReference object in the Services
property, you specify the path to the web service by using the Path property.

The ServiceReference class also has a property called InlineScript, which defaults to false. When
this property is false, client-side code obtains a proxy class to call the web service by requesting it from
the server. To enhance performance (particularly if you use a lot of web services on a page), you can set
InlineScript to true. This causes the proxy class to be defined in the client-side script for the page.

ASP.NET web services use a file extension of .asmx. Without going into too much detail in this chapter, to
add a reference to a web service called MyService.asmx in the root folder of a web application, you would
use code as follows:

<asp:ScriptManager runat="server" ID="ScriptManager1">
 <Services>
 <asp:ServiceReference Path="~/MyService.asmx" />
 </Services>
</asp:ScriptManager>

You can add references only to local web services (that is, web services in the same web application as the
calling code) in this way. You can call remote web services indirectly via local web methods.

Later in this chapter you will see how to make asynchronous web method calls from client-side JavaScript
code that uses proxy classes generated in this way.

c41.indd 1291 30-01-2014 20:49:17

1292 ❘ CHAPTER 41 ASP.NET WEb FormS

Client-side Error Messages

If an exception is thrown as part of a partial-page postback, the default behavior is to place the error mes-
sage contained in the exception into a client-side JavaScript alert message box. You can customize the mes-
sage that is displayed by handling the AsyncPostBackError event of the ScriptManager instance. In the
event handler, you can use the AsyncPostBackErrorEventArgs.Exception property to access the excep-
tion that is thrown and the ScriptManager.AsyncPostBackErrorMessage property to set the message
that is displayed to the client. You might do this to hide the exception details from users.

To override the default behavior and display a message in a different way, you must handle the endRequest
event of the client-side PageRequestManager object by using JavaScript. This is described later in this
chapter.

Using UpdatePanel Controls
The UpdatePanel control is likely to be the control that you will use most often when you write ASP.NET
AJAX-enabled web applications. This control, as you have seen in the simple example earlier in the chapter,
enables you to wrap a portion of a web page so that it is capable of participating in a partial-page postback
operation. To do this, you add an UpdatePanel control to the page and fill its child <ContentTemplate>
element with the controls that you want it to contain:

<asp:UpdatePanel runat="Server" ID="UpdatePanel1">
 <ContentTemplate>
 ...
 </ContentTemplate>
</asp:UpdatePanel>

The contents of the <ContentTemplate> template are rendered in either a <div> or element accord-
ing to the value of the RenderMode property of the UpdatePanel. The default value of this property is
Block, which results in a <div> element. To use a element, set RenderMode to Inline.

Multiple UpdatePanel Controls on a Single Web Page

You can include any number of UpdatePanel controls on a page. If a postback is caused by a control that
is contained in the <ContentTemplate> of any UpdatePanel on the page, a partial-page postback will
occur instead of a full-page postback. This will cause all the UpdatePanel controls to update according to
the value of their UpdateMode property. The default value of this property is Always, which means that the
UpdatePanel will update for a partial-page postback operation on the page, even if this operation occurs
in a different UpdatePanel control. If you set this property to Conditional, the UpdatePanel updates
only when a control that it contains causes a partial-page postback or when a trigger that you have defined
occurs. Triggers are covered shortly.

If you have set UpdateMode to Conditional, you can also set the ChildrenAsTriggers property to
false to prevent controls that are contained by the UpdatePanel from triggering an update of the panel.
Note, though, that in this case these controls still trigger a partial-page update, which may result in other
UpdatePanel controls on the page being updated. For example, this would update controls that have an
UpdateMode property value of Always. This is illustrated in the following code:

<asp:UpdatePanel runat="Server" ID="UpdatePanel1" UpdateMode="Conditional"
 ChildrenAsTriggers="false">
 <ContentTemplate>
 <asp:Button runat="Server" ID="Button1" Text="Click Me" />
 <small>Panel 1 render time: <%= DateTime.Now.ToLongTimeString() %></small>
 </ContentTemplate>
</asp:UpdatePanel>
<asp:UpdatePanel runat="Server" ID="UpdatePanel2">
 <ContentTemplate>
 <small>Panel 2 render time: <%= DateTime.Now.ToLongTimeString() %></small>
 </ContentTemplate>
</asp:UpdatePanel>
<small>Page render time: <%= DateTime.Now.ToLongTimeString() %></small>

c41.indd 1292 30-01-2014 20:49:17

Ajax ❘ 1293

In this code, the UpdatePanel2 control has an UpdateMode property of Always, the default value. When the
button is clicked, it causes a partial-page postback, but only UpdatePanel2 will be updated. Visually, you
will notice that only the “Panel 2 render time” label is updated.

Server-side UpdatePanel Updates

Sometimes when you have multiple UpdatePanel controls on a page, you might decide not to update one of
them unless certain conditions are met. In this case, you would configure the UpdateMode property of the panel
to Conditional as shown in the previous section, and possibly also set the ChildrenAsTriggers property to
false. Then, in your server-side event-handler code for one of the controls on the page that causes a partial-
page update, you would (conditionally) call the Update method of the UpdatePanel. Here is an example:

protected void Button1_Click(object sender, EventArgs e)
{
 if (TestSomeCondition())
 {
 UpdatePanel1.Update();
 }
}

UpdatePanel Triggers

You can cause an UpdatePanel control to be updated by a control elsewhere on the web page by adding
triggers to the Triggers property of the control. A trigger is an association between an event of a control
elsewhere on the page and the UpdatePanel control. All controls have default events (for example, the
default event of a Button control is Click), so specifying the name of an event is optional. Two types of
triggers can be added, represented by the following two classes:

 ➤ AsyncPostBackTrigger—This class causes the UpdatePanel to update when the specified event of
the specified control is triggered.

 ➤ PostBackTrigger—This class causes a full-page update to be triggered when the specified event of
the specified control is triggered.

You will mostly use AsyncPostBackTrigger, but PostBackTrigger can be useful if you want a control
inside an UpdatePanel to trigger a full-page postback.

Both of these trigger classes have two properties: ControlID, which specifies the control that causes
the trigger by its identifier, and EventName, which specifies the name of the event for the control
linked to the trigger.

To extend an earlier example, consider the following code:

<asp:UpdatePanel runat="Server" ID="UpdatePanel1" UpdateMode="Conditional"
 ChildrenAsTriggers="false">
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="Button2" />
 </Triggers>
 <ContentTemplate>
 <asp:Button runat="Server" ID="Button1" Text="Click Me" />
 <small>Panel 1 render time: <% =DateTime.Now.ToLongTimeString() %></small>
 </ContentTemplate>
</asp:UpdatePanel>
<asp:UpdatePanel runat="Server" ID="UpdatePanel2">
 <ContentTemplate>
 <asp:Button runat="Server" ID="Button2" Text="Click Me" />
 <small>Panel 2 render time: <% =DateTime.Now.ToLongTimeString() %></small>
 </ContentTemplate>
</asp:UpdatePanel>
<small>Page render time: <% =DateTime.Now.ToLongTimeString() %></small>

The new Button control, Button2, is specified as a trigger in the UpdatePanel1. When this button is
clicked, both UpdatePanel1 and UpdatePanel2 will be updated: UpdatePanel1 because of the trigger, and
UpdatePanel2 because it uses the default UpdateMode value of Always.

c41.indd 1293 30-01-2014 20:49:17

1294 ❘ CHAPTER 41 ASP.NET WEb FormS

Using UpdateProgress
The UpdateProgress control, as shown in the earlier example, enables you to display a progress message to
the user while a partial-page postback is in operation. You use the ProgressTemplate property to supply
an ITemplate for the progress display. You will typically use the <ProgressTemplate> child element of the
control to do this.

You can place multiple UpdateProgress controls on a page by using the AssociatedUpdatePanelID prop-
erty to associate the control with a specific UpdatePanel. If this is not set (the default), the UpdateProgress
template will be displayed for any partial-page postback, regardless of which UpdatePanel causes it.

When a partial-page postback occurs, there is a delay before the UpdateProgress template is displayed.
This delay is configurable through the DisplayAfter property, which is an int that specifies the delay in
milliseconds. The default is 500 milliseconds.

Finally, you can use the Boolean DynamicLayout property to specify whether space is allocated for the tem-
plate before it is displayed. With the default value of true for this property, space on the page is dynamically
allocated, which may result in other controls being moved out of the way for an inline progress template
display. If you set this property to false, space will be allocated for the template before it is displayed, so
the layout of other controls on the page will not change. You set this property according to the effect you
want to achieve when displaying progress. For a progress template that is positioned by using absolute coor-
dinates, as in the earlier example, you should leave this property set to the default value.

Using Extender Controls
The core ASP.NET AJAX download includes a class called ExtenderControl. The purpose of this control
is to enable you to extend (that is, add functionality to) other ASP.NET server controls. This is used exten-
sively in the AJAX Control Toolkit to great effect, and you can use the ASP.NET AJAX Server Control
Extender project template to create your own extended controls. ExtenderControl controls all work simi-
larly—you place them on a page, associate them with target controls, and add further configuration. The
extender then emits client-side code to add functionality.

To see this in action in a simple example, add the NuGet package Ajax Control Toolkit, create a
new Web Form named ExtenderDemo.aspx, and then add the following code. Notice that now the
ToolkitScriptManager is used instead of the ScriptManager. The ScriptManager might not load all nec-
essary scripts for the toolkit controls:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ExtenderDemo.aspx.cs"
 Inherits="ProCSharpAjaxSample.ExtenderDemo" %>
<!DOCTYPE html>
<html>
<head runat="server">
 <title>Color Selector</title>
</head>
<body>
 <form id="form1" runat="server">
 <ajaxToolkit:ToolkitScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <asp:UpdatePanel runat="server" ID="updatePanel1">
 <ContentTemplate>
 My favorite color is:

 <asp:Label runat="server" ID="favoriteColorLabel" Text="green"
 Style="color: #00dd00; display: inline-block; padding: 2px;
 width: 70px; font-weight: bold;" />
 <ajaxToolkit:DropDownExtender runat="server" ID="dropDownExtender1"
 TargetControlID="favoriteColorLabel"
 DropDownControlID="colDropDown" />
 <asp:Panel ID="colDropDown" runat="server"
 Style="display: none; visibility: hidden; width: 60px;
 padding: 8px; border: double 4px black; background-color: #ffffdd;

c41.indd 1294 30-01-2014 20:49:18

Ajax ❘ 1295

 font-weight: bold;">
 <asp:LinkButton runat="server" ID="OptionRed" Text="red"
 OnClick="OnSelect" Style="color: #ff0000;" />

 <asp:LinkButton runat="server" ID="OptionOrange" Text="orange"
 OnClick="OnSelect" Style="color: #dd7700;" />

 <asp:LinkButton runat="server" ID="OptionYellow" Text="yellow"
 OnClick="OnSelect" Style="color: #dddd00;" />

 <asp:LinkButton runat="server" ID="OptionGreen" Text="green"
 OnClick="OnSelect" Style="color: #00dd00;" />

 <asp:LinkButton runat="server" ID="OptionBlue" Text="blue"
 OnClick="OnSelect" Style="color: #0000dd;" />

 <asp:LinkButton runat="server" ID="OptionPurple" Text="purple"
 OnClick="OnSelect" Style="color: #dd00ff;" />
 </asp:Panel>
 </ContentTemplate>
 </asp:UpdatePanel>
 </div>
 </form>
</body>
</html>

You also need to add the following event handler to the code-behind (code file ProCSharpAjaxSample/
ExtenderDemo.aspx.cs):

protected void OnSelect(object sender, EventArgs e)
{
 favoriteColorLabel.Text = ((LinkButton)sender).Text;
 favoriteColorLabel.Style["color"] = ((LinkButton)sender).Style["color"];
}

As shown in Figure 41-28, not very much is visible in the browser at first, and the extender seems to have no
effect.

FIgURE 41-28

However, when you hover over the text that reads “green,” a drop-down dynamically appears. If you click
this drop-down, a list appears, as shown in Figure 41-29.

When you click one of the links in the drop-down list, the text changes accordingly (after a partial-page
postback operation).

c41.indd 1295 30-01-2014 20:49:18

1296 ❘ CHAPTER 41 ASP.NET WEb FormS

FIgURE 41-29

Note two important points about this simple example:

 ➤ It was extremely easy to associate the extender with target controls.

 ➤ The drop-down list was styled using custom code—meaning you can place whatever content you like
in the list. This simple extender is a great, and easy, way to add functionality to your web applications.

The extenders contained in the AJAX Control Toolkit are continually being added to and updated. If you
have installed it using NuGet, you’ll be automatically informed when a new version is available.

In addition to the extender controls that are supplied by the AJAX Control Toolkit, you can create your
own. To create an effective extender, you must use the AJAX Library. However, a discussion of this scripting
library is not part of this book.

SUMMARy
In this chapter you looked at several advanced techniques for creating ASP.NET pages and web applications.
You’ve seen how you can use ASP.NET AJAX to enhance ASP.NET web applications. ASP.NET AJAX
contains a wealth of functionality that makes websites far more responsive and dynamic and can provide a
much better user experience.

First, you learned about the ASP.NET Web Forms page model, the event model, and how to find out about
these events by using tracing. The page events are most important for understanding ASP.NET Web Forms.
You then looked at master pages, and how to provide a template for the pages of your website, which is
another way to reuse code and simplify development.

You’ve seen validation using ASP.NET validation controls, and you took a brief look at security and how
you can implement forms-based authentication on your websites with minimal effort based on the APIs
shown in the previous chapter.

Next, you investigated data controls and how easy it is to access the Entity Framework. Then, the
ObjectDataSource illustrated some more flexible use. In the last part of this chapter, you learned about
ASP.NET AJAX, Microsoft’s implementation of Ajax.

The next chapter is about another ASP.NET Framework: ASP.NET MVC. Unlike Web Forms, with
ASP.NET MVC it’s necessary to deal with HTML and JavaScript, and to use .NET for server-side function-
ality. Because of a clear separation between the UI, functionality, and data access, unit testing is easier with
ASP.NET MVC.

c41.indd 1296 30-01-2014 20:49:18

ASP.NET MVC
wHAT’s In THIs CHAPTER?

 ➤ Understanding ASP.NET MVC
 ➤ Creating Controllers
 ➤ Creating Views
 ➤ Validating User Inputs
 ➤ Using Filters
 ➤ Authentication and Authorization
 ➤ Working with the ASP.NET Web API

wRoX.CoM CoDE DownloADs FoR THIs CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/go/procsharp
on the Download Code tab. The code for this chapter is divided into the following major examples:

 ➤ MVC Sample App
 ➤ Menu Planner

AsP.nET MVC oVERVIEw
In Chapter 40, “Core ASP.NET” you learned the basics of web programming with ASP.NET, a
foundation both for ASP.NET Web Forms and ASP.NET MVC. Chapter 41, “ASP.NET Web Forms,”
discusses ASP.NET Web Forms, which is a framework that makes it easy to create web applications
just using server-side code, with server-side controls that create HTML and JavaScript code on
its own. This chapter is about the opposite — using a technology in which HTML and JavaScript
becomes more important. Server-side C# code is written for controllers and models, and with the
views HTML and JavaScript are the way to go along with just a little bit of C# code. With the release
of Visual Studio 2013 you use version 5 of ASP.NET MVC.

The major namespaces used in this chapter are System.Web.Mvc and its subnamespaces and System
.Web.Http.

42

c42.indd 1297 30-01-2014 20:49:51

1298 ❘ CHAPTER 42 ASP.NET MVC

In Chapter 40 you learned about the MVC pattern. Now get into code; start with a simple ASP.NET MVC
project. Visual Studio 2013 offers several templates with the ASP.NET Web Application that use MVC
directories and libraries — such as MVC, Web API, Single Page Application, and Facebook — by default.
With the first sample app, the Empty template is used, and the MVC option is selected with this template, as
shown in Figure 42-1. This creates the necessary directories and adds references needed.

FIGURE 42-1

After creating this project, let’s have a look at the generated directories.

DIRECToRy DEsCRIPTIon

App_Data The App_Data folder is used to store database files or other data files
such as XML files.

App_Start The App_Start folder contains a definition for the route to access
controllers and actions.

Controllers The Controllers folder contains — as the name clearly
defines — controllers. Here you should add controller classes that react to
user requests.

Models The Models folder is used for data classes, for example, the ADO.NET
Entity Framework.

Views The Views folder contains the views. Views are usually HTML code.

c42.indd 1298 30-01-2014 20:49:52

Defining Routes ❘ 1299

Now look at ASP.NET MVC from a different angle. Figure 42-2 shows all the parts of ASP.
NET MVC that come into play when a user makes an HTTP request. As the request is
received on the server, routing defines what controller should be invoked, and what action
in the controller should be invoked. The controller is responsible for returning a result. It
can use a model for its work and finally returns a view result. Based on the view result, a
view engine is selected, and this one searches for a view that fits. The result from the view is
returned with the response.

Now let’s explore the major steps starting with routing.

DEFInInG RoUTEs
The controller is selected based on a route. You can see the default routes defined in the
method RegisterRoutes (code file MVCSampleApp/App_Start/RouteConfig.cs). This
method is invoked from within the Application_Start method (code file MVCSampleApp/
Global.asax.cs) that is invoked on the start of the web application. The route named
Default is the default route for ASP.NET MVC applications. The default route is defined with the URL
{controller}/{action}/{id}. This route maps three segments of the URL. The first segment is mapped
to the controller, the second segment to the action, and the third segment to a parameter named id. Now
look at a sample URL with ASP.NET MVC, for example, http://localhost:Home/Index/demo. With
this URL, the value for controller is Home, the value for action is Index, and the value for id is demo.
With ASP.NET MVC applications, the controller and action are mandatory, but there can be defaults. The
parameter of the MapRoute method that sets the defaults parameter defines defaults for controller and
action, and specifies that the id parameter is optional. This way specifying the URL http://localhost
defines the controller Home and the action Index:

 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 defaults: new { controller = "Home", action = "Index",
 id = UrlParameter.Optional }
);

noTE Chapter 40 explains application events such as Application_Start.

Adding Routes
There are several reasons to add or change routes. For example, routes can be modified to just use actions
with the link and define Home as the default controller, adding additional entries to the link, or using
multiple parameters.

A route where the user can use links such as http://<server>/About to address the About action method
in the Home controller without passing a controller name can be defined as shown in the following snippet.
The controller is left out from the URL. It is mandatory, but it can be defined with the defaults:

 routes.MapRoute(
 name: "Default",
 url: "{action}/{id}",

FIGURE 42-2

c42.indd 1299 30-01-2014 20:49:52

1300 ❘ CHAPTER 42 ASP.NET MVC

 defaults: new { controller = "Home", action = "Index",
 id = UrlParameter.Optional }
);

Another scenario to change the route is shown here. With this code snippet a variable language is added
to the route. This variable is set to the section within the URL that follows the server name and is placed
before the controller, for example, http://server/en/Home/About. You can use this to specify a
language:

 routes.MapRoute(
 name: "Language",
 url: "{language}/{controller}/{action}/{id}",
 defaults: new { controller = "Home", action = "Index",
 id = UrlParameter.Optional }
);

Route Constraints
Mapping the route, constraints can be specified. This way URLs other than defined by the constraint are not
possible. The following constraint defines that the language parameter can be only en or de by using the
regular expression (en)|(de). URLs like http://<server>/en/Home/About or http://<server>/de/
Home/About are valid:

 routes.MapRoute(
 name: "Language",
 url: "{language}/{controller}/{action}/{id}",
 defaults: new { controller = "Home", action = "Index",
 id = UrlParameter.Optional },
 constraints: new {language = @"(en)|(de)"}
);

If a link should enable only numbers (for example, to access products with a product number), the regular
expression \d+ matches any number of numerical digits but at least one:

 routes.MapRoute(
 name: "Products",
 url: "{controller}/{action}/{productId}",
 defaults: new { controller = "Home", action = "Index",
 productId = UrlParameter.Optional },
 constraints: new { productId = @"\d+"}
);

Routing specifies the controller that is used and the action of the controller. The next section covers
controllers.

CREATInG ConTRollERs
A controller reacts to requests from the user and sends a response. A view is not required as you see next.

There are some conventions with ASP.NET MVC. With the architecture of ASP.NET MVC, conventions
have been preferred to configuration. The same is true with controllers. You can find controllers in
the directory Controllers, and the name of the controller class must be suffixed with the name
Controller.

You can easily create a controller by selecting the Controllers directory in Solution Explorer, and using
the menu Add ➪ Controller from the context menu. Figure 42-3 displays the dialog. This dialog offers
different controller types that can be created. The controllers for Web API are discussed in Chapter 44,
“ASP.NET Web API.” The first controller created here is the empty one. Other controller templates are used
later in this chapter. After selecting the empty controller type, you can assign a name to the controller. For
the route that is specified, the HomeController is created.

c42.indd 1300 30-01-2014 20:49:52

Creating Controllers ❘ 1301

The generated code contains a HomeController class that derives from the base class Controller. This
class also contains an Index method that corresponds to the Index action. Requesting an action as defined
by the route, a method within the controller is invoked:

 public class HomeController : Controller
 {
 // GET: /Home/
 public ActionResult Index()
 {
 return View();
 }
 }

Action Methods
A controller contains action methods. A simple action method is the Hello method from the following code
snippet (code file MVCSampleApp/Controllers/HomeController.cs):

 public string Hello()
 {
 return "Hello, ASP.NET MVC";
 }

The Hello action in the Home controller can be invoked with the link http://localhost:41270/Home/
Hello. Of course, the port number depends on your settings and can be configured with the web properties
in the project settings. Opening this link from the browser, the controller returns just the string Hello,
ASP.NET MVC — no HTML, just a string. The browser displays the string.

An action can return anything, for example, the bytes of an image, a video, XML or JSON data, or of
course HTML. Views are of great help for returning HTML. Before getting into views, look at more
controller features.

Parameters
Action methods can be declared with parameters like in the following code snippet:

FIGURE 42-3

c42.indd 1301 30-01-2014 20:49:52

1302 ❘ CHAPTER 42 ASP.NET MVC

 public string Greeting(string name)
 {
 return HttpUtility.HtmlEncode("Hello, " + name);
 }

With this declaration, the Greeting action method can be invoked requesting this URL passing a value with
the name parameter in the URL: http://localhost:41270/Home/Greeting?name=Stephanie.

To use links that can be better remembered, route information can be used to specify the parameters. With
the default route configuration, the Greeting2 action method is specified with the id parameter because the
route specifies this parameter value:

 public string Greeting2(string id)
 {
 return HttpUtility.HtmlEncode("Hello, " + id);
 }

Now this link can be used, and the id parameter contains the string Matthias: http://localhost:41270/
Home/Greeting2/Matthias.

Action methods can also be declared with any number of parameters. You can add the Add action method to
the Home controller with two parameters:

 public int Add(int x, int y)
 {
 return x + y;
 }

You can invoke this action with the URL http://localhost:41270/Home/Add?x=4&y=5 to fill the x and y
parameters.

With multiple parameters, you can also define a route to pass the values with a different link. The following
code snippet shows an additional route defined in the route table to specify multiple parameters that fill the
variables x and y (code file MVCSampleApp/Global.asax.cs):

 routes.MapRoute(
 name: "MultipleParameters",
 url: "{controller}/{action}/{x}/{y}",
 defaults: new { controller = "Home", action = "Index" }
);

Now the same action as before can be invoked using this URL: http://localhost:41270/Home/Add/7/2.

Returning Data
So far you returned only string values from the controller. Usually, an ActionResult or a class that derives
from ActionResult is returned.

Following are several examples with the ResultController class (code file MVCSampleApp/Controllers/
ResultController.cs). The first code snippet uses of the ContentResult class to return simple text
content. Instead of creating an instance of the ContentResult class and returning the instance, methods
from the base class Controller can be used to return ActionResults. Here, the method Content is used to
return text content. The Content method enables specifying the content, the MIME type, and encoding:

 public ActionResult ContentDemo()
 {
 return Content("Hello World", "text/plain");
 }

With the JavaScript method, JavaScript code can be returned. The method automatically sets the MIME
type to application/x-javascript with the sample code:

c42.indd 1302 30-01-2014 20:49:53

Creating Controllers ❘ 1303

 public ActionResult JavaScriptDemo()
 {
 return JavaScript("<script>function foo { alert('foo'); }</script>");
 }

To return JSON (which is the preferred from JavaScript), the Json method can be used. With the sample
code, a Menu object is created. To allow an HTTP GET request from the client, JsonRequestBehavior
.AllowGet must be specified with the Json method. A different way to use JSON would be to use it from
within server-side code in a view where a GET request wouldn’t be necessary:

 public ActionResult JsonDemo()
 {
 var m = new Menu
 {
 Id = 3,
 Text = "Grilled sausage with sauerkraut und potatoes",
 Price = 12.90,
 Category = "Main"
 };
 return Json(m, JsonRequestBehavior.AllowGet);
 }

The Menu class is defined within the Models directory and defines a simple POCO class to contain some
properties (code file MVCSampleApp/Models/Menu.cs):

 public class Menu
 {
 public int Id { get; set; }
 public string Text { get; set; }
 public double Price { get; set; }
 public string Category { get; set; }
 }

The client sees this JSON data in the response body that can now easily be used as a JavaScript object:

 {"Id":3,"Text":"Grilled sausage with sauerkraut und potatoes",
 "Price":12.9,"Category":"Main"}

Using the Redirect method of the Controller class, the client receives an HTTP redirect request. After
receiving the redirect request, the browser requests the link it received. The Redirect method returns a
RedirectResult (code file MVCSampleApp/Controllers/ResultController.cs):

 public ActionResult RedirectDemo()
 {
 return Redirect("http://www.cninnovation.com");
 }

You can also build a redirect request to the client by specifying a redirect to another controller and action.
RedirectToRoute returns a RediretToRouteResult that enables specifying route names, controllers,
actions, and parameters. This builds a link that is returned to the client with an HTTP redirect request:

 public ActionResult RedirectRouteDemo()
 {
 return RedirectToRoute(new { controller = "Home", action="Hello" });
 }

With the File method depending on different overloads of the method, FilePathResult,
FileContentResult, and FileStreamResult can be returned. The different return types depend on the
parameters used, for example, a string for a file path, a Stream for a stream result, and a byte array for a
content result. For the next sample code, a Content directory is created that contains an Images folder and
the image file Stephanie.jpg. The sample code returns a FilePathResult specifying a JPG filename that
is also defined with the contentType parameter:

c42.indd 1303 30-01-2014 20:49:53

1304 ❘ CHAPTER 42 ASP.NET MVC

 public ActionResult FileDemo()
 {
 return File("~/Content/Images/Stephanie.jpg", "image/jpg");
 }

The next section shows how to return different ViewResult variants.

CREATInG VIEws
The HTML code that is returned to the client is best specified with a view. For the samples in this section,
the ViewsDemoController is created. The views are all defined within the Views folder. The views for the
ViewsDemo controller need a ViewsDemo subdirectory. This is a convention for the views.

Another place in which views are searched is the Shared directory. You can put views that should be used
by multiple controllers (and special partial views used by multiple views) into the Shared directory (code file
MVCSampleApp/Controllers/ViewDemoController.cs):

 public ActionResult Index()
 {
 return View();
 }

When selecting the Index method in the code editor, you can create a view by opening the context menu
and selecting the Add View menu entry. The Add View dialog displays, as shown in Figure 42-4. To start
just a simple view is created by deselecting the use of the layout or master page.

FIGURE 42-4

The action method Index uses the View method without parameters, and thus the view engine searches
for a view file with the same name as the action name in the ViewsDemo directory. The View method has
overloads that enable passing a different view name. In that case the view engine looks for a view with the
name passed to the View method.

c42.indd 1304 30-01-2014 20:49:53

Creating Views ❘ 1305

A view contains HTML code mixed with a little server-side code as shown. The following snippet contains
the default generated HTML code (code file MVCSampleApp/Views/ViewsDemo/Index.cshtml):

@{
 Layout = null;
}
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
 <div>
 </div>
</body>
</html>

Server-side code is written using the @ sign: the Razor syntax. This syntax is discussed in the section Razor
Syntax. Before getting into the details of the Razor syntax, the next section shows how to pass data from a
controller to a view.

Passing Data to Views
The controller and view run in the same process. The view is directly created from within the controller.
This makes it easy to pass data from the controller to the view. To pass data, a ViewDataDictionary can
be used. This dictionary stores keys as strings and enables object values. The ViewDataDictionary can be
used with the ViewData property of the Controller class, for example, passing a string to the dictionary
where the key value MyData is used: ViewData["MyData"] = "Hello". An easier syntax is using the
ViewBag property. ViewBag is a dynamic type that enables assigning any property name to pass data to the
view (code file MVCSampleApp/Controllers/SubmitDataController.cs):

 public ActionResult PassingData()
 {
 ViewBag.MyData = "Hello from the controller";
 return View();
 }

noTE Using dynamic types has the advantage that there is no direct dependency
from the view to the controller. Dynamic types are explained in detail in Chapter 12,
“Dynamic Language Extensions.”

Accessing the data passed from the controller, the ViewBag can be used in a similar way. Similar to the
Controller base class, the ViewBag property is defined in the base class of the view, WebViewPage (code
file MVCSampleApp/Views/ViewsDemo/PassingData.cshtml):

 <div>
 <div>@ViewBag.MyData</div>
 </div>

Razor syntax
As you’ve seen, the view contains both HTML and server-side code. With ASP.NET MVC you can use
ASPX syntax or Razor syntax. Razor syntax is simpler and requires fewer keystrokes. Razor uses the @
character as a transition character. Starting with @, C# code begins.

With ASPX syntax, both start and end characters are needed to mark the start and end of a code block; this
is not required with Razor. Razor automatically detects the end when C# code finishes.

c42.indd 1305 30-01-2014 20:49:53

1306 ❘ CHAPTER 42 ASP.NET MVC

With Razor you need to differentiate statements that return a value and methods that don’t. A value that
is returned can be used directly. For example, ViewBag.MyData returns a string. This string is put directly
between the HTML div tags:

<div>@ViewBag.MyData</div>

noTE Comparing the Razor syntax to the ASPX syntax you’ve worked with in the
previous chapter, <div>@ViewBag.MyData</div> is represented with ASPX syntax as
<div><%:ViewBag.MyData %></div>. With Razor, HTML encoding is done by default.

Invoking methods that return void, or specifying some other statements that don’t return a value, a Razor
code block is needed. The following code block defines a string variable:

 @{
 string name = "Angela";
 }

Using the variable can now be done with the simple syntax just using the transition character:

 <div>@name</div>

With the Razor syntax the engine automatically detects the end of the code when an HTML element is
found. There are some cases in which this cannot be seen automatically. Here parentheses can be used to
mark a variable. Following that normal text continues:

 <div>@(name), Stephanie</div>

A foreach statement defines a Razor code block as well:

 @foreach(var item in list)
 {
 The item name is @item.
 }

noTE Usually text content is automatically detected with Razor, for example, with
opening an angle bracket or using parentheses with a variable. There are a few cases in
which this does not work. Here, you can explicitly use @: to define the start of text.

strongly Typed Views
Using the ViewBag to pass data to views is one way. Another way is passing a model to the view. This allows
you to create strongly typed views.

The ViewsDemoController is now extended with the action method PassingAModel. Here, a new list of
Menu items is created, and this list is passed to the View method of the Controller base class (code file
MVCSampleApp/Controllers/SubmitDataController.cs):

 public ActionResult PassingAModel()
 {
 var menus = new List<Menu>
 {
 new Menu { Id=1, Text="Schweinsbraten mit Knödel und Sauerkraut",
 Price=6.9, Category="Main" },
 new Menu { Id=2, Text="Erdäpfelgulasch mit Tofu und Gebäck",
 Price=6.9, Category="Vegetarian" },
 new Menu { Id=3,
 Text="Tiroler Bauerngröst'l mit Spiegelei und Krautsalat",

c42.indd 1306 30-01-2014 20:49:53

Creating Views ❘ 1307

 Price=6.9, Category="Main" }
 };
 return View(menus);
 }

The information from the action method can be used within the view as a model. The model can be
defined in the view with the model keyword as shown in the following code snippet. The model is of type
IEnumerable<Menu>. Because the Menu class is defined within the namespace MVCSampleApp.Models, this
namespace is opened with the using keyword. After the model is defined, the Model property that is defined
with the abstract base class WebViewModel<TModel> is of the type of the model (code file MVCSampleApp/
ViewsDemo/PassingAModel.cshtml):

@using MVCSampleApp.Models
@model IEnumerable<Menu>
@{
 Layout = null;
}
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>PassingAModel</title>
</head>
<body>
 <div>

 @foreach (var item in Model)
 {
 @item.Text
 }

 </div>
</body>
</html>

You can pass any object as the model, whatever you need with the view. For example, editing a single Menu
object, the model would be of type Menu. Showing or editing a list, the model can be IEnumerable<Menu>.

Running the application showing the defined view, a list of menus is shown in the browser.

layout
Usually many pages of web applications show partly the same content, for example, copyright information,
a logo, and a main navigation structure. This is where layout pages come into play. With ASP.NET Web
Forms in the previous chapter, you saw master pages that fulfilled the same functionality as layout pages
with the Razor syntax.

Until now you didn’t use layout pages, and all the views contained the complete HTML content. Not using a
layout page needs to be explicitly specified by setting the Layout property to null:

@{
 Layout = null;
}

Using a Default Layout Page
As soon as you use the Add View dialog and select to use a layout page (and leave empty the name text for
the name of the layout page), a few directories and layout pages are created automatically. Here, NuGet
packages for jQuery are added because the generated layout page makes use of jQuery. You will also find
a _ViewStart.cshtml file within the Views directory, and a newly created Shared directory that contains
_Layout.cshtml.

c42.indd 1307 30-01-2014 20:49:54

1308 ❘ CHAPTER 42 ASP.NET MVC

The _ViewStart.cshtml page contains default configurations for all views. The only setting that is
defined by default is setting the Layout property to the shared layout page _Layout.cshtml (code file
MVCSampleApp/Views/_ViewStart.cshtml):

@{
 Layout = "~/Views/Shared/_Layout.cshtml";
}

The layout page contains the HTML content that is common to all pages that make use of this layout page.
Communication with the view and the controller can be done using ViewBag. The value for ViewBag.Title
can be defined within a content page, and it is shown here within the HTML title element. The RenderBody
method of the base class WebPageBase renders the content of the content page and thus defines the position in
which the content should be placed (code file MVCSampleApp/Views/Shared/_Layout.cshtml):

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewBag.Title - My ASP.NET Application</title>
 <link href="~/Content/Site.css" rel="stylesheet" type="text/css" />
 <link href="~/Content/bootstrap.min.css" rel="stylesheet" type="text/css" />
 <script src="~/Scripts/modernizr-2.6.2.js"></script>
</head>
<body>
 <script src="~/Scripts/jquery-1.10.2.min.js"></script>
 <script src="~/Scripts/bootstrap.min.js"></script>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© @DateTime.Now.Year - My ASP.NET Application</p>
 </footer>
 </div>
</body>
</html>

The _Layout.cshtml page is now changed to include header and footer information and a navigation
structure for some main links. Html.ActionLink is a HTML Helper that creates an HTML a element to
define a link. HTML Helpers are discussed in the section HTML Helpers:

<body>
 <header>
 <h1>ASP.NET MVC Sample App</h1>
 </header>
 <nav>

 @Html.ActionLink("Layout Sample", "LayoutSample")

 @Html.ActionLink("Layout using Sections", "LayoutUsingSections")

 </nav>
 <div>
 @RenderBody()
 </div>
 <footer>Sample code for Professional C#</footer>

 <script src="~/Scripts/jquery-1.10.2.min.js"></script>
 <script src="~/Scripts/bootstrap.min.js"></script>
</body>

c42.indd 1308 30-01-2014 20:49:54

Creating Views ❘ 1309

FIGURE 42-5

A view is created for the action LayoutSample (code file MVCSampleApp/Views/ViewsDemo/
LayoutSample.cshtml). This view doesn’t set the Layout property and thus uses the default layout.
The ViewBag.Title is set that is used within the HTML title element in the layout:

@{
 ViewBag.Title = "Layout Sample";
}
<h2>LayoutSample</h2>
<p>
 This content is merged with the layout page
</p>

Running the application now, the content from the layout and the view is merged, as is shown in
Figure 42-5.

Using Sections
There are more ways than rendering the body and using the ViewBag for exchanging data between the
layout and the view. With section areas you can define where the named content within a view should
be placed. The following code snippet (code file MVCSampleApp/Views/Shared/_Layout.cshtml) makes
use of a section named PageNavigation. Such sections are required by default, and loading the view fails if
the section is not defined. Setting the required parameter to false, the section becomes optional:

 <div>
 @RenderSection("PageNavigation", required: false)
 </div>
 <div>
 @RenderBody()
 </div>

Within the view (code file MVCSampleApp/Views/ViewsDemo/LayoutUsingSections.cshtml), the section
is defined with the section keyword. The position where the section is placed is completely independent
from the other content. The section PageNavigation is positioned from the layout:

@{
 ViewBag.Title = "Layout Using Sections";
}

c42.indd 1309 30-01-2014 20:49:54

1310 ❘ CHAPTER 42 ASP.NET MVC

FIGURE 42-6

<h2>Layout Using Sections</h2>
Main content here
@section PageNavigation
{
 <div>Navigation defined from the view</div>

 Nav1
 Nav2

}

Running the application now, the content from the view and the layout is merged according to the positions
defined by the layout, as shown in Figure 42-6.

noTE Sections aren’t used only to place some content within the body of an HTML
page; they are also useful to allow the view to place something in the head, for example,
metadata from the page.

Partial Views
Although layouts give an overall definition for multiple pages from the web application, partial views can be
used to define content within views. A partial view doesn’t have a layout.

Other than that, partial views are similar to normal views. They can also have a model. Partial views use
the same base class as normal views.

Following is an example of partial views. Here you start with a model that contains properties
for independent collections, events, and menus as defined by the class EventsAndMenus (code file
MVCSampleApp/Models/EventsAndMenus.cs):

c42.indd 1310 30-01-2014 20:49:54

Creating Views ❘ 1311

 public class EventsAndMenus
 {
 private IEnumerable<Event> events = null;
 public IEnumerable<Event> Events
 {
 get
 {
 return events ?? (events = new List<Event>()
 {
 new Event { Id=1, Text="Formula 1 G.P. Abu Dhabi, Yas Marina",
 Day=new DateTime(2014, 10, 26) },
 new Event { Id=2, Text="Formula 1 G.P. USA, Austin",
 Day = new DateTime(2014, 11, 9) },
 new Event { Id=3, Text="Formula 1 G.P. Brasil, Sao Paulo",
 Day = new DateTime(2014, 11, 30) }
 });
 }
 }
 private List<Menu> menus = null;
 public IEnumerable<Menu> Menus
 {
 get
 {
 return menus ?? (menus = new List<Menu>()
 {
 new Menu { Id=1, Text="Baby Back Barbecue Ribs", Price=16.9,
 Category="Main" },
 new Menu { Id=2, Text="Chicken and Brown Rice Piaf", Price=12.9,
 Category="Main" },
 new Menu { Id=3, Text="Chicken Miso Soup with Shiitake Mushrooms",
 Price=6.9, Category="Soup" }
 });
 }
 }
 }

Using this model, you get into partial views loaded from server-side code followed by partial views that are
requested from JavaScript code on the client.

Using Partial Views from Server-Side Code
In the ViewsDemoController (code file MVCSampleApp/Controllers/ViewsDemoController.cs), the
action method UseAPartialView passes an instance of EventsAndMenus to the view:

 public ActionResult UseAPartialView1()
 {
 return View(new EventsAndMenus());
 }

The view is defined to use the model of type EventsAndMenus (code file MVCSampleApp/Views/
ViewsDemo/UseAPartialView1.cshtml). A partial view can be shown by using the HTML Helper
method Html.Partial. Html.Partial returns an MvcHtmlString. Using the Razor syntax, the string
is written as content of the div element. The first parameter of the Partial method accepts the name of
the partial view. With the second parameter, the Partial method enables passing a model. If no model is
passed, the partial view has access to the same model as the view. Here, the view uses the model of type
EventsAndMenus, and the partial view just uses a part of it with the type IEnumerable<Event>:

@model MVCSampleApp.Models.EventsAndMenus
@{
 ViewBag.Title = "Use a Partial View";
 ViewBag.EventsTitle = "Live Events";
}

c42.indd 1311 30-01-2014 20:49:54

1312 ❘ CHAPTER 42 ASP.NET MVC

<h2>Use a Partial View</h2>
<div>this is the main view</div>
<div>
 @Html.Partial("ShowEvents", Model.Events)
</div>

Another way to render a partial view within the view is to use the HTML Helper method Html
.RenderPartial, which is defined to return void. This method directly writes the partial view content to
the response stream. This way, RenderPartial can be used within a Razor code block.

The partial view is created in a similar way to a normal view. With the Add View dialog, there’s a check box
that you can check to create a partial view. Using this check box, a layout cannot be assigned because the
layout is defined by the view where the partial view is loaded within. Other than that, the partial view can
be created in a similar way to normal views. You have access to the model and also to the dictionary that is
accessed by using the ViewBag property. A partial view receives a copy of the dictionary to receive the same
dictionary data that can be used (code file MVCSampleApp/Views/ViewsDemo/ShowEvents.cshtml):

@using MVCSampleApp.Models
@model IEnumerable<Event>
<h2>
 @ViewBag.EventsTitle
</h2>
<table>
 @foreach (var item in Model)
 {
 <tr>
 <td>@item.Day.ToShortDateString()</td>
 <td>@item.Text</td>
 </tr>
 }
</table>

Running the application, the view, partial view, and layout is rendered, as shown in Figure 42-7.

FIGURE 42-7

c42.indd 1312 30-01-2014 20:49:55

Creating Views ❘ 1313

Returning Partial Views from the Controller
So far the partial view was loaded directly without the interaction with a controller. Controllers can be used
as well to return a partial view.

In the following code snippet (code file MVCSampleApp/Controllers/ViewDemoController.cs), two action
methods are defined within the class ViewsDemoController. The first action method UsePartialView2
returns a normal view; the second action method ShowEvents returns a partial view with the Controller
method PartialView. The partial view ShowEvents was already created and used previously, which is used
here. With the method PartialView a model containing the event list is passed to the partial view:

 public ActionResult UseAPartialView2()
 {
 return View();
 }
 public ActionResult ShowEvents()
 {
 ViewBag.EventsTitle = "Live Events";
 return PartialView(new EventsAndMenus().Events);
 }

The view UsePartialView2 (code file MVCSampleApp/Views/ViewsDemo/UseAPartialView2.cshtml)
invokes the controller by calling the HTML Helper method Html.Action. The action name is ShowEvents
and uses the same controller as the view came from. Otherwise other controllers and parameters to the
action method can be passed with the Action method:

@model MVCSampleApp.Models.EventsAndMenus
@{
 ViewBag.Title = "Use a Partial View";
}
<h2>UseAPartialView</h2>
<div>this is the main view</div>
<div>
 @Html.Action("ShowEvents")
</div>

Calling Partial Views from jQuery
Partial views can also be loaded directly from code on the client. In the following code snippet (code file
MVCSampleApp/Views/ViewsDemo/UseAPartialView3.cshtml), an event handler is linked to
the click event of a button. Inside the click event handler, a GET request is made to the server to request
/ViewsDemo/ShowEvents. This request returns a partial view, and the result from the partial view is placed
within the div element named events:

@model MVCSampleApp.Models.EventsAndMenus
@{
 ViewBag.Title = "Use a Partial View";
}
<script>
 $(function () {
 $("#getEvents").click(function () {
 $("#events").load("/ViewsDemo/ShowEvents");
 });
 });
</script>
<h2>Use a Partial View</h2>
<div>this is the main view</div>
<button id="getEvents">Get Events</button>
<div id="events">
</div>

c42.indd 1313 30-01-2014 20:49:55

1314 ❘ CHAPTER 42 ASP.NET MVC

sUbMITTInG DATA FRoM THE ClIEnT
Until now you used only HTTP GET requests from the client to retrieve HTML code from the server. What
about sending form data from the client?

noTE Chapter 40 discusses behind-the-scenes information on HTTP GET, POST,
PUT, and DELETE requests.

To submit form data, the view CreateMenu for the controller SubmitData is created. This view (code file
MVCSampleApp/Views/SubmitData/CreateMenu.cshtml) contains an HTML form element that defines
what data should be sent to the server. The form method is declared as an HTTP POST request. The input
elements that define the input fields all have names that correspond to the properties of the Menu type:

@{
 ViewBag.Title = "Create Menu";
}
<h2>Create Menu</h2>
<form action="/SubmitData/CreateMenu" method="post">
<fieldset>
 <legend>Menu</legend>
 <div>Id:</div>
 <input name="id" />
 <div>Text:</div>
 <input name="text" />
 <div>Price:</div>
 <input name="price" />
 <div>Category:</div>
 <input name="category" />
 <div></div>
 <button type="submit">Submit</button>
</fieldset>
</form>

Figure 42-8 shows the opened page within the browser.

Within the SubmitData controller (code file MVCSampleApp/Controllers/SubmitDataController.cs)
two CreateMenu action methods are created: one for an HTTP GET request and another for an HTTP
POST request. With C# having different methods with the same name, it’s required that the parameter
numbers or types are different. Of course, this requirement is the same with action methods. Action
methods also need to differ with the HTTP request method. By default the request method is GET; applying
the attribute HttpPost, the request method is POST. For reading HTTP POST data, information from the
Request object could be used (refer to Chapter 40). However, it’s much simpler to define the CreateMenu
method with parameters. The parameters are matched with the name of the form fields:

 public ActionResult CreateMenu()
 {
 return View();
 }
 [HttpPost]
 public ActionResult CreateMenu(int id, string text, double price,
 string category)
 {
 var m = new Menu { Id = id, Text = text, Price = price };
 ViewBag.Info = string.Format(
 "menu created: {0}, Price: {1}, category: {2}", m.Text, m.Price,
 m.Category);
 return View("Index");
 }

c42.indd 1314 30-01-2014 20:49:55

Submitting Data from the Client ❘ 1315

Model binder
Instead of using multiple parameters with the action method, you can also use a type that contains
properties that match with the incoming field names:

 [HttpPost]
 public ActionResult CreateMenu(Menu m)
 {
 ViewBag.Info = string.Format(
 "menu created: {0}, Price: {1}, category: {2}", m.Text, m.Price,
 m.Category);
 return View("Index");
 }

Submitting the data with the form, a CreateMenu is invoked that shows the Index view with the submitted
menu data, as shown in Figure 42-9.

A model binder is responsible to transfer the data from the HTTP POST request. A model binder
implements the interface IModelBinder. By default the DefaultModelBinder class is used to bind the
input fields to the model. This binder supports primitive types, model classes (such as the Menu type), and
collections implementing ICollection<T>, IList<T>, and IDictionary<TKey, TValue>.

FIGURE 42-8

c42.indd 1315 30-01-2014 20:49:55

1316 ❘ CHAPTER 42 ASP.NET MVC

In case not all the properties of the parameter type should be filled from the model binder, you can use
the Bind attribute. With this attribute you can specify either with the Include or Exclude properties
a comma-separated list of property names that should be used for binding, or should not be used for
binding.

You can also pass the input data to the model using an action method without parameters as the next code
snippet demonstrates. Here, a new instance of the Menu class is created, and this instance is passed to the
UpdateModel method of the Controller class:

 [HttpPost]
 public ActionResult CreateMenu2()
 {
 var m = new Menu();
 UpdateModel<Menu>(m);
 ViewBag.Info = string.Format(
 "menu created: {0}, Price: {1}, category: {2}", m.Text, m.Price,
 m.Category);
 return View("Index");
 }

UpdateModel throws an InvalidOperationException if the updated model is not in a valid state after the
update. You can use the TryUpdateModel method to avoid this exception.

wARnInG If the model class has some properties that should not be updated, you
shouldn’t use the UpdateModel method. A malicious user could change the request from
the browser to update these properties as well. With the TryUpdateModel method, you
can pass a white list of properties that should be updated, or a blacklist of properties
that should not be updated.

FIGURE 42-9

c42.indd 1316 30-01-2014 20:49:56

Submitting Data from the Client ❘ 1317

Annotations and Validation
You can add some annotations to the model type that are used when updating the data for validation.
The namespace System.ComponentModel.DataAnnotations contains attribute types that can be used to
specify some information for data on the client, and be used for validation.

The Menu type is changed with these added attributes (code file MVCSampleApp/Models/Menu.cs):

 public class Menu
 {
 public int Id { get; set; }

 [Required, StringLength(50)]
 public string Text { get; set; }

 [DisplayName("Price"), DisplayFormat(DataFormatString="{0:C}")]
 public double Price { get; set; }

 [DataType(DataType.Date)]
 public DateTime Date { get; set; }
 [StringLength(10)]
 public string Category { get; set; }
 }

Possible attribute types you can use for validation are CompareAttribute to compare different properties,
CreditCardAttribute to verify a valid credit card number, EmailAddressAttribute to verify an e-mail
address, EnumDataTypeAttribute to compare the input to enumeration values, and PhoneAttribute to
verify a phone number.

You can also use other attributes to get values for display and error messages, for example,
DataTypeAttribute, DisplayFormatAttribute.

To use the validation attributes, you can verify the state of the model using ModelState.IsValid within an
action method as shown here (code file MVCSampleApp/Controllers/SubmitDataController.cs):

 [HttpPost]
 public ActionResult CreateMenu(Menu m)
 {
 if (ModelState.IsValid)
 {
 ViewBag.Info = string.Format(
 "menu created: {0}, Price: {1}, category: {2}", m.Text, m.Price,
 m.Category);
 }
 else
 {
 ViewBag.Info = "not valid";
 }
 return View("Index");
 }

If you use tool-generated model classes, it can be hard to add attributes to properties. As the tool-generated
classes are defined as partial classes, the class can be extended by adding properties and methods, by
implementing additional interfaces, and by implementing partial methods that are used by the tool-
generated classes. You cannot add attributes to existing properties and methods. However, there’s also help
for such scenarios. Now assume the Menu class is a tool-generated partial class. Then a new class with a
different name (for example, MenuMetadata) can define the same properties as the entity class and add the
annotations:

 public class MenuMetadata
 {
 public int Id { get; set; }

c42.indd 1317 30-01-2014 20:49:56

1318 ❘ CHAPTER 42 ASP.NET MVC

 [Required, StringLength(25)]
 public string Text { get; set; }

 [DisplayName("Price"), DisplayFormat(DataFormatString="{0:C}")]
 public double Price { get; set; }

 [DataType(DataType.Date)]
 public DateTime Date { get; set; }

 [StringLength(10)]
 public string Category { get; set; }
 }

The MenuMetadata class must be linked to the Menu class. With tool-generated partial classes, you can
create another partial type in the same namespace to add the MetadataType attribute to the type definition
that creates the connection:

 [MetadataType(typeof(MenuMetadata))]
 public partial class Menu
 {
 }

HTML Helpers (as shown next) can also make use of annotations to add information to the client.

HTMl HElPERs
So far you’ve seen some HTML Helper methods such as Html.ActionLink and Html.Partial. There are a
lot more that can help generate HTML content.

Html is a property of the view base class WebViewPage and is of type HtmlHelper. HTML Helper methods
are implemented as extension methods to extend the HtmlHelper class.

The class InputExtensions defines HTML Helper methods to create check boxes, password controls,
radio buttons, and text box controls. The Action and RenderAction helpers are defined by the class
ChildActionExtensions. Helper methods for display are defined by the class DisplayExtensions. Helper
methods for HTML forms are defined by the class FormExtensions.

Now we will get into some examples using HTML helpers.

simple Helpers
The following code snippet uses the HTML helper methods BeginForm, Label, and CheckBox. BeginForm
starts a form element. There’s also an EndForm for ending the form element. The sample makes use of the
IDisposable interface implemented by the MvcForm returned from the BeginForm method. On disposing of
the MvcForm, EndForm is invoked. This way the BeginForm method can be surrounded by a using statement
to end the form at the closing curly brackets. The method DisplayName directly returns the content from
the argument; the method CheckBox is an input element with the type attribute set to checkbox (code file
MVCSampleApp/Views/HelperMethods/SimpleHelper.cshtml):

@using (Html.BeginForm()) {
 @Html.DisplayName("Check this (or not)")
 @Html.CheckBox("check1")
}

The resulting HTML code is shown here. The CheckBox method creates two input elements with the same
name; one is set to hidden. The reason is if a check box has a value false, the browser does not pass this
information to the server with the forms content. Only check box values of selected check boxes are passed
to the server. This HTML characteristic creates a problem with automatic binding to the parameters of
action methods. A simple solution is performed by the CheckBox helper method. This method creates a

c42.indd 1318 30-01-2014 20:49:56

HTML Helpers ❘ 1319

hidden input element with the same name that is set to false. If the check box is not selected, the hidden
input element is passed to the server, and the false value can be bound. If the check box is selected, two
input elements with the same name are sent to the server. The first one is set to true; the second one is set to
false. With automatic binding just the first one is selected to bind:

<form action="/HelperMethods/Helper1" method="post">
 Check this (or not)
 <input id="check1" name="check1" type="checkbox" value="true" />
 <input name="check1" type="hidden" value="false" />
</form>

Using Model Data
Helper methods can be used with model data. This example creates a Menu object. This type was declared
earlier in this chapter within the Models directory and passes the menu as a model to the view (code file
MVCSampleApp/Controllers/HelperMethodsController.cs):

 public ActionResult HelperWithMenu()
 {
 var menu = new Menu
 {
 Id = 1,
 Text = "Schweinsbraten mit Knödel und Sauerkraut",
 Price = 6.9,
 Date = new DateTime(2012, 10, 5),
 Category = "Main"
 };
 return View(menu);
 }

The view has the model defined to be of type Menu. The DisplayName HTML helper just returns the
text from the parameter as was already shown with the previous sample. The Display method uses an
expression as the parameter where a property name can be passed in the string format. This way this
property tries to find a property with this name and accesses the property accessor to return the value of the
property (code file MVCSampleApp/Views/HelperMethods/HelperWithMenu.cshtml):

@model MVCSampleApp.Models.Menu
@{
 ViewBag.Title = "HelperWithMenu";
}
<h2>Helper with Menu</h2>
@Html.DisplayName("Text:")
@Html.Display("Text")

@Html.DisplayName("Category:")
@Html.Display("Category")

With the resulting HTML code, you can see this as output from calling the DisplayName and Display
methods:

Text:
Schweinsbraten mit Knödel und Sauerkraut

Category:
Main

noTE Helper methods also offer strongly typed variants to access members of the
model as is shown in the section “Strongly Typed Helpers.”

c42.indd 1319 30-01-2014 20:49:56

1320 ❘ CHAPTER 42 ASP.NET MVC

Define HTMl Attributes
Most HTML Helper methods have overloads in which you can pass any HTML attributes. For example, the
following TextBox method creates an input element of type text. The first parameter defines the name;
the second parameter defines the value that is set with the text box. The third parameter of the TextBox
method is of type object that enables passing an anonymous type where every property is changed to
an attribute of the HTML element. Here, the result of the input element has the required attribute set
to required, the maxlength attribute to 15, and the class attribute to CSSDemo. Because class is a C#
keyword, it cannot be directly set as a property. Instead it is prefixed with @ to generate the class attribute
for CSS styling:

 @Html.TextBox("text1", "input text here",
 new { required="required", maxlength=15, @class="CSSDemo" });

The resulting HTML output is shown here:

<input class="Test" id="text1" maxlength="15" name="text1" required="required"
 type="text" value="input text here" />

Create lists
For displaying lists, helper methods such as DropDownList and ListBox exist. These methods create the
HTML select element.

Within the controller, first a dictionary is created that contains keys and values. The dictionary is then
converted to a list of SelectListItem with the custom extension method ToSelectListItems. The
DropDownList and ListBox methods make use of SelectListItem collections (code file MVCSampleApp/
Controllers/HelperMethodsController.cs):

 public ActionResult HelperList()
 {
 var cars = new Dictionary<int, string>();
 cars.Add(1, "Red Bull Racing");
 cars.Add(2, "McLaren");
 cars.Add(3, "Lotus");
 cars.Add(4, "Ferrari");
 return View(cars.ToSelectListItems(4));
 }

The custom extension method ToSelectListItems is defined within the class SelectListItemsExtensions
that extends IDictionary<int, string>, the type from the cars collection. Within the implementation a
new SelectListItem object is returned for every item in the dictionary:

 public static class SelectListItemsExtensions
 {
 public static IEnumerable<SelectListItem> ToSelectListItems(
 this IDictionary<int, string> dict, int selectedId)
 {
 return dict.Select(item =>
 new SelectListItem
 {
 Selected = item.Key == selectedId,
 Text = item.Value,
 Value = item.Key.ToString()
 });
 }
 }

With the view, the helper method DropDownList directly accesses the Model that is returned from the
controller (code file MVCSampleApp/Views/HelperMethods/HelperList.cshtml):

c42.indd 1320 30-01-2014 20:49:56

HTML Helpers ❘ 1321

@{
 ViewBag.Title = "Helper List";
}
@model IEnumerable<SelectListItem>
<h2>Helper2</h2>
@Html.DropDownList("carslist", Model)

The resulting HTML creates a select element with option child elements as created from the
SelectListItem and defines the selected item as returned from the controller:

<select id="carslist" name="carslist">
 <option value="1">Red Bull Racing</option>
 <option value="2">McLaren</option>
 <option value="3">Lotus</option>
 <option selected="selected" value="4">Ferrari</option>
</select>

strongly Typed Helpers
The HTML helper methods offer strongly typed methods to access the model passed from the controller.
These methods are all suffixed with the name For. For example, instead of the TextBox method, here the
TextBoxFor method can be used.

The next sample again makes use of a controller that returns a single entity (code file MVCSampleApp/
Controllers/HelperMethodsController.cs):

 public ActionResult StronglyTypedMenu()
 {
 var menu = new Menu
 {
 Id = 1,
 Text = "Schweinsbraten mit Knödel und Sauerkraut",
 Price = 6.9,
 Date = new DateTime(2013, 10, 5),
 Category = "Main"
 };
 return View(menu);
 }

The view uses the Menu type as a model, thus the methods DisplayNameFor and DisplayFor can access
the Menu properties strongly typed. DisplayNameFor by default returns the name of the property (here it’s
the Text property), and DisplayFor returns the value of the property (code file MVCSampleApp/Views/
HelperMethods/StronglyTypedMenu.cshtml):

@model MVCSampleApp.Models.Menu

@Html.DisplayNameFor(m => m.Text)

@Html.DisplayFor(m => m.Text)

Similarly, you can use Html.TextBoxFor(m => m.Text), which returns an input element that enables
setting the Text property of the model. This method also makes use of the annotations added to the Text
property of the Menu type. The Text property has the Required and MaxStringLength attributes added,
which is why the data-val-length, data-val-length-max, and data-val-required attributes are
returned from the TextBoxFor method:

<input data-val="true"
 data-val-length="The field Text must be a string with a maximum length of 50."
 data-val-length-max="50" data-val-required="The Text field is required."
 id="Text" name="Text" type="text"
 value="Schweinsbraten mit Knödel und Sauerkraut" />

c42.indd 1321 30-01-2014 20:49:56

1322 ❘ CHAPTER 42 ASP.NET MVC

Editor Extensions
Instead of using at least one helper method for every property, helper
methods from the class EditorExtensions offer an editor for all the
properties of a type.

Using the same Menu model as before, with the method Html.EditorFor
(m => m) the complete UI for editing the menu is built. The result from
this method invocation is shown in Figure 42-10.

Instead of using Html.EditorFor(m => m), Html.EditorForModel()
can be used. The method EditorForModel just makes use of the model
of the view without the need to specify it explicitly. EditorFor has more
flexibility in using other data sources (for example, just properties offered
by the model), and EditorForModel needs fewer parameters to add.

Creating Custom Helpers
Razor has a specific syntax to create custom helpers. One way to create a helper
method is to create an extension method that extends the type HtmlHelper or HtmlHelper<TModel>. This way
the helper method can be used like all other HTML helpers using the Html property that returns an HtmlHelper.

Another way to create helpers is by using the Razor helper keyword. This creates a method that can
be implemented and used in a Razor way. The helper method DisplayDay shown in the following code
snippet receives a DateTime with the parameter and writes a span element if the passed date is before
today. Mixing HTML and code works the same way as you’re used to with Razor within the helper method
implementation. The method is then used directly from within the view:

@helper DisplayDay(DateTime day)
{
 if (day < DateTime.Today)
 {
 History day
 }
 @String.Format("{0:d}", day);
}
@Html.DisplayFor(m => m.Text)
@Html.DisplayTextFor(m => m.Price)
@Html.TextBoxFor(m => m.Text)
@DisplayDay(Model.Date)

Templates
A great way to extend the outcome from HTML helpers is by using templates. A template is a simple view
used by the HTML helper methods either implicitly or explicitly. Templates are stored within special folders.
Display templates are stored within the DisplayTemplates folder that is in the view folder (for example,
Views/HelperMethods), or in a shared folder (Shared/DisplayTemplates). The shared folder is used by
all views; the specific view folder is used only by views within this folder. For editor templates the folder
EditorTemplates is used.

Now get into an example (code file MVCSampleApp/Models/Menu.cs). With the Menu type, the Date
property has the annotation DataType with a value of DataType.Date. Specifying this attribute the
DateTime type by default does not show as date and time, but only with the short date format:

 public class Menu
 {
 public int Id { get; set; }

 [Required, StringLength(50)]
 public string Text { get; set; }

FIGURE 42-10

c42.indd 1322 30-01-2014 20:49:57

Creating a Data-Driven Application ❘ 1323

 [DisplayName("Price"), DisplayFormat(DataFormatString="{0:c}")]
 public double Price { get; set; }

 [DataType(DataType.Date)]
 public DateTime Date { get; set; }

 [StringLength(10)]
 public string Category { get; set; }
 }

Now the template Date.cshtml is created within the directory Views/HelperMethods/
DisplayTemplates. Here the Model is returned using a long date string format D that is embedded within a
div tag that has the CSS class markRed:

<div class="markRed">
 @string.Format("{0:D}", Model)
</div>

The markRed CSS class is defined within the style sheet to set the color red (code file MVCSampleApp/
Content/Site.css):

.markRed {
 color: #f00;
}

Now a display HTML helper like the DisplayForModel can be used that makes use of the defined template.
The model is of type Menu, so the DisplayForModel method displays all properties of the Menu type. For
the Date it finds the template Date.cshtml, so this template is used to display the date in long date format
with the CSS style (code file MVCSampleApp/Views/HelperMethods/Display.cshtml):

@model MVCSampleApp.Models.Menu
@{
 ViewBag.Title = "Display";
}
<h2>Display</h2>
@Html.DisplayForModel()

If a single type should have different presentations in the same view, other names for the template file can be
used. Then the attribute UIHint specifying this template name can be used, or the template can be specified
with the template parameter of the helper method.

Next use a data-driven application that makes use of HTML helpers.

CREATInG A DATA-DRIVEn APPlICATIon
After discussing all the foundations of ASP.NET MVC, look into a data-driven application that uses the ADO
.NET Entity Framework. Here you can see features offered by ASP.NET MVC in combination with data access.

noTE The ADO.NET Entity Framework is covered in detail in Chapter 33, “ADO
.NET Entity Framework.”

The sample application is used to maintain restaurant menu entries in a database. Maintenance of the
database entries should be done only from an authenticated account. Browsing menus should be possible for
nonauthenticated users.

This project is started by using the MVC template selection after choosing the ASP.NET Web Application
template. For the authentication, the default selection with Individual User Accounts is selected. This
project template adds several folders for ASP.NET MVC including a HomeController and AccountController
as well as several script libraries.

c42.indd 1323 30-01-2014 20:49:57

1324 ❘ CHAPTER 42 ASP.NET MVC

Defining a Model
Start with defining a model within the Models directory. The model is created using the ADO.NET Entity
Framework Code-First. The MenuCard type defines some properties and a relation to a list of menus (code
file MenuPlanner/Models/MenuCard.cs):

 public class MenuCard
 {
 public int Id { get; set; }

 [MaxLength(50)]
 public string Name { get; set; }
 public bool Active { get; set; }
 public int Order { get; set; }

 public virtual List<Menu> Menus { get; set; }
 }

The menu types that are referenced from the MenuCard is defined by the Menu class (code file MenuPlanner/
Models/Menu.cs):

 public class Menu
 {
 public int Id { get; set; }

 public string Text { get; set; }
 public decimal Price { get; set; }
 public bool Active { get; set; }
 public int Order { get; set; }
 public string Type { get; set; }
 public DateTime Day { get; set; }

 public int MenuCardId { get; set; }
 public virtual MenuCard MenuCard { get; set; }
 }

The database connection, and the sets of both Menu and MenuCard types are managed by
RestaurantEntities. A connection to the (localdb)\v11.0 SQL Server database instance is defined to create
the database automatically. If the connection string is not specified, the name of the class is taken for the
database name (code file MenuPlanner/Models/RestaurantEntities.cs):

 public class RestaurantEntities : DbContext
 {
 private const string connectionString =
 @"server=(localdb)\v11.0;database=Restaurant;trusted_connection=true";

 public RestaurantEntities()
 : base(connectionString)
 {
 }
 public DbSet<Menu> Menus { get; set; }
 public DbSet<MenuCard> MenuCards { get; set; }
 }

Besides creating the database, using the DatabaseInitializer type, the database is also filled with initial
menu card data. The base class DropCreateDatabaseAlways<> results in creating a new database every
time the application is started. For demo scenarios, this is an easy way to get rid of user testing data. You
can change the base class to DropCreateDatabaseIfNotExists<> to create the database only if it doesn’t
exist yet (code file MenuPlanner/Models/DatabaseInitializer.cs):

 public class DatabaseInitializer : DropCreateDatabaseAlways<RestaurantEntities>
 {
 protected override void Seed(RestaurantEntities context)
 {

c42.indd 1324 30-01-2014 20:49:57

Creating a Data-Driven Application ❘ 1325

 context.MenuCards.AddOrUpdate(c => c.Name,
 new MenuCard { Name = "Breakfast", Active = true, Order = 1 },
 new MenuCard { Name = "Vegetarian", Active = true, Order = 2 },
 new MenuCard { Name = "Steaks", Active = true, Order = 3 });
 base.Seed(context);
 }
 }

The DatabaseInitializer can be configured by setting the type with the databaseInitializer context
configuration in Web.config:

 <entityFramework>
 <!-- ... -->
 <contexts>
 <context disableDatabaseInitialization="false"
 type="MenuPlanner.Models.RestaurantEntities, MenuPlanner">
 <databaseInitializer
 type="MenuPlanner.Models.DatabaseInitializer, MenuPlanner" />
 </context>
 </contexts>
 </entityFramework>

With these classes and configurations in place, the database will be created and initialized with every run of
the application.

Creating Controllers and Views
After compiling the project, the classes from the model are available and can be selected to create the
controllers and views. Create a new controller MenuAdmin, as shown in Figure 42-11, and select the template
Controller with read/write actions and views using Entity Framework. With this template the model and
data context classes can be selected. Based on this selection, controller and view code is generated.

FIGURE 42-11

c42.indd 1325 30-01-2014 20:49:57

1326 ❘ CHAPTER 42 ASP.NET MVC

Controller
The generated controller class uses of the object context by creating RestaurantEntities on creation of
the controller and offers action methods to view, edit, modify, and delete menu entries from the database.
Just step into a few of these methods. The Index method is the default method that gets invoked when just
the link of the controller is referenced. Here, all Menu items from the database are created and passed to the
view as a List<Menu>.

When the user creates a new menu, the first Create method is invoked after an HTTP GET request from the
client. With this method information the view is created with the help of a ViewBag. This ViewBag contains
information about the menu cards because this is a relation to the menu, and the user can now select one menu
card with the newly created menu. After the user fills out the form and submits the form with the new
menu to the server, the second Create method is invoked from an HTTP POST request. This method uses
model binding to pass the form data to the Menu object and adds the Menu object to the data context to write
the newly created menu to the database (code file MenuPlanner/Controllers/MenuAdminController.cs):

using MenuPlanner.Models;
using System.Data.Entity;
using System.Net;
using System.Threading.Tasks;
using System.Web.Mvc;

namespace MenuPlanner.Controllers
{
 public class MenuAdminController : Controller
 {
 private RestaurantEntities db = new RestaurantEntities();
 //
 // GET: /MenuAdmin/
 Public async Task<ActionResult> Index()
 {
 var menus = db.Menus.Include(m => m.MenuCard);
 return View(await menus.ToListAsync());
 }
 //
 // GET: /MenuAdmin/Details/5
 public async ActionResult Details(int? id = 0)
 {
 if (id == null)
 {
 Return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 Menu menu = db.Menus.FindAsync(id);
 if (menu == null)
 {
 return HttpNotFound();
 }
 return View(menu);
 }

 //
 // GET: /MenuAdmin/Create
 public ActionResult Create()
 {
 ViewBag.MenuCardId = new SelectList(db.MenuCards, "Id", "Name");
 return View();
 }

 //
 // POST: /MenuAdmin/Create
 [HttpPost]

c42.indd 1326 30-01-2014 20:49:57

Creating a Data-Driven Application ❘ 1327

 [ValidateAntiForgeryToken]
 public async Task<ActionResult> Create(
 [Bind(Include="Id,MenuCardId,Text,Price,Active,Order,Type,Day")] Menu menu)
 {
 if (ModelState.IsValid)
 {
 db.Menus.Add(menu);
 await db.SaveChangesAsync();
 return RedirectToAction("Index");
 }
 ViewBag.MenuCardId = new SelectList(db.MenuCards,
 "Id", "Name", menu.MenuCardId);
 return View(menu);
 }

 //
 // GET: /MenuAdmin/Edit/5
 public async Task<ActionResult> Edit(int? id)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 Menu menu = await db.Menus.FindAsync(id);
 if (menu == null)
 {
 return HttpNotFound();
 }
 ViewBag.MenuCardId = new SelectList(db.MenuCards, "Id",
 "Name", menu.MenuCardId);
 return View(menu);
 }

 //
 // POST: /MenuAdmin/Edit/5
 [HttpPost]
 [ValidateAntiForgeryToken]
 public async Task<ActionResult> Edit(
 [Bind(Include="Id,MenuCardId,Text,Price,Order,Type,Day")] Menu menu)
 {
 if (ModelState.IsValid)
 {
 db.Entry(menu).State = EntityState.Modified;
 await db.SaveChangesAsync();
 return RedirectToAction("Index");
 }
 ViewBag.MenuCardId = new SelectList(db.MenuCards, "Id",
 "Name", menu.MenuCardId);
 return View(menu);
 }

 //
 // GET: /MenuAdmin/Delete/5
 Public async Task<ActionResult> Delete(int id?)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 Menu menu = await db.Menus.FindAsync(id);
 if (menu == null)
 {

c42.indd 1327 30-01-2014 20:49:57

1328 ❘ CHAPTER 42 ASP.NET MVC

 return HttpNotFound();
 }
 return View(menu);
 }

 //
 // POST: /MenuAdmin/Delete/5
 [HttpPost, ActionName("Delete")]
 [ValidateAntiForgeryToken]
 public async Task<ActionResult> DeleteConfirmed(int id)
 {
 Menu menu = await db.Menus.FindAsync(id);
 db.Menus.Remove(menu);
 await db.SaveChangesAsync();
 return RedirectToAction("Index");
 }

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 db.Dispose();
 }
 base.Dispose(disposing);
 }
 }
}

Views
Now explore some of the designer-generated views. The Index view has a Menu collection as its model and
defines an HTML table. For the header elements of the table, the HTML helper DisplayNameFor is used to
access property names for display. For displaying the items, the menu collection is iterated using @foreach, and
every property value is accessed with DisplayFor (code file MenuPlanner/Views/MenuAdmin/Index.cshtml):

@model IEnumerable<MenuPlanner.Models.Menu>
@{
 ViewBag.Title = "Index";
}
<h2>Index</h2>
<p>
 @Html.ActionLink("Create New", "Create")
</p>
<table>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.MenuCard.Name)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Text)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Price)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Active)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Order)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Type)

c42.indd 1328 30-01-2014 20:49:58

Creating a Data-Driven Application ❘ 1329

 </th>
 <th>
 @Html.DisplayNameFor(model => model.Day)
 </th>
 <th></th>
 </tr>
@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.MenuCard.Name)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Text)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Active)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Order)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Type)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Day)
 </td>
 <td>
 @Html.ActionLink("Edit", "Edit", new { id=item.Id }) |
 @Html.ActionLink("Details", "Details", new { id=item.Id }) |
 @Html.ActionLink("Delete", "Delete", new { id=item.Id })
 </td>
 </tr>
}
</table>

The second view for the MenuAdmin controller shown here is the Create view. An HTML form is created
without arguments passed to the BeginForm method. This way the action method with the same name
(Create) but with a POST request is requested on submitting the form. As you can see, the form content is
built up using the helpers DropDownList, ValidationMessageFor, and EditorFor helper methods (code
file MenuPlanner/Views/MenuAdmin/Create.cshtml):

@model MenuPlanner.Models.Menu
@{
 ViewBag.Title = "Create";
}
<h2>Create</h2>
@using (Html.BeginForm())
{
 @Html.AntiForgeryToken()

 <div class="form-horizontal">
 <h4>Menu</h4>
 <hr />
 @Html.ValidationSummary(true)

 <div class="form-group">
 @Html.LabelFor(model => model.MenuCardId, "MenuCardId",
 new { @class = "control-label col-md-2" })
 <div class="col-md-10">

c42.indd 1329 30-01-2014 20:49:58

1330 ❘ CHAPTER 42 ASP.NET MVC

 @Html.DropDownList("MenuCardId", String.Empty)
 @Html.ValidationMessageFor(model => model.MenuCardId)
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.Text, new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.Text)
 @Html.ValidationMessageFor(model => model.Text)
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.Price, new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.Price)
 @Html.ValidationMessageFor(model => model.Price)
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.Active, new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.Active)
 @Html.ValidationMessageFor(model => model.Active)
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.Order, new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.Order)
 @Html.ValidationMessageFor(model => model.Order)
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.Type, new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.Type)
 @Html.ValidationMessageFor(model => model.Type)
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.Day, new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.Day)
 @Html.ValidationMessageFor(model => model.Day)
 </div>
 </div>

 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
 </div>
 </div>

<div>
 @Html.ActionLink("Back to List", "Index")

c42.indd 1330 30-01-2014 20:49:58

Action Filters ❘ 1331

</div>

@section Scripts {
 @Scripts.Render("~/bundles/jqueryval")
}

The other views are created similar to the views shown here, so they are not covered in this book. Just
consult the downloadable code or create the views with the Add Controller template as discussed.

You can now use the application to add and edit menus to existing menu cards.

ACTIon FIlTERs
ASP.NET MVC is extensible in many areas. A controller factory can be implemented to search and
instantiate a controller (interface IControllerFactory). Controllers implement the IController
interface. Finding action methods in a controller is resolved by using the IActionInvoker interface. The
ActionMethodSelectorAttribute (...) can be used to define the HTTP methods allowed. The model
binder that maps the HTTP request to parameters can be customized by implementing the IModelBinder
interface. In the section “Model Binder,” we’ve used the DefaultModelBinder type. Different view engines
that implement the interface IViewEngine can be used. In this chapter, we’ve used the Razor view engine.
Customization can also be done by using HTML Helpers (we’ve looked at this in some detail), and action
filters. Most of the extension points are out of the scope of this book, but action filters are likely ones that
you implement or use, and thus these are covered here.

Action filters are called before and after an action is executed. They are assigned to controllers or action
methods of controllers using attributes. Action filters are implemented by creating a class that derives from
the base class ActionFilterAttribute. With this class the base class members OnActionExecuting,
OnActionExecuted, OnResultExecuting, and OnResultExecuted can be overridden.
OnActionExecuting is called before the action method is invoked, and OnActionExecuted is called when
the action method is completed. After that, before the result is returned, the method OnResultExecuting
is invoked, and finally OnResultExecuted. Within these methods you can access the Request object
to retrieve information of the caller and decide some actions depending on the browser, access routing
information, change the view result dynamically, and so on. The code snippet accesses the variable language
from routing information. To add this variable to the route, the route can be changed as was shown in the
section Defining Routes. With an added language variable with the route information, the value supplied
with the URL can be accessed using RouteData.Values as shown. You can use the retrieved value to
change the culture for the user:

 public class LanguageAttribute : ActionFilterAttribute
 {
 private string language = null;
 public override void OnActionExecuting(ActionExecutingContext filterContext)
 {
 language = filterContext.RouteData.Values["language"] == null ?
 null : filterContext.RouteData.Values["language"].ToString();
 //...
 }
 public override void OnResultExecuting(ResultExecutingContext filterContext)
 {
 }
 }

noTE Globalization and localization, setting cultures, and other regional specifics are
explained in Chapter 28, “Localization.”

c42.indd 1331 30-01-2014 20:49:58

1332 ❘ CHAPTER 42 ASP.NET MVC

With the created action filter attribute class, the attribute can be applied to a controller as shown. Using the
attribute with the class, the members of the attribute class are invoked with every action method. Instead,
the attribute can also be applied to an action method, so the members are invoked only when the action
method is called:

 [Language]
 public class HomeController : Controller
 {

ASP.NET MVC includes some predefined action filters. You can use the OutputCacheAttribute
to define caching of the result. Some predefined filters derive from the base class FilterAttribute,
which is the base class of ActionFilterAttribute. Using the base class FilterAttribute instead of
ActionFilterAttribute allows only filtering action methods before they are invoked, but not afterward.
Classes that derive from FilterAttribute are HandleErrorAttribute, AuthorizeAttribute, and
RequireHttpsAttribute. HandleError enables reacting to exceptions and defining a view that should be
shown in case of an error. The type of the exception can also be filtered, which enables specifying different
views depending on the exception type. Specifying the RequireHttpsAttribute checks if the request is
coming with HTTPS and denies invoking the action method otherwise.

Using the AuthorizeAttribute is covered in the next section.

AUTHEnTICATIon AnD AUTHoRIzATIon
Chapter 40 laid the foundation for using the ASP.NET Identity system with ASP.NET. Chapter 41 showed
how to use these with ASP.NET Web Forms. This chapter is based on the foundation of Chapter 40 to give
you information how you can use these providers with ASP.NET MVC.

With the MenuPlanner sample application, authentication should be used to allow only users from a specific
role to change the menu entries.

Model for login
For asking the user to log in, creating the Web Application, a LoginModel is created. This model defines
UserName, Password, and RememberMe properties—all the information the user is asked with the login.
This model has some annotations used with HTML helpers (code file MenuPlanner/Models/LoginModel
.cs):

 public class LoginViewModel
 {
 [Required]
 [Display(Name = "User name")]
 public string UserName { get; set; }

 [Required]
 [DataType(DataType.Password)]
 [Display(Name = "Password")]
 public string Password { get; set; }

 [Display(Name = "Remember me?")]
 public bool RememberMe { get; set; }
 }

Controller for login
The controller used for the login of the user is the AccountController (code file MenuPlanner/
Controllers/AccountController.cs). This controller defines the Login action that can be requested with
an HTTP GET request. This action just returns the Login view where the user can enter a username and
password. From there an HTTP POST request is done to the second Login action where the LoginModel

c42.indd 1332 30-01-2014 20:49:58

Authentication and Authorization ❘ 1333

is used as an argument, and the values from the HTML form are assigned to the properties of the model.
With the implementation, username and password are checked with the UserManager. The UserManager
makes use of the ApplicationUser type to access information from the table specified by this type from the
database. If the user is valid, user sign-in is done calling the helper method SignInAsync. This helper method
creates the user identity invoking UserManager.CreateIdentityAsync:

using System.Web.Mvc;
using System.Web.Security;
using MenuPlanner.Models;
namespace MenuPlanner.Controllers
{
 [Authorize]
 public class AccountController : Controller
 {
 public AccountController()
 : this(new UserManager<ApplicationUser>(
 new UserStore<ApplicationUser>(new ApplicationDbContext())))
 {
 }
 public AccountController(UserManager<ApplicationUser> userManager)
 {
 UserManager = userManager;
 }

 public UserManager<ApplicationUser> UserManager { get; private set; }

 //
 // GET: /Account/Login
 [AllowAnonymous]
 public ActionResult Login(string returnUrl)
 {
 ViewBag.ReturnUrl = returnUrl;
 return View();
 }

 //
 // POST: /Account/Login
 [AllowAnonymous]
 [HttpPost]
 [ValidateAntiForgeryToken]
 public async Task<ActionResult> Login(LoginModel model, string returnUrl)
 {
 if (ModelState.IsValid)
 {
 var user = await UserManager.FindAsync(model.UserName, modelPassword);
 if (user != null)
 {
 await SignInAsync(user, model.RememberMe);
 return RedirectToLocal(returnUrl);
 }
 else
 {
 ModelState.AddModelError("","Invalid username or password.");
 }
 }
 // If we got this far, something failed, redisplay form
 return View(model);
 }

 //
 // POST: /Account/LogOff
 public ActionResult LogOff()

c42.indd 1333 30-01-2014 20:49:58

1334 ❘ CHAPTER 42 ASP.NET MVC

 {
 AuthenticationManager.SignOut();
 return RedirectToAction("Index", "Home");
 }

 private IAuthenticationManager AuthenticationManager
 {
 get
 {
 return HttpContext.GetOwinContext().Authentication;
 }
 }

 private async Task SignInAsync(ApplicationUser user, bool isPersistent)
 {
 AuthenticationManager.SignOut(DefaultAuthenticationTypes.ExternalCookie);
 var identity = await UserManager.CreateIdentityAsync(user,
 DefaultAuthenticationTypes.ApplicationCookie);
 AuthenticationManager.SignIn(new AuthenticationProperties()
 { IsPersistent = isPersistent }, identity);
 }

 private ActionResult RedirectToLocal(string returnUrl)
 {
 if (Url.IsLocalUrl(returnUrl))
 {
 return Redirect(returnUrl);
 }
 else
 {
 return RedirectToAction("Index", "Home");
 }
 }
 }
}

To specify the Login action and in turn the view to be used, with the web.config file, the loginUrl is set
to the Login method of the Account controller (code file MenuPlanner/web.config):

 <authentication mode="Forms">
 <forms loginUrl="~/Account/Login" timeout="2880" />
 </authentication>

login View
The login view just defines a form that uses the Account controller and defines labels and input controls
based on the model. This view is invoked the first time with a GET request on the Login action and in turn
invokes the Login action with a POST request passing the model data (code file MenuPlanner/Views/
Account/Login.cshtml):

@model MenuPlanner.Models.LoginModel
@{
 ViewBag.Title = "Log in";
}
<h2>@ViewBag.Title.</h2>
<div class="row">
 <div class="col-md-8">
 <section id="loginForm">
 @using (Html.BeginForm("Login", "Account",
 new { ReturnUrl = ViewBag.ReturnUrl }, FormMethod.Post,
 new { @class = "form-horizontal", role = "form" }))
 {

c42.indd 1334 30-01-2014 20:49:58

Authentication and Authorization ❘ 1335

 @Html.AntiForgeryToken()
 <h4>Use a local account to log in.</h4>
 <hr />
 @Html.ValidationSummary(true)
 <div class="form-group">
 @Html.LabelFor(m => m.UserName, new { @class = "col-md-2 control-label" })
 <div class="col-md-10">
 @Html.TextBoxFor(m => m.UserName, new { @class = "form-control" })
 @Html.ValidationMessageFor(m => m.UserName)
 </div>
 </div>
 <div class="form-group">
 @Html.LabelFor(m => m.Password, new { @class = "col-md-2 control-label" })
 <div class="col-md-10">
 @Html.PasswordFor(m => m.Password, new { @class = "form-control" })
 @Html.ValidationMessageFor(m => m.Password)
 </div>
 </div>
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <div class="checkbox">
 @Html.CheckBoxFor(m => m.RememberMe)
 @Html.LabelFor(m => m.RememberMe)
 </div>
 </div>
 </div>
 <div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Log in" class="btn btn-default" />
 </div>
 </div>
 <p>
 @Html.ActionLink("Register", "Register") if you don't have a local account.
 </p>
 }
 </section>
 </div>
 <div class="col-md-4">
 <section id="socialLoginForm">
 @Html.Partial("_ExternalLoginsListPartial",
 new { Action = "ExternalLogin", ReturnUrl = ViewBag.ReturnUrl })
 </section>
 </div>
</div>
@section Scripts {
 @Scripts.Render("~/bundles/jqueryval")
}

Now you just need to make sure that a user who is not in the correct role is not allowed to access
the methods. This can be done by applying the Authorize attribute to the MenuAdminController class
(code file MenuPlanner/Controllers/MenuAdminController.cs) and specifying the roles that are
allowed to use it:

 [Authorize(Roles="Menu Admins")]
 public class MenuAdminController : Controller
 {

Applying this attribute to the class requires the role for every action method of the class. If there are
different authorization requirements on different action methods, the Authorize attribute can also be
applied to the action methods. With this attribute, it is verified if the caller is already authorized (by
checking the authorization cookie). If the caller is not yet authorized, a 401 HTTP status code is returned
with a redirect to the login action (which is defined in the web configuration file).

c42.indd 1335 30-01-2014 20:49:59

1336 ❘ CHAPTER 42 ASP.NET MVC

sUMMARy
In this chapter, you explored the latest web technology to make use of ASP.NET, the ASP.NET MVC 5
framework. You saw how this provides you with a robust structure to work with, which is ideal for large-
scale applications that require proper unit testing. You saw how easy it is to provide advanced capabilities
with minimum effort, and how the logical structure and separation of functionality that this framework
provides makes code easy to understand and easy to maintain.

This chapter concludes the chapters about programming user interfaces. The next chapter is the first one
about communication, Windows Communication Foundation.

c42.indd 1336 30-01-2014 20:49:59

PART VI
Communication

➤ CHAPTER 43: Windows Communication Foundation

➤ CHAPTER 44: ASP.NET Web APi

➤ CHAPTER 45: Windows Workfl ow Foundation

➤ CHAPTER 46: Peer-to-Peer Networking

➤ CHAPTER 47: message Queuing

c43.indd 1337 30-01-2014 20:50:49

c43.indd 1338 30-01-2014 20:50:49

Windows Communication
Foundation

WHAT’S iN THiS CHAPTER?

➤➤ WCF overview

➤➤ Creating a simple service and client

➤➤ Defi ning service, operation, data, and message contracts

➤➤ Implementing a service

➤➤ Using binding for communication

➤➤ Creating different hosts for services

➤➤ Creating clients with a service reference and programmatically

➤➤ Using duplex communication

➤➤ Using routing

WROx.COm CODE DOWNLOADS FOR THiS CHAPTER

You can fi nd the wrox.com code downloads for this chapter at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

➤➤ Simple service and client

➤➤ WebSocket

➤➤ Duplex communication

➤➤ Routing

WCF OvERviEW
Windows Communication Foundation (WCF) is the fl exible communication technology of the .NET
Framework. Previous to .NET 3.0, several communication technologies were required in a single
enterprise solution. For platform-independent communication, ASP.NET Web services were used.
For more advanced web services — technologies such as reliability, platform-independent security,
and atomic transactions — Web Services Enhancements added a complexity layer to ASP.NET web

43

c43.indd 1339 30-01-2014 20:50:52

1340 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

services. If the communication needed to be faster, and both the client and service were .NET applications,
.NET Remoting was the technology of choice. .NET Enterprise Services with its automatic transaction
support, by default, used the DCOM protocol, which was even faster than .NET Remoting. DCOM
was also the only protocol to allow the passing of transactions. All of these technologies have different
programming models that require many skills from the developer.

.NET Framework 3.0 introduced a new communication technology that includes all the features from these
predecessors and combines them into one programming model: Windows Communication Foundation
(WCF).

The namespace covered in this chapter is System.ServiceModel.

WCF combines the functionality from ASP.NET Web services, .NET Remoting, Message Queuing, and
Enterprise Services. You can get the following from WCF:

➤➤ Hosting for components and services — Just as you can use custom hosts with .NET Remoting and
Web Service Enhancements (WSE), you can host a WCF service in the ASP.NET runtime, a Windows
service, a COM+ process, or just a Windows Forms application for peer-to-peer computing.

➤➤ Declarative behavior — Instead of the requirement to derive from a base class (this requirement exists
with .NET Remoting and Enterprise Services), attributes can be used to define the services. This is
similar to web services developed with ASP.NET.

➤➤ Communication channels — Although .NET Remoting is flexible for changing the communication
channel, WCF is a good alternative because it offers the same flexibility. WCF offers multiple channels
to communicate using HTTP, TCP, or an IPC channel. Custom channels using different transport
protocols can be created as well.

➤➤ Security infrastructure — For implementing platform-independent web services, a standardized
security environment must be used. The proposed standards are implemented with WSE 3.0, and this
continues with WCF.

➤➤ Extensibility — .NET Remoting has a rich extensibility story. It is not only possible to create custom
channels, formatters, and proxies, but also to inject functionality inside the message flow on the client
and on the server. WCF offers similar extensibilities; however, here the extensions are created by using
SOAP headers.

➤➤ Support of previous technologies — Instead of rewriting a distributed solution completely to use WCF,
WCF can be integrated with existing technologies. WCF offers a channel that can communicate with
serviced components using DCOM. Web services that have been developed with ASP.NET can be
integrated with WCF as well.

The final goal is to send and receive messages between a
client and a service across processes or different systems,
across a local network, or across the Internet. This should
be done, if required, in a platform-independent way and as
fast as possible. From a distant view, the service offers an
endpoint that is described by a contract, a binding, and an
address. The contract defines the operations offered by the
service; binding gives information about the protocol and
encoding; and the address is the location of the service.
The client needs a compatible endpoint to access the
service.

Figure 43-1 shows the components that participate with a
WCF communication.

The client invokes a method on the proxy. The proxy
offers methods as defined by the service but converts the method call to a message and transfers the
message to the channel. The channel has a client-side part and a server-side part that communicate across a
networking protocol. From the channel, the message is passed to the dispatcher, which converts the message
to a method call invoked with the service.

Channel

Proxy Dispatcher

Client Code Service

FiguRE 43-1

c43.indd 1340 30-01-2014 20:50:54

WCF Overview ❘ 1341

WCF supports several communication protocols. For platform-independent communication, web services
standards are supported. For communication between .NET applications, faster communication protocols
with less overhead can be used.

The following sections look at the functionality of core services used for platform-independent
communication:

➤➤ SOAP — A platform-independent protocol that is the foundation of several web service specifications
to support security, transactions, reliability

➤➤ Web Services Description Language (WSDL) — Offers metadata to describe a service

➤➤ Representational State Transfer (REST) — Used with RESTful Web services to communicate across HTTP

➤➤ JavaScript Object Notation (JSON) — Enables easy use from within JavaScript clients

SOAP
For platform-independent communication, the SOAP protocol can be used and is directly supported from
WCF. SOAP originally was shorthand for Simple Object Access Protocol (SOAP), but since SOAP 1.2 this is
no longer the case. SOAP no longer is an object access protocol because instead messages are sent that can
be defined by an XML schema.

A service receives a SOAP message from a client and returns a SOAP response message. A SOAP message
consists of an envelope, which contains a header and a body:

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
 <s:Header>
 </s:Header>
 <s:Body>
 <ReserveRoom xmlns="http://www.cninnovation.com/RoomReservation/2012">
 <roomReservation
 xmlns:a=
 "http://schemas.datacontract.org/2004/07/Wrox.ProCSharp.WCF.Contracts"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
 <a:Contact>UEFA</a:Contact>
 <a:EndTime>2012-07-01T22:45:00</a:EndTime>
 <a:Id>0</a:Id>
 <a:RoomName>Kiew</d4p1:RoomName>
 <a:StartTime>2012–07–01T20:45:00</a:StartTime>
 <a:Text>Spain-Germany</a:Text>
 </roomReservation>
 </ReserveRoom>
 </s:Body>
</s:Envelope>

The header is optional and can contain information about addressing, security, and transactions. The body
contains the message data.

WSDL
A Web Services Description Language (WSDL) document describes the operations and messages of the
service. WSDL defines metadata of the service that can be used to create a proxy for the client application.

The WSDL contains this information:

➤➤ Types for the messages described using an XML schema.

➤➤ Messages sent to and from the service. Parts of the messages are the types defined with an XML
schema.

➤➤ Port types map to service contracts and list operations defined with the service contract. Operations
contain messages; for example, an input and an output message as used with a request and response
sequence.

c43.indd 1341 30-01-2014 20:50:54

1342 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

➤➤ Binding information that contains the operations listed with the port types and that defines the SOAP
variant used.

➤➤ Service information that maps port types to endpoint addresses.

NOTE With WCF, WSDL information is offered by Metadata Exchange (MEX)
endpoints.

REST
WCF also offers communication by using REST. This is not actually a protocol but defines several principles
for using services to access resources. A RESTful Web service is a simple service based on the HTTP
protocol and REST principles. The principles are defined by three categories: a service can be accessed with
a simple URI, supports MIME types, and uses different HTTP methods. With the support of MIME types,
different data formats can be returned from the service such as plain XML, JSON, or AtomPub. The GET
method of a HTTP request returns data from the service. Other methods that are used are PUT, POST, and
DELETE. The PUT method is used to make an update on the service side, POST creates a new resource,
and DELETE deletes a resource.

REST enables the sending of smaller requests to services than is possible with SOAP. If transactions, secure
messages, (secure communication is still possible, for example via HTTPS), and the reliability offered by
SOAP are not needed, a REST-architected service can reduce overhead.

With the REST architecture, the service is always stateless, and the response from the service can be cached.

JSON
Instead of sending SOAP messages, accessing services from JavaScript can best be done by using JSON.
.NET includes a data contract serializer to create objects with the JSON notation.

JSON has less overhead than SOAP because it is not XML but is optimized for JavaScript clients. This
makes it extremely useful from Ajax clients. Ajax is discussed in Chapter 41, “ASP.NET Web Forms.” JSON
does not provide the reliability, security, and transaction features that can be sent with the SOAP header,
but these are features usually not needed by JavaScript clients.

CREATiNg A SimPLE SERviCE AND CLiENT
Before going into the details of WCF, start with a simple service. The service is used to reserve meeting
rooms.

For a backing store of room reservations, a simple SQL Server database with the table RoomReservations is
used. You can download the database from www.wrox.com together with the sample code of this chapter.

Following are the next steps to create a service and a client:

 1. Create service and data contracts.

 2. Create a library to access the database using the ADO.NET Entity Framework.

 3. Implement the service.

 4. Use the WCF Service Host and WCF Test Client.

 5. Create a custom service host.

 6. Create a client application using metadata.

 7. Create a client application using shared contracts.

 8. Configure diagnostics.

c43.indd 1342 30-01-2014 20:50:54

Creating a Simple Service and Client ❘ 1343

Defining Service and Data Contracts
To start, create a new solution with the name RoomReservation. Add a new project of type Class
Library to the solution, and name the project RoomReservationContracts. Create a new class named
RoomReservation (code file RoomReservation/RoomReservationContracts/RoomReservation.cs).
This class contains the properties Id, RoomName, StartTime, EndTime, Contact, and Text to define the
data needed in the database and sent across the network. For sending the data across a WCF service, the
class is annotated with the DataContract and the DataMember attributes. The attributes StringLength
from the namespace System.ComponentModel.DataAnnotations can not only be used with validation on
user input, but they can also define column schemas on creating the database table.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using System.Runtime.CompilerServices;
using System.Runtime.Serialization;

namespace Wrox.ProCSharp.WCF.Contracts
{
 [DataContract]
 public class RoomReservation : INotifyPropertyChanged
 {
 private int id;

 [DataMember]
 public int Id
 {
 get { return id; }
 set { SetProperty(ref id, value); }
 }

 private string roomName;

 [DataMember]
 [StringLength(30)]
 public string RoomName
 {
 get { return roomName; }
 set { SetProperty(ref roomName, value); }
 }

 private DateTime startTime;

 [DataMember]
 public DateTime StartTime
 {
 get { return startTime; }
 set { SetProperty(ref startTime, value); }
 }

 private DateTime endTime;

 [DataMember]
 public DateTime EndTime
 {
 get { return endTime; }
 set { SetProperty(ref endTime, value); }
 }

 private string contact;

 [DataMember]

c43.indd 1343 30-01-2014 20:50:54

1344 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

 [StringLength(30)]
 public string Contact
 {
 get { return contact; }
 set { SetProperty(ref contact, value); }
 }

 private string text;

 [DataMember]
 [StringLength(50)]
 public string Text
 {
 get { return text; }
 set { SetProperty(ref text, value); }
 }

 protected virtual void OnNotifyPropertyChanged(string propertyName)
 {
 PropertyChangedEventHandler eventHandler = PropertyChanged;
 if (eventHandler != null)
 {
 eventHandler(this, new PropertyChangedEventArgs(propertyName));
 }
 }

 protected virtual void SetProperty<T>(ref T item, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (!EqualityComparer<T>.Default.Equals(item, value))
 {
 item = value;
 OnNotifyPropertyChanged(propertyName);
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;
 }
}

Next, create the service contract. The operations offered by the service can be defined by an interface.
The interface IRoomService defines the methods ReserveRoom and GetRoomReservations. The service
contract is defined with the attribute ServiceContract. The operations defined by the service have the
attribute OperationContract applied (code file RoomReservation/RoomReservationContracts/
IRoomService.cs).

using System;
using System.ServiceModel;

namespace Wrox.ProCSharp.WCF.Contracts
{
 [ServiceContract(Namespace= "http://www.cninnovation.com/RoomReservation/2012")]
 public interface IRoomService
 {
 [OperationContract]
 bool ReserveRoom(RoomReservation roomReservation);

 [OperationContract]
 RoomReservation[] GetRoomReservations(DateTime fromTime, DateTime toTime);
 }
}

c43.indd 1344 30-01-2014 20:50:54

Creating a Simple Service and Client ❘ 1345

Data Access
Next, create a library used to access, read and write reservations to the database named
RoomReservationData. This time use the Code First model with the ADO.NET Entity Framework.
This way mapping information is not needed; everything can be defined using code. And you can also
create a database on-the-fly during runtime. The class to define the entities was already defined with the
RoomReservationContracts assembly, so this assembly needs to be referenced. Also the EntityFramework
assembly is required. Now the RoomReservationContext class (code file RoomReservation/
RoomReservationData/RoomReservationContext.cs) can be created. This class derives from the base
class DbContext to act as a context for the ADO.NET Entity Framework and defines a property named
RoomReservations to return a DbSet<RoomReservation>.

using System.Data.Entity;
using Wrox.ProCSharp.WCF.Contracts;

namespace Wrox.ProCSharp.WCF.Data
{
 public class RoomReservationContext : DbContext
 {

 public RoomReservationContext()
 : base("name=RoomReservation")
 {

 }
 public DbSet<RoomReservation> RoomReservations { get; set; }
 }
}

With the default constructor of the class, the base constructor is invoked to pass the name of an SQL
connection string. This way on creation of the database a name is not automatically mapped from the name
of the context. If the database does not exist before starting the application, it is automatically created on
first use of the context. The hosting application than needs a connection string is configured as shown. The
connection string makes use of the Microsoft SQL Server Express LocalDB database that is an improved
version of SQL Express and comes with the installation of Visual Studio 2013.

<connectionStrings>
 <add
 name="RoomReservation" providerName="System.Data.SqlClient"
 connectionString="Server=(localdb)\v11.0;Database=RoomReservation;
 Trusted_Connection=true;Integrated Security=True;
 MultipleActiveResultSets=True"/>
</connectionStrings>

Functionality that will be used by the service implementation is defined with the RoomReservationData
class (code file RoomReservation/RoomReservationData/RoomReservationData.cs). The method
ReserveRoom writes a new record to the database, and the method GetReservations returns a collection
of RoomReservation for a specified time span.

using System;
using System.Linq;
using Wrox.ProCSharp.WCF.Contracts;

namespace Wrox.ProCSharp.WCF.Data
{
 public class RoomReservationData
 {
 public void ReserveRoom(RoomReservation roomReservation)
 {
 using (var data = new RoomReservationContext())
 {
 data.RoomReservations.Add(roomReservation);
 data.SaveChanges();

c43.indd 1345 30-01-2014 20:50:54

1346 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

 }
 }

 public RoomReservation[] GetReservations(DateTime fromTime, DateTime toTime)
 {
 using (var data = new RoomReservationContext())
 {
 return (from r in data.RoomReservations
 where r.StartTime > fromTime && r.EndTime < toTime
 select r).ToArray();
 }
 }
 }
}

NOTE Chapter 33, “ADO.NET Entity Framework,” gives you the details of the ADO
.NET Entity Framework.

Service implementation
Now you can step into the implementation of the service. Create a WCF service library named
RoomReservationService. By default, this library type contains both the service contract and the service
implementation. If the client application just uses metadata information to create a proxy accessing the
service, this model is okay to work with. However, if the client might use the contract types directly, it is a
better idea to put the contracts in a separate assembly as it was done here. With the first client that is done,
a proxy is created from metadata. Later you can see how to create a client to share the contract assembly.
Splitting the contracts and implementation is a good preparation for this.

The service class RoomReservationService implements the interface IRoomService. The service is
implemented just by invoking the appropriate methods of the RoomReservationData class (code file
RoomReservation/RoomReservationService/RoomReservationService.cs):

using System;
using System.ServiceModel;
using Wrox.ProCSharp.WCF.Contracts;
using Wrox.ProCSharp.WCF.Data;

namespace Wrox.ProCSharp.WCF.Service
{
 [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
 public class RoomReservationService : IRoomService
 {
 public bool ReserveRoom(RoomReservation roomReservation)
 {
 var data = new RoomReservationData();
 data.ReserveRoom(roomReservation);
 return true;
 }

 public RoomReservation[] GetRoomReservations(DateTime fromTime,
 DateTime toTime)
 {
 var data = new RoomReservationData();
 return data.GetReservations(fromTime, toTime);
 }
 }
}

c43.indd 1346 30-01-2014 20:50:54

Creating a Simple Service and Client ❘ 1347

Figure 43-2 shows the assemblies created so far and
their dependencies. The RoomReservationContracts
assembly is used by both RoomReservationData and
RoomReservationService.

WCF Service Host and WCF Test Client
The WCF Service Library project template creates
an application configuration file named App.config
that you need to adapt to the new class and interface
names. The service element references the service type
RoomReservationService, including the namespace;
the contract interface needs to be defined with the endpoint element (configuration file RoomReservation/
RoomReservationService/app.config):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <compilation debug="true" />
 </system.web>
 <system.serviceModel>
 <services>
 <service name="Wrox.ProCSharp.WCF.Service.RoomService">
 <endpoint address="" binding="basicHttpBinding"
 contract="Wrox.ProCSharp.WCF.Service.IRoomService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress=
"http://localhost:8733/Design_Time_Addresses/RoomReservationService/Service1/"
 />
 </baseAddresses>
 </host>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled="True" httpsGetEnabled="True"/>
 <serviceDebug includeExceptionDetailInFaults="False" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

NOTE The service address http://localhost:8733/Design_Time_Addresses
has an access control list (ACL) associated with it that enables the interactive user
to create a listener port. By default, a nonadministrative user is not allowed to open
ports in listening mode. You can view the ACLs with the command-line utility
netsh http show urlacl and add new entries with netsh http add urlacl
url=http://+:8080/MyURI user=someUser.

Starting this library from Visual Studio 2013 starts the WCF Service Host, which appears as an icon
in the notification area of the taskbar. Clicking this icon opens the WCF Service Host window (see

FiguRE 43-2

c43.indd 1347 30-01-2014 20:50:55

1348 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

Figure 43-3), where you can see the status of the service. The project properties of a WCF library
application include the tab WCF options, where you can select whether the WCF service host should be
started when running a project from the same solution. By default, this option is turned on. Also, with
the Debug configuration of the project properties, you can find the command-line argument /client:
"WcfTestClient.exe" defined. With this option, the WCF Service host starts the WCF Test Client (see
Figure 43-4), which you can use to test the application. When you double-click an operation, input fields
appear on the right side of the application that you can fill to send data to the service. When you click the
XML tab, you can see the SOAP messages that have been sent and received.

FiguRE 43-3

FiguRE 43-4

Custom Service Host
WCF enables services to run in any host. You can create a Windows Forms or Windows Presentation Foundation
(WPF) application for peer-to-peer services. Or you can create a Windows service or host the service with
Windows Activation Services (WAS) or Internet Information Services (IIS). A console application is also good to
demonstrate a simple custom host.

c43.indd 1348 30-01-2014 20:50:55

Creating a Simple Service and Client ❘ 1349

With the service host, you must reference the library RoomReservationService in addition to the assembly
System.ServiceModel. The service is started by instantiating and opening an object of type ServiceHost.
This class is defined in the namespace System.ServiceModel. The RoomReservationService class that
implements the service is defined in the constructor. Invoking the Open()method starts the listener channel
of the service — the service is ready to listen for requests. The Close()method stops the channel. The
code snippet also adds a behavior of type ServiceMetadataBehavior. This behavior is added to allow
creating a client application by using WSDL (code file RoomReservation/RoomReservationServiceHost/
Program.cs).

using System;
using System.ServiceModel;
using System.ServiceModel.Description;
using Wrox.ProCSharp.WCF.Service;

namespace Wrox.ProCSharp.WCF.Host
{
 class Program
 {
 internal static ServiceHost myServiceHost = null;

 internal static void StartService()
 {
 try
 {
 myServiceHost = new ServiceHost(typeof(RoomReservationService),
 new Uri("http://localhost:9000/RoomReservation"));
 myServiceHost.Description.Behaviors.Add(new ServiceMetadataBehavior
 { HttpGetEnabled = true });
 myServiceHost.Open();
 }
 catch (AddressAccessDeniedException)
 {
 Console.WriteLine("either start Visual Studio in elevated admin " +
 "mode or register the listener port with netsh.exe");
 }
 }

 internal static void StopService()
 {
 if (myServiceHost != null &&
 myServiceHost.State == CommunicationState.Opened)
 {
 myServiceHost.Close();
 }
 }

 static void Main()
 {
 StartService();

 Console.WriteLine("Server is running. Press return to exit");
 Console.ReadLine();

 StopService();
 }
 }
}

For the WCF configuration, you can copy the application configuration file created with the service library
to the host application. You can edit this configuration file with the WCF Service Configuration Editor (see
Figure 43-5).

c43.indd 1349 30-01-2014 20:50:55

1350 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

Instead of using the configuration file, you can configure everything
programmatically and also use several defaults. The sample code
for the host application doesn’t need any configuration file. The
second parameter of the ServiceHost constructor defines a base
address for the service. With the protocol of this base address,
a default binding is defined. The default for the HTTP is the
BasicHttpBinding.

Using the custom service host, you can deselect the WCF option to
start the WCF Service Host in the project settings of the WCF library.

WCF Client
For the client, WCF is flexible again in what
application type can be used. The client can be a
simple console application as well. However, for
reserving rooms, create a simple WPF application
with controls, as shown in Figure 43-6.

Because the service host is configured with the
ServiceMetadataBehavior, it offers a MEX
endpoint. After the service host is started, you
can add a service reference from Visual Studio.
Adding the service reference, the dialog shown in
Figure 43-7 pops up. Enter the link to the service
metadata with the URL http://localhost:9000/
RoomReservation?wsdl, and set the namespace
name to RoomReservationService. This defines the
namespace of the generated proxy class.

Adding a service reference adds references to the
assemblies System.Runtime.Serialization

FiguRE 43-5

FiguRE 43-6

FiguRE 43-7

c43.indd 1350 30-01-2014 20:50:56

Creating a Simple Service and Client ❘ 1351

and System.ServiceModel and a configuration file containing the binding information and the endpoint
address to the service.

From the data contract the class RoomReservation is generated as a partial class. This class contains all
[DataMember] elements of the contract. The class RoomServiceClient is the proxy for the client that
contains methods that are defined by the operation contracts. Using this client, you can send a room
reservation to the running service.

In the code file RoomReservation/RoomReservationClient/MainWindow.xaml.cs, the OnReserveRoom
method is invoked with the Click event of the button. The ReserveRoomAsync is invoked with the service
proxy. The reservation variable receives the data from the UI via data binding.

 public partial class MainWindow : Window
 {
 private RoomReservation reservation;
 public MainWindow()
 {
 InitializeComponent();
 reservation = new RoomReservation
 { StartTime = DateTime.Now, EndTime = DateTime.Now.AddHours(1) };
 this.DataContext = reservation;
 }

 private async void OnReserveRoom(object sender, RoutedEventArgs e)
 {
 var client = new RoomServiceClient();
 bool reserved = await client.ReserveRoomAsync(reservation);
 client.Close();

 if (reserved)
 MessageBox.Show("reservation ok");
 }
 }

By running both the service and the client, the database is created, and you can add room reservations to the
database. With the settings of the RoomReservation solution, you can configure multiple startup projects,
which should be RoomReservationClient and RoomReservationHost in this case.

Diagnostics
When running a client and service application, it can be helpful to know what’s happening behind the
scenes. For this, WCF makes use of a trace source that just needs to be configured. You can configure
tracing using the Service Configuration Editor, selecting Diagnostics, and enabling Tracing and Message
Logging. Setting the trace level of the trace sources to Verbose produces detailed information. This
configuration change adds trace sources and listeners to the application configuration file as shown here:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <connectionStrings>
 <add
 name="RoomReservation" providerName="System.Data.SqlClient"
 connectionString="Server=(localdb)\v11.0;Database=RoomReservation;
 Trusted_Connection=true;Integrated Security=True;
 MultipleActiveResultSets=True" />
 </connectionStrings>

 <system.diagnostics>
 <sources>
 <source name="System.ServiceModel.MessageLogging"
 switchValue="Verbose,ActivityTracing">
 <listeners>

c43.indd 1351 30-01-2014 20:50:56

1352 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

 <add type="System.Diagnostics.DefaultTraceListener" name="Default">
 <filter type="" />
 </add>
 <add name="ServiceModelMessageLoggingListener">
 <filter type="" />
 </add>
 </listeners>
 </source>
 <source propagateActivity="true" name="System.ServiceModel"
 switchValue="Warning,ActivityTracing">
 <listeners>
 <add type="System.Diagnostics.DefaultTraceListener" name="Default">
 <filter type="" />
 </add>
 <add name="ServiceModelTraceListener">
 <filter type="" />
 </add>
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add initializeData=
 "c:\code\wcf\roomreservation\roomreservationhost\app_messages.svclog"
 type="System.Diagnostics.XmlWriterTraceListener, System, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"
 name="ServiceModelMessageLoggingListener"
 traceOutputOptions="DateTime, Timestamp, ProcessId, ThreadId">
 <filter type="" />
 </add>
 <add initializeData=
 "c:\code\wcf\roomreservation\roomreservationhost\app_tracelog.svclog"
 type="System.Diagnostics.XmlWriterTraceListener, System, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"
 name="ServiceModelTraceListener"
 traceOutputOptions="DateTime, Timestamp, ProcessId, ThreadId">
 <filter type="" />
 </add>
 </sharedListeners>
 </system.diagnostics>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5" />
 </startup>

 <system.serviceModel>
 <diagnostics>
 <messageLogging logEntireMessage="true" logMalformedMessages="true"
 logMessagesAtTransportLevel="true" />
 <endToEndTracing propagateActivity="true" activityTracing="true"
 messageFlowTracing="true" />
 </diagnostics>
 </system.serviceModel>
</configuration>

NOTE The implementation of the WCF classes uses the trace sources named System
.ServiceModel and System.ServiceModel.MessageLogging for writing trace
messages. You can read more about tracing and configuring trace sources and listeners
in Chapter 20, “Diagnostics.”

c43.indd 1352 30-01-2014 20:50:56

Creating a Simple Service and Client ❘ 1353

When you start the application, the trace files soon get large with
verbose trace settings. To analyze the information from the XML
log file, the .NET SDK includes the Service Trace Viewer tool,
svctraceviewer.exe. Figure 43-8 shows the client application
with some data entered, and Figure 43-9 shows the view from
the svctraceviewer.exe after selecting the trace and message
log files. The BasicHttpBinding is light with the messages sent
across. If you change the configuration to use the WsHttpBinding,
you see many messages related to security. Depending on your
security needs, you can choose other configuration options.

FiguRE 43-8

FiguRE 43-9

The following sections discuss the details and different options of WCF.

Sharing Contract Assemblies with the Client
With the previous WPF client application, a proxy class was created using the metadata, adding a service
reference with Visual Studio. A client can also be created by using the shared contract assembly as is shown
now. Using the contract interface, the ChannelFactory<TChannel> class is used to instantiate the channel
to connect to the service.

The constructor of the class ChannelFactory<TChannel> accepts the binding configuration and endpoint
address. The binding must be compatible with the binding defined with the service host, and the address
defined with the EndpointAddress class references the URI of the running service. The CreateChannel
method creates a channel to connect to the service. Then, you can invoke methods of the service.

c43.indd 1353 30-01-2014 20:50:57

1354 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

using System;
using System.ServiceModel;
using System.Windows;
using Wrox.ProCSharp.WCF.Contracts;

namespace RoomReservationClientSharedAssembly
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 private RoomReservation roomReservation;
 public MainWindow()
 {
 InitializeComponent();
 roomReservation = new RoomReservation
 {
 StartTime = DateTime.Now,
 EndTime = DateTime.Now.AddHours(1)
 };
 this.DataContext = roomReservation;
 }

 private void OnReserveRoom(object sender, RoutedEventArgs e)
 {
 var binding = new BasicHttpBinding();
 var address = new EndpointAddress("http://localhost:9000/RoomReservation");

 var factory = new ChannelFactory<IRoomService>(binding, address);
 IRoomService channel = factory.CreateChannel();
 if (channel.ReserveRoom(roomReservation))
 {
 MessageBox.Show("success");
 }
 }
 }
}

CONTRACTS
A contract defines what functionality a service offers and what functionality can be used by the client. The
contract can be completely independent of the implementation of the service.

The contracts defined by WCF can be grouped into four different contract types: Data, Service, Message,
and Fault. The contracts can be specified by using .NET attributes:

➤➤ Data contract — The data contract defines the data received by and returned from the service. The
classes used for sending and receiving messages have data contract attributes associated with them.

➤➤ Service contract — The service contract is used to define the WSDL that describes the service. This
contract is defined with interfaces or classes.

➤➤ Operation contract — The operation contract defines the operation of the service and is defined within
the service contract.

➤➤ Message contract — If complete control over the SOAP message is needed, a message contract can
specify what data should go into the SOAP header and what belongs in the SOAP body.

➤➤ Fault contract — The fault contract defines the error messages that are sent to the client.

The following sections explore these contract types further and discuss versioning issues that should be
thought about when defining the contracts.

c43.indd 1354 30-01-2014 20:50:57

Contracts ❘ 1355

Data Contract
With the data contract, CLR types are mapped to XML schemas. The data contract is different from other
.NET serialization mechanisms: with runtime serialization, all fields are serialized (including private fields);
with XML serialization, only the public fields and properties are serialized. The data contract requires
explicit marking of the fields that should be serialized with the DataMember attribute. This attribute can be
used regardless of whether the field is private or public, or if it is applied to a property.

[DataContract(Namespace="http://www.cninnovation.com/Services/20102"]
public class RoomReservation
{
 [DataMember] public string Room { get; set; }
 [DataMember] public DateTime StartTime { get; set; }
 [DataMember] public DateTime EndTime { get; set; }
 [DataMember] public string Contact { get; set; }
 [DataMember] public string Text { get; set; }
}

To be platform-independent, and provide the option to change data with new versions without breaking
older clients and services, using data contracts is the best way to define which data should be sent. However,
you can also use XML serialization and runtime serialization. XML serialization is the mechanism used by
ASP.NET Web services; .NET Remoting uses runtime serialization.

With the attribute DataMember, you can specify the properties described in the following table.

DATAmEmbER PROPERTy DESCRiPTiON

Name By default, the serialized element has the same name as the field or property
where the [DataMember] attribute is applied. You can change the name
with the Name property.

Order The Order property defines the serialization order of the data members.

IsRequired With the IsRequired property, you can specify that the element must be
received with serialization. This property can be used for versioning. If you
add members to an existing contract, the contract is not broken because,
by default, the fields are optional (IsRequired=false). You can break an
existing contract by setting IsRequired to true.

EmitDefaultValue The property EmitDefaultValue defines whether the member should be
serialized if it has the default value. If EmitDefaultValue is set to true, the
member is not serialized if it has the default value for the type.

versioning
When you create a new version of a data contract, pay attention to what kind of change it is and act
accordingly if old and new clients and old and new services should be supported simultaneously.

When defining a contract, you should add XML namespace information with the Namespace property
of the DataContractAttribute. This namespace should be changed if a new version of the data contract
is created that breaks compatibility. If just optional members are added, the contract is not broken — this is
a compatible change. Old clients can still send a message to the new service because the additional data
is not needed. New clients can send messages to an old service because the old service just ignores the
additional data.

Removing fields or adding required fields breaks the contract. Here, you should also change the XML
namespace. The name of the namespace can include the year and the month, for example, http://www
.cninnovation.com/Services/2012/08. Every time a breaking change is done, the namespace is changed;
for example, by changing the year and month to the actual value.

c43.indd 1355 30-01-2014 20:50:57

1356 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

Service and Operation Contracts
The service contract defines the operations the service can perform. The attribute ServiceContract is used
with interfaces or classes to define a service contract. The methods that are offered by the service have the
attribute OperationContract applied, as you can see with the interface IRoomService:

[ServiceContract]
public interface IRoomService
{
 [OperationContract]
 bool ReserveRoom(RoomReservation roomReservation);
}

The possible properties that you can set with the ServiceContract attribute are described in the
following table.

SERviCECONTRACT PROPERTy DESCRiPTiON

ConfigurationName This property defines the name of the service configuration in a
configuration file.

CallbackContract When the service is used for duplex messaging, the property
CallbackContract defines the contract that is implemented in the client.

Name The Name property defines the name for the <portType> element in the
WSDL.

Namespace The Namespace property defines the XML namespace for the
<portType> element in the WSDL.

SessionMode With the SessionMode property, you can define whether sessions
are required for calling operations of this contract. The possible
values Allowed, NotAllowed, and Required are defined with the
SessionMode enumeration.

ProtectionLevel The ProtectionLevel property defines whether the binding must
support protecting the communication. Possible values defined
by the ProtectionLevel enumeration are None, Sign, and
EncryptAndSign.

With the OperationContract, you can specify properties, as shown in the following table.

OPERATiONCONTRACT

PROPERTy DESCRiPTiON

Action WCF uses the Action of the SOAP request to map it to the appropriate
method. The default value for the Action is a combination of the contract
XML namespace, the name of the contract, and the name of the operation.
If the message is a response message, Response is added to the Action
string. You can override the Action value by specifying the Action property.
If you assign the value “*”, the service operation handles all messages.

ReplyAction Whereas Action sets the Action name of the incoming SOAP request,
ReplyAction sets the Action name of the reply message.

AsyncPattern If the operation is implemented by using an asynchronous pattern, set
the AsyncPattern property to true. The async pattern is discussed in
Chapter 21, “Tasks, Threads, and Synchronization.”

IsInitiating
IsTerminating

If the contract consists of a sequence of operations, the initiating
operation should have the IsInitiating property assigned to it; the
last operation of the sequence needs the IsTerminating property
assigned. The initiating operation starts a new session; the server closes
the session with the terminating operation.

c43.indd 1356 30-01-2014 20:50:57

Contracts ❘ 1357

OPERATiONCONTRACT

PROPERTy DESCRiPTiON

IsOneWay With the IsOneWay property set, the client does not wait for a reply
message. Callers of a one-way operation have no direct way to detect a
failure after sending the request message.

Name The default name of the operation is the name of the method the
operation contract is assigned to. You can change the name of the
operation by applying the Name property.

ProtectionLevel With the ProtectionLevel property, you define whether the message
should be signed or encrypted and signed.

With the service contract, you can also define the requirements that the service has from the transport with
the attribute [DeliveryRequirements]. The property RequireOrderedDelivery defines that the messages
sent must arrive in the same order. With the property QueuedDeliveryRequirements, you can define that
the message should be sent in a disconnected mode, for example, by using Message Queuing (covered in
Chapter 47, “Message Queuing”).

message Contract
A message contract is used if complete control over the SOAP message is needed. With the message contract,
you can specify what part of the message should go into the SOAP header and what belongs in the SOAP
body. The following example shows a message contract for the class ProcessPersonRequestMessage.
The message contract is specified with the attribute MessageContract. The header and body of the SOAP
message are specified with the attributes MessageHeader and MessageBodyMember. By specifying the
Position property, you can define the element order within the body. You can also specify the protection
level for header and body fields.

[MessageContract]
public class ProcessPersonRequestMessage
{
 [MessageHeader]
 public int employeeId;

 [MessageBodyMember(Position=0)]
 public Person person;
}

The class ProcessPersonRequestMessage is used with the service contract defined with the interface
IProcessPerson:

[ServiceContract]
public interface IProcessPerson
{
 [OperationContract]
 public PersonResponseMessage ProcessPerson(ProcessPersonRequestMessage message);
}

Another contract that is important for WCF services is the fault contract. This contract is discussed in the
next section with Error Handling.

Fault Contract
By default, the detailed exception information that occurs in the service is not returned to the client
application. The reason for this behavior is security. You wouldn’t want to give detailed exception information
to a third party by using your service. Instead, the exception should be logged on the service (which you can
do with tracing and event logging), and an error with useful information should be returned to the caller.

c43.indd 1357 30-01-2014 20:50:57

1358 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

You can return SOAP faults by throwing a FaultException. Throwing a FaultException creates an
untyped SOAP fault. The preferred way to return errors is to generate a strongly typed SOAP fault.

The information that should be passed with a strongly typed SOAP fault is defined with a data contract, as
shown with the RoomReservationFault class (code file RoomReservation/RoomReservationContracts/
RoomReservationFault.cs):

 [DataContract]
 public class RoomReservationFault
 {
 [DataMember]
 public string Message { get; set; }
 }

The type of the SOAP fault must be defined by using the FaultContractAttribute with the operation contract:

 [FaultContract(typeof(RoomReservationFault))]
 [OperationContract]
 bool ReserveRoom(RoomReservation roomReservation);

With the implementation, a FaultException<TDetail> is thrown. With the constructor, you can assign a new
TDetail object, which is a StateFault in the example. In addition, error information within a FaultReason
can be assigned to the constructor. FaultReason supports error information in multiple languages.

 FaultReasonText[] text = new FaultReasonText[2];
 text[0] = new FaultReasonText("Sample Error", new CultureInfo("en"));
 text[1] = new FaultReasonText("Beispiel Fehler", new CultureInfo("de"));
 FaultReason reason = new FaultReason(text);

 throw new FaultException<RoomReservationFault>(
 new RoomReservationFault() { Message = m }, reason);

With the client application, exceptions of type FaultException<RoomReservationFault> can be caught.
The reason for the exception is defined by the Message property; the RoomReservationFault is accessed
with the Detail property:

 try
 {
 //...
 }
 catch (FaultException<RoomReservationFault> ex)
 {
 Console.WriteLine(ex.Message);
 StateFault detail = ex.Detail;
 Console.WriteLine(detail.Message);
 }

In addition to catching the strongly typed SOAP faults, the client application can also catch exceptions of
the base class of FaultException<Detail>: FaultException and CommunicationException. By catching
CommunicationException, you can also catch other exceptions related to the WCF communication.

NOTE During development you can return exceptions to the client. To enable
exceptions propagated, you need to configure a service behavior configuration
with the serviceDebug element. The serviceDebug element has the attribute
IncludeExceptionDetailInFaults that can be set to true to return exception information.

SERviCE bEHAviORS
The implementation of the service can be marked with the attribute ServiceBehavior, as shown with the
class RoomReservationService:

c43.indd 1358 30-01-2014 20:50:57

Service Behaviors ❘ 1359

 [ServiceBehavior]
 public class RoomReservationService: IRoomService
 {
 public bool ReserveRoom(RoomReservation roomReservation)
 {
 // implementation
 }
 }

The attribute ServiceBehavior is used to describe behavior as is offered by WCF services to intercept the
code for required functionality, as shown in the following table.

SERviCEbEHAviOR PROPERTy DESCRiPTiON

TransactionAutoComplete
OnSessionClose

When the current session is finished without error, the transaction
is automatically committed. This is similar to the AutoComplete
attribute used with Enterprise Services.

TransactionIsolationLevel To define the isolation level of the transaction within the service,
the property TransactionIsolationLevel can be set to
one value of the IsolationLevel enumeration. You can read
information about transaction information levels in Chapter 25,
“Transactions.”

ReleaseServiceInstanceOn
TransactionComplete

When the transaction finishes, the instance of the service recycles.

AutomaticSessionShutdown If the session should not be closed when the client
closes the connection, you can set the property
AutomaticSessionShutdown to false. By default, the session
is closed.

InstanceContextMode With the property InstanceContextMode, you can define
whether stateful or stateless objects should be used. The default
setting is InstanceContextMode.PerCall to create a new
object with every method call. Other possible settings are
PerSession and Single. With both of these settings, stateful
objects are used. However, with PerSession a new object is
created for every client. Single enables the same object to be
shared with multiple clients.

ConcurrencyMode Because stateful objects can be used by multiple clients
(or multiple threads of a single client), you must pay attention
to concurrency issues with such object types. If the property
ConcurrencyMode is set to Multiple, multiple threads can
access the object, and you must deal with synchronization. If you
set the option to Single, only one thread accesses the object
at a time. Here, you don’t have to do synchronization; however,
scalability problems can occur with a higher number of clients. The
value Reentrant means that only a thread coming back from a
callout might access the object. For stateless objects, this setting
has no meaning because new objects are instantiated with every
method call and thus no state is shared.

UseSynchronizationContext With Windows Forms and WPF, members of controls can be
invoked only from the creator thread. If the service is hosted
in a Windows application, and the service methods invoke
control members, set the UseSynchronizationContext
to true. This way, the service runs in a thread defined by the
SynchronizationContext.

continues

c43.indd 1359 30-01-2014 20:50:58

1360 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

SERviCEbEHAviOR PROPERTy DESCRiPTiON

IncludeExceptionDetailInFaults With .NET, errors show up as exceptions. SOAP defines that
a SOAP fault is returned to the client in case the server has a
problem. For security reasons, it’s not a good idea to return details
of server-side exceptions to the client. Thus, by default, exceptions
are converted to unknown faults. To return specific faults, throw an
exception of type FaultException. For debugging purposes, it
can be helpful to return the real exception information. This is the
case when changing the setting of IncludeExceptionDetailIn
Faults to true. Here a FaultException<TDetail> is thrown
where the original exception contains the detail information.

MaxItemsInObjectGraph With the property MaxItemsInObjectGraph, you can limit the
number of objects that are serialized. The default limitation might
be too low if you serialize a tree of objects.

ValidateMustUnderstand The property ValidateMustUnderstand set to true means that
the SOAP headers must be understood (which is the default).

To demonstrate a service behavior, the interface IStateService defines a service contract with two
operations to set and get state. With a stateful service contract, a session is needed. That’s why the
SessionMode property of the service contract is set to SessionMode.Required. The service contract
also defines methods to initiate and close the session by applying the IsInitiating and IsTerminating
properties to the operation contract:

 [ServiceContract(SessionMode=SessionMode.Required)]
 public interface IStateService
 {
 [OperationContract(IsInitiating=true)]
 void Init(int i);

 [OperationContract]
 void SetState(int i);

 [OperationContract]
 int GetState();

 [OperationContract(IsTerminating=true)]
 void Close();
 }

The service contract is implemented by the class StateService. The service implementation defines the
InstanceContextMode.PerSession to keep state with the instance:

 [ServiceBehavior(InstanceContextMode=InstanceContextMode.PerSession)]
 public class StateService: IStateService
 {
 int i = 0;

 public void Init(int i)
 {
 this.i = i;
 }

 public void SetState(int i)
 {
 this.i = i;

(continued)

c43.indd 1360 30-01-2014 20:50:58

Service Behaviors ❘ 1361

 }

 public int GetState()
 {
 return i;
 }

 public void Close()
 {
 }
 }

Now the binding to the address and protocol must be defined. Here, the basicHttpBinding is assigned to
the endpoint of the service:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service behaviorConfiguration="StateServiceSample.Service1Behavior"
 name="Wrox.ProCSharp.WCF.StateService">
 <endpoint address="" binding="basicHttpBinding"
 bindingConfiguration=""
 contract="Wrox.ProCSharp.WCF.IStateService">
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8731/Design_Time_Addresses/
 StateServiceSample/Service1/" />
 </baseAddresses>
 </host>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="StateServiceSample.Service1Behavior">
 <serviceMetadata httpGetEnabled="True"/>
 <serviceDebug includeExceptionDetailInFaults="False" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

If you start the service host with the defined configuration, an exception of type InvalidOperationException
is thrown. The error message with the exception gives this error message: Contract Requires Session, but
Binding ‘BasicHttpBinding’ Doesn’t Support It or Isn’t Configured Properly to Support It.

Not all bindings support all services. Because the service contract requires a session with the attribute
[ServiceContract(SessionMode=SessionMode.Required)], the host fails because the configured
binding does not support sessions.

As soon as you change the configuration to a binding that supports sessions (for example, the
wsHttpBinding), the server starts successfully:

 <endpoint address="" binding="wsHttpBinding"
 bindingConfiguration=""
 contract="Wrox.ProCSharp.WCF.IStateService">
 </endpoint>

c43.indd 1361 30-01-2014 20:50:58

1362 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

With the implementation of the service, you can apply the properties in the following table to the service
methods, with the attribute OperationBehavior.

OPERATiONbEHAviOR PROPERTy DESCRiPTiON

AutoDisposeParameters By default, all disposable parameters are automatically
disposed. If the parameters should not be disposed, you can
set the property AutoDisposeParameters to false. Then
the sender is responsible for disposing the parameters.

Impersonation With the Impersonation property, the caller can be
impersonated, and the method runs with the identity of
the caller.

ReleaseInstanceMode The InstanceContextMode defines the lifetime of the
object instance with the service behavior setting. With the
operation behavior setting, you can override the setting
based on the operation. The ReleaseInstanceMode
defines an instance release mode with the enumeration
ReleaseInstanceMode. The value None uses the instance
context mode setting. With the values BeforeCall,
AfterCall, and BeforeAndAfterCall, you can define
recycle times with the operation.

TransactionScopeRequired With the property TransactionScopeRequired, you
can specify if a transaction is required with the operation.
If a transaction is required, and the caller already flows
a transaction, the same transaction is used. If the caller
doesn’t flow a transaction, a new transaction is created.

TransactionAutoComplete The TransactionAutoComplete property specifies
whether the transaction should complete automatically. If
the TransactionAutoComplete property is set to true,
the transaction is aborted if an exception is thrown. The
transaction is committed if it is the root transaction and no
exception is thrown.

biNDiNg
A binding describes how a service wants to communicate. With binding, you can specify the following
features:

➤➤ Transport protocol

➤➤ Security

➤➤ Encoding format

➤➤ Transaction flow

➤➤ Reliability

➤➤ Shape change

➤➤ Transport upgrade

Standard bindings
A binding is composed of multiple binding elements that describe all binding requirements. You can create a
custom binding or use one of the predefined bindings that are shown in the following table.

c43.indd 1362 30-01-2014 20:50:58

Binding ❘ 1363

STANDARD biNDiNg DESCRiPTiON

BasicHttpBinding BasicHttpBinding is the binding for the broadest interoperability,
the first-generation web services. Transport protocols used are HTTP or
HTTPS; security is available only from the transport protocol.

WSHttpBinding WSHttpBinding is the binding for the next-generation web services,
platforms that implement SOAP extensions for security, reliability, and
transactions. The transports used are HTTP or HTTPS; for security the
WS-Security specification is implemented; transactions are supported, as
has been described, with the WS-Coordination, WS-AtomicTransaction,
and WS-BusinessActivity specifications; reliable messaging is supported
with an implementation of WS-ReliableMessaging. WS-Profile also
supports Message Transmission Optimization Protocol (MTOM) encoding
for sending attachments. You can find specifications for the WS-*
standards at http://www.oasis-open.org.

WS2007HttpBinding WS2007HttpBinding derives from the base class WSHttpBinding and
supports security, reliability, and transaction specifications defined by
Organization for the Advancement of Structured Information Standards
(OASIS). This class offers newer SOAP standards.

WSHttpContextBinding WSHttpContextBinding derives from the base class WSHttpBinding
and adds support for a context without using cookies. This binding
adds a ContextBindingElement to exchange context information.
The context binding element was needed with Workflow Foundation
3.0.

WebHttpBinding This binding is used for services that are exposed through HTTP
requests instead of SOAP requests. This is useful for scripting
clients — for example, ASP.NET AJAX.

WSFederationHttpBinding WSFederationHttpBinding is a secure and interoperable
binding that supports sharing identities across multiple systems for
authentication and authorization.

WSDualHttpBinding The binding WSDualHttpBinding, in contrast to WSHttpBinding,
supports duplex messaging.

NetTcpBinding All standard bindings prefixed with the name Net use a binary encoding
used for communication between .NET applications. This encoding
is faster than the text encoding with WSxxx bindings. The binding
NetTcpBinding uses the TCP/IP protocol.

NetTcpContextBinding Similar to WSHttpContextBinding, NetTcpContextBinding adds a
ContextBindingElement to exchange context with the SOAP header.

NetHttpBinding This is a new binding with .NET 4.5 to support the Web Socket
transport protocol.

NetPeerTcpBinding NetPeerTcpBinding provides a binding for peer-to-peer
communication.

NetNamedPipeBinding NetNamedPipeBinding is optimized for communication between
different processes on the same system.

NetMsmqBinding The binding NetMsmqBinding brings queued communication to WCF.
Here, the messages are sent to the message queue.

MsmqIntegrationBinding MsmqIntegrationBinding is the binding for existing applications
that uses message queuing. In contrast, the binding NetMsmqBinding
requires WCF applications both on the client and server.

CustomBinding With a CustomBinding the transport protocol and security
requirements can be completely customized.

c43.indd 1363 30-01-2014 20:50:58

1364 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

Features of Standard bindings
Depending on the binding, different features are supported. The bindings starting with WS are platform-
independent, supporting web services specifications. Bindings that start with the name Net use binary
formatting for high-performance communication between .NET applications. The new NetHttpBinding
changes the naming conventions because it does not require .NET applications on both sides of the wire it’s
based on the Web Socket standard.

Other features are support of sessions, reliable sessions, transactions, and duplex communication; the
following table lists the bindings supporting these features.

FEATuRE biNDiNg

Sessions WSHttpBinding, WSDualHttpBinding, WsFederationHttpBinding,
NetTcpBinding, NetNamedPipeBinding

Reliable Sessions WSHttpBinding, WSDualHttpBinding, WsFederationHttpBinding,
NetTcpBinding

Transactions WSHttpBinding, WSDualHttpBinding, WSFederationHttpBinding,
NetTcpBinding, NetNamedPipeBinding, NetMsmqBinding,
MsmqIntegrationBinding

Duplex Communication WsDualHttpBinding, NetTcpBinding, NetNamedPipeBinding,
NetPeerTcpBinding

Along with defining the binding, the service must define an endpoint. The endpoint is dependent on the
contract, the address of the service, and the binding. In the following code sample, a ServiceHost object
is instantiated, and the address http://localhost:8080/RoomReservation, a WsHttpBinding instance,
and the contract are added to an endpoint of the service:

 static ServiceHost host;

 static void StartService()
 {
 var baseAddress = new Uri("http://localhost:8080/RoomReservation");
 host = new ServiceHost(typeof(RoomReservationService));

 var binding1 = new WSHttpBinding();
 host.AddServiceEndpoint(typeof(IRoomService), binding1, baseAddress);
 host.Open();
 }

In addition to defining the binding programmatically, you can define it with the application configuration
file. The configuration for WCF is placed inside the element <system.serviceModel>. The <service>
element defines the services offered. Similarly, as you’ve seen in the code, the service needs an endpoint,
and the endpoint contains address, binding, and contract information. The default binding configuration of
wsHttpBinding is modified with the bindingConfiguration XML attribute that references the binding
configuration wsHttpConfig1. This is the binding configuration you can find inside the <bindings>
section, which is used to change the wsHttpBinding configuration to enable reliableSession.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service name="Wrox.ProCSharp.WCF.RoomReservationService">
 <endpoint address=" http://localhost:8080/RoomReservation"
 contract="Wrox.ProCSharp.WCF.IRoomService"
 binding="wsHttpBinding" bindingConfiguration="wsHttpBinding" />

c43.indd 1364 30-01-2014 20:50:59

Binding ❘ 1365

 </service>
 </services>
 <bindings>
 <wsHttpBinding>
 <binding name="wsHttpBinding">
 <reliableSession enabled="true" />
 </binding>
 </wsHttpBinding>
 </bindings>
 </system.serviceModel>
</configuration>

Web Socket
WebSocket is a new communication protocol based on TCP. The HTTP protocol is stateless. With HTTP
the server can close the connection every time it answers the request. If a client wants to receive ongoing
information from the server, this always had some issues with the HTTP protocol.

Because the HTTP connection is kept, one way to deal with this would be to have a service running on the
client, and the server connects to the client and sends responses. If a firewall is between the client and the
server, this usually doesn’t work because the firewall blocks incoming requests.

Another way to deal with this is to use another protocol than the HTTP protocol. The connection can stay
alive. The issue with other protocols is that the port needs to be opened with the firewall. Firewalls are
always an issue, but they are needed to keep the bad folks out.

The way such a scenario was usually done is by instantiating the request every time from the client. The
client polls the server to ask if there’s something new. This works but has the disadvantage that either
the client asks too many times for news when there is none and thus increases the network traffic, or the
client does get old information.

A new solution for this scenario is the WebSocket protocol. This protocol is defined by the W3C (http://
www.w3.org/TR/websockets) and starts with an HTTP request. Starting with an HTTP request from
the client, the firewall usually allows the request. The client starts with a GET request with Upgrade:
websocket Connection: Upgrade in the HTTP header, along with the WebSocket version and security
information. If the server supports the WebSocket protocol, the server answers with an upgrade and
switches from HTTP to the WebSocket protocol.

With WCF the two bindings new with .NET 4.5 support the WebSocket protocol: netHttpBinding, and
netHttpsBinding.

Now get into a sample to make use of the WebSocket protocol. Start with an empty web application used to
host the service.

The default binding for the HTTP protocol is the basicHttpBinding as you’ve seen earlier. This can
be changed defining the protocolMapping to specify the netHttpBinding as shown. This way it’s not
necessary to configure the service element to match the contract, binding, and address to an endpoint. With
the configuration, serviceMetadata is enabled to allow the client referencing the service with the Add
Service Reference dialog (configuration file WebSocketsSample/web.config).

 <system.serviceModel>
 <protocolMapping>
 <remove scheme="http" />
 <add scheme="http" binding="netHttpBinding" />
 <remove scheme="https" />
 <add scheme="https" binding="netHttpsBinding" />
 </protocolMapping>
 <behaviors>
 <serviceBehaviors>
 <behavior name="">

c43.indd 1365 30-01-2014 20:50:59

1366 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

 <serviceMetadata httpGetEnabled="true" httpsGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true"
 multipleSiteBindingsEnabled="true" />
 </system.serviceModel>

The service contract is defined by the interfaces IDemoServices and IDemoCallback (code file
WebSocketsSample/IDemoService.cs). IDemoService is the service interface that defines the method
StartSendingMessages. The client invokes the method StartSendingMessages to start the process
that the service can return messages to the client. The client therefore needs to implement the interface
IDemoCallback. This interface is invoked by the server and implemented by the client.

The methods of the interfaces are defined to return Task. With this the service can easily make use of
asynchronous features, but this doesn’t go through to the contract. Defining the methods asynchronously is
independent of the WSDL generated.

using System.ServiceModel;
using System.Threading.Tasks;

namespace WebSocketsSample
{
 [ServiceContract]
 public interface IDemoCallback
 {
 [OperationContract(IsOneWay = true)]
 Task SendMessage(string message);
 }

 [ServiceContract(CallbackContract = typeof(IDemoCallback))]
 public interface IDemoService
 {
 [OperationContract]
 Task StartSendingMessages();
 }
}

The implementation of the service is done in the DemoService class (code file WebSocketsSample/
DemoService.cs). Within StartSendindingMessages, the callback interface to go back to the client
is retrieved with OperationContext.Current.GetCallbackChannel. When the client invokes the
method, it returns immediately as soon as the first time the SendMessage method is invoked. The thread
is not blocked until the SendMessage method completes. With await a thread just comes back to the
StartSendingMessages when the SendMessage is completed. Then a delay of 1 second is done before the
client receives another message. In case the communication channel is closed the while loop exits.

using System.ServiceModel;
using System.ServiceModel.Channels;
using System.Threading.Tasks;

namespace WebSocketsSample
{
 public class DemoService : IDemoService
 {
 public async Task StartSendingMessages()
 {
 IDemoCallback callback =
 OperationContext.Current.GetCallbackChannel<IDemoCallback>();
 int loop = 0;
 while ((callback as IChannel).State == CommunicationState.Opened)

c43.indd 1366 30-01-2014 20:50:59

Binding ❘ 1367

 {
 await callback.SendMessage(string.Format(
 "Hello from the server {0}", loop++));
 await Task.Delay(1000);
 }
 }
 }
}

The client application is created as a console application. Because metadata is available with the service,
adding a service reference creates a proxy class that can be used to call the service and also to implement
the callback interface. Adding the service reference not only creates the proxy class, but also adds the
netHttpBinding to the configuration file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5" />
 </startup>
 <system.serviceModel>
 <bindings>
 <netHttpBinding>
 <binding name="NetHttpBinding_IDemoService">
 <webSocketSettings transportUsage="Always" />
 </binding>
 </netHttpBinding>
 </bindings>
 <client>
 <endpoint address="ws://localhost:20839/DemoService.svc"
 binding="netHttpBinding"
 bindingConfiguration="NetHttpBinding_IDemoService"
 contract="DemoService.IDemoService"
 name="NetHttpBinding_IDemoService" />
 </client>
 </system.serviceModel>
</configuration>

The implementation of the callback interface just writes a message to the console with the information
received from the service. To start all the processing, a DemoServiceClient instance is created that receives
an InstanceContext object. The InstanceContext object contains an instance to the CallbackHandler,
a reference retrieved by the service to go back to the client.

using System;
using System.ServiceModel;
using ClientApp.DemoService;

namespace ClientApp
{
 class Program
 {
 private class CallbackHandler : IDemoServiceCallback
 {
 public void SendMessage(string message)
 {
 Console.WriteLine("message from the server {0}", message);
 }
 }

 static void Main(string[] args)
 {
 Console.WriteLine("client... wait for the server");
 Console.ReadLine();

c43.indd 1367 30-01-2014 20:50:59

1368 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

 StartSendRequest();
 Console.WriteLine("next return to exit");
 Console.ReadLine();
 }

 static async void StartSendRequest()
 {
 var callbackInstance = new InstanceContext(new CallbackHandler());
 var client = new DemoServiceClient(callbackInstance);
 await client.StartSendingMessagesAsync();
 }
 }
}

Running the application, the client requests the messages from the service, and the service responds
independent of the client:

client... wait for the server

next return to exit
message from the server Hello from the server 0
message from the server Hello from the server 1
message from the server Hello from the server 2
message from the server Hello from the server 3
message from the server Hello from the server 4

Press any key to continue . . .

HOSTiNg
WCF is flexible when you are choosing a host to run the service. The host can be a Windows service, a
COM+ application, WAS (Windows Activation Services) or IIS, a Windows application, or just a simple
console application. When creating a custom host with Windows Forms or WPF, you can easily create a
peer-to-peer solution.

Custom Hosting
Start with a custom host. The sample code shows hosting of a service within a console application; however,
in other custom host types, such as Windows services or Windows applications, you can program the service
in the same way.

In the Main method, a ServiceHost instance is created. After the ServiceHost instance is created,
the application configuration file is read to define the bindings. You can also define the bindings
programmatically, as shown earlier. Next, the Open method of the ServiceHost class is invoked, so the
service accepts client calls. With a console application, you need to be careful not to close the main thread
until the service should be closed. Here, the user is asked to press Return to exit the service. When the user
does this, the Close method is called to actually end the service:

using System;
using System.ServiceModel;

public class Program
{
 public static void Main()
 {
 using (var serviceHost = new ServiceHost())
 {
 serviceHost.Open();

 Console.WriteLine("The service started. Press return to exit");

c43.indd 1368 30-01-2014 20:50:59

Hosting ❘ 1369

 Console.ReadLine();

 serviceHost.Close();
 }
 }
}

To abort the service host, you can invoke the Abort method of the ServiceHost class. To get the current
state of the service, the State property returns a value defined by the CommunicationState enumeration.
Possible values are Created, Opening, Opened, Closing, Closed, and Faulted.

NOTE If you start the service from within a Windows Forms or WPF application
and the service code invokes methods of Windows controls, you must be sure that
only the control’s creator thread is allowed to access the methods and properties
of the control. With WCF, this behavior can be achieved easily by setting the
UseSynchronizatonContext property of the attribute [ServiceBehavior].

WAS Hosting
With Windows Activation Services (WAS) hosting, you get the features from the WAS worker process such
as automatic activation of the service, health monitoring, and process recycling.

To use WAS hosting, you just need to create a website and a .svc file with the ServiceHost declaration that
includes the language and the name of the service class. The code shown here is using the class Service1. In
addition, you must specify the file that contains the service class. This class is implemented in the same way
that you saw earlier when defining a WCF service library.

<%@ServiceHost language="C#" Service="Service1" CodeBehind="Service1.svc.cs" %>

If you use a WCF service library that should be available from WAS hosting, you can create a .svc file that
just contains a reference to the class:

<%@ ServiceHost Service="Wrox.ProCSharp.WCF.Services.RoomReservationService" %>

Since the introduction of Windows Vista and Windows Server 2008, WAS enables defining .NET TCP and
Message Queue bindings. If you use the previous edition, IIS 6 or IIS 5.1, which is available with Windows
Server 2003 and Windows XP, activation from a .svc file can be done only with an HTTP binding.

Preconfigured Host Classes
To reduce the configuration necessities, WCF also offers some hosting classes with preconfigured
bindings. One example is located in the assembly System.ServiceModel.Web in the namespace System
.ServiceModel.Web with the class WebServiceHost. This class creates a default endpoint for HTTP and
HTTPS base addresses if a default endpoint is not configured with the WebHttpBinding. Also, this class
adds the WebHttpBehavior if another behavior is not defined. With this behavior, simple HTTP GET and
POST, PUT, DELETE (with the WebInvoke attribute) operations can be done without additional setup (code
file RoomReservation/RoomReservationWebHost/Program.cs).

using System;
using System.ServiceModel;
using System.ServiceModel.Web;
using Wrox.ProCSharp.WCF.Service;

namespace RoomReservationWebHost
{
 class Program
 {

c43.indd 1369 30-01-2014 20:50:59

1370 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

 static void Main()
 {
 var baseAddress = new Uri("http://localhost:8000/RoomReservation");
 var host = new WebServiceHost(typeof(RoomReservationService), baseAddress);
 host.Open();

 Console.WriteLine("service running");
 Console.WriteLine("Press return to exit...");
 Console.ReadLine();

 if (host.State == CommunicationState.Opened)
 host.Close();

 }
 }
}

To use a simple HTTP GET request to receive the reservations, the method GetRoomReservation needs a
WebGet attribute to map the method parameters to the input from the GET request. In the following code,
a UriTemplate is defined that requires Reservations to be added to the base address followed by From
and To parameters. The From and To parameters in turn are mapped to the fromTime and toTime variables
(code file RoomReservationService/RoomReservationService.cs).

 [WebGet(UriTemplate="Reservations?From={fromTime}&To={toTime}")]
 public RoomReservation[] GetRoomReservations(DateTime fromTime,
 DateTime toTime)
 {
 var data = new RoomReservationData();
 return data.GetReservations(fromTime, toTime);
 }

Now the service can be invoked with a simple request as shown. All the reservations for the specified time
frame are returned.

http://localhost:8000/RoomReservation/Reservations?From=2012/1/1&To=2012/8/1

NOTE System.Data.Services.DataServiceHost is another class with preconfigured
features. This class derives itself from WebServiceHost.

CLiENTS
A client application needs a proxy to access a service. There are three ways to create a proxy for the client:

➤➤ Visual Studio Add Service Reference — This utility creates a proxy class from the metadata of the
service.

➤➤ ServiceModel Metadata Utility tool (Svcutil.exe) — You can create a proxy class with the Svcutil
utility. This utility reads metadata from the service to create the proxy class.

➤➤ ChannelFactory class — This class is used by the proxy generated from Svcutil; however, it can also
be used to create a proxy programmatically.

using metadata
Adding a service reference from Visual Studio requires accessing a WSDL document. The WSDL
document is created by a MEX endpoint that needs to be configured with the service. With the
following configuration, the endpoint with the relative address mex uses the mexHttpBinding and

c43.indd 1370 30-01-2014 20:50:59

Clients ❘ 1371

implements the contract IMetadataExchange. To access the metadata with an HTTP GET request, the
behaviorConfiguration MexServiceBehavior is configured.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service behaviorConfiguration=" MexServiceBehavior "
 name="Wrox.ProCSharp.WCF.RoomReservationService">
 <endpoint address="Test" binding="wsHttpBinding"
 contract="Wrox.ProCSharp.WCF.IRoomService" />
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress=
 "http://localhost:8733/Design_Time_Addresses/RoomReservationService/" />
 <baseAddresses>
 </host>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="MexServiceBehavior">
 <! — To avoid disclosing metadata information,
 set the value below to false and remove the metadata endpoint above
 before deployment — >
 <serviceMetadata httpGetEnabled="True"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

Similar to the Add service reference from Visual Studio, the Svcutil utility needs metadata to create the
proxy class. The Svcutil utility can create a proxy from the MEX metadata endpoint, the metadata of the
assembly, or WSDL and XSD documentation:

svcutil http://localhost:8080/RoomReservation?wsdl /language:C# /out:proxy.cs
svcutil CourseRegistration.dll
svcutil CourseRegistration.wsdl CourseRegistration.xsd

After the proxy class is generated, it just needs to be instantiated from the client code, the methods need to
be called, and finally the Close()method must be invoked:

var client = new RoomServiceClient();
client.RegisterForCourse(roomReservation);
client.Close();

Sharing Types
The generated proxy class derives from the base class ClientBase<TChannel> that wraps the
ChannelFactory<TChannel> class. Instead of using a generated proxy class, you can use
the ChannelFactory<TChannel> class directly. The constructor requires the binding and endpoint address;
next, you can create the channel and invoke methods as defined by the service contract. Finally, the factory
must be closed:

 var binding = new WsHttpBinding();
 var address = new EndpointAddress("http://localhost:8080/RoomService");

 var factory = new ChannelFactory<IStateService>(binding, address);

 IRoomService channel = factory.CreateChannel();

c43.indd 1371 30-01-2014 20:51:00

1372 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

 channel.ReserveRoom(roomReservation);

 //.
 factory.Close();

The ChannelFactory<TChannel> class has several properties and methods, as shown in the following table.

CHANNELFACTORy mEmbERS DESCRiPTiON

Credentials Credentials is a read-only property to access the ClientCredentials
object assigned to the channel for authentication with the service. The
credentials can be set with the endpoint.

Endpoint Endpoint is a read-only property to access the ServiceEndpoint
associated with the channel. The endpoint can be assigned in the constructor.

State The State property is of type CommunicationState to return the current
state of the channel. CommunicationState is an enumeration with the
values Created, Opening, Opened, Closing, Closed, and Faulted.

Open() The Open method is used to open the channel.

Close() The Close method closes the channel.

Opening
Opened
Closing
Closed
Faulted

You can assign event handlers to get informed about state changes of the
channel. Events are fired before and after the channel is opened, before
and after the channel is closed, and in case of a fault.

DuPLEx COmmuNiCATiON
The next sample application shows how a duplex communication can be done between the client and the
service. The client starts the connection to the service. After the client connects to the service, the service can
call back into the client. Duplex communication was shown earlier with WebSocket protocol as well. Instead
of using the WebSocket protocol (which are just supported with Windows 8 and Windows Server 2012),
duplex communication can also be done with the WsHttpBinding and the NetTcpBinding as shown here.

Contract for Duplex Communication
For duplex communication, a contract must be specified that is implemented in the client. Here the contract
for the client is defined by the interface IMyMessageCallback. The method implemented by the client
is OnCallback. The operation has the operation contract setting IsOneWay=true applied. This way, the
service doesn’t wait until the method is successfully invoked on the client. By default, the service instance
can be invoked from only one thread. (See the ConcurrencyMode property of the service behavior, which is,
by default, set to ConcurrencyMode.Single.)

If the service implementation now does a callback to the client and waits to get an answer from the client, the
thread getting the reply from the client must wait until it gets a lock to the service object. Because the service
object is already locked by the request to the client, a deadlock occurs. WCF detects the deadlock and throws
an exception. To avoid this situation, you can change the ConcurrencyMode property to the value Multiple
or Reentrant. With the setting Multiple, multiple threads can access the instance concurrently. Here, you
must implement locking on your own. With the setting Reentrant, the service instance stays single-threaded
but enables answers from callback requests to reenter the context. Instead of changing the concurrency mode,
you can specify the IsOneWay property with the operation contract. This way, the caller does not wait for a
reply. Of course, this setting is possible only if return values are not expected.

The contract of the service is defined by the interface IMyMessage. The callback contract is mapped to
the service contract with the CallbackContract property of the service contract definition (code file
DuplexCommunication/MessageService/IMyMessage.cs):

c43.indd 1372 30-01-2014 20:51:00

Duplex Communication ❘ 1373

 public interface IMyMessageCallback
 {
 [OperationContract(IsOneWay=true)]
 void OnCallback(string message);
 }

 [ServiceContract(CallbackContract=typeof(IMyMessageCallback))]
 public interface IMyMessage
 {
 [OperationContract]
 void MessageToServer(string message);
 }

Service for Duplex Communication
The class MessageService implements the service contract IMyMessage. The service writes the message
from the client to the console. To access the callback contract, you can use the OperationContext
class. OperationContext.Current returns the OperationContext associated with the current request
from the client. With the OperationContext, you can access session information, message headers
and properties, and, in the case of a duplex communication, the callback channel. The generic method
GetCallbackChannel returns the channel to the client instance. This channel can then be used to
send a message to the client by invoking the method OnCallback, which is defined with the callback
interface IMyMessageCallback. To demonstrate that it is also possible to use the callback channel
from the service independently of the completion of the method, a new thread that receives the callback
channel is created. The new thread sends messages to the client by using the callback channel (code file
DuplexCommunication/MessageService/MessageService.cs).

 public class MessageService: IMyMessage
 {
 public void MessageToServer(string message)
 {
 Console.WriteLine("message from the client: {0}", message);
 IMyMessageCallback callback =
 OperationContext.Current.
 GetCallbackChannel<IMyMessageCallback>();

 callback.OnCallback("message from the server");

 Task.Factory.StartNew(new Action<object>(TaskCallback), callback);
 }

 private async void ThreadCallback(object callback)
 {
 IMyMessageCallback messageCallback = callback as IMyMessageCallback;
 for (int i = 0; i < 10; i++)
 {
 messageCallback.OnCallback("message " + i.ToString());
 await Task.Delay(1000);
 }
 }
 }

Hosting the service is the same as it was with the previous samples, so it is not shown here. However, for duplex
communication, you must configure a binding that supports a duplex channel. One of the bindings supporting
a duplex channel is wsDualHttpBinding, which is configured in the application’s configuration file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>

c43.indd 1373 30-01-2014 20:51:00

1374 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

 <service name="Wrox.ProCSharp.WCF.MessageService">
 <endpoint contract="Wrox.ProCSharp.WCF.IMyMessage"
 binding="wsDualHttpBinding"/>
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8733/Service1" />
 </baseAddresses>
 </host>
 </service>
 </services>
 </system.serviceModel>
</configuration>

Client Application for Duplex Communication
With the client application, the callback contract must be implemented as shown here with the class
ClientCallback that implements the interface IMyMessageCallback (code file DuplexCommunication/
MessageClient/Program.cs):

 class ClientCallback: IMyMessageCallback
 {
 public void OnCallback(string message)
 {
 Console.WriteLine("message from the server: {0}", message);
 }
 }

With a duplex channel, you cannot use the ChannelFactory to initiate the connection to the service as was
done previously. To create a duplex channel, you can use the DuplexChannelFactory class. This class has a
constructor with one more parameter in addition to the binding and address configuration. This parameter
specifies an InstanceContext that wraps one instance of the ClientCallback class. When passing this
instance to the factory, the service can invoke the object across the channel. The client just needs to keep the
connection open. If the connection is closed, the service cannot send messages across it.

 private async static void DuplexSample()
 {
 var binding = new WSDualHttpBinding();
 var address = new EndpointAddress("http://localhost:8733/Service1");

 var clientCallback = new ClientCallback();
 var context = new InstanceContext(clientCallback);

 var factory = new DuplexChannelFactory<IMyMessage>(context, binding,
 address);

 IMyMessage messageChannel = factory.CreateChannel();

 await Task.Run(() => messageChannel.MessageToServer("From the client"));
 }

Duplex communication is achieved by starting the service host and the client application.

ROuTiNg
Using the SOAP protocol has some advantages to HTTP GET requests with REST. One of the advanced
features that can be done with SOAP is routing. With routing, the client does not directly address the
service, but a router in between that forwards the request.

There are different scenarios to use this feature. One is for failover (see Figure 43-10). If the service cannot
be reached or returns in an error, the router calls the service on a different host. This is abstracted from the
client; the client just receives a result.

c43.indd 1374 30-01-2014 20:51:00

Routing ❘ 1375

Routing can also be used to change the communication protocol (see Figure 43-11). The client can use the
HTTP protocol to call a request and sends this to the router. The router acts as a client with the net.tcp
protocol and calls a service forwarding the message.

FiguRE 43-10

FiguRE 43-11

Using routing for scalability is another scenario (see Figure 43-12). Depending on a field of the message
header or also information from the message content, the router can decide to forward a request to one or
the other server. Requests from customers that start with the letter A–F go to the first server, G–N to the
second one, and O–Z to the third.

FiguRE 43-12

Sample Application
With the routing sample application, a simple service contract is defined where the caller can invoke the GetData
operation from the IDemoService interface (code file RoutingSample/DemoService/IDemoService.cs):

using System.ServiceModel;

namespace Wrox.ProCSharp.WCF
{
 [ServiceContract(Namespace="http://www.cninnovation.com/Services/2012")]
 public interface IDemoService
 {
 [OperationContract]
 string GetData(string value);
 }
}

c43.indd 1375 30-01-2014 20:51:00

1376 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

The implementation of the service (code file RoutingSample/DemoService/DemoService.cs) just returns
a message with the GetData method. The message contains the information received along a server-side
string that is initialized from the host. This way you can see the host that returned the call to the client.

using System;

namespace Wrox.ProCSharp.WCF
{
 public class DemoService : IDemoService
 {
 public static string Server { get; set; }

 public string GetData(string value)
 {
 string message = string.Format("Message from {0}, You entered: {1}",
 Server, value);
 Console.WriteLine(message);
 return message;
 }
 }
}

Two sample hosts just create a ServiceHost instance and open it to start the listener. Each of the hosts
defined assigns a different value to the Server property of the DemoService.

Routing interfaces
For routing, WCF defines the interfaces ISimplexDataGramRouter, ISimplexSessionRouter,
IRequestReplyRouter, and IDuplexSessionRouter. Depending on the service contract, different interfaces
can be used. ISimplexDataGramRouter can be used with operations that have the OperationContract with
IsOneWay settings. With ISimplexDatagramRouter, sessions are optional. ISimplexSessionRouter can be used
for one-way messages like ISimlexDatagramRouter, but here sessions are mandatory. IRequestReplyRouter
is used for the most common scenario, messages with request and response. With duplex communications (for
example, with the WsDualHttpBinding used earlier), the interface IDuplexSessionRouter is used.

Depending on the message pattern used, a custom router needs to implement the corresponding router
interface.

WCF Routing Service
Instead of creating a custom router, the RouterService from the namespace System.ServiceModel
.Routing can be used. This class implements all the routing interfaces and thus can be used with all the
message patterns. It can be hosted just like any other service (code file RoutingSample/Router/Program
.cs). In the StartService method, a new ServiceHost is instantiated passing the RoutingService type.
This is just like the other hosts you’ve seen before.

using System;
using System.ServiceModel;
using System.ServiceModel.Routing;

namespace Router
{
 class Program
 {
 internal static ServiceHost routerHost = null;

 static void Main()
 {
 StartService();

 Console.WriteLine("Router is running. Press return to exit");

c43.indd 1376 30-01-2014 20:51:00

Routing ❘ 1377

 Console.ReadLine();

 StopService();
 }

 internal static void StartService()
 {
 try
 {
 routerHost = new ServiceHost(typeof(RoutingService));
 routerHost.Faulted += myServiceHost_Faulted;
 routerHost.Open();
 }
 catch (AddressAccessDeniedException)
 {
 Console.WriteLine("either start Visual Studio in elevated admin " +
 "mode or register the listener port with netsh.exe");
 }
 }

 static void myServiceHost_Faulted(object sender, EventArgs e)
 {
 Console.WriteLine("router faulted");
 }

 internal static void StopService()
 {
 if (routerHost != null && routerHost.State == CommunicationState.Opened)
 {
 routerHost.Close();
 }
 }
 }
}

using a Router for Failover
More interesting than the hosting code is the configuration (configuration file Router/App.config) of the
router. The router acts as a server to the client application and as a client to the service. So both parts need
to be configured. The configuration as shown here offers the wsHttpBinding as a server part and uses the
wsHttpBinding as a client to connect to the service. The service endpoint needs to specify the contract that
is used with the endpoint. With the request-reply operations offered by the service, the contract is defined by
the IRequestReplyRouter interface.

 <system.serviceModel>
 <services>
 <service behaviorConfiguration="routingData"
 name="System.ServiceModel.Routing.RoutingService">
 <endpoint address="" binding="wsHttpBinding"
 name="reqReplyEndpoint"
 contract="System.ServiceModel.Routing.IRequestReplyRouter" />
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8000/RoutingDemo/router" />
 </baseAddresses>
 </host>
 </service>
 </services>

c43.indd 1377 30-01-2014 20:51:01

1378 ❘ CHAPTER 43 WindoWs CommuniCation Foundation

The client part of the router defines two endpoints for services. For testing the routing service, you can use
one system. Of course, usually the hosts run on a different system. The contract can be set to * to allow all
contracts to pass through to the services covered by these endpoints.

 <client>
 <endpoint address="http://localhost:9001/RoutingDemo/HostA"
 binding="wsHttpBinding" contract="*" name="RoutingDemoService1" />
 <endpoint address="http://localhost:9001/RoutingDemo/HostB"
 binding="wsHttpBinding" contract="*" name="RoutingDemoService2" />
 </client>

The behavior configuration for the service becomes important for routing. The behavior configuration
named routingData is referenced with the service configuration you’ve seen earlier. For routing the
routing element must be set with the behavior, and here a routing table is referenced using the attribute
filterTableName.

 <behaviors>
 <serviceBehaviors>
 <behavior name="routingData">
 <serviceMetadata httpGetEnabled="True"/>
 <routing filterTableName="routingTable1" />
 <serviceDebug includeExceptionDetailInFaults="true"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>

The filter table named routingTable1 contains a filter with the filterType MatchAll. This filter
matches with every request. Now every request from the client is routed to the endpoint name
RoutingDemoService1. If this service fails and cannot be reached, the backup list takes importance. The
backup list named failOver1 defines the second endpoint used in case the first one fails.

 <routing>
 <filters>
 <filter name="MatchAllFilter1" filterType="MatchAll" />
 </filters>
 <filterTables>
 <filterTable name="routingTable1">
 <add filterName="MatchAllFilter1" endpointName="RoutingDemoService1"
 backupList="failOver1" />
 </filterTable>
 </filterTables>
 <backupLists>
 <backupList name="failOver1">
 <add endpointName="RoutingDemoService2"/>
 </backupList>
 </backupLists>
 </routing>

With the routing server and routing configuration in place, you can start the client that makes a call to a
service via the router. If everything is fine, the client gets an answer from the service running in host 1. If
you stop host 1, and another request from the client, host 2 takes responsibility and returns an answer.

bridging for Protocol Changes
If the router should act to change the protocol, you can configure the host to use the netTcpBinding instead
of the wsHttpBinding. With the router, the client configuration needs to be changed to reference the other
endpoint.

 <endpoint address="net.tcp://localhost:9010/RoutingDemo/HostA"
 binding="netTcpBinding" contract="*" name="RoutingDemoService1" />

That’s all that needs to be done to change the scenario.

c43.indd 1378 30-01-2014 20:51:01

Summary ❘ 1379

Filter Types
With the sample application, a match-all filter has been used. WCF offers more filter types.

FiLTER TyPE DESCRiPTiON

Action The Action filter enables filtering depending on the action of the message. See the
Action property of the OperationContract.

Address The Address filter enables filtering on the address that is in the To field of the SOAP
header.

AddressPrefix The AddressPrefix filter does not match on the complete address but on the best
prefix match of the address.

MatchAll The MatchAll filter is a filter that matches every request.

XPath With the XPath message filter, an XPath expression can be defined to filter on the
message header. You can add information to the SOAP header with a message
contract.

Custom If you need to route depending on the content of the message, a Custom filter type
is required. With a custom filter type, you need to create a class that derives from
the base class MessageFilter. Initialization of the filter is done with a constructor
that takes a string parameter. This string can be passed from the configuration
initialization.

If multiple filters apply to a request, priorities can be used with filters. However, it’s best to avoid priorities
as this decreases performance.

SummARy
In this chapter, you learned how to use Windows Communication Foundation for communication between
a client and a server. WCF is platform-independent like ASP.NET Web services, but it offers features similar
to .NET Remoting, Enterprise Services, and Message Queuing.

WCF has a heavy focus on contracts to make it easier to isolate developing clients and services, and to support
platform independence. It defines three different contract types: service contracts, data contracts, and message
contracts. You can use several attributes to define the behavior of the service and its operations.

You saw how to create clients from the metadata offered by the service and also by using the .NET interface
contract. You learned the features of different binding options. WCF offers not only bindings for platform
independence, but also bindings for fast communication between .NET applications. You’ve seen how to
create custom hosts and also make use of the WAS host. You saw how duplex communication is achieved by
defining a callback interface, applying a service contract, and implementing a callback contract in the client
application.

The next few chapters continue with WCF features. In Chapter 44, “WCF Data Services”, you learn about
WCF Data Services, Chapter 45, “Windows Workflow Foundation”, you learn about Windows Workflow
Foundation and how WCF is used to communicate with workflow instances. Chapter 46, “Windows
Communication Foundation”, makes use of a WCF service with peer-to-peer communication. Chapter 47,
“Message Queuing” explains how disconnected Message Queuing features can be used with WCF bindings.

c43.indd 1379 30-01-2014 20:51:01

c43.indd 1380 30-01-2014 20:51:01

ASP.NET Web API
WHAT’S iN THiS CHAPTER?

 ➤ Overview of the ASP.NET Web API
 ➤ Creating Services
 ➤ .NET Clients
 ➤ Web API Routing
 ➤ Using OData
 ➤ Security
 ➤ Custom Hosting

WROX.COM CODE DOWNlOADS FOR THiS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

 ➤ Book Service Sample

 ➤ Formula 1 Data Service Sample

 ➤ Secure Web API

 ➤ Self-Host App

OvERviEW
When Windows Communication Foundation (WCF) was announced, it was the technology for com-
munication and replaced several other technologies in the .NET stack (a few mentioned are .NET
Remoting and ASP.NET Web Services). The goal was to just have one communication technology that
is very fl exible and fulfi lls all needs. However, WCF was initially based on SOAP. Now we have many
scenarios where the powerful SOAP enhancements are not needed. For simpler scenarios such as
HTTP requests returning JSON, WCF is too complex. That’s why another technology was introduced
in the year 2012: ASP.NET Web API. With the release of Visual Studio 2013, the next major version
of ASP.NET Web API is released: 2.0. This version is covered in this chapter.

44

c44.indd 1381 30-01-2014 20:51:32

1382 ❘ CHAPTER 44 ASP.NET WEb API

ASP.NET Web API offers a simple communication technology based on Representational State Transfer
(REST). REST is an architecture style based on some constraints. Let’s compare a service that is based on
the REST architectural style with a service that makes use of SOAP to see these constraints.

Both REST services and services making use of the SOAP protocol make use of a client-server technology.
SOAP services can be stateful or stateless, REST services are always stateless. SOAP defines its own message
format with a header and body to select a method of the service. With REST, HTTP verbs such as GET,
POST, PUT, and DELETE are used. GET is used to retrieve resources, POST to add new resources, PUT to
update resources, and DELETE to delete resources.

This chapter takes you through a journey covering various important aspects of ASP.NET Web API — creat-
ing a service, using different routing methods, creating a client, using OData (which is new with version 2),
securing the service, and using custom hosts.

NOTE SOAP and WCF are covered in Chapter 43, “Windows Communication
Foundation.”

CREATiNg SERviCES
Let’s start with creating a service. ASP.NET Web API belongs to One ASP.NET, so you need to start with
a new Web Application Project. From there select the template Web API as shown in Figure 44-1. This tem-
plate adds folders and references for MVC and Web API. MVC is added because help pages for the service
are created with this technology.

FiguRE 44-1

c44.indd 1382 30-01-2014 20:51:33

Creating Services ❘ 1383

NOTE ASP.NET MVC is discussed in Chapter 42, “ASP.NET MVC.”

The directory structure that is created with this template contains folders that are mainly needed for
ASP.NET MVC. For the Web API, the Controllers directory is important because it contains not only
MVC but also Web API controllers and the Models directory for the data model.

The service that is created returns a list of book chapters and allows adding and deleting chapters dynami-
cally. The sample project that offers this service has the name BookServiceSample.

Defining a Model
First you need a type that represents the data to return and change. The class defined in the Models
directory has the name BookChapter and includes simple properties to represent a chapter (code file
BookServiceSample/Model/BookChapter.cs):

 public class BookChapter
 {
 public int Number { get; set; }
 public string Title { get; set; }
 public int Pages { get; set; }
 }

Creating a Controller
The controller for the service is created via Project ➪ Add Controller ➪ Web API 2 Controller with
read/write actions and should be named BookChaptersController. This type derives from the
base class ApiController, which is similar to the MVC controller Controller type, but it’s not
exactly the same. What’s very different compared to the MVC controller is that the routing is defined
differently; it’s not defined in the URL names but instead the HTTP verbs as you’ll see soon. For the
initial data, a List<BookChapter> is defined and initialized with the static constructor (code file
BookServiceSample/Controllers/BookChaptersController.cs):

 public class BookChaptersController : ApiController
 {
 private static List<BookChapter> chapters;
 static BookChaptersController()
 {
 chapters = new List<BookChapter>()
 {
 new BookChapter { Number=1, Title=".NET Architecture", Pages=20},
 new BookChapter { Number=2, Title="Core C#", Pages=42},
 new BookChapter { Number=3, Title="Objects and Types", Pages=24},
 new BookChapter { Number=4, Title="Inheritance", Pages=18},
 new BookChapter { Number=5, Title="Generics", Pages=22},
 new BookChapter { Number=17, Title="Visual Studio 2012", Pages=50},
 new BookChapter { Number=42, Title="ASP.NET Dynamic Data",
 Pages=14}
 };
 }

The Get method that is created from the template is renamed and modified to return the complete collection
of type IEnumerable<BookChapter>:

 // GET api/bookchapters
 public IEnumerable<BookChapter> GetBookChapters()
 {
 return chapters;
 }

c44.indd 1383 30-01-2014 20:51:33

1384 ❘ CHAPTER 44 ASP.NET WEb API

The Get method with a parameter is renamed to GetBookChapter and filters the collection with the LINQ
query operator Where. It returns a single book chapter using SingleOrDefault:

 // GET api/bookchapters/5
 public BookChapter GetBookChapter(int id)
 {
 return chapters.Where(c => c.Number == id).SingleOrDefault();
 }

NOTE LINQ is explained in detail in Chapter 11, “Language Integrated Query.”

On adding a new book chapter, the PostBookChapter is added. This method adds the BookChapter
received with the parameter to the collection:

 // POST api/bookchapters
 public void PostBookChapter([FromBody]BookChapter value)
 {
 chapters.Add(value);
 }

Updating items is based on the HTTP PUT request. The PutBookChapter method removes an existing item
from the collection and adds a new one as shown here. Of course, another implementation would be pos-
sible to find the existing item in the collection and update the properties from the new one — for example, to
find the existing item and change the properties from this item according to the new values:

 // PUT api/bookchapters/5
 public void PutBookChapter(int id, [FromBody]BookChapter value)
 {
 chapters.Remove(chapters.Where(c => c.Number == id).Single());
 chapters.Add(value);
 }

With the HTTP DELETE request, book chapters are deleted:

 // DELETE api/bookchapters/5
 public void DeleteBookChapter(int id)
 {
 chapters.Remove(chapters.Where(c => c.Number == id).Single());
 }

With this controller in place, it is already possible to do first tests from the browser. Opening the link
http://localhost:11825/api/BookChapters returns JSON or XML. With your system the port number
may be different; you can configure it on the Web settings tab in Project Properties. Opening this link with
Internet Explorer, a JSON file is returned as shown:

[{"Number":1,"Title":".NET Architecture","Pages":20},
 {"Number":2,"Title":"Core C#","Pages":42},
 {"Number":3,"Title":"Objects and Types","Pages":24},
 {"Number":4,"Title":"Inheritance","Pages":18},
 {"Number":5,"Title":"Generics","Pages":22},
 {"Number":6,"Title":"Arrays and Tuples","Pages":22},
 {"Number":7,"Title":"Operators and Casts","Pages":32},
 {"Number":17,"Title":"Visual Studio 2012","Pages":50},
 {"Number":42,"Title":"ASP.NET Dynamic Data","Pages":14}]

Using the same link with Google Chrome, XML content is returned:

<ArrayOfBookChapter xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://schemas.datacontract.org/2004/07/BookServiceSample.Models">
 <BookChapter>
 <Number>1</Number>
 <Pages>20</Pages>

c44.indd 1384 30-01-2014 20:51:33

Creating a .NET Client ❘ 1385

 <Title>.NET Architecture</Title>
 </BookChapter>
 <BookChapter>
 <Number>2</Number>
 <Pages>42</Pages>
 <Title>Core C#</Title>
 </BookChapter>
 <!-- ... -->
</ArrayOfBookChapter>

The reason for the differences with the web browsers is that Google Chrome sends the HTTP Accept header
application/xml to prefer XML content, whereas IE does not. When this Accept header is available,
ASP.NET Web API returns XML or JSON; JSON is the default format returned.

Error Handling
The template-generated action methods return void. However, it’s a good idea to return dedicated HTML
error and success codes based on the results. This can now be done easily with ASP.NET Web API 2.0.
Instead of declaring a method void, it can be declared to return IHttpActionResult. This way you can
return any object that implements this interface. The ApiController base class already defines some meth-
ods that return objects implementing IHttpActionResult; for example, the Ok method returns OkResult,
and the BadRequest method returns BadRequestResult. With the sample code, in case the referenced book
chapter to be updated is not found, the method Single throws an InvalidOperationException exception.
This is handled by returning a BadRequestResult object (which results in an HTTP status code 400, bad
request). If the update is successful, OkResult defines the HTTP status code 200, OK:

 public IHttpActionResult PutBookChapter(
 int id, [FromBody]BookChapter value)
 {
 try
 {
 chapters.Remove(chapters.Where(c => c.Number == id).Single());
 chapters.Add(value);
 return Ok();
 }
 catch (InvalidOperationException) // chapter does not exist
 {
 return BadRequest();
 }
 }

Other methods to return an HTTP status code are Conflict (409), Created (201), InternalServerError
(500), NotFound (404), and Unauthorized (401). There are many more you can return using the
StatusCode method. With this method, you can return any HTTP status code that is defined in the enu-
meration HttpStatusCode. This enumeration defines approximately 50 different status code values.

CREATiNg A .NET CliENT
Using the browser to call the service is just a simple way for testing. The clients more typically make use of
JavaScript — this is where JSON shines — and .NET clients. In this book a Console Application project is
created to call the service.

Sending gET Requests
For sending HTTP requests, the HttpClient class is used. For this type the assembly System.Net.Http
needs to be referenced, and the namespace System.Net.Http opened. GetStringAsync makes an HTTP
GET Request to the link /api/BookChapters, the same link that was used before with the web browser.
This link invokes the GetBookChapters method in the controller. The returned string is converted to a

c44.indd 1385 30-01-2014 20:51:33

1386 ❘ CHAPTER 44 ASP.NET WEb API

BookChapter array using the JavaScriptSerializer (code file BookServiceClientApp/Program
.cs). This serializer is defined in the assembly System.Web.Extensions in the namespace System.Web
.Script.Serialization:

 private static async Task ReadArraySample()
 {
 var client = new HttpClient();
 client.BaseAddress = new Uri("http://localhost:11825")
 string response = await client.GetStringAsync("/api/BookChapters");
 Console.WriteLine(response);
 var serializer = new JavaScriptSerializer();
 BookChapter[] chapters =
 serializer.Deserialize<BookChapter[]>(response);

 foreach (BookChapter chapter in chapters)
 {
 Console.WriteLine(chapter.Title);
 }
 }

NOTE The HttpClient class is explained in detail in Chapter 26, “Networking.” For
using this class, the assembly System.Net.Http needs to be referenced.

The ReadArraySample method is invoked from the Main method:

 static void Main()
 {
 Console.WriteLine("Client app, wait for service");
 Console.ReadLine();
 ReadArraySample().Wait();
 Console.ReadLine();
 }

For receiving XML instead of JSON, the client needs to send the Accept header application/xml. With the
HttpClient class, this can be done by adding a MediaTypeWithQualityHeaderValue to the Accept collec-
tion of DefaultRequestHeaders. The returned XML string is parsed with the XElement class:

 private static async Task ReadSampleXml()
 {

 var client = new HttpClient();
 client.BaseAddress = new Uri("http://localhost:11825");
 client.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("application/xml"));

 string response = await client.GetStringAsync("/api/BookChapters/3");

 XElement chapter = XElement.Parse(response);

 Console.WriteLine("{0}", chapter);
 }

Contrary to the previous code snippet, here just a single BookChapter is requested adding the 3 to the URL.
This in turn invokes the method GetBookChapter in the controller. The resulting XML is shown here:

<BookChapter xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://schemas.datacontract.org/2004/07/BookServiceSample.Models">
 <Number>3</Number>
 <Pages>24</Pages>
 <Title>Objects and Types</Title>
</BookChapter>

c44.indd 1386 30-01-2014 20:51:34

Creating a .NET Client ❘ 1387

NOTE The XElement class is explained in detail in Chapter 34, “Manipulating XML.”

By adding the System.Net.Http.Formatting assembly, helper methods are available to make the
conversion to the BookChapter object even easier. The HttpClient.GetAsync method returns an
HttpResponseMessage object with a Content property of type HttpContent. The content could
now be read as a string with the ReadAsStringAsync method (what was done earlier by invoking the
GetStringAsync method on the HttpClient class instead). However, the formatting assembly now
includes a ReadAsAsync<T> method, which immediately does the conversion to the generic type T — in this
case the BookChapter:

 private static async Task ReadWithExtensionsSample()
 {
 var client = new HttpClient();
 client.BaseAddress = new Uri("http://localhost:11825");
 HttpResponseMessage response =
 await client.GetAsync("/api/BookChapters/3");
 BookChapter chapter =
 await response.Content.ReadAsAsync<BookChapter>();

 Console.WriteLine("{0}. {1}", chapter.Number, chapter.Title);
 }

Sending POST Requests
The HTTP POST request works similarly to the GET request. This request creates a new object server side
and invokes the PostBookChapter method in the controller.

The HttpClient.PostAsync method sends the POST request. This request needs the book chapter as the
body of the request. This body is passed and transformed with the help of the ObjectContent<T> type
and the JsonMediaTypeFormatter. Both of these types are found in the System.Http.Net.Formatting
assembly.

After doing the POST request, the book chapters are read again by invoking the ReadArraySample and thus
doing a GET request. This is to verify that the book chapter was added to the chapter list:

 private static async Task AddSample()
 {
 var newChapter = new BookChapter
 {
 Title = "ASP.NET Web API",
 Number = 44,
 Pages = 29
 };

 var client = new HttpClient();
 client.BaseAddress = new Uri("http://localhost:11825");

 HttpContent content = new ObjectContent<BookChapter>(
 newChapter, new JsonMediaTypeFormatter());

 HttpResponseMessage response =
 await client.PostAsync("/api/BookChapters", content);

 response.EnsureSuccessStatusCode();

 await ReadArraySample();
 }

c44.indd 1387 30-01-2014 20:51:34

1388 ❘ CHAPTER 44 ASP.NET WEb API

Sending PuT Requests
The HTTP PUT request — used for updating a record — is sent with the help of the extension method
PutAsJsonAsync. This extension method is available with the System.Http.Net.Formatting assembly,
and it formats the content as it sends the PUT request within one method call:

 private static async Task UpdateSample()
 {
 var client = new HttpClient();
 client.BaseAddress = new Uri("http://localhost:11825");

 var updatedChapter = new BookChapter
 {
 Title = "Visual Studio 2013",
 Number = 17,
 Pages = 50
 };

 await client.PutAsJsonAsync("/api/BookChapters/17", updatedChapter);

 await ReadArraySample();
 }

Sending DElETE Requests
The last request is the HTTP DELETE request. After GetAsync, PostAsync, and PutAsync, it should be
obvious that the format is DeleteAsync. What’s shown in this code snippet is checking for a correct return
status code by calling the method EnsureSuccessStatusCode. If there’s not a success status code, this
method throws an exception of type HttpRequestException that is caught:

 private static async Task DeleteSample()
 {
 try
 {
 var client = new HttpClient();
 client.BaseAddress = new Uri("http://localhost:11825");

 HttpResponseMessage response =
 await client.DeleteAsync("/api/BookChapters/42");

 response.EnsureSuccessStatusCode();

 await ReadArraySample();
 }
 catch (HttpRequestException ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

WEb APi ROuTiNg AND ACTiONS
Contrary to the ASP.NET MVC routing where the route is defined based on the URL, with ASP.NET Web
API the route is based on the HTTP method. A GET request routes to the to a controller method that is
prefixed with Get; a POST request routes to a method prefixed with Post. It doesn’t matter if the method is
named Get or GetBookChapters; both method names are a match for the GET request.

The route for ASP.NET Web API is defined in the file BookServiceSample/App_Start/WebAPiConfig.cs. The
Register method is called from the application startup code in Global.asax.cs:

c44.indd 1388 30-01-2014 20:51:34

Web API Routing and Actions ❘ 1389

 public static void Register(HttpConfiguration config)
 {
 //...

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 //...
 }

The route definition is very similar to the ASP.NET MVC route definition. With ASP.NET MVC, the route
is defined by the MapRoute method. Instead routing of URL links, the MapHttpRoute method maps HTTP
requests.

The route template specifies api/{controller}/{id} with the URL. api is used as a prefix in the route
to differentiate the Web API controllers from the MVC controllers. The controller specifies the name of the
controller, the first sample of this chapter had BookChapters as controller name. id is the optional name of
the parameter. The methods GetBookChapter, PutBookChapter, and DeleteBookChapter all define an id
as the parameter.

Adding HTTP Methods to Actions
So far the simple naming convention was used to map an HTTP method to an action method. The
HTTP GET request maps to the GetBookChapters method, the HTTP POST request to the method
PostBookChapter:

 public IEnumerable<BookChapter> GetBookChapters()
 {
 return chapters;
 }

 public void PostBookChapter([FromBody]BookChapter value)
 {
 chapters.Add(value);
 }

If the name of the action method does not define the mapping to the HTTP method, this is also possible to
define by using attributes. For example, with a method named BookChapters, the HttpGet attribute can be
applied to map it to the HTTP GET request:

 [HttpGet]
 public IEnumerable<BookChapter> BookChapters()
 {
 return chapters;
 }

Similar to the GET request, other attributes are available for HEAD, POST, PUT, and DELETE requests:
HttpHead, HttpPost, HttpPut, and HttpDelete. Another option is to use the AcceptVerb attribute. This
attribute allows assigning multiple HTTP methods to one action method. For having a URL link that differs
from the action method, the ActionName attribute can be used:

 [AcceptVerbs("POST")]
 [ActionName("bookchapter")]
 public void AddBookChapter([FromBody]BookChapter value)
 {
 chapters.Add(value);
 }

To not map a public method of a controller to a URL, the NonAction attribute can be applied.

c44.indd 1389 30-01-2014 20:51:34

1390 ❘ CHAPTER 44 ASP.NET WEb API

Attribute-based Routing
Convention-based routing has the advantage that it’s defined in one place (calling the MapHttpRoute
method), and there’s no need to specify any mapping with the controllers. However, it can get difficult with
a larger number of controllers, where parent/child relationships should be defined. For example, a book
consists of book chapters, and the URL should be books/42/bookchapters/11 to map to Chapter 11 in the
book with the id 42. ASP.NET Web API 2 includes a new feature to route differently from the convention-
based route with the help of attributes.

To enable attribute-based routing, the MapHttpAttributeRoutes method needs to be invoked with register-
ing routes (code file BookServiceSample/App_Start/WebApiConfig.cs). With Web API 2, this method is
defined as an extension method with the System.Web.Http namespace in the System.Web.Http assembly:

public static void Register(HttpConfiguration config)
{
 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
}

For showing a referenced item with attribute-based routing, the Book type (code file BookServiceSample/
Models/Book.cs) is created:

public class Book
{
 public Book(int id, string title, params BookChapter[] chapters)
 {
 this.Id = id;
 this.Title = title;
 this.BookChapters = chapters.ToList();

 }
 public int Id { get; private set; }
 public string Title { get; private set; }

 public ICollection<BookChapter> BookChapters { get; private set;}
}

With the controller, a list of books, and a list of chapters are created (code file BookServiceSample/
Controllers/BookChaptersAttrController.cs):

private static List<BookChapter> chapters;
private static List<Book> books;
static BookChaptersAttrController()
{
 chapters = new List<BookChapter>()
 {
 new BookChapter { Number=1, Title=".NET Architecture", Pages=20},
 new BookChapter { Number=2, Title="Core C#", Pages=42},
 new BookChapter { Number=3, Title="Objects and Types", Pages=24},
 new BookChapter { Number=4, Title="Inheritance", Pages=18},
 new BookChapter { Number=5, Title="Generics", Pages=22},
 new BookChapter { Number=17, Title="Visual Studio 2012", Pages=50},
 new BookChapter { Number=42, Title="ASP.NET Dynamic Data", Pages=14}
 };

 books = new List<Book>()
 {

c44.indd 1390 30-01-2014 20:51:34

Using OData ❘ 1391

 new Book(1, "Professional C# 5 and .NET 4.5.1", chapters.ToArray()),
 new Book(2, "Professional ASP.NET MVC 4")
 };
}

With an attribute-based route, the Route attribute can be applied to action methods. In case such an attri-
bute is applied, attribute-based routing is used. For action methods without such an attribute, convention-
based routing is used. With the Route attribute, a template can be specified that contains parameters to
methods within curly brackets. The route shown here applies to the URL http://server/books/2, where
2 is passed as bookId parameter:

 [Route("books/{bookId}")]
 public IEnumerable<BookChapter> GetBookChapters(int bookId)
 {
 return books.Where(b => b.Id == bookId).Single().BookChapters;
 }

Using templates of the Route attribute, multiple parameters can be passed as well. With the URL http://
server/books/1/chapters/5, Chapter 5 of the book with id 1 is returned:

 [Route("books/{bookId}/chapters/{chapterId}")]
 public BookChapter GetBookChapter(int bookId, int chapterId)
 {
 return books.Where(b => b.Id == bookId).Single().BookChapters.
 Where(c => c.Number == chapterId).SingleOrDefault();
 }

It’s also possible to constraint parameters with a type as shown:

 [Route("books/{bookId:int}/chapters/{chapterId:int}")]

Often all the action methods of a controller are using the same route prefix. Such a prefix can be assigned to
the controller type using the RoutePrefix attribute:

 [RoutePrefix("booksamples")]
 public class BookChaptersAttrController : ApiController
 {
 //...

With the action methods this way, it’s necessary to define the parts that follow the prefix — for example,
with two parameters as in the following code snippet:

 [Route("{bookId:int}/{chapterId:int}")]
 public BookChapter GetBookChapter(int bookId, int chapterId)
 {
 return books.Where(b => b.Id == bookId).Single().BookChapters.
 Where(c => c.Number == chapterId).SingleOrDefault();
 }

Using attribute-based routing is very practical when offering resources using OData with an ASP.NET Web
API Service as shown in the following section.

uSiNg ODATA
The ASP.NET Web API offers direct support for the Open Data Protocol (OData). OData offers CRUD
access to a data source via the HTTP protocol. Sending a GET request retrieves a collection of entity data; a
POST request creates a new entity; a PUT request updates existing entities; and a DELETE request removes
an entity. Here you’ve already seen the HTTP methods mapped to action methods in the controller. OData
is built on JSON and AtomPub (an XML format) for the data serialization. You’ve seen this with the
ASP.NET Web API as well. What OData offers more of is that every resource can be accessed with simple
URL queries. For having a look into that, and how this is solved with ASP.NET Web API, let’s get into a
sample and start with a database.

c44.indd 1391 30-01-2014 20:51:34

1392 ❘ CHAPTER 44 ASP.NET WEb API

Creating a Data Model
The sample app Formula1ServiceSample used for OData accesses a Formula 1 database that you can down-
load with the sample code.

First, a model (in the directory Models) is created by using the ADO.NET Entity Data Model designer, and
the tables Racers, RaceResults, Races, and Circuits are selected as shown in Figure 44-2.

FiguRE 44-2

The designer creates the types Racer, RaceResult, Race, and Circuit, which map to the corresponding
database tables, and the database context type Formula1Entities. Formula1Entities manages the con-
nection to the database as well as querying and updating data.

NOTE The ADO.NET Entity Framework is explained in detail in Chapter 33, “ADO
.NET Entity Framework.”

Creating a Service
With the ADO.NET Entity Framework model in place, scaffolding can be used to create an OData ser-
vice. For using scaffolding, you can add a new controller with the menu Add Controller, and then you
select the option Web API 2 OData Controller with actions, using Entity Framework. When you select this

c44.indd 1392 30-01-2014 20:51:35

Using OData ❘ 1393

option, the dialog shown in Figure 44-3 opens. Here you can select the model type and data context. The
new controller has the name RacerController, with the Racer model type, and the data context class
Formula1Entities.

FiguRE 44-3

The new generated controller differs from the previous ones by having a base class ODataController
(instead of ApiController) and the attribute Queryable with the action methods as shown in the following
code snippet (code file Formula1ServiceSample/Controllers/RacerController.cs):

 public class RacerController : ODataController
 {
 private Formula1Entities db = new Formula1Entities();

 // GET odata/Formula1
 [Queryable]
 public IQueryable<Racer> GetRacer()
 {
 return db.Racers;
 }

 // GET odata/Formula1(5)
 [Queryable]
 public SingleResult<Racer> GetRacer([FromODataUri] int key)
 {
 return SingleResult.Create(db.Racers.Where(
 racer => racer.Id == key));
 }

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 db.Dispose();
 }
 base.Dispose(disposing);
 }
}

The base class ODataController derives from ApiController and provides additional protected virtual
generic methods Created and Updated. These methods will be called from within the controller code on
creating and updating entities, and create action results for the POST and PUT HTTP methods.

c44.indd 1393 30-01-2014 20:51:35

1394 ❘ CHAPTER 44 ASP.NET WEb API

Offering OData from the service requires another route defined calling the method MapODataRoute
(code file Formula1ServiceSample/App_Start/WebApiConfig.cs). The sample code uses odata as a
prefix for the route to not clash OData requests with other Web API service calls (which uses api per default).
The third parameter of the method MapODataRoute requires model metadata via the interface
IEdmModel. ODataConventionModelBuilder maps CLR types to an EDM model based on conventions — thus
it allows using Code First with the ADO.NET Entity Framework. The method GetEdmModel returns the
needed IEdmModel:

using Formula1ServiceSample.Models;
using System.Web.Http;
using System.Web.Http.OData.Builder;

namespace Formula1ServiceSample
{
 public static class WebApiConfig
 {
 public static void Register(HttpConfiguration config)
 {
 var builder = new ODataConventionModelBuilder();
 builder.EntitySet<Racer>("Racer");
 builder.EntitySet<RaceResult>("RaceResult");
 builder.EntitySet<Race>("Race");
 config.Routes.MapODataRoute("odata", "odata", builder.GetEdmModel());

 // Web API routes
 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

OData Query
Now it’s an easy task to get all the racers from the database using this URL (the port number might differ
on your system):

http://localhost:36089/odata/Racer

For getting just a single racer, the identifier of the racer can be passed with the URL. This request calls the
GetRacer action method passing the key that returns SingleResult<Racer>:

http://localhost:36089/odata/Racer(11)

Each racer has multiple results. With a URL query it’s also possible to get all the race results of one
racer:

http://localhost:36089/odata/Racer(11)/RaceResults

The requirement for all the query options is the Queryable attribute that is applied to the action methods.

OData offers more query options that are supported by ASP.NET Web API. The OData specification
allows passing parameters to the server for paging, filtering, and sorting. Let’s get into these.

To return only a limited number of entities to the client, the client can limit the count using the $top
parameter. This also allows paging by using $skip; for example, you can skip 20 and take 10:

http://localhost:36089/odata/Racer?$top=10&$skip=20

c44.indd 1394 30-01-2014 20:51:35

Using OData ❘ 1395

With $skip and $top options, the client decides the number of entities to retrieve. In case you want to
restrict what the client can request — for example, having millions of records that should never be requested
with one call — you can limit this by configuring the Queryable attribute. Setting the PageSize to 10 only
returns 10 entities at max:

[Queryable(PageSize=10)]

There are many more named parameters for the Queryable attribute to restrict the query — for example,
the maximum skip and top values, the maximum expansion depth, and restrictions for sorting.

To filter the requests based on properties of the Racer type, the $filter option can be applied to properties
of the Racer. To filter only the racers that are from the country Austria, you can use the eq operator (equals)
with $filter:

http://localhost:36089/odata/Racer?$filter=Country eq 'Austria'

You can use lt (less than) and gt (greater than) operators with $filter as well. This request only returns
racers with more than 20 wins:

http://localhost:36089/odata/Racer?$filter=Wins gt 20

To request a sorted result, the $orderby option defines the sorting order. Adding the desc keyword makes
the sorting in descending order:

http://localhost:36089/odata/Racer?$orderby=Wins%20desc

You can easily make all these requests to the service by using the HttpClient class. However, there
are other options as well, such as by using a WCF Data Services created proxy as shown in the next
section.

WCF Data Services Client
WCF Data Services is another technology for OData. WCF Data Services consists of two parts: a server-
technology and a client technology.

The server technology can be compared to the ASP.NET Web API. It’s as easy (maybe easier) to create
an OData service that is based on the ADO.NET Entity Framework. However, it’s not that easy to adapt
it with custom code and to offer updates and deletes in case custom code is used instead of the Entity
Framework. For reading, just the interface IQueryable is needed (which is easy to do, even for lists imple-
menting IEnumerable). To create, update, and delete entities, the interface IDataServiceUpdateProvider
requires much more work — much more than the Post, Put, and Delete action methods done with ASP.NET
Web API.

The client technology for WCF Data Services doesn’t have a corresponding technology with ASP.NET
Web API. However, it is easy to use the client part of WCF Data Services with the Web API on the server
side.

For using the OData service offered from the Formula 1 service, a Console application is created. To create a
WCF Data Service client, you add a service reference to the project as shown in Figure 44-4.

With the Add Service Reference, the entity types are created out of the metadata of the OData service.
One example shown here is the Racer type. The generated types (code file Formula1ServiceSample/
ClientApp/Service References/Reference.cs) implement INotifyPropertyChanged to keep the
client-context informed about changes. The set accessors not only fire notifications defined by the interface
INotifyPropertyChanged but they also invoke partial methods that you can implement in another partial
part of the type:

c44.indd 1395 30-01-2014 20:51:35

1396 ❘ CHAPTER 44 ASP.NET WEb API

FiguRE 44-4

public partial class Racer : INotifyPropertyChanged
{
 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 public static Racer CreateRacer(int ID)
 {
 Racer racer = new Racer();
 racer.Id = ID;
 return racer;
 }
 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 public int Id
 {
 get
 {
 return this._Id;

c44.indd 1396 30-01-2014 20:51:35

Using OData ❘ 1397

 }
 set
 {
 this.OnIdChanging(value);
 this._Id = value;
 this.OnIdChanged();
 this.OnPropertyChanged("Id");
 }
 }
 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 private int _Id;
 partial void OnIdChanging(int value);
 partial void OnIdChanged();
 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 public string Firstname
 {
 get
 {
 return this._Firstname;
 }
 set
 {
 this.OnFirstnameChanging(value);
 this._Firstname = value;
 this.OnFirstnameChanged();
 this.OnPropertyChanged("Firstname");
 }
 }
 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 private string _Firstname;
 partial void OnFirstnameChanging(string value);
 partial void OnFirstnameChanged();
 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 public string Lastname
 {
 get
 {
 return this._Lastname;
 }
 set
 {
 this.OnLastnameChanging(value);
 this._Lastname = value;
 this.OnLastnameChanged();
 this.OnPropertyChanged("Lastname");
 }
 }
 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 private string _Lastname;
 partial void OnLastnameChanging(string value);
 partial void OnLastnameChanged();
 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 public string Country
 {
 get
 {
 return this._Country;
 }
 set
 {
 this.OnCountryChanging(value);
 this._Country = value;

c44.indd 1397 30-01-2014 20:51:36

1398 ❘ CHAPTER 44 ASP.NET WEb API

 this.OnCountryChanged();
 this.OnPropertyChanged("Country");
 }
 }
 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 private string _Country;
 partial void OnCountryChanging(string value);
 partial void OnCountryChanged();
 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 public Nullable<int> Starts
 {
 get
 {
 return this._Starts;
 }
 set
 {
 this.OnStartsChanging(value);
 this._Starts = value;
 this.OnStartsChanged();
 this.OnPropertyChanged("Starts");
 }
 }
 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 private global::System.Nullable<int> _Starts;
 partial void OnStartsChanging(global::System.Nullable<int> value);
 partial void OnStartsChanged();
 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 public Nullable<int> Wins
 {
 get
 {
 return this._Wins;
 }
 set
 {
 this.OnWinsChanging(value);
 this._Wins = value;
 this.OnWinsChanged();
 this.OnPropertyChanged("Wins");
 }
 }
 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 private global::System.Nullable<int> _Wins;
 partial void OnWinsChanging(global::System.Nullable<int> value);
 partial void OnWinsChanged();
 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 public DataServiceCollection<RaceResult> RaceResults
 {
 get
 {
 return this._RaceResults;
 }
 set
 {
 this._RaceResults = value;
 this.OnPropertyChanged("RaceResults");
 }
 }
 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 private DataServiceCollection<RaceResult> _RaceResults =
 new DataServiceCollection<RaceResult>(null, TrackingMode.None);

c44.indd 1398 30-01-2014 20:51:36

Using OData ❘ 1399

 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 public event PropertyChangedEventHandler PropertyChanged;
 [GeneratedCodeAttribute("System.Data.Services.Design", "1.0.0")]
 protected virtual void OnPropertyChanged(string property)
 {
 if ((this.PropertyChanged != null))
 {
 this.PropertyChanged(this, PropertyChangedEventArgs(property));
 }
 }

For making a query to the service, WCF Data Services allows defining LINQ queries that are mapped
to URL requests. First, a Container object is created (code file Formula1ServiceSample/ClientApp/
Program.cs). Container derives from the base class DataServiceContext and manages the connection
and sending requests to the service. This context is comparable to the data context used by the ADO.NET
Entity Framework to manage connections to the database and keeps tracks of loaded objects. The LINQ
query to the Racer property of the container (this property is of type DataServiceQuery<Racer>) converts
the LINQ request to a URL string. Using the foreach statement to iterate the results calls the service and
uses the result:

private static void ReadSample()
{
 Uri serviceRoot = new Uri("http://localhost:36089/odata");
 var container = new Container(serviceRoot);
 var q = from r in container.Racer
 where r.Country == "Austria"
 orderby r.Wins descending
 select r;
 foreach (var r in q)
 {
 Console.WriteLine("{0} {1}", r.Firstname, r.Lastname);
 }
}

The LINQ query to filter racers by the country Austria, and order them by the number of wins converts to
this URL request:

http://localhost:36089/odata/Racer()?$filter=Country eq
'Austria'&$orderby=Wins desc

Here the OData Query options $filter and $orderby are used as described earlier. Using WCF Data
Services you just can stick to the LINQ request, and the OData query is done automatically.

For sending an HTTP POST request to create a new record, the AddToRacer of the Container is invoked to
add a new object to the context, and then SaveChanges is invoked to make the request to the service. The
result of SaveChanges is of type DataServiceResponse that allows checking for errors:

private static void CreateSample()
{
 Uri serviceRoot = new Uri("http://localhost:36089/odata");
 var container = new Container(serviceRoot);
 container.AddToRacer(
 new Racer
 {
 Firstname = "Valtteri",
 Lastname = "Botas",
 Country = "Finland",
 Wins = 0,
 Starts = 19
 });
 DataServiceResponse resp = container.SaveChanges();

}

c44.indd 1399 30-01-2014 20:51:36

1400 ❘ CHAPTER 44 ASP.NET WEb API

Updating records happens with HTTP PUT requests that change an existing object, invoke the
UpdateObject method, and call SaveChanges again:

private static void UpdateSample()
{
 Uri serviceRoot = new Uri("http://localhost:36089/odata");
 Container container = new Container(serviceRoot);
 var r1 = (from r in container.Racer
 where r.Firstname == "Sebastian" && r.Lastname == "Vettel"
 select r).FirstOrDefault();
 r1.Starts = 120;
 r1.Wins = 39;
 container.UpdateObject(r1);
 DataServiceResponse resp = container.SaveChanges();
}

SECuRiTy WiTH THE WEb APi
To restrict access to the Web API, the same technology as with ASP.NET Web Forms and ASP.NET MVC is
supported. Creating the project, you can change the authentication as shown in Figure 44-5.

FiguRE 44-5

Selecting the Individual User Account option for authentication creates a Web API AccountController.
This controller defines some methods to manage users, such as user registration and change passwords. The
ValuesController has the Authorize attribute applied, so only authorized users are allowed to access the
actions of the controller (code file SecureWebAPI/Controllers/ValuesController.cs):

[Authorize]
public class ValuesController : ApiController
{
 public IEnumerable<string> Get()
 {
 return new string[] { "value1", "value2" };
 }
 //...

Let’s try to make a request to this Values controller by using the HttpClient class as has been shown earlier
(code file SecureWebAPI/ClientApp/Program.cs):

c44.indd 1400 30-01-2014 20:51:36

Security with the Web API ❘ 1401

 private async static void NotAuthenticated()
 {
 string valuesUri = "/api/Values";
 var client = new HttpClient();
 client.BaseAddress = new Uri("http://localhost:11663");
 HttpResponseMessage resp = await client.GetAsync(valuesUri);

 Console.WriteLine(resp.StatusCode);
 string result = await resp.Content.ReadAsStringAsync();
 }

What happens here is that the HTTP status code 401 is returned with the StatusCode message
Unauthorized. The content contains this string: Authorization has been denied for this request.
But there’s even more information: information about the authentication scheme required. You can find this
information within the headers of the HttpResponseMessage: Headers.WwwAuthenticate. The scheme
found with the header is Bearer. This is a scheme used with OAuth. A bearer token needs to be passed to the
Web API service to succeed with authorization.

Let’s get this to work.

Create an Account
For authentication of the user, an account is needed. Using the new security model, having accounts with
OAuth authentication support — such as Facebook, Twitter, Google, and Microsoft accounts — is directly
supported. This way other servers where a trust is built up between the Web API service and the token
authentication service are used to authenticate users. Later, this chapter examines how other token services
can be used. However, the Account controller also supports creating users directly in a database.

This controller defines a Register method that is available for anonymous users (the AllowAnonyous
attribute is applied) that enables them to register and create a local user. The route to this method is defined
via attribute routing (code file SecureWebAPI/Controllers/AccountController.cs). The UserManager
.CreateAsync writes user information to the database. This type is defined within the namespace
Microsoft.AspNet.Identity:

[AllowAnonymous]
[Route("Register")]
public async Task<IHttpActionResult> Register(RegisterBindingModel model)
{
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 IdentityUser user = new IdentityUser
 {
 UserName = model.UserName
 };

 IdentityResult result = await UserManager.CreateAsync(user,
 model.Password);
 IHttpActionResult errorResult = GetErrorResult(result);

 if (errorResult != null)
 {
 return errorResult;
 }
 return Ok();
}

private IHttpActionResult GetErrorResult(IdentityResult result)
{

c44.indd 1401 30-01-2014 20:51:36

1402 ❘ CHAPTER 44 ASP.NET WEb API

 if (result == null)
 {
 return InternalServerError();
 }

 if (!result.Succeeded)
 {
 if (result.Errors != null)
 {
 foreach (string error in result.Errors)
 {
 ModelState.AddModelError("", error);
 }
 }

 if (ModelState.IsValid)
 {
 // No ModelState errors are available to send, so just return
 // an empty BadRequest.
 return BadRequest();
 }

 return BadRequest(ModelState);
 }
 return null;
}

Let’s make a call to this service and register a user (code file SecureWebAPI/ClientApp/Program.cs). The
link to the registration — defined via attribute routing — is /api/Account/Register. The action method
requires a RegisterBindingModel with the parameter. This model defines the properties UserName,
Password, and ConfirmPassword. To pass these values to the service, an anonymous type is created, and
formatted as a JSON string with the help of the PostAsJsonAsync extension method. This helper method is
defined in the assembly System.Net.Http.Formatting in the namespace System.Net.Http:

private async static void RegisterUser()
{
 string registerUri = "/api/Account/Register";
 HttpClient client = new HttpClient();
 client.BaseAddress = new Uri("http://localhost:11663");

 var user = new
 {
 UserName = "christian",
 Password = "Password123",
 ConfirmPassword = "Password123"
 };

 HttpResponseMessage resp =
 await client.PostAsJsonAsync(registerUri, user);

 resp.EnsureSuccessStatusCode();
 Console.WriteLine("registered successfully");
}

And this is all you need to create the user with the service. Now it’s possible to create an authentication
token.

Create an Authentication Token
Who’s answering for authentication token requests is defined within the static constructor of the
Startup class (code file SecureWebAPI/App_Start/Startup.Auth.cs). This constructor sets the
TokenEndPointPath of the OAuthAuthorizationServerOptions to /Token — this is the URI to request

c44.indd 1402 30-01-2014 20:51:36

Security with the Web API ❘ 1403

the token. The provider type defined with the Provider property is of type ApplicationOAuthProvider.
This class is created from the Visual Studio template, you can read the complete code of the provider imple-
mentation in the folder SecureWebAPI/Providers:

 static Startup()
 {
 PublicClientId = "self";

 UserManagerFactory = () => new UserManager<IdentityUser>(
 new UserStore<IdentityUser>());

 OAuthOptions = new OAuthAuthorizationServerOptions
 {
 TokenEndpointPath = new PathString("/Token"),
 Provider = new ApplicationOAuthProvider(PublicClientId,
 UserManagerFactory),
 AuthorizeEndpointPath = new PathString("/api/Account/ExternalLogin"),
 AccessTokenExpireTimeSpan = TimeSpan.FromDays(14),
 AllowInsecureHttp = true
 };
 }

NOTE The property AllowInsecureHttp by default is set to true to allow HTTP
requests. This is good for testing. However, in production you should have your service
running with HTTPS and set this property to false.

Let’s step over to the client to request the token from the service. The HttpClient class is now used for an
HTTP POST request to the Token URI. With the POST data, grant_type, username, and password need
to be sent to the authentication service. The data received is a JSON object with values for token_type
and access_token. To pass this information into an object, you can create a class with properties of these
names. The sample code demonstrates how the dynamic type could be used for this as well. Calling the
method ReadAsAsync with the generic parameter dynamic fills an object with properties of the returned
token. It’s easy to access the values with token_type and access_token; the compiler can’t verify the prop-
erties you use here and doesn’t give you a compiler error. Use the property names here exactly as written,
as these values will be filled at runtime from the JSON object. The GetToken method returns the dynamic
token object after writing the type and access token to the console. The resulting type is bearer, as you
might have guessed from the earlier explanation that introduced security with ASP.NET Web API:

private async static Task<dynamic> GetToken()
{
 string tokenUri = "/Token";
 var client = new HttpClient();
 client.BaseAddress = new Uri("http://localhost:11663");

 HttpContent content = new FormUrlEncodedContent(
 new List<KeyValuePair<string, string>> {
 new KeyValuePair<string, string>("grant_type", "password"),
 new KeyValuePair<string,string>("username","christian"),
 new KeyValuePair<string,string>("password","Password123"),
 });
 content.Headers.ContentType =
 new MediaTypeHeaderValue("application/x-www-form-urlencoded");
 content.Headers.ContentType.CharSet = "UTF-8";

 HttpResponseMessage resp = await client.PostAsync(tokenUri, content);

 resp.EnsureSuccessStatusCode();
 dynamic token = await resp.Content.ReadAsAsync<dynamic>();
 Console.WriteLine("{0}", token.token_type);

c44.indd 1403 30-01-2014 20:51:36

1404 ❘ CHAPTER 44 ASP.NET WEb API

 Console.WriteLine("{0}", token.access_token);
 Console.WriteLine();
 return token;
}

NOTE The dynamic type is explained in Chapter 12, “Dynamic Language Extensions.”

Sending an Authenticated Call
You can now use the token information to make an authenticated call to the service. Before creating the
token, calling the ValuesController resulted in the Unauthorized result. With the token in place,
the call should succeed now. The access token can be added to the Authorization header using the
DefaultRequestHeaders property of the HttpClient. Both the token type and access token need to be
passed. Next, as before the GET request is done to the URI /api/Values. This time it’s successful, and the
JSON result is written to the console:

private async static void Authenticated()
{
 dynamic token = await GetToken();

 string valuesUri = "/api/Values";
 var client = new HttpClient();
 client.BaseAddress = new Uri(baseAddress);

 client.DefaultRequestHeaders.Add("Authorization",
 string.Format("{0} {1}", token.token_type, token.access_token));

 HttpResponseMessage resp = await client.GetAsync(valuesUri);

 Console.WriteLine(resp.StatusCode);

 string content = await resp.Content.ReadAsStringAsync();
 Console.WriteLine(content);
}

getting user information
The AccountController defines a template-generated action method, GetUserInfo, that uses information
in the form of a UserInfoViewModel object. This type defines the properties UserName, HasRegistered,
and LoginProvider, which are filled in the implementation of the method. User (a property of the base
class ApiController) is filled when authorizing the user. With the help of the method FromIdentity, the
ClaimsIdentity that represents the identity of the user is checked to retrieve user information, which is
finally returned:

[HostAuthentication(DefaultAuthenticationTypes.ExternalBearer)]
[Route("UserInfo")]
public UserInfoViewModel GetUserInfo()
{
 ExternalLoginData externalLogin = ExternalLoginData.FromIdentity(
 User.Identity as ClaimsIdentity);

 return new UserInfoViewModel
 {
 UserName = User.Identity.GetUserName(),
 HasRegistered = externalLogin == null,
 LoginProvider =
 externalLogin != null ? externalLogin.LoginProvider : null
 };
}

c44.indd 1404 30-01-2014 20:51:37

Self-Hosting ❘ 1405

Let’s make a call from the client. This time is different than before; the dynamic type is not used (which
would be possible as well), but a new type is generated that defines the members that are expected to be con-
tained with the JSON result from the service:

class UserInfo
{
 public string UserName { get; set; }
 public bool HasRegistered { get; set; }
 public string LoginProvider { get; set; }
}

As before with the authenticated call, the request headers for the authorization are added, and then the call
to the UserInfo request is done with GetAsync. Filling an object of type UserInfo is accomplished with the
generic method ReadAsAsync passing a UserInfo type:

private async static void UserInfo()
{
 string userInfoUri = "/api/Account/UserInfo";
 var token = await GetToken();
 HttpClient client = new HttpClient();
 client.BaseAddress = new Uri(baseAddress);
 client.DefaultRequestHeaders.Add("Authorization",
 string.Format("{0} {1}", token.token_type, token.access_token));

 HttpResponseMessage resp = await client.GetAsync(userInfoUri);
 resp.EnsureSuccessStatusCode();
 UserInfo userInfo = await resp.Content.ReadAsAsync<UserInfo>();
 Console.WriteLine("user: {0}, registered: {1}, provider: {2}",
 userInfo.UserName, userInfo.HasRegistered, userInfo.LoginProvider);
}

SElF-HOSTiNg
One of the big advantages of WCF is that it doesn’t need to be hosted with IIS or another server hosting the
ASP.NET runtime. The ASP.NET Web API is flexible with this scenario as well. It is very easy to self-host an
ASP.NET Web API server.

You can create any application type; for example, you can create a Console application as is done with the
SelfHostApp sample. It’s just necessary to add the NuGet package Microsoft ASP.NET Web API 2 Self Host
with the ID Microsoft.AspNet.WebApi.SelfHost.

Within the executable the BooksController is created, as shown earlier in the chapter, by deriving from the
base class ApiController. The sample code makes use of attribute-based routing. Also, the Book type that
is returned from the controller is just a simple class with properties Publisher and Title:

[RoutePrefix("Books")]
public class BooksController : ApiController
{
 [Route("TheOne")]
 public IEnumerable<Book> GetBooks()
 {
 return new List<Book>()
 {
 new Book { Publisher="Wrox Press", Title="Professional C# 5"}
 };
 }
}

It’s becoming more interesting with the Main method where the host is created. Self-hosting is really
easy — just a few lines of custom code are necessary. The routing configuration is done with the
class HttpSelfHostConfiguration (in the namespace System.Web.Http.SelfHost). Invoking

c44.indd 1405 30-01-2014 20:51:37

1406 ❘ CHAPTER 44 ASP.NET WEb API

MapHttpAttributeRoutes allows for attribute-based routing as it is used with the controller. Of course, the
traditional route using method names is possible as well; you can add routes with the Routes property. The
host also needs a port number that should not be in use — in other words, is not being used by IIS. The con-
figuration is passed to the server — HttpSelfHostServer. Invoking OpenAsync with this host server type
starts the listener thread of the server that listens for requests:

using System;
using System.Web.Http;
using System.Web.Http.SelfHost;

namespace SelfHostApp
{
 class Program
 {
 static void Main()
 {
 var config = new HttpSelfHostConfiguration("http://localhost:8081");
 config.MapHttpAttributeRoutes();

 using (var server = new HttpSelfHostServer(config))
 {
 server.OpenAsync().Wait();

 Console.WriteLine("Press Enter to quit.");
 Console.ReadLine();
 }
 }
 }
}

The user needs to have rights for creating a listener to the requested port number. You can either start Visual
Studio in elevated mode to have these rights, or use the netsh utility to define rights for the user:

netsh http add urlacl url=http://+:8081 user=username listen=yes

Starting the executable, you can use a browser to make requests to http://localhost:8081/Books/
TheOne to get the result from the service. Of course, you can also create clients with the HttpClient class
instead of using a browser — the same way as done before.

After completing the service, it’s a good idea to remove the rights for the port number again. This is done
with this netsh command:

netsh http delete urlacl url=http://+:8081

SuMMARy
This chapter described the features of the ASP.NET Web API, which offers an easy way to create services
that can be called from any client — be it JavaScript or a .NET client — with the help of the HttpClient
class. Either JSON or XML can be returned.

This chapter also introduced you to OData where it’s easy to reference data in a tree using resource identi-
fiers. ASP.NET Web API 2 adds great support for OData.

You’ve not only seen the server-side part of this technology but also the client-side part, where
change information is tracked inside a data service context. The client-side part of WCF Data Services
implements a LINQ provider, so you can create simple LINQ requests that are converted to HTTP
GET/POST/PUT/DELETE requests.

The next chapter gives you information about Windows Workflow Foundation (WF), which allows graphi-
cally assigning different activities to form a workflow. Such workflows can describe a WCF service, and thus
are not only used to host a workflow but also a WCF service.

c44.indd 1406 30-01-2014 20:51:37

Windows Workfl ow Foundation
WHAT’s iN THis CHAPTER?

 ➤ Learning the different types of workfl ows that you can create
 ➤ Exploring descriptions of some of the built-in activities
 ➤ Creating custom activities
 ➤ Getting an overview of a workfl ow

WRox.CoM CodE doWNloAds FoR THis CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/procsharp on the
Download Code tab. The code for this chapter is divided into the following major examples:

 ➤ Hello World
 ➤ Parallel Execution
 ➤ Pick Demo
 ➤ Custom Activities
 ➤ Args and Vars
 ➤ Workfl ow Application
 ➤ Workfl ow as Services
 ➤ Dynamic Update
 ➤ Designer Hosting

A WoRkFloW ovERviEW
This chapter presents an overview of the Windows Workfl ow Foundation 4.5 (referred to as WF and
Workfl ow throughout the rest of this chapter), which provides a model to defi ne and execute processes
using a set of building blocks called activities. WF provides a Designer that, by default, is hosted
within Visual Studio, which enables you to drag and drop activities from the toolbox onto the design
surface to create a workfl ow template.

This template can then be executed in a number of different ways, as explained throughout the
chapter. As a workfl ow executes, it may need to access the outside world, and there are a couple of

45

c45.indd 1407 30-01-2014 20:52:07

1408 ❘ CHAPTER 45 WindoWs WorkfloW foundation

Ensure that you select .NET Framework 4 or 4.5 from the version combo box, and then choose Workflow
Console Application from the available templates. This constructs a simple console application that includes
a workflow template and also a main program, which executes this template.

Next, drag a WriteLine activity from the toolbox onto the design surface so that
you have a workflow that looks like the one shown in Figure 45-2. The WriteLine
activity is within the Primitives category of the toolbox.

The WriteLine activity includes a Text property that you can set either on the design surface by simply
entering text inline, or by displaying the property grid. Later in the section, “Custom Activities,” you see
how to define your custom activities to use this same behavior.

The Text property is not just a simple string — it’s actually defined as an argument type that can use an
expression as its source. Expressions are evaluated at runtime to yield a result, and it is this textual result

methods typically used that enable you to do this. In addition, a workflow may need to save and restore its
state, for example, when a long wait is needed.

A workflow is constructed from a number of activities, and these activities are executed at runtime. An
activity might send an e-mail, update a row in a database, or execute a transaction on a back-end system.
A number of built-in activities can be used for general-purpose work, and you can also create your own
custom activities and plug these into the workflow as necessary.

With Visual Studio 2013, there are effectively two versions of Workflow with different types — the 3.x
version, which shipped with the .NET Framework 3 (namespace System.Workflow and its subnamespaces,
which is also used by SharePoint 2010), and the 4.x version (namespace System.Activities and its
subnamespaces), which ships since the .NET Framework 4. This chapter concentrates on the latest version
of Workflow, and we’ll begin with the canonical example that everyone uses when faced with a new
technology — Hello World.

HEllo WoRld
Visual Studio 2013 contains built-in support to create workflow projects for both the 3.x and 4.x versions of
the frameworks. When you open the New Project dialog, you see a list of workflow project types, as shown
in Figure 45-1.

FiguRE 45-1

FiguRE 45-2

c45.indd 1408 30-01-2014 20:52:07

Activities ❘ 1409

that is used as the input to the WriteLine activity. To enter a simple text expression, you must use double
quotation marks — so if you follow along with this in Visual Studio, type “Hello World” into the Text
property. If you omit the quotation marks, you receive a compiler error because without quotation marks
this is not a legal expression. The expression in 4.5 is a C# expression for C# projects — in version 4.0 the
expression editor syntax was VB instead, which caused some confusion!

If you build and run the program, you see the output text on the console. When the program executes,
an instance of the workflow is created in the Main method, which uses a static method of the
WorkflowInvoker class to execute the instance. The code for this example is available in the Chapter45
solution in the 01-HelloWorld project.

The WorkflowInvoker class enables you to synchronously invoke a workflow. There are two other methods
of workflow execution that execute workflows asynchronously, which you see later in the section “Workflow
Application.” Synchronous execution was possible in Workflow 3.x but was somewhat more difficult to set
up, and there was a lot more overhead.

The synchronous nature of WorkflowInvoker makes it ideal for running short-lived workflows in response
to some UI action — you could use a workflow here to enable or disable some elements of the UI.

ACTiviTiEs
Everything in a workflow is an activity, including the workflow itself. The term workflow is actually a
synonym for a collection of activities; there is no actual Workflow class in version 4.x (there was in 3.x). An
activity is just a class that ultimately derives from the abstract Activity class.

The class hierarchy is somewhat deeper than that defined for WF 3.x, and the main classes are defined in
Figure 45-3.

FiguRE 45-3

The Activity class is the root for all workflow activities, and typically you derive custom activities from the
second tier. To create a simple activity like the WriteLine activity previously mentioned, you would derive
from CodeActivity because this class has just enough functionality for your write line clone to function.
Activities that execute and return some form of a result should derive from the ActivityWithResult
class — you should use the generic Activity<TResult> class here because that provides a strongly typed
Result property.

Deciding which base class to derive from can be the main battle when constructing custom activities, and
you see examples in this chapter to assist with choosing the right base class.

For an activity to do something, it typically overrides the Execute method, which has a number of different
signatures depending on the base class chosen. These signatures are shown in the following table.

c45.indd 1409 30-01-2014 20:52:07

1410 ❘ CHAPTER 45 WindoWs WorkfloW foundation

BAsE ClAss ExECuTE METHod

AsyncCodeActivity IAsyncResult BeginExecute(AsyncCodeActivityContext,
AsyncCallback, object)

void EndExecute(AsyncCodeActivityContext, IAsyncResult)

CodeActivity void Execute (CodeActivityContext)

NativeActivity void Execute (NativeActivityContext)

AsyncCode
Activity<TResult>

IAsyncResult BeginExecute(AsyncCodeActivityContext,
AsyncCallback, object)

TResult EndExecute(AsyncCodeActivityContext,
IAsyncResult)

CodeActivity<TResult> TResult Execute (CodeActivityContext)

NativeActivity<TResult> void Execute (NativeActivityContext)

Here you may notice that the parameters passed into the Execute methods differ in that there are type-specific
execution context parameters used. In WF 3.x, there was a single class used (the ActivityExecutionContext);
however, in WF 4.x you can use different contexts for different classes of activity.

The main difference is that the CodeActivityContext (and by derivation the AsyncCodeActivityContext)
has a limited set of functionality compared with the NativeActivityContext. This means that activities
deriving from CodeActivity and AsyncCodeActivity can do far less with their container. For example,
the WriteLine activity presented earlier needs to write only to the console. Therefore, it doesn’t need
access to its runtime environment. A more complex activity might need to schedule other child activities or
communicate with other systems, in which case you must derive from NativeActivity to access the full
runtime. You revisit this topic when you create your own custom activities.

Numerous standard activities are provided with WF, and the following sections provide examples of some
of these together with scenarios in which you might use these activities. WF 4.x uses three main assemblies”
System.Activities.dll, System.Activities.Core.Presentation.dll, and System.Activities
.Presentation.dll.

if Activity
As its name implies, this activity acts like an If-Else
statement in C#. When you drop an If onto the design
surface, you see an activity, as shown in Figure 45-4.
The If is a composite activity that contains two child
activity placeholders, one for the Then part and one
for the Else part.

The If activity (refer to Figure 45-4) also includes
a glyph indicating that there is a validation error
with the activity; in this instance it is saying that
the Condition property needs to be defined. This
condition is evaluated when the activity is executed. If it returns True, the Then branch executes; otherwise
the Else branch will be called.

The Condition property is an expression that evaluates to a Boolean value, so you can include any
expression here that is valid.

An expression can reference any variables defined in the workflow and also access many static classes
available in the .NET framework. So you could, for example, define an expression based on the
Environment.Is64BitOperatingSystem value, if that were crucial to some part of your workflow.
Naturally, you can define arguments that are passed into the workflow and that can then be evaluated by

FiguRE 45-4

c45.indd 1410 30-01-2014 20:52:08

Activities ❘ 1411

an expression inside an If activity. Arguments and variables are covered in the section, “Arguments and
Variables.”

invokeMethod Activity
This is one of the most useful activities in the box because it enables you to execute code that already exists
and effectively wrap that code within the execution semantics of a workflow. It’s typical to have a lot of
preexisting code, and this activity enables you to call that code directly from within a workflow.

There are two ways that you can use InvokeMethod to call code; which method you use depends on whether
you want to call a static method or an instance method. If you call a static method, you need to define the
TargetType and the MethodName parameters. However if you call an instance method, the TargetObject
and MethodName properties are used. In this instance the TargetObject could be created inline, or it could
be a variable defined somewhere within the workflow. The example code in the 02-ParallelExecution
sample shows both modes to use the InvokeMethod activity.

If you need to pass arguments to the method you’re invoking, you can define these using the Parameters
collection. The order of the parameters in the collection must match the order of the parameters to the
method. In addition, there is a Result property set to the return value of the function call. You can bind
this to a variable within the workflow to use the value as appropriate.

Parallel Activity
The Parallel activity is rather poorly named because, at first sight, you might think that on a
multiprocessor machine this activity would schedule its children in true parallel; however, that isn’t the case
apart from some special circumstances.

After you drop a Parallel activity onto the design
surface, you can then drop in other subordinate
activities, as shown in Figure 45-5.

These child activities can be singular activities, as in
Figure 45-5, or they can form a composite activity, such as a Sequence or another Parallel activity.

At runtime, the Parallel activity schedules each immediate child for execution. The underlying runtime
execution engine then schedules these children in a first in, first out (FIFO) manner, thereby providing the
illusion of parallel execution; however, they run only on a single thread.

To include true parallel execution, the activities you
drop into the Parallel activity must be derived from
the AsyncCodeActivity class. The sample code in
02_ParallelExecution includes an example that
shows how to asynchronously process code within
two branches of a Parallel activity. Figure 45-6
shows the use of two InvokeMethod activities within
a Parallel activity.

The InvokeMethod activities used here call two simple methods, DoJob1 and DoJob2, which sleep for 2
and 3 seconds, respectively. To run these methods asynchronously, there is one final change needed. The
InvokeMethod activity has a Boolean RunAsynchronously property that defaults to False. Setting this
in the UI to True then calls the target method asynchronously, thereby enabling the Parellel activity to
execute more than one activity at the same time. With a uniprocessor machine, two threads can execute,
giving the illusion of simultaneous execution; however, on a multiprocessor machine, these threads may be
scheduled on different cores, thereby providing true parallel execution. If you create your own activities, it
is worthwhile creating these as asynchronous activities because then the end user can get the benefits of true
parallel execution.

FiguRE 45-5

FiguRE 45-6

c45.indd 1411 30-01-2014 20:52:08

1412 ❘ CHAPTER 45 WindoWs WorkfloW foundation

delay Activity
Business processes often need to wait for a period before completing. Consider using a workflow for expense
approval. Your workflow might send an e-mail to your immediate manager asking him to approve your
expense claim. The workflow then enters a waiting state in which it waits for approval (or horror of horrors,
rejection). But it would also be nice to define a timeout so that if no response is returned within, say, one
day, the expense claim is then routed to the next manager up the chain of command.

The Delay activity can form part of this scenario. (The other part is the Pick activity defined in the next
section.) Its job is to wait for a predefined time before continuing execution of the workflow.

The Delay activity contains a Duration property, which can be set to a discrete TimeSpan value, but
because it is defined as an expression, this value could be linked to a variable within the workflow or
computed from some other values as required.

When a workflow is executed, it enters an Idle state, in which it runs a Delay activity. Workflows that are
idle are candidates for persistence — this is where the workflow instance data is stored within a persistent
medium (such as an SQL Server database), and the workflow can then be unloaded from memory. This
conserves system resources because only running workflows need to be in memory at any given time. Any
workflows delayed will be persisted to disk.

Pick Activity
A common programming construct is to wait for one of a set of possible events — one example of this is the
WaitAny method of the WaitHandle class in the System.Threading namespace. The Pick activity is the
way to do this in a workflow because it can define any number of branches, and each branch can wait for a
trigger action to occur before running. After a trigger has been fired, the other activities within that branch
execute.

As a concrete example, consider the expense claims procedure outlined in the previous section. Here, you
have a Pick activity with three branches: one to deal with accepted claims, one to deal with rejected claims,
and a third to deal with a timeout.

The example is available in the 03_PickDemo code in the download. This contains a sample workflow
consisting of a Pick activity and three branches. When it is run, you are prompted to accept or reject the
claim. If 10 seconds or more elapses, it closes this prompt and runs the delay branch instead.

In the example, the DisplayPrompt activity is used as the first activity in the workflow. This calls a
method defined on an interface that would prompt the manager for approval or rejection. Because this
functionality is defined as an interface, the prompt could be an e-mail, an IM message, or any other manner
of notifying your manager that an expense claim needs to be processed. The workflow then executes the
Pick, which awaits input from this external interface (either an approval or a rejection) and also waits on
a delay.

When the pick executes, it effectively queues a wait on the first activity in each branch, and when one event
is triggered, this cancels all other waiting events and then processes the rest of the branch where
the event was raised. So, in the instance in which the expense report is approved, the WaitForAccept
activity completes, and then the next action is to write out a confirmation message. If, however, your
manager rejects the claim, the WaitForReject activity completes, and in the example this then outputs a
rejection message.

Lastly, if neither the WaitForAccept nor WaitForReject activities completes, the WaitForTimeout
ultimately completes after its delay expires, and the expense report could then be routed to another
manager — potentially looking up that person in Active Directory. In the example, a dialog displays to the
user when the DisplayPrompt activity executes, so if the delay executes, you also need to close the dialog,
which is the purpose of the activity named ClosePrompt in Figure 45-7.

c45.indd 1412 30-01-2014 20:52:08

Custom Activities ❘ 1413

Some concepts used in that example have not been covered yet — such as how to write custom activities or
waiting on external events; however, these topics are covered in the section, “Custom Activities.”

CusToM ACTiviTiEs
So far, you have used activities defined within the System.Activities namespace. In this section, you
learn how to create custom activities and extend these activities to provide a good user experience at both
design time and runtime.

To begin, you create a DebugWrite activity that can be used to output a line of text to the console in debug
builds. Although this is a trivial example, it will be expanded to show the full gamut of options available
for custom activities using this example. When creating custom activities, you can simply construct a class
within a workflow project; however, it is preferable to construct your custom activities inside a separate
assembly because then your activities will be reusable. For this reason, you should create a simple class
library project to construct your custom activities within. The code for this example is available in the 04_
CustomActivities project.

A simple activity, such as the DebugWrite activity, will be derived directly from the CodeActivity base
class. The following code shows a constructed activity class and defines a Message property that displays
when the activity executes (code file 04_CustomActivities/Activities/DebugWrite.cs):

using System;
using System.Activities;
using System.Diagnostics;
namespace Activities
{
 public class DebugWrite : CodeActivity
 {
 [Description("The message output to the debug stream")]

FiguRE 45-7

c45.indd 1413 30-01-2014 20:52:09

1414 ❘ CHAPTER 45 WindoWs WorkfloW foundation

 public InArgument<string> Message { get; set; }
 protected override void Execute(CodeActivityContext context)
 {
 Debug.WriteLine(Message.Get(context));
 }
 }
}

When a CodeActivity is scheduled for execution, its Execute method is called — this is where the activity
actually needs to do something.

In the example, you defined the Message property, which looks like a regular .NET property; however,
its usage inside the Execute method may be unfamiliar. One of the many changes made in WF 4 is where
state data is stored. Within WF 3.x, it was common to use standard .NET properties and store activity
data within the activity. The problem with that method was that this storage was effectively opaque to
the workflow runtime engine. so to persist a workflow, you need to perform binary persistence on all
constructed activities to faithfully restore their data.

With WF 4, all data is stored outside of the individual activities — so the
model here is that to get the value of an argument, you ask the context for
the value, and to set the value of an argument, you provide the new value
to the context. In this way the workflow engine can track changes to state
as the workflow executes and potentially store only the changes between
persistence points rather than the entire workflow data.

The [Description] attribute defined on the Message property is used
within the property grid in Visual Studio to provide extra information
about the property, as shown in Figure 45-8.

As it stands, the activity is perfectly usable; however, several areas should be addressed to make this more
user-friendly. As you have seen with activities such as the Pick earlier in the chapter, an activity may have
some mandatory properties that, when not defined, produce an error glyph on the design surface. To get the
same behavior from your activity, you need to extend the code.

Activity validation
When an activity is placed on the design surface, the Designer looks in two
places for validation information. The simplest form of validation is to add a
[RequiredArgument] attribute to the argument property. If the argument is not
defined, the exclamation mark glyph is shown to the right of the activity name, as
in Figure 45-9.

If you hover over the glyph, a tooltip displays that states Value for a Required Activity Argument “Message”
Was Not Supplied. This is a compilation error, so you need to define a value for this argument before you
can execute your application.

In the case where multiple properties may be related, you can override the CacheMetadata method to add
on some extra validation code. This method is called prior to the activity being executed; within it you can
check that mandatory arguments are defined and optionally add extra metadata to the passed argument.
You can also add extra validation errors (or warnings) by calling one of the AddValidationError overrides
on the CodeActivityMetadata object passed to the CacheMetadata method.

Now that you have completed the activity validation, the next thing to do is to change the rendering
behavior of the activity because the current Designer experience is provided for you, and it could be made
more interesting.

designers
When an activity is rendered onscreen, it is typical to associate a designer with the activity. The job of the
designer is to provide the onscreen representation of that activity, and in WF this representation is done in

FiguRE 45-8

FiguRE 45-9

c45.indd 1414 30-01-2014 20:52:09

Custom Activities ❘ 1415

XAML. If you haven’t used XAML before to create user interfaces, look at Chapter 35, “Core WPF,” before
continuing.

The design-time experience for an activity is typically created in a separate assembly from the activity
because this design experience is unnecessary at runtime. Visual Studio includes an Activity Designer
Library project type that is an ideal starting point because when you create a project using this template,
you’re provided with a default activity designer that you can then alter as appropriate.

Within the XAML for your designer, you can provide anything you want — including animations. Less is
usually more for user interfaces, so look at the preexisting activities to understand what is appropriate.

First, create a simple designer and associate this with the DebugWrite activity. The code that follows (code
file 04_CustomActivities/Activities.Design/DebugWriteDesigner.xaml) shows the template created
for you when you add an activity designer to your project (or when you construct a new activity designer
library project):

<sap:ActivityDesigner x:Class="Activities.<Presentation.DebugWriteDesigner"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:sap="clr-namespace:System.Activities.Presentation;
 assembly=System.Activities.Presentation"
 xmlns:sapv="clr-namespace:System.Activities.Presentation.View;
 assembly=System.Activities.Presentation">
 <Grid>
 </Grid>
</sap:ActivityDesigner>

The XAML created simply constructs a grid and also includes some imported namespaces, which may be
needed by your activity. Obviously, there is little content within the template, so to begin add in a label and
a text box that can define the message.

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <TextBlock Text="Message" Margin="0,0,5,0"/>
 <TextBox Text="{Binding Path=ModelItem.Message, Mode=TwoWay}"
 Grid.Column="1"/>
</Grid>

The XAML here constructs a binding between the Message property of the activity and the text box. Within
the designer XAML, you can always reference the activity being designed by using the ModelItem reference.

To associate the designer previously defined with the DebugWrite activity, you also need to alter the activity
and add on a Designer attribute. (You can also implement the IRegisterMetadata interface, which isn’t
covered further in this chapter.)

[Designer("Activities.Presentation.DebugWriteDesigner, Activities.Presentation")]
public class DebugWrite : CodeActivity
{
 ...
}

Here, you used the [Designer] attribute to define the link between the designer and the activity. It’s good
practice to use the string version of this attribute because that ensures that there is no reference to the design
assembly within the activity assembly.

Now when you use an instance of the DebugWrite activity within Visual Studio, you
see something like Figure 45-10.

The problem with this, however, is the Message property. It’s not showing the value
defined within the property grid, and if you try to set a value by typing it into the text box, you receive

FiguRE 45-10

c45.indd 1415 30-01-2014 20:52:09

1416 ❘ CHAPTER 45 WindoWs WorkfloW foundation

an exception. The reason is that you’re trying to bind a simple text value to an InArgument<string>
type, and to do that, you need to use another couple built-in classes that come with WF: the
ExpressionTextBox and the ArgumentToExpressionConverter. The full XAML for the designer is
now as follows. You can see the lines that have been added or modified in boldface.

<sap:ActivityDesigner x:Class="Activities.Presentation.DebugWriteDesigner"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:sap="clr-namespace:System.Activities.Presentation;
 assembly=System.Activities.Presentation"
 xmlns:sapv="clr-namespace:System.Activities.Presentation.View;
 assembly=System.Activities.Presentation"
 xmlns:sadc="clr-namespace:System.Activities.Presentation.Converters;
 assembly=System.Activities.Presentation">
 <sap:ActivityDesigner.Resources>
 <sadc:ArgumentToExpressionConverter x:Key="argConverter"/>
 </sap:ActivityDesigner.Resources>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <TextBlock Text="Message" Margin="0,0,5,0" />
 <sapv:ExpressionTextBox Grid.Column="1"
 Expression="{Binding Path=ModelItem.Message, Mode=TwoWay,
 Converter={StaticResource argConverter},
 ConverterParameter=In}"
 OwnerActivity="{Binding ModelItem}"/>
 </Grid>
</sap:ActivityDesigner>

You included a new namespace in the file: the System.Activities.Presentation.View. This includes the
converter used to convert between an expression onscreen and the Message property of the activity. This is
the ArgumentToExpressionConverter, which has been added to the resources of the XAML file.

Then replace the standard TextBox control with an ExpressionTextBox. This control enables the user to
enter expressions and simple text, so the DebugWrite activity could include an expression combining many
values from the running workflow, rather than just a simple text string. With those changes in place, the
activity behaves more like the built-in activities.

If you upgrade a solution from .NET 4 to .NET 4.5, you might be surprised to see Enter a VB Expression in
any expression text boxes that you have in your activities for existing workflows, and Enter a C# Expression
in any new workflows you create. WF 4.5 has an attribute defined in the XAML that if absent shows the VB
expression prompt. If you look at the XAML for a new workflow, you can see the following directive.

sap:2010:ExpressionActivityEditor.ExpressionActivityEditor="C#"

If this is omitted, the VB expression displays. Needless to say, working out this foible of WF 4.5 cost me a
lot of time!

Custom Composite Activities
A common requirement with activities is to create a composite activity — that is, an activity that contains
other child activities. You have already seen examples, such as the Pick activity and the Parallel activity.
The execution of a composite activity is entirely up to the programmer — you could, for example, have a
random activity that schedules only one of its children, or an activity that bypasses some children based
on the current day of the week. The simplest execution pattern would be to execute all children, but as the
developer you can decide how child activities are executed and also when your activity is complete.

This example creates a “retry” activity. It is quite common to try an operation, and if it fails, retry it a
number of times before having it fail. The pseudo-code for this activity is as follows:

c45.indd 1416 30-01-2014 20:52:10

Custom Activities ❘ 1417

int iterationCount = 0;
bool looping = true;
while (looping)
{
 try
 {
 // Execute the activity here
 looping = false;
 }
 catch (Exception ex)
 {
 iterationCount += 1;
 if (iterationCount >= maxRetries)
 rethrow;
 }
}

You need to replicate the preceding code as an activity and insert the activity you want to execute where
the comment is placed. You might consider doing this all within the Execute method of a custom activity.
However, there is another way: You can code the whole lot using other activities. Create a custom
activity that contains a “hole” into which the end user can place the activity that will be retried, and then a
maximum retry count property. The code that follows shows how to do this (code file
04_CustomActivities/Activities/Retry.cs):

 public class Retry : Activity
 {
 public Activity Body { get; set; }
 [RequiredArgument]
 public InArgument<int> NumberOfRetries { get; set; }
 public Retry()
 {
 Variable<int> iterationCount =
 new Variable<int> ("iterationCount", 0);
 Variable<bool> looping = new Variable<bool> ("looping", true);
 this.Implementation = () =>
 {
 return new While
 {
 Variables = { iterationCount, looping },
 Condition = new VariableValue<bool> { Variable = looping },
 Body = new TryCatch
 {
 Try = new Sequence
 {
 Activities =
 {
 this.Body,
 new Assign
 {
 To = new OutArgument<bool> (looping),
 Value = new InArgument<bool> { Expression = false }
 }
 }
 },
 Catches =
 {
 new Catch<Exception>
 {
 Action = new ActivityAction<Exception>
 {
 Handler = new Sequence
 {

c45.indd 1417 30-01-2014 20:52:10

1418 ❘ CHAPTER 45 WindoWs WorkfloW foundation

 Activities =
 {
 new Assign
 {
 To = new OutArgument<int>(iterationCount),
 Value = new InArgument<int>
 (ctx => iterationCount.Get(ctx) + 1)
 },
 new If
 {
 Condition = new InArgument<bool>
 (env=>iterationCount.Get(env) >=
 NumberOfRetries.Get(env)),
 Then = new Rethrow()
 }
 }
 }
 }
 }
 }
 }
 };
 };
 }
 }

Phew!

First, you defined a Body property of type Activity, which is the activity executed within the retry loop.
Then define the RetryCount property, which is used to define the number of times the operation will be
tried.

This custom activity derives directly from the Activity class and provides the implementation as a
function. When a workflow is executed that contains this activity, it effectively executes the function, which
provides a runtime execution path similar to the pseudo-code defined earlier. Within the constructor, create
the local variables used by the activity and then construct a set of activities that matches the pseudo-code.
The code for this example is also available in the 04_CustomActivities solution.

From the preceding code, you can infer that you can create workflows without XAML — there is no design
experience (that is, you can’t drag and drop activities to generate code). However, if code is what you prefer,
there’s no reason not to use it instead of XAML.

Now that you have the custom composite activity, you also need to define a designer. What’s needed here
is an activity that has a placeholder into which you can drop another activity. If you look at other standard
activities, there are several that exhibit a similar behavior, such as the If and Pick activities. Ideally, you
would like the activity to work in a similar manner to the built-in activities, so it’s time to look at their
implementations.

If you use Reflector to poke around inside the workflow libraries, you’ll find a distinct lack of any designer
XAML. This is because it’s been compiled into the assemblies as a set of resources. You can use Reflector to
look at these resources, and the current version (v7.5) includes the capability to decompile BAML resources
so that you can read them.

In Reflector, load up the System.Activities.Presentation assembly, and
then navigate to the Resources node in the treeview and open out
System.Activites.Presentation.g.resources. This presents you with
a list of all the BAML resources in the currently loaded assemblies, and you can
then look at an appropriate sample to see some sample XAML.

The author used this method to learn about the XAML that was used for the
built-in activities, which helped to construct the example for the Retry activity
shown in Figure 45-11. FiguRE 45-11

c45.indd 1418 30-01-2014 20:52:10

Workflows ❘ 1419

The key to this activity is the WorkflowItemPresenter class, which is used in the XAML to define the
placeholder for the child activity. This is defined as follows:

<sap:WorkflowItemPresenter IsDefaultContainer="True"
 AllowedItemType="{x:Type sa:Activity}"
 HintText="Drop an activity here" MinWidth="100" MinHeight="60"
 Item="{Binding Path=ModelItem.Body, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="1" Margin="2">

This control is bound to the Body property of the Retry activity, and the HintText defines the help text
shown when no child activity has been added to the control. The XAML also includes some styles used
to show the expanded or contracted version of the designer — this ensures that the activity works
the same way as the built-in activities. All the code and XAML for this example is available in the
04_CustomActivities solution.

WoRkFloWs
Up to this point, the chapter has concentrated on activities but has not discussed workflows. A workflow is
simply a list of activities, and indeed a workflow is just another type of activity. Using this model simplifies
the runtime engine because the engine needs to know how to execute one type of object — that being
anything derived from the Activity class.

You’ve already seen the WorkflowInvoker class, which can execute a workflow synchronously, but as
mentioned at the time this is only one of the ways that a workflow can be executed. There are three different
options for executing workflows, and each has different capabilities. Before getting into the other methods
to execute workflows, you must delve into arguments and variables.

Arguments and variables
A workflow can be considered a program, and one of the facets of any programming language is the
capability to create variables and pass arguments into and out of that program. Naturally, WF supports
both constructs, and this section shows you how you can define both arguments and variables.

To begin, assume that the workflow processes an insurance policy, so a likely argument to pass to the
workflow would be the policy ID. To define an argument to a workflow, you need to go into the Designer and
click the Arguments button on the bottom left. This brings up a list of arguments defined for the workflow, as
shown in Figure 45-12, and here you can also add your own.

FiguRE 45-12

To define an argument, you need to specify the Name, Direction (which can be In, Out, or InOut) and the
data type for that argument. You can optionally specify a default value, which will be used if the argument
is not provided.

The direction of the argument is used to define whether the argument is expected as an input to the workflow,
as an output from the workflow, or in the case of the InOut direction, as both an input and output.

The first section of this chapter described using the WorkflowInvoker class to execute a workflow. You
can use several overrides of the Invoke method to pass arguments into the workflow. They are passed as a
dictionary of name/value pairs, where the name must match the argument’s name exactly — this match is

c45.indd 1419 30-01-2014 20:52:10

1420 ❘ CHAPTER 45 WindoWs WorkfloW foundation

case-sensitive. The following code passes a PolicyId value into a workflow (code file 05_ArgsAndVars/
Program.cs):

Dictionary<string, object> parms = new Dictionary<string, object>();
parms.Add("PolicyId", 123);
WorkflowInvoker.Invoke(new PolicyFlow(), parms);

This then invokes the workflow and passes the PolicyId from the dictionary to the named parameter. If
you supply a name in the dictionary for which an argument does not exist, then an ArgumentException
will be thrown. Conversely, if you don’t supply the value for an In argument, no exception is thrown. This is
the wrong way around — you would expect an argument exception to be thrown for any In arguments that
were not defined and would prefer no exception to be thrown if you passed in too many arguments.

When a workflow completes, you may want to retrieve output arguments. To do this, there is a specific
override of the WorkflowInvoker.Invoke method that returns a dictionary. This dictionary contains just
the Out or InOut arguments.

Within the workflow, you may then want to define variables. This wasn’t easy to do in XAML workflows in
WF 3.x; however, in WF 4 this has been addressed, and you can easily define parameters in the XAML.

As in any programming language, workflow variables have the notion of scope. You can define “globally”
scoped variables by defining them on the root activity of the workflow. These variables are available by all
activities within the workflow, and their lifetime is tied to that of the workflow.

You can also define variables on individual activities, and in this case these variables are only available to
the activity that the variable is defined on and also children of that activity. After an activity has completed,
its variables go out of scope and are no longer accessible.

WorkflowApplication
Although WorkflowInvoker is a useful class for synchronous execution of workflows, you might need to
have long-running workflows that may persist to a database and need to be rehydrated at some point in the
future. If that’s the case then you might want to use the WorkflowApplication class.

The WorkflowApplication class is similar to the WorkflowRuntime class that existed in Workflow 3 in
that it enables you to run a workflow and also respond to events that occur on that workflow instance.
Probably the simplest program you can write to use the WorkflowApplication class is shown here:

WorkflowApplication app = new WorkflowApplication(new Workflow1());
ManualResetEvent finished = new ManualResetEvent(false);
app.Completed = (completedArgs) => { finished.Set(); };
app.Run();
finished.WaitOne();

This constructs a workflow application instance and then hooks up to the Completed delegate of that
instance to set a manual reset event. The Run method is called to start the workflow execution, and lastly
the code waits for the event to be triggered.

This shows one of the main differences between WorkflowExecutor and WorkflowApplication — the
latter is asynchronous. When you call Run, the system uses a thread pool thread to execute the workflow
rather than the calling thread. Thus, you need some form of synchronization to ensure that the application
hosting the workflow doesn’t exit before the workflow completes.

A typical long-running workflow may have many periods when it is dormant — the execution behavior for
most workflows can best be described as periods of episodic execution. There is typically some work done
at the start of the workflow; then it waits on some input or a delay. After this input has been received, it
processes up to the next wait state.

So, when a workflow is dormant, it would be ideal to unload it from memory and only reload it when an
event triggers the workflow to continue. To do this, you need to add an InstanceStore object to the
WorkflowApplication and also make some other minor alterations to the preceding code. There is one
implementation of the abstract InstanceStore class in the framework — the SqlWorkflowInstanceStore.

c45.indd 1420 30-01-2014 20:52:10

Workflows ❘ 1421

To use this class, you first need a database, and the scripts for this can be found by default in the C:\
Windows\Microsoft.NET\Framework64\v4.0.30319\SQL\en directory. Note that the version number is
subject to change.

You can find a number of SQL files in this directory, but the two you need are:
SqlWorkflowInstanceStoreSchema.sql and SqlWorkflowInstanceStoreLogic.sql. You can run these
against an existing database or create an entirely new database as appropriate, and you can use a full SQL
server installation or an SQL Express installation.

After you have a database, you need to make some alterations to the hosting code. First, you need to
construct an instance of the SqlWorkflowInstanceStore and then add this to the workflow application
(code file 06_WorkflowApplication/Program.cs)

SqlWorkflowInstanceStore store = new SqlWorkflowInstanceStore
 (ConfigurationManager.ConnectionStrings["db"].ConnectionString);
AutoResetEvent finished = new AutoResetEvent(false);
WorkflowApplication app = new WorkflowApplication(new Workflow1());
app.Completed = (e) => { finished.Set(); };
app.PersistableIdle = (e) => { return PersistableIdleAction.Unload; };
app.InstanceStore = store;
app.Run();
finished.WaitOne();

The bold lines are those added to the previous example. You can also notice that the addition of an event
handler to the PersistableIdle delegate on the workflow application. When a workflow executes, it
runs as many activities as it can, until there is no more work to do. At that point, it transitions to an Idle
state, and an idle workflow is a candidate for persistence. The PersistableIdle delegate determines
what should happen to an idle workflow. The default is to do nothing; however, you can also specify
PersistableIdleAction.Persist, which can take a copy of the workflow and store that in the database
but still leave the workflow in memory, or you can specify PersistableIdleAction.Unload, which
persists and then unloads the workflow.

You can also request persistence of a workflow by using the Persist activity, and indeed as a custom
activity writer, you can also request persistence if you have derived from NativeActivity by calling the
RequestPersist method of the NativeActivityContext.

You now have a problem — you have the ability to unload a workflow from memory and store it in the
persistence store, but as yet you haven’t described how to retrieve it from the store and get it to execute again.

Bookmarks
The traditional use of a bookmark is to mark a page in a book, so you can resume reading from the same
point. In the context of a workflow, a bookmark specifies a place in which you would like to resume
running that workflow, and bookmarks are typically used when you’re waiting for external input.

For example, you might write an application that deals with insurance quotes. An end user might go online
to produce a quotation, and as you can imagine, there would be a workflow associated with that quotation.
The quotation might be valid for only 30 days, so you would like to invalidate the quote after that point.
Similarly, you might request proof of a no-claims discount and cancel the policy if that proof didn’t arrive
within a specified time. This workflow then has a number of periods of execution, and other times when it is
dormant and could be unloaded from memory. Before being unloaded, however, you must define a point in
the workflow where processing can be resumed, and this is where bookmarks are used.

To define a bookmark, you need a custom activity that derives from NativeActivity (code file 06_Workflow
Application/CustomActivities/Task.cs). You can then create a bookmark within the Execute method,
and when the bookmark has been resumed, your code continues. The example activity defines a simplistic Task
activity that creates a bookmark, and on resumption at the point of that bookmark, the activity completes.

 public class Task : NativeActivity<Boolean>
 {
 [RequiredArgument]
 public InArgument<string> TaskName { get; set; }

c45.indd 1421 30-01-2014 20:52:10

1422 ❘ CHAPTER 45 WindoWs WorkfloW foundation

 protected override bool CanInduceIdle
 {
 get { return true; }
 }
 protected override void Execute(NativeActivityContext context)
 {
 context.CreateBookmark(TaskName.Get(context),
 new BookmarkCallback(OnTaskComplete));
 }
 private void OnTaskComplete(NativeActivityContext context,
 Bookmark bookmark, object state)
 {
 bool taskOK = Convert.ToBoolean(state);
 this.Result.Set(context, taskOK);
 }
 }

The call to CreateBookmark passes the name of the bookmark and also a callback function. This callback
executes when the bookmark resumes. The callback is passed an arbitrary object, which in this case is a
Boolean because you decided that each task should report success or failure, and you can then use this
to decide on the next steps in the workflow. There’s nothing to stop you from passing any object into the
workflow — it could be a complex type with many fields.

So that’s the activity written; you now need to alter the hosting code to resume at the point of the
bookmarks. But there’s another problem. How does the hosting code know that a workflow has created
a bookmark? If it’s the host’s responsibility to resume from the bookmark, it needs to know that one exists.

The Task you created needs to do some more work — telling the outside world that a task has been created.
In a production system, this would typically result in an entry being stored in a queue table, and this queue
would be presented to the call center staff as a job list.

Communicating with the host is the subject of the next section.

Extensions
An extension is simply a class or interface added to the runtime context of a workflow application. In
WF 3.x these were called Services; however, that clashed with WCF Services, so these have been renamed
extensions in WF 4.

You typically define an interface for your extensions and then provide a runtime implementation of this interface.
Your activities simply call the interface, and this allows the implementation to change as necessary. A good
example of an extension is something that sends an e-mail. You could create a SendEmail activity that calls the
extension within its Execute method, and then you can define an SMTP-based e-mail extension or an Exchange-
based outlook extension to actually send the e-mail at runtime. Your activity wouldn’t need to be changed to use
any e-mail provider — you can just plug in a new one by altering the application configuration file.

For the task sample, you need an extension that will be notified when the Task activity is about to wait at
its bookmark. This could write the name of the bookmark and other pertinent information into a database
so that a task queue could then be presented to the user. Use the following interface to define this extension
(code file 06_WorkflowApplication/SharedInterfaces/ITaskExtension.cs):

public interface ITaskExtension
{
 void ExecuteTask(string taskName);
}

The task activity can then be updated to notify the task extension that it’s executing by modifying the
Execute method as follows (code file 06_WorkflowApplication/CustomActivities/Task.cs):

protected override void Execute(NativeActivityContext context)
{
 context.CreateBookmark(TaskName.Get(context),
 new BookmarkCallback(OnTaskComplete));

c45.indd 1422 30-01-2014 20:52:11

Workflows ❘ 1423

 context.GetExtension<ITaskExtension>().
 ExecuteTask(TaskName.Get(context));
}

The context object passed to the Execute method is queried for the ITaskExtension interface and then the
code calls the ExecuteTask method. The WorkflowApplication maintains a collection of extensions, so you
can create a class that implements this extension interface, which can then be used to maintain the list of tasks.
You could then construct and execute a new workflow, and each task would then notify the extension when it
was executed. Some other process might look at the task list and present this to the end user.

To keep things simple in the sample code, you created just one workflow instance. This instance contains a Task
activity followed by an If, which outputs a message according to whether the user accepts or rejects the task.

Putting It All Together
Now you can run, persist, and unload a workflow, and also deliver events into that workflow via
bookmarks; the last part reloads the workflow. When using WorkflowApplication, you can call Load and
pass through the unique ID of the workflow. Every workflow has a unique ID that can be retrieved from
the WorkflowApplication object by calling the Id property. So, in pseudo-code, the workflow-hosting
application is as follows (code file 06_WorkflowApplication/Program.cs):

WorkflowApplication app = BuildApplication();
Guid id = app.Id;
app.Run();
// Wait for a while until a task is created, then reload the workflow
app = BuildApplication();
app.Load(id);
app.ResumeBookmark()

The sample code provided is more complex than the preceding because it also includes an implementation
of the ITaskExtension interface, but the code follows the earlier pattern. You may notice two calls to the
BuildApplication method. This is one used in the code to construct a WorkflowApplication instance
and to set up all required properties, such as the InstanceStore and the delegates for Completed and
PersistableIdle. After the first call, execute the Run method. This begins execution of a new instance of the
workflow.

The second time the application is loaded is after a persistence point, so by that point the workflow
has been unloaded; hence, the application instance is also essentially dead. Then construct a new
WorkflowApplication instance, but instead of calling Run, call the Load method, which uses the
persistence provider to load up an existing instance from the database. This instance is then resumed by
calling the ResumeBookmark function.

If you run the example, you see a prompt onscreen. Although that prompt is there, the workflow is persisted
and unloaded, and you can check this by running SQL Server Management Studio and executing the
command, as shown in Figure 45-13.

FiguRE 45-13

c45.indd 1423 30-01-2014 20:52:11

1424 ❘ CHAPTER 45 WindoWs WorkfloW foundation

Workflow instances are stored within the InstancesTable of the System.Activities
.DurableInstancing schema. The entry shown in Figure 45-13 is the persisted instance of the workflow
running on the author’s machine.

When you continue the workflow will eventually complete, and at that point the workflow will
be deleted from the instances table because there’s an option on the instance store exposed as the
InstanceCompletionAction, which by default is set to be DeleteAll. This ensures that any data stored in
the database for a given workflow instance will be deleted after that workflow completes. This is a sensible
default because after a workflow completes, you would normally not expect any data to hang around. You
can change this option when you define the instance store by setting the instance completion action to
DeleteNothing.

If you now continue running the test application and then retry the SQL command from Figure 45-13, the
workflow instance has been deleted.

Hosting WCF Workflows
As previously mentioned there were three ways to host workflows — the last is to use the
WorkflowServiceHost class, which exposes a workflow through WCF. One of the major areas that
Workflow is destined to be used for is as the backend to WCF services. If you think about what a typical
WCF service does, it’s usually a bunch of related methods typically called in some sort of order. The main
problem here is that you could call these methods in any order, and usually you need to define the ordering
so that, for example, the order details are not uploaded before the order.

With Workflow you can easily expose WCF services that also have a notion of method ordering. The main
classes you use here are the Receive and the Send activities. In the code for this example (which is available
in the 07_WorkflowsAsServices solution), the scenario used is an estate agent (a Realtor if you’re in the
US) who wants to upload information about a property to a website.

You can host workflows using WCF in two ways: either
explicitly in your code by constructing an instance of
WorkflowServiceHost (much like the regular WCF
ServiceHost class). But you can also construct a service as
a .xamlx file in which case the workflow will most likely be
exposed using IIS or WAS. This option is used in the sample, but
it’s worth knowing that you can do this all manually if you
need to.

This example also showcases two new features of WF 4.5, the
first is that you use a State Machine workflow, and the second
is that the implementation of this workflow uses a WCF service
contract that has been defined in a contract-first manner. The
State Machine workflow type was missing in .NET 4 but has
made a welcome return in the latest version of the framework,
and it’s a good fit for the example you write here. Figure 45-14
shows an overview of the state-machine that you create in this
sample.

With a state-machine you have a start state, any number of intermediate states, and an optional end state. In
addition to the states, there are also transitions, which await an event (typically an activity receiving some
input) and then transition the state-machine to another state.

The state-machine works by waiting for a transition activity to complete. This then moves the state-machine
into a new state. On entry to a state, you can call an activity, and on exit from a state, you can also execute an
activity. The state-machine then waits for one of the transitions to complete and moves into the new state.

In the previous diagram the first state is marked as “Initial State”. That has just one transition that
waits for a message to come in over WCF. After this message has been received, the state-machine then

FiguRE 45-14

c45.indd 1424 30-01-2014 20:52:11

Workflows ❘ 1425

moves to the “Waiting” state, which has two transitions. These map to the two operations that are then
available on the WCF interface; either the user can send up details of a room, or they can indicate that
the data upload is complete. The WCF service used in this example is modeled as follows (code file 07_
WorkflowsAsServices/SharedInterfaces/IPropertyInformation.cs):

[ServiceContract(Namespace="http://www.morganskinner.com")]
public interface IPropertyInformation
{
 [OperationContract()]
 Guid UploadPropertyInformation(string ownerName, string address, float price);

 [OperationContract(IsOneWay=true)]
 void UploadRoomInformation(Guid propertyId, string roomName, float width,
 float length);

 [OperationContract(IsOneWay = true)]
 void DetailsComplete(Guid propertyId);
}

The UploadPropertyInformation call is the start of the
state machine. This effectively creates a new workflow
instance, transitions the state machine to the “Waiting” state
and then awaits either a call to UploadRoomInformation or
DetailsComplete.

To use an existing WCF service contract in WF, you need to
display the context menu for a Workflow project and select the
Import Service Contract item from the menu. This constructs
activities for each operation in the service contract. If you want
to see these activities, click the Show All Files toolbar button,
and expand the ServiceContracts item for the current project
in Visual Studio. This shows the service contract name (in the
example, IPropertyInformation), and then show the activities
that were automatically generated, as shown in Figure 45-15.

This shows that three activities have been created from the service
contract, and these are subsequently used in the workflow to implement the service contract.

Correlation
The other important topic to understand with WCF workflows is how to make a call from the client and
that call can find the right workflow instance on the server. If you look at the WCF service interface, you
need to make a call to the server to initiate an upload using the UploadPropertyInformation operation.

This operation returns a unique ID, and this ID is passed back on the subsequent calls to
UploadRoomInformation and DetailsComplete. To do this, Workflow has the concept of Correlation,
which, simply put, enables you to use an arbitrary piece of information (or indeed, pieces of information) to
route a call to the correct workflow instance. In the first call you return this ID, and as long as you use the
same ID on the next call to the workflow, that is enough to find the correct workflow instance to route that
message to.

To have correlation work you need two things: a CorrelationHandle and a correlation initializer. The
handle is simply a variable that you defined with a suitable scope (that is, outside of all activities that need
it). The correlation initializer defines what item(s) are used either in the incoming or outgoing messages to
uniquely identify one workflow instance from another.

In the example there is a CorrelationHandle defined as a variable on the root activity in the workflow.
Then in the UploadInfo transition, there is a Receive/Send pair. The Receive has its CanCreateInstance
property set to True, which tells Workflow that when the client calls the server, it is this operation that is

FiguRE 45-15

c45.indd 1425 30-01-2014 20:52:11

1426 ❘ CHAPTER 45 WindoWs WorkfloW foundation

permitted to be first in the chain of execution of a workflow. The Receive activity can read any data from
the parameters passed to the service call (and store these away for later in the workflow if appropriate).

The Send activity used here sets up the correlation to the unique ID created within the workflow. In this
case it uses an XPath expression, as shown in Figure 45-16, to extract the Guid sent back to the user as the
return value of the UploadPropertyInformation method.

FiguRE 45-16

Now that you have effectively associated the workflow instance with this ID, you can use correlation again
to allow subsequent calls to one of the other methods on the service contract, and these can find the right
workflow instance as correlation is used here again, in this case to extract a value from the parameters
passed to the operation(s) that process data on the server side. This is powerful; in Workflow 3.x you could
use only the inbuilt Workflow Instance ID; however, in 4.x you can choose any unique parts of the data to
allow a client call to find the right workflow instance.

Similarly, you can correlate on different data during the life of the workflow. So, you might return a Guid
from the first call but then return a unique integer key from subsequent method invocations.

Calling Workflow Services
With a Workflow hosted as a .xamlx file, you need some way to call that workflow. This is the same as calling any
standard WCF service in that you need to add a reference to that service. In this case the service is not addressed
by a URL that ends in a .svc file, but instead it’s a URL that ends with the .xamlx workflow definition.

The client can then interact with the service by making WCF calls. The only difference here is that a
Workflow won’t accept any call on that WCF interface at all times. The operation(s) that are valid at any
specific time are dependent on the state of the workflow. When you initially call the workflow, you use the
UploadPropertyInformation call, which due to the receiver of that call having its CanCreateInstance
property set to true allows a new workflow instance to be created.

Then you can call either of the other methods on the interface because these are what the workflow instance
is now awaiting.

The code download for this example includes a proxy class similar to that created with an add service
reference. The author tends to create these in code because the process is more intuitive than using add
service reference and also better to support a large development team, where a service interface can often
change. Using the method here that change needs to be made only in one place, rather than regenerating
multiple service references in multiple projects.

The code then creates an instance of this proxy class as follows:

PropertyInformationClient client = new PropertyInformationClient("state");

This uses an endpoint defined within the app.config:

<endpoint address="http://localhost:1353/StateService.xamlx"
 binding="basicHttpBinding"
 contract="SharedInterfaces.IPropertyInformation"
 name="state"/>

c45.indd 1426 30-01-2014 20:52:12

Workflows ❘ 1427

Here as you can see the address of the service ends with .xamlx, which indicates that the service is a
Workflow rather than a standard WCF service.

Workflow versioning
Because a workflow can be persisted and potentially run for a long time, you need a way to change a
workflow. For example, consider a workflow that deals with insurance renewals. An instance of
this workflow might run for every new policy taken out, and 10 months from the time the policy was taken
out it might reactivate to then send out a renewal quotation, and, depending on the response from the
customer, send out a reminder or two.

Now say that you implement a new customer contact mechanism that enables you to send text messages to
inform customers of their renewal. What would you do with all the workflows already in the database?

Before WF 4.5 there were only two options and neither was particularly palatable. The first option was to
ignore the change for any existing workflows and implement the change only in new workflow instances.
The other was to cancel all existing instances and restart them. Neither of these options are what you would
ideally like to do, and WF 4.5 adds a couple of new capabilities that can help in this area.

Dynamic Update
The Dynamic Update feature enables a persisted workflow instance to be changed to apply some new
functionality to that workflow. There are several steps to undertake to update a workflow, which can be
broken into two phases.

The first phase prepares to update your persisted workflows. Here you use the new
DynamicUpdateServices class by calling the PrepareForUpdate method as shown in the following
code. Then you alter the workflow as appropriate, such as adding new activities. The example has a new
WriteLine activity and adds this to the end of the current workflow. After all changes have been made, you
can then call the CreateUpdateMap method, which returns an instance of the DynamicUpdateMap class,
which is used when loading existing instances to update them to the new workflow definition (code file 08_
DynamicUpdate/Program.cs):

Activity workflowDefinition = GetInitialWorkflow();
DynamicUpdateServices.PrepareForUpdate(workflowDefinition);

// Now update the workflow - add in a new activity
Sequence seq = workflowDefinition as Sequence;
seq.Activities.Add(new WriteLine { Text = "Second version of workflow" });

// And then after all the changes, create the map
return DynamicUpdateServices.CreateUpdateMap(workflowDefinition);

You can use an update map repeatedly to update workflow instances, which is why the author mentions
there are two phases, the second being loading up existing workflows and upgrading them. The following
snippet shows how you could load an existing workflow instance and use the upgrade map previously
created to update that instance.

SqlWorkflowInstanceStore store = new SqlWorkflowInstanceStore(
 ConfigurationManager.ConnectionStrings["db"].ConnectionString);
WorkflowApplicationInstance instance = WorkflowApplication.GetInstance(id, store);
WorkflowApplication app = new WorkflowApplication(GetUpdatedWorkflow());
app.Load(instance, map);
app.Unload();

Here the GetUpdatedWorkflow method loads the new workflow definition, and the existing instance data is
loaded into this new workflow definition using the map object to indicate how to move persistence
data between the existing and new activities. As the workflow persistence data contains only the data and
not the workflow definition, upgrading is merely an act to move persistence information between nodes in
the workflow.

c45.indd 1427 30-01-2014 20:52:12

1428 ❘ CHAPTER 45 WindoWs WorkfloW foundation

After a workflow has been upgraded, it must run against the new workflow definition. And to simplify the
task to know what version a workflow is within the database, there is the new WorkflowIdentity class,
which can be attached to a WorkflowApplication when the application is created. This information forms
part of the persistence information of a workflow and can be accessed using the DefinitionIdentity
property of the WorkflowApplicationInstance class. You could use this to iterate through all workflows
in the persistence store to find which have been upgraded and which need to be altered.

Side-by-Side Workflows
When hosting workflows using the WorkflowApplication class, you can now include a WorkflowIdentity
object, which allows you to associate version information with a workflow definition so that when that
workflow is persisted to the database, the version information is also persisted. Then, when reading
persisted workflow instances back from the database, you can find workflows of a given version so that you
can map the runtime workflow definition in the persisted state of the workflow in the database.

To load and resume any workflow instance, the WorkflowApplication that hosts that workflow must have
been initialized with the specific workflow definition used to create the workflow place. By reading the version
information prior to resuming the workflow, you can use this to map to a specific workflow definition.

In addition, this versioning support has also been extended to workflows hosted using the
WorkflowServiceHost class. When hosting versioned workflows with WorkflowServiceHost, you need to
specify version information in the DefinitionIdentity property of the workflow service.

These additions make workflow a much better option than it was previously, especially for business
processes that might span weeks or months. Over the longer term it is much more likely that changes will
need to be made. Although making those changes is a nontrivial matter, at least you now have the option.

Hosting the designer
Often people save the best until last. Keeping with that tradition, that’s what is done in this chapter. The
Workflow Designer used within Visual Studio can also be hosted within your own application, allowing
your end users to create their own workflows without a copy of Visual Studio in sight. This is the best
feature of WF 4 by far. Traditional application extension mechanisms always require some form of
developer — either to write an extension DLL and plug it into the system somewhere, or by writing macros
or scripts. Windows Workflow enables end users to customize an application simply by dragging and
dropping activities onto a design surface.

Rehosting the designer in Workflow 3.x was not for the faint-hearted; however, in WF 4 it became almost
trivial. The Designer is a WPF control, so you can use a WPF project as the main application. The code for
this example is available in the 09_DesignerRehosting project.

The first thing you need to do is to include the workflow assemblies, and then you need to define the main
window XAML. Use the Model-View-ViewModel (MVVM) pattern when constructing WPF user interfaces
because it simplifies the coding and also ensures that you can drape different XAML over the same view
model if necessary. The XAML for the main window is as follows (code file 09_DesignerRehosting/
MainWindow.xaml):

<Window x:Class="HostApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <Menu IsMainMenu="True">
 <MenuItem Header="_File">

c45.indd 1428 30-01-2014 20:52:12

Workflows ❘ 1429

 <MenuItem Header="_New" Command="{Binding New}"/>
 <MenuItem Header="_Open" Command="{Binding Open}"/>
 <MenuItem Header="_Save" Command="{Binding Save}"/>
 <Separator/>
 <MenuItem Header="_Exit" Command="{Binding Exit}"/>
 </MenuItem>
 <MenuItem Header="Workflow">
 <MenuItem Header="_Run" Command="{Binding Run}"/>
 </MenuItem>
 </Menu>
 <Grid Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="4*"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <ContentControl Content="{Binding Toolbox}" />
 <ContentControl Content="{Binding DesignerView}"
 Grid.Column="1"/>
 <ContentControl Content="{Binding PropertyInspectorView}"
 Grid.Column="2"/>
 </Grid>
 </Grid>
</Window>

It is a simple layout with a main menu and then a grid that defines placeholders for the toolbox, designer,
and property grid. You can notice that everything is bound including the commands.

The ViewModel created consists of properties for each of the main UI elements: the Toolbox, Designer, and
Property Grid. In addition to these properties, there are also properties for each command, such as New,
Save, and Exit (code file 09_DesignerRehosting/ViewModel.cs):

public class ViewModel : BaseViewModel
{
 public ViewModel()
 {
 // Ensure all designers are registered for inbuilt activities
 new DesignerMetadata().Register();
 }
 public void InitializeViewModel(Activity root)
 {
 _designer = new WorkflowDesigner();
 _designer.Load(root);
 this.OnPropertyChanged("DesignerView");
 this.OnPropertyChanged("PropertyInspectorView");
 }
 public UIElement DesignerView
 {
 get { return _designer.View; }
 }
 public UIElement ProperttInspectorView
 {
 get { return _designer.PropertyInspectorView; }
 }
 private WorkflowDesigner _designer;
}

To begin, the ViewModel class derives from BaseViewModel. This base class is one that you use every time
you construct a view model because it provides an implementation of INotifyPropertyChanged. It comes
from a set of snippets written by Josh Twist and is available on www.thejoyofcode.com.

The constructor ensures that the metadata for all the built-in activities is registered. Without this call, none
of the type specific designers show up on the user interface. Within the InitializeViewModel method, you

c45.indd 1429 30-01-2014 20:52:12

1430 ❘ CHAPTER 45 WindoWs WorkfloW foundation

then construct an instance of the Workflow Designer and load an activity into it. The WorkflowDesigner
class is curious in that, after you load one workflow into it, you cannot load another. So here you re-create
this class whenever a new workflow is created.

The last thing that the InitializeViewModel method does is to call the property change notification
function to indicate to the user interface that both the DesignerView and PropertyInspectorView are
updated. As the UI is bound to these properties, they will be requeried and will load the new values from the
new Workflow Designer instance.

The next part of the user interface that needs to be created is the toolbox. In Workflow 3.x you had to
construct this control yourself; however, in WF 4 there is a ToolboxControl, which is trivially easy to use
(code file 09_DesignerRehosting/ViewModel.cs):

 public UIElement Toolbox
 {
 get
 {
 if (null == _toolbox)
 {
 _toolbox = new ToolboxControl();
 ToolboxCategory cat = new ToolboxCategory
 ("Standard Activities");
 cat.Add(new ToolboxItemWrapper(typeof(Sequence),
 "Sequence"));
 cat.Add(new ToolboxItemWrapper(typeof(Assign), "Assign"));
 _toolbox.Categories.Add(cat);
 ToolboxCategory custom = new ToolboxCategory("Custom Activities");
 custom.Add(new ToolboxItemWrapper(typeof(Message), "MessageBox"));
 _toolbox.Categories.Add(custom);
 }
 return _toolbox;
 }
 }

Here, you construct the toolbox control and then add two toolbox items to the first category and one
toolbox item to a second category. The ToolboxItemWrapper class is used to simplify the code needed to
add a given activity to the toolbox.

With that code in place, you have a functioning application — well almost. All you need to do now is wire up
the ViewModel with the XAML. This is done in the constructor for the main window.

 public MainWindow()
 {
 InitializeComponent();
 ViewModel vm = new ViewModel();
 vm.InitializeViewModel(new Sequence());
 this.DataContext = vm;
 }

Here, you construct the view model, and, by default, add in a Sequence activity so that something displays
onscreen when the application runs.

The only part missing now is some commands. We use a DelegateCommand class to write ICommand-based
commands for WPF because then you can find the code in the view model is easy to understand.
The commands are fairly trivial to implement because is evident by the New command shown here:

 public ICommand New
 {
 get
 {
 return new DelegateCommand(unused =>
 {

c45.indd 1430 30-01-2014 20:52:12

Workflows ❘ 1431

 InitializeViewModel(new Sequence());
 });
 }
 }

This command is bound to the New menu item, so when that is clicked, the delegate is executed, and in
this instance that simply calls the InitializeViewModel method with a new Sequence activity. Because
this method also raises the property change notification for the designer and the property grid, these are
updated, too.

The Open command is a little more involved but not much:

 public ICommand Open
 {
 get
 {
 return new DelegateCommand(unused =>
 {
 OpenFileDialog ofn = new OpenFileDialog();
 ofn.Title = "Open Workflow";
 ofn.Filter = "Workflows (*.xaml)|*.xaml";
 ofn.CheckFileExists = true;
 ofn.CheckPathExists = true;
 if (true == ofn.ShowDialog())
 InitializeViewModel(ofn.FileName);
 });
 }
 }

Here, you use another override of InitializeViewModel, which in this instance takes a filename rather
than an activity. You’ve not seen this code, but it is available in the code download. This command
displays an OpenFileDialog, and when one is chosen, it loads the workflow into the Designer. There is a
corresponding Save command, which calls the WorkflowDesigner.Save method to store the workflow
XAML on disk. If you run the application now, you see a window that looks like that in Figure 45-17.

FiguRE 45-17

The last section of code in the view model is the Run command. It wouldn’t be much good designing
workflows without executing them, so you can include this facility in the view model as well. It’s fairly
trivial — the Designer includes a Text property, which is the XAML representation of the activities

c45.indd 1431 30-01-2014 20:52:13

1432 ❘ CHAPTER 45 WindoWs WorkfloW foundation

within the workflow. All you need to do is convert this into an Activity and then execute that using the
WorkflowInvoker class.

 public ICommand Run
 {
 get
 {
 return new DelegateCommand(unused =>
 {
 Activity root = _designer.Context.Services.
 GetService<ModelService>().Root.
 GetCurrentValue() as Activity;
 WorkflowInvoker.Invoke(root);
 },
 unused => { return !HasErrors; }
);
 }
 }

 public bool HasErrors
 {
 get { return (0 != _errorCount); }
 }

 public void ShowValidationErrors(IList<ValidationErrorInfo> errors)
 {
 _errorCount = errors.Count;
 OnPropertyChanged("HasErrors");
 }
 private int _errorCount;

The author butchered the preceding code to fit it into the space on the page because the first line of the
delegate command that retrieves the root activity from the designer is long, to say the least. All you then
need to do is use the WorkflowInvoker.Invoke method to execute the workflow.

The command infrastructure within WPF includes a way to disable commands if they cannot be accessed,
and that’s the second Lambda function on the DelegateCommand. This function returns the value of
HasErrors, a Boolean property that has been added to the view model. This property indicates whether
any validation errors have been found within the workflow because the view model implements the
IValidationErrorService, which is notified whenever the valid state of the workflow changes.

You could extend the sample to expose this list of validation errors on the user interface as necessary — and
you probably want to add in some more activities to the toolbox because you won’t get far with just three
activities.

suMMARy
Windows Workflow offers a radical change in the way that you construct applications. You can now surface
complex parts of an application as activities and permit users to alter the processing of the system simply by
dragging and dropping activities into a workflow.

You can apply workflow to almost all applications — from the simplest command-line tool to the most
complex system containing many hundreds of modules. Before you might have needed a developer to
write an extension module for a system, but now you can provide a simple and extensible customization
mechanism that almost anyone can use. As an application vendor, you would have provided the custom
activities that interacted with your system, and you would also have provided the code in the application
that called the workflows, but you can now leave it up to your customers to define what they want to happen
when an event occurs in the application.

WF 3.x has now been largely superseded by WF 4, and if you plan to use workflow for the first time, start
with this version and bypass Workflow 3.x entirely.

c45.indd 1432 30-01-2014 20:52:13

Peer-to-Peer Networking
WHAT’S iN THiS CHAPTER?

➤➤ Learning about P2P
➤➤ Using the Microsoft Windows 8 P2P Networking platform
➤➤ Registering and Resolving Peer Names
➤➤ Sending and receiving messages across peers
➤➤ Building P2P applications with the .NET Framework

WRoX.Com CoDE DoWNloADS FoR THiS CHAPTER

You can fi nd the wrox.com code downloads for this chapter at replace with www.wrox.com/go/
procsharp on the Download Code tab. The code for this chapter contains this major example:

➤➤ P2PSample

PEER-To-PEER NETWoRKiNg oVERViEW
Peer-to-peer networking, often referred to as P2P, is perhaps one of the most useful and yet
misunderstood technologies to emerge in recent years. When people think of P2P, they usually think
of one thing: sharing music video, software, and other fi les, often illegally. This is because fi le-sharing
applications such as BitTorrent have risen in popularity at a staggering rate, and these applications use
P2P technology to work.

Although P2P is used in fi le-sharing applications, that doesn’t mean it doesn’t have other applications.
Indeed, as you see in this chapter, you can use P2P for a vast array of applications, and it is becoming
more important in the interconnected world in which you live. You learn about this in the fi rst part of
this chapter, when you look at an overview of P2P technologies.

Microsoft has not been oblivious to the emergence of P2P and has been developing its own tools and
technologies to use it. You can use the Microsoft Windows Peer-to-Peer Networking platform as a
communication framework for P2P applications. This platform includes the important component
Peer Name Resolution Protocol (PNRP). The .NET Framework contains the namespace, System
.Net.PeerToPeer, and several types and features that you can use to build P2P applications with
minimal effort.

46

c46.indd 1433 30-01-2014 20:52:42

1434 ❘ CHAPTER 46 Peer-to-Peer NetworkiNg

Peer-to-peer networking is an alternative approach to network communication. To understand how P2P
differs from the “standard” approach to network communication, you need to take a step backward to
look at client-server communications. Client-server communications are ubiquitous in networked
applications today.

Client-Server Architecture
Traditionally, you interact with applications over a network (including the
Internet) using a client-server architecture. Websites are a great example of this.
When you look at a website, you send a request over the Internet to a web server,
which then returns the information that you require. If you want to download a
file, you do so directly from the web server.

Similarly, desktop applications that include local or wide area network
connectivity typically connect to a single server, for example, a database
server or a server that hosts other services.

This simple form of client-server architecture is shown in Figure 46-1.

There is nothing inherently wrong with the client-server architecture, and indeed
in many cases it is exactly what you want. However, there is a scalability problem.
Figure 46-2 shows how the client-server architecture scales with additional clients.

Server

Client

Request Response

FiguRE 46-1

Clients

Server

FiguRE 46-2

With every client added an increased load is placed on the server, which must communicate with each client.
To return to the website example, this increased communication load is how websites collapse. When there
is too much traffic, the server simply becomes unresponsive.

There are, of course, scaling options that you can implement to mitigate this situation. You can scale up by
increasing the power and resources available to the server, or you can scale out by adding additional servers.
Scaling up is limited by the technology available and the cost of better hardware. Scaling out is potentially
more flexible but requires an additional infrastructure layer to ensure that clients either communicate with
individual servers or maintain session state independent of the server with which they communicate. Plenty
of solutions are available for this, such as web or server farm products.

P2P Architecture
The peer-to-peer approach is completely different from either the scaling up or scaling out approach. With
P2P, instead of focusing on and attempting to streamline the communication between the server and its
clients, you instead look at ways in which clients can communicate with each other.

Say, for example, that the website that clients communicate with is www.wrox.com. In your imaginary
scenario, Wrox has announced that a new version of this book is to be released on the wrox.com website
and will be free to download to anyone who wants it; however, it will be removed after one day. Before the
book becomes available on the website you might imagine that many people will look at the website and
refresh their browsers, waiting for the file to appear. When the file is available, everyone will try to
download it at the same time, and more than likely the wrox.com web server will collapse under the strain.

c46.indd 1434 30-01-2014 20:52:45

Peer-to-Peer Networking Overview ❘ 1435

You could use P2P technology to prevent this web server collapse. Instead of sending the file directly from the
server to all the clients, you send the file to just a few clients. A few of the remaining clients then download
the file from the clients that already have it; a few more clients download it from those second-level clients;
and so on. This process is made even faster by splitting the file into chunks and dividing these chunks
among clients, some of whom download it directly from the server, and some whom download chunks from
other clients. This is how file-sharing technologies such as BitTorrent work, as shown in Figure 46-3.

Server

Clients

FiguRE 46-3

P2P Architectural Challenges
You still need to solve problems in the file-sharing architecture discussed here. For a start, how do clients
detect that other clients exist, and how do they locate chunks of the file that other clients might have? Also,
how can you ensure optimal communication between clients that may be separated by entire continents?

Every client participating in a P2P network application must perform the following operations to overcome
these problems:

➤➤ It must discover other clients.
➤➤ It must connect to other clients.
➤➤ It must communicate with other clients.

The discovery problem has two obvious solutions. You can either keep a list of the clients on the server so
that clients can obtain this list and contact other clients (known as peers), or you can use an infrastructure
(for example PNRP, covered in the section “Peer Name Resolution Protocol”) that enables clients to find
each other directly. Most file-sharing systems use the “list on a server” solution by using servers known as
trackers. Also, in file-sharing systems any client may act as a server, as shown in Figure 46-3, by declaring
that it has a file available and registering it with a tracker. In fact, a pure P2P network doesn’t need servers,
just peers.

The connection problem is a more subtle one and concerns the overall structure of the networks used by
a P2P application. If you have one group of clients, all of which can communicate with one another, the

c46.indd 1435 30-01-2014 20:52:47

1436 ❘ CHAPTER 46 Peer-to-Peer NetworkiNg

topology of the connections between these clients can become extremely complex. You can often improve
performance by having more than one group of clients, each of which consists of connections between
clients in that group, but not to clients in other groups. If you can make these groups locale-based, you can
get an additional performance boost because clients can communicate with each other with fewer hops
between networked computers.

Communication is perhaps a problem of lesser importance because communication protocols such as TCP/
IP are well established and can be reused here. There is, however, scope for improvement in both high-level
technologies (for example, you can use WCF services and therefore all the functionality that WCF offers)
and low-level protocols (such as multicast protocols to send data to multiple endpoints simultaneously).

Discovery, connection, and communication are central to any P2P implementation. The implementation you
look at in this chapter is to use the System.Net.PeerToPeer types with PNM for discovery and PNRP for
connection. As you see in subsequent sections, these technologies cover all three operations.

P2P Terminology
In the previous sections you were introduced to the concept of a peer, which is how clients are referred to in
a P2P network. The word client makes no sense in a P2P network because there is not necessarily a server to
be a client of.

Groups of peers connected to each other are known by the interchangeable terms meshes, clouds, or graphs.
A given group can be said to be well connected if at least one of the following statements applies:

➤➤ There is a connection path between every pair of peers so that every peer can connect to any other
peer as required.

➤➤ There are a relatively small number of connections to traverse between any pair of peers.
➤➤ Removing a peer does not prevent other peers from connecting to each other.

This does not mean that every peer must connect to every other peer directly. If you analyze a network
mathematically, you can find that peers need to connect only to a relatively small number of other peers for
these conditions to be met.

Another P2P concept to be aware of is flooding. Flooding is the way in which a single piece of data may be
propagated through a network to all peers, or querying other nodes in a network to locate a specific piece
of data. In unstructured P2P networks this is a fairly random process to contact nearest neighbor peers,
which in turn contact their nearest neighbors, and so on until every peer in the network is contacted. You
can also create structured P2P networks so that there are well-defined pathways for queries and data flow
among peers.

P2P Solutions
When you have an infrastructure for P2P, you can start to develop not only improved versions of
client-server applications, but also entirely new applications. P2P is particularly suited to the following
classes of applications:

➤➤ Content distribution applications, including the file-sharing applications discussed earlier
➤➤ Collaboration applications, such as desktop sharing and shared whiteboard applications
➤➤ Multi-user communication applications that enable users to communicate and exchange data directly

rather than through a server
➤➤ Distributed processing applications, as an alternative to supercomputing applications that process

enormous amounts of data
➤➤ Web 2.0 applications that combine some or all the preceding points in dynamic, next-generation web

applications

c46.indd 1436 30-01-2014 20:52:47

Peer Name Resolution Protocol (PNRP) ❘ 1437

PEER NAmE RESoluTioN PRoToCol (PNRP)
The Microsoft Windows Peer-to-Peer Networking platform is Microsoft’s implementation of P2P
technology. It is part of Windows since Windows XP SP2. You can use the Peer Name Resolution
Protocol (PNRP) to publish and resolve peer addresses. In this section you learn about this protocol.

You can use any protocol at your disposal to implement a P2P application, but if you work in a Microsoft
Windows 8 environment (and if you’re reading this book you probably are) it makes sense to at least
consider PNRP. In itself, PNRP doesn’t give you everything you need to create a P2P application. Rather, it
is one of the underlying technologies that you use to resolve peer addresses. PNRP enables a client to register
an endpoint (known as a peer name) that is automatically circulated among peers in a cloud. This peer
name is encapsulated in a PNRP ID. A peer that discovers the PNRP ID can use PNRP to resolve it to the
actual peer name and can then communicate directly with the associated client.

For example, you might define a peer name that represents a WCF service endpoint. You could use PNRP
to register this peer name in a cloud as a PNRP ID. A peer running a suitable client application that uses a
discovery mechanism that can identify peer names for the service you are exposing might then discover this
PNRP ID. When discovered, the peer would use PNRP to locate the endpoint of the WCF service and then
use that service.

NoTE PNRP makes no assumptions about what a peer name actually represents. It is
up to peers to decide how to use them when discovered. The information a peer receives
from PNRP when resolving a PNRP ID includes the IPv6 (and usually also the IPv4)
address of the publisher of the ID, along with a port number and optionally a small
amount of additional data. Unless the peer knows what the peer name means, it is
unlikely to do anything useful with this information.

PNRP iDs
PNRP IDs are 256-bit identifiers. The low-order 128 bits can uniquely identify a particular peer, and the
high-order 128 bits identify a peer name. The high-order 128 bits are a hashed combination of a hashed
public key from the publishing peer and a string of up to 149 characters that identifies the peer name. The
hashed public key (known as the authority) combined with this string (the classifier) are together referred to
as the P2P ID. You can also use a value of 0 instead of a hashed public key, in which case the peer name is
said to be unsecured (as opposed to secured peer names, which use a public key).

Figure 46-4 uses the structure of a PNRP ID.

PNRP ID

128-bit hashed P2P ID 128-bit service location

P2P ID

Authority (hashed public key) Classifier (peer name identifier)

FiguRE 46-4

c46.indd 1437 30-01-2014 20:52:48

1438 ❘ CHAPTER 46 Peer-to-Peer NetworkiNg

The PNRP service on a peer is responsible to maintain a list of PNRP IDs, including the ones that it pub-
lishes and a cached list of those it has obtained by PNRP service instances elsewhere in the cloud. When a
peer attempts to resolve a PNRP ID, the PNRP service either uses a cached copy of the endpoint to resolve
the peer that published the PNRP or it asks its neighbors if they can resolve it. Eventually a connection
to the publishing peer is made, and the PNRP service can resolve the PNRP ID.

All this happens without you intervening in any way. All you must do is ensure that peers know what to do
with peer names after they have resolved them using their local PNRP service.

Peers can use PNRP to locate PNRP IDs that match a particular P2P ID. You can use this to implement
a basic form of discovery for unsecured peer names. This is because if several peers expose an unsecured
peer name that uses the same classifier, the P2P ID will be the same. Of course, because any peer can use an
unsecured peer name, you have no guarantee that the endpoint you connect to will be the sort of endpoint
you expect, so this is only a viable solution for discovery over a local network.

PNRP Clouds
In the preceding discussion you learned how PNRP registers and resolves peer names in clouds. A cloud is
maintained by a seed server, which can be any server running the PNRP service that maintains a record of
at least one peer. Two types of clouds are available to the PNRP service:

➤➤ Link local: These clouds consist of the computers attached to a local network. A PC may connect to
more than one link local cloud if it has multiple network adapters.

➤➤ Global: This cloud consists of computers connected to the Internet by default; although you can
define a private global cloud. The difference is that Microsoft maintains the seed server for the
global Internet cloud, whereas if you define a private global cloud you must use your own seed
server. If you use your own seed server, you must ensure that all peers connect to it by configuring
policy settings.

NoTE In previous versions of PNRP, a third type of cloud existed: site local. This is no
longer used and is not covered in this chapter.

You can discover what clouds you are connected to with the following command:

netsh p2p pnrp cloud show list

A typical result is shown here:

Scope Id Addr State Name
----- ----- ----- ---------------- -----
 1 0 1 Virtual Global_
 3 13 1 Virtual LinkLocal_ff00::%13/8
 3 19 1 Virtual LinkLocal_ff00::%19/8

The output shows that three clouds are available: one is a global and two are link local clouds. You can tell
this from both the name and the Scope value, which is 3 for link local clouds and 1 for global clouds. To
connect to a global cloud, you must have an IPv6 address.

Clouds may be in one of the following states:

➤➤ Active: If the state of a cloud is active, you can use it to publish and resolve peer names.
➤➤ Alone: If the peer you query the cloud from is not connected to any other peers, it has a state

of alone.

c46.indd 1438 30-01-2014 20:52:49

Building P2P Applications ❘ 1439

➤➤ No Net: If the peer is not connected to a network, the cloud state may change from active to no net.
➤➤ Synchronizing: Clouds are in the synchronizing state when the peer connects to them. This state

changes to another state extremely quickly because this connection does not take long, so you will
probably never see a cloud in this state.

➤➤ Virtual: The PNRP service connects to clouds only as required by peer name registration and
resolution. If a cloud connection has been inactive for more than 15 minutes, it may enter the
virtual state.

NoTE If you experience network connectivity problems, you should check your
firewall to see if it prevents local network traffic over the UDP ports 3540 or 1900.
UDP port 3540 is used by PNRP, and UDP port 1900 is used by the Simple Service
Discovery Protocol (SSDP), which in turn is used by the PNRP service (and UPnP
devices).

PNRP Since Windows 7
Since Windows 7, PNRP makes use of a component called the Distributed Routing Table (DRT). This
component is responsible to determine the structure of the keys used by PNRP; the default implementation
of which is the PNRP ID previously described. By using the DRT API you can define an alternative
key scheme, but the keys must be 256-bit integer values (just like PNRP IDs). This means that you can use
any scheme you want, but you are then responsible for the generation and security of the keys. By using this
component you can create new cloud topologies beyond the scope of PNRP, and indeed, beyond the scope of
this chapter because this is an advanced technique.

Windows 7 also introduced a new way to connect to other users for the Remote Assistance application:
Easy Connect. This connection option uses PNRP to locate users to connect to. After a session is created,
through Easy Connect or by other means (for example an e-mail invitation), users can share their Desktops
and assist each other through the Remote Assistance interface.

BuilDiNg P2P APPliCATioNS
Now that you have learned what P2P networking is and what technologies are available to .NET developers
to implement P2P applications, it’s time to look at how you can build them. From the preceding discussion
you know that you will use PNRP to publish, distribute, and resolve peer names, so the first thing you look
at here is how to achieve that using .NET. Next you look at how to use PNM as a framework for a P2P
application. This can be advantageous because if you use PNM you do not need to implement your own
discovery mechanisms.

To examine these subjects you need to learn about the classes in the System.Net.PeerToPeer namespace.
For these classes you must have a reference to the System.Net assembly.

The classes in the System.Net.PeerToPeer namespace encapsulate the API for PNRP and enable you to
interact with the PNRP service. You can use these classes for two main tasks:

➤➤ Registering peer names
➤➤ Resolving peer names

In the following sections, all the types referred to come from the System.Net.PeerToPeer namespace
unless otherwise specified.

c46.indd 1439 30-01-2014 20:52:49

1440 ❘ CHAPTER 46 Peer-to-Peer NetworkiNg

Registering Peer Names
To register a peer name follow these steps:

 1. Create a secured or unsecured peer name with a specified classifier.

 2. Configure a registration for the peer name, providing as much of the following optional information as
you choose:

➤➤ A TCP port number.
➤➤ The cloud or clouds with which to register the peer name. (If unspecified, PNRP registers the

peer name in all available clouds.)
➤➤ A comment of up to 39 characters.
➤➤ Up to 4,096 bytes of additional data.
➤➤ Whether to generate endpoints for the peer name automatically. (The default behavior, where

endpoints will be generated from the IP address or addresses of the peer and, if specified, the
port number.)

➤➤ A collection of endpoints.

 3. Use the peer name registration to register the peer name with the local PNRP service.

After step 3, the peer name is available to all peers in the selected cloud (or clouds). Peer registration
continues until it explicitly stops, or until the process that registers the peer name is terminated.

To create a peer name, you use the PeerName class. You create an instance of this class from a string
representation of a P2P ID in the form authority.classifier or from a classifier string and a
PeerNameType. You can use PeerNameType.Secured or PeerNameType.Unsecured, for example:

var pn = new PeerName("Peer classifier", PeerNameType.Secured);

Because an unsecured peer name uses an authority value of 0, the following lines of code are equivalent:

var pn = new PeerName("Peer classifier", PeerNameType.Unsecured);

var pn = new PeerName("0.Peer classifier");

After you have a PeerName instance, you can use it along with a port number to initialize a
PeerNameRegistration object:

var pnr = new PeerNameRegistration(pn, 8080);

Alternatively, you can set the PeerName and (optionally) the Port properties on a PeerNameRegistration
object created using its default parameter. You can also specify a Cloud instance as a third parameter of the
PeerNameRegistration constructor, or through the Cloud property. You can obtain a Cloud instance from
the cloud name or by using one of the following static members of Cloud:

➤➤ Cloud.Global: This static property obtains a reference to the global cloud. This may be a private
global cloud depending on peer policy configuration.

➤➤ Cloud.AllLinkLocal: This static field gets a cloud that contains all the link local clouds available to
the peer.

➤➤ Cloud.Available: This static field gets a cloud that contains all the clouds available to the peer,
which includes link local clouds and (if available) the global cloud.

When created, you can set the Comment and Data properties if you want. Be aware of the limitations of these
properties, though. You receive a PeerToPeerException if you try to set Comment to a string greater
than 39 Unicode characters or an ArgumentOutOfRangeException if you try to set Data to a byte[]

c46.indd 1440 30-01-2014 20:52:49

Building P2P Applications ❘ 1441

greater than 4,096 bytes. You can also add endpoints by using the EndPointCollection property. This
property is a System.Net.IPEndPointCollection collection of System.Net.IPEndPoint objects. If you
use the EndPointCollection property you might also want to set the UseAutoEndPointSelection
property to false to prevent automatic generation of endpoints.

When you are ready to register the peer name, you can call the PeerNameRegistration.Start method. To
remove a peer name registration from the PNRP service, use the PeerNameRegistration.Stop method.

The following code registers a secured peer name with a comment:

var pn = new PeerName("Peer classifier", PeerNameType.Unsecured);
var pnr = new PeerNameRegistration(pn, 8080);
pnr.Comment = "Get pizza here";
pnr.Start();

Resolving Peer Names
To resolve a peer name you must carry out the following steps:

 1. Generate a peer name from a known P2P ID or a P2P ID obtained through a discovery technique.

 2. Use a resolver to resolve the peer name and obtain a collection of peer name records. You can limit the
resolver to a particular cloud and a maximum number of results to return.

 3. For any peer name records that you obtain, obtain peer name, endpoint, comment, and additional data
information as required.

This process starts with a PeerName object similar to a peer name registration. The difference here is that
you use a peer name registered by one or more remote peers. The simplest way to get a list of active peers
in your link local cloud is for each peer to register an unsecured peer name with the same classifier and
to use the same peer name in the resolving phase. However, this is not a recommended strategy for global
clouds because unsecured peer names are easily spoofed.

To resolve peer names use the PeerNameResolver class. When you have an instance of this class, you can
choose to resolve peer names synchronously by using the Resolve method or asynchronously using the
ResolveAsync method.

You can call the Resolve method with a single PeerName parameter, but you can also pass an optional
Cloud instance to resolve in, an int maximum number of peers to return, or both. This method returns
a PeerNameRecordCollection instance, which is a collection of PeerNameRecord objects. For example,
the following code resolves an unsecured peer name in all link local clouds and returns a maximum of
five results:

var pn = new PeerName("0.Peer classifier");
var pnres = new PeerNameResolver();
PeerNameRecordCollection pnrc = pnres.Resolve(pn, Cloud.AllLinkLocal, 5);

The ResolveAsync method uses a standard asynchronous method call pattern. You pass a unique
userState object to the method and listen for ResolveProgressChanged events for peers being found and
the ResolveCompleted event when the method terminates. You can cancel a pending asynchronous request
with the ResolveAsyncCancel method.

Event handlers for the ResolveProgressChanged event use the ResolveProgressChangedEventArgs
event arguments parameter, which derives from the standard System.ComponentModel
.ProgressChangedEventArgs class. You can use the PeerNameRecord property of the event argument
object you receive in the event handler to get a reference to the peer name record that was found.

Similarly, the ResolveCompleted event requires an event handler that uses a parameter of type
ResolveCompletedEventArgs, which derives from AsyncCompletedEventArgs. This type includes a

c46.indd 1441 30-01-2014 20:52:49

1442 ❘ CHAPTER 46 Peer-to-Peer NetworkiNg

PeerNameRecordCollection parameter you can use to obtain a complete list of the peer name records that
were found.

The following code shows an implementation of event handlers for these events:

 private pnres_ResolveProgressChanged(object sender,
 ResolveProgressChangedEventArgs e)
 {
 // Use e.ProgressPercentage (inherited from base event args)
 // Process PeerNameRecord from e.PeerNameRecord
 }

 private pnres_ResolveCompleted(object sender,
 ResolveCompletedEventArgs e)
 {
 // Test for e.IsCancelled and e.Error (inherited from base event args)
 // Process PeerNameRecordCollection from e.PeerNameRecordCollection
 }

After you have one or more PeerNameRecord objects you can proceed to process them. This
PeerNameRecord class exposes Comment and Data properties to examine the comment and data set
in the peer name registration (if any), a PeerName property to get the PeerName object for the peer name
record, and, most important, an EndPointCollection property. As with PeerNameRegistration, this
property is a System.Net.IPEndPointCollection collection of System.Net.IPEndPoint objects. You
can use these objects to connect to endpoints exposed by the peer in any way you want.

Code Access Security in System.Net.PeerToPeer
The System.Net.PeerToPeer namespace also includes the following two classes that you can use with
Code Access Security (CAS). See Chapter 22, “Security,” for more details.

➤➤ PnrpPermission, which inherits from CodeAccessPermission
➤➤ PnrpPermissionAttribute, which inherits from CodeAccessSecurityAttribute

You can use these classes to provide permissions functionality for PNRP access in the usual CAS way.

Sample Application
The downloadable code for this chapter includes a sample P2P application (P2PSample) that uses the
concepts and namespace introduced in this section. It is a WPF application that uses a WCF service for a
peer endpoint.

The application is configured with an application configuration file, in which you can specify the name of
the peer and a port to listen on as follows (code file App.config):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="username" value="Christian" />
 <add key="port" value="8731" />
 </appSettings>
</configuration>

After you build the application, you can test it either by copying it to other computers in your local network
and running all instances, or by running multiple instances on one computer. If you choose the latter option,
you must remember to change the port used for each instance by changing individual config files. (Copy the
contents of the Debug directory on your local computer and edit each config file in turn.) The results are
clearer in both ways to test this application if you also change the username for each instance.

c46.indd 1442 30-01-2014 20:52:49

Building P2P Applications ❘ 1443

When the peer applications run, you can use the Refresh button to obtain a list of peers asynchronously. When
you locate a peer, you can send a default message by clicking the Message button for the peer.

Figure 46-5 shows this application in action with three instances running on one machine. In the figure, one
peer has just messaged another, which results in a dialog box.

FiguRE 46-5

Now get into the code. With the field members of the class MainWindow (code file MainWindow
.xaml.cs) an observable collection is defined that contains all the peers. In the constructor of the class,
just one PeerEntry is added to the collection that gives information to the user to click the Refresh button
to get all the peers.

 public partial class MainWindow : Window
 {
 private P2PService localService;
 private ServiceHost host;
 private PeerName peerName;
 private PeerNameRegistration peerNameRegistration;
 private ObservableCollection<PeerEntry> peerList =
 new ObservableCollection<PeerEntry>();
 private object peersLock = new object();

 public MainWindow()
 {
 InitializeComponent();
 this.DataContext = peerList;
 peerList.Add(
 new PeerEntry
 {
 DisplayString = "Refresh to look for peers.",
 ButtonsEnabled = false
 });
 BindingOperations.EnableCollectionSynchronization(peerList, peersLock);
 }

c46.indd 1443 30-01-2014 20:52:50

1444 ❘ CHAPTER 46 Peer-to-Peer NetworkiNg

Most of the work in this application takes place in the Window_Loaded event handler for the MainWindow
 window. This method starts by loading configuration information and setting the window title with the username:

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 // Get configuration from app.config
 string port = ConfigurationManager.AppSettings["port"];
 string username = ConfigurationManager.AppSettings["username"];
 string machineName = Environment.MachineName;
 string serviceUrl = null;

 // Set window title
 this.Title = string.Format("P2P example — {0}", username);

Next, the peer host address is used along with the configured port to determine the endpoint on which to host the
WCF service. The service uses NetTcpBinding binding, so the URL of the endpoint uses the net.tcp protocol:

 // Get service url using IPv4 address and port from config file
 serviceUrl = Dns.GetHostAddresses(Dns.GetHostName())
 .Where(address => address.AddressFamily == AddressFamily.InterNetwork)
 .Select(address =>
 string.Format("net.tcp://{0}:{1}/P2PService", address, port))
 .FirstOrDefault();

The endpoint URL is validated, and then the WCF service is registered and started:

 // Check for null address
 if (serviceUrl == null)
 {
 // Display error and shutdown
 MessageBox.Show(this, "Unable to determine WCF endpoint.",
 "Networking Error", MessageBoxButton.OK, MessageBoxImage.Stop);
 Application.Current.Shutdown();
 }

 // Register and start WCF service.
 localService = new P2PService(this, username);
 host = new ServiceHost(localService, new Uri(serviceUrl));
 var binding = new NetTcpBinding();
 binding.Security.Mode = SecurityMode.None;
 host.AddServiceEndpoint(typeof(IP2PService), binding, serviceUrl);
 try
 {
 host.Open();
 }
 catch (AddressAlreadyInUseException)
 {
 // Display error and shutdown
 MessageBox.Show(this, "Cannot start listening, port in use.",
 "WCF Error", MessageBoxButton.OK, MessageBoxImage.Stop);
 Application.Current.Shutdown();
 }

A single instance of the service class enables easy communication between the host app and the service (for
sending and receiving messages). Also, security is disabled in the binding configuration for simplicity.

Next, the System.Net.PeerToPeer namespace classes register a peer name:

 // Create peer name
 peerName = new PeerName("P2P Sample", PeerNameType.Unsecured);

 // Prepare peer name registration in link local clouds

c46.indd 1444 30-01-2014 20:52:50

Summary ❘ 1445

 peerNameRegistration = new PeerNameRegistration(peerName, int.Parse(port));
 peerNameRegistration.Cloud = Cloud.AllLinkLocal;

 // Start registration
 peerNameRegistration.Start();
 }

When the Refresh button is clicked, the RefreshButton_Click event handler uses PeerNameResolver
.ResolveAsync to get peers asynchronously:

 private async void RefreshButton_Click(object sender, RoutedEventArgs e)
 {
 // Create resolver and add event handlers
 var resolver = new PeerNameResolver();
 resolver.ResolveProgressChanged +=
 new EventHandler<ResolveProgressChangedEventArgs>(
 resolver_ResolveProgressChanged);
 resolver.ResolveCompleted +=
 new EventHandler<ResolveCompletedEventArgs>(
 resolver_ResolveCompleted);

 // Prepare for new peers
 peerList.Clear();
 RefreshButton.IsEnabled = false;

 // Resolve unsecured peers asynchronously
 resolver.ResolveAsync(new PeerName("0.P2P Sample"), 1);

When peer information is received, the events ResolveProgressChanged and ResolveCompleted events
are fired where the peer information is received. If case peers are not active yet, a timeout is defined to
cancel the resolve process to fire the ResolveCompleted. The timeout is dealt with the Task.Delay method,
and after the timeout ResolveAsyncCancel is invoked with the same user state value, that is passed to the
ResolveAsync method. With the user state value, the same resolve task is mapped for cancellation.

 await Task.Delay(5000);
 resolver.ResolveAsyncCancel(1);
 }

The remainder of the code is responsible to display and communicate with peers, and you can explore it at
your leisure.

Exposing WCF endpoints through P2P clouds is a great way to locate services within an enterprise, as well
as being an excellent way to communicate between peers, as in this example.

SummARy
This chapter demonstrated how to implement peer-to-peer functionality in your applications by using the
P2P classes.

You have looked at the types of solutions that P2P makes possible and how these solutions are structured
and how to use PNRP with the types in the System.Net.PeerToPeer namespaces. You also learned about
the extremely useful technique to expose WCF services as P2P endpoints.

In the next chapter you look at Message Queuing, both with classes from the System.Messaging
namespace and with WCF.

c46.indd 1445 30-01-2014 20:52:50

c46.indd 1446 30-01-2014 20:52:50

Message Queuing
wHAT’s in THis CHAPTER?

➤➤ Message Queuing architecture
➤➤ Using Message Queuing administrative tools
➤➤ Creating Message Queues programmatically
➤➤ Sending and receiving messages
➤➤ Course order sample application
➤➤ Using Message Queuing with WCF

wROx.COM COdE dOwnlOAds FOR THis CHAPTER

You can fi nd the wrox.com code downloads for this chapter replace URL with www.wrox.com/go/
procsharp on the Download Code tab.

➤➤ Working with Queues
➤➤ Create Message Queue
➤➤ Find Queues
➤➤ Open Queues
➤➤ Send Messages
➤➤ Receive Messages

➤➤ Course Order Sample
➤➤ Sender
➤➤ Receiver

➤➤ WCF Course Order Sample
➤➤ Sender
➤➤ Receiver

47

c47.indd 1447 30-01-2014 20:53:17

1448 ❘ CHAPTER 47 Message Queuing

OvERviEw
System.Messaging is a namespace that includes classes for reading and writing messages with the Message
Queuing facility of the Windows operating system. You can use messaging in a disconnected scenario in
which the client and server don’t need to run at the same time.

This chapter gives you information about the architecture and usage scenarios of Message Queuing, and
then you dive into the classes from the System.Messaging namespace to create queues, and send and
receive messages. You see how to deal with getting answers from the server with acknowledgment and
response queues, and also how to use message queuing with a WCF message queuing binding.

Before diving into programming Message Queuing, this section discusses the basic concepts of messaging
and compares it to synchronous and asynchronous programming. With synchronous programming, when a
method is invoked, the caller must wait until the method completes. With asynchronous programming, the
calling thread starts the method that runs concurrently. Asynchronous programming can be done with
delegates, class libraries that already support asynchronous methods (for example, web service proxies,
System.Net, and System.IO classes), or by using custom threads and tasks (see Chapter 21, “Tasks,
Threads, and Synchronization”). With both synchronous and asynchronous programming, the client and the
server must run at the same time.

Although Message Queuing operates asynchronously, because the client (sender) does not wait for the server
(receiver) to read the data sent to it, there is a crucial difference between Message Queuing and asynchro-
nous programming: Message Queuing can be done in a disconnected environment. At the time data is sent,
the receiver can be offline. Later, when the receiver goes online, it receives the data without intervention
from the sending application.

You can compare connected and disconnected programming with talking to someone on the phone and
sending an e-mail. When talking to someone on the phone, both participants must be connected at the same
time; the communication is synchronous. With an e-mail, the sender isn’t sure when the e-mail will be dealt
with. People using this technology work in a disconnected mode. Of course the e-mail may never be dealt
with — it may be ignored. That’s in the nature of disconnected communication. To avoid this problem, you
can ask for a reply to confirm that the e-mail has been read. If the answer doesn’t arrive within a time limit,
you may be required to deal with this “exception.” This is also possible with Message Queuing.

You can think of Message Queuing as e-mail for application-to-application communication, instead of per-
son-to-person communication. Message Queuing offers a lot of features not available with mailing services,
such as guaranteed delivery, transactions, confirmations, express mode using memory, and so on. As you see
in the next section, Message Queuing has a lot of features useful for communication between applications.

With Message Queuing, you can send, receive, and route messages in a connected or disconnected environ-
ment. Figure 47-1 shows a simple way to use messages. The sender sends messages to the message queue, and
the receiver receives messages from the queue.

Sender Receiver

Message

Message Queue

Send Receive

FiguRE 47-1

c47.indd 1448 30-01-2014 20:53:19

Overview ❘ 1449

when to use Message Queuing
One case in which Message Queuing is useful is when the client application is often disconnected from the
network, for example, when a salesperson visits a customer onsite. The salesperson can enter order data
directly at the customer’s site. The application sends a message for each order to the message queue located
on the client’s system (see Figure 47-2). As soon as the salesperson is back in the office, the order is auto-
matically transferred from the message queue of the client system to the message queue of the target system,
where the message is processed.

Laptop Computer,
Independent Client

Message Queue

Message Queuing
Server

Message Queue

FiguRE 47-2

In addition to using a laptop, the salesperson could use a smaller device where Message Queuing is
available.

Message Queuing can also be useful in a connected environment. Imagine an e-commerce site
(see Figure 47-3) where the server is fully loaded with order transactions at certain times, for example, early
evening and weekends, but the load is low at nighttime. A solution would be to buy a faster server or to add
additional servers to the system so that the peaks can be handled. But there’s a cheaper solution: Flatten the
peak loads by moving transactions from the times with higher loads to the times with lower loads. In this
scheme, orders are sent to the message queue, and the receiving side reads the orders at the rates that are
useful for the database system. The load of the system is now flattened over time so that the server dealing
with the transactions can be less expensive than an upgrade of the database server(s).

Client

Message Queuing
Server

Message Queue

Web Server,
Dependent Client

Internet
Database

FiguRE 47-3

c47.indd 1449 30-01-2014 20:53:22

1450 ❘ CHAPTER 47 Message Queuing

The remainder of this chapter discusses how to use these features.

MEssAgE QuEuing PROduCTs
Message Queuing 5.0 is part of Windows since Windows 7 and Windows Server 2008 R2. Windows 2000
was delivered with Message Queuing 2.0, which didn’t have support for the HTTP protocol and multicast
messages. Message Queuing 3.0 is part of Windows XP and Windows Server 2003. Message Queuing 4.0 is
part of Windows Vista and Windows Server 2008.

When you use the link Turn Windows Features On or Off in Configuring Programs and Features of
Windows 8.1 there is a separate section for Message Queuing options. With this section, you can select these
components:

➤➤ Microsoft Message Queue (MSMQ) Server Core: Required for base functionality with Message
Queuing.

➤➤ Active Directory Domain Services Integration: Message queue names are written to the Active
Directory. With this option, you can find queues with the Active Directory integration and secure
queues with Windows users and groups.

➤➤ MSMQ HTTP Support: Enables you to send and receive messages using the HTTP protocol.
➤➤ Triggers: Applications can be instantiated on the arrival of a new message.
➤➤ Multicast Support: A message can be sent to a group of servers.
➤➤ MSMQ DCOM Proxy: A system can connect to a remote server by using the DCOM API.

When Message Queuing is installed, the Message Queuing service (see Figure 47-4) must be started. This
service reads and writes messages and communicates with other Message Queuing servers to route messages
across the network.

Message Queuing Features
Message Queuing is part of the Windows 8 operating system. The main features of this service follow:

➤➤ Messages can be sent in a disconnected environment. It is not necessary for the sending and receiving
applications to run at the same time.

➤➤ With express mode, messages can be sent quickly. Express-mode messages are just stored in memory.
➤➤ For a recoverable mechanism, messages can be sent using guaranteed delivery. Recoverable messages

are stored within files and are delivered even in cases when the server reboots.
➤➤ Message queues can be secured with access-control lists to define which users can send or receive mes-

sages from a queue. Messages can also be encrypted to avoid network sniffers reading them. Messages
can be sent with priorities so that high-priority items are handled faster.

➤➤ Message Queuing 3.0 supports sending multicast messages.
➤➤ Message Queuing 4.0 supports poison messages. A poison message is one that isn’t getting resolved.

You can define a poison queue where unresolved messages are moved. For example, if the job after
reading the message from the normal queue were to insert it into the database, but the message did not
get into the database and thus this job failed, it would get sent to the poison queue. It is someone’s job
to handle the poison queue — and that person should deal with the message in a way that resolves it.

➤➤ Message Queuing 5.0 supports more secure authentication algorithms and can handle a larger number
of queues. (Message Queuing 4.0 had performance problems with several thousand queues.)

nOTE Because Message Queuing is part of the operating system, you cannot install
Message Queuing 5.0 on a Windows Vista or Windows Server 2008 system. Message
Queuing 5.0 has been part of Windows since Windows 7.

c47.indd 1450 30-01-2014 20:53:22

Message Queuing Architecture ❘ 1451

MEssAgE QuEuing ARCHiTECTuRE
With Message Queuing, messages are written to and read from a message queue. Messages and message
queues have several attributes that must be further elaborated.

Messages
A message is sent to a message queue. The message includes a body containing the data that is sent and a
label that is the title of the message. Any information can be put into the body of the message. With .NET,
several formatters convert data to be put into the body. In addition to the label and the body, the message
includes more information about the sender, timeout configuration, transaction ID, or priority.

Message queues have several types of messages:

A normal message is sent by an application.

An acknowledgment message reports the status of a normal message. Acknowledgment messages are sent to
administration queues to report success or failure when sending normal messages.

Response messages are sent by receiving applications when the original sender requires some special answer.

A report message is generated by the Message Queuing system. Test messages and route-tracking messages
belong to this category.

A message can have a priority that defines the order in which the messages will be read from the queue. The
messages are sorted in the queue according to their priority, so the next message read in the queue is the one
with the highest priority.

Messages have two delivery modes: express and recoverable. Express messages are delivered quickly because
memory is used only for the message store. Recoverable messages are stored in files at every step along the
route until the message is delivered. This way, delivery of the message is ensured, even with a computer
reboot or network failure.

Transactional messages are a special version of recoverable messages. With transactional messaging, it is
guaranteed that messages arrive only once and in the same order that they were sent. Priorities cannot be
used with transactional messages.

Message Queue
A message queue is a storage bin for messages. You can find messages stored on disk in the <windir>\
system32\msmq\storage directory.

Public or private queues are usually used for sending messages, but other queue types also exist:

A public queue is published in the Active Directory. Information about these queues is replicated across
Active Directory domains. You can use browse and search features to get information about these queues.

FiguRE 47-4

c47.indd 1451 30-01-2014 20:53:22

1452 ❘ CHAPTER 47 Message Queuing

 Creating Message Queues
Message queues can be created with the Computer Management MMC snap-in. In the tree view pane,
Message Queuing is located below the Services and Applications entry. By selecting Private Queues or Public
Queues, new queues can be created from the Action menu (see Figure 47-5). Public queues are available only
if Message Queuing is configured in Active Directory mode.

Message Queue Properties
After a queue is created, you can modify the queue’s properties with the Computer Management snap-in by
selecting the queue in the tree pane and selecting the Action Properties menu (see Figure 47-6).

A public queue can be accessed without knowing the name of the computer where it is placed. You can
also move such a queue from one system to another without the client knowing it. You cannot create public
queues in a Workgroup environment because the Active Directory is needed.

Private queues are not published in the Active Directory. You can only access these queues when the full
pathname to the queue is known. You can use private queues in a Workgroup environment.

Journal queues keep copies of messages after they have been received or sent. Enabling journaling for a
public or private queue automatically creates a journal queue. With journal queues, two different queue
types are possible: source journaling and target journaling. Source journaling is turned on with the
 properties of a message; journal messages are stored with the source system. Target journaling is turned on
with the properties of a queue; these messages are stored in the journal queue of the target system.

Dead-letter queues store messages if a message doesn’t arrive at the target system before a specific timeout
is reached. Contrary to synchronous programming where errors are immediately detected, errors must be
dealt with differently using Message Queuing. The dead-letter queue can be checked for messages that didn’t
arrive.

Administration queues contain acknowledgments for messages sent. The sender can specify an administra-
tion queue from which it receives notification of whether the message was sent successfully.

A response queue is used if more than a simple acknowledgment is needed as an answer from the receiving
side. The receiving application can send response messages back to the original sender.

A report queue is used for test messages. You can create report queues by changing the type (or category)
of a public or private queue to the predefined ID {55EE8F33-CCE9–11CF-B108–0020AFD61CE9}. Report
queues are useful as a testing tool to track messages on their route.

System queues are private and are used by the Message Queuing system. These queues are used for admin-
istrative messages, storing of notification messages, and to guarantee the correct order of transactional
messages.

MEssAgE QuEuing AdMinisTRATivE TOOls
Before looking at how to deal with Message Queuing programmatically, this section looks at the adminis-
trative tools that are part of the Windows operating system to create and manage queues and messages.

nOTE The tools shown here are not used only with Message Queuing. The Message
Queuing features of these tools are available only if Message Queuing is installed.

c47.indd 1452 30-01-2014 20:53:23

Programming Message Queuing ❘ 1453

➤➤ The maximum size of all messages of a queue can be limited to avoid filling up the disk.
➤➤ When checked, the Authenticated option enables only authenticated users to write and read messages

to and from the queue.
➤➤ With the Privacy Level option, the content of the message can be encrypted. The possible values to

set are None, Optional, or Body. None means that no encrypted messages are accepted; Body accepts
only encrypted messages; and the default Optional value accepts both.

➤➤ Target journaling can be configured with the Journal settings. With this option, copies of the mes-
sages received are stored in the journal. The maximum size of disk space occupied can be configured
for the journal messages of a queue. When the maximum size is reached, target journaling ceases.

➤➤ With the configuration option Multicast, you can define a multicast IP address for the queue. The
same multicast IP address can be used with different nodes in the network so that a message sent to a
single address is received with multiple queues.

PROgRAMMing MEssAgE QuEuing
Now that you understand the architecture of Message Queuing, you can look into the programming. In the
next sections, you see how to create and control queues, and how to send and receive messages.

You also build a small course order application that consists of a sending and a receiving part.

Creating a Message Queue
You’ve already seen how to create message queues with the Computer Management utility. Message queues
can be created programmatically with the Create method of the MessageQueue class.

You can configure several options:

➤➤ The label is the name of the queue that can search for the queue.
➤➤ The type ID, which is by default, set to {00000000–0000–0000–0000–000000000000} to map

multiple queues to a single category or type. Report queues use a specific type ID, as discussed earlier.
A type ID is a universal unique ID (UUID) or GUID.

nOTE Custom type identifiers can be created with the uuidgen.exe or guidgen.exe
utilities. uuidgen.exe is a command-line utility that can create unique IDs, and guid-
gen.exe is a graphical version that creates UUIDs.

FiguRE 47-5 FiguRE 47-6

c47.indd 1453 30-01-2014 20:53:23

1454 ❘ CHAPTER 47 Message Queuing

With the Create method, the path of the new queue must be passed. The path consists of the host
name where the queue is located and the name of the queue. In the following example, the queue
MyNewPublicQueue is created on the local host. To create a private queue, the pathname must include
Private$; for example, \Private$\MyNewPrivateQueue.

After the Create method is invoked, properties of the queue can be changed. For example, using the Label
property, the label of the queue is set to Demo Queue. The sample program writes the path of the queue and
the format name to the console. The format name is automatically created with a UUID that can access the
queue without the name of the server (code file WorkingWithQueues/CreateMessageQueue/Program.cs):

using System;
using System.Messaging;

namespace Wrox.ProCSharp.Messaging
{
 class Program
 {
 static void Main()
 {
 using (var queue = MessageQueue.Create(@".\MyNewPublicQueue"))
 {
 queue.Label = "Demo Queue";
 Console.WriteLine("Queue created:");
 Console.WriteLine("Path: {0}", queue.Path);
 Console.WriteLine("FormatName: {0}", queue.FormatName);
 }
 }
 }
}

nOTE Administrative privileges are required to create a queue. Usually, you
cannot expect the user of your application to have administrative privileges.
That’s why queues usually are created with installation programs. In the section
Message Queue Installation, you see how message queues can be created with the
MessageQueueInstaller class.

Finding a Queue
You can use the pathname and the format name to identify queues. To find queues, you must differentiate
between public and private queues. Public queues are published in the Active Directory. For these queues, it
is not necessary to know the system where they are located. You can find private queues only if you know
the name of the system where the queue is located.

You can find public queues in the Active Directory domain by searching for the queue’s label, cat-
egory, or format name. You can also get all queues on a machine. The class MessageQueue has static
methods to search for queues: GetPublicQueuesByLabel, GetPublicQueuesByCategory, and
GetPublicQueuesByMachine. The method GetPublicQueues returns an array of all public queues in the
domain (code file WorkingWithQueues/FindQueues/Program.cs):

using System;
using System.Messaging;

namespace Wrox.ProCSharp.Messaging
{
 class Program
 {
 static void Main()
 {
 foreach (var queue in MessageQueue.GetPublicQueues())

c47.indd 1454 30-01-2014 20:53:23

Programming Message Queuing ❘ 1455

 {
 Console.WriteLine(queue.Path);
 }
 }
 }
}

The method GetPublicQueues is overloaded. One version enables passing an instance of the
MessageQueueCriteria class. With this class, you can search for queues created or modified before or after
a certain time, and you can also look for a category, label, or machine name.

You can search for private queues with the static method GetPrivateQueuesByMachine. This method
returns all private queues from a specific system.

Opening Known Queues
If the name of the queue is known, it is not necessary to search for it. Queues can be opened by using the
path or format name. They both can be set in the constructor of the MessageQueue class.

Pathname
The path specifies the machine name and the queue name to open the queue. This code example opens
the queue MyPublicQueue on the local host. To be sure that the queue exists, you use the static method
MessageQueue.Exists (code file WorkingWithQueues/OpenQueue/Program.cs):

using System;
using System.Messaging;

namespace Wrox.ProCSharp.Messaging
{
 class Program
 {
 static void Main()
 {
 if (MessageQueue.Exists(@".\MyPublicQueue"))
 {
 var queue = new MessageQueue(@".\MyPublicQueue");
 //...

 }
 else
 {
 Console.WriteLine("Queue .\MyPublicQueue not existing");
 }
 }
 }
}

Depending on the queue type, different identifiers are required when queues are opened. The following table
shows the syntax of the queue name for specific types.

QuEuE TyPE synTAx

Public queue MachineName\QueueName

Private queue MachineName\Private$\QueueName

Journal queue MachineName\QueueName\Journal$

Machine journal queue MachineName\Journal$

Machine dead-letter queue MachineName\DeadLetter$

Machine transactional dead-letter queue MachineName\XactDeadLetter$

c47.indd 1455 30-01-2014 20:53:23

1456 ❘ CHAPTER 47 Message Queuing

When you use the pathname to open public queues, it is necessary to pass the machine name. If the machine
name is not known, the format name can be used instead. The pathname for private queues can be used only
on the local system. The format name must be used to access private queues remotely.

Format Name
Instead of the pathname, you can use the format name to open a queue. The format name is used for search-
ing the queue in the Active Directory to get the host where the queue is located. In a disconnected environ-
ment where the queue cannot be reached at the time the message is sent, you must use the format name:

 var queue = new MessageQueue(
 @"FormatName:PUBLIC=09816AFF-3608-4c5d-B892-69754BA151FF");

The format name has some different uses. You can use it to open private queues and to specify a protocol
that should be used:

➤➤ To access a private queue, the string that must be passed to the constructor is
FormatName:PRIVATE=MachineGUID\QueueNumber. The queue number for private queues is gener-
ated when the queue is created. You can see the queue numbers in the <windows>\System32\msmq\
storage\lqs directory.

➤➤ With FormatName:DIRECT=Protocol:MachineAddress\QueueName, you can specify the protocol
that should be used to send the message. The HTTP protocol is supported since Message Queuing 3.0.

➤➤ FormatName:DIRECT=OS:MachineName\QueueName is another way to specify a queue using the
format name. This way you don’t need to specify the protocol but still can use the machine name with
the format name.

sending a Message
You can use the Send method of the MessageQueue class to send a message to the queue. The object passed
as an argument of the Send method is serialized to the associated queue. The Send method is overloaded
so that a label and a MessageQueueTransaction object can be passed. Transactional behavior of Message
Queuing is discussed in the section “Transactional Queues.”

The code example first checks if the queue exists. If it doesn’t exist, a queue is created. Then the queue is
opened and the message Sample Message is sent to the queue using the Send method.

The pathname specifies a dot (just like a period) for the server name, which is the local system. Pathnames
to private queues work only locally (code file WorkingWithQueues/SendMessage/Program.cs):

using System;
using System.Messaging;

namespace Wrox.ProCSharp.Messaging
{
 class Program
 {
 static void Main()
 {
 try
 {
 if (!MessageQueue.Exists(@".\Private$\MyPrivateQueue"))
 {
 MessageQueue.Create(@".\Private$\MyPrivateQueue");
 }
 var queue = new MessageQueue(@".\Private$\MyPrivateQueue");

 queue.Send("Sample Message", "Label");
 }

c47.indd 1456 30-01-2014 20:53:23

Programming Message Queuing ❘ 1457

By opening the message and selecting the Body tab (see Figure 47-8) of the dialog box, you can see that the
message was formatted using XML. Determining how the message is formatted is the function of the for-
matter that’s associated with the message queue.

Message Formatter
The format in which messages are transferred to the queue
depends on the formatter. The MessageQueue class has
a Formatter property through which a formatter can be
assigned. The default formatter, XmlMessageFormatter,
formats the message in XML syntax as shown in the
previous example.

A message formatter implements the interface
IMessageFormatter. Three message formatters are
available with the namespace System.Messaging:

➤➤ The XmlMessageFormatter is the default formatter.
It serializes objects using XML. See Chapter
34, “Manipulating XML,” for more on XML
formatting.

➤➤ With the BinaryMessageFormatter, messages are
serialized in a binary format. These messages are
shorter than the messages formatted using XML.

➤➤ The ActiveXMessageFormatter is a binary for-
matter so that messages can be read or written with
COM objects. Using this formatter, you can write a
message to the queue with a .NET class and to read
the message from the queue with a COM object or
vice versa.

The sample message shown in Figure 47-8 with XML is formatted with the BinaryMessageFormatter in
Figure 47-9.

 catch (MessageQueueException ex)
 {
 Console.WriteLine(ex.Message);
 }
 }
 }
}

Figure 47-7 shows the Computer Management admin tool where you can see the message that arrived in the
queue.

FiguRE 47-7

FiguRE 47-8

c47.indd 1457 30-01-2014 20:53:24

1458 ❘ CHAPTER 47 Message Queuing

Sending Complex Messages
Instead of passing strings, you can pass objects to the Send
method of the MessageQueue class. The type of the class
must fulfill some specific requirements, but they depend on
the formatter.

For the binary formatter, the class must be serializable
with the [Serializable] attribute. With the .NET run-
time serialization, all fields are serialized. (This includes
private fields.) Custom serialization can be defined by
implementing the interface ISerializable. You can read
more about the .NET runtime serialization in Chapter 24,
“Manipulating Files and the Registry.”

XML serialization takes place with the XML formatter.
With XML serialization, all public fields and properties
are serialized. The XML serialization can be influenced
by using attributes from the System.Xml.Serialization
namespace. You can read more about XML serialization in
Chapter 34.

Receiving Messages
To read messages, again, you can use the MessageQueue class. With the Receive method, a single message
is read and removed from the queue. If messages are sent with different priorities, the message with the high-
est priority is read. Reading messages with the same priority may mean that the first message sent is not the
first message read because the order of messages across the network is not guaranteed. For a guaranteed
order, you should use transactional message queues.

In the following example, a message is read from the private queue MyPrivateQueue. Previously, a simple
string was passed to the message. When you read a message using the XmlMessageFormatter, you must
pass the types of the objects that are read to the constructor of the formatter. In the example, the type
System.String is passed to the argument array of the XmlMessageFormatter constructor. This construc-
tor enables either a String array that contains the types as strings to be passed or a Type array.

The message is read with the Receive method, and then the message body is written to the console (code file
WorkingWithQueues/SendMessage/Program.cs):

using System;
using System.Messaging;

namespace Wrox.ProCSharp.Messaging
{
 class Program
 {
 static void Main()
 {
 var queue = new MessageQueue(@".\Private$\MyPrivateQueue");
 queue.Formatter = new XmlMessageFormatter(
 new string[] {"System.String"});

 Message message = queue.Receive();
 Console.WriteLine(message.Body);
 }
 }
}

FiguRE 47-9

c47.indd 1458 30-01-2014 20:53:24

Programming Message Queuing ❘ 1459

The Receive message behaves synchronously and waits until a message is in the queue if there is none.

Enumerating Messages
Instead of reading message by message with the Receive method, you can use an enumerator to walk
through all messages. The MessageQueue class implements the interface IEnumerable and thus can be used
with a foreach statement. Here, the messages are not removed from the queue, but you get just a peek at
the messages to get their content:

 var queue = new MessageQueue(@".\Private$\MyPrivateQueue");
 queue.Formatter = new XmlMessageFormatter(
 new string[] {"System.String"});

 foreach (Message message in queue)
 {
 Console.WriteLine(message.Body);
 }

Instead of using the IEnumerable interface, you can use the class MessageEnumerator.
MessageEnumerator implements the interface IEnumerator but has some more features. With the
IEnumerable interface, the messages are not removed from the queue. The method RemoveCurrent of the
MessageEnumerator removes the message from the current cursor position of the enumerator.

In the example, the MessageQueue method GetMessageEnumeratoraccesses the MessageEnumerator. The
MoveNext method takes a peek message by message with the MessageEnumerator. The MoveNext method
is overloaded to allow a time span as an argument. This is one of the big advantages when using this
enumerator. Here, the thread can wait until a message arrives in the queue, but only for the specified time
span. The Current property, which is defined by the IEnumerator interface, returns a reference to a message:

 var queue = new MessageQueue(@".\Private$\MyPrivateQueue");
 queue.Formatter = new XmlMessageFormatter(
 new string[] {"System.String"});

 using (MessageEnumerator messages = queue.GetMessageEnumerator())
 {
 while (messages.MoveNext(TimeSpan.FromMinutes(30)))
 {
 Message message = messages.Current;
 Console.WriteLine(message.Body);
 }
 }

Asynchronous Read
The Receive method of the MessageQueue class waits until a message from the queue can be read. To
avoid blocking the thread, you can specify a timeout in an overloaded version of the Receive method.
To read the message from the queue after the timeout, you must invoke Receiveagain. Instead of polling
for messages, the asynchronous method BeginReceive can be called. Before starting the asynchronous
read with BeginReceive, you should set the event ReceiveCompleted. The ReceiveCompleted event
requires a ReceiveCompletedEventHandler delegate that references the method invoked when a mes-
sage arrives in the queue and can be read. In the example, the method MessageArrived passes to the
ReceivedCompletedEventHandler delegate (code file WorkingWithQueues/ReceiveMessageAsync/
Program.cs):

 var queue = new MessageQueue(@".\Private$\MyPrivateQueue");
 queue.Formatter = new XmlMessageFormatter(
 new string[] {"System.String"});

c47.indd 1459 30-01-2014 20:53:24

1460 ❘ CHAPTER 47 Message Queuing

 queue.ReceiveCompleted += MessageArrived;
 queue.BeginReceive();
 // thread does not wait

The handler method MessageArrived requires two parameters. The first parameter is the origin of the
event, the MessageQueue. The second parameter is of type ReceiveCompletedEventArgs that contains the
message and the asynchronous result. In the example, the method EndReceive from the queue is invoked to
get the result of the asynchronous method, the message:

 public static void MessageArrived(object source, ReceiveCompletedEventArgs e)
 {
 MessageQueue queue = (MessageQueue)source;
 Message message = queue.EndReceive(e.AsyncResult);
 Console.WriteLine(message.Body);
 }

If the message should not be removed from the queue, the BeginPeek and EndPeek methods can be used
with asynchronous I/O.

COuRsE ORdER APPliCATiOn
To demonstrate the use of Message Queuing, in this section you create a sample solution to order courses.
The sample solution is made up of three assemblies:

➤➤ A component library (CourseOrder) that includes entity classes for the messages sent and received in
the queue

➤➤ A WPF application (CourseOrderSender) that sends messages to the message queue
➤➤ A WPF application (CourseOrderReceiver) that receives messages from the message queue

Course Order Class library
Both the sending and the receiving application need the order information. For this reason, the entity classes
are put into a separate assembly. The CourseOrder assembly includes three entity classes: CourseOrder,
Course, and Customer and a base class BindableBase. With the sample application, not all properties are
implemented as they would be in a real application, but just enough properties to show the concept.

In the file BindableBase.cs, the class BindableBase is defined. This class implements the interface
INotifyPropertyChanged and offers the method SetProperty that can be called from derived classes
within a property setter (code file CourseOrderApplication/CourseOrder/BindableBase.cs).

using System.Collections.Generic;
using System.ComponentModel;
using System.Runtime.CompilerServices;

namespace Wrox.ProCSharp.Messaging
{
 public abstract class BindableBase : INotifyPropertyChanged
 {
 protected void SetProperty<T>(ref T prop, T value,
 [CallerMemberName] string callerName = "")
 {
 if (!EqualityComparer<T>.Default.Equals(prop, value))
 {
 prop = value;
 OnPropertyChanged(callerName);
 }
 }

c47.indd 1460 30-01-2014 20:53:24

Course Order Application ❘ 1461

 protected virtual void OnPropertyChanged(string propertyName)
 {
 PropertyChangedEventHandler propertyChanged = PropertyChanged;
 if (propertyChanged != null)
 {
 propertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;
 }
}

In the file Course.cs, the class Course is defined. This class has just one property for the title of the course
(code file CourseOrderApplication/CourseOrder/Course.cs):

 public class Course : BindableBase
 {
 private string title;
 public string Title
 {
 get { return title; }
 set
 {
 SetProperty(ref title, value);
 }
 }
 }

The file Customer.cs includes the class Customer, which includes properties for the company and contact
names (code file CourseOrderApplication/CourseOrder/Customer.cs):

 public class Customer : BindableBase
 {
 private string company;
 public string Company
 {
 get { return company; }
 set
 {
 SetProperty(ref company, value);
 }
 }

 private string contact;
 public string Contact
 {
 get { return contact; }
 set
 {
 SetProperty(contact, value);
 }
 }
 }

The class CourseOrder in the file CourseOrder.cs maps a customer and a course inside an order and
defines whether the order is high priority. This class also defines the name of the queue that is set to a format
name of a public queue. The format name is used to send the message, even if the queue cannot be reached
currently. You can get the format name by using the Computer Management snap-in to read the ID of the
message queue. If you don’t have access to an Active Directory to create a public queue, you can easily

c47.indd 1461 30-01-2014 20:53:24

1462 ❘ CHAPTER 47 Message Queuing

change the code to use a private queue (code file CourseOrderApplication/CourseOrder/
CourseOrder.cs):

 public class CourseOrder : BindableBase
 {
 public const string CourseOrderQueueName =
 "FormatName:Public=D99CE5F3–4282–4a97–93EE-E9558B15EB13";

 private Customer customer;
 public Customer Customer
 {
 get { return customer; }
 set
 {
 SetProperty(ref customer, value);
 }
 }

 private Course course;
 public Course Course
 {
 get { return course; }
 set
 {
 SetProperty(ref course, value);
 }
 }
 }

Course Order Message sender
The second part of the solution is a Windows application called
CourseOrderSender. With this application, course orders are sent
to the message queue. The assemblies System.Messaging and
CourseOrder must be referenced.

The user interface of this application is shown in Figure 47-10. A
combo box enables selecting an available course, and some text
box controls enable entering some text by the user before submitting
the order.

The XAML code makes use of WPF data binding as shown
in the code snippet. The ComboBox is bound to the prop-
erty Courses that returns a list of available courses (code
file CourseOrderApplication/CourseOrderSender/
CourseOrderWindow.xaml).

 <CheckBox Grid.Row="3" Grid.Column="0"
 IsChecked="{Binding MessageConfiguration.HighPriority,
 Mode=OneWayToSource}">
 High Priority</CheckBox>
 <ComboBox ItemsSource="{Binding Courses}" Grid.Row="0" Grid.Column="1"
 SelectedItem="{Binding CourseOrder.Course.Title, Mode=OneWayToSource}" />
 <TextBox Text="{Binding CourseOrder.Customer.Company}" Grid.Row="1"
 Grid.Column="1" />
 <TextBox Text="{Binding CourseOrder.Customer.Contact}" Grid.Row="2"
 Grid.Column="1" />
 <Button Click="buttonSubmit_Click" Grid.Row="3" Grid.Column="1">
 Submit the Order</Button>

FiguRE 47-10

c47.indd 1462 30-01-2014 20:53:24

Course Order Application ❘ 1463

The properties bound from the code-behind file are shown in the following code snippet. The Courses
property just returns a string collection that contains available courses. The CourseOrder property
of type CourseOrder receives the input data from the user. The CourseOrder class was shown ear-
lier creating the course order class library (code file CourseOrderApplication/CourseOrderSender/
CourseOrderWindow.xaml.xs):

 public partial class CourseOrderWindow : Window
 {
 private readonly ObservableCollection<string> courseList =
 new ObservableCollection<string>();
 private readonly CourseOrder courseOrder = new CourseOrder();
 private readonly MessageConfiguration messageConfiguration =
 new MessageConfiguration();

 public CourseOrderWindow()
 {
 InitializeComponent();
 FillCourses();
 this.DataContext = this;
 }

 public IEnumerable<string> Courses
 {
 get
 {
 return courseList;
 }
 }

 private void FillCourses()
 {
 courseList.Add("Parallel .NET Programming");
 courseList.Add("Data Access with the ADO.NET Entity Framework");
 courseList.Add("Distributed Solutions with WCF");
 courseList.Add("Windows 8 Metro Apps with XAML and C#");
 }

 public CourseOrder CourseOrder
 {
 get
 {
 return courseOrder;
 }
 }
 public MessageConfiguration MessageConfiguration
 {
 get
 {
 return messageConfiguration;
 }
 }

When the Submit the Order button is clicked, the handler method buttonSubmit_Click is invoked. With
this method, a MessageQueue instance is created to open a message queue with a format name. With the
Send method, the courseOrder object is passed to write the message to the queue (code file CourseOrder
Application/CourseOrderSender/CourseOrderWindow.xaml.cs):

 private void buttonSubmit_Click(object sender, RoutedEventArgs e)
 {
 try

c47.indd 1463 30-01-2014 20:53:24

1464 ❘ CHAPTER 47 Message Queuing

 {
 using (var queue = new MessageQueue(CourseOrder.CourseOrderQueueName))
 {
 queue.Send(courseOrder, String.Format("Course Order {{{0}}}",
 courseOrder.Customer.Company));
 }

 MessageBox.Show("Course Order submitted", "Course Order",
 MessageBoxButton.OK, MessageBoxImage.Information);
 }
 catch (MessageQueueException ex)
 {
 MessageBox.Show(ex.Message, "Course Order Error",
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
 }

sending Priority and Recoverable Messages
Messages can be prioritized by setting the Priority property of the Message class. If messages are specially
configured, a Message object must be created where the body of the message is passed in the constructor.

In the example, the priority is set to MessagePriority.High or MessagePriority.Normal depending
on the selection of the user that manifests with the MessageConfiguration.HighPriority property that
is bound to a check box setting. MessagePriority is an enumeration that enables you to set values from
Lowest (0) to Highest (7). The default value, Normal, has a priority value of 3.

To make the message recoverable, the property Recoverable is set to true:

 private void buttonSubmit_Click(object sender, RoutedEventArgs e)
 {
 try
 {
 using (var queue = new MessageQueue(CourseOrder.CourseOrderQueueName))
 using (var message = new Message(courseOrder)
 {
 Recoverable = true,
 Priority = MessageConfiguration.HighPriority == true ?
 MessagePriority.High : MessagePriority.Normal
 })
 {
 queue.Send(message, String.Format("Course Order {{{0}}}",
 courseOrder.Customer.Company));
 }

 MessageBox.Show("Course Order submitted", "Course Order",
 MessageBoxButton.OK, MessageBoxImage.Information);
 }
 catch (MessageQueueException ex)
 {
 MessageBox.Show(ex.Message, "Course Order Error",
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
 }

By running the application, you can add course orders to the message queue (see Figure 47-11).

c47.indd 1464 30-01-2014 20:53:25

Course Order Application ❘ 1465

Course Order Message Receiver
The design view of the Course Order receiving application that reads messages from the queue is shown in
Figure 47-12. This application displays labels of every order in the listOrders list box. When an order is
selected, the content of the order displays with the controls on the right side of the application.

As with the previous WPF application, the receiving application makes use of data binding as well. Here,
the ListBox is bound to the OrdersList property that returns a list of all orders. A Grid that contains the
controls for the selected order from the list box is bound to the property SelectedCourseInfo. The prop-
erty SelectedCourseInfo is of type CourseOrderInfo. This class is created for defining the information
needed by the child controls of this grid. CourseOrderInfo implements the properties Course, Company,
Contact… (code file CourseOrderApplication/CourseOrderReceiver/CourseOrderReceiverWindow
.xaml):

 <Grid Grid.Column="0">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="4*" />
 </Grid.RowDefinitions>
 <Label Grid.Row="0" Content="Orders"/>
 <ListBox x:Name="listOrders" Grid.Row="1" ItemsSource="{Binding OrdersList}"
 SelectionChanged="listOrders_SelectionChanged" />
 </Grid>
 <GridSplitter Grid.Column="1" HorizontalAlignment="Left" Width="3" />
 <Grid Grid.Column="1" IsEnabled="True"
 DataContext="{Binding SelectedCourseInfo}" >
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Label Grid.Row="0" Grid.Column="0" Content="Course:"/>
 <Label Grid.Row="1" Grid.Column="0" Content="Company:"/>
 <Label Grid.Row="2" Grid.Column="0" Content="Contact:"/>
 <TextBlock Text="{Binding Course}" Grid.Row="0" Grid.Column="1" />
 <TextBlock Text="{Binding Company}" Grid.Row="1" Grid.Column="1" />
 <TextBlock Text="{Binding Contact}" Grid.Row="2" Grid.Column="1" />

FiguRE 47-11
FiguRE 47-12

c47.indd 1465 30-01-2014 20:53:25

1466 ❘ CHAPTER 47 Message Queuing

 <TextBlock Grid.Row="3" Grid.Column="1" Text="PRIORITY ORDER"
 Visibility="{Binding HighPriority}"/>
 <Button Grid.Row="4" Grid.Column="1" Content="Process Order"
 IsEnabled="{Binding EnableProcessing}"
 Click="buttonProcessOrder_Click"/>

The code for the class CourseOrderInfo is shown in the next code snippet. This class derives from the
base class BindableBase shown earlier for an implementation of the interface INotifyPropertyChanged
and defines all the properties needed for data binding from XAML (code file CourseOrderApplication/
CourseOrderReceiver/CourseOrderInfo.cs):

using System.Windows;

namespace Wrox.ProCSharp.Messaging
{
 public class CourseOrderInfo : BindableBase
 {
 public CourseOrderInfo()
 {
 Clear();
 }

 private MessageInfo messageInfo;
 public MessageInfo MessageInfo
 {
 get { return messageInfo; }
 set
 {
 SetProperty(ref messageInfo, value);
 }
 }

 private string course;
 public string Course
 {
 get { return course; }
 set
 {
 SetProperty(ref course, value);
 }
 }

 private string company;
 public string Company
 {
 get { return company; }
 set
 {
 SetProperty(ref company, value);
 }
 }

 private string contact;
 public string Contact
 {
 get { return contact; }
 set
 {
 SetProperty(ref contact, value);
 }
 }

 private bool enableProcessing;

c47.indd 1466 30-01-2014 20:53:25

Course Order Application ❘ 1467

 public bool EnableProcessing
 {
 get
 {
 return enableProcessing;
 }
 set
 {
 SetProperty(ref enableProcessing, value);
 }
 }

 private Visibility highPriority;
 public Visibility HighPriority
 {
 get
 {
 return highPriority;
 }
 set
 {
 SetProperty(ref highPriority, value);
 }
 }

 public void Clear()
 {
 Course = string.Empty;
 Company = string.Empty;
 Contact = string.Empty;
 EnableProcessing = false;
 HighPriority = Visibility.Hidden;
 }
 }
}

In the constructor of the Window class CourseOrderReceiverWindow, the MessageQueue object is cre-
ated that references the same queue that was used with the sending application. For reading messages, the
XmlMessageFormatter with the types that are read is associated with the queue using the Formatter
property.

To display the available messages in the list, a new task is created that peeks at messages in the background.
The task’s main method is PeekMessages (code file CourseOrderApplication/CourseOrderReceiver/
CourseOrderReceiverWindow.xaml.cs):

using System;
using System.Collections.ObjectModel;
using System.Messaging;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Threading;

namespace Wrox.ProCSharp.Messaging
{
 public partial class CourseOrderReceiverWindow : Window
 {
 private MessageQueue ordersQueue;
 private ObservableCollection<MessageInfo> ordersList =
 new ObservableCollection<MessageInfo>();

c47.indd 1467 30-01-2014 20:53:25

1468 ❘ CHAPTER 47 Message Queuing

The task’s main method, PeekMessages, uses the enumerator of the message queue to display all messages.
Within the while loop, the messagesEnumerator checks to see if there is a new message in the queue. If
there is no message in the queue, the task waits 3 hours for the next message to arrive before it exits.

 private void PeekMessages()
 {
 try
 {
 using (MessageEnumerator messagesEnumerator =
 ordersQueue.GetMessageEnumerator2())
 {
 while (messagesEnumerator.MoveNext(TimeSpan.FromHours(3)))
 {
 var messageInfo = new MessageInfo
 {
 Id = messagesEnumerator.Current.Id,

 private object syncOrdersList = new object();

 public ObservableCollection<MessageInfo> OrdersList
 {
 get
 {
 return ordersList;
 }
 }

 protected override void OnClosed(EventArgs e)
 {
 base.OnClosed(e);
 if (ordersQueue != null)
 ordersQueue.Dispose();
 }

 public CourseOrderReceiverWindow()
 {
 InitializeComponent();
 this.DataContext = this;
 BindingOperations.EnableCollectionSynchronization(ordersList,
 syncOrdersList);

 ordersQueue = new MessageQueue(CourseOrder.CourseOrderQueueName);

 ordersQueue.Formatter = new XmlMessageFormatter(
 new Type[]
 {
 typeof(CourseOrder),
 typeof(Customer),
 typeof(Course)
 });

 // start the task that fills the ListBox with orders
 Task.Factory.StartNew(PeekMessages);
 }

nOTE You can read more about tasks in Chapter 21.

c47.indd 1468 30-01-2014 20:53:25

Course Order Application ❘ 1469

 Label = messagesEnumerator.Current.Label
 };

 ordersList.Add(messageInfo);
 }
 }
 MessageBox.Show("No orders in the last 3 hours. Exiting thread",
 "Course Order Receiver", MessageBoxButton.OK,
 MessageBoxImage.Information);
 }
 catch (MessageQueueException ex)
 {
 MessageBox.Show(ex.Message, "Error", MessageBoxButton.OK,
 MessageBoxImage.Error);
 }
 }

The ListBox control contains elements of the MessageInfo class. This class is used to display the labels
of the messages in the list box but to keep the ID of the message hidden. The ID of the message can be
used to read the message at a later time (code file CourseOrderApplication/CourseOrderReceiver/
MessageInfo.cs):

 private class MessageInfo
 {
 public string Label { get; set; }
 public string Id { get; set; }

 public override string ToString()
 {
 return Label;
 }
 }

The ListBox control has the SelectedIndexChanged event associated with the method listOrders_
SelectionChanged. This method gets the LabelIdMapping object from the current selection and uses
the ID to peek at the message once more with the PeekById method. Then the content of the message
displays in the TextBox control. Because by default the priority of the message is not read, the property
MessageReadPropertyFilter must be set to receive the Priority (code file CourseOrderApplication/
CourseOrderReceiver/CourseOrderReceiverWindow.xaml.cs):

 private void listOrders_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 var messageInfo = (sender as ListBox).SelectedItem as MessageInfo;
 if (messageInfo == null)
 return;

 ordersQueue.MessageReadPropertyFilter.Priority = true;
 Message message = ordersQueue.PeekById(messageInfo.Id);

 var order = message.Body as CourseOrder;
 if (order != null)
 {
 selectedCourseInfo.MessageInfo = messageInfo;
 selectedCourseInfo.Course = order.Course.Title;
 selectedCourseInfo.Company = order.Customer.Company;
 selectedCourseInfo.Contact = order.Customer.Contact;
 selectedCourseInfo.EnableProcessing = true;

 if (message.Priority > MessagePriority.Normal)

c47.indd 1469 30-01-2014 20:53:25

1470 ❘ CHAPTER 47 Message Queuing

 {
 selectedCourseInfo.HighPriority = Visibility.Visible;
 }
 else
 {
 selectedCourseInfo.HighPriority = Visibility.Hidden;
 }
 }
 else
 {
 MessageBox.Show("The selected item is not a course order",
 "Course Order Receiver", MessageBoxButton.OK,
 MessageBoxImage.Warning);
 }
 }

When the Process Order button is clicked, the handler method OnProcessOrder is invoked. Here again, the
currently selected message from the list box is referenced, and the message is removed from the queue by
calling the method ReceiveById:

 private void buttonProcessOrder_Click(object sender, RoutedEventArgs e)
 {
 Message message = ordersQueue.ReceiveById(
 SelectedCourseInfo.MessageInfo.Id);

 ordersList.Remove(SelectedCourseInfo.MessageInfo);

 listOrders.SelectedIndex = -1;
 selectedCourseInfo.Clear();

 MessageBox.Show("Course order processed", "Course Order Receiver",
 MessageBoxButton.OK, MessageBoxImage.Information);
 }

Figure 47-13 shows the running receiving application that lists four orders in the queue, and one order is
currently selected.

RECEiving REsulTs
With the current version of the sample application, the
sending application never knows if the message is ever
dealt with. To get results from the receiver, you can
use acknowledgment queues or response queues.

Acknowledgment Queues
With an acknowledgment queue, the sending applica-
tion can get information about the status of the mes-
sage. With acknowledgments, you can define if you
would like to receive an answer, if everything went
okay, or if something went wrong. For example, acknowledgments can be sent when the message reaches
the destination queue or when the message is read, or if it didn’t reach the destination queue or was not read
before a timeout elapsed.

In the example, the AdministrationQueue of the Message class is set to the CourseOrderAck queue, which
must be created similar to a normal queue. This queue is just used the other way around: The original sender
receives acknowledgments. The AcknowledgeType property is set to AcknowledgeTypes.FullReceive to
get an acknowledgment when the message is read:

FiguRE 47-13

c47.indd 1470 30-01-2014 20:53:25

Transactional Queues ❘ 1471

 var message = new Message(order);

 message.AdministrationQueue = new MessageQueue(@".\CourseOrderAck");
 message.AcknowledgeType = AcknowledgeTypes.FullReceive;

 queue.Send(message, String.Format("Course Order {{0}}",
 order.Customer.Company);

 string id = message.Id;

The correlation ID determines what acknowledgment message belongs to which message sent. Every mes-
sage sent has an ID, and the acknowledgment message sent in response to that message holds the ID of the
originating message as its correlation ID. The messages from the acknowledgment queue can be read using
MessageQueue.ReceiveByCorrelationId to receive the associated acknowledgment.

Instead of using acknowledgments, the dead-letter queue can be used for messages that didn’t arrive at their
destination. With the UseDeadLetterQueue property of the Message class set to true, the message is cop-
ied to the dead-letter queue if it didn’t arrive at the target queue before the timeout was reached.

Timeouts can be set with the Message properties TimeToReachQueue and TimeToBeReceived.

Response Queues
If more information than an acknowledgment is needed from the receiving application, a response queue can
be used. A response queue is like a normal queue, but the original sender uses the queue as a receiver, and
the original receiver uses the response queue as a sender.

The sender must assign the response queue with the ResponseQueue property of the Message class. The
sample code here shows how the receiver uses the response queue to return a response message. With the
response message responseMessage, the property CorrelationId is set to the ID of the original message.
This way the client application knows to which message the answer belongs. This is similar to acknowl-
edgment queues. The response message is sent with the Send method of the MessageQueue object that is
returned from the ResponseQueue property:

 public void ReceiveMessage(Message message)
 {
 var responseMessage = new Message("response")
 {
 CorrelationId = message.Id
 }

 message.ResponseQueue.Send(responseMessage);
 }

TRAnsACTiOnAl QuEuEs
With recoverable messages, it is not guaranteed that the messages arrives in order and just once. Failures on
the network can cause messages to arrive multiple times; this happens also if both the sender and receiver
have multiple network protocols installed that are used by Message Queuing.

Transactional queues can be used when these guarantees are required:

➤➤ Messages arrive in the same order they have been sent.
➤➤ Messages arrive only once.

With transactional queues, a single transaction doesn’t span the sending and receiving of messages. The
nature of Message Queuing is that the time between send and receive can be quite long. In contrast, trans-
actions should be short. With Message Queuing, the first transaction is used to send the message into the

c47.indd 1471 30-01-2014 20:53:26

1472 ❘ CHAPTER 47 Message Queuing

queue, the second transaction forwards the message on the network, and the third transaction is used to
receive the messages.

The next example shows how to create a transactional message queue and how to send messages using a
transaction.

A transactional message queue is created by passing true with the second parameter of the MessageQueue.
Create method.

If you want to write multiple messages to a queue within a single transaction, you must instantiate a
MessageQueueTransaction object and invoke the Begin method. When you finish sending all messages
that belong to the transaction, the Commit method of the MessageQueueTransaction object must be called.
To cancel a transaction (and have no messages written to the queue), the Abort method must be called, as
you can see within the catch block:

using System;
using System.Messaging;

namespace Wrox.ProCSharp.Messaging
{
 class Program
 {
 static void Main()
 {
 if (!MessageQueue.Exists(@".\MyTransactionalQueue"))
 {
 MessageQueue.Create(@".\MyTransactionalQueue", true);
 }

 var queue = new MessageQueue(@".\MyTransactionalQueue");
 var transaction = new MessageQueueTransaction();

 try
 {
 transaction.Begin();
 queue.Send("a", transaction);
 queue.Send("b", transaction);
 queue.Send("c", transaction);
 transaction.Commit();
 }
 catch
 {
 transaction.Abort();
 }
 }
 }
}

MEssAgE QuEuing wiTH wCF
Chapter 43, “Windows Communication Foundation,” covers the architecture and core features of WCF.
With WCF, you can configure a Message Queuing binding that makes use of the Windows Message
Queuing architecture. With this, WCF offers an abstraction layer to Message Queuing. Figure 47-14
explains the architecture using a simple picture. The client application invokes a method of a WCF proxy to
send a message to the queue. The message is created by the proxy. For the client developer, there’s no need to
know that a message is sent to the queue. The client developer just invokes a method of the proxy. The proxy
abstracts deals with the classes from the System.Messaging namespace and sends a message to the queue.
The MSMQ listener channel on the service side reads messages from the queue, converts them to method
calls, and invokes the method calls with the service.

c47.indd 1472 30-01-2014 20:53:26

Message Queuing with WCF ❘ 1473

Next, the Course Ordering application converts to
make use of Message Queuing from a WCF view-
point. With this solution, the three earlier projects
are modified, and one more assembly is added that
includes the contract of the WCF service:

➤➤ The component library (CourseOrder)
includes entity classes for the messages that
are sent across the wire. These entity
classes are modified to fulfill the data
contract for serialization with WCF.

➤➤ A new library is added
(CourseOrderService) that defines the
contract offered by the service.

➤➤ The WPF sender application
(CourseOrderSender) is modified to not send messages but instead invoke methods of a WCF proxy.

➤➤ The WPF receiving application (CourseOrderReceiver) is modified to make use of the WCF service
that implements the contract.

Entity Classes with a data Contract
In the library CourseOrder, the classes Course, Customer, and CourseOrder are modified to apply the data
contract with the attributes [DataContract] and [DataMember]. For using these attributes, you must
reference the assembly System.Runtime.Serialization and import the namespace System.Runtime
.Serialization (code file CourseOrderApplicationWCF/CourseOrder/Course.cs):

using System.Runtime.Serialization;

namespace Wrox.ProCSharp.Messaging
{
 [DataContract]
 public class Course
 {
 [DataMember]
 public string Title { get; set; }
 }
}

The Customer class requires the data contract attributes as well (code file CourseOrderApplicationWCF/
CourseOrder/Customer.cs):

 [DataContract]
 public class Customer
 {
 [DataMember]
 public string Company { get; set; }

 [DataMember]
 public string Contact { get; set; }
 }

With the class CourseOrder, not only the data contract attributes are added, but an override of
the ToString method as well to have a default string representation of these objects (code file
CourseOrderApplicationWCF/CourseOrder/CourseOrder.cs):

 [DataContract]
 public class CourseOrder

Sender

Proxy
MSMQ
Channel
Listener

Service
(Receiver)

FiguRE 47-14

c47.indd 1473 30-01-2014 20:53:27

1474 ❘ CHAPTER 47 Message Queuing

wCF Message Receiver Application
The WPF application CourseOrderReceiver is now modified to implement the WCF service and receive
the messages. References to the assembly System.ServiceModel and the WCF contract assembly
CourseOrderServiceContract are required.

The class CourseOrderService implements the interface ICourseOrderService. With the implementation,
the event CourseOrderAdded is fired. The WPF application registers to this event to receive CourseOrder
objects.

Because WPF controls are bound to a single thread, the property UseSynchronizationContext is
set with the [ServiceBehavior] attribute. This is a feature of the WCF runtime to pass the method

 {
 [DataMember]
 public Customer Customer { get; set; }

 [DataMember]
 public Course Course { get; set; }

 public override string ToString()
 {
 return String.Format("Course Order {{{0}}}", Customer.Company);
 }
 }

wCF service Contract
To offer the service with a WCF service contract, add a WCF service library with the name
CourseOrderServiceContract. The contract is defined by the interface ICourseOrderService.
This contract needs the attribute [ServiceContract]. If you want to restrict using this interface only
with message queues, you can apply the [DeliveryRequirements] attribute and assign the property
QueuedDeliveryRequirements. Possible values of the enumeration QueuedDeliveryRequirementsMode
are Required, Allowed, and NotAllowed. The method AddCourseOrder is offered by the service.
Methods used by Message Queuing can have only input parameters. Because the sender and receiver
can run independent of each other, the sender cannot expect an immediate result. With the attribute
[OperationContract], the IsOneWay property is set. The caller of this operation does not wait for an
answer from the service (code file CourseOrderApplicationWCF/CourseOrderServiceContract/
ICourseOrderService.cs):

using System.ServiceModel;

namespace Wrox.ProCSharp.Messaging
{
 [ServiceContract]
 [DeliveryRequirements(
 QueuedDeliveryRequirements=QueuedDeliveryRequirementsMode.Required)]
 public interface ICourseOrderService
 {
 [OperationContract(IsOneWay = true)]
 void AddCourseOrder(CourseOrder courseOrder);
 }
}

nOTE You can use acknowledgment and response queues to get answers to the client.

c47.indd 1474 30-01-2014 20:53:27

Message Queuing with WCF ❘ 1475

With the constructor of the class CourseReceiverWindow, a ServiceHost object is instantiated and opened
to start the listener. The binding of the listener is done in the application configuration file.

In the constructor, the event CourseOrderAdded of the CourseOrderService is subscribed. Because the
only thing that happens here is adding the received CourseOrder object to a collection, a simple Lambda
expression is used.

call invocation to the thread defined by the synchronization context of the WPF application (code file
CourseOrderApplicationWCF/CourseOrderReceiver/CourseOrderService.cs):

using System.ServiceModel;

namespace Wrox.ProCSharp.Messaging
{
 [ServiceBehavior(UseSynchronizationContext=true)]

 public class CourseOrderService: ICourseOrderService
 {
 public static event EventHandler<CourseOrderEventArgs>
 CourseOrderAdded;

 public void AddCourseOrder(CourseOrder courseOrder)
 {
 var courseOrderAdded = CourseOrderAdded;
 if (courseOrderAdded != null)
 {
 courseOrderAdded(this, new CourseOrderEventArgs(courseOrder));
 }
 }
 }

 public class CourseOrderEventArgs : EventArgs
 {
 public CourseOrderEventArgs(CourseOrder courseOrder)
 {
 this.CourseOrder = courseOrder;
 }
 public CourseOrder CourseOrder { get; private set; }
 }
}

nOTE Chapter 21, explains the synchronization context.

nOTE Lambda expressions are explained in Chapter 8, “Delegates, Lambdas, and
Events.”

The collection class used here is ObservableCollection<T> from the namespace System.Collections
.ObjectModel. This collection class implements the interface INotifyCollectionChanged, and thus
the WPF controls bound to the collection are informed about dynamic changes to the list (code file
CourseOrderApplicationWCF/CourseOrderReceiver/CourseOrderReceiverWindow.xaml.cs):

using System;
using System.Collections.ObjectModel;
using System.ServiceModel;
using System.Windows;

c47.indd 1475 30-01-2014 20:53:27

1476 ❘ CHAPTER 47 Message Queuing

namespace Wrox.ProCSharp.Messaging
{
 public partial class CourseOrderReceiverWindow : Window
 {
 private ObservableCollection<CourseOrder> courseOrders =
 new ObservableCollection<CourseOrder>();

 public CourseOrderReceiverWindow()
 {
 InitializeComponent();
 this.DataContext = courseOrders;
 CourseOrderService.CourseOrderAdded += (sender, e) =>
 {
 courseOrders.Add(e.CourseOrder);
 buttonProcessOrder.IsEnabled = true;
 };

 var host = new ServiceHost(typeof(CourseOrderService));
 try
 {
 host.Open();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

The data binding of the WPF elements in the XAML code is now changed to use the new collection.
The ListBox is bound to the data context, and the single-item controls are bound to properties of the
current item of the data context (code file CourseOrderApplicationWCF/CourseOrderReceiver/
CourseOrderReceiverWindow.xaml):

 <ListBox x:Name="listOrders" Grid.Row="1" ItemsSource="{Binding}"
 IsSynchronizedWithCurrentItem="True" />
 <!-- ... -->

 <TextBlock Text="{Binding Course.Title}" Grid.Row="0" Grid.Column="1" />
 <TextBlock Text="{Binding Customer.Company}" Grid.Row="1" Grid.Column="1" />
 <TextBlock Text="{Binding Customer.Contact}" Grid.Row="2" Grid.Column="1" />

The application configuration file defines the netMsmqBinding. For reliable messaging, transactional queues
are required. To receive and send messages to nontransactional queues, the exactlyOnce property must be
set to false (config file CourseOrderApplicationWCF/CourseOrderReceiver/app.config):

<?xml version="1.0"?>
<configuration>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5"/>
 </startup>
 <system.serviceModel>
 <bindings>
 <netMsmqBinding>
 <binding name="NonTransactionalQueueBinding" exactlyOnce="false">
 <security mode="None" />
 </binding>
 </netMsmqBinding>
 </bindings>
 <services>
 <service name="Wrox.ProCSharp.Messaging.CourseOrderService">
 <endpoint address="net.msmq://localhost/private/courseorder"
 binding="netMsmqBinding"

c47.indd 1476 30-01-2014 20:53:28

Message Queuing with WCF ❘ 1477

 bindingConfiguration="NonTransactionalQueueBinding"
 name="OrderQueueEP"
 contract="Wrox.ProCSharp.Messaging.ICourseOrderService" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

The Click event handler of the buttonProcessOrder button removes the selected course order
from the collection class (code file CourseOrderApplicationWCF/CourseOrderReceiver/
CourseOrderReceiverWindow.xaml.cs):

 private void buttonProcessOrder_Click(object sender, RoutedEventArgs e)
 {
 var courseOrder = listOrders.SelectedItem as CourseOrder;
 courseOrders.Remove(courseOrder);
 listOrders.SelectedIndex = -1;
 buttonProcessOrder.IsEnabled = false;

 MessageBox.Show("Course order processed", "Course Order Receiver",
 MessageBoxButton.OK, MessageBoxImage.Information);

 }

wCF Message sender Application
The sending application is modified to make use of a WCF proxy class. For the contract of the service,
the assembly CourseOrderServiceContract is referenced, and the assembly System.ServiceModel is
required for use of the WCF classes.

In the Click event handler of the buttonSubmit control, the ChannelFactory class returns a
proxy. The proxy sends a message to the queue by invoking the method AddCourseOrder (code file
CourseOrderApplicationWCF/CourseOrderSender/CourseOrderWindow.xaml.cs):

 private void buttonSubmit_Click(object sender, RoutedEventArgs e)
 {
 try
 {
 var factory = new ChannelFactory<ICourseOrderService>("queueEndpoint");
 ICourseOrderService proxy = factory.CreateChannel();
 proxy.AddCourseOrder(CourseOrder);
 factory.Close();

 MessageBox.Show("Course Order submitted", "Course Order",
 MessageBoxButton.OK, MessageBoxImage.Information);
 }
 catch (MessageQueueException ex)
 {
 MessageBox.Show(ex.Message, "Course Order Error",
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
 }

The application configuration file defines the client part of the WCF connection. Again, the netMsmqBind-
ing is used (config file CourseOrderApplicationWCF/CourseOrderSender/app.config):

<?xml version="1.0"?>
<configuration>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5"/>
 </startup>

c47.indd 1477 30-01-2014 20:53:28

1478 ❘ CHAPTER 47 Message Queuing

 <system.serviceModel>
 <bindings>
 <netMsmqBinding>
 <binding name="nonTransactionalQueueBinding" exactlyOnce="false">
 <security mode="None" />
 </binding>
 </netMsmqBinding>
 </bindings>
 <client>
 <endpoint address="net.msmq://localhost/private/courseorder"
 binding="netMsmqBinding"
 bindingConfiguration="nonTransactionalQueueBinding"
 contract="Wrox.ProCSharp.Messaging.ICourseOrderService"
 name="queueEndpoint"
 kind="" endpointConfiguration="" />
 </client>
 </system.serviceModel>
</configuration>

When you start the application now, it works in a similar way as before. There is no longer a need to use
classes of the System.Messaging namespace to send and receive messages. Instead, you write the applica-
tion in a similar way as using TCP or HTTP channels with WCF.

However, to create message queues and to purge messages, you still need the MessageQueue class. WCF is
only an abstraction to send and receive messages.

nOTE If you need to have a System.Messaging application to communicate with a
WCF application, you can do so by using the msmqIntegrationBinding instead of the
netMsmqBinding. This binding uses the message format used with COM and System
.Messaging.

MEssAgE QuEuE insTAllATiOn
Message queues can be created with the MessageQueue.Create method. However, the user running an
application usually doesn’t have the administrative privileges required to create message queues.

Usually, message queues are created with an installation program, using the class MessageQueueInstaller.
If an installer class is part of an application, the command-line utility installutil.exe (or a Windows
Installation Package) invokes the Install method of the installer.

Visual Studio has special support for using the MessageQueueInstaller with Windows Forms applica-
tions. If a MessageQueue component is dropped from the toolbox onto the form, the smart tag of the com-
ponent enables you to add an installer with the menu entry Add Installer. The MessageQueueInstaller
object can be configured with the properties editor to define transactional queues, journal queues, the type
of the formatter, the base priority, and so on.

suMMARy
In this chapter, you’ve seen how to use Message Queuing. Message Queuing is an important technology
that offers not only asynchronous but also disconnected communication. The sender and receiver can run at
different times, which makes Message Queuing an option for smart clients and also useful to distribute the
load on the server over time.

The most important classes with Message Queuing are Message and MessageQueue. The MessageQueue class
enables sending, receiving, and peeking at messages, and the Message class defines the content that is sent.

WCF offers an abstraction to Message Queuing. You can use the concepts offered by WCF to send messages
by calling methods of a proxy and to receive messages by implementing a service.

c47.indd 1478 30-01-2014 20:53:28

1479

Index

Symbols
* (asterisk)

arithmetic operator, 152
regular expressions, 224

@ (at sign)
Razor syntax, 1305–1306
string literals, 37

^ (caret)
logical operator, 152
regular expressions, 224

: (colon)
format strings, 216
labels, 43

// (comments), 25
== (equal sign-double)

comparison operator, 152, 163
logical operator, 56, 147

- (minus sign)
arithmetic operator, 152
delegate concatenation

operator, 152
. (period)

member access operator, 152
namespaces, 45
regular expressions, 224

| (pipe sign)
bitwise flags, 682
logical operator, 152

+ (plus sign)
arithmetic operator, 152
delegate concatenation

operator, 152
regular expressions, 224
string concatenation operator,

152
~ (tilde)

destructors, 354
logical operator, 152

, (comma), format strings, 216
<%=, ASPX, 1260–1261
<$#, ASPX data binding,

1262–1263
<%$, ASPX expressions,

1261–1262
%=, assignment operator, 152
&=, assignment operator, 152
*=, assignment operator, 152
+=, assignment operator, 152
-=, assignment operator, 152
/=, assignment operator, 152
^=, assignment operator, 152
|=, assignment operator, 152
<<>>, bit shifting operator, 152
\”, char escape sequence, 35
\’, char escape sequence, 35
!=, comparison operator, 52
<=, comparison operator, 152
<>, comparison operator, 152
=, comparison operator, 152
?:, conditional operator, 152, 154
/*, multiline comments, 25, 52
-, pointer member access operator,

364–365
() (parentheses)

cast operator, 152
Razor syntax, 1306

% %, ASPX, 1246
statements, 1240

= , assignment operator, 152
& (ampersand), logical operator,

152
&& (ampersand-double), logical

operator, 152
:: (colon-double), namespace

aliases, 47, 152
$ (dollar sign), regular expressions,

224

= (equal sign), assignment
 operator, 152

! (exclamation mark), logical
operator, 56, 152

-- (minus sign-double), decrement
operator, 152

% (percent sign), arithmetic
operator, 152

|| (pipe sign-double), logical
operator, 56, 152

++ (plus sign-double), increment
operator, 152

; (semicolon), statements, 25
{ }(curly brackets)

if, 37–38
statements, 25
strings, 50

3-D, WPF, 1098–1101
camera, 1100
lights, 1100–1101
model, 1099–1100
rotation, 1101

A
absoluteExpiration, 1242
abstract

classes, 103
modifiers, 100

abstract classes, implementation
inheritance, 94

abstract functions, implementation
inheritance, 94

AccelerationRatio, 1091
accelerometer, 1216, 1218
Accept, 1386
AcceptAllChanges(), 975
AcceptSocket, 788

bindex.indd 1479 30-01-2014 19:49:26

1480

AllowDBNull – ASP.NETaccess control entries – allowAnonymous

access control entries (ACEs),
621, 698

access control list (ACL)
directories, 696–697
files, 695–696, 698–699
security, 621–623

AccessControlType, 622
accessors, 73–74, 525–526
Account, 791
AccountController, 1313
Accumulate(), 126
ACEs. See access control entries
acknowledgment message, 1451
acknowledgment queues, 1470–1471
ACL. See access control list
Action, 557, 1354
action, 1299
actions

ASP.NET MVC filters,
1331–1332

Web API, HTTP methods, 1389
ActiveDirectorySecurity, 621
activeDocumentReader, 1166
ActiveX Data Objects (ADO), 920
ActiveXMessageFormatter, 1457
activities, WF

custom, 1413–1416
custom composite, 1416–1419
Delay, 1412
designers, 1414–1416
Else, 1410–1411
IF, 1410–1411
Pick, 1412
validation, 1414
XAML, 1415–1416

ActivityID, 532, 533
ActivityTResult, 1409
Add

Fire_Completed, 648
Items, 1128
MEF, 867, 880
sorted strings, 252
SpeedExport, 882
vtable, 634

Add(), 108
Add as Link, Solution Explorer, 518
AddAccessRule, 698
AddColorAsync, 275
AddDocument, 243

AddDocumentToPriorityNode, 249
Added, 942
addEventListener, 900
AddHandler, 858
AddInDirectory, 869
AddLast(), 110, 113
AddListener, 207
AddMenuCardPage,

1185–1186, 1203
/addmodule, 49
AddObject, 1396
AddObject(), 974
AddOrIncrementValue, 273
AddPackageAsync, 484
AddQueryOption, 1394
AddRange, 234
AddRef, 633
Address filter, WCF, 1379
AddressList, 757
AddressPrefix filter, WCF, 1379
AddSupport, 467–468
AddToAmount, 87–88
AddToCategories, 1396
AddToMenus, 1396
AddToOutput, 384
AddUserToRole, 1237
AddValidationError, 1414
administration queues, 1452
ADO. See ActiveX Data Objects
ADO.NET, 917–961

asynchronous data access,
936–938

await, 936–938
block statements, 925–926
commands, 927–933
connection strings, 923–924
data reader, 934–936
database

classes, 921–922
connections, 922–927

DataColumn, 939–940
DataRow, 940–942
DataSet, 938–947, 953–958
DataTable, 938–939
namespaces, 920
naming conventions, 962–963
ObjectContext, 310
primary key, 960–961
schema, 938, 942–944

shared classes, 921
stored procedures, 931–933
System.Xml, 1022–1023
Task, 936–938
tiered development, 971
transactions, 714–715,

924–925
try...catch...finally, 924–925
XML, 948–953, 995,

1020–1027
ADO.NET Entity Framework

ASP.NET, 1390–1391
Data, 1323
MVC, 1297–1335
Web Forms, 1271

change information, 983–985
Code First, 987–994
conceptual layer, 967–971
connection string, 972
delayed loading, 978–979
eager loading, 978–979
entities, 972–973

attaching/detaching, 985
storing changes, 985–986

Entity SQL, 980–981
EntityDataSource, 1264
lazy loading, 978–979
LINQ to Query, 981–982
logical layer, 967–971
mapping, 971
mapping layer, 968–971
object tracking, 983
ObjectContext, 973–975
ObjectQueryT, 981
POCO, 966, 988–990
querying data, 980–982
relationships, 975–979
TreeView, 1139
WCF Data Services, 1379,

1380, 1390–1398
AdvCalculator, 871
Aggregate, 302–303
aggregate operators, LINQ, 302–303
AggregateCatalog, 891
AggregateException, 343–344
AJAX. See Asynchronous JavaScript

and XML
aliases, 47, 152, 850
allowAnonymous, 1245

bindex.indd 1480 30-01-2014 19:49:26

1481

AllowDBNull – ASP.NET

AllowDBNull, 940
AllowGet, 1303
AllowMultiple, 376
AllowPaging, 1277
AllowPartiallyTrustedCallers, 624
AllowRecomposition, 864
alone, 1430
AltDirectorySeparatorChar, 669
AlternatingItemTemplate, 1278
ambient transactions, 722–729, 740
AmbientLight, 1100
an, 226
(an)+, 226
AnalyzeType, 384
Ancestors, 310
AnchoredBlock, 1159, 1163–1164
And, 264
animations, WPF, 1089–1095
annotations, ASP.NET MVC,

1317–1318
anonDel, 197
anonymous methods, 197–198
anonymous types, 79–80
ApartmentState, 646
APM. See Asynchronous

Programming Model
App, 1210
app bar, Windows Store, 1178,

1187–1188
app.config, 319
App_Data, 1298
AppDomain, 499–501
App.Domain.CreateDomain, 632
AppDomainSetup, 632
Append, 682
Append(), 215
AppendFormat(), 214, 215
AppendOnly, 979
Appl_GlobalResources, 831
Application, 1054, 1222
<Application>, 835
Application_BeginRequest, 122
ApplicationCommands, 1108
ApplicationCommands.Close, 1109
ApplicationData, 903
Application_EndRequest, 122
ApplicationException, 393
ApplicationExecutionState,

908–909, 1191

application/json, 1386
applicationName, 610
applications. See also web

applications; Windows
Presentation Foundation;
Windows Store

ASP.NET
creating, 18–19
services, 1281
Session, 1240–1241

ClickOnce
cache, 477
installation, 477–478
publishing, 474–475

data-driven, 1323–1331
domains

assemblies, 489, 499–502
dynamic loading, 496
.NET Framework,

11–13
isolation, assemblies, 490
life cycle

deployment, 465–466
WinRT, 907–913

manifest, 474
.NET Framework

assemblies, 489–499
creating, 18–20

P2P, 1431–1437
packages, Windows 8

deployment, 484
Application_Start, 1233, 1299
App_LocalResources, 831
ApplyCurrentValues, 987
ApplyPropertyChanges(), 975
AppSettings, 1261
App.xaml, 835
App.xaml Application, 835
AQS (Advanced Query Syntax

architecture).
MEF, 866–875
Message Queuing, 1451–1452
.NET Framework, 3–22
P2P, 1426–1428
Visual Studio, 446–448
Windows Services, 773–775

ArcSegment, 1058
args, 48–49
ArgumentException, 252

ArgumentNullException, 456, 523
ArgumentOutOfRangeException,

234, 1432
arguments

named, 71
optional, 72

ArgumentToExpressionConverter, 1416
arithmetic operators, 152
Array, 134, 136, 139, 148
Array.Copy(), 136, 233
ArrayExtension, 863
ArrayList, 108, 230, 232, 304
arrays, 129–140

accessing elements, 131
bit, 262–266
classes, 134–139
constructors, 134
copy, 136, 233
covariance, 139
declarations, 130
dimensions, 132–133
foreach, 141
indexers, 131, 132–133
initialization, 130–131, 133
jagged, 133–134
ListT, 233
multidimensional, 132–133
parameters, 139–140
reference types, 131–132
sort, 136–139
stacks, 370–372
ToString(), 131
tuples, 147–149
WinRT, 902
XAML, 852
yield, 141–143

ArraySegmenting, 140
ArraySegmentT, 139–140
Array.Sort, 816
as, 155
.asmx, 1291
AsNoTracking, 975
AsOutputStream, 903
AsParallel, 306
ASP.NET, 1211–1237

ADO.NET Entity Framework,
1390–1391

AJAX, 1283–1296
Control Toolkit, 1284

bindex.indd 1481 30-01-2014 19:49:26

1482

Association – Autos windowASP.NET – assemblies

applications
creating, 18–19
services, 1281

Atom, 19
client application services,

610
configuration, 1226–1228
Configuration Tool, 1266
cookies, 1237–1226
CSS, 1226
global application class,

1233–1234
handlers, 1229–1233
hosting, 1226–1228,

1390–1391
HTML, 1223–1224
HttpRequest, 1223–1224
HttpResponse, 1224
JavaScript, 1226
jQuery, 1226
JSON, 19
members, 1228
Membership API, 1236–1237
modules, 1229–1233
MVC, 19, 1213, 1297–1335

action filters, 1331–1332
action methods, 1301
ADO.NET Entity

Framework, 1323–1324
annotations, 1317–1318
authentication, 1332–1335
authorization, 1332–1335
client application,

1314–1318
controllers, 1297, 1298,

1300–1304, 1313–1314
data-driven applications,

1323–1331
HTML helpers,

1318–1323
jQuery, 1313
login view, 1334–1335
parameters, 1301–1302
partial views, 1310–1313
routes, 1299–1300, 1317
SubmitData, 1314–1318
templates, 1322–1323
validation, 1317–1318

views, 1304–1313,
1325–1331

passwords, 1248
profiles, 1230–1234
regular expressions, 222–224
REST, 19
role-based security, 607
roles, 1248
Roles API, 1237
runtime, WCF, 1340
Session, 1233

applications, 1240–1241
Cache, 1242
callbacks, 1242
identifiers, 1239–1240
storage, 1240–1241

state management, 1236–1247
Template Editor, 1278
ViewState, 1237
Visual Studio, 415
Web API, 20

template, 1284
WCF Data Services, 1380

web applications, 1223–1224
deployment, 479
.NET Framework,

1223–1224
Web Forms, 18, 1212, 1224,

1239–1281
ADO.NET Entity

Framework, 1271
ASPX page model,

1254–1263
authentication, 1280
content pages, 1266–1267
data access, 1271–1279
localization, 830–831
login controls, 1266–1267
master pages, 1263–1267
Menu, 1268
navigation, 1267–1268
PageHandlerFactory, 1231
security, 1280–1282
site map, 1267
validation, 1268–1271

Web Pages, 1224
web server controls, 18

ASP.NET Web API
actions, HTTP methods, 1389

DELETE requests, 1388
GET requests, 1386–1387
OData, 1391

data model, 1392
queries, 1394–1395
services, 1392–1394
WCF Data Services,

1395–1400
POST requests, 1387
PUT requests, 1388
routing, 1388–1389

attribute-based, 1389
security, 1400–1401

accounts, 1401–1402
authentication token,

1402–1404
GetUserInfo, 1404–1405

self-hosting, 1405–1406
services, creating, 1382–1385
WCF and, 1381

ASP.NET_SessionId, 1239
AspNetSqlMembershipProvider,

1248
ASPX

expressions, 1261–1262
page model

ASP.NET Web Forms,
1254–1263

AutoPostBack, 1257
code, 1260–1262
controls, 1254–1256
data binding, 1261–1262
events, 1256
Page Events, 1258–1260
postbacks, 1256–1258
server-side controls,

1262–1263
statements, 1254

assemblies
applications, 508–511

domains, 489, 499–502
isolation, 490
.NET Framework, 489–499

attributes, 494–496
binding, 511, 512–513
ClickOnce, 490
compiler, 494
components, 492
creating, 493–499

delayed signing, 507–508
deployment, 468, 490
dynamic loading, 496–499
exported types, 492
features, 490
GUIDs, 14
IL, 499
installation, 490
manifest, 491–492
metadata, 14, 490, 491
modules, 493–494
namespaces, 492
native image generator, 509–510
.NET Framework, 14–16, 487
parallel programming, 15
permissions, 492
portable class library, 518–519
private, 15, 490, 492
publisher policies, 515–516
references, 490, 508–509
reflection, 16
satellite, 492

language, 826
XAML resource

dictionaries, 833–834
self-description, 490
shared, 15, 492, 503–509
sharing with other technologies,

517–519
side-by-side, 490
source code, 517–518
structure, 491
versions, 513–517

binding, 514–515
dependencies, 490
runtime, 516–517

viewing, 493
WCF, 511
xcopy, 49088

Association, 971
AsStreamForWrite, 903
asymmetric encryption keys, 614, 616
async, 271, 325, 1178

compilers, 338
WinRT, 904–905
yield return, 336

AsyncCallback, 334, 341
AsyncCodeActivity, 1410, 1411
AsyncCodeActivityContext, 1410

ASP.NET (continued)

bindex.indd 1482 30-01-2014 19:49:26

1483

Association – Autos window

delayed signing, 507–508
deployment, 468, 490
dynamic loading, 496–499
exported types, 492
features, 490
GUIDs, 14
IL, 499
installation, 490
manifest, 491–492
metadata, 14, 490, 491
modules, 493–494
namespaces, 492
native image generator, 509–510
.NET Framework, 14–16, 487
parallel programming, 15
permissions, 492
portable class library, 518–519
private, 15, 490, 492
publisher policies, 515–516
references, 490, 508–509
reflection, 16
satellite, 492

language, 826
XAML resource

dictionaries, 833–834
self-description, 490
shared, 15, 492, 503–509
sharing with other technologies,

517–519
side-by-side, 490
source code, 517–518
structure, 491
versions, 513–517

binding, 514–515
dependencies, 490
runtime, 516–517

viewing, 493
WCF, 511
xcopy, 49088

Association, 971
AsStreamForWrite, 903
asymmetric encryption keys, 614, 616
async, 271, 325, 1178

compilers, 338
WinRT, 904–905
yield return, 336

AsyncCallback, 334, 341
AsyncCodeActivity, 1410, 1411
AsyncCodeActivityContext, 1410

AsyncCodeActivityTResult, 1402
AsyncCompletedEventArgs, 1441
asynchronous data access,

ADO.NET, 936–938
Asynchronous JavaScript and XML

(AJAX)
Control Toolkit, 1284
extensions, 1284–1285
Library, 1283–1296

asynchronous page requests,
WebRequest, 743, 765

asynchronous pattern, 325, 326–338
converting, 341
.NET Framework, 341
synchronous call, 333
WPF, 326–327
XAML, 328–329

asynchronous programming,
325–346

cancellation, 344–346
combinators, 340
error handling, 326, 341–344
methods, 338–339

multiple, 340–341
.NET Framework, 16, 326
synchronization context,

339–340
tasks, 338, 339
Visual Studio, 326
WinRT, 326

Asynchronous Programming Model
(APM), 936

asynchronous read, Message
Queuing, 1459–1460

AsyncPattern, 1356
AsyncPostBackError, 1292
AsyncPostBackTrigger, 1270, 1285
AtomPub, 1383, 1397
Attach(), 975
attached properties, XAML,

859–861
AttachTo(), 975
Attribute, 374, 385
attribute-based routing, 1389
AttributeModelServices, 869
attributes

assemblies, 494–496
classes, 375
COM interop, 653–654

custom, 640
HTML, 1320
MEF, 867–872
.NET Framework, 14

XAML, 851–861
parameters, 376–377
properties, 851
reflection, 374–380
XML, 1041–1042
XmlReader, 1003–1004

AttributeTargets, 375–386
AttributeTargets.All, 377
AttributeUsage, 375–377
AuthenticateRequest, 1231
authentication, 1234–1235,

1262–1263
ASP.NET

MVC, 1313–1316
Web Forms, 1280

security, 606–614
Web API, 1402–1404
Windows Authentication, 923

AuthenticationType, 607
authority, 1429
authorization

ASP.NET MVC, 1313–1316
security, 606–614

AuthorizationRule, 622
AuthorizationRuleCollection,

621, 622
Authorize, 1315
AuthorizeAttribute, 1313
AuthorizeRequest, 1231
AuthType, 607
Auto, 1026
[AutoComplete], 715
AutoDetect, 1240
AutoDisposeParameters, 1362
AutoEventWireup, 1254
AutoGenerateColumns, 1145
AutoIncrement, 940
AutoIncrementSeed, 940
AutoIncrementStep, 940
AutoLog, 784, 802
AutoPostBack, 1257
AutoResetEvent, 590
AutoReverse, 1091
Autos window, Visual Studio,

442

bindex.indd 1483 30-01-2014 19:49:27

1484

Average – C++ <c> – classes

Average, 302–303, 306
await, 271, 325, 338, 538, 934–936,

1178

B
\B, 224
\b, 224
backDateTo, 386, 389
Background, 851, 861
background threads, 572–573
BackMaterial, 1099
\ (backslash), meta-characters, 223
\\ (backslash-double), string escape

sequence, 36
BAML, 834–837
Bar(), 128, 874
Barrier, 593–594
base class library (BCL)

AJAX, 1286
.NET Framework, 16, 679

base classes
casts, 176–177
implementation inheritance, 90
.NET Framework, 666

Baseline, 1160
BaseType, 381
BaseViewModel, 1429
BasicForm, 426
BasicHttpBinding, 1363
$batch, 1397
BatchBlock, 602
BCL. See base class library
BeginExecuteReader, 936
BeginForm, 1318
BeginInvoke, 334
BeginReceive, 1459
BeginRequest, 1231
BeginSaveChanges, 1396–1397
BeginTime, 1091
BezierSegment, 1058
bin, 513
binary code reuse, generics, 109–110
binary files, FileStream, 682–686
BinaryFileReader, 684–686, 692
BinaryMessageFormatter, 1457
BinaryReader, 681–682
BinaryWriter, 681–682
BindableBase, 878, 1466

BindableObject, 1116, 1150
binding. See also data binding

assemblies
early, 634
late, 634
methods, interop, 634
WCF, 1362–1368

Binding, 1113, 1118, 1125, 1395
BindingFlags, 382
BindingOperations, 337
<bindingRedirect>, 515
BingRequest, 329, 331
bit arrays, 262–266
bit shifting operator, 152
BitArray, 262–266
BitmapDecoder, 1199, 1201
BitmapImage, 901, 912,

1202, 1203
BitmapTransform, 1199
BitVector32, 264–266
bitwise flags, 682
blittable data types, 637
Block, 1160–1161
block scope, 348
block statements, 925–926
BlockCommitUntilComplete, 721
BlockingCollectionT, 269, 272–273
BlockUIContainer, 1160
Body, 1418
bookmarks, WF, 1421–1422
bool, 32, 34–35, 237, 428
Boolean, 42, 237, 243, 852

if, 38
null, 156
Type, 381

BooleanSwitch, 530
Border, 1063, 1067–1068
Both, 956
BounceEase, 1092
BoundField, 1277
boxing, 108–109, 161–162

casts, 177–178
break, 43, 198, 397
breakpoints, 439–440
Broadcast, 757, 770
BroadcastBlock, 602
Brush, 851
BrushConverter, 851
brushes, WPF, 1060–1063

BSTR, 634, 651
btnResolve, 758
Bubble, 858
BubbleSorter, 191–192
bubbling events, XAML, 856–858
BufferBlock, 599
BufferedStream, 682
BuildApplication, 1423
BulletDecorator, 1067–1068
business applications. See Windows

Presentation Foundation
Button, 328, 497, 750, 851, 1127

ASP.NET Web Forms, 1236
FindResource, 835
ListBox, 856
System.Windows.Controls, 848

button1_Click, 1075
buttonBack, 750
ButtonCheckbox, 1064
ButtonChrome, 1067–1068
Button.Click, 613, 856
buttonForward, 750
buttonRefresh, 750
ButtonRepeat, 1064
buttonStop, 750
ButtonToggle, 1064
BYTE, 634
byte, 33, 158, 362–363, 764

C
C++

abstract functions, 94
attributes, 13
casts, 173
compiler, 435
compilers, 6
destructors, 354
GC, 11
IDL, 632
Java, 91
multiple inheritance, 90
.NET Framework, 6
operator overloading, 163
pointer member access

operator, 365
templates, 108
using namespace, 25
Windows 8, 842

bindex.indd 1484 30-01-2014 19:49:27

1485

Average – C++ <c> – classes

BSTR, 634, 651
btnResolve, 758
Bubble, 858
BubbleSorter, 191–192
bubbling events, XAML, 856–858
BufferBlock, 599
BufferedStream, 682
BuildApplication, 1423
BulletDecorator, 1067–1068
business applications. See Windows

Presentation Foundation
Button, 328, 497, 750, 851, 1127

ASP.NET Web Forms, 1236
FindResource, 835
ListBox, 856
System.Windows.Controls, 848

button1_Click, 1075
buttonBack, 750
ButtonCheckbox, 1064
ButtonChrome, 1067–1068
Button.Click, 613, 856
buttonForward, 750
buttonRefresh, 750
ButtonRepeat, 1064
buttonStop, 750
ButtonToggle, 1064
BYTE, 634
byte, 33, 158, 362–363, 764

C
C++

abstract functions, 94
attributes, 13
casts, 173
compiler, 435
compilers, 6
destructors, 354
GC, 11
IDL, 632
Java, 91
multiple inheritance, 90
.NET Framework, 6
operator overloading, 163
pointer member access

operator, 365
templates, 108
using namespace, 25
Windows 8, 842

<c>, 52
Cache, 1242
cache

applications, ClickOnce, 477
GAC, 15, 490

ClickOnce, 473
shared assemblies,

503–505, 511
CacheDependency, 1242
CacheItemRemovedCallback, 1242
CacheMetadata, 1414
calcImport, 890
CalculationCompleted, 658
CalculationInTask, 593
Calculator, 868–870

AdvCalculator, 871
Program, 872
WPF, 884

CalculatorContract, 868
CalculatorExtension, 861, 863
CalculatorImport, 864, 890
CalculatorManager, 449
CalculatorUtils, 878
CalculatorViewModel, 884
Calendar, 1064
CalendarTypeToCalendar

Information-Converter, 814
CallbackContract, 1356, 1372
CallbackHandler, 1367
callbacks

ASP.NET Session, 1242
CreateBookmark, 1422
dependency properties,

855–856
CallerFilePath, 409
CallerLineNumber, 409
CallerMemberName, 409
CallerMemberNameAttribute, 782
calling base versions, 93
CallingConvention, 661
CallSite, 318
CallSiteBinder, 318
Callstack, 532
CalTax, 320
camel casing, 59–60, 901
camera, 1100

Windows Store, 1212–1213
CameraCaptureUI, 912
CameraCaptureUIMode.Photo, 912

CancelAfter, 345
Canceled, 568
cancellation

asynchronous programming,
344–346

Parallel.For, 566–567
PLINQ, 306–307
tasks, 568–569

CancellationToken, 306–307, 345,
568

CancellationTokenSource, 307, 344–
345, 567, 568

CanChangeLiveGrouping, 1149
CanCreateInstance, 1426
CanExecute, 1109
CanGoBack, 1190
CanGoBackChanged, 752
CanGoForward, 1190
CanGoForwardChanged, 752
CanHandlePowerEvent, 784
CanHandleSessionChangeEvent, 784
CanPauseAndContinue, 784, 795
CanShutdown, 784, 795
CanStop, 784, 795
Canvas, 1069
Capacity, 212, 214
Caption, 940
CaptureCollection, 227
captures, regular expressions,

226–228
Cascade, 947
cascading style sheet (CSS), 1226
case, 38–40
casing

camel, 59–60, 901
Pascal, 59, 901

Cast, 304
casts, 172–181

base classes, 176–177
boxing, 177–178
C++, 173
classes, 176
derived classes, 176–177
interop, 634
multiple, 178–181
operator, 152
pointers, 361–362
syntax, 173
unboxing, 177–178

catalogs, MEF, 892–893
catch, 394, 397, 398
Categories, 1393
Category, 1381
CategoryName, 551
CategoryResourceFile, 544
CCW. See COM callable wallpaper
checked operator, 154
claims, 609–610
ClaimsPrincipal, 602, 609
class ID (CLSID), 635
class keyword, 26
Class View window, Visual Studio,

435–436
classes

abstract, 103
abstract, implementation

inheritance, 94
anonymous types, 79–80
arrays, 134–139
attributes, 375
base classes

casts, 176–177
implementation

inheritance, 90
.NET Framework, 666

BCL
AJAX, 1286
.NET Framework, 16, 679

casts, 176
coupling, 453
creating and using, 65–66
data members, 67
database, ADO.NET, 921–922
derived, 90, 95–99, 176–177
entities, transactions, 712–713
event logging, 540–548
exceptions, 392–393

user-defined, 402–409
extension methods, 87–88
function members, 67–78
generic library classes, 184
generics, 107, 110–114
global application class,

ASP. NET, 1233–1234
hierarchies

generics, 114
WPF, 1053–1055

inheritance, 90

bindex.indd 1485 30-01-2014 19:49:27

1486

CollectionViewSource – ConditionClasses – collections

instances, equality, 162–163
members, 66–79

pointers, 364–365
namespaces, 25, 45
nested partial classes, 84
.NET Framework, 16–17

files, 667–669
registry, 701–703

new, 66
Object, 85–87
partial, 83–85
performance, 548
portable class library,

518–519
readonly, 78–79
reference types, 108
sealed, 94–95
shared, ADO.NET, 921
static, 85
structs, 66, 80–85
System.Object, 90
System.Xml, 1001–1002
utility, 756–759
variables, 27
virtual, 103
weak references, 82–83
Windows Services, 774–777
WinRT, 901
XPath namespaces, 1013–1015

ClassesRoot, 701
ClassInterface, 653
ClassKey, 831
class-level variables, 30
Clear(), 543
ClearAllErrors, 1135
ClearErrors, 1135
Click, 498, 781, 1385

OnCalculate, 878
OnOuterButtonClick, 856
OnShowEntities, 1396

ClickOnce
assemblies, 490
deployment, 470, 473–479

client
application, 610–614

COM, 655–657
Socket, 764–767

library, WCF Data Services,
1391–1398

.NET Framework, COM
components, 638–649

P2P, 1428
WCF, 1350–1351,

1370–1372
ClientWPF, 471–472
Clone(), 136, 1013
Close, 356, 529, 1108
Close(), 702, 1370
Closed, 1372
CloseExtension, 891
ClosePrompt, 1412
Closing, 1372
closures, 199–201
cloud.AllLinkLocal, 1440
Cloud.Available, 1440
Cloud.Global, 1440
clouds, 1428, 1430–1431
CLR. See Common

LanguageRuntime
/clr, 6
clr-namespace System, 835
CLS. See Common Language

Specification
CLSID. See class ID
CNG. See Cryptography Next

Generation
Cng, 615
CngKey, 617
coclass, 652
CoCreateInstance, 635, 656
<code>, 52
Code Analysis, Visual Studio,

455–456
code-based security, 11
code contracts

abbreviations, 525
accessors, 526
diagnostics, 522–526
interfaces, 524–525
invariants, 525
legacy code, 527
postconditions, 524–525
preconditions, 523–524
Pure, 525

code editor, Visual Studio, 431–433
Code First, 987–994
Code Map, 451

code metrics, Visual Studio, 456
CodeAccessPermission, 1442
CodeAccessSecurityAttribute, 1442
CodeActivity, 1409, 1410,

1413, 1414
CodeActivityContext, 1410
CodeActivityMetadata, 1414
CodeActivityTResult, 1410
codeBase, 512
<codeBase>, 512
CodeBehind, 1254
code-behind, 1112, 1144, 1146,

1246, 1390
CodeDriver, 497, 501, 502
CodeDriverInAppDomain,

501–502
CodeLens, 433
coercion, 854–855
CoInitialize, 656
ColdCallFileException, 407, 408
ColdCallFileReader, 404, 407
cold-calling, 402–403
collections, 229–278

bit arrays, 263–266
concurrent, 268–276
dictionaries, 253–260
generics, 230
immutable, 266–268
initialization, 233
interfaces, 230–231
iteration, 143–145
linked lists, 247–251
lists, 231–241

sort, 251–253
MEF import, 863–887
.NET Framework, 230
observable, 260–262
performance, 276–277
queues, 241–245
read-only, 241
Reverse, 240
search, 237–239
sets, 260–262
sort

cultures, 816–817
lists, 251–253

stacks, 245–247
type conversions, 241
WinRT, 902–903
XAML, 852

Classes (continued)

bindex.indd 1486 30-01-2014 19:49:27

1487

CollectionViewSource – ConditionClasses – collections

code metrics, Visual Studio, 456
CodeAccessPermission, 1442
CodeAccessSecurityAttribute, 1442
CodeActivity, 1409, 1410,

1413, 1414
CodeActivityContext, 1410
CodeActivityMetadata, 1414
CodeActivityTResult, 1410
codeBase, 512
<codeBase>, 512
CodeBehind, 1254
code-behind, 1112, 1144, 1146,

1246, 1390
CodeDriver, 497, 501, 502
CodeDriverInAppDomain,

501–502
CodeLens, 433
coercion, 854–855
CoInitialize, 656
ColdCallFileException, 407, 408
ColdCallFileReader, 404, 407
cold-calling, 402–403
collections, 229–278

bit arrays, 263–266
concurrent, 268–276
dictionaries, 253–260
generics, 230
immutable, 266–268
initialization, 233
interfaces, 230–231
iteration, 143–145
linked lists, 247–251
lists, 231–241

sort, 251–253
MEF import, 863–887
.NET Framework, 230
observable, 260–262
performance, 276–277
queues, 241–245
read-only, 241
Reverse, 240
search, 237–239
sets, 260–262
sort

cultures, 816–817
lists, 251–253

stacks, 245–247
type conversions, 241
WinRT, 902–903
XAML, 852

CollectionViewSource, 1146, 1153
Color, 275
ColorAnimationUsingKeyFrames,

1094
Column, 1070
ColumnDefinition, 1070
ColumnMapping, 940
ColumnName, 940
Columns, 1145–1146
ColumnSpan, 1070
COM. See Component Object Model
COM+, 6
COM callable wallpaper (CCW),

649–650
COM Client, 649–659
combinators, 340
ComboBox, 1067, 1163, 1391, 1395
COMClient.cpp, 655
_com_error, 656
Command, 1109
command bindings, 1109
command source, 1107, 1108–1109
command target, 1107
CommandBinding, 1107
CommandField, 1277
commanding, WPF business

applications, 1107–1109
command-line tools

.NET Framework, 25
WPF, 426

CommandParameter, 1109
Comment, 1440
comments, 25, 27, 52–54,

1040–1041
Commit, 722, 731, 732, 734
CommittableTransaction,

717–719, 722
committing transaction phase, 711
Common Language Runtime (CLR)

assembly versions, 516–517
data types, 32
deployment, 467
DLR, 313
exceptions, 631
GC, 11
generics, 108
IL, 4
Main(), 48
managed code, 4

.NET Framework, 4–7
performance improvement, 4–5
permissions, 624
platform independence, 4
POCO, 966, 988–990
WCF, 1355

Data Services, 1380–1385
WPF, 1110

data binding, 1115
XAML, 861

Common Language Specification
(CLS), 10

Common Type System (CTS), 9, 33
CommonStates, 1096
CommunicationException, 1358
Compare, 210, 240
Compare(), 138
CompareAttribute, 1317
CompareOrdinal, 210
Comparer, 817
CompareTo(), 118, 137, 239
comparison operators, 169–171
ComparisonT, 240
compass, 1216, 1217–1218
CompileAndRun(), 497–498, 400
CompileAssemblyFromSource(),

498
Compile_Click(), 498, 502
compiler, 49–50

assemblies, 496
async, 338
await, 338
C++, 6, 435
delegates, 187
Equals, 254
foreach, 235
generics, 108
GetHashCode, 254
IL, 7
JIT, 4–5
Main(), 47–48
namespaces, 374–375
reflection, 374
variables, 27
yield, 142

CompilerResults, 498
Complete, 721, 728
Completed, 647
ComplexObject, 972

Component Object Model (COM), 5
application domains, 12
client application, 655–657
components, .NET Framework

client, 638–649
deployment, 465
GUIDs, 503
IL, 6, 7
interop, 653–654
reference counts, 10–11
registration, 654–655
server, dynamic language

extensions, 646
type library, 651–653
WebBrowser, 746

ComponentInstaller, 790
components

assemblies, 490
COM, .NET Framework client,

638–649
.NET Framework, COM Client,

649–659
PerformanceCounter, 548–552
WinRT, 902–905

ComponentServiceProcessInstaller,
790

ComposablePartCatalog, 890, 893
Compose, 890
ComposeParts, 867, 869, 890
CompositionContainer, 867, 869,

890
CompositionException, 393
ComVisible, 653
Concat, 210
concatenation operators, 152
conceptual layer, ADO.NET Entity

Framework, 969–971
Conceptual Schema Definition

Language (CSDL), 966, 971
Concurrency Visualizer, Visual

Studio, 454–455
ConcurrencyMode, 1359, 1372
concurrent collections, 268–276
ConcurrentBagT, 269
ConcurrentDictionaryTKey, TValue,

269, 273–274
ConcurrentQueueT, 269
ConcurrentStackT, 269
Condition, 1410

bindex.indd 1487 30-01-2014 19:49:28

1488

Conditional – CreateInstance CreateInstanceAndUnwrap – Data_CollectionChanged

Conditional, 437
conditional compilation, 55, 439
conditional operators, 152, 154
conditional statements

flow control, 37–40
if, 37–38
switch, 38–40

Configuration Tool, ASP.NET, 1266
ConfigurationContext, 1327
ConfigurationName, 1356
Connection, 972
Connection.CreateCommand, 838
connections

database, ADO.NET, 922–927
points, 647–649, 657–658
strings, 923–924, 971–970

Console, 50–52, 499
ConsoleApplication1, 425, 426
Console.ReadLine, 397, 425
Console.ReadLine(), 26, 50
Console.Write(), 50
Console.WriteLine(), 25, 50–51, 209,

214, 217, 236, 397
const,

31, 67, 550–551
ConstantExpression, 308
constants

class data members, 67
readonly, 78–79
variables, 31

Constraint, 921
Constraints, 939
constraints

ASP.NET MVC routes, 1300
DataTable, 945–947
generic methods, 125–126
generics, 115–117

ConstructorInfo, 382, 386
ConstructorParameters, 1119
constructors

arrays, 134
calling other constructors from,

77–78
class function members, 67,

75–78
constraints, 116, 117
derived classes, 95–99
hierarchies, 96–99
implementation inheritance,

95–99

initialization, 78
lists, 232–234
overloading, 75
queues, 243
static, 76–77
structs, 82
this, 78
XAML, 852–853

containers, MEF, 889–892
ContainerStyle, 1147
Contains, 246
ContainsKey, 253
Content, 745, 851, 1285, 1327
ContentControl, 1055, 1065
_contentLoaded, 428
ContentPlaceHolder, 1263, 1265
ContentProperty, 851, 852
ContentTemplate, 891, 1128
<ContentTemplate>, 1292
ContextCreating, 1264
ContextDisposing, 1264
ContextMenu, 1067
continuation tasks, 565
Continue, 800
continue, 43, 198
ContinueWith, 565
Contract, 522
ContractAbbreviator, 527
ContractFailed, 522
ContractFailedEventArgs, 522
ContractInvariantMethod, 525
ContractName, 864
contracts. See also code contracts

MEF, 873–875
WCF, 1353–1358

Message Queuing, 1474
versioning, 1355
Windows Store

applications, 1208–1212
CONTRACTS_FULL, 522
ContractType, 864
contra-variance, 119, 121–122
Control, 1055
ControlID, 1293
Controller, 1301, 1303, 1305, 1313,

1316, 1325–1326
controllers, 1300–1305

ASP.NET MVC, 1300–1306
partial views, 1297

Controls, 1128

controls. See also flow control
AJAX, 1285
ASP.NET Web Forms, login,

1266–1267
ASPX page model, 1254–1256

server-side, 1262–1263
simple controls, 1063–1064
WPF, 1063–1068

ControlTemplate, 1081–1084,
1087–1089

ControlToValidate, 1269
convention-based part registration,

872–873
conversion operators, 303–304
Convert, 1125–1126
ConvertAllT<Output>, 240
Converter, 1113
ConvertFromString, 851
cookieless, 1239–1240
Cookies, 1237–1238
cookies, 1237–1239
cookieState, 1238
Copy, 674–677, 1108
CopyFileTransacted, 737
CopyTo, 210, 674–677, 693
CopyTo(), 668
correlation, WCF workflows,

1425–1426
CorrelationHandle, 1425
CorrelationManager, 534–535
Count, 242, 246, 302–303, 1013
$count, 1389
Count Length, 264
CountdownEvent, 585
covariance, 119–121, 139
CProxy_ICompletedEvents, 648
Create, 617, 1001, 1454
Create(), 146, 668
CreateBookmark, 1422
CreateElement, 1010
CreateEventSource(), 542–543, 547
CreateFileAsync, 903, 1198
CreateFileQuery, 1198
CreateFileTransacted, 631, 737
CreateFromConfiguration, 319
CreateHardLink, 661
CreateHardLinkTransacted,

 737
CreateInstance(), 134, 135,

501, 656

bindex.indd 1488 30-01-2014 19:49:28

1489

Conditional – CreateInstance CreateInstanceAndUnwrap – Data_CollectionChanged

controls. See also flow control
AJAX, 1285
ASP.NET Web Forms, login,

1266–1267
ASPX page model, 1254–1256

server-side, 1262–1263
simple controls, 1063–1064
WPF, 1063–1068

ControlTemplate, 1081–1084,
1087–1089

ControlToValidate, 1269
convention-based part registration,

872–873
conversion operators, 303–304
Convert, 1125–1126
ConvertAllT<Output>, 240
Converter, 1113
ConvertFromString, 851
cookieless, 1239–1240
Cookies, 1237–1238
cookies, 1237–1239
cookieState, 1238
Copy, 674–677, 1108
CopyFileTransacted, 737
CopyTo, 210, 674–677, 693
CopyTo(), 668
correlation, WCF workflows,

1425–1426
CorrelationHandle, 1425
CorrelationManager, 534–535
Count, 242, 246, 302–303, 1013
$count, 1389
Count Length, 264
CountdownEvent, 585
covariance, 119–121, 139
CProxy_ICompletedEvents, 648
Create, 617, 1001, 1454
Create(), 146, 668
CreateBookmark, 1422
CreateElement, 1010
CreateEventSource(), 542–543, 547
CreateFileAsync, 903, 1198
CreateFileQuery, 1198
CreateFileTransacted, 631, 737
CreateFromConfiguration, 319
CreateHardLink, 661
CreateHardLinkTransacted,

 737
CreateInstance(), 134, 135,

501, 656

CreateInstanceAndUnwrap(),499
CreateKeys, 617
CreateMask, 266
CreateMenu, 1314
CreateQuery(), 974
CreateQueryT, 310
CreateRole, 1237
CreateSection, 266
CreateSubKey, 702
CreateSymbolicLinkTransacted, 737
CreateUser, 1236
CreationTime, 668
CredCardAttribute, 1300
Credentials, 329, 742, 1370
Critical, 530
Cryptography Next Generation

(CNG), 615
CryptoServiceProvider, 615
CryptoStream, 619
.cs, 600
csc, 25
csc.exe, 819
CSDL. See Conceptual Schema

Definition Language
.csproj, 425
CSS. See cascading style sheet
.csv, 835
ctor, 413
CTS. See Common Type System
CultureAndRegionInfoBuilder, 840
CultureAndRegionModifiers, 840
CultureData, 811–813, 815
CultureInfo, 807, 812, 840
CultureInvariant, 223
cultures

custom, 840–842
dates, 810
invariant, 807
localization, 807–816
neutral, 807
numbers, 809–810
Register, 841
sort, 816–817
specific, 807
strong names, 503
System.Globalization, 807–816
WPF, 811
XAML, 813–816

CurrencySymbol, 815

Current, 716, 939, 1013, 1459
CurrentConfig, 701
CurrentCulture, 807–808, 816
CurrentPosition(), 1013
CurrentReadCount, 594
CurrentUICulture, 807–808
CurrentUser, 701
custom attributes, 640
custom composite, 1416–1419
Custom filter, WCF, 1379
CustomBinding, 1363
CustomPages, 1327
Cut, 1108
cyclomatic complexity, 453

d
D, 51
DACL. See discretionary access

control list
Data, 266, 399, 1119, 1125,

1432
data binding

ASPX page model, 1261
WPF, 1476

change notification,
1115–1116

CLR, 1115
DataTemplateSelector,

1129–1130
error handling,

1132–1139
lists, 1120–1122, 1127
master/detail relationship,

1122
MultiBinding, 1122–1124
ObjectDataProvider,

1118–1119
PriorityBinding, 1124–1125
tab items, adding

dynamically, 1128–1129
validation, 1132–1139
value conversion,

1125–1126
XAML, 1111–111
XML, 1131–1132

WPF business applications,
1109–1139

data contract, WCF, 1355

Data Encryption Standard
(DES), 616

data members, classes, 67
data parallelism, 556–557
data reader, ADO.NET, 934–936
Data Services. See Windows

Communication Foundation data
tips, Visual Studio debugging

data types. See also reference types;
value types blittable

CLR, 32
conversions, 158–161

collections, 241
explicit, 159–161
implicit, 158–159
reference types, 158
TypeConverter, 851
XAML, 833

CTS, 33
IL, 8
inference, variables, 28–29
interop, 634–635
library, COM, 651–653
namespaces, 17
.NET Framework, XAML,

851–861
nonblittable, 637
predefined, 31–37
safety, 637

generics, 109
IL, 157
operators, 157–162

Solution Explorer, 429
structs, 66
WinRT, 901

database
ASP.NET profiles, 1243
classes

ADO.NET, 921–922
transactions, 712–713

connections, ADO.NET,
922–927

database=Northwind, 922
DatabaseResourceManager,

839–840
DatabaseResourceReader,

837–838, 840
DatabaseResourceSet, 839
Data_CollectionChanged, 262

bindex.indd 1489 30-01-2014 19:49:28

1490

DELETE – documentsDataColumn – delegates

DataColumn, 921, 939–940
DataColumnMapping, 921
DataContext, 332, 1114, 1133

DockPanel, 1121
INotifyCollectionChanged, 1127
ListBox, 1120
UserControl, 1144

DataContractAttribute, 1355
DataContractSerializer, 1197
data-driven applications, 1323–1331
DataErrorValidationRule, 1138
DataflowBlockOptions, 598
DataGrid, 939, 1021, 1101, 1153

AutoGenerateColumns, 1145
Binding, 1395
CollectionViewSource, 1153
Columns, 1145–1146
DataGridTextColumn, 1152
DataSet, 1026
groups, 1146–1148
GroupStyle, 1147
ItemsControl, 1067, 1143
ItemsSource, 1143–1144
live shaping, 1148–1153
Menus, 1395
RowDetailsTemplate, 1146
WCF Data Services, 1391
WPF business applications,

1143–1153
DataGridTextColumn, 1145–1146,

1152
DataList, 1271
DataPackageView, 1210
DataPager, 1271
DataRelation, 921
DataRequested, 1208
DataRow, 921, 940–942
data_sendingRequest, 1393
DataServiceBehavior, 1383
DataServiceCollectionT, 1394
DataServiceContext, 1391
DataServiceHost, 1384
DataServiceHostFactory, 1384, 1390
DataServiceKey, 1381, 1389
DataServiceQueryT, 1394
DataServiceQueryTElement, 1391
DataServiceT, 1380, 1382, 1390
DataSet, 921, 1023, 1026, 973

ADO.NET, 938–947, 953–958

SqlDataAdapter, 953–954
WriteXml, 1021
XML, 954–955, 957–958
XmlDocument, 1021

/dataset (/d), 949
DataSourceId, 1268
DataSourceProvider, 1131
DataTable, 921, 938–939, 945–947
DataTableMapping, 921
DataTables, 1024, 1026
DataTemplate, 798, 1131

ItemTemplate, 1128
RowDetailsTemplate, 1146
WPF, 1081, 1084–1085

DataTemplateSelector, 1129–1130
DataTransferManager, 1208
DataTrigger, 1079–1080
DataType, 940, 1330–1331
DataTypeAttribute, 1300
DataWriter, 903
Date, 1140
DateModified, 379
DatePicker, 1064
dates

cultures, 810
localization, 810

DateTime, 532, 810, 902, 1230
DateTimeFormatInfo, 809, 810
DbCommand, 980
DbConnection, 921, 979
DbDataReader, 980
DbParameter, 980
DCOM proxy, 1442
dead-letter queues, 1452
Deadline, 910
deadlocks, 577–578
Debug, Visual Studio, 437
debugger visualizers, Visual Studio,

438–440
debugging

exceptions, 399
historical, 446
IL, 8
source code, 437–438
Visual Basic project, 436–438
Visual Studio, 417

data tips, 440–441
project, 439–444

XSLT, 1019–1020

DebugWrite, 1413
DecelerationRatio, 1091
Decimal, 852
decimal, 34, 159
declarative programming, 19
declarative role-based security,

608–609
decoration, 1067–1068
decrement operator, 152
DeepCopy, 735
Default, 941
default, 115
Default.aspx, 693–694
DefaultIfEmpty, 295–296
default.js, 900
DefaultModelBinder, 1315
DefaultValue, 940
#define, 54–55
DefinitionIdentity, 1428
Delay, 1113, 1404
Delay activity, 1412
delayed loading, 978–979
delayed signing, 507–508
DelayedAutoStart, 791
delegates

ActionT, 190–191
anonymous methods,

197–198
BubbleSorter, 191–192
compilers, 187
concatenation operators, 152
declaring, 185–186
event, 590
events, 184
example, 189–190
FuncT, 190–191
generics

library classes, 184
methods, 126–127

inference, 186–187
instance, 186–187
lambda expressions, 201
methods, 184

generics, 126–127
multicast, 193–197
PredicateT, 237
string, 199
tasks, 184
threads, 184

bindex.indd 1490 30-01-2014 19:49:28

1491

DELETE – documentsDataColumn – delegates

DebugWrite, 1413
DecelerationRatio, 1091
Decimal, 852
decimal, 34, 159
declarative programming, 19
declarative role-based security,

608–609
decoration, 1067–1068
decrement operator, 152
DeepCopy, 735
Default, 941
default, 115
Default.aspx, 693–694
DefaultIfEmpty, 295–296
default.js, 900
DefaultModelBinder, 1315
DefaultValue, 940
#define, 54–55
DefinitionIdentity, 1428
Delay, 1113, 1404
Delay activity, 1412
delayed loading, 978–979
delayed signing, 507–508
DelayedAutoStart, 791
delegates

ActionT, 190–191
anonymous methods,

197–198
BubbleSorter, 191–192
compilers, 187
concatenation operators, 152
declaring, 185–186
event, 590
events, 184
example, 189–190
FuncT, 190–191
generics

library classes, 184
methods, 126–127

inference, 186–187
instance, 186–187
lambda expressions, 201
methods, 184

generics, 126–127
multicast, 193–197
PredicateT, 237
string, 199
tasks, 184
threads, 184

using, 186–189
WinRT, 904

DELETE, 1388
dependencies

external, 460–462
properties

callbacks, 855–856
coercion, 854–855
events, 855–856

versions, assemblies, 490
WPF, 853
XAML, 853–856

dependency, 1112
dependency graph, Visual Studio,

446–447
DependencyObject, 853, 1052, 1112
DependencyProperty, 859
DependencyPropertyChanged, 855
DependencyPropertyChanged

EventArgs, 855
DependencyProperty.Register, 855
dependent transactions, 721–729
DependentClone, 716, 721, 728
DependentCloneOption, 721
DependentServices, 795
DependentTransaction, 721–729
deployment, 469–486

application life cycle, 465–466
assemblies, 468, 490
ClickOnce, 470, 471–477
CLR, 467
COM, 465
manifest, 474
.NET Framework, 465, 467
.NET Runtime, 471
packages, web applications,

480–481
planning, 466–467
RAM, 467
requirements, 467
traditional, 471–473
web applications, 479–481
Windows Installer, 470
Windows Store, applications,

466, 479–484
xcopy, 466, 468, 472–473

depth of inheritance, 453
Dequeue, 242
derived classes, 90, 95–99, 176–177

derived interfaces, 104–105
DeriveKeyMaterial, 619
DES. See Data Encryption Standard
Descendants, 310
Description, 1192
[Description], 1414
design by contract, 522
design view editor, Visual Studio,418
Design View window, Visual Studio,

434
designers, WF, hosting, 1428–1432
DesignerView, 1430
destructors, 354–357
Detached, 942
DetailsComplete, 1425
DetailsView, 1271
DHTML. See Dynamic HTML
diagnostics

code contracts, 522–528
event logging, 522, 540–548
performance, 548–553
tracing, 528–540
WCF, 1351–1353

dictionaries. See also resource
dictionaries

key types, 252–254
lookups, 259
sort, 258–259

DictionaryTKey, TValue,258, 259,
277

DiffGram, 1022, 1026
DiffuseMaterial, 1099
Digital Signature Algorithm (DSA),

616
dimensions, arrays, 132–133
Direct, 858
DirectionalLight, 1100
directories, 696–697, 1179
Directory, 666, 667
DirectoryCatalog, 869, 873,

892–893
DirectoryInfo, 666, 667, 700, 702
DirectoryName, 668
DirectorySeparatorChar, 669
DirectoryServicesPermission, 625
dirty reads, 729
disconnected record set, 922
DiscreteDoubleKeyFrame,

1095

discretionary access control list
(DACL), 621

dispatch interfaces, 633–634
DispatcherObject, 1054
DispatcherSynchronizationContext,

339
DispatcherTimer, 597
DispEventAdvise, 659
DispEventUnadvise, 659
DispId, 653
DisplayAllDocuments(), 115
DisplayAllNodes, 250
DisplayBits, 264
DisplayExtensions, 1318
DisplayFile, 692, 693
DisplayFormatAttribute, 1300
DisplayName, 792, 795, 815
DisplayPrompt, 1412
DisplayTemplates, 1322
DisplayTransactionInformation, 721
DisplayTree, 308
DisplayTypeInfo, 387–388
Dispose(), 141, 354–357, 405, 723
Distinct, 299–300, 982
Distributed Routing Table (DRT),

1431
Divide, 867
Divide(), 146
.DLL, 487–488, 509, 635
DLR. See dynamic language

runtime
Dns, 758
DNS names, 756–759
DnsLookup, 758
DNSLookupResolver, 757
DnsPermission, 625
Dock, 859
DockPanel, 859, 1067–1068,

1121, 1092
Document Object Model (DOM),

998, 1009–1013, 1214, 1267
Document Outline, Visual

Studio, 437
DocumentManager, 243
DocumentManagerT, 115, 116
DocumentManagerTDocument,116
documents, XML

dynamic, 1043–1045
fixed, 1155, 1168–1171

bindex.indd 1491 30-01-2014 19:49:29

1492

entities – ExitActionsDocument – Entities

flow, 1155, 1164–1168
static, 1042–1043
WPF, 1155–1175

FixedDocument,
1168–1171

FlowDocument, 1164–1168
printing, 1173–1175
TextElement, 1156–1164

XML
LINQ to Query,

1042–1045
reading, 1045–1046
writing, 1046–1047

Documents And Settings, 477
DocumentText, 754
DocumentViewer, 1168–1169
DOM. See Document Object Model
domains

Active Directory Domain
Services Integration, 1442

application
assemblies, 490, 499–502
dynamic loading, 501
.NET Framework, 11–13

DomainTest.exe, 501–502
DoThat, 581
DoTheJob, 579, 583
DoThis, 581
DOUBLE, 634
Double, 852
double, 34, 362, 383
DoubleAnimationUsingKeyFrames,

1094–1095
do . . . while, 42, 43
DownloadFile, 738
DownloadString, 334
downloadString, 334
DownloadStringAsync, 335
DownloadStringCompleted, 335
DownloadStringTaskAsync, 336
DrawingBrush, 1061–1062
DriveInfo, 666, 693–694
DropCreateDatabaseAlways, 1316
DropDownList, 1273

Label, 1256
SelectedValue, 1275

DRT. See Distributed RoutingTable
DSA. See Digital SignatureAlgorithm
dual interfaces, 634

duplex communication, 1372–1374
WCF, 1374

DuplicateEmail, 1236
DuplicateUserName, 1236
Duration, 1091
DWORD, 361
dynamic, 313, 314–318, 874, 1164
dynamic documents, 1043–1045
Dynamic HTML (DHTML), 1283
dynamic language extensions,

313–324, 646
dynamic language runtime (DLR),

313–314
dynamic loading, 496–499, 502
Dynamic Update, WF workflows,

1427–1428
DynamicAssembly/CodeDriver. cs,

497
DynamicClass, 315–316
DynamicDataRoute, 1332
DynamicHyperLink, 1324
DynamicObject, 313, 321–322
DynamicPartitionerForArray

TSource, 306
DynamicResource, 1075–1076
DynamicUpdateMap, 1427–1428
DynamicUpdateServices,

1427–1428
DynamicValidator, 1329
DynDate, 701

e
E, 51
eager loading, 978–979
early binding, 634
EasingDoubleKeyFrame, 1095
EasingFunction, 1092
EC Diffie-Hellman, 616, 618
ECDSA. See Elliptic Curve Digital

Signature Algorithm
ECDsaCng, 618
EditItemTemplate, 1278, 1279
EditorExtensions, 1322
ElapsedEventArgs, 598
ElapsedEventHandler, 598
ElasticEase, 1092
ElementName, 1112
Elements, 310

elements
.NET Framework, XAML,

851–861
properties, 851

#elif, 55–56
Ellipse, 1056, 1168
Elliptic Curve Digital Signature

Algorithm (ECDSA), 616
Else, 1410–1411
else, 37–38, 1002
#else, 55–56
Embedded, 826
EmissiveMaterial, 1099
EmitDefaultValue, 1355
Empty, 304–305
Empty template, 1298
EnableCollectionSynchronization,

337
Enabled, 16, 598
enableDebug, 1020
EnableRequest, 781
Encoding.ASCII, 764
encryption, 614–621
encryptor, 619
EndExecuteReader, 936
EndForm, 1318
EndGetResponse, 743
#endif, 55–56
EndInvoke, 334
EndofStreamException, 393
EndPoint, 1372
EndPointCollection, 1441
EndReceive, 1460
#endregion, 56
endRequest, 1292
EndSaveChanges, 1396–1397
EnforceConstraints, 947
EnglishName, 813
EnlistDurable, 716
enlistedTransaction, 732
EnlistPromotableSinglePhase, 716
EnlistTransaction, 717
EnlistVolatile, 716, 731, 732
Enqueue, 242
Ensures, 524
EnsuresOnThrowTException,

522
EnterActions, 1078
EnterUpgradableReadLock, 594
Entities, 1395

Document (continued)

bindex.indd 1492 30-01-2014 19:49:29

1493

entities – ExitActionsDocument – Entities

elements
.NET Framework, XAML,

851–861
properties, 851

#elif, 55–56
Ellipse, 1056, 1168
Elliptic Curve Digital Signature

Algorithm (ECDSA), 616
Else, 1410–1411
else, 37–38, 1002
#else, 55–56
Embedded, 826
EmissiveMaterial, 1099
EmitDefaultValue, 1355
Empty, 304–305
Empty template, 1298
EnableCollectionSynchronization,

337
Enabled, 16, 598
enableDebug, 1020
EnableRequest, 781
Encoding.ASCII, 764
encryption, 614–621
encryptor, 619
EndExecuteReader, 936
EndForm, 1318
EndGetResponse, 743
#endif, 55–56
EndInvoke, 334
EndofStreamException, 393
EndPoint, 1372
EndPointCollection, 1441
EndReceive, 1460
#endregion, 56
endRequest, 1292
EndSaveChanges, 1396–1397
EnforceConstraints, 947
EnglishName, 813
EnlistDurable, 716
enlistedTransaction, 732
EnlistPromotableSinglePhase, 716
EnlistTransaction, 717
EnlistVolatile, 716, 731, 732
Enqueue, 242
Ensures, 524
EnsuresOnThrowTException,

522
EnterActions, 1078
EnterUpgradableReadLock, 594
Entities, 1395

entities
ADO.NET Entity Framework,

972–973
attaching/detaching, 985
storing changes, 985–986

classes, transactions, 712–713
LINQ, 280–283
WCF Data Services, 1396–1397

Entity, 1395–1396
Entity Framework. See ADO.NET

Entity Framework
Entity SQL, 980–981
EntityCommand, 980
EntityDataReader, 980
EntityDataSource, 1256,

1257–1260, 1262
EntityDescriptor, 1395–1396
EntityObject, 972, 1257
EntityParameter, 980
EntitySetRights, 1383
EntityState, 985, 1396
EntityState.Modified, 985
EntityTemplates, 1327
EntityType, 981
EntityTypeMapping, 971
Entries, 543
EntryPoint, 661
enum, 902
EnumDataTypeAttribute, 1300
Enumerable, 304, 308
EnumerateFiles(), 668
EnumerateHeaders, 744
enumerations, 43–45, 140–146
Enumerator, 142
enumerators, 111, 140, 143, 145–146
Enum.Parse(), 45
EnvironmentPermission, 625
equality, 162–163
Equals, 236, 254, 255
Equals(), 36, 86, 147–149, 162–163
Error, 529–530, 1134
#error, 56
error handling

asynchronous programming,
326, 341–344

with exceptions, .NET
Framework, 13

interop, 636–637
WPF data binding, 1132–1139

ErrorMessage, 1269
Errors, 498
errors, 109

ScriptManager, 1276–1277
ErrorsChanged, 1135
Errors.resw, 842
ErrorTemplate, 1133
escape sequence

char, 35
strings, 36

ETW. See Event Tracing for
Windows

event, 590
event handlers, class data members,

67
event listeners, 203–204, 206–207
event logging, 522

architecture, 541–542
classes, 542–543
diagnostics, 537–548
Windows Services, 802–803

event publisher, 201–203
Event Tracing for Windows (ETW),

537–540
event triggers, 1092–1094
event-based asynchronous pattern,

326, 335
EventInfo, 382
EventLog, 540
EventLogEntry, 542
EventLogInstaller, 542
EventLogTraceListener, 531, 540
EventManager. RegisterRoutedEvent,

858
EventName, 1293
EventProviderTraceListener,

531, 537
events, 201–208

ASPX page model, 1256
bubbling, 856–858
class data members, 67
delegates, 184
dependency properties,

855–856
interop, 637
Page, ASPX page model,

1258–1260
thread synchronization,

585–592

tunneling, 856–858
weak, 204–205
WinRT, 904

EventTrigger, 1089, 1092–1094
EventTypeFilter, 533
Everything permission set, 626
ex, 397
<example>, 52
Excel, 836
Except, 299–300, 982
Exception, 402, 408
<exception>, 52
exception handling, 392
Exception.Message, 398
exceptions, 391–411

caller information, 409–411
catch, 394
catching, 393–402

from other code, 399
user-defined, 403–405

classes, 392–393
CLR, 631
debugging, 399
finally, 394
modifying, 402
multiple catch blocks, 396–399
.NET Framework, 392
System, 393
throwing, 394

user-defined, 405–407
try, 394
try/finally, 392
user-defined, 402–409
Visual Studio, 444–445

ExceptionValidationRule, 1138
ExceptWith, 262
.EXE, 487–488, 631

executables, 26
Execute, 1409–1410, 1414, 1423
ExecuteAssembly(), 500, 501
ExecuteCommand, 800
ExecuteNonQuery(), 928–929
ExecuteReader(), 928, 929
ExecuteReaderAsync, 937
ExecuteScalar(), 928, 930
ExecuteTask, 1423
ExecuteXmlReader(), 930–931
Exists, 524, 668
ExitActions, 1078

bindex.indd 1493 30-01-2014 19:49:29

1494

files – FrameworkElementExand – FilePropertiesAndMovement

Expand, 1394
$expand, 1394
Expander, 1066
ExpandObject, 322–324, 849
ExpectedException, 459
Expires, 1238
explicit casts, 172
explicit conversions, 159–161
ExplicitCapture, 222–223
ExponentialEase, 1092
Export

Calculator, 868
PartBuilder, 873
SpeedExport, 882

export, MEF, 875–884
metadata, 881–883
methods, 879–880
properties, 879–880

export providers, MEF, 889–892
ExportAttribute, 882
exported types, assemblies, 490
ExportInterfaces, 873
ExportMetadata, 881
ExportsChanged, 891
ExportsChangedEventArgs, 891
Expression, 308, 938
Expression Blend, 848
Expression Design, 848
expression trees, 307–310
expressions, 1261–1262. See also

lambda expressions
regular, 221–228
resource, 1261–1262

ExpressionT, 307–310
ExpressionTextBox, 1416
ExtenderControl, 1294
extensibility. See also Managed

Extensibility Framework WCF
eXtensible Application Markup

Language (XAML), 845–862
arrays, 852
asynchronous pattern,

328–329
attached properties, 859–861
bubbling events, 856–858
CLR, 861
collections, 852
constructors, 852–853
cultures, 813–814

data type conversions, 832
dependency properties,

853–856
Expression Blend, 848
Expression Design, 848
extension methods, 859
generics, 848, 852
ListBox, 329, 850
MainWindw.xaml, 428
markup extensions,

861–863
namespaces, 848
.NET Framework, 845

attributes, 851–861
classes, 849–851
data types, 851–861
elements, 851–861
namespaces, 850
objects, 848–849
properties, 851–861

reading, 863–864
resource dictionaries

satellite assemblies, 834
WPF localization,

833–837
StringArrayConverter, 1126
TextBox, 328
TreeView, 1140
tunneling events, 856–858
Visual Studio, 417, 419
WF, 845

activities, 1415–1416
workflows, 1420

Windows 8, 842
applications, 482, 845

WinRT, 898, 890
WPF, 19, 845, 1050

data binding, 1114
writing, 863–864
XML, 848
x:Static, 833

Extension, 668
extensions, methods, methods

dynamic language, 313–324,
646

FPSE, 470
markup, 861–863
methods

classes, 87–88

LINQ, 284–285
XAML, 849

WF, 1422–1423
extern, 100
external dependencies, 457–459

F
F, 51
\f, 35
Fakes Framework, 462–463
FallbackValue, 1113
fault contract, 1357–1358
Faulted, 1372
FaultException, 1358
FieldInfo, 382, 386
FieldName, 374
FieldNameAttribute, 374, 377
fields

class data members, 67
instance, this, 31
readonly, 78–79
usage conventions, 63
variables, 29–31

FieldTemplates, 1327
FIFO. See first in, first out
Figure, 1163, 1164
File, 666, 667, 696, 1289
file system

management, 666–674
transactions, 737–740

FileAccess, 682
FileAuthorization, 1233
FileDialogPermission, 625
FileInfo, 666, 667
FileIOPermission, 624–626,

 661
FileIOPermissionSet, 632
FileIOSecurity, 627
FileMode, 682
fileNamesForPath, 598
FileNotFound, 403
FileNotFoundException, 404
FileOpenPicker, 900, 901, 1203
FILEPATH, 508
FilePathResult, 1303
FileProperties, 670–674
FilePropertiesAndMovement,

674–677

bindex.indd 1494 30-01-2014 19:49:29

1495

files – FrameworkElementExand – FilePropertiesAndMovement

LINQ, 284–285
XAML, 849

WF, 1422–1423
extern, 100
external dependencies, 457–459

F
F, 51
\f, 35
Fakes Framework, 462–463
FallbackValue, 1113
fault contract, 1357–1358
Faulted, 1372
FaultException, 1358
FieldInfo, 382, 386
FieldName, 374
FieldNameAttribute, 374, 377
fields

class data members, 67
instance, this, 31
readonly, 78–79
usage conventions, 63
variables, 29–31

FieldTemplates, 1327
FIFO. See first in, first out
Figure, 1163, 1164
File, 666, 667, 696, 1289
file system

management, 666–674
transactions, 737–740

FileAccess, 682
FileAuthorization, 1233
FileDialogPermission, 625
FileInfo, 666, 667
FileIOPermission, 624–626,

 661
FileIOPermissionSet, 632
FileIOSecurity, 627
FileMode, 682
fileNamesForPath, 598
FileNotFound, 403
FileNotFoundException, 404
FileOpenPicker, 900, 901, 1203
FILEPATH, 508
FilePathResult, 1303
FileProperties, 670–674
FilePropertiesAndMovement,

674–677

files. See also resource files
ACL, 695–696

adding and removing,
698–699

Copy, 674–677
CopyTo, 674–677
Delete, 674–677
manifest, ClickOnce, 472
manipulation of, 666–674
mapped-memory, 694–693
message resource, 544
Move, 674–677
.NET Framework classes,

667–669
objects, 435

projects, Visual Studio, 418
ReadAllText, 677–679
reading, 677–679
security, 695–699
streams, 680–686
text, 686–694
Windows Store applications,

1180–1182
WriteAllText, 679–680
writing, 679–680

FileSecurity, 621, 623, 696, 698
FileShare, 682
FileStream, 405, 621, 681,

682–686, 1001, 1031
FileSystemAccessRule, 622,

623, 698
FileSystemInfo, 666
FileSystemRights, 622
FileSystemSecurity, 621
fileTypeFilter, 901
FillBehavior, 1091
FillData, 593
Filter, 533–534
$filter, 1389
FilterAttribute, 1313
Filters, 1328
filters

actions, ASP.NET MVC,
1312–1313

LINQ, 289–291
WCF, 1379

Label, 1131
namespaces, classes,

1013–1015
[FINAL], 766

Finalize, 353, 354, 413
Finalize(), 86
finalizers, 67
finally, 43, 394, 397, 589
Find, 237, 238
FindAll, 238
FindIndex, 237, 238
FindLastIndex, 237
FindResource, 835, 1072, 1073
Fire_Completed, 648
first in, first out (FIFO), 241–242,

1403
First.cs, 25
FirstReturnedRecord, 956
Fixed, 986
fixed, 365–366
fixed documents, 1155, 1168–1171
FixedDocument, 1168–1171
FlickrRequest, 329, 331
FLOAT, 634
float, 34, 159, 174
Floater, 1163, 1164
floating-point value types, 34
flooding, 1428
flow control, 37–45

conditional statements,
37–40

jump statements, 43
loops, 40–43

flow documents, 1155,
1164–1168

FlowDocument, 1164–1168
FlowDocumentPageViewer, 1165
FlowDocumentReader, 1165
FlowDocumentScrollViewer, 1165
Flush, 529
FocusedStates, 1096
FolderPicker, 1201
folders, .NET Framework classes,

667–669
folding editor, Visual Studio,

431–432
FontFamily, 1156
fonts, 1156–1157
FontSize, 1077, 1154
FontStretch, 1156
FontStyle, 1156
FontWeight, 1156
Foo(), 116, 128, 534, 874
FooterTemplate, 1278

For, 555, 567
for, 43

jagged arrays, 134
local variables, 29
loops, 40–41
Parallel, 553

ForAll, 524
ForceRollback, 731
ForEach, 235–236, 561
foreach, 131, 141, 694, 1459

arrays, 141
closures, 200–201
compilers, 235
DisplayAllNodes, 250
enumerators, 140
FileSecurity, 696
funcs, 200
GetEnumerator(), 111
Grid, 859
int, 109
iteration, 42
Length, 134
LINQ, 285
loops, 42–43
Razor syntax, 1306
sorted lists, 252
while, 201

Foreground, 1077
foreign key, 946–947
ForeignKeyConstraint, 945
fork and join, 937
Format, 210
format strings, 50–51, 215–216
FormatException, 398, 406
FormatName, 1456
Formatter, 1457
FormExtensions, 1318
FormsAuthentication, 1233
FormsAuthentication.

RedirectFromLoginPage,
 1236

FormView, 1271
FPSE. See FrontPage Server

Extensions
Fragment, 1026
Frame, 1064, 1191
FrameworkElement, 874, 1053,

1072, 1112
DataContext, 1114
LogicalTreeHelper, 1166

bindex.indd 1495 30-01-2014 19:49:30

1496

GetUserInfo – HtmlHelperFriendlyName – GetUpdatedWorkflow

FriendlyName, 500
from, 290–291
FromAsync, 1396–1397
fromInclusive, 524
FrontPage Server Extensions (FPSE),

470
FullName, 668
FullTrust permission set, 626
fully qualified name, 45
Funcdouble, double, double, 879
funcs, 200
Funcstring, string, 197, 334
FuncT, 190–191
function members, 67–78

G
G, 51
GAC. See global assembly cache

(GAC)
GAC_MSIL, 504
gacutil, 508
gacutil /1, 504
gacutil /1 mydll, 504
gacutil /u mydll, 504
garbage collection (GC)

managed types, 361
memory, 10, 351–353
.NET Framework, 10–11,

352–353, 633
GC.Collect, 353
General Sequence Diagram, 449
GenerateInMemory, 498
generation operators, 304–305
GenericPrincipal, 602
generics, 107–128

binary code reuse, 109–110
class hierarchies, 114
classes, 107, 110–114
CLR, 108
code bloat, 110
collections, 230
compilers, 108
constraints, 115–117
contra-variance, 119, 121–122
covariance, 119–121
default values, 114–115
errors, 109
IL, 107

indexers, 120
inheritance, 117–118
interfaces, 118–122
library classes, 184
methods, 107, 124–128
names, 110
.NET Framework, 107, 119
Object, 107
performance, 108–109
specialization, 117–118
static members, 118
structs, 122–124
type safety, 109
value types, 114
WeakEventManager, 207–208
WinRT, 902
XAML, 848, 852

geolocation, Windows Store,
1213–1215

Geometry, 1056–1057
GeometryModel, 1099
GET, 1230, 1289, 1319, 1367,

1386–1387
Get, 264
get, 73–74, 583, 854
GetAccessControl, 621, 696,

700, 702
GetAccessRules, 621
GetAddressBytes, 757
GetAssemblies(), 502
GetAString, 186
GetAsync, 345, 1387
GetAttribute, 1003
GetAuditRules, 621
GetCallbackChannel, 1373
GetConstructor(), 382
GetConstructors(), 382
GetConsumingEnumerable, 273
GetCurrent, 1275–1276
GetCustomAttributes, 385–386
GetDateContent, 1170
GetDefaultMembers(), 382
GetDeferral, 910
GetDIBits(), 16
GetDirectories(), 668
GetDocument, 243, 251
GetEnlistment, 733
GetEnumerator(), 111, 112, 134,

140, 144

GetEvent(), 382
GetEvents(), 382
GetExecutingAssembly, 820
GetExportT, 890
GetField(), 382
GetFields(), 382
GetFileNames, 600, 704
GetFiles(), 668
GetFileSystemInfos(), 668
GetHandler, 1231
GetHashCode, 252, 255
GetHashCode(), 36, 85–86
GetHeaderContent, 1169
GetIDsOfNames, 633
GetIdsOfNames, 646
GetManifestResourceNames, 820
GetMember(), 382
GetMembers(), 382
GetMenuContent, 1170
GetMenusByName, 1385
GetMessageEnumerator, 1459
GetMethod, 382
GetMethods, 382
GetNamespace(), 47
GetNextTextElement, 806
GetNullableType(), 124
GetObject, 820
GetObjectByKey(), 974
GetOperations, 867
GetProperties(), 382
GetProperty(), 382
GetPublicQueues, 1454, 1455
GetPublicQueuesByCategory,

1454
GetPublicQueuesByLabel, 1454
GetPublicQueuesByMachine, 1454
GetRandomQuoteOfTheDay, 779
GetReaders, 1165
GetResponse, 755
GetRolesForUser, 611
GetStream, 761
GetString, 820, 839
GetSubKeyNames(), 702
GetText1, 1260–1261
GetTextElementEnumerator, 806
GetType, 381
GetType(), 36, 47, 86
GetUpdatedWorkflow,

1427–1428

bindex.indd 1496 30-01-2014 19:49:30

1497

GetUserInfo – HtmlHelperFriendlyName – GetUpdatedWorkflow

GetEvent(), 382
GetEvents(), 382
GetExecutingAssembly, 820
GetExportT, 890
GetField(), 382
GetFields(), 382
GetFileNames, 600, 704
GetFiles(), 668
GetFileSystemInfos(), 668
GetHandler, 1231
GetHashCode, 252, 255
GetHashCode(), 36, 85–86
GetHeaderContent, 1169
GetIDsOfNames, 633
GetIdsOfNames, 646
GetManifestResourceNames, 820
GetMember(), 382
GetMembers(), 382
GetMenuContent, 1170
GetMenusByName, 1385
GetMessageEnumerator, 1459
GetMethod, 382
GetMethods, 382
GetNamespace(), 47
GetNextTextElement, 806
GetNullableType(), 124
GetObject, 820
GetObjectByKey(), 974
GetOperations, 867
GetProperties(), 382
GetProperty(), 382
GetPublicQueues, 1454, 1455
GetPublicQueuesByCategory,

1454
GetPublicQueuesByLabel, 1454
GetPublicQueuesByMachine, 1454
GetRandomQuoteOfTheDay, 779
GetReaders, 1165
GetResponse, 755
GetRolesForUser, 611
GetStream, 761
GetString, 820, 839
GetSubKeyNames(), 702
GetText1, 1260–1261
GetTextElementEnumerator, 806
GetType, 381
GetType(), 36, 47, 86
GetUpdatedWorkflow,

1427–1428

GetUserInfo, 1404–1405
GetValue, 733
GetValue(), 134, 702, 853, 854
GetValueKind(), 702
GetValueNames(), 702
GetWords, 597
global application class, ASP.NET,

1233–1234
global assembly cache (GAC),

15, 490
ClickOnce, 472, 473
shared assemblies, 504–505,

511
global clouds, 1430
global.asax, 122
globalization, 806
<globalization>, 830
globally unique identifiers (GUIDs),

7, 503, 724, 1453
assemblies, 14
initializeData, 531

GoBack, 752
GoHome, 752
goto, 39, 43, 198
GoToPage, 1108
GradientStop, 852
GradientStops, 852
graphs, P2P, 1428
Grid, 859, 1104, 1112

FlowDocument, 1165
GetMenuContent, 1170
WPF, 1070–1071

GridView, 1190, 1192, 1257, 1324
BoundField, 1278
EntityDataSource, 1275
sort, 1271

group, 292–294
GroupBox, 815, 1064
GroupBy, 293, 982
groupby, 293
GroupCollection, 227
groups

DataGrid, 1146–1148
joins, 296–299
LINQ, 292–294

nested objects, 293–294
regular expressions, 226–228

GroupStyle, 1147

Guid, 653
guidgen.exe, 1453
GUIDs. See globally unique

identifiers
gyrometer, 1216, 1219

H
HandleErrorAttribute, 1313
HandleOneError, 343
handlers

ASP.NET, 1229–1233
event, class data members, 67
Windows Services, 775–774,

787
HandleWebSocket, 769–770
HasAttributes, 1001, 1003
HasError, 1134
HasErrors, 1432
HashSetT, 260, 277, 988
HashTable, 230
HasValue, 1001
HEAD, 1230
HeaderedContentControl,

1065–1066
HeaderedItemsControl, 1067
headers, 743–746
HeaderTemplate, 1278
heap

managed, 349–351
reference types, 32,

108, 161
helpers

ASP.NET MVC, 1308,
1318–1323

EditorExtensions, 1322
lists, 1320–1321
strong data typing, 1321
templates, 1305–1306

WCF Data Services, 1380
web application deployment,

479
Windows 8, 842

HelpLink, System.Exception, 399
HelpText, 791
hidden files, 426
HierarchicalDataTemplate,

1081, 1131, 1139, 1140

hierarchies,
classes

generics, 114
WPF, 1053–1055

constructors, 96–99
depth of inheritance, 453
streams, 680–681
tasks, 565–562
WebRequest, 754–756
WebResponse, 754–756

historical debugging, 444
HKCF. See HKEY_CURRENT_

CONFIG
HKCR. See HKEY_CLASSES_

ROOT
HKCU, 654, 700. See also HKEY_

CURRENT_USER HKEY_
CLASSES_ROOT (HKCR)

HKEY_CURRENT_CONFIG
(HKCF), 700

HKEY_CURRENT_USER (HKCU),
700

HKEY_DYN_DATA, 700
HKEY_LOCAL_MACHINE

(HKLM), 484, 700
HKEY_PERFORMANCE_DATA,

700
HKEY_USERS (HKUSR), 700
HKLM. See HKEY_LOCAL_

MACHINE
HKUSR. See HKEY_USERS
HorizontalAlignment, 1163
hosting

ASP.NET, 1226–1228,
1390–1391

WCF, 1368–1370
Data Services, 1383–1384
workflows, 1424–1427

WF, designers, 1428–1432
HRSESULT, 651, 656
HTML

AJAX, 1283
ASP.NET, 1223–1224
attributes, 1320
displaying output, 746–756

Html, 1318
<html>, 1263
HtmlHelper, 1318–1323

bindex.indd 1497 30-01-2014 19:49:30

1498

HTTP – ILookupTKey ImageBrush – int

HTTP, client application,
WCF Data

cookies, 1237–1239
DELETE, 1369, 1397

WCF Data Services, 1396
GET, 1303, 1313, 1314
GetAsync, 1387

LINQ, 1394
REST, 1382
SOAP, 1382

MERGE, 1396
MSMQ, 1450
networking, 742
POST, 1320, 1367, 1397

WCF Data Services, 1396
PUT, 1369
Services, 1385–1388
WCF, 463, 1340, 1363–1365

Data Services, 1380
WebRequest, 754–756
WebResponse, 754–756

HttpApplication, 1234
HttpBrowserCapabilities, 1234
HttpClient, 742, 1319, 1385, 1386,

1391
asynchronous web service

call, 742–743
headers, 743–745

HttpContent, 745
HttpContext, 122, 1218, 1233, 1234
HttpCookie, 1237
HttpException, 1231
HttpForbiddenHandler, 1231
HttpMessageHandler, 745–746
HttpRequest, 1230–1231,

1234–1236
HttpRequestHeaders, 744
HttpResponse, 1224, 1225
HttpResponseHeaders, 744
HttpSessionState, 1236
HttpWebRequest, 334, 755
Hungarian notation, 58

I
IAccount, 126
IANA. See Internet Assigned

Numbers Authority
IAsyncResult, 334, 934

ICalculator, 449, 867
Calculator, 868, 870
convention-based part

registration, 872
ICalculatorExtension, 863, 874, 891
ICloneable(), 136, 735
ICollection, 231, 242
ICollectionT, 230, 231, 242, 988,

1299
ICollectionViewLiveShaping, 1148
ICommand, 1430
ICommandSource, 1108–1109
IComparable, 118, 136, 137, 239
IComparer, 138, 817
IComparerT, 231
_IcompletedEvents, 647–648
IConnectionPoint, 649
IConnectionPointContainer, 649
IConnectionPointContainerImp, 648
Id, 1423
IDataErrorInfo, 1134–1135
IDataflowBlock, 599
IDE. See integrated development

environment
identifier rules, 558
IdentifyReference, 621
identity, 602–607
IdentityReference, 622
IDictionaryEnumerator, 838
IDictionarystring, object, 881
IDictionaryTKey, TValue, 231, 1299
IDispatch, 633–634

CCW, 649
RCW, 643
sink object, 658

IDisposable
101, 141, 355–356, 923, 1301

IDisposable.Dispose, 926
IDL. See Interface Definition

Language
Idle, 1412
IDocument, 115–116
IDocumentPaginatorSource, 1164
IDuplexSessionRouter, 1375
IE. See Internet Explorer
IEasingFunction, 1092
IEnitityWithRelationships, 972
IEnlistmentNotification, 731, 735
IEntityWithChangeTracker, 972
IEntityWithKey, 972

IEnumerable, 112, 131, 140–141,
231, 235, 556, 1459

IEnumerableMenu, 1292
IEnumerableT, 112, 230, 231

Accumulate(), 126
AddRange, 234
Import, 863
LINQ, 284–285
ParallelEnumerable, 306
QueueT, 242

IEnumerationT, 881
IEnumerator, 131, 141, 144, 235,

1459
IEqualityComparer, 148–149
IEqualityComparerT, 231
IEquatable, 147, 255
IF, 1410–1411
if, 37–38, 812
#if, 55–56
IFoo, 116
IFormatProvider, 209–210, 809, 810
IFormattable, 85, 215, 217, 218, 389
IgnoreCase, 223
IgnoreComments, 1001
IgnoreIdentityConstraints, 1001
IgnoreInlineSchema, 1001
IgnorePatternWhitespace, 223
IgnoreProcessingInstructions, 1001
IgnoreSchema, 1022, 1026
IgnoreSchemaLocation, 1001
IgnoreWhitespace, 1001
IGrouping, 293
IHttpHandler, 1230, 1231
IID. See interface ID
IImageRequest, 331
IIndex, 120
IIndexT, 120
IInputStreamReference, 902
IInspectible, 902
IIS. See Internet Information

Services
IKernelTransaction, 738, 739
IL. See Intermediate Language
ildasm, 14, 316, 492, 507, 819
IList, 231
IList <string>, 901
IListT, 230, 242, 1299
IListTKey, 252
IListTValue, 252
ILookupTKey, TValue, 231

bindex.indd 1498 30-01-2014 19:49:30

1499

HTTP – ILookupTKey ImageBrush – int

IEnumerable, 112, 131, 140–141,
231, 235, 556, 1459

IEnumerableMenu, 1292
IEnumerableT, 112, 230, 231

Accumulate(), 126
AddRange, 234
Import, 863
LINQ, 284–285
ParallelEnumerable, 306
QueueT, 242

IEnumerationT, 881
IEnumerator, 131, 141, 144, 235,

1459
IEqualityComparer, 148–149
IEqualityComparerT, 231
IEquatable, 147, 255
IF, 1410–1411
if, 37–38, 812
#if, 55–56
IFoo, 116
IFormatProvider, 209–210, 809, 810
IFormattable, 85, 215, 217, 218, 389
IgnoreCase, 223
IgnoreComments, 1001
IgnoreIdentityConstraints, 1001
IgnoreInlineSchema, 1001
IgnorePatternWhitespace, 223
IgnoreProcessingInstructions, 1001
IgnoreSchema, 1022, 1026
IgnoreSchemaLocation, 1001
IgnoreWhitespace, 1001
IGrouping, 293
IHttpHandler, 1230, 1231
IID. See interface ID
IImageRequest, 331
IIndex, 120
IIndexT, 120
IInputStreamReference, 902
IInspectible, 902
IIS. See Internet Information

Services
IKernelTransaction, 738, 739
IL. See Intermediate Language
ildasm, 14, 316, 492, 507, 819
IList, 231
IList <string>, 901
IListT, 230, 242, 1299
IListTKey, 252
IListTValue, 252
ILookupTKey, TValue, 231

ImageBrush, 1062
ImageFailed, 1201
ImageOpened, 1201, 1202
ImagePath, 1195
images, Windows Store application

storage
reading, 1201
writing, 1199–1201

IMessageFormatter, 1457
immutable collections, 226–268
immutable data type, 211
IModelBinder, 1315–1316
Impersonation, 1362
implementation inheritance, 90–99

abstract classes, 94
abstract functions, 94
calling base versions, 93
constructors, 95–99
hiding methods, 92–93
versus interface inheritance, 90
sealed classes, 94–95
sealed methods, 94–95
virtual methods, 91–92

implicit casts, 172
implicit conversions, 158–159
implicit permissions, 633
Import, 863, 864, 869
import, 25

MEF, 884–889
collections, 863–887

ImportMany, 864, 881
ImportProperties, 873
ImportProperty, 873
ImportsSatisfied, 864
IMyMessage, 1373
IMyMessageCallback, 1372, 1373
In, 653
in, 121
inclinometer, 1216, 1218–1219
Include, 979, 982
IncludeExceptionDetailInFaults,

1360
Increment, 552
increment operators, 152
Index, 1326, 1328
indexers

arrays, 131, 132–133
class function members, 67
generics, 120

indexing operator, 152
IndexOf, 210, 237
IndexOfAny, 210
IndexOutOfRangeException, 131
indirection and address operator,

152
InDoubt, 731, 732
inference

data type, variables, 28–29
delegates, 186–187

InferSchema, 1026
Information, 530
inheritance, 89–105

classes, 90
generics, 117–118
interfaces, 100–105

versus implementation
inheritance, 90

modifiers, 99–100
multiple, 90
structs, 82, 90

Inherited, 376
Inherits, 1254
Init, 1231
InitClass, 950–951
InitComplete, 1258
InitialiseDatabase, 954
initialization

for, 40
arrays, 130–131, 133
collections, 233
constructors, 78
variables, 27–28

initialization vector (IV), 619
Initialize, 790
InitializeComponent, 784, 789, 824
initializeData, 531
InitializePerformanceCounters, 551
InitializeService, 1383, 1385
InitializeViewModel, 1429–1431
Inline, 1158–1159, 1169
inlining, 74
inner joins, 294–295
InnerException, 399, 402
InnerExceptions, 344
INotifyCollectionChanged, 1127,

1394
INotifyDataError, 1104
INotifyDataErrorInfo, 1135–1138

INotifyPropertyChanged, 327, 782,
972, 1110, 1385–1386, 1421

BindableBase, 878, 1466
BindableObject, 1116, 1150

INotifyPropertyChanging, 972
input, 498
input strings, 222
InputExtensions, 1318
Insert, 210, 215
InsertAfter, 1014
InsertCommand, 955
InsertRange, 234
installation

application, ClickOnce,
475–476

assemblies, 490
Message Queuing, 1454, 1478
shared assemblies, 506
Windows Services, 788–793

Installer, 789–790
Installer System. Configuration.

Install. Installer, 789
installutil.exe, 789, 792–793, 1478
instance, 66

Assembly, 385
classes, equality, 162–163
DataContext, 332
delegates, 186–187
fields, this, 31
IE, 748
structs, equality, 162–163

InstanceCompletionAction, 1424
InstanceContext, 1367
InstanceContextMode, 1359
InstanceName, 551
InstanceStore, 1423
InstanceTable, 1424
int, 26, 32, 33

AddLast(), 113
BitArray, 263
float, 159
foreach, 109
GetNullableType(), 124
implicit conversion, 158
int?, 159
LinkedListT, 113
ListT, 232
Main(), 28
pointers, 362

bindex.indd 1499 30-01-2014 19:49:31

1500

ISimplexDataGramRouter – labelsint – IsFaulted

short, 159
TaskWithResult, 564
uint, 159

int?, 159
Int32, 852
integers, 361–362
integrated development environment

(IDE), 8, 415, 419
integrated security= SSPI, 922
Integration, 1450
IntelliSense, 416, 417, 432–433,

1214
IntelliTrace, 446
Interface Definition Language (IDL),

13, 632
interface ID (IID), 635
interfaces

code contracts, 522–525
collections, 230–231
custom, 633
derived, 104–105
dispatch, 633–634
dual, 634
generics, 118–122
inheritance, 100–105

versus implementation
inheritance, 90

interop, 633–634
outgoing, 647
WinRT, 902

InterfaceType, 653
Interlocked, 584–585
Intermediate Language (IL)

assemblies, 500
CLR, 4
CLS, 10
COM, 6, 7
COM+, 6–7
compilers, 7
data types, 8
debugging, 8
foreach, 141
generics, 107
JIT, 4–5
language interoperability, 5
.NET Framework, 7–13
platform independence, 4
reference types, 8

source code, 4
strong data typing, 8–13

application domains, 12
type safety, 157
value types, 8
Visual C++, 5–6
Visual F#, 6

internal, 66, 99
internal protected, 66
Internet Assigned Numbers

Authority (IANA), 761
Internet Explorer (IE)

instance, 748
WebBrowser, 748
XMLHttpRequest, 1283

Internet Information Services (IIS),
510, 1214, 1216, 1346

Internet permission set, 626
interop, 631–667

COM components, .NET
Framework client, 638–649

connection points, 647–649,
657–658

data types, 634–635
error handling, 636–637
events, 637
interfaces, 633–634
marshaling, 637–638
memory, 633
metadata, 632
method binding, 634
MTA, 635–636
.NET Framework components,

COM Client, 649–659
p/invoke, 659–667
RCW, 643–646
registration, 635
sink objects, 658–659
STA, 635
threads, 635–636, 646–647
WebBrowser, 746–747

Intersect, 299–300, 982
IntMethodInvoker, 185
IntValue, 316
InvalidOperationException, 124,

1300, 1359
invariants

code contracts, 523–528
cultures, 807

Invoke, 646
InvokeCalculatorAsync, 449
InvokeMember(), 498
InvokeMethod, 1411
I/O

Concurrency Visualizer, 451
Console, 50–52
.NET Framework, 680
streams, 680

IOException, 393
IOperation, 868, 872
IOrderedEnumerableTSource,291
<iostream>, 655
IOutputStream, 903
IP addresses, 757–759
IPAddress, 757
IPartImportsSatisfiedNotification,

864
IPEndPoint, 762, 764, 767
IPHostEntry, 757
IPrincipal, 602, 608
IProducerConsumerCollectionT,

231, 268
IQueryableT, 1379, 1382
IQueryableTSource, 310
IRandomAccessStream, 903, 1201
IRandomAccessStreamReference, 902
IRandomAccessStreamWith-

ContentType, 1201
IRequestHandler, 1380
IRequestReplyRouter, 1375, 1377
IResourceReader, 823, 836
is, 155
IsAbstract, 381
IsAlive, 83
IsArray, 381
IsAsync, 1125
IsAuthenticated, 607
IsBackground, 572–573
IsClass, 381
isDisposed, 357, 405
IsDocumentAvailable, 243
IsEnabled, 781, 799

CanGoBack, 1190
IsEnum, 381
IsEqualIID(), 16
IServiceProvider, 861
ISetT, 231, 259
IsFaulted, 343

int (continued)

bindex.indd 1500 30-01-2014 19:49:31

1501

ISimplexDataGramRouter – labelsint – IsFaulted

Invoke, 646
InvokeCalculatorAsync, 449
InvokeMember(), 498
InvokeMethod, 1411
I/O

Concurrency Visualizer, 451
Console, 50–52
.NET Framework, 680
streams, 680

IOException, 393
IOperation, 868, 872
IOrderedEnumerableTSource,291
<iostream>, 655
IOutputStream, 903
IP addresses, 757–759
IPAddress, 757
IPartImportsSatisfiedNotification,

864
IPEndPoint, 762, 764, 767
IPHostEntry, 757
IPrincipal, 602, 608
IProducerConsumerCollectionT,

231, 268
IQueryableT, 1379, 1382
IQueryableTSource, 310
IRandomAccessStream, 903, 1201
IRandomAccessStreamReference, 902
IRandomAccessStreamWith-

ContentType, 1201
IRequestHandler, 1380
IRequestReplyRouter, 1375, 1377
IResourceReader, 823, 836
is, 155
IsAbstract, 381
IsAlive, 83
IsArray, 381
IsAsync, 1125
IsAuthenticated, 607
IsBackground, 572–573
IsClass, 381
isDisposed, 357, 405
IsDocumentAvailable, 243
IsEnabled, 781, 799

CanGoBack, 1190
IsEnum, 381
IsEqualIID(), 16
IServiceProvider, 861
ISetT, 231, 259
IsFaulted, 343

ISimplexDataGramRouter, 1375
ISimplexSessionRouter, 1375
IsInAsyncPostBack, 1291
IsInitiating, 1356
IsInRole(), 608
IsInterface, 381
IsLiveFiltering, 1149
IsLiveGrouping, 1149
IsLiveSorting, 1149
IsLiveSortingRequested, 1153
IsMetric, 815
IsMouseOver, 1077
IsNetworkDeployed, 478–479
IsNeutralCulture, 813
ISOCurrencySymbol, 815
isolated storage, 704–707
IsolatedStorageFile, 705
IsolatedStorageFilePermission, 625
IsolatedStorageFileStream, 705, 707
IsolatedStoragePermission, 625
Isolation level, 729–731
isolation level, transactions, 729–731
IsolationLevel, 716
IsOneWay, 1357

[OperationContract], 1474
isOpen, 406
ISourceBlock, 599–600
ISpeedCapabilities, 882–883
IsPointer, 381
IsPressed, 1077
IsPrimitive, 381
IsPublic, 381
IsRequired, 1355
IsSealed, 381
IsSubsetOf, 259
IsSupersetOf, 259
IsSynchronized, 581
IsSynchronizedWithCurrentItem,

1122
IStateService, 1360
IsTerminating, 1356
IStorageItemProperties, 902
IStructuralComparable, 147
IStructuralEquatable, 147–148
IsUserInRole, 611, 1237
IsValueCreated, 867
IsValueType, 381
ITaskExtension, 1423
Item, 264, 266

ItemClick, 1190
ItemCount, 1147
itemGridView, 1183
itemListView, 1183
Items, 1128
ItemsControl, 1055, 1066–1067,

1140, 1143
ItemSource, 1128
ItemsPanelTemplate, 1081
ItemsPresenter, 1147
ItemsSource, 1143–1144
ItemTemplate, 329

CloseExtension, 891
DataTemplate, 1128
Label, 1279
listTemplate, 799
TabItem, 891
TextBlock, 1128
WPF, 1086–1087

iteration
for, 40
collections, 143–145
enumerations, 140
foreach, 42
sorted lists, 252

IUnknown, 633, 634, 649
RCW, 643
WinRT, 902

IV. See initialization vector
IValidationErrorService, 1432
IVectorstring, 902, 903
IVectorT, 902
IViewEngine, 1331
IWeakEventListener, 205, 206–207
IXamlTypeResolver, 861
IXPathNavigable, 1015, 1016
IXpsFixedDocumentSequence

Writer, 1172

J
jagged arrays, 133–134
Java, 25, 91
JavaScript. See also Asynchronous

JavaScript and XML
ASP.NET, 1226
DOM, 1226
dynamic language extensions,

313

Windows 8, 842
WinRT, 896

JavaScript Object Notation (JSON),
19, 1267, 1340, 1380

JIT. See Just-in-Time
JobForAThread, 569
Join, 210
join, 294–296
JoinBlock, 598
journal queues, 1452
jQuery, 1226, 1297–1298, 1319–1320
JSON. See JavaScript Object

Notation
Json, 1303
JsonRequest, 1385
JsonRequestBehavior, 1303
jump statements, 43
Just-in-Time (JIT), 4–5

K
KeepTogether, 1160
KeepWithNext, 1160
Key, 971
key exchange, 618–621
key types, 254–255
keyframe animations, 1094–1095
KeyFrames, 1094
KeyNotFoundException, 253, 258
Keys, 252
keywords, 26

class, 25
names, 60–62
namespace, 25
pointers, 358–360
reserved, 57–58

L
Label, 613

ASP.NET Web Forms, 1236
ContentControl, 1064
DropDownList, 1256
ItemTemplate, 1279
StackPanel, 1111–1112
VisualBrush, 1100
XPath, 1131

labels, 43

bindex.indd 1501 30-01-2014 19:49:31

1502

lambda expressions – ListBox ListBoxChrome– Main()

lambda expressions, 198–201
closures, 199–201
Console.WriteLine, 236
DelegateCommand, 1432
delegates, 201
ExpressionT, 308
FindIndex, 238
multiple code lines, 199
parameters, 199
Sort, 240

Language, 826
Language Integrated Query (LINQ),

279–311
aggregate operators, 302–303
conversion operators, 303–304
entities, 280–283
Enumerable, 304
expression trees, 307–310
extension methods, 284–285
filters, 289–291
from, 290–291
generation operators, 285
group, 292–294
groups, 292–294

joins, 296–299
nested objects, 293–294

HTTP GET, 1394
IEnumerableT, 284–285
IListstring, 285
inner joins, 294–295
join, 294–295
left outer join, 295–296
lists, 280–283
OfType, 290
orderby, 291–292
partitioning, 301–302
PLINQ, 305–307
providers, 310
queries

deferred execution,
285–287

operators, 287–305
set operations, 299–300

select, 293–294
sort, 291–292
string, 285
ToArray, 285
ToList, 285
WCF Data Services, 1393–1394

Where, 289
XML, 310
yield return, 285
Zip, 300–301

language interoperability
IL, 5–7
strong data typing, 9–10
translation

custom resource messages,
828

resource files, outsourcing,
829

WinRT, 897–899
/language:language, 949
LargeImageSource, 1106
last in, first out (LIFO), 245
LastAccessTime, 668
LastIndexOf, 210, 237
LastIndexOfAny, 210
LastModified, 379–380, 388
LastModifiedAttribute, 378, 387,

388
LastWriteTime, 668
late binding, 634
Launch Performance Wizard, 449
LaunchActivatedEventArgs, 1189
layer diagram, Visual Studio,

450–451
layout

ASP.NET MVC views,
1307–1310

Windows Store applications,
1190–1195

WPF, 1068–1071
LayoutAwarePage, 909, 1192, 1193,

1199
LayoutTransform, 1059–1060, 1112
lazy loading

ADO.NET Entity Framework,
978–979

MEF metadata, 883–884
LazyT, 867, 881
left outer join, 295–296
leftContent, 1263
legacy code, 527
Length, 134, 212, 668
lhs, 167
li, 1226
libraries

Activity Designer Library,
Visual Studio, 1415

ATL, 658
BCL

AJAX, 1286
.NET Framework, 16, 679

client library, WCF Data
Services, 1391–1398

data type, COM, 651–653
generic library classes, 184
portable class library, 518–519
Service Library, WCF, 1347
TPL, 16, 564

Data Flow, threads,
598–598

typelib ID, 635
LIFO. See last in first out
light, 1216–1217
#line, 56
linking, 435
LinkLabel, 748
LINQ. See Language Integrated

Query
LINQ to Query

ADO.NET Entity Framework,
981–982

XML documents, 1042–1045
LINQ to SQL, 1322
LINQ to XML, 1036, 1042–1045

dynamic documents,
1043–1045

static documents, 1042–1043
LinqDataSource, 1271
List, 328, 1159
<list>, 52
ListBox, 327

Button, 856
ControlTemplate, 1087–1089
DataContext, 1120
DataTemplate, 798
DriveInfo, 693–694
HTML helpers, 1320
IsSynchronizedWith

CurrentItem, 1122
ItemsControl, 1067
ObjectDataProvider, 1120
StackPanel, 1108
templates, 1121
ToString, 850

WebClient, 739
WPF, 1085–1086
XAML, 329, 850

ListBoxChrome, 1067–1068
listBoxIPs, 758
ListBoxItem, 1064
Listen, 763
Listener, 779
Listint, 109
ListRacer, 234
lists. See also access control list

collections, 231–241
constructors, 232–234
HTML helpers, 1320–1321
linked, 246–251
LINQ, 280–283
sort, 239–240

collections, 251–253
foreach, 252
iteration, 252
string, 252

WPF data binding, 1120–1122
adding items dynamically,

1127
Liststring, 778
ListT, 109, 230–232

AddRange, 234
arrays, 233
bool, 237
performance, 277
Sort, 239
type conversions, 241

listTemplate, 799
ListView, 1182, 1184, 1257
literals

char, 35
strings, 36–37
values, 161

live shaping, 1104, 1148–1153
LiveFilteringProperties, 1149
LiveGroupingProperties, 1149
LiveSSP, 607
liveValue, 733, 735
Load, 496, 1023, 1244, 1415
LoadComplete, 1258
LoadCompleted, 1168
LoadContentAsync, 272
LoadDataFromCultureInfo, 841
LoadDataFromRegionInfo, 841

bindex.indd 1502 30-01-2014 19:49:31

1503

lambda expressions – ListBox ListBoxChrome– Main()

Activity Designer Library,
Visual Studio, 1415

ATL, 658
BCL

AJAX, 1286
.NET Framework, 16, 679

client library, WCF Data
Services, 1391–1398

data type, COM, 651–653
generic library classes, 184
portable class library, 518–519
Service Library, WCF, 1347
TPL, 16, 564

Data Flow, threads,
598–598

typelib ID, 635
LIFO. See last in first out
light, 1216–1217
#line, 56
linking, 435
LinkLabel, 748
LINQ. See Language Integrated

Query
LINQ to Query

ADO.NET Entity Framework,
981–982

XML documents, 1042–1045
LINQ to SQL, 1322
LINQ to XML, 1036, 1042–1045

dynamic documents,
1043–1045

static documents, 1042–1043
LinqDataSource, 1271
List, 328, 1159
<list>, 52
ListBox, 327

Button, 856
ControlTemplate, 1087–1089
DataContext, 1120
DataTemplate, 798
DriveInfo, 693–694
HTML helpers, 1320
IsSynchronizedWith

CurrentItem, 1122
ItemsControl, 1067
ObjectDataProvider, 1120
StackPanel, 1108
templates, 1121
ToString, 850

WebClient, 739
WPF, 1085–1086
XAML, 329, 850

ListBoxChrome, 1067–1068
listBoxIPs, 758
ListBoxItem, 1064
Listen, 763
Listener, 779
Listint, 109
ListRacer, 234
lists. See also access control list

collections, 231–241
constructors, 232–234
HTML helpers, 1320–1321
linked, 246–251
LINQ, 280–283
sort, 239–240

collections, 251–253
foreach, 252
iteration, 252
string, 252

WPF data binding, 1120–1122
adding items dynamically,

1127
Liststring, 778
ListT, 109, 230–232

AddRange, 234
arrays, 233
bool, 237
performance, 277
Sort, 239
type conversions, 241

listTemplate, 799
ListView, 1182, 1184, 1257
literals

char, 35
strings, 36–37
values, 161

live shaping, 1104, 1148–1153
LiveFilteringProperties, 1149
LiveGroupingProperties, 1149
LiveSSP, 607
liveValue, 733, 735
Load, 496, 1023, 1244, 1415
LoadComplete, 1258
LoadCompleted, 1168
LoadContentAsync, 272
LoadDataFromCultureInfo, 841
LoadDataFromRegionInfo, 841

LoadLines, 600, 597
LoadState, 912, 1189, 1200
LoadTextBox, 1002
local, 850
Local Settings, 477
local variables, 29–31
LocalIntranet permission set, 626
Localizable, 824
localization, 805–845

ASP.NET Web Forms,
830–831

BAML, 834–837
cultures, 807–816
custom, 840–842
dates, 810–811
Multilingual App Toolkit, 842
namespaces, 842
numbers, 809–810
resource files, 817–822
resource readers, 837–841
resourceKey, 1267
sort, 816–817
System.Globalization, 806–818
Windows Forms, Visual Studio,

823–830
Windows Store applications,

842–844
WPF, 832–841

XAML resource
dictionaries, 834–838

x:Uid, 835
LocalMachine, 701
Locals window, Visual Studio, 442
LocalService, 791
LocalSqlServer, 1243
LocalSystem, 791
lock, 576, 577, 579–584
lockTaken, 585
Log, 410, 411, 543
LogDisplayName, 543
LoggedIn, 1266
logical layer

ADO.NET EntityFramework,
967–971

SSDL, 967
logical operators, 56, 152
LogicalOperationStack, 532
LogicalTreeHelper, 1165–1166
Login, 1314

login
controls, ASP.NET Web Forms,

1266–1267
views, ASP.NET MVC, 1315

login.aspx, 1266
LoginError, 1266
LoginModel, 1313
LoginName, 1262
LoginStatus, 1262
loginUrl, 1314
LoginView, 1262
logman, 537
Logo, 482
LONG, 634
long, 33, 159, 362
LongLength, 134
lookups, 258
LookupTKey, TElement, 259
loops

for, 40–41
do...while, 42
flow control, 40–43
foreach, 42–43
Parallel.ForEach, 560–561
while, 42

lower-level protocols, 759–770

M
machine.config, 1228, 1243
MachineName, 543
mageUI.exe, 474
Main

CurrentCulture, 816
DataServiceHost, 1384
Log, 410
PriorityDocumentManager,

251
ServiceHost, 1368
TraceEventType, 534–535
Type, 384
Windows Services,

775–774, 785–786
Main(), 47–49

class-level variables, 30
Console, 498
DocumentManagerT, 116
encryption, 618
executables, 26

bindex.indd 1503 30-01-2014 19:49:32

1504

Message Queuing – MultiBindingMain – Message

int, 28
multiple methods, 47–48
private, 47
public, 47
variable scope, 30

MainAssembly, 819
MainClass, 383
mainContent, 1263
MainPage, 908, 910, 1185–1187,

1192, 1194
LoadState, 1199
OnLaunched, 1188–1189

MainWindow, 1392
Categories, 1393
Readers, 1165
SearchInfo, 332
SomeData, 1133
userControls, 1128

MainWindow.xaml, 428, 912
makefiles, 436
Managed, 615
Managed Add-In Framework

(MAF), 624, 866
managed code, CLR, 4
Managed Extensibility Framework

(MEF), 863–891
architecture, 866–875
attributes, 867–872
catalogs, 892–893
containers, 889–892
contracts, 873–875
convention-based part

registration, 872–873
export, 875–884

metadata, 881–883
methods, 879–880
properties, 879–880

export providers, 889–892
import, 884–889

collections, 863–887
MAF, 866
metadata

lazy loading, 883–884
reading, 888–889

.NET Framework, 874
managed heap, 349–351
Managed Resources Editor, 821
managed types, GC, 361

manifest, 14
applications, 474
assemblies, 491–492
deployment, 474
files, ClickOnce, 474

ManualResetEvent, 585
ManualResetEventSlim, 585
mapped-memory files, 694–693
mapping, ADO.NET Entity

Framework, 971
mapping layer, 971
mapping layer, ADO.NET

EntityFramework, 968–971
Mapping Schema Language (MSL),

966
Mapping Specification Language

(MSL), 968
MappingFragment, 968
MarkerStyle, 1161
markup extensions, 861–863
MarkupCompilePass, 848
MarshalByRefObject, 502, 632
marshaling, 637–638
Master, 1263
master pages, 1263–1267
master/detail relationship, 946, 1122
MasterPageFile, 1265
MasterType, 1267
MatchAll filter, 1379
Matches(), 222
matches, regular expressions,

226–228
Material, 1099
Max, 302–303
MaxCapacity, 214
Maximum, 853–854
MaximumAutomaticRedirections,

741
MaxItemsInObjectGraph, 1360
MaxProtocolVersion, 1383
MediaCommands, 1108
MEF. See also Managed

Extensibility Framework
members

classes, 66–79
pointers, 365–366

Solution Explorer, 428
static, 118
StringBuilder, 214–215

member variables. See fields
MemberExpression, 308
MemberInfo, 382, 384
Membership, 610, 1236
Membership API, ASP.NET,

1236–1237
MembershipCreateStatus, 1236
MembershipProvider, 610, 1234
Membership.ValidateUser, 1313
MemberwiseClone(), 86
memory

destructors, 353–354
GC, 10, 351–353
interop, 633
management, 347–372
mapped-memory files,

694–693
pointers, 358–374
reference types, 349–351
SortedList, 260
structs, 66, 81
value types, 348–349
virtual, 12, 348

MemoryStream, 1021
Menu, 1262

ASP.NET Web Forms, 1254
CLR, 1381
ItemsControl, 1067
using, 1292
WPF business applications,

1104–1105
MenuAdminController, 1315
MenuCard, 1190, 1193, 1381
MenuCardDataModel, 1382
MenuCardModel, 1316
MenuDataService, 1383
MenuItem, 1067, 1104–1107
MenuItemData, 1195, 1196
MenuItemsPage, 1186–1187
Menus, 1394, 1395
MERGE

AtomPub, 1397
HTTP, 1396

MergeOption, 979
meshes, P2P, 1428
MeshGeometry3D, 1099
Message

[Description], 1414
Execute, 1414

Main (continued)

bindex.indd 1504 30-01-2014 19:49:32

1505

Message Queuing – MultiBindingMain – Message

member variables. See fields
MemberExpression, 308
MemberInfo, 382, 384
Membership, 610, 1236
Membership API, ASP.NET,

1236–1237
MembershipCreateStatus, 1236
MembershipProvider, 610, 1234
Membership.ValidateUser, 1313
MemberwiseClone(), 86
memory

destructors, 353–354
GC, 10, 351–353
interop, 633
management, 347–372
mapped-memory files,

694–693
pointers, 358–374
reference types, 349–351
SortedList, 260
structs, 66, 81
value types, 348–349
virtual, 12, 348

MemoryStream, 1021
Menu, 1262

ASP.NET Web Forms, 1254
CLR, 1381
ItemsControl, 1067
using, 1292
WPF business applications,

1104–1105
MenuAdminController, 1315
MenuCard, 1190, 1193, 1381
MenuCardDataModel, 1382
MenuCardModel, 1316
MenuDataService, 1383
MenuItem, 1067, 1104–1107
MenuItemData, 1195, 1196
MenuItemsPage, 1186–1187
Menus, 1394, 1395
MERGE

AtomPub, 1397
HTTP, 1396

MergeOption, 979
meshes, P2P, 1428
MeshGeometry3D, 1099
Message

[Description], 1414
Execute, 1414

Priority, 1464
System.Exception, 399

Message Queuing, 1439–1471
administrative tools, 1452–1453
architecture, 1451–1452
asynchronous read, 1459–1460
CourseOrder sample

application, 1460–1470
features, 1450
installation, 1454, 1478
messages, 1451

receiving, 1458–1460
sending, 1456–1458

products, 1450–1451
programming, 1453–1460
queues, 1451–1452

finding, 1454–1455
opening, 1455–1456

WCF, 1472–1478
contracts, 1474

when to use, 1449
MessageArrived, 1460
MessageBodyMember, 1357
MessageBox, 384
MessageConfiguration. HighPriority,

1464
MessageContract, WCF, 1357
MessageEnumerator, 1459
MessageHeader, 1357
MessagePriority, 1464
MessageQueue, 1454

Formatter, 1457
Receive, 1459
Serializable, 1458

MessageQueueCriteria, 1455
MessageQueueInstaller, 1454, 1478
MessageQueuePermission, 625
messages, Message Queuing, 1451

receiving, 1458–1460
sending, 1456–1458

MessageService, 1373
Messages.resw, 842
meta-characters, 223
metadata

assemblies, 14, 490
COM /.NET Framework

interop, 632
MEF

export, 881–883

lazy loading, 883–884
reading, 888–889

.NET assemblies, 490
WCF, 1370–1371
WinRT, 896–897

MetadataType, 1326
MetadataWorkspace, 974
MethodCallExpression, 308
MethodInfo, 382, 386
MethodName, 1119, 1403
methods

actions, ASP.NET MVC, 1322
anonymous, 197–198
asynchronous programming,

338–339
multiple, 340–341

binding, interop, 634
calling base versions, 93
class function members, 67,

68–72
Console, 50
declaring, 66
delegates, 184
extensions

classes, 87–88
LINQ, 284–285
XAML, 859

generics, 107, 124–128
invoking, 68–69
MEF export, 879–880
overloading, parameters, 72
Parallel.Invoke, 561
parameters, 69–72
sealed, 94–95
System.Type, 382
usage conventions, 62–63
variables, 27
virtual, 91–92
XmlReader, 1001–1003

Microsoft Immutable Collections,
266–268

Microsoft Management Console
(MMC), Windows Services,
793–794

Microsoft Message Queue (MSMQ),
1450

Min, 302–303
Minimum, 853–854

minRequiredNonalphanumeric
Characters, 1236

minRequiredPasswordStrength,
1236

MMC. See Microsoft Management
Console

Mode, 1113
Model View Controller (MVC).

See ASP.NET
ModelBinder, 1315–1316
Models, 1324
Model-View-ViewModel (MVVM),

1428
Modified, 942
modifiers, 99–100. See also

keywords inheritance
ModifyAccessControl, 623
Module, 377
modules

ASP.NET, 1229–1233
assemblies, 493–494

Monitor, 585–582
MouseOver, 1096
Move, 674–677
MoveNext(), 142, 1013, 1014
MoveTo(), 668, 1012
MoveToAttribute(), 1012
MoveToContent, 1002
MoveToFirst(), 1012
MoveToFirstAttribute, 1003, 1012
MoveToFirstChild(), 1012
MoveToId(), 1012
MoveToLast(), 1012
MoveToNext(), 1012
MoveToNextAttribute, 1003, 1012
MoveToParent(), 1012
MoveToPrevious(), 1012
MoveToRoot(), 1012
.mresource, 819
mscorlib, 835
MSL. See Mapping Schema

Language; Mapping Specification
Language

MsmgIntegrationBinding, 1363
MSMQ. See Microsoft Message

Queue
MTA. See multithreaded apartment
MTAThread, 646
MultiBinding, 1122–1124

bindex.indd 1505 30-01-2014 19:49:32

1506

net.exe – objectsmulticast – .NET Framework

multicast
delegates, 193–197
Message Queuing, 1450

multidimensional arrays, 132–133
Multiline, 223
Multilingual App Toolkit, 842, 844
multiple casting, 178–181
multiple inheritance, 90
Multiply, 867
multithreaded apartment (MTA),

565, 635–636, 646–647
multithreading, 445–446, 726–729
MultiTrigger, 1079
Mutex, 583–588
MutexSecurity, 621
MVC. See ASP.NET
MvcForm, 1318
MVVM. See Model-View-

ViewModel
MyAttachedPropertyProvider, 849
MyBase, 176–177
MyDependencyObject, 858
MyDerived, 176–177
MyGradientBrush, 1075
MyThread, 572

n
N, 51
\n, 35
naked type constraints, 116
Name, 664

RegistryKey, 702
WCF

data contract, 1355
OperationContract, 1357
ServiceContract, 1356

Windows Forms, 823
named arguments, 71
Named Pipes, 694
names

casing, 59–60
DNS, 756–759
generics, 110
keywords, 60–62
namespaces, 60
peer, 1429

registering, 1440–1441
resolving, 1441–1442

strong, 15, 503
creating, 505
shared assemblies, 503–504

styles, 60
usage conventions, 59–62

namespace keyword, 25
/namespace:namespace, 949
namespaces, 25, 45–47

ADO.NET, 920
aliases, 47, 152
assemblies, 492
classes, 25, 45
compiler, 374–375
localization, 842
names, 60
.NET Framework, 17

XAML, 850
using, 46–47
WinRT, 896–898
WPF, 1052–1053
XAML, 848
XML, 998, 1038–1040
XPath, classes, 1013–1015

native image generator,
509–510

Native Image Service, 510
Native Runtime

OptimizationService, 510
NativeActivity, 1410
NativeActivityTResult,1402
NativeMethods, 738
NativeName, 813
Navigate, 1189
Navigating, 752
navigation

ASP.NET Web Forms,
1267–1268

WinRT, 910–911
NavigationCommands, 1108
NavigationProperty, 968
NavigationService, 1168
NavigationWindow, 1065
nested objects, 293–294
nested partial classes, 84
nested scopes, 724–726
nested try, 400–402
.NET Framework. See also interop

applications
assemblies, 510–512

creating, 18–21
domains, 12–13

architecture, 3–22
ASP.NET web applications,

1223–1224
assemblies, 14–16, 487

metadata, 490
asynchronous pattern, 341
asynchronous programming,

16, 326
attributes, 13

XAML, 851–861
base classes, 666
BCL, 16, 679
C++, 6
classes, 16–17

files, 667–669
folders, 667–669
IP addresses, 757
XAML, 849–851

client
application services, 610
COM components, 638–649

CLR, 4–7
CLS, 10
collections, 230
command-line tools, 25
components, COM Client,

649–659
conceptual layer, 967
CTS, 9
data types, XAML, 851–861
deployment, 465, 467
design by contract, 522
DLR, 314
DOM, 1007–1011
elements, XAML, 851–861
encryption, 615
error handling with exceptions,

13
exceptions, 392
GC, 10–11, 352–353, 633
generics, 107, 119
IL, 7–13
I/O, 680
mapped-memory files, 694
MEF, 874
namespaces, 17

XAML, 850

bindex.indd 1506 30-01-2014 19:49:33

1507

net.exe – objects

Native Runtime Optimization
Service, 510

NativeMethods, 738
networking, 737
NullableT, 122–124
objects, XAML, 848–849
parallel programming, 15
permissions, 624
platform independence, 4
properties, XAML, 851–861
reflection, 374
registry classes, 701–703
regular expressions, 221
resource readers, 837
runtime, deployment, 467
security, 11
sets, 260
streams, Windows Store

applications, 1198
System, 26
System.Exception, 397
TraceListener, 531–532
tuples, 146
Visual Basic, 5–7
Visual Studio

5, 415, 420–421
WCF, 20, 1338
WebBrowser, 746
WF, 20
Windows Services, 20, 774
Windows Store applications, 20
WinRT, 896
WPF, 19, 832–833
XAML, 845
XML, 997, 998
XmlArrayItemAttribute, 1032
xsd.exe, 1028

net.exe, 794
NETFX_CORE, 517
NetHttpBinding, 1363
NetMsmqBinding, 1363
NetNamedPipeBinding, 1363
NetPeerTcpBinding, 1363
NetTcpBinding, 1363
netTcpBinding, 1378
NetTcpContextBinding, 1363
networking, 741–770. See also peer-

to-peer networking
AJAX, 1286

HTML, 746–756
HTTP, 742
.NET Framework, 737
TCP, 742
utility classes, 756–759
WCF, 742
WebClient, 738–740
WebRequest, 754–756
WebResponse, 754–756

NetworkStream, 759, 761
neutral cultures, 807
New, 1108
new

anonymous types, 79
classes, 66
modifiers, 100
object creation operator, 152
reference objects, 28
structs, 66

NewAppDomain, 500–501
NewLine, 1006
Next, 247
NextPage, 1108
Ngen.exe, 509–510
.nlp, 841
no net, 1431
NodeList, 1008
NodeType, 1000
nonblittable data types, 637
None, 947, 956
nonlinear animations, 1092
nonrepeatable reads, 729
NoPrincipal, 607
Normal, 1096
normal message, 1451
Northwind, 923
Nothing permission set, 626
NotifyChangeEventArgs, 262, 264
NotifyOnValidationError, 1134
NotSupportedException, 141
NPeopleToRing, 407
NuGet Package Manager, 430
null, 121

Boolean, 156
default, 115
InvalidOperationException,

124
null coalescing operator, 152,

156–157

nullable operators, 156
NullableT, 122–124
NullReferenceException, 132, 240
NumberFormatInfo, 809
NumberOperands, 867
numbers, 809–810

arithmetic operators, 152
enumerations, 43–45, 140–146
enumerators, 111, 140, 143,

145–146
integers, 361–362
localization, 809–810
versions, strong names, 503

O
-o, 537
Object

ArrayList, 232
classes, 85–87
Console.WriteLine, 236
Equals, 149, 236, 254
generics, 107
GetHashCode, 254
object, 91
VARIANT, 634
XAML, 852

object, 35–36
Content, 851
ElapsedEventHandler, 598
lock, 577
Object, 91
System.Object, 91

ObjectContext, 310, 973–975, 987
ObjectDataProvider,

1118–1120, 1131, 1146
ObjectDataSource, 1271, 1276
ObjectDisposedException, 406
ObjectHandle, 632
ObjectInstance, 1119
object-oriented programming

(OOP), 92
ObjectQueryT, 310, 981–983
Object.ReferenceEquals, 983
objects

files, 435
literal values, 161
nested, 293–294

bindex.indd 1507 30-01-2014 19:49:33

1508

P – pipelinesobjects – OverwriteChanges

.NET Framework, XAML,
848–849

reference, 28
sink, 658–659
tracking, ADO.NET Entity

Framework, 983
ObjectSecurity, 621
ObjectSetTEntity, 978
ObjectStateManager, 974, 984
Object.ToString(), 86
ObjectType, 1119
observable collections,

260–262
ObservableCollection, 1199
ObservableCollectionMainEntry,

1169
ObservableCollectionT,262-263,

1127, 1183, 1394–1395
OData, 1391

data model, 1392
queries, 1394–1395
services, 1392–1394
WCF Data Services,

1395–1400
ODBC. See Open Database

Connectivity
OfferMessage, 599
Office Open XML (OOXML), 1172
Offset, 329
OfType, 290, 976
OLE/COM Object Viewer, 651
OleDbConnection, 921
OnAsyncEventPattern, 335
OnCalcCompleted, 658
OnCalculate, 449, 878
OnCallback, 1372
OnClose, 1109
OnContextCreating, 1263
OnContextDisposing, 1263
OnContinue, 787
OnCustomCommand, 787
one-way binding, 1110
one-way-to-source binding, 1110
OnGetQuote, 781
OnImportsSatisfied, 864
OnLaunched, 1188–1189, 1207
OnlyOnRanToCompletion, 565
OnMenuCardClick, 1190

OnOpenDocument, 1167
OnOuterButtonClick,

856, 857
OnPause, 787
OnPowerEvent, 787
OnPrint, 1175
OnPropertyChanged, 1116
OnReaderSelectionChanged,

1166
OnRegisterCounts, 550
OnRequest, 1385, 1386
OnResultExecuted, 1312
OnSearchSync, 333
OnSelectedIndexChanged,

1256–1257
OnService, 799
OnShareTargetActivated, 1210
OnShowEntities, 1396
OnShowValue, 1133
OnShutdown, 787
OnStart, 786
OnSuspending, 910–911
OnTransactionCompleted, 723
OnUploadImage, 1201
OnValueChanged, 855
OOP. See object-oriented

programming
OOXML. See Office Open XML
OPAQUE, 508
OPC. See Open Packaging

Convention
Open, 682, 1372
Open Database Connectivity

(ODBC), 920
Open Packaging Convention (OPC),

1172
Opened, 1372
OpenFileDialog, 1431
Opening, 1372
OpenStreamForReadAsync, 1198
OpenSubKey, 702
OpenWrite, 740
Operate, 449, 867, 870, 880
Operation, 868
OperationCanceledException, 307,

345, 567
OperationContext, 1373
OperationContext.Current, 1373
OperationContract, 1356–1357
[OperationContract], 1474

operators, 151–171. See also specific
types

checked, 154
class function members, 67
equality, 162–163
how they work, 164–165
LINQ, 287–305
overloading, 163–171
precedence, 157
shortcuts, 153
type safety, 157–162
unchecked, 154
where, 117

OptimisticConcurrencyException,
988

Optional, 653
optional arguments, 72
OR, 377
Or, 264
Order, 1355
OrderablePartitionerTSource, 306
OrderBy, 983
orderby, 291–292
$orderby, 1389
OrderByDescending, 285, 291
orientation, 1216, 1231
Original, 941
OriginalSource, 856
Out, 653
out, 71, 120, 198
/out, 49
outgoing interface, 647
OutputCache, 1233
OutputCacheAttribute, 1313
OutputParameters, 956
OutputText, 383
outputText, 386, 387
overflow exception control operator,

152
OverflowException, 393, 402
Overline, 1160
overloading

comparison operators,
169–171

constructors, 75
methods, parameters, 72
operators, 163–171

override, 92, 100
overriding, 36, 86–87, 92
OverwriteChanges, 979

objects (continued)

bindex.indd 1508 30-01-2014 19:49:33

1509

P – pipelinesobjects – OverwriteChanges

operators, 151–171. See also specific
types

checked, 154
class function members, 67
equality, 162–163
how they work, 164–165
LINQ, 287–305
overloading, 163–171
precedence, 157
shortcuts, 153
type safety, 157–162
unchecked, 154
where, 117

OptimisticConcurrencyException,
988

Optional, 653
optional arguments, 72
OR, 377
Or, 264
Order, 1355
OrderablePartitionerTSource, 306
OrderBy, 983
orderby, 291–292
$orderby, 1389
OrderByDescending, 285, 291
orientation, 1216, 1231
Original, 941
OriginalSource, 856
Out, 653
out, 71, 120, 198
/out, 49
outgoing interface, 647
OutputCache, 1233
OutputCacheAttribute, 1313
OutputParameters, 956
OutputText, 383
outputText, 386, 387
overflow exception control operator,

152
OverflowException, 393, 402
Overline, 1160
overloading

comparison operators,
169–171

constructors, 75
methods, parameters, 72
operators, 163–171

override, 92, 100
overriding, 36, 86–87, 92
OverwriteChanges, 979

P
P, 51
-p, 537
P2P. See peer-to-peer networking
Package Editor, 482
PackageManager, 484, 485
Package/Publish Web, 480
packages, deployment

web applications, 480–481
Windows Store applications,

484
Padding, 1183
PadLeft, 211
PadRight, 211
Page, 1229

events, ASPX page model,
1258–1260

page model, ASPX, 1254–1263
page state, WinRT, 911–913
PageContent, 1169
PageHandlerFactory, 1231
Page_Preload, 1265
PageRequestManager, 1292
PageTemplates, 1328
Panel, 1055
<para>, 53
Parallel, 557–561

for, 553
WF activities, 1411

Parallel LINQ (PLINQ), 305–307
parallel programming, 16
ParallelEnumerable, 305, 306
Parallel.For, 557

Canceled, 568
cancellation, 566–567
stopping, 555–556

Parallel.ForEach, 556–561
Parallel.Invoke, 557
parallelism, tasks, 556–557
ParallelLoop, 561
ParallelLoopState, 555
ParallelOptions, 567
<param>, 53
ParameterExpression, 308
ParameterizedThreadStart, 566, 567
ParameterResourceFile, 544
parameters

arrays, 139–140

ASP.NET MVC, 1301–1302
attributes, 376–377
AttributeUsage, 377
catch, 397
IndexOf, 237
lambda expressions, 199
methods, 69–72

overloading, 72
named arguments, 71
optional arguments, 72

this, 75
<paramref>, 53
Parent, 668
Parse, 329
ParseCombiningCharacters, 806
PartBuilder, 873
partial, 83–85
partial views, ASP.NET MVC,

1310–1313
Partitioner, 306
partitioning, 301–302
Pascal casing, 59
Password, 791
PasswordBox, 613, 1061
passwordFormat, 1236
PasswordRecovery, 1262
passwords

ASP.NET, 1236
ASPX page model, 1262

passwordStrengthRegularExpression,
1236

Paste, 1108
Path, 669–670, 1054, 1112, 1113
Path.Combine, 669
PathSeparator, 670
Pause, 800
Peek, 242, 246
Peer Name Resolution Protocol

(PNRP), 1425, 1427, 1429–1431,
1437–1439

peer names, 1429
registering, 1440–1441
resolving, 1441–1442

PeerNameRecord, 1441
PeerNameRecordCollection, 1434
PeerNameRegistration, 1440–1441
peers, 1427
peer-to-peer networking (P2P),

1425–1437

applications, 1439–1435
architecture, 1426–1428
client, 1428
clouds, 1428
overview, 1433–1436
solutions, 1428
terminology, 1428

PeerToPeerException, 1440
PerfMon. See Performance Monitor

performance
classes, 548
collections, 275–277
diagnostics, 548–554
generics, 108–109
pointers, 359, 369–374
Visual Studio project, 436–437

Performance Counter, 548
Performance Counter Builder,

549–551
Performance Monitor (PerfMon),

522
PerformanceCounter, 548, 547–553
PerformanceCounterCategory, 548
PerformanceCounterCategory.

Create, 550
PerformanceCounterCategoryType.

MultiInstance, 550
PerformanceCounterInstaller, 548
PerformanceCounterPermission, 625
PerformanceData, 701
<permission>, 53
permission sets, 625–626
permissions

assemblies, 492
code access security, 624–629
implicit, 633

PersistableIdle, 1421, 1423
PersistableIdleAction.Persist, 1421
Persistence, 826
PerspectiveCamera, 1100
phantom reads, 730
PhoneAttribute, 1300
Pick, 1412–1413
Pick activity, 1412
PickerLocationId, 900
pickers, 1201–1202
pickSingleFileAsync, 900
p/invoke. See platform invoke
pipelines, 269–276

bindex.indd 1509 30-01-2014 19:49:33

1510

PipeSecurity – properties Properties window – ReadSchema

PipeSecurity, 621
Plain Old CLR Objects (POCO),

966, 988–990
platform independence, 4
platform invoke (p/invoke), 16,

659–667
PlatformString, 517
PLINQ. See Parallel LINQ
pluggable protocols, 754
PNRP. See Peer Name Resolution

Protocol
PnrpPermission, 1434
PnrpPermissionAttribute, 1434
POCO. See Plain Old CLR Objects
PointAnimationUsingKeyFrames,

1094
pointer member access operator,

364–365
pointers

adding and subtracting,
362–363

backward compatibility, 359
byte, 362–363
casts, 361–362
checked, 362
class members, 364–365
double, 362
int, 362
integers, 361–362
keywords, 358–360
memory, 358–374
performance, 359, 369–372
sizeof, 363
structs, 364
syntax, 360–361
void, 362

PointLight, 1100
poison messages, 1450
poison queue, 1450
PolicyId, 1420
PolyBezierSegment, 1058
Polygon, 1056
Polyline, 1056
PolyQuadraticBezierSegment, 1058
Pop, 246
portable class library, 518–519
PositionChange, 1152
Positions, 1099

POST, 1230, 1245, 1320, 1367, 1387
postbacks, 1256–1258
postconditions, 524–525
postfix, 498
PowerEase, 1092
#pragma, 57
preconditions, 523–524
Predicate, 237
PredicateT, 237, 238
prefix, 498
PreInit, 1258
PreLoad, 1258
Prepare, 731, 735
Prepared, 735
PrepareForUpdate, 1427–1428
preparing transaction phase, 711
PreparingEnlistment, 731
preparingEnlistment, 735
preprocessor directives, 54–57
PreRender, 1258
PreRequestHandlerExecute, 1231
PresentationBuildTasks, 848
PresentationCore, 848
PresentationFramework, 848
PreserveChanges, 979
Pressed, 1096
pretest loops, 40
PreviewMouseMove, 856
Previous, 247
PreviousExecutionState, 1189
PreviousPage, 1108
PreviousPageType, 1258
primary key

ADO.NET, 960–961
DataServiceKey, 1389
DataTable, 945–946

principal, 602–607
PrincipalPermission, 608
Print, 1108
PrintDialog, 1174
printf(), 50–51
printing

WebBrowser, 753–754
WPF documents, 1173–1175

PrintingPermission, 625
PrintVisual, 1174–1175
Priority, 573–574, 1464
priority nodes, 248

PriorityBinding, 1124–1125
PriorityDocumentManager, 249, 251
private

class members, 66
delegates, 185
Main(), 47
visibility modifiers, 99

private assemblies, 14–15, 492
private queues, 1452
<probing>, 512–513
ProcessContentAsync, 271, 273
ProcessDocuments, 244
ProcessNextPerson, 406
ProcessRequest, 1230
ProcessRequestForMessage, 1380
ProcessSomeData, 1125
Profile, 1233, 1243, 1275
ProfileBase, 1245
ProfileCommon, 1246
ProfileManager, 1247
profile/properties, 1244–1245
ProfileProvider, 1230–1231
profiler, Visual Studio, 452–454
profiles, ASP.NET, 1230–1234

database, 1243
ProgID, 635
ProgId, 653
Program, 410, 872
Program Files, 477
ProgressBar, 1064
Project, 789
ProjectInstaller, 788, 789
projects

Solution Explorer, 424–428
templates, 422–423

WCF, 424
WF, 424

Visual Basic, debugging,
436–438

Visual Studio
configuration, 438–439
debugging, 439–444
files, 418
performance, 436–437
variables, 442

promotion, transactions, 719–721
properties

accessors, 73–74

bindex.indd 1510 30-01-2014 19:49:34

1511

PipeSecurity – properties Properties window – ReadSchema

PriorityBinding, 1124–1125
PriorityDocumentManager, 249, 251
private

class members, 66
delegates, 185
Main(), 47
visibility modifiers, 99

private assemblies, 14–15, 492
private queues, 1452
<probing>, 512–513
ProcessContentAsync, 271, 273
ProcessDocuments, 244
ProcessNextPerson, 406
ProcessRequest, 1230
ProcessRequestForMessage, 1380
ProcessSomeData, 1125
Profile, 1233, 1243, 1275
ProfileBase, 1245
ProfileCommon, 1246
ProfileManager, 1247
profile/properties, 1244–1245
ProfileProvider, 1230–1231
profiler, Visual Studio, 452–454
profiles, ASP.NET, 1230–1234

database, 1243
ProgID, 635
ProgId, 653
Program, 410, 872
Program Files, 477
ProgressBar, 1064
Project, 789
ProjectInstaller, 788, 789
projects

Solution Explorer, 424–428
templates, 422–423

WCF, 424
WF, 424

Visual Basic, debugging,
436–438

Visual Studio
configuration, 438–439
debugging, 439–444
files, 418
performance, 436–437
variables, 442

promotion, transactions, 719–721
properties

accessors, 73–74

attached, XAML, 859–861
attributes, 851
auto-implemented, 74
class function members, 67,

72–74
dependency

callbacks, 855–856
coercion, 854–855
events, 855–856
WPF, 853
XAML, 853–856

elements, 851
MEF export, 879–880
Message Queuing, 1452–1453
name usage conventions, 73
.NET Framework, XAML,

851–861
System.Exception, 399–400
triggers, WPF, 1077–1078
Type, 381–382
usage conventions, 62–63

Properties window, 432–433
Properties window, Visual Studio,

435
Property, 968, 1076
PropertyChange, 1116
PropertyChangedCallback, 855
<PropertyGroup>, 834
PropertyInfo, 382
PropertyInspectorView, 1430
PropertyMetadata, 854, 855
Proposed, 941
protected, 66, 99, 185
protected internal, 99
ProtectionLevel, 1356, 1357
protocols, 1378–1379. See also

Simple Object Access Protocol
lower-level, 759–770
pluggable, 754
TCP, 461, 738, 761
UDP, 763–764
WCF routing, 1378–1379

ProvideValue, 861
proxies

DCOM, 1450
WebRequest, 754–755

public, 26
class members, 66

delegates, 185
FieldNameAttribute, 377
Main(), 47
visibility modifiers, 99

public key
encryption, 615
PNRP IDs, 1429
strong names, 503, 504

public queues, 1451–1452
Publish Web tool, 480
Publish Wizard, 474, 476–477
publisher policies, 515–516
Pure, 525
Push, 245, 246
PUT, 1369, 1388
Python, 313

Q
QuadraticBezierSegment, 1058
QuadraticEase, 1092
queries, OData, 1394–1395
Queryable, 310
QueryInterface, 634, 649
QueryTimeout, 974
??(question mark-double), null

coalescing operator, 152
QueuedDeliveryRequirements, 1474
queues

acknowledgment, 1470–1471
collections, 241–245
constructors, 243
Message Queuing, 1451–1452

finding, 1454–1455
opening, 1455–1456

ProcessDocuments, 244
response, 1471
transactional, 1471–1472

QueueT, 242, 243, 277
QuickAccessToolbar, 1105–1106
Quicksort, 136
Quote, 781
QuoteClient, 777, 781–784
QuoteInformation, 781
QuoteServer, 778
QuoteService, 777

R
R, 721
/r, 508
\r, 35
race conditions, 574–573
RaceCondition, 575
Racer, 232
racers, 234
RadialGradientBrush, 1170
RadioButton, 1064
RandomAccessStreamReference, 1200
Range, 304–305
RanToComplete, 566
Razor syntax, 1305–1306
RCW. See runtime callable wrapper
Read, 1002
ReadAllBytes, 678
ReadAllLines, 678
ReadAllText, 677–679
ReadArraySample, 1386
ReadAsStringAsync, 336
ReadByte, 683
ReadCommitted, 730, 925
ReadElementContentAs, 1003
ReadElementContentAsBoolean,

1003
ReadElementContentAsDouble,

1003
ReadElementString, 1001–1002
Readers, 1165
ReaderWriterLockSlim, 594–597
ReadFileIntoStringCollection, 693
ReadImageAsync, 1201
reading

files, 677–679
isolated storage, 704–707
MEF metadata, 888–889

registry, 699–703
streams, 680
text files, 686–694
XAML, 863–864
XML document, 1045–1046

ReadLine, 407
ReadMenuCardsAsync, 1198
readonly, 78–79
read-only collections, 241
ReadQuotes, 778, 779
ReadSchema, 1026

bindex.indd 1511 30-01-2014 19:49:34

1512

ReadSettings – resource readers ResourceDictionary – ScriptManager

ReadSettings, 704, 706
ReadUncommitted, 730, 925
ReadWriteText, 692–694
ReadXmlSchema, 1027
Receive, 763, 1459
ReceiveCompleted, 1459
ReceiveCompletedEventArgs, 1460
ReceiveCompletedEventHandler, 1459
Rectangle, 1056
Redirect, 1303
RedirectToRoute, 1303
RedirectToRouteResult, 1303
ref, 70–71, 198, 585
refactoring, 447–448
/reference, 49
reference assemblies, 491, 508–509
reference counts, 10–11
Reference Manager, 429, 485
reference objects, 28
reference types, 31–32

array covariance, 139
arrays, 131–132
classes, 108
equality, 162–163
heap, 32, 108, 161
IL, 8
lock, 577
memory, 349–351
predefined, 35–37
type conversions, 158

ReferenceEquals(), 162
references, 493
referent, 358
reflection, 373–389

assemblies, 15
attribute parameters, 376–377
attributes, 374–380
compiler, 374
.NET Framework, 374
runtime, 373–374

ReflectionPermission, 625
Reflector, 1418
Refresh, 750, 752
Refresh(), 975
RefreshQuotes, 780
RefreshServiceList, 798
REG_BINARY, 701
REG_DWORD, 701
regedit, 699–700

regedit32, 699
RegEx.Matches(), 227
RegExOptions.ExplicitCaptures, 227
#region, 56
RegionInfo, 807, 811, 815
RegionInsert, 960
RegionSelect, 954
Register, 841, 853, 859
RegisterAttached, 859
RegisterDisplayName, 547
RegisterRoutes, 1299
RegisterWndClassEx(), 16
registration

COM, 654–655
interop, 635

RegistrationBuilder, 873
Registry, 701
registry, 699–703
registry hive, 700
registry keys, 700
RegistryKey, 701, 702
RegistryPermission, 625
RegistrySecurity, 621
REG_SZ, 701
regular expressions, 221–228
RegularExpressionValidationRule,

1138
RegularExpressionValidator, 1262,

1269
Relations, 1024
relationships, ADO.NET

EntityFramework, 975–979
RelativeSource, 1113
RelativeTransformation, 1063
Release, 437, 633
Release, Visual Studio, 437
ReleaseHandler, 1231
ReleaseInstanceMode, 1362
ReleaseServiceInstanceOn, 1359
<remarks>, 53
Remove(), 215
RemoveAll, 237
RemoveHandler, 858
RemoveListener, 207
RemoveRange, 237
RemoveUserFromRole, 1237
Render, 1258
RenderComplete, 1258
RenderTransform, 1060

Repeat, 304–305
RepeatableRead, 730, 925
RepeatBehavior, 1091
Repeater, 1262
Replace, 211, 212, 215
ReplyAction, 1356
report message, 1451
report queues, 1452
ReportCompleted, 1212
ReportStarted, 1212
requestedExecutionLevel, 801

PackageManager, 485
requireAdministrator, 485, 801
Required, 724
[RequiredArgument], 1414
RequiredCreationPolicy.

AllowRecomposition, 864
RequiredFieldValidator, 1262, 1269,

1270, 1329
RequireFilePermissions, 627, 628
Requires, 523
RequiresNew, 724
RequiresQuestionAndAnswer,

1236
reserved keywords, 57–58
Reset(), 141
Resgen.exe. See Resource File

Generator
ResolveAsync, 1441
ResolveCompleted, 1441
ResolveCompletedEventArgs, 1441
ResolveProgressChanged, 1441
ResolveProgressChangedEventArgs,

1441
/resource, 819
resource dictionaries, XAML

satellite assemblies, 834–835
WPF localization, 834–835

Resource File Generator (Resgen.
exe), 818–819

resource files, 544–548
language translation

outsourcing, 830
localization, 817–822
strong data typing, 820
Windows Store application

localization, 842
resource managers, 731–737
resource readers, 837–840

bindex.indd 1512 30-01-2014 19:49:34

1513

ReadSettings – resource readers ResourceDictionary – ScriptManager

Repeat, 304–305
RepeatableRead, 730, 925
RepeatBehavior, 1091
Repeater, 1262
Replace, 211, 212, 215
ReplyAction, 1356
report message, 1451
report queues, 1452
ReportCompleted, 1212
ReportStarted, 1212
requestedExecutionLevel, 801

PackageManager, 485
requireAdministrator, 485, 801
Required, 724
[RequiredArgument], 1414
RequiredCreationPolicy.

AllowRecomposition, 864
RequiredFieldValidator, 1262, 1269,

1270, 1329
RequireFilePermissions, 627, 628
Requires, 523
RequiresNew, 724
RequiresQuestionAndAnswer,

1236
reserved keywords, 57–58
Reset(), 141
Resgen.exe. See Resource File

Generator
ResolveAsync, 1441
ResolveCompleted, 1441
ResolveCompletedEventArgs, 1441
ResolveProgressChanged, 1441
ResolveProgressChangedEventArgs,

1441
/resource, 819
resource dictionaries, XAML

satellite assemblies, 834–835
WPF localization, 834–835

Resource File Generator (Resgen.
exe), 818–819

resource files, 544–548
language translation

outsourcing, 830
localization, 817–822
strong data typing, 820
Windows Store application

localization, 842
resource managers, 731–737
resource readers, 837–840

ResourceDictionary, 1076–1077
ResourceKey, 831
resourceKey, 1267
ResourceLoader, 843
ResourceManager, 820–823, 838
ResourceManagerT, 732
resources expression, 1261–1262
ResourceSet, 823, 837–838
ResourceWriter, 818, 823
response message, 1451
response queues, 1471
REST, 1382

ASP.NET, 19
HTTP GET, 1382
WCF, 20, 463, 1340

RestoreAsync, 909, 910
ResultController, 1302
Resume, 780
resw, 842
ResXResourceReader, 823
ResXResourceSet, 823
ResXResourceWriter, 818, 823
RetryCount, 1418
return, 43
returnData, 498
<returns>, 53
Reverse, 240
Reverse(), 144
rhs, 167
Ribbon, 1105–1107
RibbonButton, 1107, 1109
RibbonGroup, 1106
RibbonTab, 1106, 1107
RichTextBox, 686, 1062, 1163
RightToLeft, 223
rm, 820
roaming data, 1197–1198
RoamingFolder, 1197
role-based security, 11, 607–608

declarative, 608–609
RolePrincipal, 602
RoleProvider, 611
roles, ASP.NET, 1267
Roles API, ASP.NET, 1237
Rollback, 714, 721, 731, 732,

734
RollbackIfNotComplete, 721
rolling marble sample, 1219–1221

Root, 668
rootCultures, 812
RotateTransform, 1059
RotateTransform3D, 1101
rotation, WPF 3-D, 1101
round-robin scheduling, 573–574
RouteData.Values, 1331
RoutedCommand, 1107
RoutedEventArgs, 856
RoutedUICommand, 1107, 1108
routes, ASP.NET, MVC,

1285–1300, 1317
WCF, 1374–1379

protocols, 1378–1379
RouteUrl, 1261
RouteValue, 161
routing

attribute-based, 1389
Web API, 1388–1389

RoutingService, 1376–1377
Row, 1070
RowDetailsTemplate, 1146
RowSpan, 1070
Ruby, 313
Run, 449

Inline, 1158
ProcessDocuments, 244
RegistrationBuilder, 873
WorkflowApplication, 1423

RunSynchronously, 563
runtime. See also Common

Language Runtime; Windows
Runtime

ASP.NET, WCF, 1340
assembly versions, 516–517
DLR, 313–314
Native Runtime Optimization

Service, 510
.NET Framework, deployment,

467
reflection, 373–374
schema, 943–944
strong names, 504

runtime callable wrapper (RCW),
643–646

RuntimeBinderException, 314

S
\S, 224
\s, 224
SACL. See system access control list
safe-critical code, 623
SafeHandleMinusOneIsInvalid, 737
SafeHandleZeroOrMinus

OneIsInvalid, 737
SafeTransactionHandle, 738
Sandbox API, 627–629
Satellite, 819
satellite assemblies, 492

language, 826
XAML resource dictionaries,

834–835
SaveAsync, 910
SaveChanges, 1396–1397
SaveChanges(), 975
SaveFile, 692
SaveFileDialog, 1172
SaveSettings, 704
SaveState, 913, 1199
sbyte, 33, 158
ScaffoldAllTables, 1323, 1326
ScaffoldColumn, 1326–1327
scaffolding, 1322, 1323, 1326–1327
ScaffoldTable, 1326–1327
ScalarProperty, 968
ScaleTransform, 1059, 1112
ScaleX, 1112
ScaleY, 1112
sc.exe, 794
schema

ADO.NET, 938, 942–944
XML, 948–953

SCM. See Service Control Manager
Scope, 1430
scope

block, 348
nested, 724–726
Solution Explorer, 429
structure, 348
variables, 29–31

<script>, 1291
ScriptEngine, 320
ScriptManager, 1263, 1270,

1284–1285

bindex.indd 1513 30-01-2014 19:49:34

1514

Session_End – SourceScript Reference – Session

ScriptReference, 1291
ScriptRuntime, 318–321
Scripts, 1291
<Scripts>, 1291
ScriptScope, 320
ScriptSource, 320
ScrollBar, 1063
ScrollViewer, 1064
sealed, 94–95, 100
sealed classes, 94–95
sealed methods, 94–95
search, 417

collections, 237–239
Visual Studio, 417
Windows Store, 1206–1207

SearchInfo, 328, 332
searchInfo, 333
SearchItemResult, 327–329, 333
SearchTerm, 328
Secure, 1238
secure transfer, 618–621
secured peer names, 1429
security, 601–630

ACL, 621–623
ASP.NET Web Forms, 1280–1282
authentication, 602–614
authorization, 602–614
certificates, 633–634
code access, 623–627
code-based, 11
encryption, 614–621
files, 695–699
.NET Framework, 11
role-based, 11, 607–608

declarative, 608–609
System.Net.PeerToPeer, 1434
WCF, 1340
Web API, 1400–1401

accounts, 1401–1402
authentication token,

1402–1404
GetUserInfo, 1404–1405

security-critical code, 623
SecurityException, 626–631
SecurityIdentifier, 621
SecurityPermission, 625, 632
SecurityRules, 624
SecuritySafeCritical, 624
SecurityTransparent, 624

<see>, 53
<seealso>, 53
SELECT, 838, 952, 953
Select, 306, 982
select, 293–294
$select, 1390
Select(), 1012
SelectAncestors(), 1012
SelectChildren(), 1012
SelectConstructors, 873
SelectDescendents(), 1012
SelectedItemChanged, 813
SelectedValue, 1275
selectImageButton, 900
selecting project type, 421–424
SelectionChanged, 1395
SelectListItem, 1320
SelectListItemsExtensions, 1320
SelectMany, 291, 297
SelectNodes, 1008
SelectSingleNode, 1008, 1009, 1012
SelectValue, 982
self-description, 490
self-hosting, 1405–1406
Semaphore, 588–589
SemaphoreSecurity, 621
SendAsync, 770
SendingRequest, 1393
SendMessage, 770, 1364
sensors, Windows Store

accelerometer, 1216
compass, 1216
gyrometer, 1216
inclinometer, 1216
light, 1216
orientation, 1216

Sequence, 1430, 1431
sequence diagram, 452
sequence diagram, Visual Studio,

449
Serializable, 730, 925, 1458
serialization

Description, 1195
ImagePath, 1195
Title, 1195
XML, 1027–1036, 1458

source code, 1033–1036
Serialize, 1028
Server Explorer, 437, 794

Server Explorer, Visual Studio, 437,
794

Server.HtmlEncode, 1261
server=(local), 922
server-side

ASP.NET MVC partial views,
1311–1312

controls, ASPX page model,
1262–1263

service, 1347
service configuration program,

Windows Services, 774
Service Control Manager (SCM),

775
service control program, Windows

Services, 774
Service Host, WCF, 1347–1348
Service Library, WCF, 1347
service program, Windows Services,

775–793
core functionality, 777–781

Service Trace Viewer, 535
Service1, 784
ServiceBase, 777, 785, 792, 802
ServiceBehavior, 1358–1362
[ServiceBehavior], 1369
ServiceContract, 1356–1357
ServiceController, 777, 794–802
ServiceControllerInfo, 798–799
ServiceControllerPermission, 625
ServiceControlWindow, 798
ServiceDependentOn, 792
ServiceHost, 1368, 1384, 1390
ServiceInstaller, 777, 790
ServiceInstallerDialog, 792
service-main, Windows Services,

775–774
ServiceModel Metadata Utility tool

(Svcutil.exe), 1370
ServiceModule, 1233
ServiceName, 784, 792, 795
ServiceOperationRights, 1383
ServiceProcessInstaller, 777, 788
<Services>, 1291
ServicesDependentOn, 795
ServiceType, 795
Session, ASP.NET, 1233

applications, 1240–1241
Cache, 1242

bindex.indd 1514 30-01-2014 19:49:35

1515

Session_End – SourceScript Reference – Session

Server Explorer, Visual Studio, 437,
794

Server.HtmlEncode, 1261
server=(local), 922
server-side

ASP.NET MVC partial views,
1311–1312

controls, ASPX page model,
1262–1263

service, 1347
service configuration program,

Windows Services, 774
Service Control Manager (SCM),

775
service control program, Windows

Services, 774
Service Host, WCF, 1347–1348
Service Library, WCF, 1347
service program, Windows Services,

775–793
core functionality, 777–781

Service Trace Viewer, 535
Service1, 784
ServiceBase, 777, 785, 792, 802
ServiceBehavior, 1358–1362
[ServiceBehavior], 1369
ServiceContract, 1356–1357
ServiceController, 777, 794–802
ServiceControllerInfo, 798–799
ServiceControllerPermission, 625
ServiceControlWindow, 798
ServiceDependentOn, 792
ServiceHost, 1368, 1384, 1390
ServiceInstaller, 777, 790
ServiceInstallerDialog, 792
service-main, Windows Services,

775–774
ServiceModel Metadata Utility tool

(Svcutil.exe), 1370
ServiceModule, 1233
ServiceName, 784, 792, 795
ServiceOperationRights, 1383
ServiceProcessInstaller, 777, 788
<Services>, 1291
ServicesDependentOn, 795
ServiceType, 795
Session, ASP.NET, 1233

applications, 1240–1241
Cache, 1242

callbacks, 1242
identifiers, 1239–1240
storage, 1240–1241

Session_End, 122
SessionMode, 1356
SessionMode.Required, 1360
Session_Start, 122
SessionStateProviderBase, 1241
Set, 264
set, 73–74, 379, 854
set operations, LINQ, 299–300
SetAccessControl, 623, 698, 702
SetAll, 264
SetBinding, 1112
SetCookie, 1237
SetDateAndNumber, 824
SetDefault, 947
SetError, 1135
SetHandled, 522
SetLastError, 661
SetMyProperty, 859
SetNull, 947
SetPrincipalPolicy, 607
setPromise, 900
sets

collections, 259–260
.NET Framework, 260

Setters, 1078
Settings, 782
settings, 419
SettingsCommand, 913
SettingsPane, 913
SettingsPaneCommandsRequest

EventArgs, 913
SetupCulture, 811
SetupPipeline, 597
SetValue(), 134, 135, 702, 734

XAML, 853, 854
Shape, 1055–1056
shared assemblies, 15, 490, 501–507

creating, 505
GAC, 504–505, 509
installation, 506
strong names, 503–506

shared classes, ADO.NET, 921
<sharedListeners>, 532
SharedSizeGroup, 1147
SharedState, 579, 582
ShareOperation, 1210

ShareTargetActivatedEventArgs,
1210

ShareTargetPage, 1210
Sharing Target, 1210–1212
ShimXElement, 460
SHORT, 634
short, 33, 158, 159
ShowMessage, 608
side-by-side

assemblies, 490
WF workflows, 1428

sideloading, 482, 483–484
SignalAndWait, 594
signature

DSA, 616
ECDSA, 616
encryption, 616–618

SILVERLIGHT, 517
simple controls, 1063–1064
Simple Object Access Protocol

(SOAP)
HTTP GET, 1382
strong data typing, 1358
WCF, 20, 463, 1339
XML, 997

SimpleException, 396
SineEase, 1092
Singleline, 223
single-threaded apartment (STA), 65,

635, 646–647
sink objects, 658–659
site map, ASP.NET Web Forms,

1267
SiteMapDataSource, 1262
siteMapNode, 1267
SiteMapPath, 1262, 1268
SiteMapProvider, 1268
sizeof, 152, 155–156, 363
sizeof is typeof as, 152
SkewTransform, 1059
Skip, 301–302, 982
$skip, 1389
SkipVerification permission set, 626
Slider, 1064, 1111–1112
.sln, 425
SmallImageSource, 1106
SmallLogo, 482
SmtpClient, 756, 760–761
Snapshot, 730

SOAP. See Simple Object Access
Protocol

Socket, 759, 764–767
SolicitColdCall, 402–403
SolidColorBrush, 851, 1058
Solution Explorer, 425–431

Add as Link, 518
data types, 429
hidden files, 426
members, 429
projects, 424–428
scope, 429
solutions, 426–428
Visual Studio, 424–429
Web.config, 480
XLIFF, 843

SomeData, 1133
SomeDataWithNotifications, 1137
SomeProperty, 410
Sort

Array, 139
ComparisonT, 240
IComparable, 239
IComparer, 817
lambda expressions, 240
ListT, 239

sort
arrays, 136–139
ASP.NET Web Forms, 1259
culture, 816–817
dictionaries, 258–259
LINQ, 291–292
lists, 239–240

collections, 251–253
foreach, 252
iteration, 252
string, 252

localization, 816–817
strings, Add, 252

SortedDictionaryTKey, TValue, 260,
277

SortedList, 260
SortedListTKey, TValue,

251–253, 260, 277
SortedSetT, 260, 277
Source, 542

Binding, 1113, 1118
OnOuterButtonClick, 857
RoutedEventArgs, 856

bindex.indd 1515 30-01-2014 19:49:35

1516

StringArrayConverter – System.Data.Services.ClientSource – string

System.Exception, 399
WPF data binding, 1112

source code
assemblies, 517–518
debugging, 437–438
IL, 4
XML serialization,

1033–1036
SourceExists(), 543
SourceFilter, 533
SourceLevels, 530
SourceSwitch, 530–531
Span, 1158
specialization, generics,

117–118
methods, 127–128

specific cultures, 807
SpecularMaterial, 1099
Speed, 882
SpeedExport, 882
SpeedRatio, 1091
SpinLock, 586
SplineDoubleKeyFrame, 1095
Split, 211
sprintf, 680
SQLClientPermission, 625
SqlCommand, 838, 952
SqlConnection, 723, 919
SqlDataAdapter, 953–957
SqlDataSource, 1256
SqlException, 926
SqlMembershipProvider, 610
SqlRoleProvider, 1234
SqlTransaction, 714
SSDL. See Storage Schema Definition

Language
STA. See single-threaded apartment
stackalloc, 369–372
StackOverflowException, 393
StackPanel

Button, 1127
Button.Click, 856
Label, 1111–1112
ListBox, 1108
MyGradientBrush, 1075
Slider, 1111–1112
WCF Data Services, 1391
WPF, 1068–1069

stacks, 32
arrays, 369–372
collections, 245–247
pointers, 349
Push, 245
value types, 108
virtual memory, 348

StackT, 245–246, 277
StackTrace, 399
star sizing, 1070
Start, 574, 780, 800

Enabled, 598
ProcessDocuments, 244
Task, 561

Start(), 16
Start Page, 419–420
Start Page, Visual Studio, 419–420
StartActivity, 534
StartActivityA, 535
StartListening, 205
StartNew, 244, 562
StartPipeline, 271
StartSendingMessage, 1366
StartType, 791
State, 1372
state management, ASP.NET,

1236–1247
state transitions, 1095

VisualStateManager,
1097–1098

statements, 25, 25
block, 925–926
conditional

flow control, 37–40
if, 37–38
switch, 38–40

jump, 43
variables, 27

StateObject, 574
STAThread, 646
static, 26, 67, 385

classes, 85
MainClass, 383

static constructors, 76–77
static documents, 1042–1043
static members, 118
StaticClass, 315, 316
StaticPartitionerForArrayT

<Source>, 306

StaticResource, 1075–1076
StaticResourceExtension, 861
Status, 795, 864
StatusBar, 1067
StatusBarItem, 1064
Stop, 598, 752, 780, 800
StopListening, 205
storage

ASP.NET Session, 1240–1241
isolated, 704–707
Windows Store applications,

1195–1203
Storage Schema Definition Language

(SSDL), 966, 965
stored procedures

ADO.NET, 931–933
SELECT, 954
SqlDataAdapter, 954

StoredProcedures, 928
StoreState, 1199
Storyboard, 1089, 1092
Storyboard.BeginStoryboard, 1092
StreamGeometry, 1058
StreamGeometryContext, 1058
StreamReader, 405, 681, 687–689

MemoryStream, 1021
ReadLine, 407
WebClient, 739

streams, 393, 677
buffered, 682
files, 680–686
hierarchies, 680–681
I/O, 680
.NET Framework, Windows

Store applications, 1198
reading, 680
System.IO, 680–681
WinRT, 903–904
writing, 680

StreamWriter, 681, 689–692
Strikethrough, 1160
String

BSTR, 651
immutable data type, 211
TextBox, 754
Type, 1458
WinRT, 901
XAML, 852

string, 36–37, 770

Source (continued)

bindex.indd 1516 30-01-2014 19:49:35

1517

StringArrayConverter – System.Data.Services.ClientSource – string

StaticResource, 1075–1076
StaticResourceExtension, 861
Status, 795, 864
StatusBar, 1067
StatusBarItem, 1064
Stop, 598, 752, 780, 800
StopListening, 205
storage

ASP.NET Session, 1240–1241
isolated, 704–707
Windows Store applications,

1195–1203
Storage Schema Definition Language

(SSDL), 966, 965
stored procedures

ADO.NET, 931–933
SELECT, 954
SqlDataAdapter, 954

StoredProcedures, 928
StoreState, 1199
Storyboard, 1089, 1092
Storyboard.BeginStoryboard, 1092
StreamGeometry, 1058
StreamGeometryContext, 1058
StreamReader, 405, 681, 687–689

MemoryStream, 1021
ReadLine, 407
WebClient, 739

streams, 393, 677
buffered, 682
files, 680–686
hierarchies, 680–681
I/O, 680
.NET Framework, Windows

Store applications, 1198
reading, 680
System.IO, 680–681
WinRT, 903–904
writing, 680

StreamWriter, 681, 689–692
Strikethrough, 1160
String

BSTR, 651
immutable data type, 211
TextBox, 754
Type, 1458
WinRT, 901
XAML, 852

string, 36–37, 770

CompareTo, 239
delegates, 199
LinkedListT, 113
LINQ, 285
OfType, 290
sorted lists, 252
TransformBlock, 597

StringArrayConverter, 1125–1126
StringBuilder, 212–215, 498, 686

OutputText, 383
XmlWriter, 1005

StringBuilder.Replace(), 214
StringCollection, 693
StringFormat, 1140
String.Format(), 217
StringLength, 1327, 1329
StringReader, 680
String.Replace(), 214
strings, 209–228

building, 211–214
concatenation operators, 152
connections, 923–924, 971–970
escape sequence, 36
formatting, 215–220
literals, 36–37
sort, Add, 252
WinRT, 901

StringWriter, 498
strong data typing

ASP.NET MVC views,
1306–1307

ASPX page model postbacks,
1258

HTML helpers, 1321
IL, 8–13

application domains, 12
language interoperability, 9–10
resource files, 820
SOAP, 1358
XmlReader, 1003

strong names, 15, 503
creating, 505
shared assemblies, 503–504

struct, 586
StructLayout, 374
structs

classes, 66, 80–85
constructors, 82
data types, 66

generics, 122–124
inheritance, 82, 90
instance, equality, 162–163
memory, 66, 81
new, 66
pointers, 364
System.Enum, 44
System.ValueType, 90
value types, 81–82, 108
variables, 27
WinRT, 902

StructuralObject, 972
structure scope, 348
Studio, 1415
Style, 1072–1073
Sub, 634, 648
SubCultures, 811
SubKeyCount, 702
SubmitData, 1314
Subset(), 144
Substring, 211
Subtract, 867, 880
Sum, 302–303
<summary>, 53
SumOfSegments, 140
supporting windows, 416
supporting windows, VisualStudio,

416
SupportsWhatsNewAttribute, 378
SupportWhatsNew, 387
Suppress, 724
Suspend, 780
SuspendingDeferral, 910
SuspendingOperation, 910
SuspensionManager, 910–911
Svcutil.exe. See ServiceModel

Metadata Utility tool
synchronization

context, asynchronous
programming, 339–340

threads, 579–597
Barrier, 593–594
events, 590–592
Interlocked, 584–585
lock, 579–584
Monitor, 585–586
Mutex, 587–588
ReaderWriterLockSlim,

593–594

Semaphore, 588–589
SpinLock, 586
WaitHandle, 586–583

synchronizing, 1431
synchronous call, 333
synchronous tasks, 563
Sys.Services.AuthenticationService,

1281
Sys.Services.RoleService, 1281
System, 26, 217, 393, 449
system access control list (SACL),

621
system queues, 1452
System.Activities, 1408
System.Activities.

DurableInstancing, 1424
System.Activities. presentation, 1418
System.Activities. statements, 848
System.Array, 17
System.Attribute, 375
System.AttributeUsage, 375–376
System.Collections, 230, 816
system.Collections.ArrayList, 108
System.Collections.Concurrent, 230,

268–276
System.Collections.Generic, 230,

242, 816
System.Collections.ObjectModel,

1127
System.Collections.Specialized, 693
SystemColors, 1074
System.ComponentModel.

DataAnnotations, 1300
System.Console, 25, 26
System.Convert, 176, 397
System.Data, 966
System.Data.Core.Common, 966
System.Data.Core.Common.

CommandTrees, 967
System.Data.Entity, 967
System.Data.EntityClient, 967
System.Data.Entity.Core.

EntityClient, 967
System.Data.Entity.Design, 967
System.Data.Objects, 967
System.Data.Objects.DataClasses,

967
System.Data.Services, 1380
System.Data.Services.Client, 1391

bindex.indd 1517 30-01-2014 19:49:35

1518

TaskCanceledException – throwing exceptionsSystem.DateTime – task-based asynchronous pattern (TAP)

System.DateTime, 215
System.Deployment, 478
<system.diagnostics>, 530
System.Diagnostics.Contracts, 522
System.Diagnostics.SourceSwitch,

530
System.Double, 383
System.Dynamic, 314
System.EnterpriseServices, 715–716
System.Enum, 44, 86
System.Exception, 393, 397,

399–400
SystemFonts, 1074
System.FormatException, 406
System.GC.Collect, 352
System.Globalization, 806–818, 841
System.IDisposable, 354–355
System.IndexOutOfRangeException,

398
System.Int32, 136
System.IO, 393, 680–681, 1001
System.IO.FileNotFoundException,

500
System.IO.FileStream, 739
System.IO.MemoryStream, 680
System.Linq, 305
System.MarshalByRefObject, 666
System.Messaging, 1440
System.Net, 738, 1385
System.Net.PeerToPeer, 1425, 1431,

1433, 1434, 1439
System.Net.Sockets, 742
System.Net.Sockets.NetworkStream,

680
System.Object

82, 85–86, 103–104
classes, 90
Equals, 255
Equals(), 162
object, 91
System.Exception, 393
ToString(), 217

SystemParameters, 1074
System.Reflection, 386, 495–496
System.Reflection.

AmbiguousMatchException, 386
System.Reflection.Assembly, 820
System.Reflection.MethodInfo, 382
System.Resources, 823
System.Resource.Tools, 823

System.Runtime.CompilerServices,
314, 410

System.Runtime.Serialization, 666
System.Runtime.WindowsRuntime,

904
System.Security.Claims, 602
System.Security.Cryptography, 615
System.Security.Permissions, 626
System.Security.Principal, 602
System.ServiceModel.Web, 1369
System.String, 136, 210–221, 255,

1458
System.Text.RegularExpressions,

221
System.Text.StringBuilder, 221
System.Threading, 597–598, 816
System.Threading.Tasks, 561
System.Timers, 597–598
System.Transactions, 716–721
System.Type, 380–382
System.ValueType, 82, 90, 163
system.web, 1232
System.Web. ApplicationServices,

610
System.Web.Extensions.Design.dll,

1284
System.Web.Extensions.dll, 1284
System.Web.Security, 610, 1234
System.Web.UI, 597–598
System.Windows, 205, 1050
System.Windows.Annotations, 1052
System.Windows.Automation, 1052
System.Windows.BamI2006, 1052
System.Windows.Controls, 848,

1050, 1105
system.windows.controls. ribbon,

1107
System.Windows.Converters, 1053
System.Windows.Data, 1053
System.Windows.Documents, 1053,

1153
System.Windows.Forms, 383,

597–598
System.Windows.Ink, 1053
System.Windows.Input, 1053
System.Windows.Markup, 848,

1051
System.Windows.Media, 1053
System.Windows.Navigation, 1053
System.Windows.Resources, 1053

System.Windows.Shapes, 1053
System.Windows.Threading,

597–598, 1051
System.Windows.Xps, 1053
System.Workflow, 1408
System.Xaml, 848
System.Xml, 997, 998–1011, 1013,

1024–1025
System.Xml.Linq, 460, 1036
System.Xml.Serialization,

1027–1036
System.Xml.XPath, 1011–1015
System.Xml.Xsl, 1015–1020

T
\t, 35
tab items, WPF data binding, adding

dynamically, 1128–1129
TabControl, 1067, 1128
TabItem, 891

HeaderedContentControl,
1066

UIControlInfo, 1128
Table, 1162–1163
table per type (TPT), 975–976
TableCell, 1162
TableColumn, 1162
TableDirect, 928
TableRow, 1162
Take, 301–302
TAP. See task-based asynchronous

pattern
TargetObject, 1411
TargetProperty, 861
TargetSite, 399
TargetType, 1411
Task, 16, 339, 341

Action, 562
Action<object>, 562
ADO.NET, 936–938
RaceCondition, 575
RunSynchronously, 563
Start, 561
WhenAll, 340

Task Parallel Library (TPL), 16,
564

Data Flow, threads, 598–598
task-based asynchronous pattern

(TAP), 325, 326, 336–338

bindex.indd 1518 30-01-2014 19:49:36

1519

TaskCanceledException – throwing exceptionsSystem.DateTime – task-based asynchronous pattern (TAP)

System.Windows.Shapes, 1053
System.Windows.Threading,

597–598, 1051
System.Windows.Xps, 1053
System.Workflow, 1408
System.Xaml, 848
System.Xml, 997, 998–1011, 1013,

1024–1025
System.Xml.Linq, 460, 1036
System.Xml.Serialization,

1027–1036
System.Xml.XPath, 1011–1015
System.Xml.Xsl, 1015–1020

T
\t, 35
tab items, WPF data binding, adding

dynamically, 1128–1129
TabControl, 1067, 1128
TabItem, 891

HeaderedContentControl,
1066

UIControlInfo, 1128
Table, 1162–1163
table per type (TPT), 975–976
TableCell, 1162
TableColumn, 1162
TableDirect, 928
TableRow, 1162
Take, 301–302
TAP. See task-based asynchronous

pattern
TargetObject, 1411
TargetProperty, 861
TargetSite, 399
TargetType, 1411
Task, 16, 339, 341

Action, 562
Action<object>, 562
ADO.NET, 936–938
RaceCondition, 575
RunSynchronously, 563
Start, 561
WhenAll, 340

Task Parallel Library (TPL), 16,
564

Data Flow, threads, 598–598
task-based asynchronous pattern

(TAP), 325, 326, 336–338

TaskCanceledException, 568
TaskContinuationOptions, 565
TaskCreationOptionDetachedParent,

566
TaskCreationOptions.LongRunning,

564
Task.Delay, 554
TaskFactory, 244, 561, 562, 565
TaskMain, 589
TaskMethod, 562, 563, 726
Task.Run, 337
tasks

asynchronous programming,
338, 339

cancellation, 562–565
continuation, 565
delegates, 184
future results from, 564–565
hierarchies, 565–562
parallelism, 556–557
starting, 557–560
synchronous, 563
thread pools, 562–559
threads, 556–608

Taskstring, 336, 340, 341
TaskTResult, 564
TaskWithResult, 564
/t:checkuid, 836
TCP. See Transmission Control

Protocol
TcpClient, 759, 761–764
TCP/IP, 1428
TcpListener, 759, 761–763, 779, 788
TcpReceive, 761–764, 779
TcpSend, 761–764
Template Editor, ASP.NET, 1278
TemplateField, 1278
templates, ASP.NET, ASP.NET

ASP.NET
MVC, 1322
Web Forms, 1278

C++, 108
HTML helpers, 1322–1323
ListBox, 1121
projects, 422–424
tuples, 147
WCF, 424
WF, 424
WPF, 1080–1089

Test Client, WCF, 1347–1348

/t:exe, 49
Text, 799, 823, 926, 1107,

1400–1401
text editor, 416
text editor, Visual Studio, 416
Text Explorer, 454
text files

reading, 686–694
writing, 686–694

TextBlock, 497, 1385
Background, 861
CultureData, 813
CultureInfo, 812
DataTemplate, 1131
GetHeaderContent, 1169
Inline, 1169
ItemTemplate, 1128
Text, 799
WCF Data Services, 1391

TextBox, 497, 499, 613, 1062, 1385
ASP.NET Web Forms, 1236
DropDownList, 1278
EditItemTemplate, 1278
Enabled, 16
ErrorMessage, 1269
String, 754
TextWrapping, 1126
WebBrowser, 748, 754
XAML, 328
x:Uid, 843

TextDecoration, 1160
TextEffect, 1157–1158
TextElement

AnchoredBlock, 1163–1164
Block, 1160–1161
fonts, 1156–1157
Inline, 1158–1159
List, 1161
Table, 1162–1163
TextEffect, 1157–1158
WPF documents, 1156–1164

TextElementEnumator, 806
TextEmail, 1269
TextMarkerStyle, 1161
TextWrapping, 1126
TextWriter, 1005
TextWriterTraceListener, 531
this, 31, 75, 78
Thread, 552, 566–570

IsBackground, 572–573

ParameterizedThread, 646
Priority, 573–574
Start, 567, 574
Start(), 16

ThreadApartmentState, 646
ThreadAbortException, 574
Thread.Delay, 554
Thread.Join, 574
ThreadMain, 572
ThreadPool, 556, 573
ThreadPool.QueueUserWorkItem, 569
Thread.ResetAbort, 574
threads

background, 568–573
controlling, 574
deadlocks, 577–578
delegates, 184
interop, 635–636, 646–647
lock, 576
multithreading, 443–444,

726–729
passing data, 571–572
pools, 562–563, 569–570
priority, 573–574
QueueT, 243
race conditions, 574–577
scheduling, 573–574
synchronization, 579–597

Barrier, 593–594
events, 590–592
Interlocked, 584–585
lock, 579–584
Monitor, 585–586
Mutex, 587–588
ReaderWriterLockSlim,

594–597
Semaphore, 588–589
SpinLock, 586
WaitHandle, 586–587

tasks, 556–608
Timer, 597–598
TPL Data Flow, 598–598
Windows Services, 788

Thread.Sleep, 554, 574
ThreadStart, 570
ThrowAfter, 342–343
ThrowIfCancellationRequested,

345–346, 568
throwing exceptions, 394

user-defined, 405–407

bindex.indd 1519 30-01-2014 19:49:36

1520

txtBoxInput – ValidationRuletime quantum – txtBoxHostName

time quantum, 573–574
TimeAction, 598
TimeLine, 1089–1092
Timer, 597–598, 1249
TimeSpan, 1242
TInput, 241
tlbexp, 651–653
/t:library, 49
_tmain, 656
/t:module, 49
ToArray, 285
toExclusive, 522
ToList, 285
TollboxItemWrapper, 1430
ToLongDateString, 810
ToLongTimeString, 810
ToLookup, 259, 304
ToLower, 211
ToolBar, 750, 1065
ToolboxControl, 1430
ToolTip, 1064
Top, 982
$top, 1389
topContent, 1263
ToSelectListItems, 1320
ToShortDateString, 810
ToShortTimeString, 810
ToString, 186, 266, 809, 850, 1030
ToString(), 36, 85, 86–87,

103–104, 131, 215, 217, 218
ToUpper, 211
TOutput, 241
TPL. See Task Parallel Library
TPT. See table per type
Trace.Assert, 574
TraceEventType, 530,

534–535
TraceFilter, 533–535
TraceListener, 528–531
TraceOptions, 532
traceOutputOptions, 532, 534
TraceSource, 529–530
TraceSwitch, 530–531
tracing, diagnostics, 528–540
trackers, 1427
TransactedFile, 739, 740
[Transaction], 715
transactional messages, 1451

transactional queues, 1471–1472
transactional resources, 732–737
Transactionalt, 732–737
TransactionAutoComplete, 1359,

1362
TransactionComplete, 1359
TransactionCompleted, 716, 723
Transaction.Current, 728
TransactionInformation, 716
TransactionIsolationLevel, 1359
transactions, 705–740

ACID, 711
ADO.NET, 714–715,

924–925
ambient, 722–729, 740
committable, 717–719
database classes, 712–713
dependent, 721–729
entity classes, 712–713
file system, 737–740
isolation level, 729–731
phases, 711
promotion, 719–721
resource managers, 731–737
System. EnterpriseServices,

715–716
System.Transactions,

716–721
valid state, 711
writing, 710

TransactionScope, 723–726, 740
TransactionScopeOption,

724–726
TransactionScopeRequired, 1362
TransferContentAsync, 275
transformation, WPF, 1058–1060
TransformBlock, 597
TransformGroup, 1059
Transmission Control Protocol

(TCP), 463, 742, 761–763
transparent code, 623
Tree, 1262
TreeView, 1104

ADO.NET Entity Framework,
1139

CultureData, 811
HierarchicalDataTemplate,

1131, 1139, 1140

ItemsControl, 1067, 1140
SelectedItemChanged, 813
WPF business applications,

1139–1143
XAML, 1140

TreeViewItem, 1067
TRest, 146
TriangleIndices, 1099
Triggers, 1292
triggers

Message Queuing, 1450
WPF, 1077–1080

Trim, 211
TrimExcess, 242
Truncate, 682
try, IndexOutOfRange

break, 397
ColdCallFileReader, 404
Exception, 398
exceptions, 394
nested, 400–402
ProcessNextPerson, 406
while, 397

try/catch, 43, 342, 343, 355
try...catch...finally, 924–925
TryEnter, 585
TryEnterUpgradableReadLock, 594
try/finally, 392, 405
TryFindResource, 835
TryGetMember, 322
TryGetObjectByKey(), 974
TryGetValue, 253, 258, 274
TrySetMember, 322
TryTake, 268–269
TryUpdate, 274
TryUpdateModel, 1300
Tunnel, 858
tunneling events, 856–858
Tuple, 146, 564, 148
tuples, 146–147

arrays, 147–149
Divide(), 146
.NET Framework, 146
templates, 147

/t:winexe, 49
Twist, Josh, 1429
two-way binding, 1110
txtBoxHostName, 758

bindex.indd 1520 30-01-2014 19:49:36

1521

txtBoxInput – ValidationRuletime quantum – txtBoxHostName

ItemsControl, 1067, 1140
SelectedItemChanged, 813
WPF business applications,

1139–1143
XAML, 1140

TreeViewItem, 1067
TRest, 146
TriangleIndices, 1099
Triggers, 1292
triggers

Message Queuing, 1450
WPF, 1077–1080

Trim, 211
TrimExcess, 242
Truncate, 682
try, IndexOutOfRange

break, 397
ColdCallFileReader, 404
Exception, 398
exceptions, 394
nested, 400–402
ProcessNextPerson, 406
while, 397

try/catch, 43, 342, 343, 355
try...catch...finally, 924–925
TryEnter, 585
TryEnterUpgradableReadLock, 594
try/finally, 392, 405
TryFindResource, 835
TryGetMember, 322
TryGetObjectByKey(), 974
TryGetValue, 253, 258, 274
TrySetMember, 322
TryTake, 268–269
TryUpdate, 274
TryUpdateModel, 1300
Tunnel, 858
tunneling events, 856–858
Tuple, 146, 564, 148
tuples, 146–147

arrays, 147–149
Divide(), 146
.NET Framework, 146
templates, 147

/t:winexe, 49
Twist, Josh, 1429
two-way binding, 1110
txtBoxHostName, 758

txtBoxInput, 758
Type, 380–382

Boolean, 381
CreateInstance(), 134
GetCustomAttributes, 385–386
Main, 384
properties, 381–382
String, 1458
Type.GeTTypeFromProgID, 646
Vector, 382

type conversions, 158–161
type information operator, 152
type library ID (typelib ID), 635
type safety, 157–162
TypeCatalog, 893
TypeConverter, 851
Type.GetMethods, 388
Type.GetTypeFromProgID, 646
TypeName, 1244, 1253
typeof, 45, 156, 381
<typeparam>, 53
<typeparamref>, 53
TypeView, 383–384

U
/u, 509
UDP. See User Datagram Protocol
UdpClient, 759, 763–764
UIControlInfo, 1128
<UICulture>, 834
UIElement, 1054, 1157, 1172
UIHint, 1323
uint, 33, 158, 159, 174, 362
UIPermission, 625
ulong, 33, 159, 362
UltimateResourceFallbackLocation,

819
UnauthenticatedPrincipal, 607
unboxing, 108–109, 161–162,

177–178
Unchanged, 942
unchecked, 152, 154–155
unchecked operator, 154
#undef, 54–55
Underline, 1160
UnderlyingSystemType, 381
UnexpectedException, 408
Unicode, 806–807

uniform resource locator (URL),
738, 1388–1390

Uninstall, 789
UNINSTALL_KEY, 508
Union, 299–300, 982
UnionAll, 982
UniqueConstraint, 945
unit tests, 455–462

code paths, 456–457
creating, 457
ExpectedException, 459
external dependencies,

460–462
Fakes Framework, 459–460
running, 457–459
Visual Studio

code paths, 459–460
ExpectedException, 459
external dependencies,

460–462
Fakes Framework, 459–460
running, 454–456

universal unique ID (UUID), 1453
unsafe, 359
unsecured peer names, 1429
Unspecified, 730
Unstarted, 574
UpdateAsync, 478
UpdateCommand, 955
UpdateMode, 1277–1278
UpdateModel, 1316
UpdatePanel, 1263, 1285
UpdateProgress, 1288, 1294
UpdateSourceTrigger, 1139
UploadFile, 740
UploadPropertyInformation, 1425,

1426
UploadRoomInformation, 1425
Uri, 756
UriBuilder, 756
URL. See uniform resource locator
UrlAuthorization, 1233
UrlRequest, 1385
usage conventions, 58–63

fields, 63
methods, 62–63
names, 59–62
properties, 62–63
variables, 58

UseAutoEndPointSelection, 1441
UseCookies, 1240
UseDeviceProfile, 1240
User, 791
User Datagram Protocol (UDP), 763
UserAgent, 1230
UserControl, 1065, 1144
userControls, 1128
UserInfo, 1246
Username, 791
UseSynchronizationContext, 1359,

1369
UseUri, 1240
ushort, 33, 158
using

Console.WriteLine, 25
First.cs, 25
IDisposable.Dispose, 926
Menu, 1292
namespaces, 46–47
TransactionScope, 723
try/finally, 405
TypeView, 383

using namespace, 25
util, 512
utility classes, 756–759
UUID. See universal unique ID
uuidgen.exe, 1453

V
\v, 35
valid state, transactions, 711
ValidateMustUnderstand, 1360
ValidatesOnDataErrors, 1135
ValidatesOnNotifyDataErrors, 1138
ValidateUser, 610, 613
Validation, 1133, 1134
validation

ASP.NET
MVC, 1317–1318
Web Forms, 1268–1271

WF activities, 1414
WPF data binding, 1132–1139
XmlReader, 1004–1005

Validation.ErrorTemplate, 1134
ValidationEvent, 1005
ValidationGroup, 1271
ValidationRule, 1138–1139

bindex.indd 1521 30-01-2014 19:49:36

1522

ValidationRules – Visual Studio VisualBrush – Windows Communication Foundation (WCF)

ValidationRules, 1113
ValidationSummary, 1270
validationTemplate, 1133–1134
ValidationType, 1005
Value, 110, 247, 733, 1076
$value, 1389
<value>, 53
value types, 31–32

equality, 163
floating-point, 34
generics, 114
IL, 8
memory, 348–349
predefined, 33–35
stack, 108
structs, 81–82, 108

ValueAtReturn, 525
ValueCount, 702
Value.IsValueCreated, 867
Values, 252, 1225
values

conversion, WPF data binding,
1125–1126

literals, 161
var, 28–29, 79
variables, 27–31

classes, 27
compilers, 27
constants, 31
fields, 29–31
initialization, 27–28
local, 29–31
methods, 27
scope, 29–31
statements, 27
structs, 27
type inference, 28–29
usage conventions, 58
Visual Studio project, 444

VARIANT, 634
Vector, 379, 382
VectorAsCollection, 379–380
VectorClass, 387, 389
Verbose, 530
VerifyData, 618
versions

assemblies, 490, 513–517
binding, 514–515
dependencies, 490

runtime, 516–517
calling base, 93
number, strong names, 503
WCF contracts, 1355
WF workflows, 1427–1428

View, 1304, 1292
view engine, 1331
ViewBag, 1291
ViewBox, 1067–1068
ViewData, 1291
ViewDataDictionary, 1305–1306
ViewModel, 1429
ViewResult, 1304
Views, 1325
views, ASP.NET MVC, 1309–1311

login, 1315
ViewState, 1237
virtual

abstract functions, 94
classes, 103
cloud state, 1431
implementation inheritance,

91–92
modifiers, 100
overriding, 92

virtual addressing, 348
virtual memory, 12, 348
virtual methods, 91–92
virtual table (vtable), 633, 634
VirtualPath, 1258
Visibility, 813, 1192, 1195
visibility modifiers, 99–100
Visual, 1054, 1063
Visual Basic

attributes, 13
IDL, 632
.NET Framework, 5

casing, 60
project, debugging, 436–438
sink object, 658
VARIANT, 634

Visual C++, 5–6
Visual F#, 6
visual states, VisualStateManager,

1096–1097
Visual Studio, 417–466

Code Map, 451
CodeBehind, 1254
CodeLens, 433

IntelliSense, 1226
projects

Activity Designer Library,
1415

Add Service Reference, 1370
analyzing applications,

448–453
architecture, 446–448
arranging windows, 435
ASP.NET, 415
asynchronous

programming, 326
Autos window, 442
breakpoints, 440–441
building, 437–438
Class View window,

435–436
ClickOnce, 472
client application services,

613
Code Analysis, 455–456
code editor, 431–433

code snippets, 433
IntelliSense, 431

code metrics, 456
compiling, 437–438
Concurrency Visualizer,

454–455
Console.Readline, 425
configuration, 440–441
creating projects, 420–425
deadlocks, 578
Debug, 437
debugger visualizers,

442–443
debugging, 417, 439–444

data tips, 438–440
dependency graph,

446–447
design view editor, 416
Design View window, 434
Document Outline, 437
editions, 418
exceptions, 444–445
exploring and coding

projects, 424–435
files, 418
folding editor, 431–432
IDE, 8, 415, 419

bindex.indd 1522 30-01-2014 19:49:37

1523

ValidationRules – Visual Studio VisualBrush – Windows Communication Foundation (WCF)

language independence,
427

Launch Performance
Wizard, 449

layer diagram, 450–451
LINQ to SQL, 1322
Locals window, 442
making, 435–436
MessageQueueInstaller,

1478
Multilingual App Toolkit,

842, 844
multithreading, 445–446
.NET Framework, 5, 415,

420–421
Object Browser window,

436
performance, 436–437
profiler, 452–454
variables, 442

Properties Window, 435
sequence diagram, 452
Server Explorer Window, 437

VisualBrush, 1062–1063, 1100
VisualStateManager, 1095–1098
void, 26, 354, 362, 570
VolumeSeparatorChar, 670
vtable. See virtual table

W
W3C. See World Wide Web

Consortium
Wait, 589
WaitCallback, 569
WaitForAccept, 1412
WaitForReject, 1412
WaitForStatus, 801
WaitHandle, 586–587
WaitingForChildrenToComplete,

566
WaitingReadCount, 594
WaitingUpgradableReadCount, 594
WaitingWriteCount, 594
WaitSleepJoin, 574
Warning, 530
#warning, 56
WAS. See Windows Activation

Services

Watch window, Visual Studio, 442
Watt, Andrew, 222
WCF, 417, 463-464. See Windows

Communication Foundation
WCF Data Services, 1395–1400
weak events, 204–205
weak references, 82–83
WeakEventManager, 205–208
WeakReference, 83
Web API. See ASP.NET
web applications

ASP.NET, 1223–1224
.NET Framework,

1223–1224
configuration files, 477–478
deployment, 466, 479–481

packages, 480–481
IIS, 1226–1227
xcopy, 470–473

Web Deploy, 479
Web Forms

ASP.NET, 18, 1212, 1224,
1239–1281

ADO.NET
EntityFramework, 1271

master pages, ASP.NET,
1263–1267

web application deployment,
479

Web Pages, ASP.NET, 1212
Web project templates, 423
web server controls, ASP.NET, 18
Web Service Enhancements (WSE),

1340
web services, 1291
Web Services Description Language

(WSDL), 1341–1342
WebBrowser

COM, 746
DocumentText, 754
IE, 746–751
interop, 746
LinkLabel, 748
.NET Framework, 746
printing, 753
TextBox, 744, 754
Windows Forms, 737

WebClient, 334
Web.config, 480

web.config, 1228, 1218, 1266
Web.debug.config, 478
WebGet, 1370
WebHttpBinding, 1363
WebInvoke, 1369
WebPermission, 625
WebRequest, 754–756
WebResponse, 754–756
WebSocket, 768–770, 1363–1366
WebSocketContext, 770
WebSocketReceiveResult, 770
WebViewPage, 1318
well connected, P2P, 1428
WF, 464, 1400-1401. See Windows

Workflow Foundation
WhatsNewAttributes, 378–380,

386–389
WhenAll, 340, 343
WHERE, 1259
Where, 289, 306, 308, 982
where, 117
where T: class, 116
where T: Foo, 116
where T: IFoo, 116
where T: new(), 116
where T: struct, 116
where T1: T2, 116
while, 43, 397

Boolean, 42
Console.ReadLine, 397
Count, 246
foreach, 201
local variables, 29
MoveToContent, 1002

Window, 1065
WindowBase, 848
WindowRuntimeStorageExtensions,

903
Windows 8, 462–464
Windows Activation Services (WAS),

1348, 1368, 1369
Windows Authentication, 923
Windows Communication

Foundation (WCF), 1339–1379
ASP.NET runtime, 1340
assemblies, 511
binding, 1362–1368
client, 1350–1351, 1370–1372

application services, 610

bindex.indd 1523 30-01-2014 19:49:37

1524

Windows project templates – Windows Workflow Foundation (WF)Windows Communication Foundation (WCF) – Windows Presentation Foundation (WPF)

CLR, 1355
contracts, 1353–1358

Message Queuing, 1474
versioning, 1355

data access, 1345–1346
data contract, 1355
Data Services, 1379–1398

ADO.NET Entity
Framework, 1379, 1380,
1390–1398

ASP.NET Web API, 1380
client library, 1391–1398
CLR, 1380–1385
entities, 1396–1397
hosting, 1383–1384
HTML, 1380
HTTP, 1380
HTTP client application,

1385–1388
JSON, 1380
LINQ, 1393–1394
object tracking, 1395–1396
URL, 1388–1390

diagnostics, 1351–1353
duplex communication,

1372–1374
extensibility, 1340
fault contract, 1357–1358
filters, 1379
hosting, 1368–1370
HTTP, 463, 1340, 1363–1365
IIS, 1348
JSON, 1342
mapped-memory files, 694
Message Queuing, 1472–1478
MessageContract, 1357
metadata, 1370–1371
.NET Framework, 20, 1338
networking, 742
OperationContract, 1356–1357
P2P, 1428
PNRP, 1429
project templates, 424
REST, 463, 1340
routes, 1382–1379

protocols, 1378–1379
RoutingService, 1376–1377

security, 1340
service, 1347
Service Host, 1347–1348
Service Library, 1347
ServiceBehavior, 1358–1362
ServiceContract, 1356–1357
SOAP, 463, 1339
TCP, 463
Test Client, 1347–1348
Visual Studio, 415, 463–464
WAS, 1368, 1369
WebSocket, 1365–1368
Windows Forms, 1348
workflows, hosting, 1424–1427
WPF, 1348
WSDL, 1341–1342
XML, 1355

Windows Forms, 415
localization, 822–830
MessageQueueInstaller, 1478
Visual Studio, 415

localization, 822–830
WCF, 1348
WebBrowser, 741

Windows Installer, 470, 473
Windows Presentation Foundation

(WPF), 415, 1049–1100
3-D, 1098–1101

camera, 1100
lights, 1100–1101
model, 1099–1100
rotation, 1101

animations, 1089–1095
keystone, 1094–1095
nonlinear, 1092

asynchronous pattern, 326–327
brushes, 1060–1063
business applications,

1105–1153
commanding, 1107–1109
data binding, 1109–1139
DataGrid, 1143–1153
Menu, 1104–1105
MenuItem, 1104–1105
Ribbon, 1109–1111
TreeView, 1139–1143

Calculator, 884
Canvas, 1069
class hierarchies, 1053–1055

Click, 498
client application services, 613
CLR, 1110
command-line tools, 426
ContentControl, 1055, 1065
controls, 1063–1068

simple controls, 1063–1064
ControlTemplate, 1081–1084
cultures, 809
data binding, change

notification, 1115–1116
CLR, 1115
DataTemplateSelector,

1129–1130
error handling, 1132–1139
lists, 1118-1120, 1127
master/detail relationship,

1122
MultiBinding, 1122–1124
ObjectDataProvider,

1118–1119
PriorityBinding, 1124–1125
tab items, adding

dynamically, 1128–1129
validation, 1132–1139
value conversion,

1125–1126
XAML, 1111–111
XML, 1131–1132

DataTemplate, 1081,
1084–1085

DataTrigger, 1079–1080
decoration, 1067–1068
dependency properties, 853
DockPanel, 1069–1070
documents, 1155–1175

FixedDocument,
1168–1171

FlowDocument, 1164–1168
printing, 1173–1175
TextElement, 1156–1164
XPS, 1171–1173

DynamicResource, 1075–1076
EventTrigger, 1089,

1092–1094
Geometry, 1056–1057
Grid, 1070–1071
HeaderedContentControl,

1065–1066

Windows Communication
Foundation (WCF) (continued)

bindex.indd 1524 30-01-2014 19:49:37

1525

Windows project templates – Windows Workflow Foundation (WF)Windows Communication Foundation (WCF) – Windows Presentation Foundation (WPF)

Click, 498
client application services, 613
CLR, 1110
command-line tools, 426
ContentControl, 1055, 1065
controls, 1063–1068

simple controls, 1063–1064
ControlTemplate, 1081–1084
cultures, 809
data binding, change

notification, 1115–1116
CLR, 1115
DataTemplateSelector,

1129–1130
error handling, 1132–1139
lists, 1118-1120, 1127
master/detail relationship,

1122
MultiBinding, 1122–1124
ObjectDataProvider,

1118–1119
PriorityBinding, 1124–1125
tab items, adding

dynamically, 1128–1129
validation, 1132–1139
value conversion,

1125–1126
XAML, 1111–111
XML, 1131–1132

DataTemplate, 1081,
1084–1085

DataTrigger, 1079–1080
decoration, 1067–1068
dependency properties, 853
DockPanel, 1069–1070
documents, 1155–1175

FixedDocument,
1168–1171

FlowDocument, 1164–1168
printing, 1173–1175
TextElement, 1156–1164
XPS, 1171–1173

DynamicResource, 1075–1076
EventTrigger, 1089,

1092–1094
Geometry, 1056–1057
Grid, 1070–1071
HeaderedContentControl,

1065–1066

HeaderedItemsControl, 1067
HierarchicalDataTemplate,

1081
ItemsControl, 1055,

1066–1067
ItemsPanelTemplate, 1081
ItemTemplate, 1084–1085
ListBox, 1085–1086
localization, 830–839

XAML resource
dictionaries, 834–838

MultiTrigger, 1079
namespaces, 1052–1053
.NET Framework, 19, 833–834
property triggers, 1077–1078
ResourceDictionary,

1076–1077
resources, 1073–1077
Shape, 1055–1056
StackPanel, 1068–1069
StaticResource, 1075–1076
Style, 1072–1073
templates, 422, 1078–1087
TimeLine, 1089–1092
transformation, 1058–1060
triggers, 1077–1080
Visual Studio, 415, 417
VisualStateManager,

1095–1098
WCF, 1348
weak events, 206
WrapPanel, 1069
XAML, 19, 845, 1050

Windows project templates,
422–423

Windows Resource Localization
Editor (winres.exe), 829

Windows Runtime (WinRT), 7,
895–914

application life cycle, 907–911
ApplicationExecutionState,

905–913
async, 900
asynchronous programming,

16, 326
camel casing, 901
collections, 902–903
components, 902–905
data types, 901
delegates, 904

events, 904
image resizing, 1199
JavaScript, 905
language, 899–901
metadata, 899
namespaces, 896–898
navigation state, 908–909
.NET Framework, 896
page state, 911–913
Pascal casing, 901
Reference Manager, 485
streams, 903–904
SuspensionManager, 908–909
webcam, 906
Windows Store applications,

913–916
Windows.Management.

Deployment, 484
XAML, 898– 901

Windows Services, 773–803
architecture, 773–777
classes, 774–777
event logging, 802–803
handlers, 773–774, 787
installation, 788–793
Main, 773–774, 785–786
MMC, 793–794
monitoring and controlling,

793–802
.NET Framework, 20, 774
SCM, 773
service configuration program,

774
service control program, 774
service program, 773–793

core functionality,
777–781

service-main, 773–774
threads, 788
troubleshooting, 802–803
Visual Studio, 794

Windows socket (Winsock), 742
Windows Store

app bar, 1178, 1187–1188
applications, 1178–1204

contracts, 1208–1212
deployment, 466, 479–484
directories, 1180–1182
files, 1180–1182
HTML, 1208–1210

launching, 1188–1190
layout, 1190–1195
localization, 842–844
navigation, 1188–1190
.NET Framework, 19–20
.NET Framework streams,

1198
pages, 1182–1187
pickers, 1201–1202
Sharing Target, 1210–1212
storage, 1196–1201
Visual Studio, 466–468
WinRT, 913–916
XAML, 845

C++, 842
camera, 1212–1213
content, 1178–1179
deployment, application

packages, 480
fast and fluid, 1179–1180
geolocation, 1213–1215
HTML, 842
JavaScript, 842
readability, 1180
resw, 842
searches, 1206–1207
sensors

accelerometer, 1216
compass, 1216
gyrometer, 1216
inclinometer, 1216
light, 1216
orientation, 1216

XAML, 842
Windows store project templates,

423
Windows Workflow Foundation

(WF), 1407–1432
activities, 1407, 1409–1413, IF

custom, 1413–1416
custom composite,

1416–1419
designers, 1414–1416
Else, 1410–1411
IF,1402-1403
validation, 1414
XAML, 1415–1416

bookmarks, 1421–1422
designers, hosting, 1428–1432
extensions, 1422–1423

bindex.indd 1525 30-01-2014 19:49:37

1526

XML Localisation Interchange File Format (XLIFF)– zero impact installation (xcopy)Windows Workflow Foundation (WF) – XML

.NET Framework, 20
project templates, 425
Visual Studio, 465, 1400–1401
workflows, 1419–1423

Dynamic Update,
1427–1428
side-by-side, 1428
versioning, 1427–1428
XAML, 1420

XAML, 845
Windows.ApplicationModel,894
Windows.ApplicationModel.

Resources, 842
WindowsAuthentication, 1233
Windows.Devices, 898
WindowsFormsSynchronization, 339
Windows.Foundation, 898
<windows>\Globalization, 841
Windows.Globalization, 843, 898
Windows.Graphics, 898
WindowsIdentity, 602
Windows.Management.

Deployment, 484
Windows.Media, 898
Windows.Networking, 898
WindowsPrincipal, 602
Windows.Security, 898
Windows.Storage, 898
Windows.System, 898
WindowsTokenRoleProvider, 1234
winres.exe. See Windows Resource

Localization Editor
WinRT. See Windows Runtime
Winsock. See Windows socket
WithCancellation, 306
Workflow, 1409
WorkflowApplication, 1420–1423
WorkflowApplicationInstance,

1428
WorkflowDesigner, 1430
WorkflowDesigner.Save, 1431
WorkflowIdentity, 1428
WorkflowInvoker, 1409,

1419–1420, 1432
WorkflowItemPresenter, 1419

workflows
WCF, hosting, 1424–1427
WF, 1419–1423

Dynamic Update, 1427–1428
side-by-side, 1428
versioning, 1427–1428
XAML, 1420

WorkflowServiceHost, 1424, 1428
WorkForATask, 535
World Wide Web Consortium

(W3C), 998
WPF, 419. See Windows Presentation

Foundation
WrapDirection, 1163
WrapPanel, 1069
Write, 684
WriteAllBytes, 679
WriteAllLines, 679–680
WriteAllText, 679–680
WriteAttributeInfo, 388
WriteAttributeString, 1006
WriteByte, 683–684
WriteEntry(), 543, 544–547
WriteEvent(), 543, 544–547
WriteImageAsync, 1199, 1200
WriteLine, 1408–1409
WriteLine(), 26
WriteMenuCardsAsync, 1198
WriteMenuCardToFileAsync,

1197
WriteSchema, 1022
WriteStartElement, 1006
Write.WriteByte, 683
WriteXml, 1021, 1022
WriteXmlSchema, 1022
writing

files, 679–680
isolated storage, 704–707
streams, 680
text files, 686–694
transactions, 710
XAML, 863–864
XML document, 1046–1047

WS2007HttpBinding, 1363
WSDL. See Web Services Description

Language
WSDualHttpBinding, 1363

wsDualHttpBinding, 1373–1374
WSE. See Web Service

Enhancements
WSFederationHttpBinding, 1363
WSHttpBinding, 1363
wsHttpBinding, 1377, 1378
WSHttpContextBinding, 1363

x
X, 51
XAML, 419, 421. See eXtensible

Application Markup Language
XamlDebuggerXmlReader, 863
XamlObjectReader, 863
XamlObjectWriter, 863
XamlReader, 848, 863–864
XamlWriter, 848, 863–864
XamlXmlWriter, 863
x:Array, 852, 863
XAttribute, 1041–1042
XComment, 1040–1041
xcopy. See zero impact

installation
xcopy deployment, 472–473
XDocument, 1036–1037
XElement, 460, 1037–1038
.xlf, 843
XLIFF. See XML Localisation

Interchange File Format
XML. See also Asynchronous

JavaScript and XML; LINQ to
XML

ADO.NET,
aliases, 850
attributes, 1041–1042
comments, 52–54, 1040–1041
DataSet, 954–955, 957–958
documents, 948–953, 995,

1020–1027
LINQ to Query,

1042–1045
reading, 1045–1046
writing, 1046–1047

FileStream, 1031
IIS, 510
isolated storage, 705

Windows Workflow Foundation
(WF) (continued)

bindex.indd 1526 30-01-2014 19:49:38

1527

XML Localisation Interchange File Format (XLIFF)– zero impact installation (xcopy)Windows Workflow Foundation (WF) – XML

wsDualHttpBinding, 1373–1374
WSE. See Web Service

Enhancements
WSFederationHttpBinding, 1363
WSHttpBinding, 1363
wsHttpBinding, 1377, 1378
WSHttpContextBinding, 1363

x
X, 51
XAML, 419, 421. See eXtensible

Application Markup Language
XamlDebuggerXmlReader, 863
XamlObjectReader, 863
XamlObjectWriter, 863
XamlReader, 848, 863–864
XamlWriter, 848, 863–864
XamlXmlWriter, 863
x:Array, 852, 863
XAttribute, 1041–1042
XComment, 1040–1041
xcopy. See zero impact

installation
xcopy deployment, 472–473
XDocument, 1036–1037
XElement, 460, 1037–1038
.xlf, 843
XLIFF. See XML Localisation

Interchange File Format
XML. See also Asynchronous

JavaScript and XML; LINQ to
XML

ADO.NET,
aliases, 850
attributes, 1041–1042
comments, 52–54, 1040–1041
DataSet, 954–955, 957–958
documents, 948–953, 995,

1020–1027
LINQ to Query,

1042–1045
reading, 1045–1046
writing, 1046–1047

FileStream, 1031
IIS, 510
isolated storage, 705

LINQ, 310
LINQ to X ML, 1036,

1042–1045
manipulating, 997–1048
namespaces, 998, 1038–1040
.NET Framework, 997, 998
schema, 948–953
serialization, 1027–1036, 1458

source code, 1033–1036
WCF, 1355
WPF data binding, 1131–1132
XAML, 848
XPathNavigator, 1011–1020

XML Localisation Interchange File
Format (XLIFF), 843

XML Paper Specification (XPS),
1171–1173

XmlArray, 1034
XmlArrayItemAttribute, 1032
XmlArrayItems, 1034
XmlAttribute, 1007
XmlAttributeOverrides, 1033, 1034
XmlAttributes, 1033, 1034
XmlCDataSection, 1007
XmlComment, 1007
XmlDataDocument, 999, 1022, 1017
XMLDataProvider, 1131
XmlDataSource, 1271
XmlDeclaration, 1007, 1011
XmlDocument, 998, 1001, 1007,

1008–1011, 1036
DataSet, 1021
XmlDataDocument, 1023
XmlMode, 1022

XmlDocumentFragment, 1007
XmlDocumentType, 1007

XmlElement, 1007
XmlElementAttribute, 1029, 1034
XmlElements, 1034
XmlEntity, 1007
XmlEntityReferenceNode, 1007
XmlException, 1002
XMLHttpRequest, 1283
XmlInsDefinition, 850
XmlLinkedNode, 1007
XmlMessageFormatter, 1457, 1458
XmlMode, 1022
XmlNode, 999, 1008
XmlNodeList, 999
XmlNodeReader, 1000
XmlNodeType, 1002
XmlNotation, 1007
XmlProcessingInstruction, 1007
XmlQueryOutput, 1000
XmlReader, 999–1007

attributes, 1003–1004
Create, 1001
methods, 1001–1003
strong data typing, 1003
validation, 1004–1005

XmlReaderSettings, 1004
XmlResolver, 999, 1018
XmlRootAttribute, 1029, 1030
XmlSchemaSet, 1005
XmlSchemaValidation, 1005
XmlSerializer, 1027, 1028, 1034
XmlSignificantWhitespace, 1007
XmlText, 1007
XmlTextReader, 707, 1001–1002
XmlTextWriter, 999, 1002,

1007–1008, 1011
XmlUrlResolver, 999

XmlValidatingReader, 1000
XmlWhitespace, 1007
XmlWriter, 1000, 1001, 1005–1006
XmlWriterSettings, 1005, 1006
XmlWriterTraceListener, 530, 534
XNamespace, 1038–1040
Xor, 264
XPath, 998, 1010, 1113
XPathDocument, 1011, 1012
XPathException, 1011
XPathNavigator, 1011–1020
XPathNodeIterator, 1011, 1013,

1014
XPS. See XML Paper Specification
XpsDocument, 1172
XSD, 948–953
XSD.EXE, 948
xsd.exe, 1028
XsdValidate, 1004, 1005
XslCompiledTransform, 1020
XSLT, 1015, 1019–1020
XsltArgumentList, 1016, 1017–1019
x:Static, 833
x:Uid, 835, 843

Y–Z
yield

arrays, 141–143
enumerators, 111, 145–146
GetWords, 601

yield return
285, 336

zero impact installation (xcopy), 15,
468, 470, 490

bindex.indd 1527 30-01-2014 19:49:38

Try Safari Books Online FREE
for 15 days and take 15% off

for up to 6 Months*
Gain unlimited subscription access to thousands of books and videos.

START YOUR FREE TRIAL TODAY!
Visit: www.safaribooksonline.com/wrox

*Discount applies to new Safari Library subscribers only and
is valid for the fi rst 6 consecutive monthly billing cycles.
Safari Library is not available in all countries.

With Safari Books Online, learn without limits
from thousands of technology, digital media and
professional development books and videos from
hundreds of leading publishers. With a monthly or
annual unlimited access subscription, you get:

• Anytime, anywhere mobile access with Safari To
Go apps for iPad, iPhone and Android

• Hundreds of expert-led instructional videos on
today’s hottest topics

• Sample code to help accelerate a wide variety of
software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Rough Cuts pre-published manuscripts

badvert.indd 1528 30-01-2014 19:47:49

Programmer to Programmer™

Contact Us.
We love feedback! Have a book idea? Need community support?
Let us know by e-mailing wrox-partnerwithus@wrox.com

Connect with Wrox.
Participate
Take an active role online by participating
in our P2P forums @ p2p.wrox.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble

Join the Community
Sign up for our free monthly newsletter
at newsletter.wrox.com

Wrox.com
Browse the vast selection of Wrox titles, e-books,
and blogs and find exactly what you need

User Group Program
Become a member and take advantage of all
the benefits

Wrox on
Follow @wrox on Twitter and be in the know
on the latest news in the world of Wrox

Wrox on
Join the Wrox Facebook page at
facebook.com/wroxpress and get updates
on new books and publications as well
as upcoming programmer conferences
and user group events

Uploaded by [StormRG]

	Professional C# 5.0 and .NET 4.5.1
	Copyright
	Credits
	About the Authors
	About the Technical Editors
	Acknowledgments
	Contents
	Introduction
	The Significance of .NET and C#
	Advantages of .NET
	What’s New in the .NET Framework 4.5 and .NET 4.5.1
	Asynchronous Programming
	Windows Store Apps and the Windows Runtime
	Enhancements with Data Access
	Enhancements with WPF

	AS P.NET MVC
	Where C# Fits In
	What You Need to Write and Run C# Code
	What This Book Covers
	Part I: The C# Language
	Part II: Visual Studio
	Part III: Foundation
	Part IV: Data
	Part V: Presentation
	Part VI: Communication

	Conventions
	Source Code
	Errata
	P2P.Wrox.Com

	Part I: The C# Language
	Chapter 1: .NET Architecture
	The Relationship of C# to .NET
	The Common Language Runtime
	Platform Independence
	Performance Improvement
	Language Interoperability

	A Closer Look at Intermediate Language
	Support for Object Orientation and Interfaces
	Distinct Value and Reference Types
	Strong Data Typing
	Error Handling with Exceptions
	Use of Attributes

	Assemblies
	Private Assemblies
	Shared Assemblies
	Reflection
	Parallel Programming
	Asynchronous Programming

	.NET Framework Classes
	Namespaces
	Creating .NET Applications Using C#
	Creating ASP.NET Applications
	Windows Presentation Foundation (WPF)
	Windows Store Apps
	Windows Services
	Windows Communication Foundation
	Windows Workflow Foundation

	The Role of C# in the .NET Enterprise Architecture
	Summary

	Chapter 2: Core C#
	Fundamental C#
	Your First C# Program
	The Code
	Compiling and Running the Program
	A Closer Look

	Variables
	Initialization of Variables
	Type Inference
	Variable Scope
	Constants

	Predefined Data Types
	Value Types and Reference Types
	CTS Types
	Predefined Value Types
	Predefined Reference Types

	Flow Control
	Conditional Statements
	Loops
	Jump Statements

	Enumerations
	Namespaces
	The using Directive
	Namespace Aliases

	The Main() Method
	Multiple Main() Methods
	Passing Arguments to Main()

	More on Compiling C# Files
	Console I/O
	Using Comments
	Internal Comments within the Source Files
	XML Documentation

	The C# Preprocessor Directives
	#define and #undef
	#if, #elif, #else, and #endif
	#warning and #error
	#region and #endregion
	#line
	#pragma

	C# Programming Guidelines
	Rules for Identifiers
	Usage Conventions

	Summary

	Chapter 3: Objects and Types
	Creating and Using Classes
	Classes and Structs
	Classes
	Data Members
	Function Members
	readonly Fields

	Anonymous Types
	Structs
	Structs Are Value Types
	Structs and Inheritance
	Constructors for Structs

	Weak References
	Partial Classes
	Static Classes
	The Object Class
	System.Object Methods
	The ToString() Method

	Extension Methods
	Summary

	Chapter 4: Inheritance
	Inheritance
	Types of Inheritance
	Implementation Versus Interface Inheritance
	Multiple Inheritance
	Structs and Classes

	Implementation Inheritance
	Virtual Methods
	Hiding Methods
	Calling Base Versions of Functions
	Abstract Classes and Functions
	Sealed Classes and Methods
	Constructors of Derived Classes

	Modifiers
	Visibility Modifiers
	Other Modifiers

	Interfaces
	Defining and Implementing Interfaces
	Derived Interfaces

	Summary

	Chapter 5: Generics
	Generics Overview
	Performance
	Type Safety
	Binary Code Reuse
	Code Bloat
	Naming Guidelines

	Creating Generic Classes
	Generics Features
	Default Values
	Constraints
	Inheritance
	Static Members

	Generic Interfaces
	Covariance and Contra-variance
	Covariance with Generic Interfaces
	Contra-Variance with Generic Interfaces

	Generic Structs
	Generic Methods
	Generic Methods Example
	Generic Methods with Constraints
	Generic Methods with Delegates
	Generic Methods Specialization

	Summary

	Chapter 6: Arrays and Tuples
	Multiple Objects of the Same and Different Types
	Simple Arrays
	Array Declaration
	Array Initialization
	Accessing Array Elements
	Using Reference Types

	Multidimensional Arrays
	Jagged Arrays
	Array Class
	Creating Arrays
	Copying Arrays
	Sorting

	Arrays as Parameters
	Array Covariance
	ArraySegment<T>

	Enumerations
	IEnumerator Interface
	foreach Statement
	yield Statement

	Tuples
	Structural Comparison
	Summary

	Chapter 7: Operators and Casts
	Operators and Casts
	Operators
	Operator Shortcuts
	Operator Precedence

	Type Safety
	Type Conversions
	Boxing and Unboxing

	Comparing Objects for Equality
	Comparing Reference Types for Equality
	Comparing Value Types for Equality

	Operator Overloading
	How Operators Work
	Operator Overloading Example: The Vector Struct
	Which Operators Can You Overload?

	User-Defined Casts
	Implementing User-Defined Casts
	Multiple Casting

	Summary

	Chapter 8: Delegates, Lambdas, and Events
	Referencing Methods
	Delegates
	Declaring Delegates
	Using Delegates
	Simple Delegate Example
	Action<T> and Func<T> Delegates
	BubbleSorter Example
	Multicast Delegates
	Anonymous Methods

	Lambda Expressions
	Parameters
	Multiple Code Lines
	Closures
	Closures with Foreach Statements

	Events
	Event Publisher
	Event Listener
	Weak Events

	Summary

	Chapter 9: Strings and Regular Expressions
	Examining System.String
	Building Strings
	StringBuilder Members
	Format Strings

	Regular Expressions
	Introduction to Regular Expressions
	The RegularExpressionsPlayaround Example
	Displaying Results
	Matches, Groups, and Captures

	Summary

	Chapter 10: Collections
	Overview
	Collection Interfaces and Types
	Lists
	Creating Lists
	Read-only Collections

	Queues
	Stacks
	Linked Lists
	Sorted List
	Dictionaries
	Key Type
	Dictionary Example
	Lookups
	Sorted Dictionaries

	Sets
	Observable Collections
	Bit Arrays
	BitArray
	BitVector32

	Immutable Collections
	Concurrent Collections
	Creating Pipelines
	Using a BlockingCollection
	Using a ConcurrentDictionary
	Completing the Pipeline

	Performance
	Summary

	Chapter 11: Language Integrated Query
	Linq Overview
	Lists and Entities
	LINQ Query
	Extension Methods
	Deferred Query Execution

	Standard Query Operatrs
	Filtering
	Filtering with Index
	Type Filtering
	Compound from
	Sorting
	Grouping
	Grouping with Nested Objects
	Inner Join
	Left Outer Join
	Group Join
	Set Operations
	Zip
	Partitioning
	Aggregate Operators
	Conversion Operators
	Generation Operators

	Parallel LINQ
	Parallel Queries
	Partitioners
	Cancellation

	Expression Trees
	LINQ Providers
	Summary

	Chapter 12: Dynamic Language Extensions
	Dynamic Language Runtime
	The Dynamic Type
	Dynamic Behind the Scenes

	Hosting the DLR Script Runtime
	Dynamicobject and Expandoobject
	DynamicObject
	ExpandoObject

	Summary

	Chapter 13: Asynchronous Programming
	Why Asynchronous Programming is Important
	Asynchronous Patterns
	Synchronous Call
	Asynchronous Pattern
	Event-Based Asynchronous Pattern
	Task-Based Asynchronous Pattern

	Foundation of Asynchronous Programming
	Creating Tasks
	Calling an Asynchronous Method
	Continuation with Tasks
	Synchronization Context
	Using Multiple Asynchronous Methods
	Converting the Asynchronous Pattern

	Error Handling
	Handling Exceptions with Asynchronous Methods
	Exceptions with Multiple Asynchronous Methods
	Using AggregateException Information

	Cancellation
	Starting a Cancellation
	Cancellation with Framework Features
	Cancellation with Custom Tasks

	Summary

	Chapter 14: Memory Management and Pointers
	Memory Management
	Memory Management Under the Hood
	Value Data Types
	Reference Data Types
	Garbage Collection

	Freeing Unmanaged Resources
	Destructors
	The IDisposable Interface
	Implementing IDisposable and a Destructor

	Unsafe Code
	Accessing Memory Directly with Pointers
	Pointer Example: PointerPlayground
	Using Pointers to Optimize Performance

	Summary

	Chapter 15: Reflection
	Manipulating and Inspecting Code at Runtime
	Custom Attributes
	Writing Custom Attributes
	Custom Attribute Example: WhatsNewAttributes

	Using Reflection
	The System.Type Class
	The TypeView Example
	The Assembly Class
	Completing the WhatsNewAttributes Example

	Summary

	Chapter 16: Errors and Exceptions
	Introduction
	Exception Classes
	Catching Exceptions
	Implementing Multiple Catch Blocks
	Catching Exceptions from Other Code
	System.Exception Properties
	What Happens If an Exception Isn’t Handled?
	Nested try Blocks

	User-Defined Exception Classes
	Catching the User-Defined Exceptions
	Throwing the User-Defined Exceptions
	Defining the User-Defined Exception Classes

	Caller Information
	Summary

	Part II: Visual Studio
	Chapter 17: Visual Studio 2013
	Working with Visual Studio 2013
	Project File Changes
	Visual Studio Editions
	Visual Studio Settings

	Creating a Project
	Multi-targeting the .NET Framework
	Selecting a Project Type

	Exploring and Coding a Project
	Solution Explorer
	Working with the Code Editor
	Learning and Understanding Other Windows
	Arranging Windows

	Building a Project
	Building, Compiling, and Making Code
	Debugging and Release Builds
	Selecting a Configuration
	Editing Configurations

	Debugging Your Code
	Setting Breakpoints
	Using Data Tips and Debugger Visualizers
	Monitoring and Changing Variables
	Exceptions
	Multithreading
	IntelliTrace

	Refactoring Tools
	Architecture Tools
	Dependency Graph
	Layer Diagram

	Analyzing Applications
	Code Map
	Sequence Diagram
	Profiler
	Concurrency Visualizer
	Code Analysis
	Code Metrics

	Unit Tests
	Creating Unit Tests
	Running Unit Tests
	Expecting Exceptions
	Testing All Code Paths
	External Dependencies
	Fakes Framework

	Windows Store Apps, WCF, WF, and More
	Building WCF Applications with Visual Studio
	Building WF Applications with Visual Studio
	Building Windows Store Apps with Visual Studio 2013

	Summary

	Chapter 18: Deployment
	Deployment as Part of the Application Life Cycle
	Planning for Deployment
	Overview of Deployment Options
	Deployment Requirements
	Deploying the .NET Runtime

	Traditional Deployment
	xcopy Deployment
	xcopy and Web Applications
	Windows Installer

	ClickOnce
	ClickOnce Operation
	Publishing a ClickOnce Application
	ClickOnce Settings
	Application Cache for ClickOnce Files
	Application Installation
	ClickOnce Deployment API

	Web Deployment
	Web Application
	Configuration Files
	Creating a Web Deploy Package

	Windows Store Apps
	Creating an App Package
	Windows App Certification Kit
	Sideloading
	Windows Deployment API

	Summary

	Part III: Foundation
	Chapter 19: Assemblies
	What are Assemblies?
	Assembly Features
	Assembly Structure
	Assembly Manifests
	Namespaces, Assemblies, and Components
	Private and Shared Assemblies
	Satellite Assemblies
	Viewing Assemblies
	Creating Assemblies
	Creating Modules and Assemblies
	Assembly Attributes
	Creating and Loading Assemblies Dynamically

	Application Domains
	Shared Assemblies
	Strong Names
	Integrity Using Strong Names
	Global Assembly Cache
	Creating a Shared Assembly
	Creating a Strong Name
	Installing the Shared Assembly
	Using the Shared Assembly
	Delayed Signing of Assemblies
	References
	Native Image Generator

	Configuring .NET Applications
	Configuration Categories
	Binding to Assemblies

	Versioning
	Version Numbers
	Getting the Version Programmatically
	Binding to Assembly Versions
	Publisher Policy Files
	Runtime Version

	Sharing Assemblies Between Different Technologies
	Sharing Source Code
	Portable Class Library

	Summary

	Chapter 20: Diagnostics
	Diagnostics Overview
	Code Contracts
	Preconditions
	Postconditions
	Invariants
	Purity
	Contracts for Interfaces
	Abbreviations
	Contracts and Legacy Code

	Tracing
	Trace Sources
	Trace Switches
	Trace Listeners
	Filters
	Correlation
	Tracing with ETW
	Using EventSource
	Advanced Tracing with EventSource

	Event Logging
	Event-logging Architecture
	Event-logging Classes
	Creating an Event Source
	Writing Event Logs
	Resource Files

	Performance Monitoring
	Performance-monitoring Classes
	Performance Counter Builder
	Adding PerformanceCounter Components
	perfmon.exe

	Summary

	Chapter 21: Tasks, Threads, and Synchronization
	Overview
	Parallel Class
	Looping with the Parallel.For Method
	Looping with the Parallel.ForEach Method
	Invoking Multiple Methods with the Parallel.Invoke Method

	Tasks
	Starting Tasks
	Futures—Results from Tasks
	Continuation Tasks
	Task Hierarchies

	Cancellation Framework
	Cancellation of Parallel.For
	Cancellation of Tasks

	Thread Pools
	The Thread Class
	Passing Data to Threads
	Background Threads
	Thread Priority
	Controlling Threads

	Threading Issues
	Race Conditions
	Deadlocks

	Synchronization
	The lock Statement and Thread Safety
	Interlocked
	Monitor
	SpinLock
	WaitHandle
	Mutex
	Semaphore
	Events
	Barrier
	ReaderWriterLockSlim

	Timers
	Data Flow
	Using an Action Block
	Source and Target Blocks
	Connecting Blocks

	Summary

	Chapter 22: Security
	Introduction
	Authentication and Authorization
	Identity and Principal
	Roles
	Declarative Role-Based Security
	Claims
	Client Application Services

	Encryption
	Signature
	Key Exchange and Secure Transfer

	Access Control to Resources
	Code Access Security
	Security Transparency Level 2
	Permissions

	Distributing Code Using Certificates
	Summary

	Chapter 23: Interop
	.NET and COM
	Metadata
	Freeing Memory
	Interfaces
	Method Binding
	Data Types
	Registration
	Threading
	Error Handling
	Events
	Marshaling

	Using a COM Component from a .NET Client
	Creating a COM Component
	Creating a Runtime Callable Wrapper
	Using the RCW
	Using the COM Server with Dynamic Language Extensions
	Threading Issues
	Adding Connection Points

	Using a .NET Component from a COM Client
	COM Callable Wrapper
	Creating a .NET Component
	Creating a Type Library
	COM Interop Attributes
	COM Registration
	Creating a COM Client Application
	Adding Connection Points
	Creating a Client with a Sink Object

	Platform Invoke
	Summary

	Chapter 24: Manipulating Files and the Registry
	File and the Registry
	Managing the File System
	.NET Classes That Represent Files and Folders
	The Path Class
	A FileProperties Sample

	Moving, Copying, and Deleting Files
	FilePropertiesAndMovement Sample
	Looking at the Code for FilePropertiesAndMovement

	Reading and Writing to Files
	Reading a File
	Writing to a File
	Streams
	Buffered Streams
	Reading and Writing to Binary Files Using FileStream
	Reading and Writing to Text Files

	Mapped Memory Files
	Reading Drive Information
	File Security
	Reading ACLs from a File
	Reading ACLs from a Directory
	Adding and Removing ACLs from a File

	Reading and Writing to the Registry
	The Registry
	The .NET Registry Classes

	Reading and Writing to Isolated Storage
	Summary

	Chapter 25: Transactions
	Introduction
	Overview
	Transaction Phases
	ACID Properties

	Database and Entity Classes
	Traditional Transactions
	ADO.NET Transactions
	System.EnterpriseServices

	System.Transactions
	Committable Transactions
	Transaction Promotion

	Dependent Transactions
	Ambient Transactions

	Isolation Level
	Custom Resource Managers
	Transactional Resources

	File System Transactions
	Summary

	Chapter 26: Networking
	Networking
	The Httpclient Class
	Displaying Output as an HTML Page
	Allowing Simple Web Browsing from Your Applications
	Launching Internet Explorer Instances
	Giving Your Application More IE-Type Features
	Printing Using the WebBrowser Control
	Displaying the Code of a Requested Page
	The WebRequest and WebResponse Classes Hierarchy

	Utility Classes
	URIs
	IP Addresses and DNS Names

	Lower-level Protocols
	Using SmtpClient
	Using the TCP Classes
	The TcpSend and TcpReceive Examples
	TCP Versus UDP
	The UDP Class
	The Socket Class
	WebSockets

	Summary

	Chapter 27: Windows Services
	What is a Windows Service?
	Windows Services Architecture
	Service Program
	Service Control Program
	Service Configuration Program
	Classes for Windows Services

	Creating a Windows Service Program
	Creating Core Functionality for the Service
	QuoteClient Example
	Windows Service Program
	Threading and Services
	Service Installation
	Installation Program

	Monitoring and Controlling Windows Services
	MMC Snap-in
	net.exe Utility
	sc.exe Utility
	Visual Studio Server Explorer
	Writing a Custom Service Controller

	Troubleshooting and Event Logging
	Summary

	Chapter 28: Localization
	Global Markets
	Namespace System.Globalization
	Unicode Issues
	Cultures and Regions
	Cultures in Action
	Sorting

	Resources
	Creating Resource Files
	Resource File Generator
	ResourceWriter
	Using Resource Files
	The System.Resources Namespace

	Windows Forms Localization Using Visual Studio
	Changing the Culture Programmatically
	Using Custom Resource Messages
	Automatic Fallback for Resources
	Outsourcing Translations

	Localization with ASP.NET Web Forms
	Localization with WPF
	.NET Resources with WPF
	XAML Resource Dictionaries

	A Custom Resource Reader
	Creating a DatabaseResourceReader
	Creating a DatabaseResourceSet
	Creating a DatabaseResourceManager
	Client Application for DatabaseResourceReader

	Creating Custom Cultures
	Localization with Windows Store Apps
	Using Resources
	Localization with the Multilingual App Toolkit

	Summary

	Chapter 29: Core XAML
	Uses of XAML
	XAML Foundation
	How Elements Map to .NET Objects
	Using Custom .NET Classes
	Properties as Attributes
	Properties as Elements
	Essential .NET Types
	Using Collections with XAML
	Calling Constructors with XAML Code

	Dependency Properties
	Creating a Dependency Property
	Coerce Value Callback
	Value Changed Callbacks and Events

	Bubbling and Tunneling Events
	Attached Properties
	Markup Extensions
	Creating Custom Markup Extensions
	XAML-Defined Markup Extensions

	Reading and Writing XAML
	Summary

	Chapter 30: Managed Extensibility Framework
	Introduction
	MEF Architecture
	MEF Using Attributes
	Convention-Based Part Registration

	Defining Contracts
	Exporting Parts
	Creating Parts
	Exporting Properties and Methods
	Exporting Metadata
	Using Metadata for Lazy Loading

	Importing Parts
	Importing Collections
	Lazy Loading of Parts
	Reading Metadata with Lazyily Instantiated Parts

	Containers and Export Providers
	Catalogs
	Summary

	Chapter 31: Windows Runtime
	Overview
	Comparing .NET and Windows Runtime
	Namespaces
	Metadata
	Language Projections
	Windows Runtime Types

	Windows Runtime Components
	Collections
	Streams
	Delegates and Events
	Async

	Windows Store Apps
	The Life Cycle of Applications
	Application Execution States
	Suspension Manager
	Navigation State
	Testing Suspension
	Page State

	Application Settings
	Summary

	Part IV: Data
	Chapter 32: Core ADO.NET
	ADO.NET Overview
	Namespaces
	Shared Classes
	Database-Specific Classes

	Using Database Connections
	Managing Connection Strings
	Using Connections Efficiently
	Transactions

	Commands
	Executing Commands
	Calling Stored Procedures

	Fast Data Access: The Data Reader
	Asynchronous Data Access: Using Task and Await
	Managing Data and Relationships: The DataSet Class
	Data Tables
	Data Relationships
	Data Constraints

	XML Schemas: Generating Code with XSD
	Populating a DataSet
	Populating a DataSet Class with a Data Adapter
	Populating a DataSet from XML

	Persisting DataSet Changes
	Updating with Data Adapters
	Writing XML Output

	Working with ADO.NET
	Tiered Development
	Key Generation with SQL Server
	Naming Conventions

	Summary

	Chapter 33: ADO.NET Entity Framework
	Programming with the Entity Framework
	Entity Framework Mapping
	Logical Layer
	Conceptual Layer
	Mapping Layer
	Connection String

	Entities
	Data Context
	Relationships
	Table-per-Hierarchy
	Table-per-Type
	Lazy, Explicit, and Eager Loading

	Querying Data
	Entity SQL
	Using DbSqlQuery
	LINQ to Entities

	Writing Data to the Database
	Object Tracking
	Change Information
	Attaching and Detaching Entities
	Writing Entity Changes with Last One Wins
	Writing Entity Changes with First One Wins
	Writing Entity Changes with Conflict Handling

	Using the Code First Programming Model
	Defining Entity Types
	Creating the Data Context
	Creating the Database and Storing Entities
	The Database
	Query Data
	Customizing Database Generation
	Automatic Filling of a Database
	Connection Resiliency
	Schema Migrations

	Summary

	Chapter 34: Manipulating XML
	XML
	XML Standards Support in .NET
	Introducing the System .Xml Namespace
	Using System .Xml Classes
	Reading and Writing Streamed XML
	Using the XmlReader Class
	Validating with XmlReader
	Using the XmlWriter Class

	Using the DOM in .NET
	Using the XmlDocument Class

	Using XPathNavigators
	The System.Xml.XPath Namespace
	The System.Xml.Xsl Namespace

	XML and ADO.NET
	Converting ADO.NET Data to XML
	Converting XML to ADO.NET Data

	Serializing Objects in XML
	Serialization without Source Code Access

	LINQ to XML and .NET
	Working with Different XML Objects
	XDocument
	XElement
	XNamespace
	XComment
	XAttribute

	Using LINQ to Query XML Documents
	Querying Static XML Documents
	Querying Dynamic XML Documents

	More Query Techniques for XML Documents
	Reading from an XML Document
	Writing to an XML Document

	Summary

	Part V: Presentation
	Chapter 35: Core WPF
	Understanding WPF
	Namespaces
	Class Hierarchy

	Shapes
	Geometry
	Transformation
	Brushes
	SolidColorBrush
	LinearGradientBrush
	RadialGradientBrush
	DrawingBrush
	ImageBrush
	VisualBrush

	Controls
	Simple Controls
	Content Controls
	Headered Content Controls
	Items Controls
	Headered Items Controls
	Decoration

	Layout
	StackPanel
	WrapPanel
	Canvas
	DockPanel
	Grid

	Styles and Resources
	Styles
	Resources
	System Resources
	Accessing Resources from Code
	Dynamic Resources
	Resource Dictionaries

	Triggers
	Property Triggers
	MultiTrigger
	Data Triggers

	Templates
	Control Templates
	Data Templates
	Styling a ListBox
	ItemTemplate
	Control Templates for ListBox Elements

	Animations
	Timeline
	Nonlinear Animations
	Event Triggers
	Keyframe Animations

	Visual State Manager
	Visual States
	Transitions

	3-D
	Model
	Cameras
	Lights
	Rotation

	Summary

	Chapter 36: Business Applications with WPF
	Introduction
	Menu and Ribbon Controls
	Menu Controls
	Ribbon Controls

	Commanding
	Defining Commands
	Defining Command Sources
	Command Bindings

	Data Binding
	BooksDemo Application Content
	Binding with XAML
	Simple Object Binding
	Change Notification
	Object Data Provider
	List Binding
	Master Details Binding
	MultiBinding
	Priority Binding
	Value Conversion
	Adding List Items Dynamically
	Adding Tab Items Dynamically
	Data Template Selector
	Binding to XML
	Binding Validation and Error Handling

	TreeView
	DataGrid
	Custom Columns
	Row Details
	Grouping with the DataGrid
	Live Shaping

	Summary

	Chapter 37: Creating Documents with WPF
	Introduction
	Text Elements
	Fonts
	TextEffect
	Inline
	Block
	Lists
	Tables
	Anchor to Blocks

	Flow Documents
	Fixed Documents
	XPS Documents
	Printing
	Printing with the PrintDialog
	Printing Visuals

	Summary

	Chapter 38: Windows Store Apps: User Interface
	Overview
	Microsoft Modern Design
	Content, Not Chrome
	Fast and Fluid
	Readability

	Sample Application Core Functionality
	Files and Directories
	Application Pages

	App Bars
	Launching and Navigation
	Layout Changes
	Application Data

	Storage
	Defining a Data Contract
	Writing Roaming Data
	Reading Data
	Writing Images
	Reading Images

	Pickers
	Live Tiles
	Summary

	Chapter 39: Windows Store Apps: Contracts and Devices
	Overview
	Searching
	Sharing Contract
	Sharing Source
	Sharing Target

	Camera
	Geolocation
	Sensors
	Light
	Compass
	Accelerometer
	Inclinometer
	Gyrometer
	Orientation
	Rolling Marble Sample

	Summary

	Chapter 40: Core ASP.NET
	.NET Frameworks for Web Applications
	ASP.NET Web Forms
	ASP.NET Web Pages
	ASP.NET MVC

	Web Technologies
	HTML
	CSS
	JavaScript and jQuery

	Hosting and Configuration
	Handlers and Modules
	Creating a Custom Handler
	ASP.NET Handlers
	Creating a Custom Module
	Common Modules

	Global Application Class
	Request and Response
	Using the HttpRequest Object
	Using the HttpResponse Object

	State Management
	View State
	Cookies
	Session
	Application
	Cache
	Profiles

	ASP.NET Identity System
	Foundation
	Storing and Retrieving User Information
	Security Startup
	User Registration and Authentication

	Summary

	Chapter 41: ASP.NET Web Forms
	Overview
	ASPX Page Model
	Adding Controls
	Using Events
	Working with Postbacks
	Using Auto-postbacks
	Doing Postbacks to Other Pages
	Defining Strongly Typed Cross-page Postbacks
	Using Page Events
	ASPX Code
	Server-side Controls

	Master Pages
	Creating a Master Page
	Using Master Pages
	Defining Master Page Content from Content Pages

	Navigation
	Site Map
	Menu Control
	Menu Path

	Validating User Input
	Using Validation Controls
	Using a Validation Summary
	Validation Groups

	Accessing Data
	Using the Entity Framework
	Creating a Repository
	Using the Object Data Source
	Editing
	Customizing Columns
	Using Templates with the Grid

	Security
	Setting Up the ASP.NET Identity
	User Registration
	User Authentication
	User Authorization

	Ajax
	What Is ASP.NET AJAX?
	ASP.NET AJAX Website Example
	ASP.NET AJAX-enabled Website Configuration
	Adding ASP.NET AJAX Functionality

	Summary

	Chapter 42: ASP.NET MVC
	ASP.NET MVC Overview
	Defining Routes
	Adding Routes
	Route Constraints

	Creating Controllers
	Action Methods
	Parameters
	Returning Data

	Creating Views
	Passing Data to Views
	Razor Syntax
	Strongly Typed Views
	Layout
	Partial Views

	Submitting Data from the Client
	Model Binder
	Annotations and Validation

	HTML Helpers
	Simple Helpers
	Using Model Data
	Define HTML Attributes
	Create Lists
	Strongly Typed Helpers
	Editor Extensions
	Creating Custom Helpers
	Templates

	Creating a Data-Driven Application
	Defining a Model
	Creating Controllers and Views

	Action Filters
	Authentication and Authorization
	Model for Login
	Controller for Login
	Login View

	Summary

	Part VI: Communication
	Chapter 43: Windows Communication Foundation
	WCF Overview
	SOAP
	WSDL
	REST
	JSON

	Creating a Simple Service and Client
	Defining Service and Data Contracts
	Data Access
	Service Implementation
	WCF Service Host and WCF Test Client
	Custom Service Host
	WCF Client
	Diagnostics
	Sharing Contract Assemblies with the Client

	Contracts
	Data Contract
	Versioning
	Service and Operation Contracts
	Message Contract
	Fault Contract

	Service Behaviors
	Binding
	Standard Bindings
	Features of Standard Bindings
	Web Socket

	Hosting
	Custom Hosting
	WAS Hosting
	Preconfigured Host Classes

	Clients
	Using Metadata
	Sharing Types

	Duplex Communication
	Contract for Duplex Communication
	Service for Duplex Communication
	Client Application for Duplex Communication

	Routing
	Sample Application
	Routing Interfaces
	WCF Routing Service
	Using a Router for Failover
	Bridging for Protocol Changes
	Filter Types

	Summary

	Chapter 44: ASP.NET Web API
	Overview
	Creating Services
	Defining a Model
	Creating a Controller
	Error Handling

	Creating a .NET Client
	Sending GET Requests
	Sending POST Requests
	Sending PUT Requests
	Sending DELETE Requests

	Web API Routing and Actions
	Adding HTTP Methods to Actions
	Attribute-based Routing

	Using OData
	Creating a Data Model
	Creating a Service
	OData Query
	WCF Data Services Client

	Security with the Web API
	Create an Account
	Create an Authentication Token
	Sending an Authenticated Call
	Getting User Information

	Self-Hosting
	Summary

	Chapter 45: Windows Workflow Foundation
	A Workflow Overview
	Hello World
	Activities
	If Activity
	InvokeMethod Activity
	Parallel Activity
	Delay Activity
	Pick Activity

	Custom Activities
	Activity Validation
	Designers
	Custom Composite Activities

	Workflows
	Arguments and Variables
	WorkflowApplication
	Hosting WCF Workflows
	Workflow Versioning
	Hosting the Designer

	Summary

	Chapter 46: Peer-to-Peer Networking
	Peer-to-Peer Networking Overview
	Client-Server Architecture
	P2P Architecture
	P2P Architectural Challenges
	P2P Terminology
	P2P Solutions

	Peer Name Resolution Protocol (PNRP)
	PNRP IDs
	PNRP Clouds
	PNRP Since Windows 7

	Building P2P Applications
	Registering Peer Names
	Resolving Peer Names
	Code Access Security in System.Net.PeerToPeer
	Sample Application

	Summary

	Chapter 47: Message Queuing
	Overview
	When to Use Message Queuing
	Message Queuing Features

	Message Queuing Products
	Message Queuing Architecture
	Messages
	Message Queue

	Message Queuing Administrative Tools
	Creating Message Queues
	Message Queue Properties

	Programming Message Queuing
	Creating a Message Queue
	Finding a Queue
	Opening Known Queues
	Sending a Message
	Receiving Messages

	Course Order Application
	Course Order Class Library
	Course Order Message Sender
	Sending Priority and Recoverable Messages
	Course Order Message Receiver

	Receiving Results
	Acknowledgment Queues
	Response Queues

	Transactional Queues
	Message Queuing with WCF
	Entity Classes with a Data Contract
	WCF Service Contract
	WCF Message Receiver Application
	WCF Message Sender Application

	Message Queue Installation
	Summary

	Index
	Advertisement

