
John Paul Mueller

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Professional

IronPython™

Design and Develop IronPython Techniques
IronP

ython

Get more out of
wrox.com

Programmer to Programmer’

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

http://www.wrox.com

PROFESSIONAL IRONPYTHON™

INTRODUCTION .. .xvii

PART � I INTRODUCING IRONPYTHON

CHAPTER 1 Discovering IronPython 3

CHAPTER 2 Understanding the IronPython Basics 23

PART I� I USING THE IRONPYTHON LANGUAGE

CHAPTER 3 Implementing Structured Language Elements . 45

CHAPTER 4 Using Arrays and Collections. 55

CHAPTER 5 Interacting with Structures and Objects 77

PART II� I WORKING WITH IRONPYTHON

CHAPTER 6 Using the Python Standard Library 97

CHAPTER 7 Accessing the .NET Framework 117

CHAPTER 8 Creating Windows Forms Applications . 139

CHAPTER 9 Interacting with COM Objects 161

CHAPTER 10 Using IronPython for Administration Tasks . 193

CHAPTER 11 Developing ASP.NET Applications 223

CHAPTER 12 Debugging IronPython Applications 241

PART I� V ADVANCED IRONPYTHON TOPICS

CHAPTER 13 Working with XML Data. 271

CHAPTER 14 Interacting with the DLR . 287

CHAPTER 15 Using IronPython from Other .NET Languages . 307

CHAPTER 16 Extending IronPython Using C# 325

CHAPTER 17 Extending IronPython Using Visual Basic.NET.. 359

CHAPTER 18 Using IronPython for Application Testing . . 387

CHAPTER 19 Using IronPython with Mono405

APPENDIX A IronPython Di�erences with CPython . . . 421

APPENDIX B CPython Extensions for IronPython 433

INDEX 439

PROFESSIONAL

IronPython ™

John Paul Mueller

Professional IronPython™

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
�l�l�l�#�l�^�a�Z�n�#�X�d�b

Copyright © 2010 by Wiley Publishing, Inc., Indianapo lis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-54859-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748 -6008, or
online at �]�i�i�e�/�$�$�l�l�l�#�l�^�a�Z�n�#�X�d�b�$�\�d�$�e�Z�g�b�^�h�h�^�d�c�h.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and speci�cally disclaim all warranties, including
without limitation warranties of �tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author
or the publisher endorses the information the organization or Web site may provide or recommendations it may make.
Further, readers should be aware that Internet Web sites listed in this work may have changed or disappeared between
when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010921245

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer , and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its af�liates, in the United States and other
countries, and may not be used without written permission. IronPython is a trademark of Python Software Foundation
Corporation. All other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated
with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions

This book is dedicated to my beautiful wife, Rebecca,

my inspiration and joy. She believed in me

when all others doubted.

ACQUISITIONS EDITOR

Paul Reese

PROJECT EDITOR

William Bridges

TECHNICAL EDITOR

Russ Mullen

PRODUCTION EDITOR

Kathleen Wisor

COPY EDITOR

Nancy Rapoport

EDITORIAL DIRECTOR

Robyn B. Siesky

EDITORIAL MANAGER

Mary Beth Wake�eld

ASSOCIATE DIRECTOR

OF MARKETING

David Mayhew

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND

EXECUTIVE GROUP PUBLISHER

Richard Swadley

VICE PRESIDENT AND

EXECUTIVE PUBLISHER

Barry Pruett

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Lynsey Stanford

COMPOSITOR

Craig Woods, Happenstance Type-O-Rama

PROOFREADER

Nancy Carrasco

INDEXER

Robert Swanson

COVER DESIGNER

Michael E. Trent

COVER IMAGE

© Ameng Wu/stockphoto

CREDITS

ABOUT THE AUTHOR

JOHN PAUL MUELLER is a freelance author and technical editor. He has writing
in his blood, having produced 84 books and more than 300 articles to date.
The topics range from networking to arti�cial intell igence and from database
management to heads-down programming. Topics for some of his current
books include Windows power optimization, Windows Server 2008 GUI, and
Windows Server 2008 Server Core, and he has also written a programmer’s
guide that discusses the new Of�ce Fluent User Interface (RibbonX). His
technical editing skills have helped more than 63 authors re�ne the content

of their manuscripts. John has provided technical editing services to both DataBased Advisor and
Coast Compute magazines. He’s also contributed articles to the following magazines: CIO.com ,
DevSource, InformIT , Informant , DevX, SQL Server Professional, Visual C++ Developer, Hard
Core Visual Basic, asp.netPRO, Software Test and Performance, and Visual Basic Developer.

When John isn’t working at the computer, he enjoys spending time in his workshop crafting wood
projects or making candles. On any given afternoon, you can �nd him working at a lathe or putting
the �nishing touches on a bookcase. He also likes making glycerin soap, which comes in handy for
gift baskets. You can reach John on the Internet at �?�B�j�Z�a�a�Z�g�5�b�l�i�#�c�Z�i. He is also setting up a Web
site and blog at �]�i�i�e�/�$�$�l�l�l�#�_�d�]�c�b�j�Z�a�a�Z�g�W�d�d�`�h�#�X�d�b�$; feel free to look and make suggestions on
how he can improve it.

ABOUT THE TECHNICAL EDITOR

RUSS MULLEN has been consulting and programming for more years than he cares to remember.
He has tech edited more than 70 books, ghost-written chapters, and co-authored several books.

ACKNOWLEDGMENTS

THANKS TO MY WIFE, REBECCA, for working with me to get this book completed. I re ally don’t know
what I would have done without her help in researching and compiling some of the information that
appears in this book. She also did a �ne job of proofreading most of my rough draft.

Russ Mullen deserves thanks for his technical edit of this book. Russ added greatly to the accuracy
and depth of the material that you see here. I appreciated the time that Russ devoted to checking my
text, especially the code, for accuracy. As I wrote this book, I also spent a good deal of time bouncing
ideas off Russ, which is a valuable aid to any author.

Matt Wagner, my agent, deserves credit for helping me get the contract in the �rst place and taking
care of all the details that most authors don’t consider. I always appreciate his assistance. It’s good
to know that someone wants to help.

A number of people read all or part of this book to help me re�ne the approach, test the examples,
and generally provide input that all readers wish they could have. These unpaid volunteers helped in
ways too numerous to mention here. I especially appreciate the efforts of Eva Beattie, Osvaldo Téllez
Almirall, and all the others who provided input on t his book. I’d like to thank each person by name
who wrote me with an idea, but there are simply too many.

Finally, I would like to thank William Bridges, Nanc y Rapoport, Kathleen Wisor, and the rest of the
editorial and production staff for their assistance in bringing this book to print. It’s always nice to
work with such a great group of professionals.

CONTENTS

INTRODUCTION xvii

INTRODUCING IRONPYTHONPART I:

DISCOVERING IRONPYTHON CHAPTER 1: 3

An Overview of IronPython 4
Getting IronPython 7

Understanding the IronPython Requirements 7
Getting the Software 8
Performing the Installation 8
Building the Binaries from Scratch 10
Using Third-Party Libraries 10

Understanding the Dynamic Language Runtime 11
Using the IronPython Console 12

Opening and Using the Default Console 12
Getting Help with Any Function 13
Understanding the IPY.EXE Command Line Syntax 14
Exiting the IronPython Interpreter 20

Using the IronPython Windowed Environment 20
Creating Your First Application 21
Using IronPython Constructively 22

UNDERSTANDING THE IRONPYTHON BASICS 2CHAPTER 2: 3

Using Visual Studio to Create IronPython Applications 24
Creating the Project 24
Adding Existing Files to the Project 27
Adding New Files to the Project 27
IronPython Project Limitations 28
Debugging the Project 29

Understanding the Use of Indentation and Capitalization
in IronPython 31
Considering Data Types in IronPython 33
Exploring the IronPython Modules 36

Considering Built-In and External Modules 36
Working with the Built-In Modules 37
Using External Modules with IronPython 39

x

CONTENTS

Interacting with the IronPython Environment 40
Obtaining Version Information 40
Changing sys.path Values 41
Obtaining Command Line Arguments 41

Using IronPython Constructively 41

USING THE IRONPYTHON LANGUAGEPART II:

IMPLEMENTING STRUCTURED LANGUAGE ELEMENTS 4CHAPTER 3: 5

Stringing Statements Together 46
Selecting Between Options 48

Performing a Simple Decision Using if 48
Choosing between Two Options Using if . . . else 49
Creating a Decision Tree Using if . . . elif . . . else 50

Creating Loops 51
Using for . . . in 51
Using while 52

Performing Enumerations 53
Using IronPython Constructively 54

USING ARRAYS AND COLLECTIONS 5CHAPTER 4: 5

Working with Tuples, Lists, and Arrays 56
Understanding Tuples, Lists, and Arrays 56
Creating and Accessing Single-Dimension Arrays 60
Manipulating Single-Dimension Arrays 63
Working with Multi-Dimension Arrays 65
Using the range() Function 66
Processing Arrays Using the break and else Clauses 69
Processing Arrays Using the continue Clause 70
Using the enumerate() Function 71

Working with the Collections Module 72
Using Dictionaries 74
Using IronPython Constructively 76

INTERACTING WITH STRUCTURES AND OBJECTS 7CHAPTER 5: 7

Working with Existing Objects 78
Discovering IronPython Objects 78
Working with String Objects 79
Working with Numeric Objects 87
Working with Boolean Objects 89

xi

CONTENTS

Creating New Objects 89
De�ning the IronPython Class 89
Using Custom Objects in IronPython 91
Adding Documentation 92

Using IronPython Constructively 93

WORKING WITH IRONPYTHONPART III:

USING THE PYTHON STANDARD LIBRARY 9CHAPTER 6: 7

Considering the Standard Library Features 98
Obtaining and Installing the Python Standard Library 100
Accessing the Standard Library from IronPython 102

Manually Adding the Import Search Path 103
Modifying the Site.py File 103

Using the Standard Library Features 104
Using the Module Documentation 104
Using the Python Manuals 104
Working with IDLE 105
Looking for Standard Library Issues 114

Using IronPython Constructively 115

ACCESSING THE .NET FRAMEWORK 11CHAPTER 7: 7

Importing the .NET Framework Assemblies 118
Performing a Standard Import 118
Importing an Assembly into the Global Namespace 120
Con�guring the Console for .NET Help 122
Creating a Reference to .NET Assemblies 123

Using .NET Data Types 126
Interacting with .NET Framework Elements 128

Obtaining Assembly Information 128
Making Static Method Calls 130
Creating .NET Objects 132
Creating the Directory Example 134

Working with Generics 135
Using IronPython Constructively 137

CREATING WINDOWS FORMS APPLICATIONS 13CHAPTER 8: 9

Working without a Visual Designer 140
Understanding How the Visual Designer Works 140
Understanding the Elements of a Window 140
Emulating the Visual Designer Results 141

xii

CONTENTS

De�ning Windows Forms 142
Creating the Window Code 142
Initializing the Application 147
Providing Handlers for the Control Events 147
Performing Some Useful Work as the Result of User Input 148
Running the Application 149

Interacting with Prede�ned and Custom Events 150
Handling Events Using Existing Classes 150
Developing Your Own Events 153

Using IronPython Constructively 159

INTERACTING WITH COM OBJECTS 16CHAPTER 9: 1

An Overview of COM Access Di�erences with Python 162
Choosing a Binding Technique 164

Understanding Early and Late Binding 164
Using Early Binding 165
Using Late Binding 166

De�ning an Interop DLL 167
Accessing the Visual Studio .NET Utilities 167
Understanding the Type Library Import Utility 167
Understanding the ActiveX Import Utility 170
Creating the Windows Media Player Interop DLL 171
Exploring the Windows Media Player Interop DLL 172
Using the Windows Media Player Interop DLL 180

Performing Late Binding Using Activator.CreateInstan ce() 186
Performing Late Binding Using Marshal.GetActiveObject () 189
Using IronPython Constructively 191

USING IRONPYTHON FOR ADMINISTRATION TASKS 19CHAPTER 10: 3

Understanding the Command Line 194
Understanding the Need for Command Line Applications 194
Reading Data from the Command Line 196
Providing Command Line Help 203

Interacting with the Environment 207
Understanding Environment Variables 208
Using the Python Method 211
Using the .NET Method 214
Environment Variable Considerations 218

Starting Other Command Line Applications 218
Providing Status Information 220

Reporting Directly to the User 220
Creating Log Files 220

xiii

CONTENTS

Using the Event Log 221
Using IronPython Constructively 222

DEVELOPING ASP.NET APPLICATIONS 22CHAPTER 11: 3

Considering IronPython Web Application Compatibility 224
Obtaining ASP.NET Dynamic Language Support 224

DLR Limitations 225
Getting DLR 226
Using the Sample Applications 226

Creating a Web Site 228
Building a Basic ASP.NET Site Using IronPython 229

Creating the Project 229
De�ning the User Interface 232
Creating the Code Behind 233
Starting the Visual Studio Built-In Web Server 236
Performing Basic Testing 238
Considering Debugging 239

Using IronPython Constructively 240

DEBUGGING IRONPYTHON APPLICATIONS 24CHAPTER 12: 1

Understanding IronPython Warnings 242
Working with Actions 243
Working with Messages 249
Working with Categories 250

Obtaining Error Information 252
Using the sys Module 252
Using the traceback Module 254

Debugging with the Python Debugger 256
Debugging with the CLR Debugger 260
Using Visual Studio for IronPython Debugging 262
De�ning and Using Exceptions 263

Implementing Python Exceptions 263
Implementing .NET Exceptions 266

Using IronPython Constructively 266

ADVANCED IRONPYTHON TOPICSPART IV:

WORKING WITH XML DATA 27CHAPTER 13: 1

Using the .NET XML Functionality 272
Considering the System.Xml Namespace 272
Developing a Basic .NET XML Application 272

xiv

CONTENTS

Using XMLUtil 276
Loading and Viewing the XMLUtil Module 276
Using the XMLUtil Module to View XML Data 277

Using the Python Modules 281
Working with xml.dom.minidom 281
Working with xml.sax 283

Using IronPython Constructively 286

INTERACTING WITH THE DLR 28CHAPTER 14: 7

Obtaining DLR 288
Using the Direct Method 289
Downloading the Full DLR 290
Building the Full DLR 291
Downloading the Documentation 292
Reporting Bugs and Other Issues 292

Working with Hosting APIs 293
Using the Hosting APIs 293
Understanding the Hosting APIs Usage Levels 294
Considering the Host Application 295
Embedding IronPython as a Scripting Language 295

Understanding the Extensions to LINQ Expression Tree 298
Considering DynamicSite 300
Working with IDynamicObject 300
Understanding the ActionBinder 304
Understanding the Other DLR Features 305
Using IronPython Constructively 305

USING IRONPYTHON FROM OTHER .NET LANGUAGES 30CHAPTER 15: 7

Understanding the Relationship between Dynamic
and Static Languages 308
Creating an Externally Accessible IronPython Module 309

Considering Requirements for Externally Accessible Modules 310
Creating the IronPython Script 311

Accessing the Module from C# 312
Adding the Required C# References 312
Adding the Required References to the Host Language 313
Understanding the Use of ScriptEngine 313
Using the dynamic Keyword 315
Working with the App.CONFIG File 316

xv

CONTENTS

Accessing the Module from Visual Basic.NET 319
Adding the Required Visual Basic.NET References 319
Creating the Visual Basic.NET Code 320

Developing Test Procedures for External Modules 321
Debugging the External Module 321
Using IronPython Constructively 324

EXTENDING IRONPYTHON USING C# 32CHAPTER 16: 5

Understanding the Requirements for an Extension 326
Considering IronPython and Static Language Di�erences 327

De�ning Why You Use a Static Language with IronPython 327
Understanding Line Noise 327
Considering Scoping Issues 328

Creating the Simple C# Extension 329
Creating the Project 329
Developing the C# Extension 331
Adding the IronPython Project 333
Creating the IronPython Application 335

Using C# for User Interface Support 336
De�ning a Library of Dialog Boxes 337
Creating the Dialog Box Library in C# 337
Accessing the Dialog Box Library from IronPython 343

Using C# for Win32 Support 348
Creating the P/Invoke Code 348
Developing the IronPython Callable Methods 351
Writing an IronPython Application to Use P/Invoke 355

Using IronPython Constructively 356

EXTENDING IRONPYTHON USING VISUAL BASIC.NET 35CHAPTER 17: 9

Considering C# and VISUAL BASIC.NET Extension Similarities 360
Creating the Simple Visual Basic.NET Extension 360

Creating the Project 361
Developing the Visual Basic.NET Extension 362
Adding the IronPython Project 364
Creating the IronPython Application 366

Using Visual Basic.NET for User Interface Support 367
Creating the User Interface Library Module 368
Accessing the User Interface Library Module from IronPython 372

Using Visual Basic.NET for Database Support 377
Obtaining and Con�guring the Database 378

xvi

CONTENTS

Creating the Database Support Module 379
Accessing the Database Module through IronPython 383

Using IronPython Constructively 386

USING IRONPYTHON FOR APPLICATION TESTING 38CHAPTER 18: 7

Understanding Why You Want to Use IronPython for Testing 388
Considering the Test Environment 389

De�ning Access 390
Considering a Few Things IronPython Can’t Test 390
Creating the Test Harness 391

Testing DLLs 392
Creating the Test DLL 392
Creating the DLL Test Script 394
Performing the DLL Test 396

Testing Applications 396
Creating the Test Application 397
Creating the Application Test Script 399
Performing the Application Test 401

Performing Command Line Tests 402
Using IronPython Constructively 404

USING IRONPYTHON WITH MONO 40CHAPTER 19: 5

What Is Mono? 406
An Overview of the Mono Family 406
Considering the Reasons for Using Mono 408
Understanding Mono Limitations 408
Using Mono on Windows Server 2008 Server Core 409

Obtaining and Installing Mono 410
Creating an IronPython Application with Mono 412

Working at the Command Line 412
De�ning the Project 413
Creating the Code 415
Running the Application from the IDE 415
Running the Application from the Command Line 417

Interacting with Other .NET Languages under Mono 418
Using IronPython Constructively 418

IRONPYTHON DIFFERENCES WITH CPYTHON 42APPENDIX A: 1

CPYTHON EXTENSIONS FOR IRONPYTHONAPPENDIX B: 433

INDEX 439

INTRODUCTION

IRONPYTHON IS PROBABLY GOING TO BE ONE OF THE MOST INTERESTING and �exible languages
you’ve ever encountered. If you’ve never tried a dynamic language, you’re really missing something.
Dynamic languages make it easy for you to try things on-the-�y, and IronPython is king when it comes
to melding the �exibility of both the Python programm ing language and the functionality of the .NET
Framework. You get an amazing array of application development tools with few hindrances to sour
the experience. Professional IronPython provides you with a guided tour of this amazing language and
makes it possible for you to get started writing applications quickly.

The emphasis of IronPython is fast. You write less code and the code that you do write is easier to
understand, making development fast. In the past, using an interpreter meant sluggish application
performance, but IronPython is anything but sluggish. Applications you develop using IronPython
run quickly because they don’t include all of the cumbersome baggage that static languages such
as C# and Visual Basic.NET include. Professional IronPython helps you understand the bene�ts
of using IronPython and demonstrates techniques to obtain what you want with little fuss and
considerable speed.

One of the most amazing parts of IronPython is that it’s incredibly easy to add whatever you need to
it. IronPython is designed to provide extensive modularity so that you can create extensions to the
basic language as dictated by your development needs. Professional IronPython shows you how to
create extensions for IronPython that �ll in all the gaps you might �nd.

Do you need multi-platform support for your project? Amazingly, IronPython can provide multi-
platform development, despite what you might have heard online. Professional IronPython devotes
an entire chapter to the topic of getting your IronPython application onto other platforms such as
Linux and the Mac OS X.

Obviously, nothing is perfect. IronPython does have a few blemishes and you’ll want to know about
them. Professional IronPython doesn’t whitewash the problems and try to dress them up as features.
This book tackles the issues you’ll encounter head on and makes it a lot easier for you to overcome
them. For example, you’ll discover when you really do need to pair IronPython with a static language
to obtain the robust application performance and development environment that you need.

WHO THIS BOOK IS FOR

This book is for the professional developer. While it does include introduction sections, the pace of
the introductory material is quite fast and the novice developer will tend to become lost. The book
does include all of the beginning IronPython you need such as working with variables and using
loops, but this material consumes a relatively small portion of the book. The book assumes that you
also have knowledge of the .NET Framework after working with another language such as C# or
Visual Basic.NET. The examples do provide complete information on everything you need to include

xviii

INTRODUCTION

in the source code, so your knowledge of the .NET Framework doesn’t have to be extensive, but some
knowledge is helpful.

WHAT THIS BOOK COVERS

Professional IronPython begins with an act of discovery. You’ll learn how IronPython can help you
create better applications in less time and with fewer errors. To keep things balanced, you’ll also see
where IronPython falls a bit short. The point is to provide a balanced view of what IronPython can
do so you don’t start a project and experience nasty surprises. As part of this discovery process, you
install IronPython on your system and begin building applications with it. The �rst applications are
relatively simple and demonstrate the kinds of things every developer needs to know when starting a
new language, such as how to work with structures.

After the introductions are over, the book begins looking at some of the ways in which you can use
IronPython to build real applications. You’ll discov er how to access both the Standard Library and
the .NET Framework from IronPython. You’ll use your ne w knowledge to create Windows Forms
applications, interact with COM objects, and work at the command line. In fact, you’ll even build
an ASP.NET application using IronPython.

Next comes some advanced IronPython topics. Everyone needs to know how to work with XML, so
that’s the �rst advanced topic you’ll tackle. The next advanced topic is the Dynamic Language Runtime
(DLR) and you learn what it can do for you. Interestingly enough, you could build your own language
using DLR, should you want to do so. The next few chapters discuss how to use IronPython with other
.NET languages. First you see how to access IronPython from other languages, and then you discover
how to build extensions for IronPython using both C# and Visual Basic.NET.

The last two chapters of the book are possibly the most interesting for someone who has worked
with programming languages for a long time. Chapter 18 demonstrates how you can use IronPython
to improve your testing process for just about any language. Of course, IronPython works best with
.NET languages. Chapter19 discusses techniques for using IronPython on other platforms. The
idea of writing an application just once and executing it equally well on Windows, Linux, and the
Mac OS X is exciting.

HOW THIS BOOK IS STRUCTURED

This book is structured to discuss IronPython in a progressively complex manner. It doesn’t leave you
wondering where the basics are — the �rst few chapters provide a whirlwind tour of the IronPython
implementation of the Python language. However, by the end of the book you’ve discovered some very
advanced information indeed. For example, you’ll create an IronPython extension that directly accesses
the Win32 API. With this in mind, the following list provid es you an overview of the book structure so
you can �nd what you want quickly.

�°�� Part I: Introducing IronPython: This part of the book begins with an introduction to IronPython.
You begin by obtaining and installing the software, using the IronPython console, and then cre-
ating your �rst application. The discussion continues by examining the modules that come with

xix

INTRODUCTION

IronPython and working with some basics such as the standard input, output, and error devices.
You also begin creating IronPython functions and performing other simple tasks.

���° Part II: Using the IronPython Language: This part of the book provides a fast-paced tour of the
IronPython language. You begin with simple statements, work through loops, examine arrays
and collections, and then move on to structures and object. By the time you complete this part
of the book, a professional developer will have enough information to write intermediate-level
IronPython code.

���° Part III: Working with IronPython: This part of the book begins the process of performing
some real work with IronPython. It begins by examining both the Standard Library and the
.NET Framework. You discover that it isn’t always possible to directly access everything you
want, but you can access most items with relative ease. The chapters in this part of the book
provide lots of tips and techniques for overcoming dif�culties with IronPython. The discussion
continues with chapters that examine speci�c application types: Windows Forms, COM inter-
actions, command line applications used for administrative tasks, and ASP.NET applications.
This part of the book ends with a complete discussion of debugging techniques — an essential
part of using any programming language.

���° Part IV: Advanced IronPython Topics: This part of the book goes beyond basic applications
and moves into areas that are a little more exotic. The chapter on XML may not seem very
interesting at �rst, but when you see the ease with which IronPython manipulates XML,
you’ll really be impressed. The next topic is DLR, which is an exciting technology you can
use for all kinds of tasks. Chapter 15 shows how to access your IronPython code from static
languages such as C# and Visual Basic.NET. Chapters 16 and 17 show how to access C# and
Visual Basic.NET code from IronPython. These three chapters together help you understand
that IronPython isn’t an isolated language — you really can mix and match it with other lan-
guages as needed. Chapter 18 is possibly one of the most exciting chapters because it shows
how you can use IronPython to perform application testing. Finally, Chapter 19 describes
how you can use IronPython with Mono, a .NET Framework alternative that makes it pos-
sible to use your IronPython applications on other platforms.

���° Appendices: This book contains two appendices that contain important information. You
can probably skip them if you want, but the information is really helpful in bridging some
gaps in IronPython functionality. Appendix A describes the differences between IronPython
and CPython, both of which implement the Python language. Appendix B provides infor-
mation about using CPython extensions with IronPython. CPython and IronPython don’t
always work well together, but the information in these appendices can help you overcome
any potential problems.

WHAT YOU NEED TO USE THIS BOOK

Theoretically, all you need is a computer with Windows installed on it to work with IronPython.
The computer must have a copy of the .NET Framework 3.5 or older installed on it that you can
download from �]�i�i�e�/�$�$�l�l�l�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�C�:�I�$. Chapter 1 contains complete instructions for

xx

INTRODUCTION

downloading and installing your copy of IronPython. Y ou must also have a text editor — even
Notepad will do, but it won’t be very convenient to u se.

If you want to get full use out of this book, however, you must have a copy of Visual Studio.NET
2008 or above. The book examples rely on Visual Studio.NET 2010. You won’t be able to work
with the examples later in the book unless you have a copy of Visual Studio. In addition, a number
of the techniques, such as debugging, require that you have a copy of Visual Studio.NET. Nothing
has been tested with the Visual Studio Express Edition products, and there’s no guarantee that any-
thing will work with this edition of the product.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used some
conventions throughout the book. Typical examples follow:

Notes, tips, hints, tricks, and asides to the current discussion are offset and
placed in italics like this.

A warning tells you that something terrible will happen should a particular event
occur. For example, if you perform a task incorrectly, you might see data loss.

As for styles in the text:

�°�� We highlight new terms and important words when we introduce them.

We show keyboard strokes like this: Ctrl+A.���°

���° We show �lenames, URLs, and code within the text like so: �e�Z�g�h�^�h�i�Z�c�X�Z�#�e�g�d�e�Z�g�i�^�Z�h.

���° We show text you should type directly like this: type Hello for regular text and type
�B�n�;�^�a�Z�#�e�n for code and �lenames.

���° We show text that you should replace with your own values like this: MyName for regular
text and �B�n�K�V�g�^�V�W�a�Z for code and �lenames.

We present code in the following way:���°

�L�Z���j�h�Z���V���b�d�c�d�[�d�c�i���i�n�e�Z���l�^�i�]���c�d���]�^�\�]�a�^�\�]�i�^�c�\���[�d�g���b�d�h�i���X�d�Y�Z���Z�m�V�b�e�a�Z�h�#

xxi

INTRODUCTION

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code �les that accompany the book. All of the source code used in this book is
available for download at �]�i�i�e�/�$�$�l�l�l�#�l�g�d�m�#�X�d�b. Once at the site, simply locate the book’s title (either
by using the Search box or by using one of the title lists) and click the Download Code link on the
book’s detail page to obtain all the source code for the book.

Because many books have similar titles, you may �nd it easiest to search by
ISBN; this book’s ISBN is 978-0-470-54859-2.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at �]�i�i�e�/�$�$�l�l�l�#�l�g�d�m�#�X�d�b�$�Y�n�c�V�b�^�X�$�W�d�d�`�h�$
�Y�d�l�c�a�d�V�Y�#�V�h�e�m to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you �nd an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

To �nd the errata page for this book, go to �]�i�i�e�/�$�$�l�l�l�#�l�g�d�m�#�X�d�b and locate the title using
the Search box or one of the title lists. Then, on the Book Search Results page, click the Errata
link. On this page you can view all errata that has been submitted for this book and posted by
Wrox editors.

A complete book list including links to each book’s errata is also available at
�]�i�i�e�/�$�$�l�l�l�#�l�g�d�m�#�X�d�b�$�b�^�h�X�"�e�V�\�Z�h�$�W�d�d�`�a�^�h�i�#�h�]�i�b�a�#

If you don’t spot “your” error on the Errata page, c lick the Errata Form link and complete the
form to send us the error you have found. We’ll check the information and, if appropriate, post
a message to the book’s errata page and �x the problem in subsequent editions of the book.

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml

xxii

INTRODUCTION

P2P.WROX.COM

For author and peer discussion, join the P2P forums at �e�'�e�#�l�g�d�m�#�X�d�b. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At �]�i�i�e�/�$�$�e�'�e�#�l�g�d�m�#�X�d�b you will �nd a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to �e�'�e�#�l�g�d�m�#�X�d�b and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions speci�c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

PART I
Introducing IronPython

CHAPTER 1:� Discovering IronPython

CHAPTER 2:� Understanding the IronPython Basics

Discovering IronPython

WHAT’S IN THIS CHAPTER?

�°�� Understanding why you want to add IronPython to your
developer toolbox

Obtaining and installing IronPython on your machine���°

Understanding some underlying basics of how IronPython works���°

Using IronPython at the console and within a window���°

Designing and building a simple application���°

IronPython: It sounds like some kind of metal snake infesting your computer, but it
isn’t. IronPython is the .NET version of the open source Python language (�]�i�i�e�/�$�$�l�l�l��
�#�e�n�i�]�d�c�#�d�g�\�$). Python is a dynamic language that can greatly enhance your programming
experience, help you create applications in less time, and make the applications you create
signi�cantly more responsive to user needs. Of course, you’ve heard these promises before
from other languages. This chapter helps you understand how IronPython delivers on these
promises in speci�c situations. The smart developer soon learns that every language serves
speci�c needs and might not work well in others. So this chapter isn’t here to blow smoke at
you — once you complete it, you’ll understand the strengths and weaknesses of IronPython.

Of course, you’ll need to obtain a copy of IronPython before you can use it because Visual
Studio doesn’t include IronPython as part of the default installation. This chapter helps you
get IronPython installed on your system and tells you about some options you may want to
install as well.

Once you have IronPython installed, you’ll want to know a little about how it works. This
chapter won’t make you an IronPython guru who’s familiar with every nuance of the underlying
structural elements, but it will give you a good overview that will make the rest of the book a lot
easier to understand. You’ll put your new-found knowledge to the test by performing a few tasks
at the IronPython console and within the IronPython windowed environment.

1

4 �X CHAPTER 1 DISCOVERING IRONPYTHON

Finally, this chapter takes you through the process of creating a simple application. No, this isn’t
going to be the next great Windows application. It will be a little better than Hello World, but not
much. The idea is to get you started doing something useful with IronPython. Don’t worry; the
examples will become a lot more interesting as the book progresses.

AN OVERVIEW OF IRONPYTHON

It surprises many developers to discover that computer languages are for humans, not for computers.
A computer couldn’t care less about which language you use, because it’s all bits and bytes in the end
anyway. Consequently, when you decide to learn another computer language, it really does pay to
know what that language will do for you, the developer. Otherwise, there really isn’t a point in making
the effort.

One phrase you often hear when discussing Python (and by extension, IronPython) is “batteries
included.” Python has an immense standard library that addresses everything from working with
ZIP �les to interacting with the �le system. You’ll discover the details of working with the Standard
Library in Chapter 6. For now, it’s important to know that the Standard Library has a lot to offer
and you may very well be able to build many of your applications without ever thinking about the
.NET Framework.

As previously mentioned, IronPython is a .NET version of the Python language. For a .NET developer,
using IronPython has the advantage of letting you create extensions using .NET (see Chapters 16 and
17 for details). In addition, you have full access to the .NET Framework (see Chapter 7 for details).
You can work with IronPython and other .NET languages that you already know, which means that
you can use the right tool for every job. However, IronPython has a few differences from the CPython
implementation that everyone else uses (see Appendix A for details), which means that you can occa-
sionally run into some odd compatibility problems when using IronPython. As with most things in
life, advantages usually come with a few disadvantages.

You’ll see Python appear in many guises when you begin using it. The original
implementation of Python is CPython and that’s the implementation that most
developers target. In fact, you’ll often see IronPython compared and contrasted
with CPython throughout this book. It’s important to remember that all these
implementations attempt to achieve the same goal — full support of the Python
standard. In most cases, all you really need to worry about is the IronPython
implementation, unless you plan to use third-party libraries written for another
Python implementation. This book helps you understand the use of CPython
extensions in Appendix B.

There are some basic reasons that you want to use IronPython (or Python for that matter). The most
important reason is that IronPython is a dynamic language, which means that it performs many
tasks during run time, rather than compile time. Using a dynamic language means that your code
has advantages of static languages, such as Visual Basic, in that it can more easily adapt to changing

An Overview of IronPython �X 5

environmental conditions. (You’ll discover many other dynamic language advantages as the chapter
progresses.) Unfortunately, you often pay for runtime �exibility with poorer performance — there’s
always a tradeoff between �exibility and performance.

Performance is a combination of three factors: speed, reliability, and security.
When an application has a performance hit, it means a decrease in any of these
three factors. When working with IronPython, there is a decrease in speed
because the interpreter must compile code at run time, rather than at compile
time. This speed decrease is partially offset by an improvement in reliability
because IronPython applications are so �exible.

Dynamic languages provide a number of bene�ts such as the ability to enter several statements
and execute them immediately to obtain feedback. Using a dynamic language also provides easier
refactoring and code modi�cation because you don’t have to change static de�nitions throughout
your code. It’s even possible to call functions you haven’t implemented yet and add an implementa-
tion later in the code when it’s needed. Don’t get the idea that dynamic languages are new. In fact,
dynamic languages have been around for a very long time. Examples of other dynamic languages
include the following:

�° LISP (List Processing)��

Smalltalk���°

JavaScript���°

PHP���°

Ruby���°

ColdFusion���°

Lua���°

Cobra���°

Groovy���°

Developers also assign a number of advantages speci�cally to the Python language (and IronPython’s
implementation of it). Whether these features truly are advantages to you depends on your perspective
and experience. Many people do agree that Python provides these features:

�° Support for the Windows, Linux/Unix, and Mac OS X platforms��

Managed support using both Java and .NET���°

���° Considerable object-oriented programming (OOP) functionality that is easy to understand
and use

���° The capability to look within the code — .NET developers will know this as a strong form
of re�ection

6 �X CHAPTER 1 DISCOVERING IRONPYTHON

�° An extensive array of standard libraries��

���° Full library support using hierarchical packages (a concept that is already familiar to every
.NET developer)

Robust third-party libraries that support just about every need���°

Support for writing both extensions and modules in both C and C++���°

���° Support for writing extensions and modules using third-party solutions for both .NET
(IronPython) and Java (Jython)

Modular application development���°

Error handling through exceptions (another concept familiar to any .NET developer)���°

High-level dynamic data types���°

Ease of embedding within applications as a scripting solution���°

Procedural code that is relatively easy and natural to write���°

Ease of reading and a clear syntax���°

All these features translate into increased developer productivity, which is something that dynamic
languages as a whole supposedly provide (productivity is one of these issues that is hard to nail down
and even harder to prove unless you resort to metrics such as lines of code, which prove useless when
comparing languages). In addition to the great features that Python provides, IronPython provides a
few of its own. The following list provides a brief o verview of these features:

�° Full access to the .NET Framework��

Usability within Silverlight applications���°

Interactive console with full dynamic compilation provided as part of the product���°

���° Accessibility from within a browser (see �]�i�i�e�/�$�$�^�g�d�c�e�n�i�]�d�c�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$�L�^�`�^�$�K�^�Z�l��
�#�V�h�e�m�4�i�^�i�a�Z�2�H�^�a�k�Z�g�a�^�\�]�i�>�c�i�Z�g�V�X�i�^�k�Z�H�Z�h�h�^�d�c for details)

Full extensibility using the .NET Framework���°

���° Complete source code available (see �]�i�i�e�/�$�$�^�g�d�c�e�n�i�]�d�c�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$�H�d�j�g�X�Z�8�d�c�i�g�d�a�$
�A�^�h�i�9�d�l�c�a�d�V�Y�V�W�a�Z�8�d�b�b�^�i�h�#�V�h�e�m for details)

One of the negatives of working with IronPython, versus Python (in the form of CPython), is that you
lose support for multiple platforms — you only have direct access to Windows. You can get around this
problem using Mono (�]�i�i�e�/�$�$�l�l�l�#�b�d�c�d�"�e�g�d�_�Z�X�i�#�X�d�b�$�B�V�^�c�T�E�V�\�Z), but it isn’t a straightforward �x
and many developers will �nd it cumbersome. (Chapter 19 tells you more about working with Mono —
a valuable solution for some Windows versions as well, such as Windows Server 2008 Server Core.)
Of course, there isn’t any way to get around the lack of Java support — you simply choose one virtual
machine or the other. Appendix A lists more IronPython differences from CPython, most of which will
cause compatibility and other issues for you.

Getting IronPython �X 7

An interesting use of IronPython is as an application testing tool. In fact, some
developers use IronPython exclusively for this purpose. Chapter 18 tells you more
about this exciting use of IronPython and demonstrates that using IronPython for
this purpose really does make application testing considerably easier.

Don’t get the idea that IronPython is going to restrict your use of familiar technologies. You can still
create a Windows Forms application (see Chapter 8) and interact with COM (see Chapter 9). It’s even
possible to create command line (console) applications (see Chapter 10) and work with the Internet (see
Chapter 11) just as you always have. What IronPython provides is another way to view problems that
you must address using your applications. As with most languages, what you’re getting is another tool
that lets you create solutions in the least amount of time and with the fewest bugs.

GETTING IRONPYTHON

Before you can use IronPython, you need to get a copy of your own, install it, and check to make
sure it works. Theoretically, you might want to obtain the source code and build your own version of
IronPython, but most developers simply download the binaries and begin working with IronPython
right away. The �rst three sections that follow tell you what you need to work with IronPython, how
to obtain the software, and how to install it. You’ll de�nitely want to read these sections.

The �nal two sections are completely optional. In fact, you may want to skip them for now and
come back to them after you complete more chapters in the book. The �rst optional section tells
you how to build your own copy of IronPython from the source. The second optional section
tells you about third-party libraries.

There’s a huge base of third-party libraries for IronPython. Generally, you don’t
need to install any third-party libraries to use this book. Everything you need to
work with IronPython is included with the download y ou get from the CodePlex
Web site. The only time you might need to work with third-party libraries is in
Part IV. You’ll receive speci�c instructions in the Part IV chapters for any required
third-party libraries, so you only need to read “Using Third-Party Libraries” if
you plan to work with third-party libraries immediat ely.

Understanding the IronPython Requirements
As with any software, IronPython has basic system requirements you must meet before you can use
it. It turns out that there are actually two versions of IronPython 2.6 — one for the .NET Framework
2.0, 3.0, and 3.5, and a second for the .NET Framework 4.0. Here are the requirements for the .NET
Framework 2.0, 3.0, and 3.5 version.

�° The .NET Framework 2.0, 3.0, and 3.5��

8 �X CHAPTER 1 DISCOVERING IRONPYTHON

�° �� (Optional) Visual Studio 2005 or Visual Studio 2008 (your system must meet the prerequi-
sites for this software)

(Optional) .NET Framework 2.0 Software Development Kit (SDK)���°

You need only the optional requirements if you plan to build IronPython 2.6 from the source code.
Here are the requirements for the .NET Framework 4.0 version (again, the optional requirements
are there if you want to build IronPython from source code).

�° The .NET Framework 4.0��

(Optional) Visual Studio 2010���°

Getting the Software
As with most open source software, you have a number of choices when it comes to download-
ing IronPython. For the sake of your sanity, the best choice when starting with IronPython is to
download the binary version of the product from �]�i�i�e�/�$�$�^�g�d�c�e�n�i�]�d�c�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$�G�Z�a�Z�V�h�Z�$
�E�g�d�_�Z�X�i�G�Z�a�Z�V�h�Z�h�#�V�h�e�m�4�G�Z�a�Z�V�h�Z�>�Y�2�(�%�(�&�*. You’ll see the Microsoft Installer (MSI) link right
below the Recommended Download link as IronPython-2.6.msi. If you really must save the few
seconds downloading the MSI version, select the IronPython-2.6-Bin.zip link instead.

It’s also possible to compile IronPython from the source code. If you want to use this option, select the
IronPython-2.6-Src.zip link. You must have a copy of Visual Studio installed on your system to use
this option. The “Building the Binaries from Scratch” section of the chapter describes how to build a
version from scratch, but this process truly isn’t for the IronPython beginner and doesn’t serve much of
a purpose unless you plan to add your own enhancements.

Most developers will likely use the standard version of IronPython that works
with the .NET Framework 3.5 and earlier. However, yo u might need some of
the new features in the .NET Framework 4.0, such as the C# �Y�n�c�V�b�^�X keyword,
which is part of the Dynamic Language Runtime (DLR) (�]�i�i�e�/�$�$�Y�a�g�#�X�d�Y�Z�e�a�Z�m��
�#�X�d�b�$). The section “Understanding the Dynamic Language Runtime” later in this
chapter tells you more about this .NET 4.0 feature. You can obtain this version of
IronPython at �]�i�i�e�/�$�$�^�g�d�c�e�n�i�]�d�c�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$�G�Z�a�Z�V�h�Z�$�E�g�d�_�Z�X�i�G�Z�a�Z�V�h�Z�h��
�#�V�h�e�m�4�G�Z�a�Z�V�h�Z�>�Y�2�'�,�(�'�%. The examples in this book will work with either version
of IronPython 2.6, except where noted (where I’m demonstrating how to work
with the DLR).

Performing the Installation
This section assumes that you’ve downloaded the MSI �le to make life easy for yourself. This pro-
cedure works equally well for either version of IronPython 2.6 so you can use it for a DLR install as
well. The following instructions help you get IronPython installed on your machine.

1. Double-click the MSI �le you downloaded from the CodePlex Web site. You’ll see the usual
Welcome page — click Next to get past it.

Getting IronPython �X 9

2. Read the licensing agreement, check I Accept the Terms in the License Agreement, and then
click Next. You’ll see the Custom Setup dialog box shown in Figure 1-1 where you can select
the IronPython features you want to install. At a minimum, you must install the Runtime. The
Documentation, Standard Library, and Tools features are also strongly recommended. This
book assumes that you’ve installed all the features. However, you might want to install just those
features you actually need for a production setup (you might not actually need the samples).

FIGURE 1�1: Choose the features you want to install.

When you perform a DLR installation, you’ll see a Do Not NGen Installed
Binaries option on the Custom Setup dialog box. Using the Native Image
Generator (NGen) can greatly improve application performance, as described
at �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�Z�c�"�j�h�$�b�V�\�V�o�^�c�Z�$�X�X�&�+�(�+�&�%�#�V�h�e�m. Earlier
versions of IronPython didn’t use NGen to build the l ibraries for you by default.
You had to use a special command line to obtain the NGen feature (�b�h�^�Z�m�Z�X���$�f�c����
�$�^���¹�>�g�d�c�E�n�i�]�d�c�#�b�h�^�¹���C�<�:�C�9�A�A�H�2�I�g�j�Z). The default setup for IronPython 2.6 is
to use NGen to build the libraries.

However, using NGen also binds the binaries to the local machine, which may
not be what you want when working in a dynamic environment. Consequently,
if you plan to use DLR more than you plan to use other IronPython features,
you might want to check the Do Not NGen Installed Bina ries option.

3. Select the features you want to install. Click Next. You’ll see a summary dialog box that
simply states you’re ready to install IronPython.

4. Click Install. MSI will begin the installation process. At some point, you’ll see an installation
completion screen.

5. Click Finish. You should be ready to begin working with IronPython at this point.

10 �X CHAPTER 1 DISCOVERING IRONPYTHON

Building the Binaries from Scratch
You may eventually want to build the IronPython binaries from scratch. The normal reason to perform
this task is to create a special version of IronPython that meets speci�c needs. A company may want to
add extensions or special features to IronPython. Because you have the source code, it’s acceptable to
create a custom version of IronPython for yourself — one that contains any feature set you deem neces-
sary to get your work completed. So have fun molding IronPython and then sharing your modi�cations
with others. In order to perform this task, you must have a
copy of Visual Studio (you must have Visual Studio 2010 to
build a DLR version of IronPython). The following step s tell
you how to build the IronPython 2.6 binaries from scratch.

1. Download the source code �le, such as
IronPython-2.6-Src.zip.

2. Extract the �les into a folder. The example assumes
that you extracted the �les into the root directory of
your hard drive into �Q�>�g�d�c�E�n�i�]�d�c�"�'�#�+.

3. Locate the �Q�>�g�d�c�E�n�i�]�d�c�"�'�#�+�Q�H�g�X directory and
open the IronPython.sln solution using Visual Studio.
Visual Studio will load the required �les, and you’ll
see them in Solution Explorer, as shown in Figure 1-2.
Figure 1-2 shows that IronPython consists of a number
of projects — you must compile the entire solution to
obtain a workable group of DLLs.

4. Make any required changes to the source code.

5. Choose Build ���¶����Build Solution. Visual Studio
creates the required DLLs, ready for testing.

Using Third-Party Libraries
Python is an extremely �exible language and enjoys strong
third-party support. In fact, you can �nd lists of the se libraries
in various places on the Internet. Here are a few places to check:

�° �]�i�i�e�/�$�$�X�d�Y�Z�#�\�d�d�\�a�Z�#�X�d�b�$�V�e�e�Z�c�\�^�c�Z�$�Y�d�X�h�$�e�n�i�]�d�c�$�i�d�d�a�h�$�a�^�W�g�V�g�^�Z�h�#�]�i�b�a��

�]�i�i�e�/�$�$�l�l�l�#�V�b�V�a�i�V�h�#�d�g�\�$�h�]�d�l�$�i�]�^�g�Y�"�e�V�g�i�n�"�e�n�i�]�d�c�"�a�^�W�g�V�g�^�Z�h�"�V�c�Y�"�[�g�V�b�Z�l�d�g�`�h�#�]�i�b�a���°

�]�i�i�e�/�$�$�Y�V�`�g�V�j�i�]�#�X�d�b�$�W�a�d�\�$�Z�c�i�g�n�$�i�]�^�g�Y�"�e�V�g�i�n�"�e�n�i�]�d�c�"�a�^�W�g�V�g�^�Z�h�"�^�c�i�Z�g�Z�h�i�$���°

IronPython is a complex product. If you fail to comp ile the entire solution
every time you make a change, you could end up with an unworkable group
of DLLs due to interactions. It’s important to build everything so that any
changes propagate properly.

FIGURE 1�2: IronPython consists of
multiple projects, so you must compile
the entire solution.

Understanding the Dynamic Language Runtime �X 11

You should be able to use some third-party libraries with IronPython. At the time of this writing,
you won’t actually �nd any usable third-party librar ies. However, you should check���]�i�i�e�/�$�$�l�l�l��
�#�^�g�d�c�e�n�i�]�d�c�#�^�c�[�d�$�^�c�Y�Z�m�#�e�]�e�$�I�]�^�g�Y�"�E�V�g�i�n�T�A�^�W�g�V�g�n�T�8�d�b�e�V�i�^�W�^�a�^�i�n from time-to-time to dis -
cover whether there are any third-party libraries that do work with IronPython. It’s important to
note that this list represents only tested libraries — you may �nd other third-party libraries that do
work with the current version of IronPython.

UNDERSTANDING THE DYNAMIC LANGUAGE RUNTIME

IronPython is a dynamic language, yet the Common Language Runtime (CLR) is a static environ-
ment. While you can build a compiler that makes it possible to use a dynamic language with CLR,
as was done for IronPython 1.0, you’ll �nd that certa in functionality is missing because CLR simply
doesn’t understand dynamic languages. Consequently, Microsoft started the Dynamic Language
Runtime (DLR) project (see �]�i�i�e�/�$�$�Y�a�g�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$ for additional information). DLR sits on
top of CLR and performs a level of interpretation that offers additional functionality for dynamic
languages. By relying on DLR, IronPython gains access to the following support:

�° Shared dynamic type support��

Shared hosted model���°

Quick dynamic code generation���°

Interaction with other dynamic languages���°

���° Improved interaction with static languages such as C# and Visual Basic.NET (see Chapters 15,
16, and 17 for details)

Shared sandbox security model and browse integration���°

DLR is now part of the .NET Framework 4.0. (In fact, you’ll discover the details o f this integration
in Chapter 14.) Consequently, you can begin accessing these features immediately when using Visual
Studio 2010 without having to install any additional support. Microsoft currently supports these lan-
guages using DLR:

�° IronPython��

IronRuby���°

JavaScript (EcmaScript 3.0)���°

Visual Basic���°

Silverlight also provides support for DLR and there’s even a special SDK for Silverlight DLR. You can dis-
cover more about this SDK at �]�i�i�e�/�$�$�h�^�a�k�Z�g�a�^�\�]�i�#�c�Z�i�$�a�Z�V�g�c�$�Y�n�c�V�b�^�X�"�a�V�c�\�j�V�\�Z�h�$. The relevance of
Silverlight support for this book is that you can now use IronPython as part of your Silverlight solution as
described in Chapter 11. You can summarize the bene�ts of using DLR as follows:

�° Makes it easier to port dynamic languages to the .NET Framework��

Lets you include dynamic features in static languages���°

12 �X CHAPTER 1 DISCOVERING IRONPYTHON

�° Creates an environment where sharing of objects and libraries between languages is possible��

Makes it possible to perform fast dynamic dispatch and invocation of objects���°

This section provides a good overview of DLR. You’ll discover additional details about DLR as the
book progresses. However, if you’d like to delve into some of the architectural details of DLR, check
out the article at �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$�Y�Y�'�(�(�%�*�'�#�V�h�e�m.

USING THE IRONPYTHON CONSOLE

The IronPython console is the best place to begin working with IronPython. You can enter a few
statements, test them out, and then work out additional details without too many consequences. In
addition, because the console is interactive, you obtain immediate feedback, so you don’t have to
wait for a compile cycle to discover that something you’re doing is completely wrong. In fact, even
after you’ve mastered IronPython, you’ll �nd that you use the console to try things out. Because
IronPython is a dynamic language, you can try things without worrying about damaging an applica-
tion. You can test things quickly using the console and then include them in your application. The
following sections describe the IronPython console and how to use it. Expect to see the IronPython
console in future chapters.

Opening and Using the Default Console
The IronPython console is an application provided with the default installation. You access it using
the Start ���¶����Programs ���¶����IronPython 2.6 ���¶����IronPython Console command. The console, shown in
Figure 1-3, looks something like a command prompt, but it isn’t.

FIGURE 1�3: The IronPython console looks something like a command prompt.

Using the IronPython Console �X 13

Notice that the top of the window tells you which ver sion of IronPython you’re using and which version
of the .NET Framework it’s running on. This is import ant information because it helps you understand
the IronPython environment and what limitations you have when working with IronPython. Below this
�rst line, you’ll see some commands that Microsoft thought you might �nd useful. The “Getting Help
with Any Function” section of the chapter tells you more about the Help command.

To use the console, simply type the commands you want to issue. When you’re done, IronPython
will execute the commands and output any result you requested. A command need not be a function
call or an object instantiation as it is in other languages. For example, type �'��� ���' right now and
then press Enter. You’ll see the result of this simple command, as shown in Figure 1-4.

FIGURE 1�4: IronPython is dynamic and the console is interactive.

Whenever you want to end a particular task, such as working with Help, press Enter a second time.
The console will take you to the previous level of interaction.

Getting Help with Any Function
You can get help with any function in the console. If you simply type help and press Enter in the
console, IronPython tells you how to request interactive help or help about a speci�c object. To
begin interactive help, type �]�Z�a�e���� and press Enter. You’ll see the interactive help display shown
in Figure 1-5.

FIGURE 1�5: Interactive help lets you ask questions about IronPython.

14 �X CHAPTER 1 DISCOVERING IRONPYTHON

Let’s say you have no idea of what you want to �nd. Console help provides you with a list of words
you can type to get general help. These terms are:

�° Modules��

Keywords���°

Topics���°

Type any of these terms and press Enter. You’ll see a list of additional words you can type, as shown
in Figure 1-6 for modules. Using this technique, you can drill down into help and locate anything you
want. In fact, it’s a good idea to spend some time in help just to see what’s available. Even advanced
developers can bene�t from this approach — I personally follow this approach when I have time to
increase my level of knowledge about all of the languages I use.

IronPython will constantly refer you to the online h elp for Python. So
you might as well check it out now. You’ll �nd a good Python tutorial at
�]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�i�j�i�d�g�^�V�a�$. While you’re at it, there’s also a good
IronPython-speci�c tutorial that comes with your ins tallation. Simply choose
Start ���¶����Programs ���¶����IronPython 2.6 ���¶����IronPython Tutorial. Although these
sources of help are useful, you’ll get a much better start working through the
examples in the book.

You might know about the topic you want to �nd. For example, you might know that you want
to print something to screen, but you don’t quite know how to use print. In this case, type
�]�Z�a�e���»�e�g�^�c�i�»�� and press Enter. Figure 1-7 shows the results. You see complete documentation
about the �e�g�^�c�i keyword.

Understanding the IP Y.EXE Command Line Syntax
When you open a console window, what you’re actually doing is executing IPY.EXE, which is
the IronPython interpreter. You don’t have to open a console window to use IPY.EXE. In fact,
you normally won’t. It’s possible to execute IronPython applications directly at the command
line. The following sections discuss IPY.EXE in more detail.

Adding IPY.EXE to the Windows Environment
Before you can use IPY.EXE effectively, you need to add it to the Windows path statement. The
following steps provide a brief procedure.

1. Open the Advanced tab of the Computer (or My Computer) applet.

2. Click Environment Variables. You’ll see an Environment Variables dialog box.

3. Highlight Path in the System Variables list. Click Edit. You’ll see the Edit Environment
Variable dialog box.

Using the IronPython Console �X 15

FIGURE 1�6: Drill down into help to �nd topics of interest.

16 �X CHAPTER 1 DISCOVERING IRONPYTHON

FIGURE 1�7: The console also provides the means to obtain precise help about any module, keyword, or topic.

4. Select the end of the string that appears in the Variable Value �eld. Type
�0�8�/�Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�>�g�d�c�E�n�i�]�d�c���'�#�+ and click OK. Make sure you modify this path to
match your IronPython con�guration.

5. Click OK three times to close the Edit System Variable, Environment Variables, and System
Properties dialog boxes. When you open a command prompt, you’ll be able to access the
IronPython executables.

Executing an Application from the Command Prompt
Normally, you execute an application by typing IPY <Python Filename> and pressing Enter. Give it
a try now. Open a command prompt, type �8�9���Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�>�g�d�c�E�n�i�]�d�c���'�#�+�Q�I�j�i�d�g�^�V�a, and
press Enter. You’re in the sample �les supplied by IronPython. Type �>�E�N���L�;�9�Z�b�d�#�e�n and press Enter.
You’ll see a window displayed. When you click your mouse in the window, you see the word Hello

Using the IronPython Console �X 17

displayed at each click point, as shown in Figure 1-8. If you look at the command prompt window at
this point, you’ll see that the mouse cursor is blinking but you can’t type anything because the com-
mand prompt is waiting for the IronPython interprete r to end. When you click the Close button, the
application ends and you can again type something at the command prompt.

Understanding the IPY.EXE Standard Command Line Switches
Sometimes you need to provide �>�E�N�#�:�M�: with more information
about a particular application. In this case, you can use one of
the command line switches shown in the following list to provide
�>�E�N�#�:�M�: with the required information. It’s important to note
that the command line switches are case sensitive; �·�k isn’t the
same as �·�K.

�¶�(: Forces the interpreter to warn about Python 3 com-
patibility issues in your application.

�¶�X�� �X�b�Y: Speci�es a command you want to execute. This
command line switch must appear last on the line because
anything after this command line switch is interpreted as
a command you want to execute. For example, if you type
�^�e�n���"�X���¹�e�g�^�c�i�����»�=�Z�a�a�d�»���¹, the interpreter will output
the word Hello.

�¶�9: Enables application debugging.

�¶�:: Ignores any environment variables that you speci�ed as part of the Windows environment
variable setup or on the command line after you started it. Some applications may not run
after you use this command line switch because they won’t be able to �nd modules and other
�les they need.

�¶�]: Displays a complete list of the command line arguments.

�¶� :̂ Displays the console after running the script. You can then inspect the results of the
script using console commands.

�¶�b�� �b�d�Y�j�a�Z: Runs library module as a script.

�¶�D: Tells the interpreter to generate optimized code, which means you can’t perform debugging,
but the application will run faster.

�¶�D�D: Removes all of the doc strings and applies �·�D optimizations so that the application runs
even faster than using the �·�D command line switch alone.

�¶�F�� �V�g�\: Speci�es use of one of several division options. You can use any of these values.

�°�� �¶�F�d�a�Y (default): The precision of the output depends on the operators used. For
example, if you divide two integers, you get an integer as output.

���° �¶�F�l�V�g�c: Outputs warnings about a loss of precision when performing division
using integers.

���° �¶�F�l�V�g�c�V�a�a: Outputs warnings about all uses of the classic division operator.

���° �¶�F�c�Z�l: The output is always a precise �oating point fraction.

FIGURE 1�8: The WFDemo shows
that you can create windowed
environments for IronPython
applications.

Hello

Hello

Hello

Hello

Hello Hello

18 �X CHAPTER 1 DISCOVERING IRONPYTHON

�¶�h: Speci�es that the interpreter shouldn’t add the user site directory to �h�n�h�#�e�V�i�].

�¶�H: Speci�es that the interpreter shouldn’t imply that it should execute the �^�b�e�d�g�i���h�^�i�Z
command on initialization.

�¶�i: Outputs warnings about inconsistent tab usage, which can lead to code interpretation
problems.

�¶�i�i: Outputs errors for inconsistent tab usage. Inconsistent tab usage can lead to code
interpretation problems, which can result in hard-to-locate bugs.

�¶�j: Provides unbuffered stdout and stderr devices. Typically, the interpreter uses buffering
to provide better application performance.

�¶�k: Speci�es that the interpreter should provide verbose output, which means that you
can see everything going on in the background. You can also obtain this result by using
�E�N�I�=�D�C�K�:�G�7�D�H�:�2�m (where x is a True or False environment variable).

�¶�K: Prints the version number and exits. This option is useful when you want to be sure
you’re using the correct version of IronPython for your application.

�¶�L�� �V�g�\: De�nes the kind of warning control. Specifying these command line switches tells
the interpreter to add the speci�ed warning messages to the output. (Don’t worry too much
about these warnings — you learn more about them in Chapter 12.) You can use any of
these values:

�¶�L���° �V�X�i�^�d�c: Actions are one of the following strings: �Z�g�g�d�g (turns matching warnings
into exceptions), �^�\�c�d�g�Z (never prints matching warnings), �V�a�l�V�n�h (always prints
matching warnings), �Y�Z�[�V�j�a�i (prints the �rst occurrence of a warning for each loca-
tion where the interpreter issues the warning), �b�d�Y�j�a�Z (prints the �rst occurrence of
a warning for each module where the error occurs), and �d�c�X�Z (prints only the �rst
occurrence of a warning no matter where it appears).

�¶�L���° �b�Z�h�h�V�\�Z: Messages are Regular Expressions that de�ne which warning messages
to match.

�¶�L���° �X�V�i�Z�\�d�g�n: Categories specify the class of the warning message.

�¶�L���° �b�d�Y�j�a�Z: Modules are Regular Expressions that de�ne which module to match.

�¶�L���° �a�^�c�Z�c�d: Line numbers are integer values that specify a line number to match.
Using 0 matches all line numbers.

�¶�m: Skips the �rst line of the source code, which may have special instructions that you don’t
need for the current session.

IronPython doesn’t support all of the CPython command line switches.
Consequently, you may �nd that a batch �le written t o execute a CPython
application won’t work properly with IronPython. For example, IronPython
doesn’t appear to support the PYTHONHOME environment v ariable. All
IronPython environment variables begin with IRON, so you need to modify
batch �les to include this �rst word as part of any environmental variable setup.

Using the IronPython Console �X 19

Working with the –X: Command Line Switches
In addition to the standard command line switches, you also have access to the –X: command line
switches, which con�gure the IronPython interpreter. The following list describes each of the con-
�guration options:

�¶�M�/�6�j�i�d�>�c�Y�Z�c�i: Enables auto-indenting in the read-evaluation-print loop (REPL).

�¶�M�/�8�d�a�d�g�[�j�a�8�d�c�h�d�a�Z: Enables ColorfulConsole support.

�¶�M�/�9�Z�W�j�\: Enables application debugging. This option is preferred over the �·�9 command
line switch because it’s newer and will enjoy a longer support period.

�¶�M�/�:�c�V�W�a�Z�E�g�d�[�^�a�Z�g: Enables pro�ling support in the compiler, which helps you optimize
your applications.

�¶�M�/�:�m�X�Z�e�i�^�d�c�9�Z�i�V�^�a: Enables ExceptionDetail mode, which gives you more information
about every exception that occurs, making it easier to locate the source of the problem (but
�lling the screen much faster as well).

�¶�M�/�;�g�V�b�Z�h: Enables basic �h�n�h�#�T�\�Z�i�[�g�V�b�Z���� support.

�¶�M�/�;�j�a�a�;�g�V�b�Z�h: Enables �h�n�h�#�T�\�Z�i�[�g�V�b�Z���� with access to local objects and variables.

�¶�M�/�<�8�H�i�g�Z�h�h: Speci�es the garbage collector (GC) stress level. Stressing the GC can point
out potential resource problems in your application.

�¶�M�/�A�^�\�]�i�l�Z�^�\�]�i�H�X�d�e�Z�h: Generates optimized scopes that are easier for the GC to collect.
Optimizing GC functionality tends to improve the overall performance (both speed and
reliability) of your application.

�¶�M�/�B�V�m�G�Z�X�j�g�h�^�d�c: Determines the maximum recursion level within the application. Recursion
can use a lot of system resources, so controlling the amount of recursion tends to reduce
resource usage by applications that rely on recursion. Of course, reducing the recursion levels
can also cause application exceptions.

�¶�M�/�B�I�6: Runs the application in a multithreaded apartment (MTA).

�¶�M�/�C�d�6�Y�V�e�i�^�k�Z�8�d�b�e�^�a�V�i�^�d�c: Disables the adaptive compilation feature.

�¶�M�/�E�V�h�h�:�m�X�Z�e�i�^�d�c�h: Tells the interpreter not to catch exceptions that are unhandled by
script code.

�¶�M�/�E�g�^�k�V�i�Z�7�^�c�Y�^�c�\: Enables binding to private members.

�¶�M�/�E�n�i�]�d�c�(�%: Enables available Python 3.0 features, such as classic division (where dividing
two integers produces an integer result).

�¶�M�/�H�]�d�l�8�a�g�:�m�X�Z�e�i�^�d�c�h: Displays the Common Language Speci�cation (CLS) exception
information.

�¶�M�/�I�V�W�8�d�b�e�a�Z�i�^�d�c: Enables TabCompletion mode.

�¶�M�/�I�g�V�X�^�c�\: Enables support for tracing all methods even before the code calls
�h�n�h�#�h�Z�i�i�g�V�X�Z����.

20 �X CHAPTER 1 DISCOVERING IRONPYTHON

Modifying the IPY.EXE Environment Variables
IPY also supports a number of environment variables. The following list describes each of these
environment variables.

�>�G�D�C�E�N�I�=�D�C�E�6�I�=: Speci�es the path to search for modules used within an application

�>�G�D�C�E�N�I�=�D�C�H�I�6�G�I�J�E: Speci�es the name and location of the startup module

Exiting the IronPython Interpreter
Eventually, you’ll want to leave the console. In order to end your session, simply type �Z�m�^�i���� and
press Enter. As an alternative, you can always press Ctrl+Z and then Enter. The console will close.

USING THE IRONPYTHON WINDOWED ENVIRONMENT

IronPython also provides access to a win-
dowed environment, but you can’t access it
from the start menu. Instead, you must pro-
vide a shortcut to the �le you want to run
or open a command prompt and start the
application manually. The windowed envi-
ronment simply provides a GUI interface
for working with IronPython, but doesn’t
do anything else for you. You start the
windowed environment by using IPYW
.EXE. If you type �>�E�N�L and press Enter, you
see the command line switch help shown in
Figure 1-9.

As you can see from Figure 1-9, the win-
dowed environment supports the same com-
mand line switches as the character mode
command line version. However, you can’t
use the windowed environment to run the
interpreted console environment, which is
a shame because many developers would
prefer working in the nicer environment. To
see that the windowed environment works
the same way as the standard console, type
�>�E�N�L���L�;�9�Z�b�d�#�e�n and press Enter. You’ll
see the test application shown earlier in
Figure 1-8.

FIGURE 1�9: The windowed version supports the same
features as the command line version.

Creating Your First Application �X 21

CREATING YOUR FIRST APPLICATION

After all this time, you might have started wondering whether you would get to write any code at all
in this chapter. The �rst application won’t be very f ancy, but it’ll be more than a simple Hello World
kind of application. You can use any editor that outputs pure text in this section. Notepad will work
just �ne. Listing 1-1 shows the code you should type in your editor.

LISTING 1�1: A simple �rst application that multiplies two numbers

�Y�Z�[���b�j�a�i���V�!���W���/
���������g�Z�i�j�g�c���V�������W

�e�g�^�c�i���»�*�������&�%���2�¼���!
�e�g�^�c�i���b�j�a�i���*�!���&�%����

Just �ve lines, including the blank line between the function and the main code, are all you need for
this example. Functions begin with the �Y�Z�[keyword. You then give the function a name, �b�j�a�i in this
case, followed by a list of arguments (if any) — �V and �W for this example.

Don’t worry too much about the details of the IronPython language just yet.
Part II of the book provides you with a good overview of all the language details.
As the book progresses, you’ll be exposed to additional language details. By the
time you reach the end of the book, you’ll be working with some relatively com-
plex examples.

The content of the function is indented with a tab. In this case, the function simply returns the value
of multiplying �V by �W. Except for the indentation requirement, this could easily be a function written
in any other language.

The main code section comes next. In this case, the code begins by printing 5 * 10 =. Notice that
you enclose the string values in single quotes. The function call ends with an odd-looking comma.
This comma tells the interpreter not to add a �$�c (newline) character after the �e�g�^�c�i���� call.

At this point, the code calls �e�g�^�c�i���� a second time, but it calls �b�j�a�i���� instead of writing text
directly. The output of �b�j�a�i���� is an integer, which IronPython automatically converts to a string for
you and then prints out. You’ll �nd that IronPython does a lot of work for you in the background —
dynamically (as explained earlier in the chapter).

Save the code you’ve typed into Notepad as �B�n�;�^�g�h�i�#�e�n. Make sure you choose All Files in the Save
As Type �eld so that Notepad doesn’t add a .txt extension to the output. To execute this example,
type �>�E�N���B�n�;�^�g�h�i�#�e�n at the command line and press Enter. Figure 1-10 shows the output from this
quick example.

22 �X CHAPTER 1 DISCOVERING IRONPYTHON

FIGURE 1�10: The output of the example is a simple equation.

USING IRONPYTHON CONSTRUCTIVELY

This chapter has introduced you to IronPython. You should have a good understanding of why you
want to use IronPython and how it differs from other, static .NET languages. Dynamic languages
have a special place in your toolbox. They aren’t the answer to every need, but they can address
speci�c needs — just as other languages address the needs for which they were built. At the end of
the day, the computer doesn’t care what language you use — the computer simply cares how that
language is translated into the bits and bytes it requires to do something useful. Languages address
human needs and it’s important to keep that in mind.

Before you do anything else, make sure you get IronPython installed on your system and test the
installation out using the examples in this chapter. If you’re getting some weird result or nothing
at all, you might have a bad installation. Once you know that you do have a good installation, try
playing around with the example application in the “Cre ating Your First Application” section of the
chapter. Work with this application as a means of working with the tools discussed in the “Using the
IronPython Console” and “Using the IronPython Windowe d Environment” sections of the chapter.

At this point, you really don’t know too much about the Python language or the IronPython implemen-
tation of that language. However, you probably do know something about other .NET languages, and
that’s a good starting point. Chapter 2 builds on the information you’ve learned in this chapter and also
builds on your personal knowledge of the .NET Framework. In Chapter 2, you begin building knowl -
edge about IronPython so you can see what an interesting language it is and so you can also begin to
understand the example in the “Creating Your First Application” section of the chapter. When you get
done with Chapter 2, you may want to take another look at the sample application — you’ll be sur-
prised to discover that you really do know how the example works.

Understanding the
IronPython Basics

WHAT’S IN THIS CHAPTER?

�° Creating your IronPython applications using Visual Studio��

Using capitalization and indentation properly���°

Working with various types of data���°

Working with the IronPython modules���°

Using functions in IronPython���°

Con�guring the IronPython environment for maximum productivity���°

No matter what language you want to learn, you always start with the basics. However, you don’t
always start with the very basics. Once you know what a loop looks like in one language, you can
usually recognize it in other languages as well. That’s how this chapter begins the process of work-
ing with IronPython. This isn’t a comprehensive guide for the rank novice, but rather the kind of
guide that someone who has used a .NET language before will appreciate.

Of course, professionals like professional tools. This chapter shows how to forgo the Notepad
programming experience to work with Visual Studio to create IronPython applications. You
might have already noticed that installing IronPython didn’t add any new templates to the
New Project dialog box — there isn’t any IronPython folder for you to look in.

IronPython is different from most .NET languages in that indentation is an important part
of the application code. If you don’t indent your code properly, the IronPython interpreter
will complain, loudly. As with many programming languag es, capitalization is also important
when working with IronPython — a variable named MyVariable is completely different from
one named myVariable. Of course, you’ll also want to know about IronPython data types. You
won’t �nd many surprises here, but it’s important to review them anyway.

2

24 �X CHAPTER 2 UNDERSTANDING THE IRONPYTHON BASICS

One of the more important features of IronPython is its ability to use external modules. This feature isn’t all that
different from any .NET language because you’re always using code found in other modules. However, you need
to know the IronPython method of working with modules because it does differ from what you’ve done with
other .NET languages.

Functions are the basis for modularization in IronPython applications. Yes, you have access to other
modularization techniques, too, but for the simple applications that you’ll see in these beginning
chapters, the function works �ne. The IronPython function looks a bit different from functions you
create in other languages. In fact, you already saw this difference in the simple example found in
Chapter 1.

Finally, this chapter exposes you to the IronPython environment. Normally, the programming
language environment is hidden away in con�guration � les when working with .NET — not so
with IronPython. You see the environment up close and personal. You’ll also �nd that you change
the environment more often than you do with other languages, so knowing how to change it is
important.

All the Visual Studio examples in this book rely on Visual Studio Team System
2010. If you use a different Visual Studio version, the steps may not match pre-
cisely and your screenshot will differ slightly. The procedures and techniques will
still work, but you may need to modify them slightly f or your setup. For example,
some versions of Visual Studio have a File�����¶����New Project command (two steps) —
Visual Studio Team System 2010 uses a three-step command, File�����¶����New ���¶����
Project. The difference is small and easily changed, but you need to be aware of the
difference as you work through the book.

USING VISUAL STUDIO TO CREATE IRONPYTHON APPLICATIONS

You might have looked at the New Project dialog box after you installed IronPython, assuming
that you’d �nd a series of new project templates. Unfortunately, you won’t �nd any new templates
for IronPython. The current version of the product doesn’t include anything you can use directly.
Fortunately, you can still create a project for IronPython projects and use Visual Studio to edit and
debug it. The following sections take you through a simple con�guration scenario and then show
the resulting project in action.

Creating the Project
Before you do anything else, you must create a project to hold your IronPython application. The
following steps show you how to perform this task.

1. Open Visual Studio, but don’t open any project or template �les.

2. Choose File ���¶����Open ���¶����Project/Solution. You’ll see the Open Project dialog box shown in
Figure 2-1.

Using Visual Studio to Create IronPython Applications �X 25

FIGURE 2�1: Use the Open Project dialog box to start the project.

3. Locate and highlight IPY.EXE (normally found in the \Program
Files\IronPython 2.6 folder). Click Open. Visual Studio creates a
solution based on IPY.EXE, as shown in Figure 2-2. You must still
con�gure this solution.

4. Right-click IPY in Solution Explorer and choose Properties from
the context menu. You’ll see the General tab of the Properties page
shown in Figure 2-3. (Your display may differ slightly from the one
shown in Figure 2-3 based on your machine con�guration and the
Visual Studio 2010 edition you use.) At a minimum, you must change
the Arguments and Working Directory �elds to match your project.

FIGURE 2�3: Modify the properties to match your project requirements.

FIGURE 2�2: IPY.EXE
becomes the focal point
for a new solution.

26 �X CHAPTER 2 UNDERSTANDING THE IRONPYTHON BASICS

Command line switches are case sensitive. Using the wrong case can result in
unexpected behavior. For example, if you use the �"�h command line switch in
place of the �"�H command line switch, you’ll obtain an unexpected result from
the IronPython interpreter. In this case, the interpreter won’t add the user site
directory to sys.path.

5. Select the Arguments �eld. Type �"�9���C�V�b�Z�D�[�E�g�d�_�Z�X�i, where �C�V�b�Z�D�[�E�g�d�_�Z�X�i is a Python
(.py) �le. For example, the example project uses MyFirst.py, so you’d type �"�9���B�n�;�^�g�h�i�#�e�n.
Remember that the �"�9 command line switch turns on debugging. You can �nd other com-
mand line arguments listed in the “Understanding the IPY.EXE Command Line Syntax”
section of Chapter 1. Include any other command line switches you want to use in the
Arguments �eld.

The .py �le extension is case sensitive. You must use lowercase for the �le
extension. For example, IronPython will import a module named MyStuff.py,
but it won’t import a module named MyStuff.PY. Exten sions aren’t normally
case sensitive, so this IronPython oddity could cause dif�cult-to-�nd errors.

6. Select the Working Directory �eld. Visual Studio will default to using the \Program Files\
IronPython 2.6 directory — a directory that you’re unlikely to use to hold your source code
�les. Change the Working Directory to match your source code directory. Click the ellipses
to locate the directory on your hard drive using the Browse for Folder dialog box.

7. Choose File ���¶����Save All. You’ll see the Save File As dialog box shown in Figure 2-4.

FIGURE 2�4: Save the resulting solution before you do anything else.

Using Visual Studio to Create IronPython Applications �X 27

8. Locate the folder you want to use to save the project in the Save In �eld.

9. Type a name for the solution in the Object Name �eld. Click Save. Visual Studio will save the
project to the folder you selected.

Adding Existing Files to the Project
At this point, you have a project without any �les i n it. Yes, you could run the project and you’d see
what you’d expect, but you can’t debug the IronPython � le or edit it. The following steps tell how to
add a �le to your project.

1. Right-click the solution entry in Solution Explorer (not the IPY project entry) and choose
Add ���¶����Exiting Item from the context menu. You’ll see the Add Exiting Item dialog box
shown in Figure 2-5.

FIGURE 2�5: Add your existing Python �les to the project.

2. Locate the existing �le you want to use and click Open. Visual Studio
adds a Solution Items folder to Solution Explorer and places the �le
you selected in the Solution Items folder, as shown in Figure 2-6. In
addition, Visual Studio automatically opens the �le for you.

Adding New Files to the Project
Once you get used to working with Visual Studio, you may decide to create
�les from scratch using the Visual Studio IDE. In this case, you need to add
blank (new) �les to the project. The following steps show you how to perform
this task.

1. Right-click the solution entry in Solution Explorer and choose Add ���¶����New Item from the
context menu. You’ll see the Add New Item dialog box shown in Figure 2-7.

FIGURE 2�6: The
Solution Items folder
holds the Python �les
you add.

28 �X CHAPTER 2 UNDERSTANDING THE IRONPYTHON BASICS

FIGURE 2�7: You can use the Visual Studio IDE to create new Python �les.

2. Highlight the Text File entry. Visual Studio will assume you want to create a text (.TXT) �le,
but you can change the extension to anything you want.

3. Type the name of the Python �le you want to create in the Name �eld. Make certain that
your �le has a .py extension or the IronPython interpreter may not work with it.

4. Click Add. Visual Studio adds the �le to Solution Explorer (similar to the addition shown in
Figure 2-6) and automatically opens the �le for editing.

IronPython Project Limitations
The project you create using this technique has some serious limitations. Here’s a partial list of
the things that you won’t see in your IronPython project that you’ll normally see in other Visual
Studio projects.

�° Color support for keywords or other special text��

IntelliSense���°

New Items dialog support���°

Immediate window (debugging)���°

Command window (when working with variables during debugging)���°

Using Visual Studio to Create IronPython Applications �X 29

Debugging the Project
After you write your code, you can use the Visual Studio debugger to debug the project. This chapter
provides a brief overview of debugging. Chapter 12 discusses debugging in detail. All you really need
to worry about now is understanding how the debugger works so that you can use it to trace through
sample programs in this and other chapters in the book.

This section assumes you’re using the MyFirst.py example found in Chapter 1 and that you’ve created a
project for it. Start by placing a breakpoint on the � rst line of the application (�e�g�^�c�i���»�*�������&�%���2�»���!);
then place a second breakpoint at the beginning of the function (�Y�Z�[���b�j�a�i���V�!���W���/). You can do this
by placing your cursor on the line and pressing F9 or choosing Debug ���¶����Toggle Breakpoint. You should
see the breakpoint shown in Figure 2-8.

FIGURE 2�8: Visual Studio helps you debug your IronPython applications.

At this point, you can begin debugging your application. The following steps get you started.

1. Press F5 or click Start Debugging to begin debugging your application. Starting the debug pro-
cess can take a while because Visual Studio has to start a copy of the IronPython interpreter.
Visual Studio stops at the function de�nition. IronPython makes a list of function de�nitions
when it starts the application.

2. Click Step Over. You’ll move to the �rst line of the application. At this point, the debugger
begins executing your application code.

3. Click Step Over again. If you look at the command prompt at this point, you’ll see that it
contains the expected output text, but not the answer, as shown in Figure 2-9. Now, if you
clicked Step Over again, you’d see the output from the �B�j�a�i���� function, but you wouldn’t
actually see the code in �B�j�a�i���� execute. The next step shows how to get inside a function so
you can see how it works.

FIGURE 2�9: The console screen will show the results of tasks performed in your application code.

30 �X CHAPTER 2 UNDERSTANDING THE IRONPYTHON BASICS

4. Press F5 or click Start Debugging. The application will stop within �B�j�a�i����. Being able to
stop within a function is the reason for setting the second breakpoint at the beginning of this
procedure. Now you can use Step Over to execute the lines of code one at a time. Notice the
Debug History window. You can select entries in this window to see what the IronPython
interpreter has been doing in the background, as shown in Figure 2-10.

FIGURE 2�10: Use the Debug History window to see what the interpreter is doing
in the background.

5. Press F5 or click Start Debugging. The application will end.

Visual Studio does provide you with access to many standard debugging features. For example,
you can place variables in the Watch windows and see their values as shown in Figure 2-11. You
also have access to the Call Stack and Output windows. The Immediate and Command windows
don’t work as you might expect them to, so you need to inspect variables and perform other
variable-related tasks using the Watch windows.

FIGURE 2�11: The Watch windows provide access to variable information.

Understanding the Use of Indentation and Capitalization in IronPython �X 31

UNDERSTANDING THE USE OF INDENTATION
AND CAPITALIZATION IN IRONPYTHON

Most application programming languages have rules that help the compiler or interpreter under-
stand what you mean. For example, when working with C, C++, Java, C#, and a number of other
languages, you use opening and closing braces to indicate the code that belongs within a structure
such as a function or loop. Without these opening and closing braces, the compiler or interpreter for
the target language would never be able to understand what you mean — these braces add structure
to your application code. Likewise, IronPython relies on rules, indentation and capitalization, to
help the interpreter understand your code.

The interpreter does help you with the indentation. The amount you indent a line doesn’t seem to
matter. Using tabs instead of spaces doesn’t seem to matter either, but using tabs will ensure that
you don’t run into problems seeing the indentation in code properly. Open a copy of IPY to follow
along with the discussion in this section. Try the following steps and you’ll discover how the inter-
preter helps you discover when to indent.

1. Type �H�d�b�Z�I�Z�m�i���2���»�=�Z�a�a�d�» and press Enter. You’ll see that the interpreter adds three
greater-than signs (>>>). The >>> is a primary prompt and tells you that you don’t need to
add any indentation.

2. Type �^�[���H�d�b�Z�I�Z�m�i���2�2���»�=�Z�a�a�d�»�/ and press Enter. Now you’ll see that the interpreter adds
three dots (�#�#�#) to the next line. The �#�#�# is the secondary prompt. It tells you that you’ve
entered a structure.

3. Type �e�g�^�c�i���H�d�b�Z�I�Z�m�i and press Enter. The interpreter displays an error message like the
one shown in Figure 2-12. The interpreter expected an indented block, but you didn’t pro-
vide any indentation, so the block failed.

FIGURE 2�12: Not indenting at a secondary prompt produces an error.

4. Repeat Step 2 again. Press Tab. Type �e�g�^�c�i���H�d�b�Z�I�Z�m�i and press Enter. This time, the entry
succeeds, as shown in Figure 2-13. Notice that the interpreter has displayed �#�#�# again so
that you can continue the block if desired. In fact, the block continues until you end it by
not indenting an entry.

32 �X CHAPTER 2 UNDERSTANDING THE IRONPYTHON BASICS

FIGURE 2�13: A properly indented entry succeeds.

5. Press Enter. The interpreter displays the word Hello. The interpreter will keep track of a
block until you �nish entering the last line of code. It then evaluates the block and performs
all of the tasks it contains.

Now that you have the basic idea about indentation, it’s time to consider capitalization. IronPython
is case sensitive. So, if you type:

�>�[���H�d�b�Z�I�Z�m�i���2�2���»�=�Z�a�a�d�¼�/

and press Enter, the code will fail. Figure 2-14 shows that the error information you receive isn’t
straightforward. All that the interpreter tells you is that the token it received is unexpected (a token
is a single word that the interpreter parses to discover what you want to do). The interpreter will
provide more precise information for some errors. Type:

�^�[���H�d�b�Z�I�Z�m�i���2�2���»�=�Z�a�a�d�¼�/
���������e�g�^�c�i���h�d�b�Z�i�Z�m�i

and press Enter. This time you get precise error information, as shown in Figure 2-15. The inter-
preter tells you that the error lies in line 2 of the block and that the error occurred because
�H�d�b�Z�I�Z�m�i isn’t de�ned.

FIGURE 2�14: Some error messages are ambiguous.

Considering Data Types in IronPython �X 33

FIGURE 2�15: The interpreter can provide precise error information for certain classes of error.

The point of this exercise is that the interpreter will catch indentation and capitalization errors. In
some cases, you might scratch your head for a while trying to �gure out what went wrong, but the
interpreter is accurate about locating such problems for you.

It doesn’t matter whether you use tabs or spaces for indentation. Try the example out using spaces
instead of a tab. You’ll discover that it works just �ne. However, using tabs provides uniform spacing
that is easier to see when you’re reading the code. If you’re not careful, you might use one space in
one location and four in the next, making it hard to tell when something really is indented.

CONSIDERING DATA TYPES IN IRONPYTHON

You might have noticed an appalling lack of data types in the example so far. When an application
needs a string variable, it simply assigns the string to a variable without ever specifying a data type.
Likewise, numbers are simply assigned to a variable; it doesn’t apparently matter whether the number
is an integer or a �oating point value. IronPython seemingly doesn’t care. For example, the code in
Listing 2-1 works just �ne.

LISTING 2�1: Working with variables of various types

�H�i�g�^�c�\���2���¹�=�Z�a�a�d�º
�>�c�i�Z�\�Z�g���2���&
�;�a�d�V�i���2���&�#�*

�e�g�^�c�i���¹�H�i�g�^�c�\���2�º�!���H�i�g�^�c�\�!���¹�Q�c�>�c�i�Z�\�Z�g���2�º�!���>�c�i�Z�\�Z�g�!���¹�Q�c�;�a�d�V�i���2�º�!���;�a�d�V�i
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

This example shows that you can create a string, integer, or �oating point value without actually
declaring them. IronPython does track the data type, but it does so in the background, without your
knowledge. When you try to print the values, IronPython automatically converts the values in the
background for you to standard strings. Figure 2-16 shows the output of this example.

You may also notice that this example makes use of escape characters, the �Q�c in this case. The �Q�c
simply tells IronPython to add a newline character to the output. In fact, if you’ve worked with C, C++,
C#, or any of a number of languages that rely on escape codes, you’ll �nd yourself right at home when
working with IronPython. Table 2-1 shows the common escape codes that IronPython recognizes.

34 �X CHAPTER 2 UNDERSTANDING THE IRONPYTHON BASICS

FIGURE 2�16: IronPython tracks data type and performs conversions automatically as needed.

TABLE 2�1: IronPython Common Escape Codes

ESCAPE CODE MEANING EXAMPLE

\‘ Single quote (‘) ‘\‘’

\“ Double quote (“) ‘\“‘

\\ Backslash (\) ‘\\‘

\a American Standard Code for Information
Interchange (ASCII) Bell (BEL) — produces a beep

 ‘\a’

\b ASCII Backspace (BS) ‘\b’

\f ASCII Formfeed (FF) ‘\f’

\n ASCII Linefeed (LF) ‘\n’

\ooo Character with octal value ooo. You may provide
up to three octal sequences, just as you would
when working with C.

‘\243’ produces the pound
monetary symbol

\r ASCII Carriage Return (CR) ‘\r’

\t ASCII Horizontal Tab (TAB) ‘\t’

\uxxxx Character with 16-bit hexidecimal value xxxx.
This escape sequence only works with Unicode
characters. You can combine character sequences
to obtain a particular complex character.

u’\u00F7’ produces the
division symbol

\Uxxxxxxxx Character with 32-bit hex value xxxxxxxx. This
escape sequence only works with Unicode char-
acters. Characters outside the Basic Multilingual
Plane (BMP) are encoded using a surrogate pair
when you compile Python for 16-bit use.

u’\U000000BD’
produces 1�2

\v ASCII Vertical Tab (VT) ‘\v’

\xhh Character with hex value hh. You must provide
precisely two values, as shown in the example.

‘\xA2’ produces the
cent sign

Considering Data Types in IronPython �X 35

The �g�V�l�T�^�c�e�j�i���� function is also new. If you’re working in Visual Studio, the console screen appears
and disappears so quickly in many cases that you can’t see the output of your code. Using the �g�V�l�T
�^�c�e�j�i���� function as shown simply adds a pause to your code. The string included with the function
call provides a prompt. You’ll discover more about input and output functionality as the book pro -
gresses. For right now, all you really need to know is that you can obtain a value from the console using
�g�V�l�T�^�c�e�j�i����.

Don’t get the idea that you won’t have any access to native data types. It’s possible to tell IronPython
to react in a certain way to your data. For example, you can use the �h�i�g���� and �g�Z�e�g���� functions to
interpret a string in multiple ways. In addition, you can speci�cally convert numbers to a speci�c type,
as shown in Listing 2-2.

LISTING 2�2: Specifying data types

�����8�g�Z�V�i�Z���V���h�i�g�^�c�\���k�V�g�^�V�W�a�Z�#
�H�i�g�^�c�\���2���»�=�Z�a�a�d���V�c�Y���<�d�d�Y�W�n�Z�¼

�����9�^�h�e�a�V�n���j�h�^�c�\���h�i�g�������V�c�Y���g�Z�e�g������
�e�g�^�c�i���»�6���h�i�g�^�c�\���V�c�Y���^�i�h���g�Z�e�g�Z�h�Z�c�i�V�i�^�d�c�#�¼
�e�g�^�c�i���»�h�i�g�����»�!���h�i�g���H�i�g�^�c�\����
�e�g�^�c�i���»�g�Z�e�g�����»�!���g�Z�e�g���H�i�g�^�c�\��

�����8�g�Z�V�i�Z���i�]�Z���c�j�b�Z�g�^�X���k�V�g�^�V�W�a�Z�#
�C�j�b�W�Z�g���2���*�#�&

�����9�^�h�e�a�V�n���i�]�Z���c�j�b�Z�g�^�X���i�n�e�Z�h�#��
�e�g�^�c�i���»�Q�c�I�]�Z���c�j�b�Z�g�^�X���Y�V�i�V���i�n�e�Z�h�#�¼
�e�g�^�c�i���»�^�c�i�¼�!���^�c�i���C�j�b�W�Z�g����
�e�g�^�c�i���»�a�d�c�\�¼�!���a�d�c�\���C�j�b�W�Z�g����
�e�g�^�c�i���»�[�a�d�V�i�¼�!���[�a�d�V�i���C�j�b�W�Z�g����
�e�g�^�c�i���»�X�d�b�e�a�Z�m�¼�!���X�d�b�e�a�Z�m���C�j�b�W�Z�g�!���(�#�*��

�����E�V�j�h�Z���i�]�Z���Y�^�h�e�a�V�n
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n�#�#�#�¼��

This example begins by showing you a comment. Yes, IronPython, like most computer languages,
supports comments and you should use them often.

The �rst part of the code works with a string. When you use the �h�i�g���� function, you tell IronPython
to take any data within the function, the expression, and convert it to a string. IronPython performs
this task for you automatically, but you can use the �h�i�g���� function for explicit conversion. The output
of the �h�i�g���� function is always in human-readable form. The �g�Z�e�g���� function returns a representa-
tion of the object you pass to it. In most cases, you use the �g�Z�e�g���� function to create output that the
interpreter understands. Figure 2-17 shows the difference in output between the two functions. Notice
that �g�Z�e�g���� outputs single quotes so you could pass this information directly to the interpreter.

The second part of the code works with a number. In this case, the number contains �oating point
data. However, you can convert it directly to an �^�c�i or �a�d�c�\ using the �^�c�i���� or �a�d�c�\���� functions.
The �[�a�d�V�i���� function will convert any numeric data into a �oating point number and you can
even create complex numbers using the �X�d�b�e�a�Z�m���� function. Figure 2-17 shows the output from the
numeric conversions as well. IronPython also supports base conversions using the �d�X�i���� and �]�Z�m����

36 �X CHAPTER 2 UNDERSTANDING THE IRONPYTHON BASICS

functions. In fact, you can see the entire list of built-in functions at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$
�a�^�W�g�V�g�n�$�[�j�c�X�i�^�d�c�h�#�]�i�b�a.

FIGURE 2�17: Use str() or repr() as appropriate to create output for your application.

You’ll see a wealth of data types as the book progresses. For example, Chapter 4 discusses arrays
and collections, Chapter 5 tells you all about objects, and Chapter 6 begins a discussion of working
with the standard library. There are a number of online resources for working with data types as
well. The two best sources — the ones used for this book — are at:

�° �]�i�i�e�/�$�$�l�l�l�#�e�n�i�]�d�c�#�d�g�\�$�Y�d�X�$�'�#�)�#�)�$�a�^�W�$�i�n�e�Z�h�#�]�i�b�a��

�]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�Y�V�i�V�i�n�e�Z�h�#�]�i�b�a���°

EXPLORING THE IRONPYTHON MODULES

In Chapter 1, you used the interpreter to work with IronPython. However, the moment you closed the
interpreter, everything you did was gone. Working directly with the interpreter means that your work
is temporary, which is �ne when you want to experiment, but not a good idea when you want to write
longer applications or save your work for posterity. Consequently, in this chapter, you’ve used Visual
Studio to work with Python �les that have a .py extension. These �les are known as modules.

Just like any other programming language, you’ll �nd it worthwhile to place some code in separate �les.
For example, you might create a math library that contains your favorite math functions. Rather than
copy those functions everywhere, you place them in a separate module and then import that module as
needed into an application. In order to make this setup work, you must know how to import modules
and use them within the application. The following sections discuss modules and how you work with
them in IronPython.

Considering Built-in and External Modules
IronPython uses the concept of built-in and external modules. A built-in module is one that you can
access all the time from within the interpreter. For example, the �h�i�g���� function is part of a built-in
module. All the code that the interpreter relies upon to perform basic tasks is part of a library of
modules that comes with IronPython. In fact, you can see these modules in the �Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q
�>�g�d�c�E�n�i�]�d�c���'�#�+�Q�A�^�W directory of your installation.

Exploring the IronPython Modules �X 37

An external module is one that you must load separately in order to use. When you create a �le of
functions you want to use within your application, y ou must load that module and then provide
access to it from within your application. The follo wing sections discuss both built-in and external
modules. However, you should consider these sections as an overview because you’ll use modules
throughout the book.

Working with the Built-in Modules
As previously mentioned, built-in modules are those that come with IronPython. There are actually two
levels of built-in modules: those that are available immediately and those that you have to import �rst.
This second group is part of IronPython, but you don’t always need them, so the interpreter asks that
you import them before using them. The following sections discuss both levels of built-in modules.

Considering the Immediately Available Modules
When you start the IronPython interpreter, you get a few functions immediately. These functions
are internal to the interpreter itself. To see these functions, you use the �Y�^�g���� function. If you type
�Y�^�g���� by itself, you see the top-level modules shown in Figure 2-18.

FIGURE 2�18: Use dir() to obtain a list of modules.

The three names, �T�T�W�j�^�a�i�^�c�h�T�T, �T�T�Y�d�X�T�T, and �T�T�c�V�b�Z�T�T, probably don’t tell you very much.
(Yes, those are double underscores before and after each module name.) However, all the functions
you’ve used so far in the book appear in these three modules. Type �Y�^�g���T�T�W�j�^�a�i�^�c�h�T�T�� and press
Enter. Suddenly, you begin seeing function names that you’ve used before, as shown in Figure 2-19.
For example, you’ll �nd the �Y�^�g���� function in the list, as well as �g�V�l�T�^�c�e�j�i����. These functions
help you create basic applications without importing anything else.

It turns out that �Y�^�g���� is an exceptionally helpful function. For example, if you want to discover
the methods and attributes that the �g�V�l�T�^�c�e�j�i object supports, then you type �Y�^�g���g�V�l�T�^�c�e�j�i��. Go
ahead; give it a try right now. You’ll �nd out that �g�V�l�T�^�c�e�j�i���� supports additional features such as
�T�T�[�d�g�b�V�i�T�T that we’ll use later in the book.

You may have noticed that the �T�T�Y�d�X�T�T attribute keeps popping up in the lists that you display. The �T�T
�Y�d�X�T�T attribute is also exceptionally important because it provides usage information about the object
or function in question. For example, you might want to �nd out more about �g�V�l�T�^�c�e�j�i�#�T�T�[�d�g�b�V�i�T�T
���� , so you’d type �e�g�^�c�i���g�V�l�T�^�c�e�j�i�#�T�T�[�d�g�b�V�i�T�T�#�T�T�Y�d�X�T�T and press Enter — the interpreter would
display the help information shown in Figure 2-20. In this case, you see that �T�T�[�d�g�b�V�i�T�T���� requires
an object that requires formatting and a string that tells how to format it.

38 �X CHAPTER 2 UNDERSTANDING THE IRONPYTHON BASICS

FIGURE 2�19: The __built-ins__ module contains a lot of functions you’ve already seen.

FIGURE 2�20: The __doc__ attribute tells you about the objects and functions IronPython supports.

Using sys.builtin_module_names
The modules loaded with the IronPython interpreter are enough to perform very basic tasks, such as
those found so far in the book. However, most applications aren’t that simple — you need additional
functionality to create something useful. One of the most commonly imported modules is sys. The
sys module contains a wealth of extremely useful objects that you’ll need to build most complex
applications. In order to use the sys module, you simply type �^�b�e�d�g�i���h�n�h and press Enter. If you use
the �Y�^�g���� function at this point, you’ll discover that you now have access to the sys module.

The sys module includes an interesting function, �h�n�h�#�W�j�^�a�i�^�c�T�b�d�Y�j�a�Z�T�c�V�b�Z�h. You can use this
particular function to obtain a list of all of the m odules that are built into the interpreter. These are
modules that load as part of the interpreter, instead of as separate �les. Try it now and you’ll see
output similar to that shown in Figure 2-21.

It’s important to note that these are module names and not object or function names. These modules
appear as part of the executable, rather than as separate �les. You’ll �nd them with the IronPython
interpreter source code. The �h�n�h�#�W�j�^�a�i�^�c�T�b�d�Y�j�a�Z�T�c�V�b�Z�h function is the only way to obtain this
information.

Exploring the IronPython Modules �X 39

FIGURE 2�21: Obtain a list of modules you can access using sys.builtin_module_names.

Using External Modules with IronPython
Any application can use external modules. In fact, your IronPython application can have any
number of external modules. You can use them as you would any other application. In order to use
an external module, you simply import it into the ma in module. Let’s begin this example with a
simple external module named MyStuff.py. Listing 2-3 shows the code for this module.

LISTING 2�3: Creating a simple external function

�����9�Z�[�^�c�Z���V���h�^�b�e�a�Z���[�j�c�X�i�^�d�c���i�]�V�i���i�V�`�Z�h
�����i�l�d���V�g�\�j�b�Z�c�i�h�#��
�Y�Z�[���H�V�n�=�Z�a�a�d���b�h�\�!���c�V�b�Z���/
���������¹�9�^�h�e�a�V�n�h���V���]�Z�a�a�d���b�Z�h�h�V�\�Z���"�3���H�V�n�=�Z�a�a�d���b�Z�h�h�V�\�Z�!���j�h�Z�g���c�V�b�Z���¹
���������e�g�^�c�i���b�h�\�!���c�V�b�Z
���������g�Z�i�j�g�c

The �H�V�n�=�Z�a�a�d���� function is quite simple. All it does is print the message and name onscreen —
nothing too complicated. However, it does serve as a useful example of how to work with external
modules. Notice the string in the �rst line. The __doc__ attribute uses this information. After
you import the module, you can type �e�g�^�c�i���B�n�H�i�j�[�[�#�H�V�n�=�Z�a�a�d�#�T�T�Y�d�X�T�T and press Enter to see
this message.

Before you can use �H�V�n�=�Z�a�a�d����, you must import it. The main module, External.py, imports the
external module as shown in Listing 2-4.

LISTING 2�4: Importing an external module and using it

�����>�b�e�d�g�i���i�]�Z���[�^�a�Z
�^�b�e�d�g�i���B�n�H�i�j�[�[

�����6�h�h�^�\�c���i�]�Z���[�j�c�X�i�^�d�c���i�d���V���a�d�X�V�a���k�V�g�^�V�W�a�Z�#

continues

40 �X CHAPTER 2 UNDERSTANDING THE IRONPYTHON BASICS

�H�V�n�=�Z�a�a�d���2���B�n�H�i�j�[�[�#�H�V�n�=�Z�a�a�d

�����E�Z�g�[�d�g�b���i�]�Z���i�V�h�`�#
�H�V�n�=�Z�a�a�d���»�=�Z�a�a�d�¼�!���»�<�Z�d�g�\�Z�¼��

�����E�V�j�h�Z���i�]�Z���Y�^�h�e�a�V�n
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n�#�#�#�¼��

The example begins by importing MyStuff. Placing the external module in the same directory as the
rest of the application is the best way to ensure the interpreter can �nd it. When you plan to use a
particular function relatively often, you can assign it to a local variable, as shown in the example.
This technique lets you call the function without using the module name, as would normally be
required. The code calls �H�V�n�=�Z�a�a�d������next. It then pauses so you can see the output in Visual
Studio. Figure 2-22 shows the results.

FIGURE 2�22: The output shows the result of calling the SayHello() function.

INTERACTING WITH THE IRONPYTHON ENVIRONMENT
At this point, you know how to create basic functions; determine which modules, objects, and
functions are available for use; and import external modules as needed. The last major basic task
you need to know about is interacting with the IronPython environment. Knowing this informa -
tion will help you create better applications. The follow ing sections provide an overview of many
environmental needs you’ll have when using IronPython.

Obtaining Version Information
You may �nd a need to programmatically process the version information for a particular IronPython
installation. Perhaps your application requires a newer version of IronPython. You can obtain this
information programmatically using the �h�n�h�#�k�Z�g�h�^�d�c attribute. The following code shows a simple
method for checking the IronPython version.

�^�b�e�d�g�i���h�n�h��
�e�g�^�c�i���h�n�h�#�k�Z�g�h�^�d�c

Of course, your concern may revolve around Windows. In this case, you can use
�h�n�h�#�\�Z�i�l�^�c�Y�d�l�h�k�Z�g�h�^�d�c���� to obtain the information you need. The output is an array
containing the following �ve values:

�° Major version��

Minor version���°

LISTING 2�4 (continued)

Using IronPython Constructively �X 41

Build���°

Platform���°

String describing installation (such as the current service pack)���°

Changing sys.path Values
The �h�n�h�#�e�V�i�] attribute is an array containing paths to various parts of IronPython. You can
use �h�n�h�#�e�V�i�] to locate or modify the path for IronPython. For example, if you type �e�g�^�c�i���h�n�h��
�#�e�V�i�]�P�%�R and press Enter, you obtain the path for the currently executing application. The standard
list provides these locations:

�° Executing application path (blank if the interpreter can’t determine the location)��

IronPython library directory���°

IronPython DLL directory���°

IronPython executable directory���°

IronPython site-packages directory���°

The interpreter always searches these paths, looking for any modules you want to import or other
resources your application requires. You can add or remove entries as necessary. Chapter 4 tells how
to work with arrays.

Obtaining Command Line Arguments
An application can receive command line arguments when it executes and then processes those
arguments, just as you would do with any other application. IronPython uses a similar approach
to that of C and C++. You use the �h�n�h�#�V�g�\�k array to obtain a list of the arguments passed at the
command line. For example, if you type �e�g�^�c�i���h�n�h�#�V�g�\�k�P�%�R, you see the �rst command line argu-
ment passed to the application. The �h�n�h�#�V�g�\�k array is blank when you start the interpreter without
specifying a module to execute. You’ll see command line processing examples as the book progresses
because this is a powerful feature.

If you’re getting the idea that loading the sys module provides all kinds of power
for your application, you’re right. You can see a complete list of the sys module
functions and attributes at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�h�n�h�#�]�i�b�a. Of
course, you’ll see additional examples as the book progresses.

USING IRONPYTHON CONSTRUCTIVELY

This is a chapter of basics. It’s the training-wheels chapter of the book because everyone needs to
start somewhere. However, this chapter didn’t start at the ground �oor — I assumed you already
know something about programming in general and .NET languages in particular, so this chapter

42 �X CHAPTER 2 UNDERSTANDING THE IRONPYTHON BASICS

didn’t have a lot of handholding in it. Consequently, you learned quite a bit about IronPython,
including how to indent and use capitalization, work w ith data types, use modules, create functions,
and control the environment. You’ll probably use the information in this chapter so much that you
won’t need the chapter after a while, but in the meantime keep a bookmark on it so you can refer to
it as you progress through the other introductory chapters.

It’s time to get a little work done with your IronPy thon setup. The �rst step is to get used to working
with Visual Studio and IronPython. You won’t �nd any fancy templates to do the work for you, so
make sure you practice creating some projects. In addition, put some simple projects together using the
techniques described in this chapter. The projects don’t have to do anything fancy; all you’re trying to
do is get the procedure for creating and managing projects down. Try creating a few applications that
use functions and exercise the various data types. Have a little fun with the �e�g�^�c�i���� function!

Chapter 3 builds on what you learned in this chapter. The next step is to work with some structured
programming elements such as loops. The pace really is going to pick up, so make sure you spend
the time required in each chapter to build your knowledge — otherwise, you’re going to get lost
pretty quickly. Even so, Chapter 3 is still a basics chapter (as are Chapters 4 and 5).

PART II
Using the IronPython Language

CHAPTER 3:� Implementing Structured Language Elements

CHAPTER 4:� Using Arrays and Collections

CHAPTER 5:� Interacting with Structures and Objects

3
Implementing Structured
Language Elements

WHAT’S IN THIS CHAPTER?

�° Creating applications that use multiple statements��

Developing applications that select between options���°

Working with loops in applications���°

Enumerating data within applications���°

Up to this point, the sample applications have focused on simple tasks that didn’t require much
structure. However, real applications solve complex problems that often require decision making
and loops. Performing these tasks requires structure within the application. The IronPython inter -
preter must know where the decision-making process and the loops begin and end. Consequently,
you must know how to add structure to your application .

This chapter discusses four levels of structure. First, you’ll see how to string a number of
statements together in a structured manner. You’ve already seen some examples of this kind
of structure in Chapters 1 and 2, but this chapter goes further. Second, you’ll see how to
create decision-making structures so that the application can choose between options. Third,
you’ll discover two looping mechanisms provided by IronPython. And fourth, you’ll see how
to enumerate data within applications — one of the more important structural techniques.

After you complete this chapter, you might be tempted to ask whether this is all that IronPython
provides in the way of structures. It’s true that IronPython does provide a few more advanced
structural elements not discussed in this chapter, such as the �l�^�i�] keyword. However, IronPython
doesn’t suffer from the complexity of other languages; it really does keep things as simple as they
appear in this chapter (and throughout the rest of the book).

46 �X CHAPTER 3 IMPLEMENTING STRUCTURED LANGUAGE ELEMENTS

STRINGING STATEMENTS TOGETHER

A basic IronPython application begins as a series of statements, as a procedure. These statements
perform some task at the command line or within a window, depending on which IronPython inter-
preter you use. This initial execution path is called the main function, even though there really isn’t
a function — simply a set of statements.

A lot of people feel uncomfortable with the open feel of IronPython’s main function so they create
something that looks a bit more like what they’re used to using, as shown in Listing 3-1.

LISTING 3�1: Creating an actual main() function

�^�b�e�d�g�i���h�n�h

�����8�g�Z�V�i�Z���V���b�V�^�c�������[�j�c�X�i�^�d�c���i�]�V�i���Z�k�Z�g�n�d�c�Z���X�V�c���g�Z�X�d�\�c�^�o�Z�#
�Y�Z�[���b�V�^�c���V�g�\�k���2���C�d�c�Z���/
������
�����������D�W�i�V�^�c���i�]�Z���X�d�b�b�V�c�Y���a�^�c�Z���V�g�\�j�b�Z�c�i�h�#
�������^�[���V�g�\�k���^�h���C�d�c�Z�/
�������������V�g�\�k���2���h�n�h�#�V�g�\�k

�����������9�^�h�e�a�V�n���i�]�Z���X�d�b�b�V�c�Y���a�^�c�Z���V�g�\�j�b�Z�c�i�h�#
�������[�d�g���I�]�^�h�6�g�\���^�c���V�g�\�k�/
�������������e�g�^�c�i���I�]�^�h�6�g�\

�����������E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�������g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

�����8�V�a�a���i�]�Z���b�V�^�c�������[�j�c�X�i�^�d�c�#
�^�[���T�T�c�V�b�Z�T�T���2�2���¹�T�T�b�V�^�c�T�T�¹�/
�������b�V�^�c����

This code shows a few interesting structural features of IronPython, which is why it’s such a good
example to start with. The code actually begins with a comparison of �T�T�c�V�b�Z�T�T to �¹�T�T�b�V�^�c�T�T�¹. It
turns out that �T�T�c�V�b�Z�T�T always contains the name of the current function. Using �T�T�c�V�b�Z�T�T makes
it possible for your application to detect its position in the execution loop.

Most programming languages provide an equivalent of the �b�V�^�c���� function
described in Listing 3-1. Even C# and Visual Basic have a �b�V�^�c����-type function
that creates the initial form. Whether you actually use a �b�V�^�c���� function in your
applications depends upon how you expect other developers to interact with
your code. The examples in this book don’t rely on a main function for the sake
of clarity, but you might want to consider including o ne when developers are
used to working with �b�V�^�c���� as part of their coding experience. Of course, you
can call �b�V�^�c���� anything you like to match the programming language that your
developers normally use.

Stringing Statements Together �X 47

In this case, the application calls �b�V�^�c����, the new main function. If you’ve spent any time
writing C or C++ code, this version of �b�V�^�c���� will look a little familiar. While it lacks �V�g�\�X
(the argument count), this �b�V�^�c���� does have an �V�g�\�k. However, the arguments can change
between the time the code starts the application and begins processing �b�V�^�c����, so you want
to set �V�g�\�k to �C�d�c�Z (essentially, nothing at all in IronPython), and obtain the command line
arguments from �h�n�h�#�V�g�\�k.

At this point, the code uses a �[�d�g loop to parse �V�g�\�k and displays its arguments on screen.
At a minimum, you get the name of the application. The arguments you see depend on their
order on the command line (or in Visual Studio). For example, if you specify �"�9 after the �le-
name, then you see it as part of the arguments. Figure 3-1 shows an example of what a series
of arguments might look like when using a command line of �C�Z�l�B�V�^�c�#�e�n���"�9���"�X���I�]�Z�h�Z���V�g�Z��
�V�g�\�j�b�Z�c�i�h. The code ends by pausing so you can see the output when using the Visual Studio
debugger.

FIGURE 3�1: Create a main() function and then process the command line arguments in it.

Notice the levels of indentation in this example. The levels of indentation show the structure of the
application. Unlike many application development languages, IronPython enforces indentation, with
the result that you can see the application structure quite easily.

In IronPython, structure comes in a number of forms, all of which are accessible to you as the
developer. Using structure properly makes your applications easier to understand. From the main
(and any other) function, you can use the following structural elements:

�° Import external �les��

Call other functions���°

Use decision-making or loop structures���°

Interact with objects���°

Chapter 5 demonstrates IronPython objects in detail. For now, you need to consider that IronPython
uses many objects that don’t appear as objects at �rst. For example, later in this chapter you’ll discover
that the common string actually provides a number of methods you can use to modify its content. You’ll
encounter more objects as the book progresses. For now, focus on the basic structure that IronPython
provides so you don’t get lost when creating your own applications.

48 �X CHAPTER 3 IMPLEMENTING STRUCTURED LANGUAGE ELEMENTS

SELECTING BETWEEN OPTIONS

Decision making is an essential part of most applications. IronPython doesn’t provide the wide range of
decision-making options that other languages do. In fact, you have just one decision-making structure:
the �^�[statement. Fortunately, the �^�[statement takes three forms that meet every possible programming
need, even when using the �^�[statement isn’t quite as elegant as other possibilities, such as
�H�Z�a�Z�X�i�#�#�#�8�V�h�Z. The following sections describe the three forms of the �^�[statement:

�^�[���°

�° �^�[�#�#�#�Z�a�h�Z��

�^�[�#�#�#�Z�a�^�[�#�#�#�Z�a�h�Z���°

Performing a Simple Decision Using if
The simplest kind of decision is one where you look for a particular value or range of values and
then perform a task when you �nd what you’re looking for. For example, you might expect the user
to input a certain value and then test for that value in your application, as shown in Listing 3-2.
Like every other computer language on the planet, the expression provided for an IronPython �^�[
statement is a Boolean value of some type.

LISTING 3�2: Making a simple decision

�����9�Z�[�^�c�Z���V�c���^�c�e�j�i���k�V�g�^�V�W�a�Z�#
�6�c�h�l�Z�g���2���g�V�l�T�^�c�e�j�i���»�H�V�n���]�Z�a�a�d�����N�$�C���4�¼��

�����8�]�Z�X�`���i�]�Z���k�V�a�j�Z���d�[���6�c�h�l�Z�g�#
�^�[���6�c�h�l�Z�g�#�j�e�e�Z�g�������2�2���»�N�¼�/

�����������E�Z�g�[�d�g�b���h�d�b�Z���i�V�h�`�h���W�V�h�Z�Y���d�c���V���e�d�h�^�i�^�k�Z���g�Z�h�e�d�c�h�Z�#
�������e�g�^�c�i���»�N�d�j���i�n�e�Z�Y�/�¼�!���6�c�h�l�Z�g
�������e�g�^�c�i���»�H�d���=�Z�a�a�d���¼

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code for this example retrieves some input from the user and reacts to it. You’ve probably created
many applications that do precisely the same thing. In this case, the application uses �g�V�l�T�^�c�e�j�i���� to
obtain the input from the user. You can see how the prompt looks in Figure 3-2.

FIGURE 3�2: Use the various versions of if to make decisions.

Selecting Between Options �X 49

At this point, the code creates the �^�[statement. Notice that the �^�[statement ends with a colon
(:) just as all IronPython statements do. Everything that’s indented after the �^�[statement is part
of the structure. There aren’t any opening or closing statements, just the colon and the statements
you want to execute (making IronPython one of the least cluttered languages available). Figure 3-2
shows the output from the application when the user provides either a y or Y as input.

One of the most common errors that developers who are familiar with other
languages make when working with IronPython is to forget to include the colon
after a structural element. Unfortunately, the error message doesn’t always tell
you that the colon is missing — it might point you in some completely different
direction. If you get an error message that doesn’t make sense, you might want
to check for a missing colon in your code. In fact, have someone else look for
the missing colon when you can’t �nd it — you’ll be amazed at how often a little
colon causes you all kinds of woe.

One of the interesting features of this example is that �6�c�h�l�Z�g is actually an object. You can’t
declare it as an object or any data type at all. In fact, the code simply assigns a string to �6�c�h�l�Z�g
and everything happens in the background. You can �nd a whole list of string methods at �]�i�i�e�/�$�$
�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�h�i�Y�i�n�e�Z�h�#�]�i�b�a���h�i�g�^�c�\�"�b�Z�i�]�d�Y�h. This book shows how to use a
number of these methods. For now, just keep in mind that IronPython tends to hide complexity in
ways that other languages don’t.

Choosing between Two Options Using if . . . else
Sometimes you need to do more than simply decide to do something based on the output of a
Boolean expression — you also need to do something if the expression is false. Most programming
languages handle this using some form of �^�[�#�#�#�Z�a�h�Z structure, which is precisely what IronPython
does. Listing 3-3 adds to the example shown in Listing 3-2 by doing something when the reader fails
to provide the expected input.

LISTING 3�3: Making an either/or decision

�����9�Z�[�^�c�Z���V�c���^�c�e�j�i���k�V�g�^�V�W�a�Z�#
�6�c�h�l�Z�g���2���g�V�l�T�^�c�e�j�i���»�H�V�n���]�Z�a�a�d�����N�$�C���4�¼��

�����8�]�Z�X�`���i�]�Z���k�V�a�j�Z���d�[���6�c�h�l�Z�g�#
�^�[���6�c�h�l�Z�g�#�j�e�e�Z�g�������2�2���»�N�¼�/

�����������E�Z�g�[�d�g�b���h�d�b�Z���i�V�h�`�h���W�V�h�Z�Y���d�c���V���e�d�h�^�i�^�k�Z���g�Z�h�e�d�c�h�Z�#
�������e�g�^�c�i���»�N�d�j���i�n�e�Z�Y�/�¼�!���6�c�h�l�Z�g
�������e�g�^�c�i���»�H�d���=�Z�a�a�d���¼

continues

50 �X CHAPTER 3 IMPLEMENTING STRUCTURED LANGUAGE ELEMENTS

�����I�]�Z���j�h�Z�g���b�j�h�i���]�V�k�Z���i�n�e�Z�Y���h�d�b�Z�i�]�^�c�\���Z�a�h�Z�#
�Z�a�h�Z�/
������
�����������E�Z�g�[�d�g�b���h�d�b�Z���i�V�h�`�h���W�V�h�Z�Y���d�c���V���Y�^�[�[�Z�g�Z�c�i���g�Z�h�e�d�c�h�Z�#
�������e�g�^�c�i���»�H�d�g�g�n�!���n�d�j���i�n�e�Z�Y�/�¼�!���6�c�h�l�Z�g�!���»�V�c�Y���c�d�i���N�#�¼

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The big thing to notice in this example is that you outdent the �Z�a�h�Z clause and follow it with a
colon. Every indented statement after the �Z�a�h�Z clause is part of the �Z�a�h�Z portion of the structure.
The output from this example is similar to the output shown in Figure 3-2. The application asks
a question and then outputs something based on the response the user provides.

Creating a Decision Tree Using if . . . elif . . . else
Many programming languages provide a special structure to handle complex decisions. IronPython
keeps things simple by relying on a special form of the �^�[statement, the �^�[�#�#�#�Z�a�^�[�#�#�#�Z�a�h�Z state-
ment. As you might expect, each �Z�a�^�[clause includes a Boolean expression. In many respects, the �Z�a�^�[
clauses act as the case clauses for the �H�Z�a�Z�X�i�#�#�#�8�V�h�Z structure. Of course, you gain some �exibility
because the �Z�a�^�[clause need not match a particular variable. The �Z�a�h�Z clause acts like the default
clause for the �H�Z�a�Z�X�i�#�#�#�8�V�h�Z structure. Listing 3-4 shows how to work with the �Z�a�^�[clause.

LISTING 3�4: Making complex decisions

�����9�Z�[�^�c�Z���V�c���^�c�e�j�i���k�V�g�^�V�W�a�Z�#
�6�c�h�l�Z�g���2���g�V�l�T�^�c�e�j�i���»�H�V�n���]�Z�a�a�d�����N�$�C���4�¼��

�����8�]�Z�X�`���i�]�Z���k�V�a�j�Z���d�[���6�c�h�l�Z�g�#
�^�[���6�c�h�l�Z�g�#�j�e�e�Z�g�������2�2���»�N�¼�/

�����������E�Z�g�[�d�g�b���h�d�b�Z���i�V�h�`�h���W�V�h�Z�Y���d�c���V���e�d�h�^�i�^�k�Z���g�Z�h�e�d�c�h�Z�#
�������e�g�^�c�i���»�N�d�j���i�n�e�Z�Y�/�¼�!���6�c�h�l�Z�g
�������e�g�^�c�i���»�H�d���=�Z�a�a�d���¼

�����8�]�Z�X�`���i�d���h�Z�Z���^�[���i�]�Z���j�h�Z�g���Z�c�i�Z�g�Z�Y���C
�Z�a�^�[���6�c�h�l�Z�g�#�j�e�e�Z�g�������2�2���»�C�¼�/

�����������<�^�k�Z���V���g�Z�e�d�c�h�Z���[�d�g���V���c�Z�\�V�i�^�k�Z���V�c�h�l�Z�g�#
�������e�g�^�c�i���»�H�d�g�g�n���i�d���]�Z�V�g���n�d�j���Y�d�c�Q�»�i���l�V�c�i���i�d���h�V�n���]�Z�a�a�d�#�¼

�����I�]�Z���j�h�Z�g���b�j�h�i���]�V�k�Z���i�n�e�Z�Y���h�d�b�Z�i�]�^�c�\���Z�a�h�Z�#
�Z�a�h�Z�/
������
�����������E�Z�g�[�d�g�b���h�d�b�Z���i�V�h�`�h���W�V�h�Z�Y���d�c���V���Y�^�[�[�Z�g�Z�c�i���g�Z�h�e�d�c�h�Z�#
�������e�g�^�c�i���»�N�d�j���c�Z�Z�Y���i�d���i�n�e�Z���N���d�g���C���¼

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

LISTING 3�3 (continued)

Creating Loops �X 51

As you can see from the code, the �Z�a�^�[clause looks very much like the �^�[clause. The only differ-
ence is that the �Z�a�^�[clause must follow the �^�[clause. You can include as many �Z�a�^�[clauses as
required to perform a particular task. The output fro m this example is similar to that shown in
Figure 3-2.

CREATING LOOPS

Computers are far better at repetitive tasks than humans. A computer will perform the same task as
long as you want it to. In fact, your computer is currently performing tasks repetitively, even if you
didn’t start those tasks. For example, you probably have a �rewall that’s looking for terrifying inputs
from outside sources, using some type of repetitive procedure. Applications handle these repetitive
tasks using loops. IronPython provides two kinds of loops as described in the following sections:

�° �[�d�g�#�#�#�^�c��

�l�]�^�a�Z���°

Using for . . . in
The �[�d�g�#�#�#�^�c loop is the best way to process lists of things in most cases. You’ll �nd the �[�d�g�#�#�#�^�c
loop used with both arrays and collections in many situations (rather than the �l�]�^�a�Z loop, which can
appear somewhat clumsy and can perform poorly for list processing). Listing 3-5 shows a �[�d�g�#�#�#�^�c
loop in action.

LISTING 3�5: Looping through data using for...in

�����8�g�Z�V�i�Z���V�c���V�g�g�V�n���d�[���h�i�g�^�c�\�h�#
�B�n�A�^�h�i���2���»�=�Z�a�a�d�¼�!���»�<�d�d�Y�W�n�Z�¼�!���»�G�Z�Y�¼�!���»�<�g�Z�Z�c�¼

�����E�g�d�X�Z�h�h���i�]�Z���V�g�g�V�n�#��
�[�d�g���I�]�^�h�H�i�g�^�c�\���^�c���B�n�A�^�h�i�/

�����������9�^�h�e�a�V�n���i�]�Z���^�c�Y�^�k�^�Y�j�V�a���k�V�a�j�Z�h�#
�������e�g�^�c�i���»�I�]�Z���X�j�g�g�Z�c�i���k�V�a�j�Z���^�h�/�¼�!���I�]�^�h�H�i�g�^�c�\

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins by creating an array. This is a very simple array, but it demonstrates just how
easy IronPython makes certain programming tasks. You don’t have to worry about doing any-
thing odd when creating the array. In addition, you’ll � nd that arrays, like strings, come with a
wealth of methods. For example, if you want to add a new member to an array, you simply call
on the �V�e�e�Z�c�Y���� method to perform the task. The site at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�Y�Z�k�$�(�#�%�$
�a�^�W�g�V�g�n�$�V�g�g�V�n�#�]�i�b�a describes array methods and types in greater detail. You’ll see many of
these array methods demonstrated in Chapter 4.

52 �X CHAPTER 3 IMPLEMENTING STRUCTURED LANGUAGE ELEMENTS

After the code creates the array, it uses the �[�d�g�#�#�#�^�c loop to process it. The interpreter automati-
cally calls the loop code once for each of the values in the array. The individual array values appear in
�I�]�^�h�H�i�g�^�c�\. In this case, the code merely prints out the values of �I�]�^�h�H�i�g�^�c�\, as shown in Figure 3-3.

FIGURE 3�3: The for loop is exceptionally e�cient at list processing.

The �[�d�g�#�#�#�^�c loop always has two parts: a target and an expression list. The target can be another
expression list, in which case you can nest �[�d�g�#�#�#�^�c loops to process the target. It’s possible to dig
down into just about any hierarchy of objects using a �[�d�g�#�#�#�^�c loop.

Using while
The �l�]�^�a�Z loop might not be quite as pretty as the �[�d�g�#�#�#�^�c loop, but it serves an important pur-
pose. The �[�d�g�#�#�#�^�c loop works with a �xed number of elements. The �l�]�^�a�Z loop can work with
an arbitrary number of elements, or can remain running until told to stop. You use a �l�]�^�a�Z loop in
situations where you don’t know how many times a loop will occur during design time. Of course,
this means that you must give the �l�]�^�a�Z loop a positive method of ending, as shown in Listing 3-6.

LISTING 3�6: Looping through data using while

�����8�g�Z�V�i�Z���V�c���V�g�g�V�n���d�[���h�i�g�^�c�\�h�#
�B�n�A�^�h�i���2���»�=�Z�a�a�d�¼�!���»�<�d�d�Y�W�n�Z�¼�!���»�G�Z�Y�¼�!���»�<�g�Z�Z�c�¼

�����9�Z�[�^�c�Z���V���X�d�j�c�i�Z�g���k�V�g�^�V�W�a�Z�#
�8�d�j�c�i�Z�g���2���%

�����9�Z�[�^�c�Z���i�]�Z���X�j�g�g�Z�c�i���h�i�g�^�c�\�#
�I�]�^�h�H�i�g�^�c�\���2���»�¼

�����E�g�d�X�Z�h�h���i�]�Z���V�g�g�V�n�#��
�l�]�^�a�Z���I�]�^�h�H�i�g�^�c�\�����2���»�<�g�Z�Z�c�¼�/

�����������<�Z�i���i�]�Z���c�Z�m�i���k�V�a�j�Z�#
�������I�]�^�h�H�i�g�^�c�\���2���B�n�A�^�h�i�P�8�d�j�c�i�Z�g�R

�����������9�^�h�e�a�V�n���i�]�Z���^�c�Y�^�k�^�Y�j�V�a���k�V�a�j�Z�h�#
�������e�g�^�c�i���»�I�]�Z���X�j�g�g�Z�c�i���k�V�a�j�Z���^�h�/�¼�!���I�]�^�h�H�i�g�^�c�\

�����������J�e�Y�V�i�Z���i�]�Z���X�d�j�c�i�Z�g�#
�������8�d�j�c�i�Z�g� �2�&
������
�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

Performing Enumerations �X 53

This example begins with the same array as shown in Listing 3-5. In order to make the �l�]�^�a�Z loop
work, the code must de�ne �8�d�j�c�i�Z�g, which keeps track of the current array element. The code also
de�nes �I�]�^�h�H�i�g�^�c�\, which holds the current array value. As you can already see, the �l�]�^�a�Z loop
isn’t nearly as automatic as the �[�d�g�#�#�#�^�c loop, but it does provide considerable �exibility.

In this case, the �l�]�^�a�Z loop continues to run until �I�]�^�h�H�i�g�^�c�\ is equal to �»�<�g�Z�Z�c�», the last value in
the array. As always, the �l�]�^�a�Z statement ends with a colon and every indented statement after it is
part of the �l�]�^�a�Z structure.

The code relies on �8�d�j�c�i�Z�g to access the individual array elements. You simply provide Counter as an
index into �B�n�A�^�h�i using �B�n�A�^�h�i�P�8�d�j�c�i�Z�g�R. The code then prints out the value found in �I�]�^�h�H�i�g�^�c�\.
Finally, the code updates Counter. Notice that IronPython supports the use of the � �2 shortcut. The out-
put from this application appears in Figure 3-4.

FIGURE 3�4: Use the while loop when you need to perform tasks an indeterminate number of times.

You might have noticed that IronPython doesn’t appear to support the vast array
of loop statement subsets found in other languages. For example, there isn’t any
version of the �l�]�^�a�Z statement that tests for the condition after executing the code
the �rst time. In general, this apparent limitation actu ally makes things consider-
ably easier. You simply need to write your code in such a way as to accommodate
the “test �rst” orientation of the IronPython �l�]�^�a�Z loop.

PERFORMING ENUMERATIONS

You’re going to encounter a lot of enumerations before the book is over because IronPython uses them
by the gross. Essentially, enumerating data means to obtain the individual elements from a collection
or array and do something with them. One of the more common collections that you’ll enumerate is
�h�n�h�#�e�V�i�]. Listing 3-7 shows a simple example of how this process might work.

LISTING 3�7: Using an enumeration

�^�b�e�d�g�i���h�n�h��

�����:�c�j�b�Z�g�V�i�Z���i�]�Z���e�V�i�]���k�V�g�^�V�W�a�Z�h�#

continues

54 �X CHAPTER 3 IMPLEMENTING STRUCTURED LANGUAGE ELEMENTS

�[�d�g���I�]�Z�E�V�i�]���^�c���h�n�h�#�e�V�i�]�/
�������e�g�^�c�i���I�]�Z�E�V�i�]

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

As you can see, the �[�d�g�#�#�#�^�c loop comes in very handy for enumerating data. Depending on your
con�guration, you might not see all of the path info rmation shown in Figure 3-5, but your output
will look similar. The “Changing sys.path Values” section of Chapter 2 tells you more about each of
the elements displayed in Figure 3-5.

FIGURE 3�5: You can �nd many uses for enumerations in IronPython.

USING IRONPYTHON CONSTRUCTIVELY

This chapter has demonstrated the essential IronPython structures, including decision making and
looping. At �rst you’ll wonder whether you can get t he task done with these simple setups. For example,
IronPython lacks a �8�V�h�Z�#�#�#�H�Z�a�Z�X�i structure. However, you can duplicate this kind of structure using a
simple �^�[�#�#�#�Z�a�^�[�#�#�#�Z�a�h�Z data structure, so the complication of using �8�V�h�Z�#�#�#�H�Z�a�Z�X�i really isn’t nec-
essary. When you think about IronPython, think simple, but elegant.

If you’ve spent much time programming, you probably don’t need a lot of practice creating structures.
However, it’s important to spend some time reviewing the examples in this chapter because IronPython
can really throw a curve at you if you think it work s like the other languages you use. Try creating a
few applications that have multiple levels to them so that you can see how indentation works within
IronPython.

Chapter 4 continues with more IronPython basics. In that chapter, you discover how to work with
arrays and collections. IronPython uses a host of arrays internally, so it’s important to pay particu -
lar attention to that part of the chapter. Just consider the number of times that arrays appeared in
Chapter 2 as the output of information. You’ll combi ne the information in Chapter 4 with the infor -
mation in this chapter to process arrays and collections.

LISTING 3�7 (continued)

Using Arrays and Collections

WHAT’S IN THIS CHAPTER?

�° Using arrays for simple data storage��

Using collections for complex data storage���°

Importing and using dictionaries for advanced data management���°

When you think about it, arrays, collections, dictionaries, and other similar storage structures
provide a means to manage related items. Yes, you can stick any data in the data structure,
but normally, the data elements are going to have some kind of relation. Arrays and other data
management structures are like apartment mailboxes, with an individual mailbox to hold each
individual data element.

The difference between data storage structures comes in the complexity of the data they can
hold and the data management functionality they provide. An array (the term is used generi-
cally here to mean any ordered storage mechanism that follows the rules of arrays) is an older,
simplistic storage mechanism that still sees plenty of use precisely because it’s so simple. If you
only need to hold a list of items, there isn’t a good reason to use a more complex data storage
mechanism.

As applications increased in complexity, developers also encountered data with greater storage
needs. Collections and dictionaries are just two of many storage mechanisms designed to meet
these needs (and the only two that IronPython supports directly). Collections introduce the idea
of enumerated access, while dictionaries provide an easier method than numbering to locate a
particular data element. You’ll discover that these two storage mechanisms provide other func-
tionality as well.

This chapter examines data storage technology for memory. You’ll see how IronPython imple-
ments arrays, collections, and dictionaries. The examples will help you better understand how
to manage and manipulate objects in memory using IronPython.

4

56 �X CHAPTER 4 USING ARRAYS AND COLLECTIONS

WORKING WITH TUPLES, LISTS, AND ARRAYS

Arrays are the backbone of in-memory data storage for most programming languages. At a basic
level, an array is simply a sequence of memory entries. These entries normally reside one after
another in physical memory and you access them using an index — a numeric value. Arrays have
been around about as long as computers have existed. Even early assembler programmers used
array-like structures in their programming.

Like every other language, IronPython provides arrays for you to use. However, IronPython has two
native structures and several external (imported) structures that can qualify as array-like structures.
In fact, unless there’s a speci�c reason to state otherwise, this book will simply use the term array
to refer to them all. However, it’s important to under stand that there are subtle differences between
these array-like structures, so the following sections discuss the three common array-like structures
you’ll �nd in IronPython.

Understanding Tuples, Lists, and Arrays
As with many languages, IronPython has its own set of odd terminology. The array type used in
Chapter 3 is more precisely called a tuple. Any time you see a list of items separated by commas
such as this:

�B�n�I�j�e�a�Z���2���»�=�Z�a�a�d�¼�!���»�<�d�d�Y�W�n�Z�¼�!���»�G�Z�Y�¼�!���»�<�g�Z�Z�c�¼

the precise terminology for the structure is a �i�j�e�a�Z. IronPython also supports lists natively. Listing 4-1
shows a simple application that creates a �a�^�h�i and then displays its content. Figure 4-1 shows the out-
put from this example.

LISTING 4�1: Creating and using a list

�����9�Z�[�^�c�Z���V���a�^�h�i��
�B�n�A�^�h�i���2���P�»�=�Z�a�a�d�¼�!���»�<�d�d�Y�W�n�Z�¼�!���»�G�Z�Y�¼�!���»�<�g�Z�Z�c�¼�R

�����9�^�h�e�a�V�n���Z�V�X�]���a�^�h�i���Z�a�Z�b�Z�c�i�#
�[�d�g���I�]�Z�H�i�g�^�c�\���^�c���B�n�A�^�h�i�/
�������e�g�^�c�i���I�]�Z�H�i�g�^�c�\

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

FIGURE 4�1: Lists produce the same output as a tuple given the same input.

Working with Tuples, Lists, and Arrays �X 57

The main difference between a �i�j�e�a�Z and a �a�^�h�i is that you can change the content of a �a�^�h�i, but you
can’t change the content of a �i�j�e�a�Z. If you create a �i�j�e�a�Z and try to change one of its elements, you
get an error message. Listing 4-2 shows what happens when you try to change a �i�j�e�a�Z and a �a�^�h�i.

LISTING 4�2: Changing tuples and lists

�����8�g�Z�V�i�Z���i�]�Z���i�j�e�a�Z��
�B�n�I�j�e�a�Z���2���»�G�Z�Y�¼�!���»�<�g�Z�Z�c�¼�!���»�7�a�j�Z�¼�!���»�N�Z�a�a�d�l�¼

�����8�g�Z�V�i�Z���i�]�Z���a�^�h�i��
�B�n�A�^�h�i���2���P�»�G�Z�Y�¼�!���»�<�g�Z�Z�c�¼�!���»�7�a�j�Z�¼�!���»�N�Z�a�a�d�l�¼�R

�����6�i�i�Z�b�e�i���i�d���X�]�V�c�\�Z���i�]�Z���i�j�e�a�Z�!���l�]�^�X�]���l�^�a�a���g�Z�h�j�a�i���^�c���V�c���Z�g�g�d�g�#
�i�g�n�/
�������B�n�I�j�e�a�Z�P�&�R���2���»�D�g�V�c�\�Z�¼
�Z�m�X�Z�e�i���I�n�e�Z�:�g�g�d�g�/
�������e�g�^�c�i���»�8�d�j�a�Y�c�Q�»�i���X�]�V�c�\�Z���i�]�Z���i�j�e�a�Z�#�Q�c�¼

�����6�i�i�Z�b�e�i���i�d���X�]�V�c�\�Z���i�]�Z���a�^�h�i�#
�i�g�n�/
�������B�n�A�^�h�i�P�&�R���2���»�D�g�V�c�\�Z�¼
�Z�m�X�Z�e�i���I�n�e�Z�:�g�g�d�g�/
�������e�g�^�c�i���»�8�d�j�a�Y�c�Q�»�i���X�]�V�c�\�Z���i�]�Z���a�^�h�i�#�Q�c�¼

�����K�Z�g�^�[�n���i�]�V�i���i�]�Z���X�]�V�c�\�Z���l�d�g�`�Z�Y�#
�e�g�^�c�i���»�9�^�h�e�a�V�n�^�c�\���i�]�Z���a�^�h�i���X�d�c�i�Z�c�i�#�¼
�[�d�g���I�]�Z�H�i�g�^�c�\���^�c���B�n�A�^�h�i�/
�������e�g�^�c�i���I�]�Z�H�i�g�^�c�\

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The example attempts to change both a �i�j�e�a�Z and a �a�^�h�i. However, when the example tries to
change the �i�j�e�a�Z, it generates an exception, as shown in Figure 4-2. Notice how the code uses a
�i�g�n�#�#�#�Z�m�X�Z�e�i structure to catch the exception and display an error message onscreen. The �Z�m�X�Z�e�i
clause can stand alone, but it’s better to provide a particular kind of exception, which is �I�n�e�Z�:�g�g�d�g
in this case. The code does successfully modify the �a�^�h�i and displays the results in Figure 4-2.

FIGURE 4�2: Lists are mutable; tuples aren’t.

58 �X CHAPTER 4 USING ARRAYS AND COLLECTIONS

�I�j�e�a�Z�h and �a�^�h�is are more similar than different. For example, it’s possible to add elements to a
�i�j�e�a�Z, just as you can to a �a�^�h�i. In fact, except for the fact that �i�j�e�a�Z�h are immutable (not change-
able) and lists are mutable (you can change them), both structures provide precisely the same features.
Both of these structures are also roughly equivalent to arrays in other languages and you can call them
arrays without provoking too many odd reactions — at least, not from normal people.

Of course, you’re wondering now why Python and IronPython support two array-like structures.
�I�j�e�a�Z�h come in handy for a few reasons. First, because �i�j�e�a�Z�h can’t change, IronPython can imple-
ment them more ef�ciently, which means that using �i�j�e�a�Z�h is faster. Second, �i�j�e�a�Z�h are less suscep-
tible to outside in�uences such as viruses. Because you can’t change the content of a �i�j�e�a�Z, you also
can’t �ll it with things that the application can’t us e. Third, �i�j�e�a�Z�h are marginally faster to type.

The object that IronPython uses as an �V�g�g�V�n really isn’t an �V�g�g�V�n in the common sense of the
word. It’s more along the lines of a byte �V�g�g�V�n for most programming languages. However,
the IronPython �V�g�g�V�n really doesn’t �t that description either. Rather, you tell IronPython w hat
kind of sequence you want to store and then provide the storage values. Table 4-1 provides a list
of the �V�g�g�V�n element types.

TABLE 4�1: IronPython Array Data Types

DESIGNATOR TYPE SIZE

�º�W�» Signed char (byte) 1

‘B’ Unsigned char (byte) 1

‘c’ Character 1

‘d’ Floating point (double) 8

‘f’ Floating point (single) 4

‘h’ Signed short 2

‘H’ Unsigned short 2

‘i’ Signed integer 2

‘I’ (capital eye) Unsigned integer 2

‘l’ (lowercase el) Signed long 4

‘L’ Unsigned long 4

As you can see from the table, an �V�g�g�V�n in IronPython doesn’t include any concept of a string. Strings
in IronPython are considered a kind of sequence. To create an �V�g�g�V�n of strings in IronPython, you’d
need to create an �V�g�g�V�n of character arrays. In short, the concept of an �V�g�g�V�n is somewhat primitive
in IronPython.

�6�g�g�V�n�h also differ from other array-like structures in IronPython in that you mu st provide a type
as part of the �V�g�g�V�n de�nition. Consequently, if you create a character �V�g�g�V�n, you can’t suddenly

Working with Tuples, Lists, and Arrays �X 59

decide to use it to store integer values. You must also import the �V�g�g�V�n module to use IronPython
�V�g�g�V�n�h, because �V�g�g�V�n�h aren’t part of the initial interpreter con�guration. Listing 4-3 shows an
example of an �V�g�g�V�n in use.

LISTING 4�3: Working with an actual array in IronPython

�^�b�e�d�g�i���V�g�g�V�n��

�����Y�Z�[�^�c�Z���V���a�d�X�V�a���k�Z�g�h�^�d�c���d�[���V�g�g�V�n�#
�V�g�g�V�n���2���V�g�g�V�n�#�V�g�g�V�n��

�����8�g�Z�V�i�Z���V���X�]�V�g�V�X�i�Z�g���V�g�g�V�n���V�c�Y���V�h�h�^�\�c���^�i���h�d�b�Z���k�V�a�j�Z�h�#
�B�n�6�g�g�V�n���2���V�g�g�V�n���»�X�¼�!���»�=�Z�a�a�d���L�d�g�a�Y�¼��

�����9�^�h�e�a�V�n���Z�V�X�]���a�^�h�i���Z�a�Z�b�Z�c�i�#
�[�d�g���I�]�Z�8�]�V�g�V�X�i�Z�g���^�c���B�n�6�g�g�V�n�/
�������e�g�^�c�i���I�]�Z�8�]�V�g�V�X�i�Z�g��

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The example begins by importing the �V�g�g�V�n module and then assigning the �V�g�g�V�n�#�V�g�g�V�n method to
a local variable. You’ve seen this kind of code before with the �h�n�h module in previous chapters.

At this point, the code creates a character �V�g�g�V�n. Now it may appear that this �V�g�g�V�n contains a
string, but what it really contains are individual characters. When you output the �V�g�g�V�n, you see the
individual characters, as shown in Figure 4-3. Consequently, most developers of other languages are
going to view the IronPython �V�g�g�V�n as a sort of byte �V�g�g�V�n.

FIGURE 4�3: Arrays handle sequences of values.

60 �X CHAPTER 4 USING ARRAYS AND COLLECTIONS

After reading this section, you might �nd yourself a bit confused, especially if you’ve worked with
Visual Basic.NET or C# in the past where �V�g�g�V�n�h really are �V�g�g�V�n�h. What you’ll want most often
is a �a�^�h�i in IronPython and you’ll likely use a �i�j�e�a�Z in some situations as well. When you think
�V�g�g�V�n for IronPython, think about these two kinds of objects. On the other hand, when you really
do need to work with individual bits of data, then thi nk about the IronPython �V�g�g�V�n because it does
work with those individual sequences.

Creating and Accessing Single- Dimension Arrays
Single-dimension arrays are actually a simple list of objects. One item appears after another in mem-
ory and you access the items using the numeric value that applies to that particular element. Single-
dimension arrays commonly appear in applications because many items �t within the �a�^�h�i category.
You can create arrays in a number of ways. For example, you can create a blank �a�^�h�i using the fol-
lowing technique

�B�n�A�^�h�i���2���P�R

If you want to �ll an array with data as part of the creation process, you can simply provide a list of
values. For example, this code creates an array with four values.

�B�n�A�^�h�i���2���P�&�!���'�!���(�!���)�R

You’ve probably seen these techniques (or similar techniques) in other languages. However, IronPython
has a few additional tricks up its sleeve. For example, you can �ll an array with a sequence. The follow-
ing code is perfectly acceptable and �lls the array with the path variables.

�B�n�A�^�h�i���2���h�n�h�#�e�V�i�]

In this case, the interpreter creates one array element for each path within �h�n�h�#�e�V�i�]. This approach
makes it possible to access each path element individually. However, changing an array element won’t
change �h�n�h�#�e�V�i�]. IronPython makes a copy of the content of �h�n�h�#�e�V�i�] and places it in �B�n�A�^�h�i.

You can also use expressions to �ll the array. This is an especially powerful technique because the
expression can be any legal Python expression that produces a list of items as output. For example,
the following code creates an array with the same list of path items in it, except this code relies on
an expression to perform the task.

�B�n�A�^�h�i���2���a�^�h�i���»�=�Z�a�a�d�¼��

In this case, �B�n�A�^�h�i will contain one element for each letter. However, the expressions can become
quite complex — as complex as you need them to generate the array elements. For example, the fol-
lowing code also works just �ne.

�B�n�A�^�h�i���2���a�^�h�i���m���m���[�d�g���m���^�c���g�V�c�\�Z���&�%����

This bit of code generates the squares of all of the numbers between 0 and 9 — �g�V�c�\�Z���� begins with 0
and ends with 9 as output (see the “Using the range() Function” section of the chapter for more details).
The expression need not work with just numeric data either. When you execute the following code

�B�n�A�^�h�i���2���a�^�h�i���m�#�j�e�e�Z�g�������[�d�g���m���^�c���¹�V�W�X�º��

Working with Tuples, Lists, and Arrays �X 61

MyList �lls with the uppercase letters A, B, and C. Consequently, you can �ll the array with the
product of a method’s output. In fact, you can create your own functions to process the input from
a �a�^�h�i, as shown in Listing 4-4.

LISTING 4�4: Creating specialized array input

�����9�Z�[�^�c�Z���V���[�j�c�X�i�^�d�c���i�d���d�j�i�e�j�i���k�V�a�j�Z�h���[�d�g���i�]�Z���V�g�g�V�n�#
�Y�Z�[���6�g�g�V�n�;�^�a�a���m���/

�����������D�j�i�e�j�i���V���k�V�a�j�Z���i�]�V�i���b�V�i�X�]�Z�h���i�]�Z���^�c�e�j�i�#
�������^�[���m���2�2���»�V�¼�/
�������������g�Z�i�j�g�c���»�G�Z�Y�¼
�������Z�a�^�[���m���2�2���»�W�¼�/
�������������g�Z�i�j�g�c���»�N�Z�a�a�d�l�¼
�������Z�a�^�[���m���2�2���»�X�¼�/
�������������g�Z�i�j�g�c���»�7�a�j�Z�¼
�������Z�a�h�Z�/
�������������g�Z�i�j�g�c���»�J�c�`�c�d�l�c�¼

�����8�g�Z�V�i�Z���i�]�Z���a�^�h�i���i�d���e�g�d�X�Z�h�h�#
�6�H�i�g�^�c�\���2���»�V�W�X�Y�6�7�8�9�¼

�����8�g�Z�V�i�Z���i�]�Z���V�g�g�V�n�#
�B�n�A�^�h�i���2���a�^�h�i���6�g�g�V�n�;�^�a�a���m�#�a�d�l�Z�g���������[�d�g���m���^�c���6�H�i�g�^�c�\��

�����E�g�^�c�i���Z�V�X�]���V�g�g�V�n���Z�a�Z�b�Z�c�i�#
�[�d�g���D�j�i�e�j�i���^�c���B�n�A�^�h�i�/
�������e�g�^�c�i���D�j�i�e�j�i

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins by de�ning an array to create array elements. This function could be anything
you choose. The point is that each call to the function provides a speci�c output based on the
input: Red, Yellow, Blue, or Unknown.

The next step is to de�ne the inputs, which appear in �6�H�i�g�^�c�\. Any sequence you want to process
works �ne.

Now the code creates the array using the complex expression shown in Listing 4-4. The expression
loops through each value in �6�H�i�g�^�c�\ and places it in �m. The value in �m is set to lowercase and passed
to �6�g�g�V�n�;�^�a�a����, which then interprets the value and provides an output. Figure 4-4 shows the output
from this example.

IronPython also includes some interesting array access features. For example, if you want to access
every other array element, you use the code shown in Listing 4-5.

LISTING 4�5: Accessing speci�c array elements

�����8�g�Z�V�i�Z���i�]�Z���V�g�g�V�n�#

continues

62 �X CHAPTER 4 USING ARRAYS AND COLLECTIONS

�B�n�A�^�h�i���2���P�&�!���'�!���(�!���)�!���*�!���+�R

�����6�X�X�Z�h�h���Z�k�Z�g�n���d�i�]�Z�g���Z�a�Z�b�Z�c�i�#
�[�d�g���D�j�i�e�j�i���^�c���B�n�A�^�h�i�P�/�/�'�R�/
�������e�g�^�c�i���D�j�i�e�j�i

FIGURE 4�4: You can use complex expressions to create arrays.

The output is 1, 3, and 5 for this example. Actually, you can provide more than the step for the
output. IronPython provides the means to provide start:stop:step with the colons. For example, if
you wanted to start with element 1 instead of element 0, you’d type:

�[�d�g���D�j�i�e�j�i���^�c���B�n�A�^�h�i�P�&�/�/�'�R�/
�������e�g�^�c�i���D�j�i�e�j�i

This code outputs 2, 4, and 6 based on the previous input. You can control things even more. For
example, look at the following code.

�[�d�g���D�j�i�e�j�i���^�c���B�n�A�^�h�i�P�&�/�)�/�'�R�/
�������e�g�^�c�i���D�j�i�e�j�i

Run this code and you’ll see 2 and 4 as output. The code begins with element 1, stops with element 4,
and uses a step of 2.

Let’s look at one other interesting IronPython array technique. Listing 4-6 shows code that not only
shows the array items, but also the index associated with that item.

LISTING 4�6: Looping through array elements

�����8�g�Z�V�i�Z���i�]�Z���V�g�g�V�n�#
�B�n�A�^�h�i���2���P�»�O�Z�g�d�¼�!���»�D�c�Z�¼�!���»�I�l�d�¼�!���»�I�]�g�Z�Z�¼�!���»�;�d�j�g�¼�R

�����9�^�h�e�a�V�n���i�]�Z���^�i�Z�b�h���V�c�Y���i�]�Z�^�g���^�c�Y�Z�m�#
�[�d�g���^�c�Y�Z�m�!���^�i�Z�b���^�c���Z�c�j�b�Z�g�V�i�Z���B�n�A�^�h�i���/
�������e�g�^�c�i���^�c�Y�Z�m�!���^�i�Z�b

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

LISTING 4�5 (continued)

Working with Tuples, Lists, and Arrays �X 63

In this case, the code begins by creating an array with �ve strings in it. The �[�d�g loop iterates
through the array as normal. However, in this case, the example relies on the �Z�c�j�b�Z�g�V�i�Z���� func-
tion to obtain the index for the array elements. Consequently, the output consists of two values —
the array index and the element value. You can read more about the �Z�c�j�b�Z�g�V�i�Z���� function in the
“Using the enumerate() Function” section of the chapter. The output from this example appears in
Figure 4-5.

FIGURE 4�5: Using functions enables you to extend the output of arrays.

By now you should have gotten the idea that arrays in IronPython are just a bit different from other
languages in that they’re far more �exible and you can use them for a host of tasks.

Manipulating Single- Dimension Arrays
After you get the data into an array, you’ll probabl y want to manipulate the data in speci�c ways.
For example, you’ve already discovered that you can change a value in Listing 4-2. However, simply
changing values won’t be enough. Listing 4-7 shows a number of ways in which you can work with
array data (and IronPython provides considerably more methods than those shown in the listing).

LISTING 4�7: Manipulating array elements

�����9�Z�[�^�c�Z���V���[�j�c�X�i�^�d�c���[�d�g���e�g�^�c�i�^�c�\�#
�Y�Z�[���H�]�d�l���i�n�e�Z�!���V�g�g�V�n���/
�������e�g�^�c�i���»�Q�c�¼�!���i�n�e�Z
�������[�d�g���H�i�g�^�c�\���^�c���V�g�g�V�n�/
�������������e�g�^�c�i���H�i�g�^�c�\

�����8�g�Z�V�i�Z���i�]�Z���V�g�g�V�n�#
�B�n�A�^�h�i���2���P�»�O�Z�g�d�¼�!���»�D�c�Z�¼�!���»�I�l�d�¼�R

�����9�^�h�e�a�V�n���i�]�Z���c�j�b�W�Z�g���d�[���Z�a�Z�b�Z�c�i�h�#
�e�g�^�c�i���»�:�a�Z�b�Z�c�i�h���^�c���B�n�A�^�h�i�/�¼�!
�e�g�^�c�i���a�Z�c���B�n�A�^�h�i��

�����6�Y�Y���V���c�Z�l���Z�a�Z�b�Z�c�i�#
�B�n�A�^�h�i�#�V�e�e�Z�c�Y���»�I�l�d�¼��
�H�]�d�l���»�6�e�e�Z�c�Y�Z�Y���V���K�V�a�j�Z�¼�!���B�n�A�^�h�i��

�����6�Y�Y���b�j�a�i�^�e�a�Z���Z�a�Z�b�Z�c�i�h�#
�B�n�A�^�h�i�#�Z�m�i�Z�c�Y���P�»�I�]�g�Z�Z�¼�!���»�;�d�j�g�¼�R��

continues

64 �X CHAPTER 4 USING ARRAYS AND COLLECTIONS

�H�]�d�l���»�:�m�i�Z�c�Y�Z�Y���B�n�A�^�h�i�¼�!���B�n�A�^�h�i��

�����9�^�h�e�a�V�n���i�]�Z���c�j�b�W�Z�g���d�[���^�c�h�i�V�c�X�Z�h���d�[���i�]�Z���l�d�g�Y���»�I�l�d�¼�#
�e�g�^�c�i���»�Q�c�C�j�b�W�Z�g���d�[���^�c�h�i�V�c�X�Z�h���d�[���I�l�d�/�¼�!��
�e�g�^�c�i���B�n�A�^�h�i�#�X�d�j�c�i���»�I�l�d�¼��

�����G�Z�b�d�k�Z���d�c�Z���d�[���i�]�Z���^�c�h�i�V�c�X�Z�h���d�[���»�I�l�d�¼���[�g�d�b���i�]�Z���V�g�g�V�n�#
�B�n�A�^�h�i�#�g�Z�b�d�k�Z���»�I�l�d�¼��
�H�]�d�l���»�G�Z�b�d�k�Z�Y���V���K�V�a�j�Z�¼�!���B�n�A�^�h�i��

�����E�d�e���i�]�Z���a�V�h�i���k�V�a�j�Z���^�c���i�]�Z���V�g�g�V�n�#
�B�n�A�^�h�i�#�e�d�e����
�H�]�d�l���»�E�d�e�e�Z�Y���V���K�V�a�j�Z�¼�!���B�n�A�^�h�i��

�����9�Z�a�Z�i�Z���V���k�V�a�j�Z�#��
�Y�Z�a���B�n�A�^�h�i�P�'�R
�H�]�d�l���»�9�Z�a�Z�i�Z�Y���V���K�V�a�j�Z�¼�!���B�n�A�^�h�i��

�����H�d�g�i���i�]�Z���V�g�g�V�n�#
�B�n�A�^�h�i�#�h�d�g�i����
�H�]�d�l���»�H�d�g�i�Z�Y���i�]�Z���A�^�h�i�¼�!���B�n�A�^�h�i��

�����G�Z�k�Z�g�h�Z���i�]�Z���h�d�g�i���d�g�Y�Z�g�#
�B�n�A�^�h�i�#�g�Z�k�Z�g�h�Z����
�H�]�d�l���»�G�Z�k�Z�g�h�Z�Y���i�]�Z���A�^�h�i�¼�!���B�n�A�^�h�i��

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins by de�ning �H�]�d�l����, a function used to display the array elements and the kind
of manipulation performed on the array. This is a simple method to display information from the
example without repeating the code. You’ve already seen this code in a number of examples, so you
already know how it works.

Array manipulation falls into two categories. The �r st is using an external function to perform
the task. For example, if you want to obtain the number of array elements, you call on the �a�Z�c����
function. Likewise, if you want to delete a speci�c element or range of elements, you call on the
�Y�Z�a���� function.

The second is using an array method. For example, if you want to add elements to an array, you
can either use �V�e�e�Z�c�Y���� or �Z�m�i�Z�c�Y����. The difference between the two is that �Z�m�i�Z�c�Y���� accepts
a sequence, so you can add more than one element in a single call. You also have multiple choices
when it comes to removing elements. Of course, you can simply delete elements by number, but
you can also use �e�d�e���� to remove the last element in the array. The �g�Z�b�d�k�Z���� method actu-
ally deletes an element based on value. If an array contains two elements with the same value,
�g�Z�b�d�k�Z����deletes only the �rst of the two elements. IronPython also makes it easy to �h�d�g�i����
and �g�Z�k�Z�g�h�Z���� sort the content of an array. Figure 4-6 shows how these various functions and
methods affect the test array.

LISTING 4�7 (continued)

Working with Tuples, Lists, and Arrays �X 65

FIGURE 4�6: IronPython makes arrays extremely easy to manipulate using functions and methods.

All these methods (and many others) make it possible to use an array in ways that you might not use
arrays in other languages. For example, by combining the �V�e�e�Z�c�Y���� and �e�d�e���� methods, you can
create a stack. If you want a queue, simply use the �V�e�e�Z�c�Y���� method and �Y�Z�a���� function. In short,
using a combination of functions and methods enables you to work with arrays in ways that would
be dif�cult in other languages.

Working with Multi- Dimension Arrays
Multi-dimension arrays provide all of the same functionality as a single-dimension array. However,
as the name implies, a multi-dimension array has more than one dimension to it. For example, here’s
a simple multi-dimension array.

���B�n�A�^�h�i���2���P�P�&�!���'�R�!���P�(�!���)�R�R

66 �X CHAPTER 4 USING ARRAYS AND COLLECTIONS

What you get from this code is a 2 �r 2 array. To access a particular element, you use its index as you
normally would. For example, to access the value 1, you would use:

�e�g�^�c�i���B�n�A�^�h�i�P�%�R�P�%�R

You may have already �gured out the special feature of IronPython arrays — it’s possible to create
ragged arrays without any problem at all. For example, the following code creates a three-element
array where the �rst element is a two-element array.

�B�n�A�^�h�i���2���P�P�&�!���'�R�!���(�!���)�R

If you want to access a member of that �rst element, say �' , you would use the following code.

�e�g�^�c�i���B�n�A�^�h�i�P�%�R�P�&�R

Accessing the other elements is straightforward. You access them as you would a single-dimensional
array. For example, to access the number �(, you use the following code.

�e�g�^�c�i���B�n�A�^�h�i�P�'�R

In all other respects, IronPython multi-dimension arrays work like their single-dimension counter-
parts. You can perform an amazing number of tasks using multi-dimension arrays.

The example, MultiDimension.py, shows how to use automation to display the
contents of both a standard and ragged multi-dimension array. You may want
to wait until after you read the following section, “Using the range() Function,”
before reviewing this example.

Using the range() Function
The �g�V�c�\�Z���� function is one of the more interesting functions when it comes to arrays because you
can use it in so many ways. The basic �g�V�c�\�Z���� function outputs a series of numbers beginning with
0 and ending with one less than the number you specify. For example, if you specify �g�V�c�\�Z���&�%��, you
get the numbers from 0 through 9. Listing 4-8 shows some examples of using the �g�V�c�\�Z���� function.

LISTING 4�8: Using the range() function

�����9�^�h�e�a�V�n���V���h�^�b�e�a�Z���g�V�c�\�Z�#
�e�g�^�c�i���»�H�^�b�e�a�Z���G�V�c�\�Z�/�¼��
�[�d�g���m���^�c���g�V�c�\�Z���&�%���/
�������e�g�^�c�i���m���!

�����9�^�h�e�a�V�n���V���h�e�Z�X�^�[�^�X���g�V�c�\�Z�#
�e�g�^�c�i���»�Q�c�Q�c�G�V�c�\�Z���[�g�d�b���*���i�d���&�%�¼��
�[�d�g���m���^�c���g�V�c�\�Z���*�!���&�&���/
�������e�g�^�c�i���m���!

�����9�^�h�e�a�V�n���i�]�Z���Z�k�Z�c���c�j�b�W�Z�g�h���[�g�d�b���'���i�]�g�d�j�\�]���&�%�#

Working with Tuples, Lists, and Arrays �X 67

�e�g�^�c�i���»�Q�c�Q�c�:�k�Z�c���C�j�b�W�Z�g�h���'���I�]�g�d�j�\�]���&�%�/�¼��
�[�d�g���m���^�c���g�V�c�\�Z���'�!���&�&�!���'���/
�������e�g�^�c�i���m���!

�����8�g�Z�V�i�Z���V�c���V�g�g�V�n�#
�B�n�A�^�h�i���2���P�»�G�Z�Y�¼�!���»�7�a�j�Z�¼�!���»�<�g�Z�Z�c�¼�!���»�N�Z�a�a�d�l�¼�R

�����J�h�Z���i�]�Z���g�V�c�\�Z�������V�c�Y���a�Z�c�������[�j�c�X�i�^�d�c�h���i�d���^�i�Z�g�V�i�Z���i�]�Z���V�g�g�V�n�#
�e�g�^�c�i���»�Q�c�Q�c�>�i�Z�g�V�i�^�c�\���V�c���6�g�g�V�n�¼����
�[�d�g���>�c�Y�Z�m���^�c���g�V�c�\�Z���a�Z�c���B�n�A�^�h�i�����/
�������e�g�^�c�i���B�n�A�^�h�i�P�>�c�Y�Z�m�R

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

As previously mentioned, the basic �g�V�c�\�Z���� function outputs numbers starting from 0 through one
less than the number you specify. Consequently, if you want to display the range of numbers from
5 through 10, you must actually specify a range of 5 through 11. Notice how you separate a range
using a comma. The �rst number is the starting point and the second is the ending point. You may
choose any starting and ending point — even negative numbers.

The �g�V�c�\�Z���� function also supports a step as a third argument. Consequently, you can output the
even numbers from 2 through 10 by specifying the correct range and using a step of 2.

Of course, using �g�V�c�\�Z���� by itself has signi�cant limitations. What you really want to do is use
�g�V�c�\�Z���� with arrays to make it easier to display the array content. The next part of the example
shows how to perform this task. Notice how this example uses the �a�Z�c���� function to obtain an
upper limit for the �g�V�c�\�Z���� function. Figure 4-7 shows the output from this example.

FIGURE 4�7: Use the range() function to generate sequences of numbers for array and other processing.

68 �X CHAPTER 4 USING ARRAYS AND COLLECTIONS

Now that you know about using �g�V�c�\�Z���� and �a�Z�c���� together, let’s look at an example of ragged
array processing. The following code shows how to process a ragged array.

�����8�g�Z�V�i�Z���V���g�V�\�\�Z�Y���V�g�g�V�n�#
�B�n�A�^�h�i���2���P�P�&�!���'�R�!���(�!���)�!���P�*�!���+�R�R

�����9�^�h�e�a�V�n���i�]�Z���V�g�g�V�n���X�d�c�i�Z�c�i�#���>�c���i�]�^�h���X�V�h�Z�!���n�d�j���b�j�h�i���e�a�V�X�Z���i�]�Z���g�V�\�\�Z�Y
�����V�g�g�V�n���e�d�g�i�^�d�c���d�[���i�]�Z���Z�m�V�b�e�a�Z���^�c���V���i�g�n���W�a�d�X�`���h�d���i�]�V�i���i�]�Z���X�d�Y�Z��
�����Y�^�h�e�a�V�n�h���_�j�h�i���i�]�Z���[�^�g�h�i���Y�^�b�Z�c�h�^�d�c���l�]�Z�c���d�c�a�n���d�c�Z���Y�^�b�Z�c�h�^�d�c���^�h��
�����V�k�V�^�a�V�W�a�Z�#��
�e�g�^�c�i���»�Q�c�9�^�h�e�a�V�n�^�c�\���i�]�Z���g�V�\�\�Z�Y���V�g�g�V�n�#�¼����
�e�g�^�c�i���»�M���N�������K�V�a�j�Z�¼����
�[�d�g���m���^�c���g�V�c�\�Z���a�Z�c���B�n�A�^�h�i�����/
�������i�g�n�/
�������������[�d�g���n���^�c���g�V�c�\�Z���a�Z�c���B�n�A�^�h�i�P�m�R�����/
�������������������e�g�^�c�i���m�!���n�!���»���»�!���B�n�A�^�h�i�P�m�R�P�n�R
�������Z�m�X�Z�e�i���I�n�e�Z�:�g�g�d�g�/
�������������e�g�^�c�i���m�!���»�C�$�6�¼�!���B�n�A�^�h�i�P�m�R

In this case, you begin with a ragged array that contains the numbers 1 through 6. In order to process
this kind of array, you begin with the �rst array dimensio n, which will always have either a sub-array
or a value. In this case, there are four array elements — two sub-arrays and two values (3 and 4).

Of course, you want the values in those sub-arrays. Consequently, the next step is to place the sub-
array processing in a �i�g�n�#�#�#�Z�m�X�Z�e�i block because the processing will fail when the code encounters
a value. The moment the code tries to get the length of the sub-array using �a�Z�c����, it will fail with a
�I�n�e�Z�:�g�g�d�g. When the error does occur, the example prints just the �rst dimension. You can use this
pattern for any ragged array you need to process. Figure 4-8 shows the output from this example.

FIGURE 4�8: Ragged arrays are relatively easy to process using range() and len().

When working with IronPython, there are typically mu ltiple ways to perform the same task.
Many developers (with good reason) won’t process data by exception. Fortunately, there’s another
way to process a ragged array that doesn’t involve the �i�g�n�#�#�#�Z�m�X�Z�e�i block shown earlier. Here’s
the second method.

�����8�g�Z�V�i�Z���V���g�V�\�\�Z�Y���V�g�g�V�n�#
�B�n�A�^�h�i���2���P�P�&�!���'�R�!���(�!���)�!���P�*�!���+�R�R

�����9�^�h�e�a�V�n���i�]�Z���V�g�g�V�n���X�d�c�i�Z�c�i�#

Working with Tuples, Lists, and Arrays �X 69

�e�g�^�c�i���»�Q�c�9�^�h�e�a�V�n�^�c�\���i�]�Z���g�V�\�\�Z�Y���V�g�g�V�n�#�¼��
�e�g�^�c�i���»�M���N�������K�V�a�j�Z�¼����
�[�d�g���m���^�c���g�V�c�\�Z���a�Z�c���B�n�A�^�h�i�����/
�������^�[���i�n�e�Z���B�n�A�^�h�i�P�m�R���#�T�T�c�V�b�Z�T�T���2�2���»�a�^�h�i�¼�/
�������������[�d�g���n���^�c���g�V�c�\�Z���a�Z�c���B�n�A�^�h�i�P�m�R�����/
�������������������e�g�^�c�i���m�!���n�!���»���»�!���B�n�A�^�h�i�P�m�R�P�n�R
�������Z�a�h�Z�/
�������������e�g�^�c�i���m�!���»�C�$�6�¼�!���B�n�A�^�h�i�P�m�R

In this case, the code simply checks the type of the �B�n�A�^�h�i element before it performs any additional
processing on it. Notice that this technique relies on the �i�n�e�Z���� function, which returns the actual
type of the element, and then you obtain the string form of the type using the �T�T�c�V�b�Z�T�T attribute.
The results are the same as shown in Figure 4-8.

Processing Arrays Using the break and else Clauses
When you process sequences and arrays using loops, you sometimes need to stop what you’re doing. For
example, if you �nd the answer to the question of whether a number is prime or not, you really don’t
need to continue the loop that was looking for the answer. At this point, you can simply print out the
two numbers that result in the target number when multiplied. Then again, you might complete the
loop without �nding a divisor that can divide equally into the number you’re testing, so you need to tell
the user that you have, indeed, found a prime number. Listing 4-9 shows one solution to this problem.

LISTING 4�9: Using break and else to process sequences

�����8�g�Z�V�i�Z���V���a�d�d�e���[�d�g���Y�Z�i�Z�X�i�^�c�\���e�g�^�b�Z���c�j�b�W�Z�g�h�#
�[�d�g���C�j�b�W�Z�g���^�c���g�V�c�\�Z���&�!���&�%���/

�����������I�]�^�h���a�d�d�e���a�d�d�`�h���[�d�g���Y�^�k�^�h�d�g�h�#
�������[�d�g���9�^�k�^�h�d�g���^�c���g�V�c�\�Z���'�!���C�j�b�W�Z�g���/

�����������������>�[���i�]�Z���c�j�b�W�Z�g���X�V�c���W�Z���Y�^�k�^�Y�Z�Y���W�n���i�]�Z���Y�^�k�^�h�d�g���Z�k�Z�c�a�n�#
�������������^�[���C�j�b�W�Z�g�������9�^�k�^�h�d�g���2�2���%�/

�����������������������E�g�^�c�i���i�]�Z���k�V�a�j�Z�h���V�c�Y���i�]�Z�c���Z�m�^�i���i�]�Z���a�d�d�e�#
�������������������e�g�^�c�i���C�j�b�W�Z�g�!���»�2�¼�!���9�^�k�^�h�d�g�!���»���»�!���C�j�b�W�Z�g�$�9�^�k�^�h�d�g
�������������������W�g�Z�V�`
�������Z�a�h�Z�/
�����������������>�[���n�d�j���X�V�c�¼�i���Y�^�k�^�Y�Z���i�]�Z���c�j�b�W�Z�g���W�n���V�c�n���d�[���i�]�Z���Y�^�k�^�h�d�g�h�!
�����������������^�i�¼�h���e�g�^�b�Z�#
�������������e�g�^�c�i���C�j�b�W�Z�g�!���»�^�h���V���e�g�^�b�Z���c�j�b�W�Z�g�¼
������������
�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins by looking at the numbers 1 through 9. (Remember that �g�V�c�\�Z���� won’t output
10 in this case.) What you have at the beginning of the second loop is a number that you want to
examine. You know that you need to check all numbers smaller than the target number to determine
whether they divide evenly into the target number. For example, if you were detecting whether 4 is a
prime number, you wouldn’t try using 5 as a divisor.

70 �X CHAPTER 4 USING ARRAYS AND COLLECTIONS

The actual detection takes place with the code, �C�j�b�W�Z�g�������9�^�k�^�h�d�g. If the output of this calculation
is 0, then there isn’t any remainder, and you’ve found the divisor you wanted. At this point, the code
outputs the two numbers that will result in the target number when multiplied, such as 4 = 2 * 2.
After printing out the result, the inner loop can stop — it’s found the divisor you wanted and deter-
mined that the number isn’t prime.

However, some numbers won’t have a divisor because they are prime. In this case, the �Z�a�h�Z clause
takes over. The �[�d�g loop literally falls through to the �Z�a�h�Z clause and performs some other processing
when the �[�d�g loop fails. Figure 4-9 shows the output from this example.

FIGURE 4�9: Using break makes it possible to stop loop processing, while else gives an alternative output.

Processing Arrays Using the continue Clause
A loop sometimes �nishes the task that it’s performing with a particular sequence or array elements,
but you want to continue processing with the next element. In this case, you use the �X�d�c�i�^�c�j�Z clause
rather than the �W�g�Z�V�` clause of the loop. The �X�d�c�i�^�c�j�Z clause will continue with the next loop and
bypass the rest of the current loop. Listing 4-10 shows an example of how you can use the �X�d�c�i�^�c�j�Z
clause to request speci�c input from the user.

LISTING 4�10: Using continue to process sequences

�����9�Z�[�^�c�Z���V���a�^�h�i���d�[���`�Z�n�l�d�g�Y�h�#
�@�Z�n�l�d�g�Y�h���2���P�»�G�:�9�¼�!���»�N�:�A�A�D�L�¼�!���»�7�A�J�:�¼�R

�����9�Z�[�^�c�Z���V���k�V�g�^�V�W�a�Z���i�d���Y�Z�i�Z�X�i���V���X�d�g�g�Z�X�i���Z�c�i�g�n�#
�>�h�8�d�g�g�Z�X�i���2���;�V�a�h�Z

�����8�g�Z�V�i�Z���V���a�d�d�e���i�d���f�j�Z�g�n���i�]�Z���j�h�Z�g���V�W�d�j�i���i�]�Z���`�Z�n�l�d�g�Y�#
�l�]�^�a�Z���c�d�i���>�h�8�d�g�g�Z�X�i�/

�����������6�h�`���i�]�Z���j�h�Z�g���[�d�g���i�]�Z���`�Z�n�l�d�g�Y�#
�������6�c�h�l�Z�g���2���g�V�l�T�^�c�e�j�i���»�I�n�e�Z���V���`�Z�n�l�d�g�Y�/���»���#�j�e�e�Z�g����

�����������9�Z�i�Z�X�i���V���X�d�g�g�Z�X�i���`�Z�n�l�d�g�Y�#
�������^�[���6�c�h�l�Z�g���^�c���@�Z�n�l�d�g�Y�h�/
�������������e�g�^�c�i���»�8�d�c�\�g�V�i�j�a�V�i�^�d�c�h�!���n�d�j���e�g�d�k�^�Y�Z�Y���i�]�Z���`�Z�n�l�d�g�Y���¼

Working with Tuples, Lists, and Arrays �X 71

�������������>�h�8�d�g�g�Z�X�i���2���I�g�j�Z
�������������X�d�c�i�^�c�j�Z

�����������I�Z�a�a���i�]�Z���j�h�Z�g���i�]�Z���V�c�h�l�Z�g���^�h���^�c�X�d�g�g�Z�X�i�#
�������e�g�^�c�i���»�N�d�j���e�g�d�k�^�Y�Z�Y���V�c���^�c�X�d�g�g�Z�X�i���`�Z�n�l�d�g�Y�¼

�����������I�g�n���V�\�V�^�c�4
�������6�c�h�l�Z�g���2���g�V�l�T�^�c�e�j�i���»�8�d�c�i�^�c�j�Z�����N�$�C���4���»���#�j�e�e�Z�g����
�������^�[���6�c�h�l�Z�g���2�2���»�C�¼�/
�������������>�h�8�d�g�g�Z�X�i���2���I�g�j�Z

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins by creating a �@�Z�n�l�d�g�Y�h array that contains a list of words the application is seeking.
It then creates a variable, �>�h�8�d�g�g�Z�X�i, to track the correctness of the user input and a �l�]�^�a�Z loop to
keep asking for input until the user either gives up or provides a correct term.

The next step is to get some input. The example uses �g�V�l�T�^�c�e�j�i���� to obtain the information.
Notice the use of �j�e�e�Z�g���� to change the case of the input text (so the user can input it without
worrying about case sensitivity).

At this point, the code checks the input. If �6�c�h�l�Z�g is in �@�Z�n�l�d�g�Y�h (in other words, if the word in
�6�c�h�l�Z�g matches one of the words in �@�Z�n�l�d�g�Y�h), then the loop prints a congratulatory message and
loops without processing the rest of the information. Because �>�h�8�d�g�g�Z�X�i is now �I�g�j�Z, the loop ends.

When the user doesn’t provide good input, the loop continues. The code outputs an error response
and asks the user about continuing. When the user enters N, the loop ends; otherwise, the loop
continues. Figure 4-10 shows example output from this application.

FIGURE 4�10: Use continue to resume processing the next element.

Using the enumerate() Function
Newer versions of Python and IronPython include the �Z�c�j�b�Z�g�V�i�Z���� function, which makes it easier
to enumerate values in a sequence or array. Instead of using the �g�V�c�\�Z���a�Z�c���B�n�A�^�h�i���� code, you can
simplify things by using �Z�c�j�b�Z�g�V�i�Z���B�n�A�^�h�i�� instead. The output is two values: an index for the
current element and the element value. Listing 4-11 shows the �nal version of the code for parsing a
ragged array. It’s helpful to compare this version to the other versions in this chapter.

72 �X CHAPTER 4 USING ARRAYS AND COLLECTIONS

LISTING 4�11: Enumerating a ragged array

�����8�g�Z�V�i�Z���V���g�V�\�\�Z�Y���V�g�g�V�n�#
�B�n�A�^�h�i���2���P�P�&�!���'�R�!���(�!���)�!���P�*�!���+�R�R

�����9�^�h�e�a�V�n���i�]�Z���V�g�g�V�n���X�d�c�i�Z�c�i�#
�e�g�^�c�i���»�9�^�h�e�a�V�n�^�c�\���i�]�Z���g�V�\�\�Z�Y���V�g�g�V�n�#�¼��
�e�g�^�c�i���»�M���N�������K�V�a�j�Z�¼����
�[�d�g���m�!���k�V�a�j�Z���^�c���Z�c�j�b�Z�g�V�i�Z���B�n�A�^�h�i���/
�������^�[���i�n�e�Z���k�V�a�j�Z���#�T�T�c�V�b�Z�T�T���2�2���»�a�^�h�i�¼�/
�������������[�d�g���n�!���h�j�W�k�V�a�j�Z���^�c���Z�c�j�b�Z�g�V�i�Z���k�V�a�j�Z���/
�������������������e�g�^�c�i���m�!���n�!���»���»�!���h�j�W�k�V�a�j�Z
�������Z�a�h�Z�/
�������������e�g�^�c�i���m�!���»�C�$�6�¼�!���k�V�a�j�Z

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The output of this code is the same as that shown in Figure 4-8, but the code itself is easier to under-
stand than either example in the “Using the range() Function” section of the chapter. When you use
the �Z�c�j�b�Z�g�V�i�Z���� function, you don’t have to calculate so many items — there’s less guesswork. Notice
that the �rst �[�d�g loop already has the index and associated value for the �rst array level. The inner
loop performs less work to get the secondary array level as well.

The only negative about using �Z�c�j�b�Z�g�V�i�Z���� is the same negative associated with any new function —
you won’t �nd it in older versions of Python or Iron Python. Consequently, you could encounter com-
patibility issues when using this, or any, new function. Make sure you look at your platform before
you use the �Z�c�j�b�Z�g�V�i�Z���� function in your code.

WORKING WITH THE COLLECTIONS MODULE

Collections are another in a series of containers that you can use to store information in memory.
For IronPython developers, the main reasons to use collections are:

�° Developmental ef�ciency��

Application speed���°

Design �exiblity���°

IronPython doesn’t include collection support by default; you must import it into your application
through the collections module. The collections module comes with a number of collection objects.
If you’re using the latest version of IronPython, you gain access to these collection features:

�°�� �Y�Z�f�j�Z (data type)

���° �Y�Z�[�V�j�a�i�Y�^�X�i (data type)

���° �c�V�b�Z�Y�i�j�e�a�Z���� (data type factory function)

For the most part, collections really are just replacements for the default IronPython storage con-
tainers such as �a�^�h�i. In many cases, you see collections used to support specialized storage

Working with the collections Module �X 73

classes — something not discussed in this chapter. To give you an example of how the objects in
the containers module work, this section discusses the �Y�Z�f�j�Z, which has the following methods
associated with it.

�°�� �V�e�e�Z�c�Y����: Appends a new item to the right side of the �Y�Z�f�j�Z.

���° �V�e�e�Z�c�Y�a�Z�[�i����: Appends a new item to the left side of the �Y�Z�f�j�Z.

���° �X�a�Z�V�g����: Removes all of the elements from the �Y�Z�f�j�Z and leaves the length at 0.

���° �Z�m�i�Z�c�Y����: Adds elements to the right side of the �Y�Z�f�j�Z using an iterable argument, such as
a sequence.

���° �Z�m�i�Z�c�Y�a�Z�[�i����: Adds elements to the left side of the �Y�Z�f�j�Z using an iterable argument, such
as a sequence. Adding items to the left side of the �Y�Z�f�j�Z reverses the order of the elements in
the iterable argument. For example, if you have a �a�^�h�i that contains �P�»�V�»�!���»�W�»�!���»�X�»�R, this
method will add them in the order �P�»�X�»�!���»�W�»�!���»�V�»�R.

���° �e�d�e����: Removes an item from the right side of the �Y�Z�f�j�Z and returns it as output to the
caller. If the �Y�Z�f�j�Z is empty, this call will raise an �>�c�Y�Z�m�:�g�g�d�g.

���° �e�d�e�a�Z�[�i����: Removes an item from the left side of the �Y�Z�f�j�Z and returns it as output to the
caller. If the �Y�Z�f�j�Z is empty, this call will raise an �>�c�Y�Z�m�:�g�g�d�g.

���° �g�Z�b�d�k�Z����: Removes the �rst occurrence of an item, starting from the left side of the �Y�Z�f�j�Z. If
the �Y�Z�f�j�Z doesn’t contain the requested value, this method raises a �K�V�a�j�Z�:�g�g�d�g.

���° �g�d�i�V�i�Z����: Rotates the elements in the �Y�Z�f�j�Z to the right the number of steps speci�ed. If
the supplied value is negative, the method rotates the �Y�Z�f�j�Z elements the number of steps
requested to the left.

Now that you have a basic idea of what a �Y�Z�f�j�Z can do, it’s time to take a look at one in action.
Listing 4-12 shows a basic �Y�Z�f�j�Z example.

LISTING 4�12: Interacting with a deque

�����9�Z�[�^�c�Z���V���[�j�c�X�i�^�d�c���[�d�g���e�g�^�c�i�^�c�\�#
�Y�Z�[���H�]�d�l���i�n�e�Z�!���V�g�g�V�n���/
�������e�g�^�c�i���i�n�e�Z
�������[�d�g���H�i�g�^�c�\���^�c���V�g�g�V�n�/
�������������e�g�^�c�i���H�i�g�^�c�\

�����>�b�e�d�g�i���_�j�h�i���i�]�Z���Y�Z�f�j�Z���[�Z�V�i�j�g�Z���d�[���i�]�Z���X�d�a�a�Z�X�i�^�d�c�h���b�d�Y�j�a�Z�#
�[�g�d�b���X�d�a�a�Z�X�i�^�d�c�h���^�b�e�d�g�i���Y�Z�f�j�Z

�����8�g�Z�V�i�Z���i�]�Z���Y�Z�f�j�Z�#
�C�j�b�W�Z�g�h���2���Y�Z�f�j�Z���P�»�G�Z�Y�¼�!���»�N�Z�a�a�d�l�¼�!���»�7�a�j�Z�¼�R��
�H�]�d�l���»�D�g�^�\�^�c�V�a���9�Z�f�j�Z�¼�!���C�j�b�W�Z�g�h��

�����6�Y�Y���V���k�V�a�j�Z���i�d���i�]�Z���Y�Z�f�j�Z�#
�C�j�b�W�Z�g�h�#�V�e�e�Z�c�Y���»�D�g�V�c�\�Z�¼��

continues

74 �X CHAPTER 4 USING ARRAYS AND COLLECTIONS

�H�]�d�l���»�Q�c�6�e�e�Z�c�Y���D�g�V�c�\�Z���i�d���i�]�Z���G�^�\�]�i�¼�!���C�j�b�W�Z�g�h��

�����6�Y�Y���V���k�V�a�j�Z���i�d���i�]�Z���a�Z�[�i���h�^�Y�Z���d�[���i�]�Z���Y�Z�f�j�Z�#
�C�j�b�W�Z�g�h�#�V�e�e�Z�c�Y�a�Z�[�i���»�<�g�Z�Z�c�¼��
�H�]�d�l���»�Q�c�6�e�e�Z�c�Y���<�g�Z�Z�c���i�d���i�]�Z���A�Z�[�i�¼�!���C�j�b�W�Z�g�h��

�����G�Z�b�d�k�Z���V���k�V�a�j�Z�#
�C�j�b�W�Z�g�h�#�g�Z�b�d�k�Z���»�N�Z�a�a�d�l�¼��
�H�]�d�l���»�Q�c�G�Z�b�d�k�Z�Y���N�Z�a�a�d�l�¼�!���C�j�b�W�Z�g�h��

�����E�d�e���V���k�V�a�j�Z�#
�E�d�e�e�Z�Y���2���C�j�b�W�Z�g�h�#�e�d�e����
�e�g�^�c�i���»�Q�c�E�d�e�e�Z�Y�/�¼�!���E�d�e�e�Z�Y

�����G�d�i�V�i�Z���i�]�Z���Y�Z�f�j�Z�#
�C�j�b�W�Z�g�h�#�g�d�i�V�i�Z���'��
�H�]�d�l���»�Q�c�G�d�i�V�i�Z�Y���'���i�d���i�]�Z���G�^�\�]�i�¼�!���C�j�b�W�Z�g�h��

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

This example begins with a slightly modi�ed version of the �H�]�d�l���� function provided in Listing 4-7.
Essentially, using this function saves a little of the coding time the developer requires to display the
output onscreen.

A �Y�Z�f�j�Z is more �exible than the built-in structures because you can work with both the right and
left side of the �Y�Z�f�j�Z. In this case, the code appends a value to the right and then to the left.

As with the built-in structures, you can remove, delete, or pop values from the �Y�Z�f�j�Z. Unlike the
built-in structures, you can also pop values from the left, which means you can create a number of
interesting structure types. For example, you could create a rotating queue. Of course, you don’t
even have to worry about popping values if you want to rotate values — simply use �g�d�i�V�i�Z���� as
shown in the example. Figure 4-11 shows the output from this example.

USING DICTIONARIES

Dictionaries take a different approach to storing information. Every other structure covered in this
chapter uses some type of numeric index — a dictionary relies on a key. Using a key does increase
the memory footprint of a dictionary so you don’t want t o use a dictionary all the time, even though the
quick access of a key may seem quite attractive. The key does make it possible to access elements con-
siderably faster. Listing 4-13 shows a dictionary in use.

LISTING 4�13: Accessing data using a dictionary

�����8�g�Z�V�i�Z���i�]�Z���Y�^�X�i�^�d�c�V�g�n�#
�E�Z�d�e�a�Z�8�d�a�d�g�h���2���p�»�<�Z�d�g�\�Z�¼�/�¼�G�Z�Y�¼�!���»�6�c�c�¼�/�¼�E�j�g�e�a�Z�¼�!���»�H�V�b�¼�/�¼�N�Z�a�a�d�l�¼�r

�����G�V�c�Y�d�b�a�n���V�X�X�Z�h�h���V���k�V�a�j�Z�#

LISTING 4�12 (continued)

Using Dictionaries �X 75

�e�g�^�c�i���»�I�]�Z���X�d�a�d�g���<�Z�d�g�\�Z���a�^�`�Z�h���W�Z�h�i���^�h�¼�!���E�Z�d�e�a�Z�8�d�a�d�g�h�P�»�<�Z�d�g�\�Z�¼�R

�����6�Y�Y���V���c�Z�l���e�Z�g�h�d�c���V�c�Y���X�d�a�d�g�#
�E�Z�d�e�a�Z�8�d�a�d�g�h�P�»�C�V�c�X�n�¼�R���2���»�7�a�j�Z�¼

�����K�Z�g�^�[�n���i�]�V�i���i�]�Z���c�Z�l���e�Z�g�h�d�c���l�V�h���V�Y�Y�Z�Y�#
�^�[���E�Z�d�e�a�Z�8�d�a�d�g�h�#�]�V�h�T�`�Z�n���»�C�V�c�X�n�¼���/
�������e�g�^�c�i���»�6�Y�Y�Z�Y���C�V�c�X�n���l�^�i�]���X�d�a�d�g�¼�!���E�Z�d�e�a�Z�8�d�a�d�g�h�P�»�C�V�c�X�n�¼�R

�����>�i�Z�g�V�i�Z���i�]�g�d�j�\�]���V�a�a���d�[���i�]�Z���k�V�a�j�Z�h�#��
�e�g�^�c�i���»�Q�c�=�Z�g�Z���V�g�Z���i�]�Z���X�d�a�d�g�h���e�Z�d�e�a�Z���a�^�`�Z�/�¼
�[�d�g���@�Z�n�!���K�V�a�j�Z���^�c���E�Z�d�e�a�Z�8�d�a�d�g�h�#�^�i�Z�g�^�i�Z�b�h�����/
�������e�g�^�c�i���@�Z�n�!���»�a�^�`�Z�h�¼�!���K�V�a�j�Z

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

FIGURE 4�11: Use a deque when you need the extra left-side �exibility this structure can provide.

Creating a dictionary is different from other sorts of storage types. Notice that you enclose all of the
values in curly braces ({}). The key appears �rst and the value second. You separate key from value
using a colon (:). The key is normally a string, but the value can be anything. The example could just
as easily have used numbers.

Accessing a particular dictionary element is different, too. You don’t need to know an index number —
you simply need to know the value you want. In this case, the example shows the color that George
likes best. The code doesn’t need to know that George appears �rst in the dictionary (he actually
doesn’t, but more about that in a moment).

76 �X CHAPTER 4 USING ARRAYS AND COLLECTIONS

Adding new members to a dictionary is easy. You simply provide a new key and assign a value to it,
as shown in the code. If you want to verify that a particular key appears in the dictionary, simply
use the �]�V�h�T�`�Z�n���� method. It’s important to remember that dictionaries use methods different from
those of other storage techniques. For example, there’s no �V�e�e�Z�c�Y���� method when working with a
dictionary. Interestingly enough, a dictionary does provide the �e�d�e���� method.

Iterating through a dictionary (listing its content) is also a bit different. You still use a �[�d�g loop to
perform the task. However, notice that you use the �^�i�Z�g�^�i�Z�b�h���� method to obtain a list of key/
value pairs from the dictionary. Figure 4-12 shows the output from this example.

FIGURE 4�12: Dictionaries are best used for named data.

USING IRONPYTHON CONSTRUCTIVELY

One of the most important facts that you can take away from this chapter is that there are many ways
to store and manage data in memory. You could probably use arrays for absolutely every data storage
need, but doing so would be painful from a development perspective. Not every problem is easy to solve
using just an array, so you also need collections and dictionaries. In fact, most languages support other
data storage mechanisms — only IronPython could successfully use these three methods to meet most
needs. As mentioned in Chapter 1, IronPython tends to simplify things and so far you’ve seen a number
of examples of that strategy in the book.

It’s time to look at the memory storage methodologies in IronPython. If you’ve been working with
another language for a long time (and I’m assuming that you have), it’s probably going to take a
while to get used to the IronPython method of doing things. You should take time now to work
through the examples in the chapter and then create a few of your own. The question you need to
ask is how the data storage structures in IronPython relate to those used in the language you already
know. In many cases, making this comparison can help you become productive considerably faster.
In addition, this exercise will �rmly implant the Ir onPython methodology in your brain.

Chapter 5 is the last of the basics chapters in the book. In this case, you discover how to interact
with objects. This means looking at objects that IronPython already provides, as well as creating
new objects of your own. Up to this point, you could probably look at IronPython as you would any
other scripting language. However, Chapter 5 starts to show you some of the impressive capabilities
that IronPython provides. Of course, Chapter 5 will build on what you’ve learned so far — all the
basics in Chapters 1 through 4 will come into play as you begin working with objects.

Interacting with Structures
and Objects

WHAT’S IN THIS CHAPTER?

�° Using native IronPython objects��

Creating your own classes and objects���°

Most developers work with structures and objects today because structures and objects
focus on data, rather than on the procedure for modifying the data. Structures and objects
are also extremely �exible when compared to procedures. In fact, if you’ve been program-
ming for any time at all, you probably wouldn’t be wi thout structures and objects as part
of your programmer toolbox.

 Like all modern languages, IronPython provides the means for working with both structures
and objects. In fact, a surprising number of the IronPython features you’ve already worked with
are objects. For example, when you work with a string, you have access to a number of methods
for manipulating the string. The “Performing a Simple Decision Using if” section of Chapter 3
is the �rst place in the book where you work with a s tring as an object, but it won’t be the last.
Because IronPython hides so many objects from view through sheer simplicity, the �rst section
of this chapter discusses common IronPython objects and how to work with them.

Providing objects in IronPython wouldn’t be very helpful if you couldn’t create new objects of
your own. After all, objects help you model the real world and make sense out of it from within
an application. IronPython lets you create your own classes, derive objects from the classes, and
use the objects with the same ease as built-in objects. The third section of the chapter �lls you
in on all the details of working with objects in IronPyth on. If you’re used to working with other
languages, you’ll want to pay close attention to IronPython object differences because there are
a few tricks that you’ll want to know before you begin creating your own object s.

5

78 �X CHAPTER 5 INTERACTING WITH STRUCTURES AND OBJECTS

WORKING WITH EXISTING OBJECTS

In many respects, most of what you work with in IronPython is some sort of object. When work-
ing with most languages, you have a vision of data types as being just that — data only. You assign
a number to a variable and see that the variable has some kind of presence on the stack as simply
a number. However, in IronPython, a variable holding a number is a lot more than simply a num-
ber — the variable is actually an object with callable methods and properties that tell you more
about the variable. For example, try assigning a number to a variable (say � ̂in this case), and then
call �^�#�T�T�h�^�o�Z�d�[�T�T����. You’ll discover that you get back the size of the variable in memory. With
this bit of information in mind, it’s time to discover what other objects lurk beneath the surface of
the supposed simplicity that IronPython provides. The following sections tell you more about the
existing objects in IronPython.

Discovering IronPython Objects
IronPython objects are everywhere, just waiting for you to discover them. Let’s take a closer look at
the number example in the introduction to this section. Go ahead and open a copy of the IronPython
interpreter, type �^�c�i���2���*, and press Enter. Now type �Y�^�g���^�c�i�� and press Enter. That’s right, you
can treat �^�c�i as an object in IronPython. You’ll see the information shown in Figure 5-1. All these
methods and properties apply to �^�c�i because �^�c�i is an object, not just a variable as you might sup-
pose when using other languages.

FIGURE 5�1: Objects lurk everywhere in IronPython.

In fact, you may have noticed in previous chapters that it appears that everything in IronPython is
an object. It’s true; everything you use in IronPython is an object, so always remember to use the
�Y�^�g���� function to display the things you can do with the objects you use. The following sections
describe a few of the more common IronPython objects and how to work with them. Don’t worry —
you’ll see a lot more objects before you complete the book. These sections are simply here to whet
your appetite for more objects later.

Working with Existing Objects �X 79

To obtain help on a particular object while working in the interpreter, use
the object’s type as the starting point. For example, if you want to obtain
help on the �X�d�j�c�i���� method for the �h�i�g type, you’d type �]�Z�a�e���h�i�g�#�X�d�j�c�i��
and press Enter. The interpreter will display the required information for
the string type.

Working with String Objects
Strings are one of the �rst objects many people use. You write that �rst “He llo World” application
and marvel when the words appear on screen. In fact, strings are the mainstay of many applications.
Without strings you can’t provide prompts to the user or ask for input. Sure, you may not do any
heavy lifting with strings, but every application out there requires strings to work properly. The fol-
lowing sections discuss the IronPython string object in more detail.

TYPING VARIABLES WITH TYPE��

One of the problems you can encounter when working with an application is
thinking a variable is of one type when it’s actually something else. Each of the
object types in IronPython has something different to offer, so it’s important not
to confuse one type with another. Chapter 4 demonstrated one potential type
problem in working with ragged arrays — you never know whether you’ll receive
a �a�^�h�i or a value. Consequently, you must check the type (or provide error trap -
ping) before you make any assumptions. In order to perform a check, always use
the �T�T�c�V�b�Z�T�T attribute for comparison purposes like this:

�B�n�K�V�g���2���»�=�Z�a�a�d�¼��
�^�[���i�n�e�Z���B�n�K�V�g���#�T�T�c�V�b�Z�T�T���2�2���»�h�i�g�¼�/
���������e�g�^�c�i���»�B�n�K�V�g���^�h���V���h�i�g�^�c�\�¼

As with most things in IronPython, there are multiple ways to perform this task.
You don’t have to use the �i�n�e�Z���� function. Use the �T�T�X�a�V�h�h�T�T attribute as shown
here instead:

�B�n�K�V�g���2���»�=�Z�a�a�d�¼��
�^�[���B�n�K�V�g�#�T�T�X�a�V�h�h�T�T�#�T�T�c�V�b�Z�T�T���2�2���»�h�i�g�¼�/
���������e�g�^�c�i���»�B�n�K�V�g���^�h���V���h�i�g�^�c�\�¼

The result is the same. Theoretically, using �T�T�X�a�V�h�h�T�T provides a performance
boost. However, that performance boost, if any, is quite small, so you should use
the approach that works best with your typing skills.

80 �X CHAPTER 5 INTERACTING WITH STRUCTURES AND OBJECTS

Performing Standard Tasks with Strings
You’ve already seen a few of the things you can do with strings in previous chapters. This chapter
takes a little more organized look at the methods and properties associated with strings. The following
list provides an overview of the most common tasks you can perform.

�°�� �X�Z�c�i�Z�g���^�c�i���l�^�Y�i�]�P�!���8�]�V�g���[�^�a�a�X�]�V�g�R��: Centers the string within the space de�ned by �l�^�Y�i�].
The default is to use spaces to pad the left and right side of the string to center it. However, you
can specify another character by specifying the optional �[�^�a�a�X�]�V�g. For example, if you want to
center a string named MyString in a 40-character area using the * as a �ll character, you’d type
�B�n�H�i�g�^�c�\�#�X�Z�c�i�Z�g���)�%�!���»���»��.

���° �^�c�i���X�d�j�c�i���h�i�g���h�h�j�W�!���P�^�c�i���h�i�V�g�i�P�!���^�c�i���Z�c�Y�R�R��: Counts the number of instances of
a substring, �h�h�j�W, within a string. The substring can be one or more letters that you want
to �nd within the string. You may optionally provide a starting point, �h�i�V�g�i, and an end-
ing point, �Z�c�Y, for the count. For example, if you want to count the number of ls found in
�B�n�H�i�g�^�c�\, you’d type �B�n�H�i�g�^�c�\�#�X�d�j�c�i���»�a�»�!���%�!���a�Z�c���B�n�H�i�g�^�c�\����.

���° �Y�Z�X�d�Y�Z���P�d�W�_�Z�X�i���Z�c�X�d�Y�^�c�\�P�!���h�i�g���Z�g�g�d�g�h�R�R��: Decodes an encoded string. Even
though �Z�c�X�d�Y�^�c�\ is optional, you must provide a value in order to decode the string.
You can �nd a list of standard encodings at �]�i�i�e�/�$�$�l�l�l�#�e�n�i�]�d�c�#�d�g�\�$�Y�d�X�$�'�#�*�#�'�$�a�^�W�$
�h�i�V�c�Y�V�g�Y�"�Z�c�X�d�Y�^�c�\�h�#�]�i�b�a. The errors argument de�nes how �Y�Z�X�d�Y�Z���� treats errors,
with a default value of �h�i�g�^�X�i. You can �nd a list of error strings at �]�i�i�e�/�$�$�l�l�l�#�e�n�i�]�d�c��
�#�d�g�\�$�Y�d�X�$�'�#�*�#�'�$�a�^�W�$�X�d�Y�Z�X�"�W�V�h�Z�"�X�a�V�h�h�Z�h�#�]�i�b�a. For example, you might have a Unix-
to-Unix Encode (uuencode) string named EncodeString that you want to decode into plain
text. To convert the string, you’d type �:�c�X�d�Y�Z�H�i�g�^�c�\�#�Y�Z�X�d�Y�Z���»�j�j�T�X�d�Y�Z�X�»��.

���° �Z�c�X�d�Y�Z���P�d�W�_�Z�X�i���Z�c�X�d�Y�^�c�\�P�!���h�i�g���Z�g�g�d�g�h�R�R��: Encodes a string to another format. You
have the same options as when decoding a string (see the �Y�Z�X�d�Y�Z���� entry in this list). For
example, you might want to encode a string using uuencode. To perform this task, you’d
type �:�c�X�d�Y�Z�H�i�g�^�c�\���2���B�n�H�i�g�^�c�\�#�Z�c�X�d�Y�Z���»�j�j�T�X�d�Y�Z�X�»��. After the call, �:�c�X�d�Y�Z�H�i�g�^�c�\
would contain the uuencoded string.

���° �Z�c�Y�h�l�^�i�]���d�W�_�Z�X�i���h�j�[�[�^�m�P�!���^�c�i���h�i�V�g�i�P�!���^�c�i���Z�c�Y�R�R��: Determines whether the string
ends with a particular letter or substring, �h�j�[�[�^�m. You may optionally provide a starting
point, �h�i�V�g�i, and ending point, �Z�c�Y, in the string. When using an end value, �Z�c�Y�h�l�^�i�]����
checks the designated endpoint, rather than the actual end of the string. For example, if you
want to determine whether there’s a l at position 4 (an end point of 3 since the string count
begins with 0), you’d type �B�n�H�i�g�^�c�\�#�Z�c�Y�h�l�^�i�]���»�a�»�!���%�!���(��.

���° �Z�m�e�V�c�Y�i�V�W�h���P�^�c�i���i�V�W�h�^�o�Z�R��: Expands the tabs within a string using spaces. You may option-
ally provide the number of spaces to use for each tab using �i�V�W�h�^�o�Z. For example, if you want
to expand the tabs in a string to four spaces, you’d type �B�n�H�i�g�^�c�\�#�Z�m�e�V�c�Y�i�V�W�h���)��.

���° �[�^�c�Y���h�i�g���h�j�W�P�!���^�c�i���h�i�V�g�i�P�!���^�c�i���Z�c�Y�R�R�� or �[�^�c�Y���h�i�g���h�j�W�!���d�W�_�Z�X�i���h�i�V�g�i�!���d�W�_�Z�X�i��
�Z�c�Y��: Locates the substring, �h�j�W, within the string and outputs an integer value de�ning the
�rst occurrence of the substring. You can optionally add a starting, �h�i�V�g�i, and ending, �Z�c�Y,
value to change the location that the method searches within the string (the default is to search
the entire string). In this case, the starting and ending value need not be an integer value, but
can be an object that de�nes the starting and ending point instead. For example, if you want

Working with Existing Objects �X 81

to search for the �rst occurrence of l within a string, you’d type �B�n�H�i�g�^�c�\�#�[�^�c�Y���»�a�»��. This
method returns a value of –1 when the string doesn’t contain the search value.

���° �[�d�g�b�V�i�����V�g�\�h�P�!�����`�l�V�g�\�h�R��: Formats the string using a template (see the “Formatting
String Output” section for details). The �V�g�\�h argument contains positional information and
�`�l�V�g�\�h contains a keyword argument.

���° �^�c�Y�Z�m���h�i�g���h�j�W�P�!���^�c�i���h�i�V�g�i�P�!���^�c�i���Z�c�Y�R�R�� or
�^�c�Y�Z�m���h�i�g���h�j�W�!���d�W�_�Z�X�i���h�i�V�g�i�!���d�W�_�Z�X�i���Z�c�Y��: Performs precisely the same task as
�[�^�c�Y����. However, instead of returning –1 when a value isn’t found, �^�c�Y�Z�m����raises a
�K�V�a�j�Z�:�g�g�d�g instead.

���° �^�h�V�a�c�j�b����, �^�h�V�a�e�]�V����, �^�h�Y�Z�X�^�b�V�a����, �^�h�Y�^�\�^�i����, �^�h�a�d�l�Z�g����, �^�h�c�j�b�Z�g�^�X����, �^�h�h�e�V�X�Z����,
�^�h�i�^�i�a�Z����, �^�h�j�c�^�X�d�Y�Z����, and �^�h�j�e�e�Z�g����: Detects the state of the string and returns True
when the speci�ed condition exists. For example, �^�h�V�a�c�j�b���� returns �I�g�j�Z when a string con-
tains some combination of letters and numbers. The string must contain at least one letter,
but need not necessarily contain any numbers. The �^�h�V�a�e�]�V���� method, on the other hand,
only returns �I�g�j�Z when the string contains only letters, and �^�h�c�j�b�Z�g�^�X���� returns �I�g�j�Z when
the string contains only numbers.

���° �_�d�^�c���a�^�h�i���h�Z�f�j�Z�c�X�Z�� or �_�d�^�c���d�W�_�Z�X�i���h�Z�f�j�Z�c�X�Z��: Appends a string to a list or a sequence.
This method joins each member of the sequence to the source string. For example, if the source
string contains ABC and you join 123 to it, you obtain ‘1ABC2ABC3’ as output. To obtain
this output, you’d type �B�n�H�i�g�^�c�\�#�_�d�^�c���»�&�'�(�»��. As an alternative, you could type �B�n�H�i�g�^�c�\��
�#�_�d�^�c���P�»�&�»�!���»�'�»�!���»�(�»�R�� to obtain the same output using a list.

���° �a�_�j�h�i���^�c�i���l�^�Y�i�]�P�!���8�]�V�g���[�^�a�a�X�]�V�g�R��: Left-justi�es the string to a length speci�ed by
�l�^�Y�i�] by padding the left end with the speci�ed number of characters. You can optionally
specify a �ll character other than the default of a space by providing �[�^�a�a�X�]�V�g. For example,
if you want to left-justify a string to 40 spaces and �ll the spaces with an *, you’d type
�B�n�H�i�g�^�c�\�#�a�_�j�h�i���)�%�!���»���»��.

���° �a�d�l�Z�g����: Returns the lowercase version of the string.

���° �a�h�i�g�^�e���P�h�i�g���X�]�V�g�h�R��: Removes white space from the beginning of a string by default. You
may also provide a �X�]�V�g�h value as input. In this case, the method removes that character from
the beginning of the string when it exists. For example, to remove the leading spaces from a
string, you’d type �B�n�H�i�g�^�c�\�#�a�h�i�g�^�e����.

���° �e�V�g�i�^�i�^�d�c���h�i�g���h�Z�e��: Divides the string into three parts based on the value of �h�Z�e.
The �rst part contains the piece of the string before �h�Z�e, the second part contains �h�Z�e,
and the third part contains the piece of the string after �h�Z�e. For example, to split a string
at the �rst space, you’d type �B�n�H�i�g�^�c�\�#�e�V�g�i�^�i�^�d�c���»���»��.

���° �g�Z�e�a�V�X�Z���d�W�_�Z�X�i���d�a�Y�!���d�W�_�Z�X�i���c�Z�l�P�!���^�c�i���b�V�m�h�e�a�^�i�R��: Replaces the occurrences of �d�a�Y
with �c�Z�l in the target string. You may provide an optional number of replacements to make
by de�ning �b�V�m�h�e�a�^�i. For example, if you want to replace the spaces in a string with the
newline escape code, you’d type �B�n�H�i�g�^�c�\�#�g�Z�e�a�V�X�Z���»���»�!���»�$�c�»��.

���° �g�[�^�c�Y����: Performs the same task as �[�^�c�Y����, except that this method searches from the right
end of the string, rather than the left. See the �[�^�c�Y���� entry in the list for details.

82 �X CHAPTER 5 INTERACTING WITH STRUCTURES AND OBJECTS

�° �� �g�^�c�Y�Z�m����: Performs the same task as �^�c�Y�Z�m����, except that this method indexes from the
right end of the string, rather than the left. See the �^�c�Y�Z�m���� entry in the list for details.

���° �g�_�j�h�i����: Performs the same task as �a�_�j�h�i����, except that this method right-justi�es the
string, rather than left-justifying it. See the �a�_�j�h�i���� entry in the list for details.

���° �g�e�V�g�i�^�i�^�d�c����: Performs the same task as �e�V�g�i�^�i�^�d�c����, except that this method partitions
the right side of the string, rather than the left side. See the �e�V�g�i�^�i�^�d�c���� entry in the list for
details.

���° �g�h�e�a�^�i����: Performs the same task as �h�e�a�^�i����, except that this method begins at the right
side of the string, rather than the left. See the �h�e�a�^�i���� entry in the list for details.

���° �g�h�i�g�^�e����: Performs the same task as �a�h�i�g�^�e����, except that this method begins at the right
side of the string, rather than the left. See the �a�h�i�g�^�e entry in the list for details.

���° �h�e�a�^�i���h�i�g���h�Z�e�P�!���^�c�i���b�V�m�h�e�a�^�i�R��: Divides the string into a list using �h�Z�e as the point
of division. You may provide an optional number of replacements to make by de�ning
�b�V�m�h�e�a�^�i. For example, if you want to divide a string into individual words, you’d type
�B�n�H�i�g�^�c�\�#�h�e�a�^�i���»���»��.

���° �h�e�a�^�i�a�^�c�Z�h���P�W�d�d�a���`�Z�Z�e�Z�c�Y�h�R��: Breaks a string apart by lines. The output is a list of lines
within the string. Normally, the output doesn’t include the newline character. However, you
can keep the newline character by setting �`�Z�Z�e�Z�c�Y�h to �I�g�j�Z. For example, to break a string
part into individual lines, you’d type �B�n�H�i�g�^�c�\�#�h�e�a�^�i�a�^�c�Z�h����.

���° �h�i�V�g�i�h�l�^�i�]����: Performs the same task as �Z�c�Y�h�l�^�i�]����, except that this method works with
the beginning of the string, rather than the end of the string. See the �Z�c�Y�h�l�^�i�]���� entry in the
list for details.

���° �h�i�g�^�e����: Performs the same task as �a�h�i�g�^�e����, except that this method removes spaces (or
other characters) from both ends of the string, rather than just the left. See the �a�h�i�g�^�e����
entry in the list for details.

���° �h�l�V�e�X�V�h�Z����: Sets all of the lowercase characters to uppercase and all of the uppercase char-
acters to lowercase. For example, if you begin with ‘Hello World’, you’d receive ‘hELLO
wORLD’ as output if you typed �B�n�H�i�g�^�c�\�#�h�l�V�e�X�V�h�Z����.

���° �i�^�i�a�Z����: Returns a title-cased version of a string where the �rst letter of each word is capi-
talized and all other letters are lowercase. For example, if you begin with ‘helLo wORLD’,
you’d receive ‘Hello World’ as output if you typed �B�n�H�i�g�^�c�\�#�i�^�i�a�Z����.

���° �i�g�V�c�h�a�V�i�Z���h�i�g���i�V�W�a�Z�!���P�h�i�g���Y�Z�a�Z�i�Z�X�]�V�g�h�R�� or �i�g�V�c�h�a�V�i�Z���Y�^�X�i���i�V�W�a�Z��: Replaces the
characters in a string with the equivalents speci�ed by �i�V�W�a�Z. The �i�V�W�a�Z argument is 256
characters long and you can create it using the �B�V�`�Z�I�g�V�c�h���� function found in the string
module. (Remember to use �[�g�d�b���h�i�g�^�c�\���^�b�e�d�g�i���b�V�`�Z�i�g�V�c�h to make accessing the func-
tion easy.) For example, if you want to replace the �rst 16 lowercase letters with hexadeci-
mal equivalents, you’d type �B�n�H�i�g�^�c�\�#�i�g�V�c�h�a�V�i�Z���b�V�`�Z�i�g�V�c�h���»�V�W�X�Y�Z�[�\�]�^�_�`�a�b�c�d�e�»�!��
�»�%�&�'�(�)�*�+�,�-�.�6�7�8�9�:�;�»����. Using this code as a starting point, ‘Hello World’ becomes
‘H4BBE WErB3’.

���° �j�e�e�Z�g����: Returns the uppercase version of the string.

Working with Existing Objects �X 83

���° �o�[�^�a�a���^�c�i���l�^�Y�i�]��: Returns a string that has zeros placed on the left side to pad the string
to the length speci�ed by width. For example, if you typed �B�n�H�i�g�^�c�\�#�o�[�^�a�a���)�%��, you’d
receive a string that is 40 characters long with as many zeros on the left side as required to
produce the required length.

Formatting String Output
String formatting can become quite complex in Python and IronPython. However, if you start with
the basics, you’ll �nd that you can usually �gure out the complex elements without too much trouble.
A basic format string contains one or more �elds. A �eld is simply some text that appears within curly
braces that you replace with a value. In fact, if you’ve worked with any .NET language, you’ve already
used �elds. Here’s a simple sentence that contains a �eld.

�B�n�H�i�g�^�c�\���2���»�=�Z�a�a�d���p�%�r�»

Of course, you won’t want to print this string direct ly onscreen. Instead, you’ll want to replace �p�%�r
with some other value. In order to do this, you can use the �[�d�g�b�V�i���� method as shown here.

�B�n�H�i�g�^�c�\�#�[�d�g�b�V�i���»�<�Z�d�g�\�Z�¼��

The interpreter replaces the �p�%�r with the name �<�Z�d�g�\�Z. Consequently, you see ‘Hello George’ as
output from these two lines of code. You have a number of options when working with replaceable
variables in a string. The following list shows just a few of the options:

�°�� �B�n�H�i�g�^�c�\���2���º�=�Z�a�a�d���p�%�r�º: Provides a simple replacement from a list of input arguments.
The input arguments must appear in the order required in the string.

���° �B�n�H�i�g�^�c�\���2���º�=�Z�a�a�d���p�%�P�c�V�b�Z�R�r�º: Provides a replacement from a dictionary. The correspond-
ing �[�d�g�b�V�i���� method input is �B�n�H�i�g�^�c�\�#�[�d�g�b�V�i���p�»�c�V�b�Z�»�/�»�<�Z�d�g�\�Z�»�r��. Of course, you can
provide additional �eld information if your dictionary contains arrays for each of the elements.
In this case, you specify the element you want to use like this:
�B�n�H�i�g�^�c�\���2���»�=�Z�a�a�d���p�%�P�c�V�b�Z�h�R�P�%�R�r�». The resulting �[�d�g�b�V�i���� method input is
�B�n�H�i�g�^�c�\�#�[�d�g�b�V�i���p�»�c�V�b�Z�h�»�/�P�»�<�Z�d�g�\�Z�»�!���»�6�b�n�»�R�r��. The advantage of this method
is that the input arguments can appear in any order.

���° �B�n�H�i�g�^�c�\���2���º�I�]�Z���e�V�i�]�h���V�g�Z���p�%�#�e�V�i�]�r�º: Provides a means of accessing an attribute
within an object. The corresponding �[�d�g�b�V�i���� method input is �B�n�H�i�g�^�c�\�#�[�d�g�b�V�i���h�n�h��.
If you want to access a speci�c path, simply include the element speci�er like this:
�B�n�H�i�g�^�c�\���2���»�I�]�Z���e�V�i�]���^�h���p�%�#�e�V�i�]�P�%�R�r�». The advantage of this technique is that you
can access properties within objects without �rst placing the property value in a variable.

A formatting string can contain as many variables as needed to provide complete information to the
user. For example, you can add a second argument like this.

�B�n�H�i�g�^�c�\���2���»�=�Z�a�a�d���p�%�r���[�g�d�b���p�&�r�»

When you call the �[�d�g�b�V�i���� method, you now need to add some more information. The �[�d�g�b�V�i����
method input for this string might look like this.

�B�n�H�i�g�^�c�\�#�[�d�g�b�V�i���»�<�Z�d�g�\�Z�¼�!���»�A�d�c�Y�d�c�¼��

84 �X CHAPTER 5 INTERACTING WITH STRUCTURES AND OBJECTS

In many cases, you need to provide input that doesn’t translate into a string. For example, you
might need to provide integer input for some strings. The interpreter won’t automatically perform
a conversion in this case so you need to perform the task manually. The conversion symbol is the
exclamation mark (��) and the most common conversion is string (�h). You can also call the �g�Z�e�g����
conversion function by using �g in place of �h. Here’s an example of a conversion:

�B�n�H�i�g�^�c�\���2���»�p�%���h�r��� ���p�&���h�r���2���p�'���h�r�»
�B�n�H�i�g�^�c�\�#�[�d�g�b�V�i���&�!���'�!���&� �'��

In this case, you get an output of ‘1 + 2 = 3’. Notice that this example places the math directly in the
format string. You could place the output of a functio n there as well.

So far, the examples haven’t done much formatting — they have simply replaced �eld values with infor -
mation found in other sources. The format operator is the colon (�/) and you can combine it with the
conversion operator if you want. To see how this works, think about displaying the previous example in
hexadecimal format. In that case, your code might look like this:

�B�n�H�i�g�^�c�\���2���»�p�%�/�M�r��� ���p�&�/�M�r���2���p�'�/�M�r�»
�B�n�H�i�g�^�c�\�#�[�d�g�b�V�i���&�%�!���'�%�!���&�%� �'�%��

The output from this code is in hexadecimal format — you’d see ‘A + 14 = 1E’. Of course, you might
want all the values to take up the same space. In this case, you can tell the interpreter to add some
space to the output using the following string:

�B�n�H�i�g�^�c�\���2���»�p�%�/�%�2�)�M�r��� ���p�&�/�%�2�)�M�r���2���p�'�/�%�2�)�M�r�»

This string outputs numbers with zeros as padding. The padding appears after any sign information.
In addition, each of the entries is four digits long. Consequently, the output now looks like this: ‘000A
+ 0014 = 001E’. The formatting has speci�c entries, all of which are options. It looks like this:

�P�P�[�^�a�a�R�V�a�^�\�c�R�P�h�^�\�c�R�P���R�P�%�R�P�l�^�Y�i�]�R�P�#�e�g�Z�X�^�h�^�d�c�R�P�i�n�e�Z�R

Fill characters determine what appears as part of the padding the interpreter uses when you specify
a width, and the �eld value doesn’t �ll the entire space. The default padding is the space, but you
can specify any character other than the closing brace, which would end the formatting de�nition.
When you specify a �ll character, such as the 0 used in the previous example, you must also use one
of the alignment characters found in Table 5-1.

TABLE 5�1: String Formatting Alignment Options

OPTION MEANING

‘<’ Sets the �eld to use left alignment, which is the default.

‘>’ Sets the �eld to use right alignment.

‘=’ Adds the padding after the sign (if any), but before any digits. You’ve already
seen the e�ect of this alignment option earlier in this chapter. The interpreter
recognizes this alignment only when working with numeric types.

‘^’ Centers the �eld information within the available space.

Working with Existing Objects �X 85

The use of signs in the output comes next. For example, you can choose to have all positive numbers
begin with a plus sign (+) so there’s no confusion about their positive value. Table 5-2 shows the sign
formatting options you can use.

TABLE 5�2: String Formatting Sign Options

OPTION MEANING

‘+’ Adds a sign for both positive and negative numbers.

‘-‘ Adds a sign only for negative numbers. This is the default behavior.

Spacebar

space

Adds a leading space for positive numbers and a minus sign for negative
numbers. Using this option lets you align numbers in tables that contain
both positive and negative numbers.

The pound sign (#), which is called by a host of names, such as octothorp and number sign, tells the
interpreter to add a letter after numeric values to show their base — b for binary, o for octal, or x for
hexadecimal (decimal values never have the letter added). For example, if you change the previous
formatting string to include the # like this:

�B�n�H�i�g�^�c�\���2���»�p�%�/�%�2���+�M�r��� ���p�&�/�%�2���+�M�r���2���p�'�/�%�2���+�M�r�»

the output changes to include the correct base designation. You’ll see ‘0X000A + 0X0014 = 0X001E’
as the output.

The width and precision entries come next. If you precede the width value with a �%, then the inter-
preter will pad the numeric values with zeros. The precision entry tells the interpreter how many
decimal places to use for the output.

The �nal formatting you can request is the output type. In this case, you must decide in advance
what kind of value that the �eld will accept — integers use different type designations than �oating
point and decimal types. Table 5-3 shows the types you can use for integer input, while Table 5-4
shows the types for �oating point and decimal.

TABLE 5�3: Integer Formatting Types

OPTION MEANING

‘b’ Outputs the number as a base 2 (binary) value.

‘c’ Converts the integer value to a Unicode character prior to printing. The
acceptable value range is from 0 to 255. The output shows printable
characters up to 126 (the tilde, ~).

‘d’ Outputs the number as a base 10 (decimal) value. This is the default output.

‘o’ Outputs the number as a base 8 (octal) value.

continues

86 �X CHAPTER 5 INTERACTING WITH STRUCTURES AND OBJECTS

OPTION MEANING

‘x’ Outputs the number as a base 16 (hexadecimal) value. The interpreter uses
lowercase characters for any value above 9 and also for the base indicator.

‘X’ Outputs the number as a base 16 (hexadecimal) value. The interpreter uses
uppercase characters for any value above 9 and also for the base indicator.

‘n’ Outputs the number as a base 10 (decimal) value. However, this setting uses
the user’s locale setting for separator characters. For example, many coun-
tries use the comma for the decimal point instead of a period.

TABLE 5�4: Floating Point and Decimal Formatting Types

OPTION MEANING

‘e’ Outputs the number in exponent (scienti�c notation) form, using the letter
‘e’ (lowercase) to indicate the exponent.

‘E’ Outputs the number in exponent (scienti�c notation) form, using the letter
‘E’ (uppercase) to indicate the exponent.

‘f’ or ‘F’ Outputs the number in �xed-point format.

‘g’ Outputs the number in a general format. The presentation depends on the
numeric magnitude. Smaller numbers appear in �xed-point format, while larger
numbers appear in scienti�c notation.

The rules for determining whether a number appears in either �xed-point or
scienti�c notation are relatively complex, but are based on the size and preci-
sion of the number. If a number would require too many zeros (due to being
too large or too small) to present as �xed point, the interpreter automatically
chooses scienti�c notation. No matter how the interpreter presents the num-
ber, it removes insigni�cant trailing zeros. In addition, the interpreter removes
the decimal point if there aren’t any digits following it.

The interpreter also presents positive in�nity as inf, negative in�nity as -inf,
positive zero as 0, negative zero as -0, and Not-a-Number (NaN) as nan. You
can read more about these special value representations at �]�i�i�e�/�$�$�h�i�Z�k�Z��
�#�]�d�a�a�V�h�X�]�#�c�Z�i�$�X�\�^�c�Y�Z�m�$�X�d�Y�^�c�\�$�^�Z�Z�Z�[�a�d�V�i�#�]�i�b�a.

‘G’ Outputs the number in general format using the same requirements as the ‘g’
type. The di�erence is that this type uses an uppercase ‘E’ for scienti�c nota-
tion. Both representations of in�nity and NaN appear in uppercase as well.

‘n’ Outputs the number in general format using the same requirements as the
‘g’ type. This type di�ers because it relies on the user’s current locale set-
tings to insert the appropriate number separator characters.

‘%‘ Outputs the number as a percentage by multiplying the number by 100 and
appending a percent sign.

TABLE 5�3 (continued)

Working with Existing Objects �X 87

Working with Numeric Objects
Numeric objects include a number of methods that make working with them easier. It’s important to
realize that some of the methods that apply to strings also apply to numbers. For example, you can
access the �T�T�[�d�g�b�V�i�T�T���� method when working with a number. In addition, you can easily turn a
number into a string using the �T�T�h�i�g�T�T���� method. Some string-oriented methods actually revolve
around numbers, such as the format typing described in Tables 5-3 and 5-4. In short, don’t think
that numbers are limited to number-speci�c methods. The following sections consider the kinds of
things you can do with numbers.

Considering Numeric Type Di�erences
IronPython generally splits numbers between integers and �oats (decimals are included with �oats).
The two numeric presentations are handled differently by the interpreter and even have different
representations at the hardware level, so it’s no surprise that there are differences you must consider
when working with a number. However, as when working with strings, you can cause numbers to
cross the divide. An integer can appear as a �oat using the �T�T�[�a�d�V�i�T�T���� method. Likewise, you can
use �T�T�^�c�i�T�T���� or �T�T�i�g�j�c�X�T�T���� methods.

Numeric types have some similarities. For example, both integers and �oats support the �T�T�V�W�h�T�T����
method, which returns the absolute value of the number. In some cases, you have to look for the
similarities. For example, �oats provide a �]�Z�m���� method that performs the same task as �T�T�]�Z�m�T�T����
does for integers.

Integers have a few interesting methods that �oats can’t support because of their memory repre-
sentation. For example, you can use the �T�T�V�c�Y�T�T���� method to “and” the value of the variable with
another integer (where “anding” 5 and 4 would result i n an output of 4, and “anding” 5 and 7
would result in an output of 5). In fact, here’s a list of methods that appear for integers that don’t
appear for �oats (you’ll notice that most of them hav e something to do with bit-level manipulation):

�° �T�T�V�c�Y�T�T��

�T�T�X�b�e�T�T���°

�T�T�]�Z�m�T�T���°

�T�T�^�c�Y�Z�m�T�T���°

�T�T�^�c�k�Z�g�i�T�T���°

�T�T�a�h�]�^�[�i�T�T���°

�T�T�d�X�i�T�T���°

�T�T�d�g�T�T���°

�T�T�g�V�c�Y�T�T���°

�T�T�g�a�h�]�^�[�i�T�T���°

�T�T�g�d�g�T�T���°

�T�T�g�g�h�]�^�[�i�T�T���°

�T�T�g�h�]�^�[�i�T�T���°

88 �X CHAPTER 5 INTERACTING WITH STRUCTURES AND OBJECTS

�° �T�T�g�m�d�g�T�T��

�T�T�m�d�g�T�T���°

�Y�Z�c�d�b�^�c�V�i�d�g���°

�c�j�b�Z�g�V�i�d�g���°

Floats, likewise, have a few methods that apply only to them. Most of these methods deal with
performing comparisons. For example, you need a special method to determine that two �oats are
equal to each other (the �T�T�Z�f�T�T���� method). The following list shows these methods:

�° �T�T�Z�f�T�T��

�T�T�\�Z�T�T���°

�T�T�\�Z�i�[�d�g�b�V�i�T�T���°

�T�T�\�i�T�T���°

�T�T�a�Z�T�T���°

�T�T�a�i�T�T���°

�T�T�c�Z�T�T���°

�T�T�h�Z�i�[�d�g�b�V�i�T�T���°

�V�h�T�^�c�i�Z�\�Z�g�T�g�V�i�^�d���°

�[�g�d�b�]�Z�m���°

�]�Z�m���°

�^�h�T�^�c�i�Z�\�Z�g���°

Performing Standard Tasks with Numbers
Now that you have a better idea of how numbers compare, it’s time to look at some speci�c methods.
This section describes some of the more common methods used with numbers. You’ll see a good many
of the other methods demonstrated as the book progresses.

�°�� �V�h�T�^�c�i�Z�\�Z�g�T�g�V�i�^�d���� (�oat only): Displays a tuple showing the integer ratio used to produce
the �oat. For example, if the �oat value is 5.5, then this method outputs (11L, 2L). To use
this method type �B�n�;�a�d�V�i�#�V�h�T�^�c�i�Z�\�Z�g�T�g�V�i�^�d����.

���° �X�d�c�_�j�\�V�i�Z����: Returns the conjugate of a complex number or the identity value of a real
number. You can read more about conjugation at �]�i�i�e�/�$�$�Z�c�#�l�^�`�^�e�Z�Y�^�V�#�d�g�\�$�l�^�`�^�$
�8�d�b�e�a�Z�m�T�X�d�c�_�j�\�V�i�Z.

���° �[�g�d�b�]�Z�m���h�i�g���^�c�e�j�i�� (�oat only): Outputs the decimal equivalent of a hexadecimal number
input as a string. For example, to determine the decimal value of the hexadecimal number A5,
you’d type �B�n�;�a�d�V�i�#�[�g�d�b�]�Z�m���»�6�*�»��. In this case, the output is 165.

���° �]�Z�m���� (�oat) or �T�T�]�Z�m�T�T���� (integer): Outputs the hexadecimal value of the �oat or integer.
For example, to �nd the hexadecimal value of �B�n�>�c�i, you’d type �B�n�>�c�i�#�T�T�]�Z�m�T�T����.

Creating New Objects �X 89

���° �^�b�V�\: Contains the imaginary part of a complex number. To use this attribute you’d type
�B�n�8�d�b�e�a�Z�m�#�^�b�V�\.

���° �^�h�T�^�c�i�Z�\�Z�g���� (�oat only): Determines whether the content of a �oating point number is an
integer in value. When using this method, a value of 5.0 would return �I�g�j�Z, while a value of
5.1 would return �;�V�a�h�Z. To use this method, you’d type �B�n�;�a�d�V�i�#�^�h�T�^�c�i�Z�\�Z�g����.

���° �g�Z�V�a: Contains the real part of a complex number. To use this attribute you’d type
�B�n�8�d�b�e�a�Z�m�#�g�Z�V�a.

The �^�c�i�#�Y�Z�c�d�b�^�c�V�i�d�g and �^�c�i�#�c�j�b�Z�g�V�i�d�g attributes are in place for
support of rational numbers. You can read more about this support at
�]�i�i�e�/�$�$�l�l�l�#�e�n�i�]�d�c�#�d�g�\�$�Y�Z�k�$�e�Z�e�h�$�e�Z�e�"�%�'�(�.�$.

Working with Boolean Objects
Boolean objects provide access to truth values about other objects and their relationships. Many
objects have Boolean methods built in. For example, when working with a �oat, you can use the
equality methods �T�T�Z�f�T�T����, �T�T�\�Z�T�T����, �T�T�\�i�T�T����, �T�T�a�Z�T�T����, �T�T�a�i�T�T����, and �T�T�c�Z�T�T���� to deter-
mine relationships between values. In fact, Boolean objects also include these equality methods and
you might �nd them useful at times for comparing the truth value of two Boolean objects.

For the most part, Boolean objects have little in the way of other methods that you need when
creating a typical IronPython application. For example, you could use the �T�T�a�d�c�\�T�T���� method to
convert the Boolean to long integer, but that really wouldn’t accomplish much for most developers.
About the only other method that you really need to know about is �T�T�[�d�g�b�V�i�T�T����, which is
explained in the “Formatting String Output” section of the chapter.

CREATING NEW OBJECTS

Although IronPython has a wealth of built-in objects, you eventually need to create your own objects
for an application of any complexity. If you’ve work ed with other languages and scratched your head
over some of the requirements for creating a class, you’ll �nd that IronPython is a welcome change.
Creating and using custom classes in IronPython is amazingly easy. The following sections tell you how
to create a basic class and then show how to use it. Don’t worry about the simplicity of this example;
you’ll have plenty of opportunity to create more complex classes later in the book.

De�ning the IronPython Class
An IronPython class can have both attributes (properties) and methods, just as any class in any
other language can have. However, IronPython classes have a few quirks as well. Listing 5-1 shows
an example of a simple IronPython class.

90 �X CHAPTER 5 INTERACTING WITH STRUCTURES AND OBJECTS

You’ve probably worked with a language that has both structures and classes.
The structures serve as a means to tightly pack information and possibly add some
information to it. Using structures in other languages usually incurs a performance
bene�t at a cost of some �exibility. IronPython also has structures, but these struc-
tures work differently from other languages. An IronPython structure is more like
a marshaling mechanism used for binary protocols and some types of networking,
and you probably won’t use it very often. Consequently, this book concentrates
on objects. If you do need a structure-like construct for your application, most
experts recommend using dictionaries or �eld-only class constructs in IronPython.
You can read more about IronPython structures at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$
�a�^�W�g�V�g�n�$�h�i�g�j�X�i�#�]�i�b�a.

LISTING 5�1: De�ning a simple class

�X�a�V�h�h���B�n�<�g�Z�Z�i�^�c�\�h�/

�����������<�g�Z�Z�i�^�c�\���c�V�b�Z���k�V�g�^�V�W�a�Z�#
�������C�V�b�Z���2���»�H�V�b�b�n�¼

�����������E�g�d�k�^�Y�Z�h���V���]�Z�a�a�d���\�g�Z�Z�i�^�c�\�#
�������Y�Z�[���H�V�n�=�Z�a�a�d���h�Z�a�[���/
�������������e�g�^�c�i���»�=�Z�a�a�d���i�]�Z�g�Z�¼�!���h�Z�a�[�#�C�V�b�Z�!���»���¼

�����������E�g�d�k�^�Y�Z�h���V���\�d�d�Y�W�n�Z���b�Z�h�h�V�\�Z�#
�������Y�Z�[���H�V�n�<�d�d�Y�W�n�Z���h�Z�a�[���/
�������������e�g�^�c�i���»�H�Z�Z���n�d�j���a�V�i�Z�g�¼�!���h�Z�a�[�#�C�V�b�Z�!���»���¼

The class description starts out with the word �X�a�V�h�h, as you might expect, and the name of the
class. If you plan to inherit from another class, you enclose its name in parentheses behind the class
name like this:

�X�a�V�h�h���B�n�<�g�Z�Z�i�^�c�\�h���h�n�h���/

In this case, the �B�n�<�g�Z�Z�i�^�c�\�h class would inherit from the �h�n�h class. A class de�nition ends with a
colon, just like every other structure in IronPython. You use indentation, as normal, to signify the
end of the class.

Attributes are simply variables that you declare as part of the class. As you can see, you normally
de�ne a default value for attributes. An attribute can be of any type.

You might have noticed that �C�V�b�Z doesn’t include anything other than the variable
name and its value. IronPython doesn’t support the concept of data hiding — it
isn’t possible to declare attributes and methods as private. More than a few people
have discussed the topic online, but the general consensus is that IronPython
knows what you’re doing and will let you shoot yourself in the foot if you really
want to do so.

Creating New Objects �X 91

Methods are simply a different kind of function in I ronPython. You de�ne them within the class as
you might expect. A method uses �Y�Z�[as the starting point, followed by the method name. Notice
that both methods, �H�V�n�=�Z�a�a�d���� and �H�V�n�<�d�d�Y�W�n�Z����, have an input variable named �h�Z�a�[. When you
create an instance of a class, the interpreter automatically creates the �h�Z�a�[variable for that instance.
The �h�Z�a�[variable contains all of the data associated with that instance, such as �C�V�b�Z in this case.
As you discover in the “Using Custom Objects in IronPython” section, you don’t actually assign any
value to �h�Z�a�[, the interpreter does it for you.

As shown in the method code, you can use any of the data that �h�Z�a�[provides. In this case, the code
accesses �h�Z�a�[�#�C�V�b�Z to obtain the name you assigned to the �C�V�b�Z attribute (or the default, if you
haven’t). If you were to try to access �C�V�b�Z directly, the interpreter would display an error message.

Using Custom Objects in IronPython
At this point, you have a shiny new class named �B�n�<�g�Z�Z�i�^�c�\�h. Normally, you won’t place the class
and the code that uses it in the same �le, so the example places the test code in �I�Z�h�i�;�^�g�h�i�8�a�V�h�h�#�e�n.
Consequently, the �rst thing the example does is import �B�n�<�g�Z�Z�i�^�c�\�h from �;�^�g�h�i�8�a�V�h�h, as shown
in Listing 5-2.

LISTING 5�2: Testing the simple class

�[�g�d�b���;�^�g�h�i�8�a�V�h�h���^�b�e�d�g�i���B�n�<�g�Z�Z�i�^�c�\�h

�����8�g�Z�V�i�Z���V�c���^�c�h�i�V�c�X�Z���d�[���i�]�Z���X�a�V�h�h�#
�I�Z�h�i�>�i���2���B�n�<�g�Z�Z�i�^�c�\�h������

�����H�Z�i���i�]�Z���C�V�b�Z���V�i�i�g�^�W�j�i�Z�#
�I�Z�h�i�>�i�#�C�V�b�Z���2���»�<�Z�d�g�\�Z�¼

�����8�V�a�a���i�]�Z���i�l�d���b�Z�i�]�d�Y�h�#
�I�Z�h�i�>�i�#�H�V�n�=�Z�a�a�d����
�I�Z�h�i�>�i�#�H�V�n�<�d�d�Y�W�n�Z������

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

At this point, the code creates an instance of �B�n�<�g�Z�Z�i�^�c�\�h and places it in �I�Z�h�i�>�i. Notice that the
call to �B�n�<�g�Z�Z�i�^�c�\�h doesn’t require any data. If you want to request data from the caller during
instantiation, you must provide an �T�T�^�c�^�i�T�T���� method in your class declaration. Otherwise, the
interpreter provides a default declaration for you that creates the desired object.

The code changes the value of �C�V�b�Z by assigning a new value to it. Notice that you assign the new
value to �I�Z�h�i�>�i�#�C�V�b�Z, just as you would in any other language.

Next, the code calls the two methods, �H�V�n�=�Z�a�a�d���� and �H�V�n�<�d�d�Y�W�n�Z����. Notice that the method calls
don’t require any input, and IronPython would complai n if you tried to provide it. Remember that
the interpreter provides �h�Z�a�[in the background. Figure 5-2 shows the output from this application.

92 �X CHAPTER 5 INTERACTING WITH STRUCTURES AND OBJECTS

FIGURE 5�2: The simple class outputs the expected information.

Adding Documentation
It’s important to add documentation to your class as soon as possible — preferably while you’re
typing the code. Many IronPython developers work in the interpreter to create applications faster
and rely on the �]�Z�a�e���� function or �T�T�Y�d�X�T�T attribute to understand what a method does with
considerably less effort than �nding the documentation.

Adding documentation to your class is straightforward. You simply add strings immediately after the
class or method de�nition. A string that documents your class is called a docstring. IronPython doesn’t
recognize docstrings that appear in places other than class and method declarations. For example, if
you place a docstring after an attribute, it won’t appear when you use the �]�Z�a�e���� function or �T�T�Y�d�X�T�T
attribute. However, third-party tools often pick up t hese additional docstrings and place them in any
documentation they output. Listing 5-3 shows the example class with docstrings in place.

LISTING 5�3: Adding documentation to a class

�X�a�V�h�h���B�n�<�g�Z�Z�i�^�c�\�h�/
�������¹�º�¹�8�d�c�i�V�^�c�h���V���a�^�h�i���d�[���b�Z�h�h�V�\�Z�h���i�]�V�i���n�d�j���l�V�c�i���i�d���h�Z�c�Y���i�d���i�]�Z���j�h�Z�g�#
�������B�V�`�Z���h�j�g�Z���n�d�j���V�h�h�^�\�c���V���k�V�a�j�Z���i�d���C�V�b�Z���W�Z�[�d�g�Z���j�h�^�c�\���V�c�n���d�[���i�]�Z��
���������\�g�Z�Z�i�^�c�\�h���h�d���i�]�Z���b�Z�h�h�V�\�Z���^�h���X�j�h�i�d�b�^�o�Z���[�d�g���i�]�V�i���j�h�Z�g�#�º�¹�º

�����������<�g�Z�Z�i�^�c�\���c�V�b�Z���k�V�g�^�V�W�a�Z�#
�������C�V�b�Z���2���»�H�V�b�b�n�¼
�������¹�º�¹�E�g�d�k�^�Y�Z�h���i�]�Z���j�h�Z�g�¼�h���c�V�b�Z�#�º�¹�º

�����������E�g�d�k�^�Y�Z�h���V���]�Z�a�a�d���\�g�Z�Z�i�^�c�\�#
�������Y�Z�[���H�V�n�=�Z�a�a�d���h�Z�a�[���/
�������������¹�º�¹�D�j�i�e�j�i�h���V�c���^�c�i�Z�g�Z�h�i�^�c�\���\�g�Z�Z�i�^�c�\���i�d���i�]�Z���j�h�Z�g�#�º�¹�º
�������������e�g�^�c�i���»�=�Z�a�a�d���i�]�Z�g�Z�¼�!���h�Z�a�[�#�C�V�b�Z�!���»���¼

�����������E�g�d�k�^�Y�Z�h���V���\�d�d�Y�W�n�Z���b�Z�h�h�V�\�Z�#
�������Y�Z�[���H�V�n�<�d�d�Y�W�n�Z���h�Z�a�[���/
�������������¹�º�¹�D�j�i�e�j�i�h���V���\�d�d�Y�W�n�Z���b�Z�h�h�V�\�Z���i�d���i�]�Z���j�h�Z�g�#�º�¹�º
�������������e�g�^�c�i���»�H�Z�Z���n�d�j���a�V�i�Z�g�¼�!���h�Z�a�[�#�C�V�b�Z�!���»���¼

Docstrings can consume one or more lines. The standard convention is to place docstrings within
triple quotes as shown in the listing. You can �nd a number of other docstring conventions at
�]�i�i�e�/�$�$�l�l�l�#�e�n�i�]�d�c�#�d�g�\�$�Y�Z�k�$�e�Z�e�h�$�e�Z�e�"�%�'�*�,�$.

Using IronPython Constructively �X 93

After you create your docstrings, start the IronPython interpreter and load your class. You can try
the docstrings out using either the �]�Z�a�e���� function or �T�T�Y�d�X�T�T attribute. Figure 5-3 shows the
docstring output for the example class.

FIGURE 5�3: Docstrings add greatly to the usability of your application.

Self-documenting your application is great, but some people will prefer some sort of HTML docu -
mentation. Don’t worry; you can get a tool to handle this requirement as well. PythonDoc (�]�i�i�e�/�$�$
�Z�[�[�W�d�i�#�d�g�\�$�o�d�c�Z�$�e�n�i�]�d�c�Y�d�X�#�]�i�b) provides the same type of functionality that JavaDoc does. It’s
akin to generating the documentation you need when you compile your application in Visual Studio.
PythonDoc locates all of the comments in your code and uses them to create HTML documentation
that others can use when working with your classes.

USING IRONPYTHON CONSTRUCTIVELY

This chapter has helped you discover the objects lurking beneath the surface in IronPython. These
objects provide a surprising number of features that simply occur automatically. In fact, IronPython
makes objects look surprisingly simple. Of course, you won’t be happy using just the objects that
IronPython provides, so this chapter also demonstrates how to create structures and objects of
your own. The key thing to take from this chapter is not to make structures and objects too hard in
IronPython — think simple. Otherwise, you’ll end up doing a lot more work than you really need
to do to make use of objects. More important, your objects might not actually work as you intend if
you make them too complex (to look like objects you create in other languages).

By now, you should have some interesting ideas for creating objects of your own. Try creating some
structures and objects in IronPython. In fact, try creating some of both structures and objects to
ensure you understand the difference between the two. Take time to work with enough objects that
you understand how they differ from those you create in other languages.

94 �X CHAPTER 5 INTERACTING WITH STRUCTURES AND OBJECTS

You can play around with searching for objects in IronPython. Use the techniques in this chapter to
locate potential objects and then look them up in the IronPython help. Don’t cheat now — look for
the objects �rst and then study about them in the documentation. You’ll be amazed at how many
IronPython elements have an object lurking in the background.

This is the last basic chapter of the book. It’s important that you understand the concepts pre-
sented in the last �ve chapters before you move on. Chapter 6 begins a new part of the book
where you discover how to work with IronPython in detai l. The book topics move along a little
more rapidly from this point on. In fact, Chapter 6 gets right into the meaty topic o f working with
the Python Standard Library. The Standard Library contains a wealth of objects that make pro-
gramming with IronPython doable. Of course, the reason you want to use the Python Standard
Library is to make your code portable to other platfor ms. IronPython need not necessarily work
as its own language — you can program something and run it on Linux, if you desire, by simply
avoiding IronPython-speci�c features.

PART III
Working with IronPython

CHAPTER 6:� Using the Python Standard Library

CHAPTER 7:� Accessing the .NET Framework

CHAPTER 8:� Creating Windows Forms Applications

CHAPTER 9:� Interacting with COM Objects

CHAPTER 10:� Using IronPython for Administration Tasks

CHAPTER 11:� Developing ASP.NET Applications

CHAPTER 12:� Debugging IronPython Applications

Using the Python
Standard Library

WHAT’S IN THIS CHAPTER?

�° Understanding what the Standard Library can do for you��

Getting a copy of the Standard Library for your system���°

Using the Standard Library from within IronPython���°

Working with the Standard Library���°

The Python Standard Library is the centerpiece of any IronPython you want to create of any com-
plexity. If you want to ensure that your IronPython appl ication will run on other platforms using
other Python interpreters, then you need to stick with the functionality that the Standard Library
provides and avoid the temptation to use .NET features (see Chapter 7 for details) in your applica-
tion. Of course, the �rst thing you’ll want to do is d iscover what the Standard Library can do for
you — perhaps it contains everything you need and falling back on .NET won’t be a problem.

Interestingly enough, IronPython does ship with a version of the Standard Library that’s been
tuned for maximum compatibility with IronPython. Of co urse, the problem word in that previous
sentence is “tuned.” If you want to ensure maximum compatibility outside the IronPython envi-
ronment, you must download a copy of the Python Standard Library, install it on your machine,
and use it in place of the IronPython equivalent. It’s also important to know that the IronPython
version of the Standard Library isn’t complete. You won’t have all the functionality that other
Python developers have unless you use the Python Standard Library.

Whichever version of the Standard Library you use, you’ll need to import modules into your
application before you can use them. This chapter provides a few tricks and techniques you
can use to make accessing the modules easier. It’ll also explain how IronPython locates the
modules so you don’t spend a lot of time trying to �gure out why a particular module is
seemingly inaccessible.

6

98 �X CHAPTER 6 USING THE PYTHON STANDARD LIBRARY

Finally, in this chapter, you’ll spend some time working with the Standard Library. You’ll also spend a
considerable amount of time exploring parts of the Standard Library as the book progresses because
you need it for everything from working from �les to parsing XML. The examples in this chapter are
meant to whet your appetite and demonstrate a few of the more interesting things you can do with the
Standard Library. Make sure you take some time to play with the Standard Library on your own, too.
You’ll be amazed at what you can accomplish after reading this chapter!

CONSIDERING THE STANDARD LIBRARY FEATURES

The Standard Library comes with a number of features not found in IronPython. Of course, there are
all those missing modules. If you look in �Q�E�n�i�]�d�c�'�+�Q�A�^�W you’ll �nd that the Python Standard Library
contains 256 modules in the main library directory, while IronPython has only 186. (Table 6-1 shows
a complete list of the missing modules — each module contains a header telling you about the task it
performs.) In addition, the Python library contains 20 subdirectories, while IronPython has only 11.
In short, the IronPython version of the Standard Library has a lot to offer; the Python version of the
Standard Library has more. Here’s a list of the missing directories:

�°�� bsddb: Provides access to the Berkeley database library. This element is deprecated and will
disappear in Python 3.0, but you can still use it today. See �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$
�a�^�W�g�V�g�n�$�W�h�Y�Y�W�#�]�i�b�a for details.

���° compiler: Contains elements that help you analyze your code. This element is deprecated and
will disappear in Python 3.0, but you can still use it today. See �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$
�a�^�W�g�V�g�n�$�X�d�b�e�^�a�Z�g�#�]�i�b�a for details.

���° curses: Provides the means to handle character-cell displays. See �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$
�a�^�W�g�V�g�n�$�X�j�g�h�Z�h�#�]�i�b�a for details.

���° hotshot: Gives you a high-performance logging pro�ler. See �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$
�a�^�W�g�V�g�n�$�]�d�i�h�]�d�i�#�]�i�b�a for details.

���° json: Implements the JavaScript Object Notation (JSON) encoder and decoder used as a light-
weight data exchange format. See �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�_�h�d�c�#�]�i�b�a for details.

���° msilib: Reads and writes Microsoft Installer (MSI) �les. The Microsoft Installer Library
(MSILib) is an essential library for Windows systems where you need to work with .MSI
�les often. See �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�b�h�^�a�^�W�#�]�i�b�a for details.

���° multiprocessing: Helps you create multi-processing applications. This is an exciting new
addition for Python 2.6. See �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�b�j�a�i�^�e�g�d�X�Z�h�h�^�c�\�#�]�i�b�a
for details.

���° sqlite3: Provides access to the SQLite database library. See �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$
�a�^�W�g�V�g�n�$�h�f�a�^�i�Z�(�#�]�i�b�a for details. You can learn more about the SQLite database at
�]�i�i�e�/�$�$�l�l�l�#�h�f�a�^�i�Z�#�d�g�\�$.

���° test: Contains a complete test package for the Python Standard Library. If you make any
changes to the Standard Library to meet your speci�c needs, you want to perform regression
testing to ensure the changes don’t introduce incompatibilities. See �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c��
�#�d�g�\�$�a�^�W�g�V�g�n�$�i�Z�h�i�#�]�i�b�a for details.

Considering the Standard Library Features �X 99

Standard Library �les that have a .pyc extension are Python-compiled �les that
contain byte code. You can’t read them, but they’re always accompanied by a .py
�le that you can read. The .pyc �les are useful because they execute faster than the
.py �les because the interpreter doesn’t have to turn them into byte code �rst.

TABLE 6�1: Standard Library Modules Missing from IronPython

__future__.pyc _abcoll.pyc abc.pyc ast.py

BaseHTTPServer.pyc bdb.pyc bisect.pyc code.pyc

codecs.pyc codeop.pyc collections.pyc Con�gParser.pyc

copy.pyc copy_reg.py copy_reg.pyc cPro�le.py

csv.py dbhash.py dis.pyc fnmatch.pyc

functools.pyc genericpath.pyc getopt.pyc gzip.py

heapq.pyc inspect.pyc keyword.pyc linecache.pyc

locale.pyc mimetools.pyc ntpath.pyc opcode.pyc

os.pyc pkgutil.pyc pty.py pydoc.pyc

Queue.pyc random.pyc re.py re.pyc

repr.pyc rfc822.pyc shlex.pyc site.pyc

socket.py socket.pyc SocketServer.pyc sre.py

sre_compile.pyc sre_constants.pyc sre_parse.pyc ssl.py

stat.pyc string.pyc stringprep.py struct.pyc

subprocess.py subprocess.pyc symtable.py tabnanny.pyc

temp�le.pyc threading.pyc token.pyc tokenize.pyc

traceback.pyc tty.py types.pyc UserDict.pyc

warnings.pyc webbrowser.py webbrowser.pyc

Getting all of the modules found in the original Python Standard Library would be reason enough
to download, install, and use it. However, the Python Standard Library provides a number of addi-
tional features in the form of help �les and utilities. Al though you can’t use the utilities to perform
.NET-speci�c work, you can use them to ensure your code is truly compatible with Python, which is
a big deal if you plan to use your application on other platforms. With this in mind , here’s a list of
the additional help �les and utilities provided with the Python Standard Library. (You can read more
about them in the “Using the Standard Library Features” section of the chapter.)

100 �X CHAPTER 6 USING THE PYTHON STANDARD LIBRARY

�° �� IDLE (Integrated DeveLopment Environment): A graphical user interface to work with
Python code. In many respects, this is a much nicer interface than the command line version
of the IronPython interpreter. Most important, you can save your work, which means that
you can possibly use IDLE as an alternative to Visual Studio if desired. Of course, IDLE
doesn’t know anything about working with the .NET Framework and you can’t use it to
write multi-language applications.

���° Module Docs: An HTML-formatted help �le that provides complete documentation of the
various Python Standard Library modules. Interestingly enough, you can use this help �le
with IronPython without modi�cation because this is the documentation that IronPython’s
Standard Library is written to support. For the most part, this help �le is brief and not very
detailed, but it’s good when you need a quick reference.

���° Python (command line): An application that works precisely like the IronPython command
line. In fact, you’d be hard pressed to tell the two apart. The only reason you’d want to use
the Python command line is to test the cross-platform compatibility of a module you write.
Otherwise, you’ll want to use the IronPython command line to ensure your code runs prop-
erly with IronPython.

���° Python Manuals: This is the detailed help �le you probably wanted with IronPython, but
didn’t receive. You’ll de�nitely want to spend some time looking around this help �le and
discovering new things about the Python language.

Now that you have a better idea of what the Python Standard Library provides, you need to consider
how you’ll use it or whether you want to use it at all . Just how the Python Standard Library affects
your organization and you depends on your goals. For the most part, you’ll use these tools when you
want to write pure Python applications or applications that rely heavily on Python (versus the mixed
language applications found later in this book). It’s important to remember that IronPython has a lot
to offer that Python doesn’t, so you need to decide which route your organization will take before
you make a commitment to pure Python by using the Python Standard Library.

OBTAINING AND INSTALLING THE PYTHON STANDARD LIBRARY

You can obtain the Python Standard Library from a number of sources, but the best place to go is
directly to the Python Web site at �]�i�i�e�/�$�$�l�l�l�#�e�n�i�]�d�c�#�d�g�\�$�Y�d�l�c�a�d�V�Y�$. Download the Python 2.6.4
Windows installer version of the product (about 14.2 MB). IronPython won’t currently work with the
newer 3.1.1 version of Python (nor will many third-party libraries). After you complete the download,
you’ll have a �le named �e�n�i�]�d�c�"�'�#�+�#�)�#�b�h�^. The following steps tell how to install the product on
your machine.

1. Right-click the �le and choose Install from the context menu. You’ll see a Welcome page like
the one shown in Figure 6-1 that asks whether you want to install Python for all users or just
for your own needs. Notice that you can’t perform a personal installation on Windows Vista —
it really doesn’t work.

2. Choose an installation option (either will work for the book) and click Next. The installer will
ask where you want to install Python. In most cases, the installer will choose �8�/�Q�E�n�i�]�d�c�'�+�Q,
which works out well for using the Standard Library from IronPython. As an alternative, you

Obtaining and Installing the Python Standard Library �X 101

could install Python in a directory below the IronPython directory, but the default usually
works �ne.

FIGURE 6�1: Tell the installer whether you want a personal
install or one for everyone.

3. Choose an installation location and click Next. You’ll see the Customize Python 2.6.4 dialog
box shown in Figure 6-2. Notice the Register Extensions entry. If you let the installer make
this change, Python, not IronPython, will be the default installation.

FIGURE 6�2: Customize the Python installation to meet
your needs.

102 �X CHAPTER 6 USING THE PYTHON STANDARD LIBRARY

4. Click the down arrow in the Register Extensions option and choose Entire Feature Will Be
Unavailable from the menu. You can choose to keep all of the remaining features if desired
(highly recommended).

5. Con�gure any of the other installation options as needed. Click Next. You’ll see a status dialog
box as Python installs to your hard drive. Eventually, you see a completion dialog box.

6. Click Finish. Python (and its associated Standard Library) is set up on your machine.

C MODULES IN THE PYTHON STANDARD LIBRARY

One of the reasons that IronPython installs a tuned version of the Standard Library
is that the full Standard Library has modules written in C included with it. These
modules generally won’t work with IronPython. As Python has become more
advanced, the developers have removed many of these C modules and you may
eventually �nd that they’re all gone.

Of course, you might �nd that you really do need that C module because nothing else
will work. In this case, you can try to gain access to the C module using IronClad
(�]�i�i�e�/�$�$�X�d�Y�Z�#�\�d�d�\�a�Z�#�X�d�b�$�e�$�^�g�d�c�X�a�V�Y�$). You won’t always have complete success
using IronClad, but it does help considerably, and you should give it a try for those
stubborn modules.

Another potential �x is getting a pure Python version of the module you need from
PyPy (�]�i�i�e�/�$�$�X�d�Y�Z�h�e�Z�V�`�#�c�Z�i�$�e�n�e�n�$�Y�^�h�i�$�e�n�e�n�$�Y�d�X�$). In many cases, the PyPy
solution is actually a little more compatible than other solutions because it does rely
on pure Python code to provide access to the module you want. A potential disad-
vantage of this solution is that the pure Python alternatives will tend to run slower
than the C modules they replace.

Finally, there’s the IronPython Community Edition (also known as FePy) (�]�i�i�e�/�$�$
�[�Z�e�n�#�h�d�j�g�X�Z�[�d�g�\�Z�#�c�Z�i�$). This group has created solutions for the C modules
based on the .NET Framework. From an IronPython perspective, this solution is
probably the most compatible option. However, in using the .NET Framework, you
potentially give up some cross-platform independence. Fortunately, the IronPython
Community Edition also has information on using its version of IronPython with
Mono (�]�i�i�e�/�$�$�b�d�c�d�"�e�g�d�_�Z�X�i�#�X�d�b�$�B�V�^�c�T�E�V�\�Z), which lets .NET applications run
on both Linux and Macintosh systems.

ACCESSING THE STANDARD LIBRARY FROM IRONPYTHON

Before you can use the Python Standard Library to create applications, you must provide a means
for IronPython to �nd the Standard Library so it can import modules. You have three options for
performing this task.

�°�� Create an environment variable named �>�G�D�C�E�N�I�=�D�C�E�6�I�= and provide the path to the
Standard Library through it. The “Understanding the IPY.EXE Command Line Syntax”

Accessing the Standard Library from IronPython �X 103

section of Chapter 1 tells you how to work with environment variables. This option is
machine-speci�c, but it does work.

���° Manually add the path to the import search path (discussed later in this section). The advan-
tage of this method is that the import requirements move with the application. However, if the
user has their copy of the Standard Library in a different location (or doesn’t have the Standard
Library installed at all), the change can break your application.

���° Add the path to �h�^�i�Z�#�e�n, which is located in the �Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�>�g�d�c�E�n�i�]�d�c���'�#�+�Q�A�^�W
directory of your machine. The interpreter loads this �le every time it starts, so you can be
sure that everyone using the IronPython interpreter on your machine will have the required
access. As with the �>�G�D�C�E�N�I�=�D�C�E�6�I�= environment variable, this solution works on the cur-
rent machine only.

Manually Adding the Import Search Path
In order to manually add the import search path, you need to add code to every application created.
The code isn’t long or hard to understand, but you must add it to every application that requires the
Standard Library or the application won’t be able to access it. Here’s an example of the code you need.

�^�b�e�d�g�i���h�n�h
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�E�n�i�]�d�c�'�+�Q�A�^�W�¼��

In this case, my copy of the Standard Library is located in �8�/�Q�E�n�i�]�d�c�'�+�Q�A�^�W, which is the default
setup. You need to change this value to match your system. After you make the change, you can
verify that it’s correct by using the following code.

�e�g�^�c�i���h�n�h�#�e�V�i�]�P�a�Z�c���h�n�h�#�e�V�i�]���"�&�R

All that this code does is display the last path added to �h�n�h�#�e�V�i�]. If you see the appropriate path,
you know you’re ready to go.

Modifying the Site.py File
It’s less convenient to modify the �H�^�i�Z�#�e�n �le than it is to use the other two techniques, but you’re
also sure that every application will see the path addition when you modify �H�^�i�Z�#�e�n. Of course,
if you reinstall IronPython, it will overwrite your �H�^�i�Z�#�e�n, and you’ll need to remember to make
the change again. As previously mentioned, the �H�^�i�Z�#�e�n �le is located in the �Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q
�>�g�d�c�E�n�i�]�d�c���'�#�+�Q�A�^�W directory of your machine. Open this �le with your editor and add the fol -
lowing code to the top of the �le:

�^�b�e�d�g�i���h�n�h
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�E�n�i�]�d�c�'�+�Q�A�^�W�¼��

Make sure you change �8�/�Q�E�n�i�]�d�c�'�+�Q�A�^�W to match the location of the Standard Library on your
machine. This example uses the default location. After you save the �le, restart the interpreter and
you should see the path added to the �h�n�h�#�e�V�i�] attribute.

104 �X CHAPTER 6 USING THE PYTHON STANDARD LIBRARY

An interesting side effect of using the �H�^�i�Z�#�e�n �le is that the Standard Library path will appear
before the IronPython paths, which means that the Python Standard Library receives preferential
treatment. Remember that you can always tell the interpreter not to load the �H�^�i�Z�#�e�n �le by using
the –S command line switch (see the section “Understanding the IPY.EXE Command Line Syntax”
in Chapter 1 for details).

USING THE STANDARD LIBRARY FEATURES

The Standard Library provides a lot of features that you don’t get with IronPython. Many of these
features you can use while developing IronPython applications. The following sections describe how
to use each of the features. In addition, you’ll see how to use the Standard Library to create an appli-
cation. Before you use this section, you must install the Python Standard Library and determine
how you plan to access it from IronPython. Because the Python command line console is essentially
the same as the IronPython command line console, you won’t �nd it in the sections that follow.

Using the Module Documentation
The module documentation provides terse information about each of the modules provided in the
Standard Library. However, the information you receive is normally enough to use the module. To
start this feature, choose Start�����¶����Programs�����¶����Python 2.6�����¶����Module Docs. You’ll see the pydoc dia-
log box shown in Figure 6-3. This dialog box already has a search term entered into it.

When you enter a search term and press Enter, Module
Docs searches the documentation to locate all of the
matching entries. To use a particular search result, high-
light its entry in the list and click Go To Selected. Your
browser will open and show a search topic similar to the
one shown in Figure 6-4.

You might want to do a little exploring, rather than enter
a speci�c search term. In this case, click Open Browser
on the pydoc dialog box to go to the top-level Module
Docs page shown in Figure 6-5. Simply click the links to
drill down to the search topic you want.

After you �nd all of the information you want, click
Quit Serving on the pydoc dialog box. Module Docs will
shut down. Because Module Docs runs on an internal Web server, you’ll want to shut Module Docs
down when your search is complete to save processing cycles.

Using the Python Manuals
The Python Manuals are a full-�edged compiled help module, which is the same kind of help
you’ve been using in Windows for just about every other application you own. To access this

FIGURE 6�3: Use Module Docs to discover
speci�cs about Python modules.

Using the Standard Library Features �X 105

feature, choose Start�����¶����Programs�����¶����Python 2.6�����¶����Python Manuals. You’ll see the Python 2.6.4
Documentation window shown in Figure 6-6.

As you can see, the Python Manual relies on a standard help �le. You can search it, look through
the table of contents, click links, and do everything else you’d do with a standard help �le.

FIGURE 6�4: Obtain speci�c help on the module for which you searched.

One potential issue with using the Python Manuals is that the help is Python-speci�c. This help �le
will contain information that won’t apply to IronPyth on in some cases because IronPython doesn’t
precisely implement the full Python feature set. Consequently, you need to test any help you receive
before you accept it as completely useful.

Working with I DLE
IDLE is the IDE that IronPython should have shipped with because it lets you perform all kinds
of interesting tasks using Python. To access this feature, choose Start�����¶����Programs�����¶����Python 2.6�����¶����
IDLE (Python GUI). You’ll see a window similar to th e one shown in Figure 6-7.

The window opens immediately with a fully functional interpreter by default. The interpreter is
called the Shell Window. For example, in Figure 6-7, if you type 2 + 2 and press Enter, you’ll see

106 �X CHAPTER 6 USING THE PYTHON STANDARD LIBRARY

the answer 4 on the next line. However, it’s the next feature that you’ll like best. When you type a
method, such as help, you see an IntelliSense-like help feature, as shown in the �gure.

IDLE also has a full-�edged editor, called the Editor Window . The Editor Window contains
all of the editing features that you’d expect in any IDE. You use the Editor Window to edit
your code and the Shell Window to interact with the Python interpreter and test your code
using the debugger.

FIGURE 6�5: Browse Module Docs starting at the top-level page.

Of course, IDLE has a lot more to offer you, including a full-�edged debugger and a number of edit-
ing tools. Most important, you can open and save �les quite easily using IDLE. You can even track
down modules by exploring the paths accessible using �h�n�h�#�e�V�i�]. The following sections tell you
considerably more about this interesting IDE.

Con�guring IDLE
IDLE has a number of con�guration options that you c an set. These options make it possible to cus-
tomize IDLE to an extent. For example, you can choose a theme for coloring the editor, if desired.
Choose Options�����¶����Con�gure IDLE to display the dialog box shown in Fig ure 6-8.

Using the Standard Library Features �X 107

FIGURE 6�6: The Python Manual relies on a standard help �le to provide detailed information
about Python.

FIGURE 6�7: IDLE is a nice development environment for working with Python.

108 �X CHAPTER 6 USING THE PYTHON STANDARD LIBRARY

The Font/Tabs page contains a number of
interesting options. For example, if you’re a
bit older, you might want to use a larger font
than the default or even a font that offers serifs
to make it easier to follow text on screen. You
can also make the text bold, which can help
when you’re using a laptop in a sunny environ-
ment. The tab setting helps you use indenta-
tion, but still get more text on screen. Most
people �nd that 3 spaces is the minimum inden-
tation that works.

The Highlighting page, shown in Figure 6-9,
helps you adjust the coloration used to display
certain kinds of code and application features.
This is an especially useful feature for people
who have color blindness because you can adjust
the colors to make various kinds of highlights
easier to see. You can save your settings as a
theme. In fact, you might want to have special
themes for particular purposes, such as low
ambient lighting.

The Keys page, shown in Figure 6-10, helps you
set the control keys used to move around the application quickly. IDLE comes with four key setups
as a default.

�° IDLE Classic Mac��

IDLE Classic OS/X���°

IDLE Classic Unix���°

IDLE Classic Windows���°

Of course, you can always create your own key setups and save them. Some people (such as those
who are left-handed) might �nd that the default key setups don’t work for them.

The General page, shown in Figure 6-11, lets you set general application settings. For example,
you can tell IDLE what to do during certain events such as startup and before you run your
application. You can also control the initial size of the IDLE window and the encoding used for
the text.

For some reason, IDLE lacks a command to start the editor from within the
shell. The editor, however, has a command to start the shell. Consequently, you
want to con�gure IDLE to start with the editor open by choosin g the Open Edit
Window as the At Startup option.

FIGURE 6�8: The Fonts/Tabs page lets you
con�gure the display for ease of viewing and
optimize the tab spacing.

Using the Standard Library Features �X 109

FIGURE 6�9: Modify the highlighting to make
application features easier to use.

FIGURE 6�10: Modify key setups to make IDLE faster
and easier to work with.

FIGURE 6�11: Con�gure IDLE to perform tasks the
way you feel most comfortable.

110 �X CHAPTER 6 USING THE PYTHON STANDARD LIBRARY

The item of special interest on the General page is the Additional Help Sources list at the bottom of
the page. To add a new help source, click Add. You’ll see the New Help Source dialog box shown in
Figure 6-12. Notice that you can use either a local help source or a remote help URL. IronPython
developers have good reason to add other help sources they can use for IronPython-speci�c needs.

IronPython doesn’t provide a lot of speci�c help sources, but it does provide some. The following list
provides some suggestions of URLs you might want to add to your copy of IDLE.

�° �� Differences between IronPython 2.0.x and CPython 2.5.2:
�]�i�i�e�/�$�$�^�g�d�c�e�n�i�]�d�c�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$��
�l�^�`�^�e�V�\�Z�4�i�^�i�a�Z�2�>�E�n�'�#�%�#�m�8�E�n�9�^�[�[�Z�g�Z�c�X�Z�h

���° IronPython Readme: �$�E�g�d�\�g�V�b���;�^�a�Z�h�$�>�g�d�c�E�n�i�]�d�c���'�#�+�$
�G�Z�V�Y�b�Z�#�]�i�b�a

���° IronPython Tutorial: �$�E�g�d�\�g�V�b���;�^�a�Z�h�$�>�g�d�c�E�n�i�]�d�c���'�#�+�$
�I�j�i�d�g�^�V�a�$�I�j�i�d�g�^�V�a�#�]�i�b

���° IronPython Samples: �]�i�i�e�/�$�$�^�g�d�c�e�n�i�]�d�c�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$
�l�^�`�^�e�V�\�Z�4�i�^�i�a�Z�2�H�V�b�e�a�Z�h

���° More Information About IronPython: �]�i�i�e�/�$�$�^�g�d�c�e�n�i�]�d�c��
�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$�l�^�`�^�e�V�\�Z�4�i�^�i�a�Z�2�B�d�g�Z���>�c�[�d�g�b�V�i�^�d�c

Performing an Interactive Edit
To use IDLE as an editor, you simply begin entering commands in the Shell Window. If you have
IDLE con�gured to open the Editor Window �rst, choos e Run�����¶����Python Shell to open the Shell
Window. The interpreter will tell you the result of e ach command you enter, so you know immedi-
ately whether the command will work. After you’ve completed the task you want to perform, choose
File�����¶����Save and save the �le. At this point, IDLE will save everything you typed, some of which isn’t
useful for an application, so you need to edit the code.

If you haven’t already con�gured IDLE to open the Editor Window �rst, do so now. Choose Options �����¶����
Con�gure IDLE, select Open Edit Window in the At Star tup section on the General tab, and click OK.
Choose File�����¶����New Window. IDLE will open an Editor Window that you can use to edit the code you
just created interactively.

In the Editor Window, choose File�����¶����Open. You’ll see an Open dialog box like the one shown in
Figure 6-13. Select the �le you just saved and click Open. IDLE opens the �le you saved from your
interpreter section.

Figure 6-14 shows a short example of an interpreter session saved as a �le. As you can see, you need
to perform a number of edits, such as removing the initial startup information. Modify the �le just
as you would using any other editor and save the result. The Edit menu contains a full list of editing
tools, including the familiar Cut, Copy, and Paste commands, as well as a Find command. It even
includes a command to go directly to a speci�c line in the �le, Edit �����¶����Go To Line, which comes in
handy for dealing with interpreter error messages.

FIGURE 6�12: IronPython develop-
ers should add IronPython-speci�c
help sources.

Using the Standard Library Features �X 111

FIGURE 6�13: Open the �le you created and saved using the interpreter.

FIGURE 6�14: Editing interpreter sessions can be messy, but you know the result will work.

In this case, you can cut the text shown in Figure 6-14 down to three simple lines.

�^�b�e�d�g�i���h�n�h��
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�Q�%�'�*�*���"���H�d�j�g�X�Z���8�d�Y�Z�Q�Q�8�]�V�e�i�Z�g�%�+�¼��
�e�g�^�c�i���h�n�h�#�e�V�i�]

112 �X CHAPTER 6 USING THE PYTHON STANDARD LIBRARY

After you make the changes, you can always reload the �le into the interpreter and debug it or work
with it in other ways. For example, if you want to ru n the application, press F5 or choose Run�����¶����
Run Module.

Of course, you can always build an application from scratch using the Editor Window. You get the
same IntelliSense-type help as you do when using the interpreter in the Shell Window. Unfortunately,
when using the Editor Window directly, you don’t get in stant feedback, but you do bene�t from not
having to edit the result.

Using the Path Browser
IDLE provides more than one way to locate a �le
you want to edit. One of these methods is to display
a dialog box that contains a hierarchical display of
the current �h�n�h�#�e�V�i�] content. You drill down
through the list to �nd the �le you want to work
with. Not only does this technique make it easy to
�nd what you want, but it also tells you that the
interpreter can see the �le. To use this feature,
choose File�����¶����Path Browser. You’ll see the Path
Browser dialog box shown in Figure 6-15.

Notice that the Path Browser shows which folders
are packages and clearly shows the �les. Double-
click any �le entry to open it. The �le will open in a
separate copy of IDLE, so you don’t need to worry
about modi�cations to your current session.

Using the Class Browser
Class Browser works with the currently loaded �le.
It helps you see the elements within the �le and go directly to them. To see the class setup for
your application, choose File�����¶����Class Browser. You’ll see a dialog similar to the one shown
in Figure 6-16, except that it contains speci�cs for your application.

Using the Debugger
The IDLE debugger is interesting. You use it to debug your application, but not in the same way as
you would within Visual Studio.

In order to make the debugger useful, choose Run�����¶����Python
Shell in the Editor Window. IDLE starts a copy of the Shell
Window. In the Shell Window, choose Debug�����¶����Debugger.
You’ll see the strange Debug Control dialog box shown in
Figure 6-17 open. At this point, you’re ready to debug your
application.

FIGURE 6�15: The Path Browser makes it easy to
locate �les that the interpreter can see.

FIGURE 6�16: Browsing by class
makes it easy to navigate your
application.

Using the Standard Library Features �X 113

FIGURE 6�17: Start the Debug Control before you start the application.

To start debugging the application, choose Run�����¶����Run Module or press F5 in the Editor Window
(not the Shell Window). IDLE actually picks the Shell Window that you opened earlier and stops
execution immediately so you can see what’s happening with your application, as shown in
Figure 6-18.

At this point, you can click Step within the Debug Control to go to the next line of execution, Over
to skip over a line of execution (the commands still execute, but you won’t see them), or Out to move
out of a function or method. If you click Go, the appli cation will continue to execute without debug-
ging support. Clicking Quit ends the application.

FIGURE 6�18: Running the module automatically �lls the Debug
Control with information.

114 �X CHAPTER 6 USING THE PYTHON STANDARD LIBRARY

The IDLE debugger has no concept of breakpoints. You have no immediate window for entering
commands or watch windows to track expressions. Even so, the debugger does work well, even if it
does take a while for the .NET developer to get used to it.

Looking for Standard Library Issues
It’s important to exercise care when working with the Standard Library. Sometimes, it appears that
IronPython provides support for a feature when it really doesn’t. For example, Listing 6-1 shows
an application that runs �ne within IDLE because IDL E relies on the Python interpreter, not the
IronPython interpreter.

LISTING 6�1: An example of a Standard Library application

�[�g�d�b���I�`�^�c�i�Z�g���^�b�e�d�g�i����
�^�b�e�d�g�i���V�W�d�j�i�9�^�V�a�d�\

�����G�Z�e�g�Z�h�Z�c�i�h���i�]�Z���b�V�^�c���l�^�c�Y�d�l���d�[���V�c���V�e�e�a�^�X�V�i�^�d�c�#
�g�d�d�i���2���I�`����

�X�a�V�h�h���I�Z�h�i�>�9�A�:�/
���������¹�9�Z�[�^�c�Z�h���V���W�V�h�^�X���i�Z�h�i���d�[���>�9�A�:�º
��������
���������Y�Z�[���H�]�d�l�6�W�d�j�i���h�Z�a�[���/
�����������������¹�9�^�h�e�a�V�n���i�]�Z���>�9�A�:���6�W�d�j�i���Y�^�V�a�d�\���W�d�m�º
�����������������V�W�d�j�i�9�^�V�a�d�\�#�6�W�d�j�i�9�^�V�a�d�\���g�d�d�i�!���»�6�W�d�j�i�¼��

���������������������B�V�`�Z���h�j�g�Z���n�d�j���Y�Z�h�i�g�d�n���i�]�Z���l�^�c�Y�d�l���l�]�Z�c���n�d�j���\�Z�i���Y�d�c�Z���l�^�i�]���^�i�#
�����������������g�d�d�i�#�Y�Z�h�i�g�d�n����

�Y�Z�[���H�V�n�=�Z�a�a�d�����/
���������¹�6���k�Z�g�n���W�V�h�^�X���[�j�c�X�i�^�d�c���^�c���E�n�i�]�d�c�º
���������e�g�^�c�i���»�=�Z�a�a�d�¼
��������
�����H�Z�i���i�]�Z���e�V�i�]���i�d���^�c�X�a�j�Y�Z���i�]�Z���V�e�e�a�^�X�V�i�^�d�c���Y�^�g�Z�X�i�d�g�n�#
�^�b�e�d�g�i���h�n�h��
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�Q�%�'�*�*���"���H�d�j�g�X�Z���8�d�Y�Z�Q�Q�8�]�V�e�i�Z�g�%�+�¼��
�e�g�^�c�i���h�n�h�#�e�V�i�]

�����8�V�a�a���H�V�n�=�Z�a�a�d����
�H�V�n�=�Z�a�a�d����

�����9�^�h�e�a�V�n���i�]�Z���>�9�A�:���6�W�d�j�i���Y�^�V�a�d�\���W�d�m�#
�B�n�6�W�d�j�i���2���I�Z�h�i�>�9�A�:����
�B�n�6�W�d�j�i�#�H�]�d�l�6�W�d�j�i����

This is an interesting example because it displays the IDLE About dialog box. When you run this
example, the code begins by doing something simple — it modi�es the path to point to the example
directory and then it displays a simple hello message to the user.

Using IronPython Constructively �X 115

The problem occurs with the second part of the example. The process is relatively straightforward. The
�I�Z�h�i�>�9�A�: class contains a method called �H�]�d�l�6�W�d�j�i����. �H�]�d�l�6�W�d�j�i���� creates a window and then dis-
plays the IDLE About dialog box in it. The code then destroys the window it created and ends.

When you try to run this example using IronPython by typing IPY IDLETest.py at the command
prompt and pressing Enter, the �rst message you see says that IronPython knows nothing about a
�I�`�^�c�i�Z�g module, which provides access to the windowing environment provided by �I�`. You can
read all about �I�`�^�c�i�Z�g at �]�i�i�e�/�$�$�l�l�l�#�e�n�i�]�d�c�l�V�g�Z�#�X�d�b�$�a�^�W�g�V�g�n�$�i�`�^�c�i�Z�g�$�^�c�i�g�d�Y�j�X�i�^�d�c�$. The
bottom line is that �I�`�^�c�i�Z�g is a windowing environment that many Python developers use, so you’re
going to run into it when working with IronPython.

At this point, you notice that IronPython does indeed include support for �I�`�^�c�i�Z�g in the
�Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�>�g�d�c�E�n�i�]�d�c���'�#�+�Q�A�^�W�Q�a�^�W�"�i�` folder. So you add this directory to your
IRONPYTHONPATH environment variable by typing �H�Z�i���>�G�D�C�E�N�I�=�D�C�E�6�I�=�2���>�G�D�C�E�N�I�=�D�C�E�6�I�=
���0�8�/�Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�>�g�d�c�E�n�i�]�d�c���'�#�+�Q�A�^�W�Q�a�^�W�"�i�` and pressing Enter. This command adds the
required directory to your application environment, so you type �>�E�N���>�9�A�:�I�Z�h�i�#�e�n again and press
Enter. Now you see an error message, “ImportError: No module named _tkinter.”

Unfortunately, you’ll never �nd a �T�i�`�^�c�i�Z�g module in the IronPython folders. You’ll �nd it in the
�Q�E�n�i�]�d�c�'�+�Q�9�A�A�h directory as �T�i�`�^�c�i�Z�g�#�e�n�Y and in the �Q�E�n�i�]�d�c�'�+�Q�a�^�W�h directory as �T�i�`�^�c�i�Z�g��
�#�a�^�W. The alarms should be going off in your head at this moment. Python implements �I�`�^�c�i�Z�g as a
C library, which means that IronPython doesn’t support it, despite the fact that IronPython includes
the required �I�`�^�c�i�Z�g�#�e�n �le. The point of this whole exercise is that you’re going to run into some
very popular Python features that simply won’t work i n IronPython because they require C support
(despite the fact that it appears that IronPython does support it). Your only choice (in most cases) is
to avoid using the module or rely on straight Python instead. Happily, some developers are working
on the �I�`�^�c�i�Z�g problem. You can read about one such solution at �]�i�i�e�/�$�$�l�l�l�#�k�d�^�Y�h�e�V�X�Z�#�d�g�\��
�#�j�`�$�^�g�d�c�e�n�i�]�d�c�$�X�e�n�i�]�d�c�T�Z�m�i�Z�c�h�^�d�c�h�#�h�]�i�b�a.

Whenever you have a question about IronPython support for a particular
Python feature, check the not-supported-module-list at �]�i�i�e�/�$�$�^�g�d�c�e�n�i�]�d�c��
�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$�l�^�`�^�e�V�\�Z�4�i�^�i�a�Z�2�A�^�h�i���d�[���H�i�V�c�Y�V�g�Y���A�^�W�g�V�g�n���X�d�b�e�d�c�Z�c�i�h��
�c�d�i���^�c�X�a�j�Y�Z�Y���^�c���i�]�Z���B�H�>.

USING IRONPYTHON CONSTRUCTIVELY

This chapter has given you insights into the Standard Library. The Standard Library is a necessary
ingredient for any IronPython application, even if you plan to use the .NET Framework extensively.
However, by using the Standard Library alone, you can create applications that will work well on
other platforms. Unlike many other languages that Microsoft supports, the applications you build in
IronPython really are for the rest of the world too — at least, as long as you abide by a few rules.

It’s time to explore! Nothing will get you more invo lved with IronPython than exploring the Standard
Library to determine what it can do for you. Go ahead; try out a few experimental applications. Better

116 �X CHAPTER 6 USING THE PYTHON STANDARD LIBRARY

yet, use one of the IronPython features that make experimentation so easy. Start up a copy of the inter-
preter and try things out one line at a time. It won’t take long for you to understand just how huge the
Standard Library is. Don’t forget the lessons learned in Chapter 5 — use �Y�^�g����, �T�T�Y�d�X�T�T, and �]�Z�a�e����
to drill down into the Standard Library.

You’re working with IronPython, not Python. One of t he advantages of working with IronPython is
that you have options other than the Standard Library available to you. You might decide that you
really do need to build a Windows Forms application using .NET code instead of the more standard
Python interfaces. Chapter 7 gets you started working with the .NET Framework. Because most of
you already have some .NET experience, you’ll probably �nd that working with the .NET Framework
in IronPython is pretty easy once you get the basics down. Even so, IronPython lets you work with
both the Standard Library and the .NET Framework — use the tool that works best for your particu-
lar needs.

Accessing the .NET Framework

WHAT’S IN THIS CHAPTER?

�° Gaining access to the .NET Framework from IronPython��

Working with .NET data types in your application���°

Using .NET classes within your application���°

Creating applications that use generics���°

Chapter 6 emphasized the Python portion of IronPython. As you learned in that chapter,
IronPython doesn’t quite provide full Python capability, but it comes very close. In this chap-
ter, you discover the .NET capabilities of IronPython. In this case, you’ll see that IronPython
has its own take on the .NET Framework but that it does provide you with full access.

Of course, before you can work with the .NET Framework in IronPython, you need to know
how to import the assemblies. It turns out that you have several levels of import capability that
you can use to work with assemblies in different ways. In most cases, you’ll perform a standard
import and use the .NET assemblies much as you would any other IronPython class.

The .NET Framework provides strict data typing and a wider range of data types than
Python does. You need to know how to use these data types within IronPython in order to
write applications that make full use of the .NET Framework. The second section of this
chapter addresses this need.

Once you know about the data types, you can begin working with classes. This chapter provides
you with an overview of the process. You get more details as the book progresses. However, this
chapter is important because it explains basics you absolutely must know in order to move on to
more advanced examples in the book.

Finally, this chapter looks at one of the more interesting uses of the .NET Framework with
IronPython — generics. The use of generics with IronPython can greatly improve your ability
to create �exible applications that can work with a wide range of data types. Eventually, you’ll

7

118 �X CHAPTER 7 ACCESSING THE .NET FRAMEWORK

begin using generics with a number of examples in the book, but for now you should focus on under-
standing the technique used to work with generics.

IMPORTING THE .NET FRAMEWORK ASSEMBLIES

Importing an assembly into IronPython isn’t much different from importing a Python module.
In fact, you use about the same code. The primary difference is that you can’t import some .NET
assemblies directly into IronPython, just as you can’t import them directly into any .NET language.
Instead, you must �rst create a reference to the .NET assembly and then import it. For anyone who
has worked with .NET languages in the past, nothing will have changed from the normal procedure
they follow.

One odd thing about IronPython is that it’s case sensitive even when it comes to
.NET Framework assemblies. As a consequence, importing �h�n�h�i�Z�b�#�b�V�i�] won’t
work but importing �H�n�h�i�Z�b�#�B�V�i�] will. Because many developers aren’t used to
thinking about the case of .NET Framework assemblies, you might be caught
off guard when an application fails for some unknown reason. One issue always
to consider is whether you’ve capitalized the assembly name incorrectly.

Performing a Standard Import
As with Python modules, you can perform a standard import of a .NET assembly. For example, you
might want to import the .NET Framework’s �H�n�h�i�Z�b assembly. In this case, you type

�^�b�e�d�g�i���H�n�h�i�Z�b

and press Enter. If you want to see what the System assembly contains, type

�Y�^�g���H�n�h�i�Z�b��

and press Enter. Figure 7-1 shows typical results from importing the �H�n�h�i�Z�b assembly.

Now, let’s say that you want to create a �J�>�c�i�(�' variable, just like a �J�>�c�i�(�' that you’d create in any
other .NET language. Simply type something like �B�n�K�V�g���2���H�n�h�i�Z�b�#�J�>�c�i�(�'���*��. Of course, you can
use any variable within the range that �ts within a �J�>�c�i�(�'. If you don’t provide a value by typing
�B�n�K�V�g���2���H�n�h�i�Z�b�#�J�>�c�i�(�'���� the .NET Framework automatically assigns the variable a value of 0. You
can read more about .NET data types in the section “Using .NET Data Types” later in this chapter.

However, let’s take a look at �B�n�K�V�g. If you type �B�n�K�V�g by itself, you see that it’s an object that has a
value of 5, as shown in Figure 7-2. Type �Y�^�g���B�n�K�V�g�� and you see that �B�n�K�V�g contains many of the
same methods as a standard Python integer. For example, you still have access to the absolute value
function, �T�T�V�W�h�T�T����, and comparison method, �T�T�Z�f�T�T����. In addition to these standard methods,
you also have access to .NET-speci�c functions such as �E�V�g�h�Z���� and �I�d�8�]�V�g����.

Importing the .NET Framework Assemblies �X 119

FIGURE 7�1: Performing a standard import places the System assembly where you’d expect.

When you import an assembly using the standard approach, some code can become long and cumber-
some. For example, if you want to change the console foreground color, you must type the following:

�H�n�h�i�Z�b�#�8�d�c�h�d�a�Z�#�;�d�g�Z�\�g�d�j�c�Y�8�d�a�d�g���2���H�n�h�i�Z�b�#�8�d�c�h�d�a�Z�8�d�a�d�g�#�7�a�j�Z

Notice that you must use the correct enumeration when specifying the color, or the change won’t
occur. This code really does work — give it a try and then print the current console foreground color,
as shown in Figure 7-3 (the screenshot in this book shows only shades of gray, but you’ll see color on

120 �X CHAPTER 7 ACCESSING THE .NET FRAMEWORK

your display). The console color changes to whatever value you specify without creating a variable
�rst because �H�n�h�i�Z�b�#�8�d�c�h�d�a�Z�#�;�d�g�Z�\�g�d�j�c�Y�8�d�a�d�g is a property.

FIGURE 7�2: Creating a .NET object provides a mix of Python and .NET methods.

FIGURE 7�3: Using the standard import can become a little cumbersome.

As with Python modules, you can get around the problem by assigning a particular object to a variable.
For example, if you type �8�d�c�h�d�a�Z���2���H�n�h�i�Z�b�#�8�d�c�h�d�a�Z, then you can shorten the code a little, as shown
in Figure 7-3. The bottom line is that using a standard import with .NET isn’t much different from
using it with Python modules. The only real difference is that you use a different name.

Importing an Assembly into the Global Namespace
Sometimes you need to have an entire assembly available at a global level. Using variables to bring part
of the assembly up to the right level won’t work. In this case, you rely on a different import strategy
than used in the section “Performing a Standard Import” earlier in this chapter. You’ve already seen
this technique before as applied to Python modules, but now you’ll see how it applies to .NET assem-
blies. Simply use the �[�g�d�b���6�h�h�Z�b�W�a�n�C�V�b�Z���^�b�e�d�g�i���6�h�h�Z�b�W�a�n���q������ format used for Python modules.
For example, if you want to import the �H�n�h�i�Z�b assembly into the global namespace, you type

�[�g�d�b���H�n�h�i�Z�b���^�b�e�d�g�i����

Importing the .NET Framework Assemblies �X 121

The asterisk (*) means that you import everything in the �H�n�h�i�Z�b assembly at the global
namespace level. Figure 7-4 shows what happens when you use the �Y�^�g���� function to see the
global namespace.

FIGURE 7�4: You can import an entire assembly into the global namespace.

If you want a speci�c class within the �H�n�h�i�Z�b assembly imported at the global namespace level, you
simply specify the name of the class as you would when working with Python. For example, if you
want to work with the �8�d�c�h�d�a�Z class, then you’d type

�[�g�d�b���H�n�h�i�Z�b���^�b�e�d�g�i���8�d�c�h�d�a�Z

122 �X CHAPTER 7 ACCESSING THE .NET FRAMEWORK

Some developers will be tempted to import everything they need into the global
namespace. While this strategy works �ne for a .NET application created in a
language such as C#, it doesn’t always work well in IronPython because of the
way the Python language works. For example, Figure 7-4 shows an example of
the problems that can occur. Imagine importing four or �ve assemblies into the
global namespace and then using the �Y�^�g���� function to display a list of classes,
methods, enumerations, or other .NET features you want to use. The list would
be so large as to make any search pointless. Import only what you need into the
global namespace.

You can extend individual imports by separating classes, enumerations, or other assembly members
with commas. For example, if you want to import both the �8�d�c�h�d�a�Z class and the �8�d�c�h�d�a�Z�8�d�a�d�g
enumeration into the global namespace, you type

�[�g�d�b���H�n�h�i�Z�b���^�b�e�d�g�i���8�d�c�h�d�a�Z�!���8�d�c�h�d�a�Z�8�d�a�d�g

If you use the �Y�^�g���� function to see the result, you see output similar to Figure 7-5. Importing only
what you need keeps clutter down, makes your application run faster, and reduces potential security
issues. In this case, you can reduce the foreground color-changing code shown in the “Performing a
Standard Import” section to

�8�d�c�h�d�a�Z�#�;�d�g�Z�\�g�d�j�c�Y�8�d�a�d�g���2���8�d�c�h�d�a�Z�8�d�a�d�g�#�7�a�j�Z

FIGURE 7�5: Importing into the global namespace reduces the size and complexity of your code.

Con�guring the Console for .NET Help
Believe it or not, the �]�Z�a�e���� function work s �ne with .NET assemblies. However, Microsoft
designed the assembly help for a much larger display area. If you type �]�Z�a�e���8�d�c�h�d�a�Z�8�d�a�d�g�� and
press Enter, the help output is so long that you can’t see even a small portion of it. In fact, you won’t
actually see the help you need because it appears at the beginning of the help listing.

The console window has a buffer associated with it. When you type a command and the interpreter
presents output, the buffer accepts all the output up to the size of the buffer. At that point, all the
old information drops off the end into the bit bucket and you never see it again. The standard buffer

Importing the .NET Framework Assemblies �X 123

size is 300 lines, which seems like it would be enough, but it isn’t nearly enough for the .NET help.
What you really need for .NET help is about 3,000 lines. Use these steps to change the buffer size.

1. Click the system menu in the upper-left corner of the console window and choose Properties
from the context menu. You see the IronPython Console Properties dialog box.

2. Select the Layout tab. You see the information
shown in Figure 7-6.

3. Change the Height property in the Screen Buffer
Size area to 3000. This means that the screen
buffer can now hold up the 3,000 lines of out-
put. However, it also means that the screen
buffer consumes ten times more memory, which
means you won’t want to make this change to a
console window unless you need the extra space.

4. Click OK. You see the Apply Properties To
Shortcut dialog box shown in Figure 7-7. If you
plan to work with .NET very often, you’ll de�-
nitely want to choose “Modify Shortcut that
Started this Window” so that you don’t have
to make the change every time.

5. Select one of the con�guration change options
and then click OK. Windows makes the change
you requested.

At this point, you need to try out the �]�Z�a�e���� function.
Try typing

�]�Z�a�e���8�d�c�h�d�a�Z�8�d�a�d�g��

and press Enter. You’ll see that the display takes a second or so
to return. At this point, you can scroll through the m assive help
display to �nd the information you need. Figure 7-8 shows typi-
cal output.

Creating a Reference to .NET Assemblies
Not every .NET assembly is available to IronPython by default, even if that assembly appears in the
Global Assembly Cache (GAC). As with any other .NET language, you sometimes need to reference
.NET assemblies in order to import and use them. For example, try typing

�[�g�d�b���H�n�h�i�Z�b�#�M�b�a���^�b�e�d�g�i����

and press Enter. You get an error message as output stating the following:

�[�g�d�b���H�n�h�i�Z�b�#�M�b�a���^�b�e�d�g�i����
�I�g�V�X�Z�W�V�X�`�����b�d�h�i���g�Z�X�Z�c�i���X�V�a�a���a�V�h�i���/
�����;�^�a�Z���¹�1�h�i�Y�^�c�3�º�!���a�^�c�Z���&�!���^�c���1�b�d�Y�j�a�Z�3
�>�b�e�d�g�i�:�g�g�d�g�/���C�d���b�d�Y�j�a�Z���c�V�b�Z�Y���M�b�a

FIGURE 7�6: Modify the bu�er to hold more
lines of information.

FIGURE 7�7: Choose a con�guration
change option that matches your
.NET usage habits.

124 �X CHAPTER 7 ACCESSING THE .NET FRAMEWORK

FIGURE 7�8: The screen bu�er is now large enough to hold the help information you need.

Of course, you know that the �H�n�h�i�Z�b�#�M�b�a assembly does exist. This error message tells you that you
have to add a reference to the �H�n�h�i�Z�b�#�M�b�a assembly before you can use it. In order to add a reference,
you must import the �X�a�g (Common Language Runtime) module. You can then use one of the �ve
following methods to import the assembly.

�°�� �X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���6�h�h�Z�b�W�a�n�D�W�_�Z�X�i�D�g�;�^�a�Z�c�V�b�Z�� : Adds a reference to the .NET assem-
bly by passing an assembly object directly or by specifying the assembly �lename. (You can
provide either a partial or full �lename.) This is a generic sort of assembly reference addition
because you don’t have control over which assembly version IronPython loads. You can use
this method when you’re experimenting and really don’t care about which version of the .NET
assembly you get. This is also a good method to use when you’re not sure which version of the
assembly the user has installed on his or her machine but do know that all versions of the .NET
Framework include the functionality you require.

���° �X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z���6�h�h�Z�b�W�a�n�;�^�a�Z�c�V�b�Z�P�!���6�h�h�Z�b�W�a�n�;�^�a�Z�c�V�b�Z�#�#�#�R): Adds a reference
to the .NET assembly by passing a �lename. You may supply multiple �lenames to load multiple
assemblies. IronPython looks for the assembly using the �h�n�h�#�e�V�i�] attribute. Consequently, you
can partially control which version of the assembly you get by controlling the �h�n�h�#�e�V�i�] attri-
bute. However, if more than one assembly has the correct �lename, IronPython doesn’t guar-
antee which version of the assembly will load. You can use the �X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�7�n�C�V�b�Z����
method to better control which version of the assembly loads.

���° �X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z�6�c�Y�E�V�i�]���6�h�h�Z�b�W�a�n�E�V�i�]�6�c�Y�;�^�a�Z�c�V�b�Z�P�!��
�6�h�h�Z�b�W�a�n�E�V�i�]�6�c�Y�;�^�a�Z�c�V�b�Z���#�#�#�R��: Performs about the same task as the �X�a�g��
�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z���� method. However, in this case, you must provide an absolute path
to the assembly you want to load, which means that you have better control over which assem-
bly version loads. This method automatically adds the assembly path to �h�n�h�#�e�V�i�] for you.

Importing the .NET Framework Assemblies �X 125

���° �X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�7�n�C�V�b�Z���6�h�h�Z�b�W�a�n�C�V�b�Z�!���K�Z�g�h�^�d�c�2�K�Z�g�h�^�d�c�C�j�b�W�Z�g�!���8�j�a�i�j�g�Z�2��
�8�j�a�i�j�g�Z�>�Y�Z�c�i�^�[�^�Z�g�q�c�Z�j�i�g�V�a�!���E�j�W�a�^�X�@�Z�n�I�d�`�Z�c�2�I�d�`�Z�c�K�V�a�j�Z�� : Adds an assembly refer-
ence based on assembly speci�cs normally found in the GAC. You must supply values that fully
de�ne the assembly. For example, to import the .NET Framework 2.0 version of the System.
Xml assembly, you would supply: �»�H�n�h�i�Z�b�#�M�b�a�!���K�Z�g�h�^�d�c�2�'�#�%�#�%�#�%�!���8�j�a�i�j�g�Z�2�c�Z�j�i�g�V�a�!����
�E�j�W�a�^�X�@�Z�n�I�d�`�Z�c�2�W�,�,�V�*�X�*�+�&�.�(�)�Z�%�-�.�».

���° �X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�7�n�E�V�g�i�^�V�a�C�V�b�Z���E�V�g�i�^�V�a�6�h�h�Z�b�W�a�n�C�V�b�Z�� : Adds a reference to the .NET
assembly by passing a partial name that IronPython looks up in the GAC. This method doesn’t
assure that you obtain any particular version of the assembly you need. You can use the
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�7�n�C�V�b�Z���� method to better control which version of the assembly loads.

Now that you have a better idea of how to add a reference, let’s try importing the System.Xml
assembly. The following steps help you get the assembly referenced and imported into IronPython.

1. Type���^�b�e�d�g�i���h�n�h

and press Enter. This step makes the �h�n�h module accessible.

2. Type �h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�Q�L�>�C�9�D�L�H�Q�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�Q�;�g�V�b�Z�l�d�g�`�Q�Q�k�'�#�%�#�*�%�,�'�,�»��
and press Enter. In order to add a reference to an assembly, you must provide its location as
part of �h�n�h�#�e�V�i�]. You may need to change the drive and directory to match your system.

If you provide the wrong .NET Framework location, yo u can use the �h�n�h��
�#�e�V�i�]�#�g�Z�b�d�k�Z���� method to remove it from the list. For example, if you want
to remove the .NET Framework 2.0 path, you type �h�n�h�#�e�V�i�]�#�g�Z�b�d�k�Z���»�8�/�Q�Q
�L�>�C�9�D�L�H�Q�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�Q�;�g�V�b�Z�l�d�g�`�Q�Q�k�'�#�%�#�*�%�,�'�,�»�� and press Enter.

3. Type �^�b�e�d�g�i���X�a�g and press Enter. This step makes the �X�a�g module accessible, which has the
various assembly reference methods described earlier.

4. Type �X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�H�n�h�i�Z�b�#�M�b�a�#�9�A�A�»�� and press Enter. IronPython now has a ref-
erence to the assembly �le it needs, but the assembly isn’t imported yet. If you receive an IO
Error message, it means that IronPython couldn’t �nd the assembly you requested in the loca-
tion provided as part of �h�n�h�#�e�V�i�].

5. Type �^�b�e�d�g�i���H�n�h�i�Z�b�#�M�b�a and press Enter. The �H�n�h�i�Z�b�#�M�b�a assembly is now available for
use. It’s time to test to verify that the assembly is available.

6. Type �Y�^�g���H�n�h�i�Z�b�#�M�b�a�� and press Enter. You should see the content of the �H�n�h�i�Z�b�#�M�b�a
assembly, as shown in Figure 7-9.

This technique works with any .NET assembly, not just those found in the GAC. If you have a custom
.NET assembly you want to use in your application, this technique lets you access it with ease. Make
sure you use the right technique for the kind of assembly you want to import. If version number is
important, then make sure you use the �X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�7�n�C�V�b�Z���� method.

126 �X CHAPTER 7 ACCESSING THE .NET FRAMEWORK

FIGURE 7�9: Verify that you can access the System.Xml assembly.

If you import a module or assembly by mistake, you can unload it in
the same way as you remove variables you no longer need, by typing
�Y�Z�a���1�C�V�b�Z�D�[�B�d�Y�j�a�Z�D�g�6�h�h�Z�b�W�a�n�3. For example, if you want to get rid of the
�H�n�h�i�Z�b�#�M�b�a assembly after using it, type �Y�Z�a���H�n�h�i�Z�b and press Enter. The
module or assembly you want to remove must appear in the �Y�^�g���� list. In this
case, when you type �Y�^�g���� after importing �H�n�h�i�Z�b�#�M�b�a, you see �H�n�h�i�Z�b, not
�H�n�h�i�Z�b�#�M�b�a in the �Y�^�g���� list, so you must �Y�Z�a���H�n�h�i�Z�b, not �Y�Z�a���H�n�h�i�Z�b�#�M�b�a.
Never set an assembly or module reference to �C�d�c�Z (as you would for clear-
ing a variable) because the reference will remain, but none of the content will
exist, causing hard to �nd errors in your application.

USING .NET DATA TYPES

When you work with .NET in IronPython, you have full access to every type that .NET supports.
However, you don’t always create these types as you would in another language. For example, when
working with C# or Visual Basic, you simply declare a variable of a certain type and then make an
assignment to it. When working in IronPython, you must remember that making an assignment cre-
ates a Python type, not a .NET type. For example, let’s suppose you create a �J�>�c�i�(�' variable and
then make an assignment to it. Figure 7-10 shows the sequence of events that will occur.

As you can see, when you initially create the variable, IronPython recognizes it as a �J�>�c�i�(�'. In fact,
even the �i�n�e�Z���� function knows that this is a �J�>�c�i�(�'. When the code makes a simple assignment,
however, notice that IronPython changes the type to a simple �^�c�i. A check using �i�n�e�Z���� shows that
the data type has indeed changed. In order to change the value of a �J�>�c�i�(�', you must make another
assignment using the �J�>�c�i�(�'���� constructor.

Using .NET Data Types �X 127

FIGURE 7�10: .NET and Python variables don’t mix very well in most cases.

You can easily convert Python variables to their .NET counterparts in many cases. For example, you
can use the following code to create a Python variable and then use it to create a .NET variable.

�E�K�V�g���2���*��
�C�Z�i�K�V�g���2���H�n�h�i�Z�b�#�J�>�c�i�(�'���E�K�V�g��

In some cases, you’ll �nd that a direct conversion won’t work for any of a number of reasons.
For example, you might �nd that converting Python numer ic variables won’t work in some
cases because .NET is expecting a string. In this case, you can try the �X�a�g�#�8�d�c�k�Z�g�i���� method.
Here’s an example of using �X�a�g�#�8�d�c�k�Z�g�i���� to produce the same results as the previous example.
(Remember that you must type �^�b�e�d�g�i���X�a�g before you can use it.)

�C�Z�i�K�V�g�'���2���X�a�g�#�8�d�c�k�Z�g�i���E�K�V�g�!���H�n�h�i�Z�b�#�J�>�c�i�(�'��

The �rst argument contains the Python variable. The second argument contains the .NET data type
you want as output. Of course, you must ensure you have imported the .NET assembly that contains
the desired output type because the call will fail otherwise. In fact, any time �X�a�g�#�8�d�c�k�Z�g�i���� fails to
convert the data, you get a �I�n�e�Z�:�g�g�d�g.

Of course, before you can convert anything, you need to know the best type to use for the conversion.
For example, you run the �i�n�e�Z���� function against a Python variable to obtain the type information,
but don’t know the equivalent .NET type. In this case, you can use �X�a�g�#�<�Z�i�8�a�g�I�n�e�Z���� to obtain the
closest .NET equivalent, as shown here.

�����E�g�d�Y�j�X�Z�h���H�n�h�i�Z�b�#�>�c�i�(�'���V�h���d�j�i�e�j�i�#
�X�a�g�#�<�Z�i�8�a�g�I�n�e�Z���^�c�i��

�����E�g�d�Y�j�X�Z�h���H�n�h�i�Z�b�#�H�i�g�^�c�\���V�h���d�j�i�e�j�i�#
�X�a�g�#�<�Z�i�8�a�g�I�n�e�Z���h�i�g��

The �X�a�g�#�<�Z�i�E�n�i�]�d�c�I�n�e�Z���� method obtains the Python equivalent of .NET data types. For example, if
you type �X�a�g�#�<�Z�i�E�n�i�]�d�c�I�n�e�Z���H�n�h�i�Z�b�#�>�c�i�(�'��, you get �^�c�i as output. Of course, you’ll want to know
how to convert your .NET data into a Python equivalent. In this case, you simply rely on the Python
functions you use to create variables of speci�c types. For example, the following code converts a .NET
�J�>�c�i�(�' into a Python �a�d�c�\.

�B�n�K�V�g���2���a�d�c�\���C�Z�i�K�V�g��

128 �X CHAPTER 7 ACCESSING THE .NET FRAMEWORK

Some .NET to Python conversions will result in data loss and Python won’t
warn you about the problem. However, Python normally chooses a data type
override that will work. For example, if you try to convert a number that won’t
�t into an �^�c�i, Python will automatically choose a �a�d�c�\ for you. Make sure that
you always test a conversion before you assume it will work.

INTERACTING WITH .NET FRAMEWORK ELEMENTS

Now that you know how to get a .NET assembly loaded into IronPython, it’s time to consider where
to go next. Of course, it’s not going to be possible to cover every potential destination in a single
chapter of a book. However, the following sections provide some basics you can use to get started.
For example, most developers need to know a little about the assemblies they have loaded, such as
the version number. The following sections also show how to work with static methods and objects
created from .NET classes. The �nal section provides a quick example that shows how to obtain
a list of �les and directories found in the root directory of your system. All th ese examples work
together to help you get an idea of how .NET works within IronPython.

Obtaining Assembly Information
Developers will want to obtain information about the assemblies they load into IronPython. Part of
the problem is going to be that you won’t see a list of these assemblies in Solution Explorer because
Visual Studio doesn’t provide direct support for IronPython. Consequently, the application itself will
need to have some level of assembly management support built into it. With this in mind, Listing 7-1
shows you how to perform some basic tasks with assemblies.

LISTING 7�1: Interacting with assemblies

�����6�Y�Y���i�]�Z���#�C�:�I���;�g�V�b�Z�l�d�g�`���'�#�%���i�d���i�]�Z���e�V�i�]�#��
�^�b�e�d�g�i���h�n�h
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�Q�L�>�C�9�D�L�H�Q�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�Q�;�g�V�b�Z�l�d�g�`�Q�Q�k�'�#�%�#�*�%�,�'�,�¼��

�����B�V�`�Z���X�a�g���V�X�X�Z�h�h�^�W�a�Z�#
�^�b�e�d�g�i���X�a�g

�����>�b�e�d�g�i���i�]�Z���H�n�h�i�Z�b���V�h�h�Z�b�W�a�n�#
�^�b�e�d�g�i���H�n�h�i�Z�b

�����6�Y�Y���V���g�Z�[�Z�g�Z�c�X�Z���[�d�g���H�n�h�i�Z�b�#�M�b�a���V�c�Y���^�b�e�d�g�i���^�i�#
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�H�n�h�i�Z�b�#�M�b�a�#�9�A�A�¼����
�^�b�e�d�g�i���H�n�h�i�Z�b�#�M�b�a

�����9�^�h�e�a�V�n���V���a�^�h�i���d�[���V�k�V�^�a�V�W�a�Z���V�h�h�Z�b�W�a�^�Z�h�#
�e�g�^�c�i���»�A�^�h�i���d�[���6�h�h�Z�b�W�a�^�Z�h�/�¼��
�[�d�g���I�]�^�h�G�Z�[���^�c���X�a�g�#�G�Z�[�Z�g�Z�c�X�Z�h�/

Interacting with .NET Framework Elements �X 129

�������e�g�^�c�i���I�]�^�h�G�Z�[

�����6�X�X�Z�h�h���V���h�e�Z�X�^�[�^�X���V�h�h�Z�b�W�a�n���V�c�Y���Y�^�h�e�a�V�n���b�d�g�Z���^�c�[�d�g�b�V�i�^�d�c���V�W�d�j�i���^�i�#
�I�]�^�h�G�Z�[���2���X�a�g�#�G�Z�[�Z�g�Z�c�X�Z�h�P�'�R��
�e�g�^�c�i���»�Q�c�;�j�a�a���C�V�b�Z���d�[���H�n�h�i�Z�b�#�M�b�a�/�¼��
�e�g�^�c�i���I�]�^�h�G�Z�[�#�;�j�a�a�C�V�b�Z

�����9�^�h�e�a�V�n���i�]�Z���g�Z�[�Z�g�Z�c�X�Z�Y���V�h�h�Z�b�W�a�^�Z�h�#��
�e�g�^�c�i���»�Q�c�G�Z�[�Z�g�Z�c�X�Z�Y���6�h�h�Z�b�W�a�^�Z�h�/�¼��
�[�d�g���G�Z�[�Z�g�Z�c�X�Z���^�c���I�]�^�h�G�Z�[�#�<�Z�i�G�Z�[�Z�g�Z�c�X�Z�Y�6�h�h�Z�b�W�a�^�Z�h�����/
�������e�g�^�c�i���G�Z�[�Z�g�Z�c�X�Z�#�I�d�H�i�g�^�c�\����

�����9�^�h�e�a�V�n���i�]�Z���V�h�h�Z�b�W�a�n���V�i�i�g�^�W�j�i�Z�h�#��
�e�g�^�c�i���»�Q�c�6�i�i�g�^�W�j�i�Z�h�/�¼��
�[�d�g���6�c�6�i�i�g�^�W�j�i�Z���^�c���I�]�^�h�G�Z�[�#�<�Z�i�8�j�h�i�d�b�6�i�i�g�^�W�j�i�Z�h���i�n�e�Z���I�]�^�h�G�Z�[�����/
�������e�g�^�c�i���6�c�6�i�i�g�^�W�j�i�Z�#�I�d�H�i�g�^�c�\����

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins by importing �h�n�h and adding the .NET Framework 2.0 path to �h�n�h�#�e�V�i�]. Adding
just the path you need tends to reduce the risk of importing the wrong assembly. Even so, you want
to verify that you’re using the right assembly, especially when the code is running on another system.

The next step is to import �X�a�g. This module provides the features required to interact with the
assemblies. The next few lines of code import �H�n�h�i�Z�b and �H�n�h�i�Z�b�#�M�b�a so that you can see a
number of assemblies in IronPython. Notice that the �H�n�h�i�Z�b�#�M�b�a import requires use of the
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���� method.

At this point, the example obtains the list of loaded assemblies from the �X�a�g�#�G�Z�[�Z�g�Z�c�X�Z�h property
and displays them onscreen using a �[�d�g loop. Figure 7-11 shows the list of assemblies for this example.
Notice that the �rst assembly is �b�h�X�d�g�a�^�W, which always loads.

You can drill down into an assembly as far as you want. The example continues by working with
the �H�n�h�i�Z�b�#�M�b�a assembly. As a �rst step, the code displays the full name of the assembly. Using
string manipulation, you can obtain the assembly name, version, culture, and public key token.

When creating an installation program, you often need to know the list of referenced
assemblies. The next portion of application code shows how to perform this task using the �I�]�^�h�G�Z�[��
�#�<�Z�i�G�Z�[�Z�g�Z�c�X�Z�Y�6�h�h�Z�b�W�a�^�Z�h���� method. The output includes the same four pieces of information as
the assembly information, so you know precisely which assemblies to include with your application.

Some developers also want to know about attributes assigned to an assembly. The �I�]�^�h�G�Z�[��
�#�<�Z�i�8�j�h�i�d�b�6�i�i�g�^�W�j�i�Z�h���i�n�e�Z���I�]�^�h�G�Z�[���� method call obtains this information. You must provide
the type of the assembly you want to interact with. Notice that the example uses the Python �i�n�e�Z����
function, rather than a .NET equivalent. In some situations, you mix .NET and Python code to
obtain a desired result. The code shows how to use a loop to obtain the list of attributes. Most
assemblies include a wealth of attributes (some inherited). A developer might need to know some of
these attributes, such as �H�n�h�i�Z�b�#�H�Z�X�j�g�^�i�n�#�E�Z�g�b�^�h�h�^�d�c�h�#�H�Z�X�j�g�^�i�n�E�Z�g�b�^�h�h�^�d�c�6�i�i�g�^�W�j�i�Z (which
provides security information about the assembly), to create a functional application.

130 �X CHAPTER 7 ACCESSING THE .NET FRAMEWORK

FIGURE 7�11: IronPython doesn’t limit the information you receive about assemblies.

Working with the attributes can prove a little trick y because they each contain different values.
When working with the �6�h�h�Z�b�W�a�n�8�d�b�e�V�c�n�6�i�i�g�^�W�j�i�Z, for example, you can access the �8�d�b�e�V�c�n
property that contains the name of the company that created the attribute. Of course, nothing dif-
fers from any other .NET language in this case. You need to know precisely which attributes you
want to query and the properties within those attributes that contain the values you need in order to
interact with attributes successfully.

Making Static Method Calls
Many of the tasks you perform using .NET require use of static methods. Static methods
work the same in IronPython as they do in any .NET language. Listing 7-2 shows some static
method calls that work with the current date and time. The techniques shown work with any
static method.

Interacting with .NET Framework Elements �X 131

LISTING 7�2: Performing tasks using static methods

�����6�Y�Y���i�]�Z���#�C�:�I���;�g�V�b�Z�l�d�g�`���'�#�%���i�d���i�]�Z���e�V�i�]�#��
�^�b�e�d�g�i���h�n�h
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�Q�L�>�C�9�D�L�H�Q�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�Q�;�g�V�b�Z�l�d�g�`�Q�Q�k�'�#�%�#�*�%�,�'�,�¼��

�����B�V�`�Z���X�a�g���V�X�X�Z�h�h�^�W�a�Z�#
�^�b�e�d�g�i���X�a�g

�����>�b�e�d�g�i���i�]�Z���H�n�h�i�Z�b���V�h�h�Z�b�W�a�n�#
�^�b�e�d�g�i���H�n�h�i�Z�b

�����<�Z�i���i�]�Z���h�n�h�i�Z�b���Y�V�i�Z���V�c�Y���i�^�b�Z�#
�8�j�g�g�9�V�i�Z�I�^�b�Z���2���H�n�h�i�Z�b�#�9�V�i�Z�I�^�b�Z�#�C�d�l

�����9�^�h�e�a�V�n���i�]�Z���Y�V�i�Z���V�c�Y���i�^�b�Z���^�c���V���c�j�b�W�Z�g���d�[���[�d�g�b�V�i�h�#
�e�g�^�c�i���»�H�]�d�g�i���Y�V�i�Z���V�c�Y���i�^�b�Z�/�¼��
�e�g�^�c�i���H�n�h�i�Z�b�#�9�V�i�Z�I�^�b�Z�#�C�d�l�#�I�d�H�]�d�g�i�9�V�i�Z�H�i�g�^�c�\�����!
�e�g�^�c�i���H�n�h�i�Z�b�#�9�V�i�Z�I�^�b�Z�#�C�d�l�#�I�d�H�]�d�g�i�I�^�b�Z�H�i�g�^�c�\����

�e�g�^�c�i���»�Q�c�A�d�c�\���Y�V�i�Z���V�c�Y���i�^�b�Z�/�¼��
�e�g�^�c�i���8�j�g�g�9�V�i�Z�I�^�b�Z�#�I�d�A�d�c�\�9�V�i�Z�H�i�g�^�c�\�����!
�e�g�^�c�i���8�j�g�g�9�V�i�Z�I�^�b�Z�#�I�d�A�d�c�\�I�^�b�Z�H�i�g�^�c�\����

�����9�^�h�e�a�V�n���V���[�Z�l���h�i�V�i�^�h�i�^�X�h�#��
�e�g�^�c�i���»�Q�c���9�V�i�Z���H�i�V�i�^�h�i�^�X�h�/�¼��
�e�g�^�c�i���»�9�V�n�h���^�c���B�d�c�i�]�/�¼�!��
�e�g�^�c�i���8�j�g�g�9�V�i�Z�I�^�b�Z�#�9�V�n�h�>�c�B�d�c�i�]���8�j�g�g�9�V�i�Z�I�^�b�Z�#�N�Z�V�g�!���8�j�g�g�9�V�i�Z�I�^�b�Z�#�B�d�c�i�]��
�e�g�^�c�i���»�9�V�n�a�^�\�]�i���H�V�k�^�c�\�h�4�¼�!���8�j�g�g�9�V�i�Z�I�^�b�Z�#�>�h�9�V�n�a�^�\�]�i�H�V�k�^�c�\�I�^�b�Z������
�e�g�^�c�i���»�A�Z�V�e���N�Z�V�g�4�¼�!��
�e�g�^�c�i���8�j�g�g�9�V�i�Z�I�^�b�Z�#�>�h�A�Z�V�e�N�Z�V�g���8�j�g�g�9�V�i�Z�I�^�b�Z�#�N�Z�V�g��

�����B�V�c�^�e�j�a�V�i�Z���i�]�Z���Y�V�i�Z�#��
�e�g�^�c�i���»�Q�c�6�Y�Y�^�c�\���V���9�V�n�!���B�d�c�i�]�!���V�c�Y���N�Z�V�g�/�¼
�8�j�g�g�9�V�i�Z�I�^�b�Z���2���8�j�g�g�9�V�i�Z�I�^�b�Z�#�6�Y�Y�9�V�n�h���&��
�8�j�g�g�9�V�i�Z�I�^�b�Z���2���8�j�g�g�9�V�i�Z�I�^�b�Z�#�6�Y�Y�B�d�c�i�]�h���&��
�8�j�g�g�9�V�i�Z�I�^�b�Z���2���8�j�g�g�9�V�i�Z�I�^�b�Z�#�6�Y�Y�N�Z�V�g�h���&��
�e�g�^�c�i���8�j�g�g�9�V�i�Z�I�^�b�Z�#�I�d�A�d�c�\�9�V�i�Z�H�i�g�^�c�\����

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins by adding the required �h�n�h�#�e�V�i�] entry and importing the necessary modules and
assemblies. It then creates a variable named �8�j�g�g�9�V�i�Z�I�^�b�Z, which is only in place for convenience.
The code sets �8�j�g�g�9�V�i�Z�I�^�b�Z to reference �H�n�h�i�Z�b�#�9�V�i�Z�I�^�b�Z�#�C�d�l. You can do the same thing with-
out relying on the variable.

The �rst outputs are the short and long date and time. Notice that the short date and time
rely on �H�n�h�i�Z�b�#�9�V�i�Z�I�^�b�Z�#�C�d�l, while the long date and time rely on �8�j�g�g�9�V�i�Z�I�^�b�Z. In both
cases, the code calls on static methods to output the date and time in a speci�c format using
�I�d�H�]�d�g�i�9�V�i�Z�H�i�g�^�c�\����, �I�d�H�]�d�g�i�I�^�b�Z�H�i�g�^�c�\����, �I�d�A�d�c�\�9�V�i�Z�H�i�g�^�c�\����, and �I�d�A�d�c�\�I�^�b�Z�H�i�g�^�c�\����.
Figure 7-12 shows the output from these calls.

132 �X CHAPTER 7 ACCESSING THE .NET FRAMEWORK

FIGURE 7�12: Static methods enable you to perform tasks without creating objects.

As with any date and time example, you can output statistics for the date and time in question. The
example shows how to determine the number of days in the month, whether daylight savings time
is in effect, and whether this is a leap year. Notice that some of these calls also require that you
provide property values to obtain the output. You could just as easily replace �8�j�g�g�9�V�i�Z�I�^�b�Z with
�H�n�h�i�Z�b�#�9�V�i�Z�I�^�b�Z�#�C�d�l for the properties.

You do need a variable to hold date and time manipulations. The method calls are still static,
but when you add date or time values, you need a place to store the result. The �nal portion of
the example shows how you’d perform this task. The output is one day, one month, and one year
later than the current date.

Creating .NET Objects
The .NET Framework provides access to a lot of objects and following chapters will explore many
of them. However, one of the objects that developers need to know about �rst is the exception. The
.NET code you run will generate exceptions at times, and Python does provide support for them as
long as you have some idea of what to expect. In fact, you can even create and catch .NET exceptions
in your IronPython code, as shown in Listing 7-3.

LISTING 7�3: Catching and handling .NET exceptions

�����6�Y�Y���i�]�Z���#�C�:�I���;�g�V�b�Z�l�d�g�`���'�#�%���i�d���i�]�Z���e�V�i�]�#
�^�b�e�d�g�i���h�n�h
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�Q�L�>�C�9�D�L�H�Q�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�Q�;�g�V�b�Z�l�d�g�`�Q�Q�k�'�#�%�#�*�%�,�'�,�¼��

�����B�V�`�Z���X�a�g���V�X�X�Z�h�h�^�W�a�Z�#
�^�b�e�d�g�i���X�a�g��

�����>�b�e�d�g�i���i�]�Z���H�n�h�i�Z�b���V�h�h�Z�b�W�a�n�#
�^�b�e�d�g�i���H�n�h�i�Z�b��

�����8�g�Z�V�i�Z���V�c���Z�m�X�Z�e�i�^�d�c�#

Interacting with .NET Framework Elements �X 133

�I�]�^�h�:�m�X�Z�e�i�^�d�c���2���H�n�h�i�Z�b�#�D�e�Z�g�V�i�^�d�c�8�V�c�X�Z�a�Z�Y�:�m�X�Z�e�i�^�d�c���»�I�]�Z���J�h�Z�g���H�V�^�Y���C�d���¼��

�����6�h�`���i�]�Z���j�h�Z�g���V���f�j�Z�h�i�^�d�c�#
�i�g�n�/
�������6�c�h�l�Z�g���2���g�V�l�T�^�c�e�j�i���»�9�d���n�d�j���l�V�c�i���i�d���X�d�c�i�^�c�j�Z�4�����N�$�C���»��

�����������8�]�Z�X�`���i�]�Z���g�Z�h�e�d�c�h�Z�#
�������^�[���6�c�h�l�Z�g�#�j�e�e�Z�g�������2�2���»�N�¼�/
�������������e�g�^�c�i���»�<�g�Z�V�i���¼
�������Z�a�h�Z�/
�������������g�V�^�h�Z���I�]�^�h�:�m�X�Z�e�i�^�d�c��

�Z�m�X�Z�e�i���H�n�h�i�Z�b�:�g�g�d�g���V�h�����H�n�h�:�g�g���/
�������e�g�^�c�i���»�Q�c�B�Z�h�h�V�\�Z�/�¼�!���H�n�h�:�g�g�#�b�Z�h�h�V�\�Z
�������e�g�^�c�i���»�Q�c�8�a�V�h�h�/�¼�!���H�n�h�:�g�g�#�X�a�h�:�m�X�Z�e�i�^�d�c�#�<�Z�i�I�n�e�Z����
�������e�g�^�c�i���»�Q�c�8�a�V�h�h�!���B�Z�h�h�V�\�Z�!���V�c�Y���H�i�V�X�`���I�g�V�X�Z�/�¼�!���H�n�h�:�g�g�#�X�a�h�:�m�X�Z�e�i�^�d�c
������
�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The example starts out as most do in the chapter by making the appropriate references and import-
ing the correct modules and assemblies. The �rst bit of code creates an exception, �I�]�^�h�:�m�X�Z�e�i�^�d�c,
by calling the �H�n�h�i�Z�b�#�D�e�Z�g�V�i�^�d�c�8�V�c�X�Z�a�Z�Y�:�m�X�Z�e�i�^�d�c���� constructor. You can embed previous
exceptions in the current exception by using the correct constructor, but the example uses just one
level to keep things simple.

The code then asks the user a simple question. If the user answers N, the code raises an excep-
tion and then catches it as a �H�n�h�i�Z�b�:�g�g�d�g. Notice that this exception handler provides a means
of accessing the error through �H�n�h�:�g�g. The easiest way to obtain the error message is through the
�H�n�h�:�g�g�#�b�Z�h�h�V�\�Z.

Of course, you’ll probably want more information. All of the .NET errors will appear as the
�H�n�h�i�Z�b�:�g�g�d�g type. Consequently, you need to consider how to detect the proper error class in
your IronPython code. The �H�n�h�:�g�g�#�X�a�h�:�m�X�Z�e�i�^�d�c�#�<�Z�i�I�n�e�Z���� provides the answer. You can also
display a complex message by displaying the �H�n�h�:�g�g�#�X�a�h�:�m�X�Z�e�i�^�d�c attribute. Figure 7-13 shows
the output from this example.

FIGURE 7�13: Use SysErr.clsException.GetType () to obtain an error class.

134 �X CHAPTER 7 ACCESSING THE .NET FRAMEWORK

Creating the Directory Example
You’ll probably �nd that you need access to the user’s hard drive at some point. IronPython does pro-
vide the functionality that Python provides for working with drives, directories, and folders, but many
developers will �nd using the .NET functionality easier — especially if that’s what they normally rely
upon. Listing 7-4 shows a very simple example of gaining access to directories and �les. Once you gain
this access, you can perform any task that you’d normally perform with a directory or �le. The rest of
�H�n�h�i�Z�b�#�>�D works amazingly like what you’d expect from any .NET language.

LISTING 7�4: Obtaining access to directories and �les

�����6�Y�Y���i�]�Z���#�C�:�I���;�g�V�b�Z�l�d�g�`���'�#�%���i�d���i�]�Z���e�V�i�]�#��
�^�b�e�d�g�i���h�n�h
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�Q�L�>�C�9�D�L�H�Q�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�Q�;�g�V�b�Z�l�d�g�`�Q�Q�k�'�#�%�#�*�%�,�'�,�¼��

�����B�V�`�Z���X�a�g���V�X�X�Z�h�h�^�W�a�Z�#
�^�b�e�d�g�i���X�a�g

�����>�b�e�d�g�i���i�]�Z���g�Z�f�j�^�g�Z�Y���V�h�h�Z�b�W�a�^�Z�h�#
�^�b�e�d�g�i���H�n�h�i�Z�b��
�^�b�e�d�g�i���H�n�h�i�Z�b�#�>�D

�����<�Z�i���i�]�Z���h�i�V�g�i�^�c�\���Y�^�g�Z�X�i�d�g�n�#
�H�i�V�g�i���2���g�V�l�T�^�c�e�j�i���»�I�n�e�Z���V���h�i�V�g�i�^�c�\���Y�^�g�Z�X�i�d�g�n�����h�j�X�]���V�h���8�/�Q�Q���»��

�����8�g�Z�V�i�Z���i�]�Z���9�^�g�Z�X�i�d�g�n�>�c�[�d���d�W�_�Z�X�i�#
�B�n�9�^�g���2���H�n�h�i�Z�b�#�>�D�#�9�^�g�Z�X�i�d�g�n�>�c�[�d���H�i�V�g�i��

�����9�^�h�e�a�V�n���V���a�^�h�i���d�[���h�j�W�Y�^�g�Z�X�i�d�g�^�Z�h�#
�e�g�^�c�i���»�H�j�W�Y�^�g�Z�X�i�d�g�^�Z�h�/�¼��
�[�d�g���:�V�X�]�9�^�g���^�c���B�n�9�^�g�#�<�Z�i�9�^�g�Z�X�i�d�g�^�Z�h�����/
�������e�g�^�c�i���:�V�X�]�9�^�g�!���»�Q�i�¼�!

�����9�^�h�e�a�V�n���V���a�^�h�i���d�[���[�^�a�Z�h�#��
�e�g�^�c�i���»�Q�c�Q�c�;�^�a�Z�h�/�¼��
�[�d�g���:�V�X�]�;�^�a�Z���^�c���B�n�9�^�g�#�<�Z�i�;�^�a�Z�h�����/
�������e�g�^�c�i���:�V�X�]�;�^�a�Z�!���»�Q�i�¼�!

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins with the usual imports. Notice that you must import the �H�n�h�i�Z�b�#�>�D assembly to
make this example work.

At this point, the code asks the user to provide a drive speci�cation as a starting point. You can type
any location on your hard drive that actually exists. The example doesn’t provide error-trapping code
for the sake of clarity (although, you could easily add it using the techniques in the “Creating .NET
Objects” section of this chapter).

Now that the code has a drive speci�cation to use, it creates a �H�n�h�i�Z�b�#�>�D�#�9�^�g�Z�X�i�d�g�n�>�c�[�d����
object, �B�n�9�^�g, just as you would when using a .NET language. The code uses �B�n�9�^�g to access the

Working with Generics �X 135

list of directories using �B�n�9�^�g�#�<�Z�i�9�^�g�Z�X�i�d�g�^�Z�h���� and a list of �les using �B�n�9�^�g�#�<�Z�i�;�^�a�Z�h����. In
this case, the code simply prints out the result, but you could go on to process the directories and
�les. Figure 7-14 shows typical output from this example (of course, the actual directory and �le-
names will match your system).

FIGURE 7�14: A list of directories and subdirectories is in the C:\ folder.

WORKING WITH GENERICS

Generic classes are exceptionally easy to work with in IronPython, which is a good feature to have
because the .NET Framework includes a lot of generic classes. Listing 7-5 starts with a simple �A�^�h�i,
but the technique shown in this listing works with every other generic class that .NET provides.

LISTING 7�5: Using .NET generics

�����6�Y�Y���i�]�Z���#�C�:�I���;�g�V�b�Z�l�d�g�`���'�#�%���i�d���i�]�Z���e�V�i�]�#��
�^�b�e�d�g�i���h�n�h
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�Q�L�>�C�9�D�L�H�Q�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�Q�;�g�V�b�Z�l�d�g�`�Q�Q�k�'�#�%�#�*�%�,�'�,�¼��

�����B�V�`�Z���X�a�g���V�X�X�Z�h�h�^�W�a�Z�#
�^�b�e�d�g�i���X�a�g

�����>�b�e�d�g�i���i�]�Z���g�Z�f�j�^�g�Z�Y���V�h�h�Z�b�W�a�^�Z�h�#
�^�b�e�d�g�i���H�n�h�i�Z�b

continues

136 �X CHAPTER 7 ACCESSING THE .NET FRAMEWORK

�^�b�e�d�g�i���H�n�h�i�Z�b�#�8�d�a�a�Z�X�i�^�d�c�h�#�<�Z�c�Z�g�^�X

�����8�g�Z�V�i�Z���V�c���^�c�i�Z�\�Z�g���a�^�h�i�#
�B�n�A�^�h�i���2���H�n�h�i�Z�b�#�8�d�a�a�Z�X�i�^�d�c�h�#�<�Z�c�Z�g�^�X�#�A�^�h�i�P�^�c�i�R����

�����6�Y�Y���^�i�Z�b�h���i�d���i�]�Z���a�^�h�i�#
�B�n�A�^�h�i�#�6�Y�Y���&��
�B�n�A�^�h�i�#�6�Y�Y���'��
�B�n�A�^�h�i�#�6�Y�Y���(��

�����:�c�j�b�Z�g�V�i�Z���i�]�Z���a�^�h�i�#
�e�g�^�c�i���»�>�c�^�i�^�V�a���A�^�h�i�¼
�[�d�g���>���^�c���B�n�A�^�h�i�/
�������e�g�^�c�i���>�!

�����6�Y�Y���V���g�V�c�\�Z���d�[���c�j�b�W�Z�g�h�#
�B�n�A�^�h�i�#�6�Y�Y�G�V�c�\�Z���g�V�c�\�Z���*����

�����:�c�j�b�Z�g�V�i�Z���i�]�Z���j�e�Y�V�i�Z�Y���a�^�h�i�#
�e�g�^�c�i���»�Q�c�Q�c�A�^�h�i���L�^�i�]���G�V�c�\�Z���6�Y�Y�Z�Y�¼
�[�d�g���>���^�c���B�n�A�^�h�i�/
�������e�g�^�c�i���>�!

�����G�Z�b�d�k�Z���V���k�V�a�j�Z���i�]�V�i�¼�h���c�d���a�d�c�\�Z�g���c�Z�Z�Y�Z�Y�#
�B�n�A�^�h�i�#�G�Z�b�d�k�Z���)��

�����9�^�h�e�a�V�n���i�]�Z���g�Z�h�j�a�i�h�#��
�e�g�^�c�i���»�Q�c�Q�c�A�^�h�i���L�^�i�]���)���G�Z�b�d�k�Z�Y�¼
�[�d�g���>���^�c���B�n�A�^�h�i�/
�������e�g�^�c�i���>�!

�����G�Z�b�d�k�Z���V���g�V�c�\�Z���d�[���^�i�Z�b�h�#
�B�n�A�^�h�i�#�G�Z�b�d�k�Z�G�V�c�\�Z���&�!���'��

�����9�^�h�e�a�V�n���i�]�Z���g�Z�h�j�a�i�h�#��
�e�g�^�c�i���»�Q�c�Q�c�G�Z�b�d�k�Z�Y���>�i�Z�b�h���&���V�c�Y���'�¼
�[�d�g���>���^�c���B�n�A�^�h�i�/
�������e�g�^�c�i���>�!

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins with the usual imports. Notice that you must import �H�n�h�i�Z�b�#�8�d�a�a�Z�X�i�^�d�c�h�#�<�Z�c�Z�g�^�X
to make this example work. If you were going to work quite a bit with this namespace, you’d want to
import it into the global namespace because typing the longer namespace would prove time consuming
and error prone. Fortunately, you use it only once in this example, to create �B�n�A�^�h�i, which is an
�^�c�i �A�^�h�i. Notice that the data type of �A�^�h�i appears within square brackets and that the example uses
a Python data type. You could just as easily use a .NET data type.

LISTING 7�5 (continued)

Using IronPython Constructively �X 137

At this point, the code makes some additions to �B�n�A�^�h�i using the �6�Y�Y���� method. Most .NET devel-
opers have used this technique since they �rst started working with their .NET language of ch oice,
so there aren’t any surprises here. The initial output appears in Figure 7-15.

FIGURE 7�15: You can use generics to interact with a list.

The next addition might surprise you a little. The code uses the �6�Y�Y�G�V�c�\�Z���� method to add a range
of numbers supplied by the �g�V�c�\�Z���� function. This is another example where you can easily mix
.NET and Python code without any problems. Figure 7-15 shows that �B�n�A�^�h�i now contains both
the initial additions and the range of numbers.

You can also remove values from �B�n�A�^�h�i. The �rst example uses �G�Z�b�d�k�Z���� to remove a speci�c value.
The �G�Z�b�d�k�Z�G�V�c�\�Z���� method removes a range of the entries by position. Both removals appear in
Figure 7-15 so you can see their effect.

Like many of the techniques described in this chapter, �A�^�h�i has a lot more to offer. Make sure you
perform a �Y�^�g���B�n�A�^�h�i�� to see other tasks you can perform with the �A�^�h�i generic class. For example,
you might want to see the results of using �G�Z�k�Z�g�h�Z���� or �H�d�g�i���� on �B�n�A�^�h�i. Have some fun with this
example because discovering what generics can add to IronPython is important.

USING IRONPYTHON CONSTRUCTIVELY

This chapter provides you with an introduction to wo rking with the .NET Framework in
IronPython. Access to the .NET Framework is a huge advantage that IronPython possesses
that you won’t �nd with any other version of Python. Th is advantage limits you to the Windows
environment in most cases, unless you use a subset of the .NET Framework that also works with
Mono (�]�i�i�e�/�$�$�l�l�l�#�b�d�c�d�"�e�g�d�_�Z�X�i�#�X�d�b�$�B�V�^�c�T�E�V�\�Z). If you can �nd a way to work with just
the subset, your applications will also work without problem on both Mac and Linux so you
get the best of both worlds — full access to Python and full access to the .NET Framework in
one language. Amazing!

You’ve probably spent a good deal of time working with the .NET Framework when using other
languages. However, IronPython has speci�c needs and requirements when working with the
.NET Framework. It’s a good idea to spend some time working through examples of your own

138 �X CHAPTER 7 ACCESSING THE .NET FRAMEWORK

with IronPython before you move on to the next chapter. Try converting a few of your simpler
applications from the language you currently use to IronPython. The exercise will help you under-
stand the IronPython differences and may help you understand where IronPython can help with
your current application development needs.

This chapter is about .NET Framework basics. In Chapter 8 you move beyond basics to a speci�c
kind of application — the Windows Forms application. The examples in Chapter 8 help you under-
stand how you can use IronPython to create a standard desktop application with a full GUI, some-
thing that most developers will need to know in order to use IronPython fully in their application
development environment. It’s important to keep the basics in mind, however, as you move from this
chapter to the graphical examples in Chapter 8.

Creating Windows Forms
Applications

WHAT’S IN THIS CHAPTER?

�° Creating a form design without using the Visual Designer��

Building a Windows Forms application���°

Using events and delegates in IronPython���°

Most of the applications you’ve worked with in the book so far rely on a character-mode inter-
face. Of course, character-mode is just �ne when you’re dealing with utilities or example applica-
tions, but most users want a GUI. The idea of typing commands at the command prompt is so
foreign to most of today’s users that you’d never get them all trained to use your application.

Fortunately, you can create a number of graphical application types using IronPython.
Unfortunately, many of the graphical programming tools available to Python developers
won’t work with IronPython because IronPython lacks support for C-style libraries. This
is a situation where you really do need Windows Forms support to provide what the user
needs in the way of an application.

The problem for the IronPython developer is that IronPython isn’t integrated into Visual
Studio. Consequently, you won’t have Visual Designer support in a pure IronPython environ-
ment. (Chapters 16 and 17 show how to overcome this problem by using either C# or Visual
Basic.NET to produce the user interface.) This chapter discusses some ways in which you can
produce a great interface without using the Visual Designer.

A graphical interface naturally implies writing code that responds to events (handlers) and
providing the code required to produce an event (delegates). When the user clicks a button,
something needs to happen in your application. This chapter addresses the requirements for
working with both handlers and delegates. You’ll discover the techniques used to create event
handlers that act just like those created in other languages.

8

140 �X CHAPTER 8 CREATING WINDOWS FORMS APPLICATIONS

The �nal section of this chapter puts everything you’ve discovered into practice. You’ll build a
Windows Forms application. The application isn’t designed to do anything too complex — the main
purpose of the example is to show you how to put all of the component parts together so that you
end up with a working application. You’ll discover ho w to perform more complex processing as the
book progresses.

WORKING WITHOUT A VISUAL DESIGNER

Tools are a good thing because they help you perform tasks faster and more accurately. However, tools
aren’t indispensible. You use a tool when it’s available to gain the bene�ts it provides, but a good devel-
oper can get by without the tools. The Visual Designer found in Visual Studio is simply a tool, nothing
more. It doesn’t perform any sort of magic or suddenly make your application do things that it couldn’t
in the past. In fact, you can dispense with the Visual Designer when creating any application using
Visual Studio. Developers simply use the Visual Designer because it performs its task so admirably.

Unfortunately, tools can also hide the work they perform. The Visual Designer does a lot of work in
the background that most developers could �gure out given time but most developers don’t bother to
learn. Consequently, when approaching a Windows Forms application for IronPython, you might �nd
that you have to develop some new skills to get the window to display at all. Let’s hope that IronPython
will eventually become integrated with the Visual Studio IDE enough that you won’t have to create your
Windows Forms interface by hand. In the meantime, the following sections describe what the Visual
Designer does in a little more detail and then tell you what you need to know to work without it.

Understanding How the Visual Designer Works
The Visual Designer is nothing more than a code writer. When you place a new control on the form,
the Visual Designer writes the code to create the control in the form when the application executes.
Sizing and other property changes are merely coding additions to the form code. When you’re done,
you end up with a class that de�nes a form using code — code that you didn’t write.

The class that Visual Designer creates appears in a separate �le so that the Windows Form code
doesn’t interfere with code you write. For example, if you create a form named �[�g�b�B�V�^�c�#�8�H, the
designer code appears in �[�g�b�B�V�^�c�#�9�Z�h�^�\�c�Z�g�#�8�H. When you open the �[�g�b�B�V�^�c�#�9�Z�h�^�\�c�Z�g�#�8�H �le,
you see code such as that shown in Figure 8-1.

The code in Figure 8-1 shows that the form has two buttons (�W�i�c�D�@ and �W�i�c�8�V�c�X�Z�a) and a label
(�a�V�W�Z�a�&) de�ned. You then see the code used to de�ne the properties for each control. For example,
the �W�i�c�D�@�#�9�^�V�a�d�\�G�Z�h�j�a�i property is set to �H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�9�^�V�a�d�\�G�Z�h�j�a�i�#�D�@. There isn’t
anything mysterious about this code — you’ve probably written similar code yourself, so you can
easily do it now.

Understanding the Elements of a Window
Before you tackle an IronPython Windows Forms application, it’s a good idea to spend a little
time looking at simple examples in languages you know. If you don’t have a simple example to
review, check out CSharpExample, which is provided with the book’s source code. The �[�g�b�B�V�^�c��
�#�9�Z�h�^�\�c�Z�g�#�8�H �le is the best place to start.

Working without a Visual Designer �X 141

FIGURE 8�1: The Visual Designer writes the code used to create a form.

All Windows Forms applications inherit from �H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�;�d�g�b. This class provides
the basic window, which is con�gurable for a variety o f needs. All of the properties you see in the
Visual Designer are also available programmatically. For example, if you want to create a dialog
box, you simply change the �;�d�g�b�7�d�g�Y�Z�g�H�i�n�a�Z property.

Inside the window are controls. It’s important to realize that even if controls appear within another
control, you de�ne them as part of the window. Now, you might add the control to another control,
but eventually, the host control is added to the window or it isn’t displayed.

Emulating the Visual Designer Results
When working with IronPython, you become the Visual Designer. It helps if you have a familiar-
ity with what the Visual Designer does so that you can emulate its output and produce an appli-
cation faster.

There are certain features the Visual Designer needs that you don’t need to consider when working with
IronPython. For example, you don’t need to include a call to �H�j�h�e�Z�c�Y�A�V�n�d�j�i���� or �G�Z�h�j�b�Z�A�V�n�d�j�i����,
which prevent multiple �A�V�n�d�j�i events when using the Visual Designer. You also don’t need to include
any of the designer variables or the �9�^�h�e�d�h�Z���� method.

142 �X CHAPTER 8 CREATING WINDOWS FORMS APPLICATIONS

It helps to create two �les when building a Windows Forms application. The �rst �le contains the
client application — the code that instantiates a copy of the Windows Forms class, provides event
handlers, and actually runs the application. The second �le contains the code used to create the
form. This �le contains the property settings that create a unique application window. Throughout
this chapter, you’ll discover that the use of two �les does make things considerably easier.

When you use the Visual Designer, you probably set up the controls and assign all the property values
in one step. When working with IronPython, you want to start by creating the client application and
a basic window and then try the code. After this step, you add controls, position them, and try the
application again. Only after you complete these �rst two tasks do you start cluttering the �les with
the property settings that de�ne a completed application.

DEFINING WINDOWS FORMS

Creating a Windows Forms application from scratch need not be dif�cult. The basic problem is one
of layout. Often, you can perform the layout using another language and copy the layout information
from the Visual Designer window (such as the one shown in Figure 8-1). In fact, later chapters will
show you how to mix languages so you can get the best of all worlds. For now, it’s important to see
how you’d implement a simple Windows Forms application using IronPython. The following sections
describe the �ve basic steps in creating a Windows Forms application:

1. De�ne any required forms.

2. Initialize the application, including the forms.

3. Add event handlers for control events.

4. Perform useful work when an event occurs.

5. Run the application by starting the main form.

Creating the Window Code
Every Windows Forms application begins with one or more windows. You de�ne the code used to
create the window, starting with the window itself. As previously explained, creating a class that
inherits from the �H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�;�d�g�b class is enough to create the window, but then you
need to add controls to the window to de�ne the interface. The following sections describe how to
create a basic control structure for a window and then how to enhance that structure to make life
easier for the user.

Creating the Basic Control Structure
It’s helpful to lay out your controls and give them the visual appearance that you expect before
doing anything else. The example is relatively simple — it includes two buttons and a static label
containing a message. The �rst button displays a message, while the second ends the application.
Listing 8-1 shows the code required to create the interface for this example.

De�ning Windows Forms �X 143

LISTING 8�1: Designing the form and controls

�����H�Z�i���j�e���i�]�Z���e�V�i�]���i�d���i�]�Z���#�C�:�I���;�g�V�b�Z�l�d�g�`�#��
�^�b�e�d�g�i���h�n�h
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�Q�L�>�C�9�D�L�H�Q�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�Q�;�g�V�b�Z�l�d�g�`�Q�Q�k�'�#�%�#�*�%�,�'�,�¼��

�����B�V�`�Z���X�a�g���V�X�X�Z�h�h�^�W�a�Z�#
�^�b�e�d�g�i���X�a�g

�����6�Y�Y���V�c�n���g�Z�f�j�^�g�Z�Y���g�Z�[�Z�g�Z�c�X�Z�h�#
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�9�A�A�¼��
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�9�A�A�¼��

�����>�b�e�d�g�i���i�]�Z���#�C�:�I���V�h�h�Z�b�W�a�^�Z�h�#
�^�b�e�d�g�i���H�n�h�i�Z�b��
�^�b�e�d�g�i���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h
�^�b�e�d�g�i���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�E�d�^�c�i

�X�a�V�h�h���[�g�b�B�V�^�c���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�;�d�g�b���/

�����������I�]�^�h���[�j�c�X�i�^�d�c���e�Z�g�[�d�g�b�h���V�a�a���d�[���i�]�Z���g�Z�f�j�^�g�Z�Y���^�c�^�i�^�V�a�^�o�V�i�^�d�c�#
�������Y�Z�[���>�c�^�i�^�V�a�^�o�Z�8�d�b�e�d�c�Z�c�i���h�Z�a�[���/

�����������������8�d�c�[�^�\�j�g�Z���W�i�c�D�@
�������������h�Z�a�[�#�W�i�c�D�@���2���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�7�j�i�i�d�c����
�������������h�Z�a�[�#�W�i�c�D�@�#�I�Z�m�i���2���¹���D�@�º
�������������h�Z�a�[�#�W�i�c�D�@�#�A�d�X�V�i�^�d�c���2���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�E�d�^�c�i���'�+�(�!���&�(��

�����������������8�d�c�[�^�\�j�g�Z���W�i�c�8�V�c�X�Z�a
�������������h�Z�a�[�#�W�i�c�8�V�c�X�Z�a���2���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�7�j�i�i�d�c����
�������������h�Z�a�[�#�W�i�c�8�V�c�X�Z�a�#�I�Z�m�i���2���¹���8�V�c�X�Z�a�º
�������������h�Z�a�[�#�W�i�c�8�V�c�X�Z�a�#�A�d�X�V�i�^�d�c���2���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�E�d�^�c�i���'�+�(�!���)�(��

�����������������8�d�c�[�^�\�j�g�Z���a�W�a�B�Z�h�h�V�\�Z
�������������h�Z�a�[�#�a�W�a�B�Z�h�h�V�\�Z���2���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�A�V�W�Z�a����
�������������h�Z�a�[�#�a�W�a�B�Z�h�h�V�\�Z�#�I�Z�m�i���2���»�I�]�^�h���^�h���V���h�V�b�e�a�Z���a�V�W�Z�a�#�¼
�������������h�Z�a�[�#�a�W�a�B�Z�h�h�V�\�Z�#�A�d�X�V�i�^�d�c���2���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�E�d�^�c�i���&�(�!���&�(��
�������������h�Z�a�[�#�a�W�a�B�Z�h�h�V�\�Z�#�H�^�o�Z���2���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�H�^�o�Z���&�'�%�!���&�(��

�����������������8�d�c�[�^�\�j�g�Z���i�]�Z���[�d�g�b�#
�������������h�Z�a�[�#�I�Z�m�i���2���»�H�^�b�e�a�Z���E�n�i�]�d�c���L�^�c�Y�d�l�h���;�d�g�b�h���:�m�V�b�e�a�Z�¼
�������������h�Z�a�[�#�8�a�^�Z�c�i�H�^�o�Z���2���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�H�^�o�Z���(�*�%�!���'�%�%��

�����������������6�Y�Y���i�]�Z���X�d�c�i�g�d�a�h���i�d���i�]�Z���[�d�g�b�#
�������������h�Z�a�[�#�8�d�c�i�g�d�a�h�#�6�Y�Y���h�Z�a�[�#�W�i�c�D�@��
�������������h�Z�a�[�#�8�d�c�i�g�d�a�h�#�6�Y�Y���h�Z�a�[�#�W�i�c�8�V�c�X�Z�a��
�������������h�Z�a�[�#�8�d�c�i�g�d�a�h�#�6�Y�Y���h�Z�a�[�#�a�W�a�B�Z�h�h�V�\�Z��

The code begins by adding the .NET Framework path to �h�n�h�#�e�V�i�]. It then uses �X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z����
to add references for both �H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�9�A�A and �H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�9�A�A. Finally, the code
imports a number of .NET assemblies. The example uses individual �^�b�e�d�g�i statements for each assem-
bly. Theoretically, you can combine all the imports into a single �^�b�e�d�g�i statement, but most developers
�nd using individual �^�b�e�d�g�i statements is a lot more readable and easy to maintain.

144 �X CHAPTER 8 CREATING WINDOWS FORMS APPLICATIONS

The next step is to create the window class, �[�g�b�B�V�^�c, which inherits from �H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h��
�#�;�d�g�b. It’s important to remember that this class is simply a blueprint, as all classes are, and that
your application can create as many instances of it as required. This is the reason that every element
in the code is prefaced with �h�Z�a�[, which refers to the current instance.

You can perform the con�guration tasks found in
�>�c�^�i�^�V�a�^�o�Z�8�d�b�e�d�c�Z�c�i���� in any order. Most developers
like to create the controls �rst, followed by the client area,
as shown in Listing 8-1. However, you must add the con-
trols to the window after you con�gure them, or the co n-
trols will appear partially con�gured onscreen (and make
for a dif�cult debugging chore). For this reason, the code
calls on �h�Z�a�[�#�8�d�c�i�g�d�a�h�#�6�Y�Y���� last to add the controls to
the window. Figure 8-2 shows the output from the example
based on the con�guration criteria in Listing 8-1.

It’s easy to get lost while con�guring the controls, espe-
cially if you have multiple control levels to consider (such
as when using container controls). Most controls require
�ve con�guration steps and you want to perform them i n
this order to ensure you accomplish them all:

1. Instantiate the control.

2. Set the control’s output text, if any.

3. Set the control’s position on the window (starting from the upper-left corner).

4. (Optional) Set the control’s size when the default size won’t work.

5. (Optional) Add control enhancements, such as the tooltips discussed in the section “Making
the Application Easier to Use,” which follows.

Making the Application Easier to Use
One interesting point about using IronPython to create a Windows Forms application is that it tends
to reduce the number of unnecessary bells and whistles. However, don’t make your application so
Spartan that the user spends a lot of head-scratching time trying to �gure out how to use it. You
have to create a balance between the amount of code you must write and the needs of the user.

An easy addition is the use of speed keys. Simply type an ampersand (&) in front of the letter you
want to use for a speed key. When the user presses Alt+<Speed Key Letter>, the application selects
the associated control. Providing speed keys is incredibly easy, yet has a big impact on user produc-
tivity and also makes it possible for users who can’t work with a mouse to use your application. The
sample application described in Listing 8-1 already has this feature.

When users rely on the keyboard instead of the mouse, they also want to select the controls in order —
from left to right and from top to bottom (unless your language has a different natural order for reading
text). In some cases, this means changing the �I�V�W�>�c�Y�Z�m property. The form defaults to the tab order
provided by the order in which the controls appear in the code. Careful placement of the controls often
negates the need to change the �I�V�W�>�c�Y�Z�m property.

FIGURE 8�2: The form created by this
example is simple but works for demonstra-
tion purposes.

De�ning Windows Forms �X 145

Windows can also have default actions. The two most common default actions occur when you press
Enter (default acceptance) and Escape (default cancel). Providing controls for these two features helps
users move quickly through a form and can speed processing of wizards. Here’s the code you use to
provide default actions for the example application.

�h�Z�a�[�#�6�X�X�Z�e�i�7�j�i�i�d�c���2���h�Z�a�[�#�W�i�c�D�@
�h�Z�a�[�#�8�V�c�X�Z�a�7�j�i�i�d�c���2���h�Z�a�[�#�W�i�c�8�V�c�X�Z�a

You must con�gure the controls for a form before you con�gure a ny default
actions. The control must exist before you make the assignment to either �h�Z�a�[��
�#�6�X�X�Z�e�i�7�j�i�i�d�c or �h�Z�a�[�#�8�V�c�X�Z�a�7�j�i�i�d�c. Otherwise, you receive an ambiguous
error message when you run the application that will prove dif�cult to debug.

Another useful enhancement that doesn’t require a lot of work is the �I�d�d�a�I�^�e component. Using
tooltips makes it easier for the user to �gure out how an application works. These bits of mini-help
are quite useful and they provide all that many users need to become pro�cient quickly. Tooltips
also make it easy for someone who hasn’t used the application for a while to get back up to speed
quickly. Tooltips also provide input to screen readers (commonly used by those with special visual
needs) so that the screen reader can tell the user the control’s purpose. Here’s the code used to add
�I�d�d�a�I�^�e to the window.

�����6�Y�Y���V���i�d�d�a�i�^�e���X�d�c�i�g�d�a�#��
�h�Z�a�[�#�I�^�e�h���2���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�I�d�d�a�I�^�e����

You don’t add the �I�d�d�a�I�^�e component to the window itself using �h�Z�a�[�#�8�d�c�i�g�d�a�h�#�6�Y�Y���� because
�I�d�d�a�I�^�e lacks a visual interface. The �I�d�d�a�I�^�e component sits in the background and waits for a visual
control to require its services. The following code shows how to add a �I�d�d�a�I�^�e to individual controls.

�h�Z�a�[�#�I�^�e�h�#�H�Z�i�I�d�d�a�I�^�e���h�Z�a�[�#�W�i�c�D�@�!���»�9�^�h�e�a�V�n�h���V�c���^�c�i�Z�g�Z�h�i�^�c�\���b�Z�h�h�V�\�Z�#�¼��

The �H�Z�i�I�d�d�a�I�^�e���� method of the �I�d�d�a�I�^�e adds a tooltip to the control speci�ed by the �rst argu -
ment. The message appears as the second argument. Figure 8-3 shows a typical example of a tooltip
created using this technique.

Visual Studio provides a wealth of addi-
tional enhancements that usually won’t
require a lot of implementation time, but
can make a big difference to the user.
The best way to determine how to add
these enhancements is to add them to a
C# or Visual Basic.NET application and
then view the Visual Designer �le. For
example, you might want to add informa-
tion to the �6�X�X�Z�h�h�^�W�a�Z�9�Z�h�X�g�^�e�i�^�d�c,
�6�X�X�Z�h�h�^�W�a�Z�C�V�b�Z, and �6�X�X�Z�h�h�^�W�a�Z�G�d�a�Z FIGURE 8�3: Adding tooltips is easy and

helps most users considerably.

146 �X CHAPTER 8 CREATING WINDOWS FORMS APPLICATIONS

properties when your application will see even moderate use by those with special physical needs.
Obviously, you don’t add precisely the same code to your IronPython application that the Visual
Designer adds to the C# or Visual Basic.NET application, but the Visual Designer �le provides enough
insight to make the transition to IronPython work with relative ease.

Performing Quick Form Tests
You’ll want to see your form from time to time, befo re you’ve written the rest of the application code.
Fortunately, you’re using IronPython, so you have the interpreter at your disposal. The following steps
outline a quick way to see what your form looks like.

1. Start the interpreter (�>�E�N�#�:�M�:) in the directory that contains the form code.

2. Type �[�g�d�b���[�g�b�B�V�^�c���^�b�e�d�g�i���� and press Enter. This step imports the form into the inter-
preter for testing.

3. Type �I�Z�h�i�;�d�g�b���2���[�g�b�B�V�^�c���� and press Enter. This step instantiates a copy of �[�g�b�B�V�^�c that
you’ll use for testing.

4. Type �I�Z�h�i�;�d�g�b�#�>�c�^�i�^�V�a�^�o�Z�8�d�b�e�d�c�Z�c�i���� and press Enter. In this step, you execute the code
used to create and con�gure the controls within the form.

5. Type �I�Z�h�i�;�d�g�b�#�H�]�d�l�9�^�V�a�d�\���� and press Enter. At this point, you see the dialog box appear
onscreen, just as you’d normally see it when executed from the application. However, you see
just the dialog box and its controls. The dialog box is pretty much non-functional because
you don’t have any event handlers in place.

6. After you �nish viewing the dialog box, click Cancel or the close button. This act
closes the dialog box. You’ll see a dialog result value as part of the output, as shown
in Figure 8-4.

FIGURE 8�4: This output shows a typical form-viewing session in the interpreter.

Even though this technique is a little limited, it does give you a view of your form so that you can
easily �x any problems. You must repeat the entire process every time you want to test changes
to the form. The act of importing the form code means that you won’t see any changes within the
interpreter until you import the form code again. In short, if you make changes and don’t see them
during testing, it’s probably because you didn’t exit the interpreter and start over.

De�ning Windows Forms �X 147

Initializing the Application
After you’ve created a form and tested its functionality, you can begin to create an application that
uses the form. The �rst step in this process is to initialize the application as shown in Listing 8-2.
You might think that adding all of the .NET assembly imports is unnecessary given that the form
code already has them, but it turns out that you really do need to include the imports or the code
won’t work.

LISTING 8�2: Starting the application

�����H�Z�i���j�e���i�]�Z���e�V�i�]���i�d���i�]�Z���#�C�:�I���;�g�V�b�Z�l�d�g�`�#��
�^�b�e�d�g�i���h�n�h
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�Q�L�>�C�9�D�L�H�Q�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�Q�;�g�V�b�Z�l�d�g�`�Q�Q�k�'�#�%�#�*�%�,�'�,�¼��

�����B�V�`�Z���X�a�g���V�X�X�Z�h�h�^�W�a�Z�#
�^�b�e�d�g�i���X�a�g

�����6�Y�Y���V�c�n���g�Z�f�j�^�g�Z�Y���g�Z�[�Z�g�Z�c�X�Z�h�#
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�9�A�A�¼��

�����>�b�e�d�g�i���i�]�Z���#�C�:�I���V�h�h�Z�b�W�a�^�Z�h�#
�^�b�e�d�g�i���H�n�h�i�Z�b��
�^�b�e�d�g�i���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h

�����^�b�e�d�g�i���i�]�Z���[�d�g�b�#
�[�g�d�b���[�g�b�B�V�^�c���^�b�e�d�g�i����

�����9�Z�[�^�c�Z���i�]�Z���L�^�c�Y�d�l�h���;�d�g�b���V�c�Y���i�]�Z���Z�a�Z�b�Z�c�i�h���d�[���i�]�^�h���h�e�Z�X�^�[�^�X���^�c�h�i�V�c�X�Z�#
�I�Z�h�i�;�d�g�b���2���[�g�b�B�V�^�c����
�I�Z�h�i�;�d�g�b�#�>�c�^�i�^�V�a�^�o�Z�8�d�b�e�d�c�Z�c�i����

This part of the example shows all the required startup code. It begins by adding the path and
making all the required imports, as usual. The code ends by creating �I�Z�h�i�;�d�g�b, the object
used to interact with the �[�g�b�B�V�^�c instance. A common error developers make is that they don’t
call �I�Z�h�i�;�d�g�b�#�>�c�^�i�^�V�a�^�o�Z�8�d�b�e�d�c�Z�c�i����. When this problem occurs, the form won’t look as
expected — it may not appear at all. In fact, sometimes the IronPython interpreter will simply
freeze, requiring you to force a restart.

Providing Handlers for the Control Events
After the form initialization is complete, you have access to a form object and could display it
using �H�]�d�l�9�^�V�a�d�\����. However, the form object still won’t perform any useful work because
you don’t have any event handlers in place. You might be used to working with other .NET lan -
guages, where double-clicking the control on the form or double-clicking one of the event entries
in the Properties window performs all the con�guration for you. However, when working with
IronPython, you must perform these steps manually. Here is the code used to assign an event
handler to a particular control event.

148 �X CHAPTER 8 CREATING WINDOWS FORMS APPLICATIONS

�����6�a�l�V�n�h���V�Y�Y���Z�k�Z�c�i���]�V�c�Y�a�Z�g�h���V�[�i�Z�g���Y�Z�[�^�c�^�c�\���i�]�Z���L�^�c�Y�d�l�h���;�d�g�b�#
�I�Z�h�i�;�d�g�b�#�W�i�c�D�@�#�8�a�^�X�`��� �2���W�i�c�D�@�T�8�a�^�X�`
�I�Z�h�i�;�d�g�b�#�W�i�c�8�V�c�X�Z�a�#�8�a�^�X�`��� �2���W�i�c�8�V�c�X�Z�a�T�8�a�^�X�`

Notice that you must drill down into the form in ord er to access the controls. Consequently, you
must provide the full path to the event, such as �I�Z�h�i�;�d�g�b�#�W�i�c�D�@�#�8�a�^�X�`. IronPython lets you use
the � �2 operator to add an event handler to the �8�a�^�X�` event. If you want to remove the event handler,
all you need to use is the �·�2 operator instead. Assigning the event handler is as easy as providing the
method name as shown in the code.

IronPython events can have more than one handler, as you’ll see in the section “Developing Your
Own Events.” As with any OOP language, you simply keep adding event handlers with the correct
signature (a combination of the right return type and input arguments). Unlike most OOP languages,
IronPython tends to make things very simple and you could actually �nd this approach detrimental
because there are times where the interpreter will output odd messages instead of telling you that the
event handler won’t work for the event to which you assigned it.

Performing Some Useful Work as the Result of User Input
The Windows Forms application now has a form object and methods assigned to some of the events.
Of course, this means you need to provide the event handlers required to do the work. Event handlers
can come in a number of forms. When working with Windows Forms controls, you may never even
need the arguments that IronPython passes. The following code shows the event handlers used for
this example.

�����9�Z�[�^�c�Z���i�]�Z���Z�k�Z�c�i���]�V�c�Y�a�Z�g�h�#
�Y�Z�[���W�i�c�D�@�T�8�a�^�X�`�����V�g�\�h���/

�����������9�^�h�e�a�V�n���V���b�Z�h�h�V�\�Z���h�]�d�l�^�c�\���l�Z���V�g�g�^�k�Z�Y�#
�������H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���»�=�Z�a�a�d���¼��

�Y�Z�[���W�i�c�8�V�c�X�Z�a�T�8�a�^�X�`�����V�g�\�h���/

�����������8�a�d�h�Z���i�]�Z���V�e�e�a�^�X�V�i�^�d�c�#
�������I�Z�h�i�;�d�g�b�#�8�a�d�h�Z����

The code is a standard IronPython function. However, notice that the arguments have an asterisk
(*) in front of them. Essentially, this means that all the arguments passed to the event handler end
up in a sequence. In this case, that means you’ll end up with a list of event arguments. For a button
handler, you obtain two arguments:

�° Sender��

Mouse arguments���°

Let’s say for a minute that the user has clicked OK. Then the sender argument would contain

�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�7�j�i�i�d�c�!���I�Z�m�i�/�����D�@

De�ning Windows Forms �X 149

and the mouse arguments would contain the following (in a single line, rather than the multiple lines
shown in the book):

�1�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�B�d�j�h�Z�:�k�Z�c�i�6�g�\�h���d�W�_�Z�X�i���V�i���%�m�%�%�%�%�%�%�%�%�%�%�%�%�%�%�'�7
���P�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�B�d�j�h�Z�:�k�Z�c�i�6�g�\�h�R�3

Sometimes you need to access the event arguments. In this case, you could easily rewrite this event
handler as shown here:

�Y�Z�[���W�i�c�D�@�T�8�a�^�X�`���H�Z�c�Y�Z�g�!���B�6�g�\�h���/

�����������9�^�h�e�a�V�n���V���b�Z�h�h�V�\�Z���h�]�d�l�^�c�\���l�Z���V�g�g�^�k�Z�Y�#
�������H�Z�c�Y�Z�g�I�Z�m�i���2���»�I�Z�m�i�/���»��� ���H�Z�c�Y�Z�g�#�I�Z�m�i
�������B�d�j�h�Z�I�Z�m�i���2���»�Q�c�7�j�i�i�d�c�/���»��� ���B�6�g�\�h�#�7�j�i�i�d�c�#�I�d�H�i�g�^�c�\����
�������B�d�j�h�Z�E�d�h�^�i���2���»�Q�c�M�$�N�/���»��� ���B�6�g�\�h�#�M�#�I�d�H�i�g�^�c�\������� ���»�$�»��� ���B�6�g�\�h�#�N�#�I�d�H�i�g�^�c�\����
�������H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���H�Z�c�Y�Z�g�I�Z�m�i��� ���B�d�j�h�Z�I�Z�m�i��� ���B�d�j�h�Z�E�d�h�^�i��

When you run this code, you see more of the information that the event handler receives.
It turns out that �H�Z�c�Y�Z�g is actually a �H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�7�j�i�i�d�c object and you
can perform any task you’d normally perform with tha t object. Likewise, �B�6�g�\�h is a
�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�B�d�j�h�Z�:�k�Z�c�i�6�g�\�h object. The example code shows only a few
of the items you receive. Figure 8-5 shows the output when you click OK using this alter-
nate event handler.

Figure 8-5 shows that the button �I�Z�m�i property is ���D�@. You can read more about
the �7�j�i�i�d�c class at �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$�h�n�h�i�Z�b�#�l�^�c�Y�d�l�h��
�#�[�d�g�b�h�#�W�j�i�i�d�c�#�V�h�e�m. The user clicked the left mouse button, and the X/Y position
shows the mouse pointer location within the control. You can read more about the
�B�d�j�h�Z�:�k�Z�c�i�6�g�\�h class at �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$�h�n�h�i�Z�b�#�l�^�c�Y�d�l�h��
�#�[�d�g�b�h�#�b�d�j�h�Z�Z�k�Z�c�i�V�g�\�h�#�V�h�e�m.

The IronPython environment won’t always provide a default value for some
class properties. In many cases, the Visual Designer provides these defaults in
the background. If you don’t de�ne a property, such as �C�V�b�Z, then you won’t
see this property de�ned for the object sent to the event handler.

Running the Application
The window is complete. A user can now see the window displayed, interact with it, and expect
some type of output from the application. However, one more task remains. The application that’s
running now is an IronPython interpreted application, not a .NET Windows Forms application. In
order to get a true Windows Forms application, you must perform one more step as shown in the
following code.

�����G�j�c���i�]�Z���V�e�e�a�^�X�V�i�^�d�c�#
�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�6�e�e�a�^�X�V�i�^�d�c�#�G�j�c���I�Z�h�i�;�d�g�b��

FIGURE 8�5:
Event han-
dlers receive
a number
of pieces of
information
from .NET.

150 �X CHAPTER 8 CREATING WINDOWS FORMS APPLICATIONS

This code exists in your C# and Visual Basic.NET applications as well. However, you
normally �nd it hidden in the �E�g�d�\�g�V�b�#�8�H or �E�g�d�\�g�V�b�#�K�7 �le (along with a lot of other
code that you won’t need for this example). All that this code says is that the Common
Language Runtime (CLR) should execute the .NET application using �I�Z�h�i�;�d�g�b as a
starting point.

When you run the default version of the application, you see a dialog box like the
one shown previously in Figure 8-1. Clicking OK displays a simple message like
the one shown in Figure 8-6. Clicking Cancel will close the dialog box, much as
you might expect. Congratulations! You’ve just created a simple Windows Forms
application using IronPython — an example that will help you create more complex
Windows Forms applications in the future.

INTERACTING WITH PREDEFINED AND CUSTOM EVENTS

Being able to de�ne, create, and respond to events is a major part of working in a windowed
environment. Even when a .NET developer isn’t working in a windowed environment, the use of
events and delegates is an important part of creating responsive applications. Whenever an event
occurs, the application must be able to respond to it, no matter what the source of the event might
be (including Windows messages, such as a shutdown warning). The following sections discuss
events and delegates.

Handling Events Using Existing Classes
The .NET Framework includes a host of controls and components that you �nd useful in IronPython.
For example, one of the more interesting (and useful) components is �I�^�b�Z�g. The �I�^�b�Z�g component
lets you set an interval for automatic events. All you need to do is set the interval between event ticks.
You’ve probably used this component before, but working in IronPython introduces a few twists.
Listing 8-3 shows the form code for this example.

LISTING 8�3: Creating a form containing a component

�����������I�]�^�h���[�j�c�X�i�^�d�c���e�Z�g�[�d�g�b�h���V�a�a���d�[���i�]�Z���g�Z�f�j�^�g�Z�Y���^�c�^�i�^�V�a�^�o�V�i�^�d�c�#
�������Y�Z�[���>�c�^�i�^�V�a�^�o�Z�8�d�b�e�d�c�Z�c�i���h�Z�a�[���/

�����������������8�d�c�[�^�\�j�g�Z���i�]�Z���[�d�g�b�#
�������������h�Z�a�[�#�8�a�^�Z�c�i�H�^�o�Z���2���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�H�^�o�Z���(�*�%�!���'�%�%��
�������������h�Z�a�[�#�I�Z�m�i���2���»�J�h�^�c�\���V���I�^�b�Z�g���:�m�V�b�e�a�Z�¼

�����������������8�d�c�[�^�\�j�g�Z���W�i�c�H�i�V�g�i
�������������h�Z�a�[�#�W�i�c�H�i�V�g�i���2���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�7�j�i�i�d�c����
�������������h�Z�a�[�#�W�i�c�H�i�V�g�i�#�I�Z�m�i���2���¹���H�i�V�g�i�º
�������������h�Z�a�[�#�W�i�c�H�i�V�g�i�#�A�d�X�V�i�^�d�c���2���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�E�d�^�c�i���'�+�(�!���&�(��

�����������������8�d�c�[�^�\�j�g�Z���W�i�c�F�j�^�i
�������������h�Z�a�[�#�W�i�c�F�j�^�i���2���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�7�j�i�i�d�c����
�������������h�Z�a�[�#�W�i�c�F�j�^�i�#�I�Z�m�i���2���¹���F�j�^�i�º
�������������h�Z�a�[�#�W�i�c�F�j�^�i�#�A�d�X�V�i�^�d�c���2���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�E�d�^�c�i���'�+�(�!���)�(��

FIGURE 8�6:
Clicking OK
displays a
familiar mes-
sage box.

Interacting with Prede �ned and Custom Events �X 151

�����������������8�d�c�[�^�\�j�g�Z���a�W�a�I�^�b�Z
�������������h�Z�a�[�#�a�W�a�I�^�b�Z���2���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�A�V�W�Z�a����
�������������h�Z�a�[�#�a�W�a�I�^�b�Z�#�I�Z�m�i���2���H�n�h�i�Z�b�#�9�V�i�Z�I�^�b�Z�#�C�d�l�#�I�d�A�d�c�\�I�^�b�Z�H�i�g�^�c�\����
�������������h�Z�a�[�#�a�W�a�I�^�b�Z�#�A�d�X�V�i�^�d�c���2���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�E�d�^�c�i���&�(�!���&�(��
�������������h�Z�a�[�#�a�W�a�I�^�b�Z�#�H�^�o�Z���2���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�H�^�o�Z���&�'�%�!���&�(��

�����������������8�d�c�[�^�\�j�g�Z���d�W�_�I�^�b�Z�g
�������������h�Z�a�[�#�d�W�_�I�^�b�Z�g���2���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�I�^�b�Z�g����
�������������h�Z�a�[�#�d�W�_�I�^�b�Z�g�#�>�c�i�Z�g�k�V�a���2���&�%�%�%

�����������������6�Y�Y���i�]�Z���X�d�c�i�g�d�a�h���i�d���i�]�Z���[�d�g�b�#
�������������h�Z�a�[�#�8�d�c�i�g�d�a�h�#�6�Y�Y���h�Z�a�[�#�W�i�c�H�i�V�g�i��
�������������h�Z�a�[�#�8�d�c�i�g�d�a�h�#�6�Y�Y���h�Z�a�[�#�W�i�c�F�j�^�i��
�������������h�Z�a�[�#�8�d�c�i�g�d�a�h�#�6�Y�Y���h�Z�a�[�#�a�W�a�I�^�b�Z��

Quite a bit of this form code should look familiar f rom Listing 8-1. However, �a�W�a�I�^�b�Z is set to
show the long time format (using �I�d�A�d�c�\�I�^�b�Z�H�i�g�^�c�\����) based on the application starting time.
You can use any value desired for control properties as long as you perform the required conver-
sions. In this case, the code calls �H�n�h�i�Z�b�#�9�V�i�Z�I�^�b�Z�#�C�d�l�#�I�d�A�d�c�\�I�^�b�Z�H�i�g�^�c�\���� to obtain the
correct string value.

Notice that the code doesn’t add �d�W�_�I�^�b�Z�g to the form
using �h�Z�a�[�#�8�d�c�i�g�d�a�h�#�6�Y�Y����. As with all components,
�d�W�_�I�^�b�Z�g waits in the background for a control to call
on it for services. However, unlike the �I�d�d�a�I�^�e component
used in the section “Making the Application Easier to Use,”
you must con�gure a �I�^�b�Z�g component as part of the form
code. This example sets the �d�W�_�I�^�b�Z�g interval to 1 second
(1,000 ms). Figure 8-7 shows the initial presentation of the
dialog box.

The initial form shown in Figure 8-7 appears quite use-
ful, but the time doesn’t update. In order to make the
time update, you must provide an event handler for
the �d�W�_�I�^�b�Z�g�#�I�^�X�` event. Listing 8-4 shows the code required to create the form, display it
onscreen, and then handle the various events required to make this application work.

LISTING 8�4: Handling timer events in a form

�����H�Z�i���j�e���i�]�Z���e�V�i�]���i�d���i�]�Z���#�C�:�I���;�g�V�b�Z�l�d�g�`�#��
�^�b�e�d�g�i���h�n�h
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�Q�L�>�C�9�D�L�H�Q�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�Q�;�g�V�b�Z�l�d�g�`�Q�Q�k�'�#�%�#�*�%�,�'�,�¼��

�����B�V�`�Z���X�a�g���V�X�X�Z�h�h�^�W�a�Z�#
�^�b�e�d�g�i���X�a�g

�����6�Y�Y���V�c�n���g�Z�f�j�^�g�Z�Y���g�Z�[�Z�g�Z�c�X�Z�h�#
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�9�A�A�¼��

�����>�b�e�d�g�i���i�]�Z���#�C�:�I���V�h�h�Z�b�W�a�^�Z�h�#

FIGURE 8�7: The started application shows
the current long time format.

continues

152 �X CHAPTER 8 CREATING WINDOWS FORMS APPLICATIONS

�^�b�e�d�g�i���H�n�h�i�Z�b
�^�b�e�d�g�i���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h

�����^�b�e�d�g�i���i�]�Z���[�d�g�b�#
�[�g�d�b���[�g�b�J�h�Z�I�^�b�Z�g���^�b�e�d�g�i������

�����9�Z�[�^�c�Z���i�]�Z���Z�k�Z�c�i���]�V�c�Y�a�Z�g�h�#
�Y�Z�[���W�i�c�H�i�V�g�i�T�8�a�^�X�`�����V�g�\�h���/

�����������8�]�Z�X�`���i�]�Z���W�j�i�i�d�c���h�i�V�i�j�h�#
�������^�[���I�Z�h�i�;�d�g�b�#�W�i�c�H�i�V�g�i�#�I�Z�m�i���2�2���»���H�i�V�g�i�¼�/

�����������������H�i�V�g�i���i�]�Z���i�^�b�Z�g�#
�������������I�Z�h�i�;�d�g�b�#�d�W�_�I�^�b�Z�g�#�H�i�V�g�i����

�����������������8�]�V�c�\�Z���i�]�Z���W�j�i�i�d�c���i�Z�m�i�#
�������������I�Z�h�i�;�d�g�b�#�W�i�c�H�i�V�g�i�#�I�Z�m�i���2���»���H�i�d�e�¼

�������Z�a�h�Z�/

�����������������H�i�V�g�i���i�]�Z���i�^�b�Z�g�#
�������������I�Z�h�i�;�d�g�b�#�d�W�_�I�^�b�Z�g�#�H�i�d�e����

�����������������8�]�V�c�\�Z���i�]�Z���W�j�i�i�d�c���i�Z�m�i�#
�������������I�Z�h�i�;�d�g�b�#�W�i�c�H�i�V�g�i�#�I�Z�m�i���2���»���H�i�V�g�i�¼

�Y�Z�[���W�i�c�F�j�^�i�T�8�a�^�X�`�����V�g�\�h���/

�����������8�a�d�h�Z���i�]�Z���V�e�e�a�^�X�V�i�^�d�c�#
�������I�Z�h�i�;�d�g�b�#�8�a�d�h�Z������

�Y�Z�[���d�W�_�I�^�b�Z�g�T�I�^�X�`�����V�g�\�h���/

�����������=�V�c�Y�a�Z���i�]�Z���i�^�b�Z�g���i�^�X�`�#
�������I�Z�h�i�;�d�g�b�#�a�W�a�I�^�b�Z�#�I�Z�m�i���2���H�n�h�i�Z�b�#�9�V�i�Z�I�^�b�Z�#�C�d�l�#�I�d�A�d�c�\�I�^�b�Z�H�i�g�^�c�\������

�����9�Z�[�^�c�Z���i�]�Z���L�^�c�Y�d�l�h���;�d�g�b���V�c�Y���i�]�Z���Z�a�Z�b�Z�c�i�h���d�[���i�]�^�h���h�e�Z�X�^�[�^�X���^�c�h�i�V�c�X�Z�#
�I�Z�h�i�;�d�g�b���2���[�g�b�B�V�^�c����
�I�Z�h�i�;�d�g�b�#�>�c�^�i�^�V�a�^�o�Z�8�d�b�e�d�c�Z�c�i������

�����6�a�l�V�n�h���V�Y�Y���Z�k�Z�c�i���]�V�c�Y�a�Z�g�h���V�[�i�Z�g���Y�Z�[�^�c�^�c�\���i�]�Z���L�^�c�Y�d�l�h���;�d�g�b�#
�I�Z�h�i�;�d�g�b�#�W�i�c�H�i�V�g�i�#�8�a�^�X�`��� �2���W�i�c�H�i�V�g�i�T�8�a�^�X�`
�I�Z�h�i�;�d�g�b�#�W�i�c�F�j�^�i�#�8�a�^�X�`��� �2���W�i�c�F�j�^�i�T�8�a�^�X�`
�I�Z�h�i�;�d�g�b�#�d�W�_�I�^�b�Z�g�#�I�^�X�`��� �2���d�W�_�I�^�b�Z�g�T�I�^�X�`

�����G�j�c���i�]�Z���V�e�e�a�^�X�V�i�^�d�c�#
�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�6�e�e�a�^�X�V�i�^�d�c�#�G�j�c���I�Z�h�i�;�d�g�b��

This example begins as any Windows Forms application does, by providing access to the .NET
Framework directory and then importing the required assemblies after adding any required

LISTING 8�4 (continued)

Interacting with Prede �ned and Custom Events �X 153

references. The �W�i�c�H�i�V�g�i�T�8�a�^�X�`���� event handler doesn’t just display a simple message this time.
When the user clicks Start, the code checks the current �I�Z�h�i�;�d�g�b�#�W�i�c�H�i�V�g�i�#�I�Z�m�i value. When this
value is ���H�i�V�g�i, the code calls �I�Z�h�i�;�d�g�b�#�d�W�_�I�^�b�Z�g�#�H�i�V�g�i����, which starts the timer and changes
the �I�Z�h�i�;�d�g�b�#�W�i�c�H�i�V�g�i�#�I�Z�m�i value to ���H�i�d�e. When the value is ���H�i�d�e, the opposite sequence of
events occurs. Figure 8-8 shows the dialog box with the timer started.

Starting �d�W�_�I�^�b�Z�g causes the component to begin emit-
ting �I�^�X� ̀events. The �d�W�_�I�^�b�Z�g�T�I�^�X�`���� handles these
�I�^�X� ̀events by updating the �I�Z�h�i�;�d�g�b�#�a�W�a�I�^�b�Z�#�I�Z�m�i
with the latest time. Notice that even though you don’t
add �d�W�_�I�^�b�Z�g to the window, you must still add the
event handler to the event using �I�Z�h�i�;�d�g�b�#�d�W�_�I�^�b�Z�g��
�#�I�^�X�`��� �2���d�W�_�I�^�b�Z�g�T�I�^�X�`. In fact, you’ll often �nd that
components require you to handle a number of events
because events are the main form of communication for
components (versus controls, which rely on their inter-
face elements for interaction and use events only to regis-
ter control changes so you can act on them).

Developing Your Own Events
It’s true that the .NET Framework comes with more events than you’ll probably use in an entire life-
time. However, it’s also true that IronPython developers simply can’t see every need (and even if they
did, it just wouldn’t pay to create a general event that only two people would ever use). Consequently,
you’ll eventually need to create your own events to handle those situations that don’t neatly �t within
someone else’s pigeonhole. The following sections show how to create a simple custom event that you
can use as a model for creating events of your own.

Creating the Event Class
An event class de�nes the custom event. Of course, you have to also write code to implement and
respond to the custom event, but let’s focus on the de�nition �rst. The most basic event class must
include four activities:

�° An initialization that de�nes a container for holding a list of event handlers��

A method for adding new event handlers���°

A method for removing old event handlers���°

���° A method that calls the event handlers in turn whenever an external source invokes (�res)
the event

You can always add more items to your event handler, but a basic event handler must include these
four items. With this in mind, Listing 8-5 shows a basic event de�nition. You might be surprised at
how little code you need to perform this task.

FIGURE 8�8: The Timer component updates
the time shown in this example.

154 �X CHAPTER 8 CREATING WINDOWS FORMS APPLICATIONS

LISTING 8�5: De�ning a simple event class

�X�a�V�h�h���B�n�:�k�Z�c�i�/

�����������8�g�Z�V�i�Z���i�]�Z���^�c�^�i�^�V�a���=�V�c�Y�a�Z�g�A�^�h�i�#
�������Y�Z�[���T�T�^�c�^�i�T�T���h�Z�a�[���/
�������������h�Z�a�[�#�=�V�c�Y�a�Z�g�A�^�h�i���2���h�Z�i����

�����������6�Y�Y���c�Z�l���]�V�c�Y�a�Z�g�h���i�d���i�]�Z���a�^�h�i�#
�������Y�Z�[���6�Y�Y���h�Z�a�[�!���C�Z�l�=�V�c�Y�a�Z�g���/
�������������h�Z�a�[�#�=�V�c�Y�a�Z�g�A�^�h�i�#�V�Y�Y���C�Z�l�=�V�c�Y�a�Z�g��

�����������G�Z�b�d�k�Z���Z�m�^�h�i�^�c�\���]�V�c�Y�a�Z�g�h���[�g�d�b���i�]�Z���a�^�h�i�#
�������Y�Z�[���G�Z�b�d�k�Z���h�Z�a�[�!���D�a�Y�=�V�c�Y�a�Z�g���/
�������������i�g�n�/
�������������������h�Z�a�[�#�=�V�c�Y�a�Z�g�A�^�h�i�#�g�Z�b�d�k�Z���D�a�Y�=�V�c�Y�a�Z�g��
�������������Z�m�X�Z�e�i���@�Z�n�:�g�g�d�g�/
�������������������e�V�h�h

�����������>�c�k�d�`�Z���i�]�Z���]�V�c�Y�a�Z�g�#
�������Y�Z�[���;�^�g�Z���h�Z�a�[�!���B�h�\���/

�����������������8�V�a�a���Z�V�X�]���d�[���i�]�Z���]�V�c�Y�a�Z�g�h���^�c���i�]�Z���a�^�h�i�#
�������������[�d�g���h�Z�a�[�#�=�V�c�Y�a�Z�g���^�c���h�Z�a�[�#�=�V�c�Y�a�Z�g�A�^�h�i�/
�������������������h�Z�a�[�#�=�V�c�Y�a�Z�g���B�h�\��

The code begins with �T�T�^�c�^�i�T�T����, which IronPython calls automatically anytime someone creates
an event of this type. The only purpose of �T�T�^�c�^�i�T�T���� is to create a container for storing event
handler references. You can use any container you want, but the example relies on a �h�Z�i���� because
this particular container works very well as a means of storing event handlers. The initialization
code creates an empty �h�Z�i���� that you’ll later �ll with event handler references.

There are many different ways to create a delegate using IronPython — this
chapter shows one of the more basic techniques you can use. However, you
might �nd that this technique doesn’t work for your partic ular need. It’s
always a good idea to look at what other people are doing with Python and
IronPython. For example, there’s another example of an event system at
�]�i�i�e�/�$�$�l�l�l�#�k�V�a�j�Z�Y�a�Z�h�h�d�c�h�#�X�d�b�$�'�%�%�-�$�%�)�$�Z�k�Z�c�i�h�"�^�c�"�e�n�i�]�d�c�#�]�i�b�a. In this
case, the author wanted to create a lightweight event system that mimicked
C#. Another, more ambitious example is at �]�i�i�e�/�$�$�X�d�Y�Z�#�V�X�i�^�k�Z�h�i�V�i�Z�#�X�d�b�$��
�g�Z�X�^�e�Z�h�$�)�&�%�+�-�+�$. Don’t forget the �e�n�Z�k�Z�c�i�#�e�n class provided with the
IronPython tutorial (it does work). The point is tha t you don’t want to give
up on events in IronPython. If what you want doesn’t exist now, you can
probably create it without too much trouble.

The �6�Y�Y���� method simply adds a reference to the event handler passed as one of the arguments. In
this case, the code uses the �h�Z�a�[�#�=�V�c�Y�a�Z�g�A�^�h�i�#�V�Y�Y���� method to perform the task.

Interacting with Prede �ned and Custom Events �X 155

Likewise, �G�Z�b�d�k�Z���� takes the requested event handler reference out of the container using the
�h�Z�a�[�#�=�V�c�Y�a�Z�g�A�^�h�i�#�g�Z�b�d�k�Z���� method. Because someone could pass an invalid reference, the code
must perform this task within a �i�g�n�#�#�#�Z�m�X�Z�e�i block, capturing the �@�Z�n�:�g�g�d�g exception as needed.
The �e�V�h�h keyword tells IronPython not to do anything about the exception. Normal ly, you’d pro -
vide some type of error handling code.

Invoking (�ring) the event is the responsibility of t he �;�^�g�Z���� method. This event accepts a message,
�B�h�\, and does something with it. Precisely what happens with �B�h�\ is up to the event handler. All the
event knows is that it must accept a �B�h�\ object and pass it along to the event handler. As you can
see, the code calls each event handler reference in turn and passes the �B�h�\ to it. In short, the event
handler must have the proper signature (set of input arguments) to handle the event correctly.

It’s important to realize that event handlers may not receive calls in the order in
which you add them to the event. Consequently, you should never create event
handlers that depend on a speci�c order of calling.

Devising an Event Class Test Form
Now that you have a new event, you’ll want to do something with it. Listing 8-6 shows code used to
create the form for this example.

LISTING 8�6: Creating an event class test form

�����H�Z�i���j�e���i�]�Z���e�V�i�]���i�d���i�]�Z���#�C�:�I���;�g�V�b�Z�l�d�g�`�#��
�^�b�e�d�g�i���h�n�h
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�Q�L�>�C�9�D�L�H�Q�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�Q�;�g�V�b�Z�l�d�g�`�Q�Q�k�'�#�%�#�*�%�,�'�,�¼��

�����B�V�`�Z���X�a�g���V�X�X�Z�h�h�^�W�a�Z�#
�^�b�e�d�g�i���X�a�g

�����6�Y�Y���V�c�n���g�Z�f�j�^�g�Z�Y���g�Z�[�Z�g�Z�c�X�Z�h�#
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�9�A�A�¼��
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�9�A�A�¼��

�����>�b�e�d�g�i���i�]�Z���#�C�:�I���V�h�h�Z�b�W�a�^�Z�h�#
�^�b�e�d�g�i���H�n�h�i�Z�b��
�^�b�e�d�g�i���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h
�^�b�e�d�g�i���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�E�d�^�c�i

�X�a�V�h�h���[�g�b�B�V�^�c���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�;�d�g�b���/

�����������I�]�^�h���[�j�c�X�i�^�d�c���e�Z�g�[�d�g�b�h���V�a�a���d�[���i�]�Z���g�Z�f�j�^�g�Z�Y���^�c�^�i�^�V�a�^�o�V�i�^�d�c�#
�������Y�Z�[���>�c�^�i�^�V�a�^�o�Z�8�d�b�e�d�c�Z�c�i���h�Z�a�[���/

�����������������8�d�c�[�^�\�j�g�Z���i�]�Z���[�d�g�b�#
�������������h�Z�a�[�#�8�a�^�Z�c�i�H�^�o�Z���2���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�H�^�o�Z���(�*�%�!���'�%�%��
�������������h�Z�a�[�#�I�Z�m�i���2���»�8�g�Z�V�i�^�c�\���V�c���:�k�Z�c�i���:�m�V�b�e�a�Z�¼

continues

156 �X CHAPTER 8 CREATING WINDOWS FORMS APPLICATIONS

�����������������8�d�c�[�^�\�j�g�Z���W�i�c�;�^�g�Z�:�k�Z�c�i
�������������h�Z�a�[�#�W�i�c�;�^�g�Z�:�k�Z�c�i���2���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�7�j�i�i�d�c����
�������������h�Z�a�[�#�W�i�c�;�^�g�Z�:�k�Z�c�i�#�I�Z�m�i���2���¹���;�^�g�Z���:�k�Z�c�i�º
�������������h�Z�a�[�#�W�i�c�;�^�g�Z�:�k�Z�c�i�#�A�d�X�V�i�^�d�c���2���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�E�d�^�c�i���'�+�(�!���&�(��

�����������������8�d�c�[�^�\�j�g�Z���W�i�c�F�j�^�i
�������������h�Z�a�[�#�W�i�c�F�j�^�i���2���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�7�j�i�i�d�c����
�������������h�Z�a�[�#�W�i�c�F�j�^�i�#�I�Z�m�i���2���¹���F�j�^�i�º
�������������h�Z�a�[�#�W�i�c�F�j�^�i�#�A�d�X�V�i�^�d�c���2���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�E�d�^�c�i���'�+�(�!���)�(��

�����������������6�Y�Y���i�]�Z���X�d�c�i�g�d�a�h���i�d���i�]�Z���[�d�g�b�#
�������������h�Z�a�[�#�8�d�c�i�g�d�a�h�#�6�Y�Y���h�Z�a�[�#�W�i�c�;�^�g�Z�:�k�Z�c�i��
�������������h�Z�a�[�#�8�d�c�i�g�d�a�h�#�6�Y�Y���h�Z�a�[�#�W�i�c�F�j�^�i��

It’s generally a good practice to keep the event, form, and operational code
separate. Doing so will make the application easier to debug later. This example
actually uses three separate �les, even though it’s a very simple example. Make
sure you follow this principle when creating events of your own.

As you can see, this form is a very simple version of
the other forms used so far in this chapter. All it does
is provide access to two buttons: one to �re the event
and the other to close the form. Figure 8-9 shows the
output from this code.

Running the Code
It’s time to try out the new event and its associated test
form. Listing 8-7 shows the code required for this part of
the example.

LISTING 8�7: Testing the event class

�����H�Z�i���j�e���i�]�Z���e�V�i�]���i�d���i�]�Z���#�C�:�I���;�g�V�b�Z�l�d�g�`�#��
�^�b�e�d�g�i���h�n�h
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�Q�L�>�C�9�D�L�H�Q�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�Q�;�g�V�b�Z�l�d�g�`�Q�Q�k�'�#�%�#�*�%�,�'�,�¼��

�����B�V�`�Z���X�a�g���V�X�X�Z�h�h�^�W�a�Z�#
�^�b�e�d�g�i���X�a�g

�����6�Y�Y���V�c�n���g�Z�f�j�^�g�Z�Y���g�Z�[�Z�g�Z�c�X�Z�h�#
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�9�A�A�¼��

FIGURE 8�9: A simple form used to test the
custom event and associated handler.

LISTING 8�6 (continued)

Interacting with Prede �ned and Custom Events �X 157

�����>�b�e�d�g�i���i�]�Z���#�C�:�I���V�h�h�Z�b�W�a�^�Z�h�#
�^�b�e�d�g�i���H�n�h�i�Z�b��
�^�b�e�d�g�i���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h

�����^�b�e�d�g�i���i�]�Z���[�d�g�b�#��
�[�g�d�b���[�g�b�8�g�Z�V�i�Z�:�k�Z�c�i���^�b�e�d�g�i����

�����^�b�e�d�g�i���i�]�Z���C�Z�l�:�k�Z�c�i�8�a�V�h�h�#
�[�g�d�b���C�Z�l�:�k�Z�c�i�8�a�V�h�h���^�b�e�d�g�i����

�����8�g�Z�V�i�Z���i�]�Z���Z�k�Z�c�i���]�V�c�Y�a�Z�g�#
�Y�Z�[���=�V�c�Y�a�Z�B�h�\���B�h�\���/
�������H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���B�h�\��

�����9�Z�[�^�c�Z���i�]�Z���Z�k�Z�c�i���V�c�Y���V�Y�Y���i�]�Z���]�V�c�Y�a�Z�g���i�d���^�i�#
�I�]�^�h�:�k�Z�c�i���2���B�n�:�k�Z�c�i����
�I�]�^�h�:�k�Z�c�i�#�6�Y�Y���=�V�c�Y�a�Z�B�h�\��

�����9�Z�[�^�c�Z���i�]�Z���Z�k�Z�c�i���]�V�c�Y�a�Z�g�h�#
�Y�Z�[���W�i�c�;�^�g�Z�:�k�Z�c�i�T�8�a�^�X�`�����V�g�\�h���/

�����������;�^�g�Z���i�]�Z���Z�k�Z�c�i�#
�������I�]�^�h�:�k�Z�c�i�#�;�^�g�Z���»�=�Z�a�a�d���L�d�g�a�Y�¼��

�Y�Z�[���W�i�c�F�j�^�i�T�8�a�^�X�`�����V�g�\�h���/

�����������8�a�d�h�Z���i�]�Z���V�e�e�a�^�X�V�i�^�d�c�#
�������I�Z�h�i�;�d�g�b�#�8�a�d�h�Z����

�����9�Z�[�^�c�Z���i�]�Z���L�^�c�Y�d�l�h���;�d�g�b���V�c�Y���i�]�Z���Z�a�Z�b�Z�c�i�h���d�[���i�]�^�h���h�e�Z�X�^�[�^�X���^�c�h�i�V�c�X�Z�#
�I�Z�h�i�;�d�g�b���2���[�g�b�B�V�^�c����
�I�Z�h�i�;�d�g�b�#�>�c�^�i�^�V�a�^�o�Z�8�d�b�e�d�c�Z�c�i����

�����6�a�l�V�n�h���V�Y�Y���Z�k�Z�c�i���]�V�c�Y�a�Z�g�h���V�[�i�Z�g���Y�Z�[�^�c�^�c�\���i�]�Z���L�^�c�Y�d�l�h���;�d�g�b�#
�I�Z�h�i�;�d�g�b�#�W�i�c�;�^�g�Z�:�k�Z�c�i�#�8�a�^�X�`��� �2���W�i�c�;�^�g�Z�:�k�Z�c�i�T�8�a�^�X�`
�I�Z�h�i�;�d�g�b�#�W�i�c�F�j�^�i�#�8�a�^�X�`��� �2���W�i�c�F�j�^�i�T�8�a�^�X�`

�����G�j�c���i�]�Z���V�e�e�a�^�X�V�i�^�d�c�#
�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�6�e�e�a�^�X�V�i�^�d�c�#�G�j�c���I�Z�h�i�;�d�g�b��

The code begins like many of the other examples in this chapter — it makes the proper additions to
�h�n�h�#�e�V�i�], creates references to .NET assemblies, and then imports them. Make sure you import all
the classes required to make your event work. In this case, the code imports both �[�g�b�8�g�Z�V�i�Z�:�k�Z�c�i
and �C�Z�l�:�k�Z�c�i�8�a�V�h�h.

The next step is to de�ne an event handler for the new event. This event handler takes a simple
approach. It accepts �B�h�\ from �;�^�g�Z���� and displays it using a simple message box similar to the one
shown in Figure 8-6 (the message is slightly different, but the idea is the same).

Now that there’s an event handler, �=�V�c�Y�a�Z�B�h�\����, to use, it’s time to assign it to the event. The code cre-
ates a new event, �I�]�^�h�:�k�Z�c�i, and assigns �=�V�c�Y�a�Z�B�h�\���� as an event handler to it. In many respects, this
approach is no different from using a delegate in a .NET language such as C# or Visual Basic .NET.
The techniques are a bit different, but the basic concept is the same.

158 �X CHAPTER 8 CREATING WINDOWS FORMS APPLICATIONS

Whenever the user clicks Fire Event, the code calls �W�i�c�;�^�g�Z�:�k�Z�c�i�T�8�a�^�X�`���� because this is the
event handler assigned to the �W�i�c�;�^�g�Z�:�k�Z�c�i�#�8�a�^�X�` event. The code inside �W�i�c�;�^�g�Z�:�k�Z�c�i�T�8�a�^�X�`����
simply calls �I�]�^�h�:�k�Z�c�i�#�;�^�g�Z���� with a message of Hello World. At this point, the event calls
�=�V�c�Y�a�Z�B�h�\���� to display the message using a standard message box.

WHY NOT USE DELEGATES?

When you write an application using a language such as C# or Visual Basic.NET,
you usually rely on delegates to create custom events. Using a delegate is simple and
well understood. You can see examples all over the place, but check out the example
at �]�i�i�e�/�$�$�l�l�l�#�V�`�V�Y�^�V�#�X�d�b�$�h�Z�g�k�^�X�Z�h�$�Y�d�i�c�Z�i�T�Y�Z�a�Z�\�V�i�Z�h�T�V�c�Y�T�Z�k�Z�c�i�h�#�]�i�b�a for
a good overview.

Theoretically, there must be a way to use delegates with IronPython too, but the
process would be extremely dif�cult and error prone for a number of reasons. The
fact is that IronPython simply doesn’t provide good support for delegates, so using
the other techniques described in this chapter simply works better.

However, it’s interesting to view one particular issue when considering delegates in
IronPython. You must provide a method that’s compatible with delegates in order to
use delegates. As part of the preparation for this chapter, I played around with del-
egates for a while and found that you simply can’t obtain the method information in
a way that delegates will understand. To see this for yourself, try this code:

�^�b�e�d�g�i���H�n�h�i�Z�b

�X�a�V�h�h���B�n�8�a�V�h�h�/
���������Y�Z�[���B�n�B�h�\�9�^�h�e�a�V�n���h�Z�a�[�!���B�h�\�!���I�^�i�a�Z���/
�������������������������e�g�^�c�i���B�h�\�!���I�^�i�a�Z

�[�d�g���B�Z�i�]�d�Y�h���^�c���H�n�h�i�Z�b�#�I�n�e�Z�#�<�Z�i�B�Z�i�]�d�Y�h���i�n�e�Z���B�n�8�a�V�h�h�����/
���������e�g�^�c�i���B�Z�i�]�d�Y�h

When you run this code, you’ll begin to understand something interesting about
IronPython. The output from this example does include methods such as �T�T�c�Z�l�T�T
���� , �I�d�H�i�g�^�c�\����, and �T�T�g�Z�e�g�T�T����, but nowhere will you see �B�n�B�h�\�9�^�h�e�a�V�n����. It
turns out that �B�n�B�h�\�9�^�h�e�a�V�n���� is implemented as part of the IronPython run time,
so it looks like this (even though the code appears on two lines in the book, you
must type it as a single line in your code):

�H�n�h�i�Z�b�#�D�W�_�Z�X�i���8�V�a�a���>�g�d�c�E�n�i�]�d�c�#�G�j�c�i�^�b�Z�#�8�d�Y�Z�8�d�c�i�Z�m�i�!���H�n�h�i�Z�b�#�D�W�_�Z�X�i�P�R��

All that code is the little �B�n�B�h�\�9�^�h�e�a�V�n���� method. What you’re seeing is the method
that marshals information to the IronPython run time. For example, �>�g�d�c�E�n�i�]�d�c��
�#�G�j�c�i�^�b�Z�#�8�d�Y�Z�8�d�c�i�Z�m�i is actually �h�Z�a�[. The �H�n�h�i�Z�b�#�D�W�_�Z�X�i�P�R array is a collection
of two objects, �B�h�\ and �I�^�i�a�Z, sent to �B�n�B�h�\�9�^�h�e�a�V�n����. Unless something changes
drastically, you won’t ever be able to use delegates in IronPython.

Using IronPython Constructively �X 159

USING IRONPYTHON CONSTRUCTIVELY

This chapter has demonstrated basic principles for creating a Windows Forms application using
IronPython. Admittedly, the process isn’t as easy as it could be because you lack Visual Designer
support. In fact, some developers will do better by creating the user interface using C# or Visual
Basic.NET. However, this chapter does demonstrate that the technique is useful and that you can
make IronPython work quite well in a graphical environment.

Before you leave this chapter, spend some time enhancing the sample application. You might want to
try out some additional controls or work with other eve nts. For example, you might want to think
about how you’d create an event handler that reacts to a right-click on the form. Try adding a context
menu that the user can use to con�gure the form in some way. The point of this chapter is that you can
create a GUI with IronPython and it’s a nice-looking GUI, but that you’ll have to do a little extra work
to make the techniques viable.

Chapter 9 explores a new topic — the Component Object Model (COM). Microsoft has used COM
for a very long time to make it possible to execute code found in other executables on a machine. You
might think that COM is outdated; however, even .NET developers need to rely on COM sometimes
to accomplish speci�c tasks. In fact, it shouldn’t surprise you to discover that the code base for COM
is far larger than the one for .NET and still growing. Learning how to work with COM from within
IronPython is a particularly important task.

Interacting with COM Objects

WHAT’S IN THIS CHAPTER?

�° Accessing COM components from IronPython��

Deciding on a COM binding technique���°

Designing an Interop DLL���°

Using Activator.CreateInstance() for late binding���°

Using Marshal.GetActiveObject() for late binding���°

The Component Object Model (COM) has been around for a very long time in terms of computer
technology. Of course, the predecessor of COM is Object Linking and Embedding (OLE), which
is still found all over the place. COM spawned a few technologies of its own, such as Distributed
COM (DCOM), used for connecting to objects over a network connection, and COM+, which is
used to implement objects in a service-like environment. COM-like technologies even appear on
other platforms in the form of technologies such as Common Object Request Broker Architecture
(CORBA) and Java/Remote Method Invocation (Java/RMI). You can see these technologies com-
pared at �]�i�i�e�/�$�$�b�n�#�Z�m�Z�X�e�X�#�X�d�b�$�s�\�d�e�V�a�V�c�$�b�^�h�X�$�X�d�b�e�V�g�Z�#�]�i�b�a (among many other places).
It isn’t too surprising, then, that you really do need to know how to interact with COM using
IronPython. Otherwise, you’d miss out on a huge installed code base.

One chapter can’t possibly cover many years’ worth of technology. In fact, entire books can’t
cover the topic any longer — not that any users in their right minds would try. Th is chapter
does provide a basic overview of how to work with COM using IronPython. It contains topics
that most of you will �nd helpful and that will lead you to other discoveries of the beauties of
working with COM and IronPython. The chapter starts at the beginning by trying to build on
knowledge you already have about working with COM.

An important issue to decide before you begin your project is the kind of binding you should
use. This chapter discusses both early and late binding issues. It then shows how to access COM

9

162 �X CHAPTER 9 INTERACTING WITH COM OBJECTS

components using several different techniques — two of which rely on late binding �6�X�i�^�k�V�i�d�g��
�#�8�g�Z�V�i�Z�>�c�h�i�V�c�X�Z���� and �B�V�g�h�]�V�a�#�<�Z�i�6�X�i�^�k�Z�D�W�_�Z�X�i����. In short, you can access COM components
in numerous ways, and this chapter discusses a few of the more popular techniques that the .NET
developer is likely to know about.

AN OVERVIEW OF COM ACCESS DIFFERENCES WITH PYTHON

COM access is an area where IronPython and Python take completely different approaches. In fact, it’s
safe to say that any Python code you want to use de�nitely won’t work in IronPython. Python develop -
ers normally rely on a library such as Python for Windows Extensions (�]�i�i�e�/�$�$�h�d�j�g�X�Z�[�d�g�\�Z�#�c�Z�i�$
�e�g�d�_�Z�X�i�h�$�e�n�l�^�c�(�'�$). This is a library originally created by Mark Hamm ond (�]�i�i�e�/�$�$�h�i�V�g�h�]�^�e��
�#�e�n�i�]�d�c�#�c�Z�i�$�X�g�Z�l�$�b�]�V�b�b�d�c�Y�$�l�^�c�(�'�$) that includes not only the COM support but also a really
nice Python editor. You can see a basic example of using this library to access COM at �]�i�i�e�/�$�$�l�l�l��
�#�W�d�Y�Y�^�Z�#�d�g�\�#�j�`�$�e�n�i�]�d�c�$�8�D�B�#�]�i�b�a. Even if you download the required library and try to follow the
tutorial, you won’t get past step 1. The tutorial wor ks �ne with standard Python, but doesn’t work at
all with IronPython.

It’s important to remember that IronPython is a constantly moving target. Th e
developers who support IronPython constantly come out with new features and
functionality, as do the third parties that support it. You may �nd at some point
that there’s a COM interoperability solution that does w ork for both Python
and IronPython. The solution doesn’t exist today, but there’s always hope for
tomorrow. If you do encounter such a solution, please be sure to contact me at
�?�B�j�Z�a�a�Z�g�5�b�l�i�#�c�Z�i.

Fortunately, IronPython developers aren’t left out in the cold. COM support is built right into
IronPython in the form of the .NET Framework. An Iron Python developer uses the same tech-
niques as a C# or a Visual Basic.NET developer uses to access COM — at least at a code level.

When you work with COM in Visual Studio in either a C# or Visual Basic.NET project, the IDE does
a lot of the work for you. If you want to use a COM component in your application, you rig ht-click
References in Solution Explorer and choose Add Reference from the context menu. At this point, you
see the Add Reference dialog box where you choose the COM tab shown in Figure 9-1.

When you highlight an item, such as the Windows Media Player, and click OK, the IDE adds the
COM component to the References folder of Solution Explorer, as shown in Figure 9-2. The IDE
writes code for you in the background that adds the COM component and makes it accessible.
You’ll �nd this code in the .CSProj �le and it looks something like this:

�1�8�D�B�G�Z�[�Z�g�Z�c�X�Z���>�c�X�a�j�Y�Z�2�º�B�Z�Y�^�V�E�a�V�n�Z�g�º�3
�����1�<�j�^�Y�3�p�'�'�9�+�;�(�%�)�"�7�%�;�+�"�&�&�9�%�"�.�)�6�7�"�%�%�-�%�8�,�)�8�,�:�.�*�r�1�$�<�j�^�Y�3
�����1�K�Z�g�h�^�d�c�B�V�_�d�g�3�&�1�$�K�Z�g�h�^�d�c�B�V�_�d�g�3
�����1�K�Z�g�h�^�d�c�B�^�c�d�g�3�%�1�$�K�Z�g�h�^�d�c�B�^�c�d�g�3
�����1�A�X�^�Y�3�%�1�$�A�X�^�Y�3
�����1�L�g�V�e�e�Z�g�I�d�d�a�3�i�a�W�^�b�e�1�$�L�g�V�e�e�Z�g�I�d�d�a�3

An Overview of COM Access Di�erences with Python �X 163

�����1�>�h�d�a�V�i�Z�Y�3�;�V�a�h�Z�1�$�>�h�d�a�V�i�Z�Y�3
�����1�:�b�W�Z�Y�>�c�i�Z�g�d�e�I�n�e�Z�h�3�I�g�j�Z�1�$�:�b�W�Z�Y�>�c�i�Z�g�d�e�I�n�e�Z�h�3
�1�$�8�D�B�G�Z�[�Z�g�Z�c�X�Z�3

FIGURE 9�1: The Add Reference dialog box provides you with a list of COM
components you can use.

In addition, the IDE creates �>�c�i�Z�g�d�e�#�B�Z�Y�^�V�E�a�V�n�Z�g�#�9�A�A, which
resides in the project’s �d�W�_�Q�m�-�+�Q�9�Z�W�j�\ or �d�W�_�Q�m�-�+�Q�G�Z�a�Z�V�h�Z
folder. This interoperability (interop for short) assembly makes
it easy for you to access the COM component features.

Of course, if the COM component you want to use is actually
a control, you right-click the Toolbox instead and select Choose
Items from the context menu. The COM Components tab looks
much like the one shown in Figure 9-3.

In this case, check the controls you want to use and click OK.
Again, the IDE does some work for you in the background to
make the control accessible and usable. For example, it creates
the same interop assembly as it would for a reference. You’ll see
the control in the Toolbox, as shown in Figure 9-4.

The tasks that the IDE performs for you as part of adding a ref-
erence or Toolbox item when working with C# or Visual Basic.NET are manual tasks when working
with IronPython. As you might imagine, all of this man ual labor makes IronPython harder to use
with COM than when you work with Python. While a Pytho n developer simply imports a module
and then writes a little specialized code, you’re saddled with creating interop assemblies and jump-
ing through coding hoops.

FIGURE 9�2: Any reference you add
appears in the References folder of
Solution Explorer.

164 �X CHAPTER 9 INTERACTING WITH COM OBJECTS

FIGURE 9�3: COM components and controls can also appear in the
Choose Toolbox Items dialog box.

You do get something for the extra work, though. IronPython provides considerably more �exibility
than Python does and you can use IronPython in more places. For example, you might �nd it hard
to access Word directly in Python. The bottom line is that IronPython and Python are incompatible
when it comes to COM support, so you can’t use all the online Python sources of information you
normally rely on when performing a new task.

CHOOSING A BINDING TECHNIQUE

Before you can use a COM component, you must bind to it (create a connection to it). The act of bind-
ing gives you access to an instance of the component. You use binding to work with COM because, in
actuality, you’re taking over another application. For example, you can use COM to create a copy of
Word, do some work with it, save the resulting �le, and then close Word — all without user interac-
tion. A mistake that many developers make is thinking of COM as just another sort of class, but it
works differently and you need to think about it dif ferently. For the purposes of working with COM
in IronPython, the act of binding properly is one of the more important issues. The following sections
describe binding in further detail.

Understanding Early and Late Binding
When you work with a class, you create an instance of the class, set the resulting object’s properties,
and then use methods to perform a particular task. COM lets you perform essentially the same set of
steps in a process called early binding. When you work with early binding, you de�ne how to access the
COM object during design time. In order to do this, you instantiate an object based on the COM class.

FIGURE 9�4: The control
or controls you selected
appear in the Toolbox.

Choosing a Binding Technique �X 165

These sections provide an extremely simpli�ed view of COM. You can easily
become mired in all kinds of details when working with COM because COM has
been around for so long. For example, COM supports multiple interface types,
which in turn determines the kind of binding you can perform. This chapter looks
at just the information you need to work with COM fro m IronPython. If you
want a better overview of COM, check the site at �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$
�a�^�W�g�V�g�n�$�b�h�-�%�.�.�-�%�#�V�h�e�m. In fact, you can �nd an entire list of COM topics at
�]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$�b�h�-�,�,�.�-�&�#�V�h�e�m.

The COM approach relies on a technique called a virtual table (vtable) — essentially a list of inter-
faces that you can access, with �>�J�c�`�c�d�l�c as the interface that’s common to all COM components.
Your application gains access to the �>�J�c�`�c�d�l�c interface and then calls the �f�j�Z�g�n�^�c�i�Z�g�[�V�X�Z����
method to obtain a list of other interfaces that the component supports (you can read more about
this method at �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$�b�h�+�-�'�*�'�&�#�V�h�e�m). Using this approach
means that your application can understand a component without really knowing anything about
it at the outset.

It’s also possible to tell COM to create an instance of an object after the application is already run-
ning. This kind of access is called late binding because you bind after the application starts. In order
to support late binding, a COM component must support the �>�9�^�h�e�V�i�X�] interface. This interface
lets you create the object using �8�g�Z�V�i�Z�D�W�_�Z�X�i����. Visual Basic was the �rst language product to rely
on late binding. You can read more about �>�9�^�h�e�V�i�X�] at �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$
�b�h�'�'�&�+�%�-�#�V�h�e�m.

Late binding also offers the opportunity to gain access to a running copy of a COM component.
For example, if the system currently has a copy of Excel running, you can access that copy, rather
than create a new Excel object. In this case, you use �<�Z�i�D�W�_�Z�X�i���� instead of �8�g�Z�V�i�Z�D�W�_�Z�X�i���� to
work with the object. If you call �<�Z�i�D�W�_�Z�X�i���� where there isn’t any copy of the component already
executing, you get an error message — Windows doesn’t automatically start a new copy of the appli-
cation for you.

If a COM component supports both the vtable and �>�9�^�h�e�V�i�X�] technologies, then it has a dual interface
that works with any current application language. Most COM components today are dual interface
because adding both technologies is relatively easy and developers want to provide the greatest exposure
for their components. However, it’s always a good idea to consider the kind of binding that your com-
ponent supports. You can read more about dual interfaces at �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$
�Z�`�[�n�]�'�-�.�#�V�h�e�m.

Using Early Binding
As previously mentioned, using early binding means creating a reference to the COM component and
then using that reference to interact with the component. IronPython doesn’t support the standard
methods of early binding that you might have used in other languages. What you do instead is create
an interoperability DLL and then import that DLL into your application. The “De�ning an Interop

166 �X CHAPTER 9 INTERACTING WITH COM OBJECTS

DLL” section of the chapter describes this process in considerably more detail. Early binding provides
the following bene�ts:

�° �� Faster execution: Generally, your application will execute faster if you use early binding
because you rely on compiled code for the interop assembly. However, you won’t get the
large bene�ts in speed that you see when working with C# or Visual Basic.NET because
IronPython itself is interpreted.

���° Easier debugging: In most cases, using early binding reduces the complexity of your applica-
tion, making it easier to debug. In addition, because much of the access code for the COM
component resides in the interop assembly, you won’t have to worry about debugging it.

���° Fuller component access: Even though both early and late binding provide access to the com-
ponent interfaces, trying to work through those interfaces in IronPython is hard. Using early
binding provides you with tools that you can use to explore the interop assembly, and there-
fore discover more about the component before you use it.

���° Better access to enumerations and constants: Using early binding provides you with access to
features that you might not be able to access when using late binding. In some cases, IronPython
will actually hide features such as enumerations or constants when using late binding.

Using Late Binding
When using late binding, you create a connection to the COM component at run time by creating
a new object or reusing a running object. Some developers prefer this kind of access because it’s less
error prone than early binding where you might not know about runtime issues during design time.
Here are some other reasons that you might use late binding.

�°�� More connectivity options: You can use late binding to create a connection to a new instance
of a COM component (see the “Performing Late Binding Using Activator.CreateInstance()”
section of this chapter) or a running instance of the COM component (see the “Performing
Late Binding Using Marshal.GetActiveObject()” section of the chapter).

���° Fewer modules: When you use late binding, you don’t need an interop assembly for each
of the COM components you want to use, which decreases the size and complexity of your
application.

���° Better version independence: Late binding relies on registry entries to make the connection.
Consequently, when Windows looks up the string you use to specify the application, it looks
for any application that satis�es that string. If you specify the Microsoft Excel 9.0 Object
Library COM component (Of�ce 2000 speci�c), Windows will substitute any newer version
of Of�ce on the system for the component you requested.

���° Fewer potential compatibility issues: Some environments don’t work well with interop assem-
blies. For example, you might be using IronPython within a Web-based application. In this
case, the client machine would already have to have the interop assembly, too, and it prob-
ably doesn’t. In this case, using late binding allows your application to continue working
when early binding would fail.

De�ning an Interop DLL �X 167

DEFINING AN INTEROP DLL

Before you can do much with COM, you need to provide some means for .NET (managed code) and
the component (native code) to talk. The wrapper code that marshals data from one environment
to another, and that translates calls from one language to the other, is an interoperability (interop)
assembly, which always appears as a DLL. Fortunately, you don’t have to write this code by hand
because the task is somewhat mundane. Microsoft was able to automate the process required to
create an interop DLL.

Of course, Microsoft couldn’t make the decision straightforward or simple. You use different utilities
for controls and components. The Type Library Import (TLbImp) utility produces a DLL suitable for
component work, while the ActiveX Import (AxImp) util ity produces a pair of DLLs suitable for con-
trol work. In many cases, the decision is easy — a COM component that supports a visual interface
should use AxImp. However, some COM components, such as Windows Media Player (�L�B�E�#�9�A�A) are
useful as either controls or components. The example in this chapter uses the control form because
that’s the way you’ll use Windows Media Player most often, but it’s important to make the decision.
The following sections describe how to use both the TLbImp and AxImp utilities.

Accessing the Visual Studio .NET Utilities
You want to create an interop assembly in the folder that you’ll use for your sample application.
However, you also need access to the .NET utilities. The best way to gain this access is to open
a Visual Studio command prompt by choosing Start�����¶����Programs�����¶����Microsoft Visual Studio
2010�����¶����Visual Studio Tools�����¶����Visual Studio Command Prompt (2010). If you’re worki ng with
Vista or Windows 7, right-click the Visual Studio Com mand Prompt (2010) entry and choose Run
As Administrator from the context menu to ensure you have the rights required to use the utilities.
Windows will open a command prompt that provides the required access to the .NET utilities.

Understanding the Type Library Import Utility
Remember that you always use Type Library Import (TLbImp) for components, not for controls.
Before you can use TLbImp, you need to know a bit more about it. Here’s the command line syntax
for the tool:

�I�a�W�>�b�e���I�n�e�Z�A�^�W�C�V�b�Z���P�D�e�i�^�d�c�h�R

The �I�n�e�Z�A�^�W�C�V�b�Z argument is simply the �lename of the COM component that you want to use to
create an interop assembly. A COM component can have a number of �le extensions, but the most
common extensions are �#�9�A�A, �#�:�M�:, and �#�D�8�M.

The TypeLibName argument can specify a resource identi�er when the library
contains more than one resource. Simply follow the �lename with a backslash
and the resource number. For example, the command line �I�A�W�>�b�e���B�n�B�d�Y�j�a�Z��
�#�9�A�A�Q�& would create an output assembly that contains only resource 1 in the
�B�n�B�d�Y�j�a�Z�#�9�A�A �le.

168 �X CHAPTER 9 INTERACTING WITH COM OBJECTS

You can also include one or more options that modify the behavior of TLbImp. The following list
describes these options.

�° �� �$�d�j�i�/�;�^�a�Z�C�V�b�Z: Provides the name of the �le you want to produce as output. If you don’t
provide this argument, the default is to add �A�^�W to the end of the �lename for the type
library. For example, �L�B�E�#�9�A�A becomes �L�B�E�A�^�W�#�9�A�A.

���° �$�c�V�b�Z�h�e�V�X�Z�/�C�V�b�Z�h�e�V�X�Z: De�nes the namespace of the classes within the interop assembly.
The default is to add �A�^�W to the �lename of the type library. For example, if the �le has a
name of �L�B�E�#�9�A�A, the namespace is �L�B�E�A�^�W.

���° �$�V�h�b�k�Z�g�h�^�d�c�/�K�Z�g�h�^�d�c: Speci�es the �le version number of the output assembly. This infor-
mation appears on the Version tab of the �le Properties dialog box shown in Figure 9-5. The
default version number is 1.0.0.0.

You must specify a version number using dotted syntax. The four version
number elements are: major version, minor version, build number, and revi-
sion number. For example, 1.2.3.4 would specify a major version number of 1,
minor version number of 2, a build number of 3, and a revision number of 4.

���° �$�g�Z�[�Z�g�Z�c�X�Z�/�;�^�a�Z�C�V�b�Z: Determines the name
of the assembly that TLbImp uses to resolve refer-
ences. There’s no default value. You may use this
command line switch as many times as needed to
provide a complete list of assemblies.

�°�� �$�i�a�W�g�Z�[�Z�g�Z�c�X�Z�/�;�^�a�Z�C�V�b�Z: Determines the name
of the type library that TLbImp uses to resolve
references. There’s no default value. You may
use this command line switch as many times as
needed to provide a complete list of assemblies.

���° �$�e�j�W�a�^�X�`�Z�n�/�;�^�a�Z�C�V�b�Z: Speci�es the name of a
�le containing a strong name public key used to
sign the assembly. There’s no default value.

���° �$�`�Z�n�[�^�a�Z�/�;�^�a�Z�C�V�b�Z: Speci�es the name of a �le
containing a strong name key pair used to sign
the assembly. There’s no default value.

���° �$�`�Z�n�X�d�c�i�V�^�c�Z�g�/�;�^�a�Z�C�V�b�Z: Speci�es the name
of a key container containing a strong name
key pair used to sign the assembly. There’s no
default value.

���° �$�Y�Z�a�V�n�h�^�\�c: Sets the assembly to force a delay
in signing. Use this option when you want to use the assembly for experimentation only.

FIGURE 9�5: Include version information for
the assembly so others know about it.

De�ning an Interop DLL �X 169

���° �$�e�g�d�Y�j�X�i�/�E�g�d�Y�j�X�i: De�nes the name of the product that contains this assembly. This infor-
mation appears on the Version tab of the �le Properties dialog box shown in Figure 9-5. The
default is to say that the assembly is imported from a speci�c type library.

���° �$�e�g�d�Y�j�X�i�k�Z�g�h�^�d�c�/�K�Z�g�h�^�d�c: De�nes the product version number of the output assembly.
This information appears on the Version tab of the �le Properties dialog box shown in
Figure 9-5. The default version number is 1.0.0.0.

���° �$�X�d�b�e�V�c�n�/�8�d�b�e�V�c�n: De�nes the name of the company that produced the output assembly. This
information appears on the Version tab of the �le Properties dialog box shown in Figure 9-5.
There’s no default value.

���° �$�X�d�e�n�g�^�\�]�i�/�8�d�e�n�g�^�\�]�i: De�nes the copyright information that applies to the output
assembly. This information appears on the Version tab of the �le Properties dialog box
shown in Figure 9-5. There’s no default value.

���° �$�i�g�V�Y�Z�b�V�g�`�/�I�g�V�Y�Z�b�V�g�`: De�nes the trademark and registered trademark information that
applies to the output assembly. This information appears on the Version tab of the �le Properties
dialog box shown in Figure 9-5. There’s no default value.

���° �$�j�c�h�V�[�Z: Creates an output assembly that lacks runtime security checks. Using this option
will make the assembly execute faster and reduce its size. However, you shouldn’t use this
option for production systems because it does reduce the security features that the assembly
would normally possess.

���° �$�c�d�X�a�V�h�h�b�Z�b�W�Z�g�h: Creates an output assembly that has classes, but the classes have
no members.

���° �$�c�d�a�d�\�d: Prevents the TLbImp utility from displaying a logo when it starts execution. This
option is useful when performing batch processing.

���° �$�h�^�a�Z�c�i: Prevents the TLbImp utility from displaying any output, except error information.
This option is useful when performing batch processing.

���° �$�h�^�a�Z�c�X�Z�/�L�V�g�c�^�c�\�C�j�b�W�Z�g: Prevents the TLbImp utility from displaying output for the speci�ed
warning number. This option is useful when an assembly contains a number of warnings that
you already know about and you want to see only the warnings that you don’t know about.
You can’t use this option with the �$�h�^�a�Z�c�i command line switch.

���° �$�k�Z�g�W�d�h�Z: Tells the TLbImp utility to display every available piece of information about
the process used to create the output assembly. This option is useful when you need to
verify the assembly before placing it in a production environment or when you suspect a
subtle error is causing application problems (or you’re simply curious).

���° �$�e�g�^�b�V�g�n: Creates a Primary Interop Assembly (PIO). A COM component may use only one
PIO and you must sign the PIO (use the �$�e�j�W�a�^�X�`�Z�n, �$�`�Z�n�[�^�a�Z, or �$�`�Z�n�X�d�c�i�V�^�c�Z�g switches
to sign the assembly). See �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$�V�V�m�,�h�Y�X�]�#�V�h�e�m for
additional information.

���° �$�h�n�h�V�g�g�V�n: Speci�es that the assembly should use �H�6�;�:�6�G�G�6�N in place of the standard
�H�n�h�i�Z�b�#�6�g�g�V�n.

170 �X CHAPTER 9 INTERACTING WITH COM OBJECTS

�° �� �$�b�V�X�]�^�c�Z�/�B�V�X�]�^�c�Z�I�n�e�Z: Creates an assembly for the speci�ed machine type. The valid
inputs for this command line switch are:

X86���°

X64���°

Itanium���°

Agnostic���°

���° �$�i�g�V�c�h�[�d�g�b�/�I�g�V�c�h�[�d�g�b�C�V�b�Z: Performs the speci�ed transformations on the assembly. You
may use any of these values as a transformation.

���° SerializableValueClasses: Forces TLbImp to mark all of the classes as serializable.

���° DispRet: Applies the �P�d�j�i�!���g�Z�i�k�V�a�R attribute to methods that have a dispatch-only
interface.

���° �$�h�i�g�^�X�i�g�Z�[: Forces TLbImp to use only the assemblies that you specify using the
�$�g�Z�[�Z�g�Z�c�X�Z command line switch, along with PIAs, to produce the output assembly,
even if the source �le contains other references. The output assembly might not work
properly when you use this option.

���° �$�h�i�g�^�X�i�g�Z�[�/�c�d�e�^�V: Forces TLbImp to use only the assemblies that you specify using the
�$�g�Z�[�Z�g�Z�c�X�Z command line switch to produce the output assembly, even if the source �le
contains other references. This command line switch ignores PIAs. The output assembly
might not work properly when you use this option.

���° �$�K�V�g�^�V�c�i�7�d�d�a�;�^�Z�a�Y�I�d�7�d�d�a: Converts all �K�6�G�>�6�C�I�T�7�D�D�A �elds in structures to �W�d�d�a.

�$�4��� ° or �$�]�Z�a�e: Displays a help message containing a list of command line options for the
version of TLbImp that you’re using.

Understanding the ActiveX Import Utility
The example in this chapter relies on the ActiveX Import (AxImp) utility because it produces the
�les you need to create a control (with a visual interface) rather than a component. When you use
this utility, you obtain two �les as output. The �rst contains the same information you receive when
using the TLbImp utility. The second, the one with the Ax pre�x, contains the code for a control.
Before you can use AxImp, you need to know a bit more about it. Here’s the command line syntax
for the tool:

�6�m�>�b�e���D�X�m�C�V�b�Z���P�D�e�i�^�d�c�h�R

The �D�X�m�C�V�b�Z argument is simply the �lename of the COM component that you want to use to
create a control version of an interop assembly. A COM component can have a number of �le
extensions, but the most common extensions are �#�9�A�A, �#�:�M�:, and �#�D�8�M. It’s uncommon for an
OLE Control eXtension (OCX), a COM component with a visual interface, to have a �#�:�M�: �le
extension.

De�ning an Interop DLL �X 171

You can also include one or more options that modify the behavior of AxImp. The following list
describes these options.

�°�� �$�d�j�i�/�;�^�a�Z�C�V�b�Z: Provides the name of the ActiveX library �le you want to produce as output. If
you don’t provide this argument, the default is to add �A�^�W to the end of the �lename for the type
library. For example, �L�B�E�#�9�A�A becomes �L�B�E�A�^�W�#�9�A�A and �6�m�L�B�E�A�^�W�#�9�A�A. Using this command
line switch changes the name of the �6�m�L�B�E�A�^�W�#�9�A�A �le. For example, if you type �6�m�>�b�e���L�B�E��
�#�9�A�A���$�d�j�i�/�L�B�E�D�j�i�#�9�A�A and press Enter, the utility now outputs �L�B�E�A�^�W�#�9�A�A and �L�B�E�D�j�i�#�9�A�A.

���° �$�e�j�W�a�^�X�`�Z�n�/�;�^�a�Z�C�V�b�Z: Speci�es the name of a �le containing a strong name public key used
to sign the assembly. There’s no default value.

���° �$�`�Z�n�[�^�a�Z�/�;�^�a�Z�C�V�b�Z: Speci�es the name of a �le containing a strong name key pair used to
sign the assembly. There’s no default value.

���° �$�`�Z�n�X�d�c�i�V�^�c�Z�g�/�;�^�a�Z�C�V�b�Z: Speci�es the name of a key container containing a strong name
key pair used to sign the assembly. There’s no default value.

���° �$�Y�Z�a�V�n�h�^�\�c: Sets the assembly to force a delay in signing. Use this option when you want to
use the assembly for experimentation only.

���° �$�h�d�j�g�X�Z: Generates the C# source code for a Windows Forms wrapper. You don’t need to
use this option when working in IronPython because the code doesn’t show how to use the
wrapper — it simply shows the wrapper code itself.

���° �$�g�X�l�/�;�^�a�Z�C�V�b�Z: Speci�es an assembly to use for Runtime Callable Wrapper (RCW) rather
than generating a new one. In most cases, you want to generate a new RCW when working
with IronPython.

���° �$�c�d�a�d�\�d: Prevents the AxImp utility from displaying a logo when it starts execution. This
option is useful when performing batch processing.

���° �$�h�^�a�Z�c�i: Prevents the AxImp utility from displaying any output, except error information.
This option is useful when performing batch processing.

���° �$�k�Z�g�W�d�h�Z: Tells the AxImp utility to display every available piece of information about
the process used to create the output assembly. This option is useful when you need to
verify the assembly before placing it in a production environment or when you suspect a
subtle error is causing application problems (or you’re simply curious).

�$�4��� ° or �$�]�Z�a�e: Displays a help message containing a list of command line options for the version
of AxImp that you’re using.

Creating the Windows Media Player Interop DLL
Now that you have an idea of how to use the AxImp utility, it’s time to see the utility in action.
The following command line creates an interop assembly for the Windows Media Player.

�6�m�>�b�e�����H�n�h�i�Z�b�G�d�d�i���Q�H�n�h�i�Z�b�(�'�Q�L�B�E�#�9�A�A

This command line switch doesn’t specify any options. It does include ���H�n�h�i�Z�b�G�d�d�i��, which points
to the Windows directory on your machine (making it possible to use the command line on more

172 �X CHAPTER 9 INTERACTING WITH COM OBJECTS

than one system, even if those systems have slightly different con�gurations). When you execute this
command line, you see the AxImp utility logo. After a few minutes work, you’ll see one or more
warning or error messages if the AxImp utility encounters problems. Eventually, you see a success
message, as shown in Figure 9-6.

FIGURE 9�6: The AxImp tells you that it has generated the two DLLs needed for a control.

Exploring the Windows Media Player Interop DLL
When working with imported Python modules, you use the �Y�^�g���� function to see what those
modules contain. In fact, you often use �Y�^�g���� when working with .NET assemblies as well, even
though you have the MSDN documentation at hand. Theoretically, you can also use �Y�^�g���� when
working with imported COM components as well, but th ings turn quite messy when you do. The
“Using the Windows Media Player Interop DLL” section o f this chapter describes how to import
and use an interop assembly, but for now, let’s just look at WMPLib.DLL using �Y�^�g����. Figure 9-7
shows typical results.

FIGURE 9�7: Using dir() won’t work well with interop assemblies in many cases.

De�ning an Interop DLL �X 173

The list goes on and on. Unfortunately, this is only the top level. You still need to drill down into
the interop assembly, so things can become confusing and complex. Figuring out what you want to
use is nearly impossible. Making things worse is the fact that any documentation you obtain for the
interop assembly probably won’t work because the documentation will take the COM perspective
of working with the classes and you need the IronPython perspective. Using �Y�^�g���� won’t be very
helpful in this situation.

Fortunately, you have another alternative in the form of the Intermediate Language Disassembler
(ILDasm) utility. This utility looks into the intero p assembly and creates a graphic picture of it
for you. Using this utility, you can easily drill dow n into the interop assembly and, with the help
of the COM documentation, normally �gure out how to w ork with the COM component — even
complex COM components such as the Windows Media Player.

To gain access to ILDasm, you use the same process you use for TLbImp to create a Visual Studio
Command Prompt. At the command prompt, type �>�A�9�V�h�b���L�B�E�A�^�W�#�9�A�A and press Enter (see more
of the command line options in the “Using the ILDasm Command Line” section of the chapter). The
ILDasm utility will start and show entries similar t o those shown in Figure 9-8.

ILDasm is an important tool for the IronPython developer who wants to work with COM. With this in
mind, the following sections provide a good overview of ILDasm and many of its usage details. Most
important, these sections describe how to delve into the innermost parts of any interop assembly.

FIGURE 9�8: Use ILDASM to explore WMPLib.DLL.

174 �X CHAPTER 9 INTERACTING WITH COM OBJECTS

Using the ILDasm Command Line
The ILDasm utility usually works �ne when you run it and provide the �lename of the interop
assembly you want to view. However, sometimes an interop assembly is so complex that you really
do want to optimize the ILDasm view. Consequently, you use command line options to change the
way ILDasm works. ILDasm has the following command line syntax.

�^�a�Y�V�h�b���P�d�e�i�^�d�c�h�R���1�[�^�a�Z�T�c�V�b�Z�3���P�d�e�i�^�d�c�h�R

Even though this section shows the full name of all the command line switches,
you can use just the �rst three letters. For example, you can abbreviate �$�7�N�I�:�H
as �$�7�N�I. In addition, ILDasm accepts both the dash (-) and slash (/) as command
line switch pre�xes, so �$�7�N�I�:�H and �"�7�N�I�:�H work equally well.

The options can appear either before or after the �lename. You can divide the options into those
that affect output redirection (sending the output to a location other than the display) and those that
change the way the �le/console output appears. ILDasm further divides the �le/console options into
those that work with EXE and DLL �les, and those that wo rk with EXE, DLL, OBJ, and LIB �les.
Here are the options for output redirection.

�°�� �$�D�J�I�2�;�^�a�Z�c�V�b�Z: Redirects the output to the speci�ed �le rather than to a GUI.

���° �$�I�:�M�I: Redirects the output to a console window rather than to a GUI. This option isn’t very
useful for anything but the smallest �les because the entire content of the interop assembly
simply scrolls by. Of course, you can always use a pipe (|) to send the output to the More
utility to view the output one page at a time.

���° �$�=�I�B�A: Creates the �le in HTML format (valid with the �$�D�J�I option only). This option is
handy for making the ILDasm available for a group of developers on a Web site. For example,
if you type �>�A�9�V�h�b���$�D�J�I�2�L�B�E�A�^�W�#�=�I�B�A���$�=�I�B�A���L�B�E�A�^�W�#�9�A�A and press Enter, you obtain
�L�B�E�A�^�W�#�=�I�B�A. The resulting �le is huge — 7.53 MB for �L�B�E�A�^�W�#�=�I�B�A. Figure 9-9 shows how
this �le will appear.

���° �$�G�I�;: Creates the �le in RTF format (valid with the �$�D�J�I option only). This option is handy for
making the ILDasm available for a group of developers on a local network using an application
such as Word. For example, if you type �>�A�9�V�h�b���$�D�J�I�2�L�B�E�A�^�W�#�G�I�;���$�G�I�;���L�B�E�A�^�W�#�9�A�A and
press Enter, you obtain �L�B�E�A�^�W�#�G�I�;. The resulting �le is huge — 5.2 MB for �L�B�E�A�^�W�#�G�I�;,
and may cause Word to freeze.

Of course, you might not want to redirect the output to a �le, but may want to change the way the
console appears instead. The following options change the GUI or �le/console output for EXE and
DLL �les only.

�°�� �$�7�N�I�:�H: Displays actual bytes (in hex) as instruction comments. Generally, this informa-
tion isn’t useful unless you want to get into the low-level details of the interop assembly. For
example, you might see a series of hex bytes such as �$�$���H�>�<�/���'�%���%�&���%�&���%�-, which won’t be
helpful to most developers. (In this case, you’re looking at the signature for the �L�B�E�A�^�W��
�#�>�6�e�e�9�^�h�e�V�i�X�]�#�V�Y�_�j�h�i�A�Z�[�i���� method.)

De�ning an Interop DLL �X 175

FIGURE 9�9: HTML output is useful for viewing ILDasm output in a browser.

�°�� �$�G�6�L�:�=: Shows the exception handling clauses in raw form. This isn’t a useful command line
switch for interop assemblies because interop assemblies don’t require exception handlers in
most cases.

���° �$�I�D�@�:�C�H: Displays the metadata tokens of classes and members as comments in the source
code, as shown in Figure 9-10 for the �L�B�E�A�^�W�#�>�6�e�e�9�^�h�e�V�i�X�]�#�V�Y�_�j�h�i�A�Z�[�i���� method. For
example, the metadata token for �b�h�X�d�g�a�^�W is �$���'�(�%�%�%�%�%�&���$. Most developers won’t require
this information.

FIGURE 9�10: The metadata tokens appear as comments beside the coded text.

�°�� �$�H�D�J�G�8�:: Shows the original source lines as comments when available. Unfortunately, when
working with an interop assembly, there aren’t any original source lines to show, so you
won’t need to use this command line switch.

176 �X CHAPTER 9 INTERACTING WITH COM OBJECTS

�° �� �$�A�>�C�:�C�J�B: Shows the original source code line numbers as comments when available. Again,
when working with an interop assembly, there aren’t any original source code line numbers
to show so you won’t need to use this command line switch.

���° �$�K�>�H�>�7�>�A�>�I�N�2�K�^�h�P� �K�^�h�#�#�#�R: Outputs only the items with speci�ed visibility. The valid
inputs for this argument are:

���° �E�J�7: Public

���° �E�G�>: Private

���° �;�6�B: Family

���° �6�H�B: Assembly

���° �;�6�6: Family and assembly

���° �;�D�6: Family or assembly

���° �E�H�8: Private scope

���° �$�E�J�7�D�C�A�N: Outputs only the items with public visibility (same as �$�K�>�H�2�E�J�7).

���° /QUOTEALLNAMES: Places single quotes around all names. For example, instead of seeing
�b�h�X�d�g�a�^�W, you’d see �»�b�h�X�d�g�a�^�W�». In some cases, using this approach makes it easier to see
or �nd speci�c names in the code.

���° �$�C�D�8�6: Suppresses the output of custom attributes.

���° �$�8�6�K�:�G�7�6�A: Displays all of the Custom Attribute (CA) blobs in verbal form. The default
setting outputs the CA blobs in binary form. Using this command line switch can make the
code more readable, but also makes it more verbose (larger).

���° �$�C�D�7�6�G: Tells ILDasm not to display the progress bar as it redirects the interop assembly
output to another location (such as a �le).

ILDasm includes a number of command line switches that affect �le and console output only. The
following command line switches work for EXE and DLL �les.

�°�� �$�J�I�;�-: Forces ILDasm to use UTF-8 encoding for output in place of the default ANSI encoding.

���° �$�J�C�>�8�D�9�:: Forces ILDasm to use Unicode encoding for output in place of the default
ANSI encoding.

���° �$�C�D�>�A: Suppresses Intermediate Language (IL) assembler code output. Unfortunately, this
option isn’t particularly useful because it creates a �le that contains just the disassembly com-
ments, not any of the class or method information. You do get the resource (�#�G�:�H) �le contain-
ing the resource information for the interop assembly (such as the version number). To use this
command line switch, you must include redirection such as �>�A�9�V�h�b���$�D�J�I�2�L�B�E�A�^�W�#�=�I�B�A���$��
�=�I�B�A���$�C�D�>�A���L�B�E�A�^�W�#�9�A�A to produce �L�B�E�A�^�W�#�=�I�B�A as output.

���° �$�;�D�G�L�6�G�9: Forces ILDasm to use forward class declaration. In some cases, this command line
switch can reduce the size of the disassembly.

De�ning an Interop DLL �X 177

���° �$�I�N�E�:�A�>�H�I: Outputs a full list of types. Using this command line switch can help preserve
type ordering.

���° �$�=�:�6�9�:�G�H: Outputs the �le header information in the output.

���° �$�>�I�:�B�2�8�a�V�h�h�P�/�/�B�Z�i�]�d�Y�P���H�^�\�c�V�i�j�g�Z���R�R: Disassembles only the speci�ed item. Using this com-
mand line switch can greatly reduce the confusion of looking over an entire interop assembly.

���° �$�H�I�6�I�H: Provides statistical information about the image. The statistics appear at the beginning
of the �le in comments. Here’s a small segment of the statistics you might see (telling you about
the use of space in the �le).

�$�$���;�^�a�Z���h�^�o�Z�������������������������/���(�(�&�,�,�+��
�$�$���E�:���]�Z�V�Y�Z�g���h�^�o�Z���������������/���)�%�.�+�����)�.�+���j�h�Z�Y�������������&�#�'�(����
�$�$���E�:���V�Y�Y�^�i�^�d�c�V�a���^�c�[�d�������/���&�%�&�*���������������������������������%�#�(�&����
�$�$���C�j�b�#�d�[���E�:���h�Z�X�i�^�d�c�h�������/���(��
�$�$���8�A�G���]�Z�V�Y�Z�g���h�^�o�Z�������������/���,�'�������������������������������������%�#�%�'����
�$�$���8�A�G���b�Z�i�V�"�Y�V�i�V���h�^�o�Z�������/���'�*�+�+�+�-���������������������������,�,�#�(�+����
�$�$���8�A�G���V�Y�Y�^�i�^�d�c�V�a���^�c�[�d�����/���%���������������������������������������%�#�%�%����
�$�$���8�A�G���b�Z�i�]�d�Y���]�Z�V�Y�Z�g�h�������/���.�%�-�+���������������������������������'�#�,�)����
�$�$���B�V�c�V�\�Z�Y���X�d�Y�Z�������������������/���*�&�&�-�'�����������������������������&�*�#�)�(����
�$�$���9�V�i�V�����������������������������������/���-�&�.�'���������������������������������'�#�)�,����
�$�$���J�c�V�X�X�d�j�c�i�Z�Y���������������������/���&�)�+�*���������������������������������%�#�)�)����

���° �$�8�A�6�H�H�A�>�H�I: Outputs a list of the classes de�ned in the module. The class list appears as a
series of comments at the beginning of the �le. Here’s an example of the class list output for
�L�B�E�A�^�W�#�9�A�A (a very small part of it, reformatted to �t within the book).

�$�$���8�a�V�h�h�Z�h���Y�Z�Ä�c�Z�Y���^�c���i�]�^�h���b�d�Y�j�a�Z�/
�$�$�s
�$�$���>�c�i�Z�g�[�V�X�Z���>�L�B�E�:�k�Z�c�i�h�������������������e�j�W�a�^�X�������V�W�h�i�g�V�X�i�������V�j�i�d�������V�c�h�^�������^�b�e�d�g�i����
�$�$���8�a�V�h�h���L�B�E�E�a�V�n�a�^�h�i�8�]�V�c�\�Z�:�k�Z�c�i�I�n�e�Z�������������e�j�W�a�^�X�������V�j�i�d�������V�c�h�^�������h�Z�V�a�Z�Y����
�$�$���>�c�i�Z�g�[�V�X�Z���>�L�B�E�:�k�Z�c�i�h�'�����������������e�j�W�a�^�X�������V�W�h�i�g�V�X�i�������V�j�i�d�������V�c�h�^�������^�b�e�d�g�i����
�$�$���>�c�i�Z�g�[�V�X�Z���>�L�B�E�H�n�c�X�9�Z�k�^�X�Z�����������e�j�W�a�^�X�������V�W�h�i�g�V�X�i�������V�j�i�d�������V�c�h�^�������^�b�e�d�g�i����
�$�$���8�a�V�h�h���L�B�E�9�Z�k�^�X�Z�H�i�V�i�j�h�����������������������������������e�j�W�a�^�X�������V�j�i�d�������V�c�h�^�������h�Z�V�a�Z�Y����
�$�$���8�a�V�h�h���L�B�E�H�n�c�X�H�i�V�i�Z���e�j�W�a�^�X�������V�j�i�d�������V�c�h�^�������h�Z�V�a�Z�Y����
�$�$���>�c�i�Z�g�[�V�X�Z���>�L�B�E�:�k�Z�c�i�h�(�����������������e�j�W�a�^�X�������V�W�h�i�g�V�X�i�������V�j�i�d�������V�c�h�^�������^�b�e�d�g�i����
�$�$���>�c�i�Z�g�[�V�X�Z���>�L�B�E�8�Y�g�d�b�G�^�e���������������e�j�W�a�^�X�������V�W�h�i�g�V�X�i�������V�j�i�d�������V�c�h�^�������^�b�e�d�g�i����

���° �$�6�A�A: Performs the combination of the �$�=�:�6�9�:�G, �$�7�N�I�:�H, �$�H�I�6�I�H, �$�8�A�6�H�H�A�>�H�I, and �$�I�D�@�:�C�H
command line switches.

This set of command line switches also affects just �le and console output. However, you can use
them for EXE, DLL, OBJ, and LIB �les.

�°�� �$�B�:�I�6�9�6�I�6�P�2�H�e�Z�X�^�[�^�Z�g�R: Shows the interop assembly metadata for the elements de�ned by
�H�e�Z�X�^�[�^�Z�g. Here are the values you can use for �H�e�Z�X�^�[�^�Z�g.

���° �B�9�=�:�6�9�:�G: MetaData header information and sizes

���° �=�:�M: More data in hex as well as words

���° �8�H�K: Record counts and heap sizes

178 �X CHAPTER 9 INTERACTING WITH COM OBJECTS

�° �� �J�C�G�:�M: Unresolved externals

�°�� �H�8�=�:�B�6: MetaData header and schema information

�°�� �G�6�L: Raw MetaData tables

�°�� �=�:�6�E�H: Raw heaps

�°�� �K�6�A�>�9�6�I�:: MetaData consistency validation

The �nal set of command line switches affects �le and console output for LIB �les only.

�°�� �$�D�7�?�:�8�I�;�>�A�:�2�D�W�_�T�;�^�a�Z�c�V�b�Z: Shows the MetaData of a single object �le in library.

Working with ILDasm Symbols
When working with ILDasm, you see a number of special symbols. Unfortunately, the utility often
leaves you wondering what the symbols mean. Here are some of the most common symbols you
encounter when working with COM components.

Interface: Represents an interface with which you can interact.

Private Class: Represents an abstract or sealed class in most cases.

 Enumeration: Contains a list of enumerated items you use to provide values for
method calls and other tasks.

 Attribute: Provides access to the attributes that describe a COM component.
Common attributes and attribute containers include:

�°�� Manifest (and its associated attributes)

�°�� Extends (de�nes a class that the class extends)

�°�� Implements (de�nes an interface that the class implements)

�°�� �8�a�V�h�h�>�c�i�Z�g�[�V�X�Z (see �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$�h�n�h�i�Z�b��
�#�g�j�c�i�^�b�Z�#�^�c�i�Z�g�d�e�h�Z�g�k�^�X�Z�h�#�X�a�V�h�h�^�c�i�Z�g�[�V�X�Z�V�i�i�g�^�W�j�i�Z�#�V�h�e�m for details)

���° �<�j�^�Y�6�i�i�g�^�W�j�i�Z (see �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$�h�n�h�i�Z�b��
�#�g�j�c�i�^�b�Z�#�^�c�i�Z�g�d�e�h�Z�g�k�^�X�Z�h�#�\�j�^�Y�V�i�i�g�^�W�j�i�Z�#�V�h�e�m for details)

���° �I�n�e�Z�A�^�W�I�n�e�Z�6�i�i�g�^�W�j�i�Z (see �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$��
�h�n�h�i�Z�b�#�g�j�c�i�^�b�Z�#�^�c�i�Z�g�d�e�h�Z�g�k�^�X�Z�h�#�i�n�e�Z�a�^�W�i�n�e�Z�V�i�i�g�^�W�j�i�Z�#�V�h�e�m
for details)

���° �>�c�i�Z�g�[�V�X�Z�I�n�e�Z�6�i�i�g�^�W�j�i�Z (see �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$
�h�n�h�i�Z�b�#�g�j�c�i�^�b�Z�#�^�c�i�Z�g�d�e�h�Z�g�k�^�X�Z�h�#�^�c�i�Z�g�[�V�X�Z�i�n�e�Z�V�i�i�g�^�W�j�i�Z�#�V�h�e�m
for details)

Method: Describes a method that you can use within an interface or private class.

Property: Describes a property that you can use within an interface or private class.

Variable: De�nes a variable of some type within an interface or private class. The
variable could be an interface, such as �>�8�d�c�c�Z�X�i�^�d�c�E�d�^�c�i, or an array, such as
�6�g�g�V�n�A�^�h�i, or anything else that the developer wanted to include.

Event: Speci�es an event that occurs within the interface or private class.

De�ning an Interop DLL �X 179

Exploring ILDasm entries
It’s important to remember that interop assemblies simply provide a reference to the actual code found
in the COM component. Even so, you can use ILDasm to �nd out all kinds of interesting information
about the component. At the top level, you can see a list of all of the interfaces, classes, and enumera-
tions, as shown in Figure 9-8. The next level is to drill down into speci�c me thods and properties, as
shown in Figure 9-11.

FIGURE 9�11: Opening an interface displays all the methods it contains.

The information shown in this �gure is actually the most valuable information that ILDasm provides
because you can use it to discover the names of methods and properties you want to use in your applica-
tion. In addition, these entries often provide clues about where to look for additional information in the
vendor help �les. Sometimes these help �les are a little disorganized and you might not understand how
methods are related until you see this visual presentation of them.

It’s possible to explore the interop assembly at one more level. Double-click any of the methods,
properties, or attributes and you’ll see a dialog box like the one shown in Figure 9-12. The amount
of information you receive may seem paltry at �rst. However, look closer and you’ll discover that
this display often tells you about calling requirements. For example, you can discover the data types
you need to rely on to work with the COM component (something that COM documentation can’t
tell you because the vendor doesn’t know that you’re using the component from .NET).

180 �X CHAPTER 9 INTERACTING WITH COM OBJECTS

FIGURE 9�12: Discover the calling requirements for methods by reviewing the methods’ underlying code.

Using the Windows Media Player Interop DLL
It’s �nally time to use early binding to create a connection to the Windows Media Player. This example
uses the Windows Media Player as a control. You might �nd a number of online sources that say it’s
impossible to use the Windows Media Player as a control, but it’s actually quite doable. Of course, you
need assistance from yet another one of Microsoft’s handy utilities, Resource Generator (ResGen) to
do it. The example itself relies on the normal combination of a form �le and associated application �le.
The following sections provide everything needed to create the example.

Working with ResGen
Whenever you drop a control based on a COM component onto a Windows Forms dialog box, the
IDE creates an entry for it in the �#�G�:�H�M �le for the application. This entry contains binary data that
describes the properties for the COM component. You may not know it, but most COM components
have a Properties dialog box that you access by right-clicking the control and choosing Properties from
the context menu. These properties are normally different from those shown in the Properties window
for the managed control. Figure 9-13 shows the Properties dialog box for the Windows Media Player.

FIGURE 9�13: The COM component has properties that
di�er from the managed control.

De�ning an Interop DLL �X 181

It’s essential to remember that the managed control is separate from the COM component in a
Windows Forms application. The COM component properties appear in a separate location and
the managed environment works with them differently. If you look in the �#�G�:�H�M �le, you see some-
thing like this:

�1�Y�V�i�V���c�V�b�Z�2�º�B�E�#�D�X�m�H�i�V�i�Z�º���b�^�b�Z�i�n�e�Z�2�º�V�e�e�a�^�X�V�i�^�d�c�$�m�"�b�^�X�g�d�h�d�[�i�#�c�Z�i�#�d�W�_�Z�X�i�#�W�^�c�V�g�n�#�W�V�h�Z�+�)�º�3
�����1�k�V�a�j�Z�3
�������������6�6�:�6�6�6�9�$�$�$�$�$�6�F�6�6�6�6�6�6�6�6�6�B�6�\�6�6�6�;�Y�I�Z�M�C�%�O�L�%�j�K�'�a�j�O�<�.�(�X�n�*�<�W�(�?�i�X�n�l�\�K�b�K�n�X�'�a�k�W�_�%�%�A�_�6�j�B�8�)�l
�������������A�8�7�9�Y�L�m�%�Y�M�?�a�E�L�*�a�Y�M�G�n�N�L�l�h�>�;�7�&�N�b�m�e�N�%�i�a�Z�K�G�k�V�'�K�j�E�L�>�(�C�'�:�&�N�o�J�'�B�I�`�o�C�<�J�l�D�9�`�;�6�F�6�6�6�8�;�I�Z�M�C�%
�������������O�L�%�j�K�'�a�j�O�<�.�(�X�n�*�<�W�(�?�i�X�n�*�7�Z�:�]�k�X�(�F�g�J�(�G�]�Y�<�J�7�6�6�6�6�7�:�G�]�Y�<�:�=�6�\�>�6�6�6�6�?�6�l�6�6�6�6�-�9�6�6�6�6�n�l�6�6�6�6�>�7
�������������6�6�6�6�6�F�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�A�N�6�6�6�6�6�6�l�6�6�8�6�6�J�6�6�6�6�F�\�7�a�6�<�l�6�W�6�7�o�6�8�)�6�Y�l�7�]�6�=�N�6�6�6�6�;�6�6�6�6�6�6�6�6�6�E�6�$
�������������6�l�6�6�6�6�6�6�7�F�6�6�6�6�6�6�6�6�6�6�6�6�\�6�6�\�6�6�6�6�6�6�6�l�6�7�6�6�6�6�8�l�9�$�$�l�B�6�6�6�6�6�6�6�h�6�$�$�-�>�6�6�>�6�6�6�6�6�6�6�B�6�B�\�6�6�6�6�h�6
�������������6�6�6�>�6�6�d�6�6�6�7�b�6�=�J�6�W�6�7�h�6�6�6�6�8�l�6�6�6�6�h�6�6�6�6�A�6�E�$�$�8�l�9�$�$�l�h�6�6�6�6�>�6�6�>�6�6�6�6�6�6�6�\�6�6�\�6�6�6�6�6�6�8�6�6�8�6�6�6�6
�������������6�6�6�>�6�6�>�6�6�6�6�6�6�6�h�6�6�6�6�j�=�\�6�6�[�]�h�6�6�6�h�2
�1�$�k�V�a�j�Z�3

This binary data contains the information needed to con�gure the COM aspects of the component.
When the application creates the form, the binary data is added to the component using the �D�X�m�H�i�V�i�Z
property like this:

�i�]�^�h�#�B�E�#�D�X�m�H�i�V�i�Z���2
�����������H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�6�m�=�d�h�i�#�H�i�V�i�Z�����g�Z�h�d�j�g�X�Z�h�#�<�Z�i�D�W�_�Z�X�i���¹�B�E�#�D�X�m�H�i�V�i�Z�º�������0

Because of the managed code/COM component duality of a Windows Forms application, you can’t
simply embed the COM component into an IronPython application using techniques such as the one
shown at �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$�Y�Y�*�+�)�(�*�%�#�V�h�e�m. You must provide the binary data
to the COM component using the �D�X�m�H�i�V�i�Z property. Unfortunately, IronPython developers have an
added twist to consider. The C# code shown previously won’t work because you don’t have access to a
�8�d�b�e�d�c�Z�c�i�G�Z�h�d�j�g�X�Z�B�V�c�V�\�Z�g for the IronPython form. Instead, you must read the resource from disk
using code like this (note the code will appear on a single line in the source code �le, even though it
appears on multiple lines in the book):

�h�Z�a�[�#�g�Z�h�d�j�g�X�Z�h���2���H�n�h�i�Z�b�#�8�d�b�e�d�c�Z�c�i�B�d�Y�Z�a�#�8�d�b�e�d�c�Z�c�i�G�Z�h�d�j�g�X�Z�B�V�c�V�\�Z�g�#
�������8�g�Z�V�i�Z�;�^�a�Z�7�V�h�Z�Y�G�Z�h�d�j�g�X�Z�B�V�c�V�\�Z�g��
�������������»�[�g�b�J�h�Z�L�B�E�¼�!���»�8�/�$�%�'�*�*���"���H�d�j�g�X�Z���8�d�Y�Z�$�8�]�V�e�i�Z�g�%�.�¼�!���C�d�c�Z��

Now, here’s where the tricky part begins (you might have thought we were there already, but
we weren’t). The �8�g�Z�V�i�Z�;�^�a�Z�7�V�h�Z�Y�G�Z�h�d�j�g�X�Z�B�V�c�V�\�Z�g���� method doesn’t support �#�G�:�H�M �les.
Instead, it supports �#�G�:�H�D�J�G�8�:�H �les. The ResGen utility can create �#�G�:�H�D�J�G�8�:�H �les. You might
be tempted to think that you can duplicate the binary data from the �#�G�:�H�M �le using �#�I�M�I �les as
suggested by the ResGen documentation. Unfortunately, �#�I�M�I �les can only help you create string
data in �#�G�:�H�D�J�G�8�:�H �les.

So your �rst step is to create a Windows Forms application, add the component to it, perform any
required COM component con�guration (no need to perform t he managed part), save the result, and
then take the resulting �#�G�:�H�M �le for your IronPython application. You can then use ResGen to create
the �#�G�:�H�D�J�G�8�:�H �le using a command line like this:

�G�Z�h�<�Z�c���[�g�b�J�h�Z�L�B�E�#�G�:�H�M

182 �X CHAPTER 9 INTERACTING WITH COM OBJECTS

ResGen outputs a �#�G�:�H�D�J�G�8�:�H �le you can use within your application. Of course, like every
Microsoft utility, ResGen offers a little more than simple conversion. Here’s the command line syn-
tax for ResGen:

�G�Z�h�<�Z�c���^�c�e�j�i�;�^�a�Z�#�Z�m�i���P�d�j�i�e�j�i�;�^�a�Z�#�Z�m�i�R���P�$�h�i�g�/�a�V�c�\�P�!�c�V�b�Z�h�e�V�X�Z�P�!�X�a�V�h�h�P�!�[�^�a�Z�R�R�R�R
�G�Z�h�<�Z�c���P�d�e�i�^�d�c�h�R���$�X�d�b�e�^�a�Z���^�c�e�j�i�;�^�a�Z�&�#�Z�m�i�P�!�d�j�i�e�j�i�;�^�a�Z�&�#�g�Z�h�d�j�g�X�Z�h�R���P�#�#�#�R

Here are the options you can use.

�° �� �$�X�d�b�e�^�a�Z: Performs a bulk conversion of �les from one format to another format. Typically,
you use this feature with a response �le where you provide a list of �les to convert.

���° �$�h�i�g�/�a�V�c�\�j�V�\�Z�P�!���c�V�b�Z�h�e�V�X�Z�P�!���X�a�V�h�h�c�V�b�Z�P�!���[�^�a�Z�c�V�b�Z�R�R�R: De�nes a strongly typed
resource class using the speci�ed programming language that relies on Code Document Object
Model (CodeDOM) (see �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$�n�'�`�-�*�V�m�+�#�V�h�e�m for details).
To ensure that the strongly typed resource class works properly, the name of your output �le,
without the �#�G�:�H�D�J�G�8�:�H extension, must match the �P�c�V�b�Z�h�e�V�X�Z�#�R�X�a�V�h�h�c�V�b�Z of your strongly
typed resource class. You may need to rename your output �le before using it or embedding it
into an assembly.

���° �$�j�h�Z�H�d�j�g�X�Z�E�V�i�]: Speci�es that ResGen uses each source �le’s directory as the current directory
for resolving relative �le paths.

���° �$�e�j�W�a�^�X�8�a�V�h�h: Creates the strongly typed resource class as a public class. You must use this
command line switch with the �$�h�i�g command line switch.

���° �$�g�/�V�h�h�Z�b�W�a�n: Tells ResGen to load types from the assemblies that you specify. A �#�G�:�H�M �le
automatically uses newer assembly types when you specify this command line switch. You
can’t form the �#�G�:�H�M �le to rely on older assembly types.

���° �$�Y�Z�[�^�c�Z�/�6�P�!�7�R: Provides a means for performing optional conversions speci�ed by #ifdef
structures within a �#�G�:�H�I�:�M�I (text) �le.

�5���° �[�^�a�Z: Speci�es the name of a response �le to use for additional command line options. You
can only provide one response �le for any given session.

Creating the Media Player Form Code
As normal, the example relies on two �les to hold the form and the client code. Because we’re using
a COM component for this example, the form requires a number of special con�guration steps.
Listing 9-1 shows the form code.

LISTING 9�1: Creating a Windows Forms application with a COM component

�����H�Z�i���j�e���i�]�Z���e�V�i�]���i�d���i�]�Z���#�C�:�I���;�g�V�b�Z�l�d�g�`�#��
�^�b�e�d�g�i���h�n�h
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�Q�L�>�C�9�D�L�H�Q�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�Q�;�g�V�b�Z�l�d�g�`�Q�Q�k�'�#�%�#�*�%�,�'�,�¼��

�����B�V�`�Z���X�a�g���V�X�X�Z�h�h�^�W�a�Z�#
�^�b�e�d�g�i���X�a�g

�����6�Y�Y���V�c�n���g�Z�f�j�^�g�Z�Y���g�Z�[�Z�g�Z�c�X�Z�h�#

De�ning an Interop DLL �X 183

�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�9�A�A�¼��
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�9�A�A�¼��
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�6�m�L�B�E�A�^�W�#�9�A�A�¼��

�����>�b�e�d�g�i���i�]�Z���#�C�:�I���V�h�h�Z�b�W�a�^�Z�h�#
�^�b�e�d�g�i���H�n�h�i�Z�b��
�^�b�e�d�g�i���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h
�^�b�e�d�g�i���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�E�d�^�c�i
�^�b�e�d�g�i���6�m�L�B�E�A�^�W

�X�a�V�h�h���[�g�b�J�h�Z�L�B�E���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�;�d�g�b���/

�����������I�]�^�h���[�j�c�X�i�^�d�c���e�Z�g�[�d�g�b�h���V�a�a���d�[���i�]�Z���g�Z�f�j�^�g�Z�Y���^�c�^�i�^�V�a�^�o�V�i�^�d�c�#
�������Y�Z�[���>�c�^�i�^�V�a�^�o�Z�8�d�b�e�d�c�Z�c�i���h�Z�a�[���/

�����������������8�g�Z�V�i�Z���V���8�d�b�e�d�c�Z�c�i���G�Z�h�d�j�g�X�Z���B�V�c�V�\�Z�g
�������������h�Z�a�[�#�g�Z�h�d�j�g�X�Z�h���2���H�n�h�i�Z�b�#�8�d�b�e�d�c�Z�c�i�B�d�Y�Z�a�#�8�d�b�e�d�c�Z�c�i�G�Z�h�d�j�g�X�Z�B�V�c�V�\�Z�g�#
�������������������8�g�Z�V�i�Z�;�^�a�Z�7�V�h�Z�Y�G�Z�h�d�j�g�X�Z�B�V�c�V�\�Z�g��
�������������������������»�[�g�b�J�h�Z�L�B�E�¼�!���»�8�/�$�%�'�*�*���"���H�d�j�g�X�Z���8�d�Y�Z�$�8�]�V�e�i�Z�g�%�.�¼�!���C�d�c�Z��

�����������������8�d�c�[�^�\�j�g�Z���L�^�c�Y�d�l�h���B�Z�Y�^�V���E�a�V�n�Z�g
�������������h�Z�a�[�#�B�E���2���6�m�L�B�E�A�^�W�#�6�m�L�^�c�Y�d�l�h�B�Z�Y�^�V�E�a�V�n�Z�g����
�������������h�Z�a�[�#�B�E�#�9�d�X�`���2���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�9�d�X�`�H�i�n�a�Z�#�;�^�a�a
�������������h�Z�a�[�#�B�E�#�:�c�V�W�a�Z�Y���2���I�g�j�Z
�������������h�Z�a�[�#�B�E�#�A�d�X�V�i�^�d�c���2���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�E�d�^�c�i���%�!���%��
�������������h�Z�a�[�#�B�E�#�C�V�b�Z���2���¹�B�E�º
�������������h�Z�a�[�#�B�E�#�H�^�o�Z���2���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�H�^�o�Z���'�.�'�!���'�+�+��
�������������h�Z�a�[�#�B�E�#�D�X�m�H�i�V�i�Z���2���h�Z�a�[�#�g�Z�h�d�j�g�X�Z�h�#�<�Z�i�D�W�_�Z�X�i���¹�B�E�#�D�X�m�H�i�V�i�Z�º��

�����������������8�d�c�[�^�\�j�g�Z���i�]�Z���[�d�g�b�#
�������������h�Z�a�[�#�8�a�^�Z�c�i�H�^�o�Z���2���H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�H�^�o�Z���(�*�%�!���'�%�%��
�������������h�Z�a�[�#�I�Z�m�i���2���»�H�^�b�e�a�Z���L�^�c�Y�d�l�h���B�Z�Y�^�V���E�a�V�n�Z�g���:�m�V�b�e�a�Z�¼

�����������������6�Y�Y���i�]�Z���X�d�c�i�g�d�a�h���i�d���i�]�Z���[�d�g�b�#
�������������h�Z�a�[�#�8�d�c�i�g�d�a�h�#�6�Y�Y���h�Z�a�[�#�B�E��

The code begins with the normal steps of adding the .NET Framework path, making �X�a�g accessible,
importing the required DLLs, and importing the required assemblies. Notice that the example uses
the �6�m�L�B�E�A�^�W�#�9�A�A �le and �6�m�L�B�E�A�^�W assembly. Remember that the Ax versions of the �les provide
wrapping around the ActiveX controls to make them usable as a managed control.

The code begins by creating a �8�d�b�e�d�c�Z�c�i�G�Z�h�d�j�g�X�Z�B�V�c�V�\�Z�g from a �le, using the
�8�g�Z�V�i�Z�;�^�a�Z�7�V�h�Z�Y�G�Z�h�d�j�g�X�Z�B�V�c�V�\�Z�g���� method. Normally, a managed application would
create the �8�d�b�e�d�c�Z�c�i�G�Z�h�d�j�g�X�Z�B�V�c�V�\�Z�g directly from the data stored as part of the form.
This is a special step for IronPython that could cause you grief later if you forget about it.

Even though Listing 9-1 shows the �8�g�Z�V�i�Z�;�^�a�Z�7�V�h�Z�Y�G�Z�h�d�j�g�X�Z�B�V�c�V�\�Z�g����
method call on multiple lines, it appears on a single line in the actual source
code. The IronPython call won’t work if you place it o n multiple lines because
IronPython lacks a line continuation character (or methodology).

184 �X CHAPTER 9 INTERACTING WITH COM OBJECTS

Media Player (MP) con�guration comes next. You must instantiate the control from the �6�m�L�B�E�A�^�W��
�#�6�m�L�^�c�Y�d�l�h�B�Z�Y�^�V�E�a�V�n�Z�g���� constructor, rather than using the COM component constructor. The Ax
constructor provides a wrapper with additional features you need within the Windows Forms environ-
ment. Like most controls, you need to specify control position and size on the form. However, because
of the nature of the Windows Media Player, you want it to �ll the client area of the form, so you set the
�9�d�X�` property to �H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�9�d�X�`�H�i�n�a�Z�#�;�^�a�a.

The one con�guration item that you must perform corr ectly is setting the COM component values
using the �B�E�#�D�X�m�H�i�V�i�Z property. The �8�d�b�e�d�c�Z�c�i�G�Z�h�d�j�g�X�Z�B�V�c�V�\�Z�g, �g�Z�h�d�j�g�X�Z�h, contains this value.
You simply set the �B�E�#�D�X�m�H�i�V�i�Z property to �g�Z�h�d�j�g�X�Z�h�#�<�Z�i�D�W�_�Z�X�i���¹�B�E�#�D�X�m�H�i�V�i�Z�º�� — this tech-
nique is also different from what you’d use in a C# or Visual Basic.NET application. The rest of the
form code isn’t anything special — you’ve seen it in all of the Windows Forms examples so far.

Creating the Media Player Application Code
Some COM components require a lot of tinkering by the host application, despite being self-contained
for the most part. However, the Windows Media Player is an exception to the rule. Normally, you want
to tinker with it as little as possible to meet your programming requirements. In some cases, you won’t
want to tinker at all, as shown in Listing 9-2.

LISTING 9�2: Interacting with the COM component

�����H�Z�i���j�e���i�]�Z���e�V�i�]���i�d���i�]�Z���#�C�:�I���;�g�V�b�Z�l�d�g�`�#��
�^�b�e�d�g�i���h�n�h
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�Q�Q�L�>�C�9�D�L�H�Q�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�Q�;�g�V�b�Z�l�d�g�`�Q�Q�k�'�#�%�#�*�%�,�'�,�¼��

�����B�V�`�Z���X�a�g���V�X�X�Z�h�h�^�W�a�Z�#
�^�b�e�d�g�i���X�a�g

�����6�Y�Y���V�c�n���g�Z�f�j�^�g�Z�Y���g�Z�[�Z�g�Z�c�X�Z�h�#
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�9�A�A�¼��

�����>�b�e�d�g�i���i�]�Z���#�C�:�I���V�h�h�Z�b�W�a�^�Z�h�#
�^�b�e�d�g�i���H�n�h�i�Z�b��
�^�b�e�d�g�i���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h

�����^�b�e�d�g�i���i�]�Z���[�d�g�b�#��
�[�g�d�b���[�g�b�J�h�Z�L�B�E���^�b�e�d�g�i����

�����9�Z�[�^�c�Z���i�]�Z���L�^�c�Y�d�l�h���;�d�g�b���V�c�Y���i�]�Z���Z�a�Z�b�Z�c�i�h���d�[���i�]�^�h���h�e�Z�X�^�[�^�X���^�c�h�i�V�c�X�Z�#
�L�B�E�;�d�g�b���2���[�g�b�J�h�Z�L�B�E����
�L�B�E�;�d�g�b�#�>�c�^�i�^�V�a�^�o�Z�8�d�b�e�d�c�Z�c�i����

�����G�j�c���i�]�Z���V�e�e�a�^�X�V�i�^�d�c�#
�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�6�e�e�a�^�X�V�i�^�d�c�#�G�j�c���L�B�E�;�d�g�b��

This code does the minimum possible for a Windows Forms application. It contains no event
handlers or anything of that nature. In fact, the code simply displays the forms. Believe it or not,

De�ning an Interop DLL �X 185

the actual settings for the application appear as part
of the �#�G�:�H�D�J�G�8�:�H �le. What you see when you run this
application appears in Figure 9-14.

This is a fully functional Windows Media Player. You
can adjust the volume, set the starting position, pause
the play, or do anything else you normally do with the
Windows Media Player. It’s even possible to right-click
the Windows Media Player to see the standard context
menu. The context menu contains options to do things
like slow the play time, see properties, and change
options. Play with the example a bit to see just how fully
functional it is.

A QUICK VIEW OF THE WINDOWS MEDIA PLAYER COMPONENT FORM

You may encounter times when you really don’t want to display the Windows Media
Player as a control — you simply want it to work in the background. In thi s case,
you can use the Windows Media Player as a component. The following code snippet
shows the fastest way to perform this task in IronPython (the �h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y����
call should appear on a single line, even though it appears on two lines in the book).
(You can �nd the entire source in the MPComponent example supplied with the
book’s source code.)

�����H�Z�i���j�e���i�]�Z���e�V�i�]���i�d���i�]�Z���#�C�:�I���;�g�V�b�Z�l�d�g�`�#
�^�b�e�d�g�i���h�n�h��
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y��
�������»�8�/�Q�Q�L�>�C�9�D�L�H�Q�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�Q�;�g�V�b�Z�l�d�g�`�Q�Q�k�'�#�%�#�*�%�,�'�,�¼��

�����B�V�`�Z���X�a�g���V�X�X�Z�h�h�^�W�a�Z�#
�^�b�e�d�g�i���X�a�g

�����6�Y�Y���V�c�n���g�Z�f�j�^�g�Z�Y���g�Z�[�Z�g�Z�c�X�Z�h�#
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�9�A�A�¼��
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�L�B�E�A�^�W�#�9�A�A�¼��

�����>�b�e�d�g�i���i�]�Z���#�C�:�I���V�h�h�Z�b�W�a�^�Z�h�#
�^�b�e�d�g�i���H�n�h�i�Z�b��
�^�b�e�d�g�i���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h
�^�b�e�d�g�i���L�B�E�A�^�W

�����^�b�e�d�g�i���i�]�Z���[�d�g�b�#��
�[�g�d�b���[�g�b�B�E�8�d�b�e�d�c�Z�c�i���^�b�e�d�g�i����

�����9�Z�[�^�c�Z���i�]�Z���Z�k�Z�c�i���]�V�c�Y�a�Z�g�h�#
���Y�Z�[���W�i�c�E�a�V�n�T�8�a�^�X�`�����V�g�\�h���/

�����������8�g�Z�V�i�Z���i�]�Z���B�Z�Y�^�V���E�a�V�n�Z�g���d�W�_�Z�X�i�#

FIGURE 9�14: The example application shows
a form with Windows Media Player on it.

(continues)

186 �X CHAPTER 9 INTERACTING WITH COM OBJECTS

(continued)

�������B�E���2���L�B�E�A�^�W�#�L�^�c�Y�d�l�h�B�Z�Y�^�V�E�a�V�n�Z�g�8�a�V�h�h����

�����������6�h�h�^�\�c���i�]�Z���b�Z�Y�^�V���e�a�V�n�Z�g���Z�k�Z�c�i�#
�������B�E�#�B�Z�Y�^�V�:�g�g�d�g��� �2���E�a�V�n�Z�g�:�g�g�d�g

�����������6�h�h�^�\�c���V���h�d�j�c�Y���i�d���i�]�Z���B�Z�Y�^�V���E�a�V�n�Z�g�#
�������B�E�#�J�G�A���2���¹�7�Z�a�a�h�#�L�6�K�º

�����������E�a�V�n���i�]�Z���h�d�j�c�Y�#
�������B�E�#�X�d�c�i�g�d�a�h�#�e�a�V�n����

Notice that you start by adding a reference to �L�B�E�A�^�W�#�9�A�A and importing �L�B�E�A�^�W
into IronPython, rather than using the Ax versions. The next step appears in
the �W�i�c�E�a�V�n�T�8�a�^�X�`���� event handler. After the code imports the required sup-
port, it instantiates an object (�B�E) of the �L�^�c�Y�d�l�h�B�Z�Y�^�V�E�a�V�n�Z�g�8�a�V�h�h, not
�L�^�c�Y�d�l�h�B�Z�Y�^�V�E�a�V�n�Z�g (an interface) as many of the Microsoft examples show.

Now you can perform various tasks with the resulting component. The example
is simple. All it does is assign a �lename to the �J�G�A property, and then call on
�X�d�c�i�g�d�a�h�#�e�a�V�n���� to play the �le. You can �nd additional information on using
this technique at �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$�Y�Y�*�+�'�+�.�'�#�V�h�e�m.

PERFORMING LATE BINDING USING ACTIVATOR.CREATEINSTANCE��

The �6�X�i�^�k�V�i�d�g�#�8�g�Z�V�i�Z�>�c�h�i�V�c�X�Z���� method is one of the more powerful ways to work with objects
of all kinds. In fact, this particular method can give your IronPython applications the same kind of
support as the Windows scripting engines CScript and WScript.

When working with the �6�X�i�^�k�V�i�d�g�#�8�g�Z�V�i�Z�>�c�h�i�V�c�X�Z���� method, you describe the type of object
you want to create. The object can be anything. In fact, if you look through the �=�@�:�N�T�8�A�6�H�H�:�H�T
�G�D�D�I hive of the registry, you’ll �nd a number of objects to try on your system.

The example in this section does something a bit mundane, but also interesting — it demonstrates
how to interact with the �H�]�Z�a�a objects. You can get a description of the �H�]�Z�a�a objects at �]�i�i�e�/�$�$
�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$�W�W�,�,�)�&�'�'�#�V�h�e�m. The main reason to look at the Shell objects is
that every Windows machine has them and they’re pretty useful for detecting user preferences.
Listing 9-3 shows the code used for this example.

LISTING 9�3: Working with Shell objects

�����L�Z���d�c�a�n���c�Z�Z�Y���i�]�Z���H�n�h�i�Z�b���V�h�h�Z�b�W�a�n���[�d�g���i�]�^�h���Z�m�V�b�e�a�Z�#
�[�g�d�b���H�n�h�i�Z�b���^�b�e�d�g�i���6�X�i�^�k�V�i�d�g�!���I�n�e�Z��

�����>�b�e�d�g�i���i�]�Z���i�^�b�Z���b�d�Y�j�a�Z���i�d���]�Z�a�e���l�^�i�]���V���e�V�j�h�Z�#
�^�b�e�d�g�i���i�^�b�Z

Performing Late Binding Using Activator.CreateInstance() �X 187

�����8�d�c�h�i�V�c�i�h���j�h�Z�Y���[�d�g���H�]�Z�a�a���h�Z�i�i�^�c�\�h�#
�[�g�d�b���H�]�Z�a�a�H�Z�i�i�^�c�\�h���^�b�e�d�g�i����

�����8�g�Z�V�i�Z���i�]�Z���H�]�Z�a�a���d�W�_�Z�X�i�#
�H�]�D�W�_���2���6�X�i�^�k�V�i�d�g�#�8�g�Z�V�i�Z�>�c�h�i�V�c�X�Z���I�n�e�Z�#�<�Z�i�I�n�e�Z�;�g�d�b�E�g�d�\�>�9���»�H�]�Z�a�a�#�6�e�e�a�^�X�V�i�^�d�c�¼����

�����I�d�\�\�a�Z���i�]�Z���9�Z�h�`�i�d�e�#��
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���:�c�i�Z�g���i�d���h�]�d�l���V�c�Y���i�]�Z�c���]�^�Y�Z���i�]�Z���9�Z�h�`�i�d�e�¼��
�H�]�D�W�_�#�I�d�\�\�a�Z�9�Z�h�`�i�d�e������
�i�^�b�Z�#�h�a�Z�Z�e���'��
�H�]�D�W�_�#�I�d�\�\�a�Z�9�Z�h�`�i�d�e����

�����H�]�d�l���h�d�b�Z���d�[���i�]�Z���h�Z�i�i�^�c�\�h�#��
�e�g�^�c�i���»�Q�c�I�]�Z���j�h�Z�g���l�V�c�i�h���i�d���h�]�d�l���[�^�a�Z���Z�m�i�Z�c�h�^�d�c�h�/�¼�!��
�e�g�^�c�i���H�]�D�W�_�#�<�Z�i�H�Z�i�i�^�c�\���H�H�;�T�H�=�D�L�:�M�I�:�C�H�>�D�C�H����
�e�g�^�c�i���»�I�]�Z���j�h�Z�g���l�V�c�i�h���i�d���h�Z�Z���h�n�h�i�Z�b���[�^�a�Z�h�/�¼�!��
�e�g�^�c�i���H�]�D�W�_�#�<�Z�i�H�Z�i�i�^�c�\���H�H�;�T�H�=�D�L�H�N�H�;�>�A�:�H����
�e�g�^�c�i���»�I�]�Z���j�h�Z�g���V�a�h�d���l�V�c�i�h���i�d���h�Z�Z���d�e�Z�g�V�i�^�c�\���h�n�h�i�Z�b���[�^�a�Z�h�/�¼�!
�e�g�^�c�i���H�]�D�W�_�#�<�Z�i�H�Z�i�i�^�c�\���H�H�;�T�H�=�D�L�H�J�E�:�G�=�>�9�9�:�C��

�����8�]�Z�X�`���:�m�e�a�d�g�Z�g���e�d�a�^�X�^�Z�h�#��
�e�g�^�c�i���»�Q�c�I�]�Z���C�d�9�g�^�k�Z�I�n�e�Z�6�j�i�d�G�j�c���e�d�a�^�X�^�Z�h���V�g�Z�/�¼

�����D�W�i�V�^�c���i�]�Z���W�^�i���k�V�a�j�Z�h�#���I�]�Z�h�Z���k�V�a�j�Z�h���V�g�Z�/��
�����%���J�c�`�c�d�l�c���Y�g�^�k�Z�h��
�����&���C�d���g�d�d�i���Y�^�g�Z�X�i�d�g�n��
�����'���G�Z�b�d�k�V�W�a�Z���Y�g�^�k�Z�h�����;�a�d�e�e�n�!���O�>�E����
�����(���=�V�g�Y���Y�^�h�`���Y�g�^�k�Z�h��
�����)���C�Z�i�l�d�g�`���Y�g�^�k�Z�h��
�����*���8�9�"�G�D�B���Y�g�^�k�Z�h��
�����+���G�6�B���Y�^�h�`���Y�g�^�k�Z�h��
�����,���G�Z�h�Z�g�k�Z�Y��
�B�n�7�^�i�h���2���H�]�D�W�_�#�:�m�e�a�d�g�Z�g�E�d�a�^�X�n���»�C�d�9�g�^�k�Z�I�n�e�Z�6�j�i�d�G�j�c�¼��

�����9�^�h�e�a�V�n���i�]�Z���g�Z�h�j�a�i�h�#��
�^�[���B�n�7�^�i�h�#�T�T�V�c�Y�T�T���%�m�%�&�����2�2���%�m�%�&�/
�������e�g�^�c�i���»�Q�i�6�j�i�d�g�j�c���9�^�h�V�W�a�Z�Y���[�d�g���J�c�`�c�d�l�c���9�g�^�k�Z�h�¼��
�Z�a�h�Z�/
�������e�g�^�c�i���»�Q�i�6�j�i�d�g�j�c���:�c�V�W�a�Z�Y���[�d�g���J�c�`�c�d�l�c���9�g�^�k�Z�h�¼��
�^�[���B�n�7�^�i�h�#�T�T�V�c�Y�T�T���%�m�%�'�����2�2���%�m�%�'�/
�������e�g�^�c�i���»�Q�i�6�j�i�d�g�j�c���9�^�h�V�W�a�Z�Y���[�d�g���C�d���G�d�d�i���9�^�g�Z�X�i�d�g�n�¼��
�Z�a�h�Z�/
�������e�g�^�c�i���»�Q�i�6�j�i�d�g�j�c���:�c�V�W�a�Z�Y���[�d�g���C�d���G�d�d�i���9�g�^�k�Z�h�¼��
�^�[���B�n�7�^�i�h�#�T�T�V�c�Y�T�T���%�m�%�)�����2�2���%�m�%�)�/
�������e�g�^�c�i���»�Q�i�6�j�i�d�g�j�c���9�^�h�V�W�a�Z�Y���[�d�g���G�Z�b�d�k�V�W�a�Z�����;�a�d�e�e�n�$�O�>�E�����9�g�^�k�Z�h�¼��
�Z�a�h�Z�/
�������e�g�^�c�i���»�Q�i�6�j�i�d�g�j�c���:�c�V�W�a�Z�Y���[�d�g���G�Z�b�d�k�V�W�a�Z�����;�a�d�e�e�n�$�O�>�E�����9�g�^�k�Z�h�¼��
�^�[���B�n�7�^�i�h�#�T�T�V�c�Y�T�T���%�m�%�-�����2�2���%�m�%�-�/
�������e�g�^�c�i���»�Q�i�6�j�i�d�g�j�c���9�^�h�V�W�a�Z�Y���[�d�g���=�V�g�Y���9�^�h�`���9�g�^�k�Z�h�¼��
�Z�a�h�Z�/
�������e�g�^�c�i���»�Q�i�6�j�i�d�g�j�c���:�c�V�W�a�Z�Y���[�d�g���=�V�g�Y���9�^�h�`���9�g�^�k�Z�h�¼��
�^�[���B�n�7�^�i�h�#�T�T�V�c�Y�T�T���%�m�&�%�����2�2���%�m�&�%�/
�������e�g�^�c�i���»�Q�i�6�j�i�d�g�j�c���9�^�h�V�W�a�Z�Y���[�d�g���C�Z�i�l�d�g�`���9�g�^�k�Z�h�¼��
�Z�a�h�Z�/
�������e�g�^�c�i���»�Q�i�6�j�i�d�g�j�c���:�c�V�W�a�Z�Y���[�d�g���C�Z�i�l�d�g�`���9�g�^�k�Z�h�¼��

continues

188 �X CHAPTER 9 INTERACTING WITH COM OBJECTS

�^�[���B�n�7�^�i�h�#�T�T�V�c�Y�T�T���%�m�'�%�����2�2���%�m�'�%�/
�������e�g�^�c�i���»�Q�i�6�j�i�d�g�j�c���9�^�h�V�W�a�Z�Y���[�d�g���8�9�"�G�D�B���9�g�^�k�Z�h�¼��
�Z�a�h�Z�/
�������e�g�^�c�i���»�Q�i�6�j�i�d�g�j�c���:�c�V�W�a�Z�Y���[�d�g���8�9�"�G�D�B���9�g�^�k�Z�h�¼��
�^�[���B�n�7�^�i�h�#�T�T�V�c�Y�T�T���%�m�)�%�����2�2���%�m�)�%�/
�������e�g�^�c�i���»�Q�i�6�j�i�d�g�j�c���9�^�h�V�W�a�Z�Y���[�d�g���G�6�B���9�^�h�`���9�g�^�k�Z�h�¼��
�Z�a�h�Z�/
�������e�g�^�c�i���»�Q�i�6�j�i�d�g�j�c���:�c�V�W�a�Z�Y���[�d�g���G�6�B���9�^�h�`���9�g�^�k�Z�h�¼��

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

This example starts by showing a different kind of �^�b�e�d�g�i call. In this case, the �^�b�e�d�g�i retrieves
only the �6�X�i�^�k�V�i�d�g and �I�n�e�Z classes from the �H�n�h�i�Z�b assembly. Using this approach reduces envi-
ronmental clutter. In addition, using this technique reduces the memory requirements for your appli-
cation and could mean the application runs faster. The example also imports the �i�^�b�Z module.

The �rst step in this application can seem a little complicated so it pays to break it down into two
pieces. First, you must get the type of a particular object by using its identi�er within the registry
with the �I�n�e�Z�#�<�Z�i�I�n�e�Z�;�g�d�b�E�g�d�\�>�9���� method. As previously mentioned, the object used in this
example is �H�]�Z�a�a�#�6�e�e�a�^�X�V�i�^�d�c. After the code obtains the type, it can create an instance of the
object using �6�X�i�^�k�V�i�d�g�#�8�g�Z�V�i�Z�>�c�h�i�V�c�X�Z����.

The �H�]�Z�a�a�#�6�e�e�a�^�X�V�i�^�d�c object, �H�]�D�W�_, provides several interesting methods and this example
works with three of them. The �rst method, �I�d�\�\�a�Z�9�Z�h�`�i�d�e����, provides the same service as click-
ing the Show Desktop icon in the Quick Launch toolbar. Calling �I�d�\�\�a�Z�9�Z�h�`�i�d�e���� the �rst time
shows the desktop, while the second call restores the application windows to their former appear -
ance. Notice the call to �i�^�b�Z�#�h�a�Z�Z�e���'��, which provides a 2-second pause between the two calls.

The second method, �<�Z�i�H�Z�i�i�^�c�\����, accepts a constant value as input. Listing 9-4 shows common
settings you can query using �<�Z�i�H�Z�i�i�^�c�\����. The example shows the results of three queries about
Windows Explorer settings for �le display. You can see these results (as well as the results for the
third method) in Figure 9-15.

LISTING 9�4: Queryable information for GetSetting()

�H�H�;�T�H�=�D�L�6�A�A�D�7�?�:�8�I�H���2���%�m�%�%�%�%�%�%�%�&
�H�H�;�T�H�=�D�L�:�M�I�:�C�H�>�D�C�H���2���%�m�%�%�%�%�%�%�%�'
�H�H�;�T�=�>�9�9�:�C�;�>�A�:�:�M�I�H���2���%�m�%�%�%�%�%�%�%�)
�H�H�;�T�H�:�G�K�:�G�6�9�B�>�C�J�>���2���%�m�%�%�%�%�%�%�%�)
�H�H�;�T�H�=�D�L�8�D�B�E�8�D�A�D�G���2���%�m�%�%�%�%�%�%�%�-
�H�H�;�T�H�D�G�I�8�D�A�J�B�C�H���2���%�m�%�%�%�%�%�%�&�%
�H�H�;�T�H�=�D�L�H�N�H�;�>�A�:�H���2���%�m�%�%�%�%�%�%�'�%
�H�H�;�T�9�D�J�7�A�:�8�A�>�8�@�>�C�L�:�7�K�>�:�L���2���%�m�%�%�%�%�%�%�-�%
�H�H�;�T�H�=�D�L�6�I�I�G�>�7�8�D�A���2���%�m�%�%�%�%�%�&�%�%
�H�H�;�T�9�:�H�@�I�D�E�=�I�B�A���2���%�m�%�%�%�%�%�'�%�%
�H�H�;�T�L�>�C�.�*�8�A�6�H�H�>�8���2���%�m�%�%�%�%�%�)�%�%
�H�H�;�T�9�D�C�I�E�G�:�I�I�N�E�6�I�=���2���%�m�%�%�%�%�%�-�%�%
�H�H�;�T�H�=�D�L�>�C�;�D�I�>�E���2���%�m�%�%�%�%�'�%�%�%

LISTING 9�3 (continued)

Performing Late Binding Using Marshal.GetActiveObject() �X 189

�H�H�;�T�B�6�E�C�:�I�9�G�K�7�J�I�I�D�C���2���%�m�%�%�%�%�&�%�%�%
�H�H�;�T�C�D�8�D�C�;�>�G�B�G�:�8�N�8�A�:���2���%�m�%�%�%�%�-�%�%�%
�H�H�;�T�=�>�9�:�>�8�D�C�H���2���%�m�%�%�%�%�)�%�%�%
�H�H�;�T�;�>�A�I�:�G���2���%�m�%�%�%�&�%�%�%�%
�H�H�;�T�L�:�7�K�>�:�L���2���%�m�%�%�%�'�%�%�%�%
�H�H�;�T�H�=�D�L�H�J�E�:�G�=�>�9�9�:�C���2���%�m�%�%�%�)�%�%�%�%
�H�H�;�T�H�:�E�E�G�D�8�:�H�H���2���%�m�%�%�%�-�%�%�%�%
�H�H�;�T�C�D�C�:�I�8�G�6�L�A�>�C�<���2���%�m�%�%�&�%�%�%�%�%
�H�H�;�T�H�I�6�G�I�E�6�C�:�A�D�C���2���%�m�%�%�'�%�%�%�%�%
�H�H�;�T�H�=�D�L�H�I�6�G�I�E�6�<�:���2���%�m�%�%�)�%�%�%�%�%

FIGURE 9�15: The shell objects provide access to all sorts of useful information.

The third method, �:�m�e�a�d�g�Z�g�E�d�a�^�X�n����, is a registry-based query that relies on bit positions
to de�ne a value. You �nd these values in the �=�@�:�N�T�8�J�G�G�:�C�I�T�J�H�:�G�Q�H�d�[�i�l�V�g�Z�Q�B�^�X�g�d�h�d�[�i�Q
�L�^�c�Y�d�l�h�Q�8�j�g�g�Z�c�i�K�Z�g�h�^�d�c�Q�E�d�a�^�X�^�Z�h�Q�:�m�e�a�d�g�Z�g registry key. The two most common policies are
�C�d�9�g�^�k�Z�6�j�i�d�g�j�c and �C�d�9�g�^�k�Z�I�n�e�Z�6�j�i�d�G�j�c. When working with the �C�d�9�g�^�k�Z�6�j�i�d�g�j�c policy,
Windows enables or disables autorun on a drive letter basis where bit 0 is drive A and bit 25 is
drive Z. Listing 9-3 shows how to work with the bits for the �C�d�9�g�^�k�Z�I�n�e�Z�6�j�i�d�G�j�c policy, while
Figure 9-15 shows the results for the host machine.

You can �nd a number of other examples of this kind of late binding for IronPython on the Internet.
For example, you can see a Word late binding example at �]�i�i�e�/�$�$�l�l�l�#�^�g�d�c�e�n�i�]�d�c�#�^�c�[�d�$�^�c�Y�Z�m��
�#�e�]�e�$�:�m�i�g�Z�b�Z�a�n�T�A�V�i�Z�T�7�^�c�Y�^�c�\. This particular example would possibly be the next step for many
developers in working with �6�X�i�^�k�V�i�d�g�#�8�g�Z�V�i�Z�>�c�h�i�V�c�X�Z����. The important thing to remember is
that this method is extremely �exible and that you need to think of the impossible, as well as the
possible, when using it.

PERFORMING LATE BINDING USING MARSHAL.GETACTIVEOBJECT��

Sometimes you need to interact with an application that’s already running. In this case, you don’t
want to create a new object; you want to gain access to an existing object. The technique used to
perform this type of late binding is to call �B�V�g�h�]�V�a�#�<�Z�i�6�X�i�^�k�Z�D�W�_�Z�X�i���� with the type of object you

190 �X CHAPTER 9 INTERACTING WITH COM OBJECTS

want to access. Typically, you use this technique with application objects, such as a running copy of
Word. Listing 9-5 shows an example of how to use �B�V�g�h�]�V�a�#�<�Z�i�6�X�i�^�k�Z�D�W�_�Z�X�i���� to gain access to
a running Word application.

LISTING 9�5: Working with a running copy of Word

�����>�b�e�d�g�i���d�c�a�n���i�]�Z���g�Z�f�j�^�g�Z�Y���X�a�V�h�h�Z�h���[�g�d�b���H�n�h�i�Z�b�#
�[�g�d�b���H�n�h�i�Z�b�#�G�j�c�i�^�b�Z�#�>�c�i�Z�g�d�e�H�Z�g�k�^�X�Z�h���^�b�e�d�g�i���B�V�g�h�]�V�a

�����D�W�i�V�^�c���V���e�d�^�c�i�Z�g���i�d���i�]�Z���g�j�c�c�^�c�\���L�d�g�Y���V�e�e�a�^�X�V�i�^�d�c�#��
�����L�d�g�Y���b�j�h�i���W�Z���g�j�c�c�^�c�\���d�g���i�]�^�h���X�V�a�a���l�^�a�a���[�V�^�a�#
�L�d�g�Y�D�W�_���2���B�V�g�h�]�V�a�#�<�Z�i�6�X�i�^�k�Z�D�W�_�Z�X�i���»�L�d�g�Y�#�6�e�e�a�^�X�V�i�^�d�c�¼��

�����6�Y�Y���V���c�Z�l���Y�d�X�j�b�Z�c�i���i�d���i�]�Z���g�j�c�c�^�c�\���X�d�e�n���d�[���L�d�g�Y�#
�B�n�9�d�X���2���L�d�g�Y�D�W�_�#�9�d�X�j�b�Z�c�i�h�#�6�Y�Y����

�����<�Z�i���i�]�Z���6�e�e�a�^�X�V�i�^�d�c���d�W�_�Z�X�i�#
�6�e�e���2���B�n�9�d�X�#�6�e�e�a�^�X�V�i�^�d�c

�����I�n�e�Z���h�d�b�Z���i�Z�m�i���^�c���i�]�Z���Y�d�X�j�b�Z�c�i�#
�6�e�e�#�H�Z�a�Z�X�i�^�d�c�#�I�n�e�Z�I�Z�m�i���»�=�Z�a�a�d���L�d�g�a�Y�¼��
�6�e�e�#�H�Z�a�Z�X�i�^�d�c�#�I�n�e�Z�E�V�g�V�\�g�V�e�]����
�6�e�e�#�H�Z�a�Z�X�i�^�d�c�#�I�n�e�Z�I�Z�m�i���»�<�d�d�Y�W�n�Z���¼��

The �^�b�e�d�g�i statement differs from normal in this example. Notice that you can drill down into
the namespace or class you want, and then import just the class you need. In this case, the example
requires only the �B�V�g�h�]�V�a class from �H�n�h�i�Z�b�#�G�j�c�i�^�b�Z�#�>�c�i�Z�g�d�e�H�Z�g�k�^�X�Z�h.

The �rst step is to get the running application. You must have a copy of Word running for
this step to work; otherwise, you get an error. The call to �B�V�g�h�]�V�a�#�<�Z�i�6�X�i�^�k�Z�D�W�_�Z�X�i���� with
�L�d�g�Y�#�6�e�e�a�^�X�V�i�^�d�c returns a Word object, �L�d�g�Y�D�W�_. This object is the same object you get when
working with Visual Basic for Applications (VBA). In fact, if you can do it with VBA, you can do
it with IronPython.

After gaining access to Word, the application adds a new document using �L�d�g�Y�D�W�_�#�9�d�X�j�b�Z�c�i�h�#�6�Y�Y����.
It then creates an �6�e�e�a�^�X�V�i�^�d�c object, �6�e�e. Using the �6�e�e�#�H�Z�a�Z�X�i�^�d�c�#�I�n�e�Z�I�Z�m�i���� method, the
application types some text into Word, as shown in Figure 9-16. Of course, you can perform any task
required — the example does something simple for demonstration purposes.

FIGURE 9�16: You can control Word using IronPython as easily as you can using VBA.

Using IronPython Constructively �X 191

USING IRONPYTHON CONSTRUCTIVELY

This chapter has demonstrated techniques for working with COM in your applications. Direct
COM access has a lot of bene�ts so it really does pay to discover how to make COM work from
IronPython. Remember that there’s no one best way to work with COM, simply the way that works
best in a particular situation.

Your organization probably has a lot of COM code sit ting around. COM appears not only in custom
applications, but as part of Windows, server applications, desktop applications, services, and in many
other coded forms on all of the machines on your network. One of the things you should do now is
identify the critical applications that you might need to access from IronPython and then decide on
a strategy to access them. You might not need to access these applications any time soon, but the
exercise of thinking through the process of accessing them is helpful in seeing how IronPython works
with COM. The time you spend now will pay dividends lat er.

Chapter 10 goes back to the command line. However, Chapter 10 doesn’t go to the command line to
perform common tasks. Many administrators prefer to use the command line to perform tasks because
it’s fast and ef�cient. In addition, the command line lends itself to automation that would be dif�cult to
implement in a GUI. Microsoft has even recognized the role of the command line in management tasks
and has placed a new emphasis on it. When working with Windows Server 2008 Server Core, you have
only a command line with which to work, which means th at command line tools have taken on a new
signi�cance in that environment. Of course, you can take what you’ve learned in this chapter to build
powerful applications using a command line interface. It’s also possible to mix the command line and
GUI environments (and many applications do just that).

Using IronPython for
Administration Tasks

WHAT’S IN THIS CHAPTER?

�° Developing command line utilities��

Using and con�guring the command line environment���°

Using IronPython to script other command line applications���°

Outputting status information from the command line���°

Administration occurs at many levels and for many different tasks. For example, many admin-
istrators today rely on graphical tools to accomplish tasks manually. As you saw in Chapters 8
and 9, you can use IronPython to create graphical applications. However, where IronPython
excels is at the command line. You can create IronPython applications to perform a host of
tasks at the command line quite quickly and with less effort than using many other languages.
In addition, IronPython works well as a batch processor — a special kind of application that
executes a list of commands normally found in a �le.

Of course, some people feel the command line is dead — that no one uses it any longer. The
converse is true. Many administrators have soured on the time-consuming nature of graphical
utilities and now prefer the functionality provided by command line utilities, especially those
designed to work in batch �les. Microsoft is actually introducing a number of new applica-
tions that rely on the command line, such as latest versions of Exchange Server. In addition,
Windows Server 2008 Server Core lacks a graphical environment (strictly speaking) and relies
on the administrator’s knowledge of command line tools for management tasks. In short, the
command line is alive and well.

You have a number of options available to provide input to command line applications. The one
that comes to mind immediately is to provide an interactive environment. However, you can also

10

194 �X CHAPTER 10 USING IRONPYTHON FOR ADMINISTRATION TASKS

let the user enter data using command line switches (as shown by the many utilities described so far
in the book) or through environment variables. This chapter concentrates on the latter two techniques,
but shows all three to some extent. (Theoretically, you have a fourth option in forcing the application
to gather information from an external source such as a database, but this chapter doesn’t discuss that
option because most command line applications don’t use it.)

The user also expects your application to provide output as appropriate. As with data input, command
line applications have three major options for outputting data. The common method is to display the
output directly on the console screen. However, the user might not be looking at the console screen, so
you need alternatives. The two most common alternatives are to use log �les on disk or to add entries
to the Windows event log. This chapter discusses all three techniques because they’re all important.

UNDERSTANDING THE COMMAND LINE

The command line is a text-based environment that some users never even see. You type a command
and the computer follows it — nothing could be simpler. In fact, early PCs relied on the command
line exclusively (even earlier systems didn’t even have a console and instead relied on punched tape,
magnetic tape, punched cards, or other means for input, but let’s not go that far back). Some people
are amazed at the number of commands that they can enter at the command line and the usefulness
of those commands even today. A few administrators still live at the command line because they’re
used to working with it. The following sections give you a better understanding of the command
line and how it functions.

Newer versions of Windows (such as Vista and Windows 7) display a command
prompt with reduced privileges as a security precaution. Many command line utili -
ties require administrator privileges to work properly. To open an administrator
command prompt when working with a newer version of Wi ndows, right-click the
Command Prompt icon in the Start menu and choose Run As Administrator from
the context menu. You may have to provide a password to complete the command.
When the command prompt opens, you have full administrator privileges, which
let you execute any of the command line applications.

Understanding the Need for Command Line Applications
Many administrators today work with graphical tools. However, the graphical tools sometimes have
problems — perhaps they’re slow or they don’t offer a �exible means of accomplishing a task. For this
reason, good administrators also know how to work at the command line. A command line applica-
tion can accomplish with one well-constructed command what a graphical application may require
hundreds of mouse clicks to do — for example, the FindStr utility that lets you �nd an y string in any
�le. Using FindStr is signi�cantly faster than any W indows graphical search application and always
provides completely accurate results. In addition, there’s that option of searching any �le — many
search applications skip executables and other binary �les. Give it a try right now. Open a command
prompt, change directories to the root directory (�8�9���Q), and type �;�^�c�Y�H�i�g���$�B���$�H���¹�N�d�j�g���C�V�b�Z�¹ and
press Enter. You’ll �nd every �le on the hard drive that contains your name.

Understanding the Command Line �X 195

In some cases, the administrator must work at the command line. If you’ve taken a look at Windows
Server 2008 Server Core edition, you know that it doesn’t include much in the way of a graphical
interface. In fact, this version of Windows immediately opens a command processor when you start
it. There’s no desktop, no icons, nothing that looks even remotely like a graphical interface. In fact,
many graphical applications simply don’t work in Server Core because it lacks the required DLLs.
When faced with this environment, you must know how to use command line applications.

You see the terms “application,” “utility,” and “com mand” used throughout this
chapter. An application can refer to any executable code. A utility is a specialized
kind of application that performs low-level tasks and includes automation sup-
port. Utilities aren’t part of the command processor (the application that provides
the command line interface) — they exist as separate �les. A command is a utility
that resides within the command processor. For example, the �9�^�g command is a
command because it exists as part of �8�B�9�#�:�M�:; you won’t �nd a separate �9�^�g�#�:�M�:
residing somewhere on the hard drive.

Don’t get the idea that command line applications are a panacea for every application ailment or
every administrator need. Command line applications share some common issues that prompted
the development of graphical applications in the �rst place. Here are the issues you should consider
when creating a command line application of your own:

�° Isn’t intuitive or easy to learn.��

Requires the user to learn arcane input arguments.���°

Relies on the user to open a separate command prompt.���°

Is error prone.���°

���° Output results can simply disappear when starting the application without opening a
separate command prompt.

Of course, you wouldn’t even be reading this chapter if command line applications didn’t also provide
some bene�ts. In fact, command line applications are the only answer for certain application needs.
Here are the bene�ts of using a command line application.

�° Fast, no GUI to slow things down��

Ef�cient, single command versus multiple mouse clicks���°

Usable in automation, such as batch �les���°

Less development time, no GUI code to write���°

Invisible when executed in the background���°

Command line applications can have other bene�ts. For example, a properly written, general
command line application can execute just �ne on more than one platform. Even if you use
.NET-speci�c functionality, there’s a very good chance that you can use an alternative, such as

196 �X CHAPTER 10 USING IRONPYTHON FOR ADMINISTRATION TASKS

Mono (�]�i�i�e�/�$�$�l�l�l�#�b�d�c�d�"�e�g�d�_�Z�X�i�#�X�d�b�$�B�V�^�c�T�E�V�\�Z), to run your application on other platforms.
Adding a GUI always complicates matters and makes your application less easy to move.

Reading Data from the Command Line
You have a multitude of options when working with da ta from the command line. Precisely which
method you use depends on what you’re trying to achieve. If you merely want to see what the com-
mand line contains, you should use the Python approach because it’s fast and easy. However, Python
doesn’t provide the widest range of command line processing features — it tends to focus on Unix
methodologies. If you want additional �exibility in working with the command line options, you
might use the .NET approach instead. The following sections describe both techniques.

Using the Python Method
Most programming languages provide some means of reading input from the command line and
Python is no exception. As an IronPython developer, you also have full access to the Python method
of working with the command line. While you’re exper imenting, you may simply want to read the
command line arguments. Listing 10-1 shows how to perform this task.

LISTING 10�1: Displaying the command line arguments

�����E�Z�g�[�d�g�b���i�]�Z���g�Z�f�j�^�g�Z�Y���^�b�e�d�g�i�h�#
�^�b�e�d�g�i���h�n�h

�����D�W�i�V�^�c���i�]�Z���c�j�b�W�Z�g���d�[���X�d�b�b�V�c�Y���a�^�c�Z���V�g�\�j�b�Z�c�i�h�#��
�e�g�^�c�i���»�I�]�Z���X�d�b�b�V�c�Y���a�^�c�Z���]�V�h�¼�!���a�Z�c���h�n�h�#�V�g�\�k���!���»�V�g�\�j�b�Z�c�i�h�#�Q�c�¼

�����A�^�h�i���i�]�Z���X�d�b�b�V�c�Y���a�^�c�Z���V�g�\�j�b�Z�c�i�h�#
�[�d�g���V�g�\���^�c���h�n�h�#�V�g�\�k�/
�������e�g�^�c�i���V�g�\

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

Developers who have worked with C or C++ know that the �b�V�^�c���� function can include the �V�g�\�X
(argument count) and �V�g�\�k (argument vector — a type of array) arguments. Python includes the
�V�g�\�k argument as part of the �h�n�h module. To obtain the �V�g�\�X argument, you use the �a�Z�c���h�n�h�#�V�g�\�k��
function call. The example relies on a simple �[�d�g loop to display each of the arguments, as shown in
Figure 10-1.

FIGURE 10�1: Python makes it easy to list the command line arguments.

Understanding the Command Line �X 197

Of course, you’ll want to expand beyond simply listing the command line arguments into doing some-
thing with them. Listing 10-2 shows an example of how you could parse command line arguments for
the typical Windows user.

LISTING 10�2: Using the Python approach to parse command line arguments

�����E�Z�g�[�d�g�b���i�]�Z���g�Z�f�j�^�g�Z�Y���^�b�e�d�g�i�h�#
�^�b�e�d�g�i���h�n�h��
�^�b�e�d�g�i���\�Z�i�d�e�i

�����D�W�i�V�^�c���i�]�Z���X�d�b�b�V�c�Y���a�^�c�Z���V�g�\�j�b�Z�c�i�h�#
�Y�Z�[���b�V�^�c���V�g�\�k���/
�������i�g�n�/
�����������������D�W�i�V�^�c���i�]�Z���d�e�i�^�d�c�h���V�c�Y���V�g�\�j�b�Z�c�i�h�#
�������������d�e�i�h�!���V�g�\�h���2���\�Z�i�d�e�i�#�\�Z�i�d�e�i���V�g�\�k�!���»�9�]�4�\�/�h�¼�!���P�»�]�Z�a�e�¼�!���»�<�g�Z�Z�i�2�¼�!���»�=�Z�a�a�d�¼�R��

�����������������E�V�g�h�Z���i�]�Z���X�d�b�b�V�c�Y���a�^�c�Z���d�e�i�^�d�c�h�#
�������������[�d�g���d�e�i�!���V�g�\���^�c���d�e�i�h�/
������������������
�����������������������9�^�h�e�a�V�n���]�Z�a�e���l�]�Z�c���g�Z�f�j�Z�h�i�Z�Y�#
�������������������^�[���d�e�i���^�c�����»�"�]�¼�!���»�"�4�¼�!���»�"�"�]�Z�a�e�¼���/
�������������������������j�h�V�\�Z����
�������������������������h�n�h�#�Z�m�^�i����

�����������������������I�Z�a�a���i�]�Z���j�h�Z�g���l�Z�¼�g�Z���^�c���Y�Z�W�j�\���b�d�Y�Z�#
�������������������^�[���d�e�i���^�c�����»�"�9�¼���/
�������������������������e�g�^�c�i���»�6�e�e�a�^�X�V�i�^�d�c���^�c���9�Z�W�j�\���b�d�Y�Z�#�¼

�����������������������9�^�h�e�a�V�n���V���j�h�Z�g���\�g�Z�Z�i�^�c�\�#
�������������������^�[���d�e�i���^�c�����»�"�\�¼�!���»�"�"�<�g�Z�Z�i�¼���/
�������������������������e�g�^�c�i���»�<�d�d�Y���i�d���h�Z�Z���n�d�j�¼�!���V�g�\�#�h�i�g�^�e���»�/�¼��

�����������������������H�V�n���]�Z�a�a�d���i�d���i�]�Z���j�h�Z�g�#
�������������������^�[���d�e�i���^�c�����»�"�h�¼�!���»�"�"�=�Z�a�a�d�¼���/
�������������������������e�g�^�c�i���»�=�Z�a�a�d���¼

�����������������E�V�g�h�Z���i�]�Z���X�d�b�b�V�c�Y���a�^�c�Z���V�g�\�j�b�Z�c�i�h�#
�������������[�d�g���V�g�\���^�c���V�g�\�h�/

�����������������������9�^�h�e�a�V�n���]�Z�a�e���l�]�Z�c���g�Z�f�j�Z�h�i�Z�Y�#
�������������������^�[���V�g�\�#�j�e�e�Z�g�������^�c�����»�$�4�¼�!���»�$�=�:�A�E�¼���/
�������������������������j�h�V�\�Z����
�������������������������h�n�h�#�Z�m�^�i����

�����������������������I�Z�a�a���i�]�Z���j�h�Z�g���l�Z�¼�g�Z���^�c���9�Z�W�j�\���b�d�Y�Z�#
�������������������Z�a�^�[���V�g�\���^�c�����»�$�9�¼���/
�������������������������e�g�^�c�i���»�6�e�e�a�^�X�V�i�^�d�c���^�c���9�Z�W�j�\���b�d�Y�Z�#�¼

�����������������������9�^�h�e�a�V�n���V���j�h�Z�g���\�g�Z�Z�i�^�c�\�#
�������������������Z�a�^�[���»�$�<�G�:�:�I�¼���^�c���V�g�\�#�j�e�e�Z�g�������d�g���»�$�<�¼���^�c���V�g�\�#�j�e�e�Z�g�����/
�������������������������e�g�^�c�i���»�<�d�d�Y���i�d���h�Z�Z���n�d�j�¼�!���V�g�\�#�h�e�a�^�i���»�/�¼���P�&�R
������������
�����������������������H�V�n���]�Z�a�a�d���i�d���i�]�Z���j�h�Z�g�#

continues

198 �X CHAPTER 10 USING IRONPYTHON FOR ADMINISTRATION TASKS

�������������������Z�a�^�[���V�g�\�#�j�e�e�Z�g�������^�c�����»�$�H�¼�!���»�$�=�:�A�A�D�¼���/
�������������������������e�g�^�c�i���»�=�Z�a�a�d���¼

�����������������������J�h�Z�g���]�V�h���e�g�d�k�^�Y�Z�Y���W�V�Y���^�c�e�j�i�#
�������������������Z�a�h�Z�/
�������������������������g�V�^�h�Z���\�Z�i�d�e�i�#�<�Z�i�d�e�i�:�g�g�d�g���»�:�g�g�d�g���^�c���^�c�e�j�i�#�¼�!���V�g�\��

�����������I�]�Z���j�h�Z�g���h�j�e�e�a�^�Z�Y���X�d�b�b�V�c�Y���a�^�c�Z���X�d�c�i�V�^�c�h���^�a�a�Z�\�V�a���V�g�\�j�b�Z�c�i�h�#
�������Z�m�X�Z�e�i���\�Z�i�d�e�i�#�<�Z�i�d�e�i�:�g�g�d�g�/

�����������������9�^�h�e�a�V�n���i�]�Z���j�h�V�\�Z���^�c�[�d�g�b�V�i�^�d�c�#
�������������j�h�V�\�Z����

�����������������Z�m�^�i���l�^�i�]���V�c���Z�g�g�d�g���X�d�Y�Z�#
�������������h�n�h�#�Z�m�^�i���'��

�����8�V�a�a���b�V�^�c�������l�^�i�]���d�c�a�n���i�]�Z���g�Z�a�Z�k�V�c�i���V�g�\�j�b�Z�c�i�h�#
�^�[���T�T�c�V�b�Z�T�T���2�2���¹�T�T�b�V�^�c�T�T�¹�/
�������b�V�^�c���h�n�h�#�V�g�\�k�P�&�/�R��

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

This example actually begins at the bottom of the listing with an �^�[statement:

�^�[���T�T�c�V�b�Z�T�T���2�2���¹�T�T�b�V�^�c�T�T�¹�/
�������b�V�^�c���h�n�h�#�V�g�\�k�P�&�/�R��

Many of your IronPython applications will use this t echnique to pass just the command line arguments
to the �b�V�^�c���� function. As shown in Figure 10-1, the �rst command line argument is the name of the
script and you don’t want to attempt processing it.

Python assumes that everyone works with Linux or some other form of Unix. Consequently, it only
supports the short dash (–) directly for command line options. An option is an input that you can
parse without too much trouble because Python does most of the work for you. Options use a single
dash for a single letter (short option) or a double dash for phrases (long option). Anything that doesn’t
begin with a dash, such as something that begins with a slash (/) is an argument. Unfortunately, most
of your Windows users will be familiar with argument s, not options, so your application should pro-
cess both.

The code begins by separating options and arguments that you’ve de�ned. The �\�Z�i�d�e�i�#�\�Z�i�d�e�i����
method requires three arguments:

�° The list of options and arguments to process��

A list of short options���°

A list of long options���°

In this example, �V�g�\�k contains the list of options and arguments contained in the command line,
except for the script name. Each option and argument is separated by a space in the original string.

LISTING 10�2 (continued)

Understanding the Command Line �X 199

The list of short options is �»�9�]�4�\�/�h�». Notice that you don’t include a dash between each of the
options — Python includes them for you automatically. Each of the entries is a different command
line switch, except for the colon. So, this application accepts �·�9, �·�] , �·�4, �·�\�/ , and �·�h as command line
switches. The command line switches are case sensitive. The colon after �·�\ signi�es that the user must
also provide a value as part of the command line switch.

The list of long options includes �P�»�]�Z�a�e�»�!���»�<�g�Z�Z�i�2�»�!���»�=�Z�a�a�d�»�R. Notice that you don’t include
the double dash at the beginning of each long option. As with the short versions of the command
line switch, these command line switches are case sensitive. The command line switches for this
example are:

�¶�9���° : Debug mode

�¶�]���° , �¶�4, and �¶�¶�]�Z�a�e: Help

���° �¶�\�/�J�h�Z�g�c�V�b�Z and �¶�¶�<�g�Z�Z�i�/�J�h�Z�g�c�V�b�Z: Greeting that includes the user’s name

�¶�h���° and �¶�¶�=�Z�a�a�d: Says hello to the user without using a name

At this point, the code can begin processing �d�e�i�h and �V�g�\�h. In both cases, the code relies on a �[�d�g
loop to perform the task. However, notice that �d�e�i�h relies on two arguments, �d�e�i and �V�g�\, while �V�g�\�h
relies on a single argument �V�g�\. That’s because �d�e�i�h and �V�g�\�h are stored differently. The �d�e�i�h��version
of �"�\�/�?�d�]�c appears as �P���»�·�\�»�!���»�/�?�d�]�c�»���R, while the �V�g�\�h version appears as �P�»�$�\�/�?�d�]�c�»�R. Notice
that �d�e�i�h automatically separates the command line switch from the value for you.

Processing �d�e�i�h takes the same course in every case. The code uses an �^�[statement such as �^�[���d�e�i��
�^�c�����»�·�]�»�!���»�·�4�»�!���»�·�·�]�Z�a�e�»�� to determine whether the string appears in �d�e�i. In most cases, the
code simply prints out a value for this example. The help routine calls on �j�h�V�\�Z����, which is explained
in the “Providing Command Line Help” section of the chap ter. Calling �h�n�h�#�Z�m�^�i���� automatically
ends the application. If the application detects any command line options that don’t appear in your
list of command line options to process, it raises the �\�Z�i�d�e�i�#�<�Z�i�d�e�i�:�g�g�d�g���� exception. Standard
practice for Python applications is to display usage information using �j�h�V�\�Z���� and then exit with an
error code (of 2 in this case by calling �h�n�h�#�Z�m�^�i���'��).

Now look at the �V�g�\�h processing and you see something different. Python doesn’t provide nearly as
much automation in this case. In addition, your user will likely expect / command line switches to
behave like those for most Windows applications (case insensitive). The example handles this issue
by using a different �^�[statement, such as �^�[���V�g�\�#�j�e�e�Z�g�������^�c�����»�$�4�»�!���»�$�=�:�A�E�»��. Notice that the
options use a slash, not a dash.

Argument processing relies on a single �^�[statement, rather than individual �^�[statements.
Consequently, the second through the last command line switches actually rely on an �Z�a�^�[
clause. Python won’t automatically detect errors in / command line switches. Therefore, your
code also requires an else clause that raises the �\�Z�i�d�e�i�#�<�Z�i�d�e�i�:�g�g�d�g���� event manually.

Remember that arguments are single strings, not command line switch and value pairs. You need
some method to split the command line switch from the value. The code handles this case using
�Z�a�^�[���»�$�<�G�:�:�I�»���^�c���V�g�\�#�j�e�e�Z�g���� or���»�$�<�»���^�c���V�g�\�#�j�e�e�Z�g���� where it compares each command line
switch individually. In addition, it relies on �V�g�\�#�h�e�a�^�i���»�/�»���P�&�R to display the value. The argument
processing routine shows that you can accommodate both Linux and Windows users quite easily
with your application.

200 �X CHAPTER 10 USING IRONPYTHON FOR ADMINISTRATION TASKS

It’s time to test the example. Figure 10-2 shows the output of using �>�E�N���8�b�Y�A�^�c�Z�'��
�#�e�n���·�9���·�h���·�\�/�?�d�]�c���$�=�Z�a�a�d���$�\�/�?�d�]�c.

FIGURE 10�2: An IronPython application can accommodate both – and / command line switches.

Using the .NET Method
The .NET method of working with command line arguments is similar to the Python method, but
there are distinct differences. When you design your application, you should use one technique of
parsing the command line or the other because mixing the two will almost certainly result in appli-
cation errors. Listing 10-3 shows a simple example of the .NET method.

LISTING 10�3: Using the .NET approach to list command line arguments

�����E�Z�g�[�d�g�b���i�]�Z���g�Z�f�j�^�g�Z�Y���^�b�e�d�g�i�h�#
�^�b�e�d�g�i���H�n�h�i�Z�b

�����D�W�i�V�^�c���i�]�Z���c�j�b�W�Z�g���d�[���X�d�b�b�V�c�Y���a�^�c�Z���V�g�\�j�b�Z�c�i�h�#
�e�g�^�c�i���»�I�]�Z���X�d�b�b�V�c�Y���a�^�c�Z���]�V�h�¼�!��
�e�g�^�c�i���a�Z�c���H�n�h�i�Z�b�#�:�c�k�^�g�d�c�b�Z�c�i�#�<�Z�i�8�d�b�b�V�c�Y�A�^�c�Z�6�g�\�h�������!
�e�g�^�c�i���»�V�g�\�j�b�Z�c�i�h�#�Q�c�¼

�����A�^�h�i���i�]�Z���X�d�b�b�V�c�Y���a�^�c�Z���V�g�\�j�b�Z�c�i�h�#��
�[�d�g���V�g�\���^�c���H�n�h�i�Z�b�#�:�c�k�^�g�d�c�b�Z�c�i�#�<�Z�i�8�d�b�b�V�c�Y�A�^�c�Z�6�g�\�h�����/
�������e�g�^�c�i���V�g�\

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

This example also relies on �a�Z�c���� to obtain the number of command line arguments contained in
�H�n�h�i�Z�b�#�:�c�k�^�g�d�c�b�Z�c�i�#�<�Z�i�8�d�b�b�V�c�Y�A�^�c�Z�6�g�\�h����. As before, the code relies on a �[�d�g loop to process
the command line arguments. You might expect that the results would also be the same, but look at
Figure 10-3 and compare it to Figure 10-1. Notice that the .NET method outputs not only t he script
name, but also the name of the script processor and its location on the hard drive. Using the .NET
method can have bene�ts if you need to verify the location of �>�E�N�#�:�M�: on the user’s system.

It’s time to see how you might parse a command line using the .NET method. Many of the tech-
niques are similar, but there are signi�cant differences because .NET lacks any concept of options
versus arguments. In short, you use a single technique to process both in .NET. Listing 10-4 shows
how to parse a command line using the .NET method.

Understanding the Command Line �X 201

FIGURE 10�3: The .NET method produces di�erent results than the Python method.

LISTING 10�4: Using the .NET approach to parse command line arguments

�����E�Z�g�[�d�g�b���i�]�Z���g�Z�f�j�^�g�Z�Y���^�b�e�d�g�i�h�#��
�[�g�d�b���H�n�h�i�Z�b���^�b�e�d�g�i���6�g�\�j�b�Z�c�i�:�m�X�Z�e�i�^�d�c�!���6�g�g�V�n�!���H�i�g�^�c�\
�[�g�d�b���H�n�h�i�Z�b�#�:�c�k�^�g�d�c�b�Z�c�i���^�b�e�d�g�i���<�Z�i�8�d�b�b�V�c�Y�A�^�c�Z�6�g�\�h
�^�b�e�d�g�i���h�n�h

�e�g�^�c�i���»�#�C�:�I���K�Z�g�h�^�d�c���D�j�i�e�j�i�Q�c�¼

�i�g�n�/
�����������D�W�i�V�^�c���i�]�Z���c�j�b�W�Z�g���d�[���X�d�b�b�V�c�Y���a�^�c�Z���V�g�\�j�b�Z�c�i�h�#
�������H�^�o�Z���2���<�Z�i�8�d�b�b�V�c�Y�A�^�c�Z�6�g�\�h�����#�8�d�j�c�i

�����������8�]�Z�X�`���i�]�Z���c�j�b�W�Z�g���d�[���V�g�\�j�b�Z�c�i�h�#
�������^�[���H�^�o�Z���1���(�/

�����������������G�V�^�h�Z���V�c���Z�m�X�Z�e�i�^�d�c���^�[���i�]�Z�g�Z���V�g�Z�c�¼�i���V�c�n���V�g�\�j�b�Z�c�i�h�#
�������������g�V�^�h�Z���6�g�\�j�b�Z�c�i�:�m�X�Z�e�i�^�d�c���»�>�c�k�V�a�^�Y���6�g�\�j�b�Z�c�i�¼�!���V�g�\��

�������Z�a�h�Z�/
�����������������8�g�Z�V�i�Z���V�c���V�g�g�V�n���i�]�V�i���]�V�h���_�j�h�i���X�d�b�b�V�c�Y���a�^�c�Z���V�g�\�j�b�Z�c�i�h���^�c���^�i�#
�������������6�g�\�j�b�Z�c�i�h���2���6�g�g�V�n�#�8�g�Z�V�i�Z�>�c�h�i�V�c�X�Z���H�i�g�^�c�\�!���H�^�o�Z���"���'��
�������������6�g�g�V�n�#�8�d�e�n���<�Z�i�8�d�b�b�V�c�Y�A�^�c�Z�6�g�\�h�����!���'�!���6�g�\�j�b�Z�c�i�h�!���%�!���H�^�o�Z���"���'��

�����������E�V�g�h�Z���i�]�Z���X�d�b�b�V�c�Y���a�^�c�Z���d�e�i�^�d�c�h�#
�������[�d�g���V�g�\���^�c���6�g�\�j�b�Z�c�i�h�/

�����������������9�^�h�e�a�V�n���]�Z�a�e���l�]�Z�c���g�Z�f�j�Z�h�i�Z�Y�#
�������������^�[���V�g�\���^�c�����»�"�]�¼�!���»�"�4�¼�!���»�$�4�¼�!���»�"�"�]�Z�a�e�¼�����d�g���V�g�\�#�j�e�e�Z�g�������^�c�����»�$�=�¼�!���»�$�=�:�A�E�¼���/
�������������������j�h�V�\�Z����
�������������������h�n�h�#�Z�m�^�i����

�����������������I�Z�a�a���i�]�Z���j�h�Z�g���l�Z�¼�g�Z���^�c���9�Z�W�j�\���b�d�Y�Z�#
�������������Z�a�^�[���V�g�\���^�c�����»�"�9�¼�!���»�$�9�¼���/
�������������������e�g�^�c�i���»�6�e�e�a�^�X�V�i�^�d�c���^�c���9�Z�W�j�\���b�d�Y�Z�#�¼

�����������������9�^�h�e�a�V�n���V���j�h�Z�g���\�g�Z�Z�i�^�c�\�#
�������������Z�a�^�[���»�"�\�¼���^�c���V�g�\���d�g���»�"�"�<�g�Z�Z�i�¼���^�c���V�g�\���d�g���»�$�<�¼���^�c���V�g�\�#�j�e�e�Z�g�������d�g��
�������������������»�$�<�G�:�:�I�¼���^�c���V�g�\�#�j�e�e�Z�g�����/

continues

202 �X CHAPTER 10 USING IRONPYTHON FOR ADMINISTRATION TASKS

�������������������e�g�^�c�i���»�<�d�d�Y���i�d���h�Z�Z���n�d�j�¼�!���V�g�\�#�h�e�a�^�i���»�/�¼���P�&�R

�����������������H�V�n���]�Z�a�a�d���i�d���i�]�Z���j�h�Z�g�#
�������������Z�a�^�[���V�g�\���^�c�����»�"�h�¼�!���»�"�"�=�Z�a�a�d�¼�����d�g���V�g�\�#�j�e�e�Z�g�������^�c�����»�$�H�¼�!���»�$�=�:�A�A�D�¼���/
�������������������e�g�^�c�i���»�=�Z�a�a�d���¼

�������������Z�a�h�Z�/
�������������������g�V�^�h�Z���6�g�\�j�b�Z�c�i�:�m�X�Z�e�i�^�d�c���»�>�c�k�V�a�^�Y���6�g�\�j�b�Z�c�i�¼�!���V�g�\��

�Z�m�X�Z�e�i���6�g�\�j�b�Z�c�i�:�m�X�Z�e�i�^�d�c�/
�������j�h�V�\�Z����
�������h�n�h�#�Z�m�^�i���'��

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The .NET implementation is a little simpler than the Python implementation — at least if you want
to use both kinds of command line switches. This example begins by importing the required .NET
assemblies. The example also relies on �h�n�h to provide the �Z�m�^�i���� function.

The code begins by checking the number of arguments. When using .NET parsing, you
must have at least three command line arguments to receive any input. The example uses the
�6�g�\�j�b�Z�c�i�:�m�X�Z�e�i�^�d�c���� method to raise an exception should the user not provide any inputs.

In the IronPython example, the code uses a special technique to get rid of the script name.
The .NET method also gets rid of the application name and the script name. In this case, the
code creates a new array, �6�g�\�j�b�Z�c�i�h, to hold the command line arguments. You must make
�6�g�\�j�b�Z�c�i�h large enough to hold all of the command line arguments, so the code uses the �6�g�g�V�n��
�#�8�g�Z�V�i�Z�>�c�h�i�V�c�X�Z���� method to create an �6�g�g�V�n object with two fewer elements than the origi-
nal array provided by �<�Z�i�8�d�b�b�V�c�Y�A�^�c�Z�6�g�\�h����. The �6�g�g�V�n�#�8�g�Z�V�i�Z�>�c�h�i�V�c�X�Z���� method requires
two inputs: the array data type and the array length. The �6�g�g�V�n�#�8�d�e�n���� method moves just the
command line arguments to �6�g�\�j�b�Z�c�i�h. The �6�g�g�V�n�#�8�d�e�n���� method requires �ve inputs: source
array, source array starting element, destination array, destination array starting element, and
the number of elements to copy.

At this point, the code can begin parsing the input arguments. Notice that unlike the Python method,
you can parse all the permutations in a single line of code using the .NET method. The example pro-
vides the same processing as the Python method example, so that you can compare the two techniques.
As with the Python method, the .NET method raises an exception when the user doesn’t provide cor-
rect input. The result is that the example displays usage instructions for the application. Figure 10-4
shows the output from this example.

The Listing 10-4 code line �Z�a�^�[���»�"�\�»���^�c���V�g�\���d�g���»�"�"�<�g�Z�Z�i�»���^�c���V�g�\���d�g��
�»�$�<�»���^�c���V�g�\�#�j�e�e�Z�g�������d�g���»�$�<�G�:�:�I�»���^�c���V�g�\�#�j�e�e�Z�g�����/ appears on one line
in the example application, even though it appears on multiple lines in this book
due to space considerations. Remember that IronPython lacks any form of line
continuation character. All your code must appear on a single line.

LISTING 10�4 (continued)

Understanding the Command Line �X 203

FIGURE 10�4: Parsing arguments produces the same results in .NET as it does with Python.

Providing Command Line Help
Your command line application won’t have a user interface — just a command. While some people
can �gure out graphical applications by pointing here and clicking there, �guring out a command
line application without help is nearly impossible. The methods used to understand an undocumented
command line application are exotic and usually require advanced debugging techniques, time spent in
the registry, lots of research online, and more than a little luck. If you seriously expect someone to use
your command line application, you must provide help.

Unlike a graphical application, you won’t need tons of text and screenshots to document most
command line applications. All you really need is a little text that’s organized in a certain manner.
Most command line applications use the same help format, which makes them easier to understand
and use. However, not all command line applications provide all the help they really need. In order
to provide your command line application with superior help, you need to consider the �ve follow-
ing elements:

�° Application description��

Application calling syntax���°

Command line switch summary and description���°

Usage examples���°

(Optional) Other elements���°

The following sections describe all these elements and help you understand why they’re important.
Of course, every command line application is different, so you’ll want to customize the suggestions
in the following sections to meet your particular needs. The point is, you must provide the user with
help of some kind.

Creating an Application Description
Many of the command line applications you see lack this essential feature. You ask for help and
the application provides you with syntax and a quick overview of the command line switches.
At the outset, you have little idea of what the application actually does and how the developer

204 �X CHAPTER 10 USING IRONPYTHON FOR ADMINISTRATION TASKS

envisioned your using it. After a little experimentation, you might still be confused and have a
damaged system as well.

An application description doesn’t have to be long. In fact, you can make it a single sentence. If you
can’t describe your command line application in a single sentence, it might actually be too big —
characteristically, command line applications are small and agile. Of course, there are exceptions
and you may very well need an entire paragraph to describe your application. The big mistake is
writing a huge tome. Most people using your application have worked with computers for a long
time, so a shorter description normally works �ne.

As a minimum, your application description should include the application name so the user can
look for additional information online. The description should tell the user what the application
does and why you created it. These three elements can �t quite easily in a single sentence as you see
in the “Showing Usage Examples” section of this chapter.

Describing the Application Calling Syntax
Applications have a calling syntax — a protocol used to interact with the application. Unfortunately,
you won’t have access to any formatting when writing your application help screen. Developers have
come up with some methods to show certain elements over the years and you should use these methods
for your command line syntax. Consider the following command line:

�B�n�6�e�e���1�;�^�a�Z�c�V�b�Z�3���P�"�H�R���P�"�h�R���P�"�9���P�"�J�P�/�1�C�V�b�Z�3�R�R�R���P�"�M���q���"�N���q���"�O���q���1�9�Z�a�i�V�3�R���P�"�4�R

Believe it or not, all these strange looking symbols do have a meaning and you need to consider
them for your application. Any item that appears in square brackets ([]), such as �P�·�H�R, is optional.
The user doesn’t need to provide it to use the application.

Anything that appears in angle brackets (<>), such as �1�;�^�a�Z�c�V�b�Z�3, is a variable. The user replaces
this value with some other value. Normally, you provide a descriptive name for the variable. For
example, when you see �1�;�^�a�Z�c�V�b�Z�3, you know that you need to provide the name of a �le. In this
case, �1�;�^�a�Z�c�V�b�Z�3 isn’t optional — the user must provide it unless asking for help. It’s understood
that requesting help, normally �·�4 or �$�4, doesn’t require any other input.

Command line switches within other command line switches are dependent on that command line
switch. For example, you can use �·�9 alone. However, if you want to use �·�J, you must also provide
�·�9. In this case, �·�J is dependent on �·�9. Notice that you can use �·�J alone or you can include a �1�C�V�b�Z�3
variable with it. When you use the �1�C�V�b�Z�3 variable, the command line switch sequence must appear
as �·�9���·�J�/�1�C�V�b�Z�3.

Sometimes a command line switch is mutually exclusive with other command line switches or even
variables. For example, the �P�·�M���q���·�N���q���·�O���q���1�9�Z�a�i�V�3�R sequence says that you can provide �·�M or
�·�N or �·�O or �1�9�Z�a�i�V�3, but you can’t provide more than one of them.

Most Windows command line applications are case insensitive. However, there are notable excep-
tions to this rule. If you �nd that you must make yo ur application case sensitive, be sure to use the
correct case for the command line syntax. For example, �·�H isn’t the same as �·�h for this application
and the command line syntax shows that. You should also note that the application is case sensitive
in other areas of your help screen because some users won’t notice the difference in case.

Understanding the Command Line �X 205

Some developers will simply use �P�D�e�i�^�d�c�h�R for the command line syntax if you
can use any of the command line switches at any time, or simply ignore them
completely. There isn’t anything wrong with this approach, especially when your
application defaults to showing the help screen when the user doesn’t provide any
command line switches. However, make absolutely certain that your application
truly doesn’t have a unique calling syntax before you use this approach.

Documenting the Command Line Switches
No matter how simple or complex the application, you need to document every command line
switch. Most application writers use anywhere from one to three sentences to document the com-
mand line switch unless it’s truly complex. The command line switch documentation should focus
on the purpose of the command line switch. Save any examples you want to provide for the usage
examples portion of the help screen.

You must document every command line switch or the user won’t know it exists. Placing alternative
command line switches together is a good idea because it reduces the complexity of the help screen.
The order in which you place the command line switches depends on the purpose and complexity of
your application. However, most developers use one of the following ordering techniques:

�°�� Alphabetical: Useful for longer lists of command line switches because alphabetical order can
make it easier to �nd a particular command line switch in the list.

���° Syntactical: Developers especially like to see the command line switches in syntactical order.
After viewing the syntax, the developer can �nd the associated command line switch descrip-
tion quickly.

���° Order of potential usage: Placing the command line switches in order of popularity means
that the user doesn’t have to search the entire list to �nd a particular command line switch
description. This approach is less useful on long or complex lists because you really don’t
know how the user will work with the application.

���° Order of required use: In some cases, an application requires that a user place the command
line switches in a particular order. For example, when creating a storyboard effect with a com-
mand line application, you want the user to know which command line switch to use �rst.

Some command line switch lists become quite long. In this case, you might want to group like com-
mand line switches together and place them in groups on the help screen. For example, you might
have a set of command line switches that affects input and another that affects output. You could
create two groups, one for each task, on your help screen to make �nding a particular command line
switch easier.

Showing Usage Examples
Most users won’t really understand your command line application unless you provide some usage
examples. A usage example should show the command line and its result — if you do this, then you
get that as output. Precisely how you put the examples together depends on your application and its

206 �X CHAPTER 10 USING IRONPYTHON FOR ADMINISTRATION TASKS

intended audience. An application designed for advanced users can probably get by with fewer examples,
while a complex application requires more examples. The usage examples should be non-trivial. You
should try to show common ways in which you expect the user to work with your application.

Putting Everything Together
Now that you have a basic understanding of the required help screen elements, it’s time to look at an
example. Listing 10-5 shows a typical �j�h�V�\�Z���� function. It displays help information to users who
need it, using simple �e�g�^�c�i���� statements.

LISTING 10�5: Creating a help screen for your application

�����8�g�Z�V�i�Z���V���j�h�V�\�Z�������[�j�c�X�i�^�d�c�#
�Y�Z�[���j�h�V�\�Z�����/
�������e�g�^�c�i���»�L�Z�a�X�d�b�Z���i�d���i�]�Z���X�d�b�b�V�c�Y���a�^�c�Z���Z�m�V�b�e�a�Z�#�¼
�������e�g�^�c�i���»�I�]�^�h���V�e�e�a�^�X�V�i�^�d�c���h�]�d�l�h���W�V�h�^�X���X�d�b�b�V�c�Y���a�^�c�Z���V�g�\�j�b�Z�c�i���g�Z�V�Y�^�c�\�#�¼
�������e�g�^�c�i���»�Q�c�J�h�V�\�Z�/�¼
�������e�g�^�c�i���»�Q�i�>�E�N���8�b�Y�A�^�c�Z�'�#�e�n���P�D�e�i�^�d�c�h�R�»
�������e�g�^�c�i���»�Q�c�D�e�i�^�d�c�h�/�¼
�������e�g�^�c�i���»�Q�i�"�9�/���E�a�V�X�Z�h���V�e�e�a�^�X�V�i�^�d�c���^�c���Y�Z�W�j�\���b�d�Y�Z�#�¼
�������e�g�^�c�i���»�Q�i�"�]���d�g���"�4���d�g���"�"�]�Z�a�e�/���9�^�h�e�a�V�n�h���i�]�^�h���]�Z�a�e���b�Z�h�h�V�\�Z�#�¼
�������e�g�^�c�i���»�Q�i�"�\�/�1�C�V�b�Z�3���d�g���"�"�<�g�Z�Z�i�/�1�C�V�b�Z�3�/���9�^�h�e�a�V�n�h���V���h�^�b�e�a�Z���\�g�Z�Z�i�^�c�\�#�¼
�������e�g�^�c�i���»�Q�i�"�h���d�g���"�"�=�Z�a�a�d�/���9�^�h�e�a�V�n�h���V���h�^�b�e�a�Z���]�Z�a�a�d���b�Z�h�h�V�\�Z�#�¼
�������e�g�^�c�i���»�Q�c�:�m�V�b�e�a�Z�h�/�¼
�������e�g�^�c�i���»�Q�i�>�E�N���8�b�Y�A�^�c�Z�'�#�e�n���"�h���d�j�i�e�j�i�h���=�Z�a�a�d���¼
�������e�g�^�c�i���»�Q�i�>�E�N���8�b�Y�A�^�c�Z�'�#�e�n���"�\�/�?�d�]�c���d�j�i�e�j�i�h���<�d�d�Y���i�d���h�Z�Z���n�d�j���?�d�]�c�¼
�������e�g�^�c�i���»�Q�i�N�d�j���X�V�c���j�h�Z���Z�^�i�]�Z�g���i�]�Z���"���d�g���$���V�h���X�d�b�b�V�c�Y���a�^�c�Z���h�l�^�i�X�]�Z�h�#�¼
�������e�g�^�c�i���»�Q�i�;�d�g���Z�m�V�b�e�a�Z�!���>�E�N���8�b�Y�A�^�c�Z�'�#�e�n���$�h���d�j�i�e�j�i�h���=�Z�a�a�d���¼

Notice the use of formatting in the code. The code places section titles at the left and an extra
space below the previous section. Section content is indented so it appears as part of the section.
Figure 10-5 shows the output from this code. Even though this help screen is quite simple, it pro-
vides everything needed for someone to use the example application to test command line switches.

Including Other Elements
Some command line application help screens become enormous and hard to use. In fact, some of
Microsoft’s own utilities have help that’s several layers deep. Just try drilling into the �C�Z�i utility
sometime and you’ll discover just how cumbersome the help can become. Of course, you do want to
document everything for the user. As an alternative, some command line application developers will
provide an overview as part of the application, and then include a URL for detailed material online.
It’s not a perfect solution because you can’t always count on the user having an Internet connection,
but it does work most of the time.

You don’t have to stop with simple information redir ection as part of your help. Some utilities include
a phone number (just in case the user really is lacking that Internet connection). E-mail addresses aren’t
unusual, and some developers get creative in providing other helpful tips. It’s also important to take
ownership of your application by including a company or developer name. If copyright is important,
then you should provide a copyright notice as well. The thing is to make it easy for someone to identify
your command line application without cluttering up th e help screens too much.

Interacting with the Environment �X 207

FIGURE 10�5: The application help screen is simple, but helpful.

To break the help screens up, you might want to include layered help. Typing �B�n�6�e�e���$�4 might display
an overview, while �B�n�6�e�e���$�B�n�H�l�^�i�X�]���$�4 provides detailed information. Microsoft uses this approach
with several of its utilities. If you use layered help, make sure you mention it on the overview help
screen, or most users will think that the overview is all they get in the way of useful information.

Special settings require a section as well. For example, �>�E�N�#�:�M�: provides access to some application
features through environment variables. These environment variables appear in a separate section of
the help screen.

Applications that could damage application data or the system as a whole in some way require
warnings. Too few command line applications provide warnings, so command line applications have
gotten a reputation for being dangerous — only experts need apply. The fact is that many of these
applications would be quite easy to use with the proper warning information. However, don’t go
too far in protecting the user by providing messages that request the user con�rm a particular task.
Using con�rmations would reduce the ability of developers to use the command line applications for
batch processing and automation needs.

Given that your application might inadvertently damage something when the user misuses it, you might
also want to include �xes and workarounds as part of your help. Unfortunately, it’s the nature of com-
mand line utilities that the actions they perform are one-way — once done, you can’t undo them.

INTERACTING WITH THE ENVIRONMENT

The application environment consists of a number of elements. Of course, you need to consider
whether the application uses a character mode interface or a graphical interface. The platform on
which the application runs is also a consideration. Depending on the application’s purpose, you may

208 �X CHAPTER 10 USING IRONPYTHON FOR ADMINISTRATION TASKS

need to consider background task management as part of the picture. Most developers understand that
these elements, and more, affect the operation of the application. However, some developers miss out
on a special environmental feature, the environment variable. Using environment variables makes it
possible to communicate settings to your application at a number of different levels in a way that com-
mand line switches can’t. In fact, you may not even realize it, but there are several different levels of
environment variables with which you can control an application, making the variables quite �exible.
The following sections describe environment variables and their use in IronPython.

Understanding Environment Variables
Environment variables are simply a kind of storage location managed by the operating system. When
you open a command prompt, you can see a list of environment variables by typing �H�Z�i and pressing
Enter. Figure 10-6 shows the environment variables on my system. The environment variables (or at
least their values) will differ on your machine, so you should take a look at them. If you want to see
the value of a particular environment variable, type �H�Z�i���K�V�g�^�V�W�a�Z�C�V�b�Z (such as �H�Z�i���J�H�:�G�C�6�B�:) and
press Enter. To remove an environment variable, simply type �H�Z�i���K�V�g�^�V�W�a�Z�C�V�b�Z�2 (with no value)
and press Enter. (Never remove environment variables you didn’t create because some of your appli-
cations could, or more likely will, stop working.)

FIGURE 10�6: Most computers have a wealth of environment variables.

Interacting with the Environment �X 209

As you can see from Figure 10-6, environment variables appear as a name/value pair. An environment
variable with a speci�c name has a certain value. Some environment variables in this list are common
to all Windows machines. For example, the system wouldn’t be able to �nd applications without the
�E�V�i�] environment variable. Environment variables such as �8�D�B�E�J�I�:�G�C�6�B�: and �J�H�:�G�C�6�B�: can prove
helpful for your applications. You can also discover facts such as the processor type and system drive
using environment variables.

It’s possible to create environment variables using a number of techniques. However, the method used
to create the environment variable determines its scope (personal or global), visibility (command prompt
only or command prompt and Windows application), and longevity (session or permanent). For exam-
ple, if you type �H�Z�i���B�n�K�V�g�2�=�Z�a�a�d (notice that there are no quotes for the value) and press Enter, you cre-
ate a personal environment variable that lasts for the current session and is visible only in the command
prompt window. You can see any environment variable by typing �:�X�]�d�����K�V�g�C�V�b�Z�� and pressing Enter.
Try it out with �B�n�K�V�g. Type �:�X�]�d�����B�n�K�V�g�� and press Enter to see the output shown in Figure 10-7.

FIGURE 10�7: Use the Echo command to see environment variable content.

The most common way to set a permanent environ-
ment variable is to click Environment Variables on
the Advanced tab of the System Properties dialog box.
You see the Environment Variables dialog box shown
in Figure 10-8. This dialog box has two environment
variable settings areas. The upper area manages per-
sonal settings that affect just one person — the current
user. The lower area manages environment variables
that affect everyone who uses the system.

To create a new environment variable, simply click
New. You see the New User Variable (shown in
Figure 10-9) or the New System Variable dialog box.
In both cases, you type an environment variable name
in the Variable Name �eld and an environment vari-
able value in the Variable Value �eld. Click OK and
you see the environment variable added to the appro-
priate list. Editing an environment variable is just as
easy. Simply highlight the environment variable you
want to change in the list and click Edit. You’ll see a
dialog box similar to the one shown in Figure 10-9
where you can change the environment variable value.
To remove an environment variable, simply highlight
its entry in the list and click Delete.

FIGURE 10�8: Personal environment variables
a�ect just one person; system environment
variables a�ect everyone.

210 �X CHAPTER 10 USING IRONPYTHON FOR ADMINISTRATION TASKS

Any changes you make to environment variables won’t show up until you close
and reopen any command prompt windows. Windows provides the current set
of environment variables to every command prompt window when it opens the
window, but it doesn’t perform updates.

The interesting thing about environment variables you set
using the Environment Variables dialog box is that they are
also available to Windows applications. You can read these
environment variables just as easily in a graphical applica-
tion as you can in a character mode application (as described
in the “Using the .NET Method” section of the chapter).

You may �nd that you want to create environment vari -
ables for just the command prompt. Of course, you can
always use the �H�Z�i command approach described earlier in this section. However, most developers
will want something a little more automated. If you n eed to set command line–only environment
variables for the entire machine, then you need to modify the �6�j�i�d�:�m�Z�X�#�C�I �le found in the
�Q�L�>�C�9�D�L�H�Q�h�n�h�i�Z�b�(�' folder of your system. Figure 10-10 shows a typical view of this �le.

FIGURE 10�10: Some people forget that AutoExec.NT contains environment variables.

FIGURE 10�9: Create an environment
variable by supplying a name/value pair.

Interacting with the Environment �X 211

Simply open the �le using a text editor, such as Notepad (don’t use WordPad), and add a �H�Z�i command
to it. Every time someone opens a command prompt, Windows reads this �le and uses the settings in it
to con�gure the command prompt window. Many people for get that the �6�j�i�d�:�m�Z�X�#�C�I �le even exists,
but it’s a valuable way to add �H�Z�i commands in certain cases.

It’s also possible to set individualized command prompt environment variables for a speci�c
application. In this case, create a batch (�#�7�6�I) �le using a text editor. Add �H�Z�i commands to it
for the application, and then add a line to start the application, such as �>�E�N���B�n�6�e�e�#�e�n. In short,
you can make environment variables appear whenever and wherever you want by simply using
the correct method to create them.

Using the Python Method
Python provides operating system–generic methods of reading and writing variables. As with
many things in IronPython, the Python techniques work great across platforms, but probably
won’t provide the greatest �exibility. The following sections describe the techniques you use to
read and set environment variables using the Python method.

Reading the Environment Variables Using Python
This example looks at a new Python module, �d�h, which contains a number of interesting classes. In
this case, you use the �Z�c�k�^�g�d�c class, which provides access to the environment variables and lets you
manipulate them in various ways, as shown in Listing 10-6.

LISTING 10�6: Displaying the environment variables using the Python method

�����>�b�e�d�g�i���i�]�Z���g�Z�f�j�^�g�Z�Y���E�n�i�]�d�c���b�d�Y�j�a�Z�h�#
�^�b�e�d�g�i���d�h

�����D�W�i�V�^�c���i�]�Z���Z�c�k�^�g�d�c�b�Z�c�i���k�V�g�^�V�W�a�Z���`�Z�n�h�#
�K�V�g�^�V�W�a�Z�h���2���d�h�#�Z�c�k�^�g�d�c�#�`�Z�n�h����

�����H�d�g�i���i�]�Z���`�Z�n�h���^�c���V�a�e�]�V�W�Z�i�^�X���d�g�Y�Z�g�#
�K�V�g�^�V�W�a�Z�h�#�h�d�g�i����

�����9�^�h�e�a�V�n���i�]�Z���`�Z�n�h���V�c�Y���i�]�Z�^�g���V�h�h�d�X�^�V�i�Z�Y���k�V�a�j�Z�h�#
�[�d�g���K�V�g���^�c���K�V�g�^�V�W�a�Z�h�/
�������e�g�^�c�i���»���(�%�h�����h�¼���������K�V�g�!�d�h�#�Z�c�k�^�g�d�c�P�K�V�g�R��

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins by importing the required modules, as normal. It then places the list of environment
variable keys, the names, in �K�V�g�^�V�W�a�Z�h using �d�h�#�Z�c�k�^�g�d�c�#�`�Z�n�h����. In most cases, you want to view
the environment variables in sorted order because there are too many of them to simply peruse a list,
so the code sorts the list using �K�V�g�^�V�W�a�Z�h�#�h�d�g�i����.

At this point, the code is ready to display the list. It uses a simple �[�d�g loop to perform the task.
Notice the use of formatting to make the output more readable. Remember that the values don’t

212 �X CHAPTER 10 USING IRONPYTHON FOR ADMINISTRATION TASKS

appear in the �K�V�g�^�V�W�a�Z�h list, so you must obtain them using �d�h�#�Z�c�k�^�g�d�c�P�K�V�g�R. Figure 10-11 shows
typical output from this example.

FIGURE 10�11: The environment variables are displayed in alphabetical order.

Setting the Environment Variables Using Python
Python makes it relatively easy to set environment variables. However, the environment variables
you create using IronPython affect only the current command prompt session and the current user.
Consequently, if you start another application in the current session (see the section “Starting Other
Command Line Applications” later in the chapter for details), it can see the environment variable,
but if you start an application in a different session or start a graphical application, the environment
variable isn’t de�ned. In addition, changes you make to existing environment variables affect only

Interacting with the Environment �X 213

the current session. Nothing is permanent. Listing 10-7 shows how to modify environment variables
using the Python method.

LISTING 10�7: Setting an environment variable using the Python meth od

�����>�b�e�d�g�i���i�]�Z���g�Z�f�j�^�g�Z�Y���E�n�i�]�d�c���b�d�Y�j�a�Z�h�#
�^�b�e�d�g�i���d�h

�����8�g�Z�V�i�Z���V���c�Z�l���Z�c�k�^�g�d�c�b�Z�c�i���k�V�g�^�V�W�a�Z�#
�d�h�#�Z�c�k�^�g�d�c�#�T�T�h�Z�i�^�i�Z�b�T�T���»�B�n�K�V�g�¼�!���»�=�Z�a�a�d�¼��

�����9�^�h�e�a�V�n���^�i�h���k�V�a�j�Z���d�c���h�X�g�Z�Z�c�#��
�e�g�^�c�i���»�B�n�K�V�g���2�¼�!���d�h�#�Z�c�k�^�g�d�c�P�»�B�n�K�V�g�¼�R

�����8�]�V�c�\�Z���i�]�Z���Z�c�k�^�g�d�c�b�Z�c�i���k�V�g�^�V�W�a�Z���V�c�Y���h�]�d�l���i�]�Z���g�Z�h�j�a�i�h�#
�d�h�#�Z�c�k�^�g�d�c�#�T�T�h�Z�i�^�i�Z�b�T�T���»�B�n�K�V�g�¼�!���»�<�d�d�Y�W�n�Z�¼����
�e�g�^�c�i���»�B�n�K�V�g���2�¼�!���d�h�#�Z�c�k�^�g�d�c�P�»�B�n�K�V�g�¼�R

�����9�Z�a�Z�i�Z���i�]�Z���k�V�g�^�V�W�a�Z�!���V�c�Y���i�]�Z�c���i�g�n���i�d���h�]�d�l���^�i�#
�i�g�n�/
�������d�h�#�Z�c�k�^�g�d�c�#�T�T�Y�Z�a�^�i�Z�b�T�T���»�B�n�K�V�g�¼��
�������e�g�^�c�i���»�B�n�K�V�g���2�¼�!���d�h�#�Z�c�k�^�g�d�c�P�»�B�n�K�V�g�¼�R
�Z�m�X�Z�e�i���@�Z�n�:�g�g�d�g���V�h�����@�Z�n�C�V�b�Z���/
�������e�g�^�c�i���»�8�V�c�Q�»�i���Y�^�h�e�a�V�n�¼�!���@�Z�n�C�V�b�Z

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

Setting and changing an environment variable use the same method, �d�h�#�Z�c�k�^�g�d�c�#�T�T�h�Z�i�^�i�Z�b�T�T����.
In both cases, you supply a name/value pair (�B�n�K�V�g/�=�Z�a�a�d). When you want to see the value of the
environment variable, you request the value by supplying the name, such as �d�h�#�Z�c�k�^�g�d�c�P�»�B�n�K�V�g�»�R
for this example.

Deleting an environment variable requires use of �d�h�#�Z�c�k�^�g�d�c�#�T�T�Y�Z�a�^�i�Z�b�T�T����. In this case, you
supply only the name of the environment variable you want to remove.

If you try to display an environment variable that doesn’t exist, the interpreter raises a �@�Z�n�:�g�g�d�g
exception. The example shows the result of trying to print �B�n�K�V�g after you remove it using
�d�h�#�Z�c�k�^�g�d�c�#�T�T�Y�Z�a�^�i�Z�b�T�T����. Figure 10-12 shows the output from this example.

FIGURE 10�12: IronPython makes it easy to set, modify, and delete environment variables for the
current session.

214 �X CHAPTER 10 USING IRONPYTHON FOR ADMINISTRATION TASKS

Using the .NET Method
Working with environment variables using the .NET method isn’t nearly as easy as working
with them using the Python method. Then again, you can make permanent environment variable
changes using .NET. In fact, .NET provides support for three levels of environment variables.

�°�� Process: Affects only the current process and any processes that the current process starts

���° User: Affects only the current user

���° Machine: Affects all users of the host system

An important difference between the Python and .NET methods is that any change you make using
the .NET method affects both command line and graphical applications. You have signi�cant control
over precisely how and where an environment variable change appears because you specify precisely
what level the environment variable should affect. The following sections provide more information
on reading and setting environment variables using the .NET method.

Reading the Environment Variables Using .NET
As previously mentioned, the .NET method is more �exible than the Python method, but also
requires a little extra work on your part. Some of the extra work comes in the form of �exibility.
The .NET method provides several ways to obtain environment variable data.

�°�� Use one of the �:�c�k�^�g�d�c�b�Z�c�i class properties to obtain a standard environment variable
value. You can �nd a list of these properties at �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$
�h�n�h�i�Z�b�#�Z�c�k�^�g�d�c�b�Z�c�i�T�e�g�d�e�Z�g�i�^�Z�h�#�V�h�e�m.

���° Check a speci�c environment variable using �<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z����.

���° Obtain all the environment variables for a particular level using �<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�h����
with an �:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�I�V�g�\�Z�i enumeration value.

���° Obtain all the environment variables regardless of level using �<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�h����.

It’s important to note that these techniques let you answer questions such as whether a particular envi-
ronment variable is a standard or custom setting. You can also determine whether the environment
variable affects the process, user, or machine as a whole. In short, you obtain more information using
the .NET method, but at the cost of additional complexity. Listing 10-8 shows how to read environ-
ment variables using each of the .NET methods.

LISTING 10�8: Displaying the environment variables using the .NET method

�����D�W�i�V�^�c���V�X�X�Z�h�h���i�d���:�c�k�^�g�d�c�b�Z�c�i���X�a�V�h�h���e�g�d�e�Z�g�i�^�Z�h�#
�[�g�d�b���H�n�h�i�Z�b���^�b�e�d�g�i���:�c�k�^�g�d�c�b�Z�c�i

�����D�W�i�V�^�c���V�a�a���d�[���i�]�Z���:�c�k�^�g�d�c�b�Z�c�i���X�a�V�h�h���b�Z�i�]�d�Y�h�#
�[�g�d�b���H�n�h�i�Z�b�#�:�c�k�^�g�d�c�b�Z�c�i���^�b�e�d�g�i����

Interacting with the Environment �X 215

�����>�b�e�d�g�i���i�]�Z���:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�I�V�g�\�Z�i���Z�c�j�b�Z�g�V�i�^�d�c�#
�[�g�d�b���H�n�h�i�Z�b���^�b�e�d�g�i���:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�I�V�g�\�Z�i

�����9�^�h�e�a�V�n���h�e�Z�X�^�[�^�X�!���h�i�V�c�Y�V�g�Y���Z�c�k�^�g�d�c�b�Z�c�i���k�V�g�^�V�W�a�Z�h�#��
�e�g�^�c�i���»�H�i�V�c�Y�V�g�Y���:�c�k�^�g�d�c�b�Z�c�i���K�V�g�^�V�W�a�Z�h�/�¼��
�e�g�^�c�i���»�Q�i�8�j�g�g�Z�c�i���9�^�g�Z�X�i�d�g�n�/�¼�!���:�c�k�^�g�d�c�b�Z�c�i�#�8�j�g�g�Z�c�i�9�^�g�Z�X�i�d�g�n
�e�g�^�c�i���»�Q�i�D�H���K�Z�g�h�^�d�c�/�¼�!���:�c�k�^�g�d�c�b�Z�c�i�#�D�H�K�Z�g�h�^�d�c��
�e�g�^�c�i���»�Q�i�J�h�Z�g���C�V�b�Z�/�¼�!���:�c�k�^�g�d�c�b�Z�c�i�#�J�h�Z�g�C�V�b�Z

�����9�^�h�e�a�V�n���V�c�n���h�^�c�\�a�Z���Z�c�k�^�g�d�c�b�Z�c�i���k�V�g�^�V�W�a�Z�#��
�e�g�^�c�i���»�Q�c�H�e�Z�X�^�[�^�X���:�c�k�^�g�d�c�b�Z�c�i���K�V�g�^�V�W�a�Z�h�/�¼��
�e�g�^�c�i���»�Q�i�>�g�d�c�E�n�i�]�d�c���E�V�i�]�/�¼�!���<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���»�>�g�d�c�E�n�i�]�d�c�E�V�i�]�¼��
�e�g�^�c�i���»�Q�i�H�Z�h�h�^�d�c���C�V�b�Z�/�¼�!���<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���»�H�Z�h�h�^�d�c�C�V�b�Z�¼��

�����9�^�h�e�a�V�n���V���e�V�g�i�^�X�j�a�V�g���`�^�c�Y���d�[���Z�c�k�^�g�d�c�b�Z�c�i���k�V�g�^�V�W�a�Z�#��
�e�g�^�c�i���»�Q�c�J�h�Z�g���A�Z�k�Z�a���:�c�k�^�g�d�c�b�Z�c�i���K�V�g�^�V�W�a�Z�h�/�¼��
�[�d�g���K�V�g���^�c���<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�h���:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�I�V�g�\�Z�i�#�J�h�Z�g���/
�������e�g�^�c�i���»�Q�i���h�/�����h�¼���������K�V�g�#�@�Z�n�!���K�V�g�#�K�V�a�j�Z��

�����9�^�h�e�a�V�n���V�a�a���d�[���i�]�Z���Z�c�k�^�g�d�c�b�Z�c�i���k�V�g�^�V�W�a�Z�h���^�c���V�a�e�]�V�W�Z�i�^�X�V�a���d�g�Y�Z�g�#
�e�g�^�c�i���»�Q�c�6�a�a���d�[���i�]�Z���Z�c�k�^�g�d�c�b�Z�c�i���k�V�g�^�V�W�a�Z�h�#�¼

�����8�g�Z�V�i�Z���V���a�^�h�i���i�d���]�d�a�Y���i�]�Z���k�V�g�^�V�W�a�Z���c�V�b�Z�h�#
�@�Z�n�h���2���<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�h�����#�@�Z�n�h
�K�V�g�^�V�W�a�Z�h���2���P�R��
�[�d�g���>�i�Z�b���^�c���@�Z�n�h�/
�������K�V�g�^�V�W�a�Z�h�#�6�Y�Y���>�i�Z�b��

�����H�d�g�i���i�]�Z���g�Z�h�j�a�i�^�c�\���a�^�h�i�#
�K�V�g�^�V�W�a�Z�h�#�h�d�g�i����

�����9�^�h�e�a�V�n���i�]�Z���g�Z�h�j�a�i�#
�[�d�g���K�V�g���^�c���K�V�g�^�V�W�a�Z�h�/
�������e�g�^�c�i���»�Q�i���h�/�����h�¼���������K�V�g�!���<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���K�V�g����

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins by importing some .NET assemblies. Notice that the example reduces clutter by
importing only what the code actually needs.

As mentioned earlier, you can obtain standard environment variable values by using the correct
property value from the �H�n�h�i�Z�b�#�:�c�k�^�g�d�c�b�Z�c�i class. In this case, the code retrieves the current
directory, operating system version, and the user name, as shown in Figure 10-13.

The next code segment in Listing 10-8 shows how to obtain a single environment variable. All you
need is the �<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���� with a variable name, such as, �>�g�d�c�E�n�i�]�d�c�E�V�i�].

If you want to work with the environment variables f ound at a particular level, you use
�<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�h���� with an �:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�I�V�g�\�Z�i enumeration value, as
shown in the next code segment in Listing 10-8. Unless you create a custom environment variable,
you won’t see any output at the �:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�I�V�g�\�Z�i�#�E�g�d�X�Z�h�h level.

216 �X CHAPTER 10 USING IRONPYTHON FOR ADMINISTRATION TASKS

You might remember from Listing 10-6 the ease of sorting the environment variables when
using the Python method. Sorting the environment variables when using the .NET method isn’t
nearly as easy because the .NET method relies on a �H�n�h�i�Z�b�#�8�d�a�a�Z�X�i�^�d�c�h�#�=�V�h�]�i�V�W�a�Z object
for the output of the �<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�h���� method call. The easiest method to sort
the environment variables is to obtain a list of the keys using �<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�h������
�#�@�Z�n�h, the �@�Z�n�h object; place them in a list object, �K�V�g�^�V�W�a�Z�h; and then sort as normal using
�K�V�g�^�V�W�a�Z�h�#�h�d�g�i����.

FIGURE 10�13: The .NET method provides multiple ways to obtain environment variables.

Now that the code has a sorted list, it uses a �[�d�g loop to enumerate each environment variable using
�<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z����. Figure 10-13 does show the entire list, but when you try the example,
you’ll see that the list is indeed sorted. There are de�nitely times where .NET objects will cause
problems for your IronPython application and this is one of them.

Setting the Environment Variables Using .NET
The .NET method provides some additional setting capabilities when compared to the Python
method. For one thing, you can make the environment variable settings permanent. The reason for
this difference is that the .NET method lets you write the settings directly to the registry. You won’t
manipulate the registry directly, but the writing does take place in the background, just as it would
if you used the Environment Variables dialog box.

You do have some limitations. For example, you can’t change an Environment class property
value. This restriction makes sense because you don’t want to change an environment variable
that a number of applications might need. Listing 10-9 shows how to set environment variables
as needed.

Interacting with the Environment �X 217

LISTING 10�9: Setting an environment variable using the .NET method

�����D�W�i�V�^�c���V�X�X�Z�h�h���i�d���:�c�k�^�g�d�c�b�Z�c�i���X�a�V�h�h���e�g�d�e�Z�g�i�^�Z�h�#
�[�g�d�b���H�n�h�i�Z�b���^�b�e�d�g�i���:�c�k�^�g�d�c�b�Z�c�i

�����D�W�i�V�^�c���V�a�a���d�[���i�]�Z���:�c�k�^�g�d�c�b�Z�c�i���X�a�V�h�h���b�Z�i�]�d�Y�h�#
�[�g�d�b���H�n�h�i�Z�b�#�:�c�k�^�g�d�c�b�Z�c�i���^�b�e�d�g�i����

�����>�b�e�d�g�i���i�]�Z���:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�I�V�g�\�Z�i���Z�c�j�b�Z�g�V�i�^�d�c�#
�[�g�d�b���H�n�h�i�Z�b���^�b�e�d�g�i���:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�I�V�g�\�Z�i

�����8�g�Z�V�i�Z���V���i�Z�b�e�d�g�V�g�n���e�g�d�X�Z�h�h���Z�c�k�^�g�d�c�b�Z�c�i���k�V�g�^�V�W�a�Z�#
�H�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���»�B�n�K�V�g�¼�!���»�=�Z�a�a�d�¼����
�e�g�^�c�i���»�B�n�K�V�g���2�¼�!���<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���»�B�n�K�V�g�¼��

�����8�g�Z�V�i�Z���V���e�Z�g�b�V�c�Z�c�i���j�h�Z�g���Z�c�k�^�g�d�c�b�Z�c�i���k�V�g�^�V�W�a�Z�#
�H�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���»�K�V�g�'�¼�!���»�<�d�d�Y�W�n�Z�¼�!���:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�I�V�g�\�Z�i�#�J�h�Z�g��
�e�g�^�c�i���»�K�V�g�'���2�¼�!���<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���»�K�V�g�'�¼����
�e�g�^�c�i���»�K�V�g�'���2�¼�!���<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���»�K�V�g�'�¼�!���:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�I�V�g�\�Z�i�#�J�h�Z�g��
�g�V�l�T�^�c�e�j�i���»�Q�c�D�e�Z�c���i�]�Z���:�c�k�^�g�d�c�b�Z�c�i���K�V�g�^�V�W�a�Z�h���Y�^�V�a�d�\���W�d�m�#�#�#�¼��

�����9�Z�a�Z�i�Z���i�]�Z���i�Z�b�e�d�g�V�g�n���V�c�Y���e�Z�g�b�V�c�Z�c�i���k�V�g�^�V�W�a�Z�h�#��
�e�g�^�c�i���»�Q�c�9�Z�a�Z�i�^�c�\���i�]�Z���k�V�g�^�V�W�a�Z�h�#�#�#�¼
�H�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���»�B�n�K�V�g�¼�!���C�d�c�Z��
�H�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���»�K�V�g�'�¼�!���C�d�c�Z�!���:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�I�V�g�\�Z�i�#�J�h�Z�g����
�e�g�^�c�i���»�B�n�K�V�g���2�¼�!���<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���»�B�n�K�V�g�¼����
�e�g�^�c�i���»�K�V�g�'���2�¼�!���<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���»�K�V�g�'�¼�!���:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�I�V�g�\�Z�i�#�J�h�Z�g��

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The example begins with the usual assembly imports. It then creates a new environment variable
using the �H�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���� method. If you call �H�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���� without
specifying a particular level, then the .NET Framework creates a temporary process environment
variable that only lasts for the current session.

The next step creates a permanent user environment variable. In this case, you must supply an
�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�I�V�g�\�Z�i enumeration value as the third argument. This portion of the example
also demonstrates something interesting. If you create a new permanent environment variable in
a process, the .NET Framework won’t update that process (or any other process for that matter).
Consequently, the �rst call to �<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���� fails, as shown in Figure 10-14.

To see the environment variable, you must either restart the process or you must call
�<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���� with an �:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�I�V�g�\�Z�i enumeration value. As a result,
the second call succeeds. At this point, the example pauses so you can open the Environment Variables
dialog box and see for yourself that the environment variable actually does exist as a permanent value.

Deleting an environment variable is as simple as setting it to �C�d�c�Z using the
�H�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z���� method. However, you need to delete permanent environment variables
by including the �:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�I�V�g�\�Z�i enumeration value, or the .NET Framework won’t
delete it. Unlike the Python method, you won’t get an error when checking for environment variables
that don’t exist using the .NET method. Instead, you’ll get a value of �C�d�c�Z, as shown in Figure 10-14.

218 �X CHAPTER 10 USING IRONPYTHON FOR ADMINISTRATION TASKS

FIGURE 10�14: You can create permanent environment variables using the .NET method.

Environment Variable Considerations
Some developers don’t think too hard about how the changes they make to the environment will
affect other applications. One application, which will remain nameless, actually changed the �e�V�i�]
environment variable and caused other applications to stop working. Users won’t tolerate such
behavior because it impedes their ability to perform useful work. In addition, companies lose a lot
of money when administrators have to devote time to �xing such problems.

The standard rules for using environment variables is that you should only read environment
variables created by others. You may �nd a situation where you need to change a non-standard
environment variable, but proceed with extreme caution. It’s never allowed to change a standard
environment variable, such as �J�H�:�G�C�6�B�:, created by the operating system because doing so can
cause a host of problems.

If you want to have an environment variable you can change, create a custom environment variable
speci�cally for your application. Even if you have to copy the value of another environment variable
into this custom environment variable, you can be sure you won’t cause problems for other applica-
tions if you always use custom environment variables for your application.

STARTING OTHER COMMAND LINE APPLICATIONS

You can start other applications using IronPython. In fact, Python provides a number of tech-
niques for performing this task. If you’ve worked with a .NET language for a while, you know
that the .NET Framework also provides several methods of starting applications. However, most
developers want to do something simple with the applications they start as subprocesses. For
example, you might want to get the operating system to perform a task that IronPython won’t
perform for you directly.

IronPython sports a plethora of methods to execute external applications. However, the simplest
of these methods is �d�h�#�e�d�e�Z�c����. Using this method, you can quickly open an external application,
obtain any output it provides, and work with that outp ut in your application. These three steps are
all that many developers need. Listing 10-10 shows how to use �d�h�#�e�d�e�Z�c���� to execute an external
application.

Starting Other Command Line Applications �X 219

LISTING 10�10: Starting applications directly in IronPython

�����>�b�e�d�g�i���i�]�Z���g�Z�f�j�^�g�Z�Y���b�d�Y�j�a�Z�#
�^�b�e�d�g�i���d�h

�����D�e�Z�c���V���X�d�e�n���d�[���C�d�i�Z�e�V�Y�#
�d�h�#�e�d�e�Z�c���»�C�d�i�Z�e�V�Y���8�/�$�I�Z�h�i�#�I�M�I�¼��

�����J�h�Z���i�]�Z���9�^�g���X�d�b�b�V�c�Y���i�d���\�Z�i���V���Y�^�g�Z�X�i�d�g�n���a�^�h�i�^�c�\���V�c�Y���Y�^�h�e�a�V�n���^�i�#
�A�^�h�i�^�c�\���2���d�h�#�e�d�e�Z�c���»�9�^�g���8�/�Q�Q���$�D�<���$�D�C�¼����
�[�d�g���;�^�a�Z���^�c���A�^�h�i�^�c�\�#�g�Z�V�Y�a�^�c�Z�h�����/
���������e�g�^�c�i���;�^�a�Z�!

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

This example begins by opening a copy of Notepad with �8�/�$�I�Z�h�i�#�I�M�I. Notice that the command
uses a slash, not a backslash. In many cases, you can use a standard slash to avoid having to use a
double backslash (\\) in your command. When this command executes, you see a copy of Notepad
open with the �le loaded. Of course, you need to create �8�/�$�I�Z�h�i�#�I�M�I before you execute the example
to actually see the �le loaded into Notepad.

In some cases, you need to read the output from a command after it executes. For example, you
might want to obtain a directory listing using parti cular command line switches. The second part
of the example shows how to perform this task. When the �9�^�g command returns, Listing 10-10 has
a directory listing in it similar to the one shown in Figure 10-15. In this case, you must provide the
double backslash because, for some reason, �9�^�g won’t work with the / when called from IronPython.

FIGURE 10�15: Use the results of executing a command to display results in IronPython.

220 �X CHAPTER 10 USING IRONPYTHON FOR ADMINISTRATION TASKS

If you really need high-powered application management when working with
IronPython, then you want to use the �h�j�W�e�g�d�X�Z�h�h module, which contains a
single method, �E�d�e�Z�c����. This approach is for those few who really need extreme
control over the applications they execute. You can read about this module at
�]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�h�j�W�e�g�d�X�Z�h�h�#�]�i�b�a. The �d�h module also has
a number of �e�d�e�Z�c���� versions, ranging from �e�d�e�Z�c���� to �e�d�e�Z�c�)����. Generally, if
�e�d�e�Z�c���� won’t meet your needs, it’s probably a good idea to use the �h�j�W�e�g�d�X�Z�h�h��
�#�E�d�e�Z�c���� method because it provides better support for advanced functionality.

PROVIDING STATUS INFORMATION

Your administrative application often performs tasks without much user interaction, which means that
the user might not even be aware of errors that occur. Consequently, you need to provide some means
of reporting status information. The following section s provide a quick overview of some techniques
you can use to report status information to the user.

Reporting Directly to the User
The time honored method of reporting status information to the user is to display it directly onscreen.
In fact, most of the applications in this book use this approach. If you know that the user will be watch-
ing the display or at least checking it from time-to-time, it’s probably a good idea to provide direct
information. Make sure you provide all the details, including error numbers and strings as appropriate.
Depending on the skill of the user, you’ll want to provide messages that are both friendly and easy to
understand. Otherwise, less-skilled users are apt to do something rash because they don’t understand
what the message is telling them.

If you know that less skilled users will rely on your application, you should provide a second-
ary method of reporting status information such as an event log. Log �les are also helpful, but
can prove troublesome for the administrator to access from a remote location. The Microsoft
Management Console (MMC) provides easy methods for administrators to gain access to remote
event logs as necessary.

You can probably provide a remote paging system or similar contact techniques for the administra-
tor as well. However, such methods are somewhat complex and not directly supported by IronPython
through the Python libraries. The implementation of these techniques is outside the scope of this book.
However, you’ll probably want to use a .NET Framework methodology, such as the one described at
�]�i�i�e�/�$�$�X�d�Y�Z�#�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�h�Z�c�Y�Z�b�V�^�a, to perform this task.

Creating Log Files
At one time, administrators relied on text log �les to store information from applications. However,
most applications today output complex information that’s hard to read w ithin a text �le. If you plan
to create log �les for your application, you probably want to store them in XML format to make them
easy to ready and easy to import into a database. Chapter 13 describes how to work with XML �les.

Providing Status Information �X 221

Using the Event Log
Many applications rely on the event log as a means to output data to the administrator. Of all of the
methods that Microsoft has created for outputting error and status information, the event log has
been around the longest and is the most successful. Fortunately, for the IronPython developer, using
the event log is extremely easy and it’s the method that you should use most often. Listing 10-11
shows just how easy it is to write an event log entry.

LISTING 10�11: Writing an event log entry

�����>�b�e�d�g�i���i�]�Z���g�Z�f�j�^�g�Z�Y���V�h�h�Z�b�W�a�^�Z�h�#
�[�g�d�b���H�n�h�i�Z�b�#�9�^�V�\�c�d�h�i�^�X�h���^�b�e�d�g�i���:�k�Z�c�i�A�d�\�!���:�k�Z�c�i�A�d�\�:�c�i�g�n�I�n�e�Z

�����8�g�Z�V�i�Z���i�]�Z���Z�k�Z�c�i���a�d�\���Z�c�i�g�n�#
�I�]�^�h�:�c�i�g�n���2���:�k�Z�c�i�A�d�\���»�6�e�e�a�^�X�V�i�^�d�c�¼�!���»�B�V�^�c�¼�!���»�H�V�b�e�a�Z�6�e�e�¼��

�����L�g�^�i�Z���Y�V�i�V���i�d���i�]�Z���Z�c�i�g�n�#
�I�]�^�h�:�c�i�g�n�#�L�g�^�i�Z�:�c�i�g�n���»�I�]�^�h���^�h���V���i�Z�h�i���¼�!���:�k�Z�c�i�A�d�\�:�c�i�g�n�I�n�e�Z�#�>�c�[�d�g�b�V�i�^�d�c��

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�:�k�Z�c�i���a�d�\���Z�c�i�g�n���l�g�^�i�i�Z�c�#�#�#�¼��

The �:�k�Z�c�i�A�d�\���� constructor accepts a number of different inputs. The form shown in the example
de�nes the log name, machine name, and the application name. In most cases, this is all the infor-
mation you need to start writing event log entries.

After you create �I�]�^�h�:�c�i�g�n, you can use it to begin writing event log entries as needed using the
�L�g�^�i�Z�:�c�i�g�n���� method. The �L�g�^�i�Z�:�c�i�g�n���� is overloaded to accept a number of information for-
mats — the example shows what you’ll commonly use for simple entries. You can see other forms
of the �L�g�^�i�Z�:�c�i�g�n���� method at �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$�h�n�h�i�Z�b�#�Y�^�V�\�c�d�h�i�^�X�h��
�#�Z�k�Z�c�i�a�d�\�#�l�g�^�i�Z�Z�c�i�g�n�#�V�h�e�m.

In this case, the �L�g�^�i�Z�:�c�i�g�n���� provides a message and de�nes the kind of event log entry to create.
You can also create warning, error, success audit, and failure audit messages. Figure 10-16 shows
the results of running this example.

FIGURE 10�16: The example outputs data to the event log.

222 �X CHAPTER 10 USING IRONPYTHON FOR ADMINISTRATION TASKS

USING IRONPYTHON CONSTRUCTIVELY

This chapter has provided you with the basic information required to write a good command line
application that an administrator (or anyone else for that matter) can use to work at the command
line. The basic idea you should take away from this chapter is that while command line applications
are normally more dif�cult to work with, they’re also much more �exible, faster, and more adaptable
to automation than graphical applications are. In short, you won’t write command line applications
for the novice user — you write them for an experienced user who is normally a developer, adminis-
trator, or someone else who needs to perform low-level tasks.

It’s amazing to think that some developers don’t even have a strong grasp of the command line any
longer. If you haven’t done so already, take some time to discover the command line. Work with
some applications that look interesting. You can �nd a basic reference of command line utilities at
�]�i�i�e�/�$�$�l�l�l�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�g�Z�h�d�j�g�X�Z�h�$�Y�d�X�j�b�Z�c�i�V�i�^�d�c�$�l�^�c�Y�d�l�h�$�m�e�$�V�a�a�$�e�g�d�Y�Y�d�X�h�$�Z�c�"�j�h�$
�c�i�X�b�Y�h�#�b�h�e�m, but Microsoft and other vendors provide a wealth of other utilities for you t o use. My
book, Administering Windows Server 2008 Server Core (Sybex, 2008), provides a complete com-
mand line reference and documents a few of those undocumented utilities as well. Check out the
help for each of the utilities (normally you use the �$�4 command line switch) to discover differences
in command line utility design that you can use when creating your own applications.

If you’re really interested in the command line, consider getting a book on command utilities. The
help provided with command line applications, especially utilities and commands, is notoriously
poor. Besides discovering an entirely different side of Windows, these utilities help you discover
what works, and what doesn’t, when creating utilities of your own. Book authors often make you
aware of utility and command problems that you want to �x in your own applications.

Chapter 11 helps you discover the ASP.NET application in IronPython. You might be amazed
at how simple ASP.NET application development can be in IronPython. In fact, you’ll learn that
IronPython has certain advantages when compared to other languages.

Developing ASP.NET
Applications

WHAT’S IN THIS CHAPTER?

�° Discovering and overcoming Web Application compatibility issues��

Downloading and installing ASP.NET dynamic language support���°

Developing a simple Web site���°

Using IronPython to add content to a basic Web site���°

Chapter 8 introduces the idea of building Windows Forms applications using IronPython. In
that chapter, you discovered you can create a Windows Forms application of any complexity
using IronPython as long as you understand what the Visual Studio IDE is doing in the back-
ground for you. It shouldn’t be too surprising, then , that you can also build Webforms applica-
tions using ASP.NET. Again, you need to consider what is happening in the background when
you create a Webform using another language such as C# or Visual Basic.NET.

Unlike Windows Forms applications, a Webforms application relies on a server such as Internet
Information Server (IIS) to execute. Using IIS adds another layer of complexity to the application
development process. Unfortunately, Microsoft didn’t have IronPython in mind when it built IIS,
so there are some compatibility issues to consider when using IronPython to build Web applica-
tions. Some of these problems you can overcome by installing dynamic language support (the
process is discussed later in this chapter), but other issues will remain a problem and you need to
know how to overcome them.

One of the best kept secrets of the .NET Framework is that it provides a miniature Web server
you can use for testing purposes. In fact, Visual Studio calls on this Web server every time you
test your Webforms applications. Fortunately, you can access this Web server from the command
line and use it to work with your IronPython Web app lications as well. This chapter demonstrates

11

224 �X CHAPTER 11 DEVELOPING ASP.NET APPLICATIONS

how to use the WebDev.WebServer utility to test your application quickly, even if you don’t have IIS
installed on your machine. Using WebDev.WebServer isn’t only a real time saver, but it makes your sys-
tem considerably more secure as well, so it’s a good idea to work with this utility whenever you can.

CONSIDERING IRONPYTHON WEB APPLICATION COMPATIBILITY

IronPython (and Python for that matter) have huge potential for making Web sites signi�-
cantly easier to build and manage. In fact, there are a lot of options for using Python (and
IronPython) to perform Web development tasks that you can see at �]�i�i�e�/�$�$�l�^�`�^�#�e�n�i�]�d�c�#�d�g�\�$
�b�d�^�c�$�L�Z�W�E�g�d�\�g�V�b�b�^�c�\ and �]�i�i�e�/�$�$�l�l�l�#�[�g�Z�Y�h�]�V�X�`�#�X�d�b�$�Y�d�X�h�$�e�n�i�]�d�c�l�Z�W�#�]�i�b�a. The prob-
lem with IronPython is that it can’t use the C/C++ libraries used by Python, which means that
some of these solutions won’t work. For example, it’s unlikely that you could use IronPython in
a Common Gateway Interface (CGI) application because CGI relies on modules written in C/
C++. Consequently, the �rst rule for Web development with IronPython is to make sure that
IronPython can actually interact with the desired modules.

Unfortunately, IronPython isn’t integrated into Visu al Studio. Because Visual Studio relies on some level
of integration to provide full Web development support, you’ll almost certainly �nd that some projects
are out of reach. It’s not that you can’t create them using IronPython; it’s that the process would be
so horribly time consuming and error prone that using another language would be a better idea. You
do have full .NET capability when working with IronPy thon, as demonstrated by the example in this
chapter. All you really need is to add Dynamic Language Runtime (DLR) support to the picture and
things will work out just �ne.

The picture isn’t all gloom. IronPython actually pro ves to be a good development language for
some tasks. As you progress through this chapter, you’ll �nd that IronPython actually makes code
behind tasks exceptionally easy. It’s conceivable that you can build and test simple Web projects
using IronPython considerably faster than using another language such as C# or Visual Basic.NET.

It’s important to remember that you don’t have to wo rk with IronPython alone. Your Web appli -
cation can include other technologies, such as Silverlight. You can also rely on other languages,
such as C# or Visual Basic.NET, to �ll in the gaps in IronPython coverage. Having another lan-
guage at your disposal is all about �exibility, and I ronPython is a great add-on language for any
Web application project.

OBTAINING ASP.NET DYNAMIC LANGUAGE SUPPORT

Microsoft built ASP.NET with extensibility in mind, b ut the native support tends to focus more on
static languages such as Visual Basic.NET and C#, rather than dynamic languages such as IronPython.
The Dynamic Language Runtime (DLR) is an add-on for ASP.NET that makes it possible to use lan-
guages, such as IronPython, that make typing decisions at run time, rather than compile time. You
must download and install this support before you can use IronPython to create a Web application.
The following sections describe DLR in more detail.

Obtaining ASP.NET Dynamic Language Support �X 225

DLR Limitations
The DLR is currently a work in progress. The overall feel is of an alpha product that shows promise,
but still has more than a few warts. In addition, the product currently lacks these features (in order
of their importance to you as a developer):

�°�� IntelliSense: Most developers depend on IntelliSense to provide clues as to what works and
what doesn’t — in essence, what to write next. Without IntelliSense support, most developers
�nd themselves peaking at the documentation and spending hours being frustrated with the
development environment. Because a default relies so heavily on IntelliSense during the entire
development process, its lack is keenly felt. Let’s hope that Microsoft will choose to add this
feature sooner rather than later.

���° Limited designer support: If you worked through the examples in Chapter 8, you probably
have a good idea of why designer support is so important. Sure, you can create a perfectly
usable interface without a designer, but doing so becomes time consuming and many devel-
opers give up before they get their user interface completely right. The better the designer
support, the faster you can work.

���° Project templates: The lack of templates isn’t anything new. You’ve created examples
throughout this book without them, so not having them now isn’t that big a deal. However,
it will be nice to have the convenience of project templates when Microsoft creates them.

���° ASP.NET Model-View-Controller (MVC) pattern: MVC is a development pattern that
Microsoft is pushing very hard because it provides better control over the development pro-
cess. You can learn more about ASP.NET MVC at �]�i�i�e�/�$�$�l�l�l�#�V�h�e�#�c�Z�i�$�b�k�X�$. Microsoft
eventually plans to add MVC to DLR by extending MVC for IronRuby (see �]�i�i�e�/�$�$
�\�^�i�]�j�W�#�X�d�b�$�_�h�X�]�Z�b�Z�c�i�^�$�^�g�d�c�g�j�W�n�b�k�X for additional details).

���° Language Services Support: A new language feature that Microsoft plans to provide some-
time in the future. Details about this feature are unavailable as of this writing, but it’s likely
that Language Services Support will somehow make DLR more �exible and able to support a
myriad of languages.

If you read the information at �]�i�i�e�/�$�$�l�l�l�#�V�h�e�#�c�Z�i�$�9�n�c�V�b�^�X�A�V�c�\�j�V�\�Z�h�$
carefully, you notice that it contains a wealth of caveats. The DLR is essen-
tially an alpha version of a product that may not even appear as part of ASP
.NET. Consequently, you need to use DLR to see what’s possible, rather than
as a production tool for needs you have today. Anything you create using DLR
today is likely to require updates and changes tomorrow (assuming you can
use DLR at all). The lack of solid DLR commitment by Microsoft is one rea-
son this chapter provides an overview of ASP.NET application development,
rather than in-depth information.

226 �X CHAPTER 11 DEVELOPING ASP.NET APPLICATIONS

Getting DLR
Before you can use DLR, you must download and install it. The �les you need for the installation
appear at �]�i�i�e�/�$�$�V�h�e�c�Z�i�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$�G�Z�a�Z�V�h�Z�$�E�g�d�_�Z�X�i�G�Z�a�Z�V�h�Z�h�#�V�h�e�m�4�G�Z�a�Z�V�h�Z�>�Y�2�&�,�+�&�(.
Download both the documentation and binaries �les so that you have a complete setup. The docu-
mentation �le is very small, so you might not think you even received the download at �rst.

The �les are simple ZIP �les, so you can extract them to your root directory. The examples in this
chapter use a source folder of �8�/�Q�^�g�d�c�e�n�i�]�d�c�"�'�#�+�"�W�Z�i�V�&�"�V�h�e�c�Z�i�"�'�%�%�.�%�* for the DLR-speci�c
examples. You need to change the path in the examples to match the location you used to extract
the �les on your machine.

The �^�g�d�c�e�n�i�]�d�c�"�'�#�+�"�W�Z�i�V�&�"�V�h�e�c�Z�i�"�'�%�%�.�%�*�#�O�>�E �le contains two folders: �W�^�c and �Z�m�V�b�e�a�Z�h.
The �W�^�c folder contains a complete set of IronPython �les, including the �les required to make an
IronPython script work as an ASP.NET application (you can read more about these �les in the section
“Creating a Web Site” later in this chapter). The �Z�m�V�b�e�a�Z�h folder contains two examples that you
work with in the next section, “Using the Sample Applications.”

Using the Sample Applications
The �Q�^�g�d�c�e�n�i�]�d�c�"�'�#�+�"�W�Z�i�V�&�"�V�h�e�c�Z�i�"�'�%�%�.�%�*�Q�Z�m�V�b�e�a�Z�h�Q folder contains two example applica-
tions. You should run at least one of these examples to ensure you have a good installation (simple
as it is, sometimes there’s a con�guration on your machine that prevents the examples from work-
ing as intended). To start as simply as possible, use the following steps to run the basic Hello Web
forms example:

1. Open a command prompt. It doesn’t have to be a VS2010 command prompt — any com-
mand prompt will do. If you’re using Vista or above, make sure you open the command
prompt with administrator rights by right-clicking the Command Prompt icon in the Start
menu and choosing Run As Administrator from the context menu.

2. Type �8�9���Q�L�>�C�9�D�L�H�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�;�g�V�b�Z�l�d�g�`�Q�k�'�#�%�#�*�%�,�'�, and press Enter to change
directories to the .NET Framework 2.0 folder on your system. If you don’t have the .NET
Framework 2.0 installed on your system, then type �8�9���Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�8�d�b�b�d�c���;�^�a�Z�h�Q
�B�^�X�g�d�h�d�[�i���H�]�V�g�Z�Y�Q�9�Z�k�H�Z�g�k�Z�g�Q�&�%�#�%�Q and press Enter to gain access to the ASP.NET
Development Server folder on your system.

3. Type �L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g���$�e�d�g�i�/�-�*���$�e�V�i�]�/�8�/�Q�^�g�d�c�e�n�i�]�d�c�"�'�#�+�"�W�Z�i�V�&�"�V�h�e�c�Z�i�"�'�%�%�.�%�*�Q
�Z�m�V�b�e�a�Z�h�Q�]�Z�a�a�d�"�l�Z�W�[�d�g�b�h and press Enter (change your path information if you need
to do so). You may need to type �L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g�'�% if you’re using an alternate folder
location. This action will start the ASP.NET Development Server on port 85. You’ll see an
ASP.NET Development Server icon appear in the Noti�cation Area. (Don’t worry about the
details of the ASP.NET Development Server for now — they appear in the section “Starting
the Visual Studio Built-In Web Server” later in this chapter.)

4. Right-click the ASP.NET Development Server icon and choose Open in Web Browser from
the context menu. Your Web browser should open up and you should see a simple Web page
like the one shown in Figure 11-1.

Obtaining ASP.NET Dynamic Language Support �X 227

FIGURE 11�1: This simple Web page relies on IronPython for support.

5. Test the Web page to see if it works. Type your name in the Enter Your Name �eld and
click Submit. You should see your name appear in place of the Your Name Here label
shown in Figure 11-1. It’s a really simple example, but it will tell you whether you‘re get-
ting the right results.

6. Right-click the ASP.NET Development Server icon and choose Stop from the context menu.
The server is no longer available.

The DLR package includes a second example. To use it, simply type �L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g���$�e�d�g�i�/�-�*���$��
�e�V�i�]�/�8�/�Q�^�g�d�c�e�n�i�]�d�c�"�'�#�+�"�W�Z�i�V�&�"�V�h�e�c�Z�i�"�'�%�%�.�%�*�Q�Z�m�V�b�e�a�Z�h�Q�V�a�W�j�b�"�]�V�c�Y�a�Z�g and press Enter at
the command prompt (again, make sure you use a path that matches your machine setup). This
example is a little more complicated. When you initially display the browser, you see a list of �le-
names, which isn’t particularly helpful. Click the �V�a�W�j�b�"�^�e�n�#�V�h�e�m entry and wait a few seconds.
Eventually, you’ll see the Test icon shown in Figure 11-2.

FIGURE 11�2: The second example is a little more interesting — at least it has graphics.

Click the Test icon and you’ll see more graphics. You can click the La Flore icon to see some �owers,
or click one of the scenic images, as shown in Figure 11-3. Spend a bit of time with this application and
you’ll �nd that it really is pretty interesting. Now , consider that this application is written in IronPython.
Even though DLR isn’t a fully supported technology yet, it does have some amazing capabilities.

228 �X CHAPTER 11 DEVELOPING ASP.NET APPLICATIONS

FIGURE 11�3: Drill down into the second example and you start to see some complexity.

CREATING A WEB SITE

You might think that creating an IronPython Web site is going to be complex at �rst — especially
with a lack of IDE support. However, an IronPython W eb site doesn’t really contain many parts that
you have to worry about. A basic Web site starts with the root folder, which contains three items:

�°�� An Active Server Page Framework (�#�6�H�E�M) �le containing the user interface

���° The code behind �le for the �#�6�H�E�M �le containing IronPython code

���° The �L�Z�W�#�8�D�C�;�>�< �le that contains all of the required con�guration entries (such as the loca-
tion of the special binaries used to interpret the IronPython script)

In addition to these �les, you need a �W�^�c folder that contains the executables for working with
IronPython. These �les won’t vary between projects, so you may as well copy the �W�^�c folder
whenever you create a new project. The following list is the �les found in the �W�^�c folder.

�° �>�g�d�c�E�n�i�]�d�c�#�9�A�A��

�>�g�d�c�E�n�i�]�d�c�#�B�d�Y�j�a�Z�h�#�9�A�A���°

�B�^�X�g�d�h�d�[�i�#�9�n�c�V�b�^�X�#�9�A�A���°

�B�^�X�g�d�h�d�[�i�#�H�X�g�^�e�i�^�c�\�#�8�d�g�Z�#�9�A�A���°

Building a Basic ASP.NET Site Using IronPython �X 229

���° �B�^�X�g�d�h�d�[�i�#�H�X�g�^�e�i�^�c�\�#�9�A�A

�°�� �B�^�X�g�d�h�d�[�i�#�H�X�g�^�e�i�^�c�\�#�:�m�i�Z�c�h�^�d�c�6�i�i�g�^�W�j�i�Z�#�9�A�A

�° �B�^�X�g�d�h�d�[�i�#�L�Z�W�#�H�X�g�^�e�i�^�c�\�#�9�A�A��

It’s important to remember that IronPython is scripted. As a consequence, much of the compiled
language baggage that you might have had to consider in the past isn’t an issue when working with
IronPython. Don’t let the seeming simplicity of the Web site fool you, however; IronPython is just as
capable as any other language.

BUILDING A BASIC ASP.NET SITE USING IRONPYTHON

You’ve seen someone else’s examples for working with IronPython on a Web site. Now it’s time to
create an IronPython Web site of your own. The example in this section isn’t meant to do anything
too impressive. This section focuses on a process you can use to build ASP.NET applications of your
own instead. The following sections describe every step you need to take to create any ASP.NET
application using IronPython.

Creating the Project
Neither Visual Studio nor DLR provides a project template for you to use. In addition, you have
more work to do when creating an ASP.NET application, so creating a project isn’t quite as easy as
it should be. The DLR instructions suggest copying the �]�Z�a�a�d�"�l�Z�W�[�d�g�b�h folder to another location
and using it as a starting point, which will work bu t will prove cumbersome. The following steps
create a different kind of setup, one that will prove better in the long run, but require more work on
your part now.

1. Create a folder for your application. The example uses �8�V�a�X�j�a�V�i�d�g, but you can use any
name you want.

2. Copy the �]�Z�a�a�d�"�l�Z�W�[�d�g�b�h�Q�W�^�c folder to your project folder.

3. Create a �#�7�6�I �le (the example uses �H�i�V�g�i�#�7�6�I) with the following content:

�5�:�X�]�d���D�[�[

�G�:�B���8�]�V�c�\�Z���i�]�^�h���Y�^�g�Z�X�i�d�g�n���i�d���i�]�Z���a�d�X�V�i�^�d�c���d�[���L�Z�W�9�Z�k�#�L�Z�W�h�Z�g�k�Z�g
�8�9���Q�L�>�C�9�D�L�H�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�;�g�V�b�Z�l�d�g�`�Q�k�'�#�%�#�*�%�,�'�,

�G�:�B���H�i�V�g�i���i�]�Z���L�Z�W���h�Z�g�k�Z�g�#
�H�i�V�g�i���$�7���L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g���$�e�d�g�i�/���&���$�e�V�i�]�/���'��

�G�:�B���D�e�Z�c���i�]�Z���L�Z�W���W�g�d�l�h�Z�g���i�d���i�]�Z���g�^�\�]�i���L�Z�W���h�^�i�Z�#
�H�i�V�g�i���¹�8�/�Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�B�d�o�^�a�a�V���;�^�g�Z�[�d�m�Q�;�^�g�Z�[�d�m�º���]�i�i�e�/�$�$�a�d�X�V�a�]�d�h�i�/���&�$

�5�:�X�]�d���D�c

This batch �le changes directories to the correct location for the WebDev.Webserver utility.
It then starts the WebDev.Webserver utility with the port and path information you provide
as part of the project arguments. Finally, it starts your browser so you can see the results.

230 �X CHAPTER 11 DEVELOPING ASP.NET APPLICATIONS

4. Start Visual Studio and choose File�����¶����Open�����¶����Project/Solution. Locate �8�B�9�#�:�M�: found in the
�Q�L�^�c�Y�d�l�h�Q�H�n�h�i�Z�b�(�' folder and click Open. This step creates a project based on the com-
mand processor.

5. Right-click cmd in Solution Explorer and choose Properties from the context menu. You see
the General tab of the cmd Properties window, as shown in Figure 11-4.

FIGURE 11�4: Set the properties for your project.

6. Type �$�8���H�i�V�g�i�#�7�6�I���-�*���¹�8�/�Q�%�'�*�*���"���H�d�j�g�X�Z���8�d�Y�Z�Q�8�]�V�e�i�Z�g�&�&�Q�8�V�a�X�j�a�V�i�d�g�¹ in the
Arguments �eld. The arguments start with the �$�8 command line switch, which tells the com-
mand processor to process all of the commands you’ve requested, and then terminate itself.
The �H�i�V�g�i�#�7�6�I argument is the �le you created in Step 3. This batch �le requires two input
arguments, the port number you want to use and the location of the example application.

7. Type the location of your project, such as �8�/�Q�%�'�*�*���"���H�d�j�g�X�Z���8�d�Y�Z�Q�8�]�V�e�i�Z�g�&�&�Q
�8�V�a�X�j�a�V�i�d�g, in the Working Directory folder.

8. Right-click the Solution entry in Solution Explorer and choose Add�����¶����New Item from the
context menu. You’ll see the Add New Item dialog box shown in Figure 11-5.

9. Highlight the HTML Page template and type �9�Z�[�V�j�a�i�#�6�H�E�M in the Name �eld. Click Add.
Visual Studio adds a new ASPX �le to your project.

10. Right-click the Solution entry in Solution Explorer and choose Add�����¶����New Item from the
context menu to display the Add New Item dialog box again.

11. Highlight the Text File template and type �9�Z�[�V�j�a�i�#�6�H�E�M�#�e�n in the Name �eld. Click Add.
Visual Studio adds the code behind �le for the �9�Z�[�V�j�a�i�#�6�H�E�M page.

12. Copy the �L�Z�W�#�8�D�C�;�>�< �le from the �]�Z�a�a�d�"�l�Z�W�[�d�g�b�h folder to your project folder.

Building a Basic ASP.NET Site Using IronPython �X 231

13. Right-click the Solution entry in Solution Explorer and choose Add�����¶����Existing Item from the
context menu to display the Add Existing Item dialog box shown in Figure 11-6.

FIGURE 11�5: Select items to add from the Add New Item dialog box.

FIGURE 11�6: Copy the Web.CONFIG �le from an existing project.

14. Locate and highlight the �L�Z�W�#�8�D�C�;�>�< �le as shown in Figure 11-6. Click Add. Your project is
now ready to go.

232 �X CHAPTER 11 DEVELOPING ASP.NET APPLICATIONS

De�ning the User Interface
The template used for this example is actually an �#�=�I�B �le so it doesn’t contain a few essential entries;
you need to use it as an �#�6�H�E�M �le. First, you must tell the Web service which language to use and
where to �nd the code behind �le. Add the following cod e as the �rst line in the �#�6�H�E�M �le.

�1���5���E�V�\�Z���A�V�c�\�j�V�\�Z�2�º�>�g�d�c�E�n�i�]�d�c�º���8�d�Y�Z�;�^�a�Z�2�º�9�Z�[�V�j�a�i�#�V�h�e�m�#�e�n�º�����3

When you complete this step, close and then reopen the �9�Z�[�V�j�a�i�#�6�H�E�M �le. Otherwise, the IDE is
going to spend a lot of time complaining. The next step is to change where the code runs. You want
it to run at the server so you change the �1�]�Z�V�Y�3 tag, as shown in the following code:

�1�]�Z�V�Y���g�j�c�V�i�2�º�h�Z�g�k�Z�g�º�3

Now you need to create content for the Web page. In this case, the user interface provides a simple
four-function calculator. Listing 11-1 shows the code needed to perform this task.

LISTING 11�1: De�ning a user interface for the example application

�1�[�d�g�b���>�9�2�º�[�d�g�b�&�º���g�j�c�V�i�2�º�h�Z�g�k�Z�g�º�3
���������1�Y�^�k�3
�����������������1�V�h�e�/�A�V�W�Z�a���>�9�2�º�a�W�a�>�c�e�j�i�º���g�j�c�V�i�2�º�h�Z�g�k�Z�g�º
�������������������������i�Z�m�i�2�º�I�n�e�Z���V�c���^�c�e�j�i���k�V�a�j�Z�/�º�$�3
�����������������1�V�h�e�/�I�Z�m�i�7�d�m���>�9�2�º�i�m�i�>�c�e�j�i�º���g�j�c�V�i�2�º�h�Z�g�k�Z�g�º���$�3
�����������������1�V�h�e�/�A�V�W�Z�a���>�9�2�º�a�W�a�:�g�g�d�g�º���g�j�c�V�i�2�º�h�Z�g�k�Z�g�º
�������������������������i�Z�m�i�2�º�I�n�e�Z���V���c�j�b�W�Z�g���^�c���i�]�Z���^�c�e�j�i���[�^�Z�a�Y���º
�������������������������h�i�n�a�Z�2�º�X�d�a�d�g�/�g�Z�Y�º
�������������������������k�^�h�^�W�a�Z�2�º�[�V�a�h�Z�º���$�3
���������1�$�Y�^�k�3
���������1�Y�^�k�3
�����������������1�V�h�e�/�7�j�i�i�d�c���>�9�2�º�W�i�c�6�Y�Y�º���g�j�c�V�i�2�º�h�Z�g�k�Z�g�º���i�Z�m�i�2�º� �º
�������������������������D�c�8�a�^�X�`�2�º�W�i�c�6�Y�Y�T�8�a�^�X�`�º���$�3
�����������������1�V�h�e�/�7�j�i�i�d�c���>�9�2�º�W�i�c�H�j�W�º���g�j�c�V�i�2�º�h�Z�g�k�Z�g�º���i�Z�m�i�2�º�"�¹
�������������������������D�c�8�a�^�X�`�2�º�W�i�c�H�j�W�T�8�a�^�X�`�º���$�3
�����������������1�V�h�e�/�7�j�i�i�d�c���>�9�2�º�W�i�c�B�j�a�º���g�j�c�V�i�2�º�h�Z�g�k�Z�g�º���i�Z�m�i�2�º���¹
�������������������������D�c�8�a�^�X�`�2�º�W�i�c�B�j�a�T�8�a�^�X�`�º���$�3
�����������������1�V�h�e�/�7�j�i�i�d�c���>�9�2�º�W�i�c�9�^�k�º���g�j�c�V�i�2�º�h�Z�g�k�Z�g�º���i�Z�m�i�2�º�$�¹
�������������������������D�c�8�a�^�X�`�2�º�W�i�c�9�^�k�T�8�a�^�X�`�º���$�3
���������1�$�Y�^�k�3
���������1�Y�^�k�3
�����������������1�V�h�e�/�A�V�W�Z�a���>�9�2�º�a�W�a�G�Z�h�j�a�i�º���g�j�c�V�i�2�º�h�Z�g�k�Z�g�º
�������������������������i�Z�m�i�2�º�8�j�g�g�Z�c�i���K�V�a�j�Z�/�º���$�3
�����������������1�V�h�e�/�I�Z�m�i�7�d�m���>�9�2�º�i�m�i�G�Z�h�j�a�i�º���g�j�c�V�i�2�º�h�Z�g�k�Z�g�º���i�Z�m�i�2�º�%�º��
�������������������������g�Z�V�Y�d�c�a�n�2�º�i�g�j�Z�º���$�3
���������1�$�Y�^�k�3
���������1�Y�^�k�3
�����������������1�V�h�e�/�7�j�i�i�d�c���>�9�2�º�W�i�c�8�a�Z�V�g�º���g�j�c�V�i�2�º�h�Z�g�k�Z�g�º���i�Z�m�i�2�º�8�a�Z�V�g�º
�������������������������D�c�8�a�^�X�`�2�º�W�i�c�8�a�Z�V�g�T�8�a�^�X�`�º���$�3
���������1�$�Y�^�k�3
�1�$�[�d�g�b�3

Building a Basic ASP.NET Site Using IronPython �X 233

As the listing shows, you work with IronPython code in the same way that you work with any .ASPX
�le. Unfortunately, the designer has not a clue as to what to do with your code, so you have to write
it all by hand. Theoretically, you could start a Web project and then simply move the �#�6�H�E�M �le from
that project to your IronPython project, but that seems like a lot of work unless your interface is rela-
tively complex. If you �nd that you can’t quite reme mber all the ASP.NET controls at your disposal,
you can �nd a complete list at �]�i�i�e�/�$�$�l�l�l�#�l�(�h�X�]�d�d�a�h�#�X�d�b�$�6�H�E�C�:�I�$�V�h�e�c�Z�i�T�g�Z�[�l�Z�W�X�d�c�i�g�d�a�h�#�V�h�e
in an easily accessible form.

In this case, the controls appear in four sepa-
rate groups: input, control, result, and clearing.
Figure 11-7 shows a typical view of the example
form. Some common errors that developers
make are not including the �g�j�c�V�i�2�º�h�Z�g�k�Z�g�º
attribute and not providing the proper con-
nectivity to events in the code behind, such as
�D�c�8�a�^�X�`�2�º�W�i�c�8�a�Z�V�g�T�8�a�^�X�`�º. Notice that you
can use styles, just as you normally do, with the
�h�i�n�a�Z attribute. One of the attributes that devel-
opers can forget about is �k�^�h�^�W�a�Z�2�º�[�V�a�h�Z�º,
which makes the control invisible.

Creating the Code Behind
The code behind for this example is in pure IronPython. So, while you won’t see much difference in
�9�Z�[�V�j�a�i�#�6�H�E�M, you’ll �nd that �9�Z�[�V�j�a�i�#�6�H�E�M�#�e�n looks completely different from any Web project
you’ve worked with in the past. Listing 11-2 shows the code for this example.

LISTING 11�2: Creating the code behind for the example

�����>�b�e�d�g�i���i�]�Z���g�Z�f�j�^�g�Z�Y���V�h�h�Z�b�W�a�^�Z�h�#
�[�g�d�b���H�n�h�i�Z�b���^�b�e�d�g�i����

�����G�Z�h�e�d�c�Y���i�d���V�c���6�Y�Y���W�j�i�i�d�c���X�a�^�X�`�#
�Y�Z�[���W�i�c�6�Y�Y�T�8�a�^�X�`���h�Z�c�Y�Z�g�!���Z���/

�����������<�Z�i���i�]�Z���X�j�g�g�Z�c�i���k�V�a�j�Z�#
�������K�V�a�j�Z���2���>�c�i�(�'�#�E�V�g�h�Z���i�m�i�G�Z�h�j�a�i�#�I�Z�m�i��

�����������G�Z�h�Z�i���i�]�Z���Z�g�g�d�g���b�Z�h�h�V�\�Z���a�V�W�Z�a�#
�������a�W�a�:�g�g�d�g�#�K�^�h�^�W�a�Z���2���;�V�a�h�Z

�����������D�W�i�V�^�c���i�]�Z���c�Z�l���^�c�e�j�i���k�V�a�j�Z�#
�������i�g�n�/
�������������6�Y�Y�^�i�^�d�c���2���>�c�i�(�'�#�E�V�g�h�Z���i�m�i�>�c�e�j�i�#�I�Z�m�i��
�������Z�m�X�Z�e�i�/
�����������������9�^�h�e�a�V�n���V�c���Z�g�g�d�g���b�Z�h�h�V�\�Z���l�]�Z�c���c�Z�X�Z�h�h�V�g�n�#
�������������a�W�a�:�g�g�d�g�#�K�^�h�^�W�a�Z���2���I�g�j�Z
�������������g�Z�i�j�g�c

FIGURE 11�7: The example form is a simple
four-function calculator.

continues

234 �X CHAPTER 11 DEVELOPING ASP.NET APPLICATIONS

�����������E�Z�g�[�d�g�b���i�]�Z���i�V�h�`���V�c�Y���g�Z�i�j�g�c���i�]�Z���g�Z�h�j�a�i�#
�������K�V�a�j�Z���2���K�V�a�j�Z��� ���6�Y�Y�^�i�^�d�c
�������i�m�i�G�Z�h�j�a�i�#�I�Z�m�i���2���h�i�g���K�V�a�j�Z��

�����G�Z�h�e�d�c�Y���i�d���V���H�j�W�i�g�V�X�i�^�d�c���W�j�i�i�d�c���X�a�^�X�`�#
�Y�Z�[���W�i�c�H�j�W�T�8�a�^�X�`���h�Z�c�Y�Z�g�!���Z���/

�����������<�Z�i���i�]�Z���X�j�g�g�Z�c�i���k�V�a�j�Z�#
�������K�V�a�j�Z���2���>�c�i�(�'�#�E�V�g�h�Z���i�m�i�G�Z�h�j�a�i�#�I�Z�m�i��

�����������G�Z�h�Z�i���i�]�Z���Z�g�g�d�g���b�Z�h�h�V�\�Z���a�V�W�Z�a�#
�������a�W�a�:�g�g�d�g�#�K�^�h�^�W�a�Z���2���;�V�a�h�Z

�����������D�W�i�V�^�c���i�]�Z���c�Z�l���^�c�e�j�i���k�V�a�j�Z�#
�������i�g�n�/
�������������H�j�W�i�g�V�X�i���2���>�c�i�(�'�#�E�V�g�h�Z���i�m�i�>�c�e�j�i�#�I�Z�m�i��
�������Z�m�X�Z�e�i�/
�����������������9�^�h�e�a�V�n���V�c���Z�g�g�d�g���b�Z�h�h�V�\�Z���l�]�Z�c���c�Z�X�Z�h�h�V�g�n�#
�������������a�W�a�:�g�g�d�g�#�K�^�h�^�W�a�Z���2���I�g�j�Z
�������������g�Z�i�j�g�c

�����������E�Z�g�[�d�g�b���i�]�Z���i�V�h�`���V�c�Y���g�Z�i�j�g�c���i�]�Z���g�Z�h�j�a�i�#
�������K�V�a�j�Z���2���K�V�a�j�Z���"���H�j�W�i�g�V�X�i
�������i�m�i�G�Z�h�j�a�i�#�I�Z�m�i���2���h�i�g���K�V�a�j�Z��

�����G�Z�h�e�d�c�Y���i�d���V���B�j�a�i�^�e�a�^�X�V�i�^�d�c���W�j�i�i�d�c���X�a�^�X�`�#
�Y�Z�[���W�i�c�B�j�a�T�8�a�^�X�`���h�Z�c�Y�Z�g�!���Z���/

�����������<�Z�i���i�]�Z���X�j�g�g�Z�c�i���k�V�a�j�Z�#
�������K�V�a�j�Z���2���>�c�i�(�'�#�E�V�g�h�Z���i�m�i�G�Z�h�j�a�i�#�I�Z�m�i��

�����������G�Z�h�Z�i���i�]�Z���Z�g�g�d�g���b�Z�h�h�V�\�Z���a�V�W�Z�a�#
�������a�W�a�:�g�g�d�g�#�K�^�h�^�W�a�Z���2���;�V�a�h�Z

�����������D�W�i�V�^�c���i�]�Z���c�Z�l���^�c�e�j�i���k�V�a�j�Z�#
�������i�g�n�/
�������������B�j�a�i�^�e�a�n���2���>�c�i�(�'�#�E�V�g�h�Z���i�m�i�>�c�e�j�i�#�I�Z�m�i��
�������Z�m�X�Z�e�i�/
�����������������9�^�h�e�a�V�n���V�c���Z�g�g�d�g���b�Z�h�h�V�\�Z���l�]�Z�c���c�Z�X�Z�h�h�V�g�n�#
�������������a�W�a�:�g�g�d�g�#�K�^�h�^�W�a�Z���2���I�g�j�Z
�������������g�Z�i�j�g�c

�����������E�Z�g�[�d�g�b���i�]�Z���i�V�h�`���V�c�Y���g�Z�i�j�g�c���i�]�Z���g�Z�h�j�a�i�#
�������K�V�a�j�Z���2���K�V�a�j�Z�������B�j�a�i�^�e�a�n
�������i�m�i�G�Z�h�j�a�i�#�I�Z�m�i���2���h�i�g���K�V�a�j�Z��

�����G�Z�h�e�d�c�Y���i�d���V���9�^�k�^�h�^�d�c���W�j�i�i�d�c���X�a�^�X�`�#
�Y�Z�[���W�i�c�9�^�k�T�8�a�^�X�`���h�Z�c�Y�Z�g�!���Z���/

�����������<�Z�i���i�]�Z���X�j�g�g�Z�c�i���k�V�a�j�Z�#

LISTING 11�2 (continued)

Building a Basic ASP.NET Site Using IronPython �X 235

�������K�V�a�j�Z���2���>�c�i�(�'�#�E�V�g�h�Z���i�m�i�G�Z�h�j�a�i�#�I�Z�m�i��

�����������G�Z�h�Z�i���i�]�Z���Z�g�g�d�g���b�Z�h�h�V�\�Z���a�V�W�Z�a�#
�������a�W�a�:�g�g�d�g�#�K�^�h�^�W�a�Z���2���;�V�a�h�Z

�����������D�W�i�V�^�c���i�]�Z���c�Z�l���^�c�e�j�i���k�V�a�j�Z�#
�������i�g�n�/
�������������9�^�k�^�Y�Z���2���>�c�i�(�'�#�E�V�g�h�Z���i�m�i�>�c�e�j�i�#�I�Z�m�i��
�������Z�m�X�Z�e�i�/
�����������������9�^�h�e�a�V�n���V�c���Z�g�g�d�g���b�Z�h�h�V�\�Z���l�]�Z�c���c�Z�X�Z�h�h�V�g�n�#
�������������a�W�a�:�g�g�d�g�#�K�^�h�^�W�a�Z���2���I�g�j�Z
�������������g�Z�i�j�g�c

�����������E�Z�g�[�d�g�b���i�]�Z���i�V�h�`���V�c�Y���g�Z�i�j�g�c���i�]�Z���g�Z�h�j�a�i�#
�������K�V�a�j�Z���2���K�V�a�j�Z���$���9�^�k�^�Y�Z
�������i�m�i�G�Z�h�j�a�i�#�I�Z�m�i���2���h�i�g���K�V�a�j�Z��

�����G�Z�h�e�d�c�Y���i�d���V���8�a�Z�V�g���W�j�i�i�d�c���X�a�^�X�`�#
�Y�Z�[���W�i�c�8�a�Z�V�g�T�8�a�^�X�`���h�Z�c�Y�Z�g�!���Z���/
�������i�m�i�G�Z�h�j�a�i�#�I�Z�m�i���2���»�%�¼

The code begins by importing the required assemblies. As with any IronPython application, you
can use a combination of Python modules and .NET assemblies to create your application. You also
have full access to both Python and .NET functionality in your application, so the considerable �ex-
ibility that IronPython provides is still available i n this environment.

Each of the event handlers must provide both the �h�Z�c�Y�Z�g and �Z arguments as shown. You don’t
include a �h�Z�a�[argument in this case, as you would with other IronPython code. As you might expect,
the �h�Z�c�Y�Z�g argument contains a reference to the control that called the event handler, while �Z contains
a list of event arguments (normally set to �C�d�c�Z).

The four math buttons begin by obtaining the current value of �i�m�i�G�Z�h�j�a�i (the output �I�Z�m�i�7�d�m) as
an �>�c�i�(�' value. Because �i�m�i�G�Z�h�j�a�i is read-only, you don’t need to worry about someone putting an
incorrect value into it. Consequently, this task doesn’t provide any error trapping code.

The next step is to obtain the new value for the math operation from �i�m�i�>�c�e�j�i. In this case, you’re
relying on the user to provide the correct input value, which means that the application code could
receive anything. Someone might even try to enter a script in order to fool your application into
doing something improper. Using the �>�c�i�(�'�#�E�V�g�h�Z���� method means that any input other than a
number triggers an exception, which your code can handle by simply not processing the input. The
�i�g�n�#�#�#�Z�m�X�Z�e�i structure does just that. If the user inputs an incorrect value, the Web page displays
an error message, rather than doing anything with the input.

Now that the code has two inputs to process, it performs the required math operation. After the
math operation is complete, the code outputs the result to �i�m�i�G�Z�h�j�a�i�#�I�Z�m�i.

The �W�i�c�8�a�Z�V�g�T�8�a�^�X�`���� event handler is relatively simple. All it does is place a 0 in �i�m�i�G�Z�h�j�a�i��
�#�I�Z�m�i. The next math operation starts with a zero value, which means that �i�m�i�G�Z�h�j�a�i is cleared.

236 �X CHAPTER 11 DEVELOPING ASP.NET APPLICATIONS

Starting the Visual Studio Built-In Web Server
It’s time to begin testing your application. Many developers don’t realize it, but the .NET Framework
includes a special utility that makes it possible to host Web sites without having a full-�edged Web
server. The WebDev.WebServer utility originally appeared as part of the .NET Framework 2.0. When
you build an application for testing purposes with Visual Studio, you’re using this built-in Web server
to execute the code.

You �nd the �L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g�#�:�M�: �le in the �Q�L�>�C�9�D�L�H�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�;�g�V�b�Z�l�d�g�`�Q�k�'�#�%�#�*�%�,�'�,
folder on your system. Alternatively, you can also �nd versions of this utility in the �Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q
�8�d�b�b�d�c���;�^�a�Z�h�Q�B�^�X�g�d�h�d�[�i���H�]�V�g�Z�Y�Q�9�Z�k�H�Z�g�k�Z�g�Q�&�%�#�%�Q folder as �L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g�'�%�#�:�M�: or
�L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g�)�%�#�:�M�:.

The amazing part of the built-in Web server is that it works �ne for any Web site using any kind of
code. If you want to test your standard HTML pages, that’s �ne — just point the built-in Web server
to the correct directory on your hard drive. Of course, you can’t run some types of applications
because the built-in Web server isn’t designed to handle them. For example, you can’t execute your
PHP code. This little de�ciency doesn’t matter for your IronPython application, however, because
the built-in Web server will see it as a standard ASP.NET application.

Unlike your full-�edged Web server, the built-in Web server doesn’t provide outside access, which is
the reason you want to use it to test your unsecured, experimental IronPython Webforms application.
You don’t have to worry about prying eyes seeing your tests and possibly using them as a means to gain
entrance to your machine. More important, because this server is virtual, it’s less likely that a failed
experiment will cause your system to crash. The following sections describe the WebDev.WebServer
utility in more detail.

Understanding the WebDev.WebServer Command Line Syntax
The WebDev.WebServer utility provides only a few command line switches because you perform
most con�guration tasks using a special Noti�cation Area icon. Here’s the command line syntax
for this utility.

�L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g���$�e�d�g�i�/�1�E�d�g�i�C�j�b�W�Z�g�3���$�e�V�i�]�/�1�E�]�n�h�^�X�V�a�E�V�i�]�3���P�$�k�e�V�i�]�/�1�K�^�g�i�j�V�a�E�V�i�]�3�R
�L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g�'�%���$�e�d�g�i�/�1�E�d�g�i�C�j�b�W�Z�g�3���$�e�V�i�]�/�1�E�]�n�h�^�X�V�a�E�V�i�]�3
�������P�$�k�e�V�i�]�/�1�K�^�g�i�j�V�a�E�V�i�]�3�R
�L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g�)�%���$�e�d�g�i�/�1�E�d�g�i�C�j�b�W�Z�g�3���$�e�V�i�]�/�1�E�]�n�h�^�X�V�a�E�V�i�]�3
�������P�$�k�e�V�i�]�/�1�K�^�g�i�j�V�a�E�V�i�]�3�R

The following list provides an explanation of each of the command line switches.

�°�� �$�e�d�g�i�/�E�d�g�i�C�j�b�W�Z�g: De�nes the port number used to host the application. Because your
application isn’t accessible to the outside world and you use a local browser to access the
Web server, the port you use isn’t as important as it usually is. You can’t select port 80 if you
also have IIS installed on the system. Any port number between 1 and 65,535 will work as
long as the port you select isn’t in use.

���° �$�e�V�i�]�/�E�]�n�h�^�X�V�a�E�V�i�]: Speci�es the physical location of the application you want to host in
the browser. You must provide the full path, but you don’t include a �lename.

Building a Basic ASP.NET Site Using IronPython �X 237

���° �$�k�e�V�i�]�/�K�^�g�i�j�V�a�E�V�i�]: Provides a virtual path for the application where �K�^�g�i�j�V�a�E�V�i�] is nor-
mally the application name, such as �$�B�n�6�e�e. The default setting provides a virtual path of �$.

?:���° Displays the help information for the WebDev.WebServer utility.

Using the Built-In Web Server with a Batch File
When you use a batch (.BAT) �le to start the application, use the Start utility to execute WebDev
.WebServer. Otherwise, the Web server won’t start properly. In addition, you should include the Start
utility’s �$�7 command line switch (it isn’t mandatory). The �$�7 command line switch tells Windows not
to open a new window to start the application. If Windo ws opens a new window, the Web server will
start, but it may not display the Web page. Here’s a modi�ed command line for batch �les.

�H�i�V�g�i���$�7���L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g���$�e�d�g�i�/�,�&�,�&���$�e�V�i�]�/�º�;�/�Q�B�n���L�Z�W���H�^�i�Z�º

Interacting with the Built-In Web Server
The WebDev.WebServer utility creates an icon in the Noti�cation Area () when you start it. In fact,
a popup message alerts you to the presence of this icon. Right-click this icon and you see three options:

�° �� Open in Web Browser: Tells the utility to start the default Web browser and navigate to
the Web page hosted by the Web server. In most cases, WebDev.WebServer uses the same
defaults as any full Web server you have set up on your machine. Otherwise, you can count
on these defaults working:

�9�Z�[�V�j�a�i�#�=�I�B���°

�9�Z�[�V�j�a�i�#�6�H�E���°

�9�Z�[�V�j�a�i�#�6�H�E�M���°

�>�c�Y�Z�m�#�=�I�B���°

���° Stop: Stops the server and makes
any Web pages inaccessible.

���° Show Details: Displays the
ASP.NET Development Server
dialog box shown in Figure 11-8
where you can see details about
the Web server. In addition, this
dialog box provides a link to
access the default Web page.

Considering the Built-In Web Server Limitations
It’s important to realize that we’re not using the WebDev.WebServer utility for production purposes.
The following list helps you better understand why you can’t use this utility for every purpose.

�°�� Functionality: The WebDev.WebServer utility doesn’t create a full-�edged Web server.
Some of the functionality you rely on, such as the ability to add users or work with virtual
directories, simply isn’t available.

FIGURE 11�8: The ASP.NET Development Server dialog box
provides details about the Web server.

238 �X CHAPTER 11 DEVELOPING ASP.NET APPLICATIONS

�° �� Security: Any security that you want to set up has to appear as part of your application in a
�L�Z�W�#�8�D�C�;�>�< �le. The WebDev.WebServer utility does tend to follow whatever rules you set
for Internet Information Server (IIS) if you have it installed. However, you can’t count on this
behavior when working on your own and you certainly can’t count on it when you send the
application to other machines.

���° Administrative tools support: Anything you normally con�gure through the Internet Information
Services console located in the Administrative Tools folder of the Control Panel is unavailable
when working with the WebDev.WebServer utility. Consequently, if your application relies on
a special ISAPI Filter, you won’t be able to execute it using the WebDev.WebServer utility. The
same holds true for anything else that you normally have to add using the Internet Information
Services console.

Savvy developers can get around some of the WebDev.WebServer con�guration
limitations through judicious use of the �L�Z�W�#�8�D�C�;�>�< �le and by creating resources
locally. Make sure you don’t assume that an application won’t work simply
because you have to con�gure it in a new way.

���° Single user Web server: It’s important to remember that this is a single-user Web server. No one
outside the local machine can access the Web server because theoretically, it doesn’t exist — it’s
virtual. This means that you can’t perform some types of testing using the built-in Web server.
The feature that makes it so secure also prevents you from performing some kinds of real-world
testing. Multi-user applications simply won’t work with the built-in Web server.

Performing Basic Testing
Your IronPython Web application works just like any other Web application you create. Because
IronPython is fully .NET capable, you can use any control set you want within the application. Of
course, you also have access to standard Web controls. All of this �exibility increases complexity
and makes it necessary to test your application fully.

The example application is relatively
simple, so testing isn’t cumbersome.
When you �rst start the application
by pressing Ctrl+F5, you see the Web
page shown in Figure 11-7. When you
type a value into the Type an Input
Value �eld and click one of the math
buttons (+, -, *, or /), the application
performs the desired task. Trying to
input an invalid value triggers an
error message like the one shown in
Figure 11-9.

FIGURE 11�9: Incorrect values trigger an error message.

Building a Basic ASP.NET Site Using IronPython �X 239

Interestingly enough, the scripting nature of IronPython makes it possible to use IronPython to test
your Web application. This gives you an advantage over compiled languages such as C# and Visual
Basic.NET. Chapter 18 tells you more about using IronPython for application testing.

Considering Debugging
You may be wondering whether this project can provide any debugging. The fact is that you don’t
get direct debugging when working with DLR, even if you use a full Web server. However, there are
four ways in which you can debug your application.

�° Use print statements and other old standbys to determine what your application is doing.��

���° Attach the debugger to the running process after the fact by choosing Debug�����¶����Attach to
Process within Visual Studio.

���° Import the �B�^�X�g�d�h�d�[�i�#�H�X�g�^�e�i�^�c�\�#�9�Z�W�j�\�\�^�c�\�#�9�A�A found in the �Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q
�>�g�d�c�E�n�i�]�d�c���'�#�+ folder and add debugging information manually.

���° Rely on the output error message from the Web server, such as the one shown in
Figure 11-10.

FIGURE 11�10: The Web server provides you with error messages as needed.

240 �X CHAPTER 11 DEVELOPING ASP.NET APPLICATIONS

USING IRONPYTHON CONSTRUCTIVELY

This chapter demonstrates that it’s possible to use IronPython to create a Webforms application.
In fact, given enough time, you can create a Webforms application of any complexity. However,
it’s the time factor that’s a problem right now. With out proper support for project templates and
IntelliSense, you’ll spend a lot of time using IronPython to create a production Webforms applica-
tion. In addition, unlike a Windows Forms application, yo u have to use DLR to make Webforms
applications work and DLR isn’t in released form yet. Experimentation is the name of the game for
now. Even so, as you’ve seen, IronPython can be a lot of fun to use for Webforms development.

Even though Webforms use isn’t quite ready for prime time, you should still take time to experiment.
At the very least, try the example programs that come with DLR to see that IronPython is a viable
Web development language. Use the example application in this chapter as a starting point for your
own experimentation. In short, have a bit of fun using IronPython to create Web pages. Consider
how the dynamic nature of IronPython could help you in future Web application development,
because DLR won’t remain in alpha status forever.

Chapter 12 considers an extremely important need for any developer — application debugging. Unlike
debugging a C# or Visual Basic.NET application, IronPython holds a few surprises — mainly because
this language isn’t built into the Visual Studio IDE. Even so, you can use the Visual Studio IDE to debug
an IronPython application and many developers do just that. Chapter 12 helps you understand the ins
and outs of this process.

Debugging IronPython
Applications

WHAT’S IN THIS CHAPTER?

�° Diagnosing and understanding IronPython warnings��

Getting error information using sys���°

Using the Python debugger to debug an application���°

Using the CLR debugger to debug an application���°

Using Visual Studio to debug an application���°

Adding exceptions to your application���°

Most applications have a bug or two in them at some point. In fact, unless your application is
mind-numbingly simple (making it of dubious value), you can probably count on seeing at least
a few bugs. When working with a language such as C#, the debugging process can be dif�cult,
but at least you know directly where to start for debugging. You simply use the debugger built
into Visual Studio. Unfortunately, IronPython isn’t b uilt into Visual Studio and lacks a dedi-
cated Integrated Development Environment (IDE) of its own. As a result, debugging is more
dif�cult for IronPython developers because you don’t have a ready-made debugging solution.

IronPython developers aren’t without resources. Debugging requires a different approach in
IronPython, but in many respects you can use the same techniques you normally do to work
through the debugging process. For example, most developers don’t go directly to the debugger —
they begin with warnings and error messages. Fortunately, IronPython has a robust set of both
warning and error-handling features, which makes your job easier.

You can also use any of a number of debuggers with IronPython — these debuggers simply
won’t have the built-in feel that you might expect from other languages. This chapter discusses

12

242 �X CHAPTER 12 DEBUGGING IRONPYTHON APPLICATIONS

two debuggers: the Common Language Runtime (CLR) debugger and the Visual Studio debugger.
Neither of these solutions is perfect and you might have to combine them to locate the precise source
of the bug in your application.

Easy debugging actually begins with good exception handling. When you understand the potential
sources of bugs in your application, you can add exceptions and exception handlers to alert you to
these conditions. A sudden rise in exceptions can signal a change in environment, new threats to your
application, or modi�cations in user patterns. IronP ython tends to force you to create robust error-
handling routines, which really isn’t a bad feature to add to an application.

UNDERSTANDING IRONPYTHON WARNINGS

Warnings are simply indicators that something could be wrong with your application or might not
work under all conditions. For example, if you use a deprecated (outdated) function, you might later
�nd that the application refuses to work on all mach ines. You can use warnings for all kinds of pur-
poses, including providing debugging messages for your application.

The main difference between a warning and an exception is that a warning won’t stop the application.
When the interpreter encounters a warning, it outputs the warning information to the standard error
device unless the interpreter is ignoring the warning. In some cases, you need to tell the interpreter to
ignore a warning because the warning is due to a bug in someone else’s code, a known issue that you
can’t �x, or simply something that is obscuring other potential errors in your code. A standard warn-
ing looks like this:

�T�T�b�V�^�c�T�T�/�&�/���J�h�Z�g�L�V�g�c�^�c�\�/���Y�Z�e�g�Z�X�V�i�Z�Y

The elements are separated by colons (:) and each warning message contains the following elements
(unless you change the message formatting to meet a speci�c need).

�°�� Function name (such as �T�T�b�V�^�c�T�T)

Line number where the warning appears���°

Warning category���°

Message���°

You’ll discover more about these elements as the chapter progresses. In the meantime, it’s also
important to know that you can issue warnings, �lter them, change the message formatting, and
perform other tasks using the warning-related functions shown in Table 12-1. You see these func-
tions in action in the sections that follow.

TABLE 12�1: Warning-Related Functions and Their Purpose

FUNCTION PURPOSE

�lterwarnings() Adds rules to a warning that a�ects when it triggers and how the inter-
preter reacts to the warning.

formatwarning() Displays a warning in the standard way.

Understanding IronPython Warnings �X 243

FUNCTION PURPOSE

resetwarnings() Resets the warning state to its default settings.

showwarning() Displays the speci�ed warning. You can use this function to write
the warning to a �le. The function defaults to writing the warning
to the �h�n�h�#�h�i�Y�Z�g�g device.

simple�lter() Provides a simpli�ed version of the �[�^�a�i�Z�g�l�V�g�c�^�c�\�h���� function that
doesn’t require the use of Regular Expressions.

warn() Used to issue a warning of a particular category.

warn_explicit() Provides low-level access to the �l�V�g�c���� function so that you can out-
put extended warning information.

warnpy3k() Issues warnings for Python 3.x–related deprecations. This function
doesn’t do anything unless you start IronPython using the �·�(command
line switch.

This chapter doesn’t describe every argument you can use with every function;
it concentrates on actual usage instead. The site at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$
�a�^�W�g�V�g�n�$�l�V�g�c�^�c�\�h�#�]�i�b�a provides information about all of the arguments you
can use with each of these functions.

Working with Actions
Before you do too much with warnings, it’s important to know that warnings have an action associated
with them. For example, you can choose to turn a particular warning into an exception or to ignore it
completely. You can apply actions to warnings in a number of ways using either the �[�^�a�i�Z�g�l�V�g�c�^�c�\�h����
or �h�^�b�e�a�Z�[�^�a�i�Z�g���� function. Table 12-2 shows the list of standard warning actions.

TABLE 12�2: Standard Warning Actions

ACTION TYPE DESCRIPTION

error Turns all matching warnings into exceptions, which means the application will
terminate when it encounters the warning unless you provide the required
exception handling.

ignore Disregards the matching warnings so that the interpreter doesn’t print them
and they don’t a�ect application execution. Using this action can hide poten-
tially useful warnings from view and make debugging signi�cantly harder.

continues

244 �X CHAPTER 12 DEBUGGING IRONPYTHON APPLICATIONS

ACTION TYPE DESCRIPTION

always Prints the matching warnings, even if the interpreter would normally ignore
it. Using this action displays more information, which could make debugging
easier, but also means that the screen will become clogged with unnecessary
warnings at times.

default Performs the default warning action of printing the �rst occurrence of matching
warnings for each location where the interpreter issues the warning. A warn-
ing could appear more than once for each module. For example, it can appear
once in each class within the module.

module Prints the �rst occurrence of matching warnings just one time for each module,
even if the interpreter would print the warning more often. Using this action
displays less information than the default action, which means that the console
screen will remain clearer. However, you could miss essential warnings you
need to debug your application.

once Prints only the �rst occurrence of matching warnings no matter where the
warning appears. This action is useful when you want to �x each warning
immediately. However, it’ll de�nitely hide useful debugging information if you
plan to run your application for an extended interval.

It’s important to work with a few warnings to see ho w �ltering works because �lters are excep-
tionally important. In order to use warnings, you impo rt the warnings module. Figure 12-1 shows
a typical instance of the default action. Notice that the �rst time the code issues the �l�V�g�c�^�c�\�h��
�#�l�V�g�c���¹�Y�Z�e�g�Z�X�V�i�Z�Y�¹�!���9�Z�e�g�Z�X�V�i�^�d�c�L�V�g�c�^�c�\�� warning, the interpreter displays a message.
(Don’t worry too much about the speci�c arguments fo r the �l�V�g�c�^�c�\�h�#�l�V�g�c����function for right
now; you see them explained in the “Working with Messages” and “Working with Categories”
sections of the chapter.) However, the interpreter ignores the same warning the second time.
If you change the message, however, the interpreter displays another message.

FIGURE 12�1: The default action displays each message just one time.

Of course, you could always associate a different action with the �l�V�g�c�^�c�\�h��
�#�l�V�g�c���¹�Y�Z�e�g�Z�X�V�i�Z�Y�¹�!���9�Z�e�g�Z�X�V�i�^�d�c�L�V�g�c�^�c�\�� warning. To make this change, you can use the
�h�^�b�e�a�Z�[�^�a�i�Z�g���� function as shown in Figure 12-2. Now when you issue the warning, it appears
every time.

TABLE 12�2 (continued)

Understanding IronPython Warnings �X 245

FIGURE 12�2: You can set the warning to appear every time.

Unfortunately, as shown in the �gure, the change affects every message. Using the �h�^�b�e�a�Z�[�^�a�i�Z�g����
function affects every message in every module for a particular message category. Both the �c�Z�l�b�Z�h�h�V�\�Z
and �Y�Z�e�g�Z�X�V�i�Z�Y messages always appear. Let’s say you want to make just the deprecated message always
appear. To perform this task, you use the �[�^�a�i�Z�g�l�V�g�c�^�c�\�h���� function as shown in Figure 12-3 (after
�rst resetting the category using the �g�Z�h�Z�i�l�V�g�c�^�c�\�h���� function).

FIGURE 12�3: Use the �lterwarnings() function when you need better control over �ltering.

In this case, the �l�V�g�c�^�c�\�h�#�l�V�g�c���¹�Y�Z�e�g�Z�X�V�i�Z�Y�¹�!���9�Z�e�g�Z�X�V�i�^�d�c�L�V�g�c�^�c�\��
warning appears every time because its action is set to �V�a�l�V�n�h. However, the �l�V�g�c�^�c�\�h��
�#�l�V�g�c���¹�c�Z�l�b�Z�h�h�V�\�Z�¹�!���9�Z�e�g�Z�X�V�i�^�d�c�L�V�g�c�^�c�\�� warning appears only once because it uses
the default action.

You can also set an action at the command line using the �·�L command line
switch. For example, to set the interpreter to always display warning messages,
you’d use the �·�L���V�a�l�V�n�h command line switch. The �·�L command line switch
accepts an action, message, category, module, or line number (lineno) as input.
You can include as many �·�L command line switches as needed on the command
line to �lter the warning messages.

246 �X CHAPTER 12 DEBUGGING IRONPYTHON APPLICATIONS

The �g�Z�h�Z�i�l�V�g�c�^�c�\�h���� function affects every warning category and every message in every module.
You might not want to reset an entire �ltering con�g uration by using the �g�Z�h�Z�i�l�V�g�c�^�c�\�h���� function.
In this case, simply use the �[�^�a�i�Z�g�l�V�g�c�^�c�\�h���� or �h�^�b�e�a�Z�[�^�a�i�Z�g���� function to set the warning back
to the default action.

At this point, you might wonder how to obtain a list of the �lters you’ve de�ned. For that matter,
you don’t even know if there are default �lters that the interpreter de�nes for you. Fortunately, the
�l�V�g�c�^�c�\�h class provides two attributes, �Y�Z�[�V�j�a�i�T�V�X�i�^�d�c and �[�^�a�i�Z�g�h, which provide this informa -
tion to you. Listing 12-1 shows how to use these two attributes.

LISTING 12�1: Discovering the default action and installed �lters

�����>�b�e�d�g�i���i�]�Z���g�Z�f�j�^�g�Z�Y���b�d�Y�j�a�Z�h�#
�^�b�e�d�g�i���l�V�g�c�^�c�\�h

�����9�^�h�e�a�V�n���i�]�Z���Y�Z�[�V�j�a�i���V�X�i�^�d�c�#��
�e�g�^�c�i���»�9�Z�[�V�j�a�i���V�X�i�^�d�c�/�¼�!���l�V�g�c�^�c�\�h�#�Y�Z�[�V�j�a�i�T�V�X�i�^�d�c

�����9�^�h�e�a�V�n���i�]�Z���Y�Z�[�V�j�a�i���[�^�a�i�Z�g�h�#
�e�g�^�c�i���»�Q�c�9�Z�[�V�j�a�i���;�^�a�i�Z�g�h�/�¼��
�[�d�g���[�^�a�i�Z�g���^�c���l�V�g�c�^�c�\�h�#�[�^�a�i�Z�g�h�/
���������e�g�^�c�i���»�6�X�i�^�d�c�/�¼�!���[�^�a�i�Z�g�P�%�R�!
���������e�g�^�c�i���»�B�h�\�/�¼�!���[�^�a�i�Z�g�P�&�R�!
���������e�g�^�c�i���»�8�V�i�/�¼�!���h�i�g���[�^�a�i�Z�g�P�'�R���#�h�e�a�^�i���¹�»�¹���P�&�R�#�h�e�a�^�i���»�#�¼���P�&�R�!
���������e�g�^�c�i���»�B�d�Y�j�a�Z�/�¼�!���[�^�a�i�Z�g�P�(�R�!
���������e�g�^�c�i���»�A�^�c�Z�/�¼�!���[�^�a�i�Z�g�P�)�R

�����6�Y�Y���c�Z�l���[�^�a�i�Z�g�h�#��
�l�V�g�c�^�c�\�h�#�[�^�a�i�Z�g�l�V�g�c�^�c�\�h���»�V�a�l�V�n�h�¼�!���b�Z�h�h�V�\�Z�2�¼�I�Z�h�i�¼�!���X�V�i�Z�\�d�g�n�2�J�h�Z�g�L�V�g�c�^�c�\��
�l�V�g�c�^�c�\�h�#�[�^�a�i�Z�g�l�V�g�c�^�c�\�h���»�V�a�l�V�n�h�¼�!���b�Z�h�h�V�\�Z�2�¼�I�Z�h�i�'�¼�!���X�V�i�Z�\�d�g�n�2�J�h�Z�g�L�V�g�c�^�c�\�!
�������b�d�Y�j�a�Z�2�¼�I�Z�h�i�¼����
�l�V�g�c�^�c�\�h�#�[�^�a�i�Z�g�l�V�g�c�^�c�\�h���»�V�a�l�V�n�h�¼�!���b�Z�h�h�V�\�Z�2�¼�I�Z�h�i�(�¼�!���X�V�i�Z�\�d�g�n�2�J�h�Z�g�L�V�g�c�^�c�\�!
�������b�d�Y�j�a�Z�2�¼�I�Z�h�i�¼�!���V�e�e�Z�c�Y�2�I�g�j�Z��

�����9�^�h�e�a�V�n���i�]�Z���j�e�Y�V�i�Z�Y���[�^�a�i�Z�g�h�#
�e�g�^�c�i���»�Q�c�J�e�Y�V�i�Z�Y���;�^�a�i�Z�g�h�/�¼��
�[�d�g���[�^�a�i�Z�g���^�c���l�V�g�c�^�c�\�h�#�[�^�a�i�Z�g�h�/
�������e�g�^�c�i���»�6�X�i�^�d�c�/�¼�!���[�^�a�i�Z�g�P�%�R�!

�������i�g�n�/
�������������e�g�^�c�i���»�B�h�\�/�¼�!���[�^�a�i�Z�g�P�&�R�#�e�V�i�i�Z�g�c�!
�������Z�m�X�Z�e�i���6�i�i�g�^�W�j�i�Z�:�g�g�d�g�/
�������������e�g�^�c�i���»�C�d�c�Z�¼�!

�������e�g�^�c�i���»�8�V�i�/�¼�!���h�i�g���[�^�a�i�Z�g�P�'�R���#�h�e�a�^�i���¹�»�¹���P�&�R�#�h�e�a�^�i���»�#�¼���P�&�R�!

�������i�g�n�/
�������������^�[���a�Z�c���[�^�a�i�Z�g�P�(�R�#�e�V�i�i�Z�g�c�����2�2���%�/
�������������������e�g�^�c�i���»�B�d�Y�j�a�Z�/���J�c�Y�Z�[�^�c�Z�Y�¼�!
�������������Z�a�h�Z�/
�������������������e�g�^�c�i���»�B�d�Y�j�a�Z�/�¼�!���[�^�a�i�Z�g�P�(�R�#�e�V�i�i�Z�g�c�!
�������Z�m�X�Z�e�i���6�i�i�g�^�W�j�i�Z�:�g�g�d�g�/

Understanding IronPython Warnings �X 247

�������������e�g�^�c�i���»�B�d�Y�j�a�Z�/���C�d�c�Z�¼�!

�������e�g�^�c�i���»�A�^�c�Z�/�¼�!���[�^�a�i�Z�g�P�)�R

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins by importing the �l�V�g�c�^�c�\�h module. It then displays (using �l�V�g�c�^�c�\�h�#�Y�Z�[�V�j�a�i�T
�V�X�i�^�d�c) the default action that the interpreter will take when it encounters a warning. As shown in
Figure 12-4 and described in Table 12-2, the default action is �»�Y�Z�[�V�j�a�i�».

FIGURE 12�4: The example shows the default actions and �lters, along with the output of �lter changes.

Because of space limitations in this book, the text of Listing 12-1
shows two lines of code as being split, when they should appear on a
single line. You would type the �l�V�g�c�^�c�\�h�#�[�^�a�i�Z�g�l�V�g�c�^�c�\�h���»�V�a�l�V�n�h�»�!��
�b�Z�h�h�V�\�Z�2�»�I�Z�h�i�'�»�!���X�V�i�Z�\�d�g�n�2�J�h�Z�g�L�V�g�c�^�c�\�!���b�d�Y�j�a�Z�2�»�I�Z�h�i�»�� and
�l�V�g�c�^�c�\�h�#�[�^�a�i�Z�g�l�V�g�c�^�c�\�h���»�V�a�l�V�n�h�»�!���b�Z�h�h�V�\�Z�2�»�I�Z�h�i�(�»�!��
�X�V�i�Z�\�d�g�n�2�J�h�Z�g�L�V�g�c�^�c�\�!���b�d�Y�j�a�Z�2�»�I�Z�h�i�»�!���V�e�e�Z�c�Y�2�I�g�j�Z�� lines of code
on a single line. The example won’t work if you type the code on multiple
lines as shown.

The next step is to show the default �lters that the interpreter provides for you. It may surprise you
to know that the interpreter does include some default �lters for the �E�Z�c�Y�^�c�\�9�Z�e�g�Z�X�V�i�^�d�c�L�V�g�c�^�c�\,
�>�b�e�d�g�i�L�V�g�c�^�c�\, and �7�n�i�Z�h�L�V�g�c�^�c�\, as shown in Figure 12-4. These default �lters make the interpreter
easier and more enjoyable to use, but could also hide important bugs, so you need to be aware of them.

In order to show how actions and �lters work, the ex ample adds three �lters using the �l�V�g�c�^�c�\�h��
�#�[�^�a�i�Z�g�l�V�g�c�^�c�\�h���� function. The �rst �lter simply tells the interpreter to always display wa rnings
about the �I�Z�h�i message provided in the �J�h�Z�g�L�V�g�c�^�c�\ category. The second �lter speci�es that the
�I�Z�h�i�' warning will appear in the �I�Z�h�i module. The third �lter speci�es that the interpreter should

248 �X CHAPTER 12 DEBUGGING IRONPYTHON APPLICATIONS

append the warning �lter to the end of the �lter lis t, rather than add it to the front of the list as i s
traditional. You can see the result of all three �lter additions in Figure 12-4.

The code used to display the �lter information is dif ferent in this case because the simple display
method used earlier won’t work. What you’ll see as output for the message and module information
is something like

�1�G�:�T�E�V�i�i�Z�g�c���d�W�_�Z�X�i���V�i���%�m�%�%�%�%�%�%�%�%�%�%�%�%�%�%�'�8�3

which isn’t particularly useful. In order to get info rmation from the message and module elements,
you must access the �e�V�i�i�Z�g�c attribute. Unfortunately, this attribute isn’t available with the d efault
�lters, so the solution is to create a �i�g�n�#�#�#�Z�m�X�Z�e�i���6�i�i�g�^�W�j�i�Z�:�g�g�d�g structure, as shown in the
code. When the code encounters a default �lter entry, it simply prints �C�d�c�Z as it would have done
in the past.

Working with modules presents a special problem. If you look at the �rst �lter declaration, it doesn’t
include the �B�d�Y�j�a�Z attribute. Unfortunately, the interpreter takes this omission to mean that you
want to create a blank entry, not a null entry. Consequently, the module code also handles the empty
entry scenario by saying the module is unde�ned. If you want to create a null module entry, you
must use �B�d�Y�j�a�Z�2�C�d�c�Z as part of your �lter declaration.

Notice in Figure 12-4 that the �rst two �lters appear at the front of the list and in reverse order.
That’s because the interpreter always adds new �lters to the beginning of the list unless you
include the �V�e�e�Z�c�Y�2�I�g�j�Z attribute. Because the third �lter includes this attribute, it appears at
the end of the list.

UNDERSTANDING THE WARNING TYPE EXTRACTION CODE

You’ve probably noticed that the code for extracting the type string from �[�^�a�i�Z�g�P�'�R
is somewhat complex. Some extraction sequences can become this way in IronPython.
Let’s start simply. When you �e�g�^�c�i���[�^�a�i�Z�g�P�'�R directly you get

�1�i�n�e�Z���»�Z�m�X�Z�e�i�^�d�c�h�#�E�Z�c�Y�^�c�\�9�Z�e�g�Z�X�V�i�^�d�c�L�V�g�c�^�c�\�¼�3

While this output is descriptive, it doesn’t really make type apparent in a friendly
way. Consequently, you can �e�g�^�c�i���h�i�g���[�^�a�i�Z�g�P�'�R���#�h�e�a�^�i���¹�»�¹�� to obtain the
following array with three elements

�P�»�1�i�n�e�Z���»�!���»�Z�m�X�Z�e�i�^�d�c�h�#�E�Z�c�Y�^�c�\�9�Z�e�g�Z�X�V�i�^�d�c�L�V�g�c�^�c�\�¼�!���»�3�¼�R

The next step is to extract the second array element and split the remaining text in
two. You use �e�g�^�c�i���h�i�g���[�^�a�i�Z�g�P�'�R���#�h�e�a�^�i���¹�»�¹���P�&�R�#�h�e�a�^�i���»�#�»�� to perform
this task and the output looks like this:

�P�»�Z�m�X�Z�e�i�^�d�c�h�¼�!���»�E�Z�c�Y�^�c�\�9�Z�e�g�Z�X�V�i�^�d�c�L�V�g�c�^�c�\�¼�R

The �nal step is to extract the second array element again and print it to screen. So
the �nal statement is �e�g�^�c�i���h�i�g���[�^�a�i�Z�g�P�'�R���#�h�e�a�^�i���¹�»�¹���P�&�R�#�h�e�a�^�i���»�#�»���P�&�R.
Even though this code looks complex, it really isn’t once you take it apart.

Understanding IronPython Warnings �X 249

Working with Messages
A message is simply the text that you want to appear as part of the warning. The message is speci�c
information about the warning so that someone viewing the warning will know precisely why the
warning is issued. For example, if you issue a �9�Z�e�g�Z�X�V�i�^�d�c�L�V�g�c�^�c�\ category warning, the output will
automatically tell the viewer that something is deprecated. As a result, your message doesn’t have to
tell the viewer that something is deprecated, but it does have to tell the viewer what is deprecated. In
many cases, this means supplying the name of the feature such as a method name, attribute, function,
or even a class.

Simply telling someone that a feature is deprecated usually isn’t enough information. At a mini -
mum, you must include information about an alternative. For example, you might want to suggest
another class or a different function. Even if there is no alternative, you should at least tell the
viewer that there isn’t an alternative. Otherwise, the viewer is going to spend hours looking for
something that doesn’t exist.

You can’t always tell someone why something is deprecated, but you should when you can. For
example, it would be helpful to know that an old func tion is unstable and that the new function
�xes this problem. It’s a good idea to extend this information by saying that the old function is
supplied for backward compatibility (assuming that thi s really is the case).

In some cases, you also need to provide some idea of when a feature is deprecated, especially if the
action occurs in the future. Perhaps your organization knows that a function is unstable but hasn’t
come up with a �x yet. The �x will appear in the nex t version of a module as a new function. Having
this information will help organizations that rely on y our module to plan ahead for required updates.

The point of messages is that they should provide robust information — everything that someone
needs to make good decisions. Of course, you don’t want to provide too much information either
(anything over three well-written sentences is too much). If you feel the viewer needs additional infor-
mation, you can always provide it as part of the feature’s help. That way, people who are curious can
always �nd more information. Make sure you note the availability of additional information as part
of your message.

Message consistency is another consideration. Remember that �lters work with messages as well as
categories and other warning elements. If two modules require the same message, make sure you use
the same message to ensure �ltering works as anticipated. In fact, copying and pasting the message
is encouraged to reduce the risk of typographical errors.

If you ever want to see how your message will appear to others, you can use the �[�d�g�b�V�i�l�V�g�c�^�c�\����
function to perform the task. Try it out now. Open a copy of the IronPython console and try the
following code.

�^�b�e�d�g�i���l�V�g�c�^�c�\�h��
�l�V�g�c�^�c�\�h�#�[�d�g�b�V�i�l�V�g�c�^�c�\���»�7�V�Y���>�c�e�j�i�¼�!���J�h�Z�g�L�V�g�c�^�c�\�!���»�B�n�#�e�n�¼�!���*�!���»�^�b�e�d�g�i���l�V�g�c�^�c�\�h�¼��

You’ll see results similar to those shown in Figure 12-5. Notice that the output contains linefeeds
like this: �»�B�n�#�e�n�/�*�/���J�h�Z�g�L�V�g�c�^�c�\�/���7�V�Y���>�c�e�j�i�Q�c�����^�b�e�d�g�i���l�V�g�c�^�c�\�h�Q�c�». When you work with
the printed version, the warning appears on multiple lines, as shown near the bottom of Figure 12-5.

250 �X CHAPTER 12 DEBUGGING IRONPYTHON APPLICATIONS

FIGURE 12�5: Use formatwarning() to see how your warning will appear.

Of course, it’s handy to know the arguments for the �[�d�g�b�V�i�l�V�g�c�^�c�\���� function. The following list
provides a brief description of each argument.

�°�� Message: The message you want to display to the user.

���° Category: The warning category you want to use.

���° Filename: The name of the �le where the warning occurred (not necessarily the current �le).

���° Line number: In most cases, this value contains the line at which the warning is detected, which
isn’t always the line at which the warning occurs. For example, it’s possible for a warning to
appear at the end of a structure, rather than at the appropriate line within the structure.

���° Line of code: An optional entry that shows the line of code at which the warning occurs.
If you don’t supply this argument, the �[�d�g�b�V�i�l�V�g�c�^�c�\�h���� function defaults to a value of
�C�d�c�Z. The IronPython implementation differs from the standard in this regard. According
to the standard, the interpreter is supposed to read the �le, obtain the correct line of code,
and display the speci�ed line when you don’t provide the appropriate text.

Working with Categories
A warning category is a means of identifying a particular kind of warning. The category makes it pos-
sible to group like warnings together and reduces the risk that someone will misinterpret the meaning
of a message. In short, a category is a way to pigeonhole a particular message so that others know
what you intend. Of course, �ltering considers the warning category, so you also need to use the cor-
rect category to ensure �ltering works as expected. Table 12-3 contains a list of the warning message
categories, including a general �L�V�g�c�^�c�\ class that you shouldn’t ever use because it’s too general.

TABLE 12�3: Warning Message Categories

CLASS DESCRIPTION

DeprecationWarning Used to display warnings about applications that use deprecated
(outdated) features. Normally, these warnings provide an alterna-
tive feature you should use in place of the deprecated feature.

Understanding IronPython Warnings �X 251

CLASS DESCRIPTION

FutureWarning Used to display warnings about applications that use features
that will change sometime in the future. For example, the class,
method, attribute, or function might change in an update of the
Python speci�cation. In most cases, you should keep the future
update in mind, but not change your application today unless
the new feature is available and debugged.

ImportWarning Triggered when an application imports a module. The module
is still usable and likely doesn’t contain any problems (unless
you see other warnings). The interpreter generally ignores
these warnings.

PendingDeprecationWarning Used to display warnings about applications that use
features that will be deprecated sometime in the future (as
opposed to the change indicated by the FutureWarning cat-
egory). In most cases, you won’t need to change your applica-
tion immediately, but you should change it to use an updated
feature soon.

RuntimeWarning Speci�es that one or more features are based on suspect run-
time functionality (such as modules that aren’t fully tested). In
most cases, this warning indicates that your application is likely
to fail more often or su�er other reliability issues.

SyntaxWarning Indicates that the application will run, but that it contains some
suspect syntax. Perhaps the syntax isn’t approved or is simply
non-standard. Finding standardized methods for creating the
application syntax is a good way to avoid this warning.

UnicodeWarning Triggered whenever an application experiences some problem
with Unicode implementation. Although this warning may not
a�ect some languages, it could a�ect languages that rely on an
extended character set.

UserWarning Provides the default category for the �l�V�g�c���� function. This
warning level is for issues related to user code. For example,
input from a user code function is supposed to provide the loca-
tion of a logging �le on disk, but your module can’t �nd the log -
ging �le. Your code won’t fail without the information, but it can’t
create the logging information either.

Warning Provides the implementation of all warning subclasses.
It’s a subclass of the �:�m�X�Z�e�i�^�d�c class. This is a warning
category that you use to create new warning categories.
There is never a good reason to use this category to generate
warning messages.

252 �X CHAPTER 12 DEBUGGING IRONPYTHON APPLICATIONS

The warning categories are used with almost every �l�V�g�c�^�c�\�h module function. For example, you
supply a category when setting a �lter or creating a new message. There is always an exception. The
�g�Z�h�Z�i�l�V�g�c�^�c�\�h���� function doesn’t require any input, not even a warning category, because it resets
the entire warning environment to a default state.

OBTAINING ERROR INFORMATION

Errors will happen in your application, even if you use good exception handling. The handlers you
create only react to the errors you know about. Applications also encounter unknown errors. In this
case, your application has to have a way to obtain error information and display it to the user (or at
least record it in a log �le).

It’s important to remember that you normally obtain error information in an application using the
exception process described in the “De�ning and Using Exceptions” section of this chapter. This
section of the chapter is more designed for those situations where you need to work with a generic
exception or obtain more detailed information than the speci�c exceptions provide.

As with many things, IronPython provides a number of methods for obtaining error information.
In fact, you might be surprised at how many ways you can retrieve information once you really start
looking. The following sections discuss the most common methods for obtaining error information.

Using the sys Module
The �h�n�h module contains a wealth of useful functions and attributes you use to obtain, track,
and manage error information. One of the �rst things you should know about the �h�n�h module is
that it contains the �h�n�h�#�h�i�Y�Z�g�g attribute, which de�nes where the interpreter sends error output.
Normally, the output goes to the console window, but you can redirect the error output to any
object that has a �l�g�^�i�Z���� method associated with it, such as a �le. If you want to later reset the
�h�n�h�#�h�i�Y�Z�g�g attribute to the console, the �h�n�h�#�T�T�h�i�Y�Z�g�g�T�T attribute always contains the original
output location, so using �h�n�h�#�h�i�Y�Z�g�g���2���h�n�h�#�T�T�h�i�Y�Z�g�g�T�T performs a reset.

Obtaining error information seems like it should be straightforward, but it’s harder than most develop-
ers initially think because obtaining error information often affects application execution in unforeseen
ways. In addition, ensuring that the caller receives the right information in a multithreaded application
is dif�cult. The caller could also make unfortunate changes to error information objects, such as the
�i�g�V�X�Z�W�V�X�` object, creating problems with circular references that the garbage collector is unable to
handle. Consequently, you �nd a lot of functions in �h�n�h that look like they should do something use-
ful (and this section covers them), but the two functions you need to keep in mind when working with
IronPython are.

�°�� �h�n�h�#�Z�m�X�T�^�c�[�d����: Returns a �i�j�e�a�Z containing three items:

���° �i�n�e�Z: The type of the error, such as �O�Z�g�d�9�^�k�^�h�^�d�c�:�g�g�d�g. You can �nd a list of all
standard exception types in the �Z�m�X�Z�e�i�^�d�c�h module.

���° �k�V�a�j�Z: The human readable string that de�nes the error. For example,
a �O�Z�g�d�9�^�k�^�h�^�d�c�:�g�g�d�g might provide
�O�Z�g�d�9�^�k�^�h�^�d�c�:�g�g�d�g���»�6�i�i�Z�b�e�i�Z�Y���i�d���Y�^�k�^�Y�Z���W�n���o�Z�g�d�#�»�!�� as a value.

Obtaining Error Information �X 253

���° �i�g�V�X�Z�W�V�X�`: An object that describes the stack trace for an exception. Normally, you
won’t use this information directly unless you truly need to obtain the stack trace
information, which can prove dif�cult. If you need stack trace information, consider
using the �i�g�V�X�Z�W�V�X�` module features instead (see the “Using the traceback Module”
section of this chapter for details).

���° �h�n�h�#�Z�m�X�T�X�a�Z�V�g����: Clears the existing exceptions from the current thread. After you call this
function, �h�n�h�#�Z�m�X�T�^�c�[�d���� returns �C�d�c�Z for all three elements in the �i�j�e�a�Z.

The �h�n�h�#�Z�m�X�T�^�c�[�d���� function isn’t very hard to use, but you can’t really try it out by executing it
directly in the IronPython console. You need to place it within a �i�g�n�#�#�#�Z�m�X�Z�e�i structure instead.
The following code shows a quick demonstration you can type directly into the console window.

�i�g�n�/
���������*�$�%
�Z�m�X�Z�e�i�/
���������i�n�e�Z�!���k�V�a�j�Z���2���h�n�h�#�Z�m�X�T�^�c�[�d�����P�/�'�R
���������e�g�^�c�i���i�n�e�Z
���������e�g�^�c�i���k�V�a�j�Z

The example uses a simple division by zero to create an exception. As previously noted, you normally
need just the �rst two elements of the �i�j�e�a�Z, which you can obtain using �h�n�h�#�Z�m�X�T�^�c�[�d�����P�/�'�R. When
you execute this code, you see the following output.

�1�i�n�e�Z���»�Z�m�X�Z�e�i�^�d�c�h�#�O�Z�g�d�9�^�k�^�h�^�d�c�:�g�g�d�g�¼�3
�6�i�i�Z�b�e�i�Z�Y���i�d���Y�^�k�^�Y�Z���W�n���o�Z�g�d�#

Some IronPython �h�n�h module functions affect only the interactive thread (which means they’re
safe to use in multithreaded applications because there is only one interactive thread in any given
session). You could use these functions to determine the current type, value, and �i�g�V�X�Z�W�V�X�` for an
exception, but only for the interactive session, which means these functions are completely useless
for your application. In most cases, you avoid using these three functions.

�° �h�n�h�#�a�V�h�i�T�i�g�V�X�Z�W�V�X�`������

�h�n�h�#�a�V�h�i�T�i�n�e�Z�������°

�h�n�h�#�a�V�h�i�T�k�V�a�j�Z�������°

You could run into problems when working with some f unctions in the �h�n�h module. For example,
these three functions are global, which means they aren’t speci�c to the current thread and are
therefore, unsafe to use in a multithreaded application.

�° �h�n�h�#�Z�m�X�T�i�n�e�Z������

�h�n�h�#�Z�m�X�T�k�V�a�j�Z�������°

�h�n�h�#�Z�m�X�T�i�g�V�X�Z�W�V�X�`�������°

Interestingly enough, these three functions are also listed as deprecated (outdated) in most Python
implementations (including IronPython). As with all Ir onPython modules, you also have access to

254 �X CHAPTER 12 DEBUGGING IRONPYTHON APPLICATIONS

low-level functions in the �h�n�h module. The following list is low-level modules you can use for special
needs, but won’t normally use in your application.

�° �� �h�n�h�#�Z�m�X�Z�e�i�]�d�d�`���i�n�e�Z�!�� �k�V�a�j�Z�!�� �i�g�V�X�Z�W�V�X�`�� : The system calls this low-level function each
time it generates an exception. To use this function, you supply the same tuple of values as
you receive when you call �h�n�h�#�Z�m�X�T�^�c�[�d����.

���° �h�n�h�#�T�\�Z�i�[�g�V�b�Z���P�Y�Z�e�i�]�R��: The system calls this low-level function to display a frame
object from the call stack. If the caller supplies a �Y�Z�e�i�] value, the frame object is at that
call stack depth. The default �Y�Z�e�i�] value setting is 0. IronPython doesn’t appear to imple-
ment this function, but you may encounter it in other versions of Python, so it pays to
know about this function.

If you want to control how much information the inte rpreter provides when you request a �i�g�V�X�Z�W�V�X�`,
you can always set the �h�n�h�#�i�g�V�X�Z�W�V�X�`�a�^�b�^�i attribute. The �h�n�h�#�i�g�V�X�Z�W�V�X�`�a�^�b�^�i attribute defaults to
1,000. It doesn’t actually appear when you perform a �Y�^�g���� command. In fact, until you set it, printing
the �h�n�h�#�i�g�V�X�Z�W�V�X�`�a�^�b�^�i attribute returns an �6�i�i�g�^�W�j�i�Z�:�g�g�d�g. Use code like this

�h�n�h�#�i�g�V�X�Z�W�V�X�`�a�^�b�^�i���2���(

to modify the �i�g�V�X�Z�W�V�X�` level. Now when you try to print the �h�n�h�#�i�g�V�X�Z�W�V�X�`�a�^�b�^�i attribute, you
get back the value you supplied.

Using the traceback Module
The �i�g�V�X�Z�W�V�X�` module adds to the capabilities of the �h�n�h module described in the “Using the sys
Module” section of the chapter. In addition, it adds to the standard exception handling capabilities
of IronPython by making it easier to obtain complex information about exceptions in general. The
�i�g�V�X�Z�W�V�X�` module does focus on �i�g�V�X�Z�W�V�X�`s, which are the IronPython equivalent of a call stack.

The most common call is �i�g�V�X�Z�W�V�X�`�#�e�g�^�c�i�T�Z�m�X����. Essentially, this call prints out the current
exception information. You can use it in a �i�g�n�#�#�#�Z�m�X�Z�e�i structure, much as you’d use the
�h�n�h�#�Z�m�X�T�^�c�[�d���� function, but with fewer limitations. Figure 12-6 shows a typical view of
the �i�g�V�X�Z�W�V�X�`�#�e�g�^�c�i�T�Z�m�X���� function in action.

FIGURE 12�6: Obtain traceback information with ease using the traceback.print_exc() function.

Obtaining Error Information �X 255

You may �nd that you want a string that you can mani pulate, rather than direct output. In this case,
you use the �i�g�V�X�Z�W�V�X�`�#�[�d�g�b�V�i�T�Z�m�X���� function and place its output in a variable. The information is
the same as shown in Figure 12-6, but you have the full capability of string manipulation functions to
output the information in any form desired.

All of the �i�g�V�X�Z�W�V�X�` output functions include a �a�Z�k�Z�a argument that de�nes how many levels of
trace information you want. The default setting provides 1,000 levels, which may be a little more
information than you want. Many of the �i�g�V�X�Z�W�V�X�` output functions also include a �[�^�a�Z argument
that accepts the name of a �le you can use for output (such as application logging). If you don’t pro-
vide the �[�^�a�Z argument, it defaults to using the �h�n�h�#�h�i�Y�Z�g�g device (normally the console).

Some of the �i�g�V�X�Z�W�V�X�` functions are macros for longer function combinations. For example, when you
type �i�g�V�X�Z�W�V�X�`�#�e�g�^�c�i�T�a�V�h�i����, what you’re really doing is executing �e�g�^�c�i�T�Z�m�X�Z�e�i�^�d�c���h�n�h�#�a�V�h�i�T
�i�n�e�Z�!���h�n�h�#�a�V�h�i�T�k�V�a�j�Z�!���h�n�h�#�a�V�h�i�T�i�g�V�X�Z�W�V�X�`�!���a�^�b�^�i�!���[�^�a�Z��. Obviously, typing �i�g�V�X�Z�W�V�X�`��
�#�e�g�^�c�i�T�a�V�h�i���� is a lot less work!

IronPython is missing some extremely important functionality when it comes to the �i�g�V�X�Z�W�V�X�` mod-
ule. You can’t use �i�g�V�X�Z�W�V�X�`�#�e�g�^�c�i�T�h�i�V�X�`����, �i�g�V�X�Z�W�V�X�`�#�Z�m�i�g�V�X�i�T�h�i�V�X�`����, or �i�g�V�X�Z�W�V�X�`�#�[�d�g�b�V�i�T
�h�i�V�X�`���� to obtain current stack information. The code shown in Figure 12-7 is standard output when
working with Python. Figure 12-8 shows what happens when you execute this code in IronPython.
Instead of getting a nice stack trace you can use for debugging (see Figure 12-7), you get nothing at all
(see Figure 12-8). This is a known issue (see the issue information at �]�i�i�e�/�$�$�^�g�d�c�e�n�i�]�d�c�#�X�d�Y�Z�e�a�Z�m��
�#�X�d�b�$�L�d�g�`�>�i�Z�b�$�K�^�Z�l�#�V�h�e�m�4�L�d�g�`�>�i�Z�b�>�Y�2�'�*�*�)�().

FIGURE 12�7: Python provides full stack information you can use for debugging.

256 �X CHAPTER 12 DEBUGGING IRONPYTHON APPLICATIONS

FIGURE 12�8: IronPython lacks support for stack traces, making debugging signi�cantly more di�cult.

The �i�g�V�X�Z�W�V�X�` module contains a number of interesting functions that you can use to debug your
application. You can see these functions described at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�i�g�V�X�Z�W�V�X�`��
�#�]�i�b�a. Don’t assume that all of these functions work as they do in Python. There are currently a num-
ber of outstanding �i�g�V�X�Z�W�V�X�` module issues for IronPython.

DEBUGGING WITH THE PYTHON DEBUGGER

You might not know it, but Python and IronPython com e with a debugger module, �e�Y�W (for Python
debugger). Like any module, you have full access to the debugger source code and can modify it as
needed. This section describes the default debugger performance.

It’s possible to use �e�Y�W with any Python �le by invoking the debugger at the command line using the
�·�b command line switch. Here’s how you’d invoke it for the example shown in Listing 12-1.

�>�E�N���"�b���e�Y�W���H�]�d�l�;�^�a�i�Z�g�h�#�e�n

Unfortunately, using this command line format limits what you can do with the debugger. Although
you can single step through code, you can’t work with variables easily and some other debugger
commands may not work as anticipated.

The debugger works better if you con�gure your application to use a �b�V�^�c���� module. Most of the
examples in this book don’t use a �b�V�^�c���� function for the sake of simplicity, but you should use one
for any production code you create. The �H�]�d�l�;�^�a�i�Z�g�h�'�#�e�n �le contains the modi�cations to provide

Debugging with the Python Debugger �X 257

a �b�V�^�c���� function. Essentially, you encase the code in Listing 12-1 in the �b�V�^�c���� function and then
call it using the following code:

�����8�g�Z�V�i�Z���V�c���Z�c�i�g�n���e�d�^�c�i���[�d�g���Y�Z�W�j�\�\�^�c�\�#
�^�[���T�T�c�V�b�Z�T�T���2�2���¹�T�T�b�V�^�c�T�T�¹�/
�������b�V�^�c����

Using the debugger is very much like old-style DOS debuggers such as the Debug utility. You issue
commands and the debugger responds without output based on the application environment and
variable content. The lack of a visual display may prove troublesome to developers who have never
used a character-mode debugger, but �e�Y�W is actually more effective than any of the graphical alter-
natives in helping you locate problems with your application — at least, in the Python code. Use
these steps to start the �e�Y�W:

1. Start the IronPython console by selecting it from the Start menu or typing �>�E�N at the
command line.

2. Type �^�b�e�d�g�i���e�Y�W and press Enter to import the Python debugger.

3. Type �^�b�e�d�g�i���6�e�e�a�^�X�V�i�^�d�c�C�V�b�Z where �6�e�e�a�^�X�V�i�^�d�c�C�V�b�Z is the name of the �le that
contains your application and press Enter. For example, if your application appears in
�H�]�d�l�;�^�a�i�Z�g�h�'�#�e�n, then you’d type �^�b�e�d�g�i���H�]�d�l�;�^�a�i�Z�g�h�' (without the �le extension)
and press Enter.

4. Type �e�Y�W�#�g�j�c���»�6�e�e�a�^�X�V�i�^�d�c�C�V�b�Z�#�;�j�c�X�i�^�d�c�C�V�b�Z�����»�� where �6�e�e�a�^�X�V�i�^�d�c�C�V�b�Z is the
name of the application and �;�j�c�X�i�^�d�c�C�V�b�Z is the name of the function you want to test, and
press Enter. For example, if your application is named �H�]�d�l�;�^�a�i�Z�g�h�' and the function you
want to test is �b�V�^�c����, you’d type �e�Y�W�#�g�j�c���»�H�]�d�l�;�^�a�i�Z�g�h�'�#�b�V�^�c�����»�� and press Enter. The
standard console prompt changes to a �e�Y�W prompt, as shown in Figure 12-9.

FIGURE 12�9: The Python debugger uses a special pdb prompt where you can enter debugging commands.

Now that you have a debugger prompt, you can begin debugging your application. Here is a list of
standard debugger commands you can issue:

�°�� a or args: Displays the list of arguments supplied to the current function. If there aren’t any
arguments, the call simply returns without displaying anything.

���° alias: Creates an alias for a complex command. For example, you might need to use a �[�d�g
loop to drill down into a �a�^�h�i to see its contents. You could use an alias to create a com-
mand to perform that task without having to write the complete code every time. An alias
can include replaceable variables, just as you would use for a batch �le.

258 �X CHAPTER 12 DEBUGGING IRONPYTHON APPLICATIONS

�° �� b or break: De�nes a breakpoint when you supply a line number or a function name. When
you provide a function name, the breakpoint appears at the �rst executable line within the
function. If an application spans multiple �les, you can specify a �lename, followed by a
colon, followed by a line number (no function name allowed), such as �H�]�d�l�;�^�a�i�Z�g�h�'�/�&.
A breakpoint can also include a condition. To add the condition, follow the breakpoint
speci�cation with a comma and the condition you want to use, such as
�H�]�d�l�;�^�a�i�Z�g�h�'�/�'�!���;�^�a�i�Z�g���2�2���C�d�c�Z. If you type just b or break, the debugger shows the
current breakpoints. Use the �X�a or �X�a�Z�V�g command to clear breakpoints you create.

���° bt, w, or where: Prints a stack trace with the most current frame at the bottom of the list.
You can use this feature to see how the application arrived at the current point of execution.

���° c, cont, or continue: Continues application execution until the application ends or the debugger
encounters a breakpoint.

���° cl or clear: Clears one or more breakpoints. You can specify the breakpoint to clear by providing
one or more breakpoint numbers separated by spaces. As an alternative, you can supply a line
number or a �lename and line number combination (where the �lename and line number are
separated by a colon).

���° commands: De�nes one or more commands that execute when the debugger arrives at a line
of code speci�ed by a breakpoint. You include the optional breakpoint as part of the com-
mands command. If you don’t supply a breakpoint, then the commands command refers to
the last breakpoint you set. To stop adding commands to a breakpoint, simply type end. If
you want to remove the commands for a breakpoint, type commands, press Enter, type end,
and press Enter again. A command can consist of any interactive Python or debugger com-
mand. For example, if you want to automatically move to the next line of code, you’d simply
add step as one of the commands.

���° condition: Adds a condition to a breakpoint. You must supply a breakpoint number and a
Boolean statement (in string format) as arguments. The debugger doesn’t honor a breakpoint
with a condition unless the condition evaluates to �I�g�j�Z. The condition command lets you
add a condition to a breakpoint after de�ning the breakpoint, rather than as part of de�ning
the breakpoint. If you use condition with a breakpoint, but no condition, then the debugger
removes a condition from a breakpoint, rather than adding one.

���° d or down: Moves the frame pointer down one level in the stack trace to a new frame.

���° debug: Enters a recursive debugger that helps you debug complex statements.

���° disable: Disables one or more breakpoints so that they still exist, but the debugger ignores
them. You can separate multiple breakpoint numbers with spaces to disable a group of
breakpoints at once.

���° enable: Enables one or more breakpoints so that the debugger responds to them. You can
separate multiple breakpoint numbers with spaces to enable a group of breakpoints at once.
Enabling a breakpoint doesn’t override any conditions that are set on the breakpoint. The
condition must still evaluate to �I�g�j�Z before the debugger reacts to the breakpoint.

���° EOF: Tells the debugger to handle the End of File (EOF) as a command. Normally, this
means ending the debugger session once the debugger reaches EOF.

Debugging with the Python Debugger �X 259

���° exit or q or quit: Ends the debugging session. Make sure you type �Z�m�^�i, and not �Z�m�^�i����,
which still ends the IronPython console session.

���° h or help: Displays information about the debugger. If you don’t provide an argument, help
displays a list of available debugging commands. Adding an argument shows information
about the speci�c debugging command.

���° ignore: Creates a condition where the debugger ignores a breakpoint a speci�c number of times.
For example, you might want to debug a loop with a breakpoint set at a speci�c line of code
within the breakpoint. You could use the ignore command to ignore the �rst �ve times through
the loop and stop at the sixth. You must supply a breakpoint number and a count to use this
command. The debugger automatically ignores the breakpoint until the count is 0.

���° j or jump: Forces the debugger to jump to the line of code speci�ed as an argument.

���° l or list: Displays the speci�ed lines of code. If you don’t supply any arguments with the com-
mand, the debugger displays 11 lines of code starting with the current line. When you supply
just a starting point (a code line number), the debugger displays 11 lines of code starting with
the starting point you specify. To control the listing completely, supply both a starting and
ending point.

���° n or next: Continues execution to the next line of code. If the current line of code is a function,
the debugger executes all of the code within the function and stops at the next line of code in
the current function. In sum, this command works much like a step over command in most
other debuggers. (See return, step, and until for other stepping commands.)

p:���° Prints the value of an expression as the debugger sees it. Don’t confuse this command with
the IronPython �e�g�^�c�i���� function, which prints an expression based on how IronPython sees it.

���° pp: Performs a pretty print. Essentially, this command is the same as the �e command, except
that the debugger interprets any control characters within the output so that the output
appears with line feeds, carriage returns, tabs, and other formatting in place.

���° r or return: Continues execution until the current function returns. This command works
much like a step out command in most other debuggers (see next, step, and until for other
stepping commands).

���° restart: Restarts the current application at the beginning so that you can retest it. The com-
mand lets you supply optional arguments that appear as part of the �h�n�h�#�V�g�\�k attribute. This
command preserves debugger history, breakpoints, actions, and options.

���° run: Starts the application when used within Python as demonstrated earlier in this sec-
tion. However, this command is simply an alias for restart when used within the debugger
environment.

���° s or step: Executes the current line of code and then moves to the next line of code, even if
that line of code appears within another function. This command works much like a step into
command in most other debuggers (see next, return, and until for other stepping commands).

���° tbreak: Performs precisely like a break command, except that the debugger removes the
breakpoint when the debugger stops at it the �rst time. This is a useful command when you
want to execute a breakpoint just one time.

260 �X CHAPTER 12 DEBUGGING IRONPYTHON APPLICATIONS

�° �� u or up: Moves the frame pointer up one level in the stack trace to an old frame.

���° unalias: Removes the speci�ed alias (see the alias command for additional details).

���° unt or until: Continues execution until such time as the line number is greater than the cur-
rent line number or the current frame returns. This command works much like a combina-
tion of the step over and step out commands in most other debuggers (see next, return, and
step for other stepping commands).

���° whatis: Displays the type of the argument that you supply.

DEBUGGING WITH THE CLR DEBUGGER

The CLR debugger, �8�A�G�9�W�\�#�:�M�:, is part of the .NET Framework SDK. You �nd it in the �<�j�^�9�Z�W�j�\
folder of your .NET Framework installation or in the �Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�B�^�X�g�d�h�d�[�i�#�C�:�I�Q�H�9�@�Q�k�'�#�%�Q
�<�j�^�9�Z�W�j�\�Q folder. However, if you installed Visual Studio without installing th e SDK, you might
not see a �<�j�^�9�Z�W�j�\ folder. In this case, you can download and install the .NET Framework SDK
separately. You can obtain the .NET Framework SDK for various platforms at these locations.

�°�� .NET Framework 2.0: �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�Z�c�"�j�h�$�c�Z�i�[�g�V�b�Z�l�d�g�`�$�V�V�,�(�&�*�)�'�#�V�h�e�m

���° .NET Framework 3.0: �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�Z�c�"�j�h�$�c�Z�i�[�g�V�b�Z�l�d�g�`�$�W�W�'�+�)�*�-�.�#�V�h�e�m

���° .NET Framework 3.5: �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�Z�c�"�j�h�$�c�Z�i�[�g�V�b�Z�l�d�g�`�$�X�X�(�,�-�%�.�,�#�V�h�e�m

���° .NET Framework 3.5 SP1: �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�Z�c�"�j�h�$�c�Z�i�[�g�V�b�Z�l�d�g�`�$
�V�V�*�+�.�'�+�(�#�V�h�e�m

 This section relies on the �8�A�G�9�W�\�#�:�M�: version found in the .NET Framework 2.0 SDK. However, the
instructions work �ne for every other version of the C LR debugger as well. The newer versions of
the debugger may include a few additional features that you won’t likely use or need when working
with IronPython. The following steps describe how to start the debugger.

1. Start the CLR debugger. If you installed
the .NET Framework SDK separately,
choose Start�����¶����Programs�����¶����Microsoft .NET
Framework SDK v2.0�����¶����Tools�����¶����Microsoft
CLR Debugger. It’s also possible to start
the CLR debugger from the command line
by typing CLRDbg and pressing Enter as
long as the debugger’s location appears in
the path. You see the Microsoft CLR
Debugger window.

2. Choose Debug�����¶����Program to Debug. You
see the Program to Debug dialog box shown
in Figure 12-10. This dialog box is where you enter the IronPython executable and script
information, along with any command line switches you want to use.

FIGURE 12�10: Provide the information needed
to debug your application.

Debugging with the CLR Debugger �X 261

3. Click the ellipsis (...) in the Program �eld and use the Find Program to Debug dialog box to
locate the �>�E�N�#�:�M�: �le. Click Open to add the �>�E�N�#�:�M�: information to the dialog box.

4. Type –D NameOfScript.py in the Arguments �eld (the example uses �·�9���H�]�d�l�;�^�a�i�Z�g�h�'��
�#�e�n). Type any additional command line arguments you want to use while working with the
application.

5. Click the ellipses in the Working Directory �eld and use the Browse for Working Directory
dialog box to locate the script directory (not the �>�E�N�#�:�M�: directory). Click Open to select the
working directory.

6. Click OK. The CLR debugger prepares the debugging environment. However, you don’t see
any �les opened. You must open any �les you wish to interact with as a separate step.

7. Choose File�����¶����Open�����¶����File. Locate the source �les you want to debug (�H�]�d�l�;�^�a�i�Z�g�h�'�#�e�n
for the example). Click Open. You see the source �le opened in the Microsoft CLR Debugger
window. Figure 12-11 shows an example of how your display should look when working
with the example. (The �gure shows the debugger in debugging mode.)

FIGURE 12�11: Open the source �les you want to debug.

At this point, you can begin working with the script just as you would with the Visual Studio debugger.
The next section, “Using Visual Studio for IronPython Debugging,” discusses this debugger in more
detail. Make sure you review the debugger basics described in the “Debugging the Project” section of
Chapter 2 as well.

262 �X CHAPTER 12 DEBUGGING IRONPYTHON APPLICATIONS

USING VISUAL STUDIO FOR IRONPYTHON DEBUGGING

When you create a project for your IronPython application using the techniques described in the
“Using Visual Studio to Create IronPython Applications” section of Chapter 2, you also have access
to the Visual Studio debugger. The “Debugging the Project” section of Chapter 2 provides a good
overview of the functionality you have available to you. However, working with the ShowFilters2
example can provide a few additional insights not found in Chapter 2.

As mentioned in Chapter 2, you can set breakpoints, use the History window, and set watches for
your application. It’s the watches that really shine when working with complex objects. For example,
set a breakpoint at this line of code.

�e�g�^�c�i���»�6�X�i�^�d�c�/�¼�!���[�^�a�i�Z�g�P�%�R

When you click Start Debugging, the debugger stops at the line of code as you might expect. Now,
create a watch for both �[�^�a�i�Z�g and �[�^�a�i�Z�g�h. As shown in Figure 12-12, you can drill down into a
complex object and examine it. In many cases, you must look through the Non-Public Members to
�nd what you want, but the data is there for you to peruse. In this case, you can see all �ve elements
in �[�^�a�i�Z�g�h and even see the �e�V�i�i�Z�g�c data. Notice that the Type column is truly helpful in showing
you which types to use when interacting with the data.

FIGURE 12�12: Watches let you drill down into both Python and .NET data.

Unfortunately, Figure 12-12 also shows the other side of the coin. You can’t access �l�V�g�c�^�c�\�h��
�#�[�^�a�i�Z�g�h even though it should be available. The Visual Studio debugger often produces poor

De�ning and Using Exceptions �X 263

results when working with Python-speci�c objects. If you have a need for working with these
objects, the Python debugger described in the “Debugging with the Python Debugger” section of
this chapter is a better choice.

If you’re used to working with the Immediate window while debugging, it does have some use
when working with IronPython. As shown in Figure 12-13, you can use the Immediate window to
query objects directly. However, you can’t drill dow n into an object as you might have in the past.
Consequently, entering ? �lter works just �ne, but entering ? �lter[0] doesn’t.

FIGURE 12�13: The Immediate window is only partially useful when working with IronPython.

In general, you’ll �nd that using the Python debugger works better for some Python-speci�c appli-
cations. Even though the Visual Studio debugger does provide a nice visual display, the quality of
information isn’t quite as good. Of course, the picture changes when your application mixes Python
and .NET code. In this case, the Visual Studio debugger can be your best friend because it knows
how to work with the .NET objects.

DEFINING AND USING EXCEPTIONS

Exceptions are an essential part of any application. In fact, most developers have no problem using
them at all. Unfortunately, many developers also misuse exceptions. Instead of providing robust
code that handles common problems, the developer simply raises an exception and hopes someone
else does something about the issue. Exceptions are generally used to address conditions that you
couldn’t anticipate.

IronPython provides access to both Python exception and .NET exceptions, so the developer actually
has twice as many opportunities to catch errors before they become a problem. It’s important to use
the correct kind of exception handling. If you’re work ing with .NET code, you’ll normally use a .NET
exception. Python exceptions address anything that isn’t .NET-speci�c. The following sections provide
additional information about exceptions.

Implementing Python Exceptions
Python provides a number of standard exceptions, just as the .NET Framework does. You �nd these
exceptions in the �Z�m�X�Z�e�i�^�d�c�h module. To see the list of standard exceptions, import the �Z�m�X�Z�e�i�^�d�c�h
module and perform a �Y�^�g���� command on it, as shown in Figure 12-14.

264 �X CHAPTER 12 DEBUGGING IRONPYTHON APPLICATIONS

FIGURE 12�14: Python stores its list of standard exceptions in the exceptions module.

The various exceptions provide different amounts of information. For example, when working with
an �>�D�:�g�g�d�g, you can access the �Z�g�g�c�d, �[�^�a�Z�c�V�b�Z, �b�Z�h�h�V�\�Z, and �h�i�g�Z�g�g�d�g attributes. On the other
hand, a �O�Z�g�d�9�^�k�^�h�^�d�c�:�g�g�d�g provides only the �b�Z�h�h�V�\�Z attribute. You can use the �Y�^�g���Z�m�X�Z�e�i�^�d�c�h��
�#�:�m�X�Z�e�i�^�d�c�C�V�b�Z�� command to obtain information about each of the exception attributes.

As with .NET, you can create custom exceptions using Python. The documentation for creating
a custom exception is a bit sketchy, but you can create a custom exception (usually with the word
Error in the name by convention) for every need. Listing 12-2 shows all of the Python exception
basics, including creating a relatively �exible custom exception.

LISTING 12�2: Discovering the default action and installed �lters

�����>�b�e�d�g�i���i�]�Z���g�Z�f�j�^�g�Z�Y���b�d�Y�j�a�Z�h�#
�^�b�e�d�g�i���Z�m�X�Z�e�i�^�d�c�h

�����9�Z�[�^�c�Z���V���X�j�h�i�d�b���Z�m�X�Z�e�i�^�d�c�#��
�X�a�V�h�h���B�n�:�g�g�d�g���Z�m�X�Z�e�i�^�d�c�h�#�:�m�X�Z�e�i�^�d�c���/
�������Z�g�g�c�d���2���%
�������b�Z�h�h�V�\�Z���2���»�C�d�i�]�^�c�\�¼
�������Y�Z�[���T�T�^�c�^�i�T�T���h�Z�a�[�!���Z�g�g�c�d�2�%�!���b�Z�h�h�V�\�Z�2�¼�C�d�i�]�^�c�\�¼���/
�������������h�Z�a�[�#�Z�g�g�c�d���2���Z�g�g�c�d
�������������h�Z�a�[�#�b�Z�h�h�V�\�Z���2���b�Z�h�h�V�\�Z
�������Y�Z�[���T�T�h�i�g�T�T���h�Z�a�[���/
�������������g�Z�i�j�g�c���g�Z�e�g���h�Z�a�[�#�b�Z�h�h�V�\�Z��

�����9�^�h�e�a�V�n���i�]�Z���:�g�g�d�g���Z�m�X�Z�e�i�^�d�c���a�^�h�i�#
�[�d�g���:�g�g�d�g���^�c���Y�^�g���Z�m�X�Z�e�i�^�d�c�h���/
�������^�[���»�:�g�g�d�g�¼���^�c���:�g�g�d�g�/
�������������e�g�^�c�i���:�g�g�d�g

�����8�g�Z�V�i�Z���V���h�i�V�c�Y�V�g�Y���Z�m�X�Z�e�i�^�d�c�#
�i�g�n�/
�������*�$�%

De�ning and Using Exceptions �X 265

�Z�m�X�Z�e�i���O�Z�g�d�9�^�k�^�h�^�d�c�:�g�g�d�g���V�h�����Z�g�g�^�c�[�d���/
�������e�g�^�c�i���¹�Q�c�9�^�k�^�Y�Z���W�n���O�Z�g�d���Z�g�g�d�g�/���p�%�r�¹�#�[�d�g�b�V�i���Z�g�g�^�c�[�d��

�����8�g�Z�V�i�Z���V���X�j�h�i�d�b���Z�m�X�Z�e�i�^�d�c�#
�i�g�n�/
�������g�V�^�h�Z���B�n�:�g�g�d�g���*�!���»�=�Z�a�a�d���[�g�d�b���B�n�:�g�g�d�g�¼��
�Z�m�X�Z�e�i���B�n�:�g�g�d�g�!���>�c�[�d�/
�������e�g�^�c�i���¹�8�j�h�i�d�b���:�g�g�d�g���p�%�r���/���p�&�r�¹�#�[�d�g�b�V�i���>�c�[�d�#�Z�g�g�c�d�!���>�c�[�d�#�b�Z�h�h�V�\�Z��

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins by importing �Z�m�X�Z�e�i�^�d�c�h. The �[�d�g loop lists all of the exceptions
(the names of the types) found in exceptions, as shown in Figure 12-15. Notice how the code uses
�^�[���»�:�g�g�d�g�»���^�c���:�g�g�d�g to locate just the exceptions in the module. This technique is useful for a lot
of tasks in IronPython where you need to �lter the output in some way.

FIGURE 12�15: The example shows basic exception handling and creation for Python.

The next bit of code raises a standard exception and then handles it. The output shows just a message.
Notice that this exception relies on the �V�h clause to access the error information.

266 �X CHAPTER 12 DEBUGGING IRONPYTHON APPLICATIONS

It’s time to look at a custom exception, which begins with the �B�n�:�g�g�d�g class de�nition. At a
minimum, you should de�ne both �T�T�^�c�^�i�T�T���� and �T�T�h�i�g�T�T���� or the exception won’t work as
intended. Notice how �T�T�^�c�^�i�T�T���� assigns default values to both �Z�g�g�c�d and �b�Z�h�h�V�\�Z. You can’t
depend on the caller to provide this information, so including default values is the best way to ap-
proach the problem. You can always assign other values later in the code based on the actual errors.

Make sure you create attributes for any amplifying information you want the caller to have. In this
case, the example de�nes two attributes �Z�g�g�c�d and �b�Z�h�h�V�\�Z.

The �T�T�h�i�g�T�T���� method should return a human-readable message. You can return just the text
portion of the exception or return some combination of exception attributes. The important thing
is to return something that the developer will �nd u seful should the exception occur. You can test
this behavior out with the example by typing �g�V�^�h�Z���B�n�:�g�g�d�g. Here’s the output you’ll see.

�I�g�V�X�Z�W�V�X�`�����b�d�h�i���g�Z�X�Z�c�i���X�V�a�a���a�V�h�i���/
�����;�^�a�Z���¹�1�h�i�Y�^�c�3�º�!���a�^�c�Z���&�!���^�c���1�b�d�Y�j�a�Z�3
�T�T�b�V�^�c�T�T�#�B�n�:�g�g�d�g�/���»�C�d�i�]�^�c�\�¼

Because you didn’t provide any arguments, the output shows the default values. Try various
combinations to see how the output works. The example tries the exception in a �i�g�n�#�#�#�Z�m�X�Z�e�i
statement. Notice that a custom exception differs from a standard exception in that you don’t use
the �V�h clause and simply provide a comma with a variable (�>�c�[�d in this case) instead. You can then
use the variable to access the exception attributes as shown. Figure 12-15 shows how the custom
exception outputs information. Of course, your custom exception can provide any combination of
values.

Implementing .NET Exceptions
In general, you want to avoid using .NET exceptions in your IronPython applications, except in those
cases where you need to provide speci�c functionality for .NET code. The problem is that IronPython
views such exceptions from a Python perspective. Consequently, trapping .NET exceptions can prove
tricky unless you spend some time working with them in advance.

Many .NET exceptions are available in the �H�n�h�i�Z�b assembly so you need to import it before
you can perform any serious work. After that, you can �g�V�^�h�Z a .NET exception much as you do
a Python exception. Handling the exception follows the same route as using a �i�g�n�#�#�#�Z�m�X�Z�e�i
statement. However, the problem is that the exception you get isn’t the exception you raised.
Look at Figure 12-16 and you see that the �6�g�\�j�b�Z�c�i�:�m�X�Z�e�i�^�d�c becomes a �K�V�a�j�Z�:�g�g�d�g and the
�6�g�^�i�]�b�Z�i�^�X�:�m�X�Z�e�i�^�d�c becomes an �6�g�^�i�]�b�Z�i�^�X�:�g�g�d�g.

USING IRONPYTHON CONSTRUCTIVELY

This chapter has shown you some practical techniques for debugging your IronPython application.
In some respects, IronPython actually makes things easier for you by forcing you to use good coding
practice to write your applications. Sloppy programming will cost you so much time as to make the
programming experience a nightmare. Using a combination of warnings, error trapping, and excep-
tions will make your code signi�cantly easier to debug. Of course, choosing the right debugging tool
is also a requirement if you want to go home this weekend, rather than spending it in your of�ce
debugging your latest application.

Using IronPython Constructively �X 267

FIGURE 12�16: IronPython tends to change the name of .NET exceptions.

You’ll get plenty of practice debugging applications. Even experts create applications that don’t
behave as expected. However, sometimes it’s educational to create an application that you use to
experiment. Write the application, make sure it doesn’t actually contain any bugs, and then introduce
bugs to see how various tools work in �nding them. Work ing with known bugs can help you discover
what unknown bugs look like based on their pattern. Fixing known bugs also helps you discover new
techniques for handling bugs so that you can locate and repair bugs in production applications faster.

Chapter 13 begins a new part of the book. In this part, you begin working through some advanced
IronPython capabilities — some of which you can also perform in Python (such as reading and writ-
ing XML), and some that might prove dif�cult when wor king with Python (such as interacting with
another .NET language). Chapter 13 begins simply by working through the intricacies of XML
development. You’ll �nd that IronPython provides many methods of working with XML. Of course,
you might �nd uses for the debugging techniques covered in this chapter as you work through these
advanced IronPython topics.

PART IV
Advanced IronPython Topics

CHAPTER 13:� Working with XML data

CHAPTER 14:� Interacting with the DLR

CHAPTER 15:� Using IronPython from Other .NET Languages

CHAPTER 16:� Extending IronPython Using C#

CHAPTER 17:� Extending IronPython Using Visual Basic.NET

CHAPTER 18:� Using IronPython for Application Testing

CHAPTER 19:� Using IronPython with Mono

Working with XML Data

WHAT’S IN THIS CHAPTER?

�° Interacting with XML using the .NET XML classes��

Interacting with XML using the XMLUtil module���°

Interacting with XML using the Python modules���°

The eXtensible Markup Language (XML) is one of the easiest ways to move data between sys-
tems without losing the data context. (Although every system on the planet accepts text data,
you can’t incorporate context with text data.) In ad dition, Web services and many applications
use XML as an essential data storage strategy. In short, anyone writing an application today is
bound to run into some form of XML. Fortunately, Iro nPython provides robust XML handling
capabilities that don’t require you to jump through too many hoops (unlike some languages that
make it nearly impossible to perform some XML tasks).

When working with IronPython, you have three choices for working with XML: the .NET
Framework, XMLUtil, and Python modules. This chapter provides an overview of all three
techniques. When you �nish this chapter, you should have a good idea of what each technique
can do for you and understand the basics of using each technique.

XML comes in a number of forms. In fact, XML comes in so many forms that it
would be quite easy to write an entire book on just one of the techniques described
in this chapter, much less all three. Consequently, you shouldn’t consider this chap-
ter the end of the IronPython XML experience. Rather, you should consider it a
good start that you can use to �nd additional information that meets your speci�c
programming needs. The chapter does provide online references as needed to help
you obtain more information about IronPython’s suppo rt for XML.

13

272 �X CHAPTER 13 WORKING WITH XML DATA

USING THE .NET XML FUNCTIONALITY

If you know how to work with XML in .NET languages s uch as C#, then you already know how
to perform the same tasks in IronPython because you can import the �H�n�h�i�Z�b�#�M�b�a assembly to gain
full access to this functionality. Because the XML capabilities of the .NET Framework are so well
de�ned, using the �H�n�h�i�Z�b�#�M�b�a assembly may be all you need to perform tasks within your applica-
tion. The main issue to consider is how you plan to use your application later. For example, if you
plan to move your application to another platform, then using the .NET Framework solution won’t
work. In addition, you need to consider data type translation in IronPython. The .NET data types
that you use normally are translated into their IronPython counterparts, which could prove confus-
ing for some developers. With these factors in mind, the following sections provide an overview of
XML support in the .NET Framework from the IronPython perspective.

Considering the System.Xml Namespace
The �H�n�h�i�Z�b�#�M�b�a namespace provides access to the various classes used to interact with XML data.
You use these classes to read, write, interpret, edit, build, and otherwise manage XML data. For
example, you might use the �M�b�a�9�Z�X�a�V�g�V�i�^�d�c class to begin building an XML data �le from scratch
when needed. All of these classes depend heavily on standards to ensure the �le you create using
IronPython is readable by other languages and applications. In fact, the �H�n�h�i�Z�b�#�M�b�a namespace
supports these standards and speci�cations.

�°�� XML 1.0 (including Document Type De�nition, DTD, support): �]�i�i�e�/�$�$�l�l�l�#�l�(�#�d�g�\�$
�I�G�$�&�.�.�-�$�G�:�8�"�m�b�a�"�&�.�.�-�%�'�&�%

���° XML Namespaces (both stream level and Document Object Model, DOM):
�]�i�i�e�/�$�$�l�l�l�#�l�(�#�d�g�\�$�I�G�$�G�:�8�"�m�b�a�"�c�V�b�Z�h�$

���° XSD Schemas: �]�i�i�e�/�$�$�l�l�l�#�l�(�#�d�g�\�$�'�%�%�&�$�M�B�A�H�X�]�Z�b�V

���° XPath expressions: �]�i�i�e�/�$�$�l�l�l�#�l�(�#�d�g�\�$�I�G�$�m�e�V�i�]

���° XSLT transformations: �]�i�i�e�/�$�$�l�l�l�#�l�(�#�d�g�\�$�I�G�$�m�h�a�i

���° DOM Level 1 Core: �]�i�i�e�/�$�$�l�l�l�#�l�(�#�d�g�\�$�I�G�$�G�:�8�"�9�D�B�"�A�Z�k�Z�a�"�&�$

���° DOM Level 2 Core: �]�i�i�e�/�$�$�l�l�l�#�l�(�#�d�g�\�$�I�G�$�9�D�B�"�A�Z�k�Z�a�"�'�$

Developing a Basic .NET XML Application
A .NET XML application will follow most of the same principles you use when work ing with a
static language such as C# or Visual Basic.NET. In fact, you might not notice much difference at all
except for the obvious structural requirements of a Python application. Consequently, you should
�nd it easy to move your XML code over to IronPython because you really don’t have anything new
to worry about. Listing 13-1 shows a simple XML application that creates an XML document, saves
it to disk, reads it from disk, and then displays the content onscreen.

Using the .NET XML Functionality �X 273

DOM�ONLY SUPPORT IN THE .NET FRAMEWORK

It’s important to note that the .NET Framework suppo rts DOM and not Simple API
for XML (SAX). However, if you want SAX support, you can use the Python modules
instead (see the “Working with xml.sax” section of this chapter). XML �les include
both data and context. In order to reconstruct the original dataset described by an
XML �le, you need a parser to read the text and then convert it to a usable object.
DOM and SAX represent two different methods for interacting with XML documents
without forcing the developer to create a parser. If you want more information about
the DOM versus SAX approach to parsing XML parsers, check out the information at
�]�i�i�e�/�$�$�Y�Z�k�Z�a�d�e�Z�g�a�^�[�Z�#�X�d�b�$�i�j�i�d�g�^�V�a�h�$�4�e�2�'�- and �]�i�i�e�/�$�$�l�l�l�#�_�V�b�Z�h�]�#�^�Y�#�V�j�$
�V�g�i�^�X�a�Z�h�$�a�^�W�m�b�a�"�h�V�m�$�a�^�W�m�b�a�"�h�V�m�#�]�i�b�a. Here’s a summary of the DOM features.

�° Object-based.��

Object module is created automatically.���°

Element sequencing is preserved.���°

High memory usage.���°

Slow initial data retrieval.���°

Best for complex data structures.���°

In-memory document updates are supported.���°

SAX takes a completely different approach than DOM. Here’s a summary of
the SAX features.

�° Event-based.��

Object module is created by the application.���°

Element sequencing is ignored in favor of single events.���°

Low memory usage.���°

Fast initial data retrieval.���°

Best for simple data structures.���°

No document updates.���°

LISTING 13�1: Reading and writing an XML document

�����>�b�e�d�g�i���X�a�g���i�d���V�Y�Y���g�Z�[�Z�g�Z�c�X�Z�h�#
�^�b�e�d�g�i���X�a�g

�����6�Y�Y���i�]�Z���g�Z�f�j�^�g�Z�Y���g�Z�[�Z�g�Z�c�X�Z�#
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�H�n�h�i�Z�b�#�M�b�a�¼��

continues

274 �X CHAPTER 13 WORKING WITH XML DATA

�����>�b�e�d�g�i���i�]�Z���H�n�h�i�Z�b�#�M�b�a���X�a�V�h�h�Z�h�#
�[�g�d�b���H�n�h�i�Z�b�#�M�b�a���^�b�e�d�g�i����

�����I�]�^�h���[�j�c�X�i�^�d�c���X�g�Z�V�i�Z�h���i�]�Z���Y�d�X�j�b�Z�c�i���V�c�Y���l�g�^�i�Z�h���^�i���i�d���Y�^�h�`�#
�Y�Z�[���8�g�Z�V�i�Z�9�d�X�j�b�Z�c�i�����/

�����������8�g�Z�V�i�Z���V���Y�d�X�j�b�Z�c�i�#
�������9�d�X���2���M�b�a�9�d�X�j�b�Z�c�i����

�����������6�Y�Y���i�]�Z���M�B�A���9�Z�X�a�V�g�V�i�^�d�c�#
�������9�Z�X�a�V�g�V�i�^�d�c���2���9�d�X�#�8�g�Z�V�i�Z�M�b�a�9�Z�X�a�V�g�V�i�^�d�c���»�&�#�%�¼�!���»�j�i�[�"�-�¼�!���»�n�Z�h�¼��
�������9�d�X�#�6�e�e�Z�c�Y�8�]�^�a�Y���9�Z�X�a�V�g�V�i�^�d�c��

�����������8�g�Z�V�i�Z���i�]�Z���g�d�d�i���c�d�Y�Z�#
�������G�d�d�i���2���9�d�X�#�8�g�Z�V�i�Z�C�d�Y�Z���M�b�a�C�d�Y�Z�I�n�e�Z�#�:�a�Z�b�Z�c�i�!���»�g�d�d�i�¼�!���C�d�c�Z��

�����������6�Y�Y���X�]�^�a�Y���Z�a�Z�b�Z�c�i�h���i�d���i�]�Z���g�d�d�i�#
�������B�h�\�C�d�Y�Z���2���9�d�X�#�8�g�Z�V�i�Z�C�d�Y�Z���M�b�a�C�d�Y�Z�I�n�e�Z�#�:�a�Z�b�Z�c�i�!���»�B�Z�h�h�V�\�Z�¼�!���C�d�c�Z��
�������B�h�\�C�d�Y�Z�#�>�c�c�Z�g�M�b�a���2���»�=�Z�a�a�d�¼
�������G�d�d�i�#�6�e�e�Z�c�Y�8�]�^�a�Y���B�h�\�C�d�Y�Z��

�������B�h�\�C�d�Y�Z���2���9�d�X�#�8�g�Z�V�i�Z�C�d�Y�Z���M�b�a�C�d�Y�Z�I�n�e�Z�#�:�a�Z�b�Z�c�i�!���»�B�Z�h�h�V�\�Z�¼�!���C�d�c�Z��
�������B�h�\�C�d�Y�Z�#�>�c�c�Z�g�M�b�a���2���»�<�d�d�Y�W�n�Z�¼
�������G�d�d�i�#�6�e�e�Z�c�Y�8�]�^�a�Y���B�h�\�C�d�Y�Z��

�����������6�Y�Y���i�]�Z���g�d�d�i���c�d�Y�Z���i�d���i�]�Z���Y�d�X�j�b�Z�c�i�#
�������9�d�X�#�6�e�e�Z�c�Y�8�]�^�a�Y���G�d�d�i��

�����������H�V�k�Z���i�]�Z���Y�d�X�j�b�Z�c�i���i�d���Y�^�h�`�#
�������9�d�X�#�H�V�k�Z���»�I�Z�h�i�#�M�B�A�¼��

�Y�Z�[���9�^�h�e�a�V�n�9�d�X�j�b�Z�c�i�����/

�����������8�g�Z�V�i�Z���V���Y�d�X�j�b�Z�c�i�#
�������M�B�A�9�d�X���2���M�b�a�9�d�X�j�b�Z�c�i����

�����������A�d�V�Y���i�]�Z���M�B�A���Y�V�i�V�#
�������M�B�A�9�d�X�#�A�d�V�Y���»�I�Z�h�i�#�M�B�A�¼��

�����������E�g�d�X�Z�h�h���i�]�Z���Y�d�X�j�b�Z�c�i�#
�������[�d�g���C�d�Y�Z�h���^�c���M�B�A�9�d�X�/
�������������^�[���i�n�e�Z���C�d�Y�Z�h�����2�2���M�b�a�:�a�Z�b�Z�c�i�/
�������������������[�d�g���B�h�\�C�d�Y�Z�h���^�c���C�d�Y�Z�h�/
�������������������������e�g�^�c�i���»�B�Z�h�h�V�\�Z�/�¼�!���B�h�\�C�d�Y�Z�h�#�>�c�c�Z�g�M�b�a

�����>�c�i�Z�g�V�X�i���l�^�i�]���V�c���M�B�A���Y�d�X�j�b�Z�c�i�#
�8�g�Z�V�i�Z�9�d�X�j�b�Z�c�i����
�9�^�h�e�a�V�n�9�d�X�j�b�Z�c�i����

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

LISTING 13�1 (continued)

Using the .NET XML Functionality �X 275

The code begins by importing �X�a�g, which the application uses to add the required reference to
�H�n�h�i�Z�b�#�M�b�a using the �X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���� method. The code then imports the �H�n�h�i�Z�b�#�M�b�a classes.

The example relies on two functions to keep the code simple: �8�g�Z�V�i�Z�9�d�X�j�b�Z�c�i����, which creates and
saves the document to disk, and �9�^�h�e�a�V�n�9�d�X�j�b�Z�c�i����, which reads the document from disk and dis-
plays the content on screen. The example calls each of these functions in turn.

The �8�g�Z�V�i�Z�9�d�X�j�b�Z�c�i���� function begins by creating an �M�b�a�9�d�X�j�b�Z�c�i object, �9�d�X. As with any .NET
application, �9�d�X doesn’t contain anything when you create it. The �rst task is to add the XML dec-
larations so that the result is a well-formed XML document using �9�d�X�#�8�g�Z�V�i�Z�M�b�a�9�Z�X�a�V�g�V�i�^�d�c����.
Calling �9�d�X�#�6�e�e�Z�c�Y�8�]�^�a�Y���� adds the declaration to the document.

Now it’s time to create some content. All XML documents have a root node, which is �G�d�d�i for this
example. The code creates �G�d�d�i using �9�d�X�#�8�g�Z�V�i�Z�C�d�Y�Z���� with an �M�b�a�C�d�Y�Z�I�n�e�Z�#�:�a�Z�b�Z�c�i type and
�»�g�d�d�i�» for a name. The example doesn’t work with XML namespaces, so the third argument is set
to �C�d�c�Z.

The most ef�cient way to create an XML document from scratch is to add all the child nodes to
�G�d�d�i before you add �G�d�d�i to the document. The code creates �B�h�\�C�d�Y�Z using the same technique as
for �G�d�d�i. It adds content to �B�h�\�C�d�Y�Z using the �B�h�\�C�d�Y�Z�#�>�c�c�Z�g�M�b�a property and then adds the node
to �G�d�d�i using �G�d�d�i�#�6�e�e�Z�c�Y�8�]�^�a�Y����. The example provides two �»�B�Z�h�h�V�\�Z�» nodes.

At this point, the code adds
�G�d�d�i to the document using �9�d�X��
�#�6�e�e�Z�c�Y�8�]�^�a�Y����. It then saves the
document to disk using �9�d�X�#�H�V�k�Z����.
Figure 13-1 shows the typical output
from this example when viewed in
Notepad (you can use any text editor
to view the output because the �9�d�X��
�#�H�V�k�Z���� method includes spaces and
line feeds).

The �9�^�h�e�a�V�n�9�d�X�j�b�Z�c�i���� function begins by creating a document, �M�B�A�9�d�X, using the �M�b�a�9�d�X�j�b�Z�c�i
class constructor. It then loads the previously created XML document using �M�B�A�9�d�X�#�A�d�V�Y����. At this
point, �M�B�A�9�d�X contains everything the code created earlier and you can easily explore it using the
IronPython console.

If you’ve worked with XML documents using C# or Visu al Basic.NET, you know that these languages
sometimes make it hard to get to the data you really want. IronPython makes things very easy. All you
need is a �[�d�g loop, as shown in the code. Simple �^�[statements make it easy to locate nodes of a par-
ticular type, �M�b�a�:�a�Z�b�Z�c�i in this case.

By the time the code reaches the second �[�d�g loop, it’s working with the �»�B�Z�h�h�V�\�Z�» elements. The
code simply prints the �B�h�\�C�d�Y�Z�h�#�>�c�c�Z�g�M�b�a property value to the screen, as shown in Figure 13-2.
By now you can see that IronPython makes it incredibly simple to work with XML documents using
the .NET Framework approach.

FIGURE 13�1: The XML document output looks much as you
might expect.

276 �X CHAPTER 13 WORKING WITH XML DATA

FIGURE 13�2: The example outputs the message content in the XML document.

USING XMLUTIL

The IronPython �I�j�i�d�g�^�V�a directory contains an interesting module, �M�B�A�J�i�^�a�#�e�n. Normally, a
tutorial module wouldn’t require much discussion in a book because the tutorial modules normally
address the special need of teaching someone how to use IronPython. This module is a little differ-
ent, however, because you could possibly use it in an application to reduce the work you must per-
form. It’s important to remember that �M�B�A�J�i�^�a�#�e�n is a tutorial script, so you should make a copy of
it and modify it as needed to meet speci�c needs in your application. The following sections describe
�M�B�A�J�i�^�a�#�e�n in more detail.

Loading and Viewing the XMLUtil Module
The example in this section assumes that you’ve loaded the �M�B�A�J�i�^�a module from the IronPython
�I�j�i�d�g�^�V�a directory. The following steps show you how to load this module manually so you can see
the content.

1. Open the IronPython console.

2. Type �^�b�e�d�g�i���h�n�h and press Enter. This command imports the �h�n�h module so that you can
add the required directory to it.

3. Type �h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�$�E�g�d�\�g�V�b���;�^�a�Z�h�$�>�g�d�c�E�n�i�]�d�c���'�#�+�$�I�j�i�d�g�^�V�a�»�� and press
Enter (make sure you change the path information to match the location of your IronPython
installation). The �M�B�A�J�i�^�a�#�e�n module exists in the �I�j�i�d�g�^�V�a directory. Using this module is
�ne for experimentation, but be sure you copy the �M�B�A�J�i�^�a�#�e�n module to another location
for other uses.

Remember that you can use forward slashes (/) for a path to avoid using double
backslashes (\\). Either form works �ne with IronPython, but the forward slashes
tend to be easier to read.

4. Type �e�g�^�c�i���h�n�h�#�e�V�i�] and press Enter. You should see the new path added to the list.

5. Type �^�b�e�d�g�i���M�B�A�J�i�^�a and press Enter. This step makes the �M�B�A�J�i�^�a�#�e�n module available
for use.

6. Type �Y�^�g���M�B�A�J�i�^�a�� and press Enter. You see the list of methods available in �M�B�A�J�i�^�a (as
shown in Figure 13-3), which includes the �L�V�a�`���� method used in the example.

Using XMLUtil �X 277

FIGURE 13�3: The Walk() method makes viewing XML data easier.

Using the XMLUtil Module to View XML Data
As previously mentioned, the �M�B�A�J�i�^�a�#�e�n �le isn’t anything so advanced that you couldn’t put it
together yourself, but it’s an interesting module to work with and use. Listing 13-2 shows a short
example of how you could use this module in an application.

LISTING 13�2: Walking an XML document using XMLUtil

�����6�Y�Y���i�]�Z���e�V�i�]���g�Z�f�j�^�g�Z�Y���i�d���^�b�e�d�g�i���m�b�a�j�i�^�a�#��
�^�b�e�d�g�i���h�n�h��
�h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�$�E�g�d�\�g�V�b���;�^�a�Z�h�$�>�g�d�c�E�n�i�]�d�c���'�#�+�$�I�j�i�d�g�^�V�a�¼��

�����>�b�e�d�g�i���m�b�a�j�i�^�a���i�d���V�X�X�Z�h�h���i�]�Z���L�V�a�`�������[�j�c�X�i�^�d�c�#
�^�b�e�d�g�i���m�b�a�j�i�^�a

�����>�b�e�d�g�i���X�a�g���i�d���V�Y�Y���g�Z�[�Z�g�Z�c�X�Z�h�#
�^�b�e�d�g�i���X�a�g

�����6�Y�Y���i�]�Z���g�Z�f�j�^�g�Z�Y���g�Z�[�Z�g�Z�c�X�Z�#
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z���»�H�n�h�i�Z�b�#�M�b�a�¼��

�����>�b�e�d�g�i���i�]�Z���H�n�h�i�Z�b�#�M�b�a���X�a�V�h�h�Z�h�#
�[�g�d�b���H�n�h�i�Z�b�#�M�b�a���^�b�e�d�g�i����

�����8�g�Z�V�i�Z���V���Y�d�X�j�b�Z�c�i�#
�M�B�A�9�d�X���2���M�b�a�9�d�X�j�b�Z�c�i����

�����A�d�V�Y���i�]�Z���M�B�A���Y�V�i�V�#
�M�B�A�9�d�X�#�A�d�V�Y���»�I�Z�h�i�#�M�B�A�¼��

�����L�V�a�`���i�]�Z���[�^�a�Z���X�d�c�i�Z�c�i�h�#��
�e�g�^�c�i���»�8�d�c�i�Z�c�i�h���d�[���I�Z�h�i�#�M�B�A�¼��
�[�d�g���C�d�Y�Z���^�c���m�b�a�j�i�^�a�#�L�V�a�`���M�B�A�9�d�X���/
�������e�g�^�c�i���»�Q�c�C�V�b�Z�/�¼�!���C�d�Y�Z�#�C�V�b�Z
�������e�g�^�c�i���»�K�V�a�j�Z�/�¼�!���C�d�Y�Z�#�K�V�a�j�Z

continues

278 �X CHAPTER 13 WORKING WITH XML DATA

�������e�g�^�c�i���»�>�c�c�Z�g�M�b�a�¼�!���C�d�Y�Z�#�>�c�c�Z�g�M�b�a

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The example begins by importing �h�n�h, appending the �I�j�i�d�g�^�V�a folder path, and importing
�M�B�A�J�i�^�a. The code then imports �X�a�g, adds a reference to �H�n�h�i�Z�b�#�M�b�a, and imports the �H�n�h�i�Z�b�#�M�b�a
classes. There isn’t anything new about any of this code.

The example makes use of the �I�Z�m�i�#�M�B�A �le created in the “Developing a Basic .NET XML
Application” section of this chapter. It creates an �M�b�a�9�d�X�j�b�Z�c�i object, �M�B�A�9�d�X, and loads �I�Z�m�i�#�M�B�A
into it using the �M�B�A�9�d�X�#�A�d�V�Y���� method. At this point, you have an XML document that you can walk
(go from node-to-node and examine). The �M�B�A�J�i�^�a�#�L�V�a�`���� method can walk any sort of XML docu -
ment, so you should try it out with other �les after you’ve worked with the example for a while.

The next step is to call on �M�B�A�J�i�^�a�#�L�V�a�`���� to walk the XML document for you. The example shows
output from the �C�V�b�Z, �K�V�a�j�Z, and �>�c�c�Z�g�M�b�a properties. However, you have access to all the properties
provided for the various XML data types that the .NET Framework provides. Consequently, you can
use �M�B�A�J�i�^�a�#�L�V�a�`���� to display any information needed, or to manage that information. Just because
the example displays properties doesn’t mean you have any limitation on how you interact with the
output of �M�B�A�J�i�^�a�#�L�V�a�`����. Figure 13-4 shows the output of this example.

FIGURE 13�4: Screen shows the output of the Walk() method for Test.XML.

LISTING 13�2 (continued)

Using XMLUtil �X 279

The �M�B�A�J�i�^�a�#�L�V�a�`���� function is so important because it demonstrates a Python generator
(described later in the section when you have the required background). Most languages don’t pro-
vide support for generators, so they require a little explanation. The issue at the center of this whole
discussion is the variant list. You know that an application will need to process some number of
items during run time, but you have no idea of how long this list is or whether the list will exist at
all. A producer function is one that outputs values one at a time in response to a request. The pro-
ducer keeps processing items until it runs out, so the length of the list is no longer a concern (even if
the list contains no items at all). Most languages rely on a callback, an address to the requestor, to
provide a place to send the producer output. The problem with using a callback is that the code must
provide some means of retaining state information to remember previous values. In some cases,
using callbacks leads to unnatural, convoluted coding techniques that are hard to write, harder to
understand, and nearly impossible to update later.

Developers have a number of alternatives they can use. For example, the developer could simply use
a very large �a�^�h�i. However, �a�^�h�is require that the developer know what values should appear in the
�a�^�h�i during design time, and lists can consume large quantities of memory, making them a less than
helpful solution in many cases. Another solution is to use an �^�i�Z�g�V�i�d�g to perform the task. Using
an �^�i�Z�g�V�i�d�g makes it easier to get out of a loop when the processing is �nished and eliminates the
memory requirements. However, using an �^�i�Z�g�V�i�d�g shifts the burden of maintaining state informa-
tion to the producer, complicating an already dif�cult p rogramming task because the producer may
not know anything about the caller. There are other solutions, as well, such as running the requestor
and producer on separate threads so that each object can maintain state information without worrying
about the potential corruption that occurs when running the code on a single thread. Unfortunately,
multithreaded applications can run slowly and require a platform that fully supports multithreading,
making your application less portable. In short, most languages don’t provide a good solution to the
problem of working with data of variant length.

A generator creates a situation where the producer continuously outputs individual results as
in a loop, maintaining its state locally. The requestor actually views the function as a type of
�^�i�Z�g�V�i�d�g, even though the producer isn’t coded to provide an �^�i�Z�g�V�i�d�g. To accomplish this
task, Python provides the �n�^�Z�a�Y statement shown in Figure 13-5. The �n�^�Z�a�Y statement returns
an intermediate result from the producer to the requestor, while the producer continues to pro-
cess a list of items.

The code in Figure 13-5 begins with the de�nition of a function named �L�V�a�`����. This function accepts
some kind of XML as input. The �rst �n�^�Z�a�Y statement sends the entire �m�b�a input back to the requestor
(the example application shown in Listing 13-2). Consequently, you see ���Y�d�X�j�b�Z�c�i as the �C�V�b�Z and the
entire XML document as the �>�c�c�Z�g�M�b�a.

The second call to �L�V�a�`���� moves past the �rst �n�^�Z�a�Y statement. Because the second item doesn’t
meet the �]�V�h�V�i�i�g���m�b�a�!���¹�6�i�i�g�^�W�j�i�Z�h�¹�� requirement, the code moves onto the loop statement at
the bottom of the code listing shown in Figure 13-5. The effect of this loop is to obtain the child
elements of the entire document. So the second call to �L�V�a�`���� ends with �n�^�Z�a�Y���X, which returns
the XML declaration element. As a result, you see �m�b�a for the �C�V�b�Z, �k�Z�g�h�^�d�c�2�¹�&�#�%�¹��
�Z�c�X�d�Y�^�c�\�2�¹�j�i�[�"�-�¹���h�i�V�c�Y�V�a�d�c�Z�2�¹�n�Z�h�¹ for the �K�V�a�j�Z, and nothing for the �>�c�c�Z�g�M�b�a.
This second call ends processing of the XML declaration.

280 �X CHAPTER 13 WORKING WITH XML DATA

FIGURE 13�5: The XMLUtil.Walk() function is interesting because it provides a generator.

The third call to �L�V�a�`���� begins processing of the �g�d�d�i node. It’s interesting to trace through the code
in the debugger because you see the �[�d�g loops in �M�B�A�J�i�^�a�#�L�V�a�`���� used to trace through each element
of the input �m�b�a as if it were using recursion or perhaps some type of iteration, but the fact is that
the code merely combines the �[�d�g loop with a yield statement to feed each partial result back to the
requestor. Using the Python debugger is actually a bit more helpful in this case than using the Visual
Studio debugger because the Visual Studio debugger won’t show you the value of �m�b�a, �X�]�^�a�Y, or �X so
that you can see the changing values. The example code for this book includes �M�B�A�J�i�^�a�9�Z�b�d�'�#�e�n for
the purpose of using the Python debugger. Follow these steps to load the debugger so you can trace
through the example yourself.

1. Open the IronPython console.

2. Type �^�b�e�d�g�i���h�n�h and press Enter. This command imports the �h�n�h module so that you can
add the required directory to it.

3. Type �h�n�h�#�e�V�i�]�#�V�e�e�Z�c�Y���»�8�/�$�E�g�d�\�g�V�b���;�^�a�Z�h�$�>�g�d�c�E�n�i�]�d�c���'�#�+�$�I�j�i�d�g�^�V�a�»�� and press
Enter (make sure you change the path information to match the location of your IronPython
installation).

4. Type �^�b�e�d�g�i���M�B�A�J�i�^�a and press Enter to import the support �le (important if you want to
see how the generator works).

5. Type �^�b�e�d�g�i���M�B�A�J�i�^�a�9�Z�b�d�' and press Enter to import the source code �le.

6. Type �^�b�e�d�g�i���e�Y�W and press Enter to import the debugger.

7. Type �e�Y�W�#�g�j�c���»�M�B�A�J�i�^�a�9�Z�b�d�'�#�b�V�^�c�����»�� to start the debugger. At this point, you can
single step through the code to see how everything works. The “Debugging with the Python
Debugger” section of Chapter 12 provides additional details.

Using the Python Modules �X 281

USING THE PYTHON MODULES

At one point, the Python modules were stable and straightforward to use, but later versions are less
stable and, when it comes to IronPython, may be missing required elements completely. Consequently,
you might see tutorials such as the one at �]�i�i�e�/�$�$�l�l�l�#�W�d�Y�Y�^�Z�#�d�g�\�#�j�`�$�e�n�i�]�d�c�$�M�B�A�T�^�c�i�g�d�#�]�i�b�a
and wonder why they don’t work. These tutorials are based on earlier versions of Python and don’t
account for the missing CPython elements in IronPython. The following sections describe how to over-
come these problems in your application when you use the Python approach to XML �le management
in IronPython.

Working with xml.dom.minidom
The �m�b�a�#�Y�d�b�#�b�^�c�^�Y�d�b module is designed to help you work with XML using the DOM approach.
However, this module is far from complete in IronPython, partly due to the CPython support required
in standard Python. The actual document support is complete, so you won’t have a problem building,
editing, and managing XML documents. It’s the write and read support that are lacking.

Fortunately, you can overcome write issues by using a different approach to outputting the docu-
ment to disk (or other media). Standard Python development practice is to use the �m�b�a�#�Y�d�b�#�Z�m�i��
�#�E�g�Z�i�i�n�E�g�^�c�i���� method, which simply doesn’t exist in IronPython. You get around the problem by
performing the task in two steps, rather than one, as shown in Listing 13-3.

The reading problem isn’t as easy to solve. Standard Python development practice is to use the �m�b�a��
�#�Y�d�b�#�b�^�c�^�Y�d�b�#�e�V�g�h�Z���� method. This method does exist in IronPython, but it outputs an error stating

�>�b�e�d�g�i�:�g�g�d�g�/���C�d���b�d�Y�j�a�Z���c�V�b�Z�Y���e�n�Z�m�e�V�i

This module actually is missing. In order to �x this problem, you must download the �e�n�Z�m�e�V�i�#��
�e�n �le from �]�i�i�e�h�/�$�$�[�Z�e�n�#�h�k�c�#�h�d�j�g�X�Z�[�d�g�\�Z�#�c�Z�i�$�h�k�c�g�d�d�i�$�[�Z�e�n�$�i�g�j�c�`�$�a�^�W�$. Place this �le in
your �Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�>�g�d�c�E�n�i�]�d�c���'�#�+�Q�A�^�W, not the �Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�>�g�d�c�E�n�i�]�d�c���'�#�+�Q�A�^�W�Q
�m�b�a�Q�Y�d�b folder as you might think. As shown in Listing 13-3, the standard Python techniques
work just �ne now.

LISTING 13�3: Managing XML documents using the Python approach

�����>�b�e�d�g�i���i�]�Z���g�Z�f�j�^�g�Z�Y���M�B�A���h�j�e�e�d�g�i�#
�^�b�e�d�g�i���m�b�a�#�Y�d�b�#�b�^�c�^�Y�d�b

�Y�Z�[���8�g�Z�V�i�Z�9�d�X�j�b�Z�c�i�����/
�����������8�g�Z�V�i�Z���V�c���M�B�A���Y�d�X�j�b�Z�c�i�#
�������9�d�X���2���m�b�a�#�Y�d�b�#�b�^�c�^�Y�d�b�#�9�d�X�j�b�Z�c�i����

�����������8�g�Z�V�i�Z���i�]�Z���g�d�d�i���c�d�Y�Z�#
�������G�d�d�i���2���9�d�X�#�X�g�Z�V�i�Z�:�a�Z�b�Z�c�i���»�g�d�d�i�¼��

�����������6�Y�Y���i�]�Z���b�Z�h�h�V�\�Z���c�d�Y�Z�h�#
�������B�h�\�C�d�Y�Z���2���9�d�X�#�X�g�Z�V�i�Z�:�a�Z�b�Z�c�i���»�B�Z�h�h�V�\�Z�¼��
�������B�Z�h�h�V�\�Z���2���9�d�X�#�X�g�Z�V�i�Z�I�Z�m�i�C�d�Y�Z���»�=�Z�a�a�d�¼��
�������B�h�\�C�d�Y�Z�#�V�e�e�Z�c�Y�8�]�^�a�Y���B�Z�h�h�V�\�Z��

continues

282 �X CHAPTER 13 WORKING WITH XML DATA

�������G�d�d�i�#�V�e�e�Z�c�Y�8�]�^�a�Y���B�h�\�C�d�Y�Z��

�������B�h�\�C�d�Y�Z���2���9�d�X�#�X�g�Z�V�i�Z�:�a�Z�b�Z�c�i���»�B�Z�h�h�V�\�Z�¼��
�������B�Z�h�h�V�\�Z���2���9�d�X�#�X�g�Z�V�i�Z�I�Z�m�i�C�d�Y�Z���»�<�d�d�Y�W�n�Z�¼��
�������B�h�\�C�d�Y�Z�#�V�e�e�Z�c�Y�8�]�^�a�Y���B�Z�h�h�V�\�Z��
�������G�d�d�i�#�V�e�e�Z�c�Y�8�]�^�a�Y���B�h�\�C�d�Y�Z��

�����������6�e�e�Z�c�Y���i�]�Z���g�d�d�i���c�d�Y�Z���i�d���i�]�Z���Y�d�X�j�b�Z�c�i�#
�������9�d�X�#�V�e�e�Z�c�Y�8�]�^�a�Y���G�d�d�i��

�����������8�g�Z�V�i�Z���i�]�Z���d�j�i�e�j�i���Y�d�X�j�b�Z�c�i�#
�������B�n�;�^�a�Z���2���d�e�Z�c���»�I�Z�h�i�'�#�M�B�A�¼�!���»�l�¼��

�����������L�g�^�i�Z���i�]�Z���d�j�i�e�j�i�#
�������B�n�;�^�a�Z�#�l�g�^�i�Z���9�d�X�#�i�d�e�g�Z�i�i�n�m�b�a���Z�c�X�d�Y�^�c�\�2�¼�j�i�[�"�-�¼����

�����������8�a�d�h�Z���i�]�Z���Y�d�X�j�b�Z�c�i�#
�������B�n�;�^�a�Z�#�X�a�d�h�Z����

�Y�Z�[���9�^�h�e�a�V�n�9�d�X�j�b�Z�c�i�����/
�����������G�Z�V�Y���i�]�Z���Z�m�^�h�i�^�c�\���M�B�A���Y�d�X�j�b�Z�c�i�#
�������M�B�A�9�d�X���2���m�b�a�#�Y�d�b�#�b�^�c�^�Y�d�b�#�e�V�g�h�Z���»�I�Z�h�i�'�#�M�B�A�¼��

�����������E�g�^�c�i���i�]�Z���b�Z�h�h�V�\�Z���c�d�Y�Z���X�d�c�i�Z�c�i�#
�������[�d�g���I�]�^�h�8�]�^�a�Y���^�c���M�B�A�9�d�X�#�\�Z�i�:�a�Z�b�Z�c�i�h�7�n�I�V�\�C�V�b�Z���»�B�Z�h�h�V�\�Z�¼���/
�������������e�g�^�c�i���»�B�Z�h�h�V�\�Z�/�¼�!���I�]�^�h�8�]�^�a�Y�#�[�^�g�h�i�8�]�^�a�Y�#�i�d�m�b�a�����#�h�i�g�^�e���»�Q�c�Q�i�¼��

�8�g�Z�V�i�Z�9�d�X�j�b�Z�c�i����
�9�^�h�e�a�V�n�9�d�X�j�b�Z�c�i����

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The �rst thing you should notice is that the code for this example is much shorter than its .NET
counterpart, even though the result is essentially the same. Despite the problems with the Python
libraries, you can write concise code for manipulating XML using Python.

The code begins by importing the only module it needs, �m�b�a�#�Y�d�b�#�b�^�c�^�Y�d�b. It then calls
�8�g�Z�V�i�Z�9�d�X�j�b�Z�c�i���� and �9�^�h�e�a�V�n�9�d�X�j�b�Z�c�i���� in turn, just as the .NET example does. In fact, the
output from this example is precisely the same. You see the same output shown in Figure 13-2
when you run this example.

The �8�g�Z�V�i�Z�9�d�X�j�b�Z�c�i���� function begins by creating an XML document, �9�d�X, using �m�b�a�#�Y�d�b��
�#�b�^�c�^�Y�d�b�#�9�d�X�j�b�Z�c�i����. The XML document automatically contains the XML declaration, so
unlike the .NET version of the code, you don’t need to add it manually. So the �rst processing task
is to create the �g�d�d�i node using �9�d�X�#�X�g�Z�V�i�Z�:�a�Z�b�Z�c�i���»�g�d�d�i�»��.

As with the .NET example, this example creates two �B�h�\�C�d�Y�Z elements that contain different messages.
The technique used is different from the .NET example. Instead of setting an �>�c�c�Z�g�M�b�a property, the
code creates an actual text node using �9�d�X�#�X�g�Z�V�i�Z�I�Z�m�i�C�d�Y�Z����. However, the result is the same, as
shown in Figure 13-6. The last step is to add �G�d�d�i to �9�d�X using �9�d�X�#�V�e�e�Z�c�Y�8�]�^�a�Y����.

LISTING 13�3 (continued)

Using the Python Modules �X 283

A big difference between IronPython and
Python is how you write the XML to a �le.
As previously mentioned, you can’t use the
�m�b�a�#�Y�d�b�#�Z�m�i�#�E�g�Z�i�i�n�E�g�^�c�i���� method. In
this case, the code creates a �le, �B�n�;�^�a�Z,
using �d�e�Z�c����. The arguments de�ne the
�lename and the mode, where �»�l�» signi-
�es write. In order to write the text to a
�le, you use a two-step process. First, the
code creates formatting XML by calling
�9�d�X�#�i�d�e�g�Z�i�i�n�m�b�a����. The function accepts
an optional encoding argument, but there isn’t any way to de�ne the resulting XML document as
stand-alone using the �h�i�V�c�Y�V�a�d�c�Z�2�¹�n�Z�h�¹ attribute (see Figure 13-1). Second, the code writes the
data to the �le buffer using �B�n�;�^�a�Z�#�l�g�^�i�Z����.

Calling �B�n�;�^�a�Z�#�l�g�^�i�Z���� doesn’t write the data to disk. In order to clear the
�le buffer, you must call �B�n�;�^�a�Z�#�X�a�d�h�Z����. Theoretically, IronPython will call
�B�n�;�^�a�Z�#�X�a�d�h�Z���� when the application ends, but there isn’t any guarantee of
this behavior, so you must speci�cally call �B�n�;�^�a�Z�#�X�a�d�h�Z���� to ensure there isn’t
any data loss.

The �9�^�h�e�a�V�n�9�d�X�j�b�Z�c�i���� function comes next. Reading an XML document from disk and placing
it in a variable is almost too easy when using IronPython. All you need to do is make a single call to
�m�b�a�#�Y�d�b�#�b�^�c�^�Y�d�b�#�e�V�g�h�Z����. That’s it! The document is immediately ready for use.

The second step is to display the same output shown in Figure 13-2. Again, all you need in
IronPython is a simple �[�d�g loop, rather than the somewhat lengthy .NET code. In this case,
you ask IronPython to retrieve the nodes you want using �M�B�A�9�d�X�#�\�Z�i�:�a�Z�b�Z�c�i�h�7�n�I�V�\�C�V�b�Z����.
The output is a list that you can process one element at a time. The �e�g�^�c�i statement calls on
a complex-looking call sequence.

�I�]�^�h�8�]�^�a�Y�#�[�^�g�h�i�8�]�^�a�Y�#�i�d�m�b�a�����#�h�i�g�^�e���»�Q�c�Q�i�¼��

However, if you take this call sequence apart, it really isn’t all that hard to understand. Every iterat ion
of the loop places one of the �B�h�\�C�d�Y�Z elements in �I�]�^�h�8�]�^�a�Y. The �rst (and only) child of �B�h�\�C�d�Y�Z is
the �B�Z�h�h�V�\�Z text node, so you can retrieve it using the �[�^�g�h�i�8�]�^�a�Y property. The �[�^�g�h�i�8�]�^�a�Y property
contains a �9�D�B���I�Z�m�i���c�d�Y�Z object, so you convert it to XML using the �i�d�m�b�a���� method. Unfortunately,
the resulting string contains control characters, so you remove them using the �h�i�g�^�e���»�Q�c�Q�i�»�� method.
The result is a simple value output.

Working with xml.sax
It’s important to remember that SAX is an event-driven method of working with XML. An applica -
tion looks at a small number of bits out of an entire document. Consequently, SAX can be a good

FIGURE 13�6: The Python output is similar, but not precisely
the same as the .NET output.

284 �X CHAPTER 13 WORKING WITH XML DATA

method for processing larger documents that you can’t read into memory at one time. A SAX appli-
cation normally relies on three constructs:

�° One or more sources as input��

A parser (normally, only one is used)���°

One or more handlers to respond to input events���°

There are many different Python SAX modules. Each of these modules provides different imple-
mentations of the three constructions. The default SAX implementation provides just four handlers.
These handlers are implemented as classes that you use to interact with the events generated by the
input �le.

�°�� �8�d�c�i�Z�c�i�=�V�c�Y�a�Z�g: Provides the main SAX interface for handling document events. Most
applications use this interface as a minimum because it provides the basic support required
for any document. The example shows how to use this handler, which is provided as part of
the �m�b�a�#�h�V�m module.

���° �9�I�9�=�V�c�Y�a�Z�g: Manages all of the Document Type De�nition (DTD) events.

���° �:�c�i�^�i�n�G�Z�h�d�a�k�Z�g: Resolves external entities such as �les referenced by processing
instructions.

���° �:�g�g�d�g�=�V�c�Y�a�Z�g: Reports any errors or warnings that the parser encounters when it processes
the XML. Provided as part of the �m�b�a�#�h�V�m module.

Now that you have a little better idea of what to expect, it’s time to look at an actual example.
Listing 13-4 shows a simple SAX implementation that includes all of the constructs you normally
need. Of course, you can easily add to this example to make it do considerably more than it does now.

LISTING 13�4: Parsing an XML document using SAX

�����>�b�e�d�g�i���i�]�Z���g�Z�f�j�^�g�Z�Y���b�d�Y�j�a�Z�#
�^�b�e�d�g�i���m�b�a�#�h�V�m

�����8�g�Z�V�i�Z���V���]�V�c�Y�a�Z�g���W�V�h�Z�Y���d�c���i�]�Z���Y�Z�[�V�j�a�i���8�d�c�i�Z�c�i�=�V�c�Y�a�Z�g���X�a�V�h�h�#
�X�a�V�h�h���B�Z�h�h�V�\�Z�=�V�c�Y�a�Z�g���m�b�a�#�h�V�m�#�8�d�c�i�Z�c�i�=�V�c�Y�a�Z�g���/

�����������8�d�c�i�V�^�c�h���i�]�Z���b�Z�h�h�V�\�Z���i�Z�m�i�#
�������B�Z�h�h�V�\�Z���2���»�¼

�����������9�Z�i�Z�g�b�^�c�Z�h���l�]�Z�c���i�]�Z���X�d�c�i�Z�c�i���^�h���V���b�Z�h�h�V�\�Z�#
�������>�h�B�Z�h�h�V�\�Z���2���;�V�a�h�Z

�����������8�]�Z�X�`���[�d�g���i�]�Z���`�^�c�Y���d�[���Z�a�Z�b�Z�c�i���W�Z�[�d�g�Z���e�g�d�X�Z�h�h�^�c�\���^�i�#
�������Y�Z�[���h�i�V�g�i�:�a�Z�b�Z�c�i���h�Z�a�[�!���c�V�b�Z�!���V�i�i�g�h���/
�������������^�[���c�V�b�Z���2�2���»�B�Z�h�h�V�\�Z�¼�/
�������������������h�Z�a�[�#�>�h�B�Z�h�h�V�\�Z���2���I�g�j�Z
�������������������h�Z�a�[�#�B�Z�h�h�V�\�Z���2���»�¼
�������������Z�a�h�Z�/

Using the Python Modules �X 285

�������������������h�Z�a�[�#�>�h�B�Z�h�h�V�\�Z���2���;�V�a�h�Z

�����������>�[���i�]�^�h���^�h���i�]�Z���g�^�\�]�i���`�^�c�Y���d�[���Z�a�Z�b�Z�c�i�!���Y�^�h�e�a�V�n���i�]�Z���b�Z�h�h�V�\�Z���[�d�g���^�i�#
�������Y�Z�[���Z�c�Y�:�a�Z�b�Z�c�i���h�Z�a�[�!���c�V�b�Z���/
�������������^�[���c�V�b�Z���2�2���»�B�Z�h�h�V�\�Z�¼�/
�������������������e�g�^�c�i���»�B�Z�h�h�V�\�Z�/�¼�!���h�Z�a�[�#�B�Z�h�h�V�\�Z�#�h�i�g�^�e���»�Q�c�Q�i�¼��

�����������6�Y�Y���Z�V�X�]���d�[���i�]�Z���X�]�V�g�V�X�i�Z�g�h���d�[���i�]�Z���b�Z�h�h�V�\�Z���i�d���i�]�Z���B�Z�h�h�V�\�Z���k�V�g�^�V�W�a�Z�#
�������Y�Z�[���X�]�V�g�V�X�i�Z�g�h���h�Z�a�[�!���X�]���/
�������������^�[���h�Z�a�[�#�>�h�B�Z�h�h�V�\�Z�/
�������������������h�Z�a�[�#�B�Z�h�h�V�\�Z��� �2���X�]

�����8�g�Z�V�i�Z���V���e�V�g�h�Z�g�#
�E�V�g�h�Z�g���2���m�b�a�#�h�V�m�#�b�V�`�Z�T�e�V�g�h�Z�g����

�����8�g�Z�V�i�Z���V���]�V�c�Y�a�Z�g���[�d�g���i�]�Z���e�V�g�h�Z�g���V�c�Y���i�Z�a�a���i�]�Z���e�V�g�h�Z�g���i�d���j�h�Z���^�i�#
�=�V�c�Y�a�Z�g���2���B�Z�h�h�V�\�Z�=�V�c�Y�a�Z�g����
�E�V�g�h�Z�g�#�h�Z�i�8�d�c�i�Z�c�i�=�V�c�Y�a�Z�g���=�V�c�Y�a�Z�g��

�����D�e�Z�c���V���h�d�j�g�X�Z���V�c�Y���e�V�g�h�Z���^�i���j�h�^�c�\���i�]�Z���e�V�g�h�Z�g���l�^�i�]���i�]�Z���X�j�h�i�d�b���]�V�c�Y�a�Z�g�#
�E�V�g�h�Z�g�#�e�V�g�h�Z���d�e�Z�c���»�I�Z�h�i�'�#�M�B�A�¼����

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins by importing the required �m�b�a�#�h�V�m module. You don’t need anything fancy to create a
basic SAX handler. Remember that SAX processes the �le one character at a time and generates events
based on the characters that the parser sees. Consequently, the code may seem a little odd for someone
who is used to working with complete elements, but SAX gives you �ne control over the processing
cycle, including locating errors within the �le.

The centerpiece of this example is the �B�Z�h�h�V�\�Z�=�V�c�Y�a�Z�g class. This class includes a variable to hold
the message (�B�Z�h�h�V�\�Z), an indicator of whether an element is a message (�>�h�B�Z�h�h�V�\�Z), and the three
methods described in the following list.

�°�� �h�i�V�g�i�:�a�Z�b�Z�c�i����: The parser calls this method at the beginning of an element.

���° �Z�c�Y�:�a�Z�b�Z�c�i����: The parser calls this method at the end of an element.

���° �X�]�V�g�V�X�i�Z�g�h����: Every character read from the source generates a call to �X�]�V�g�V�X�i�Z�g�h����.

For this example, the �h�i�V�g�i�:�a�Z�b�Z�c�i���� method checks the element name. If the element is a �»�B�Z�h�h�V�\�Z�»
element, then the code sets �>�h�B�Z�h�h�V�\�Z to �I�g�j�Z and clears �B�Z�h�h�V�\�Z of any existing content. This is a
preparatory step.

When the �X�]�V�g�V�X�i�Z�g�h���� method sees that �>�h�B�Z�h�h�V�\�Z is �I�g�j�Z, it appends every character it receives
to �B�Z�h�h�V�\�Z. Remember that these are individual characters, so you can’t assume much about the
content except that the �ow is from the beginning of the �le to the end of it. In other words, you
won’t receive characters out of order.

The �Z�c�Y�:�a�Z�b�Z�c�i���� checks the element name again. When the element name is �»�B�Z�h�h�V�\�Z�», the code
prints the content of �B�Z�h�h�V�\�Z. Because �B�Z�h�h�V�\�Z contains all of the characters from the source, you

286 �X CHAPTER 13 WORKING WITH XML DATA

must use �h�i�g�^�e���»�Q�c�Q�i�»�� to remove any control characters. The output from this example is the
same as shown in Figure 13-2.

Now that you understand the handler, it’s time to see how you put it to work. The main part of
the code begins by creating a parser, �E�V�g�h�Z�g, using �m�b�a�#�h�V�m�#�b�V�`�Z�T�e�V�g�h�Z�g����. Remember that the
parser simply generates events based on the input characters it sees. The handler performs the actual
interpretation of those characters.

The next step is to create an instance of �B�Z�h�h�V�\�Z�=�V�c�Y�a�Z�g named �=�V�c�Y�a�Z�g. The code uses �E�V�g�h�Z�g��
�#�h�Z�i�8�d�c�i�Z�c�i�=�V�c�Y�a�Z�g���� to assign the handler to �E�V�g�h�Z�g. Otherwise, �E�V�g�h�Z�g won’t know which
handler to use to process the XML characters.

In order to process the XML �le, the code still requ ires a source — the third construct. The
�d�e�Z�c���»�I�Z�h�i�'�#�M�B�A�»�� call opens �I�Z�h�i�'�#�M�B�A as a source and passes this source to �E�V�g�h�Z�g through
the �E�V�g�h�Z�g�#�e�V�g�h�Z���� method. It’s the call to the �E�V�g�h�Z�g�#�e�V�g�h�Z���� method that actually begins
the process of generating events.

USING IRONPYTHON CONSTRUCTIVELY

This chapter has demonstrated basic XML usage in IronPython using three basic techniques. It’s
important to remember that this chapter presents an overview of XML usage with IronPython and
that it isn’t intended to tell the whole story of XML usage for your speci�c application. What you
should take away from this chapter is a basic understanding of which techniques work best for a
particular need. In addition, because IronPython does offer so many choices, you should consider
just how to use it to access the XML you need from any location. When working with IronPython,
you don’t have to follow someone else’s rules — you make your own.

A major issue that most companies face when working with XML is that the developers don’t
truly understand the format of the XML data with which t hey want to work. The �exibility that
IronPython offers is a double-edged sword. If you don’t truly understand the data you want to manip -
ulate, the �exibility that IronPython offers can beco me more of a hindrance than a help. Take time
now to work through the XML data formats that your appl ication uses and create a plan for manag-
ing them using IronPython. After you take this step, consider which IronPython technique will work
best for your application and then spend more time researching that technique before you begin build-
ing your application.

Chapter 11 introduced the Dynamic Language Runtime (DLR) as it applies to ASP.NET application
development. However, the information in Chapter 11 was just an appetizer. Now that you’ve had
time to work through more of the capabilities that Iron Python has to offer, it’s time for the main
course. Chapter 14 helps you understand the capabilities that DLR provides in more detail. You’ll
be amazed at what DLR can do for your application and how it can make your development efforts
both simpler and less error-prone. Of course, you’ll �nd a few usage caveats in Chapter 14 as well.

Interacting with the DLR

WHAT’S IN THIS CHAPTER?

�° Getting your copy of the DLR��

Considering hosting APIs���°

Employing extensions to the LINQ ExpressionTree���°

Working with DynamicSite���°

Understanding IDynamicObject���°

Using the ActionBinder���°

Considering the other DLR Features���°

The Dynamic Language Runtime (DLR) is a new feature of the .NET platform. Its intended pur -
pose is to support dynamic languages, such as Python (through IronPython) and Ruby (through
IronRuby). Without DLR, the .NET Framework can’t real ly run dynamic languages. In addition,
DLR provides interoperability between dynamic languages, the .NET Framework, and static
languages such as C# and Visual Basic.NET. Without DLR, dynamic and static languages can’t
communicate (see the section “Understanding the Relationship between Dynamic and Static
Languages” in Chapter 15 for additional details). In order to meet these goals, DLR must pro-
vide basic functionality that marshals data and code calls between the dynamic and static envi-
ronments. This functionality comes in a number of forms that are discussed in this chapter. You
might be surprised to �nd that you’ve already used many of these features throughout the book.
Here’s the list of features that DLR supports in order to accomplish its goals.

�°�� Hosting Application Programming Interfaces (APIs): In order to run dynamic language
scripts, the host language must have access to the scripting engine. The Hosting APIs
provide the support needed to host the dynamic language within the host environment
through the scripting engine. This marshaling of code and data makes it possible to
seamlessly integrate static and dynamic languages.

14

288 �X CHAPTER 14 INTERACTING WITH THE DLR

�° �� Extensions to Language Integrated Query (LINQ) ExpressionTree: Normally, a language would
need to convert data, objects, and code into Microsoft Intermediate Language (MSIL) before it
could translate anything into another language. Because all .NET languages eventually end up
as MSIL, MSIL is the common language for all higher-level .NET languages. These extensions
make it possible for language compilers to create higher-level constructs for communication pur-
poses, rather than always relying on MSIL. The result is that the marshaling process takes less
time and the application runs faster.

���° �9�n�c�V�b�^�X�H�^�i�Z: This feature provides a call-site cache that dynamic languages use in place
of making constant calls to other .NET languages. Because the call-site cache is already in a
form that the dynamic language can use, the overall speed of the dynamic language applica-
tion improves.

���° �>�9�n�c�V�b�^�X�D�W�_�Z�X�i: An interface used to interact with dynamic objects directly. If you create
a class that implements �>�9�n�c�V�b�^�X�D�W�_�Z�X�i, DLR lets the class perform the required conver-
sions, rather than rely on the built-in functionality. Essentially, you create an object that
can have methods, properties, and events added dynamically during run time. You use
�>�9�n�c�V�b�^�X�D�W�_�Z�X�i when you want to implement custom behaviors in your class.

���° �6�X�i�^�d�c�7�^�c�Y�Z�g: The �6�X�i�^�d�c�7�^�c�Y�Z�g is a utility that helps support .NET interoperability. The
�6�X�i�^�d�c�7�^�c�Y�Z�g is language speci�c. It ensures that conversions of variable data, return values,
and arguments all follow language-speci�c behaviors so that the host language sees the data
in a form it understands.

These are the main tasks that DLR performs. Of course, it also provides other compiler utilities
that you need to know about. The �nal section in this chapter provides an overview of these other
features.

DLR is a constantly changing technology today, so you’ll want to keep up
with the additions and changes to DLR. One of the better places to �nd
general DLR resources online is at �]�i�i�e�/�$�$�W�a�d�\�h�#�b�h�Y�c�#�X�d�b�$�^�g�d�c�e�n�i�]�d�c�$
�V�g�X�]�^�k�Z�$�'�%�%�-�$�%�(�$�&�+�$�Y�a�g�"�g�Z�h�d�j�g�X�Z�h�#�V�h�e�m. This chapter also provides a
number of speci�c resources you can use to discover more about DLR. The
point is to keep track of what’s going on with this exciting technology and
review your code as things change.

OBTAINING DLR

It’s important to remember that IronPython relies on DLR to perform just about every task that
IronPython executes. Therefore, you already have access to a certain level of DLR, even if you don’t
install anything or do anything special. In fact, you’re using DLR in the background every time you
use IronPython. However, you’re using DLR without really knowing it exists and without under -
standing what DLR itself can do for your application . So while you can use the direct approach to
DLR, it can prove frustrating and less than friendly.

Obtaining DLR �X 289

In order to truly understand DLR, you at least need documentation. Better yet, you can download
the entire DLR package and begin to understand the true impact of this product. If nothing else,
spend some time viewing the available components at �]�i�i�e�/�$�$�l�l�l�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$�Y�a�g. The follow -
ing sections describe various methods of gaining access to DLR so you can use it to perform some
custom tasks.

This chapter relies on DLR version 0.92, which is a pre-release version of the
product. It’s never a good idea to use pre-release software in a production envi-
ronment unless you’re willing to live with the potential issues that pre-release
software brings, such as reliability, speed, and security problems. This chapter is
better viewed as food for thought for future product ion projects and as a means
of experimenting with new technology.

Using the Direct Method
The direct method is the easiest way to obtain the bene�ts of DLR, but it’s also the most limited. You
simply add a reference to the �>�g�d�c�E�n�i�]�d�c�#�9�A�A �le located in the �Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�>�g�d�c�E�n�i�]�d�c���'�#�+
folder of your hard drive. This technique works �ne for embedding IronPython scripts in your C# or
Visual Basic.NET application. In fact, you gain access to the following classes:

�° �>�g�d�c�E�n�i�]�d�c��

�>�g�d�c�E�n�i�]�d�c�#�8�d�b�e�^�a�Z�g���°

�>�g�d�c�E�n�i�]�d�c�#�8�d�b�e�^�a�Z�g�#�6�h�i���°

�>�g�d�c�E�n�i�]�d�c�#�=�d�h�i�^�c�\���°

�>�g�d�c�E�n�i�]�d�c�#�B�d�Y�j�a�Z�h���°

�>�g�d�c�E�n�i�]�d�c�#�G�j�c�i�^�b�Z���°

�>�g�d�c�E�n�i�]�d�c�#�G�j�c�i�^�b�Z�#�7�^�c�Y�^�c�\���°

�>�g�d�c�E�n�i�]�d�c�#�G�j�c�i�^�b�Z�#�:�m�X�Z�e�i�^�d�c�h���°

�>�g�d�c�E�n�i�]�d�c�#�G�j�c�i�^�b�Z�#�D�e�Z�g�V�i�^�d�c�h���°

�>�g�d�c�E�n�i�]�d�c�#�G�j�c�i�^�b�Z�#�I�n�e�Z�h���°

For many developers, this is all the DLR support you need, especially if your application only requires
cross-language support through the Hosting APIs. (You’ll still want to download the documentation
that’s available on the main DLR Web site — the section “Downloading the Documentation” later in
this chapter explains how to perform this task.) The following steps describe how to add the required
reference to gain access to these classes.

1. Create the .NET project.

2. Right-click References in Solution Explorer and choose Add Reference from the context menu.
You see the Add Reference dialog box.

290 �X CHAPTER 14 INTERACTING WITH THE DLR

3. Select the Browse tab and locate the
IronPython.DLL �le, as shown in
Figure 14-1.

4. Click OK. Visual Studio adds the
required reference to your project.

You make use of �>�g�d�c�E�n�i�]�d�c�#�9�A�A as you
would any other .NET assembly. Simply
add the required �j�h�Z or �>�b�e�d�g�i�h statement
to your code. The examples throughout the
book tell you about these requirements for
the individual example.

Downloading the Full DLR
If you really want to experience DLR, you
need the complete package. The full DLR
consists of a number of components and even the source code weighs in at a hefty 10.5 MB. You
must build the full DLR from the source code as described in the section “Building the Full DLR”
later in this chapter.

Before you begin the download, check out the release notes at �]�i�i�e�/�$�$�Y�a�g�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$
�l�^�`�^�e�V�\�Z�4�i�^�i�a�Z�2�%�#�.�'�T�g�Z�a�Z�V�h�Z�T�c�d�i�Z�h for additional information about DLR. For example, you
might decide to get an IronPython- or IronRuby-speci�c download. The full release includes both
language products (which can be helpful, even if you use only one of them).

You obtain the full DLR from �]�i�i�e�/�$�$�Y�a�g�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$�G�Z�a�Z�V�h�Z�$�E�g�d�_�Z�X�i�G�Z�a�Z�V�h�Z�h��
�#�V�h�e�m�4�G�Z�a�Z�V�h�Z�>�Y�2�(�)�-�(�). When you click the DLR-0.92-Src.zip link, you see a licensing
dialog box. Click I Agree to begin the download process.

After the download completes, extract the resulting �9�A�G�"�%�#�.�'�"�H�g�X�#�O�>�E �le into its own folder. The
resulting �Q�8�d�Y�Z�e�a�Z�m�"�9�A�G�"�%�#�.�' folder contains the following items.

�°�� �A�^�X�Z�c�h�Z�#�=�I�B�A and �A�^�X�Z�c�h�Z�#�G�I�;: You can read the same licensing information in two differ-
ent formats. Use whichever form works best for you.

���° �Q�9�d�X�h: A folder containing the complete documentation for DLR. The best place to begin is
the �9�A�G�"�D�k�Z�g�k�^�Z�l�#�9�D�8 �le.

���° �Q�H�V�b�e�a�Z�h: A folder containing a number of sample applications that demonstrate DLR
features. There’s only one IronPython sample in the whole batch — you’ll �nd it in the
�Q�8�d�Y�Z�e�a�Z�m�"�9�A�G�"�%�#�.�'�Q�H�V�b�e�a�Z�h�Q�H�^�a�k�Z�g�a�^�\�]�i�Q�6�e�e�Q�E�n�i�]�d�c�Q�e�n�i�]�d�c folder.

���° �Q�H�d�j�g�X�Z: A folder that contains the complete DLR source code that you need to compile in
order to use DLR to create applications. This folder should be your �rst stop after you read
the �9�A�G�"�D�k�Z�g�k�^�Z�l�#�9�D�8 �le.

At this point, you can proceed with the instructions in the next section, “Building the Full DLR.”

FIGURE 14�1: Add the IronPython.DLL �le to your project.

Obtaining DLR �X 291

Building the Full DLR
Before you can use DLR, you must build it. The previous section explains how to download a copy of
the DLR source. The following sections describe three methods you can use to build DLR. For most
developers, the easiest and fastest method is the command line build. However, if you want to review
the code before you use it, you might want to load the solution in Visual Studio and take a peek.

Performing a Command Line Build
The command line build option requires that you use the Visual Studio command line, not a standard
command line (which doesn’t contain a path to the utilities you need). The following steps describe
how to perform the command line build:

1. Choose Start�����¶����Programs�����¶����Microsoft Visual Studio 2008 �����¶����Visual Studio Tools�����¶����Visual
Studio 2008 Command Prompt or Start�����¶����Programs�����¶����Microsoft Visual Studio 2010 �����¶��������
Visual Studio Tools�����¶����Visual Studio Command Prompt (2010). You’ll see a command prompt.

2. Type���8�9���Q�8�d�Y�Z�e�a�Z�m�"�9�A�G�"�%�#�.�'�Q�H�g�X and press Enter. This command places you in the DLR
source code directory.

3. Type �B�H�7�j�^�a�Y���8�d�Y�Z�e�a�Z�m�"�9�A�G�#�H�A�C (when using Visual Studio 2008) or
�B�H�7�j�^�a�Y���8�d�Y�Z�e�a�Z�m�"�9�A�G�"�9�Z�k�&�%�#�H�A�C��(when using Visual Studio 2010) and press
Enter. By default, you get a debug build. Use the �$�e�/�8�d�c�[�^�\�j�g�V�i�^�d�c�2�G�Z�a�Z�V�h�Z command
line switch (as in �B�H�7�j�^�a�Y���8�d�Y�Z�e�a�Z�m�"�9�A�G�#�H�A�C���$�e�/�8�d�c�[�^�\�j�g�V�i�^�d�c�2�G�Z�a�Z�V�h�Z or
�B�H�7�j�^�a�Y���8�d�Y�Z�e�a�Z�m�"�9�A�G�"�9�Z�k�&�%�#�H�A�C���$�e�/�8�d�c�[�^�\�j�g�V�i�^�d�c�2�G�Z�a�Z�V�h�Z) to obtain a release
build. You see a lot of text appear onscreen as MSBuild creates the DLR DLLs for you.
Some of the text will appear unreadable (Microsoft uses some odd color combinations).
When the build process is complete, you should see �%���:�g�g�d�g���h�� as the output, along with a
build time, as shown in Figure 14-2. (If you don’t see a 0 error output, you should probably
download the �les again because there is probably an error in the �les you downloaded.)

FIGURE 14�2: The build process should show 0 Error(s) as the output message.

Don’t look for the output in the source code folders. The output from the build
process appears in the �Q�8�d�Y�Z�e�a�Z�m�"�9�A�G�"�%�#�.�'�Q�7�^�c�Q�)�% folder when working with
Visual Studio 2010, no matter which technique you use to build DLR. Visual
Studio 2008 developers will �nd their output in the �Q�8�d�Y�Z�e�a�Z�m�"�9�A�G�"�%�#�.�'�Q��
�7�^�c�Q�9�Z�W�j�\ or �Q�8�d�Y�Z�e�a�Z�m�"�9�A�G�"�%�#�.�'�Q�7�^�c�Q�G�Z�a�Z�V�h�Z folders, depending on the
kind of build created. Visual Studio 2008 developers will also �nd a separate
�Q�8�d�Y�Z�e�a�Z�m�"�9�A�G�"�%�#�.�'�Q�7�^�c�Q�H�^�a�k�Z�g�a�^�\�]�i���9�Z�W�j�\ or �Q�8�d�Y�Z�e�a�Z�m�"�9�A�G�"�%�#�.�'�Q�7�^�c�Q
�H�^�a�k�Z�g�a�^�\�]�i���G�Z�a�Z�V�h�Z folder for Silverlight use.

292 �X CHAPTER 14 INTERACTING WITH THE DLR

Performing a Visual Studio 2008 Build
Some developers will want to perform a build from within Visual Studio 2008. To perform this
task, simply double-click the Codeplex-DLR.SLN icon in the �Q�8�d�Y�Z�e�a�Z�m�"�9�A�G�"�%�#�.�'�Q�H�g�X folder.
Choose Build�����¶����Build Solution or press Ctrl+Shift+B. You’ll see a series of messages in the Output
window. When the process is complete, you should see, “Build: 23 succeeded or up-to-date, 0 failed,
1 skipped” as the output.

You must select each of the options in the Solution Con�gurations combo box
in turn and perform a build to create a complete setup. Otherwise, you’ll end
up with just the Release build or just the Debug build. If you need Silverlight or
FxCop support, you must also create these builds individually.

Don’t worry if you see a number of messages stating

�E�g�d�_�Z�X�i���[�^�a�Z���X�d�c�i�V�^�c�h���I�d�d�a�h�K�Z�g�h�^�d�c�2�º�)�#�%�º�!���l�]�^�X�]���^�h���c�d�i���h�j�e�e�d�g�i�Z�Y���W�n���i�]�^�h��
�k�Z�g�h�^�d�c���d�[���B�H�7�j�^�a�Y�#���I�g�Z�V�i�^�c�\���i�]�Z���e�g�d�_�Z�X�i���V�h���^�[���^�i���]�V�Y���I�d�d�a�h�K�Z�g�h�^�d�c�2�º�(�#�*�º�#

because this is normal when using Visual Studio 2008. You’ll also see a number of warning messages
(a total of 59 for the current DLR build) in the Err ors window, which you can ignore when using the
current release.

Performing a Visual Studio 2010 Build
A release version of DLR will build better if you have a copy of Visual Studio 2010 on your
system. To perform this task, simply double-click the Codeplex-DLR-Dev10.SLN icon in the
�Q�8�d�Y�Z�e�a�Z�m�"�9�A�G�"�%�#�.�'�Q�H�g�X folder. Set the Solution Con�gurations option to Release or Debug as
needed (there aren’t any options to build Silverlight or FxCop output). Choose Build�����¶����Build Solution
or press Ctrl+Shift+B. You’ll see a series of messages in the Output window. When the process is
complete, you should see, “Build: 15 succeeded or up-to-date, 0 failed, 2 skipped” as the output. The
Warnings tab of the Error List window should show 24 warnings.

Downloading the Documentation
The download you performed earlier provides code and documentation, but you might �nd that the
documentation is outdated. As with everything else about DLR, the documentation is in a constant
state of �ux. If you want to use DLR directly, then you need the documentation found at
�]�i�i�e�/�$�$�Y�a�g�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$�l�^�`�^�e�V�\�Z�4�i�^�i�a�Z�2�9�d�X�h���V�c�Y���h�e�Z�X�h���g�Z�[�Z�g�g�^�c�\�I�^�i�a�Z�2�=�d�b�Z.
Unfortunately, you have to download each document separately.

Reporting Bugs and Other Issues
At some point, you’ll run into something that doesn’t work as expected. Of course, this problem
even occurs with production code, but you’ll de�nitel y run into problems when using the current
release of DLR. In this case, check out the listing of issues at �]�i�i�e�/�$�$�l�l�l�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$�Y�a�g�$

Working with Hosting APIs �X 293

�L�d�g�`�>�i�Z�b�$�A�^�h�i�#�V�h�e�m. If you don’t �nd an issue entry that matches the problem you’re experiencing,
make sure you report the bug online so it gets �xed. Of course, reporting applies equally to code
and documentation. Documentation errors are often harder to �nd and �x than coding errors — at
least where developers are concerned — because it’s easier to see the coding error in many cases.

WORKING WITH HOSTING APIS

As you’ve progressed through the book, you probably found that IronPython is a reasonably easy
language to learn, yet it provides considerable �exibility and functionality. In fact, you may have even
wondered whether it’s possible to use IronPython as a scripting language for your next application.
Fortunately, you can use IronPython as the scripting language for your next application by relying on
the Hosting APIs. It turns out that a lot of people have considered IronPython an optimal language
for the task. The following sections consider a number of Hosting API questions, such as how you can
use it in an actual application, what the host application needs in order to use the Hosting APIs, and
what you’d need to do to embed IronPython as a scripting language in an application.

A single section of a book can’t provide everything needed to use the Hosting
APIs. In fact, the authors of the Hosting APIs speci�cation required 87 pages
just to document the speci�cation. You can �nd the speci�cation in the
�9�A�G�"�H�e�Z�X�"�=�d�h�i�^�c�\�#�9�D�8 �le found in the �Q�8�d�Y�Z�e�a�Z�m�"�9�A�G�"�%�#�.�'�Q�9�d�X�h folder of
your DLR installation. Of course, you may �nd that so me of the information in
this �le is outdated, so be sure to check on �]�i�i�e�/�$�$�l�l�l�#�^�j�c�`�c�d�l�c�#�X�d�b�$�'�%�%�-�$�%�&�$
�a�V�i�Z�h�i�"�Y�a�g�"�]�d�h�i�#�]�i�b�a for additional information or download the updated
speci�cation from �]�i�i�e�/�$�$�l�l�l�#�^�j�c�`�c�d�l�c�#�X�d�b�$�[�^�a�Z�h�$�Y�a�g�"�h�e�Z�X�"�]�d�h�i�^�c�\�#�e�Y�[.

Using the Hosting APIs
The DLR speci�cation lists a number of hosting scenarios, such as operating on dynamic
objects you create within C# or Visual Basic.NET applications. (See the section “Working
with IDynamicObject” later in this chapter for detail s on dynamic objects in C# and Visual
Basic.NET.) It’s also possible to use the Hosting APIs to create a scripting environment within
Silverlight or other types of Web applications.

Whatever sort of host environment you create, you can use it to execute code snippets or entire
applications found in �les. The script run time can appear locally or within a remote application so
you can use this functionality to create agent applications or scripting that relies on server support.
The Hosting APIs make it possible to choose a speci�c scripting engine to execute the code or to
let DLR choose the most appropriate scripting engine for the task. This second option might seem
foolhardy, but it can actually let your code use the most recent scripting engine, even if that engine
wasn’t available at the time you wrote the host environment code.

Chaos could result if you couldn’t control the extent (range) of the script execution in some way.
For example, two developers could create variables with the same name in different areas of the

294 �X CHAPTER 14 INTERACTING WITH THE DLR

application. The Hosting APIs make it possible to add scope to script execution. The scope acts
much like a namespace does when writing code. Just as a namespace eliminates naming con�icts in
assemblies, scoping eliminates them in the scripting environment. Executing the code within a scope
also provides it with an execution context (controlled using a �H�X�g�^�e�i�H�X�d�e�Z). Scopes are either pub-
lic or private, with private scopes providing a measure of protection for the scripting environment. A
script can also import scopes for use within the environment or require the host to support a certain
scope to execute the script.

The Hosting APIs also provide support for other functionality. For example, you can employ
re�ection to obtain information about object members, obtain parameter information, and view
documentation. You can also control how the scripting engine resolves �le content when dynamic
languages import code �les.

Understanding the Hosting APIs Usage Levels
The DLR documentation speci�es that most developers will use the Hosting APIs at one of three
levels that are dictated by application requirements. Here are the three basic levels.

�°�� Basic code: The basic code level (Level 1 in the documentation) relies on a few basic types to
execute code within scopes. The code can interact with variable bindings within those scopes.

���° Advanced code execution: The next level (Level 2 in the documentation) adds intermediate
types that provide additional control over how code executes. In addition, this level supports
using compiled code in various scopes and permits use of various code sources.

���° Support overrides: The �nal level (Level 3 in the documentation) provides methods to override
how DLR resolves �lenames. The application can also use custom source content readers, re�ect
over objects for design-time tool support, provide late bound variable values from the host, and
use remote �H�X�g�^�e�i�G�j�c�i�^�b�Z objects.

The concept of a �H�X�g�^�e�i�G�j�c�i�^�b�Z object is central to working with the Hosting APIs. A host always
begins a session by creating the �H�X�g�^�e�i�G�j�c�i�^�b�Z object and then using that object to perform tasks.
You can create a �H�X�g�^�e�i�G�j�c�i�^�b�Z object using several methods. Of course, the easiest method is to
use the standard constructor, which requires a �H�X�g�^�e�i�G�j�c�i�^�b�Z�H�Z�i�j�e object as input. It’s also pos-
sible to create a �H�X�g�^�e�i�G�j�c�i�^�b�Z object using these methods

�°�� �H�X�g�^�e�i�G�j�c�i�^�b�Z�#�8�g�Z�V�i�Z�;�g�d�b�8�d�c�[�^�\�j�g�V�i�^�d�c����: A factory method that lets you use a pre-
con�gured scope to create the �H�X�g�^�e�i�G�j�c�i�^�b�Z object. In fact, this factor method is just short
for �c�Z�l���H�X�g�^�e�i�G�j�c�i�^�b�Z���H�X�g�^�e�i�G�j�c�i�^�b�Z�H�Z�i�j�e�#�G�Z�V�Y�8�d�c�[�^�\�j�g�V�i�^�d�c������.

���° �H�X�g�^�e�i�G�j�c�i�^�b�Z�#�8�g�Z�V�i�Z�G�Z�b�d�i�Z����: A factory method that helps you to create a
�H�X�g�^�e�i�G�j�c�i�^�b�Z object in another domain. The code must meet strict requirements to per-
form remote execution. See Section 4.1.3, “Create* Methods,” in the Hosting APIs speci�ca-
tion for details.

At its name implies, a �H�X�g�^�e�i�G�j�c�i�^�b�Z�H�Z�i�j�e object gives a host full control over the �H�X�g�^�e�i�G�j�c�i�^�b�Z
object con�guration. The �H�X�g�^�e�i�G�j�c�i�^�b�Z�H�Z�i�j�e object contains settings for debug mode, private execu-
tion, the host type, host arguments, and other setup features. Simply creating a �H�X�g�^�e�i�G�j�c�i�^�b�Z�H�Z�i�j�e
object sets the defaults for executing a script. Once you use a �H�X�g�^�e�i�G�j�c�i�^�b�Z�H�Z�i�j�e object to create a
�H�X�g�^�e�i�G�j�c�i�^�b�Z object, you can’t change the settings — doing so will raise an exception.

Working with Hosting APIs �X 295

The Hosting APIs actually support a number of objects that you use to create a scripting environ-
ment, load the code you want to execute, and control the execution process. The �gure at �]�i�i�e�/�$�$
�l�l�l�#�[�a�^�X�`�g�#�X�d�b�$�e�]�d�i�d�h�$�_�d�]�c�T�a�V�b�$�'�'�'�%�,�.�+�+�)�,�$ provides an overview of these objects and how
you normally use them within the hosting session.

It’s important to isolate code during execution. The Hosting APIs provide three levels of isolation.

�°�� �6�e�e�9�d�b�V�^�c: The highest isolation level, which affects the entire application. The �6�e�e�9�d�b�V�^�c
lets you execute code at different trust levels, and load and unload code as needed.

���° �H�X�g�^�e�i�G�j�c�i�^�b�Z: Every �6�e�e�9�d�b�V�^�c can have multiple �H�X�g�^�e�i�G�j�c�i�^�b�Zs within it. Each
�H�X�g�^�e�i�G�j�c�i�^�b�Z object can have different name bindings, use different .NET assemblies,
have different settings (one can be in debug mode, while another might not), and provide
other settings and options support.

���° �H�X�g�^�e�i�H�X�d�e�Z: Every �H�X�g�^�e�i�G�j�c�i�^�b�Z can contain multiple �H�X�g�^�e�i�H�X�d�e�Zs. A �H�X�g�^�e�i�H�X�d�e�Z
can provide variable binding isolation. In addition, you can use a �H�X�g�^�e�i�H�X�d�e�Z to give exe-
cutable code speci�c permissions.

Now that you have a better idea of how the pieces �t together, it’s important to consider which
pieces you use to embed scripting support within an application. Generally, if you want basic code
(Level 1) support, all you need are the objects shown in green at �]�i�i�e�/�$�$�l�l�l�#�[�a�^�X�`�g�#�X�d�b�$�e�]�d�i�d�h�$
�_�d�]�c�T�a�V�b�$�'�'�'�%�,�.�+�+�)�,�$. In fact, if you want to use the default �H�X�g�^�e�i�H�X�d�e�Z settings, all you really
need to do is create the �H�X�g�^�e�i�G�j�c�i�^�b�Z and then use the default �H�X�g�^�e�i�H�X�d�e�Z.

Considering the Host Application
A host has to meet speci�c requirements before it can run IronPython as a scripting language.
Chapter 15 discusses more of the details for C# and Visual Basic.NET developers. You’ll �nd that
C# and Visual Basic.NET provide everything you need. However, it’s interesting to see just what
the requirements are, especially if you’re using an older version of these languages. Section 3 of the
�9�A�G�"�H�e�Z�X�"�=�d�h�i�^�c�\�#�9�D�8 �le found in the �Q�8�d�Y�Z�e�a�Z�m�"�9�A�G�"�%�#�.�'�Q�9�d�X�h folder contains complete
information about the hosting requirements. Section 3.3 (and associated subsections) are especially
important for most developers to read if they plan to use the Hosting APIs for anything special.

Embedding IronPython as a Scripting Language
Imagine that you’ve created a custom editor in your application where users can write IronPython
scripts. They then save the script to disk (or you could read it from memory), and then they assign
the script to a button or menu in your application. W hen the user selects the button or menu, your
application executes the script. Creating this scenario isn’t as hard as you might imagine. DLR
comes with most of the functionality you need built in.

Of course, you need a test script to start. Listing 14-1 shows the test script for this example. The
example is purposely simple so that the example doesn’t become more focused on the IronPython
code than the code that executes it. However, you could easily use any script you want as long as
it’s a legitimate IronPython script.

296 �X CHAPTER 14 INTERACTING WITH THE DLR

LISTING 14�1: A simple IronPython script to execute

�����6���h�^�b�e�a�Z���[�j�c�X�i�^�d�c���X�V�a�a�#
�Y�Z�[���b�j�a�i���V�!���W���/
���������g�Z�i�j�g�c���V�������W

�����8�g�Z�V�i�Z���V���k�V�g�^�V�W�a�Z���i�d���]�d�a�Y���i�]�Z���d�j�i�e�j�i�#
�D�j�i�e�j�i���2���b�j�a�i���*�!�&�%��

�����9�^�h�e�a�V�n���i�]�Z���d�j�i�e�j�i�#
�e�g�^�c�i���»�*�������&�%���2�¼���!
�e�g�^�c�i���D�j�i�e�j�i��

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

In this case, the example has a simple func-
tion, �b�j�a�i����, that multiplies two numbers
together. The �T�T�b�V�^�c�T�T���� part of the script
multiplies two numbers and displays the
result using the �e�g�^�c�i���� function. In short,
the script isn’t very complicated.

Now that you have a script, you need to cre-
ate an application to execute it. The example
is a simple console application. In order to
create the IronPython �H�X�g�^�e�i�G�j�c�i�^�b�Z object,
you need access to some of the IronPython
assemblies. Right-click References in Solution
Explorer and choose Add Reference from the
context menu. You see the Add Reference dia-
log box shown in Figure 14-3. Ctrl+click each
of the entries shown in Figure 14-3, then click
OK to add them to your project.

The example also requires that you add �j�h�^�c�\ statements for a number of the assemblies. Here are
the �j�h�^�c�\ statements that you must add for this example.

�j�h�^�c�\���H�n�h�i�Z�b�0��
�j�h�^�c�\���>�g�d�c�E�n�i�]�d�c�#�=�d�h�i�^�c�\�0��
�j�h�^�c�\���>�g�d�c�E�n�i�]�d�c�#�G�j�c�i�^�b�Z�0��
�j�h�^�c�\���B�^�X�g�d�h�d�[�i�#�H�X�g�^�e�i�^�c�\�#�=�d�h�i�^�c�\�0

Now that the console project is set up, you can begin coding it. This example is very simple, but it
actually works. You can execute an IronPython script using this technique. Of course, you can’t inter-
act with it much. Chapter 15 provides more detailed examples, but this example is a good starting
place. Listing 14-2 shows the minimum code you need to execute an IronPython script and display the
result of executing it onscreen.

FIGURE 14�3: Add the required references from your
IronPython setup.

Working with Hosting APIs �X 297

You may wonder why Figure 14-3 shows so many assemblies selected when the
example code only uses one of them directly. The other assemblies are dependen-
cies that the assemblies you use directly require to execute. The code will compile
just �ne without these other assemblies, but the application will raise an exception
when you try to execute it. If you run into a situatio n where you think that the
application should execute, but it keeps raising an exception, read the exception
information carefully to determine whether a missing assembly is the problem.

LISTING 14�2: Executing the IronPython script

�h�i�V�i�^�X���k�d�^�Y���B�V�^�c���h�i�g�^�c�\�P�R���V�g�\�h��
�p
���������$�$���8�g�Z�V�i�Z���V�c���>�g�d�c�E�n�i�]�d�c���H�X�g�^�e�i�G�j�c�i�^�b�Z�#
���������H�X�g�^�e�i�G�j�c�i�^�b�Z���G�j�c�i�^�b�Z���2���>�g�d�c�E�n�i�]�d�c�#�=�d�h�i�^�c�\�#�E�n�i�]�d�c�#�8�g�Z�V�i�Z�G�j�c�i�^�b�Z�����0

���������$�$���:�m�Z�X�j�i�Z���i�]�Z���h�X�g�^�e�i���[�^�a�Z���V�c�Y���g�Z�i�j�g�c���h�X�d�e�Z���^�c�[�d�g�b�V�i�^�d�c���V�W�d�j�i
���������$�$���i�]�Z���i�V�h�`�#
���������H�X�g�^�e�i�H�X�d�e�Z���H�X�d�e�Z���2���G�j�c�i�^�b�Z�#�:�m�Z�X�j�i�Z�;�^�a�Z���¹�I�Z�h�i�#�e�n�º���0

���������$�$���9�^�h�e�a�V�n���i�]�Z���c�V�b�Z���d�[���i�]�Z���[�^�a�Z���Z�m�Z�X�j�i�Z�Y�#
���������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�Q�g�Q�c�:�m�Z�X�j�i�Z�Y���p�%�r�¹�!��
�����������������H�X�d�e�Z�#�<�Z�i�K�V�g�^�V�W�a�Z�1�h�i�g�^�c�\�3���¹�T�T�c�V�b�Z�T�T�¹�����0

���������$�$���@�Z�Z�e���i�]�Z���d�j�i�e�j�i���k�^�h�^�W�a�Z�#
���������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�Q�g�Q�c�E�g�Z�h�h���V�c�n���`�Z�n�#�#�#�º���0
���������8�d�c�h�d�a�Z�#�G�Z�V�Y�A�^�c�Z�����0
�r

The code begins by creating the �H�X�g�^�e�i�G�j�c�i�^�b�Z object, �G�j�c�i�^�b�Z. Notice that you create this object
by directly accessing the IronPython assemblies, rather than the DLR assemblies. There are many
ways to accomplish this task, but using the technique shown is the simplest. The �G�j�c�i�^�b�Z object
contains default settings for everything. For example, this �H�X�g�^�e�i�G�j�c�i�^�b�Z doesn’t provide debug-
ging capability. Consequently, this technique is only useful when you have a debugged script to work
with and may not do everything needed in a production environment where you let users execute
their own scripts as part of an application.

The �G�j�c�i�^�b�Z�#�:�m�Z�X�j�i�Z�;�^�a�Z���� method is just one of several ways to execute a script. You use it
when a script appears in a �le on disk, as is the case for this example. When you call the �G�j�c�i�^�b�Z��
�#�:�m�Z�X�j�i�Z�;�^�a�Z���� method, your application actually calls on the IronPython interpreter to execute
the code. The output from the script appears in Figure 14-4. As you can see, the code executes as you
expect without any interference from the host. In fact, you can’t even tell that the application has a host.

FIGURE 14�4: The script output appears as you might expect.

298 �X CHAPTER 14 INTERACTING WITH THE DLR

When the �G�j�c�i�^�b�Z�#�:�m�Z�X�j�i�Z�;�^�a�Z���� method call returns, the C# application that executed the script
receives a �H�X�g�^�e�i�H�X�d�e�Z object that it can use to interact with the application in various ways. This
�H�X�g�^�e�i�H�X�d�e�Z object, like the �H�X�g�^�e�i�G�j�c�i�^�b�Z object, contains all the usual defaults. It’s a good idea
to examine both �G�j�c�i�^�b�Z and �H�X�d�e�Z in the debugger to see what these objects contain because you’ll
�nd useful information in both.

The script is running in a host application. In fact, they share the same console window. To show
how this works, the example writes output to the console window. It retrieves the �T�T�c�V�b�Z�T�T prop-
erty from �H�X�d�e�Z and displays it onscreen with the message, as shown in Figure 14-5. The point of
this example is that the IronPython script truly is hosted and not running on its own. The technique
shown here lets you perform simple interactions between C# or Visual Basic.NET and IronPython.

FIGURE 14�5: The output shows that the host and the IronPython environment share the same console.

You may have heard that hosting DLR requires that you create entries in
the �6�e�e�#�8�D�C�;�>�< �le. While it’s true that you gain additional �exibility using the
�6�e�e�#�8�D�C�;�>�< �le approach, it’s not true that you must use this approach to execute
scripts. Many developers will �nd that their scripts execute just �ne using the tech-
nique shown in this section and with far less code than using the �6�e�e�#�8�D�C�;�>�< �le
approach. However, Chapter 15 does demonstrate this technique so that you can
see the best of both worlds when it comes to working with scripts.

UNDERSTANDING THE EXTENSIONS TO LINQ EXPRESSION TREE

Part of the premise behind DLR is that every .NET language eventually ends up in Microsoft
Intermediate Language (MSIL) form. Whether you use C# or Visual Basic.NET, or even managed
C++, the output from the compiler is MSIL. That’s how the various languages can get along. They
rely on MSIL as an intermediary so that managed languages can work together.

Earlier versions of IronPython let you compile your application code using
the �·�M�/�H�V�k�Z�6�h�h�Z�b�W�a�^�Z�h command line switch. For example, you could type
�>�E�N���·�M�/�H�V�k�Z�6�h�h�Z�b�W�a�^�Z�h���I�Z�h�i�#�e�n and press Enter to create an executable
�le (it still requires that you supply IronPython.DLL). The latest version of
IronPython doesn’t supply this feature, so you can’t actually see IronPython
turned into MSIL.

Understanding the Extensions to LINQ Expression Tree �X 299

The problem with compiling everything to MSIL is tha t MSIL doesn’t necessarily perform tasks
quickly or easily when working with dynamic languages such as IronPython. It would be far easier
if there were a mechanism for translating the code directly into something that C# or Visual Basic
.NET could use. That’s where the LINQ Expression Tree (ET) comes into play. A LINQ ET can rep-
resent IronPython or other code (such as JavaScript) in a tree form that DLR can then translate into
something that C# or Visual Basic.NET can understand. The result is a DLR tree that presents the
code in an easily analyzable and mutable form. The example at �]�i�i�e�/�$�$�W�a�d�\�h�#�b�h�Y�c�#�X�d�b�$�]�j�\�j�c�^�c�$
�V�g�X�]�^�k�Z�$�'�%�%�,�$�%�*�$�&�*�$�Y�a�g�"�i�g�Z�Z�h�"�e�V�g�i�"�&�#�V�h�e�m explains how DRL trees work graphically. In this
case, the author explains how a DLR tree can represent a JavaScript application — the same tech-
nique also applies to IronPython.

The LINQ ET originally appeared in the .NET Framework 3.5. In its original form, Microsoft
used the LINQ ET to model LINQ expressions written in C# and Visual Basic.NET. In the .NET
Framework 4.0, Microsoft added extensions for a number of reasons. For the purposes of this book,
the most important reason to extend LINQ ETs is to accommodate the DLR semantics used to
translate IronPython code into something that C# and Visual Basic.NET can understand.

A single section of a book can’t provide everything needed to use the DLR
Trees. In fact, the authors of the Expression Trees speci�cation required 173
pages just to document the speci�cation. You can �nd the speci�cation in the
�:�m�e�g�"�I�g�Z�Z�"�H�e�Z�X�#�9�D�8 �le found in the �Q�8�d�Y�Z�e�a�Z�m�"�9�A�G�"�%�#�.�'�Q�9�d�X�h folder of
your DLR installation. Of course, you may �nd that so me of the information
in this �le is outdated, so be sure to check on �]�i�i�e�/�$�$�Y�a�g�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$
�l�^�`�^�e�V�\�Z�4�i�^�i�a�Z�2�9�d�X�h���'�%�V�c�Y���'�%�h�e�Z�X�h for the latest documentation.

DLR trees work in the background. It’s helpful to know they exist, but you generally won’t worry
about them when working with IronPython so this section is short. However, let’s say you want to
create a scripting language for your application that isn’t as complex as IronPython. Perhaps you
want to implement an editor and everything that goes with it in your application. In this case, you
may very well want to work with DLR trees. The exampl es found at �]�i�i�e�/�$�$�l�Z�W�a�d�\�h�#�V�h�e�#�c�Z�i�$
�e�d�Y�l�n�h�d�X�`�^�$�V�g�X�]�^�k�Z�$�'�%�%�-�$�%�'�$�%�-�$�V�Y�k�Z�c�i�j�g�Z�h�"�^�c�"�X�d�b�e�^�a�Z�g�h�"�W�j�^�a�Y�^�c�\�"�d�c�"�i�]�Z�"�Y�a�g�#�V�h�e�m
show what you need to do to create your own language compiler. Once you have a compiler like this
built, you could execute the code using a technique similar to the one shown in Listing 14-2.

It’s important to consider one word of warning, howev er, when working with the current version of
DLR trees. As you scan through the speci�cation, you’ll �nd that the authors have left behind copious
notes about issues that aren’t resolved now or features that were left out of the current implementa-
tion due to a lack of time. The result is conversations such as the one at �]�i�i�e�/�$�$�h�i�V�X�`�d�k�Z�g�[�a�d�l�#�X�d�b�$
�f�j�Z�h�i�^�d�c�h�$�'�*�%�(�,�,�$�V�g�Z�"�a�^�c�f�"�Z�m�e�g�Z�h�h�^�d�c�"�i�g�Z�Z�h�"�i�j�g�^�c�\�"�X�d�b�e�a�Z�i�Z. If you look at section 2.4.1
of the speci�cation, you �nd that a higher-level loopi ng mechanism was indeed cut, but Microsoft is
aware of the problem and plans to implement the feature in the future. In short, DLR trees have limits
that you need to consider before implementing them in your application.

300 �X CHAPTER 14 INTERACTING WITH THE DLR

CONSIDERING DYNAMICSITE

When working with a static language such as C# or Visual Basic.NET, the compiler knows what to
emit in the form of MSIL based on the code the developer provides. However, dynamic code isn’t
static — it can change based on any of a number of factors. One problem with dynamic languages
is that DLR doesn’t always know what to emit during compile time because the real time event
hasn’t occurred yet. Of course, the static language still needs some code in place because static lan-
guages need to know what to do at compile time. This seeming conundrum is handled by invoking a
�9�n�c�V�b�^�X�H�^�i�Z object. Using a �9�n�c�V�b�^�X�H�^�i�Z object means that the static language knows what to call
at compile time and DLR can �ll the �9�n�c�V�b�^�X�H�^�i�Z object with executable code during run time.

As with many parts of DLR, the action takes place behind the scenes — you don’t even know it
occurs. However, it’s useful to know what happens so you at least know what to suspect when an
error occurs. The act of invoking the �9�n�c�V�b�^�X�H�^�i�Z method creates an operation to perform and a
delegate. The delegate contains caching logic that is updated every time the arguments change. In
short, as the dynamic language changes, DLR generates events that change the content of the cache
as well.

At the center of working with �9�n�c�V�b�^�X�H�^�i�Z is the �J�e�Y�V�i�Z�7�^�c�Y�^�c�\�6�c�Y�>�c�k�d�`�Z���� method. The �rst
time that application code calls the �9�n�c�V�b�^�X�H�^�i�Z object, the �J�e�Y�V�i�Z�7�^�c�Y�^�c�\�6�c�Y�>�c�k�d�`�Z���� method
queries the arguments for the speci�ed code. For example, the code might be something simple such
as �m��� ���n, so the query would request the types of �m and �n. At this point, �J�e�Y�V�i�Z�7�^�c�Y�^�c�\�6�c�Y�>�c�k�d�`�Z����
generates a delegate that contains the implementation of the code.

The next time the application invokes the �9�n�c�V�b�^�X�H�^�i�Z object, the delegate checks the arguments
in the call against those in the cache. If the argument types match, then the delegate simply uses the
current implementation of the code. However, if the arguments are different, then the delegate calls
�J�e�Y�V�i�Z�7�^�c�Y�^�c�\�6�c�Y�>�c�k�d�`�Z����, which creates a new delegate that contains a de�nition of the new code
with the updated arguments. The new delegate contains checks for both sets of argument types and
calls the appropriate implementation based on the arguments it receives. Of course, if none of the argu-
ment sets match the call, then the process starts over again with a call to �J�e�Y�V�i�Z�7�^�c�Y�^�c�\�6�c�Y�>�c�k�d�`�Z����.

WORKING WITH IDYNAMICOBJECT

This section discusses the �>�9�n�c�V�b�^�X�D�W�_�Z�X�i interface provided as part of DLR, which doesn’t affect
IronPython directly, but could affect how you use other languages to interact with IronPython. You can
easily skip this section and leave it for later reading if you plan to work exclusively with IronPython fo r
the time being. This is a very short discussion of the topic that is meant to �ll in the information you
have about DLR and its use with IronPython.

As mentioned throughout the book, C# and Visual Basic.NET are both static languages. Microsoft
doesn’t appear to have any desire to change this situation in upcoming versions of either language.
Consequently, you can’t create dynamic types using C# or Visual Basic. There isn’t any technique
for de�ning missing methods or dynamic classes using either language. However, you can consume
dynamic types de�ned using a new interface, �>�9�n�c�V�b�^�X�D�W�_�Z�X�i.

Working with IDynamicObject �X 301

The �>�9�n�c�V�b�^�X�D�W�_�Z�X�i interface tells DLR that the class knows how to dispatch operations on itself.
In some respects, �>�9�n�c�V�b�^�X�>�c�i�Z�g�[�V�X�Z is a kind of managed form of the �>�F�j�Z�g�n�V�W�a�Z interface that
C++ developers use when creating COM objects. The concept isn’t new, but the implementation of it
in the .NET environment is new.

There are many levels of complexity that you can build into your dynamic implementation.
The example in this section is a very simple shell that you can build on when creating a full-
�edged application. It’s designed to show a common implementation that you might use in an
application. You can see another simple example at �]�i�i�e�/�$�$�W�a�d�\�h�#�b�h�Y�c�#�X�d�b�$�X�h�]�V�g�e�[�V�f�$
�V�g�X�]�^�k�Z�$�'�%�%�.�$�&�%�$�&�.�$�Y�n�c�V�b�^�X�"�^�c�"�X�"�)�"�%�"�X�g�Z�V�i�^�c�\�"�l�g�V�e�e�Z�g�h�"�l�^�i�]�"�Y�n�c�V�b�^�X�d�W�_�Z�X�i�#�V�h�e�m.

The starting point for this example is a class that implements �9�n�c�V�b�^�X�D�W�_�Z�X�i. In order to create
such a class, you need to include the following �j�h�^�c�\ statements:

�j�h�^�c�\���H�n�h�i�Z�b�0��
�j�h�^�c�\���H�n�h�i�Z�b�#�9�n�c�V�b�^�X�0

The class is called �6�9�n�c�V�b�^�X�D�W�_�Z�X�i and appears in Listing 14-3.

LISTING 14�3: Creating a class to handle dynamic objects

�$�$���6�c�n���Y�n�c�V�b�^�X���d�W�_�Z�X�i���n�d�j���X�g�Z�V�i�Z���b�j�h�i���^�b�e�a�Z�b�Z�c�i���>�9�n�c�V�b�^�X�D�W�_�Z�X�i�#
�e�j�W�a�^�X���X�a�V�h�h���6�9�n�c�V�b�^�X�D�W�_�Z�X�i���/���9�n�c�V�b�^�X�D�W�_�Z�X�i��
�p

���������$�$���8�V�a�a�h���V���b�Z�i�]�d�Y���e�g�d�k�^�Y�Z�Y���l�^�i�]���i�]�Z���Y�n�c�V�b�^�X���d�W�_�Z�X�i�#
���������e�j�W�a�^�X���d�k�Z�g�g�^�Y�Z���W�d�d�a���I�g�n�>�c�k�d�`�Z�B�Z�b�W�Z�g���>�c�k�d�`�Z�B�Z�b�W�Z�g�7�^�c�Y�Z�g���W�^�c�Y�Z�g�!��
�����������������d�W�_�Z�X�i�P�R���V�g�\�h�!���d�j�i���d�W�_�Z�X�i���g�Z�h�j�a�i��
���������p
�����������������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�>�c�k�d�`�Z�B�Z�b�W�Z�g���d�[���b�Z�i�]�d�Y���p�%�r�#�º�!���W�^�c�Y�Z�g�#�C�V�b�Z���0
�����������������^�[�����V�g�\�h�#�A�Z�c�\�i�]���3���%��
�����������������p
�������������������������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�Q�i�B�Z�i�]�d�Y���X�V�a�a���]�V�h���p�%�r���V�g�\�j�b�Z�c�i�h�#�º�!���V�g�\�h�#�A�Z�c�\�i�]���0
�������������������������[�d�g�����^�c�i���^���2���%�0���^���1���V�g�\�h�#�A�Z�c�\�i�]�0���^� � ��
���������������������������������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�Q�i�Q�i�6�g�\�j�b�Z�c�i���p�%�r���^�h���p�&�r�#�º�!���^�!���V�g�\�h�P�^�R���0
�����������������r
�����������������g�Z�h�j�a�i���2���W�^�c�Y�Z�g�#�C�V�b�Z�0
�����������������g�Z�i�j�g�c���i�g�j�Z�0
���������r

���������$�$���<�Z�i�h���i�]�Z���e�g�d�e�Z�g�i�n���k�V�a�j�Z�#
���������e�j�W�a�^�X���d�k�Z�g�g�^�Y�Z���W�d�d�a���I�g�n�<�Z�i�B�Z�b�W�Z�g���<�Z�i�B�Z�b�W�Z�g�7�^�c�Y�Z�g���W�^�c�Y�Z�g�!
�����������������d�j�i���d�W�_�Z�X�i���g�Z�h�j�a�i��
���������p
�����������������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�<�Z�i�B�Z�b�W�Z�g���d�[���e�g�d�e�Z�g�i�n���p�%�r�#�º�!���W�^�c�Y�Z�g�#�C�V�b�Z���0
�����������������g�Z�h�j�a�i���2���W�^�c�Y�Z�g�#�C�V�b�Z�0
�����������������g�Z�i�j�g�c���i�g�j�Z�0
���������r

���������$�$���H�Z�i�h���i�]�Z���e�g�d�e�Z�g�i�n���k�V�a�j�Z�#
���������e�j�W�a�^�X���d�k�Z�g�g�^�Y�Z���W�d�d�a���I�g�n�H�Z�i�B�Z�b�W�Z�g���H�Z�i�B�Z�b�W�Z�g�7�^�c�Y�Z�g���W�^�c�Y�Z�g�!���d�W�_�Z�X�i���k�V�a�j�Z��
���������p

continues

302 �X CHAPTER 14 INTERACTING WITH THE DLR

�����������������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�H�Z�i�B�Z�b�W�Z�g���d�[���e�g�d�e�Z�g�i�n���p�%�r���i�d���p�&�r�#�º�!
���W�^�c�Y�Z�g�#�C�V�b�Z�!���k�V�a�j�Z���0
�����������������g�Z�i�j�g�c���i�g�j�Z�0��
���������r
�r

In this case, the code provides the ability to call methods, get property values, and set property values.
Amazingly, DLR automatically calls the correct method without any hints from you.

Notice that each of the methods uses a different binder class: �>�c�k�d�`�Z�B�Z�b�W�Z�g�7�^�c�Y�Z�g,
�<�Z�i�B�Z�b�W�Z�g�7�^�c�Y�Z�g, or �H�Z�i�B�Z�b�W�Z�g�7�^�c�Y�Z�g as needed. The binder provides you with information
about the member of interest. In most cases, you use the member name to locate the member
within the dynamic object. In this case, the code simply displays the member name onscreen so
you can see that the code called the correct member.

Two of these methods, �I�g�n�>�c�k�d�`�Z�B�Z�b�W�Z�g���� and �I�g�n�<�Z�i�B�Z�b�W�Z�g����, return something to the caller.
It’s important to remember that the data is marshaled, so you must use the �d�j�i keyword for the
argument that returns a value or the application will complain later (the compiler may very well
accept the error without comment). In both cases, the code simply returns the �W�^�c�Y�Z�g�#�C�V�b�Z value. If
you were building this dynamic object class for an application, you’d use the �W�^�c�Y�Z�g�#�C�V�b�Z value to
access the actual property or method.

When invoking a method, the �I�g�n�>�c�k�d�`�Z�B�Z�b�W�Z�g���� method receives an array of arguments to use
with the method call. The code shows how you detect the presence of arguments and then displays
them onscreen for this example. In an actual application, you’d need to compare the arguments
provided by the caller against those required by the method to ensure the caller has supplied enough
arguments of the right type.

All three methods return �i�g�j�Z. If the code were to return �[�V�a�h�Z instead, you’d see a
�G�j�c�i�^�b�Z�7�^�c�Y�Z�g�:�m�X�Z�e�i�^�d�c in the caller code. This exception tells the caller that the requested
method or property doesn’t exist.

When a C# application desires to create a dynamic object, it simply creates an instance of the
dynamic class. The instance can create properties, methods, or other constructs as needed.
Listing 14-4 shows an example of how a test application might appear.

LISTING 14�4: Using the ADynamicObject class

�X�a�V�h�h���I�Z�h�i
�p
���������h�i�V�i�^�X���k�d�^�Y���B�V�^�c����
���������p
�����������������$�$���8�g�Z�V�i�Z���V���c�Z�l���Y�n�c�V�b�^�X���d�W�_�Z�X�i�#
�����������������Y�n�c�V�b�^�X���9�n�c�D�W�_�Z�X�i���2���c�Z�l���6�9�n�c�V�b�^�X�D�W�_�Z�X�i�����0

�����������������$�$���H�Z�i���V���e�g�d�e�Z�g�i�n���i�d���V���h�e�Z�X�^�[�^�X���k�V�a�j�Z�#
�����������������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�H�Z�i�i�^�c�\���V���E�g�d�e�Z�g�i�n���i�d���V���K�V�a�j�Z�º���0
�����������������9�n�c�D�W�_�Z�X�i�#�6�E�g�d�e���2���*�0

LISTING 14�3 (continued)

Working with IDynamicObject �X 303

�����������������$�$���J�h�Z���d�c�Z���e�g�d�e�Z�g�i�n���i�d���h�Z�i���V�c�d�i�]�Z�g���e�g�d�e�Z�g�i�n�#
�����������������$�$���N�d�j���l�d�j�a�Y���h�Z�Z���V���e�g�d�e�Z�g�i�n���\�Z�i�!���[�d�a�a�d�l�Z�Y���W�n���V���e�g�d�e�Z�g�i�n���h�Z�i�#
�����������������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�Q�g�Q�c�H�Z�i�i�^�c�\���V���E�g�d�e�Z�g�i�n���i�d���V�c�d�i�]�Z�g���E�g�d�e�Z�g�i�n�º���0
�����������������9�n�c�D�W�_�Z�X�i�#�E�g�d�e�&���2���9�n�c�D�W�_�Z�X�i�#�6�E�g�d�e�0

�����������������$�$���8�V�a�a���V���b�Z�i�]�d�Y���V�c�Y���h�Z�i���^�i�h���d�j�i�e�j�i���i�d���V���e�g�d�e�Z�g�i�n�#
�����������������$�$���N�d�j���l�d�j�a�Y���h�Z�Z���V���b�Z�i�]�d�Y���X�V�a�a�!���[�d�a�a�d�l�Z�Y���W�n���V���e�g�d�e�Z�g�i�n���h�Z�i�#
�����������������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�Q�g�Q�c�H�Z�i�i�^�c�\���V���E�g�d�e�Z�g�i�n���i�d���V���B�Z�i�]�d�Y���D�j�i�e�j�i�º���0
�����������������9�n�c�D�W�_�Z�X�i�#�E�g�d�e�'���2���9�n�c�D�W�_�Z�X�i�#�6�B�Z�i�]�d�Y�����0

�����������������$�$���8�V�a�a���V���b�Z�i�]�d�Y���l�^�i�]���V���e�g�d�e�Z�g�i�n���V�g�\�j�b�Z�c�i���V�c�Y���h�Z�i���V���c�Z�l���e�g�d�e�Z�g�i�n�#
�����������������$�$���N�d�j���l�d�j�a�Y���h�Z�Z���V���e�g�d�e�Z�g�i�n���\�Z�i�!���V���b�Z�i�]�d�Y���X�V�a�a�!���V�c�Y���[�^�c�V�a�a�n���V
�����������������$�$���e�g�d�e�Z�g�i�n���h�Z�i�#
�����������������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�Q�g�Q�c�H�Z�i�i�^�c�\���V���E�g�d�e�Z�g�i�n���i�d���B�Z�i�]�d�Y���D�j�i�e�j�i���l�^�i�]���6�g�\�h�º���0
�����������������9�n�c�D�W�_�Z�X�i�#�E�g�d�e�(���2���9�n�c�D�W�_�Z�X�i�#�6�B�Z�i�]�d�Y���9�n�c�D�W�_�Z�X�i�#�6�E�g�d�e���0

�����������������$�$���L�V�^�i���i�d���h�Z�Z���i�]�Z���g�Z�h�j�a�i�h�#
�����������������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�Q�g�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���l�]�Z�c���g�Z�V�Y�n�#�#�#�º���0
�����������������8�d�c�h�d�a�Z�#�G�Z�V�Y�A�^�c�Z�����0
���������r
�r

Notice that the code begins by creating a new dynamic object using the �Y�n�c�V�b�^�X keyword. At this
point, you can begin adding properties and methods to the resulting �9�n�c�D�W�_�Z�X�i. Properties can
receive values directly, from other properties, or from methods. Methods can use arguments to
change their output. Figure 14-6 shows the output from this example. The path that the code takes
through the various objects helps you understand how dynamic objects work.

The �9�n�c�V�b�^�X�D�W�_�Z�X�i class actually provides support for a number of members. You can use these
members to provide a complete dynamic implementation for your application. Here’s a list of the
�9�n�c�V�b�^�X�D�W�_�Z�X�i members you can override.

�° �<�Z�i�9�n�c�V�b�^�X�B�Z�b�W�Z�g�C�V�b�Z�h������

�<�Z�i�B�Z�i�V�D�W�_�Z�X�i�������°

�I�g�n�7�^�c�V�g�n�D�e�Z�g�V�i�^�d�c�������°

�I�g�n�8�d�c�k�Z�g�i�������°

�I�g�n�9�Z�a�Z�i�Z�>�c�Y�Z�m�������°

�I�g�n�9�Z�a�Z�i�Z�B�Z�b�W�Z�g�������°

�I�g�n�<�Z�i�>�c�Y�Z�m�������°

�I�g�n�<�Z�i�B�Z�b�W�Z�g�������°

�I�g�n�>�c�k�d�`�Z�������°

�I�g�n�>�c�k�d�`�Z�B�Z�b�W�Z�g�������°

�I�g�n�H�Z�i�>�c�Y�Z�m�������°

�I�g�n�H�Z�i�B�Z�b�W�Z�g�������°

�I�g�n�J�c�V�g�n�D�e�Z�g�V�i�^�d�c�������°

304 �X CHAPTER 14 INTERACTING WITH THE DLR

FIGURE 14�6: The output shows the process used to work with dynamic objects.

The point of all this is that you can implement a kind of dynamic object strategy for static languages,
but it’s cumbersome compared to IronPython. You might use this approach when you need to provide
a dynamic strategy for something small within C# or Visual Basic. This technique is also useful for
understanding how IronPython works, at a very basic level. IronPython is far more robust than the
code shown in this example, but the theory is the same.

UNDERSTANDING THE ACTIONBINDER

In the section “Considering DynamicSite” earlier in this chapter, you discovered how DLR makes it
possible to invoke dynamic code from within a static environment using a �9�n�c�V�b�^�X�H�^�i�Z object. The
actual process for creating the method invocation call is to create an Abstract Syntax Tree (AST).
The AST has functions assigned to it using an �6�h�h�^�\�c���� method. When DLR wants to assign a
new function to AST, it supplies a function name and provides a calling syntax using the �8�V�a�a����
method. The �8�V�a�a���� method accepts four arguments.

�°�� An object used to hold the function. Normally, the code calls the �8�g�Z�V�i�Z���� method of the
host class using �<�Z�i�B�Z�i�]�d�Y���¹�8�g�Z�V�i�Z�º��.

A constant containing the name of the function as it appears within the host object.���°

The array of arguments supplied to the function.���°

���° A delegate instance used to invoke the code later. It’s this argument that you consider when
working with an �6�X�i�^�d�c�7�^�c�Y�Z�g.

At this point, you have an object that holds the parameters of the function call, as well as a delegate
used to execute the function. The problem now is one of determining how to call the function. After
all, the rest of your code knows nothing about the delegate if you create it during run time, as is the
case when working with dynamic languages. If none of the code knows about the delegate, there
must be some way to call it other than directly.

Using IronPython Constructively �X 305

The most common way to call a delegate of this sort is to create a rule that DLR can use to call
it. Of course, you still have to know what to call. D LR supports a number of methods to perform
this task, but the method that works with an �6�X�i�^�d�c�7�^�c�Y�Z�g is to create an object that implements
�>�9�n�c�V�b�^�X�D�W�_�Z�X�i as described in the section “Working with IDynamicObject” earlier in th is chapter.

To make rules work, your code has to include a �<�Z�i�G�j�a�Z���� method that returns a �H�i�V�c�Y�V�g�Y�G�j�a�Z
object. Inside �<�Z�i�G�j�a�Z���� is a switch that selects an action based on the kind of action that DLR
requests, such as a call (�9�n�c�V�b�^�X�6�X�i�^�d�c�@�^�c�Y�#�8�V�a�a). When DLR makes this request, the code cre-
ates a �H�i�V�c�Y�V�g�Y�G�j�a�Z object that contains an �6�X�i�^�d�c�7�^�c�Y�Z�g. The �6�X�i�^�d�c�7�^�c�Y�Z�g determines what
kind of action the call performs. For example, you might decide that the �6�X�i�^�d�c�7�^�c�Y�Z�g should be
�A�V�c�\�j�V�\�Z�8�d�c�i�Z�m�i�#�7�^�c�Y�Z�g, which de�nes a language context for the function. The language context
is a de�nition of the language’s properties, such as its name, identi�er, version, and specialized fea-
tures. (You can learn more about how a language context works at �]�i�i�e�/�$�$�l�l�l�#�Y�d�i�c�Z�i�\�j�g�j��
�#�d�g�\�$�j�h�$�Y�a�g�j�h�$�9�A�G�'�#�]�i�b.) The code then calls �H�Z�i�8�V�a�a�G�j�a�Z���� with the �H�i�V�c�Y�V�g�Y�G�j�a�Z object,
the �6�X�i�^�d�c�7�^�c�Y�Z�g, and a list of arguments for the function.

Now, here’s the important consideration for this section. The �6�X�i�^�d�c�7�^�c�Y�Z�g is actually part of the
language design. If you wanted to create a new language, then part of the design process is to design
an �6�X�i�^�d�c�7�^�c�Y�Z�g for it. The �6�X�i�^�d�c�7�^�c�Y�Z�g performs an immense amount of work. For example,
a call to �6�X�i�^�d�c�7�^�c�Y�Z�g�#�8�d�c�k�Z�g�i�:�m�e�g�Z�h�h�^�d�c���� provides conversion information about the data
types that the language supports. Of course, IronPython already performs this task for you, but it’s
important to know how things work under the hood in c ase you encounter problems.

UNDERSTANDING THE OTHER DLR FEATURES

DLR is a moving target at the time of this writing. The latest release, 0.92, isn’t even considered
production code as of yet. Consequently, you might �nd that the version of DLR that you use has
features not described in this chapter because they weren’t available at the time of this writing.

This chapter doesn’t discuss some of the DLR features because you see them in use in other
chapters or they’re of a type that you normally won’t implement directly. For example, to go
along with the �9�n�c�V�b�^�X�D�W�_�Z�X�i class (and associated �>�9�n�c�V�b�^�X�D�W�_�Z�X�i interface), you can create
an �:�m�e�V�c�Y�d�D�W�_�Z�X�i object.

An �:�m�e�V�c�Y�d�D�W�_�Z�X�i is a dynamic property bag. Essentially, you �ll it with data you want to move
from one language to another. It works just like any other property bag you’ve used in the past.
Because the �:�m�e�V�c�Y�d�D�W�_�Z�X�i class implements �>�9�n�c�V�b�^�X�B�Z�i�V�D�W�_�Z�X�i�E�g�d�k�^�Y�Z�g, you can use it with
dynamic languages such as IronPython. You use this object when moving data from C# or Visual
Basic.NET to IronPython.

USING IRONPYTHON CONSTRUCTIVELY

This chapter has provided a comprehensive overview of DLR. You probably noticed that you’ve
already used some of these features in the book without really viewing them as DLR. Of course,
later chapters, especially Chapter 15, will demonstrate how to use more DLR functionality. The
point is that you now know what DLR has to offer you as a developer. It’s important to realize that

306 �X CHAPTER 14 INTERACTING WITH THE DLR

DLR is there as the base of IronPython, even though you don’t see it, and you don’t have to see DLR
to use it effectively. What this chapter tells you is that there’s more functionality available should
you want to use it.

Many of you probably won’t want to use the full funct ionality of DLR until you become pro�cient
using IronPython. However, you should at least consider working with the Hosting APIs because
they provide powerful ways for developers to interact with IronPython. Make sure you read and
understand at least that part of the chapter before you move on to Chapter 15. In addition, make
sure you understand the section “Using the Direct Method” earlier in this chapter or you’ll quickly
become lost as the book progresses. The more adventurous will want to try all the techniques
explored in this chapter and use them to build a few new applications.

Chapter 15 is possibly one of the most exciting chapters in the book because you close a loop. You
already know how to access the .NET Framework from IronPython — previous chapters provide plenty
of examples of using this technique. However, Chapter 15 shows how to go in the other direction —
accessing IronPython from .NET languages such as C# and Visual Basic.NET. The reason this chapter
is so exciting is that you can �nally create applications that exchange data and objects in two directions,
enabling you to make full use of all of the IronPython capabilities to create your next application.

Using IronPython from
Other .NET Languages

WHAT’S IN THIS CHAPTER?

�° Considering the dynamic and static language relationship��

Developing an externally accessible IronPython module���°

Using the external module from C#���°

Using the external module from Visual Basic.NET���°

Testing the external module���°

Finding bugs in external modules���°

One of the essential features of IronPython is that it relies on the .NET Framework as a basis for
its functionality and is designed to interact with the .NET Framework. You’ve seen examples of
using the .NET Framework in a number of previous chapters. For example, Chapter 13 demon-
strates how to tap the .NET Framework for the functionality needed to manage XML data. This
chapter considers the other side of the coin — accessing IronPython from a .NET language such
as C# or Visual Basic.NET.

You may have noticed that IronPython is great when it comes to processing lists of informa-
tion and it excels at working with various sorts of data, including ragged datasets. However,
Chapters 8 and 11 demonstrated that IronPython isn’t always the easiest language to use for
user interface needs. The language currently lacks designer and other visual tool support,
which means you have to write all of the interface code by hand. Of course, writing the code
by hand isn’t a very big deal for an application with just a few dialog boxes, but imagine the
complexity of developing an application with 40 or 5 0 different windows, dialog boxes, and
other visual elements. In this case, combining C# or Visual Basic.NET with IronPython makes
sense because you can leverage the forte of each language to develop applications faster and
with fewer errors.

15

308 �X CHAPTER 15 USING IRONPYTHON FROM OTHER .NET LANGUAGES

Before you can use IronPython in another language, you need to create a module that works with
that other language. This chapter demonstrates a relatively simple IronPython module that offers
enough functionality to do something useful. Of course, a major part of this task is discovering how
to use the script engine to access IronPython functionality. The IronPython module you create will
work �ne with either C# or Visual Basic.NET.

The next task is to create an application that can consume the IronPython module. Using IronPython
from C# or Visual Basic.NET isn’t nearly as easy as using .NET from IronPython — the dynamic
nature of IronPython makes consuming it in the static languages much harder. The examples in this
chapter show all the steps you need to take to use the sample IronPython module.

Once you get the IronPython module working from with in C# or Visual Basic.NET, you need to test
it. The testing process will likely reveal bugs in both the IronPython and the C# or Visual Basic.NET
code, so you also need to perform debugging. This chapter considers both issues and offers insights on
how to make the task easier.

UNDERSTANDING THE RELATIONSHIP BETWEEN
DYNAMIC AND STATIC LANGUAGES

Something that most developers fail to consider is that, at some point, all languages generate the
same thing — machine code. Without machine code, the software doesn’t execute. Your computer
cares nothing at all about the idiosyncrasies of human language and it doesn’t care about communi-
cating with you at all. Computers are quite sel�sh when you think about it. The circuitry that makes
up your computer relies on software to change the position of switches — trillions of them in some
cases. So computers use machine code and only machine code; languages are for humans.

When it comes to dynamic and static languages, it’s the way that humans view the languages that
make them useful. A dynamic language offers the developer freedom of choice, call it the creative solu-
tion. A static language offers a reliable and stable paradigm — call it the comfort solution, the one that
everyone’s used. How you feel about the languages partly affects your use of them. In the end, both
dynamic and static language output ends up as machine code. Dynamic and static languages end up
being tools that help you create applications faster and with fewer errors. If you really wanted to do
so, you could write any application today using assembler (a low-level language just above machine
code, see �]�i�i�e�/�$�$�l�l�l�#�W�^�c�\�#�X�d�b�$�g�Z�[�Z�g�Z�c�X�Z�$�h�Z�b�]�i�b�a�$�6�h�h�Z�b�W�a�n�T�a�V�c�\�j�V�\�Z for more information),
but assembler is hardly the correct tool any longer — humans need a better tool to put applications
together. The point is that you should use the tool that works best for a particular development pro-
cess and not think that the tool is doing anything for your computer.

Anytime you use multiple languages, you must consider issues that have nothing to do with the dynamic
or static nature of that language. For example, you must consider the data types that the languages
support and provide a method for marshaling data from one language to the other. In fact, marshaling
data is an important element in many areas of coding. If you want to communicate with the Win32 API
from a .NET-managed language such as C# or Visual Basic.NET, you must marshal the data between
the two environments. It’s important not to confuse communication and infrastructure requirements
with differences between dynamic and static languages. Many resources you �nd do confuse these
issues, which makes it hard for anyone to truly understand how dynamic and static languages differ.

Creating an Externally Accessible IronPython Module �X 309

Before you can use IronPython from other languages, it’s important to consider the way in which
IronPython performs tasks. When an IronPython session starts, nothing exists — the environment
begins with an empty slate. You’ve discovered throughout this book that IronPython calls upon
certain script �les as it starts to con�gure the environment automatically. These con�guration tasks
aren’t part of the startup; they are part of the con�guration — something that occurs after the startup.
The dynamic nature of IronPython means that all activity begins and ends with adding, changing,
and removing environment features. There aren’t any compiled bits that you can examine statically.
Everything in IronPython is dynamic.

When a static language such as C# or Visual Basic.NET attempts to access IronPython, it must
accommodate the constant change. If you got nothing else out of Chapter 14 but this one fact, then
the chapter was worth reading. In order to do this, C# and Visual Basic.NET rely upon events because
they can’t actually accommodate change as part of the language. An event signals a change — an
IronPython application has modi�ed a class to contain a new method or property. It isn’t just the idea
that the output or value has changed, but the method or property itself is new. In some cases, C# or
Visual Basic.NET will also need to deal with the situation where a method or property simply goes
away as well. The underlying mechanism of events, delegates, and caches is inspired and all but invis-
ible, but to be successful at using the languages together, you must know they’re present.

The differences between dynamic and static languages go further than simply not knowing what code
will execute next in a dynamic language. There’s also the matter of data typing. A static language
assigns a type to the data it manages, which means that the compiler can make assumptions about the
data and optimize access to it. A dynamic language also assigns types to the data it manages, but only
does so at run time and even then the data type can change. Now, consider how this changeability
complicates the matter of marshaling data from one language to the other. Because the data no longer
has a stable type, the marshaling code can’t assume anything about it and must constantly check type
to ensure the data it marshals appears in the right form in the target language.

The difference between dynamic and static languages, at least from a programming perspective,
comes down to �exible coding and data typing. Everything else you may have heard either relates to
differences between any two languages (such as the need to marshal data) or the political drama of
which tool works best. This book won’t endeavor to tell you what tool to use. Certainly, I don’t tell
anyone that a hammer works best for driving screws or that screwdrivers make wonderful ice picks
(not that I believe either of these statements myself). The tool you use for a particular task is the one
you can use best or the one called for by a particular job requirement. The point of this chapter and
the rest of the book is to demonstrate that dynamic and static languages can work together success-
fully and in more than one way. The tool you use is up to you.

CREATING AN EXTERNALLY ACCESSIBLE IRONPYTHON MODULE

The �rst requirement for building an application tha t allows external access is to create the IronPython
script you want to use. Ideally, this script will contain code that is fully debugged. You also want to test
the code before you try to use it within C# or Visual Basic.NET. The following sections provide you
with the techniques you use to create an IronPython script that you access from C# or Visual Basic
.NET. Later sections of this chapter will show the actual access techniques.

310 �X CHAPTER 15 USING IRONPYTHON FROM OTHER .NET LANGUAGES

CONSIDERING AN ALTERNATIVE EDITOR

Visual Studio 2010 doesn’t have IronPython built into it, so you may �nd that it
doesn’t always provide the best functionality for working with your IronPython
applications. Yes, it provides a means for starting and stopping your application from
within the IDE. It’s even possible to perform some basic application debugging. Yet,
everything about using Visual Studio seems like an afterthought — you’re adding
IronPython into an environment in which it doesn’t actually belong.

In the “Working with IDLE” section of Chapter 6, you discovered one
alternative editor, the Integrated DeveLopment Environment. The only problem
with IDLE is that it doesn’t help much with .NET Fram ework speci�c features,
such as DLR. Fortunately, you have another alternative to consider, IronEditor
(�]�i�i�e�/�$�$�^�g�d�c�Z�Y�^�i�d�g�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$). IronEditor is speci�cally designed to
work with DLR languages such as IronPython and IronRuby.

One of the more interesting features of IronEditor is that it actually works with
both the .NET Framework and with Mono (see Chapter 19), so you can use it on
both the Linux and Mac OS X platforms. IronEditor pro vides some nice features,
such as keyword highlighting. You don’t get anything like IntelliSense with this
application. It also doesn’t include a debugger at present. However, IronEditor is
a nice editor that works well with IronPython and supports multiple platf orms
should you require such support.

Considering Requirements for Externally Accessible Modules
It’s easy to access a .NET assembly from within IronPython. For example, in Chapter 9, you
accessed the managed code assembly to work with the Windows Media Player, among other
things. You could just as easily build a DLL using C# of Visual Basic.NET and use the tech-
niques shown in Chapter 9 to access the DLL. The DLL can contain anything, including
Windows forms or other resources you need.

Unfortunately, accessing IronPython from C# or Visual Basic.NET is more dif�cult. The section
“Embedding IronPython as a Scripting Language” in Chapter 14 shows a bare minimum example
of accessing an IronPython script from C#, but this example is hardly functional. In order to use
IronPython fully, you need more.

The mistake that many developers will make is to think they must do something special in
IronPython to make the code accessible. What you really need to do is create an IronPython
script using the same techniques as always, and then test it directly. After you test the script using
IronPython code, work with the target static language to gain the required access. This pretest-
ing process is important to ensure that you aren’t �ghting with a bad script in addition to potential
problems marshaling data or interacting with methods that change.

Creating an Externally Accessible IronPython Module �X 311

Creating the IronPython Script
The IronPython script used for this example is quite simple in approach. All that the example
call really does is add two numbers together. You could perform the task with far less code, but
the point of this class is to demonstrate access techniques, so it’s purposely simple. Listing 15-1
shows the external module code and the code used to test it. As previously mentioned, testing your
IronPython script is essential if you want the application to work properly.

LISTING 15�1: A test IronPython class for use in the examples

�����I�]�Z���X�a�V�h�h���n�d�j���l�V�c�i���i�d���V�X�X�Z�h�h���Z�m�i�Z�g�c�V�a�a�n�#
�X�a�V�h�h���9�d�8�V�a�X�j�a�V�i�^�d�c�h�����/
������
�����������6���b�Z�i�]�d�Y���l�^�i�]�^�c���i�]�Z���X�a�V�h�h���i�]�V�i���V�Y�Y�h���i�l�d���c�j�b�W�Z�g�h�#
�������Y�Z�[���9�d�6�Y�Y���h�Z�a�[�!���;�^�g�h�i�!���H�Z�X�d�c�Y���/
������������
�����������������E�g�d�k�^�Y�Z���V���g�Z�h�j�a�i�#
�������������g�Z�i�j�g�c���;�^�g�h�i��� ���H�Z�X�d�c�Y

�����6���i�Z�h�i���h�j�^�i�Z���^�c���>�g�d�c�E�n�i�]�d�c�#
�Y�Z�[���T�T�i�Z�h�i�T�T�����/
������
�����������8�g�Z�V�i�Z���i�]�Z���d�W�_�Z�X�i�#
�������B�n�8�V�a�X���2���9�d�8�V�a�X�j�a�V�i�^�d�c�h����
������
�����������E�Z�g�[�d�g�b���i�]�Z���i�Z�h�i�#
�������e�g�^�c�i���B�n�8�V�a�X�#�9�d�6�Y�Y���*�!���&�%��
������
�����������E�V�j�h�Z���V�[�i�Z�g���i�]�Z���i�Z�h�i���h�Z�h�h�^�d�c�#
�������g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

�����:�m�Z�X�j�i�Z���i�]�Z���i�Z�h�i�#��
�����8�d�b�b�Z�c�i���i�]�^�h���X�V�a�a���d�j�i���l�]�Z�c���n�d�j���[�^�c�^�h�]���i�Z�h�i�^�c�\���i�]�Z���X�d�Y�Z�#
�T�T�i�Z�h�i�T�T����

The class used for this example is �9�d�8�V�a�X�j�a�V�i�^�d�c�h����. It contains a single method, �9�d�6�Y�Y����, that
returns the sum of two numbers, �;�^�g�h�i and �H�Z�X�d�c�Y. Overall, the class is simple.

The �I�Z�h�i�8�a�V�h�h�#�e�n �le also contains a �T�T�i�Z�h�i�T�T���� function. This function creates an instance of
�9�d�8�V�a�X�j�a�V�i�^�d�c�h����, �B�n�8�V�a�X. It then prints the result of calling the �9�d�6�Y�Y���� method with values
of �* and �&�%. The example waits until you press Enter to exit.

In �T�T�b�V�^�c�T�T����, you see a call to �T�T�i�Z�h�i�T�T����. You can execute the example at the command line,
as shown in Figure 15-1. Make sure you use the �·�9 command line switch to place the interpreter
in debug mode. You could also open �>�E�N�#�:�M�: interactively, load the �le, and execute it inside the
interpreter. When you know that the code works properly, be sure to comment out the call to
�T�T�i�Z�h�i�T�T���� in �T�T�b�V�^�c�T�T����.

312 �X CHAPTER 15 USING IRONPYTHON FROM OTHER .NET LANGUAGES

FIGURE 15�1: Test the external module before you use it with your application.

Make absolutely certain that you comment out the call to �T�T�i�Z�h�i�T�T���� after you
�nish testing the code. Otherwise, the IronPython module will be in test mode
when you use it in your application.

ACCESSING THE MODULE FROM C#

Now that you have an external module to use, you’ll probably want to access from an application.
This section considers the requirements for accessing IronPython from C#. Don’t worry; the section
“Accessing the Module from Visual Basic.NET” later i n this chapter discusses access from Visual Basic.
NET as well. The sections that follow provide everything you need to access the external module cre-
ated in the section “Creating an Externally Accessible IronPython Module” earlier in this chapter. If yo u
follow these steps, you’ll �nd that access is relatively straightforward, even if it does get a bit convoluted
at times. Microsoft promises the future versions of C# will make dynamic language access even easier.

Adding the Required C# References
Any application you create requires
access to the dynamic language assemblies.
The IronPython assemblies appear in the
�Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�>�g�d�c�E�n�i�]�d�c���'�#�+ folder
on your machine. Right-click References
and choose Add Reference from the content
menu to display the Add Reference dialog
box. Select the Browse tab. In most cases,
you only need the three DLLs shown in
Figure 15-2 to access any IronPython script.
(You may also need to add the �>�g�d�c�E�n�i�]�d�c��
�#�B�d�Y�j�a�Z�h�#�9�A�A �le to the list in some cases.)

Select the assemblies you require by Ctrl-
clicking them in the Add Reference dialog
box. Click OK when you’re �nished. You’ll
see the assemblies added to the References
folder in Solution Explorer.

FIGURE 15�2: Add the required references from your
IronPython setup.

Accessing the Module from C# �X 313

Adding the Required References to the Host Language
You can perform a multitude of tasks with IronPython . In fact, later chapters in the book show
how to perform tasks such as testing your static application code. IronPython really is quite �exible.
However, most people will start by executing external scripts and only need a few of the namespaces
in the IronPython assemblies to do it. The following �j�h�^�c�\ statements provide everything needed to
execute and manage most IronPython scripts.

�j�h�^�c�\���H�n�h�i�Z�b�0��
�j�h�^�c�\���>�g�d�c�E�n�i�]�d�c�#�=�d�h�i�^�c�\�0��
�j�h�^�c�\���>�g�d�c�E�n�i�]�d�c�#�G�j�c�i�^�b�Z�0��
�j�h�^�c�\���B�^�X�g�d�h�d�[�i�#�H�X�g�^�e�i�^�c�\�#�=�d�h�i�^�c�\�0

Understanding the Use of ScriptEngine
You have many options for working with IronPython sc ripts. This �rst example takes an approach
that works �ne for Visual Studio 2008 developers, as well as those using Visual Studio 2010. It doesn’t
require anything fancy and it works reliably for most scripts. Ease and �exibility concerns aside, this
isn’t the shortest technique for working with IronPy thon scripts. This is the Method1 approach to work-
ing with IronPython scripts — the technique that nearly everyone can use and it appears in Listing 15-2.

LISTING 15�2: Using the script engine to access the script

�h�i�V�i�^�X���k�d�^�Y���B�V�^�c���h�i�g�^�c�\�P�R���V�g�\�h��
�p
���������$�$���8�g�Z�V�i�Z���V�c���Z�c�\�^�c�Z���i�d���V�X�X�Z�h�h���>�g�d�c�E�n�i�]�d�c�#
���������H�X�g�^�e�i�:�c�\�^�c�Z���:�c�\���2���E�n�i�]�d�c�#�8�g�Z�V�i�Z�:�c�\�^�c�Z�����0

���������$�$���9�Z�h�X�g�^�W�Z���l�]�Z�g�Z���i�d���a�d�V�Y���i�]�Z���h�X�g�^�e�i�#
���������H�X�g�^�e�i�H�d�j�g�X�Z���H�d�j�g�X�Z���2���:�c�\�#�8�g�Z�V�i�Z�H�X�g�^�e�i�H�d�j�g�X�Z�;�g�d�b�;�^�a�Z���¹�I�Z�h�i�8�a�V�h�h�#�e�n�º���0

���������$�$���D�W�i�V�^�c���i�]�Z���Y�Z�[�V�j�a�i���h�X�d�e�Z���[�d�g���Z�m�Z�X�j�i�^�c�\���i�]�Z���h�X�g�^�e�i�#
���������H�X�g�^�e�i�H�X�d�e�Z���H�X�d�e�Z���2���:�c�\�#�8�g�Z�V�i�Z�H�X�d�e�Z�����0

���������$�$���8�g�Z�V�i�Z���V�c���d�W�_�Z�X�i���[�d�g���e�Z�g�[�d�g�b�^�c�\���i�V�h�`�h���l�^�i�]���i�]�Z���h�X�g�^�e�i�#
���������D�W�_�Z�X�i�D�e�Z�g�V�i�^�d�c�h���D�e�h���2���:�c�\�#�8�g�Z�V�i�Z�D�e�Z�g�V�i�^�d�c�h�����0

���������$�$���8�g�Z�V�i�Z���i�]�Z���X�a�V�h�h���d�W�_�Z�X�i�#
���������H�d�j�g�X�Z�#�:�m�Z�X�j�i�Z���H�X�d�e�Z���0

���������$�$���D�W�i�V�^�c���i�]�Z���X�a�V�h�h���d�W�_�Z�X�i�#
���������D�W�_�Z�X�i���8�V�a�X�8�a�V�h�h���2���H�X�d�e�Z�#�<�Z�i�K�V�g�^�V�W�a�Z���¹�9�d�8�V�a�X�j�a�V�i�^�d�c�h�º���0

���������$�$���8�g�Z�V�i�Z���V�c���^�c�h�i�V�c�X�Z���d�[���i�]�Z���X�a�V�h�h�#
���������D�W�_�Z�X�i���8�V�a�X�D�W�_���2���D�e�h�#�>�c�k�d�`�Z���8�V�a�X�8�a�V�h�h���0

���������$�$���<�Z�i���i�]�Z���b�Z�i�]�d�Y���n�d�j���l�V�c�i���i�d���j�h�Z���[�g�d�b���i�]�Z���X�a�V�h�h���^�c�h�i�V�c�X�Z�#
���������D�W�_�Z�X�i���6�Y�Y�B�Z���2���D�e�h�#�<�Z�i�B�Z�b�W�Z�g���8�V�a�X�D�W�_�!���¹�9�d�6�Y�Y�º���0

���������$�$���E�Z�g�[�d�g�b���i�]�Z���V�Y�Y�#
���������>�c�i�(�'���G�Z�h�j�a�i���2�����>�c�i�(�'���D�e�h�#�>�c�k�d�`�Z���6�Y�Y�B�Z�!���*�!���&�%���0

continues

314 �X CHAPTER 15 USING IRONPYTHON FROM OTHER .NET LANGUAGES

���������$�$���9�^�h�e�a�V�n���i�]�Z���g�Z�h�j�a�i�#
���������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�*��� ���&�%���2���p�%�r�¹�!���G�Z�h�j�a�i���0

���������$�$���E�V�j�h�Z���V�[�i�Z�g���g�j�c�c�^�c�\���i�]�Z���i�Z�h�i�#
���������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�Q�g�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���l�]�Z�c���g�Z�V�Y�n�#�#�#�º���0
���������8�d�c�h�d�a�Z�#�G�Z�V�Y�@�Z�n�����0
�r

This example builds on the example you saw in Chapter 14. In this case, the code begins by creating
a script engine. Think of this engine as a means to access �>�E�N�#�:�M�: without actually loading �>�E�N�#�:�M�:.
If you don’t really understand the �H�X�g�^�e�i�:�c�\�^�c�Z object, �:�c�\, make sure you read through the theory
section in Chapter 14. What this code is showing you is the practical application of that theory.

Now that you have access to �:�c�\, you can use it to perform various tasks. For example, you must tell
�:�c�\ what scope to use when executing code, so the example creates a �H�X�g�^�e�i�H�X�d�e�Z object, �H�X�d�e�Z. In
order to perform tasks, you must also have an �D�W�_�Z�X�i�D�e�Z�g�V�i�^�d�c�h object, �D�e�h. The example uses the
defaults provided for each of these objects. However, in a production application, you might decide to
change some properties to make the application execute faster or with better security.

At this point, you can execute the script. The act of executing the script using �H�d�j�g�X�Z�#�:�m�Z�X�j�i�Z����
loads the script into memory and compiles it in a form that the static application can use. The
�H�d�j�g�X�Z�#�:�m�Z�X�j�i�Z���� method associates �H�X�d�e�Z with the execution environment. At this point, the
parameters for executing the script are set in stone — you can’t change them.

The script is in memory, but you can’t access any of its features just yet. The script contains a
�9�d�8�V�a�X�j�a�V�i�^�d�c�h class that you access by calling �H�X�d�e�Z�#�<�Z�i�K�V�g�^�V�W�a�Z���� to create �8�V�a�X�D�W�_. The
code gains access to the class by creating an instance of it, �8�V�a�X�D�W�_, using �D�e�h�#�>�c�k�d�`�Z����. At this
point, �8�V�a�X�D�W�_ contains an instance of �9�d�8�V�a�X�j�a�V�i�^�d�c�h���� in the IronPython module, but you can’t
use it directly. Remember that you must marshal data between C# and IronPython. In addition, C#
has to have a way to deal with the potential changes in the IronPython script.

In order to use the �9�d�6�Y�Y���� method in �9�d�8�V�a�X�j�a�V�i�^�d�c�h����, the static application must create an object
to hold a call-site cache, as explained in Chapter 14. To do this, the code calls �D�e�h�#�<�Z�i�B�Z�b�W�Z�g���� with
the instance of �9�d�8�V�a�X�j�a�V�i�^�d�c�h����, �8�V�a�X�D�W�_, and the name of the method it wants to access, �9�d�6�Y�Y����.
The result is the �6�Y�Y�B�Z object.

This seems like a lot of work just to gain access to �9�d�6�Y�Y, but you can �nally use �6�Y�Y�B�Z to perform
the addition. A call to �D�e�h�#�>�c�k�d�`�Z���� with �6�Y�Y�B�Z and the arguments you want to use performs all
of the required marshaling for you. You must coerce the output to an �>�c�i�(�' (something that C#
understands). Finally, the application outputs the result, as shown in Figure 15-3.

FIGURE 15�3: The example application calls the DoAdd() method and displays the result onscreen.

LISTING 15�2 (continued)

Accessing the Module from C# �X 315

Using the dynamic Keyword
One of the new ways in which you can access IronPython in C# 4.0 is to use the �Y�n�c�V�b�^�X keyword.
This keyword makes it possible for you to cut out a lot of the code shown in Listing 15-2 to perform
tasks with IronPython. It’s still not perfect, but y ou’ll do a lot less work. Listing 15-3 shows a short
example that accesses the �T�T�i�Z�h�i�T�T���� function found in Listing 15-1.

LISTING 15�3: Accessing IronPython using the dynamic keyword

�h�i�V�i�^�X���k�d�^�Y���B�V�^�c���h�i�g�^�c�\�P�R���V�g�\�h��
�p
���������$�$���D�W�i�V�^�c���i�]�Z���g�j�c�i�^�b�Z�#
���������k�V�g���>�E�N���2���E�n�i�]�d�c�#�8�g�Z�V�i�Z�G�j�c�i�^�b�Z�����0

���������$�$���8�g�Z�V�i�Z���V���Y�n�c�V�b�^�X���d�W�_�Z�X�i���X�d�c�i�V�^�c�^�c�\���i�]�Z���h�X�g�^�e�i�#
���������Y�n�c�V�b�^�X���I�Z�h�i�E�n���2���>�E�N�#�J�h�Z�;�^�a�Z���¹�I�Z�h�i�8�a�V�h�h�#�e�n�º���0

���������$�$���:�m�Z�X�j�i�Z���i�]�Z���T�T�i�Z�h�i�T�T�������b�Z�i�]�d�Y�#
���������I�Z�h�i�E�n�#�T�T�i�Z�h�i�T�T�����0
�r

This example has a few differences from previous examples. The �rst is the use of �k�V�g as the type for
�>�E�N. Calling �E�n�i�]�d�c�#�8�g�Z�V�i�Z�G�j�c�i�^�b�Z���� creates a �H�X�g�^�e�i�G�j�c�i�^�b�Z object, much like the example in
Chapter 14. In this case, the code works with �>�E�N in a different manner by relying on the �Y�n�c�V�b�^�X type.

The next step is to load the script. The dynamic type, �I�Z�h�i�E�n, contains all the features of the
�I�Z�h�i�8�a�V�h�h�#�e�n script after you load it using �>�E�N�#�J�h�Z�;�^�a�Z����. Figure 15-4 shows how �I�Z�h�i�E�n
appears after the script loads. Notice that the Locals window correctly identi�es all the IronPython
types in the �le. This approach gives you far better access with a lot less code than other techniques
in this chapter, but it only works with C# 4.0 (Visual Basic.NET developers will have to wait for
an update).

In this case, the example calls the �T�T�i�Z�h�i�T�T���� function. This function outputs the same information
shown in Figure 15-1.

FIGURE 15�4: Loading the script provides access to all of the features it contains.

316 �X CHAPTER 15 USING IRONPYTHON FROM OTHER .NET LANGUAGES

CONSIDERING THE DYNAMIC TYPE IN C# 4.0

Visual Basic.NET has always had a kind of dynamic lookup in the form of late bind -
ing. However, C# has always used early binding. That has changed with C# 4.0 with
the new dynamic lookup functionality found in the DLR. Dynamic lookup provides
you with these additional capabilities when working with C#:

�° A shared infrastructure for runtime name resolution across all .NET languages.��

���° Enhanced support for the Of�ce Primary Interoperability Assemblies (PIA) and
Component Object Model (COM) interoperability that negates the need to use
bulky type libraries and optional arguments in function calls.

���° The ability to consume dynamic languages by making it possible to interact
with dynamic language types.

���° Improved re�ection support, which makes it possible to easily instantiate
classes and call arbitrary methods that are not known at compile time.

The �Y�n�c�V�b�^�X type has considerably more to offer than a sidebar can hold. For
more information check out the article at �]�i�i�e�/�$�$�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�a�^�W�g�V�g�n�$
�Y�Y�'�+�)�,�(�+���K�H�#�&�%�%���#�V�h�e�m. This article provides a good example of how the
�Y�n�c�V�b�^�X keyword comes into play.

Working with the App.CONFIG File
In some cases, you might want to con�gure your application using an �6�e�e�#�8�D�C�;�>�< �le. Using the
�6�e�e�#�8�D�C�;�>�< �le tends to ensure that your application works better between development machines.
In addition, using the �6�e�e�#�8�D�C�;�>�< �le can make it easier to work with DLR using older versions of
Visual Studio. Most important of all, using the �6�e�e�#�8�D�C�;�>�< �le ensures that anyone working with
the application uses the correct version of the DLLs so that any DLL differences aren’t a problem.

Your project won’t contain an �6�e�e�#�8�D�C�;�>�< �le at the outset. To add this �le, right-click the project
entry in Solution Explorer and choose Add�����¶����New Item from the context menu. You see the Add
New Item dialog box shown in Figure 15-5. Highlight the Application Con�guration File entry as
shown and click Add. Visual Studio automatically opens the �le for you.

The �6�e�e�#�8�D�C�;�>�< �le contains entries that describe the Microsoft scripting con�guration. In most
cases, you begin by de�ning a �1�h�Z�X�i�^�d�c�3 element, which describes a �1�b�^�X�g�d�h�d�[�i�#�h�X�g�^�e�i�^�c�\�3
element. The �1�b�^�X�g�d�h�d�[�i�#�h�X�g�^�e�i�^�c�\�3 element contains a list of languages you want to use in a
�1�a�V�c�\�j�V�\�Z�h�3 element, as shown in Listing 15-4.

LISTING 15�4: De�ning the App.CONFIG �le content

�1�4�m�b�a���k�Z�g�h�^�d�c�2�º�&�#�%�º���Z�c�X�d�Y�^�c�\�2�º�j�i�[�"�-�º���4�3
�1�X�d�c�[�^�\�j�g�V�i�^�d�c�3
�����1�X�d�c�[�^�\�H�Z�X�i�^�d�c�h�3
���������1�h�Z�X�i�^�d�c���c�V�b�Z�2�º�b�^�X�g�d�h�d�[�i�#�h�X�g�^�e�i�^�c�\�º��

Accessing the Module from C# �X 317

���������������������������i�n�e�Z�2�º�B�^�X�g�d�h�d�[�i�#�H�X�g�^�e�i�^�c�\�#�=�d�h�i�^�c�\�#�8�d�c�[�^�\�j�g�V�i�^�d�c�#�H�Z�X�i�^�d�c�!
���������������������������������������B�^�X�g�d�h�d�[�i�#�H�X�g�^�e�i�^�c�\�!���K�Z�g�h�^�d�c�2�&�#�%�#�%�#�%�!���8�j�a�i�j�g�Z�2�c�Z�j�i�g�V�a�!
���������������������������������������E�j�W�a�^�X�@�Z�n�I�d�`�Z�c�2�(�&�W�[�(�-�*�+�V�Y�(�+�)�Z�(�*�º��
���������������������������g�Z�f�j�^�g�Z�E�Z�g�b�^�h�h�^�d�c�2�º�[�V�a�h�Z�º���$�3
�����1�$�X�d�c�[�^�\�H�Z�X�i�^�d�c�h�3
�����1�b�^�X�g�d�h�d�[�i�#�h�X�g�^�e�i�^�c�\�3
���������1�a�V�c�\�j�V�\�Z�h�3
�������������1�a�V�c�\�j�V�\�Z���c�V�b�Z�h�2�º�>�g�d�c�E�n�i�]�d�c�!�E�n�i�]�d�c�!�e�n�º
���������������������������������Z�m�i�Z�c�h�^�d�c�h�2�º�#�e�n�º
���������������������������������Y�^�h�e�a�V�n�C�V�b�Z�2�º�>�g�d�c�E�n�i�]�d�c���'�#�%���7�Z�i�V�º
���������������������������������i�n�e�Z�2�º�>�g�d�c�E�n�i�]�d�c�#�G�j�c�i�^�b�Z�#�E�n�i�]�d�c�8�d�c�i�Z�m�i�!�>�g�d�c�E�n�i�]�d�c�!��
���K�Z�g�h�^�d�c�2�'�#�+�#�&�%�.�'�%�#�%�!���8�j�a�i�j�g�Z�2�c�Z�j�i�g�V�a�!
���E�j�W�a�^�X�@�Z�n�I�d�`�Z�c�2�(�&�W�[�(�-�*�+�V�Y�(�+�)�Z�(�*�º���$�3
���������1�$�a�V�c�\�j�V�\�Z�h�3
�����1�$�b�^�X�g�d�h�d�[�i�#�h�X�g�^�e�i�^�c�\�3
�1�$�X�d�c�[�^�\�j�g�V�i�^�d�c�3

FIGURE 15�5: Use an App.CONFIG �le to hold DLR con�guration information.

The �1�h�Z�X�i�^�d�c�3 element includes attributes for �c�V�b�Z, �i�n�e�Z, and �g�Z�f�j�^�g�Z�E�Z�g�b�^�h�h�^�d�c. The �i�n�e�Z
attribute should appear on one line, even though it appears on multiple lines in the book. This attri-
bute describes the �B�^�X�g�d�h�d�[�i�#�H�X�g�^�e�i�^�c�\�#�9�A�A attributes. Especially important is the �K�Z�g�h�^�d�c and
�E�j�W�a�^�X�@�Z�n�I�d�`�Z�c entries.

The �1�b�^�X�g�d�h�d�[�i�#�h�X�g�^�e�i�^�c�\�3 element contains a �1�a�V�c�\�j�V�\�Z�h�3 element at a minimum. Within the
�1�a�V�c�\�j�V�\�Z�h�3 element you �nd individual �1�a�V�c�\�j�V�\�Z�3 elements that are descriptions of the languages
you want to use in your application.

For this example, you create a �1�a�V�c�\�j�V�\�Z�3 element for IronPython that starts with a �c�V�b�Z�h attri -
bute. It’s important to de�ne all the names you plan to use to access the language — the example
de�nes three of them. The �Z�m�i�Z�c�h�^�d�c�h attribute describes the �le extensions associated with the

318 �X CHAPTER 15 USING IRONPYTHON FROM OTHER .NET LANGUAGES

language, which is �#�e�n in this case. The �Y�^�h�e�a�V�n�C�V�b�Z attribute simply tells how to display the lan-
guage. Finally, the �i�n�e�Z attribute contains a description of the �>�g�d�c�E�n�i�]�d�c�#�9�A�A �le. As with the type
element for �B�^�X�g�d�h�d�[�i�#�H�X�g�^�e�i�^�c�\�#�9�A�A, this element should appear on a single line, even though it
appears on multiple lines in the book. Again, you need to exercise special care with the �K�Z�g�h�^�d�c and
�E�j�W�a�^�X�@�Z�n�I�d�`�Z�c entries.

Now that you have the �6�e�e�#�8�D�C�;�>�< �le created, it’s time to look at the application code. Listing 15-5
contains the source for this example.

LISTING 15�5: Using the App.CONFIG �le in an application

�h�i�V�i�^�X���k�d�^�Y���B�V�^�c���h�i�g�^�c�\�P�R���V�g�\�h��
�p
���������$�$���G�Z�V�Y���i�]�Z���X�d�c�[�^�\�j�g�V�i�^�d�c���^�c�[�d�g�b�V�i�^�d�c���[�g�d�b���6�e�e�#�8�D�C�;�>�<�#
���������H�X�g�^�e�i�G�j�c�i�^�b�Z�H�Z�i�j�e���h�g�h���2���H�X�g�^�e�i�G�j�c�i�^�b�Z�H�Z�i�j�e�#�G�Z�V�Y�8�d�c�[�^�\�j�g�V�i�^�d�c�����0

���������$�$���8�g�Z�V�i�Z���V���H�X�g�^�e�i�G�j�c�i�^�b�Z���d�W�_�Z�X�i���[�g�d�b���i�]�Z���X�d�c�[�^�\�j�g�V�i�^�d�c
���������$�$���^�c�[�d�g�b�V�i�^�d�c�#
���������H�X�g�^�e�i�G�j�c�i�^�b�Z���g�j�c�i�^�b�Z���2���c�Z�l���H�X�g�^�e�i�G�j�c�i�^�b�Z���h�g�h���0

���������$�$���8�g�Z�V�i�Z���V�c���Z�c�\�^�c�Z���i�d���V�X�X�Z�h�h���>�g�d�c�E�n�i�]�d�c�#
���������H�X�g�^�e�i�:�c�\�^�c�Z���:�c�\���2���g�j�c�i�^�b�Z�#�<�Z�i�:�c�\�^�c�Z���¹�E�n�i�]�d�c�º���0

���������$�$���9�Z�h�X�g�^�W�Z���l�]�Z�g�Z���i�d���a�d�V�Y���i�]�Z���h�X�g�^�e�i�#
���������H�X�g�^�e�i�H�d�j�g�X�Z���H�d�j�g�X�Z���2���:�c�\�#�8�g�Z�V�i�Z�H�X�g�^�e�i�H�d�j�g�X�Z�;�g�d�b�;�^�a�Z���¹�I�Z�h�i�8�a�V�h�h�#�e�n�º���0

���������$�$���D�W�i�V�^�c���i�]�Z���Y�Z�[�V�j�a�i���h�X�d�e�Z���[�d�g���Z�m�Z�X�j�i�^�c�\���i�]�Z���h�X�g�^�e�i�#
���������H�X�g�^�e�i�H�X�d�e�Z���H�X�d�e�Z���2���:�c�\�#�8�g�Z�V�i�Z�H�X�d�e�Z�����0

���������$�$���8�g�Z�V�i�Z���V�c���d�W�_�Z�X�i���[�d�g���e�Z�g�[�d�g�b�^�c�\���i�V�h�`�h���l�^�i�]���i�]�Z���h�X�g�^�e�i�#
���������D�W�_�Z�X�i�D�e�Z�g�V�i�^�d�c�h���D�e�h���2���:�c�\�#�8�g�Z�V�i�Z�D�e�Z�g�V�i�^�d�c�h�����0

���������$�$���8�g�Z�V�i�Z���i�]�Z���X�a�V�h�h���d�W�_�Z�X�i�#
���������H�d�j�g�X�Z�#�:�m�Z�X�j�i�Z���H�X�d�e�Z���0

���������$�$���D�W�i�V�^�c���i�]�Z���X�a�V�h�h���d�W�_�Z�X�i�#
���������D�W�_�Z�X�i���8�V�a�X�8�a�V�h�h���2���H�X�d�e�Z�#�<�Z�i�K�V�g�^�V�W�a�Z���¹�9�d�8�V�a�X�j�a�V�i�^�d�c�h�º���0

���������$�$���8�g�Z�V�i�Z���V�c���^�c�h�i�V�c�X�Z���d�[���i�]�Z���X�a�V�h�h�#
���������D�W�_�Z�X�i���8�V�a�X�D�W�_���2���D�e�h�#�>�c�k�d�`�Z���8�V�a�X�8�a�V�h�h���0

���������$�$���<�Z�i���i�]�Z���b�Z�i�]�d�Y���n�d�j���l�V�c�i���i�d���j�h�Z���[�g�d�b���i�]�Z���X�a�V�h�h���^�c�h�i�V�c�X�Z�#
���������D�W�_�Z�X�i���6�Y�Y�B�Z���2���D�e�h�#�<�Z�i�B�Z�b�W�Z�g���8�V�a�X�D�W�_�!���¹�9�d�6�Y�Y�º���0

���������$�$���E�Z�g�[�d�g�b���i�]�Z���V�Y�Y�#
���������>�c�i�(�'���G�Z�h�j�a�i���2�����>�c�i�(�'���D�e�h�#�>�c�k�d�`�Z���6�Y�Y�B�Z�!���*�!���&�%���0

���������$�$���9�^�h�e�a�V�n���i�]�Z���g�Z�h�j�a�i�#
���������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�*��� ���&�%���2���p�%�r�¹�!���G�Z�h�j�a�i���0

���������$�$���E�V�j�h�Z���V�[�i�Z�g���g�j�c�c�^�c�\���i�]�Z���i�Z�h�i�#
���������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�Q�g�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���l�]�Z�c���g�Z�V�Y�n�#�#�#�º���0
���������8�d�c�h�d�a�Z�#�G�Z�V�Y�@�Z�n�����0
�r

Accessing the Module from Visual Basic.NET �X 319

The biggest difference between this example and the one shown in Listing 15-2 is that you don’t
create the script engine immediately. Rather, the code begins by reading the con�guration from the
�6�e�e�#�8�D�C�;�>�< �le using �H�X�g�^�e�i�G�j�c�i�^�b�Z�H�Z�i�j�e�#�G�Z�V�Y�8�d�c�[�^�\�j�g�V�i�^�d�c����. This information appears in
�h�g�h and is used to create a �H�X�g�^�e�i�G�j�c�i�^�b�Z object, �g�j�c�i�^�b�Z.

At this point, the code �nally creates the �H�X�g�^�e�i�:�c�\�^�c�Z, �:�c�\, as in the previous example. However,
instead of using �E�n�i�]�d�c�#�8�g�Z�V�i�Z�:�c�\�^�c�Z����, this example relies on the �g�j�c�i�^�b�Z�#�<�Z�i�:�c�\�^�c�Z����
method. For this example, the result is the same, except that you’ve had better control over how
the �H�X�g�^�e�i�:�c�\�^�c�Z is created, which is the entire point of the example — exercising control over
the IronPython environment. The rest of the example works the same as the example shown in
Listing 15-2. The output is the same, as shown in Figure 15-3.

ACCESSING THE MODULE FROM VISUAL BASIC.NET

You might get the idea from the lack of Visual Basic.NET examples online that Microsoft has somehow
forgotten Visual Basic.NET when it comes to DLR. Surprise! Just because the examples are nowhere
to be seen (send me an e-mail at �?�B�j�Z�a�a�Z�g�5�b�l�i�#�c�Z�i if you �nd a stash of Visual Basic.NET examples
somewhere) doesn’t mean that you can’t work with IronPython from Visual Basic. In fact, the require-
ments for working with Visual Basic.NET are much the same as those for working with C#, as shown
in the following sections.

One limitation of Visual Basic.NET is that it doesn’t appear to support an
equivalent of the �Y�n�c�V�b�^�X keyword. Consequently, you might �nd that some
techniques which work �ne for C# won’t work at all for Visual Basic.NET.
Let’s hope Microsoft will remedy this situation sometime in the future. In the
meantime, a little extra thought and creativity should give you complete access
to every IronPython script you might want to access from Visual Basic.NET.

Adding the Required Visual Basic.NET References
Visual Basic requires the same DLL references as C# does to work with IronPython. Figure 15-2
shows the assemblies you should add to your application to make it work properly. In this case, you
right-click the project entry and choose Add Reference from the context menu to display an Add
Reference dialog box similar to the one shown in Figure 15-2. Select the Browse tab and add the
IronPython assemblies shown in Figure 15-2 by Ctrl-clicking on each of the assembly entries. Click
OK. Visual Basic will add the references, but you won’t see them in Solution Explorer unless you
click Show All Files at the top of the Solution Explorer window.

As with C#, you need to add some Imports statements to your code to access the various IronPython
assemblies with ease. Most applications will require the following Imports statements at a minimum.

�>�b�e�d�g�i�h���H�n�h�i�Z�b��
�>�b�e�d�g�i�h���>�g�d�c�E�n�i�]�d�c�#�=�d�h�i�^�c�\��
�>�b�e�d�g�i�h���>�g�d�c�E�n�i�]�d�c�#�G�j�c�i�^�b�Z��
�>�b�e�d�g�i�h���B�^�X�g�d�h�d�[�i�#�H�X�g�^�e�i�^�c�\�#�=�d�h�i�^�c�\

320 �X CHAPTER 15 USING IRONPYTHON FROM OTHER .NET LANGUAGES

Creating the Visual Basic.NET Code
This example uses the same �I�Z�h�i�8�a�V�h�h�#�e�n �le as every other example in this chapter. As with all
the other examples, you shouldn’t let the IronPython example dictate what you do in your own
applications. You can obtain full access to any IronPython script from Visual Basic.NET and fully
use every feature it provides.

Accessing IronPython scripts from Visual Basic.NET is much the same as accessing them from C#
using the �H�X�g�^�e�i�:�c�\�^�c�Z object. Listing 15-6 shows the code you need to access the IronPython
script used for all the examples in this chapter.

LISTING 15�6: Accessing IronPython from Visual Basic.NET

�H�j�W���B�V�^�c����
���������»���8�g�Z�V�i�Z���V�c���Z�c�\�^�c�Z���i�d���V�X�X�Z�h�h���>�g�d�c�E�n�i�]�d�c�#
���������9�^�b���:�c�\���6�h���H�X�g�^�e�i�:�c�\�^�c�Z���2���E�n�i�]�d�c�#�8�g�Z�V�i�Z�:�c�\�^�c�Z����

���������»���9�Z�h�X�g�^�W�Z���l�]�Z�g�Z���i�d���a�d�V�Y���i�]�Z���h�X�g�^�e�i�#
���������9�^�b���H�d�j�g�X�Z���6�h���H�X�g�^�e�i�H�d�j�g�X�Z���2���:�c�\�#�8�g�Z�V�i�Z�H�X�g�^�e�i�H�d�j�g�X�Z�;�g�d�b�;�^�a�Z���¹�I�Z�h�i�8�a�V�h�h�#�e�n�º��

���������»���D�W�i�V�^�c���i�]�Z���Y�Z�[�V�j�a�i���h�X�d�e�Z���[�d�g���Z�m�Z�X�j�i�^�c�\���i�]�Z���h�X�g�^�e�i�#
���������9�^�b���H�X�d�e�Z���6�h���H�X�g�^�e�i�H�X�d�e�Z���2���:�c�\�#�8�g�Z�V�i�Z�H�X�d�e�Z����

���������»���8�g�Z�V�i�Z���V�c���d�W�_�Z�X�i���[�d�g���e�Z�g�[�d�g�b�^�c�\���i�V�h�`�h���l�^�i�]���i�]�Z���h�X�g�^�e�i�#
���������9�^�b���D�e�h���6�h���D�W�_�Z�X�i�D�e�Z�g�V�i�^�d�c�h���2���:�c�\�#�8�g�Z�V�i�Z�D�e�Z�g�V�i�^�d�c�h����

���������»���8�g�Z�V�i�Z���i�]�Z���X�a�V�h�h���d�W�_�Z�X�i�#
���������H�d�j�g�X�Z�#�:�m�Z�X�j�i�Z���H�X�d�e�Z��

���������»���D�W�i�V�^�c���i�]�Z���X�a�V�h�h���d�W�_�Z�X�i�#
���������9�^�b���8�V�a�X�8�a�V�h�h���6�h���D�W�_�Z�X�i���2���H�X�d�e�Z�#�<�Z�i�K�V�g�^�V�W�a�Z���¹�9�d�8�V�a�X�j�a�V�i�^�d�c�h�º��

���������»���8�g�Z�V�i�Z���V�c���^�c�h�i�V�c�X�Z���d�[���i�]�Z���X�a�V�h�h�#
���������9�^�b���8�V�a�X�D�W�_���6�h���D�W�_�Z�X�i���2���D�e�h�#�>�c�k�d�`�Z���8�V�a�X�8�a�V�h�h��

���������»���<�Z�i���i�]�Z���b�Z�i�]�d�Y���n�d�j���l�V�c�i���i�d���j�h�Z���[�g�d�b���i�]�Z���X�a�V�h�h���^�c�h�i�V�c�X�Z�#
���������9�^�b���6�Y�Y�B�Z���6�h���D�W�_�Z�X�i���2���D�e�h�#�<�Z�i�B�Z�b�W�Z�g���8�V�a�X�D�W�_�!���¹�9�d�6�Y�Y�º��

���������»���E�Z�g�[�d�g�b���i�]�Z���V�Y�Y�#
���������9�^�b���G�Z�h�j�a�i���6�h���>�c�i�(�'���2���D�e�h�#�>�c�k�d�`�Z���6�Y�Y�B�Z�!���*�!���&�%��

���������»���9�^�h�e�a�V�n���i�]�Z���g�Z�h�j�a�i�#
���������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�*��� ���&�%���2���p�%�r�¹�!���G�Z�h�j�a�i��

���������»���E�V�j�h�Z���V�[�i�Z�g���g�j�c�c�^�c�\���i�]�Z���i�Z�h�i�#
���������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���k�W�8�g�A�[��� ���¹�E�g�Z�h�h���V�c�n���`�Z�n���l�]�Z�c���g�Z�V�Y�n�#�#�#�º��
���������8�d�c�h�d�a�Z�#�G�Z�V�Y�@�Z�n����
�:�c�Y���H�j�W

As you can see from the listing, Visual Basic.NET code uses precisely the same process as C# does
to access IronPython scripts. In fact, you should compare this listing to the content of Listing 15-2.
The two examples are similar so that you can compare them. The output is also precisely the same.
You’ll see the output shown in Figure 15-3 when you execute this example.

Debugging the External Module �X 321

DEVELOPING TEST PROCEDURES FOR EXTERNAL MODULES

Many developers are beginning to realize the bene�ts of extensive application testing. There are
entire product categories devoted to the testing process now because testing is so important. Most, if
not all, developer tools now include some idea of application testing with them. In short, you should
have all the testing tools you need to test the static portion of your IronPython application.

Unfortunately, the testing tools might not work part icularly well with the dynamic portion of the
application. Creating a test that goes from the static portion of the application to the dynamic por -
tion of the application is hard. (Chapter 18 shows that the opposite isn’t true — IronPython makes
an excellent tool for testing your static application.) Consequently, you need to include a test harness
with your dynamic code and perform thorough testing of the dynamic code before you use it with
the static application. (When you think about a test harness, think about a horse, your application
that has a harness added externally for testing purposes. You add the harness for testing and remove
it for production work without modifying the applicat ion.) Listing 15-1 shows an example of how
you might perform this task.

The test harness you create has to test everything, which is a daunting task to say the least. In addi-
tion, you need to expend extra effort to make the test harness error free — nothing would be worse
than to chase an error through your code, only to �nd out that the error is in the test harness. At a
minimum, your test harness should perform the following checks on your dynamic code:

�° Outputs with good inputs��

Outputs with erroneous inputs���°

Exception handling within methods���°

Property value handling���°

Exceptions that occur on public members that would normally be private���°

Of course, you want to check every method and property of every class within the dynamic code.
To ensure you actually test everything, make sure you create a checklist to use to verify your test
harness. Because IronPython isn’t compiled, you’ll �nd that you must manually perform some
checks to ensure the code works precisely as planned, but use as much automation as possible.

DEBUGGING THE EXTERNAL MODULE

Debugging isn’t hard, but it also isn’t as straightforward as you might think when working with
IronPython. The debugger won’t take you directly to an error. You can’t test variables using the
debugger from within the static language. In short, you have to poke and prod the external script to
discover what ails it. Fortunately, you do have three tools at your disposal for discovering errors.

�° Exceptions��

���° �e�g�^�c�i Statements

���° An �:�g�g�d�g�A�^�h�i�Z�c�Z�g object

322 �X CHAPTER 15 USING IRONPYTHON FROM OTHER .NET LANGUAGES

Let’s begin with the easiest of the three tools. The static language application won’t ignore outright
errors in the script code. For example, you might have the following error in the script:

�����>�c�i�g�d�Y�j�X�Z���V�c���Z�g�g�d�g�#
�e�g�^�c�i���&�$�%

If your code has this error (and it really
shouldn’t), you’ll see an exception dialog
box like the one shown in Figure 15-6.
Unfortunately, when you click View Detail,
the content of the View Detail dialog box
is nearly useless. The exception informa-
tion won’t tell you where to �nd the error
in your script. In fact, it may very well lead
you on a wild goose chase that ends in
frustration.

The name of the exception will provide
clues as to where the error might exist, but
you can’t con�rm your suspicions without help. The onl y tool, besides vigorous script testing, is to
include �e�g�^�c�i statements such as these in your code.

�����9�^�h�e�a�V�n���i�]�Z���k�V�a�j�Z�h���d�[���;�^�g�h�i���V�c�Y���H�Z�X�d�c�Y�#
�e�g�^�c�i���»�K�V�a�j�Z�h���^�c���>�g�d�c�E�n�i�]�d�c���H�X�g�^�e�i�¼��
�e�g�^�c�i���»�;�^�g�h�i���2���»�!���;�^�g�h�i��
�e�g�^�c�i���»�H�Z�X�d�c�Y���2���»�!���H�Z�X�d�c�Y

When you run the script, you see the output shown in Figure 15-7. Most developers view �e�g�^�c�i
statements as a bit old school, but they do work if you use them correctly. Make sure you provide
enough information to know where the script is faili ng to perform as expected. Even so, using �e�g�^�c�i
statements may feel a bit like wandering around in the dark, so you should place an emphasis on
testing the script before you use it and after each change you make.

FIGURE 15�7: Using print statements may seem old school, but they work.

In some cases, you might make a small change to a script and it stops running completely — you might
not see a script exception, just an indicator that something’s wrong because the application raises an

FIGURE 15�6: The static language application displays
exceptions for your script.

Debugging the External Module �X 323

unrelated exception. Syntax errors and other problems where the interpreter simply fails can cause the
developer a lot of woe. For example, your application might have the following syntax error:

�����8�g�Z�V�i�Z���V���h�n�c�i�V�m���Z�g�g�d�g�#��
�l�]�^�a�Z���I�g�j�Z���e�g�^�c�i���»�I�]�^�h���^�h���V�c���Z�g�g�d�g���¼

This code obviously won’t run. Because of the nature of the error, you might even pass it by while
looking through your code. The answer to this problem is to create an �:�g�g�d�g�A�^�h�i�Z�c�Z�g class like the
one shown in Listing 15-7.

LISTING 15�7: Create an ErrorListener to hear script semantic errors

�X�a�V�h�h���B�n�A�^�h�i�Z�c�Z�g���/���:�g�g�d�g�A�^�h�i�Z�c�Z�g
�p

���������e�j�W�a�^�X���d�k�Z�g�g�^�Y�Z���k�d�^�Y���:�g�g�d�g�G�Z�e�d�g�i�Z�Y���H�X�g�^�e�i�H�d�j�g�X�Z���h�d�j�g�X�Z�!
���h�i�g�^�c�\���b�Z�h�h�V�\�Z�!
���H�d�j�g�X�Z�H�e�V�c���h�e�V�c�!
���^�c�i���Z�g�g�d�g�8�d�Y�Z�!
���H�Z�k�Z�g�^�i�n���h�Z�k�Z�g�^�i�n��
���������p
�����������������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�H�X�g�^�e�i���:�g�g�d�g���p�%�r�/���p�&�r�¹�!���Z�g�g�d�g�8�d�Y�Z�!���b�Z�h�h�V�\�Z���0
�����������������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�H�d�j�g�X�Z�/���p�%�r�¹�!���h�d�j�g�X�Z�#�<�Z�i�8�d�Y�Z�A�^�c�Z���h�e�V�c�#�H�i�V�g�i�#�A�^�c�Z�����0
�����������������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���¹�H�Z�k�Z�g�^�i�n�/���p�%�r�¹�!���h�Z�k�Z�g�^�i�n�#�I�d�H�i�g�^�c�\�������0
���������r
�r

The �:�g�g�d�g�A�^�h�i�Z�c�Z�g contains just one method, �:�g�g�d�g�G�Z�e�d�g�i�Z�Y����. This method can contain any-
thing you need to diagnose errors. The example provides an adequate amount of information for
most needs. However, you might decide to provide additional information based on the kind of
script you’re using.

In order to use this approach, you must compile the script before you execute it. The compilation
process must include the �:�g�g�d�g�A�^�h�i�Z�c�Z�g, as shown here.

�$�$���8�d�b�e�^�a�Z���i�]�Z���h�X�g�^�e�i�#
�H�d�j�g�X�Z�#�8�d�b�e�^�a�Z���c�Z�l���B�n�A�^�h�i�Z�c�Z�g�������0

When you run the application now, you get some useful information about the syntax error, as
shown in Figure 15-8.

FIGURE 15�8: The ErrorListener provides useful output on syntax errors.

324 �X CHAPTER 15 USING IRONPYTHON FROM OTHER .NET LANGUAGES

USING IRONPYTHON CONSTRUCTIVELY

This chapter has demonstrated how to access an IronPython module from C# or Visual Basic.NET.
All this work may seem counterproductive, but you really can gain a lot from using this approach.
Not only can you create extremely fast and �exible IronPython modules to perform tasks such as
list processing, but you gain the user interface development �exibility offered by both C# and Visual
Basic.NET. The one essential concept you should take from this chapter is that using multiple lan-
guages in an application to gain access to the best features of each language nets considerable �ex-
ibility and development speed once you overcome the initial development hurdles.

There isn’t any way that a single chapter of a book can address every possible need for every possible
reader. However, before this technology becomes real to you, you have to see it do something that
you couldn’t ordinarily do with ease in your development environment. Before you move on to the
next chapter, consider creating a list of applications that could bene�t from a combined IronPython
and C# or Visual Basic.NET approach. Try creating examples that exemplify key features of these
applications. As you gain experience using IronPython with the .NET languages you use now, you’ll
begin to understand why using multiple language tools is so bene�cial. The important thing is to try
more than just the one example in this chapter.

So far you’ve used .NET from IronPython and IronPython from a .NET static language. There’s a
third relationship that you need to try before you can consider your essential IronPython experi-
ence complete — extending IronPython using another language. Chapters 16 and 17 show how to
create extensions for IronPython so that you can begin building special libraries that enhance basic
IronPython functionality. For example, you might create a basic library of dialog boxes to use with
IronPython and overcome that user interface problem (at least partially). Chapter 16 discusses C#
extensions, while Chapter 17 discusses Visual Basic.NET extensions. Interestingly enough, the two
languages require a slightly different approach when extending IronPython; it pays to read both
chapters so you can see the full range of extension requirements.

Extending IronPython Using C#

WHAT’S IN THIS CHAPTER?

�° De�ning the requirements for an extension��

Understanding how static language di�erences a�ect extensions���°

Developing a simple C# extension���°

Providing user interface support through a C# extension���°

Providing Win32 API support through a C# extension���°

Many developers view C# as the new C. It’s true that C# does provide many of the low-level
characteristics of C, but it’s not really a replacement. Even so, C# is a good language choice
for many tasks, especially when it comes to working through dif�culties with Win32 API (the
programming interface that native code executables use). Because IronPython lacks support for
certain low-level operations, you’ll �nd many ways t o use C# to extend IronPython to perform
amazing new tasks.

Of course, it’s important to know precisely what an extension is, so this chapter spends some
time exploring the issue. As with many software constructs, extensions aren’t a complete �x
for every problem — they have both advantages and disadvantages that you need to consider
during the design process. Extensions are an important tool in your IronPython toolkit and
act as a replacement for the lack of CPython support in many cases.

This chapter provides a simple extension. You can use this simple example as a starting point
for other extensions you might want to create. Of course, even a simple example can take you
a long way in understanding extension techniques.

After you complete the simple extension, you see two other examples. The �rst example
shows how to build a library of Windows forms. You s ee how to work with both message
boxes and Windows Forms classes using an extension. Even though you could perform this
task using IronPython, many developers will �nd it signi�cantly easier to use a C# extension

16

326 �X CHAPTER 16 EXTENDING IRONPYTHON USING C#

to perform the task. With careful planning, you could create an entire library containing all the
forms required to address every need in an IronPython application. The second example is a Win32
API extension that helps you better understand how extensions can provide access to low-level calls
that you might not ordinarily be able to make — at least, not with ease. Even though the Python
language is supposed to shield you from the vagaries of platform-speci�c coding, sometimes you
really do need to know something more about the platform on which you’re working.

UNDERSTANDING THE REQUIREMENTS FOR AN EXTENSION

It’s important to understand that an extension, any extension, probably ties your code to Windows.
Whenever you use an extension with IronPython, you rely on something other than the Python
libraries to perform a task, which means you lose the platform independence for which Python is
so famous. In short, extensions provide considerable �exibility and help you provide additional
capabilities for IronPython, but this �exibility isn ’t without cost. Every time you make a design
decision of this sort, you must pay a price in the following:

�°�� Reduced reliability: Due to increased failure points.

���° Weakened security: More languages mean more places where someone could leave a
security hole.

���° Impaired speed: Marshaling data between language barriers takes time.

���° Fewer platforms: In order to use an extension, you must �nd a platform that supports both
IronPython and the extension language.

Writing an extension isn’t always straightforward. I t isn’t as simple as writing some class library
code and putting it in a DLL. In fact, you must spend considerable effort thinking about how an
extension should be designed to make it useable. The following list considers just a few of the most
important factors for your extension.

�°�� Python language requirements: IronPython may not support every feature that the static
language supports. For example, you may �nd that IronPython doesn’t support a particular
static language operator, such as the � � operator.

���° IronPython developer mentality: An extension that performs tasks in a way that runs completely
counter to the way that an IronPython developer normally does them isn’t very useful, because
the IronPython developer will have to think too hard about using the extension. The best kind of
extension is one that feels natural to the IronPython developer.

���° Flexibility: An extension should provide some signi�cant advantage in �exibility. When you
write an extension, write it with the bene�t to the IronPython developer in mind, not simply
because the functionality the extension provides is interesting.

The one factor that you don’t need to consider is whether something is doable. Normally, if you can
perform a task with the static language you want to use to build the extension, then you can do it with
IronPython as well. Sometimes, you have to massage the data or present the technique in a way that
doesn’t match your normal methodology, but you can normally perform the task with a bit of effort.

Considering IronPython and Static Language Di�erences �X 327

CONSIDERING IRONPYTHON AND STATIC
LANGUAGE DIFFERENCES

IronPython is a dynamic language (a language that does things like decide variable type at run time,
which is contrasted with a static language that decides everything during compile time). As such, it
has some signi�cant advantages for the human developer that a static language can’t provide. It’s true
that the concept of language is foreign to the computer, but the human developer relies on certain
characteristics of language to accomplish tasks quickly and with few errors. Consequently, as part of
de�ning the reason to use an extension, you must consider the differences between IronPython and
the static language of your choice.

De�ning Why You Use a Static Language with IronPython
Typically, you use a static language with IronPython to gain a speci�c advantage. For example,
IronPython doesn’t create graphical user interfaces very well, so using a static language to perform this
task could provide a signi�cant advantage in development time. In addition, you could probably reuse
code that you already have on hand, which may reduce debugging time as well. Look for the advantages
that you can gain when using a static language with IronPython. If you have problems describing the
material bene�t of an extension, then perhaps you really should look at another solution.

Make sure you consider the strengths of the static language when making your selections. For example,
C# is often the best choice for Win32 API interaction because it supports unsafe pointers — a require-
ment for certain specialized Win32 API tasks. Of course, you should make sure that the use of the
Win32 API is actually required. Perhaps a third-party library already has the solution you require and
with a lot less work. Visual Basic.NET is often the best choice for database work because it takes care
of so many tasks in the background for the developer. You don’t have to worry so much about coercing
data types because Visual Basic addresses the need for you in the background.

Sometimes the use of a static language is practical. For example, you might have an overwhelming
number of developers on your team who know C# or Visual Basic.NET, but know nothing about
IronPython. In general, this is one of the poorest reasons to use a static language with IronPython,
but the reality of development today is that you often use the tools you have on hand to accomplish
the task. No one can afford to have developers sitting on their hands simply because the dynamic
language is the best choice for a particular job.

Understanding Line Noise
There are good reasons to avoid using a static language with IronPython. You can write most code
in IronPython using far fewer lines than a static language requires. Fewer lines of code translate into
higher developer productivity and sometimes into fewer coding errors as well.

The additional code that a static code developer must write is often referred to as line noise. The
code doesn’t substantially translate into useful output, but the static language requires it. For
example, IronPython doesn’t require that you declare the type of a variable — you simply leave
this task to IronPython.

While the extra code in a static language does tend to reduce the potential for unintended output, it
can also make the code harder to read. With every bene�t, there’s a corresponding negative. When

328 �X CHAPTER 16 EXTENDING IRONPYTHON USING C#

you decide to use an extension with IronPython, you need to consider when it’s appropriate to work
through the extra code and cumbersome features of static languages and when IronPython is truly
the better choice.

Let’s look at a quick example. Say you want to create an array of names in a function and pass them
back to a caller. Here’s the C# code to perform the task.

�e�j�W�a�^�X���H�i�g�^�c�\�P�R���<�Z�i�C�V�b�Z�h����
�p
���������H�i�g�^�c�\�P�R���G�Z�h�j�a�i���2���c�Z�l���H�i�g�^�c�\�P�)�R�0
���������G�Z�h�j�a�i�P�%�R���2���¹�?�d�]�c�º�0
���������G�Z�h�j�a�i�P�&�R���2���¹�6�b�n�º�0
���������G�Z�h�j�a�i�P�'�R���2���¹�?�d�h�Z�º�0
���������G�Z�h�j�a�i�P�(�R���2���¹�8�V�g�a�V�º�0
���������g�Z�i�j�g�c���G�Z�h�j�a�i�0
�r

�e�j�W�a�^�X���k�d�^�Y���H�]�d�l�C�V�b�Z�h����
�p
���������H�i�g�^�c�\�P�R���I�]�Z�C�V�b�Z�h���2���<�Z�i�C�V�b�Z�h�����0

���������[�d�g�Z�V�X�]�����H�i�g�^�c�\���C�V�b�Z���^�c���I�]�Z�C�V�b�Z�h��
���������p
�����������������8�d�c�h�d�a�Z�#�L�g�^�i�Z�A�^�c�Z���C�V�b�Z���0
���������r
�r

The code in �<�Z�i�C�V�b�Z�h���� creates an array of �H�i�g�^�c�\, �lls it with names, and returns those names to the
caller, �H�]�d�l�C�V�b�Z�h����. At this point, �H�]�d�l�C�V�b�Z�h���� uses a �[�d�g�Z�V�X�] loop to display each name individually.
Now take a look at the same functionality written in I ronPython.

�Y�Z�[���<�Z�i�C�V�b�Z�h�����/
���������g�Z�i�j�g�c���¹�?�d�]�c�º�!���¹�6�b�n�º�!���¹�?�d�h�Z�º�!���¹�8�V�g�a�V�º

�Y�Z�[���H�]�d�l�C�V�b�Z�h�����/
���������[�d�g���C�V�b�Z���^�c���<�Z�i�C�V�b�Z�h�����/
�������������������������e�g�^�c�i���C�V�b�Z

The code performs the same task in both cases, but as you can see, the IronPython code is signi�cantly
shorter. In addition, the IronPython code is actually easier to read.

Considering Scoping Issues
One of the most important differences between IronPython and static languages such as C# is that
IronPython doesn’t have the concept of scope within classes. Everything in an IronPython class is
public, so you always have access to every element. Of course, this presents a dilemma for languages
that do support scope. When creating an IronPython extension, your static language scope declara-
tions will change as follows:

�°�� �E�j�W�a�^�X members remain public.

���° �E�g�d�i�Z�X�i�Z�Y members become public.

Creating the Simple C# Extension �X 329

���° �E�g�d�i�Z�X�i�Z�Y���>�c�i�Z�g�c�V�a members become public.

���° �E�g�^�k�V�i�Z members remain private and don’t appear at all to IronPython.

���° �>�c�i�Z�g�c�V�a members become private and don’t appear at all to IronPython.

CREATING THE SIMPLE C# EXTENSION

The example in the following sections provides a simple set of calculations. Think of it as the
basic four-function calculator with a bit extra added . The example doesn’t do anything fancy, but
it does demonstrate techniques you need to build any C# extension for IronPython. The rest of
the examples in this chapter build on this example, so you should at least scan the techniques pre-
sented in the sections that follow.

Creating the Project
A C# extension project in Visual Studio is nothing more than the typical class library. The following
steps help you create the project for this example. You can use the same steps when working with
the other examples — all you need to do is change the project name.

1. Choose File�����¶����New�����¶����Project. You see the New Project dialog box shown in Figure 16-1.

FIGURE 16�1: Create a new project to hold your C# extension.

330 �X CHAPTER 16 EXTENDING IRONPYTHON USING C#

2. Choose the Visual C# folder in the Installed Templates list.

3. Select .NET Framework 3.5 or an earlier version of the .NET Framework. Don’t select
the .NET Framework 4.0 entry. The list of templates changes when you change the .NET
Framework version.

4. Select the Class Library template.

5. Type Calcs in the Name �eld and click OK. Visual Studio creates a class library project for you.

6. Right-click �8�a�V�h�h�&�#�X�h in Solution Explorer and choose Rename from the context menu.
Visual Studio makes the �lename editable.

7. Type �8�V�a�X�h�#�8�H for the new �lename and press Enter. Visual Studio displays a dialog box that
asks whether you’d like to rename all of the �8�a�V�h�h�&�#�X�h references to match the new �lename.

8. Click Yes. The project is ready for use.

At the time of this writing, IronPython doesn’t suppo rt extensions written using the .NET
Framework 4.0. You must create your extensions using the .NET Framework 3.5 or earlier.
Otherwise, the extension will simply fail to load and IronPython won’t provide anything in the
way of an explanation (at least, nothing useable). If you suspect that you’ve targeted the wrong
.NET Framework version, choose Project�����¶����ProjectName Properties. Select the Application
tab of the Properties window and change the entry in the Target Framework �eld to .NET
Framework 3.5, as shown in Figure 16-2. The IDE may ask permission to modify features in
your setup and require that you restart your project to see the effects of the change.

FIGURE 16�2: Modify the Target Framework �eld to a version of the .NET Framework that
works with IronPython.

Creating the Simple C# Extension �X 331

Developing the C# Extension
The C# extension does have a few tricks to it, but generally speaking, if you know how to create a
class library, you already know how to create the code for a C# extension. Listing 16-1 shows the
code for the example extension.

LISTING 16�1: A simple calculations extension

�e�j�W�a�^�X���X�a�V�h�h���8�V�a�X�h
�p
���������e�g�^�k�V�i�Z���>�c�i�(�'���9�V�i�V�0

���������e�j�W�a�^�X���8�V�a�X�h���>�c�i�(�'���K�V�a�j�Z��
���������p
�����������������i�]�^�h�#�9�V�i�V���2���K�V�a�j�Z�0
���������r

���������e�j�W�a�^�X���d�k�Z�g�g�^�Y�Z���h�i�g�^�c�\���I�d�H�i�g�^�c�\����
���������p
�����������������g�Z�i�j�g�c���9�V�i�V�#�I�d�H�i�g�^�c�\�����0
���������r

���������e�j�W�a�^�X���h�i�V�i�^�X���8�V�a�X�h���d�e�Z�g�V�i�d�g��� ���8�V�a�X�h���K�V�a�j�Z�&�!���8�V�a�X�h���K�V�a�j�Z�'��
���������p
�����������������g�Z�i�j�g�c���c�Z�l���8�V�a�X�h���K�V�a�j�Z�&�#�9�V�i�V��� ���K�V�a�j�Z�'�#�9�V�i�V���0
���������r

���������e�j�W�a�^�X���h�i�V�i�^�X���8�V�a�X�h���d�e�Z�g�V�i�d�g���"���8�V�a�X�h���K�V�a�j�Z�&�!���8�V�a�X�h���K�V�a�j�Z�'��
���������p
�����������������g�Z�i�j�g�c���c�Z�l���8�V�a�X�h���K�V�a�j�Z�&�#�9�V�i�V���"���K�V�a�j�Z�'�#�9�V�i�V���0
���������r

���������e�j�W�a�^�X���h�i�V�i�^�X���8�V�a�X�h���d�e�Z�g�V�i�d�g�������8�V�a�X�h���K�V�a�j�Z�&�!���8�V�a�X�h���K�V�a�j�Z�'��
���������p
�����������������g�Z�i�j�g�c���c�Z�l���8�V�a�X�h���K�V�a�j�Z�&�#�9�V�i�V�������K�V�a�j�Z�'�#�9�V�i�V���0
���������r

���������e�j�W�a�^�X���h�i�V�i�^�X���8�V�a�X�h���d�e�Z�g�V�i�d�g���$���8�V�a�X�h���K�V�a�j�Z�&�!���8�V�a�X�h���K�V�a�j�Z�'��
���������p
�����������������g�Z�i�j�g�c���c�Z�l���8�V�a�X�h���K�V�a�j�Z�&�#�9�V�i�V���$���K�V�a�j�Z�'�#�9�V�i�V���0
���������r

���������e�j�W�a�^�X���8�V�a�X�h���>�c�X����
���������p
�����������������g�Z�i�j�g�c���c�Z�l���8�V�a�X�h���i�]�^�h�#�9�V�i�V��� ���&���0
���������r

���������e�j�W�a�^�X���8�V�a�X�h���9�Z�X����
���������p
�����������������g�Z�i�j�g�c���c�Z�l���8�V�a�X�h���i�]�^�h�#�9�V�i�V���"���&���0
���������r
�r

332 �X CHAPTER 16 EXTENDING IRONPYTHON USING C#

In most cases, you want to create a constructor that accepts the kind of data you want to manipulate
with the extension. In this case, the constructor accepts an �>�c�i�(�' value. Interestingly enough, the
constructor is the only place where you normally reference the data type of the data directly. In all
other cases, you work with the data type indirectly by using the extension class.

Another issue is displaying the data in IronPython. The default implementation of the �I�d�H�i�g�^�c�\����
method displays the class name, which isn’t helpful. Consequently, you must override the default
implementation of �I�d�H�i�g�^�c�\���� and provide your own output. In this case, the method simply
returns the current value of the private variable �9�V�i�V as a string.

This example deals with operators. Of course, there are two kinds of operators, unary and binary.
The method you implement for each kind of operator is different.

To create a binary operator, you must consider that the operator will work with two instances
of the �8�V�a�X�h class. In short, the operator works with the base class and you must declare it as
�h�i�V�i�^�X. In this example, the � operator is binary, so the code declares it as �h�i�V�i�^�X. The method
also accepts the two instances of the �8�V�a�X�h class as input. In order to return output, the method
must create a new instance of the �8�V�a�X�h class with the sum of the two input values. Notice that
the method never de�nes what kind of data it works on, simply that the data is contained in an
instance of the �8�V�a�X�h class.

Creating a unary operator is different because you’re working with a single instance of the �8�V�a�X�h
class in this instance. To create a unary operator, you simply declare the method as a non-static
member of the class, as shown for the �>�c�X���� and �9�Z�X���� methods. In this case, because you’re
working with a single value, the code uses �i�]�^�h�#�9�V�i�V (the internal representation of the data value
of the single value) to perform the math. You may wonder why the code simply doesn’t create a � �
operator method. A � � operator method would look like this and wouldn’t work in a unary man -
ner within IronPython.

�e�j�W�a�^�X���h�i�V�i�^�X���8�V�a�X�h���d�e�Z�g�V�i�d�g��� � ���8�V�a�X�h���K�V�a�j�Z�&��
�p
���������g�Z�i�j�g�c���c�Z�l���8�V�a�X�h���K�V�a�j�Z�&�#�9�V�i�V��� ���&���0
�r

If you compiled the class now, you could view it in the IronPython console. The following code
provides the steps for loading the extension into memory.

�^�b�e�d�g�i���X�a�g
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z���»�8�V�a�X�h�#�9�A�A�¼��
�^�b�e�d�g�i���8�V�a�X�h��
�Y�^�g���8�V�a�X�h�#�8�V�a�X�h��

Figure 16-3 shows the output of the �Y�^�g���8�V�a�X�h�#�8�V�a�X�h�� call. Notice that �>�c�X���� and �9�Z�X����
appear as you expect. However, there aren’t any entries for � , �", �� , and �$ methods. These
operators still work as you expect, but IronPython shows a Python equivalent for the operators
in the form of the �T�T�V�Y�Y�T�T����, �T�T�g�V�Y�Y�T�T����, �T�T�h�j�W�T�T����, �T�T�g�h�j�W�T�T����, �T�T�b�j�a�T�T����, �T�T�g�b�j�a�T�T����,
�T�T�Y�^�k�T�T����, and �T�T�g�Y�^�k�T�T����. These methods don’t appear unless you de�ne the operators in
your class.

Creating the Simple C# Extension �X 333

If you’re looking at the class in the IronPython console, you might want to give it a quick try before
you close up the console and move on to the next part of the example. Try this code and you’ll see
an output of 15 from the �T�T�V�Y�Y�T�T���� method.

�K�V�a�j�Z�&���2���8�V�a�X�h�#�8�V�a�X�h���&�%��
�K�V�a�j�Z�'���2���8�V�a�X�h�#�8�V�a�X�h���*��
�e�g�^�c�i���K�V�a�j�Z�&�#�T�T�V�Y�Y�T�T���K�V�a�j�Z�'��

FIGURE 16�3: The dir() function shows the content of the Calcs class.

Adding the IronPython Project
At this point, you have a C# extension (or module) to use with IronPython. Of course, you’ll want
to test it. The easiest way to do this is to add the IronPython project directly to the current solution.
The following steps describe how to perform this task.

1. Right-click the solution entry in Solution Explorer and choose Add�����¶����Existing Project from
the context menu. You see the Add Existing Project dialog box shown in Figure 16-4.

FIGURE 16�4: Locate IPY.EXE and add it to your solution.

334 �X CHAPTER 16 EXTENDING IRONPYTHON USING C#

2. Locate �>�E�N�#�:�M�: on your hard drive and highlight it. Click Open. You see a new project entry
added to the solution.

3. Right-click the ipy entry in Solution Explorer and choose Set as Startup Project from the con-
text menu. This step ensures that choosing one of the startup options from the Debug menu
starts the IronPython application.

4. Right-click the ipy entry in Solution Explorer and choose Properties from the context menu.
You’ll see the General tab of the ipy Properties window shown in Figure 16-5.

FIGURE 16�5: Con�gure the IronPython application to work with Calcs.DLL.

5. Type -D TestCalcs.py in the Arguments �eld.

6. Click the ellipses in the Working Directory �eld to display the Browse for Folder dialog box.
Locate the output folder of the �8�V�a�X�h�#�9�A�A (or other extension) �le. Click OK. The IDE adds
the correct directory information to the Working Directory �eld.

7. Open Windows Explorer. Locate the �Q�8�V�a�X�h�Q�8�V�a�X�h�Q�W�^�c�Q�9�Z�W�j�\ folder. Right-click in
the right pane and choose New�����¶����Text Document from the context menu. Name the
�le �I�Z�h�i�8�V�a�X�h�#�e�n and press Enter. Click Yes if asked if you want to rename the �le
extension.

8. Right-click the solution item in Solution Explorer and choose Add�����¶����Existing Item from the
context menu to display the Add Existing Item dialog box shown in Figure 16-6.

9. Locate the �I�Z�h�i�8�V�a�X�h�#�e�n �le in the solution and click Add. Visual Studio adds �I�Z�h�i�8�V�a�X�h�#�e�n
to the �H�d�a�j�i�^�d�c���>�i�Z�b�h folder in Solution Explorer and automatically opens the �le for you.
You’re ready to add test code for the application.

Creating the Simple C# Extension �X 335

FIGURE 16�6: Add the TestCalcs.py �le to the solution.

Creating the IronPython Application
Now that you have a �le to use for the IronPython application, it’s time to add some code to it. The
example code fully exercises everything you can do with the C# extension. Listing 16-2 shows the
code you add to the �I�Z�h�i�8�V�a�X�h�#�e�n �le.

LISTING 16�2: Testing the extension using IronPython

�����6�Y�Y���V���g�Z�[�Z�g�Z�c�X�Z���i�d���i�]�Z���8�A�G
�^�b�e�d�g�i���X�a�g

�����D�W�i�V�^�c���V�X�X�Z�h�h���i�d���i�]�Z���Z�m�i�Z�c�h�^�d�c�#
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z���»�8�V�a�X�h�#�9�A�A�¼��
�^�b�e�d�g�i���8�V�a�X�h

�����8�g�Z�V�i�Z���V�c���^�c�h�i�V�c�X�Z���d�[���i�]�Z���X�a�V�h�h���V�c�Y���[�^�a�a���^�i���l�^�i�]���Y�V�i�V�#
�K�V�a�j�Z�&���2���8�V�a�X�h�#�8�V�a�X�h���&�%��

�����E�g�^�c�i���i�]�Z���d�g�^�\�^�c�V�a���k�V�a�j�Z�!���i�]�Z�c���Y�Z�X�g�Z�b�Z�c�i���V�c�Y���^�c�X�g�Z�b�Z�c�i���^�i�#
�e�g�^�c�i���»�D�g�^�\�^�c�V�a���K�V�a�j�Z�&���8�d�c�i�Z�c�i�/���»�!���K�V�a�j�Z�&��
�e�g�^�c�i���»�K�V�a�j�Z�&��� ���&�/���»�!���K�V�a�j�Z�&�#�>�c�X������
�e�g�^�c�i���»�K�V�a�j�Z�&���"���&�/���»�!���K�V�a�j�Z�&�#�9�Z�X����

�����8�g�Z�V�i�Z���V���h�Z�X�d�c�Y���k�V�a�j�Z���V�c�Y���Y�^�h�e�a�V�n���^�i�#
�K�V�a�j�Z�'���2���8�V�a�X�h�#�8�V�a�X�h���*����
�e�g�^�c�i���»�Q�c�D�g�^�\�^�c�V�a���K�V�a�j�Z�'���8�d�c�i�Z�c�i�/���»�!���K�V�a�j�Z�'

�����J�h�Z���i�]�Z���i�l�d���k�V�a�j�Z�h���i�d�\�Z�i�]�Z�g���^�c���Y�^�[�[�Z�g�Z�c�i���l�V�n�h�#
�e�g�^�c�i���»�Q�c�K�V�a�j�Z�&��� ���K�V�a�j�Z�'���2���»�!���K�V�a�j�Z�&��� ���K�V�a�j�Z�'

continues

336 �X CHAPTER 16 EXTENDING IRONPYTHON USING C#

�e�g�^�c�i���»�K�V�a�j�Z�&���"���K�V�a�j�Z�'���2���»�!���K�V�a�j�Z�&���"���K�V�a�j�Z�'
�e�g�^�c�i���»�K�V�a�j�Z�&�������K�V�a�j�Z�'���2���»�!���K�V�a�j�Z�&�������K�V�a�j�Z�'
�e�g�^�c�i���»�K�V�a�j�Z�&���$���K�V�a�j�Z�'���2���»�!���K�V�a�j�Z�&���$���K�V�a�j�Z�'

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The example begins by importing support for the Common Language Runtime (CLR). It then uses the
�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z���� method to reference the �8�V�a�X�h�#�9�A�A �le and imports the code into IronPython.
These steps are similar to those that you used to test the DLL initially.

The next step is to create an instance of the �8�V�a�X�h class, �K�V�a�j�Z�&. The code references �8�V�a�X�h twice —
once for the namespace and a second time for the class itself. The next few code steps display the
value of �K�V�a�j�Z�& and show how to use the �>�c�X���� and �9�Z�X���� methods. If you set �K�V�a�j�Z�& equal to
the output of �>�c�X���� or �9�Z�X����, it truly would increment or decrement the value of �K�V�a�j�Z�&. Because
IronPython doesn’t support the � � operator, however, you can’t use the � � operator in your exten-
sion. On the other hand, you could implement the � �2 and �"�2 operators.

You can’t really test binary operators without a second variable, so the code creates a second
instance of �8�V�a�X�h, �K�V�a�j�Z�'. The example then shows how the � , �", �� , and �$ operators work.
Figure 16-7 shows the output from this example.

FIGURE 16�7: Here are the results of using the C# extension within IronPython.

USING C# FOR USER INTERFACE SUPPORT

Chapter 8 demonstrates that you can create Windows Forms applications using IronPython. It’s a
painful process because you don’t have access to any designers, but the process is de�nitely doable.
You may very well decide to use IronPython directly for all your graphics needs, simply to avoid
using another language. However, C# or Visual Basic.NET make better choices for creating a user
interface because you do get access to the designer support that these languages provide. With this
in mind, the following sections describe how you can add graphic support to IronPython using a C#
extension. (Chapter 17 shows how to perform essentially the same task using Visual Basic.NET.)

LISTING 16�2 (continued)

Using C# for User Interface Support �X 337

De�ning a Library of Dialog Boxes
If you’re using IronPython as your main application language and relying on a static language for
ancillary support, such as the user interface requirements, it makes sense to create all the dialog
boxes you require and place them in a library. Of course, if the application is relatively complex, you
might use several physical DLLs to perform the task or rely on a single DLL, but rely on multiple
projects to accommodate a team of developers The point is that you need to plan how to store the
dialog boxes in a manner that makes it ef�cient to work on the project.

There’s a tendency by some developers to create generic dialog boxes and then manipulate them
in code. This technique does work well when you use the dialog boxes in the static language.
However, the approach can become counterproductive when using the dialog boxes in IronPython.
The IronPython code can become so complicated that it becomes unreliable and hard to maintain.
In general, use speci�c dialog boxes whenever possible, which won’t require many (or any) changes.

IronPython doesn’t have a representation of every C# or Visual Basic.NET feature. For example,
in the section “Developing the C# Extension” section earlier in this chapter, you’ll discover that
IronPython doesn’t support the C# � � operator, but it does support the � �2 operator. It’s best to
perform data manipulation in the static language environment when possible or pass the raw data
to IronPython in a form it can readily use. For example, you might pass a list of �eld values to
IronPython as a dictionary.

Marshaling data between languages can reduce application performance. You may �nd situations
where you need to process data in a thread to maintain acceptable performance for the user. However,
before you take time to create a complex threading solution, ask users to try the application in a test
environment to determine whether the performance is acceptable.

Creating the Dialog Box Library in C#
Your dialog box library can support dialog boxes at two levels. It’s possible to meet some IronPython
needs using a simple message box or prompt box. Because these solutions are already programmed
for you, supporting them through the static language, where the features are easily accessed, is a good
way to save on development and debugging time. You can customize the implementation of these stan-
dardized features to make them easy to use within IronPython — reducing the need to import a lot of
managed assemblies into IronPython.

Of course, many user-interface needs require something more advanced than a simple message box.
The following sections describe how to create simple message boxes and complex Windows Forms
in C# that you can use in your IronPython application. The goal is to use the right kind of interface
element for a given task and to make the interface element easy to access and process from within
IronPython. The section “Creating the Simple C# Extension” earlier in this chapter describes how
to set up the solution used for this example.

De�ning Simple Message Boxes
This example is interesting because it shows how you can create overrides of your methods.
�I�]�Z���B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���� method has 21 overrides in C#. Of course, you might not need all those
overrides and the example shows only �ve of them. Before you can work with message boxes in a

338 �X CHAPTER 16 EXTENDING IRONPYTHON USING C#

C# class, you need to add a reference to the �H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�9�A�A and add the following
�j�h�^�c�\ statement.

�j�h�^�c�\���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�0

Now that you have the prerequisites in place, it’s time to look at some code. Listing 16-3 shows the
code used to create this example.

LISTING 16�3: Creating a simple message box class

�e�j�W�a�^�X���X�a�V�h�h���9�^�V�a�d�\�h
�p
���������e�j�W�a�^�X���9�^�V�a�d�\�h����
���������p
���������r

���������e�j�W�a�^�X���H�i�g�^�c�\���H�]�d�l�B�Z�h�h�V�\�Z���H�i�g�^�c�\���B�h�\��
���������p
�����������������g�Z�i�j�g�c���B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���B�h�\���#�I�d�H�i�g�^�c�\�����0
���������r

���������e�j�W�a�^�X���H�i�g�^�c�\���H�]�d�l�B�Z�h�h�V�\�Z���H�i�g�^�c�\���B�h�\�!���H�i�g�^�c�\���I�^�i�a�Z��
���������p
�����������������g�Z�i�j�g�c���B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���B�h�\�!���I�^�i�a�Z���#�I�d�H�i�g�^�c�\�����0
���������r

���������e�j�W�a�^�X���H�i�g�^�c�\���H�]�d�l�B�Z�h�h�V�\�Z���H�i�g�^�c�\���B�h�\�!���H�i�g�^�c�\���I�^�i�a�Z�!���>�c�i�&�+���7�j�i�i�d�c�h��
���������p
�����������������g�Z�i�j�g�c���B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���B�h�\�!���I�^�i�a�Z�!��
���������������������������B�Z�h�h�V�\�Z�7�d�m�7�j�i�i�d�c�h���7�j�i�i�d�c�h���#�I�d�H�i�g�^�c�\�����0
���������r

���������e�j�W�a�^�X���H�i�g�^�c�\���H�]�d�l�B�Z�h�h�V�\�Z���H�i�g�^�c�\���B�h�\�!���H�i�g�^�c�\���I�^�i�a�Z�!���>�c�i�&�+���7�j�i�i�d�c�h�!��
�����������������>�c�i�&�+���>�X�d�c��
���������p
�����������������g�Z�i�j�g�c���B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���B�h�\�!���I�^�i�a�Z�!��
���������������������������B�Z�h�h�V�\�Z�7�d�m�7�j�i�i�d�c�h���7�j�i�i�d�c�h�!�����B�Z�h�h�V�\�Z�7�d�m�>�X�d�c���>�X�d�c���#�I�d�H�i�g�^�c�\�����0
���������r

���������e�j�W�a�^�X���H�i�g�^�c�\���H�]�d�l�B�Z�h�h�V�\�Z���H�i�g�^�c�\���B�h�\�!���H�i�g�^�c�\���I�^�i�a�Z�!���>�c�i�&�+���7�j�i�i�d�c�h�!
�����������������>�c�i�&�+���>�X�d�c�!���>�c�i�&�+���9�Z�[�V�j�a�i�7�j�i�i�d�c��
���������p
�����������������g�Z�i�j�g�c���B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���B�h�\�!���I�^�i�a�Z�!
���������������������������B�Z�h�h�V�\�Z�7�d�m�7�j�i�i�d�c�h���7�j�i�i�d�c�h�!�����B�Z�h�h�V�\�Z�7�d�m�>�X�d�c���>�X�d�c�!��
���������������������������B�Z�h�h�V�\�Z�7�d�m�9�Z�[�V�j�a�i�7�j�i�i�d�c���9�Z�[�V�j�a�i�7�j�i�i�d�c���#�I�d�H�i�g�^�c�\�����0
���������r
�r

The code begins with the usual constructor. The constructor doesn’t really need to do anything in
this case. Of course, you could set up the constructor to accept some of the required inputs, such as
the message and message box title, but sending the information with the �H�]�d�l�B�Z�h�h�V�\�Z���� method
works just �ne, too. The constructor could also set up default settings, if desired, that the developer
could override with speci�c versions of �H�]�d�l�B�Z�h�h�V�\�Z����.

Using C# for User Interface Support �X 339

The �H�]�d�l�B�Z�h�h�V�\�Z���� method declarations come next. The methods are relatively simple. Each one
calls a different override of the �B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���� method. Notice that you must coerce the
�B�Z�h�h�V�\�Z�7�d�m�7�j�i�i�d�c�h, �B�Z�h�h�V�\�Z�7�d�m�>�X�d�c, �B�Z�h�h�V�\�Z�7�d�m�9�Z�[�V�j�a�i�7�j�i�i�d�c values from the inputs. You
could ask the caller to provide the actual enumerated values, but that approach would reduce the
bene�t of using this approach for working with message boxes, because the developer would need to
load the required .NET assemblies anyway.

Even when working with simple message boxes, you can encounter a few problems. For example,
the enumerations provided in the static environment make it simple to select a particular button
combination or icon. IntelliSense displays the list of values from which you can choose. However,
IronPython doesn’t provide IntelliSense, so there isn’t any simple method of selecting a button com-
bination or icon from a list. The example uses numbers, which works �ne for the button combina -
tions because they’re numbered 0 through 5. However, the icons have values of 0, 16, 32, 48, and
64, which are hardly easy to remember. The default button values are equally odd at 0, 256, and
512. Tables 16-1 through 16-3 show the values for the message box enumerations. In a production
environment, you’d probably create text equivalents for the developer, which you could translate in
the extension, or provide some type of enumeration for the developer.

TABLE 16�1: Message Box Button Combinations

ENUMERATED VALUE INT16 VALUE

MessageBoxButtons.AbortRetryIgnore 2

MessageBoxButtons.OK 0

MessageBoxButtons.OKCancel 1

MessageBoxButtons.RetryCancel 5

MessageBoxButtons.YesNo 4

MessageBoxButtons.YesNoCancel 3

TABLE 16�2: Message Box Icon Combinations

ENUMERATED VALUE INT16 VALUE

MessageBoxIcon.Asterisk 64

MessageBoxIcon.Error 16

MessageBoxIcon.Exclamation 48

MessageBoxIcon.Hand 16

MessageBoxIcon.Information 64

MessageBoxIcon.None 0

continues

340 �X CHAPTER 16 EXTENDING IRONPYTHON USING C#

ENUMERATED VALUE INT16 VALUE

MessageBoxIcon.Question 32

MessageBoxIcon.Stop 16

MessageBoxIcon.Warning 48

TABLE 16�3: Message Box Default Button Options

ENUMERATED VALUE INT16 VALUE

MessageBoxDefaultButton.Button1 0

MessageBoxDefaultButton.Button2 256

MessageBoxDefaultButton.Button3 512

Using Enumerations with IronPython
There’s a way around the issue of enumerated values in .NET calls. You can simply choose to create
your own enumeration. For example, let’s say you want to overcome the problem of working with
the �B�Z�h�h�V�\�Z�7�d�m�7�j�i�i�d�c�h enumeration. In this case, you create an enumeration and a new override
of the �H�]�d�l�B�Z�h�h�V�\�Z���� method as shown here.

�e�j�W�a�^�X���Z�c�j�b���7�j�i�i�d�c�I�n�e�Z�h
�p
���������D�@�!
���������D�@�8�V�c�X�Z�a�!
���������6�W�d�g�i�G�Z�i�g�n�>�\�c�d�g�Z�!
���������N�Z�h�C�d�8�V�c�X�Z�a�!
���������N�Z�h�C�d�!
���������G�Z�i�g�n�8�V�c�X�Z�a
�r

�e�j�W�a�^�X���H�i�g�^�c�\���H�]�d�l�B�Z�h�h�V�\�Z���H�i�g�^�c�\���B�h�\�!���H�i�g�^�c�\���I�^�i�a�Z�!���7�j�i�i�d�c�I�n�e�Z�h���7�j�i�i�d�c�h��
�p
���������g�Z�i�j�g�c���B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���B�h�\�!���I�^�i�a�Z�!
�������������������B�Z�h�h�V�\�Z�7�d�m�7�j�i�i�d�c�h���7�j�i�i�d�c�h���#�I�d�H�i�g�^�c�\�����0
�r

Notice that you must still use coercion to make the �B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���� call. However, the IronPython
developer now has an enumeration to use when making the call. Here’s a typical call from within
IronPython.

�B�n�9�^�V�a�d�\�#�H�]�d�l�B�Z�h�h�V�\�Z���»�=�Z�a�a�d�¼�!���»�I�^�i�a�Z�¼�!���B�n�9�^�V�a�d�\�#�7�j�i�i�d�c�I�n�e�Z�h�#�D�@�8�V�c�X�Z�a��

The resulting message box would contain �»�=�Z�a�a�d�» as the message, �»�I�^�i�a�Z�» as the message box title,
and two buttons, OK and Cancel.

TABLE 16�2 (continued)

Using C# for User Interface Support �X 341

Considering Developer Help
As your extensions gain in complexity, you need to start providing some help to the IronPython
developer. Most IronPython developers will spend part of their time in the interpreter trying things
out. The developer will look to your documentation fo r help in using the extension you create. There
are two forms of help, as shown here.

�]�Z�a�e���B�n�9�^�V�a�d�\�#�H�]�d�l�B�Z�h�h�V�\�Z��
�B�n�9�^�V�a�d�\�#�H�]�d�l�B�Z�h�h�V�\�Z�#�T�T�Y�d�X�T�T����

It turns out that IronPython automatically provides a form of the �]�Z�a�e���� function help for you as
shown in Figure 16-8. In this case, you see all of the method calls that the �9�^�V�a�d�\�h class provides,
along with the enumeration described in the section “Using Enumerations with IronPython” earlier
in this chapter.

FIGURE 16�8: IronPython provides a kind of help for you automatically.

Unfortunately, IronPython doesn’t provide the �T�T�Y�d�X�T�T���� method by default. You must de�ne it
for yourself as part of the class you create. Here’s a simple �T�T�Y�d�X�T�T���� method you can use with the
example. Of course, a production version would contain far more information.

�e�j�W�a�^�X���H�i�g�^�c�\���T�T�Y�d�X�T�T����
�p
���������g�Z�i�j�g�c���¹�I�]�^�h���^�h���V���]�Z�a�e���h�i�g�^�c�\�º�0
�r

342 �X CHAPTER 16 EXTENDING IRONPYTHON USING C#

When you try this method out at the Python prompt, you see the outline shown in Figure 16-9. You
can use all of the normal formatting characters to make the help provided by the �T�T�Y�d�X�T�T���� method
look nice. For that matter, you could store the information externally and simply read it in as needed.

FIGURE 16�9: You must de�ne your own version of the __doc__() method.

De�ning Complex Forms
At some point, simple message boxes simply won’t do the job for you. After all, you’ll want forms
that contain a number of �elds that you can use to process complex information from the user. In
this case, you must create a standard Windows form for your extension. To accomplish this task,
you begin by adding the form using the following steps.

1. Right-click Dialogs in Solution Explorer and choose Add�����¶����New Item. Select the Windows
Forms entry in the Installed Templates list. You see the Add New Item dialog box shown in
Figure 16-10.

FIGURE 16�10: Add a Windows Form to your project.

2. Highlight the Windows Form entry. Type �I�Z�h�i�;�d�g�b�#�8�H in the Name �eld and click Add.
Visual Studio adds the new form to your project and automatically opens it for editing.

Using C# for User Interface Support �X 343

At this point, you can create the form just as you normally
would for any static application. Figure 16-11 shows the form
used for this example. It’s simple, but it contains multiple data-
entry �elds and multiple exit options.

Before you assume anything about this form, note that it does
differ in a few ways from the forms you’ve created for your
static applications. The �rst difference is that the buttons that
close the form, rather than do something within the form,
must have the �9�^�V�a�d�\�G�Z�h�j�a�i property set to a unique value
or you won’t be able to tell which button the user clicked. For
this example, the �9�^�V�a�d�\�G�Z�h�j�a�i for �W�i�c�D�@ is �D�@, while the
�9�^�V�a�d�\�G�Z�h�j�a�i for �W�i�c�8�V�c�X�Z�a is �8�V�c�X�Z�a.

The second difference involves a problem with getting informa-
tion from the form you create to the IronPython application.
You could contrive all sorts of odd methods for accomplish-
ing the task, but the simplest method is to set the �B�d�Y�^�[�^�Z�g�h property for the individual controls
(�i�m�i�C�V�b�Z and �i�m�i�8�d�a�d�g) to �E�j�W�a�^�X. In this case, using �E�j�W�a�^�X doesn’t create a problem because
IronPython sets everything to public. In all other respects, there’s no difference between this form
and any other form you’ve created in the past.

To make things simple, this example doesn’t use any code-behind for the form itself. Any code-
behind works as you’d expect. There isn’t any difference between calling the form from IronPython
than calling it from within your C# application.

Accessing the Dialog Box Library from IronPython
At this point, you have a nice collection of dialog box and form classes to use in an IronPython
application. Of course, a production application woul d probably have quite a few more forms in
it, but you have enough for testing and experimentation purposes. The following sections describe
how to use these classes.

An Alternative Method for Adding the IronPython Projec t
There are a number of ways to con�gure a test setup for your extensions. The section “Adding the
IronPython Project” earlier in this chapter shows one technique. The technique works well when
you want to maintain separate builds of your extension. However, you might want to maintain
just one build — the build you’re currently using for debugging, testing, or experimentation. Use
the following steps to create a centralized test con�guration.

1. Right-click Dialogs in Solution Explorer and choose Properties from the context menu. Select
the Build tab. You see the Properties window shown in Figure 16-12.

2. Click Browse next to the Output Path �eld to display the Select Output Path dialog box
shown in Figure 16-13. Because you’ll add the IronPython test �le at the solution level, you
need to send the output to the solution level as well.

FIGURE 16�11: The Windows Form
can contain any level of complexity
you desire.

344 �X CHAPTER 16 EXTENDING IRONPYTHON USING C#

FIGURE 16�12: Con�gure the build to use a central output location.

3. Select the �rst Dialogs entry in the list and click OK.
Visual Studio adds an absolute path to the Output
Path �eld that you must change for every machine
that uses the application. As an alternative, you
could type ..\(two periods and a backslash) in the
�eld to place the output in the solution folder.

4. Select the next con�guration in the Con�guration �eld.

5. Perform Steps 2 through 4 for each con�guration.
Make sure each con�guration uses the same output
directory. Normally, your project will only contain
Debug and Release con�gurations.

6. Right-click the solution entry in Solution Explorer
and choose Add�����¶����Existing Project from the context
menu. You see the Add Existing Project dialog box
shown in Figure 16-4.

FIGURE 16�13: Modify the output path
as required for your application.

Using C# for User Interface Support �X 345

7. Locate �>�E�N�#�:�M�: on your hard drive and highlight it. Click Open. You’ll see a new project
entry added to the solution.

8. Right-click the �^�e�n entry in Solution Explorer and choose Set as Startup Project from the
context menu.

9. Right-click the �^�e�n entry in Solution Explorer and choose Properties from the context menu.
You see the General tab of the �^�e�n Properties window shown in Figure 16-5.

10. Type -D DialogTest.py in the Arguments �eld.

11. Click the ellipses in the Working Directory �eld to display the Browse for Folder dialog box.
Locate the solution folder for the project (the �rst �9�^�V�a�d�\�h folder). Click OK. The IDE adds
the correct directory information to the Working Directory �eld.

12. Right-click the solution entry in Solution Explorer and choose Add�����¶����New Item from the
context menu. You see the Add New Item dialog box shown in Figure 16-14.

FIGURE 16�14: Add the IronPython test �le to your project.

13. Type �9�^�V�a�d�\�I�Z�h�i�#�e�n in the Name �eld and click Add. Visual Studio adds the new �le to the
Solution Items folder in Solution Explorer and opens the �le automatically for editing.

Performing the Message Box and Form Tests
It’s �nally time to test the message boxes and forms you’ve created. The code in this section performs
a few simple tests and demonstrates how to obtain output from the message boxes and forms you’ve
created. You can use this code as a starting point for more complex processing in your own applica-
tion. Listing 16-4 shows the test code for this application.

346 �X CHAPTER 16 EXTENDING IRONPYTHON USING C#

LISTING 16�4: Testing the extension using IronPython

�����9�Z�[�^�c�Z���i�]�Z���b�Z�h�h�V�\�Z���W�d�m���i�Z�h�i�h�#
�Y�Z�[���I�Z�h�i�B�Z�h�h�V�\�Z�h�����/

�����������8�g�Z�V�i�Z���V���b�Z�h�h�V�\�Z���W�d�m���d�W�_�Z�X�i�#
�������B�n�9�^�V�a�d�\���2���9�^�V�a�d�\�h�#�9�^�V�a�d�\�h����

�����������I�Z�h�i���V���h�^�b�e�a�Z���b�Z�h�h�V�\�Z���W�d�m�#
�������e�g�^�c�i���»�I�Z�h�i�^�c�\���V���h�^�b�e�a�Z���b�Z�h�h�V�\�Z���W�d�m�#�¼
�������e�g�^�c�i���»�H�^�b�e�a�Z���b�Z�h�h�V�\�Z���W�d�m���d�j�i�e�j�i�/���»�!
�������e�g�^�c�i���B�n�9�^�V�a�d�\�#�H�]�d�l�B�Z�h�h�V�\�Z���»�=�Z�a�a�d�¼��

�����������E�Z�g�[�d�g�b���V���b�d�g�Z���X�d�b�e�a�Z�m���i�Z�h�i�#
�������e�g�^�c�i���»�Q�c�6���b�d�g�Z���X�d�b�e�a�Z�m���b�Z�h�h�V�\�Z���W�d�m�#�¼
�������e�g�^�c�i���»�8�d�b�e�a�Z�m���b�Z�h�h�V�\�Z���W�d�m���d�j�i�e�j�i�/���»�!
�������e�g�^�c�i���B�n�9�^�V�a�d�\�#�H�]�d�l�B�Z�h�h�V�\�Z���»�=�Z�a�a�d���6�\�V�^�c�¼�!���»�I�^�i�a�Z���'�¼�!���(�!���+�)�!���'�*�+��

�����9�Z�[�^�c�Z���i�]�Z���[�d�g�b���i�Z�h�i�#
�Y�Z�[���I�Z�h�i�;�d�g�b�����/
������
�����������8�g�Z�V�i�Z���i�]�Z���[�d�g�b���^�c�h�i�V�c�X�Z�#
�������B�n�;�d�g�b���2���9�^�V�a�d�\�h�#�I�Z�h�i�;�d�g�b����

�����������9�^�h�e�a�V�n���i�]�Z���[�d�g�b���V�c�Y���i�Z�h�i���i�]�Z���Y�^�V�a�d�\���g�Z�h�j�a�i�#
�������e�g�^�c�i���»�Q�c�I�]�Z���[�d�g�b���Z�m�V�b�e�a�Z�#�¼
�������^�[���B�n�;�d�g�b�#�H�]�d�l�9�^�V�a�d�\�����#�I�d�H�i�g�^�c�\�������2�2���»�D�@�¼�/

�����������������9�^�h�e�a�V�n���i�]�Z���g�Z�h�j�a�i�h�#
�������������e�g�^�c�i���»�I�]�Z���j�h�Z�g���X�a�^�X�`�Z�Y���D�@�#�¼
�������������e�g�^�c�i���»�J�h�Z�g���C�V�b�Z�/���»�!���B�n�;�d�g�b�#�i�m�i�C�V�b�Z�#�I�Z�m�i
�������������e�g�^�c�i���»�;�V�k�d�g�^�i�Z���8�d�a�d�g�/���»�!���B�n�;�d�g�b�#�i�m�i�8�d�a�d�g�#�I�Z�m�i

�����������9�^�h�e�a�V�n���V�c���V�a�i�Z�g�c�V�i�Z���g�Z�h�j�a�i�#
�������Z�a�h�Z�/
�������������e�g�^�c�i���»�I�]�Z���j�h�Z�g���X�a�^�X�`�Z�Y���X�V�c�X�Z�a�#�¼

�����>�b�e�d�g�i���i�]�Z���8�d�b�b�d�c���A�V�c�\�j�V�\�Z���G�j�c�i�^�b�Z�#
�^�b�e�d�g�i���X�a�g

�����6�X�X�Z�h�h���i�]�Z���Z�m�i�Z�c�h�^�d�c�#
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z���»�9�^�V�a�d�\�h�#�9�A�A�¼��
�^�b�e�d�g�i���9�^�V�a�d�\�h

�����I�Z�h�i���i�]�Z���b�Z�h�h�V�\�Z���W�d�m���X�d�Y�Z�#
�I�Z�h�i�B�Z�h�h�V�\�Z�h����

�����I�Z�h�i���i�]�Z���[�d�g�b���X�d�Y�Z�#
�I�Z�h�i�;�d�g�b����

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

Using C# for User Interface Support �X 347

The test code begins by importing CLR and gaining access to the �9�^�V�a�d�\�h namespace. This example
demonstrates one of the bene�ts of using a namespace, easy access to multiple classes. It’s a good
way to organize a library of forms to make them easy to access and to avoid naming con�icts.

The �I�Z�h�i�B�Z�h�h�V�\�Z�h���� function contains the code to test the �9�^�V�a�d�\�h�#�9�^�V�a�d�\�h class. This code
begins by creating a �9�^�V�a�d�\�h�#�9�^�V�a�d�\�h instance, �B�n�9�^�V�a�d�\. In this case, the application begins by
creating a simple message box and displaying it onscreen. This message box lacks a title and con-
tains only an OK button. When the user clicks OK, the program prints the dialog result to screen.

The second test is a little more complex. This time the code relies on the most complex form of the
�H�]�d�l�B�Z�h�h�V�\�Z���� method to display a dialog box that contains a
message, title, icon, and multiple buttons as shown in Figure 16-15.
Notice that the �gure shows that the message box also has the
middle button selected by default. Pressing Enter will automatically
select this default option. Normally, message boxes select the �rst
button as the default. Depending on which button the user clicks,
the application will display a message with the appropriate dialog
result. You could also use this dialog result as part of an �^�[�#�#�#�Z�a�h�Z
statement to choose an appropriate course of action.

The �I�Z�h�i�;�d�g�b���� method begins by creating an instance of �9�^�V�a�d�\�h�#
�I�Z�h�i�;�d�g�b, �B�n�;�d�g�b. The �Y�^�g���� function will show you that �B�n�;�d�g�b now has access to all of the func-
tionality normally associated with a Windows Forms class, but without importing any of the bulk
associated with the �H�n�h�i�Z�b�#�L�^�c�Y�d�l�h��
�#�;�d�g�b�h assembly. As with any Windows Form, you call �H�]�d�l�9�^�V�a�d�\���� to display the form. However,
the result of displaying the form is going to be something that IronPython can’t use directly. The way
to overcome this problem is to call �H�]�d�l�9�^�V�a�d�\�����#�I�d�H�i�g�^�c�\����. In this case, the output is a string that
describes which button the user has clicked.

This portion of the example shows how to process the form data locally. When the user clicks OK,
the dialog result is �»�D�@�» and the �^�[statement succeeds. The code accesses the �B�n�;�d�g�b�#�i�m�i�C�V�b�Z�#�I�Z�m�i
and �B�n�;�d�g�b�#�i�m�i�8�d�a�d�g�#�I�Z�m�i properties to determine what the user has typed. When the �^�[state-
ment fails, the code displays a message telling you that the user clicked Cancel. Figure 16-16 shows
typical output from this example.

FIGURE 16�16: Here are the results of using the C# extension within IronPython.

FIGURE 16�15: A more complex
message box includes multiple
buttons, a title, and an icon.

348 �X CHAPTER 16 EXTENDING IRONPYTHON USING C#

USING C# FOR WIN32 SUPPORT

The Python language doesn’t really support much in the way of platform-speci�c functionality and
that’s by design. One of the tenets of cross-platform compatibility is not to make an issue out of the
platform on which the code runs. However, in some cases, you really do need to access the platform
and discover things about it. For example, you might want to know more about the environment in
which your application is executing, such as the size of the console window. You might even want to
clear the console window (a feature that is missing from the IronPython console, without which your
sessions can appear messy). An application may need to know something about the security in place
for the current session. In short, you might have many reasons for wanting to know something more,
but Python (and by extension, IronPython) largely lacks the functionality to provide this information.

The example in the following sections plays to a strength of C#, which is to interact with the
Windows platform through a feature called Platform Invoke (P/Invoke). This example goes outside
the managed .NET environment and relies on the Win32 API to access Windows functionality that
you can’t access through .NET.

Creating the P/Invoke Code
Before you can write any P/Invoke code, you need to add the following �j�h�^�c�\ statement.

�j�h�^�c�\���H�n�h�i�Z�b�#�G�j�c�i�^�b�Z�#�>�c�i�Z�g�d�e�H�Z�g�k�^�X�Z�h�0

This statement provides access to the various special programming features that C# provides for
accessing the Win32 API.

You may �nd that you have little interest in precisely how P/Invoke works.
It’s possible to skip the details found in this section, proceed to the sections
that follow, and still understand how the whole appli cation works. However,
working through the P/Invoke code will give you a better understanding of the
power that C# provides in accessing features you might not have used in the
past (and potentially a few that you might not even know exist now).

If you haven’t worked with the Win32 API in the past , you might �nd the use of structures, enumera-
tions, and pointers confusing. In reality, all these events take place somewhere in the background
when you execute any application. At some point, your managed code ends up interacting with the
Win32 API to perform tasks because the basic Windows DLLs still rely on the Win32 API. Normally,
CLR hides all these details from view so you don’t need to worry about them. Listing 16-5 shows the
Win32 API access code — the lower-level code that does all the hard work for this example.

LISTING 16�5: Win32 API access code and structures

�$�$���I�]�^�h���h�e�Z�X�^�V�a���X�a�V�h�h���X�d�c�i�V�^�c�h���V�c���Z�c�j�b�Z�g�V�i�^�d�c���d�[
�$�$���h�i�V�c�Y�V�g�Y���]�V�c�Y�a�Z�h�#��
�X�a�V�h�h���H�i�Y�=�V�c�Y�a�Z�:�c�j�b

Using C# for Win32 Support �X 349

�p
���������e�j�W�a�^�X���X�d�c�h�i���^�c�i���H�I�9�T�>�C�E�J�I�T�=�6�C�9�A�:�������2���"�&�%�0
���������e�j�W�a�^�X���X�d�c�h�i���^�c�i���H�I�9�T�D�J�I�E�J�I�T�=�6�C�9�A�:�����2���"�&�&�0
���������e�j�W�a�^�X���X�d�c�h�i���^�c�i���H�I�9�T�:�G�G�D�G�T�=�6�C�9�A�:�������2���"�&�'�0
�r�0

�$�$���I�]�Z���<�Z�i�H�i�Y�=�V�c�Y�a�Z�������[�j�c�X�i�^�d�c���g�Z�i�j�g�c�h���V���]�V�c�Y�a�Z���i�d���V�c�n��
�$�$���h�i�V�c�Y�V�g�Y���^�c�e�j�i���d�g���d�j�i�e�j�i�#
�P�9�a�a�>�b�e�d�g�i���¹�`�Z�g�c�Z�a�(�'�#�Y�a�a�º�!���H�Z�i�A�V�h�i�:�g�g�d�g�2�i�g�j�Z���R��
�e�j�W�a�^�X���h�i�V�i�^�X���Z�m�i�Z�g�c���>�c�i�E�i�g���<�Z�i�H�i�Y�=�V�c�Y�a�Z���^�c�i���c�H�i�Y�=�V�c�Y�a�Z���0

�$�$���I�]�^�h���h�g�j�X�i�j�g�Z���X�d�c�i�V�^�c�h���V���h�X�g�Z�Z�c���X�d�d�g�Y�^�c�V�i�Z�#
�P�H�i�g�j�X�i�A�V�n�d�j�i���A�V�n�d�j�i�@�^�c�Y�#�H�Z�f�j�Z�c�i�^�V�a�!���E�V�X�`�2�&���R
�e�j�W�a�^�X���h�i�g�j�X�i���8�D�D�G�9��
�p
���������e�j�W�a�^�X���h�]�d�g�i���M�0
���������e�j�W�a�^�X���h�]�d�g�i���N�0
�r

�$�$���D�W�i�V�^�c�h���i�]�Z���X�j�g�g�Z�c�i���Y�^�h�e�a�V�n���b�d�Y�Z�"�"�[�j�a�a�h�X�g�Z�Z�c���d�g���[�j�a�a�h�X�g�Z�Z�c���]�V�g�Y�l�V�g�Z�#
�P�9�a�a�>�b�e�d�g�i���¹�@�Z�g�c�Z�a�(�'�#�9�A�A�º���R��
�e�j�W�a�^�X���h�i�V�i�^�X���Z�m�i�Z�g�c���W�d�d�a���<�Z�i�8�d�c�h�d�a�Z�9�^�h�e�a�V�n�B�d�Y�Z���g�Z�[���J�>�c�i�(�'���a�e�B�d�Y�Z�;�a�V�\�h���0

�$�$���6�c���Z�c�j�b�Z�g�V�i�^�d�c���j�h�Z�Y���i�d���Y�Z�i�Z�g�b�^�c�Z���i�]�Z���X�j�g�g�Z�c�i���Y�^�h�e�a�V�n���b�d�Y�Z�#
�e�j�W�a�^�X���Z�c�j�b���8�d�c�h�d�a�Z�9�^�h�e�B�d�Y�Z��
�p
���������8�D�C�H�D�A�:�T�L�>�C�9�D�L�:�9�������������������������2���%�!���$�$���D�c�a�n���^�b�e�a�^�Z�Y���W�n���[�j�c�X�i�^�d�c�#
���������8�D�C�H�D�A�:�T�;�J�A�A�H�8�G�:�:�C���������������������2���&�!���$�$���I�]�Z���X�d�c�h�d�a�Z���^�h���[�j�a�a�h�X�g�Z�Z�c�#
���������8�D�C�H�D�A�:�T�;�J�A�A�H�8�G�:�:�C�T�=�6�G�9�L�6�G�:���2���'�����$�$���I�]�Z���X�d�c�h�d�a�Z���d�l�c�h���i�]�Z���]�V�g�Y�l�V�g�Z�#
�r

�$�$���D�W�i�V�^�c�h���i�]�Z���h�^�o�Z���d�[���i�]�Z���a�V�g�\�Z�h�i���X�d�c�h�d�a�Z���l�^�c�Y�d�l���e�d�h�h�^�W�a�Z�#
�P�9�a�a�>�b�e�d�g�i���¹�@�Z�g�c�Z�a�(�'�#�9�A�A�º���R��
�e�j�W�a�^�X���h�i�V�i�^�X���Z�m�i�Z�g�c���8�D�D�G�9
�������<�Z�i�A�V�g�\�Z�h�i�8�d�c�h�d�a�Z�L�^�c�Y�d�l�H�^�o�Z���>�c�i�E�i�g���]�8�d�c�h�d�a�Z�D�j�i�e�j�i���0

�$�$���G�Z�i�j�g�c�h���i�]�Z���X�d�c�h�d�a�Z���b�d�Y�Z���^�c�[�d�g�b�V�i�^�d�c�#
�P�9�a�a�>�b�e�d�g�i���¹�@�Z�g�c�Z�a�(�'�#�9�A�A�º���R��
�e�j�W�a�^�X���h�i�V�i�^�X���Z�m�i�Z�g�c���W�d�d�a���<�Z�i�8�d�c�h�d�a�Z�B�d�Y�Z��
���������>�c�i�E�i�g���]�8�d�c�h�d�a�Z�=�V�c�Y�a�Z�!��
���������g�Z�[���J�>�c�i�(�'���a�e�B�d�Y�Z���0

�e�j�W�a�^�X���Z�c�j�b���B�d�Y�Z�;�a�V�\�h
�p
���������$�$���>�c�e�j�i���b�d�Y�Z���[�a�V�\�h
���������:�C�6�7�A�:�T�E�G�D�8�:�H�H�:�9�T�>�C�E�J�I�������������2���%�m�%�%�%�&�!
���������:�C�6�7�A�:�T�A�>�C�:�T�>�C�E�J�I�����������������������2���%�m�%�%�%�'�!
���������:�C�6�7�A�:�T�:�8�=�D�T�>�C�E�J�I�����������������������2���%�m�%�%�%�)�!
���������:�C�6�7�A�:�T�L�>�C�9�D�L�T�>�C�E�J�I�������������������2���%�m�%�%�%�-�!
���������:�C�6�7�A�:�T�B�D�J�H�:�T�>�C�E�J�I���������������������2���%�m�%�%�&�%�!

���������$�$���D�j�i�e�j�i���b�d�Y�Z���[�a�V�\�h
���������:�C�6�7�A�:�T�E�G�D�8�:�H�H�:�9�T�D�J�I�E�J�I�����������2���%�m�%�%�%�&�!
���������:�C�6�7�A�:�T�L�G�6�E�T�6�I�T�:�D�A�T�D�J�I�E�J�I�������2���%�m�%�%�%�'
�r

350 �X CHAPTER 16 EXTENDING IRONPYTHON USING C#

Many of the Win32 API functions require you to know s peci�c integer or hexadecimal values. Even
C++ developers can’t remember these numbers. Normally, a C++ developer relies on �Y�Z�[�^�c�Z statements
that put the numbers into human-readable form. The P/Invoke code used in this chapter does the same
thing, but sometimes it places the numbers in an enumeration to make them even easier to use. The
�H�i�Y�=�V�c�Y�a�Z�:�c�j�b class provides a list of standard handles (pointers) for Windows devices: input, output,
and error. However, these aren’t the actual handles.

In order to get the standard Windows handle, an application must call the �<�Z�i�H�i�Y�=�V�c�Y�a�Z���� function.
This function is in �`�Z�g�c�Z�a�(�'�#�Y�a�a. The �P�9�a�a�>�b�e�d�g�i�����R attribute tells the compiler where to look for
an external Win32 API function that you want to use in your code. In this case, the attribute also
tells the compiler that you want any error informati on that the Win32 API can provide. The use of
�Z�m�i�Z�g�c before the function name tells the compiler that the requested DLL contains a function of the
name that follows. You can now call this function dir ectly and CLR will automatically perform any
required marshaling for you.

Many of the Win32 API calls provide coordinates — x and y locations that tell where something is
or how large it is. The �8�D�D�G�9 structure provides a means of transferring this kind of information
between the .NET environment and the Win32 API environment. Windows uses a very basic view
of structures. Unfortunately, .NET often causes problems by trying to optimize the data structures
and causes P/Invoke calls to fail even though they should succeed. The �P�H�i�g�j�X�i�A�V�n�d�j�i�����R attribute
tells the compiler how to create a data structure in memory, which overrides the normal optimiza-
tion process.

You may create applications that need to run in full-screen mode, if for no other reason
than that they require the additional screen real estate to present information to the user. The
�<�Z�i�8�d�c�h�d�a�Z�9�^�h�e�a�V�n�B�d�Y�Z���� function tells you what mode the console is currently in. If the con-
sole is in the wrong mode, you can ask the user to change the mode or simply stop the applica-
tion before the screen mode causes any problems. This function returns �ags, not an enumerated
value. At least one of the �ags is always set, but the return value can have multiple �ags set. The
�8�d�c�h�d�a�Z�9�^�h�e�B�d�Y�Z enumeration makes it easier to work through the �ag settings and provide
usable output. The section “De�ning the GetCurrentDisplayMode() Method” later in this chap -
ter provides more information about this function.

In some cases, you need to know the largest size console window that the system will support. The
�<�Z�i�A�V�g�\�Z�h�i�8�d�c�h�d�a�Z�L�^�c�Y�d�l�H�^�o�Z���� function provides this information. You can use other Win32
API functions to adjust the size of the window to meet application requirements (which is a topic for
another book). The section “De�ning the GetConsoleWindowSize() Method” provides more infor -
mation about this function.

It’s also handy to know what kinds of operations the console window will support. For example, it’s
good to know whether the console window will respond to the mouse. The �<�Z�i�8�d�c�h�d�a�Z�B�d�Y�Z���� func-
tion provides this kind of information. The output is i n the form of �ags that you must interpret in
your code. The �<�Z�i�8�d�c�h�d�a�Z�B�d�Y�Z���� function is special in that the output you receive depends on the
kind of device handle you provide. The output differs when you provide an input handle, versus an
output handle. The section “De�ning the GetConsoleInfo() Method” provides additional information
about how this technique works.

Using C# for Win32 Support �X 351

Developing the IronPython Callable Methods
The P/Invoke code shown in Listing 16-5 does expose the Win32 API calls needed to perform cer-
tain tasks with IronPython. Theoretically, you could rely on just the code in Listing 16-5 to gain the
access you require in IronPython. However, the task would be dif�cult because you’d need to work
through the required bit manipulations. It’s better to place the code you need to access the Win32
API in easily called methods, which is the purpose of the code in the following sections.

De�ning Common Variables and the Constructor
Win32 API calls often reuse information. It’s not uncommon for functions to ask for the same infor-
mation over and over. For example, any function that works with a window will probably need the
handle for that window. With this requirement in mind , Listing 16-6 shows the common variables
and the constructor used for this example.

LISTING 16�6: Common variables and constructor

�J�>�c�i�(�'���9�^�h�e�a�V�n�B�d�Y�Z���2���%�0�����������$�$���I�]�Z���X�j�g�g�Z�c�i���Y�^�h�e�a�V�n���b�d�Y�Z�#
�>�c�i�E�i�g���]�D�j�i�0���������������������������������$�$���=�V�c�Y�a�Z���i�d���i�]�Z���d�j�i�e�j�i���Y�Z�k�^�X�Z�#
�>�c�i�E�i�g���]�>�c�0�����������������������������������$�$���=�V�c�Y�a�Z���i�d���i�]�Z���^�c�e�j�i���Y�Z�k�^�X�Z�#
�J�>�c�i�(�'���8�d�c�h�d�a�Z�B�d�Y�Z���2���%�0�����������$�$���I�]�Z���X�d�c�h�d�a�Z���b�d�Y�Z���^�c�[�d�g�b�V�i�^�d�c�#

�e�j�W�a�^�X���8�d�c�B�d�Y�Z����
�p
���������$�$���D�W�i�V�^�c���V���]�V�c�Y�a�Z���i�d���i�]�Z���X�d�c�h�d�a�Z���h�X�g�Z�Z�c���V�c�Y���X�d�c�h�d�a�Z���^�c�e�j�i�#
���������]�>�c���2���<�Z�i�H�i�Y�=�V�c�Y�a�Z���H�i�Y�=�V�c�Y�a�Z�:�c�j�b�#�H�I�9�T�>�C�E�J�I�T�=�6�C�9�A�:���0
���������]�D�j�i���2���<�Z�i�H�i�Y�=�V�c�Y�a�Z���H�i�Y�=�V�c�Y�a�Z�:�c�j�b�#�H�I�9�T�D�J�I�E�J�I�T�=�6�C�9�A�:���0
�r

The common variables include the current display mode (such as windowed), the console mode
information (such as whether it accepts mouse input), and the handles for the input and output
devices. These variables represent common pieces of information that the developer requires for
multiple calls.

The constructor initializes the input and output handles using the �<�Z�i�H�i�Y�=�V�c�Y�a�Z���� function. The
input argument simply tells Windows which handle you want. The output is an �>�c�i�E�i�g, a special
kind of variable that points to something. An �>�c�i�E�i�g is a safe pointer, meaning you can use it with-
out problems in a managed language. C# also supports unsafe pointers that you should use only as a
last resort.

An �>�c�i�E�i�g provides an integer value that represents a pointer. The size of the
integer is platform-speci�c and you should never view a standard �>�c�i�&�+ or
�>�c�i�(�' type as an acceptable substitute. Always use an �>�c�i�E�i�g when you need
to access a pointer or handle supplied by a Win32 API call.

352 �X CHAPTER 16 EXTENDING IRONPYTHON USING C#

De�ning the GetCurrentDisplayMode() Method
Sometimes you need to know whether the console is presented in a windowed or full-screen mode. A
windowed console can get covered up and needs to share resources with other windows. In addition,
the text in a windowed console can be small and hard to read. On a positive note, using a windowed
console makes it easier to share data between applications. In most cases, the user will prefer that
you use a windowed console to make it easier to multitask between applications. Listing 16-7 shows
how to detect the current console display mode.

LISTING 16�7: Obtaining the current display mode

�e�j�W�a�^�X���D�j�i�e�j�i�B�d�Y�Z���<�Z�i�8�j�g�g�Z�c�i�9�^�h�e�a�V�n�B�d�Y�Z����
�p

���������$�$���<�Z�i���i�]�Z���X�j�g�g�Z�c�i���Y�^�h�e�a�V�n���b�d�Y�Z�#
���������^�[�����<�Z�i�8�d�c�h�d�a�Z�9�^�h�e�a�V�n�B�d�Y�Z���g�Z�[���9�^�h�e�a�V�n�B�d�Y�Z����

�����������������$�$���9�Z�i�Z�g�b�^�c�Z���^�[���i�]�Z���X�d�c�h�d�a�Z���^�h���^�c���l�^�c�Y�d�l�Z�Y���b�d�Y�Z�#
�����������������^�[�����9�^�h�e�a�V�n�B�d�Y�Z���2�2�����J�>�c�i�(�'���8�d�c�h�d�a�Z�9�^�h�e�B�d�Y�Z�#�8�D�C�H�D�A�:�T�L�>�C�9�D�L�:�9��
�������������������������g�Z�i�j�g�c���D�j�i�e�j�i�B�d�Y�Z�#�L�^�c�Y�d�l�Z�Y�0
�����������������Z�a�h�Z
�����������������p

�������������������������$�$���>�[���i�]�Z���X�d�c�h�d�a�Z���^�h���[�j�a�a�h�X�g�Z�Z�c���b�d�Y�Z�!���Y�Z�i�Z�g�b�^�c�Z���l�]�^�X�]
�������������������������$�$���d�[���i�]�Z���e�d�i�Z�c�i�^�V�a���X�d�c�Y�^�i�^�d�c�h���V�g�Z���i�g�j�Z�#
�������������������������h�l�^�i�X�]�����9�^�h�e�a�V�n�B�d�Y�Z��
�������������������������p
���������������������������������X�V�h�Z�����J�>�c�i�(�'���8�d�c�h�d�a�Z�9�^�h�e�B�d�Y�Z�#�8�D�C�H�D�A�:�T�;�J�A�A�H�8�G�:�:�C�/
���g�Z�i�j�g�c���D�j�i�e�j�i�B�d�Y�Z�#�;�j�a�a�h�X�g�Z�Z�c�0
���������������������������������X�V�h�Z�����J�>�c�i�(�'���8�d�c�h�d�a�Z�9�^�h�e�B�d�Y�Z�#�8�D�C�H�D�A�:�T�;�J�A�A�H�8�G�:�:�C�T�=�6�G�9�L�6�G�:�/
���g�Z�i�j�g�c���D�j�i�e�j�i�B�d�Y�Z�#�=�V�Y�l�V�g�Z�6�X�X�Z�h�h�0
���������������������������������X�V�h�Z�����J�>�c�i�(�'���8�d�c�h�d�a�Z�9�^�h�e�B�d�Y�Z�#�8�D�C�H�D�A�:�T�;�J�A�A�H�8�G�:�:�C���
���J�>�c�i�(�'���8�d�c�h�d�a�Z�9�^�h�e�B�d�Y�Z�#�8�D�C�H�D�A�:�T�;�J�A�A�H�8�G�:�:�C�T�=�6�G�9�L�6�G�:�/
���g�Z�i�j�g�c���D�j�i�e�j�i�B�d�Y�Z�#�;�j�a�a�h�X�g�Z�Z�c�=�V�g�Y�l�V�g�Z�6�X�X�Z�h�h�0
�������������������������r
�����������������r

���������$�$���G�Z�i�j�g�c���V���Y�Z�[�V�j�a�i���k�V�a�j�Z�#
���������g�Z�i�j�g�c���D�j�i�e�j�i�B�d�Y�Z�#�J�c�`�c�d�l�c�0
�r

The code begins by calling �<�Z�i�8�d�c�h�d�a�Z�9�^�h�e�a�V�n�B�d�Y�Z���� to obtain the display mode as a numeric
value. The information is returned in �9�^�h�e�a�V�n�B�d�Y�Z, not as a return value from the function call.
The function itself returns a success value that indicates the call was successful. The �rst �^�[state-
ment says that if the call is successful, then �9�^�h�e�a�V�n�B�d�Y�Z will contain the console display mode, and
that the application should proceed to process it. Because �9�^�h�e�a�V�n�B�d�Y�Z provides a return value, you
must include the �g�Z�[keyword when passing it to the Win32 API.

Now that the code has a display mode value, it needs to process it. If a console is in windowed
mode, all the code has to do is return a value that says it’s windowed. However, full-screen mode

Using C# for Win32 Support �X 353

requires some additional processing. When a console is in full-screen mode, it can also have access
to the hardware. This is virtual hardware access, but it still feels to the application as if the access
is direct. Consequently, the code must now determine whether the console is simply in full-screen
mode or it’s in full-screen mode with hardware access.

The call could fail, but it’s unlikely to. Even so, the �<�Z�i�8�j�g�g�Z�c�i�9�^�h�e�a�V�n�B�d�Y�Z���� handles the potential
problem by providing the �D�j�i�e�j�i�B�d�Y�Z�#�J�c�`�c�d�l�c return value. This value simply says that the method
couldn’t determine the current console display mode.

De�ning the GetConsoleWindowSize() Method
Sometimes an application needs to know the maximum windowed console that a machine can
accommodate. You might need additional room to display complex textual information. The
Win32 API returns this information in a �8�D�D�G�9 structure that simply states the number of rows
and columns of text that a console can support at maximum size. The following code shows the
�<�Z�i�8�d�c�h�d�a�Z�L�^�c�Y�d�l�H�^�o�Z���� method used to obtain this information.

�e�j�W�a�^�X���8�D�D�G�9���<�Z�i�8�d�c�h�d�a�Z�L�^�c�Y�d�l�H�^�o�Z����
�p
���������$�$���9�Z�i�Z�g�b�^�c�Z���i�]�Z���a�V�g�\�Z�h�i���h�X�g�Z�Z�c���h�^�o�Z���e�d�h�h�^�W�a�Z�#
���������g�Z�i�j�g�c���<�Z�i�A�V�g�\�Z�h�i�8�d�c�h�d�a�Z�L�^�c�Y�d�l�H�^�o�Z���]�D�j�i���0
�r

This method is easy. All it does is call the �<�Z�i�A�V�g�\�Z�h�i�8�d�c�h�d�a�Z�L�^�c�Y�d�l�H�^�o�Z���� function with
the output handle. Make sure you provide the output handle, and not the input handle, when
making this call. The �M and �N members of �8�D�D�G�9 contain the maximum screen size on return
from the call.

If you compare how the �<�Z�i�8�d�c�h�d�a�Z�9�^�h�e�a�V�n�B�d�Y�Z���� function works with the
�<�Z�i�A�V�g�\�Z�h�i�8�d�c�h�d�a�Z�L�^�c�Y�d�l�H�^�o�Z���� function, you’ll see that they’re inconsistent.
The inconsistency of the Win32 API calls is one of the reasons that developers
don’t like to work with them and why using the .NET Framework is better. When
working with the Win32 API, make sure you know preci sely how a function works
before you use it. Calling some functions using the wrong technique can have ter-
rifying results (such as rebooting your system or damaging data).

De�ning the GetConsoleInfo() Method
Consoles can support a number of input and output methods. For example, a console can sup-
port the mouse, which may make it easier for the user to interact with your character-mode
application. If a console provides support for echo, it re-displays commands sent to it from batch
�les and other forms of automation. Consequently, you might �nd it useful to know just what the
console will do for you. Listing 16-8 shows how to determine the input and output handling that
a console provides.

354 �X CHAPTER 16 EXTENDING IRONPYTHON USING C#

LISTING 16�8: Obtaining the console characteristics

�e�j�W�a�^�X���h�i�g�j�X�i���8�d�c�h�d�a�Z�9�V�i�V
�p
���������e�j�W�a�^�X���7�d�d�a�Z�V�c���:�X�]�d�0
���������e�j�W�a�^�X���7�d�d�a�Z�V�c���A�^�c�Z�>�c�e�j�i�0
���������e�j�W�a�^�X���7�d�d�a�Z�V�c���B�d�j�h�Z�>�c�e�j�i�0
���������e�j�W�a�^�X���7�d�d�a�Z�V�c���E�g�d�X�Z�h�h�Z�Y�>�c�e�j�i�0
���������e�j�W�a�^�X���7�d�d�a�Z�V�c���L�^�c�Y�d�l�>�c�e�j�i�0
���������e�j�W�a�^�X���7�d�d�a�Z�V�c���E�g�d�X�Z�h�h�Z�Y�D�j�i�e�j�i�0
���������e�j�W�a�^�X���7�d�d�a�Z�V�c���A�^�c�Z�L�g�V�e�0
�r

�e�j�W�a�^�X���8�d�c�h�d�a�Z�9�V�i�V���<�Z�i�8�d�c�h�d�a�Z�>�c�[�d����
�p
���������$�$���8�g�Z�V�i�Z���i�]�Z���g�Z�f�j�^�g�Z�Y���h�i�g�j�X�i�j�g�Z�#
���������8�d�c�h�d�a�Z�9�V�i�V���D�j�i�e�j�i���2���c�Z�l���8�d�c�h�d�a�Z�9�V�i�V�����0

���������$�$���G�Z�i�g�^�Z�k�Z���i�]�Z���^�c�e�j�i���^�c�[�d�g�b�V�i�^�d�c�#
���������^�[�����<�Z�i�8�d�c�h�d�a�Z�B�d�Y�Z���]�>�c�!���g�Z�[���8�d�c�h�d�a�Z�B�d�Y�Z����
���������p
�����������������^�[�������8�d�c�h�d�a�Z�B�d�Y�Z���������J�>�c�i�(�'���B�d�Y�Z�;�a�V�\�h�#�:�C�6�7�A�:�T�:�8�=�D�T�>�C�E�J�I�����2�2
�������������������J�>�c�i�(�'���B�d�Y�Z�;�a�V�\�h�#�:�C�6�7�A�:�T�:�8�=�D�T�>�C�E�J�I��
�������������������������D�j�i�e�j�i�#�:�X�]�d���2���i�g�j�Z�0
�����������������Z�a�h�Z
�������������������������D�j�i�e�j�i�#�:�X�]�d���2���[�V�a�h�Z�0

�����������������^�[�������8�d�c�h�d�a�Z�B�d�Y�Z���������J�>�c�i�(�'���B�d�Y�Z�;�a�V�\�h�#�:�C�6�7�A�:�T�A�>�C�:�T�>�C�E�J�I�����2�2
�������������������J�>�c�i�(�'���B�d�Y�Z�;�a�V�\�h�#�:�C�6�7�A�:�T�A�>�C�:�T�>�C�E�J�I��
�������������������������D�j�i�e�j�i�#�A�^�c�Z�>�c�e�j�i���2���i�g�j�Z�0
�����������������Z�a�h�Z
�������������������������D�j�i�e�j�i�#�A�^�c�Z�>�c�e�j�i���2���[�V�a�h�Z�0

�����������������^�[�������8�d�c�h�d�a�Z�B�d�Y�Z���������J�>�c�i�(�'���B�d�Y�Z�;�a�V�\�h�#�:�C�6�7�A�:�T�B�D�J�H�:�T�>�C�E�J�I�����2�2
�������������������J�>�c�i�(�'���B�d�Y�Z�;�a�V�\�h�#�:�C�6�7�A�:�T�B�D�J�H�:�T�>�C�E�J�I��
�������������������������D�j�i�e�j�i�#�B�d�j�h�Z�>�c�e�j�i���2���i�g�j�Z�0
�����������������Z�a�h�Z
�������������������������D�j�i�e�j�i�#�B�d�j�h�Z�>�c�e�j�i���2���[�V�a�h�Z�0

�����������������^�[�������8�d�c�h�d�a�Z�B�d�Y�Z���������J�>�c�i�(�'���B�d�Y�Z�;�a�V�\�h�#�:�C�6�7�A�:�T�E�G�D�8�:�H�H�:�9�T�>�C�E�J�I�����2�2
�������������������J�>�c�i�(�'���B�d�Y�Z�;�a�V�\�h�#�:�C�6�7�A�:�T�E�G�D�8�:�H�H�:�9�T�>�C�E�J�I��
�������������������������D�j�i�e�j�i�#�E�g�d�X�Z�h�h�Z�Y�>�c�e�j�i���2���i�g�j�Z�0
�����������������Z�a�h�Z
�������������������������D�j�i�e�j�i�#�E�g�d�X�Z�h�h�Z�Y�>�c�e�j�i���2���[�V�a�h�Z�0

�����������������^�[�������8�d�c�h�d�a�Z�B�d�Y�Z���������J�>�c�i�(�'���B�d�Y�Z�;�a�V�\�h�#�:�C�6�7�A�:�T�L�>�C�9�D�L�T�>�C�E�J�I�����2�2
�������������������J�>�c�i�(�'���B�d�Y�Z�;�a�V�\�h�#�:�C�6�7�A�:�T�L�>�C�9�D�L�T�>�C�E�J�I��
�������������������������D�j�i�e�j�i�#�L�^�c�Y�d�l�>�c�e�j�i���2���i�g�j�Z�0
�����������������Z�a�h�Z
�������������������������D�j�i�e�j�i�#�L�^�c�Y�d�l�>�c�e�j�i���2���[�V�a�h�Z�0
���������r

���������$�$���G�Z�i�g�^�Z�k�Z���i�]�Z���d�j�i�e�j�i���^�c�[�d�g�b�V�i�^�d�c�#
���������^�[�����<�Z�i�8�d�c�h�d�a�Z�B�d�Y�Z���]�D�j�i�!���g�Z�[���8�d�c�h�d�a�Z�B�d�Y�Z����

Using C# for Win32 Support �X 355

���������p
�����������������^�[�������8�d�c�h�d�a�Z�B�d�Y�Z���������J�>�c�i�(�'���B�d�Y�Z�;�a�V�\�h�#�:�C�6�7�A�:�T�E�G�D�8�:�H�H�:�9�T�D�J�I�E�J�I�����2�2
�������������������J�>�c�i�(�'���B�d�Y�Z�;�a�V�\�h�#�:�C�6�7�A�:�T�E�G�D�8�:�H�H�:�9�T�D�J�I�E�J�I��
�������������������������D�j�i�e�j�i�#�E�g�d�X�Z�h�h�Z�Y�D�j�i�e�j�i���2���i�g�j�Z�0
�����������������Z�a�h�Z
�������������������������D�j�i�e�j�i�#�E�g�d�X�Z�h�h�Z�Y�D�j�i�e�j�i���2���[�V�a�h�Z�0

�����������������^�[�������8�d�c�h�d�a�Z�B�d�Y�Z���������J�>�c�i�(�'���B�d�Y�Z�;�a�V�\�h�#�:�C�6�7�A�:�T�L�G�6�E�T�6�I�T�:�D�A�T�D�J�I�E�J�I��
�����������������2�2�����J�>�c�i�(�'���B�d�Y�Z�;�a�V�\�h�#�:�C�6�7�A�:�T�L�G�6�E�T�6�I�T�:�D�A�T�D�J�I�E�J�I��
�������������������������D�j�i�e�j�i�#�A�^�c�Z�L�g�V�e���2���i�g�j�Z�0
�����������������Z�a�h�Z
�������������������������D�j�i�e�j�i�#�A�^�c�Z�L�g�V�e���2���[�V�a�h�Z�0
���������r

���������$�$���G�Z�i�j�g�c���i�]�Z���g�Z�h�j�a�i�h�#
���������g�Z�i�j�g�c���D�j�i�e�j�i�0
�r

This is one of the few situations in the chapter where you need to send a number of pieces of informa-
tion back to IronPython. The �8�d�c�h�d�a�Z�9�V�i�V structure contains an entry of each piece of information
that the �<�Z�i�8�d�c�h�d�a�Z�>�c�[�d���� provides. An IronPython application can set the output of the call to a
variable and then use the variable content to determine precisely how the console is con�gured.

The �<�Z�i�8�d�c�h�d�a�Z�>�c�[�d���� method is a little more complicated than the other calls in the extension.
This method relies on the �<�Z�i�8�d�c�h�d�a�Z�B�d�Y�Z���� function to obtain console information. However,
notice that the method calls the �<�Z�i�8�d�c�h�d�a�Z�B�d�Y�Z���� function twice, once with the input handle and
again with the output handle. This method demonstrates how the use of the wrong handle could
cause problems because the output from the �<�Z�i�8�d�c�h�d�a�Z�B�d�Y�Z���� function differs with the handle
you provide as input.

The return value from the �<�Z�i�8�d�c�h�d�a�Z�B�d�Y�Z���� function is a series of �ags. Notice how the code uses
�^�[statements to determine whether each �ag is set. When a �ag is set, the feature is enabled and
the code sets that value in the �8�d�c�h�d�a�Z�9�V�i�V data structure, �D�j�i�e�j�i, to �i�g�j�Z. The method ends by
returning the fully completed �8�d�c�h�d�a�Z�9�V�i�V data structure to the caller.

Writing an IronPython Application to Use P/Invoke
If you’ve been following along with the example, you know it’s �nally time to use the �8�d�c�B�d�Y�Z class
with IronPython. It’s now possible to determine the display mode, the size of the console window,
and the capabilities it provides. Listing 16-9 shows the code used for testing this extension.

LISTING 16�9: Testing the Win32 API extension

�����>�b�e�d�g�i���i�]�Z���8�d�b�b�d�c���A�V�c�\�j�V�\�Z���G�j�c�i�^�b�Z�#
�^�b�e�d�g�i���X�a�g

�����6�X�X�Z�h�h���i�]�Z���Z�m�i�Z�c�h�^�d�c�#
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z���»�L�^�c�(�'�6�E�>�#�9�A�A�¼��
�^�b�e�d�g�i���L�^�c�(�'�6�E�>

�����8�g�Z�V�i�Z���V�c���^�c�h�i�V�c�X�Z���d�[���i�]�Z���X�a�V�h�h�#
continues

356 �X CHAPTER 16 EXTENDING IRONPYTHON USING C#

�I�Z�h�i�L�^�c�(�'���2���L�^�c�(�'�6�E�>�#�8�d�c�B�d�Y�Z����

�����8�]�Z�X�`���i�]�Z���Y�^�h�e�a�V�n���b�d�Y�Z�#��
�e�g�^�c�i���»�I�]�Z���Y�^�h�e�a�V�n���b�d�Y�Z���^�h�/���»�!��
�e�g�^�c�i���I�Z�h�i�L�^�c�(�'�#�<�Z�i�8�j�g�g�Z�c�i�9�^�h�e�a�V�n�B�d�Y�Z����

�����D�W�i�V�^�c���i�]�Z���a�V�g�\�Z�h�i���e�d�h�h�^�W�a�Z���l�^�c�Y�d�l���h�^�o�Z�#
�e�g�^�c�i���»�Q�c�I�]�Z���a�V�g�\�Z�h�i���e�d�h�h�^�W�a�Z���l�^�c�Y�d�l���h�^�o�Z���^�h�/���»
�H�^�o�Z���2���I�Z�h�i�L�^�c�(�'�#�<�Z�i�8�d�c�h�d�a�Z�L�^�c�Y�d�l�H�^�o�Z������
�e�g�^�c�i���»�Q�i�8�d�a�j�b�c�h�/���»�!���H�^�o�Z�#�M��
�e�g�^�c�i���»�Q�i�G�d�l�h�/���»�!���H�^�o�Z�#�N

�����9�^�h�e�a�V�n���i�]�Z���X�d�c�h�d�a�Z���X�]�V�g�V�X�i�Z�g�^�h�i�^�X�h�#��
�e�g�^�c�i���»�Q�c�I�]�Z���X�d�c�h�d�a�Z���]�V�h���i�]�Z�h�Z���X�]�V�g�V�X�i�Z�g�^�h�i�^�X�h�/�¼
�8�]�V�g�h���2���I�Z�h�i�L�^�c�(�'�#�<�Z�i�8�d�c�h�d�a�Z�>�c�[�d������
�e�g�^�c�i���»�Q�i�:�X�]�d���:�c�V�W�a�Z�Y�/���»�!���8�]�V�g�h�#�:�X�]�d��
�e�g�^�c�i���»�Q�i�A�^�c�Z���>�c�e�j�i���:�c�V�W�a�Z�Y�/���»�!���8�]�V�g�h�#�A�^�c�Z�>�c�e�j�i��
�e�g�^�c�i���»�Q�i�B�d�j�h�Z���>�c�e�j�i���:�c�V�W�a�Z�Y�/���»�!���8�]�V�g�h�#�B�d�j�h�Z�>�c�e�j�i��
�e�g�^�c�i���»�Q�i�E�g�d�X�Z�h�h�Z�Y���>�c�e�j�i���:�c�V�W�a�Z�Y�/���»�!���8�]�V�g�h�#�E�g�d�X�Z�h�h�Z�Y�>�c�e�j�i��
�e�g�^�c�i���»�Q�i�L�^�c�Y�d�l���>�c�e�j�i���:�c�V�W�a�Z�Y�/���»�!���8�]�V�g�h�#�L�^�c�Y�d�l�>�c�e�j�i��
�e�g�^�c�i���»�Q�i�8�d�c�h�d�a�Z���8�V�c���E�g�d�Y�j�X�Z���E�g�d�X�Z�h�h�Z�Y���D�j�i�e�j�i�/�¼�!���8�]�V�g�h�#�E�g�d�X�Z�h�h�Z�Y�D�j�i�e�j�i
�e�g�^�c�i���»�Q�i�8�d�c�h�d�a�Z���J�h�Z�h���A�^�c�Z���L�g�V�e�/���»�!���8�]�V�g�h�#�A�^�c�Z�L�g�V�e

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins by importing CLR support. It then creates a reference to �L�^�c�(�'�6�E�>�#�9�A�A and
imports the �L�^�c�(�'�6�E�> namespace into the IronPython environment. The next step is to create an
instance of the �L�^�c�(�'�6�E�>�#�8�d�c�B�d�Y�Z class, �I�Z�h�i�L�^�c�(�'.

At this point, the code begins checking each console feature in turn, beginning with the console dis-
play mode, which doesn’t require any additional processing. The �<�Z�i�8�d�c�h�d�a�Z�L�^�c�Y�d�l�H�^�o�Z���� method
call requires that the code display the �H�^�o�Z�#�M (columns) and �H�^�o�Z�#�N (rows) values separately.

The �<�Z�i�8�d�c�h�d�a�Z�>�c�[�d���� method call comes next. This particular call requires a little more processing
because it returns more information. The output of the call appears in Chars as a �8�d�c�h�d�a�Z�9�V�i�V data
structure. As you can see, the code simply displays the �i�g�j�Z or �[�V�a�h�Z value of each of the data structure
members. Figure 16-17 shows the output from this example.

One of the most important issues when making Win32 API calls from IronPython is to ensure that
the C# extension processes the data in an easy-to-use manner. In addition, you should provide a
consistent method for returning the data from the C# extension to IronPython, such as using data
structures (as shown in the example).

USING IRONPYTHON CONSTRUCTIVELY

When you complete this chapter, you should have gained a number of new skills related to exten-
sions. Remember to use the simple extension example as the starting point for extensions that you
create. The more complex examples provide techniques you can use, but not necessarily implement

LISTING 16�9 (continued)

Using IronPython Constructively �X 357

directly in your own extensions. Of course, the starting point for this chapter describes how to work
with extensions in general and helps you consider issues related to extension design. This informa-
tion applies equally well to Visual Basic.NET extensions.

FIGURE 16�17: The P/Invoke code tells you about the console window characteristics.

Before you move on to the next chapter, try all the examples in this chapter and discover how they
work. It’s important to choose the right extension language. Even though there’s overlap between
the tasks you can perform with C# and Visual Basic.NET, each language also has features that
make it the right choice for a particular task. In this chapter, you discover that C# works great
for low-level tasks that you might not be able to perform otherwise, such as directly accessing
the Windows security features. After you work through the examples in this chapter, make a list
of tasks that you might want to perform for your orga nization that involve C# extensions and
IronPython. Weigh the value of the C# and IronPython combination against other language choices.
As you gain experience in more languages, choosing the right language becomes harder because
each language has so much to offer.

Now that you’ve discovered the C# extension, it’s time to see the Visual Basic.NET extension in
action. Chapter 17 shows how to create extensions using Visual Basic.NET. Just like this chapter,
Chapter 17 provides you with a basic example you can use to build your own extensions with ease.
However, Chapter 17 also compares and contrasts the kinds of extensions you build using C# with
those that you typically build using Visual Basic.NET. For example, Visual Basic.NET excels at
database management tasks. You may actually want to come back to this chapter after you read
through and try out the examples in Chapter 17 so that you get the full amount of information
available from both chapters.

Extending IronPython Using
Visual Basic.NET

WHAT’S IN THIS CHAPTER?

�°�� Understanding the di�erences between C# and Visual Basic.NET
extensions

Developing a simple Visual Basic.NET extension���°

���° Providing user interface support through a Visual Basic.NET
extension

Providing database support through a Visual Basic.NET extension���°

Visual Basic is a great language for many tasks, especially when it comes to database manage-
ment. Sure, you can write great database management code using C#, but many developers feel
that Visual Basic does a better job in this area. In addition, many developers �nd that Visual
Basic is easier to work with for user interface tasks. Whether you agree with this assessment or
not, Visual Basic should be another tool in your IronPython extension toolkit.

This chapter assumes that you already know the requirements for building
an extension. If you haven’t already read the section “Understanding the
Requirements for an Extension” in Chapter 16, you should do so before you
start this chapter. The �rst section of this chapter describes the few differences
between C# and Visual Basic.NET extensions.

This chapter begins with a simple Visual Basic.NET extension. You can use this example as
the basis for your own extensions. Simply remove the example code and use the project itself

17

360 �X CHAPTER 17 EXTENDING IRONPYTHON USING VISUAL BASIC.NET

to start your own extensions. Of course, this simple example is also useful for demonstrating how to
create extensions. This chapter provides the complete Visual Basic.NET view of working with exten -
sions, so you only need to view a few common items in Chapter 16 (and may not need to view them
at all). The example in this chapter is complete and you should follow it when working with Visual
Basic.NET code.

The chapter includes two additional examples that demonstrate some of the better ways to use Visual
Basic.NET to create extensions for IronPython. The �rst example provides you with a library of dia-
log boxes that you can use within IronPython. In many cases, your existing Visual Basic.NET dialog
boxes are your best resource when working with IronPython — there isn’t a good reason to recreate
them in IronPython. The second example is a little more complex. It demonstrates how to work with
databases in Visual Basic.NET and then extend that code to IronPython.

CONSIDERING C# AND VISUAL BASIC.NET
EXTENSION SIMILARITIES

Most of the techniques you use to create an extension in C# also work with Visual Basic.NET. You
con�gure your projects essentially the same way and the layout of the code itself is the same. Both C#
and Visual Basic.NET extensions require the same forms of type conversion and marshaling to work
with IronPython. Consequently, most of the materials contained in the sections “Understanding the
Requirements for an Extension” and “Considering IronPython and Static Language Differences” in
Chapter 16 also apply to Visual Basic.NET extensions. Make sure you read these sections before you
proceed further in this chapter.

Visual Basic.NET does have some distinct advantages over C# when building an extension. The most
important of these distinctions is that Visual Basic.NET does more for you in the background. For
example, Visual Basic.NET automatically creates a namespace for you — it isn’t something you have
to think about. Visual Basic.NET also performs some type conversions automatically, so you don’t
have to think about type conversions as much either. When you do need to perform a type conversion,
you use the �8�I�n�e�Z���� function, which makes the kind of conversion a little more apparent.

You can easily use either C# or Visual Basic.NET to perform simple tasks. For example, either
language works �ne for creating a math library or fo r working with �les. It’s also possible to use
either language to create a library of dialog boxes. The language you choose comes down to a mat-
ter of personal preference. As presented in Chapter 16, C# probably has an advantage in working
with low-level extensions, especially those that interact with the Win32 API. On the other hand,
the tendency of Visual Basic.NET to hide some of the gory details of programming works to your
advantage when working with higher-level programming requirements, such as database access.
Consequently, this chapter describes the requirements for creating a database extension.

CREATING THE SIMPLE VISUAL BASIC.NET EXTENSION

The best place to begin learning how to create extensions is to create a very simple one. The sections
that follow explore a simple Visual Basic.NET extension. This project creates a simple math library.
In the process, it demonstrates some unique principles of creating extensions using Visual Basic.NET.

Creating the Simple Visual Basic.NET Extension �X 361

Creating the Project
A Visual Basic.NET extension project is nothing more than the typical class library. The following
steps help you create the project for this example. You can use the same steps when working with
the other examples — simply change the project name.

1. Choose File�����¶����New�����¶����Project. You’ll see the New Project dialog box shown in Figure 17-1.

FIGURE 17�1: Create a new project to hold your Visual Basic.NET extension.

2. Choose the Visual Basic folder in the Installed Templates list.

3. Select .NET Framework 3.5 or an earlier version of the .NET Framework if you’re using
Visual Studio 2010. Don’t select the .NET Framework 4.0 entry because IronPython won’t
load extensions based on the .NET Framework 4.0. The list of templates changes when you
change the .NET Framework version.

4. Select the Class Library template.

5. Check Create Directory for Solution if it isn’t already checked. When working with exten-
sions, creating a solution directory provides a place for putting solution-level objects.

6. Type Calcs in the Name �eld and click OK. Visual Studio creates a class library project for you.

7. Right-click �8�a�V�h�h�&�#�k�W in Solution Explorer and choose Rename from the context menu.
Visual Studio makes the �lename editable.

8. Type �8�V�a�X�h�#�K�7 for the new �lename and press Enter. Visual Studio displays a dialog box that
asks whether you’d like to rename all of the �8�a�V�h�h�&�#�k�W references to match the new �lename.

9. Click Yes. The project is ready for use.

362 �X CHAPTER 17 EXTENDING IRONPYTHON USING VISUAL BASIC.NET

Renaming the class �le also renames any hidden elements. For example, the
namespace for this project is hidden, but it’s renamed to �8�V�a�X�h. It’s impor -
tant to keep the renaming of hidden elements in mind as you work with the
IronPython code.

Developing the Visual Basic.NET Extension
The Visual Basic.NET extension code for this example is relatively simple. Listing 17-1 shows the
constructor, operator overrides, and methods used for this example.

LISTING 17�1: A simple calculations extension

�E�j�W�a�^�X���8�a�V�h�h���8�V�a�X�h

���������E�g�^�k�V�i�Z���9�V�i�V���6�h���>�c�i�(�'

���������E�j�W�a�^�X���H�j�W���C�Z�l���7�n�K�V�a���K�V�a�j�Z���6�h���>�c�i�(�'��
�����������������B�Z�#�9�V�i�V���2���K�V�a�j�Z
���������:�c�Y���H�j�W

���������E�j�W�a�^�X���D�k�Z�g�g�^�Y�Z�h���;�j�c�X�i�^�d�c���I�d�H�i�g�^�c�\�������6�h���H�i�g�^�c�\
�����������������G�Z�i�j�g�c���9�V�i�V�#�I�d�H�i�g�^�c�\����
���������:�c�Y���;�j�c�X�i�^�d�c

���������E�j�W�a�^�X���H�]�V�g�Z�Y���D�e�Z�g�V�i�d�g��� ���7�n�K�V�a���K�V�a�j�Z�&���6�h���8�V�a�X�h�!���T
���7�n�K�V�a���K�V�a�j�Z�'���6�h���8�V�a�X�h�����6�h���8�V�a�X�h
�����������������G�Z�i�j�g�c���C�Z�l���8�V�a�X�h���K�V�a�j�Z�&�#�9�V�i�V��� ���K�V�a�j�Z�'�#�9�V�i�V��
���������:�c�Y���D�e�Z�g�V�i�d�g

���������E�j�W�a�^�X���H�]�V�g�Z�Y���D�e�Z�g�V�i�d�g���"���7�n�K�V�a���K�V�a�j�Z�&���6�h���8�V�a�X�h�!���T
���7�n�K�V�a���K�V�a�j�Z�'���6�h���8�V�a�X�h�����6�h���8�V�a�X�h
�����������������G�Z�i�j�g�c���C�Z�l���8�V�a�X�h���K�V�a�j�Z�&�#�9�V�i�V���"���K�V�a�j�Z�'�#�9�V�i�V��
���������:�c�Y���D�e�Z�g�V�i�d�g

���������E�j�W�a�^�X���H�]�V�g�Z�Y���D�e�Z�g�V�i�d�g�������7�n�K�V�a���K�V�a�j�Z�&���6�h���8�V�a�X�h�!���T
���7�n�K�V�a���K�V�a�j�Z�'���6�h���8�V�a�X�h�����6�h���8�V�a�X�h
�����������������G�Z�i�j�g�c���C�Z�l���8�V�a�X�h���K�V�a�j�Z�&�#�9�V�i�V�������K�V�a�j�Z�'�#�9�V�i�V��
���������:�c�Y���D�e�Z�g�V�i�d�g

���������E�j�W�a�^�X���H�]�V�g�Z�Y���D�e�Z�g�V�i�d�g���$���7�n�K�V�a���K�V�a�j�Z�&���6�h���8�V�a�X�h�!���T
���7�n�K�V�a���K�V�a�j�Z�'���6�h���8�V�a�X�h�����6�h���8�V�a�X�h
�����������������G�Z�i�j�g�c���C�Z�l���8�V�a�X�h���K�V�a�j�Z�&�#�9�V�i�V���$���K�V�a�j�Z�'�#�9�V�i�V��
���������:�c�Y���D�e�Z�g�V�i�d�g

���������E�j�W�a�^�X���;�j�c�X�i�^�d�c���>�c�X�������6�h���8�V�a�X�h
�����������������G�Z�i�j�g�c���C�Z�l���8�V�a�X�h���B�Z�#�9�V�i�V��� ���&��
���������:�c�Y���;�j�c�X�i�^�d�c

Creating the Simple Visual Basic.NET Extension �X 363

���������E�j�W�a�^�X���;�j�c�X�i�^�d�c���9�Z�X�������6�h���8�V�a�X�h
�����������������G�Z�i�j�g�c���C�Z�l���8�V�a�X�h���B�Z�#�9�V�i�V���"���&��
���������:�c�Y���;�j�c�X�i�^�d�c

�:�c�Y���8�a�V�h�h

The code begins with a constructor that accepts an �>�c�i�(�' value as input. The example doesn’t
include a default constructor because IronPython needs to assign a value to the object during the
instantiation process. A default constructor would still need to assign a value to the private �9�V�i�V
member, so it’s just better to assign a valid value to �9�V�i�V at the outset.

The �I�d�H�i�g�^�c�\���� override comes next. The default behavior for �I�d�H�i�g�^�c�\���� is to display the name of
the class. You must override this behavior to display the value of �9�V�i�V. Notice that you must access
�9�V�i�V as �B�Z�#�9�V�i�V — the copy of �9�V�i�V associated with this particular instance of the �8�V�a�X�h class.

The four �D�e�Z�g�V�i�d�g methods are de�ned as �H�]�V�g�Z�Y, rather than �D�k�Z�g�g�^�Y�Z�h. The �D�e�Z�g�V�i�d�g methods
act as static class members so that you can use them naturally in IronPython. The input arguments
for each method are the objects you create within IronPython. Consequently, there isn’t any concept
of numeric type for �K�V�a�j�Z�& or �K�V�a�j�Z�' (you could theoretically use the same methods for any numeric
value). The actual math operation occurs on the �9�V�i�V member of each object.

IronPython doesn’t support the � � or �"�" operators that are supported by Visual Basic for increment and
decrement. Consequently, the class provides an �>�c�X���� and �9�Z�X���� method. Notice that these methods
aren’t de�ned as �H�]�V�g�Z�Y because they work with a single object. You need to consider the differences
between binary (those that work with two objects) and unary (those that work with a single object)
operators when creating your extension. Binary operators are always declared as �H�]�V�g�Z�Y, while unary
operators appear as a standard method.

At this point, you can compile the class if desired. Start a copy of the IronPython console and type
the following commands to load the extension.

�^�b�e�d�g�i���X�a�g
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z���»�8�V�a�X�h�#�9�A�A�¼��
�^�b�e�d�g�i���8�V�a�X�h��
�Y�^�g���8�V�a�X�h�#�8�V�a�X�h��

The �Y�^�g���� function shows the content of the �8�V�a�X�h extension as shown in Figure 17-2. Notice that
�>�c�X���� and �9�Z�X���� appear as you expect. However, there aren’t any entries for � , �", �� , and �$ methods.
These operators still work as you expect, but IronPython shows a Python equivalent for the operators
in the form of �T�T�V�Y�Y�T�T����, �T�T�g�V�Y�Y�T�T����, �T�T�h�j�W�T�T����, �T�T�g�h�j�W�T�T����, �T�T�b�j�a�T�T����, �T�T�g�b�j�a�T�T����, �T�T�Y�^�k�T�T
���� , and �T�T�g�Y�^�k�T�T����. These methods don’t appear unless you de�ne the operators in your class.

If you’re looking at the class in the IronPython console, you might want to give it a quick try before
you close up the console and move on to the next part of the example. Try this code and you’ll see
an output of 15 from the �T�T�V�Y�Y�T�T���� method. Figure 17-2 shows the results of the calculation.

�K�V�a�j�Z�&���2���8�V�a�X�h�#�8�V�a�X�h���&�%��
�K�V�a�j�Z�'���2���8�V�a�X�h�#�8�V�a�X�h���*��
�e�g�^�c�i���K�V�a�j�Z�&�#�T�T�V�Y�Y�T�T���K�V�a�j�Z�'��

364 �X CHAPTER 17 EXTENDING IRONPYTHON USING VISUAL BASIC.NET

FIGURE 17�2: The dir() function shows the content of the Calcs class.

Adding the IronPython Project
At this point, you have a Visual Basic.NET extension (or module) to use with IronPython. Of course,
you’ll want to test it. The easiest way to do this is to add the IronPython project directly to the current
solution. The following steps describe how to perform this task.

1. Right-click the solution entry in Solution Explorer and choose Add�����¶����Existing Project from
the context menu. You’ll see the Add Existing Project dialog box shown in Figure 17-3.

FIGURE 17�3: Locate IPY.EXE and add it to your solution.

Creating the Simple Visual Basic.NET Extension �X 365

2. Locate �>�E�N�#�:�M�: on your hard drive and highlight it. Click Open. You’ll see a new project
entry added to the solution.

3. Right-click the ipy entry in Solution Explorer and choose Set as Startup Project from the con-
text menu. This step ensures that choosing one of the startup options from the Debug menu
starts the IronPython application.

4. Right-click the ipy entry in Solution Explorer and choose Properties from the context menu.
You’ll see the General tab of the ipy Properties window shown in Figure 17-4.

FIGURE 17�4: Con�gure the IronPython application to work with Calcs.DLL.

5. Type -D TestCalcs.py in the Arguments �eld.

6. Click the ellipses in the Working Directory �eld to display the Browse for Folder dialog box.
Locate the output folder of the �8�V�a�X�h�#�9�A�A (or other extension) �le. Click OK. The IDE adds
the correct directory information to the Working Directory �eld.

7. Open Windows Explorer. Locate the �Q�8�V�a�X�h�Q�8�V�a�X�h�Q�W�^�c�Q�9�Z�W�j�\ folder. Right-click in
the right pane and choose New�����¶����Text Document from the context menu. Name the �le
�I�Z�h�i�8�V�a�X�h�#�e�n and press Enter. Click Yes if asked if you want to rename the �le extension.

8. Right-click the solution item in Solution Explorer and choose Add�����¶����Existing Item from the
context menu to display the Add Existing Item dialog box shown in Figure 17-5.

9. Locate the �I�Z�h�i�8�V�a�X�h�#�e�n �le in the solution and click Add. Visual Studio adds �I�Z�h�i�8�V�a�X�h�#�e�n
to the �H�d�a�j�i�^�d�c���>�i�Z�b�h folder in Solution Explorer and automatically opens the �le for you.
You’re ready to add test code for the application.

366 �X CHAPTER 17 EXTENDING IRONPYTHON USING VISUAL BASIC.NET

FIGURE 17�5: Add the TestCalcs.py �le to the solution.

Creating the IronPython Application
It’s time to write code to test �8�V�a�X�h�#�9�A�A. Listing 17-2 shows the code you’ll use for testing purposes.

LISTING 17�2: Testing the extension using IronPython

�����6�Y�Y���V���g�Z�[�Z�g�Z�c�X�Z���i�d���i�]�Z���8�A�G
�^�b�e�d�g�i���X�a�g

�����D�W�i�V�^�c���V�X�X�Z�h�h���i�d���i�]�Z���Z�m�i�Z�c�h�^�d�c�#
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z���»�8�V�a�X�h�#�9�A�A�¼��
�^�b�e�d�g�i���8�V�a�X�h

�����8�g�Z�V�i�Z���V�c���^�c�h�i�V�c�X�Z���d�[���i�]�Z���X�a�V�h�h���V�c�Y���[�^�a�a���^�i���l�^�i�]���Y�V�i�V�#
�K�V�a�j�Z�&���2���8�V�a�X�h�#�8�V�a�X�h���&�%��

�����E�g�^�c�i���i�]�Z���d�g�^�\�^�c�V�a���k�V�a�j�Z�!���i�]�Z�c���Y�Z�X�g�Z�b�Z�c�i���V�c�Y���^�c�X�g�Z�b�Z�c�i���^�i�#
�e�g�^�c�i���»�D�g�^�\�^�c�V�a���K�V�a�j�Z�&���8�d�c�i�Z�c�i�/���»�!���K�V�a�j�Z�&��
�e�g�^�c�i���»�K�V�a�j�Z�&��� ���&�/���»�!���K�V�a�j�Z�&�#�>�c�X������
�e�g�^�c�i���»�K�V�a�j�Z�&���"���&�/���»�!���K�V�a�j�Z�&�#�9�Z�X����

�����8�g�Z�V�i�Z���V���h�Z�X�d�c�Y���k�V�a�j�Z���V�c�Y���Y�^�h�e�a�V�n���^�i�#
�K�V�a�j�Z�'���2���8�V�a�X�h�#�8�V�a�X�h���*����
�e�g�^�c�i���»�Q�c�D�g�^�\�^�c�V�a���K�V�a�j�Z�'���8�d�c�i�Z�c�i�/���»�!���K�V�a�j�Z�'

�����J�h�Z���i�]�Z���i�l�d���k�V�a�j�Z�h���i�d�\�Z�i�]�Z�g���^�c���Y�^�[�[�Z�g�Z�c�i���l�V�n�h�#
�e�g�^�c�i���»�Q�c�K�V�a�j�Z�&��� ���K�V�a�j�Z�'���2���»�!���K�V�a�j�Z�&��� ���K�V�a�j�Z�'
�e�g�^�c�i���»�K�V�a�j�Z�&���"���K�V�a�j�Z�'���2���»�!���K�V�a�j�Z�&���"���K�V�a�j�Z�'
�e�g�^�c�i���»�K�V�a�j�Z�&�������K�V�a�j�Z�'���2���»�!���K�V�a�j�Z�&�������K�V�a�j�Z�'

Using Visual Basic.NET for User Interface Support �X 367

�e�g�^�c�i���»�K�V�a�j�Z�&���$���K�V�a�j�Z�'���2���»�!���K�V�a�j�Z�&���$���K�V�a�j�Z�'

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins by importing the Common Language Runtime (CLR). It then uses the
�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z���� method to create a reference to �8�V�a�X�h�#�9�A�A. The �nal step is to import
the �8�V�a�X�h code.

Visual Basic automatically creates a hidden namespace for you. Even though the
namespace is hidden in the Visual Basic editor, you must still use it when accessing
the class in IronPython. Consequently, you see the �8�V�a�X�h accessed as �8�V�a�X�h��
�#�8�V�a�X�h, where the �rst reference is the namespace and the second is the class.

Before the code can use the �8�V�a�X�h code, it must create an instance of it, �K�V�a�j�Z�&. Notice that
the code calls the �8�V�a�X�h�#�8�V�a�X�h���� constructor with an initial value. Any time you want to assign
a value to �K�V�a�j�Z�&, you must use the �8�V�a�X�h�#�8�V�a�X�h���� constructor. If you were to assign a value
using �K�V�a�j�Z�&���2���&�*, it would change the type of �K�V�a�j�Z�&. A consequent addition, such as
�K�V�a�j�Z�&��� ���K�V�a�j�Z�', would produce the following error:

�I�g�V�X�Z�W�V�X�`�����b�d�h�i���g�Z�X�Z�c�i���X�V�a�a���a�V�h�i���/
�����;�^�a�Z���¹�1�h�i�Y�^�c�3�º�!���a�^�c�Z���&�!���^�c���1�b�d�Y�j�a�Z�3
�I�n�e�Z�:�g�g�d�g�/���j�c�h�j�e�e�d�g�i�Z�Y���d�e�Z�g�V�c�Y���i�n�e�Z���h�����[�d�g��� �/���»�^�c�i�¼���V�c�Y���»�8�V�a�X�h�¼

One way to overcome this problem would be to override the = operator.

After the code creates �K�V�a�j�Z�&, it demonstrates the use of the �>�c�X���� and �9�Z�X���� methods. These two
methods simply add or remove 1 from the value of �K�V�a�j�Z�&. If you want to change the actual value of
�K�V�a�j�Z�&, you need to make �K�V�a�j�Z�& equal to the output of the method like this:

�K�V�a�j�Z�&���2���K�V�a�j�Z�&�#�>�c�X����

The next step is to create �K�V�a�j�Z�', a second �8�V�a�X�h object you can use for binary operations. The
code outputs the initial value of �K�V�a�j�Z�'. The remainder of the example demonstrates the use of the
various operators. As you can see, they work precisely as you would expect. You could even use
them to create a third value like this:

�K�V�a�j�Z�(���2���K�V�a�j�Z�&��� ���K�V�a�j�Z�'

Figure 17-6 shows the output from this example. Except for the absence of the � � and �"�" operators,
everything works much as you would expect.

USING VISUAL BASIC.NET FOR USER INTERFACE SUPPORT

It’s certainly possible to create message boxes and even Windows Forms applications using
IronPython. Chapter 8 shows how to perform this task and most people will consider the process
quite painful by the time they’re �nished. The biggest issue is that IronPython lacks support for the

368 �X CHAPTER 17 EXTENDING IRONPYTHON USING VISUAL BASIC.NET

designers that make the task of writing Windows Forms code so easy. You have to be able to picture
the form you want in your mind and then use trial and error to get it to appear in the application.
Consequently, most developers will probably want to use a language such as Visual Basic.NET to
create their Windows Forms applications and then make those forms accessible from IronPython as
part of an extension.

FIGURE 17�6: Here are the results of using the Visual Basic.NET extension within IronPython.

The examples in the sections that follow aren’t all that complicated, but they do demonstrate the
principles required to build your own library of message boxes and Windows Forms classes. By
the time you �nish these examples, you’ll have everything needed to create your own user interface
library for use in IronPython.

Creating the User Interface Library Module
From an IronPython perspective, user interface elements come in two forms: messages boxes and
Windows Forms. Obviously, Visual Basic.NET can create a host of user interface presentations, but
if you start at this basic level, you’ll �nd the task of creating a user interface library module easier. The
following sections describe how to create both a message box class and a Windows Forms class that
you place in a single DLL for use with your IronPython application. Of course, a production DLL could
have hundreds of different forms, depending on the user interface requirements for the application.

De�ning Simple Message Boxes
Message boxes (created using the �B�Z�h�h�V�\�Z�7�d�m class) are extremely useful for displaying short messages
and getting canned responses. Depending on the buttons you provide, a user could tell you that the
application should retry an operation or answer yes to simple questions. If you need a little more input,
you can always rely on an input box (created with the �>�c�e�j�i�7�d�m���� method of the �>�c�i�Z�g�V�X�i�^�d�c class).
Of course, an input box is still limited to a single � eld, but even so, it does extend the kinds of input
you can receive from the user.

Listing 17-3 demonstrates both the �B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���� and �>�c�e�j�i�7�d�m���� methods. In addition,
you’ll see how to implement the �T�T�Y�d�X�T�T���� method that most IronPython developers rely upon to
obtain information about your extension. The section “C onsidering Developer Help” in Chapter 16
provides additional information about developer help needs.

Using Visual Basic.NET for User Interface Support �X 369

The content of the �>�c�i�Z�g�V�X�i�^�d�c class is something that some Visual
Basic.NET developers tend to forget. These methods, such as �7�Z�Z�e����, are useful
in IronPython. Visual Basic.NET developers get these features automatically as
part of the �B�^�X�g�d�h�d�[�i�#�K�^�h�j�V�a�7�V�h�^�X namespace. Other language developers,
such as C#, can use these features, too, but will need to add a reference to
�B�^�X�g�d�h�d�[�i�#�K�^�h�j�V�a�7�V�h�^�X�#�9�A�A and provide the proper �j�h�^�c�\ statements.

LISTING 17�3: Working with simple message boxes

�>�b�e�d�g�i�h���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h

�E�j�W�a�^�X���8�a�V�h�h���9�^�V�a�d�\�h

���������E�j�W�a�^�X���;�j�c�X�i�^�d�c���H�]�d�l�B�Z�h�h�V�\�Z���7�n�K�V�a���B�h�\���6�h���H�i�g�^�c�\�����6�h���H�i�g�^�c�\
�����������������G�Z�i�j�g�c���B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���B�h�\���#�I�d�H�i�g�^�c�\����
���������:�c�Y���;�j�c�X�i�^�d�c

���������E�j�W�a�^�X���;�j�c�X�i�^�d�c���H�]�d�l�B�Z�h�h�V�\�Z���7�n�K�V�a���B�h�\���6�h���H�i�g�^�c�\�!���T
���7�n�K�V�a���I�^�i�a�Z���6�h���H�i�g�^�c�\�����6�h���H�i�g�^�c�\
�����������������G�Z�i�j�g�c���B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���B�h�\�!���I�^�i�a�Z���#�I�d�H�i�g�^�c�\����
���������:�c�Y���;�j�c�X�i�^�d�c

���������E�j�W�a�^�X���;�j�c�X�i�^�d�c���H�]�d�l�B�Z�h�h�V�\�Z���7�n�K�V�a���B�h�\���6�h���H�i�g�^�c�\�!���7�n�K�V�a���I�^�i�a�Z���6�h���H�i�g�^�c�\�!���T
���7�n�K�V�a���7�j�i�i�d�c�h���6�h���>�c�i�&�+�����6�h���H�i�g�^�c�\
�����������������G�Z�i�j�g�c���B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���B�h�\�!���I�^�i�a�Z�!���8�I�n�e�Z���7�j�i�i�d�c�h�!���B�Z�h�h�V�\�Z�7�d�m�7�j�i�i�d�c�h�����T
���#�I�d�H�i�g�^�c�\����
���������:�c�Y���;�j�c�X�i�^�d�c

���������E�j�W�a�^�X���;�j�c�X�i�^�d�c���H�]�d�l�B�Z�h�h�V�\�Z���7�n�K�V�a���B�h�\���6�h���H�i�g�^�c�\�!���7�n�K�V�a���I�^�i�a�Z���6�h���H�i�g�^�c�\�!���T
���7�n�K�V�a���7�j�i�i�d�c�h���6�h���>�c�i�&�+�!���7�n�K�V�a���>�X�d�c���6�h���>�c�i�&�+���T
���6�h���H�i�g�^�c�\
�����������������G�Z�i�j�g�c���B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���B�h�\�!���I�^�i�a�Z�!���8�I�n�e�Z���7�j�i�i�d�c�h�!���B�Z�h�h�V�\�Z�7�d�m�7�j�i�i�d�c�h���!���T
���8�I�n�e�Z���>�X�d�c�!���B�Z�h�h�V�\�Z�7�d�m�>�X�d�c�����#�I�d�H�i�g�^�c�\����
���������:�c�Y���;�j�c�X�i�^�d�c

���������E�j�W�a�^�X���;�j�c�X�i�^�d�c���H�]�d�l�B�Z�h�h�V�\�Z���7�n�K�V�a���B�h�\���6�h���H�i�g�^�c�\�!���7�n�K�V�a���I�^�i�a�Z���6�h���H�i�g�^�c�\�!���T
���7�n�K�V�a���7�j�i�i�d�c�h���6�h���>�c�i�&�+�!���7�n�K�V�a���>�X�d�c���6�h���>�c�i�&�+�!���T
���7�n�K�V�a���9�Z�[�V�j�a�i�7�j�i�i�d�c���6�h���>�c�i�&�+�����6�h���H�i�g�^�c�\
�����������������G�Z�i�j�g�c���B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l���B�h�\�!���I�^�i�a�Z�!���8�I�n�e�Z���7�j�i�i�d�c�h�!���B�Z�h�h�V�\�Z�7�d�m�7�j�i�i�d�c�h���!���T
���8�I�n�e�Z���>�X�d�c�!���B�Z�h�h�V�\�Z�7�d�m�>�X�d�c���!���T
���8�I�n�e�Z���9�Z�[�V�j�a�i�7�j�i�i�d�c�!���B�Z�h�h�V�\�Z�7�d�m�9�Z�[�V�j�a�i�7�j�i�i�d�c�����T
���#�I�d�H�i�g�^�c�\����
���������:�c�Y���;�j�c�X�i�^�d�c

���������E�j�W�a�^�X���;�j�c�X�i�^�d�c���<�Z�i�>�c�e�j�i���7�n�K�V�a���B�h�\���6�h���H�i�g�^�c�\�!���7�n�K�V�a���I�^�i�a�Z���6�h���H�i�g�^�c�\��
�����������������G�Z�i�j�g�c���>�c�e�j�i�7�d�m���B�h�\�!���I�^�i�a�Z�!���¹�I�n�e�Z���V���k�V�a�j�Z�º��

continues

370 �X CHAPTER 17 EXTENDING IRONPYTHON USING VISUAL BASIC.NET

���������:�c�Y���;�j�c�X�i�^�d�c

���������E�j�W�a�^�X���;�j�c�X�i�^�d�c���T�T�Y�d�X�T�T�������6�h���H�i�g�^�c�\
�����������������G�Z�i�j�g�c���¹�I�]�^�h���^�h���V���]�Z�a�e���h�i�g�^�c�\�º
���������:�c�Y���;�j�c�X�i�^�d�c
�:�c�Y���8�a�V�h�h

Before you can compile this code, you
need to add a reference to �H�n�h�i�Z�b�#�L�^�c�Y�d�l�h��
�#�;�d�g�b�h�#�9�A�A. Right-click Dialogs in Solution
Explorer and choose Add Reference from the
context menu. You’ll see the Add Reference
dialog box shown in Figure 17-7. Highlight
the �H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h entry and click
OK. At this point, you also need to add an
�>�b�e�d�g�i�h���H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h entry to
your project and you’re ready to work with
message boxes.

The code begins by creating a series of
�H�]�d�l�B�Z�h�h�V�\�Z���� methods. The �rst is rela-
tively simple and the complexity increases
with each �H�]�d�l�B�Z�h�h�V�\�Z���� method entry.
Notice that the �H�]�d�l�B�Z�h�h�V�\�Z���� method uses
�>�c�i�&�+ input values to select the buttons, icon,
and default button. You could also use enu-
merations to provide input values. The one thing you don’t want to do is ask the IronPython developer
to provide a �B�Z�h�h�V�\�Z�7�d�m�7�j�i�i�d�c�h, �B�Z�h�h�V�\�Z�7�d�m�>�X�d�c, or �B�Z�h�h�V�\�Z�7�d�m�9�Z�[�V�j�a�i�7�j�i�i�d�c value, because
then the IronPython developer would need to import all the required .NET Framework functionality,
reducing the usefulness of your extension. The �8�I�n�e�Z���� function helps you convert the �>�c�i�&�+ values
into the appropriate enumeration value. Interestingly enough, there are 21 forms of the �B�Z�h�h�V�\�Z�7�d�m��
�#�H�]�d�l���� method, even though the example shows only �ve of them.

The enumeration values used to access message box features aren’t consistent. For
example, the �B�Z�h�h�V�\�Z�7�d�m�>�X�d�c enumeration has values of 0, 16, 32, 48, and 64,
which are hardly easy to remember. The �B�Z�h�h�V�\�Z�7�d�m�9�Z�[�V�j�a�i�7�j�i�i�d�c enumeration
values are equally odd at 0, 256, and 512. Fortunately, the �B�Z�h�h�V�\�Z�7�d�m�7�j�i�i�d�c�h
enumeration is a straightforward list of 0 through 5. In Chapter 16, Tables 16-1
through 16-3 show the values for the message box enumerations.

FIGURE 17�7: Add the System.Windows.Forms.DLL entry
to your project.

LISTING 17�3 (continued)

Using Visual Basic.NET for User Interface Support �X 371

The �<�Z�i�>�c�e�j�i���� method shows just one of several �>�c�e�j�i�7�d�m���� method variations you can use. In
this case, the IronPython developer supplies the prompt (or message) and title to display onscreen.
The �<�Z�i�>�c�e�j�i���� method supplies a default �>�c�e�j�i�7�d�m���� value. Normally, you want to supply a value
so that the user knows to type something and what you want the user to type. Even if the required
input seems obvious to you, many users won’t know what to provide.

The �T�T�Y�d�X�T�T���� provides a help string for the IronPython developer. The example shows something
quick, but in reality, you’d provide complete documentation for your class. The output string can use
all the standard formatting characters. You could even read the content in from an external source,
such as a �le, to make it easy to provide updates without having to recompile the extension. Using
an external �le would also allow the IronPython developer to personalize the content.

De�ning Complex Forms
A Windows Forms class can contain anything you want. It can even call other forms as needed.
In fact, anything you can do with a Visual Basic.NET Windows Forms application is doable with
IronPython. Of course, you do need to maintain interaction with the IronPython application. The
following steps describe how to create a simple Windows Forms class for your extension.

1. Right-click Dialogs in Solution Explorer and choose Add�����¶����New Item. Select the Windows
Forms entry in the Installed Templates list. You see the Add New Item dialog box shown in
Figure 17-8.

FIGURE 17�8: Add a Windows Form to your project.

372 �X CHAPTER 17 EXTENDING IRONPYTHON USING VISUAL BASIC.NET

One of the advantages of using Visual Basic.NET rather than C# to create
Windows Forms classes is that Visual Basic.NET includes several additional
prede�ned templates. In fact, Visual Basic.NET provides 11 templates rather
than the seven templates provided in C#. The additional Visual Basic.NET
templates include Dialog, Explorer Form, Login Form, and Splash Screen,
all of which are usable in IronPython.

2. Highlight the Windows Form entry. Type �I�Z�h�i�;�d�g�b�#�K�7 in the Name �eld and click Add.
Visual Studio adds the new form to your project and automatically opens it for editing.

3. Create the form just as you normally would for any
static application. Figure 17-9 shows the form used for
this example. It’s simple, but it contains multiple data
entry �elds and multiple exit options.

The form shown in Figure 17-9 is a little deceptive. Before you
assume anything about this form, it does have a few differences
from the forms you’ve created for your static applications.

�°�� Buttons that close the form, rather than do some-
thing within the form, must have the �9�^�V�a�d�\�G�Z�h�j�a�i
property set to a unique value or you won’t be able
to tell which button the user clicked. For this exam-
ple, the �9�^�V�a�d�\�G�Z�h�j�a�i for �W�i�c�D�@ is �D�@, while the
�9�^�V�a�d�\�G�Z�h�j�a�i for �W�i�c�8�V�c�X�Z�a is �8�V�c�X�Z�a.

���° Getting information from the form you create to the
IronPython application can prove problematic. You could contrive all sorts of odd methods
for accomplishing the task, but the simplest method is to set the �B�d�Y�^�[�^�Z�g�h property for the
individual controls (�i�m�i�C�V�b�Z and �i�m�i�8�d�a�d�g) to �E�j�W�a�^�X. In this case, using �E�j�W�a�^�X doesn’t
create a problem because IronPython sets everything to public. In all other respects, there’s
no difference between this form and any other form you’ve created in the past.

To make things simple, this example doesn’t use any code-behind for the form itself. Any code-
behind works as you’d expect. There isn’t any difference between calling the form from IronPython
than calling it from within your Visual Basic.NET appli cation.

Accessing the User Interface Library Module from IronPython
It’s time to use the extension you’ve created with an IronPython application. The following sections
describe an alternative way to set up your project so that you don’t have to create the IronPython �le
using Windows Explorer and show how to use the extension.

An Alternative Method for Adding the IronPython Projec t
There are a number of ways to con�gure a test setup for your extensions. The “Adding the IronPython
Project” section shows one technique. The technique shown in that section works well when you want

FIGURE 17�9: The Windows Form
can contain any level of complexity
you desire.

Using Visual Basic.NET for User Interface Support �X 373

to maintain separate builds of your extension. For example, you might want to maintain separate
debug and release builds.

Unfortunately, that earlier method is a bit clumsy — you have to create the IronPython �le using
Windows Explorer. The technique in this section avoids that problem. In addition, this technique
shows how to maintain just one build — the build you’re currently using for debugging, testing, or
experimentation. Use the following steps to create a centralized test con�guration:

1. Right-click Dialogs in Solution Explorer and choose Properties from the context menu.
Select the Compile tab. You’ll see the Properties window shown in Figure 17-10.

FIGURE 17�10: Con�gure the build to use a central output location.

2. Click Browse next to the Build Output Path �eld to display the Select Output Path dialog box
shown in Figure 17-11. Because you’ll add the IronPython test �le at the solution level, you
need to send the output to the solution level as well.

3. Select the �rst Dialogs entry in the list and click OK. Visual Studio adds an absolute path to
the Output Path �eld that you must change for every machine that uses the application. As
an alternative, you could type ..\ (two periods and a backslash) in the �eld to place the output
in the solution folder.

374 �X CHAPTER 17 EXTENDING IRONPYTHON USING VISUAL BASIC.NET

4. Select the next con�guration in the Con�guration
�eld.

5. Perform Steps 2 through 4 for each con�guration.
Make sure each con�guration uses the same output
directory. Normally, your project will contain only
Debug and Release con�gurations.

6. Right-click the solution entry in Solution Explorer
and choose Add�����¶����Existing Project from the context
menu. You’ll see the Add Existing Project dialog box
shown in Figure 17-3.

7. Locate �>�E�N�#�:�M�: on your hard drive and highlight it.
Click Open. You’ll see a new project entry added to
the solution.

8. Right-click the ipy entry in Solution Explorer and choose Set as Startup Project from the con-
text menu.

9. Right-click the ipy entry in Solution Explorer and choose Properties from the context menu.
You’ll see the General tab of the ipy Properties window shown in Figure 17-4.

10. Type -D DialogTest.py in the Arguments �eld.

11. Click the ellipses in the Working Directory �eld to display the Browse for Folder dialog box.
Locate the solution folder for the project (the �rst �9�^�V�a�d�\�h folder). Click OK. The IDE adds
the correct directory information to the Working Directory �eld.

12. Right-click the solution entry in Solution Explorer and choose Add�����¶����New Item from the
context menu. You see the Add New Item dialog box shown in Figure 17-12.

FIGURE 17�12: Add the IronPython test �le to your project.

FIGURE 17�11: Modify the output path as
required for your application.

Using Visual Basic.NET for User Interface Support �X 375

13. Type �9�^�V�a�d�\�I�Z�h�i�#�e�n in the Name �eld and click Add. Visual Studio adds the new �le to the
Solution Items folder in Solution Explorer and opens the �le automatically for editing.

Performing the Message Box and Form Tests
The example is ready except for the test code. Listing 17-4 shows the IronPython code you need for
this example.

LISTING 17�4: Testing the message boxes and forms

�����9�Z�[�^�c�Z���i�]�Z���b�Z�h�h�V�\�Z���W�d�m���i�Z�h�i�h�#
�Y�Z�[���I�Z�h�i�B�Z�h�h�V�\�Z�h�����/

�����������8�g�Z�V�i�Z���V���b�Z�h�h�V�\�Z���W�d�m���d�W�_�Z�X�i�#
�������B�n�9�^�V�a�d�\���2���9�^�V�a�d�\�h�#�9�^�V�a�d�\�h����

�����������H�]�d�l���i�]�Z���]�Z�a�e���^�c�[�d�g�b�V�i�^�d�c�#
�������e�g�^�c�i���»�9�^�V�a�d�\�h���8�a�V�h�h���=�Z�a�e���>�c�[�d�g�b�V�i�^�d�c�#�¼
�������e�g�^�c�i���B�n�9�^�V�a�d�\�#�T�T�Y�d�X�T�T����

�����������I�Z�h�i���V���h�^�b�e�a�Z���b�Z�h�h�V�\�Z���W�d�m�#
�������e�g�^�c�i���»�Q�c�I�Z�h�i�^�c�\���V���h�^�b�e�a�Z���b�Z�h�h�V�\�Z���W�d�m�#�¼
�������e�g�^�c�i���»�H�^�b�e�a�Z���b�Z�h�h�V�\�Z���W�d�m���d�j�i�e�j�i�/���»�!
�������e�g�^�c�i���B�n�9�^�V�a�d�\�#�H�]�d�l�B�Z�h�h�V�\�Z���»�=�Z�a�a�d�¼��

�����������E�Z�g�[�d�g�b���V���b�d�g�Z���X�d�b�e�a�Z�m���i�Z�h�i�#
�������e�g�^�c�i���»�Q�c�6���b�d�g�Z���X�d�b�e�a�Z�m���b�Z�h�h�V�\�Z���W�d�m�#�¼
�������e�g�^�c�i���»�8�d�b�e�a�Z�m���b�Z�h�h�V�\�Z���W�d�m���d�j�i�e�j�i�/���»�!
�������e�g�^�c�i���B�n�9�^�V�a�d�\�#�H�]�d�l�B�Z�h�h�V�\�Z���»�=�Z�a�a�d���6�\�V�^�c�¼�!���»�I�^�i�a�Z���'�¼�!���(�!���+�)�!���'�*�+��

�����������<�Z�i���h�d�b�Z���j�h�Z�g���^�c�e�j�i�#
�������e�g�^�c�i���»�Q�c�J�h�^�c�\���V�c���>�c�e�j�i�7�d�m�#�¼
�������e�g�^�c�i���»�>�c�e�j�i�7�d�m���D�j�i�e�j�i�/���»�!
�������e�g�^�c�i���B�n�9�^�V�a�d�\�#�<�Z�i�>�c�e�j�i���»�I�n�e�Z���N�d�j�g���C�V�b�Z�/�¼�!���»�J�h�Z�g���C�V�b�Z���:�c�i�g�n�¼��

�����9�Z�[�^�c�Z���i�]�Z���[�d�g�b���i�Z�h�i�#
�Y�Z�[���I�Z�h�i�;�d�g�b�����/
������
�����������8�g�Z�V�i�Z���i�]�Z���[�d�g�b���^�c�h�i�V�c�X�Z�#
�������B�n�;�d�g�b���2���9�^�V�a�d�\�h�#�I�Z�h�i�;�d�g�b����

�����������9�^�h�e�a�V�n���i�]�Z���[�d�g�b���V�c�Y���i�Z�h�i���i�]�Z���Y�^�V�a�d�\���g�Z�h�j�a�i�#
�������e�g�^�c�i���»�Q�c�I�]�Z���[�d�g�b���Z�m�V�b�e�a�Z�#�¼
�������^�[���B�n�;�d�g�b�#�H�]�d�l�9�^�V�a�d�\�����#�I�d�H�i�g�^�c�\�������2�2���»�D�@�¼�/

�����������������9�^�h�e�a�V�n���i�]�Z���g�Z�h�j�a�i�h�#
�������������e�g�^�c�i���»�I�]�Z���j�h�Z�g���X�a�^�X�`�Z�Y���D�@�#�¼
�������������e�g�^�c�i���»�J�h�Z�g���C�V�b�Z�/���»�!���B�n�;�d�g�b�#�i�m�i�C�V�b�Z�#�I�Z�m�i
�������������e�g�^�c�i���»�;�V�k�d�g�^�i�Z���8�d�a�d�g�/���»�!���B�n�;�d�g�b�#�i�m�i�8�d�a�d�g�#�I�Z�m�i

�����������9�^�h�e�a�V�n���V�c���V�a�i�Z�g�c�V�i�Z���g�Z�h�j�a�i�#
�������Z�a�h�Z�/

continues

376 �X CHAPTER 17 EXTENDING IRONPYTHON USING VISUAL BASIC.NET

�������������e�g�^�c�i���»�I�]�Z���j�h�Z�g���X�a�^�X�`�Z�Y���X�V�c�X�Z�a�#�¼

�����>�b�e�d�g�i���i�]�Z���8�d�b�b�d�c���A�V�c�\�j�V�\�Z���G�j�c�i�^�b�Z�#
�^�b�e�d�g�i���X�a�g��

�����6�X�X�Z�h�h���i�]�Z���Z�m�i�Z�c�h�^�d�c�#
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z���»�9�^�V�a�d�\�h�#�9�A�A�¼��
�^�b�e�d�g�i���9�^�V�a�d�\�h��

�����I�Z�h�i���i�]�Z���b�Z�h�h�V�\�Z���W�d�m���X�d�Y�Z�#
�I�Z�h�i�B�Z�h�h�V�\�Z�h������

�����I�Z�h�i���i�]�Z���[�d�g�b���X�d�Y�Z�#
�I�Z�h�i�;�d�g�b������

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The code begins by importing CLR support and then uses the �6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z���� to add a
reference to the �9�^�V�a�d�\�h�#�9�A�A. The next step is to import the Dialogs namespace for use. The
�T�T�b�V�^�c�T�T������ function calls two functions, �I�Z�h�i�B�Z�h�h�V�\�Z�h���� and �I�Z�h�i�;�d�g�b����, to test the content of
the �9�^�V�a�d�\�h��namespace. It then pauses so you can see the results.

The �I�Z�h�i�B�Z�h�h�V�\�Z�h���� function begins by creating an instance of �9�^�V�a�d�\�h�#�9�^�V�a�d�\�h, �B�n�9�^�V�a�d�\. It then
calls the �B�n�9�^�V�a�d�\�#�T�T�Y�d�X�T�T���� method to output the help information provided by the �9�^�V�a�d�\�h class.
Normally you’d use this method at the interactive console, but it’s good to see how the method works.

The next step is to test the �B�n�9�^�V�a�d�\�#�H�]�d�l�B�Z�h�h�V�\�Z���� method. To
keep you from clicking all afternoon, the test code uses just two
forms of the method. The �rst form shows the simplest dialog box,
while the second shows the most complex. The most complex dia-
log box (shown in Figure 17-13) contains a message, title, icon, and
three buttons. Notice that the second button, rather than the �rst
button, is selected by default. Normally, a message box selects the
�rst button by default.

The next step is to display an input box. In this case,
the �B�n�9�^�V�a�d�\�#�<�Z�i�>�c�e�j�i���� method displays an input
box that contains a simple prompt and a title, as shown
in Figure 17-14. Notice the default message in the input
box. The input box automatically highlights this default
entry so that the �rst thing the user types will erase
the default content. The output from the �B�n�9�^�V�a�d�\��
�#�<�Z�i�>�c�e�j�i���� method is the text that the user types
in the input box.

The �I�Z�h�i�;�d�g�b���� function begins by creating an instance of the �9�^�V�a�d�\�h�#�I�Z�h�i�;�d�g�b class, �B�n�;�d�g�b.
The code then displays the dialog box shown in Figure 17-9 using the �B�n�;�d�g�b�#�H�]�d�l�9�^�V�a�d�\����

FIGURE 17�13: The complex
message box can convey quite
a bit of information for such a
simple call.

FIGURE 17�14: Input boxes are good for
small amounts of custom user input.

LISTING 17�4 (continued)

Using Visual Basic.NET for Database Support �X 377

method. Notice that the example code adds a call to �I�d�H�i�g�^�c�\����, so that the entire method call
is �B�n�;�d�g�b�#�H�]�d�l�9�^�V�a�d�\�����#�I�d�H�i�g�^�c�\����. This is a technique for converting the �H�n�h�i�Z�b�#�L�^�c�Y�d�l�h��
�#�;�d�g�b�h�#�9�^�V�a�d�\�G�Z�h�j�a�i to a simple string that you can compare with the desired output, which is
�»�D�@�» in this case.

The hidden namespace provided with Visual Basic won’t change names
when you add the �I�Z�h�i�;�d�g�b class to it. The namespace retains the same name
as when you created the project and changed the name of the original class.
Consequently, you access the Windows Forms class, �I�Z�h�i�;�d�g�b, as �9�^�V�a�d�\�h��
�#�I�Z�h�i�;�d�g�b, not as �I�Z�h�i�;�d�g�b�#�I�Z�h�i�;�d�g�b.

When the call succeeds (the user clicks OK), the code prints the user’s name and favorite color. Notice
that the code directly accesses both �i�m�i�C�V�b�Z�#�I�Z�m�i and �i�m�i�8�d�a�d�g�#�I�Z�m�i to obtain the required informa-
tion. When the call fails (the user clicks Cancel), the code outputs a simple failure message. Figure 17-15
shows typical output from this example.

FIGURE 17�15: The IronPython output shows the results of the various dialog and form selections.

USING VISUAL BASIC.NET FOR DATABASE SUPPORT

Visual Basic.NET makes database management easy. Of course, there are all the handy designers
that Visual Basic.NET makes available. The features of Server Explorer help as well. However, the
fact that Visual Basic.NET tends to hide some of the details is what helps the most. The follow-
ing sections provide a simple database management example that you could easily expand to help
IronPython work with all sorts of data.

378 �X CHAPTER 17 EXTENDING IRONPYTHON USING VISUAL BASIC.NET

This example assumes that you have SQL Server 2008 installed on your system.
Although the example will very likely work with olde r versions of SQL Server,
it hasn’t been tested with them. You could also download the SQL Server 2008
Express version from �]�i�i�e�/�$�$�l�l�l�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�Z�m�e�g�Z�h�h�$�h�f�a�$�Y�d�l�c�a�d�V�Y�$.
The example doesn’t provide complex database connectivity, so the SQL Server
2008 Express Edition will work just �ne. If you want to see the full version of
SQL Server 2008 Express in action, download the trial version at �]�i�i�e�/�$�$�b�h�Y�c��
�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�h�f�a�h�Z�g�k�Z�g�$�W�W�-�.�*�.�%�+�#�V�h�e�m or �]�i�i�e�/�$�$�l�l�l�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$
�H�F�A�h�Z�g�k�Z�g�$�'�%�%�-�$�Z�c�$�j�h�$�i�g�^�V�a�"�h�d�[�i�l�V�g�Z�#�V�h�e�m.

Obtaining and Con�guring the Database
This example relies on an old standby, the Northwind database. Microsoft has passed this database
by for signi�cantly more complex examples, but Northwi nd remains unsurpassed in its ability to
create useful examples with very little code, so it’s the database of choice for this chapter. You can
download the Northwind database from �]�i�i�e�/�$�$�l�l�l�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�Y�d�l�c�a�d�V�Y�h�$�Y�Z�i�V�^�a�h��
�#�V�h�e�m�4�;�V�b�^�a�n�>�9�2�%�+�+�&�+�'�&�'�"�%�(�*�+�"�)�+�6�%�"�-�9�6�'�"�:�:�7�8�*�(�6�+�-�%�(�).

Make sure you have a database manager installed on your system. The Northwind database
works just �ne with versions of SQL Server as old as SQL Server 2000, but you should at least try
a newer version, even if it’s SQL Server 2008 Express. The following steps tell you how to install
the Northwind database.

1. Double-click the �H�F�A�'�%�%�%�H�V�b�e�a�Z�9�W�#�b�h�^. You’ll see the normal Welcome dialog box for
installing Microsoft products. Click Next. You’ll see the licensing agreement.

2. Click I Agree after reading the license agreement, and then click Next. You’ll see an
Installation Options dialog box. There aren’t any actual installation options.

3. Click Next. You’ll see a Con�rm Installation dialog box.

4. Click Next. The installer installs the �les into the �8�/�Q�H�F�A���H�Z�g�k�Z�g���'�%�%�%���H�V�b�e�a�Z���9�V�i�V�W�V�h�Z�h
folder on your machine (you aren’t given a choice about the installation folder). After the
installation is complete, you’ll see an Installation Complete dialog box.

5. Click Close. The Northwind database and its associated script are now loaded on your
machine.

6. Open a command prompt in the �8�/�Q�H�F�A���H�Z�g�k�Z�g���'�%�%�%���H�V�b�e�a�Z���9�V�i�V�W�V�h�Z�h folder.

7. Type OSQL -E -i InstNwnd.SQL and press Enter (the command line switches are case sen-
sitive — make sure you type the command correctly). The OSQL utility will start building
and installing the Northwind database. This process can take a while to complete — get a
cup of coffee and enjoy. When the process is complete, you see a command prompt with
a bunch of numbers on it and no error message, as shown in Figure 17-16.

Using Visual Basic.NET for Database Support �X 379

FIGURE 17�16: The output from the OSQL utility doesn’t tell you much except if it encountered errors.

The OSQL utility comes with your SQL Server installatio n. If Windows
tells you that it can’t �nd the OSQL utility, make sure the �Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q
�B�^�X�g�d�h�d�[�i���H�F�A���H�Z�g�k�Z�g�Q�&�%�%�Q�I�d�d�a�h�Q�7�^�c�c folder (or equivalent for your ver -
sion of SQL Server) is part of your path statement. To check the path, type Path
at the command line and press Enter. To add the path to your path statement,
type something like Path = C:\Program Files\Microsoft SQL Server\100\Tools\
Binn;%PATH% and press Enter at the command line.

Creating the Database Support Module
Creating a database support module is a multi-step process. At a minimum, you must �rst create a
connection to the database and then work with that connection using code. The example that fol-
lows isn’t very complex. All that this example will do is retrieve some information from the database
in the interest of keeping things simple. Even so, the basics shown in the example provide enough
information for you to start creating database extensions of your own.

Creating a Connection to the Database
The �rst step in working with the Northwind database is to create a connection to it. The following
steps describe how to perform this task.

1. Right-click on the Data Connections entry in Server Explorer and choose Add Connection from
the context menu. You may see the Choose Data Source dialog box shown in Figure 17-17. If
not, you’ll see the Add Connection dialog box shown in Figure 17-18 and will need to proceed
to Step 3.

380 �X CHAPTER 17 EXTENDING IRONPYTHON USING VISUAL BASIC.NET

 2. Highlight the Microsoft SQL Server
entry. Select the .NET Framework Data
Provider for SQL Server entry in the
Data Provider �eld. Click Continue.
You’ll see the Add Connection dialog
box shown in Figure 17-18.

 3. Select or type the server name in the
Server Name �eld. You can type a
period (.) for the default server. The
Add Connection dialog box automati-
cally enables the Select or Enter
a Database Name �eld.

4. Select the Northwind database in the Select or Enter a Database Name �eld.

5. Click Test Connection. You see a success message box (click OK to dismiss it).

6. Click OK. Visual Studio displays the new connection in Server Explorer, as shown in
Figure 17-19.

FIGURE 17�18: The Add Connection dialog box
lets you create and test a connection to the
Northwind database.

FIGURE 17�17: Select the SQL Server data source to
make the Northwind connection.

FIGURE 17�19: The new connection
appears in Server Explorer where you
can work with it directly.

Using Visual Basic.NET for Database Support �X 381

7. Choose Data�����¶����Add New Data Source. You’ll see the Data Source Con�guration Wizard dia-
log box shown in Figure 17-20.

FIGURE 17�20: Use the Data Source Con�guration Wizard to create a
coded connection.

8. Highlight Database and click Next. You’ll see the Choose Database Model page.

9. Highlight the Dataset option and click Next. You’ll see the Choose Your Data Connection
page. Notice that the Northwind database connection already appears in the connection
�eld. The connection name will have your machine name, followed by the database name,
followed by .dbo, such as �b�V�^�c�#�C�d�g�i�]�l�^�c�Y�#�Y�W�d. If it doesn’t, make sure you select it from
the list. If the connection doesn’t appear in the list, click Cancel and start over with Step 1
because your connection wasn’t successful.

10. Select the Northwind connection and click Next. The wizard will ask how you want to save
the connection. There isn’t a good reason to change the default name provided.

11. Click Next. You see the Choose Your Database Objects page shown in Figure 17-21.

12. Check the Customers table entry, as shown in Figure 17-21. The example relies on the
Customers table and none of the other database content. Click Finish. The new data source
appears in the Data Sources window, as shown in Figure 17-22. If you can’t see this window,
choose Data�����¶����Show Data Sources.

Adding Database Manipulation Code
After all the work you performed to obtain access to the data, the actual database manipulation
code is relatively easy. Listing 17-5 shows the small amount of code used to actually retrieve a par-
ticular record from the database based on the �8�j�h�i�d�b�Z�g�>�9 �eld. Of course, you can add any level of
complexity required.

382 �X CHAPTER 17 EXTENDING IRONPYTHON USING VISUAL BASIC.NET

LISTING 17�5: Retrieving data from the database

�E�j�W�a�^�X���;�j�c�X�i�^�d�c���<�Z�i�9�V�i�V���7�n�K�V�a���8�j�h�i�d�b�Z�g���6�h���H�i�g�^�c�\�����6�h�����T
���������C�d�g�i�]�l�^�c�Y�9�V�i�V�H�Z�i�#�8�j�h�i�d�b�Z�g�h�G�d�l

���������»���D�W�i�V�^�c���V�X�X�Z�h�h���i�d���i�]�Z���i�V�W�a�Z�#
���������9�^�b���B�n�9�V�i�V���6�h���C�d�g�i�]�l�^�c�Y�9�V�i�V�H�Z�i�I�V�W�a�Z�6�Y�V�e�i�Z�g�h�#�8�j�h�i�d�b�Z�g�h�I�V�W�a�Z�6�Y�V�e�i�Z�g���2���T
�����������������C�Z�l���C�d�g�i�]�l�^�c�Y�9�V�i�V�H�Z�i�I�V�W�a�Z�6�Y�V�e�i�Z�g�h�#�8�j�h�i�d�b�Z�g�h�I�V�W�a�Z�6�Y�V�e�i�Z�g����

���������»���8�g�Z�V�i�Z���V���9�V�i�V�H�Z�i�#
���������9�^�b���9�H���6�h���C�d�g�i�]�l�^�c�Y�9�V�i�V�H�Z�i�#�8�j�h�i�d�b�Z�g�h�9�V�i�V�I�V�W�a�Z���2���T
�����������������C�Z�l���C�d�g�i�]�l�^�c�Y�9�V�i�V�H�Z�i�#�8�j�h�i�d�b�Z�g�h�9�V�i�V�I�V�W�a�Z����

���������»���;�^�a�a���i�]�Z���9�V�i�V�H�Z�i���l�^�i�]���Y�V�i�V�#
���������B�n�9�V�i�V�#�;�^�a�a���9�H��

���������»���;�^�c�Y���V���e�V�g�i�^�X�j�a�V�g���g�Z�X�d�g�Y���j�h�^�c�\���i�]�Z���8�j�h�i�d�b�Z�g���>�9�#
���������G�Z�i�j�g�c���9�H�#�;�^�c�Y�7�n�8�j�h�i�d�b�Z�g�>�9���8�j�h�i�d�b�Z�g��
�:�c�Y���;�j�c�X�i�^�d�c

The code begins by creating a �I�V�W�a�Z�6�Y�V�e�i�Z�g object. Because the example relies on the
Data Source Con�guration Wizard, it has a speci�c �I�V�W�a�Z�6�Y�V�e�i�Z�g to use in the form of the
�C�d�g�i�]�l�^�c�Y�9�V�i�V�H�Z�i�I�V�W�a�Z�6�Y�V�e�i�Z�g�h�#�8�j�h�i�d�b�Z�g�h�I�V�W�a�Z�6�Y�V�e�i�Z�g, �B�n�9�V�i�V object. �B�n�9�V�i�V provides the
means to select information from the table. In addition, it can update, delete, and insert records.
Essentially, �B�n�9�V�i�V is the database connection.

The next step is to create a �9�V�i�V�I�V�W�a�Z object. Again, the example has a speci�c version,
�C�d�g�i�]�l�^�c�Y�9�V�i�V�H�Z�i�#�8�j�h�i�d�b�Z�g�h�9�V�i�V�I�V�W�a�Z class, �9�H object. �9�H contains all the data selected from
the database through the �I�V�W�a�Z�6�Y�V�e�i�Z�g object.

FIGURE 17�21: Select the Customers table for this example.

FIGURE 17�22: The data source
is ready to use in the example
extension.

Using Visual Basic.NET for Database Support �X 383

In order to get data from the database into the �9�V�i�V�I�V�W�a�Z object, the code calls the �B�n�9�V�i�V�#�;�^�a�a����
method. Until the code calls this method, �9�H contains all of the information about the Customers
table, but none of the records.

Finally, the code calls the �9�H�#�;�^�c�Y�7�n�8�j�h�i�d�b�Z�g�>�9���� method to �nd the record requested by the
caller. The input argument to this method, �8�j�h�i�d�b�Z�g, is a string that contains the �8�j�h�i�d�b�Z�g�>�9 �eld
value. The output from the call is a �C�d�g�i�]�l�^�c�Y�9�V�i�V�H�Z�i�#�8�j�h�i�d�b�Z�g�h�G�d�l object, which is a special-
ized form of the �9�V�i�V�G�d�l. Interestingly enough, IronPython can use the �9�V�i�V�G�d�l directly without
having to translate it in any way.

Accessing the Database Module through IronPython
The example extension has a method, �<�Z�i�9�V�i�V����, that accepts a �8�j�h�i�d�b�Z�g�>�9 as input and provides
a �C�d�g�i�]�l�^�c�Y�9�V�i�V�H�Z�i�#�8�j�h�i�d�b�Z�g�h�G�d�l as output. All you need now is some IronPython code to make
the request and display the result. Listing 17-6 shows a typical example.

LISTING 17�6: Displaying a record onscreen

�����>�b�e�d�g�i���i�]�Z���8�d�b�b�d�c���A�V�c�\�j�V�\�Z���G�j�c�i�^�b�Z�#
�^�b�e�d�g�i���X�a�g

�����6�X�X�Z�h�h���i�]�Z���Z�m�i�Z�c�h�^�d�c�#
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z���»�C�d�g�i�]�l�^�c�Y�#�9�A�A�¼��
�^�b�e�d�g�i���C�d�g�i�]�l�^�c�Y

�����8�g�Z�V�i�Z���V�c���^�c�h�i�V�c�X�Z���d�[���i�]�Z���C�d�g�i�]�l�^�c�Y���V�X�X�Z�h�h���d�W�_�Z�X�i�#
�B�n�9�V�i�V���2���C�d�g�i�]�l�^�c�Y�#�9�7�6�X�X�Z�h�h����

�����;�^�a�a���V���g�d�l���l�^�i�]���Y�V�i�V�#
�G�d�l���2���B�n�9�V�i�V�#�<�Z�i�9�V�i�V���»�6�A�;�@�>�¼��

�����9�^�h�e�a�V�n���i�]�Z���Y�V�i�V���d�c���h�X�g�Z�Z�c�#��
�e�g�^�c�i���»�6�a�a���i�]�Z���Y�V�i�V���[�d�g���8�j�h�i�d�b�Z�g���>�9���6�A�;�@�>�¼
�e�g�^�c�i���»�Q�c�8�j�h�i�d�b�Z�g���>�9�/���»�!���G�d�l�#�8�j�h�i�d�b�Z�g�>�9
�e�g�^�c�i���»�8�d�b�e�V�c�n���C�V�b�Z�/���»�!���G�d�l�#�8�d�b�e�V�c�n�C�V�b�Z

�e�g�^�c�i���»�8�d�c�i�V�X�i���C�V�b�Z�/���»�!��
�^�[���G�d�l�#�>�h�8�d�c�i�V�X�i�C�V�b�Z�C�j�a�a�����/
�������e�g�^�c�i���»�C�d�i�]�^�c�\�¼
�Z�a�h�Z�/
�������e�g�^�c�i���G�d�l�#�8�d�c�i�V�X�i�C�V�b�Z

�e�g�^�c�i���»�8�d�c�i�V�X�i���I�^�i�a�Z�/���»�!��
�^�[���G�d�l�#�>�h�8�d�c�i�V�X�i�I�^�i�a�Z�C�j�a�a�����/
�������e�g�^�c�i���»�C�d�i�]�^�c�\�¼
�Z�a�h�Z�/
�������e�g�^�c�i���G�d�l�#�8�d�c�i�V�X�i�I�^�i�a�Z

�e�g�^�c�i���»�6�Y�Y�g�Z�h�h�/���»�!��
�^�[���G�d�l�#�>�h�6�Y�Y�g�Z�h�h�C�j�a�a�����/
�������e�g�^�c�i���»�C�d�i�]�^�c�\�¼

continues

384 �X CHAPTER 17 EXTENDING IRONPYTHON USING VISUAL BASIC.NET

�Z�a�h�Z�/
�������e�g�^�c�i���G�d�l�#�6�Y�Y�g�Z�h�h

�e�g�^�c�i���»�8�^�i�n�/���»�!��
�^�[���G�d�l�#�>�h�8�^�i�n�C�j�a�a�����/
�������e�g�^�c�i���»�C�d�i�]�^�c�\�¼
�Z�a�h�Z�/
�������e�g�^�c�i���G�d�l�#�8�^�i�n

�e�g�^�c�i���»�G�Z�\�^�d�c�/���»�!��
�^�[���G�d�l�#�>�h�T�G�Z�\�^�d�c�C�j�a�a�����/
���������e�g�^�c�i���»�C�d�i�]�^�c�\�¼
�Z�a�h�Z�/
���������e�g�^�c�i���G�d�l�#�T�G�Z�\�^�d�c

�e�g�^�c�i���»�E�d�h�i�V�a���8�d�Y�Z�/���»�!��
�^�[���G�d�l�#�>�h�E�d�h�i�V�a�8�d�Y�Z�C�j�a�a�����/
�������e�g�^�c�i���»�C�d�i�]�^�c�\�¼
�Z�a�h�Z�/
�������e�g�^�c�i���G�d�l�#�E�d�h�i�V�a�8�d�Y�Z

�e�g�^�c�i���»�8�d�j�c�i�g�n�/���»�!��
�^�[���G�d�l�#�>�h�8�d�j�c�i�g�n�C�j�a�a�����/
�������e�g�^�c�i���»�C�d�i�]�^�c�\�¼
�Z�a�h�Z�/
�������e�g�^�c�i���G�d�l�#�8�d�j�c�i�g�n

�e�g�^�c�i���»�E�]�d�c�Z�/���»�!��
�^�[���G�d�l�#�>�h�E�]�d�c�Z�C�j�a�a�����/
�������e�g�^�c�i���»�C�d�i�]�^�c�\�¼
�Z�a�h�Z�/
�������e�g�^�c�i���G�d�l�#�E�]�d�c�Z

�e�g�^�c�i���»�;�V�m�/���»�!��
�^�[���G�d�l�#�>�h�;�V�m�C�j�a�a�����/
�������e�g�^�c�i���»�C�d�i�]�^�c�\�¼
�Z�a�h�Z�/
�������e�g�^�c�i���G�d�l�#�;�V�m

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

This listing looks like a lot of code, but the process is relatively simple. The example begins as usual
by gaining access to CLR, using the �6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z���� method to create a reference to the
extension, and creating an instance of the extension class.

At this point, the code calls �B�n�9�V�i�V�#�<�Z�i�9�V�i�V���� with a �8�j�h�i�d�b�Z�g�>�9 of �»�6�A�;�@�>�». The output is
placed in �G�d�l. If you use the �Y�^�g���� function on �G�d�l, you see it provides a lot more than a listing of
�elds that appear as part of the output. Figure 17-23 shows the attributes �G�d�l provides.

The output �elds come in two types. The �rst are �eld s that the row must contain. These �elds
always contain data. The second are optional �elds that might not contain data. If you try to �e�g�^�c�i

LISTING 17�6 (continued)

Using Visual Basic.NET for Database Support �X 385

these �elds, you’ll get an error. Consequently, the next section of code displays the mandatory
�elds �rst.

FIGURE 17�23: Row contains more than just �elds.

Notice the �^�[�#�#�#�Z�a�h�Z structures that appear next. Every optional �eld includes an
�>�h�;�^�Z�a�Y�C�V�b�Z�C�j�a�a���� method. Before you print these optional �elds, use the null check, such
as �G�d�l�#�>�h�8�d�c�i�V�X�i�C�V�b�Z�C�j�a�a����, to verify that the �eld contains data. In this case, the code simply
prints �»�C�d�i�]�^�c�\�» when the �eld is null.

You need to consider one other issue when working through your database access methods. Notice
that the �T�G�Z�\�^�d�c �eld has an underscore in front of it. This underscore doesn’t appear in the data-
base or in the Visual Basic.NET code — IronPython adds it for some reason. If you suddenly �nd
that some �elds aren’t accessible, even though you’re using the right name, check for an underscore.
Figure 17-24 shows the output from this example.

FIGURE 17�24: The extension provides data to IronPython to output.

386 �X CHAPTER 17 EXTENDING IRONPYTHON USING VISUAL BASIC.NET

USING IRONPYTHON CONSTRUCTIVELY

This chapter has helped you discover the wonders of the Visual Basic.NET extension. As with the
C# extensions discussed in Chapter 16, the extensions described in this chapter follow certain rules
and you must provide basic functionality when creating an extension in Visual Basic.NET before
you can use it with IronPython. Visual Basic.NET extensions also follow the C# extension rules in
areas such as method visibility. The two advanced examples in this chapter help you understand the
areas in which Visual Basic.NET is the better choice when creating an extension.

If you really want to use extensions to their full effect, you really need to know which language
to choose to get the job done quickly. With this in mind, you’ll want to work through all the
examples in this chapter so you understand the Visual Basic.NET strengths. After you complete
the examples, take time to go back through Chapter 16 and the list you created of tasks you might
want to perform for your organization using a combinat ion of IronPython and C#. At this point,
you can ask yourself whether all those tasks really will work best with C# as the extension lan-
guage, or whether they’ll work better using Visual Basic.NET. The whole purpose of this task is
to help you start considering the importance of language choice when designing an application.

Chapter 18 takes you in another direction in working with IronPython — application testing. Some
organizations spend as much time creating a test suite for their application as they do on the appli-
cation itself. The scripting nature of IronPython makes it a perfect choice for some types of testing
tasks. Chapter 18 describes how to perform testing using IronPython as the testing language. It also
helps you understand when you might need to work with another tool to perform testing. Although
IronPython is a great choice, it isn’t the perfect choice for all situations and you need to consider this
issue as part of developing your test suite.

Using IronPython for
Application Testing

WHAT’S IN THIS CHAPTER?

�° Considering IronPython for testing��

De�ning the test environment requirements���°

Performing tests on DLLs���°

Performing tests on applications���°

Testing applications at the command line���°

One of the things about IronPython that’s exciting a lot of application developers is the ability
to use it to write application tests quickly and easily. Now, you might wonder why you’d need
yet another application testing tool, but IronPython has some signi�cant advantages over other
test tools, and these advantages will be discussed in this chapter.

Before you begin testing anything, you have to consider the kind of testing you want to do and
the environment in which testing takes place. In short, you need to de�ne the test environment.
IronPython has unique capabilities that you should consider while devising the test environ-
ment. Because IronPython operates outside of the application, you can create a test harness, a
set of routines that could possibly work on multiple applications in a particular way. Using the
test harness approach means that you place the test on the application, perform the test, and
then take the harness off for production-level testing.

This chapter looks at three main kinds of application testing: DLLs, desktop applications, and
ad hoc testing at the command line. You can use IronPython for any sort of testing, but these
three application types demonstrate a range of IronPython testing uses. The demonstrations in
this chapter provide everything you need to create test harnesses for your applications.

18

388 �X CHAPTER 18 USING IRONPYTHON FOR APPLICATION TESTING

The techniques in this chapter don’t imply that your old testing tool is worthless or
that IronPython is somehow superior to everything else on the market. Like any
other tool, IronPython excels in some areas and not in others. As a good developer,
you want to have multiple testing tools in your arsenal to ensure you create useful
applications that won’t immediately break under heavy usage. IronPython is sim-
ply another tool in your toolkit and you should trea t it as such.

UNDERSTANDING WHY YOU WANT TO
USE IRONPYTHON FOR TESTING

Every testing technique you’ve ever used has some drawback. For example, if you include debug
statements in your code, you must ensure that you perform a release build to remove the statements
before you release the code. Otherwise, the application will run slowly. In addition, using debug
statements can cause the application to perform differently from the way it performs when you use
it in a production environment, which makes it possible that the very tests that you depend on to
check the application will actually hide problems from view.

Using IronPython for testing has a considerable number of bene�ts over other testing tools. The
biggest bene�t is that you don’t have to do anything special to the application. The test harness
you create exists outside the application and doesn’t affect the application in any way. All the test
harness does is monitor application behavior and report on it to you. As a result, if the test harness
reviews every aspect of the application and veri�es that it runs correctly, the application will run
correctly in the production environment, too, because nothing will have changed.

As you’ve seen throughout the book, IronPython is an interpreted environment. That means you don’t
have to create the test harness in one piece — you can create it a little at a time as you try things out
with the application. In fact, the very nature of Ir onPython makes it possible for you to play “what if ”
analysis on your application. You can see just how bad you can make the application environment and
try things that users do, such as create unreasonable execution conditions.

Using an IronPython script for testing means that all the testing code is in one place. If you decide that
you need to add another test, you don’t have to delve into the inner workings of the application to add i t
and then create another build. Instead of using this time-consuming process, you simply add a few more
lines to an external script using any text editor that you like. There’s nothing complicated about the
process — anyone knowledgeable about your application should be able to do it without any problem.

The external nature of IronPython also makes it impossible for your test code to add problems (such as
errors, performance issues, or reliability concerns) to the application. In some cases, adding test code
actually introduces an application error, making it hard to know whether the error is in the test harness
or the application. If there’s a problem in the IronPython test harness, you’ll see an IronPython error
telling you about it. In short, you have separation between the test harness and the application, which
ensures one won’t affect the other.

There are a few downsides to working with IronPython as a testing tool. The most important of
these issues is that IronPython treats your application like a series of black boxes. It provides input

Considering the Test Environment �X 389

to a method and expects a certain output. However, IronPython can’t see into the method to test
individual elements within it.

IronPython also can’t see private members of your application, so it can’t test absolutely every aspect
of your application. If a private member is causing a problem, you need to use some other tools to
�nd it. Of course, you can use IronPython to infer certain issues in private methods based on their
effect on public methods, but this kind of logic can prove more troublesome than direct testing.

CONSIDERING THE TEST ENVIRONMENT

Before you begin writing your test harness, you need to consider the test environment. The test environ-
ment determines how you test the application, be it a DLL or a desktop application with user access.
The following list provides some criteria you need to consider as part of the test environment.

�°�� Code access: You must de�ne how the test harness will access the code. It’s important to
determine whether the harness will test absolutely every method, property, event, and other
application element individually, whether it will test elements in combination, or whether it
will use a combination of individual and combined tests.

���° Test ranges: A test harness must test both the possible and the impossible. For example, you
might design a method to accept positive numbers from 0 through 5. However, the test harness
must also test numbers greater than 5 and less than 0. In addition, it must test unexpected input,
such as a string.

���° User emulation: When working with some applications, you must determine how to emulate
user activity. For example, you might write down a series of steps that the user will take to
perform a certain activity and then execute those steps in your test harness. Of course, users
are unpredictable; your script must also perform some haphazard and unpredictable steps
and provide unexpected input. If you �nd that users are doing something you never expected,
you must add it to the test harness.

���° Security testing: If you don’t try to break down the walls you erected for your application,
someone else will most certainly sign up for the job. Because IronPython tends to treat every-
thing as public, it actually makes a great tool for testing security. You’ll �nd no arti�cial walls
to keep things neat and tidy. Security is never neat or tidy — it’s all about someone ripping
away the veneer of the façade you called security when you put the application together.
IronPython lets you test your application brutally, the same way someone else will.

���° System characteristics: Even though you can’t write code to ensure that your application will
run on every machine in the solar system, you can do things such as add random pauses in your
code to mimic activity on an overloaded system. You can also execute your application and its
test harness on a number of different machine con�gurations to verify that the application will
run as expected.

There are probably other criteria that you need to consider for your individual testing scenario. Take
time to brainstorm scenarios, worst-case situations, and truly horrifying events, and then test for
them. The following sections provide some additional insights about the test environment and the
issues you must consider.

390 �X CHAPTER 18 USING IRONPYTHON FOR APPLICATION TESTING

It’s important to remember that IronPython can test more than just .NET
code. If you can load some type of code into IronPython, you can test it. Of
course, this means you can test IronPython code at a minimum, but you’ll �nd
that you can test other kinds of code as well. The point is that IronPython is a
good environment for testing multiple kinds of code, which makes it an incred-
ibly �exible testing tool.

De�ning Access
The matter of access is an essential part of testing. The word “access” has all kinds of meanings and
connotations. Of course, there’s the access of your test harness to the code within the application. The
black box nature of IronPython prevents access in depth, but careful programming can provide access
to unprecedented amounts of information within your application and make testing relatively complete.

You must also consider the access the user has to the application as part of the test harness. For
example, if you use external con�guration �les, you can count on some number of users accessing
them. Even if you work out methods that are seemingly impossible to overcome, a user or two will
�nd a way to overcome them. Anything you can devise will be overcome by someone (it’s always eas-
ier to destroy than to create). Consequently, you must consider all forms of user access as part of your
test harness — if for no other reason than to determine how bad things can get when a user meddles.

It’s also important to consider external access. Whenever a system has access to the network or the
Internet, you must consider the potential for outside sources to access your application (even if your
application isn’t designed for such access). Many vendors of shrink-wrapped software have gained
notoriety for not taking this kind of access into consideration. The thought was that the application
didn’t access the outside source, so there wasn’t any need to consider the outside source during testing.
It turns out that any outside access opens avenues of in�uence and attack for all the applications on a
system, so you must test this kind of access.

Access is a two-way street. As part of your testing harness, you must consider application access
to external resources. For example, you must consider what happens when an application attempts to
access a particular �le on disk and can’t �nd it. Even more important, you need to consider resources
on the network or on the Internet. There are many forms of access that your test harness must con-
sider as it tests the various methods inside the application. It isn’t always possible to test simply for
strict inputs or outputs; you must test inputs and outputs within the con�nes of an environment
de�ned by various kinds of access.

Considering a Few Things IronPython Can’t Test
Earlier, you learned that IronPython tests application elements using a black box approach — given
a particular input, what should the element provide as output? However, there are other limitations
you need to consider in the way IronPython performs testing. For example, IronPython can’t perform

Considering the Test Environment �X 391

stress testing. If you want to test your application in a memory-starved environment, then you need to
combine IronPython with another tool. For example, you might want to read the article at �]�i�i�e�/�$�$
�b�h�Y�c�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�b�V�\�V�o�^�c�Z�$�X�X�&�+�(�.�-�(�#�V�h�e�m about a load-generating tool you can build your-
self. Web application load testing requires other techniques that you can learn about at �]�i�i�e�/�$�$
�h�j�e�e�d�g�i�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$�`�W�$�'�(�&�'�-�'. If you need to stress test applications in combination with a
particular server, check out the site at �]�i�i�e�/�$�$�W�a�d�\�h�#�b�h�Y�c�#�X�d�b�$�c�^�X�`�b�V�X�$�V�g�X�]�^�k�Z�$�'�%�%�)�$�&�%�$�%�+�$
�h�Z�g�k�Z�g�"�h�i�g�Z�h�h�"�i�d�d�a�h�#�V�h�e�m.

IronPython can perform diagnostic testing of your application with ease, but it doesn’t make a good
environment for performance testing. As with stress testing, you need to combine IronPython with
another tool to check application performance in various conditions. In fact, you may very well need
to combine IronPython, your stress testing tool, and your performance testing tool to obtain statistics
for a range of test scenarios and environments.

The point of this section is that while IronPython is a good scripting tool or a good diagnostic tool,
it can’t do everything. In many cases, you must combine IronPython with one or more additional
tools to obtain the desired information about your application. Your test plan should include all of
these contingencies, and you should consider them before you create your test harness.

Creating the Test Harness
An advantage to working with IronPython is that you need not create the test harness in one sitting.
You can use an iterative technique to create the test harness. It’s possible to start with a small nugget
of tests that you know you must perform, and then add to that nugget as other issues come to light.
Eventually, you end up with a full-blown test suite.

Most .NET developers won’t initially understand the bene�ts of using an int erpreter for testing,
but the realization will grow with time that interpr eters make things easy. If you get an idea, you
don’t have to run a complete test or compile anything. All you need to do is open up the IronPython
console, load the assembly you want to test, and then try out various tests until you come up with a
perfect combination of items to use. At this point, you can click the system menu in the IronPython
console, choose Edit�����¶����Mark, highlight the text you want to copy from your experiments, and press
Enter to copy it to the clipboard. Now you can paste the text you’ve created into your test harness
and comment it. In fact, the IronPython console (and all consoles for that matter) provides a number
of commands, as shown in Figure 18-1.

As an alternative, if you already have the beginnings of a test-harness check, but want to add to it,
you can always paste the text directly into the IronPython console using the Paste command shown
in Figure 18-1. The interpreter will automatically execute any statements that you paste into it, so
you’ll be ready to start typing new code after you paste it.

Modularity is the name of the game when it comes to a test harness. Try to place the individual tests
into separate �les so that you can reuse the code later. Simply have a centralized �le where you call
each of the tests in turn. The tests will output the information you need to screen, so the developer
using the test harness need not even know that there are multiple �les involved.

392 �X CHAPTER 18 USING IRONPYTHON FOR APPLICATION TESTING

FIGURE 18�1: Use the text-editing tools to copy and paste text as needed.

TESTING DLLS

DLLs present one of the easier ways to begin using IronPython to test applications. In fact, you’ve
already performed a kind of testing in Chapters 16 and 17 when you created the extensions and then
used their content as part of an IronPython application. All that a test harness will do is formalize
the testing process so that the output you receive speaks directly about the functionality of the DLL
under test, rather than its use in an application. The following sections describe how to perform a
test on a DLL using IronPython.

The examples in this chapter rely on the project construction technique shown
in the “An Alternative Method for Adding the IronPython Project” sections
of Chapters 16 and 17. If you’re working with a C# a pplication, use the
procedure found in Chapter 16. Visual Basic.NET developers should use
the procedure found in Chapter 17. Using a centralized build makes things
simpler. Of course, in a real-world environment, you’ll probably use a number
of techniques to get the IronPython test script close to your application code.

Creating the Test DLL
The DLL used for testing purposes is extremely simple so that the section doesn’t focus more on an
interesting DLL than it does on testing techniques. All that this DLL provides is an account where

Testing DLLs �X 393

you make an initial deposit to create the account and then make deposits, withdrawals, and transfers.
The DLL includes a number of features so that you can try things out, but the code de�nitely isn’t
production quality. For one thing, most of the error-checking code is left out to keep the code clear so
you can easily see what will happen next. Listing 18-1 shows the DLL code used for this example.

LISTING 18�1: De�ning a DLL to test

�e�j�W�a�^�X���X�a�V�h�h���6�X�X�d�j�c�i�h
�p
���������$�$���8�d�c�i�V�^�c�h���i�]�Z���X�j�g�g�Z�c�i���V�X�X�d�j�c�i���V�b�d�j�c�i�#
���������e�g�^�k�V�i�Z���>�c�i�(�'���I�d�i�V�a�0

���������e�j�W�a�^�X���6�X�X�d�j�c�i�h����
���������p
�����������������$�$���H�Z�i�h���V���Y�Z�[�V�j�a�i���V�X�X�X�d�j�c�i���V�b�d�j�c�i�#
�����������������I�d�i�V�a���2���*�%�%�%�0
���������r

���������e�j�W�a�^�X���6�X�X�d�j�c�i�h���>�c�i�(�'���>�c�^�i�^�V�a��
���������p
�����������������$�$���H�Z�i���V���j�h�Z�g���h�j�e�e�a�^�Z�Y���^�c�^�i�^�V�a���V�b�d�j�c�i�#
�����������������I�d�i�V�a���2���>�c�^�i�^�V�a�0
���������r

���������$�$���E�g�d�k�^�Y�Z�h���V�X�X�Z�h�h���i�d���i�]�Z���V�X�X�d�j�c�i���i�d�i�V�a�#
���������e�j�W�a�^�X���>�c�i�(�'���<�Z�i�I�d�i�V�a
���������p
�����������������\�Z�i���p���g�Z�i�j�g�c���I�d�i�V�a�0���r
���������r

���������$�$���6�Y�Y�h���V���Y�Z�e�d�h�^�i���i�d���i�]�Z���V�X�X�d�j�c�i�#
���������e�j�W�a�^�X���>�c�i�(�'���9�Z�e�d�h�^�i
���������p
�����������������h�Z�i���p���I�d�i�V�a��� �2���k�V�a�j�Z�0���r
���������r

���������$�$���H�j�W�i�g�V�X�i�h���V���l�^�i�]�Y�g�V�l�V�a�#
���������e�j�W�a�^�X���>�c�i�(�'���L�^�i�]�Y�g�V�l�V�a
���������p
�����������������h�Z�i���p���I�d�i�V�a���"�2���k�V�a�j�Z�0���r
���������r

���������e�j�W�a�^�X���k�d�^�Y���I�g�V�c�h�[�Z�g���6�X�X�d�j�c�i�h���6�X�X�d�j�c�i�'��
���������p
�����������������$�$���E�a�V�X�Z���i�]�Z���b�d�c�Z�n���^�c���i�]�Z���h�Z�X�d�c�Y���V�X�X�d�j�c�i���^�c���i�]�Z���[�^�g�h�i���V�X�X�d�j�c�i�#
�����������������i�]�^�h�#�I�d�i�V�a��� �2���6�X�X�d�j�c�i�'�#�I�d�i�V�a�0

�����������������$�$���L�^�i�]�Y�g�V�l���i�]�Z���b�d�c�Z�n���[�g�d�b���i�]�Z���h�Z�X�d�c�Y���V�X�X�d�j�c�i�#
�����������������6�X�X�d�j�c�i�'�#�I�d�i�V�a���2���%�0
���������r
�r

394 �X CHAPTER 18 USING IRONPYTHON FOR APPLICATION TESTING

The example includes two constructors (something you didn’t try in Chapters 16 or 17). The developer
can create an account with a default value of �*�%�%�% or provide some other initial amount. In either case,
you end up with a new �6�X�X�d�j�c�i�h object that has �I�d�i�V�a de�ned.

The �<�Z�i�I�d�i�V�a property is read-only and lets the developer obtain the total in the count from �I�d�i�V�a.
Using a property enables you to perform checks before allowing people to have the information. For
example, you could place a security code in this property to ensure that only authorized personnel
received the information. If a developer were to take this approach, you’d need to write a test to check
the �<�Z�i�I�d�i�V�a property using an account other than the developer account.

The �9�Z�e�d�h�^�i and �L�^�i�]�Y�g�V�l�V�a properties are write-only. The caller doesn’t receive anything back
from them. You could use a method to perform the task as well. Using a property makes the test
code easier to read, but that’s the only advantage. In both cases, the properties change the value of
�I�d�i�V�a. Of course, you can perform checks in the properties, such as verifying that a withdrawal
won’t result in an account with a value less than 0.

The �I�g�V�c�h�[�Z�g���� method moves all the money from one account to the other. Typically, you’d provide
some type of transaction support in a method of this type, but the example doesn’t include it. This is
one situation where IronPython can test the method’s inputs and outputs, but can’t test the internal
workings of the method. You’d need another tool to test issues such as whether the transaction support
actually worked as intended.

Creating the DLL Test Script
It’s time to build an IronPython script to test the DLL shown in Listing 18-1. In this case, the test
script is a bit short and doesn’t test every contingency (such as starting with a negative amount in
the account), but it demonstrates how you’d create a test script for a DLL. Listing 18-2 contains the
code needed for this example.

LISTING 18�2: Developing a DLL test harness

�����8�g�Z�V�i�Z�h���V���c�Z�l���]�Z�V�Y�^�c�\�#��
�Y�Z�[���8�g�Z�V�i�Z�=�Z�V�Y�^�c�\���I�Z�h�i�!���I�^�i�a�Z���/
�������e�g�^�c�i���»�Q�c���»
�������e�g�^�c�i���»�I�Z�h�i���>�9���2���»�!���I�Z�h�i
�������e�g�^�c�i���»�I�Z�h�i���I�^�i�a�Z���2���»�!���I�^�i�a�Z

�����9�^�h�e�a�V�n�h���i�]�Z���k�V�a�j�Z�h�#��
�Y�Z�[���H�]�d�l�K�V�a�j�Z�h���:�m�e�Z�X�i�Z�Y�!���G�Z�X�Z�^�k�Z�Y���/
�������e�g�^�c�i���»�:�m�e�Z�X�i�Z�Y���K�V�a�j�Z���2���»�!���:�m�e�Z�X�i�Z�Y
�������e�g�^�c�i���»�G�Z�X�Z�^�k�Z�Y���K�V�a�j�Z���2���»�!���G�Z�X�Z�^�k�Z�Y
�������^�[���:�m�e�Z�X�i�Z�Y���2�2���G�Z�X�Z�^�k�Z�Y�/
�������������e�g�^�c�i���»�I�Z�h�i���E�V�h�h�Z�Y�¼
�������Z�a�h�Z�/
�������������e�g�^�c�i���»�I�Z�h�i���;�V�^�a�Z�Y�¼

�����:�c�Y�h���i�]�Z���i�Z�h�i�#
�Y�Z�[���8�g�Z�V�i�Z�;�d�d�i�Z�g�����/
�������e�g�^�c�i���»���»

Testing DLLs �X 395

�����E�g�^�c�i���d�j�i���h�i�V�i�Z�b�Z�c�i�h���d�[���Z�k�Z�g�n�i�]�^�c�\���i�]�Z���i�Z�h�i���^�h���Y�d�^�c�\�#
�e�g�^�c�i���»�7�Z�\�^�c�c�^�c�\���I�Z�h�i�¼

�e�g�^�c�i���»�A�d�V�Y�^�c�\���X�a�g�¼
�^�b�e�d�g�i���X�a�g

�e�g�^�c�i���»�A�d�V�Y�^�c�\���i�Z�h�i���b�d�Y�j�a�Z�¼
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z���»�I�Z�h�i�9�A�A�#�9�A�A�¼��
�[�g�d�b���I�Z�h�i�9�A�A���^�b�e�d�g�i����

�8�g�Z�V�i�Z�=�Z�V�Y�^�c�\���»�%�%�%�&�¼�!���»�8�g�Z�V�i�^�c�\���6�X�X�d�j�c�i�&�¼��
�6�X�X�d�j�c�i�&���2���6�X�X�d�j�c�i�h����
�H�]�d�l�K�V�a�j�Z�h���*�%�%�%�!���6�X�X�d�j�c�i�&�#�<�Z�i�I�d�i�V�a��
�8�g�Z�V�i�Z�;�d�d�i�Z�g����

�8�g�Z�V�i�Z�=�Z�V�Y�^�c�\���»�%�%�%�'�¼�!���»�B�V�`�^�c�\���V���9�Z�e�d�h�^�i�¼��
�6�X�X�d�j�c�i�&�#�9�Z�e�d�h�^�i���2���&�%�%�%
�H�]�d�l�K�V�a�j�Z�h���+�%�%�%�!���6�X�X�d�j�c�i�&�#�<�Z�i�I�d�i�V�a��
�8�g�Z�V�i�Z�;�d�d�i�Z�g����

�8�g�Z�V�i�Z�=�Z�V�Y�^�c�\���»�%�%�%�(�¼�!���»�B�V�`�^�c�\���V���L�^�i�]�Y�g�V�l�V�a�¼��
�6�X�X�d�j�c�i�&�#�L�^�i�]�Y�g�V�l�V�a���2���*�%�%
�H�]�d�l�K�V�a�j�Z�h���*�*�%�%�!���6�X�X�d�j�c�i�&�#�<�Z�i�I�d�i�V�a��
�8�g�Z�V�i�Z�;�d�d�i�Z�g����

�8�g�Z�V�i�Z�=�Z�V�Y�^�c�\���»�%�%�%�)�¼�!���»�8�g�Z�V�i�^�c�\���6�X�X�d�j�c�i�'�¼��
�6�X�X�d�j�c�i�'���2���6�X�X�d�j�c�i�h���(�%�%�%��
�H�]�d�l�K�V�a�j�Z�h���(�%�%�%�!���6�X�X�d�j�c�i�'�#�<�Z�i�I�d�i�V�a��
�8�g�Z�V�i�Z�;�d�d�i�Z�g����

�8�g�Z�V�i�Z�=�Z�V�Y�^�c�\���»�%�%�%�*�¼�!���»�I�g�V�c�h�[�Z�g�g�^�c�\���B�d�c�Z�n�¼��
�6�X�X�d�j�c�i�&�#�I�g�V�c�h�[�Z�g���6�X�X�d�j�c�i�'����
�e�g�^�c�i���»�Q�c�6�X�X�d�j�c�i�&���2���-�*�%�%�¼
�H�]�d�l�K�V�a�j�Z�h���-�*�%�%�!���6�X�X�d�j�c�i�&�#�<�Z�i�I�d�i�V�a����
�e�g�^�c�i���»�Q�c�6�X�X�d�j�c�i�'���2���%�¼
�H�]�d�l�K�V�a�j�Z�h���%�!���6�X�X�d�j�c�i�'�#�<�Z�i�I�d�i�V�a��
�8�g�Z�V�i�Z�;�d�d�i�Z�g����

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

Let’s begin with the three functions at the beginning of the script: �8�g�Z�V�i�Z�=�Z�V�Y�^�c�\����, �H�]�d�l�K�V�a�j�Z�h����,
and �8�g�Z�V�i�Z�;�d�d�i�Z�g����. It may seem a bit silly at �rst to create these functions, but they provide a
method for changing the output of the tests quickly, should you need to do so. In addition, you don’t
want to write the same �e�g�^�c�i statements hundreds of times as you create your script. It’s far easier to
simply call the functions.

The �8�g�Z�V�i�Z�=�Z�V�Y�^�c�\���� and �8�g�Z�V�i�Z�;�d�d�i�Z�g���� functions don’t have much logic in them — they
simply display information onscreen. The �H�]�d�l�K�V�a�j�Z�h���� function does have a bit of logic. In this
case, it simply compares the expected value to the result and displays the appropriate output text.
However, you could perform any number of checks required by your application. For example, if
you’re working with strings, you might need to check the string length and determine precisely how
it differs from another string.

396 �X CHAPTER 18 USING IRONPYTHON FOR APPLICATION TESTING

Notice that the �T�T�b�V�^�c�T�T���� code begins with print �»�A�d�V�Y�^�c�\���X�a�g�». It’s important to describe every
event that occurs in the test script. Otherwise, you won’t know where a script has failed during testing.
Make sure you describe the mundane acts of loading and unloading modules, as well as the actual tests.

The �rst test begins with a call to �8�g�Z�V�i�Z�=�Z�V�Y�^�c�\���� with the test number and title. The code then
performs a test, �6�X�X�d�j�c�i�&���2���6�X�X�d�j�c�i�h���� in this case, calls �H�]�d�l�K�V�a�j�Z�h���� to test the result, and
�nishes with �8�g�Z�V�i�Z�;�d�d�i�Z�g����. Almost all of the tests follow the same pattern.

The �nal test is a little different than the rest. To perform the test correctly, you must evaluate the
content of both �6�X�X�d�j�c�i�& and �6�X�X�d�j�c�i�'. This is a case where you can infer what is happening inside a
method with the test code. The method, �I�g�V�c�h�[�Z�g����, could perform the task correctly with �6�X�X�d�j�c�i�&,
but not with �6�X�X�d�j�c�i�', which would tell you something about the content of the method and where to
look for the problem.

This �nal bit of script also shows the �exibility of using the three functions presented earlier. By sepa-
rating the individual tasks into three parts, you can call the �H�]�d�l�K�V�a�j�Z�h���� function multiple times
as needed. You might also consider creating a second form of �H�]�d�l�K�V�a�j�Z�h���� to accept a comparison
string for output (the �e�g�^�c�i���»�Q�c�6�X�X�d�j�c�i�&���2���-�*�%�%�» part of the script).

Performing the DLL Test
It’s time to run the DLL test. If you con�gured your project using the techniques in Chapters 16 and 17,
you should be able to click Start Debugging (or press F5) to start the build process. During the build
process, the compiler checks your DLL for major errors.

After the DLL is built, the IronPython script runs. Remember that this script is running outside of
the IDE, so nothing it does will actually affect the performance of your code. The diagnostic tests
will run and provide the information shown in Figure 18-2.

Notice that the use of formatting, test numbers, titles, comparison values, and so on makes the test
results extremely easy to read. Of course, a large DLL could overwhelm the capacity of the console
to display information. In this case, you could just as easily send the output to a text �le, HTML
page, or an XML �le. The point is that the script ma kes it possible to view diagnostics about your
application almost immediately after you build it.

TESTING APPLICATIONS

You can use IronPython for more than DLL testing — you can also use it to test your applications.
Applications are more of a challenge than DLLs because you have to �nd a way to emulate user input.
Of course, many developers just aren’t as creative as users. A developer would never think about putting
text where a number is expected. Many developers discover, to their chagrin, that users will also try
implanting scripts and doing other weird things to the application that aren’t easy to test. Some users
will even try odd character combinations looking for hi dden application features or just to see what will
happen. Tests will only work as well as your ability to outguess the user. The following sections show
how to test a simple Windows Forms application.

Testing Applications �X 397

FIGURE 18�2: The output shows a list of all of the tests run by the IronPython script on the DLL.

Creating the Test Application
The test application is very simple, but it does include some internal code you can use for testing
purposes. The following sections describe the test application.

398 �X CHAPTER 18 USING IRONPYTHON FOR APPLICATION TESTING

De�ning the Form
A Windows Forms application need not be complex to test it
using IronPython. All you really need are a few controls and
some buttons with code for their event handlers. Figure 18-3
shows the simple form used for this example.

As with Windows Forms you use in a DLL, you must make
an important change to test an application using IronPython.
All the controls you want to access must have their �B�d�Y�^�[�^�Z�g�h
property set to �E�j�W�a�^�X. The default setting of �E�g�^�k�V�i�Z prevents
you from accessing them directly in IronPython.

Building the Code
You can see that the form in Figure 18-3 has three �7�j�i�i�d�c
controls in it. Each of the controls has a �8�a�^�X�`���� event handler
associated with it, as shown in Listing 18-3.

LISTING 18�3: De�ning an application to test

�e�g�^�k�V�i�Z���k�d�^�Y���W�i�c�F�j�^�i�T�8�a�^�X�`���d�W�_�Z�X�i���h�Z�c�Y�Z�g�!���:�k�Z�c�i�6�g�\�h���Z��
�p
���������8�a�d�h�Z�����0
�r

�e�j�W�a�^�X���k�d�^�Y���W�i�c�6�Y�Y�T�8�a�^�X�`���d�W�_�Z�X�i���h�Z�c�Y�Z�g�!���:�k�Z�c�i�6�g�\�h���Z��
�p
���������i�m�i�G�Z�h�j�a�i�#�I�Z�m�i���2�����>�c�i�(�'�#�E�V�g�h�Z���i�m�i�K�V�a�j�Z�&�#�I�Z�m�i����� ��
�����������������>�c�i�(�'�#�E�V�g�h�Z���i�m�i�K�V�a�j�Z�'�#�I�Z�m�i�����#�I�d�H�i�g�^�c�\�����0
�r

�e�j�W�a�^�X���k�d�^�Y���W�i�c�H�j�W�i�g�V�X�i�T�8�a�^�X�`���d�W�_�Z�X�i���h�Z�c�Y�Z�g�!���:�k�Z�c�i�6�g�\�h���Z��
�p
���������i�m�i�G�Z�h�j�a�i�#�I�Z�m�i���2�����>�c�i�(�'�#�E�V�g�h�Z���i�m�i�K�V�a�j�Z�&�#�I�Z�m�i�����"��
�����������������>�c�i�(�'�#�E�V�g�h�Z���i�m�i�K�V�a�j�Z�'�#�I�Z�m�i�����#�I�d�H�i�g�^�c�\�����0
�r

The �W�i�c�F�j�^�i�T�8�a�^�X�`���� event handler is as you might expect. It simply closes the form using the
�8�a�d�h�Z���� method. You won’t test this functionality using the IronPython script.

The �W�i�c�6�Y�Y�T�8�a�^�X�`���� event handler converts the values of �i�m�i�K�V�a�j�Z�&�#�I�Z�m�i and �i�m�i�K�V�a�j�Z�'�#�I�Z�m�i
to �>�c�i�(�' values using �>�c�i�(�'�#�E�V�g�h�Z����. It then adds the numbers together, converts the result to a
string using �I�d�H�i�g�^�c�\����, and places it into �i�m�i�G�Z�h�j�a�i�#�I�Z�m�i. Because IronPython needs to test this
event handler, the visibility is set to �e�j�W�a�^�X. If you don’t change the visibility of the event handler,
IronPython won’t be able to access it. The �W�i�c�H�j�W�i�g�V�X�i�T�8�a�^�X�`���� event handler works the same as
the �W�i�c�6�Y�Y�T�8�a�^�X�`���� event handler, except that it subtracts the two numbers.

FIGURE 18�3: The simple form used
for this example provides enough
inputs to test.

Testing Applications �X 399

Creating the Application Test Script
As long as you’re willing to make the required visibility changes to your application, you can use
IronPython to test it. Creating a test project for an application works precisely the same as creating
a test project for a DLL. Here’s the short list of changes you must perform:

1. Change the build output location for both the Debug and Release builds to the solution folder.

2. Add �>�E�N�#�:�M�: as an existing project to your solution.

3. Set the ipy project as the startup project so that the IDE executes it instead of the Windows
Forms application.

4. Con�gure the ipy project to start your script and to use the appropriate working directory.

5. Add a new IronPython script to the solution folder.

This test script uses the three functions described in Listing 18-2 to provide output. It also adds the
following two output functions:

�����K�Z�g�^�[�n���i�]�Z���i�n�e�Z�#��
�Y�Z�[���8�]�Z�X�`�I�n�e�Z���D�W�_�Z�X�i�!���I�n�e�Z���/
���������^�[���D�W�_�Z�X�i�#�<�Z�i�I�n�e�Z�����#�T�T�h�i�g�T�T�������2�2���I�n�e�Z�/
�������������������������e�g�^�c�i���»�I�Z�h�i���E�V�h�h�Z�Y�¼
���������Z�a�h�Z�/
�������������������������e�g�^�c�i���»�I�Z�h�i���;�V�^�a�Z�Y�¼

�����H�]�d�l���^�c�^�i�^�V�a���k�V�a�j�Z�h�#��
�Y�Z�[���H�]�d�l�>�c�^�i���K�V�a�j�Z�&�!���K�V�a�j�Z�'���/
���������e�g�^�c�i���»�K�V�a�j�Z�&�/���»�!���K�V�a�j�Z�&
���������e�g�^�c�i���»�K�V�a�j�Z�'�/���»�!���K�V�a�j�Z�'

The �8�]�Z�X�`�I�n�e�Z���� function compares the type of an object you create against an expected type. If
the type is incorrect, then it displays a failed message. You can use this function when creating a
form or other object that could fail for any number o f reasons.

The �H�]�d�l�>�c�^�i���� function displays the initial values for a binary operation or perhaps just two values
used for some other task. You could probably create a version of the function that accepts any number
of arguments in the form of an array. The point is that you can create some specialized functions to
display data for a particular test and then �nd that you can use it for other purposes later.

As previously mentioned, this test script also uses the three functions found in Listing 18-2.
Listing 18-4 shows the actual test script for this application. It doesn’t provide a complete test but
does provide enough information that you could easily complete it if you wanted.

LISTING 18�4: Developing an application test harness

�����E�g�^�c�i���d�j�i���h�i�V�i�Z�b�Z�c�i�h���d�[���Z�k�Z�g�n�i�]�^�c�\���i�]�Z���i�Z�h�i���^�h���Y�d�^�c�\�#
�e�g�^�c�i���»�7�Z�\�^�c�c�^�c�\���I�Z�h�i�¼

�e�g�^�c�i���»�A�d�V�Y�^�c�\���X�a�g�¼
continues

400 �X CHAPTER 18 USING IRONPYTHON FOR APPLICATION TESTING

�^�b�e�d�g�i���X�a�g

�e�g�^�c�i���»�A�d�V�Y�^�c�\���H�n�h�i�Z�b���V�h�h�Z�b�W�a�n���h�j�e�e�d�g�i�¼
�^�b�e�d�g�i���H�n�h�i�Z�b

�e�g�^�c�i���»�8�g�Z�V�i�^�c�\���V���W�a�V�c�`���Z�k�Z�c�i���V�g�\�j�b�Z�c�i�#�¼
�:�k�Z�c�i�6�g�\���2���H�n�h�i�Z�b�#�:�k�Z�c�i�6�g�\�h����

�e�g�^�c�i���»�A�d�V�Y�^�c�\���i�Z�h�i���b�d�Y�j�a�Z�¼
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z���»�I�Z�h�i�6�e�e�a�^�X�V�i�^�d�c�#�:�M�:�¼��
�[�g�d�b���I�Z�h�i�6�e�e�a�^�X�V�i�^�d�c���^�b�e�d�g�i����

�8�g�Z�V�i�Z�=�Z�V�Y�^�c�\���»�%�%�%�&�¼�!���»�8�g�Z�V�i�^�c�\���V���i�Z�h�i���[�d�g�b�¼��
�B�n�;�d�g�b���2���;�d�g�b�&����
�8�]�Z�X�`�I�n�e�Z���B�n�;�d�g�b�!���»�I�Z�h�i�6�e�e�a�^�X�V�i�^�d�c�#�;�d�g�b�&�¼��
�8�g�Z�V�i�Z�;�d�d�i�Z�g����

�8�g�Z�V�i�Z�=�Z�V�Y�^�c�\���»�%�%�%�'�¼�!���»�I�Z�h�i�^�c�\���V���Y�Z�[�V�j�a�i���V�Y�Y�¼��
�B�n�;�d�g�b�#�W�i�c�6�Y�Y�T�8�a�^�X�`���d�W�_�Z�X�i�!���:�k�Z�c�i�6�g�\��
�H�]�d�l�>�c�^�i���B�n�;�d�g�b�#�i�m�i�K�V�a�j�Z�&�#�I�Z�m�i�!���B�n�;�d�g�b�#�i�m�i�K�V�a�j�Z�'�#�I�Z�m�i��
�H�]�d�l�K�V�a�j�Z�h���»�'�¼�!���B�n�;�d�g�b�#�i�m�i�G�Z�h�j�a�i�#�I�Z�m�i��
�8�g�Z�V�i�Z�;�d�d�i�Z�g����

�8�g�Z�V�i�Z�=�Z�V�Y�^�c�\���»�%�%�%�(�¼�!���»�I�Z�h�i�^�c�\���V���Y�Z�[�V�j�a�i���h�j�W�i�g�V�X�i�¼��
�B�n�;�d�g�b�#�W�i�c�H�j�W�i�g�V�X�i�T�8�a�^�X�`���d�W�_�Z�X�i�!���:�k�Z�c�i�6�g�\��
�H�]�d�l�>�c�^�i���B�n�;�d�g�b�#�i�m�i�K�V�a�j�Z�&�#�I�Z�m�i�!���B�n�;�d�g�b�#�i�m�i�K�V�a�j�Z�'�#�I�Z�m�i��
�H�]�d�l�K�V�a�j�Z�h���»�%�¼�!���B�n�;�d�g�b�#�i�m�i�G�Z�h�j�a�i�#�I�Z�m�i��
�8�g�Z�V�i�Z�;�d�d�i�Z�g����

�8�g�Z�V�i�Z�=�Z�V�Y�^�c�\���»�%�%�%�)�¼�!���»�I�Z�h�i�^�c�\���V�Y�Y���l�^�i�]���d�c�Z���X�]�V�c�\�Z�¼��
�B�n�;�d�g�b�#�i�m�i�K�V�a�j�Z�&�#�I�Z�m�i���2���»�*�¼
�B�n�;�d�g�b�#�W�i�c�6�Y�Y�T�8�a�^�X�`���d�W�_�Z�X�i�!���:�k�Z�c�i�6�g�\��
�H�]�d�l�>�c�^�i���B�n�;�d�g�b�#�i�m�i�K�V�a�j�Z�&�#�I�Z�m�i�!���B�n�;�d�g�b�#�i�m�i�K�V�a�j�Z�'�#�I�Z�m�i��
�H�]�d�l�K�V�a�j�Z�h���»�+�¼�!���B�n�;�d�g�b�#�i�m�i�G�Z�h�j�a�i�#�I�Z�m�i��
�8�g�Z�V�i�Z�;�d�d�i�Z�g����

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

The test script begins by loading the required code for the test, beginning with �X�a�g. Because this test
has to work with event handlers, it needs to load the System assembly and create a �H�n�h�i�Z�b�#�:�k�Z�c�i�6�g�\�h
object, �:�k�Z�c�i�6�g�\. Because the event handlers in this application don’t actually use the event arguments,
�:�k�Z�c�i�6�g�\ is actually a default object with no content. The call simply won’t succeed without it, how -
ever, so you must create it.

After the script �nishes the prerequisites, it performs the �rst test, which is to create the Windows
Forms object, �;�d�g�b�&, as �B�n�;�d�g�b. The creation process could fail; you want to verify that �B�n�;�d�g�b isn’t
null, so that’s the �rst test that relies on the �8�]�Z�X�`�I�n�e�Z���� function. You don’t have to show the form

LISTING 18�4 (continued)

Testing Applications �X 401

to test it, so the code doesn’t call �H�]�d�l�9�^�V�a�d�\����. If you do decide to show the form, you’ll actually
need someone to work with it. The script is suspended during the time the form appears onscreen.

The next step is to perform some tasks with the form. The code performs a default add
and subtract. The two value �elds, �B�n�;�d�g�b�#�i�m�i�K�V�a�j�Z�&�#�I�Z�m�i and �B�n�;�d�g�b�#�i�m�i�K�V�a�j�Z�'�#�I�Z�m�i,
contain default values that you can use for testing. Actually, it’s good application design to
always include default values for the user so that the user has some idea of what kind of content
to provide.

The �B�n�;�d�g�b�#�W�i�c�6�Y�Y�T�8�a�^�X�`���� and �B�n�;�d�g�b�#�W�i�c�H�j�W�i�g�V�X�i�T�8�a�^�X�`���� event handlers perform the actual
addition and subtraction. In order to call these two methods, you must supply both a sender object
and event arguments. The sender object can simply be an object because the code doesn’t use it.

The �nal test in the example is to change one of the values and perform another addition. To perform
this task, the script changes the value of �B�n�;�d�g�b�#�i�m�i�K�V�a�j�Z�&�#�I�Z�m�i and calls �B�n�;�d�g�b�#�W�i�c�6�Y�Y�T�8�a�^�X�`����.
Normally, you’d provide a wealth of additional tests to check various values and see how they react
with the code. For example, you might provide some negative values to ensure that the event handlers
work properly with them. You might also test incorre ct input, such as providing a string. The point is
that you can completely automate any level of testing using this IronPython script technique.

Performing the Application Test
At this point, you have an application to test and the script to test it. It’s time to run the application.
One of the problems you could encounter is not making something public (such as an object, control,
or property) that you need to test (the default is to create private objects, controls, and properties).
Unfortunately, the need to make class members public is one of the problems of using IronPython for
desktop application testing. It’s not a big problem, but you need to consider it. When working with an
extremely large application, changing the required member visibility could prove problematic. In addi -
tion, making some members public could pose security risks.

Let’s hope everything works as anticipated when you run the test. Figure 18-4 shows typical output
from this application.

As with the DLL testing script, this script outputs text that’s easy to read and results that are easy
to decipher. You know immediately whether certain tests have failed and precisely what inputs were
used to conduct the test. As with DLL testing, you may need to use some other form of output, such
as an XML �le, when performing testing on complex applications because the content won’t �t
entirely onscreen.

Applications can present a number of problems for this kind of testing. For
example, you wouldn’t want to make the password �eld of a security dialog
box public because someone else could possibly intercept user passwords as a
result. It’s always a good idea to return the members that you’ve made public
to private status to ensure that the application works in a secure manner when
you put it into production.

402 �X CHAPTER 18 USING IRONPYTHON FOR APPLICATION TESTING

FIGURE 18�4: Desktop applications can prove di�cult to test, but the results are worth it.

PERFORMING COMMAND LINE TESTS

For many developers, testing must be formal or it really isn’t testing. Actually, ad hoc testing is
sometimes better because you get to play with the application while you test it. Testing in an ad hoc
manner at the command line is possible in IronPython because it’s an interpreted environment. In
fact, we’ve been performing ad hoc testing throughout the book. Every time you reviewed the con-
tent of an application, no matter what type it was, using the �Y�^�g���� function, you were performing a
kind of ad hoc testing because you were reviewing the content of the application.

To provide a more concrete example, both Chapters 16 and 17 discussed the use of operator over-
rides in the �8�V�a�X�h extension DLL. In this case, the �Y�^�g���� function showed that the � operator

Performing Command Line Tests �X 403

override resulted in the addition of the �T�T�V�Y�Y�T�T���� and �T�T�g�V�Y�Y�T�T���� methods. The test demon-
strated that the DLL had added the overrides correctly and that you should be able to access them
from an application. In addition, you discovered that IronPython views the content of the DLL in
a slightly different manner than another environment might view them.

Let’s look at a speci�c test example, the �I�Z�h�i�9�A�A�#�9�A�A �le. For the purposes of this example, you want
to use the �Y�^�g���� function to determine whether the Accounts class contains everything it should (and
nothing it shouldn’t), as shown in Figure 18-5. Notice that there’s no mention of Total in thi s list, but
you can see all of the properties and methods described in Listing 18-1.

FIGURE 18�5: Make sure you check the actual content of the DLL against the expectations you have for it.

If you remember from Chapters 16 and 17, the �T�T�Y�d�X�T�T���� function is unde�ned for an assembly
that you import into IronPython, but the �]�Z�a�e���� function does produce a result. One of the next
checks you should perform manually is to verify that the assembly provides the kind of information
you expect from help. Figure 18-6 shows the output of the �]�Z�a�e���� function for the �6�X�X�d�j�c�i�h class.
Notice that it contains all of the information you e xpect, including the fact that there are two forms
of �T�T�c�Z�l�T�T����, the constructor, and the read/write state of the various properties.

Of course, you’ll want to perform other sorts of manual testing that could eventually appear in your
test script. For example, you might decide to check whether the �6�X�X�d�j�c�i�h class will let you create an
account with a negative starting amount (it will).

It would be also helpful to know whether someone could circumvent some of the properties in the
Accounts class. You wouldn’t want someone to use code such as �6�X�X�d�j�c�i�'���2���6�X�X�d�j�c�i�'��� ���'�% to
overcome the protections in the Deposit property. In this case, the test displays an error. Another
check might include adding two accounts together, such as �6�X�X�X�d�j�c�i�(���2���6�X�X�d�j�c�i�&��� ���6�X�X�d�j�c�i�'.

By now, you should have the point of using manual testing. You can creatively think of ways that
someone might try to overcome protections in your code. It probably isn’t possible to �nd every
avenue of entry into a DLL, but testing in this way helps you think through more potential prob -
lems that other forms of testing allow. Interactively probing your code is a unique method of test-
ing the impossible.

404 �X CHAPTER 18 USING IRONPYTHON FOR APPLICATION TESTING

FIGURE 18�6: Verify that the help() function doesn’t show any surprises about your assembly.

USING IRONPYTHON CONSTRUCTIVELY

This chapter has discussed and demonstrated some of the techniques you can use to work with
IronPython for application testing. Because IronPython works outside the application, it tends not
to interfere with the application’s internal processing as some other testing tools can. In addition,
you’ve discovered that IronPython can �nd errors quickly, especially those that tend to cause the
most trouble. By creating a good test harness, you can possibly use parts of a test suite to work with
other applications (depending on the purpose of that application and how you coded it).

It’s time for you to try IronPython out as a testing tool. Begin with the sample applications in this
chapter. Work through the examples to see how IronPython performs its job. After you get done with
the example, try creating a test harness for some of the simpler applications you’ve created and then
work your way up. You’ll �nd that creating a test harn ess in IronPython is relatively fast, and the
interpretive nature of IronPython makes it easy to create the test harness one step at a time.

Chapter 19 explores another exciting possibility for using IronPython — on another platform,
such as Linux. That’s right! You might initially thi nk that IronPython is married to the .NET
Framework (and it is, in certain situations), but you can do a great deal with IronPython using a
.NET Framework alternative called Mono. Using Mono i s interesting because it also lets you use
IronPython on the one Windows platform that doesn’t support a full implementation of the .NET
Framework, Windows Server 2008 Server Core Edition.

Using IronPython with Mono

WHAT’S IN THIS CHAPTER?

�° De�ning Mono and its features��

Getting and con�guring Mono���°

Using Mono and IronPython together���°

Using Mono with other .NET languages���°

If you buy into the idea that IronPython only works on the Windows platform, you’re losing
out on a lot of the power of IronPython. In fact, Iro nPython works �ne on a number of plat -
forms, including Linux and the Macintosh. The secret, as is the case in so many situations, is
to think outside the box. There’s a little product called Mono that Microsoft would rather you
didn’t think about too much. Mono is an alternative f or the .NET Framework that runs many
(but not all) .NET applications just �ne. Because IronPython is mainly a character mode kind
of an application development platform, you can use the vast majority of your IronPython
applications on any platform that supports Mono.

Because Mono is such a big secret, this chapter begins with an overview of Mono. You won’t
get every detail about what Mono has to offer, but you’ll obtain enough information to use
IronPython comfortably with Mono. If you do decide t hat Mono is the product for you, you
should probably obtain a Mono-speci�c book because Mono has too much to offer to discuss
it in just one chapter.

Your system probably doesn’t have Mono installed, so the next step is to obtain a copy and
install it on your machine. Mono won’t cost you a penny, so all you really need to invest is a
bit of time to work through the examples in this chapter. (Mono is an open source product
that is sponsored by Novell.) The next section shows how to work with IronPython using
Mono. However, IronPython and Mono are such a good match that you’ll �nd many of yo ur
applications will run just �ne under Mono.

19

406 �X CHAPTER 19 USING IRONPYTHON WITH MONO

Many developers are worried that the extensions they create for IronPython won’t work under
Mono. Unfortunately, not every extension will run under Mono, but you’ll be su rprised to discover
that Mono comes with fewer limitations than you might think. The section “Interacting with Other
.NET Languages Under Mono” later in this chapter discusses a few issues you should know about
when using your extension on another platform to support IronPython.

Finally, the chapter discusses application testing. Actually, there are fewer issues here than you might
think. Mono provides good support for many of the test ing techniques that you already use. However,
you might �nd that you need to obtain a few additiona l tools to create a full testing solution. Some
platforms simply require that you buy a testing tool for that platform, but take time to read this section
before you come to any conclusions on your own.

WHAT IS MONO?

Mono (�]�i�i�e�/�$�$�l�l�l�#�b�d�c�d�"�e�g�d�_�Z�X�i�#�X�d�b�$) is a run time along the same lines as the .NET Framework,
and it includes much of the functionality of the .NET Framework. In fact, with each release, Mono
gets a bit closer to .NET Framework functionality. How ever, don’t get the idea that Mono will ever
exactly match the .NET Framework. Platform differences, Microsoft copyrights, and other issues will
always keep Mono just a bit different from the .NET Framework. Even so, Mono can run a consider-
able number of .NET applications. The following sections describe Mono, its advantages and limita-
tions, in greater detail.

An Overview of the Mono Family
You can obtain Mono for a considerable number of platforms. In fact, the makers of Mono add
new platforms with every release. At one time, Mono worked on just a few Linux implementations,
Windows, and the Mac OS X. Over time, Mono support h as increased to the exciting list of platforms
that follows.

�°�� LiveCD: This is actually an openSUSE 11.2.1 (�]�i�i�e�/�$�$�l�l�l�#�d�e�Z�c�h�j�h�Z�#�d�g�\�$�Z�c�$) LiveCD
(a CD or DVD that contains a bootable image — see �]�i�i�e�/�$�$�Z�c�#�l�^�`�^�e�Z�Y�^�V�#�d�g�\�$�l�^�`�^�$
�A�^�k�Z�T�8�9 for details) that includes Mono 2.6.1.

���° Mac OS X: You can use this installation on a number of Mac versions including Mac OS X
Tiger (10.4), Leopard (10.5), and Snow Leopard (10.6) (it may work on other versions as well,
but you’re on your own for support). The download includes Mono, Cocoa#, and Gtk# (GIMP
Toolkit Sharp). You need to download the Client Software Development Kit (CSDK), available
on the Mono site, separately. There are separate downloads for the Intel and PowerPC plat-
forms. You can learn more about Mac OS X at �]�i�i�e�/�$�$�l�l�l�#�V�e�e�a�Z�#�X�d�b�$�b�V�X�d�h�m�$.

Computer acronyms and abbreviations often contain terms within terms. GIMP
stands for GNU Image Manipulation Program. Of course , GNU is one of those
fancy recursive abbreviations that stands for GNU’s Not Unix. You can learn
more about Gtk# at �]�i�i�e�/�$�$�l�l�l�#�b�d�c�d�"�e�g�d�_�Z�X�i�#�X�d�b�$�<�i�`�H�]�V�g�e. You can obtain
a .NET Framework version of the Gtk# library from �]�i�i�e�/�$�$�[�i�e�#�c�d�k�Z�a�a�#�X�d�b�$
�e�j�W�$�b�d�c�d�$�\�i�`�"�h�]�V�g�e�$; simply download �\�i�`�"�h�]�V�g�e�"�'�#�&�'�#�.�"�'�#�l�^�c�(�'�#�b�h�^.

What Is Mono? �X 407

���° openSUSE: You can use this download for the openSUSE 11.0, 11.1, and 11.2 platforms. You
must have your own system with openSUSE installed to use it. You can download openSUSE
at �]�i�i�e�/�$�$�h�d�[�i�l�V�g�Z�#�d�e�Z�c�h�j�h�Z�#�d�g�\�$. Just in case you’re interested, the SUSE part of the
name stands for Software und System-Entwicklung, which translates to software and systems
development.

���° SLES/SLED: You can use this download for SUSE Linux Enterprise Server (SLES) or
SUSE Linux Enterprise Desktop (SLED). SLES and SLED are the paid versions of SUSE
from Novell. As with openSUSE, you must have your own system with SLES or SLED
installed to use this version of Mono. You can �nd out more about SLES and SLED at
�]�i�i�e�/�$�$�l�l�l�#�c�d�k�Z�a�a�#�X�d�b�$�a�^�c�j�m�$.

���° Virtual PC: This is actually an openSUSE 11.2.1 virtual PC image that includes Mono 2.6.1.
You could use this download to check out Linux functionality for your IronPython applica-
tion on your PC without leaving Windows. Of course, performance won’t be very good, but
it will get the job done.

���° VMware: This is actually an openSUSE 11.2.1 VMware image that includes Mono 2.6.1.
You’d use it to check your application for Linux functionality without leaving the host
operating system.

���° Windows: You can of�cially use this download for Windows 2000, XP, 2003, and Vista.
Testing shows that it also works �ne for Windows 7 and Windows Server 2008. The download
includes Mono for Windows, Gtk# (a graphics library to display a user interface onscreen), and
XSP (eXtensible Server Pages, an alternate Web server for serving ASP.NET pages). You can
also get the Mono Migration Analyzer tool as a separate download.

���° Other: This is a group of less supported platforms including Debian and Ubuntu. At least these
two platforms have supported packages. You can also get Mono in an unsupported form for
Solaris, Nokia, and Maemo. Theoretically, you could support yet other platforms by compiling
the source code found at �]�i�i�e�/�$�$�[�i�e�#�c�d�k�Z�a�a�#�X�d�b�$�e�j�W�$�b�d�c�d�$�h�d�j�g�X�Z�h�"�h�i�V�W�a�Z�$.

Of course, this list contains only a summary of the main Mono downloads. There are a large num-
ber of Mono add-ons a well. For example, you can obtain Mono Tools for Visual Studio (�]�i�i�e�/�$�$
�\�d�"�b�d�c�d�#�X�d�b�$�b�d�c�d�i�d�d�a�h�$�Y�d�l�c�a�d�V�Y�$) if you want to work with Mono directly from Visual Studio.
Unfortunately, the current version of this product only works with Visual Studio 2008. The developer
should provide a Visual Studio 2010 version soon. You can obtain a trial version of Mono Tools for
Visual Studio (registration is required), but you must pay for the full version.

You might also decide that you want to eschew Visual Studio for something
speci�cally designed for Mono. In this case, you should at least look at Mono
Develop (�]�i�i�e�/�$�$�b�d�c�d�Y�Z�k�Z�a�d�e�#�X�d�b�$). Mono Develop comes in a form for most
platforms that Mono supports, so you can use the same IDE on any platform you
require. For the time being at least, Mono Develop is free, so download it and
give it a try.

408 �X CHAPTER 19 USING IRONPYTHON WITH MONO

IronPython does include support for Silverlight development. If you plan to use IronPython for Web
applications and need to support multiple platforms, you might want to look at Moonlight (�]�i�i�e�/�$�$
�b�d�c�d�"�e�g�d�_�Z�X�i�#�X�d�b�$�B�d�d�c�a�^�\�]�i) instead. This Silverlight replacement works on the same platforms
that Mono does and should also work �ne with IronPytho n.

Some of the extensions to Mono are well outside the scope of this book, but are interesting to
contemplate. For example, you can get Mono Touch (�]�i�i�e�/�$�$�b�d�c�d�i�d�j�X�]�#�c�Z�i�$) to develop appli-
cations for the iPhone and iPod Touch devices. The point is that you can probably �nd some form
of Mono to meet just about any need, but using Mono fully means learning some new techniques,
such as creating user interfaces using Gtk#.

Considering the Reasons for Using Mono
You already know the reasons that you’re using the .NET Framework and this chapter isn’t about
changing your mind. The .NET Framework is stable and many developers love the functionality it
provides them for building great applications. However, you could think of Mono as another tool
to extend the range of your applications. If for no other reason, the fact that you could run your
IronPython application on Linux or the Mac OS X make s Mono a good choice for some forms of
application development. In sum, the main reason for using Mono in place of the .NET Framework
is �exibility.

As previously mentioned, Mono and the .NET Framework aren’t precisely the same. The �rst thought
that most developers will have is that compatibility issues will be bad, and to a certain extent, they do
cause problems. However, Mono also provides functionality that you won’t �nd when working with
the .NET Framework. Features such as Gtk# actually make Mono a better product. In addition, with
Mono you have a lightweight Web server for ASP.NET pages, XSP, that works on every Mono plat-
form. Therefore, the differences between Mono and the .NET Framework aren’t always bad — some-
times they become downright useful.

Mono does provide direct support for IronPython, but you need to use a newer version of Mono (see
�]�i�i�e�/�$�$�l�l�l�#�b�d�c�d�"�e�g�d�_�Z�X�i�#�X�d�b�$�E�n�i�]�d�c for details). The support isn’t all that good. The section
“Running the Application from the Command Line” later in this chapter demonstrates the prob-
lem of using the Mono implementation of IronPython. Even so, you do get IronPython support that
will likely improve as Mono improves, so this is an area where you can expect Mono to grow as an
IronPython platform. In reality, the Mono community is quite excited about IronPython. You can
�nd tutorials for using IronPython in a Mono environm ent at �]�i�i�e�/�$�$�o�Z�i�X�d�Y�Z�#�X�d�b�$�i�j�i�d�g�^�V�a�h�$
�^�g�d�c�e�n�i�]�d�c�i�j�i�d�g�^�V�a�$. If you want to see IronPython running under Mono on a Linux system, see
the screenshot and description at �]�i�i�e�/�$�$�l�l�l�#�^�g�d�c�e�n�i�]�d�c�#�^�c�[�d�$�^�c�Y�Z�m�#�e�]�e�$�B�d�c�d.

Understanding Mono Limitations
Don’t get the idea that every .NET application will instantly run on Mono. For example, while Mono
includes support for Language Integrated Query (LINQ), the support isn’t perfect. The LINQ to SQL
support works �ne for many applications, but not all of them. The Mono developers realize that the
support isn’t complete and they plan to work on it (see the release notes at �]�i�i�e�/�$�$�l�l�l�#�b�d�c�d�"�e�g�d�_�Z�X�i��
�#�X�d�b�$�G�Z�a�Z�V�h�Z�T�C�d�i�Z�h�T�B�d�c�d�T�'�#�+�#�& for details).

There are some obvious limitations for using Mono that should come to mind immediately. Because
the purpose of Mono is to work across platforms, the P/Invoke calls in your extensions aren’t going

What Is Mono? �X 409

to work. A P/Invoke call causes your extension to provide Windows-speci�c support, so using it on
Linux wouldn’t work no matter what product you tried . The previous chapters in the book have
emphasized when a particular technique is unlikely to produce useful cross-platform results.

The Mono developers want you to be able to move your applications from the
.NET Framework to Mono so they’ve provided some assistance in the form of
the Mono Migration Analyzer (MoMA). You should check any application you
want to run under Mono using this tool. The download is free from �]�i�i�e�/�$�$
�b�d�c�d�"�e�g�d�_�Z�X�i�#�X�d�b�$�B�d�B�6. There’s also a version of MoMA for openSUSE users
available on the Web site.

The current version of Mono doesn’t work with .NET F ramework 4.0 applications. The applica-
tions won’t start at all — you see an error message instead. However, Mono does work �ne with
older versions of the .NET Framework. It’s only a matter of time before Mono supports the .NET
Framework 4.0, so this is a short-term limitation that you can easily overcome by using an older
version of the .NET Framework when building your application. Given that IronPython doesn’t
currently support the .NET Framework 4.0 in many respects, this particular problem isn’t much
of an issue for IronPython developers.

In a few cases, you have to look around to determine whether you’ll encounter problems using
Mono for a particular task. For example, if your ASP.NET application uses Web Parts, you can’t
use Mono (see �]�i�i�e�/�$�$�l�l�l�#�b�d�c�d�"�e�g�d�_�Z�X�i�#�X�d�b�$�6�H�E�#�C�:�I). You also can’t use a precompiled
updateable Web site.

Using Mono on Windows Server 2008 Server Core
Early versions of Windows Server 2008 Server Core (Server Core for short) don’t come with any form
of the .NET Framework. Consequently, you can’t run any form of .NET application on early versions
of Server Core unless you use Mono. The lack of .NET Framework support on Server Core led some
people to come up with odd solutions to problems, such as running PowerShell (see the solution at
�]�i�i�e�/�$�$�Y�b�^�i�g�n�h�d�i�c�^�`�d�k�#�l�d�g�Y�e�g�Z�h�h�#�X�d�b�$�'�%�%�-�$�%�*�$�&�*�$�e�d�l�Z�g�h�]�Z�a�a�"�d�c�"�h�Z�g�k�Z�g�"�X�d�g�Z�$).

Fortunately, Microsoft decided to provide a limited version of the .NET Framework for Windows
Server 2008 Server Core Edition R2. You can read about it at �]�i�i�e�/�$�$�i�Z�X�]�c�Z�i�#�b�^�X�g�d�h�d�[�i�#�X�d�b�$
�a�^�W�g�V�g�n�$�Y�Y�-�-�(�'�+�-�#�V�h�e�m. However, this version of the .NET Framework still has signi�cant limita -
tions and you might actually �nd it better to use Mono for your .NET applications. For example,
while you can now provide limited support for ASP.NET on Server Core, you might actually �nd
the Mono alternative, XSP, to provide the solutions you need for your application.

Mono has generated quite a bit of interest from the Server Core crowd, especially anyone who
uses Server Core as their main server. Server Core has a number of advantages that makes it popu-
lar with small- to medium-sized companies. It uses far less memory and other resources, runs
faster, runs more reliably, and has a far smaller attack surface for those nefarious individuals who
want to ruin your day by attacking your server. You can �nd a complete article about running
applications on Server Core using Mono at �]�i�i�e�/�$�$�l�l�l�#�Y�Z�k�h�d�j�g�X�Z�#�X�d�b�$�X�$�V�$�6�g�X�]�^�i�Z�X�i�j�g�Z�$
�B�^�m�^�c�\�"�H�Z�g�k�Z�g�"�8�d�g�Z�"�l�^�i�]�"�C�:�I�"�6�e�e�a�^�X�V�i�^�d�c�h�$.

410 �X CHAPTER 19 USING IRONPYTHON WITH MONO

OBTAINING AND INSTALLING MONO

It’s time to obtain and install your copy of Mono. O f course, the �rst step is to download the prod-
uct. You can �nd the various versions of Mono at �]�i�i�e�/�$�$�l�l�l�#�\�d�"�b�d�c�d�#�X�d�b�$�b�d�c�d�"�Y�d�l�c�a�d�V�Y�h�$
�Y�d�l�c�a�d�V�Y�#�]�i�b�a. This section assumes you’re installing Mono version 2.6.1 on a Windows system. If
you need to install Mono on another system, follow the instructions that the Mono Web site provides
for those versions. After you complete the download, follow these steps to perform the installation.

1. Double-click the �b�d�c�d�"�'�#�+�#�&�"�\�i�`�h�]�V�g�e�"�'�#�&�'�#�.�"�l�^�c�(�'�"�&�#�Z�m�Z �le you downloaded from
the Mono Web site. You see a Welcome page.

2. Click Next. You see a License page.

3. Read the licensing information. Select I Accept the Agreement, and then click Next. You see
the Information page shown in Figure 19-1. Unlike most Information pages, this one actu-
ally contains a lot of useful information. Make sure you review the information it contains
and click on the links it provides as needed. Especially important for keeping updated on
Mono is joining the mailing list (�]�i�i�e�/�$�$�l�l�l�#�b�d�c�d�"�e�g�d�_�Z�X�i�#�X�d�b�$�B�V�^�a�^�c�\�T�A�^�h�i�h) or
forums (�]�i�i�e�/�$�$�l�l�l�#�\�d�"�b�d�c�d�#�d�g�\�$�[�d�g�j�b�h�$). You can �nd these links at the bottom of the
Information page.

FIGURE 19�1: Make sure you review this Information page
because it contains useful information.

4. Read the release information and then click Next. You see the Select Destination Location
page shown in Figure 19-2. Normally, you can accept the default installation location. Some
developers prefer a less complex path to Mono, such as simply C:\Mono, to make it easier to
access from the command line. The chapter uses the default installation location.

Obtaining and Installing Mono �X 411

FIGURE 19�2: Select an installation location for Mono.

5. Provide an installation location for Mono and then click Next. You see the Select Components
page shown in Figure 19-3. The components you select depend on what you plan to do with
Mono — you can always change your setup later if necessary. If your only goal is to try
Mono for your existing .NET applications and to create some simple IronPython applica-
tions, you really don’t need the Gtk# and XSP support. This chapter assumes that you per-
form a Compact Installation to obtain a minimum amount of support for working with the
IronPython sample application.

FIGURE 19�3: Choose the Mono components that you want
to install.

412 �X CHAPTER 19 USING IRONPYTHON WITH MONO

6. Select the components you want to install and then click Next. You see the Select Start Menu
Folder page. This is where you choose a name for the folder that holds the Mono components.
The default name normally works �ne.

7. Type a name for the Start menu folder (or simply accept the default) and then click Next. You
see the Ready to Install page. This page provides a summary of the options that you’ve selected.

8. Review the installation options and then click Install. You see the Installing page while the
installer installs Mono on your machine. After a few minutes, you see a completion dialog box.

9. Click Finish. You’re ready to begin using Mono.

CREATING AN IRONPYTHON APPLICATION WITH MONO

It’s time to begin working with Mono and IronPython to create an application. Of course, you’ll
want to know a bit more about how Mono works before yo u just plunge into the project, so the �rst
step is to look at Mono from a command line perspective. The �rst section that follows shows how
to create an �>�E�N environment variable and use it to open the IronPython console using Mono when-
ever you need it. The sections that follow show how to create a project, build a simple IronPython
application, and then test the application in a number of ways.

Working at the Command Line
Mono works differently than the .NET Framework. When you want to use the .NET Fr amework to
execute an application, you simply double-click the application and it starts. The same doesn’t hold
true for Mono. If you want to execute an application using Mono, you must open the Mono command
prompt and start it by speci�cally specifying Mono. Un fortunately, this limitation has an unusual
effect on working with IronPython because you can no longer access �>�E�N�#�:�M�: using the �E�V�i�] environ-
ment variable. Instead, you must create a special �>�E�N environment variable using the following steps.

1. Double-click the System applet in the Control Panel and choose the Advanced tab. You see
the System Properties dialog box.

2. Click Environment Variables. You see the Environment Variables dialog box.

3. Click New in the System Variables section of the Environment Variables dialog box if you want
to use IronPython from any account on the machine or the User Variables section if you want to
use IronPython only from your personal account. You see a New System Variable or New User
Variable dialog box. Except for the title, both dialog boxes are the same.

4. Type IPY in the Variable Name �eld.

5. Type C:\Program Files\IronPython 2.6\ or the location of your IronPython installation in
the Variable Value �eld.

6. Click OK three times to add the new environment variable, close the Environment Variables
dialog box, and close the System Properties dialog box. You’re ready to begin working with
IronPython.

Creating an IronPython Application with Mono �X 413

At this point, you’re ready to begin working with Mo no. Choose Start�����¶����Programs�����¶����Mono 2.6.1
for Windows �����¶����Mono-2.6.1 Command Prompt to display a Mono command prompt. When you
see the Mono command prompt, type �B�d�c�d���¸���>�E�N���>�E�N�#�:�M�:�¹ and press Enter. You’ll see the usual
IronPython console.

The �rst thing you should notice is that the .NET Fr amework version reporting by the IronPython
console is slightly different from the one you normally see. There isn’t any problem with this differ-
ence. In fact, it’s the only difference you’re going to notice as you work with the IronPython console.
Let’s give it a try so you can see for yourself. Type the following code and you’ll see the standard
responses shown in Figure 19-4.

�^�b�e�d�g�i���h�n�h��
�[�d�g���I�]�^�h�E�V�i�]���^�c���h�n�h�#�e�V�i�]�/
���������e�g�^�c�i���I�]�^�h�E�V�i�]

FIGURE 19�4: Running IronPython under Mono doesn’t really look any di�erent.

If you compare the results you see when running IronPython under the .NET Framework with the
results you see when running IronPython under Mono, you won’t notice any differences. In fact, you
can try out the applications in this book, and you won’t see any differences at all unless you need
to work with an extension or other outside code source (and you might not even see any differences
then). Working with Mono simply means you have access to more platforms when working with
IronPython, not that you have more limitations.

De�ning the Project
The project you create for working with Mono is goin g to be just a little different from the one you
create when working strictly with the .NET Framework . You’ll still start up IronPython using the
Visual Studio IDE, but there’s an extra step now: you must start Mono �rst. The following steps
describe how to create the project for this chapter.

1. Choose File�����¶����Open�����¶����Project/Solution. You see the Open Project dialog box shown in
Figure 19-5.

414 �X CHAPTER 19 USING IRONPYTHON WITH MONO

FIGURE 19�5: Use Mono as the starting point for your project.

2. Highlight �B�d�c�d�#�:�M�: in the �Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�B�d�c�d�"�'�#�+�#�&�Q�W�^�c folder of your machine (unless
you used a different installation folder) and click Open. Visual Studio creates a solution based
on Mono.

3. Right-click the Mono entry in Solution Explorer and choose Properties from the context
menu. You see the General tab of the Properties window shown in Figure 19-6.

FIGURE 19�6: Set the Mono con�guration for your project.

Creating an IronPython Application with Mono �X 415

4. Type �¸�8�/�Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�>�g�d�c�E�n�i�]�d�c���'�#�+�Q�>�E�N�#�:�M�:�¸���"�9���I�Z�h�i�B�d�c�d�#�e�n in the Arguments
�eld (change the folder location to match your IronPython installation).

5. Click the ellipses in the Working Directory �eld to display the Browse for Folder dialog box.
Locate the folder that contains the project you’re working on and click OK. The project
folder appears in the Working Directory �eld of the Properties window.

6. Choose File�����¶����Save All. You see a Save File As dialog box.

7. Type the solution name in the Object Name dialog box and click Save.

8. Right-click the solution entry in Solution Explorer and choose Add�����¶����New Item. You see the
Add New Item dialog box.

9. Highlight the Text File template. Type �I�Z�h�i�B�d�c�d�#�e�n in the Name �eld and click Add. Visual
Studio adds the Python �le to your project and automatically opens it for you.

Creating the Code
It’s time to add some code to the IronPython �le. This example provides a listing of the modules
that IronPython is using. If you compare this list to the one that IronPython provides when you
run the application using the .NET Framework, you’ll see the modules in a different order, but
otherwise the output is the same. Listing 19-1 shows the code used for this example.

LISTING 19�1: Creating a simple Mono test program

�����D�W�i�V�^�c���V�X�X�Z�h�h���i�d���i�]�Z���h�n�h���b�d�Y�j�a�Z�#
�^�b�e�d�g�i���h�n�h

�����D�j�i�e�j�i���V���a�^�h�i���d�[���b�d�Y�j�a�Z�h�#��
�e�g�^�c�i���»�>�g�d�c�E�n�i�]�d�c���B�d�Y�j�a�Z���A�^�h�i�^�c�\�Q�c�¼
�[�d�g���I�]�^�h�B�d�Y���^�c���h�n�h�#�b�d�Y�j�a�Z�h�/
���������e�g�^�c�i���I�]�^�h�B�d�Y�!���h�n�h�#�b�d�Y�j�a�Z�h�P�I�]�^�h�B�d�Y�R

�����E�V�j�h�Z���V�[�i�Z�g���i�]�Z���Y�Z�W�j�\���h�Z�h�h�^�d�c�#
�g�V�l�T�^�c�e�j�i���»�Q�c�E�g�Z�h�h���V�c�n���`�Z�n���i�d���X�d�c�i�^�c�j�Z�#�#�#�¼��

This example demonstrates a simple �[�d�g loop to iterate through the list of modules found in the �h�n�h��
�#�b�d�Y�j�a�Z�h dictionary. In this case, the code prints out two items. First, it prints out the module name.
Second, it prints out the module information, which normally includes the module location. As always,
the code ends with a pause, �g�V�l�T�^�c�e�j�i����, so that you can see the output before the window closes.

Running the Application from the I DE
Running the application is the �rst place you see some potential problems with using Mono. If you
click Start Debugging, you see the No Debugging Information dialog box shown in Figure 19-7. If
you click Yes, the program will run, but you won’t ge t any debugging support. This is one of the
problems with using Mono exclusively. You’ll probably want to use the normal .NET Framework
setup to debug your application �rst, and then move on to the Mono con�guration described in this
chapter to test the application under Mono.

416 �X CHAPTER 19 USING IRONPYTHON WITH MONO

FIGURE 19�7: Mono doesn’t provide any debugging support that
Visual Studio understands.

If you really do need Mono debugging, then you should consider adding Mono
support to Visual Studio or using one of the alternative Mono IDEs. The “An
Overview of the Mono Family” section of this chapter p rovides additional
details about these alternatives.

To start the application successfully, choose Debug�����¶����Start Without Debugging or press Ctrl+F5.
The program will run normally and you’ll see the usual message at the end. Pressing Enter displays
a second pause as shown in Figure 19-8. It seems that Mono provides its own pause so that you can
see the results of executing the program, which is a nice touch for those times when you forget to
add a pause of your own.

FIGURE 19�8: IronPython displays the list of modules found in the current setup.

Creating an IronPython Application with Mono �X 417

Running the Application from the Command Line
Interestingly enough, Mono does come with direct support for IronPython, but Mono supports
IronPython 1.1, and the IronPython console supplied with Mono seems to do odd things. Open a
Mono command prompt, type IPY, and press Enter. When you see the IronPython prompt, you’ll
see that it differs considerably from the one used throughout the book. Now try typing 1+1 and
pressing Enter. You’ll probably see results like those in Figure 19-9.

FIGURE 19�9: The IronPython console provided with Mono leaves a lot to be desired.

Of course, the question isn’t about the IronPython console, but whether it can run the example appli-
cation. Press Ctrl+C to break out of the mess you’re seeing onscreen. Type Y and press Enter when
you’re asked whether you want to stop the batch �le. Then type �>�E�N���I�Z�h�i�B�d�c�d�#�e�n and press Enter.
You’ll see that the application does indeed work, as shown in Figure 19-10. The number of modules is
far smaller than the list shown in Figure 19-8, but it’s correct for the version of IronPython provided
with Mono.

FIGURE 19�10: You can run the test application using the Mono version of IronPython.

The picture isn’t completely gloomy. Developers are constantly trying new solutions for working with
IronPython. You can �nd a potential �x for the proble ms described in this section of the chapter at
�]�i�i�e�/�$�$�^�g�d�c�e�n�i�]�d�c�"�j�g�a�h�#�W�a�d�\�h�e�d�i�#�X�d�b�$�'�%�%�.�$�%�+�$�b�d�c�d�"�X�V�c�"�c�d�l�"�X�d�b�e�^�a�Z�"�^�g�d�c�e�n�i�]�d�c�"�'�%��
�#�]�i�b�a. The solution comes with the caveat that it might not work for you.

418 �X CHAPTER 19 USING IRONPYTHON WITH MONO

INTERACTING WITH OTHER .NET LANGUAGES UNDER MONO

Mono originally focused its attention on C# development, but later added support for Visual Basic
.NET as well. At this point, you can run any Visual Studio 2008–created application written under
C# or Visual Basic.NET using Mono within the limitat ions described in the section “Understanding
Mono Limitations” earlier in this chapter. Even DLR code appears to run �ne in Mon o within the
current limits of the product, which aren’t many.

The question for this book is whether Mono will work with your IronPython application and its
extensions written in C# or Visual Basic.NET. The extensions found in Chapters 16 and 17 are a
good test case for using Mono in a multi-language scenario. During testing, the examples worked
�ne (except the P/Invoke example in Chapter 16) using Mono on a number of Windows platforms.
Of course, you’ll need to test them on your machine to see if they’ll work in your environment. As
with anything new and growing, Mono con�gurations don’t always work on every system.

Unfortunately, trying to get the Chapter 16 and 17 examples to work on an openSUSE setup didn’t
prove quite as simple. The IronPython part worked �ne, but trying to get the extensions to load and
work properly didn’t. The amount of documentation ava ilable to help with these sorts of problems
is currently limited, so troubleshooting becomes a nightmarish experiment in trying things one at a
time and �nding that many of them don’t work. If som eone does get the examples in Chapters 16 and
17 to work on Linux, I’d be really interested in kno wing. Please contact me at �?�B�j�Z�a�a�Z�g�5�b�l�i�#�c�Z�i.
The point is that you’ll probably �nd situations whe re your multi-language application won’t work on
other platforms as you originally intended.

USING IRONPYTHON CONSTRUCTIVELY

This chapter has helped you understand Mono as it applies to IronPython. By now you’re probably
thinking about all the possibilities of running your Iro nPython applications on a Macintosh, Linux
system, or even under Windows Server 2008 Server Core edition (which provides limited .NET
Framework support). Using Mono isn’t a perfect solution for applications that run on multiple plat -
forms, but it comes very close. An IronPython developer should �nd very little to dislike when it
comes to Mono.

Before you go any further, it’s time to have a bit of fun. Start trying your IronPython applications
with Mono. If you do �nd one or two that doesn’t run, try to �gure out why. In general, you’ll �nd
the limitations imposed by Mono are few, so it’s often a matter of tweaking something a bit here or
a bit there to get it to run. The thing is, by trying your applications under Mono, yo u can discover
which ones can run on all of the platforms that Mono supports right now. You don’t even have to
do anything special to make it work.

If you get serious about using Mono for all of your IronPython applications, you probably won’t
get quite enough information from this chapter to do everything. Make sure you take time to look
through the Mono sites presented in this chapter. It’s also important that you obtain a Mono-speci�c
book and start working through it. Now that your appe tite for things Mono has been whetted, take
some time to get the full Mono experience.

Using IronPython Constructively �X 419

Congratulations! You’ve �nished the book. Of course, you’ll want to check out the two appendices
as you have time. Appendix A tells you about the differences between IronPython and CPython.
This information is invaluable when you try to use applications created by CPython developers. In
most cases, these applications will work �ne. In a few cases, you can tweak the application to work
with IronPython. You’ll de�nitely run into a few insta nces where IronPython simply won’t run the
CPython application. Appendix B provides you with a list of CPython extensions that will work with
IronPython. Using these extensions can save you considerable time and effort. Please be sure to contact
me if you have any questions or comments about this book at �?�B�j�Z�a�a�Z�g�5�b�l�i�#�c�Z�i.

IronPython Di�erences
with CPython

WHAT’S IN THIS APPENDIX?

�° Considering standard types, functions, and behaviors��

De�ning which CPython libraries are missing���°

De�ning which extension modules are changed or missing���°

Working with custom CPython extensions���°

Using the interpreter and environment���°

Using garbage collection���°

IronPython has a lot of functionality, but throughou t the book you’ve probably noticed
that it isn’t precisely like CPython. In fact, there are more than a few differences between
IronPython and CPython. Some of these differences occur because of the way IronPython is
written. (IronPython is a managed application, CPython is written in C.) However, some of
the differences result from Microsoft’s interpretation of the speci�cation or its decision not to
follow the speci�cation in order to make IronPython interact with the other .NET languages
with greater ease. Whatever the differences, you need to know about them in order to avoid
potential problems when working through your applications.

IMPLEMENTING STANDARD TYPES,
FUNCTIONS, AND BEHAVIORS

Whenever you have two different teams working on a software product, some differences will
occur in implementation and behavior. The IronPython team is currently working on these
differences, but you can probably expect some of them to remain long-term. For example, you

A

422 �X APPENDIX A IRONPYTHON DIFFERENCES WITH CPYTHON

might see different error messages when working in IronPython than when you work with CPython.
The error number is the same, but the message is different. Other than making it harder to search
for information about the error online, the difference in wording really doesn’t cause a show-stopper
problem. Both IronPython and CPython carry on as before. However, the differences can prove con-
fusing to developers who are used to looking at the error message rather than the error number, so
it’s important that both products begin to display th e same error messages.

It would be easy to beat up on one party or another when it comes to language
implementations. The problem is that the Python language speci�cation found
at �]�i�i�e�/�$�$�l�l�l�#�e�n�i�]�d�c�#�d�g�\�$�Y�d�X�$�X�j�g�g�Z�c�i�$�g�Z�[�Z�g�Z�c�X�Z�$ isn’t always as clear
as it could be about certain language characteristics. The lack of clarity has
translated into different implementations of some features. Of course, now that
these problems are clear, the speci�cation should get an update to clarify them.
Unfortunately, past experience shows that no matter how well the speci�cation is
written, there will always be some wiggle room for different implementations so
you need to learn to work around them when building your application.

You’ll �nd other cases where IronPython and CPython behave differently. For example, when dis-
playing a traceback after an error, IronPython provides a caret (̂) to show the origin of the error.
CPython doesn’t provide the functionality.

There are a few cases where IronPython and CPython react differently to code. The following list
contains the most common issues that you’ll encounter. (Because the IronPython developers are con-
stantly �xing issues and developers are �nding new ones, you’ll also want to review the issue list at
�]�i�i�e�/�$�$�^�g�d�c�e�n�i�]�d�c�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$�L�d�g�`�>�i�Z�b�$�A�^�h�i�#�V�h�e�m.)

�°�� IronPython doesn’t support use of �T�T�g�Z�Y�j�X�Z�T�T���� or �T�T�g�Z�Y�j�X�Z�T�Z�m�T�T���� on the �C�d�c�Z object.
The problem is that IronPython doesn’t think it has an instance in which to use either method.

���° IronPython supports the use of �T�h�a�d�i�h�T on a �i�j�e�a�Z, whereas CPython raises an error if you
try to use �T�h�a�d�i�h�T. For example, the following code runs �ne in IronPython.

�X�a�V�h�h���[�d�d���i�j�e�a�Z���/
���������T�h�a�d�i�h�T���2���»�V�W�X�¼

���° Sometimes IronPython fails to show all the members of a type that has a metaclass. The
most common missed members are �T�T�Y�Z�a�V�i�i�g�T�T����, �T�T�\�Z�i�V�i�i�g�^�W�j�i�Z�T�T����, �T�T�]�V�h�]�T�T����,
�T�T�h�Z�i�V�i�i�g�T�T����, and �T�T�h�i�g�T�T����. You can still call the members.

���° If you attempt to get a method from a class that hasn’t been instantiated in IronPython, you
get an unbound method, while CPython returns a function.

���° Some IronPython modules have a �T�T�Y�^�X�i�T�T���� attribute de�ned that displays a list of the
module content. CPython modules don’t have this feature.

���° The �h�n�h�#�k�Z�g�h�^�d�c value is different between IronPython and CPython.

Missing CPython Libraries �X 423

���° The maximum recursion limit is unlimited in IronPython by default. You can call
�h�n�h�#�h�Z�i�g�Z�X�j�g�h�^�d�c�a�^�b�^�i���� to set an appropriate value. As an alternative to coding the
recursion change, you can use the �·�M�/�B�V�m�G�Z�X�j�g�h�^�d�c���&�%�%�% command line switch to give
IronPython behavior similar to that of CPython.

���° IronPython tends to be more lenient about the use of keyword arguments in many cases. For
example, IronPython will accept �P�R�#�V�e�e�Z�c�Y�#�T�T�X�V�a�a�T�T���^�i�Z�b�2�¼�V�W�X�¼�� as usable code, but
CPython will raise an error. In fact, IronPython is less restrictive in a number of ways. The
following code raises an error in CPython but works �ne in IronPython.

�m���2���»�¼
�m�#�X�Z�c�i�Z�g���&�!���[�^�a�a�X�]�V�g�2�¼���»��

���° The address returned by the �h�d�X�`�Z�i�#�h�d�X�`�Z�i���� method differs between IronPython and
CPython. Given an address of 0.0.0.0, IronPython returns 0.0.0.0 and CPython returns 0.

There are many other differences between IronPython and CPython that you can read about at
�]�i�i�e�/�$�$�^�g�d�c�e�n�i�]�d�c�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$�l�^�`�^�e�V�\�Z�4�i�^�i�a�Z�2�9�^�[�[�Z�g�Z�c�X�Z�h. Make sure you check the dif-
ferences for each IronPython version because the Web site doesn’t relist differences. In addition, some
of the difference entries aren’t complete. The version 2.0.x page at �]�i�i�e�/�$�$�^�g�d�c�e�n�i�]�d�c�#�X�d�Y�Z�e�a�Z�m��
�#�X�d�b�$�l�^�`�^�e�V�\�Z�4�i�^�i�a�Z�2�>�E�n�'�#�%�#�m�8�E�n�9�^�[�[�Z�g�Z�c�X�Z�h���g�Z�[�Z�g�g�^�c�\�I�^�i�a�Z�2�9�^�[�[�Z�g�Z�c�X�Z�h is an example.

MISSING CPYTHON LIBRARIES

IronPython isn’t a full implementation of CPython. Ye s, it has most of the pieces, but some pieces are
missing. A few of these pieces are written in C. IronPython relies heavily on pure Python modules,
so the C modules don’t appear in IronPython unless someone has written an alternative for them.
In some cases, the IronPython team simply hasn’t written the required module yet, but will in the
future. Table A-1 provides a list of the missing CPython libraries and what they do for you.

The IronPython team is constantly adding new functionality to IronPython.
This section lists the missing CPython libraries at the time of this writing (using
IronPython version 2.6.10920.0), but the IronPython te am will add at least
some of these modules in the future.

TABLE A�1: Missing CPython Libraries

LIBRARY NAME PURPOSE

ast.py This module provides Abstract Syntax Tree (AST) support in CPython. The purpose
of this library is to parse the current grammar for each Python version since the
grammar can change with each new version. You can read more about this module
at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�V�h�i�#�]�i�b�a.

continues

424 �X APPENDIX A IRONPYTHON DIFFERENCES WITH CPYTHON

LIBRARY NAME PURPOSE

cPro�le.py Python provides a number of pro�lers that developers can use to determine
the runtime performance of their application. The standard recommends using the
�X�E�g�d�[�^�a�Z pro�ler because it has low overhead and is suitable for long running
programs. You can �nd out more about the Python pro�lers at �]�i�i�e�/�$�$�Y�d�X�h
�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�e�g�d�[�^�a�Z�#�]�i�b�a.

csv.py One of the most common methods for storing database and spreadsheet informa-
tion in text format is Comma Separated Value (CSV). This module provides Python
support for CSV �les. Because there’s no CSV standard, this module provides gen-
eralized CSV support that will work on a range of �le formats. You can read more
about this module at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�X�h�k�#�]�i�b�a.

dbhash.py Originally, this module provided access to the Berkeley Software Distribution (BSD)
database library for Database Management (DBM)-style databases. In order to use
this module, the application must have access to the �W�h�Y�Y�W module. This module
has been deprecated and will probably be removed in Python 3.0. You can read
more about this module at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�Y�W�]�V�h�]�#�]�i�b�a.

gzip.py This module provides support for GNU ZIP (�#�\�o�^�e) �les, a kind of compression
commonly found on Linux systems, but not found very often on Windows machines
(although you might see it when downloading open source �les). In order to use
this module, the application must have access to the �o�a�^�W module. It’s also pos-
sible to use the �W�o�', �o�^�e�[�^�a�Z, and �i�V�g�[�^�a�Z modules to compress and decom-
press �les. You can read more about this module at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$
�a�^�W�g�V�g�n�$�\�o�^�e�#�]�i�b�a.

pty.py You can use the Pseudo-Terminal (PTY) utilities to start another process, and then
read and write from its controlling terminal. This module currently works reliably
only on Linux systems, even if you use a CPython implementation on Windows, so
it isn’t surprising that IronPython doesn’t implement this module yet. You can read
more about this module at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�e�i�n�#�]�i�b�a.

sre.py The Support for Regular Expressions (SRE) module provides support for Regular
Expressions under Python. The level of support is similar to that found in the Practical
Extraction and Report Language (PERL). You can read more about this module at
�]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�g�Z�#�]�i�b�a and �]�i�i�e�/�$�$�e�n�Y�d�X�#�d�g�\�$�'�#�(�#�(�$
�h�g�Z�#�]�i�b�a.

ssl.py Web applications of all types require security, especially with the rampant abuses
on the Internet today. The Secure Sockets Layer (SSL) module provides support for
SSL security within your Web (and other network) applications. In order to use this
module, you must have OpenSSL (�]�i�i�e�/�$�$�l�l�l�#�d�e�Z�c�h�h�a�#�d�g�\�$) installed on your
machine because the module makes low-level calls to this software. You can �nd
out more about this module at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�h�h�a�#�]�i�b�a.

TABLE A�1 (continued)

Missing CPython Libraries �X 425

LIBRARY NAME PURPOSE

stringprep.py Provides methods for preparing Unicode strings for Internet use according to the
requirements of RFC 3454 (�]�i�i�e�/�$�$�l�l�l�#�[�V�f�h�#�d�g�\�$�g�[�X�h�$�g�[�X�(�)�*�)�#�]�i�b�a). You
can �nd out more about this module at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$
�h�i�g�^�c�\�e�g�Z�e�#�]�i�b�a.

subprocess.py
and
subprocess
.pyc

Allows a Python application to spawn subprocesses and then interact with
them through their input, output, and error pipes. The host application also
receives the subprocess’s return code. This module replaces several older
modules including �d�h�#�h�n�h�i�Z�b, �d�h�#�h�e�V�l�c��, �d�h�#�e�d�e�Z�c��, �e�d�e�Z�c�'�#��, and
�X�d�b�b�V�c�Y�h�#��. You can read more about this module at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c
�#�d�g�\�$�a�^�W�g�V�g�n�$�h�j�W�e�g�d�X�Z�h�h�#�]�i�b�a.

symtable.py The �V�h�i module generates symbol tables right before Python generates byte
codes. This module provides access to the symbol tables so that you can examine
them in detail. You can read more about this module at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c
�#�d�g�\�$�a�^�W�g�V�g�n�$�h�n�b�i�V�W�a�Z�#�]�i�b�a.

tty.py This module provides terminal mode support. In order to use this module, the appli-
cation must have access to the �i�Z�g�b�^�d�h module. This module currently works reli-
ably only on Linux systems, even if you use a CPython implementation on Windows,
so it isn’t surprising that IronPython doesn’t implement this module yet. You can read
more about this module at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�i�i�n�#�]�i�b�a.

webbrowser
.py and
webbrowser
.pyc

This module provides Web browser controller support for applications. In most
cases, all you need to do is perform a little con�guration and then open the �le for
viewing. The behavior of this module varies on di�erent platforms so you need to
exercise some care when using it. This module doesn’t directly support Internet
Explorer, but does support the other major browsers. It does indirectly support
Internet Explorer through the �L�^�c�Y�d�l�h�9�Z�[�V�j�a�i option. You can read more about
this module at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�l�Z�W�W�g�d�l�h�Z�g�#�]�i�b�a.

CPython includes a number of compiled (�#�e�n�X) modules that don’t appear in IronPython. Even
though these are technically missing modules, the fact that you have a source code original makes
it possible to access the functionality these modules provide. Table A-2 provides a list of the missing
compiled modules.

TABLE A�2: Missing Compiled Modules

__future__.pyc _abcoll.pyc abc.pyc BaseHTTPServer.pyc

bdb.pyc bisect.pyc code.pyc codecs.pyc

codeop.pyc collections.pyc Con�gParser.pyc copy.pyc

continues

426 �X APPENDIX A IRONPYTHON DIFFERENCES WITH CPYTHON

copy_reg.pyc dis.pyc fnmatch.pyc functools.pyc

genericpath.pyc getopt.pyc heapq.pyc inspect.pyc

keyword.pyc linecache.pyc locale.pyc mimetools.pyc

ntpath.pyc opcode.pyc os.pyc pkgutil.pyc

pydoc.pyc Queue.pyc random.pyc re.pyc

repr.pyc rfc822.pyc shlex.pyc site.pyc

socket.pyc SocketServer.pyc sre_compile.pyc sre_constants.pyc

sre_parse.pyc stat.pyc string.pyc struct.pyc

tabnanny.pyc temp�le.pyc threading.pyc token.pyc

tokenize.pyc traceback.pyc types.pyc UserDict.pyc

warnings.pyc

MISSING OR CHANGED EXTENSION MODULES

Chapters 16 and 17 demonstrated the bene�ts of extension modules. With the proper extension
modules, you can perform amazing feats with IronPython. Unfortunately, some CPython extension
modules don’t work with IronPython for various reasons (some of which have to do with the fact that
the extensions are written in C). In other cases, IronPython does provide an alternative extension that
doesn’t work quite the same as the original CPython extension. Table A-3 provides a list of missing
and changed extension modules. See Table A-1 for a description of the associated libraries.

Early versions of IronPython were missing a lot of extension modules, but
support for extension modules has improved greatly with recent releases. This
section lists the missing CPython extension modules at the time of this writing,
but the IronPython team will add at least some of these modules in the future.

TABLE A�3: Missing and Changed Extension Modules

MODULE NAME MISSING OR CHANGED? NOTES

_bisect Missing Maintains lists in sorted order. You can read
more about this module at �]�i�i�e�/�$�$�e�n�Y�d�X
�#�d�g�\�$�'�#�*�#�&�$�T�W�^�h�Z�X�i�#�]�i�b�a and �]�i�i�e�/�$�$�Y�d�X�h
�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�W�^�h�Z�X�i�#�]�i�b�a.

TABLE A�2 (continued)

Missing or Changed Extension Modules �X 427

MODULE NAME MISSING OR CHANGED? NOTES

_csv Missing Provides support for the �#�X�h�k �le format. You can
read more about this module at �]�i�i�e�/�$�$�e�n�Y�d�X
�#�d�g�\�$�'�#�*�#�&�$�T�X�h�k�#�]�i�b�a and �]�i�i�e�/�$�$�Y�d�X�h
�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�X�h�k�#�]�i�b�a.

_heapq Missing Provides support for the heap queue algorithm.
You can read more about this module at �]�i�i�e�/�$�$
�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$�T�]�Z�V�e�f�#�]�i�b�a and �]�i�i�e�/�$�$
�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�]�Z�V�e�f�#�]�i�b�a.

_hotshot Missing Provides high performance logging pro�ler support.
You can read more about this module at �]�i�i�e�/�$�$
�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$�T�]�d�i�h�]�d�i�#�]�i�b�a and �]�i�i�e�/�$�$
�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�]�d�i�h�]�d�i�#�]�i�b�a.

_multibytecodec Missing Implements the multi-byte encoder and decoder.
You can read more about this module at �]�i�i�e�/�$�$
�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$�T�b�j�a�i�^�W�n�i�Z�X�d�Y�Z�X�#�]�i�b�a.

_subprocess Missing Allows subprocess management. You can read
more about this module at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c
�#�d�g�\�$�a�^�W�g�V�g�n�$�h�j�W�e�g�d�X�Z�h�h�#�]�i�b�a.

_symtable Missing Returns symbol and scope dictionaries used by
the compiler. You can read more about this mod-
ule at �]�i�i�e�/�$�$�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$�T�h�n�b�i�V�W�a�Z
�#�]�i�b�a and �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$
�a�^�W�g�V�g�n�$�h�n�b�i�V�W�a�Z�#�]�i�b�a.

_testcapi Missing Incorporates Python testing functionality. You can
read more about this module at �]�i�i�e�/�$�$�e�n�Y�d�X
�#�d�g�\�$�'�#�*�#�&�$�T�i�Z�h�i�X�V�e�^�#�]�i�b�a.

_winreg Missing Allows Windows registry access. You can read more
about this module at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$
�a�^�W�g�V�g�n�$�T�l�^�c�g�Z�\�#�]�i�b�a.

audioop Missing Manipulates raw audio data. You can read more
about this module at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$
�a�^�W�g�V�g�n�$�V�j�Y�^�d�d�e�#�]�i�b�a and �]�i�i�e�/�$�$�e�n�Y�d�X
�#�d�g�\�$�'�#�*�#�&�$�V�j�Y�^�d�d�e�#�]�i�b�a.

binascii Changed Performs conversions between binary data and
ASCII. Some methods don’t work as anticipated or
produce di�erent error information. You can read
more about this module at �]�i�i�e�/�$�$�e�n�Y�d�X
�#�d�g�\�$�'�#�*�#�&�$�W�^�c�V�h�X�^�^�#�]�i�b�a.

continues

428 �X APPENDIX A IRONPYTHON DIFFERENCES WITH CPYTHON

MODULE NAME MISSING OR CHANGED? NOTES

codecsiso2022 Missing Provides ISO 2022 codec (�]�i�i�e�/�$�$
�Z�c�#�l�^�`�^�e�Z�Y�^�V�#�d�g�\�$�l�^�`�^�$�>�H�D�$�>�:�8�T�'�%�'�')
support. You can read more about this module
at �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$
�X�d�Y�Z�X�h�#�]�i�b�a.

codecsjp, codecskr,
and codecstw

Missing Provides various types of codec support. You can
read more about these modules at �]�i�i�e�/�$�$�Y�d�X�h
�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�X�d�Y�Z�X�h�#�]�i�b�a.

doctest Missing Creates a framework for executing examples found
in document strings. You can read more about this
module at �]�i�i�e�/�$�$�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$�Y�d�X�i�Z�h�i
�#�]�i�b�a and �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$
�Y�d�X�i�Z�h�i�#�]�i�b�a.

imageop Missing Manipulates raw image data. You can read more
about this module at �]�i�i�e�/�$�$�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$
�^�b�V�\�Z�d�e�#�]�i�b�a and �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$
�a�^�W�g�V�g�n�$�^�b�V�\�Z�d�e�#�]�i�b�a.

md5 Missing Implements the Message Digest 5 (MD5) hash
algorithm used for security purposes. This extension
module is deprecated, and you should use
�]�V�h�]�a�^�W instead. You can read more about this
module at �]�i�i�e�/�$�$�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$�b�Y�*�#�]�i�b�a
and �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$
�b�Y�*�#�]�i�b�a.

mmap Missing Provides memory mapped �le support. You can
read more about this module at �]�i�i�e�/�$�$�e�n�Y�d�X
�#�d�g�\�$�'�#�*�#�&�$�b�b�V�e�#�]�i�b�a and �]�i�i�e�/�$�$�Y�d�X�h
�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�b�b�V�e�#�]�i�b�a.

msvcrt Missing Allows direct access to a number of useful
Microsoft Visual C++ runtime functions including
those that a�ect �le operations and console access.
You can read more about this module at �]�i�i�e�/�$�$
�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�b�h�k�X�g�i�#�]�i�b�a.

parser Missing Provides access to Python’s internal parser for
parse trees. You can read more about this module
at �]�i�i�e�/�$�$�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$�e�V�g�h�Z�g�#�]�i�b�a
and �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$
�e�V�g�h�Z�g�#�]�i�b�a.

TABLE A�3 (continued)

Missing or Changed Extension Modules �X 429

MODULE NAME MISSING OR CHANGED? NOTES

pickle Changed Provides access to the Python method for serial-
izing and de-serializing its object structure. The
IronPython version doesn’t support fast mode.
You can read more about this module at �]�i�i�e�/�$�$
�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$�e�V�g�h�Z�g�#�]�i�b�a and �]�i�i�e�/�$�$
�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�e�^�X�`�a�Z�#�]�i�b�a.

regex Missing Performs Regular Expression manipulation within
Python. You can read more about this module at
�]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�g�Z�#�]�i�b�a.

rgbimg Missing De�nes a method for reading and writing Silicon
Graphics, Incorporated (SGI) Red-Green-Blue (RGB)
graphics �les. You can read more about this module
at �]�i�i�e�/�$�$�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$�g�\�W�^�b�\�#�]�i�b�a
and �]�i�i�e�/�$�$�l�l�l�#�e�n�i�]�d�c�#�d�g�\�$�Y�d�X�$�'�#�)�$�a�^�W�$
�b�d�Y�j�a�Z�"�g�\�W�^�b�\�#�]�i�b�a.

select Missing Waits for I/O operations of various types to com-
plete. This module only works for sockets on
Windows systems. It works for a range of other
�le types, including pipes, on other platforms.
You can read more about this module at �]�i�i�e�/�$�$
�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$�h�Z�a�Z�X�i�#�]�i�b�a and �]�i�i�e�/�$�$
�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�h�Z�a�Z�X�i�#�]�i�b�a.

sha Missing Implements the Secure Hash Algorithm 1 (SHA-1)
hash algorithm used for security purposes. You
can read more about this module at �]�i�i�e�/�$�$
�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$�h�]�V�#�]�i�b�a and �]�i�i�e�/�$�$
�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�h�]�V�#�]�i�b�a.

signal Missing De�nes handlers for asynchronous events. The
.NET Framework doesn’t support signals. You
can read more about this module at �]�i�i�e�/�$�$
�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$�h�^�\�c�V�a�#�]�i�b�a and �]�i�i�e�/�$�$
�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$�h�^�\�c�V�a�#�]�i�b�a.

socket Changed Provides low-level support for the BSD socket
interface used for network communications. Some
methods don’t work as anticipated or produce dif-
ferent error information. You can read more about
this module at �]�i�i�e�/�$�$�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$
�h�d�X�`�Z�i�#�]�i�b�a and �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$
�a�^�W�g�V�g�n�$�h�d�X�`�Z�i�#�]�i�b�a.

continues

430 �X APPENDIX A IRONPYTHON DIFFERENCES WITH CPYTHON

MODULE NAME MISSING OR CHANGED? NOTES

strop Missing Provides support for common string operations. This
module is optimized for speed. You can read more
about this module at �]�i�i�e�/�$�$�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$
�h�i�g�d�e�#�]�i�b�a.

xxsubtype Missing Presents an example of how to subtype built-in
C types. You can read more about this module at
�]�i�i�e�/�$�$�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$�m�m�h�j�W�i�n�e�Z�#�]�i�b�a.

zipimport Missing De�nes a method for importing modules from
ZIP �les. You can read more about this module at
�]�i�i�e�/�$�$�e�n�Y�d�X�#�d�g�\�$�'�#�*�#�&�$�o�^�e�^�b�e�d�g�i�#�]�i�b�a
and �]�i�i�e�/�$�$�Y�d�X�h�#�e�n�i�]�d�c�#�d�g�\�$�a�^�W�g�V�g�n�$
�o�^�e�^�b�e�d�g�i�#�]�i�b�a.

USING CUSTOM CPYTHON EXTENSIONS

Getting your CPython extension to work with IronPytho n could prove dif�cult. In fact, you can’t
ever make compiled extensions, those with the �#�e�n�X �le extension, work with IronPython because
it simply doesn’t provide the required support. If your custom extension is written in pure Python
and doesn’t rely on any of the missing modules found in Table A-2, then it may very well work
with IronPython.

You don’t need to slog through the process of creating a solution for a custom
CPython extension alone. The Google group at �]�i�i�e�/�$�$�\�g�d�j�e�h�#�\�d�d�\�a�Z�#�X�d�b�$
�\�g�d�j�e�$�X�"�Z�m�i�Z�c�h�^�d�c�h�"�[�d�g�"�^�g�d�c�e�n�i�]�d�c can provide assistance with your cus-
tom CPython extension needs. In addition, some companies such as Resolver
Systems are looking for ways to make using CPython extensions a lot easier (see
the press release at �]�i�i�e�/�$�$�l�l�l�#�g�Z�h�d�a�k�Z�g�h�n�h�i�Z�b�h�#�X�d�b�$�c�Z�l�h�$�4�e�2�&�,).

It’s important to consider, however, that direct access limitations need not mean a complete lack of
access. For example, you could always write an extension wrapper using C# or Visual Basic.NET
using the technique found in the “Using C# for Win32 Support” section of Chapter 16. Using P/
Invoke makes it possible to access code that IronPython couldn’t ordinarily access. For this solution
to work, however, you must have a detailed knowledge of how the CPython extension works.

In some cases, you might �nd a third-party alternative for the CPython extension you want to use.
This solution is becoming more common every day as other developers �nd that they require access
to a particular CPython module that IronPython doesn’t support.

TABLE A�3 (continued)

Using Garbage Collection �X 431

INTERACTING WITH THE INTERPRETER AND ENVIRONMENT

The IronPython setup focuses more on .NET usage, rather than strict Python uses in some
respects. For example, IronPython doesn’t provide access to the Standard Library by default.
Chapter 6 explains techniques you can use to access the Standard Library and why this access is
important in some situations.

IronPython and CPython also behave differently in some situations. In some cases, this behavior is
by design or a necessity given the differing goals of the design teams. In other cases, the IronPython
team plans to �x the error or has asked the Python community about the issue and the Python com-
munity has found it acceptable. In fact, some of the following behavior issues might be �xed with
the next release of IronPython.

�°�� The actual error output might not be changed in response to a change to �h�n�h�#�h�i�Y�Z�g�g�d�g.

IronPython and CPython use different forms of command line editing support.���°

���° IronPython and CPython use differing command line options, which means that batch �les
created for one won’t necessarily work for the other.

���° Some �h�n�h module hooks may not work at all or may work differently than those in CPython.
For example, IronPython doesn’t implement the �h�n�h�#�\�Z�i�g�Z�[�X�d�j�c�i���� method.

���° It’s possible to access �T�T�Y�^�X�i�T�T����, �T�T�b�d�Y�j�a�Z�T�T����, �T�T�X�a�V�h�h�T�T����, and �T�T�^�c�^�i�T�T���� at the
global level, where CPython doesn’t allow global access.

USING GARBAGE COLLECTION

CPython relies on an older method of keeping track of objects, reference counting, which is similar to
the technique used in older Component Object Model (COM) applications. IronPython uses a newer
garbage collector. Relying on a garbage collector is actually an advantage for the IronPython developer.
The Python community as a whole has decided that using a garbage collector is acceptable. However,
using a garbage collector has the following implications for the IronPython developer.

�°�� No need to worry about circular references because the garbage collector ensures that such
instances are properly collected.

���° There’s no guarantee as to when �nalization occurs or system resources are freed. This has
implications for people who constantly create and then free resources. The system could very
well slow down when garbage collection occurs at inconvenient times.

���° Invoking the �T�T�Y�Z�a�T�T���� method doesn’t immediately delete the affected resource. The dele-
tion occurs during the next garbage collection cycle.

���° Calling �h�n�h�#�\�Z�i�g�Z�[�X�d�j�c�i���� returns an �6�i�i�g�^�W�j�i�Z�:�g�g�d�g because the �h�n�h module doesn’t
implement this feature.

���° CPython reuses �i�j�e�a�Z objects in some cases, but this behavior doesn’t occur in IronPython.

CPython Extensions
for IronPython

WHAT’S IN THIS APPENDIX?

�° Finding extensions that work��

Fixing extension problems���°

Finding third-party solutions to �x problems���°

In many cases, there’s code that’s already written for CPython that also works for IronPython.
You’ve already experienced using CPython code in Chapter 6 when working with the Standard
Library. The material in Chapter 6 also applies to third-party extensions. Some of these exten-
sions will work just �ne, especially if they’re written in pure Python and the re aren’t any odd
IronPython behaviors to consider (see Appendix A for details).

The sticky part comes when you try to work with CPython extensions that rely more heavily on
the C basis for CPython. In this situation, you need to create your own tool to make the extension
work, rely on a third-party tool to perform the heavy lifting, or simply emulate the behavior of
the CPython extension using .NET code. All of these solutions have problems.

The purpose of this appendix is to provide you with some tips and techniques for making
your CPython extensions run in IronPython. However, you need to face the fact that not
every CPython extension will work as you’d like it to , and some won’t work at all.

OBTAINING THE EXTENSIONS

You can �nd more than a few Python extensions on the Internet. For the most part, you see
them listed simply as Python extensions — not speci�cally IronPython or CPython extensions.
A number of these extensions are simply �#�e�n �les and probably work �ne for IronPython or

B

434 �X APPENDIX B CPYTHON EXTENSIONS FOR IRONPYTHON

CPython without any changes. However, when you see an extension listed as providing support for
Python, it’s better to assume that the person created it speci�cally for CPython. IronPython exten -
sions typically state that the developer created them for IronPython.

There are a number of places where you can �nd extensions speci�cally for IronPython. However,
sometimes you have to take the source code and build the module yourself. Fortunately, Chapters 16
and 17 tell you how to perform the task. The followi ng list provides information about various sites
to try in order to obtain extensions for IronPython ta sks, such as debugging your application
or con�guring a Web server.

�° �� Debugger: You might not be very impressed with the debugging features that IronPython
provides natively. Some people have decided to start looking at the problem and doing
something about it. You can �nd a start for a debugger at �]�i�i�e�/�$�$�W�a�d�\�h�#�b�h�Y�c�#�X�d�b�$
�_�b�h�i�V�a�a�$�V�g�i�^�X�a�Z�h�$�H�V�b�e�a�Z�T�B�Y�W�\�T�>�g�d�c�E�n�i�]�d�c�#�V�h�e�m. If you need an explanation of how
such a debugger would work, check out the article at �]�i�i�e�/�$�$�Y�Z�k�]�V�l�`�#�c�Z�i�$�'�%�%�.�$�%�'�$�'�,�$
�L�g�^�i�^�c�\� �6�c� �>�g�d�c�E�n�i�]�d�c� �9�Z�W�j�\�\�Z�g� �B�9�W�\� �&�%�&�#�V�h�e�m.

���° Web Server Gateway Interface (WSGI): There wasn’t an IronPython version of the WSGI
until Jeff Hardy (�]�i�i�e�/�$�$�_�Y�]�V�g�Y�n�#�W�a�d�\�h�e�d�i�#�X�d�b�$) put one together. The NWSGI (.NET
Web Server Gateway Interface) provides the functionality you need to provide full WSGI
support in your IronPython application. Download this extension at �]�i�i�e�/�$�$�c�l�h�\�^��
�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$�G�Z�a�Z�V�h�Z�$�E�g�d�_�Z�X�i�G�Z�a�Z�V�h�Z�h�#�V�h�e�m�4�G�Z�a�Z�V�h�Z�>�Y�2�(�+�'�+�-.

���° ASP.NET Dynamic Language Support: You’ll probably want to try IronPython with ASP.NET
at some point. Fortunately, you can get the information and software you need to perform
the task at �]�i�i�e�/�$�$�l�l�l�#�X�d�Y�Z�e�a�Z�m�#�X�d�b�$�l�^�`�^�e�V�\�Z�4�E�g�d�_�Z�X�i�C�V�b�Z�2�V�h�e�c�Z�i����
�i�^�i�a�Z�2�9�n�c�V�b�^�X���A�V�c�\�j�V�\�Z���H�j�e�e�d�g�i.

You may have found that Visual Studio isn’t precisely hospitable toward
IronPython. Fortunately, you can �nd some Visual Studio extensions that
make the life of an IronPython developer easier at �]�i�i�e�/�$�$�_�Y�]�V�g�Y�n�#�W�a�d�\�h�e�d�i��
�#�X�d�b�$�'�%�%�.�$�&�&�$�^�g�d�c�e�n�i�]�d�c�"�Z�m�i�Z�c�h�^�d�c�h�"�[�d�g�"�k�^�h�j�V�a�"�h�i�j�Y�^�d�#�]�i�b�a.

Some CPython extensions are must haves. Here’s a list of extensions that you might want to get for
your IronPython con�guration with suggestions on how to make them work.

�°�� �c�j�b�e�n�#�e�n and �h�X�^�e�n�#�e�n: The original �c�j�b�e�n (�]�i�i�e�/�$�$�c�j�b�e�n�#�h�X�^�e�n�#�d�g�\�$) and
�h�X�^�e�n (�]�i�i�e�/�$�$�h�X�^�e�n�#�d�g�\�$) combination provides the resources needed for scienti�c numeric
computations. You can download the �c�j�b�e�n extension and associated �h�X�^�e�n tools from
�]�i�i�e�/�$�$�h�X�^�e�n�#�d�g�\�$�9�d�l�c�a�d�V�Y. You need to use IronClad to make these extensions work.

���° pygames: If you ever thought you’d like to perform game development using IronPython, you
can do it using pygames, which is more like an entire platform than a single module. Learn
more about pygames at �]�i�i�e�/�$�$�l�l�l�#�e�n�\�V�b�Z�#�d�g�\�$�c�Z�l�h�#�]�i�b�a.

Overcoming Potential Extension Problems �X 435

���° Python for Windows: A number of extensions speci�cally designed for Windows developers
that are packaged together (some developers might know this package as pywin32). You can
download this package from �]�i�i�e�/�$�$�h�d�j�g�X�Z�[�d�g�\�Z�#�c�Z�i�$�e�g�d�_�Z�X�i�h�$�e�n�l�^�c�(�'�$. The majority
of this package will very likely run without extra help.

There are some situations where you should consider not using an extension. For example, you could
easily download the �e�n�b�h�h�f�a extension found at �]�i�i�e�/�$�$�e�n�b�h�h�f�a�#�h�d�j�g�X�Z�[�d�g�\�Z�#�c�Z�i�$. However,
it’s probably easier to write your own extension using Visual Basic.NET using the technique shown in
Chapter 17. The resulting extension will probably run faster and provide precisely what you need with
a lot less work. For that matter, you could always decide to import the required .NET assemblies and
directly access your database from IronPython (assuming you want to pursue the task without designer
support). When in doubt, consider at least trying to obtain the results you want using the simplest and
most direct approach possible, which often means writing your own extension.

OVERCOMING POTENTIAL EXTENSION PROBLEMS

If you have a CPython extension that you really must use and there isn’t an IronPython alternative,
you have a number of solutions you can try. Of course, the �rst solution is to get someone else to �x
the problem (see the section “Obtaining Third-Party Solutions” later in this appendix for details).
Unfortunately, duping someone else into performing your work for you isn’t always possible, so you
might have to �x the problem yourself.

When you have the source code for the CPython extension in the form of a �#�e�n �le, you can some-
times �x the issue directly. Try importing the extension and then working with it. Often, the error
information you receive from the interpreter is enough to help you locate and �x the problem. Some
CPython extensions will work �ne once you overcome the compatibility issues between IronPython
and CPython.

One company that has a lot of experience �xing problem extensions is
Resolver Systems. You’ll �nd blogs and articles about the experiences of
their developers in a lot of places on the Internet. Most important, Resolver
Systems has created a spreadsheet application, Resolver One, which relies
on IronPython as its base language. You can learn more about Resolver
Systems at �]�i�i�e�/�$�$�l�l�l�#�g�Z�h�d�a�k�Z�g�h�n�h�i�Z�b�h�#�X�d�b�$. Another example of Python
in action is the Python Extension for Mozilla developers found at �]�i�i�e�/�$�$
�e�n�m�e�X�d�b�Z�m�i�#�b�d�o�Y�Z�k�#�d�g�\�$. You get the power of Python within Firefox,
Thunderbird, and XulRunner. In short, there are lots of examples of Python
in use on the Internet.

The issue that will give you the most trouble is that some CPython extensions rely on C code. These
extensions contain a combination of Python code and DLLs written in C because using C provides
certain advantages (much as C# and Visual Basic.NET provide certain advantages for the .NET

436 �X APPENDIX B CPYTHON EXTENSIONS FOR IRONPYTHON

developer). In this case, you need to access the code within the DLL, but you probably can’t do it
from IronPython. The fastest way to overcome this problem is to use a third-party solution such as
IronClad (see the section “Working with IronClad” lat er in this appendix).

Another technique you can use to overcome extension problems that involve C code is to work through
the issue using P/Invoke. The section “Using C# for Win32 Support” in Chapter 16 provides a quick
view of how powerful a P/Invoke extension can be. However, sometimes it’s the detective work required
to obtain the information you need to use P/Invoke that proves the most dif�cult to obtain. I’ve written
a series of four articles that show some of my techniques for performing this task:

�° �� “Working with Windows Messages in .NET” (�]�i�i�e�/�$�$�l�l�l�#�Y�Z�k�h�d�j�g�X�Z�#�X�d�b�$�X�$�V�$
�J�h�^�c�\�"�K�H�$�L�d�g�`�^�c�\�"�l�^�i�]�"�L�^�c�Y�d�l�h�"�B�Z�h�h�V�\�Z�h�"�^�c�"�C�:�I�$)

���° “Hooking Windows Messages in .NET” (�]�i�i�e�/�$�$�l�l�l�#�Y�Z�k�h�d�j�g�X�Z�#�X�d�b�$�X�$�V�$�J�h�^�c�\�"�K�H�$
�=�d�d�`�^�c�\�"�L�^�c�Y�d�l�h�"�B�Z�h�h�V�\�Z�h�"�^�c�"�C�:�I�$)

���° “Globally Hooking Windows Messages in .NET” (�]�i�i�e�/�$�$�l�l�l�#�Y�Z�k�h�d�j�g�X�Z�#�X�d�b�$�X�$�V�$
�J�h�^�c�\�"�K�H�$�<�a�d�W�V�a�a�n�"�=�d�d�`�^�c�\�"�L�^�c�Y�d�l�h�"�B�Z�h�h�V�\�Z�h�"�^�c�"�C�:�I�$)

���° “Special Windows Message Hooking Techniques for .NET” (�]�i�i�e�/�$�$�l�l�l�#�Y�Z�k�h�d�j�g�X�Z��
�#�X�d�b�$�X�$�V�$�J�h�^�c�\�"�K�H�$�H�e�Z�X�^�V�a�"�L�^�c�Y�d�l�h�"�B�Z�h�h�V�\�Z�"�=�d�d�`�^�c�\�"�I�Z�X�]�c�^�f�j�Z�h�"�[�d�g�"�C�:�I�$)

There’s a point where you do need to give up on using a particular CPython extension with IronPython.
These situations are becoming fewer as developers come up with new tools for addressing problems and
IronPython itself becomes closer to CPython in implementation. It would be overly optimistic to say
that there will ever come a time when you can run any CPython extension using IronPython.

OBTAINING THIRD�PARTY SOLUTIONS

Third-party solutions are de�nitely easier, in many respects, than creating your own solutions. Of
course, you have to �nd a third-party solution that ac tually performs the required task. In addition,
you can’t accept that third-party solutions come without potential problems. If you use a third-party
solution, even one that works, you always run the risk that you won’t be able to obtain help when
you need it or that the third party will choose not to update the software as needed. Even so, third-
party solutions can be very bene�cial, especially when you’re on a tight time schedule. The following
sections describe some third-party solutions in general and one speci�cally, IronClad.

Considering Some of the Better Solutions
There are a number of quick and easy �xes for your CPython library problems. In most cases, all
you do is download the alternative you need, place it into the right IronPython folder, and you
have the support you require. The following list provides information about a number of these
third-party solutions.

�°�� ZLib Module for IronPython: Download this solution from �]�i�i�e�/�$�$�W�^�i�W�j�X�`�Z�i�#�d�g�\�$�_�Y�]�V�g�Y�n�$
�^�g�d�c�e�n�i�]�d�c�o�a�^�W�$�d�k�Z�g�k�^�Z�l�$. After you download the ZIP �le, simply unzip it and place the
resulting �les in your �Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�>�g�d�c�E�n�i�]�d�c���'�#�+�Q�9�A�A�h folder to obtain �o�a�^�W module
support. (You’ll probably have to create the DLLs subfolder because it doesn’t exist by default.)

Obtaining Third-Party Solutions �X 437

���° �h�j�W�e�g�d�X�Z�h�h�#�e�n: Download this solution from �]�i�i�e�/�$�$�W�^�i�W�j�X�`�Z�i�#�d�g�\�$�_�Y�]�V�g�Y�n�$�X�d�Y�Z�$
�h�g�X�$. This same page has �h�f�a�h�Z�g�k�Z�g�T�W�V�X�`�Z�c�Y�#�e�n, which is a SQL Server backend for Trac.
After you download the �h�j�W�e�g�d�X�Z�h�h�#�e�n �le, add it to the �Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�>�g�d�c�E�n�i�]�d�c���'�#�+�Q
�A�^�W�Q�h�^�i�Z�"�e�V�X�`�V�\�Z�h folder to obtain �h�j�W�e�g�d�X�Z�h�h module support.

���° �e�n�Z�m�e�V�i�#�e�n: Download this solution from �]�i�i�e�h�/�$�$�[�Z�e�n�#�h�k�c�#�h�d�j�g�X�Z�[�d�g�\�Z�#�c�Z�i�$�h�k�c�g�d�d�i�$
�[�Z�e�n�$�i�g�j�c�`�$�a�^�W�$. This same page has a wealth of other �#�e�n �les you can use with IronPython.
After you download �e�n�Z�m�e�V�i�#�e�n, copy it to the �Q�E�g�d�\�g�V�b���;�^�a�Z�h�Q�>�g�d�c�E�n�i�]�d�c���'�#�+�Q�A�^�W�Q�m�b�a�Q
�e�V�g�h�Z�g�h folder and rename the �le to �Z�m�e�V�i�#�e�n to obtain �Z�m�e�V�i module support.

Working with Iron Clad
There’s a third-party tool available on the market from Resolver Systems that could make it easier
for you to work with CPython modules, IronClad (�]�i�i�e�/�$�$�l�l�l�#�g�Z�h�d�a�k�Z�g�h�n�h�i�Z�b�h�#�X�d�b�$�e�g�d�Y�j�X�i�h�$
�^�g�d�c�X�a�V�Y�$ or �]�i�i�e�/�$�$�X�d�Y�Z�#�\�d�d�\�a�Z�#�X�d�b�$�e�$�^�g�d�c�X�a�V�Y�$). As the tool’s author states, it’s a work in
progress. The tool currently works only on Windows 32-bit platforms, so this isn’t a good tool to
try if you need 64-bit support for your IronPython a pplications. The Web site provides a download
link. After you download the �le, simply unzip it int o a folder on your hard drive, as suggested by
the author.

One of the changes that you’ll probably want to make to the author’s instructions is to create an
IRONPYTHONPATH environment variable like the one des cribed in the section “Accessing the
Standard Library from IronPython” in Chapter 6. Howe ver, in this case, set the environment variable
to provide access to the full Standard Library and to IronClad as well by including �8�/�Q�E�n�i�]�d�c�'�+�Q
�9�A�A�h�0�8�/�Q�E�n�i�]�d�c�'�+�Q�A�^�W�0�8�/�Q�E�n�i�]�d�c�'�+�Q�A�^�W�Q�h�^�i�Z�"�e�V�X�`�V�\�Z�h�0�8�/�Q�^�g�d�c�X�a�V�Y�"�k�'�#�+�#�%�g�X�&�"�W�^�c as
directories. (You’ll need to change the paths to match your system con�guration.) When you open
the IronPython console, you’ll be able to access all of the Standard Library and IronClad as well.
Use the following code to verify that you have the required access:

�^�b�e�d�g�i���h�n�h
�h�n�h�#�e�V�i�]

When you execute these commands, you should see the output shown in Figure B-1. At this point,
you should be able to follow the IronClad directions for a fully functional setup that can import
many, but not all, of those CPython modules you want to use.

FIGURE B�1: Make sure you have the path to IronClad set correctly.

439

Symbols
�»�1�¼, string formatting, 84
�»���», string formatting, 86
�»� �¼, string formatting, 85
�»�"�», string formatting, 85
�»�2�¼, string formatting, 84
� , �Y�^�g����, 402–403
� �2

�8�a�^�X�`, 148
event handler, 148

�"�2, event handler, 148
�$�4

AxImp, 171
TLbImp, 170

�Q�¹, escape code, 34
�"�(, command line switch, 17
�1�3 (angled brackets), calling

syntax, 204
�� (asterisk), global namespace, 121
�/ (colon)

dictionaries, 75
�^�[, 49

�p�r (curly brackets), dictionaries, 75
�" (dash)

ILDasm, 174
options, 198

�Q�Q (double backslash), 276
command line, 219

�$ (slash), 276
arguments, 198
command line, 219
ILDasm, 174

�P�R (square brackets), calling
syntax, 204

�¹�º�¹ (triple quotes), docstrings, 92
�" (dash), ILDasm, 174

A
�Q�V, escape code, 34
�V, Python debugging, 257
�T�T�V�W�h�T�T����, 118
Abstract Syntex Tree (AST), 304

CPython, 423
access, testing, 390
�6�X�i�^�d�c�7�^�c�Y�Z�g, 288, 304–305
actions

command line switch, 245
warnings, 243–248

�6�X�i�^�k�V�i�d�g�#�8�g�Z�V�i�Z�>�c�h�i�V�c�X�Z����, 162
late binding, 186–189

Active Server Page Framework (�#�6�H�E�M), 228
ActiveX Import utility (AxImp), 170–171
�6�Y�Y����

event handlers, 154
�B�n�A�^�h�i, 137

�T�T�V�Y�Y�T�T����, 332, 363
�Y�^�g����, 403

Add References, COM, 162
�6�Y�Y�B�Z, 314
�6�Y�Y�G�V�c�\�Z����, �g�V�c�\�Z����, 137
�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z����, 336

CLR, 384
Visual Basic.NET, 367

administration, 193–222
�6�9�n�c�V�b�^�X�D�W�_�Z�X�i, 302–303
�V�a�^�V�h, Python debugging, 257
�$�6�A�A, ILDasm, 177
�V�a�l�V�n�h, warning action, 244
American Standard Code for Information Interchange

(ASCII), 34
�T�T�V�c�Y�T�T����, 87
APIs. See Hosting Application Programming Interfaces
�6�e�e�#�8�D�C�;�>�<, 316–319

INDEX

440

AppDomain – Boolean objects

�6�e�e�9�d�b�V�^�c, Hosting APIs, 295
�V�e�e�Z�c�Y����, 51, 64

�Y�Z�a����, 64
�Y�Z�f�j�Z, 72
�e�d�e����, 64

�V�e�e�Z�c�Y�a�Z�[�i����, �Y�Z�f�j�Z, 72
applications

C#, 335–336
calling syntax, 204–205
command line, 16–17, 194–196
compatibility, 224
creating, 21–22
debugging, 19, 241–267
description, 203–204
environment, 207–218

variables, 208–218
external, 218–220

command line, 218–220
debugging, 321–323
modules, 309–312
testing, 321

Mono, 412–417
P/Invoke, 355–356
testing, 397–402
Visual Basic.NET, 366–367
Visual Studio, 24–30
Windows Forms, 139–159

�V�g�\�X, �b�V�^�c����, 196
�V�g�\�h, Python debugging, 257
�6�g�\�j�b�Z�c�i�:�m�X�Z�e�i�^�d�c, 266
�6�g�\�j�b�Z�c�i�h, 202
�6�g�^�i�]�b�Z�i�^�X�:�g�g�d�g, 266
�6�g�^�i�]�b�Z�i�^�X�:�m�X�Z�e�i�^�d�c, 266
�V�g�g�V�n�#�V�g�g�V�n, 59
�6�g�g�V�n�#�8�d�e�n����, 202
�6�g�g�V�n�#�8�g�Z�V�i�Z�>�c�h�i�V�c�X�Z����, 202
�6�g�g�V�n�;�^�a�a����, 61
arrays, 55–72

data types, 58
loops, 62
multi-dimension, 65–69
single dimension, 60–65
�h�n�h�#�e�V�i�], 60

ASCII. See American Standard Code for
Information Interchange

�V�h�T�^�c�i�Z�\�Z�g�T�g�V�i�^�d����, number
method, 88

�6�H�B, ILDasm, 176

�$�V�h�b�k�Z�g�h�^�d�c�/�K�Z�g�h�^�d�c, TLbImp, 168
ASP.NET, 223–240

CPython, 434
DLR, 224–228
Web sites, 229–239

�#�6�H�E�M. See Active Server Page Framework
assemblies

�X�a�g, 129
.NET Framework, 128–130
Solution Explorer, 128
Visual Studio, 128

�6�h�h�^�\�c����, 304
AST. See Abstract Syntex Tree
�V�h�i�#�e�n, CPython library, 423
�6�H�i�g�^�c�\, 61
�6�i�i�g�^�W�j�i�Z�:�g�g�d�g, 432
�V�j�Y�^�d�d�e, CPython extension

module, 427
�6�j�i�d�:�m�Z�X�#�C�I, 210
AxImp. See ActiveX Import utility

B
�»�7�¼, array data type, 58
�»�W�¼

array data type, 58
string formatting, 85

�Q�W, escape code, 34
�W, Python debugging, 258
Backspace (BS), 34
Basic Multilingual Plane (BMP), 34
�#�7�6�I, 229

�L�Z�W�9�Z�k�#�H�Z�g�k�Z�g, 237
Berkeley software Distribution (BSD), 424
binaries, 10
�W�^�c�V�h�X�^�^, CPython extension module, 428
binding, 19

COM, 164–166
early, 164–166
late, 166

�6�X�i�^�k�V�i�d�g�#�8�g�Z�V�i�Z�>�c�h�i�V�c�X�Z����,
186–189

�B�V�g�h�]�V�a�#�<�Z�i�6�X�i�^�k�Z�D�W�_�Z�X�i����,
189–190

�T�W�^�h�Z�X�i, CPython extension module, 426
BMP. See Basic Multilingual Plane
�W�d�d�a, 170
Boolean objects, 89

441

break – CLRDbg.EXE

�W�g�Z�V�`, 69–70
loops, 70
Python debugging, 258

BS. See Backspace
BSD. See Berkeley software Distribution
�W�h�Y�Y�W, Standard Library directory, 98
�W�i�c�6�Y�Y�T�8�a�^�X�`����, 398
�W�i�c�8�V�c�X�Z�a, 372
�W�i�c�8�a�Z�V�g�T�X�a�^�X�`����, 235

Python debugging, 258
�W�i�c�;�^�g�Z�:�k�Z�c�i�T�8�a�^�X�`����, Fire Event, 157
�W�i�c�F�j�^�i�T�8�a�^�X�`����, 398
�W�i�c�H�i�V�g�i�T�8�a�^�X�`����, 153
�W�i�c�H�j�W�i�g�V�X�i�T�8�a�^�X�`����, 398
built-in modules, 36–39
�$�7�N�I�:�H, ILDasm, 174
�7�n�i�Z�h�L�V�g�c�^�c�\, 247

C
C, 6

libraries, 224
modules, 102
P/Invoke, 436

C#, 325–357
applications, 335–336
dialog box library, 337–343
extensions, 329–333, 431
�b�V�^�c����, 46
modules, 312–319
Mono, 418
user interface, 336–347
Visual Basic.NET, 360
Win32, 348–357

�»�X�¼��
array data type, 58
string formatting, 85

C++, 6
�Y�Z�[�^�c�Z, 350
libraries, 224

�"�X���X�b�Y, command line switch, 17
CA. See Custom Attribute
�8�V�a�X�D�W�_, 314
�8�V�a�X�h, 332, 336

�Y�^�g����, 363–364
�8�V�a�a����, 304
�X�V�a�a�W�V�X�`�h, 279
calling syntax, applications, 204–205

calls, event handlers, 155
capitalization. See case sensitivity
Carriage Return (CR), 34
case sensitivity, 31–33

command line switches, 26, 204
�#�e�n, 26

categories, warnings, 250–252
�$�8�6�K�:�G�7�6�A, ILDasm, 176
�X�Z�c�i�Z�g���^�c�i���l�^�Y�i�]�P�!���8�]�V�g���[�^�a�a�X�]�V�g�R��, string

task, 80
CGI. See Common Gateway Interface
�X�]�V�g�V�X�i�Z�g�h����, �B�Z�h�h�V�\�Z�=�V�c�Y�a�Z�g, 285
�8�]�Z�X�`�I�n�e�Z����, 399–400
�X�a, Python debugging, 258
�X�a�V�h�h, 90
�T�T�X�a�V�h�h�T�T, 79
Class Browser, IDLE, 112
classes, 89–91

documentation, 92–93
event, 153–158
generic, 135–137
�>�9�n�c�V�b�^�X�D�W�_�Z�X�i, 301–302
scope, 328–329

�$�8�A�6�H�H�A�>�H�I, ILDasm, 177
�X�a�Z�V�g����, �Y�Z�f�j�Z, 72
�X�a�Z�V�g, Python debugging, 258
�8�a�^�X�`����, 398
�8�a�^�X�`, � �2, 148
Client Software Development Kit (CSDK), 406
CLR. See Common Language Runtime
�X�a�g, 275

application test script, 400
assemblies, 129
.NET Framework, 183
.NET references, 124

�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z����, 129
.NET reference, 124
�H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�9�A�A, 143
�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�9�A�A, 143
�H�n�h�i�Z�b�#�M�b�a, 129

�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�7�n�C�V�b�Z����, .NET reference, 125
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�7�n�E�V�g�i�^�V�a�C�V�b�Z����, .NET

reference, 125
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z����, .NET reference, 124
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z�6�c�Y���e�V�i�]����, .NET

reference, 124
�X�a�g�#�8�d�c�k�Z�g�i����, �I�n�e�Z�:�g�g�d�g, 127
�8�A�G�9�W�\�#�:�M�:, 260–261

442

clr.GetClrType – custom objects

�X�a�g�#�<�Z�i�8�a�g�I�n�e�Z����, 127
�X�a�g�#�<�Z�i�E�n�i�]�d�c�I�n�e�Z����, 127
CLS. See Common Language Speci�cation
�8�B�9�#�:�M�:, 230
Cobra, 5
�X�d�Y�Z�X�h�^�h�d�'�%�'�', CPython extension module, 428
�X�d�Y�Z�X�h�_�e, CPython extension module, 428
�X�d�Y�Z�X�h�`�g, CPython extension module, 428
�X�d�Y�Z�X�h�i�l, CPython extension module, 428
ColdFusion, 5
collections, 72–74
color, console, 119–120
ColorfulConsole, 19
COM. See Component Object Model
Comma Separated Value (CSV), 424
command line, 100, 194–207

applications, 16–17, 194–196
arguments, 41, 196–200

�b�V�^�c����, 198
.NET, 200–203
parse, 197–198

DLR, 291
external applications, 218–220
GUI, 19
help, 203–207
Mono, 412–413, 417
switches, 17–19

actions, 245
case sensitivity, 26, 204
documentation, 205

testing, 402–404
usage examples, 205–206
�L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g, 236–237

�X�d�b�b�V�c�Y�h, Python debugging, 258
Common Gateway Interface (CGI), 224
Common Language Runtime (CLR), 11

�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z�I�d�;�^�a�Z����, 384
debugging, 242, 260–261
�I�Z�h�i�;�d�g�b, 150
Visual Basic.NET, 367

Common Language Speci�cation (CLS), 19
Common Object Request Broker Architecture

(CORBA), 161
�$�X�d�b�e�V�c�n�/�8�d�b�e�V�c�n, TLbImp, 169
compatibility

applications, 224
late binding, 166

�$�X�d�b�e�^�a�Z, ResGen, 182

�X�d�b�e�^�a�Z�g, Standard Library directory, 98
�X�d�b�e�a�Z�m����, 35
Component Object Model (COM), 7,

161–191, 316
Add References, 162
binding, 164–166
IDE, 162–163
Visual Studio, 162

�8�d�b�e�d�c�Z�c�i�G�Z�h�d�j�g�X�Z�B�V�c�V�\�Z�g����, 183
�X�d�c�Y�^�i�^�d�c, Python debugging, 258
�X�d�c�_�j�\�V�i�Z����, number method, 88
console, 12–22

color, 119–120
�]�Z�a�e����, 122–123

constants, early binding, 166
�8�d�c�i�Z�c�i�=�V�c�Y�a�Z�g, SAX handler, 284
�X�d�c�i�^�c�j�Z, 70–71
�8�D�D�G�9, 350
�$�X�d�e�n�g�^�\�]�i�/�8�d�e�n�g�^�\�]�i, TLbImp, 169
CORBA. See Common Object Request

Broker Architecture
�8�d�j�c�i�Z�g, �B�n�A�^�h�i, 53
�X�E�g�d�[�^�a�Z�#�e�n, CPython library, 424
CPython, 4, 421–432

ASP.NET, 434
command line switches, 18
debugging, 434
extension modules, 426–430
extensions, 433–437
GC, 431–432
libraries, 423–426

CR. See Carriage Return
�8�g�Z�V�i�Z�9�d�X�j�b�Z�c�i����, 275, 282
�8�g�Z�V�i�Z�;�^�a�Z�7�V�h�Z�Y�G�Z�h�d�j�g�X�Z�B�V�c�V�\�Z�g����, 181
�8�g�Z�V�i�Z�;�d�d�i�Z�g����, 395–396
�8�g�Z�V�i�Z�=�Z�V�Y�^�c�\����, 395–396
�8�g�Z�V�i�Z�D�W�_�Z�X�i����, 165
CSDK. See Client Software Development Kit
CSV. See Comma Separated Value
�T�X�h�k, CPython extension module, 427
�8�H�K, ILDasm, 177
�X�h�k�#�e�n, CPython library, 424
�8�I�n�e�Z����, 360

�>�c�i�&�+, 370
�X�j�g�h�Z�h, Standard Library

directory, 98
Custom Attribute (CA), 176
custom objects, 91–92

443

‘d’ – docstring

D
�»�Y�¼��

array data type, 58
string formatting, 85

�"�9, command line switch, 17, 199
�Y, Python debugging, 258
Data Source Con�guration Wizard, 382
data types, 33–36

arrays, 58
.NET, 126–128
warnings, 128

�9�V�i�V, Visual Basic.NET, 363
database

manipulation code, 381–383
modules, 379–386
Visual Basic.NET, 377–386

�Y�W�]�V�h�]�#�e�n, CPython library, 424
DCOM. See Distributed COM
Debian, 407
Debug History window, 30
�Y�Z�W�j�\, Python debugging, 258
debugging, 17

applications, 19, 241–267
CLR, 242, 260–261
CPython, 434
DLR, 239
early binding, 166
external modules, 321–323
IDLE, 106, 112–114
Mono, 415–416
Python, 256–260
Visual Studio, 29–30, 242, 262–263

�9�Z�X����, 332
Visual Basic.NET, 363

�Y�Z�X�d�Y�Z���P�d�W�_�Z�X�i���Z�c�X�d�Y�^�c�\�P, �h�i�g���Z�g�g�d�g�h�R�R��,
string task, 80

�Y�Z�[, 21
classes, 90

�Y�Z�[�V�j�a�i, 18
warning action, 244

�Y�Z�[�V�j�a�i�T�V�X�i�^�d�c, 246
�Y�Z�[�V�j�a�i�Y�^�X�i, 72
�Y�Z�[�^�c�Z, C++, 350
�$�Y�Z�[�^�c�Z�/�6�P�!�7�R, ResGen, 182
�Y�Z�a����, 64

�V�e�e�Z�c�Y����, 64
�T�T�Y�Z�a�T�T����, 432

�$�Y�Z�a�V�n�h�^�\�c
AxImp, 171
TLbImp, 168

delegates, 139, 154, 158
�9�Z�e�d�h�^�i, 394
�9�Z�e�g�Z�X�V�i�^�d�c�L�V�g�c�^�c�\, warning message category, 250
�Y�Z�f�j�Z, 72–74
�Y�Z�k�h�d�j�g�X�Z�#�X�d�b, 436
�»�9�]�4�\�/�h�¼, 199
diagnostic testing, 391
dialog boxes, libraries, 337–347
�9�^�V�a�d�\�G�Z�h�j�a�i, 372
�T�T�Y�^�X�T�T����, 422
dictionaries, 74–76
�Y�^�g����, 37

�8�V�a�X�h, 363–364
�Z�m�X�Z�e�i�^�d�c�h, 263
global namespace, 121
modules, 172
objects, 78
testing, 402–403
Visual Basic.NET, 363

�Y�^�g���B�n�A�^�h�i��, 137
directories, .NET, 134–135
�Y�^�h�V�W�a�Z, Python debugging, 258
�9�^�h�e�a�V�n�9�d�X�j�b�Z�c�i����, 282

XML, 275
�9�^�h�e�a�V�n�B�d�Y�Z, 352
�9�^�h�e�d�h�Z����, 141
�9�^�h�e�G�Z�i, 170
Distributed COM (DCOM), 161
�T�T�Y�^�k�T�T����, 363
division, warnings, 17
�#�9�A�A, 170
�P�9�a�a�>�b�e�d�g�i�����R, 350
DLLs, 10, 310

early binding, 165–166
Interop, 167–186
testing, 392–397

DLR. See Dynamic Language Runtime
�9�d�6�Y�Y, 314
�T�T�Y�d�X�T�T, 37–38, 92
�T�T�Y�d�X�T�T����, 341–342, 371, 403

Visual Basic.NET, 368
�9�d�X�#�V�e�e�Z�c�Y�8�]�^�a�Y����, �G�d�d�i, 282
�9�d�X�#�X�g�Z�V�i�Z�I�Z�m�i�C�d�Y�Z����, 282
�Q�9�d�X�h, DLR, 290
docstring, 92–93

444

doctest – expandtabs([int tabsize]}

�Y�d�X�i�Z�h�i, CPython extension module, 428
Document Type De�nition (DTD), 284
documentation

classes, 92–93
command line switches, 205
DLR, 292
HTML, 93
Standard Library modules, 104

DOM, .NET Framework, 273
�Y�d�l�c, Python debugging, 258
DTD. See Document Type De�nition
�9�I�9�=�V�c�Y�a�Z�g, SAX handler, 284
�9�n�V�c�^�X�H�^�i�Z, 300
�Y�n�c�V�b�^�X, keyword, 315–316
Dynamic Language Runtime (DLR), 8, 11–12, 287–306

ASP.NET, 224–228
command line, 291
debugging, 239
documentation, 292
Mono, 418
.NET Framework, 11
Silverlight, 11
Visual Studio, 10, 292

dynamic languages, 4–5
static languages, 308–309

�9�n�c�V�b�^�X�D�W�_�Z�X�i, 301
�9�n�c�V�b�^�X�H�^�i�Z, 288
�9�n�c�D�W�_�Z�X�i, 303

E
�»�:�¼, string formatting, 86
�»�Z�¼, string formatting, 86
�"�:, command line switch, 17
early binding, 164–166
�:�X�]�d�����B�n�K�V�g��, 209
Editor Window, IDLE, 106, 110–112
�Z�a�^�[, 51
�Z�a�h�Z, 50, 69–70

�[�d�g, 70
loops, 70

emulation, testing, 389
�Z�c�V�W�a�Z, Python debugging, 258
�Z�c�X�d�Y�Z���P�d�W�_�Z�X�i���Z�c�X�d�Y�^�c�\�P, �h�i�g���Z�g�g�d�g�h�R�R��,

string task, 80
End of File (EOF), 258
�Z�c�Y�:�a�Z�b�Z�c�i����, �B�Z�h�h�V�\�Z�=�V�c�Y�a�Z�g, 285
�:�c�i�^�i�n�G�Z�h�d�a�k�Z�g, SAX handler, 284

�Z�c�j�b�Z�g�V�i�Z����, 63, 71–72
enumerations, 53–54

early binding, 166
message boxes, 339–340

Environment Variables, 209–210
environment variables

.NET, 214–218
Python, 211–213

�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z�I�V�g�\�Z�i, 217
EOF. See End of File
�:�D�;, Python debugging, 258
�T�T�Z�f�T�T����, 88, 118
�Z�g�g�c�d, 264
�Z�g�g�d�g, warning action, 243
error(s), 252–256

case sensitivity, 32–33
handling, 6
indentation, 31–32
�h�n�h, 252–254

�:�g�g�d�g�=�V�c�Y�a�Z�g, SAX handler, 284
�:�g�g�d�g�A�^�h�i�Z�c�Z�g, external modules, 323
�:�g�g�d�g�G�Z�e�d�g�i�Z�Y����, 323
escape codes, 34
event classes, 153–158
event handlers, 139

� �2, 148
�"�2, 148
�6�Y�Y����, 154
calls, 155
�d�W�_�I�^�b�Z�g�#�I�^�X�`, 151
�G�Z�b�d�k�Z����, 155

event logs, 221
�:�k�Z�c�i�6�g�\, 400
�Z�m�X�Z�e�i, 57
ExceptionDetail mode, 19
exceptions, 263–266

�[�d�g, 265
external modules, 321–323
�T�T�^�c�^�i�T�T����, 266
.NET, 266
Python, 263–266
�T�T�h�i�g�T�T����, 266
warnings, 242

�Z�m�X�Z�e�i�^�d�c�h, �Y�^�g����, 263
�#�:�M�:, 170
�Z�m�^�i����, 202
�Z�m�^�i, Python debugging, 259
�Z�m�e�V�c�Y�i�V�W�h���P�^�c�i���i�V�W�h�^�o�Z�R��, string task, 80

445

ExplorerPolicy() – GetNames()

�:�m�e�a�d�g�Z�g�E�d�a�^�X�n����, 189
�Z�m�i�Z�c�Y����, 64
�Z�m�i�Z�c�Y�a�Z�[�i����, �Y�Z�f�j�Z, 72
eXtensible Markup Language (XML), 271–286

.NET, 272–276
�M�B�A�J�i�^�a�#�e�n, 277–280

eXtensible Server Pages (XSP), 407
extensions, 6

C#, 329–333, 431
CPython, 433–437
CPython modules, 426–430
requirements, 326
Visual Basic.NET, 360–367

Extensions to Language Integrated Query (LINQ), 288,
298–299

�Z�m�i�Z�g�c, 350
external applications

command line, 218–220
modules, 309–312

debugging, 321–323
testing, 321

external modules, 39–40

F
�»�;�¼, string formatting, 86
�»�[�¼

array data type, 58
string formatting, 86

�Q�[, escape code, 34
�;�6�6, ILDasm, 176
�;�6�B, ILDasm, 176
FePy, 102
�5�[�^�a�Z, ResGen, 182
�[�^�a�Z�c�V�b�Z, 264
�les, .NET, 134–135
�[�^�a�i�Z�g, 262
�[�^�a�i�Z�g�h, 246, 262
�[�^�a�i�Z�g�l�V�g�c�^�c�\�h����, 242, 243, 245
�[�^�c�Y���h�i�g���h�j�W, �d�W�_�Z�X�i���h�i�V�g�i, �d�W�_�Z�X�i���Z�c�Y��, string

task, 80–81
�[�^�c�Y���h�i�g���h�j�W�P, �^�c�i���h�i�V�g�i�P, �^�c�i���Z�c�Y�R�R��, string

task, 80–81
�;�^�c�Y�H�i�g, 194
Fire Event, �W�i�c�;�^�g�Z�:�k�Z�c�i�T�8�a�^�X�`����, 157
�;�^�g�Z����, �B�h�\, 155, 157
�[�a�d�V�i����, 35
�oats, 87–88

�;�D�6, ILDasm, 176
Font/Tabs page, IDLE, 108
�[�d�g

�Z�a�h�Z, 70
exceptions, 265
XML, 275

�[�d�g�Z�V�X�], �H�]�d�l�C�V�b�Z�h����, 328
�[�d�g�#�#�#�^�c, 51–52

enumerations, 54
�T�T�[�d�g�b�V�i�T�T, 37
�[�d�g�b�V�i�����V�g�\�h�P�!�����`�l�V�g�\�h�R��, string task, 81
�[�d�g�b�V�i�l�V�g�c�^�c�\����, 242
forms, 342–343. See also Windows Forms

testing, 345–347
�$�;�D�G�L�6�G�9, ILDasm, 177
�[�g�b�8�g�Z�V�i�Z�:�k�Z�c�i, 157
�[�g�b�B�V�^�c, �H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�;�d�g�b, 144
�[�g�b�B�V�^�c�#�9�Z�h�^�\�c�Z�g�#�8�H, 140
�[�g�d�b�]�Z�m���h�i�g���^�c�e�j�i��, number method, 88
�[�g�d�b�B�V�^�c���^�b�e�d�g�i����, 146
�;�j�i�j�g�Z�L�V�g�c�^�c�\, warning message category, 251
�[�l , Python debugging, 258

G
�»�<�¼, string formatting, 86
�»�\�¼, string formatting, 86
GAC. See Global Assembly Cache
garbage collector (GC), 19

CPython, 431–432
GC. See garbage collector
General page, IDLE, 108–110
generators, 279
generic classes, .NET Framework, 135–137
�<�Z�i�8�d�b�b�V�c�Y�A�^�c�Z�6�g�\�h����, 202
�<�Z�i�8�d�c�h�d�a�Z�9�^�h�e�a�V�n�B�d�Y�Z����, 350
�<�Z�i�8�d�c�h�d�a�Z�>�c�[�d����, 353–355, 356
�<�Z�i�8�d�c�h�d�a�Z�B�d�Y�Z����, 350, 355
�<�Z�i�8�d�c�h�d�a�Z�L�^�c�Y�d�l�H�^�o�Z����, 353
�<�Z�i�8�j�g�g�Z�c�i�9�^�h�e�a�V�n�B�d�Y�Z����, 352–353
�<�Z�i�9�n�c�V�b�^�X�B�Z�b�W�Z�g�C�V�b�Z�h����, 303
�<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z����, 215

�@�Z�n�h, 216
�<�Z�i�>�c�e�j�i����, �>�c�e�j�i�7�d�m����, 371
�<�Z�i�A�V�g�\�Z�h�i�8�d�c�h�d�a�Z�L�^�c�Y�d�l�H�^�o�Z����, 350, 353
�<�Z�i�B�Z�b�W�Z�g�7�^�c�Y�Z�g, 302
�<�Z�i�B�Z�i�V�D�W�_�Z�X�i����, 303
�<�Z�i�C�V�b�Z�h����, �H�i�g�^�c�\, 328

446

GetObject() – index(str sub[, int start[, int end]])

�<�Z�i�D�W�_�Z�X�i����, 165
�\�Z�i�d�e�i�#�\�Z�i�d�e�i����, 198
�<�Z�i�G�j�a�Z����, 305
�<�Z�i�H�Z�i�i�^�c�\����, 188–189
�<�Z�i�H�i�Y�=�V�c�Y�a�Z����, 350, 351
�<�Z�i�I�d�i�V�a, 394
�<�Z�i�K�V�g�^�V�W�a�Z����, 314
GIMP. See GNU Image Manipulation Program
Global Assembly Cache (GAC), 123
global namespace, 120–122
GNU Image Manipulation Program (GIMP), 406
graphical user interface (GUI), 20, 139. See also Integrated

DeveLopment Environment
command line, 195–196

Groovy, 5
GUI. See graphical user interface
�"�\�/�J�h�Z�g�c�V�b�Z, command line switch, 199
�\�o�^�e�#�e�n, CPython library, 424

H
�»�=�¼, array data type, 58
�»�]�¼, array data type, 58
�"�], command line switch, 17, 199
�], Python debugging, 259
�=�V�c�Y�a�Z�B�h�\����, �I�]�^�h�:�k�Z�c�i, 157
handlers. See event handlers
Hardy, Jeff, 434
�]�V�h�T�`�Z�n����, 76
�1�]�Z�V�Y�3, 232
�$�=�:�6�9�:�G�H, ILDasm, 177
�T�]�Z�V�e�f, CPython extension

module, 427
�=�:�6�E�H, ILDasm, 178
�]�Z�a�a�d�"�l�Z�W�[�d�g�b�h, 229
help, 13–14, 341–342

command line, 203–207
objects, 79
Python Manuals, 100
URLs, 108

�]�Z�a�e����, 13, 79, 403
console, 122–123
documentation, 92
.NET, 122–123

�$�]�Z�a�e��
AxImp, 171
TLbImp, 170

�]�Z�a�e, Python debugging, 259

�]�Z�m����, 35, 87
number method, 88

�T�T�]�Z�m�T�T����, 87
number method, 88

�=�:�M, ILDasm, 177
Highlighting page, IDLE, 108–109
�=�@�:�N�T�8�A�6�H�H�:�H�T�G�D�D�I, 186
Horizontal Tab (TAB), 34
Hosting Application Programming Interfaces (APIs), 287,

293–298
�T�]�d�i�h�]�d�i, CPython extension module, 427
�]�d�i�h�]�d�i, Standard Library directory, 98
HTML

documentation, 93
ILDasm, 175
Standard Library, 100

�$�=�I�B�A, ILDasm, 174

I
�»�^�¼, array data type, 58
�"� ,̂ command line switch, 17
�»�>�¼ (capital eye), array data type, 58
IDE. See Integrated Development Environment
�>�9�^�h�e�V�i�X�], 165
IDLE. See Integrated DeveLopment Environment
�>�9�n�c�V�b�^�X�D�W�_�Z�X�i, 288, 300–304
�^�[, 48–49
�^�[�#�#�#�Z�a�^�[�#�#�#�Z�a�h�Z, 50–51
�^�[�#�#�#�Z�a�h�Z, 49–50, 385
�^�\�c�d�g�Z, 18

Python debugging, 259
warning action, 243

IIS. See Internet Information Server
IL. See Intermediate Language
ILDasm. See Intermediate Language Disassembler
�^�b�V�\, number method, 89
�^�b�V�\�Z�d�e, CPython extension module, 428
�^�b�e�d�g�i, 143
�^�b�e�d�g�i���h�^�i�Z, 17
�>�b�e�d�g�i�L�V�g�c�^�c�\, 247, 251
�>�c�X����, 332

Visual Basic.NET, 363
indentation, 31–33
�^�c�Y�Z�m���h�i�g���h�j�W, �d�W�_�Z�X�i���h�i�V�g�i, �d�W�_�Z�X�i���Z�c�Y��, string

task, 81
�^�c�Y�Z�m���h�i�g���h�j�W�P, �^�c�i���h�i�V�g�i�P, �^�c�i���Z�c�Y�R�R��, string

task, 81

447

__init__() – Keys

�T�T�^�c�^�i�T�T����, 154
exceptions, 266

�>�c�^�i�^�V�a�^�o�Z�8�d�b�e�d�c�Z�c�i����, 144
�>�c�c�Z�g�M�b�a, 282
�>�c�e�j�i�7�d�m����

�<�Z�i�>�c�e�j�i����, 371
Visual Basic.NET, 368

installation, 8–9
Standard Library, 100–102

�^�c�i���� , 35
�>�c�i�(�', 235, 332

Visual Basic.NET, 363
�^�c�i���X�d�j�c�i���h�i�g���h�h�j�W�!���P�^�c�i���h�i�V�g�i�P�!���^�c�i��

�Z�c�Y�R�R��, string task, 80
�>�c�i�&�+, �8�I�n�e�Z����, 370
Integrated Development Environment (IDE), 241

COM, 162–163
Mono, 415–416

Integrated DeveLopment Environment (IDLE), 100,
105–114, 310

Class Browser, 112
debugging, 106, 112–114
Editor Window, 106, 110–112
Font/Tabs page, 108
General page, 108–110
Highlighting page, 108–109
Keys page, 108–109
Open Edit Window, 108
Path Browser, 112

IntelliSense, 225
�>�c�i�Z�g�V�X�i�^�d�c, Visual Basic.NET, 368
Intermediate Language (IL), 176

MSIL, 298–299
Intermediate Language Disassembler (ILDasm), 173–180
�>�c�i�Z�g�c�V�a, 329
Internet Information Server (IIS), 223

�L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g, 238
Interop DLL, 167–186

Windows Media Player, 171–186
�>�c�i�(�'�#�E�V�g�h�Z����, 235
�>�c�i�E�i�g, 351
�>�c�k�d�`�Z�B�Z�b�W�Z�g�7�^�c�Y�Z�g, 302
�>�D�:�g�g�d�g, 264
iPhone, 408
iPod Touch, 408
�>�E�N�#�:�M�:, 14–20, 146, 200
�>�E�N�L, 20
IronClad, 436, 437

IronPython Community Edition, 102
�>�G�D�C�E�N�I�=�D�C�E�6�I�=, 20, 102
�>�G�D�C�E�N�I�=�D�C�H�I�6�G�I�J�E, 20
IronRuby, 310
�^�h�V�a�c�j�b����, string task, 81
�^�h�V�a�e�]�V����, string task, 81
ISAPI, 238
�>�h�8�d�g�g�Z�X�i, 71
�^�h�Y�Z�X�^�b�V�a����, string task, 81
�^�h�Y�^�\�^�i����, string task, 81
�>�h�;�^�Z�a�Y�C�V�b�Z�C�j�a�a����, 385
�^�h�T�^�c�i�Z�\�Z�g����, number method, 89
�^�h�a�d�l�Z�g����, string task, 81
�^�h�c�j�b�Z�g�^�X����, string task, 81
�^�h�h�e�V�X�Z����, string task, 81
�^�h�i�^�i�a�Z����, string task, 81
�^�h�j�c�^�X�d�Y�Z����, string task, 81
�^�h�j�e�e�Z�g����, string task, 81
�$�>�I�:�B�2�8�a�V�h�h�P�/�/�B�Z�i�]�d�Y�P���H�^�\�c�V�i�j�g�Z���R�R,

ILDasm, 177
�^�i�Z�g�V�i�d�g, 279
�^�i�Z�g�^�i�Z�b�h����, 76
�>�J�c�`�c�d�l�c, 165

J
�_, Python debugging, 259
Java, 5, 6
JavaDoc, 93
Java/Remove Method Invocation (Java/RMI), 161
Java/RMI. See Java/Remove Method Invocation
JavaScript, 5
JavaScript Object Notation (JSON), 98
�_�d�^�c�i���a�^�h�i���h�Z�f�j�Z�c�X�Z��, string task, 81
�_�d�^�c�i���d�W�_�Z�X�i���h�Z�f�j�Z�c�X�Z��, string task, 81
JSON. See JavaScript Object Notation
�_�h�d�c, Standard Library directory, 98
�_�j�b�e, Python debugging, 259
Jython, 6

K
�$�`�Z�n�X�d�c�i�V�^�c�Z�g�/�;�^�a�Z�C�V�b�Z, AxImp, 171
�@�Z�n�:�g�g�d�g, �i�g�n�#�#�#�Z�m�X�Z�e�i, 155
�$�`�Z�n�[�^�a�Z�/�;�^�a�Z�C�V�b�Z

AxImp, 171
TLbImp, 168

�@�Z�n�h, �<�Z�i�:�c�k�^�g�d�c�b�Z�c�i�K�V�g�^�V�W�a�Z����, 216

448

Keys page – module(s)

Keys page, IDLE, 108–109
keywords

�Y�n�c�V�b�^�X, 315–316
help, 14

�@�Z�n�l�d�g�Y�h, 71

L
�»�a�¼ (lower case el), array data type, 58
Language Services Support, 225
�1�a�V�c�\�j�V�\�Z�h�3, 316–317
late binding, 166

�6�X�i�^�k�V�i�d�g�#�8�g�Z�V�i�Z�>�c�h�i�V�c�X�Z����,
186–189

�B�V�g�h�]�V�a�#�<�Z�i�6�X�i�^�k�Z�D�W�_�Z�X�i����, 189–190
�A�V�n�d�j�i, 141
�a�W�a�I�^�b�Z, �I�d�A�d�c�\�I�^�b�Z�H�i�g�^�c�\����, 151
�a�Z�c����, 64

�g�V�c�\�Z����, 68
�I�n�e�Z�:�g�g�d�g, 68

LF. See Linefeed
libraries, 6

C, 224
C++, 224
CPython, 423–426
dialog boxes, 337–347
MSLib, 98
Standard Library, 97–116
third-party, 7, 10–11
TLblmp, 167–170
user interface library, Visual Basic.NET, 368–377

�A�^�X�Z�c�h�Z�#�=�I�B�A, DLR, 290
�A�^�X�Z�c�h�Z�#�G�I�;, DLR, 290
line noise, 327–328
Linefeed (LF), 34
�$�A�>�C�:�C�J�B, ILDasm, 176
LINQ. See Extensions to Language Integrated Query
LISP, 5
�a�^�h�i, 56–60
LiveCD, 406
�a�_�j�h�i���^�c�i���l�^�Y�i�]�P�!���8�]�V�g���[�^�a�a�X�]�V�g�R��, string

task, 81
log �les, 220
�a�d�c�\����, 35
loops, 51–53

arrays, 62
�W�g�Z�V�`, 70
�Z�a�h�Z, 70

�a�d�l�Z�g����, string task, 81
�a�h�i�g�^�e���P�h�i�g���X�]�V�g�h�R��, string task, 81
Lua, 5

M
�"�b���b�d�Y�j�a�Z, command line switch, 17
Mac OS X, 406
�$�b�V�X�]�^�c�Z�/�B�V�X�]�^�c�Z�I�n�e�Z, TLbImp, 170
Maemo, 407
�b�V�^�c����, 46–47

�V�g�\�X, 196
C#, 46
command line arguments, 198
Python debugging, 256–257

�T�T�b�V�^�c�T�T����, 296
manipulation code, database, 381–383
�B�V�g�h�]�V�a�#�<�Z�i�6�X�i�^�k�Z�D�W�_�Z�X�i����, 162

late binding, 189–190
�b�Y�*, CPython extension module, 428
�B�9�=�:�6�9�:�G�/, ILDas, 177
�b�Z�h�h�V�\�Z, 264
message(s), warnings, 249–250
message boxes, 337–340

testing, 345–347
Visual Basic.NET, 368–371

�B�Z�h�h�V�\�Z�7�d�m�7�j�i�i�d�c�h, Visual Basic.NET, 370
�B�Z�h�h�V�\�Z�7�d�m�9�Z�[�V�j�a�i�7�j�i�i�d�c, Visual Basic.NET, 370
�B�Z�h�h�V�\�Z�7�d�m�>�X�d�c, Visual Basic.NET, 370
�B�Z�h�h�V�\�Z�7�d�m�#�H�]�d�l����, 337–339

Visual Basic.NET, 368, 370
�B�Z�h�h�V�\�Z�=�V�c�Y�a�Z�g, 285
�$�B�:�I�6�9�6�I�6�P�2�H�e�Z�X�^�[�^�Z�g�R, ILDasm, 177
Microsoft Installer (MSI), 8
Microsoft Installer Library (MSILib), 98
Microsoft Intermediate Language (MSIL), 298–299
�1�b�^�X�g�d�h�d�[�i�#�h�X�g�^�e�i�^�c�\�3, 316
�b�b�V�e, CPython extension module, 428
Model-View-Controller (MVC), 225
�B�d�Y�^�[�^�Z�g�h, 372
�b�d�Y�j�a�Z, warning action, 244
module(s), 6, 36–40

C, 102
C#, 312–319
CPython extension, 426–430
database, 379–386
deleting, 126
�Y�^�g����, 172

449

Module Docs – .NET

documentation, Standard Library, 104
external, 39–40
external applications, 309–312

debugging, 321–323
testing, 321

help, 14, 15
late binding, 166
Python, 281–286
Standard Library, 99

Module Docs, 100
MoMA. See Mono Migration Analyzer
Mono, 6, 405–419

applications, 412–417
C#, 418
command line, 412–413, 417
debugging, 415–416
DLR, 418
IDE, 415–416
.NET Framework, 406, 408–409
P/Invoke, 408–409
Visual Basic.NET, 418
Visual Studio, 407
Windows Server 2008 Server Core, 409

Mono Migration Analyzer (MoMA), 409
Mono Touch, 408
Moonlight, 408
�B�h�\, �;�^�g�Z����, 155, 157
�B�h�\�C�d�Y�Z, 282
�B�h�\�C�d�Y�Z�h�#�>�c�c�Z�g�M�b�a, 275
MSI. See Microsoft Installer
MSIL. See Microsoft Intermediate Language
MSILib. See Microsoft Installer Library
�b�h�^�a�^�W, Standard Library directory, 98
�b�h�k�X�g�i, CPython extension module, 428
MTA. See multithreaded apartment
�T�T�b�j�a�T�T����, 363
�b�j�a�i, 21
�b�j�a�i���� , 21, 296
�T�b�j�a�i�^�W�n�i�Z�X�d�Y�Z�X, CPython extension module, 427
multi-dimension arrays, 65–69
�b�j�a�i�^�e�g�d�X�Z�h�h�^�c�\, Standard Library directory, 98
multithreaded apartment (MTA), 19
mutability, tupels and lists, 57–58
MVC. See Model-View-Controller
�B�n�9�V�i�V, 382
�B�n�9�V�i�V�#�;�^�a�a����, 383
�B�n�9�V�i�V�#�<�Z�i�9�V�i�V����, 384
�B�n�9�^�V�a�d�\�#�H�]�d�l�B�Z�h�h�V�\�Z����, 376

�B�n�9�^�g, 134–135
�B�n�9�^�g�#�<�Z�i�9�^�g�Z�X�i�d�g�^�Z�h����, 135
�B�n�9�^�g�#�<�Z�i�;�^�a�Z�h����, 135
�B�n�;�^�a�Z�#�X�a�d�h�Z����, 283
�B�n�;�^�a�Z�#�l�g�^�i�Z����, 283
�B�n�;�d�g�b�#�H�]�d�l�9�^�V�a�d�\�����#�I�d�H�i�g�^�c�\����, 377
�B�n�A�^�h�i

�6�Y�Y����, 137
�8�d�j�c�i�Z�g, 53
�g�V�c�\�Z����, 69
�G�Z�b�d�k�Z����, 137
�G�Z�b�d�k�Z�G�V�c�\�Z����, 137
�G�Z�k�Z�g�h�Z����, 137
�H�d�g�i����, 137
�h�n�h�#�e�V�i�], 60

�B�n�B�h�\�9�^�h�e�a�V�n����, run time, 158
�B�n�H�i�g�^�c�\���2���»�=�Z�a�a�d���», string

variable, 83
�B�n�H�i�g�^�c�\���2���»�I�]�Z���e�V�i�]�h���V�g�Z���», string

variable, 83

N
�»�c�¼, string formatting, 86
�Q�c, escape code, 34
�c, Python debugging, 259
�C�V�b�Z, 90
�c�V�b�Z, 317
�T�T�c�V�b�Z�T�T, 46, 69, 79

�H�X�d�e�Z, 298
�c�V�b�Z�Y�i�n�e�Z, 72
�$�c�V�b�Z�h�e�V�X�Z�/�C�V�b�Z�h�e�V�X�Z, TLbImp, 168
Native Image Generator (NGen), 9
.NET, 4, 5

assemblies
references, 123–126
�h�n�h�#�e�V�i�], 157

command line arguments, 200–203
parse, 201–203

data types, 126–128
directories, 134–135
environment variables, 214–218
exceptions, 266
�les, 134–135
�]�Z�a�e����, 122–123
objects, 132–133
static methods, 130–132
XML, 272–276

450

.NET Framework – PHP

.NET Framework, 6, 7, 117–138
assemblies, 128–130
�X�a�g, 183
DLR, 11
DOM, 273
generic classes, 135–137
importing, 118–126
Mono, 406, 408–409
SDK, 8
�h�n�h�#�e�V�i�], 129, 143

.NET Web Server Gateway Interface
(NWSGI), 434

�T�T�c�Z�l�T�T����, 403
�C�Z�l�:�k�Z�c�i�8�a�V�h�h, 157
�c�Z�l�b�Z�h�h�V�\�Z, 245
�c�Z�m�i, Python debugging, 259
NGen. See Native Image Generator
�$�C�D�7�6�G, ILDasm, 176
�$�C�D�8�6, ILDasm, 176
�$�c�d�X�a�V�h�h�b�Z�b�W�Z�g�h, TLbImp, 169
�C�d�9�g�^�k�Z�6�j�i�d�G�j�c, 189
�C�d�9�g�^�k�Z�I�n�e�Z�6�j�i�d�G�j�c, 189
�$�C�D�>�A, ILDasm, 176
Nokia, 407
�$�c�d�a�d�\�d

AxImp, 171
TLbImp, 169

Northwind database, 378, 380
number method, 88
numeric objects, 87–89
�c�j�b�e�n�#�e�n, CPython extension, 434
NWSGI. See .NET Web Server Gateway Interface

O
�»�d�¼, string formatting, 85
�"�d, command line switch, 17
Object Linking and Embedding (OLE), 161
�D�W�_�Z�X�i�D�e�Z�g�V�i�^�d�c�h, 314
object-oriented programming (OOP), 5
objects, 77–94

Boolean, 89
custom, 91–92
�Y�^�g����, 78
help, 79
.NET, 132–133
numeric, 87–89
strings, 79–86

�d�W�_�I�^�b�Z�g
�h�Z�a�[�#�8�d�c�i�g�d�a�h�#�6�Y�Y����, 151
�I�^�X�,̀ 153

�d�W�_�I�^�b�Z�g�#�I�^�X�`, event handlers, 151
�d�W�_�I�^�b�Z�g�T�I�^�X�`����, 153
�d�X�i����, 35
OCX. See OLE Control eXtension
�#�D�8�M, 170
�D�X�m�C�V�b�Z, 170
�D�X�m�H�i�V�i�Z, 181
OLE. See Object Linking and Embedding
OLE Control eXtension (OCX), 170
�d�c�X�Z, warning action, 244
�"�d�d, command line switch, 17
�Q�d�d�d, escape code, 34
OOP. See object-oriented programming
�d�e�Z�c����, 283
Open Edit Window, IDLE, 108
openSUSE, 407
�D�e�Z�g�V�i�d�g, Visual Basic.NET, 363
�D�e�h�#�>�c�k�d�`�Z����, 314
options, 198
�P�D�e�i�^�d�c�h�R, 205
�d�h�#�Z�c�k�^�g�d�c�#�T�T�Y�Z�a�^�i�Z�b�T�T����, 213
�d�h�#�Z�c�k�^�g�d�c�#�`�Z�n�h����, �K�V�g�^�V�W�a�Z�h, 211
�d�h�#�e�d�e�Z�c����, 218
OSQL utility, 378–379
�P�d�j�i, �g�Z�i�k�V�a�R, 170
�$�d�j�i�/�;�^�a�Z�C�V�b�Z

AxImp, 171
TLbImp, 168

�$�D�J�I�2�;�^�a�Z�C�V�b�Z, ILDasm, 174
�D�k�Z�g�g�^�Y�Z�h, Visual Basic.NET, 363

P
�e, Python debugging, 259
parse, command line arguments, 197–198
�E�V�g�h�Z����, 118
�e�V�g�h�Z�g, CPython extension module, 429
�e�V�g�i�^�i�^�d�c���h�i�g���h�Z�e��, string task, 81
Path Browser, IDLE, 112
�$�e�V�i�]�/�E�]�n�h�^�X�V�a�E�V�i�], �L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g command

line switches, 236
�e�Y�W, 256–260
�E�Z�c�Y�^�c�\�9�Z�e�g�Z�X�V�i�^�d�c�L�V�g�c�^�c�\, 247, 251
performance, 5
PHP, 5

451

pickle – reliability

�e�^�X�`�a�Z, CPython extension module, 429
P/Invoke. See Platform Invoke
PIO. See Primary Interop Assembly
Platform Invoke (P/Invoke), 348–350

applications, 355–356
C, 436
Mono, 408–409

�e�d�e����, 64
�V�e�e�Z�c�Y����, 64
�Y�Z�f�j�Z, 72

�E�d�e�Z�c����, 220
�$�e�d�g�i�/�E�d�g�i�C�j�b�W�Z�g, �L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g command

line switches, 236
�e�e, Python debugging, 259
�E�G�>, ILDasm, 176
Primary Interop Assembly (PIO), 169, 316
�$�e�g�^�b�V�g�n, TLbImp, 169
�e�g�^�c�i����, 21
�e�g�^�c�i, external modules, 321–322
�E�g�^�k�V�i�Z, 329
producer functions, 279
�$�e�g�d�Y�j�X�i�/�E�g�d�Y�j�X�i, TLbImp, 169
�$�e�g�d�Y�j�X�i�k�Z�g�h�^�d�c�/�K�Z�g�h�^�d�c, TLbImp, 169
�E�g�d�i�Z�X�i�Z�Y, 328
�E�g�d�i�Z�X�i�Z�Y���>�c�i�Z�g�c�V�a, 329
�E�H�8, ILDasm, 176
Pseudo-Terminal (PTY), 424
PTY. See Pseudo-Terminal
�e�i�n�#�e�n, CPython library, 424
�E�J�7, ILDasm, 176
�E�j�W�a�^�X, 328
�$�e�j�W�a�^�X�8�a�V�h�h, ResGen, 182
�$�e�j�W�a�^�X�`�Z�n�/�;�^�a�Z�C�V�b�Z

AxImp, 171
TLbImp, 168

�E�j�W�a�^�X�@�Z�n�I�d�`�Z�c, 317–318
�$�E�J�7�D�C�A�N, ILDasm, 176
�#�e�n

case sensitivity, 26
Standard Library, 99

�#�e�n�X, 99
�e�n�Z�m�e�V�i�#�e�n, 437
�e�n�\�V�b�Z�h, CPython extension, 434
Python, 4

debugging, 256–260
environment variables, 211–213
exceptions, 263–266
modules, 281–286
Windows, 435

Python Manuals, 100, 104–105
Python Standard Library. See

Standard Library
PythonDoc, 93
�E�N�I�=�D�C�K�:�G�7�D�H�:�2�m, 18

Q
�"�F���V�g�\, command line switch, 17
�f, Python debugging, 259
�"�F�c�Z�l, command line switch, 17
�"�F�d�a�Y, command line switch, 17
�f�j�Z�g�n�^�c�i�Z�g�[�V�X�Z����, 165
�f�j�^�i , Python debugging, 259
�F�J�D�I�:�6�A�A�C�6�B�:�H, ILDasm, 176
�"�F�l�V�g�c, command line switch, 17
�"�F�l�V�g�c�V�a�a, command line switch, 17

R
�Q�g, escape code, 34
�g, Python debugging, 259
�T�T�g�V�Y�Y�T�T����, 363

�Y�^�g����, 403
�g�V�c�\�Z����, 66–69

�6�Y�Y�G�V�c�\�Z����, 137
�a�Z�c����, 68
�B�n�A�^�h�i, 69
�i�g�n�#�#�#�Z�m�X�Z�e�i, 68

�$�g�/�V�h�h�Z�b�W�a�n, ResGen, 182
�G�6�L, ILDasm, 178
�$�G�6�L�:�=, ILDasm, 175
�g�V�l�T�^�c�e�j�i����, 35, 37, 71
�$�g�X�l�/�;�^�a�Z�C�V�b�Z, AxImp, 171
�T�T�g�Y�^�k�T�T����, 363
read-evaluation-print loop (REPL), 19
�g�Z�V�a, number method, 89
recursion, 19

CPython, 423
�T�T�g�Z�Y�j�X�Z�T�T����, 422
�T�T�g�Z�Y�j�X�Z�T�Z�m�T�T����, 422
�g�Z�[, 352
�$�g�Z�[�Z�g�Z�c�X�Z�/�;�^�a�Z�C�V�b�Z,

TLbImp, 168
�g�Z�\�Z�m, CPython extension module, 429
registry, late binding, 166
Regular Expressions, 18
reliability, 5

452

Remove – Shell Window

�G�Z�b�d�k�Z������
event handlers, 155
�B�n�A�^�h�i, 137

�g�Z�b�d�k�Z����, 64
�Y�Z�f�j�Z, 72

�G�Z�b�d�k�Z�G�V�c�\�Z����, �B�n�A�^�h�i, 137
REPL. See read-evaluation-print loop
�g�Z�e�a�V�X�Z���d�W�_�Z�X�i���d�a�Y, �d�W�_�Z�X�i���c�Z�l�P, �^�c�i��

�b�V�m�h�e�a�^�i�R��, string task, 81
�g�Z�e�g����, 35–36
�g�Z�f�j�^�g�Z�E�Z�g�b�^�h�^�d�c, 317
�#�G�:�H, 176
�g�Z�h�Z�i�l�V�g�c�^�c�\�h����, 242, 245, 246
ResGen, 180–182
Resolver Systems, 435
�#�G�:�H�D�J�G�8�:�H, 181–182
�g�Z�h�i�V�g�i, Python debugging, 259
�G�Z�h�j�b�Z�A�V�n�d�j�i����, 141
�#�G�:�H�M, 180–181
�g�Z�i�j�g�c, Python debugging, 259
�g�Z�k�Z�g�h�Z����, 64
�G�Z�k�Z�g�h�Z����, �B�n�A�^�h�i, 137
�g�[�^�c�Y����, string task, 81
�g�\�W�^�b�\, CPython extension

module, 429
�g�^�c�Y�Z�m����, string task, 82
�g�_�j�h�i����, string task, 82
�T�T�g�b�j�a�T�T����, 363
�G�d�d�i

�9�d�X�#�V�e�e�Z�c�Y�8�]�^�a�Y����, 282
XML, 275

�g�d�i�V�i�Z����, �Y�Z�f�j�Z, 72
�g�e�V�g�i�^�i�^�d�c����, string task, 82
�g�h�e�a�^�i����, string task, 82
�g�h�i�g�^�e����, string task, 82
�T�T�g�h�j�W�T�T����, 363
�$�G�I�;, ILDasm, 174
Ruby, 5

IronRuby, 310
�g�j�c, Python debugging, 259
run time, �B�n�B�h�\�9�^�h�e�a�V�n����, 158
�g�j�c�V�i�2�º�h�Z�g�k�Z�g�º, 233
�G�j�c�i�^�b�Z�7�^�c�Y�Z�g�:�m�X�Z�e�i�^�d�c, 302
�G�j�c�i�^�b�Z�#�:�m�Z�X�j�i�Z�;�^�a�Z����, 297–298
�G�j�c�i�^�b�Z�L�V�g�c�^�c�\, warning message

category, 251

S
�"�H, command line switch, 18
�"�h, command line switch, 18, 199
�h, Python debugging, 259
�H�6�;�:�6�G�G�6�N, 169
�Q�H�V�b�e�a�Z�h, DLR, 290
SAX. See Simple API for XML
�H�8�=�:�B�6, ILDasm, 178
�h�X�^�e�n�#�e�n, CPython extension, 434
scope, classes, 328–329
�H�X�d�e�Z, �T�T�c�V�b�Z�T�T, 298
script, 311–312

application test, 399–401
DLL test, 394–397

�H�X�g�^�e�i�:�c�\�^�c�Z, 313–314
�6�e�e�#�8�D�C�;�>�<, 319

scripting language, 295–298
�H�X�g�^�e�i�G�j�c�i�^�b�Z, Hosting APIs, 294, 295
�H�X�g�^�e�i�G�j�c�i�^�b�Z�H�Z�i�j�e

�6�e�e�#�8�D�C�;�>�<, 319
Hosting APIs, 294

�H�X�g�^�e�i�H�X�d�e�Z, 314
Hosting APIs, 295, 298

SDK. See Software Development Kit
�1�h�Z�X�i�^�d�c�3, 316–317
Secure Sockets Layer (SSL), 424
security, 5

testing, 389
�L�Z�W�#�8�D�C�;�>�<, 238

�h�Z�a�Z�X�i, CPython extension module, 429
�H�Z�a�Z�X�i�#�#�#�8�V�h�Z, 50
�h�Z�a�[�#�6�X�X�Z�e�i�7�j�i�i�d�c, 145
�h�Z�a�[�#�8�V�c�X�Z�a�7�j�i�i�d�c, 145
�h�Z�a�[�#�8�d�c�i�g�d�a�h�#�6�Y�Y����, 144

�d�W�_�I�^�b�Z�g, 151
�h�Z�a�[�#�=�V�c�Y�a�Z�g�A�^�h�i�#�V�Y�Y����, 154
�h�Z�a�[�#�=�V�c�Y�a�Z�g�A�^�h�i�#�g�Z�b�d�k�Z����, 155
�H�Z�g�^�V�a�^�o�V�W�a�Z�K�V�a�j�Z�8�a�V�h�h�Z�h, 170
Server Core, 409
Server Explorer, 379–380
�h�Z�i����, 154
�H�Z�i�B�Z�b�W�Z�g�7�^�c�Y�Z�g, 302
�H�Z�i�I�d�d�a�I�^�e����, 145
�h�]�V, CPython extension module, 429
�H�]�V�g�Z�Y, Visual Basic.NET, 363
�H�]�Z�a�a, 186–188
Shell Window, 105–106

453

Show() – SUSE Linux Enterprise Server (SLES)

�H�]�d�l����, 64
�H�]�d�l�6�W�d�j�i����, 115
�H�]�d�l�9�^�V�a�d�\����, 147
�H�]�d�l�>�c�^�i����, 399
�H�]�d�l�B�Z�h�h�V�\�Z����, 338–339

testing, 347
Visual Basic.NET, 370

�H�]�d�l�C�V�b�Z�h����, �[�d�g�Z�V�X�], 328
�H�]�d�l�K�V�a�j�Z�h����, 395–396
�h�]�d�l�l�V�g�c�^�c�\����, 242
�h�^�\�c�V�a, CPython extension module, 429
�$�h�^�a�Z�c�X�Z�/�L�V�g�c�^�c�\�C�j�b�W�Z�g, TLbImp, 169
�$�h�^�a�Z�c�i

AxImp, 171
TLbImp, 169

Silverlight, 6, 408
DLR, 11
SDK, 11

Simple API for XML (SAX), 273, 283–286
�h�^�b�e�a�Z�[�^�a�i�Z�g����, 242, 243, 245
single-dimension arrays, 60–65
�H�^�i�Z�#�e�n, 103–104
�h�^�i�Z�#�e�n, 103
SLED. See SUSE Linux Enterprise Desktop
SLES. See SUSE Linux Enterprise Server
�T�h�a�d�i�h�T, 422
Smalltalk, 5
�h�d�X�`�Z�i, CPython extension module, 430
�h�d�X�`�Z�i�#�h�d�X�`�Z�i����, 423
Software Development Kit (SDK)

.NET Framework, 8
Silverlight, 11

Solaris, 407
Solution Explorer, 230–231, 364–365

assemblies, 128
�h�d�g�i����, 64
�H�d�g�i����, �B�n�A�^�h�i, 137
�$�h�d�j�g�X�Z, AxImp, 171
source code, 6
�Q�H�d�j�g�X�Z, DLR, 290
�$�H�D�J�G�8�:, ILDasm, 176
�H�d�j�g�X�Z�#�:�m�Z�X�j�i�Z����, 314
Spacebar space, string formatting, 85
speed, 5
speed keys, 144
�h�e�a�^�i���h�i�g���h�Z�e�P, �^�c�i���b�V�m�h�e�a�^�i�R��, string task, 82
�h�e�a�^�i�a�^�c�Z�h���P�W�d�d�a���`�Z�Z�e�Z�c�Y�h�R��, string task, 82
SQL Server 2008, 378–379, 380

�h�f�a�^�i�Z�(, Standard Library directory, 98
SRE. See Support for Regular Expressions
�h�g�Z�#�e�n, CPython library, 424
SSL. See Secure Sockets Layer
�h�h�a�#�e�n, CPython library, 424
stack traces, 255–256
Standard Library, 97–116

installation, 100–102
module documentation, 104

���H�i�V�g�i, 153
Start Debugging, 29–30
�h�i�V�g�i�:�a�Z�b�Z�c�i����, �B�Z�h�h�V�\�Z�=�V�c�Y�a�Z�g, 285
�h�i�V�g�i�h�l�^�i�]����, string task, 82
�h�i�V�i�^�X, 332
static languages

dynamic languages, 308–309
IronPython, 327–329

static methods, .NET, 130–132
�$�H�I�6�I�H, ILDasm, 177
status information, 220–221
stderr devices, 18
�H�i�Y�=�V�c�Y�a�Z�:�c�j�b, 350
stdout devices, 18
�h�i�Z�e, Python debugging, 259
���H�i�d�e, 153
�h�i�g����, 35–36

build-in modules, 36
�T�T�h�i�g�T�T����, exceptions, 266
�h�i�g�Z�g�g�d�g, 264
stress testing, 391
�$�h�i�g�^�X�i�g�Z�[, TLbImp, 170
�$�h�i�g�^�X�i�g�Z�[�/�c�d�e�^�V, TLbImp, 170
�H�i�g�^�c�\, �<�Z�i�C�V�b�Z�h����, 328
string objects, 79–86
�h�i�g�^�c�\�e�g�Z�e�#�e�n, CPython library, 425
�h�i�g�^�e����, string task, 82
�h�i�g�d�e, CPython extension module, 430
�P�H�i�g�j�X�i�A�V�n�d�j�i�R, 350
structures, 90
�T�T�h�j�W�T�T����, 363
�h�j�W�e�g�d�X�Z�h�h, 220
�T�h�j�W�e�g�d�X�Z�h�h, CPython extension module, 427
�h�j�W�e�g�d�X�Z�h�h�#�e�n, 437

CPython library, 425
�h�j�W�e�g�d�X�Z�h�h�#�e�n�X, CPython library, 425
Support for Regular Expressions (SRE), 424
SUSE Linux Enterprise Desktop (SLED), 407
SUSE Linux Enterprise Server (SLES), 407

454

SuspendLayout() – ThisEntry

�H�j�h�e�Z�c�Y�A�V�n�d�j�i����, 141
�h�l�V�e�X�V�h�Z����, string task, 82
�T�h�n�b�i�V�W�a�Z, CPython extension module, 427
�h�n�b�i�V�W�a�Z�#�e�n, CPython library, 425
�H�n�c�i�V�m�L�V�g�c�^�c�\, warning message category, 251
�h�n�h, 129

errors, 252–254
�$�h�n�h�V�g�g�V�n, TLbImp, 169
�h�n�h�#�W�j�^�a�i�^�c�T�b�d�Y�j�a�Z�T�c�V�b�Z�h, 38–39
�H�n�h�:�g�g, 133
�H�n�h�:�g�g�#�X�a�h�:�m�X�Z�e�i�^�d�c�#�<�Z�i�I�n�e�Z����, 133
�H�n�h�:�g�g�#�b�Z�h�h�V�\�Z, 133
�h�n�h�#�Z�m�X�T�X�a�Z�V�g����, errors, 253
�h�n�h�#�Z�m�X�Z�e�i�]�d�d�`����, 254
�h�n�h�#�Z�m�X�T�^�c�[�d����

errors, 253
�i�j�e�a�Z, 252

�h�n�h�#�Z�m�X�T�i�g�V�X�Z�W�V�X�`����, 253
�h�n�h�#�Z�m�X�T�i�n�e�Z����, 253
�h�n�h�#�Z�m�X�T�k�V�a�j�Z����, 253
�h�n�h�#�T�\�Z�i�[�g�V�b�Z����, 19, 254
�h�n�h�#�\�Z�i�g�Z�[�X�d�j�c�i����, 432
�h�n�h�#�\�Z�i�l�^�c�Y�d�l�h�k�Z�g�h�^�d�c����, 40–41
�h�n�h�#�a�V�h�i�T�i�g�V�X�Z�W�V�X�`����, 253
�h�n�h�#�a�V�h�i�T�i�n�e�Z����, 253
�h�n�h�#�a�V�h�i�T�k�V�a�j�Z����, 253
�h�n�h�#�e�V�i�], 17, 41, 103

arrays, 60
�B�n�A�^�h�i, 60
.NET assemblies, 157
.NET Framework, 129, 143

�h�n�h�#�h�Z�i�g�Z�X�j�g�h�^�d�c�a�^�b�^�i����, 423
�h�n�h�#�h�Z�i�i�g�V�X�Z����, 19
�H�n�h�i�Z�b, global namespace, 121
�H�n�h�i�Z�b�#�8�d�a�a�Z�X�i�^�d�c�h�#�<�Z�c�Z�g�^�X, 136
�H�n�h�i�Z�b�#�8�d�a�a�Z�X�i�^�d�c�h�#�=�V�h�]�i�V�W�a�Z, 216
�H�n�h�i�Z�b�#�9�g�V�l�^�c�\�#�9�A�A, �X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z����, 143
�H�n�h�i�Z�b�:�g�g�d�g, 133
�H�n�h�i�Z�b�#�>�D, 134–135
�H�n�h�i�Z�b�#�D�e�Z�g�V�i�^�d�c�8�V�c�X�Z�a�Z�Y�:�m�X�Z�e�i�^�d�c����, 133
���H�n�h�i�Z�b�G�d�d�i��, 171
�H�n�h�i�Z�b�#�H�Z�X�j�g�^�i�n�#�E�Z�g�b�^�h�h�^�d�c�h�#

�H�Z�X�j�g�^�i�n�E�Z�g�b�^�h�h�^�d�c�6�i�i�g�^�W�j�i�Z, 129
�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�9�A�A

�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z����, 143
Visual Basic.NET, 370

�H�n�h�i�Z�b�#�L�^�c�Y�d�l�h�#�;�d�g�b�h�#�;�d�g�b, 141
�[�g�b�B�V�^�c, 144

�H�n�h�i�Z�b�#�M�b�a, 272
�X�a�g�#�6�Y�Y�G�Z�[�Z�g�Z�c�X�Z����, 129

�h�n�h�#�k�Z�g�h�^�d�c, 40–41
CPython, 422

T
�"�i , command line switch, 18
�Q�i, escape code, 34
TAB. See Horizontal Tab
TabCompletion mode, 19
�I�V�W�>�c�Y�Z�m, 144
�I�V�W�a�Z�6�Y�V�e�i�Z�g, 382–383
�i�V�c�h�a�V�i�Z���Y�^�X�i���i�V�W�a�Z��, string task, 82
�i�W�g�Z�V�`, Python debugging, 259
templates, 225
test harness, 391–392
�i�Z�h�i, Standard Library directory, 98
�T�i�Z�h�i�X�V�e�^, CPython extension module, 427
�I�Z�h�i�;�d�g�b����, 347, 376–377
�I�Z�h�i�;�d�g�b���2���[�g�b�B�V�^�c����, 146
�I�Z�h�i�;�d�g�b, CLR, 150
�i�Z�h�i�;�d�g�b�#�>�c�^�i�^�V�a�^�o�Z�8�d�b�e�d�c�Z�c�i����, 146
�I�Z�h�i�;�d�g�b�#�d�W�_�I�^�b�Z�g�#�H�i�V�g�i����, 153
�I�Z�h�i�;�d�g�b�#�H�]�d�l�9�^�V�a�d�\����, 146
�I�Z�h�i�>�9�A�:, 115
testing, 387–404

access, 390
applications, 397–402
command line, 402–404
diagnostic, 391
DLLs, 392–397
emulation, 389
external applications modules, 321
forms, 345–347
message boxes, 345–347
security, 389
�H�]�d�l�B�Z�h�h�V�\�Z����, 347
stress, 391
Windows Forms, 146, 398

�I�Z�h�i�B�Z�h�h�V�\�Z�h����, 347, 376
�I�Z�i�;�d�g�b�#�W�i�c�H�i�V�g�i�#�I�Z�m�i, 153
�$�I�:�M�I, ILDasm, 174
third-party

libraries, 7, 10–11
solutions, 436–437

�i�]�^�h�#�9�V�i�V, 332
�I�]�^�h�:�c�i�g�n, 221

455

ThisEvent – /Uxxxxxxxx

�I�]�^�h�:�k�Z�c�i, �=�V�c�Y�a�Z�B�h�\����, 157
�I�]�^�h�:�k�Z�c�i�#�;�^�g�Z����, 157
�I�]�^�h�:�m�X�Z�e�i�^�d�c, 133
�I�]�^�h�G�Z�[�#�<�Z�i�8�j�h�i�d�b�6�i�i�g�^�W�j�i�Z�h��

���i�n�e�Z���I�]�^�h�G�Z�[����, 129
�I�]�^�h�G�Z�[�#�<�Z�i�G�Z�[�Z�g�Z�c�X�Z�Y�6�h�h�Z�b�W�a�^�Z�h����, 129
�I�]�^�h�H�i�g�^�c�\

�[�d�g�#�#�#�^�c, 52
�l�]�^�a�Z, 53

�I�^�X�,̀ �d�W�_�I�^�b�Z�g, 153
�I�^�b�Z�g, 150–153
�i�^�i�a�Z����, string task, 82
TLbImp. See Type Library Import
�$�i�a�W�g�Z�[�Z�g�Z�c�X�Z�/�;�^�a�Z�C�V�b�Z, TLbImp, 168
�I�d�8�]�V�g����, 118
�$�I�D�@�:�C�H, ILDasm, 175
�I�d�A�d�c�\�I�^�b�Z�H�i�g�^�c�\����, �a�W�a�I�^�b�Z, 151
�I�d�d�a�I�^�e, 145
topics, help, 14
�I�d�H�i�g�^�c�\����, 332, 377

Visual Basic.NET, 363
�i�g�V�X�Z�W�V�X�`, 254–256

errors, 253
�i�g�V�X�Z�W�V�X�`�#�Z�m�i�g�V�X�i�T�h�i�V�X�`����, 255
�i�g�V�X�Z�W�V�X�`�#�[�d�g�b�V�i�T�Z�m�X����, 255
�i�g�V�X�Z�W�V�X�`�#�[�d�g�b�V�i�T�h�i�V�X�`����, 255
�i�g�V�X�Z�W�V�X�`�#�e�g�^�c�i�T�Z�m�X����, 254
�i�g�V�X�Z�W�V�X�`�#�e�g�^�c�i�T�h�i�V�X�`����, 255
�$�i�g�V�Y�Z�b�V�g�`�/�I�g�V�Y�Z�b�V�g�`, TLbImp, 169
�I�g�V�c�h�[�Z�g����, 394
�$�i�g�V�c�h�[�d�g�b�/�I�g�V�c�h�[�d�g�b�C�V�b�Z, TLbImp, 170
�i�g�V�c�h�a�V�i�Z���h�i�g���i�V�W�a�Z�!���P�h�i�g���Y�Z�a�Z�i�Z�X�]�V�g�h�R��,

string task, 82
�T�T�i�g�j�c�X�T�T����, 87
�I�g�n�7�^�c�V�g�n�D�e�Z�g�V�i�^�d�c����, 303
�I�g�n�8�d�c�k�Z�g�i����, 303
�I�g�n�9�Z�a�Z�i�Z�>�c�Y�Z�m����, 303
�I�g�n�9�Z�a�Z�i�Z�B�Z�b�W�Z�g����, 303
�i�g�n�#�#�#�Z�m�X�Z�e�i, 57, 235

�@�Z�n�:�g�g�d�g, 155
�g�V�c�\�Z����, 68
�h�n�h�#�Z�m�X�T�^�c�[�d����, 253

�I�g�n�<�Z�i�>�c�Y�Z�m����, 303
�I�g�n�<�Z�i�B�Z�b�W�Z�g����, 302, 303
�I�g�n�>�c�k�d�`�Z����, 303
�I�g�n�>�c�k�d�`�Z�B�Z�b�W�Z�g����, 302, 303
�I�g�n�H�Z�i�>�c�Y�Z�m����, 303
�I�g�n�H�Z�i�B�Z�b�W�Z�g����, 303

�I�g�n�J�c�V�g�n�D�e�Z�g�V�i�^�d�c����, 303
�"�i�i , command line switch, 18
�i�i�n�#�e�n, CPython library, 425
�i�j�e�a�Z, 56–60

CPython, 432
�h�n�h�#�Z�m�X�T�^�c�[�d����, 252

�#�I�M�I, 181
�i�m�i�G�Z�h�j�a�i, 235
�i�n�e�Z����, 69, 79

�J�>�c�i�(�', 126
�i�n�e�Z, 317–318

errors, 252
Type Library Import (TLbImp), 167–170
�I�n�e�Z�:�g�g�d�g, 57

�X�a�g�#�8�d�c�k�Z�g�i����, 127
�a�Z�c����, 68

�$�I�N�E�:�A�>�H�I, ILDasm, 177

U
�"�j , command line switch, 18
�j , Python debugging, 260
Ubuntu, 407
�J�>�c�i�(�', �i�n�e�Z����, 126
�j�c�V�a�^�V�h, Python debugging, 260
�$�J�C�>�8�D�9�:, ILDasm, 176
�J�c�^�X�d�Y�Z�L�V�g�c�^�c�\, warning message

category, 251
�J�C�G�:�M, ILDasm, 178
�$�j�c�h�V�[�Z, TLbImp, 169
�j�c�i , Python debugging, 260
�j�c�i�^�a, Python debugging, 260
�j�e, Python debugging, 260
�J�e�Y�V�i�Z�7�^�c�Y�^�c�\�6�c�Y�>�c�k�d�`�Z����, 300
�j�e�e�Z�g����, 71

string task, 82
usage examples, command line, 205–206
user interface

ASP.NET Web site, 232–233
C#, 336–347
Visual Basic.NET, 367–377

�J�h�Z�g�L�V�g�c�^�c�\, 247
warning message category, 251

�$�j�h�Z�H�d�j�g�X�Z�E�V�i�], ResGen, 182
�$�J�I�;�-, ILDasm, 176
�Q�j�m�m�m�m, escape code, 34
�Q�J�m�m�m�m�m�m�m�m, escape code, 34

456

-V – Windows Forms

V
�"�K, command line switch, 18
�"�k, command line switch, 18
�Q�k, escape code, 34
�K�6�A�>�9�6�I�:, ILDasm, 178
�k�V�a�j�Z, errors, 252
�K�V�a�j�Z�:�g�g�d�g, 266
variables

application environment, 208–218
Win32, 351

�K�V�g�^�V�W�a�Z�h, �d�h�#�Z�c�k�^�g�d�c�#�`�Z�n�h����, 211
�K�V�g�^�V�W�a�Z�h�#�h�d�g�i����, 211
�K�6�G�>�6�C�I�T�7�D�D�A, 170
�$�K�V�g�^�V�c�i�7�d�d�a�;�^�Z�a�Y�I�d�7�d�d�a,

TLbImp, 170
�$�k�Z�g�W�d�h�Z

AxImp, 171
TLbImp, 169

�K�Z�g�h�^�d�c, 317–318
versions, 40–41
Vertical Tab (VT), 34
Virtual PC, 407
�$�K�>�H�>�7�>�A�>�I�N�"�K�^�h�P� �K�^�h�#�#�#�R, ILDasm, 176
�k�^�h�^�W�a�Z�2�º�[�V�a�h�Z�º, 233
Visual Basic.NET, 319–320, 359–386

applications, 366–367
C#, 360
database, 377–386
extensions, 360–367
message boxes, 368–371
Mono, 418
user interface, 367–377

library, 368–377
Windows Forms, 371–372

Visual Designer, Windows Forms, 140–142
Visual Studio, 8, 139

applications, 24–30
assemblies, 128
COM, 162
debugging, 29–30, 242, 262–263
DLR, 10, 292
Mono, 407
Web server, 236–238

VMware, 407
�$�k�e�V�i�]�/�K�^�g�i�j�V�a�E�V�i�], �L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g command

line switches, 237
VT. See Vertical Tab

W
�"�L, command line switch, 245
�"�L���V�g�\, command line switch, 18
�"�L�V�X�i�^�d�c, command line switch, 18
�L�V�a�`����, 279–280
�l�V�g�c����, 242
�l�V�g�c�Z�m�e�a�^�X�^�i����, 242
�L�V�g�c�^�c�\, warning message category, 251
warnings, 18, 242–252

actions, 243–248
categories, 250–252
data types, 128
division, 17
exceptions, 242
messages, 249–250

�l�V�g�c�^�c�\�h�#�[�^�a�i�Z�g�h, 262
�l�V�g�c�^�c�\�h�#�[�^�a�i�Z�g�l�V�g�c�^�c�\�h����, 247
�l�V�g�c�^�c�\�h�#�l�V�g�c���/�Y�Z�e�g�V�X�V�i�Z�Y�º�!��

�9�Z�e�g�Z�X�V�i�^�d�c�L�V�g�c�^�c�\��, 244
�l�V�g�c�e�n�(�`����, 242
Watch windows, 30
Web Server Gateway Interface (WSGI), 434
Web server, Visual Studio, 236–238
Web sites, 228–229

ASP.NET, 229–239
�l�Z�W�W�g�d�l�h�Z�g�#�e�n, CPython library, 425
�l�Z�W�W�g�d�l�h�Z�g�#�e�n�X, CPython library, 425
�L�Z�W�#�8�D�C�;�>�<, 228

security, 238
�L�Z�W�9�Z�k�#�H�Z�g�k�Z�g, �#�7�6�I, 237
�L�Z�W�9�Z�k�#�L�Z�W�H�Z�g�k�Z�g, 236–238

command line, 236–237
IIS, 238

�l�]�V�i�^�h, Python debugging, 260
�l�]�Z�g�Z, Python debugging, 258
�l�]�^�a�Z, 52–53
Win32

C#, 348–357
variables, 351

windowed environment, 20
Windows, 407

Python, 435
Windows Forms, 7

applications, 139–159
testing, 146, 398
Visual Basic.NET, 371–372
Visual Designer, 140–142

457

Windows Media Player – ZLib

Windows Media Player, Interop DLL, 171–186
Windows Server 2008 Server Core, Mono, 409
�T�l�^�c�g�Z�\, CPython extension module, 427
�L�^�i�]�Y�g�V�l�V�a, 394
�"�L�a�^�c�Z�c�d, command line switch, 18
�"�L�b�Z�h�h�V�\�Z, command line switch, 18
�"�L�b�d�Y�j�a�Z, command line switch, 18
�L�g�^�i�Z�:�c�i�g�n����, 221
WSGI. See Web Server Gateway Interface

X
�»�M�¼, string formatting, 86
�»�m�¼, string formatting, 86
�"�M, command line switch, 19
�"�m, command line switch, 18
�"�M�/�6�j�i�d�>�c�Y�Z�c�i, command line switch, 19
�"�M�/�8�d�a�d�g�[�j�a�8�d�c�h�d�a�Z, command line switch, 19
�"�M�/�9�Z�W�j�\, command line switch, 19
�"�M�/�:�m�X�Z�e�i�^�d�c�9�Z�i�V�^�a, command line switch, 19
�"�M�/�;�g�V�b�Z�h, command line switch, 19
�"�M�/�<�8�H�i�g�Z�h�h, command line switch, 19
�Q�m�]�], escape code, 34
�"�M�/�A�^�\�]�i�l�Z�^�\�]�i�H�X�d�e�Z�h, command line switch, 19
�"�M�/�B�V�m�G�Z�X�j�g�h�^�d�c

command line switch, 19
CPython, 423

XML. See eXtensible Markup Language

�m�b�a�#�Y�d�b�#�Z�m�i�#�E�g�Z�i�i�n�E�g�^�c�i����, 283
�m�b�a�#�Y�d�b�#�b�^�c�^�Y�d�b, 281–283
�m�b�a�#�h�V�m, 283–286
�M�B�A�J�i�^�a�#�e�n, 276–280

XML, 277–280
�M�B�A�J�i�^�a�#�L�V�a�`����, 278–280
�"�M�/�B�I�6, command line switch, 19
�"�M�/�C�d�6�Y�V�e�i�^�k�Z�8�d�b�e�^�a�V�i�^�d�c, command line

switch, 19
�"�M�/�E�V�h�h�:�m�X�Z�e�i�^�d�c�h, command line switch, 19
�"�M�/�E�g�^�k�V�i�Z�7�^�c�Y�^�c�\�h, command line switch, 19
�"�M�/�E�n�i�]�d�c�(�%, command line switch, 19
�"�M�/�H�V�k�Z�6�h�h�Z�b�W�a�^�Z�h, 298
�"�M�/�h�]�d�l�8�a�g�:�m�X�Z�e�i�^�d�c�h, command line switch, 19
XSP. See eXtensible Server Pages
�"�M�/�I�V�W�8�d�b�e�a�Z�i�^�d�c, command line switch, 19
�"�M�/�I�g�V�X�^�c�\, command line switch, 19
�m�m�h�j�W�i�n�e�Z, CPython extension module, 430

Y
�n�^�Z�a�Y, 279

Z
�o�[�^�a�a���^�c�i���l�^�Y�i�]��, string task, 83
�o�^�e�^�b�e�d�g�i, CPython extension module, 430
ZLib, 436

Programmer to Programmer TM

Take your library
wherever you go.

Now you can access complete Wrox books online, wherever
you happen to be! Every diagram, description, screen capture,
and code sample is available with your subscription to the
Wrox Reference Library. For answers when and where you need
them, go to wrox.books24x7.com and subscribe today!

�s���!�3�0���.�%�4��
�s���#�����#������
�s���$�A�T�A�B�A�S�E��
�s���*�A�V�A
�s���-�A�C
�s���-�I�C�R�O�S�O�F�T���/�F�F�I�C�E��
�s�����.�%�4��

�s���/�P�E�N���3�O�U�R�C�E��
�s���0�(�0���-�Y�3�1�,��
�s���3�1�,���3�E�R�V�E�R��
�s���6�I�S�U�A�L���"�A�S�I�C��
�s���7�E�B
�s���8�-�,

Find books on

www.wrox.com

Related Wrox Books
Beginning ASP.NET 4: in C# and VB
ISBN: 978-0-470-50221-1
This introductory book offers helpful examples in a step-by-step format and has code examples written in both C# and Visual
Basic. With this book, a web site example takes you through the processes of building basic ASP.NET web pages, adding features
with pre-built server controls, designing consistent pages, displaying data, and more.

Beginning Visual C# 2010
ISBN: 978-0-470-50226-6
Using this book, you will first cover the fundamentals such as variables, flow control, and object-oriented programming and gradually
build your skills for web and Windows programming, Windows forms, and data access. Step-by-step directions walk you through
processes and invite you to “Try it Out” at every stage. By the end, you’ll be able to write useful programming code following the
steps you’ve learned in this thorough, practical book. If you’ve always wanted to master Visual C# programming, this book is
the perfect one-stop resource.

Beginning Python: Using Python 2.6 and Python 3.1
ISBN: 978-0-470-41463-7
Author James Payne covers every aspect of Python needed to get started writing programs with Python. Topics covered include
variables, input/output, XML, HTML, and XSL, and numerical programming techniques.

Professional ASP.NET 4: in C# and VB
ISBN: 978-0-470-50220-4
Written by three highly recognized and regarded ASP.NET experts, this book provides all-encompassing coverage on ASP.NET 4 and
offers a unique approach of featuring examples in both C# and VB, as is the incomparable coverage of core ASP.NET. After a fast-paced
refresher on essentials such as server controls, the book delves into expert coverage of all the latest capabilities of ASP.NET 4.
You’ll learn site navigation, personalization, membership, role management, security, and more.

Professional C# 4 and .NET 4
ISBN: 978-0-470-50225-9
After a quick refresher on C# basics, the author dream team moves on to provide you with details of language and framework
features including LINQ, LINQ to SQL, LINQ to XML, WCF, WPF, Workflow, and Generics. Coverage also spans ASP.NET programming
with C#, working in Visual Studio 2010 with C#, and more. With this book, you’ll quickly get up to date on all the newest capabilities
of C# 4.

Professional Visual Basic 2010 and .NET 4
ISBN: 978-0-470-50224-2
If you’ve already covered the basics and want to dive deep into VB and .NET topics that professional programmers use most, this
is your guide. You’ll explore all the new features of Visual Basic 2010 as well as all the essential functions that you need, including
.NET features such as LINQ to SQL, LINQ to XML, WCF, and more. Plus, you’ll examine exception handling and debugging, Visual
Studio features, and ASP.NET web programming.

Professional Visual Studio 2010
ISBN: 978-0-470-54865-3
Written by an author team of veteran programmers and developers, this book gets you quickly up to speed on what you can
expect from Visual Studio 2010. Packed with helpful examples, this comprehensive guide examines the features of Visual Studio
2010 and walks you through every facet of the Integrated Development Environment (IDE), from common tasks and functions to
its powerful tools.

Visual Basic 2010 Programmer’s Reference
ISBN: 978-0-470-49983-2
Visual Basic 2010 Programmer’s Reference is a language tutorial and a reference guide to the 2010 release of Visual Basic.
The tutorial provides basic material suitable for beginners but also includes in-depth content for more advanced developers

���›�Ž�™�Š�›�Ž�•�1�•�˜�›�1���������1�	���������	�ð�1�Ž�–�Š�’�•�ñ�1�œ�Ž�Š�—�›�£�›�‹�”���•�’�Ÿ�Ž�ï�Œ�˜�–�1���›�•�Ž�›�1�—�ž�–�‹�Ž�›�ñ�1�[�^�]�Z�[�[�W�X�1���‘�’�œ�1�������1�’�œ�1�•�˜�›�1�•�‘�Ž�1�™�ž�›�Œ�‘�Š�œ�Ž�›���œ�1�™�Ž�›�œ�˜�—�Š�•�1�ž�œ�Ž�1�’�—�1�Š�Œ�Œ�˜�›�•�Š�—�Œ�Ž�1� �’�•�‘�1�•�‘�Ž�1���›�˜�¡�1���Ž�›�–�œ�1�˜�•
���Ž�›�Ÿ�’�Œ�Ž�1�Š�—�•�1�ž�—�•�Ž�›�1�����1�Œ�˜�™�¢�›�’�•�‘�•�1�Š�œ�1�œ�•�Š�•�Ž�•�1�˜�—�1�•�‘�’�œ�1�‹�˜�˜�”���œ�1�Œ�˜�™�¢�›�’�•�‘�•�1�™�Š�•�Ž�ï�1���•�1�¢�˜�ž�1�•�’�•�1�—�˜�•�1�™�ž�›�Œ�‘�Š�œ�Ž�1�•�‘�’�œ�1�Œ�˜�™�¢�ð�1�™�•�Ž�Š�œ�Ž�1�Ÿ�’�œ�’�•�1� � � �ï� �›�˜�¡�ï�Œ�˜�–�1�•�˜�1�™�ž�›�Œ�‘�Š�œ�Ž�1�¢�˜�ž�›�1�˜� �—�1�Œ�˜�™�¢�ï

IronPython should be an important part of your developer’s toolbox
and this book will quickly get you up and running with this
powerful language. John Paul Mueller clearly shows how IronPython
can help you create better desktop or web-based applications in
less time and with fewer errors. Throughout the pages, you’ll find
techniques for extending IronPython and making it a more robust
language. In addition, you’ll follow advanced steps such as building
an IronPython extension that directly accesses the Win32 API. And
you’ll enhance your skill set as you introduce IronPython into other
environments such as Linux® and Mac OS® X.

Professional IronPython:

• Demonstrates how to build applications that every developer needs
to know when starting a new language

• Explains how to create Windows Forms applications, interact with
COM objects, and work at the command line

• Uncovers how to work with XML, the Dynamic Language Runtime,
and other .NET languages

• Shows how you can use IronPython to improve your testing process
for just about any language

• Discusses techniques for using IronPython with the Python
Standard Library

John Paul Mueller is the owner of DataCon Services, a consulting firm, where
he has written code for everything from database management systems (DBMS)
to low-level hardware access code. He is the author of more than 80 books covering
topics such as Web Services, web development, and Win32 API. He has also
published over 300 articles.

Wrox Professional guides are planned and written by working programmers
to meet the real-world needs of programmers, developers, and IT professionals.
Focused and relevant, they address the issues technology professionals face every
day. They provide examples, practical solutions, and expert education in new
technologies, all designed to help programmers do a better job.

Programming Languages / General

Create applications that are
more responsive to user needs

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters, and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

 $44.99 USA
 $53.99 CAN

IronP
ython

