
www.allitebooks.com

http://www.allitebooks.org

Programming ASP.NET AJAX

www.allitebooks.com

http://www.allitebooks.org

Other Microsoft Windows resources from O’Reilly

Related titles Essential SharePoint 2007

Learning ASP.NET 2.0 with
AJAX

Learning C# 2008

Programming WPF

SharePoint 2007:
The Definitive Guide

Windows Vista:
The Definitive Guide

Windows Vista in a Nutshell

Windows Books
Resource Center

windows.oreilly.com is a complete catalog of O’Reilly’s Win-
dows and Office books, including sample chapters and code
examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

www.allitebooks.com

http://www.allitebooks.org

Programming ASP.NET AJAX

Christian Wenz

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Programming ASP.NET AJAX
by Christian Wenz

Copyright © 2007 Christian Wenz. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn
Technical Editor: Mike Pope
Production Editor: Rachel Monaghan
Production Services: Octal Publishing, Inc.

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and

Jessamyn Read

Printing History:

September 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming ASP.NET AJAX, the image of a murex, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-51424-7

ISBN-13: 978-0-596-51424-2

[M]

www.allitebooks.com

http://safari.oreilly.com
mailto:corporate@oreilly.com
http://www.allitebooks.org

v

Table of Contents

Preface . xi

Part I. Basics

1. ASP.NET AJAX, Ajax, and ASP.NET . 3
ASP.NET AJAX and Ajax 3
ASP.NET AJAX and ASP.NET 5
ASP.NET AJAX Prerequisites and Installation 6
ASP.NET AJAX Structure and Architecture 12
A First ASP.NET AJAX Example: Hello User 14
The ScriptManager Control 19
Summary 21
For Further Reading 21

2. JavaScript . 22
The JavaScript Language 24
Object-Oriented Programming (OOP) 34
Accessing Page Elements 38
DOM Methods 42
Summary 43
For Further Reading 43

3. Ajax . 44
The XMLHttpRequest Object 45
The XMLDocument Object 55
JSON 61
Summary 64
For Further Reading 64

www.allitebooks.com

http://www.allitebooks.org

vi | Table of Contents

Part II. ASP.NET AJAX Extensions

4. Using ASP.NET AJAX JavaScript Extensions . 67
ASP.NET AJAX Shortcuts and Helper Functions 67
Extensions to Existing JavaScript Objects 70
ASP.NET AJAX OOP Features for JavaScript 71
Client Versions of .NET Classes 83
Summary 87
For Further Reading 87

5. Web Services . 88
Error Handling 88
Page Methods 93
Maintaining Session State 95
Exchanging Complex Data with the Server 100
Consuming Web Services with JavaScript 105
Summary 114
For Further Reading 115

6. UpdatePanel: Refreshing Only Parts of a Page . 116
Making a Page Region Updatable 116
Summary 131
For Further Reading 132

7. Using the ASP.NET AJAX Profile Service . 133
Preparing the Web Site 133
Accessing Profile Data 135
Accessing Profile Group Data 139
Summary 144
For Further Reading 144

8. Using the ASP.NET AJAX Authentication Service . 145
Preparing the Application 145
Login and Logout 148
Summary 154
For Further Reading 154

www.allitebooks.com

http://www.allitebooks.org

Table of Contents | vii

9. Localizing and Globalizing Applications . 155
Localization 156
Globalization and Internationalization 169
Summary 173
For Further Reading 173

Part III. ASP.NET AJAX Control Toolkit

10. Using the Control Toolkit . 177
Installing the Control Toolkit 177
Using the Control Toolkit 181
Summary 184
For Further Reading 184

11. Adding Animation to a Web Page . 185
Animation Framework 185
Drag-and-Drop 193
Summary 195
For Further Reading 196

12. Autocompleting User Input, Fighting Spam, and More 197
Creating an Accordion Pane 197
Maintaining the Relative Position of an Element 199
Adding Autocomplete Behavior to a TextBox Control 201
Attaching a Calendar to a Text Field 208
Dynamically Collapsing a Single Panel 210
Displaying a Pop Up Over a Page 211
Fighting Spam in Blogs and in Other Entry Forms 214
Creating a Tabbed Interface 216
Summary 218
For Further Reading 218

13. Writing Custom Controls and Contributing to the Community 219
Writing Custom ASP.NET AJAX Controls 219
Contributing to the Control Toolkit 228
Summary 237
For Further Reading 237

www.allitebooks.com

http://www.allitebooks.org

viii | Table of Contents

Part IV. ASP.NET AJAX Futures

14. Client Controls . 241
Introducing ASP.NET AJAX Client Controls 241
Using ASP.NET AJAX Controls 242
Handling Control Events 259
Summary 263
For Further Reading 263

15. Binding and Validating Data . 264
Data Binding 264
Data Validation 280
Summary 296
For Further Reading 296

16. Using Behaviors and Components . 297
Using Behaviors 297
Using Components 310
Summary 313
For Further Reading 313

17. Using Server Data . 314
Using a ListView Control 314
Creating a Custom Data Source 330
Summary 336
For Further Reading 336

18. Using Remote Web Services . 337
Using the Google Web Service 338
Using the Amazon Web Service 345
Transforming a Web Service Result with XSLT 350
Using the Yahoo! Web Service (and REST and XPath) 358
Summary 367
For Further Reading 367

19. Using Animations . 368
Using Animations 368
Using an Animation to Create a Fade Effect 370

www.allitebooks.com

http://www.allitebooks.org

Table of Contents | ix

Summary 380
For Further Reading 380

20. Fixing Bookmarks and Back/Forward Buttons . 381
Fixing with Code 382
Fixing Bookmarks and Back/Forward Buttons with Controls Using
UpdateHistory 384
Fixing Bookmarks and Back/Forward Buttons with Controls Using the
ASP.NET AJAX Futures 388
Summary 395
For Further Reading 395

21. Web Parts . 396
Using ASP.NET AJAX with ASP.NET Web Parts 396
Summary 401
For Further Reading 401

Part V. Microsoft AJAX Library

22. Using ASP.NET AJAX with Other Server Technologies 405
Using ASP.NET AJAX with PHP 406
Summary 409
For Further Reading 410

Part VI. Appendixes

A. Debugging ASP.NET AJAX Applications . 413

B. XMLHttpRequest Reference . 426

C. DOM Reference . 428

D. ASP.NET AJAX Reference . 432

E. ScriptManager, UpdatePanel, UpdateProgress, and Timer
Declarative Reference . 435

Index . 439

www.allitebooks.com

http://www.allitebooks.org

xi

Preface1

The Wikipedia page for Ajax (http://en.wikipedia.org/wiki/Ajax) provides more than
40 meanings for the word, including the names of two characters in Homer’s Iliad
(Ajax the Great and Ajax the Lesser), the name of an Amsterdam soccer team, a
couple of automobiles, a horse, and—my personal favorite—a household cleaner
made by Colgate. However, Ajax is also the term for a collection of technologies
many say could revolutionize the Web. If various weblogs and online and print com-
mentaries are to be believed, Ajax is the future of web development, the enabler of
Web 2.0, and probably a cure for fatal diseases, as well.

Many web developers want to provide their users with a far richer client experience
but don’t want to write a Windows client application (or, for practical reasons, can-
not write one). Ajax could be just what they need. It allows web applications to
behave almost like desktop applications, with features such as keyboard shortcuts
and drag-and-drop placement.

ASP.NET “Atlas” was the code name for a new set of technologies from Microsoft
that provide Ajax-like functionality for the ASP.NET developer. It offered many of
the same benefits for Ajax development that ASP.NET provides for server-side devel-
opment. In autumn of 2006, the final product name was announced: ASP.NET
AJAX. (However, Atlas is much easier to pronounce.)

I resisted writing about Ajax for quite some time. For years, I had used and written
about the technologies that make up Ajax, but the term itself had to be coined in
early 2005 before the technology really took off. In my opinion, Clemens Vasters said
it best: “Web 2.0 yadda yadda AJAX yaddayadda Profit!(?)” (see http://vasters.com/
clemensv/PermaLink,guid,d88c1112-d8da-496e-9fd0-8cf03cf55c32.aspx).

The hype reminds me of the buzz that accompanied XML and web services a few
years back: everybody was talking about them, but few had ever read their specs.
Once reality settled in, the hype vanished and actual real-world applications
appeared that made effective use of both technologies.

http://en.wikipedia.org/wiki/Ajax
http://vasters.com/clemensv/PermaLink,guid,d88c1112-d8da-496e-9fd0-8cf03cf55c32.aspx
http://vasters.com/clemensv/PermaLink,guid,d88c1112-d8da-496e-9fd0-8cf03cf55c32.aspx

xii | Preface

I am convinced that Ajax will follow a similar path but will travel it more quickly. A
tour of the Web will prove that there are already loads of useful Ajax applications
available today.

But, back to my reluctance to write a book about Ajax.

I kept saying that Ajax itself could be explained in 20 to 30 pages. Adding some
background information and examples might produce 75 pages, maybe 100. But
how could I fill the rest of the book? Many of the Ajax books currently on the mar-
ket have to go through contortions to reach a reasonable page count.

My thinking about all of this changed when in September 2005 I attended the
Microsoft Professional Developers Conference conference in Los Angeles and saw
Atlas for the first time. Microsoft was announcing a framework that provided Ajax
functionality but added controls and other tools to make development of modern
web applications easier. Now this was something to write about, I thought. I started
working on a manuscript based on the early, prerelease version of Atlas. It had to be
rewritten several times with every new prerelease drop of Atlas I could get my
hands on. The lack of documentation for the preliminary releases required me to
reverse-engineer the inner workings of Atlas. As a result, this book may describe a
few unofficial ways to accomplish things.

Programming Atlas was published in September of 2006. As one of the first books on
the topic, it provided detailed information on the yet still changing framework. At
the end of January 2007, ASP.NET AJAX was released in its final 1.0 version. Beyond
the name change, the internal changes were so vast it actually required a new edition
of the book as each and every existing application had to be adapted.

This book will teach you how to create professional, dynamic web pages using the
Microsoft ASP.NET AJAX framework. A certain amount of JavaScript and ASP.NET
knowledge is required. For your convenience, some JavaScript basics are covered at
the beginning of the book.

I am a big believer in the “show, don’t tell” principle. Therefore, this book contains a
large number of examples showing you the key aspects of the ASP.NET AJAX frame-
work. I am also a fan of focusing on the relevant facts. So, I have created small exam-
ples, each conveying one or two points; I deliberately avoided putting as many facts
as possible into one very long listing. In my experience as an author and trainer,
shorter examples produce better results and make learning easier.

Also, note that the examples are always very generic. This allows you to add them
directly to your own projects and modify and tweak them to meet your needs. Every
example is self-contained, making it very easy to use and reuse.

Preface | xiii

Who This Book Is For
This book was written for two groups of web developers: those who are using ASP.NET
and would like to take their applications a step further through the Ajax technology,
and those who are using another technology but are interested in the ASP.NET AJAX
framework. It is also suitable for JavaScript programmers who would like to avoid some
of the headaches caused by the necessity of writing cross-browser code. The languages
used in this book are C# and JavaScript. If you need background on these languages,
O’Reilly has some solid introductions to both, including Learning C# 2005, by Jesse
Liberty and Brian MacDonald, and Learning JavaScript, by Shelley Powers.

How This Book Is Organized
Chapter 1, ASP.NET AJAX, Ajax, and ASP.NET, gives a broad overview of Ajax and
the ASP.NET AJAX framework and then covers the installation of ASP.NET AJAX, a
review of its structure, and a first simple example.

Chapter 2, JavaScript, is a concise introduction to JavaScript. Although ASP.NET
AJAX does its best to hide the functional details from ASP.NET programmers, a cer-
tain knowledge of JavaScript is required to really master ASP.NET AJAX.

Chapter 3, Ajax, explains the technologies beyond the hype. You learn what hap-
pens in the background, how Ajax works, and what it really is all about, in fewer
than 20 pages.

Chapter 4, Using ASP.NET AJAX JavaScript Extensions, describes how ASP.NET
AJAX enriches the functionality of client-side JavaScript by adding new OOP-like
features and even reimplementing some classes of the .NET Framework so they can
be used on the client side.

Chapter 5, Web Services, deals with XML web services. Even though ASP.NET AJAX
focuses on client-based development, it also adds features for server-side web ser-
vices. This includes features for error management and session support.

Chapter 6, UpdatePanel: Refreshing Only Parts of a Page, introduces the UpdatePanel
control that makes individual parts of a web page updateable independent from the
rest of the page, without a page refresh. This is one of the most important elements
of ASP.NET AJAX.

Chapter 7, Using the ASP.NET AJAX Profile Service, details how ASP.NET AJAX
provides a JavaScript access to the ASP.NET 2.0 Profile API.

Chapter 8, Using the ASP.NET AJAX Authentication Service, explains the JavaScript
hook into the ASP.NET 2.0 Forms Authentication API.

xiv | Preface

Chapter 9, Localizing and Globalizing Applications, covers the emerging topic of pro-
viding a web application that works with different languages and regional settings.

Chapter 10, Using the Control Toolkit, introduces the ASP.NET AJAX Control Tool-
kit, a collection of impressive server controls enriched with Ajax features.

Chapter 11, Adding Animation to a Web Page, introduces the animation framework
that is part of the ASP.NET AJAX Control Toolkit.

Chapter 12, Autocompleting User Input, Fighting Spam, and More, shows the (debat-
able) highlights of the ASP.NET AJAX Control Toolkit, showcasing the diversity of
the toolkit and also covering some best practices and tips.

Chapter 13, Writing Custom Controls and Contributing to the Community, explains
how to write your own controls using the Control Toolkit infrastructure, and how to
integrate them, or patches, to existing controls in the toolkit project.

Chapter 14, Client Controls, describes the client-side controls that come with the
ASP.NET AJAX Futures CTP. These make accessing HTML elements from Java-
Script easy using a consistent API.

Chapter 15, Binding and Validating Data, shows how to implement a client-side data
binding between (client) controls, courtesy of the ASP.NET AJAX Futures CTP.

Chapter 16, Using Behaviors and Components, shows you the built-in behaviors of
ASP.NET AJAX and how to attach their functionality to client-side controls and
components.

Chapter 17, Using Server Data, explains how you connect to databases. ASP.NET
AJAX can be linked to a data source via specifically crafted web services, making
data binding without page refreshes quite easy. ASP.NET AJAX also provides special
client-side controls to display data.

Chapter 18, Using Remote Web Services, helps you overcome the same-domain pol-
icy of JavaScript and allows you to call remote web services, using a server-side
bridge.

Chapter 19, Using Animations, showcases some animation features in the ASP.NET
AJAX Futures CTP.

Chapter 20, Fixing Bookmarks and Back/Forward Buttons, provides possible solu-
tions to two of the most annoying issues with Ajax applications (breaking the stan-
dard browser behavior).

Chapter 21, Web Parts, demonstrates that ASP.NET AJAX web parts can do things
ASP.NET web parts cannot, including, for example, drag-and-drop on any browser.

Chapter 22, Using ASP.NET AJAX with Other Server Technologies, proves that some
parts of the Microsoft Ajax Library are not tied to ASP.NET 2.0; a sample applica-
tion in PHP shows how to bridge these two worlds.

Preface | xv

Appendix A, Debugging ASP.NET AJAX Applications, covers how to find bugs in
ASP.NET AJAX applications and introduces some must-have browser tools.

Appendix B, XMLHttpRequest Reference, lists important methods and properties of
the XMLHttpRequest object.

Appendix C, DOM Reference, covers important JavaScript DOM methods.

Appendix D, ASP.NET AJAX Reference, lists the most important methods provided
by the ASP.NET AJAX framework.

Appendix E, ScriptManager, UpdatePanel, UpdateProgress, and Timer Declarative
Reference, documents the properties of these four key ASP.NET AJAX server
controls.

What You Need to Use This Book
The examples in this book require only ASP.NET 2.0, which is included in the free
redistributable version of the .NET Framework. However, to make the most of
ASP.NET and ASP.NET AJAX, you should use one of the IDE offerings from
Microsoft. Visual Web Developer 2005 Express Edition (VWD) is free; Visual Stu-
dio 2005 (in its various editions) is the commercial package with more features.
Both are perfectly suited for using the examples in this book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, or the output from commands.

Constant width bold
Used to highlight portions of code.

Constant width italic
Shows text that should be replaced with user-supplied values.

xvi | Preface

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is designed to help you get your job done. In general, you may use the
code in this book in your programs and documentation. Unless you’re reproducing a
significant portion of the code you do not need to contact us for permission. For
example, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quot-
ing example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming ASP.NET AJAX, by
Christian Wenz. Copyright 2007 Christian Wenz, 978-0-596-51424-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

A web page is available for this book where we list errata, code examples, and any
additional information. Corresponding files for code examples are mentioned on the
first line of the example. You can access this page at:

http://www.oreilly.com/catalog/9780596514242

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596514242
mailto:bookquestions@oreilly.com

Preface | xvii

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments (Programming Atlas)
Working on this book turned out to be an enormous task. The lack of documenta-
tion changes from one release to the next, and complicated JavaScript debugging led
to a lot of trial and error. Although I had worked with ASP.NET and JavaScript for a
very long time, I had to learn Atlas from scratch. Luckily, the Atlas team has been
very supportive and open, especially in the public forums at http://forums.asp.net/
default.aspx?GroupID=34.

I am grateful to the impressive roster of tech editors who helped me shape this book
and provided me with feedback. In alphabetical order by first name, the ones who
saved my reputation in a couple of instances are: Adonis Bitar, Arsen Yeremin,
Bertrand Le Roy, Christoph Wille, Mike Pope, and Tobias Hauser.

Also, I am indebted to my editor, John Osborn, who guided me through this project.
He is the only editor I know who ever complained when I was submitting material
before the negotiated deadline. But it was his excellent project management that
allowed me to focus on writing and staying on—and even going ahead—of schedule.

Finally, I have to admit that I am not too keen on personal acknowledgments, thank-
ing family members, husbands/wives/fiancées/partners, and cats/dogs. (The only
exception is Richard Hundhausen, who once expressed his gratitude that there were
no 24-hour divorce services where he lived.) However, I would like to take this
opportunity to thank my parents. They were very supportive when I wrote my first
book, and now, some 50-odd books later, I finally show some appreciation. Embar-
rassingly, they sometimes even find mistakes without knowing the technologies
involved: some time ago, my father noticed that there were more opening than
closing parentheses in a listing. So, thanks Mom, thanks Dad. And—now that I am
into it—thanks to my friends and family, who do not seem to mind when I have long
writing phases or am on the road for yet another conference.

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://forums.asp.net/default.aspx?GroupID=34
http://forums.asp.net/default.aspx?GroupID=34

xviii | Preface

Acknowledgments (Programming ASP.NET AJAX)
Sometimes, your timing is just bad. About two weeks after the first edition—then
called Programming Atlas—was released, Microsoft changed the name to ASP.NET
AJAX. Bad timing, but not only for the new name: apart from changing the name,
Microsoft also quite drastically changed the inner workings of the framework. As a
consequence, no Atlas code listing works with ASP.NET AJAX. Admittedly, many
listings were quite trivial to port, but some functionality was dropped or irreversibly
changed.

Therefore, this edition looks completely different from the previous ones. The struc-
ture has been completely revamped with many new chapters, and some content has
been added, some content dropped, and some chapters rewritten. So, while this is
technically a second edition, it is more or less a new book. However, if you have
existing code based on Atlas, don’t worry: you will receive advice regarding the
migration of old code to the new release in several chapters of this edition.

I am indebted to John Osborn, my editor, who managed the project, always sending
me new ideas for the book. Mike Pope was the primary tech editor (a role he
assumed for the first edition). He not only eliminated most of my Microsoft jokes
(sigh), but also provided me with countless suggestions, comments, and ideas for
this new edition. It was a lot of work, both for him (finding glitches) and for me (fix-
ing them), but I think that the result has been worth the effort. Thanks to both of
you for making the second edition even better than the first.

Thanks also to all the readers from the previous editions who provided me with a lot
of feedback and suggestions. And thanks to various developers I taught using this
book, who gave great feedback as well.

PART I

I.Basics

Chapter 1, ASP.NET AJAX, Ajax, and ASP.NET

Chapter 2, JavaScript

Chapter 3, Ajax

www.allitebooks.com

http://www.allitebooks.org

3

Chapter 1 CHAPTER 1

ASP.NET AJAX, Ajax, and ASP.NET1

This book is about ASP.NET AJAX (known in pre-release versions as “Atlas”), a col-
lection of new Microsoft technologies that enables web developers — particularly
ASP.NET 2.0 developers—to more easily create web sites with pages that use Ajax.
Ajax-style pages provide a richer user interface. Such a page is also more responsive
because it can respond immediately to users, and can interact more or less immedi-
ately with the server. ASP.NET AJAX also includes tools for creating mashups, web
applications that combine content from multiple sites, typically using the APIs pro-
vided by third-party web services. We’ll be exploring all of these capabilities and
more throughout the book. This chapter will get you started with ASP.NET AJAX
while providing an overview of the underlying technology, and an architectural view
of its operation.

ASP.NET AJAX and Ajax
ASP.NET AJAX expands on accepted browser technologies, including Asynchro-
nous JavaScript and XML. Ajax has itself generated quite a lot of buzz lately (see the
Preface for some thoughts about that), as it brings the functionality and user inter-
face (UI) of web applications closer to that of desktop applications.

The main concept behind Ajax is to enable web pages to make HTTP requests in the
background, or asynchronously, without reloading an entire page (or, in ASP.NET
terms, without a round trip, or a postback). Ajax also allows more responsive UIs to
be constructed by drawing on the power of commonly supported browser functions
such as, JavaScript, Document Object Model (DOM), and Cascading Style Sheets
(CSS). Google Suggest (http://www.google.com/webhp?complete=1&hl=en) demon-
strates how an Ajax-enabled page can provide users with suggested words as text is
entered (also known as auto-completion). Another example is Microsoft’s Virtual
Earth (http://www.virtualearth.com/).

ASP.NET AJAX can help you create these types of Ajax-enabled applications by pro-
gramming the browser (client). To work with the client side of Ajax and ASP.NET

http://www.google.com/webhp?complete=1&hl=en
http://www.virtualearth.com/

4 | Chapter 1: ASP.NET AJAX, Ajax, and ASP.NET

AJAX, you will need a solid understanding of the core Ajax technologies. Creating
Ajax-enabled web pages by programming the browser requires knowledge of Java-
Script, DOM, and the XMLHttpRequest object, which handles the requests from the
client to the server. Additional knowledge of XML and XSLT is a plus, but is not
mandatory. Neither is covered extensively in this book.)

Chapter 2 introduces JavaScript essentials. Other Ajax technologies are discussed
in greater detail in Chapter 3. The example provided later in this chapter (“A First
ASP.NET AJAX Example: Hello User”) will require only a basic understanding of
the Ajax technologies. You will develop these skills as we move forward.

Writing Ajax-based applications without a framework like ASP.NET AJAX is not
necessarily easy, and you can find yourself writing the same code over and over to
perform tasks such as displaying the data returned from a request to the server, bind-
ing controls to data, or working with web services. You can also find yourself writ-
ing code to work around different browser implementations of the DOM. One of the
goals of ASP.NET AJAX is to reduce or even eliminate the need for writing redun-
dant and tedious code and to deliver a client-side developer experience that matches
the experience of ASP.NET 2.0 developers. A related goal is to bring to JavaScript
some of the productivity advantages of object-oriented programming (OOP) as well
as a framework like .NET. ASP.NET AJAX includes client-script libraries that pro-
vide these advantages to the JavaScript/DOM/CSS programmer:

Browser compatibility layer
Allows ASP.NET AJAX scripts to run in most browsers and eliminates the need
to handcraft scripts for each browser you want to target. (However, some
browser-specific script is unavoidable, as you’ll see in Chapter 3.)

Core services
Provides JavaScript extensions that make OOP-like scripting possible, including
support for classes, namespaces, event handling, inheritance, and object serial-
ization with the formats JSON (JavaScript Object Notation) and XML. The most
valuable of these extensions are discussed in Chapter 4.

Base class library
This library provides a number of .NET-like components, such as string build-
ers and timers. You’ll learn about them in Chapter 4.

Script controls and components
Provides ASP.NET AJAX versions of standard HTML controls that are extended
with capabilities like data binding, prepackaged behaviors (for example, drag-
and-drop functionality), and tight integration with the ASP.NET AJAX client
libraries. You can program these controls and components directly, or you can
use a new declarative markup called xml-script, which we will discuss in several
chapters throughout the book. If you are familiar with ASP.NET markup syntax,
then you already understand (in general terms) the relationship of HTML con-
trols, abstract programmable versions of these controls, and a declarative syntax.

ASP.NET AJAX and ASP.NET | 5

ASP.NET AJAX and ASP.NET
Although ASP.NET AJAX provides a host of benefits to the client script programmer
creating Ajax applications, it is not just about writing JavaScript and making asyn-
chronous calls to the server. As ASP.NET AJAX was created by the ASP.NET team,
it’s no surprise that one of its prominent features is a server framework that is inte-
grated with (and requires) ASP.NET 2.0.

As with ASP.NET itself, ASP.NET AJAX is designed to deliver functionality—in this
case, the benefits of Ajax—without requiring mastery of Ajax technologies. ASP.NET
AJAX can manage Ajax functionality for you in much the same way that ASP.NET man-
ages HTTP functionality, such as postbacks, state management, and the client script
required to make ASP.NET all “just work.”

In addition, on the server side, ASP.NET AJAX works as part of ASP.NET, taking
advantage of its inherent features. ASP.NET AJAX controls can interact with other
ASP.NET controls and components and participate in the page life cycle. It can be
linked to ASP.NET 2.0 features, such as sessions, authentication, and profiles,
allowing you to take advantage of these types of capabilities on the client. Finally,
with ASP.NET AJAX and ASP.NET, you can reach beyond the page to special web
services.

Some of the key elements of the ASP.NET AJAX server framework are described
here:

ASP.NET AJAX server controls
ASP.NET AJAX provides server-based controls resembling those of core ASP.NET
2.0, but which work with the ASP.NET AJAX client framework to deliver their
functionality. Two controls in particular are fundamental to ASP.NET AJAX appli-
cations: ScriptManager, which will be discussed later in this chapter (see “The
ScriptManager Control”), and UpdatePanel, which is discussed in Chapter 6.

ASP.NET AJAX ASP.NET services
Provide certain ASP.NET 2.0 application services that are directly available to
ASP.NET AJAX client scripts, including profiles, personalization, authentication
and membership, and culture-specific services. You can expect the number of
ASP.NET services available to ASP.NET AJAX applications to grow with future
releases of ASP.NET AJAX.

The Microsoft Ajax Library
This library provides a JavaScript-only library that does not depend on ASP.NET.
Therefore, it can also be used without ASP.NET, as we will discuss in Chapter 22.

Ultimately, ASP.NET AJAX will take its rightful place as a key component of the
next release of ASP.NET and will be fully supported with designers, IntelliSense, and
debugging tools in a future release of Visual Studio.

6 | Chapter 1: ASP.NET AJAX, Ajax, and ASP.NET

ASP.NET AJAX Packages
The ASP.NET AJAX home page (http://ajax.asp.net/) presents several different pack-
ages that each have a specific focus:

ASP.NET AJAX Extensions
Also referred to as “ASP.NET AJAX Core,” this is the “main” ASP.NET AJAX
package. It is fully supported by Microsoft and contains the ASP.NET AJAX infra-
structure (covered in Part II).

ASP.NET AJAX Control Toolkit
This package contains an extensive collection of server-side components that
provide astonishing Ajax functionality with very little effort. The Control Tool-
kit is an open source effort, although Microsoft still controls the project to
ensure quality. However, there is no official Microsoft support for elements
within the toolkit. Part III will explore the Control Toolkit.

ASP.NET AJAX Futures Release
This package provides a sneak peek at features that might become part of ASP.NET
and ASP.NET AJAX (or not). The Future Release is also the home of less com-
monly used functionality that was originally part of pre-release versions of ASP.
NET AJAX. The CTP (Community Technology Preview, a pre-release version
made available for download) is refreshed more often than the core package. It
also is not officially supported, so use it at your own risk. Part IV of this book
covers the Futures Release that was current as of the time of printing, namely the
ASP.NET Futures (July 2007) release. Also, as of May 2007, the ASP.NET AJAX
Futures CTP is part of the ASP.NET Futures CTP, which includes fascinating
new (and unsupported) possibilities for classic ASP.NET.

The Microsoft Ajax Library
The aforementioned JavaScript-only library, which will be covered in Part V.

In a somewhat surprising move, Microsoft provided the complete
source code for ASP.NET AJAX. It can be downloaded from http://
ajax.asp.net/.

This chapter will introduce and show you how to install the core ASP.NET AJAX
Extensions (and will touch briefly on the Futures CTP), before Part II will get into
more detail; the remaining packages will be introduced at the beginning of the
respective parts.

ASP.NET AJAX Prerequisites and Installation
The best way to understand the power of ASP.NET AJAX is to use it. All you need to
develop applications is a JavaScript-enabled browser on the client and an ASP.NET
2.0-enabled web server. A text editor is sufficient to get started. However, when

http://ajax.asp.net/
http://ajax.asp.net/
http://ajax.asp.net/

ASP.NET AJAX Prerequisites and Installation | 7

applications get more complex, an IDE with additional features like IntelliSense,
code completion, project management, debugging, and WYSIWYG functionality can
be real timesavers. In the world of ASP.NET 2.0, the most widely used editor comes
from Microsoft in the form of Visual Studio 2005.

Installing the IDE
The good news is that, although the full versions of Visual Studio 2005 are usually
your best bet, the free web-centric Express edition of Visual Studio 2005—Microsoft
Visual Web Developer 2005 Express Edition—also fully supports ASP.NET AJAX.

In the interest of simplicity, we will sometimes refer to Visual Web
Developer as VWD throughout this book. By VWD we mean both the
Express edition and the full version of Visual Studio 2005. The web
development component of VS 2005 is also called Visual Web Devel-
oper (you can see it during installation of Visual Studio), so VWD is
the most generic term for creating ASP.NET 2.0 applications with a
Microsoft IDE.

If you do not already have an IDE, install either Visual Studio 2005 or Visual Web
Developer Express Edition. For the latter, go to http://msdn.microsoft.com/vstudio/
express/vwd/download, where you will find a web installer that not only downloads
and installs VWD (Figure 1-1), but also takes care of installing the .NET Framework
2.0, if it is not already installed on your system.

If the web installer doesn’t work on your machine (e.g., it cannot con-
nect to the Internet from within a corporate environment, or your con-
nection is slow), you can find ISO and IMG images of a CD containing
Visual Web Developer and all prerequisites (http://msdn.microsoft.com/
vstudio/express/support/install), which you can download to a place with
a better connection, then transfer onto a CD.

Installing ASP.NET AJAX
No matter which version of VWD you use, ASP.NET AJAX is integrated directly
into the IDE. On the ASP.NET AJAX home page (http://ajax.asp.net), you can find
a link to ASP.NET AJAX itself in the form of an MSI installer package named
ASPAJAXExtSetup.msi. Look for the Microsoft ASP.NET 2.0 AJAX Extensions 1.0.

Before you launch the installer, uninstall any previous ASP.NET AJAX versions that
may be on your system. The .msi installer asks only a few questions. Once you accept
the ASP.NET AJAX license agreement, installation will begin, as shown in Figure 1-2.

When installation is complete, a new option for creating a web site—ASP.NET
AJAX Web Site—will display within VWD and Visual Studio. This is the best way to
get started with the ASP.NET AJAX technology as it copies all required files and

http://msdn.microsoft.com/vstudio/express/vwd/download
http://msdn.microsoft.com/vstudio/express/vwd/download
http://msdn.microsoft.com/vstudio/express/support/install)
http://msdn.microsoft.com/vstudio/express/support/install)
http://ajax.asp.net

8 | Chapter 1: ASP.NET AJAX, Ajax, and ASP.NET

places them in the proper directories (see Figure 1-3). It also installs the ASP.NET
AJAX assembly in the Global Assembly Cache (GAC), so that it is automatically
available for all ASP.NET applications.

ASP.NET AJAX also works with the upcoming Visual Studio 2008 and Visual Web
Developer 2008 Express Edition. When creating a new web site, just state that you
want to use .NET Framework 3.5 (see Figure 1-4), you don’t even have to install
ASP.NET AJAX, since it comes with the .NET Framework 3.5. For .NET versions
prior to 3.5, you still need to install ASP.NET AJAX separately. By the way, if you are
working with both Visual Studio 2005 and Visual Studio 2008, or if you want to
open ASP.NET AJAX projects in Visual Studio 2008 that were created in Visual
Studio 2005, refer to “For Further Reading” at the end of this chapter for some
important advice for these scenarios.

Figure 1-1. Installing Visual Web Developer Express Edition

ASP.NET AJAX Prerequisites and Installation | 9

Figure 1-2. Installing the template

Figure 1-3. After installation, you have a new web site template

10 | Chapter 1: ASP.NET AJAX, Ajax, and ASP.NET

The ASP.NET AJAX web site offers further information and software
related to ASP.NET AJAX. Some of the helpful items you will find on
the site are detailed here:

• Documentation that familiarizes you with several aspects of
ASP.NET AJAX (ajax.asp.net/docs). The documentation also
comes in a downloadable form that can be installed on your
local computer (AspNet_AJAX_Documentation.zip).

• ASP.NET AJAX samples

• Links to other ASP.NET AJAX packages: The ASP.NET AJAX
Control Toolkit, the Microsoft Ajax Library, the ASP.NET AJAX
Futures release, and the ASP.NET AJAX source code.

Installing the Sample Database
Some of the examples in this book assume you are using SQL Server 2005 Express
Edition as a database server (although the examples can also be adapted to other
data sources). However, if you already have Microsoft SQL Server installed on your
computer, you can use that as well. If you do not have Microsoft SQL Server avail-
able, download and install SQL Server Express (a free download).

Figure 1-4. A .NET Framework 3.5 web site project automatically uses ASP.NET AJAX

ASP.NET AJAX Prerequisites and Installation | 11

To make the setup as easy to deploy as possible, I use the Microsoft sample database
AdventureWorks for all of the database examples in this book. I also assume that
AdventureWorks was installed into a local SQL Server 2005 Express Edition installa-
tion, and is accessible using Windows authentication, at (local)\SQLEXPRESS.

You may need to adapt the SQL Express pathname to your local
system.

Depending on the version of SQL Server you use, AdventureWorks is available for
download at either of the following locations:

SQL Server 2005
http://www.microsoft.com/downloads/details.aspx?familyid=E719ECF7-9F46-
4312-AF89-6AD8702E4E6E&displaylang=en

SQL Server 2005 Express Edition
http://www.microsoft.com/downloads/details.aspx?familyid=9697AAAA-AD4B-
416E-87A4-A8B154F92787&displaylang=en

Select the appropriate link, download and run the installer. When installation is com-
plete, you will have to attach the AdventureWorks_Data.mdf file (residing in your SQL
Server’s Data folder) to your SQL Server 2005 installation. The most convenient way to
do is by using Microsoft SQL Server Management Studio Express (SSMSE), a free GUI
I recommend for administering SQL Server 2005 Express Edition installations. SSMSE
is available in both 32-bit and 64-bit versions at http://www.microsoft.com/downloads/
details.aspx?FamilyID=c243a5ae-4bd1-4e3d-94b8-5a0f62bf7796&DisplayLang=en.

Installing the Futures CTP
The installer for the ASP.NET AJAX Futures CTP (part of the ASP.NET Futures CTP)
is quite similar to that of the ASP.NET AJAX Extensions. It also installs a web site tem-
plate into Visual Studio and Visual Web Developer. It is called ASP.NET Futures AJAX
Web Site (not to be confused with ASP.NET Futures Web Site, which is for Ajax-less
sites). Installing the CTP requires that the ASP.NET AJAX Extensions have been
installed first.

For samples presented in this book, the ASP.NET AJAX Extensions application uses
its standard name, AJAXEnabledWebSite1, whereas the CTP web site will be named
AJAXFuturesEnabledWebSite1. The former will run on port 1234, the latter on port
1236. The port in between, 1235, is reserved for the ASP.NET AJAX Control Toolkit
sample application. You can, of course, choose port numbers of your own liking.

www.allitebooks.com

http://www.microsoft.com/downloads/details.aspx?familyid=E719ECF7-9F46-4312-AF89-6AD8702E4E6E&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=9697AAAA-AD4B-416E-87A4-A8B154F92787&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=c243a5ae-4bd1-4e3d-94b8-
http://www.microsoft.com/downloads/details.aspx?FamilyID=c243a5ae-4bd1-4e3d-94b8-
http://www.allitebooks.org

12 | Chapter 1: ASP.NET AJAX, Ajax, and ASP.NET

After you’ve finished installing and configuring AdventureWorks, go to the Win-
dows Start menu and launch SQL Server on your system. Enter the information for
your SQL Server 2005 Express Edition installation in the dialog box shown in
Figure 1-5. The default installation can be accessed using the server name (local)\
SQLEXPRESS or YourMachineName\SQLEXPRESS and authentication type Windows
Authentication.

Next, right-click on the databases folder within SSMSE and select Attach. In the dia-
log box that opens (Figure 1-6), click the Add button and select the
AdventureWorks_Data.mdf file. Click OK twice. The AdventureWorks database is
now permanently attached to your installation of SQL Server 2005 Express Edition.

ASP.NET AJAX Structure and Architecture
It is now time to actually use ASP.NET AJAX. Start VWD and create a new ASP.NET
web site using the ASP.NET AJAX template. If you take a look at Solution Explorer,
you will see a regular ASP.NET web site. Don’t be surprised; the installer placed the
ASP.NET AJAX assembly directly in the GAC. The only thing different about it is the
file, Web.config, which is preconfigured with the settings required for ASP.NET
AJAX to work.

ASP.NET AJAX consists of both server and client components. It is possible to use
only the server components, or only the client components. There is one exception:
every ASP.NET AJAX application will need the ScriptManager server control, which
will be discussed later in this chapter. Usually, you will want to use both the server
and client components.

Figure 1-5. The SSMSE login window

ASP.NET AJAX Structure and Architecture | 13

The roles the client and server components play in an ASP.NET AJAX project will
become clearer when we take a closer look at how Ajax applications that use
XMLHttpRequest really work.

Figure 1-7 shows the basic structure of ASP.NET AJAX. Whereas standard web
pages consist of only two parts—one request and one response—Ajax-enabled web
pages can continuously exchange data with the server. ASP.NET AJAX helps on both
ends of the wire. Client script libraries (which, as you will soon see are dynamically
loaded by the ScriptManager control) facilitate communication between browser and
web server and make client coding easier. The code implemented in the ASP.NET
AJAX server assembly takes care of accepting and handling XMLHttpRequest calls and
also implements some convenient server web controls that we will cover later in the
book. As a result, client and server components can exchange data with very little
effort by the programmer.

Figure 1-6. Attaching the MDF file to the SQL Server 2005 Express Edition installation

14 | Chapter 1: ASP.NET AJAX, Ajax, and ASP.NET

The ASP.NET AJAX client framework (bottom layer of the client component in
Figure 1-7) is sent to the browser from the server the first time an ASP.NET AJAX-
enabled page is requested (steps 1 and 2 in Figure 1-7). Subsequent requests to the
server from the same page in an Ajax application can then be made with HTTP
requests that return text and XML (steps 3 and 4 in Figure 1-7). An ASP.NET web
page might use full-page postbacks and asynchronous requests for different tasks.

The individual components of ASP.NET AJAX, both on the client and on the server,
are detailed throughout the book. However you should always keep the basic struc-
ture in mind, including the data exchange between client and server. The smaller the
number of page requests, the better—at least for the purpose of avoiding page
refreshes.

A First ASP.NET AJAX Example: Hello User
To test whether your setup of ASP.NET AJAX has been successful and to see the
framework in action, let’s end this chapter by creating a small sample application.
The sample page accepts a username, sends it to the web server (in the background,
using XMLHttpRequest), and receives it back with some extra text. The new version of
the name is then presented to the user. This sample is a simple demonstrations of
how easy it can be to set up an application using the features of ASP.NET AJAX. In
later chapters, more detailed descriptions of the inner workings and operation will be
provided.

In VWD, create a new web site using the ASP.NET AJAX template. Next, create a
new web service (using the web service file template) in the root directory of the web
site and call it WebService.asmx. In the web service .asmx file, implement a simple
web method that accepts one string parameter by pasting the code shown in
Example 1-1 into the file. Notice that you need the attribute, [ScriptServices],
which is actually defined by ASP.NET AJAX (within the namespace System.Web.
Script.Services).

Figure 1-7. The life cycle of an ASP.NET AJAX web page

Markup (HTML, CSS)

Script (JavaScript, DOM)

ASP.NET AJAX
Framework (client)

Client

ASP.NET Code

Web Service(s)

ASP.NET AJAX
Framework (server)

Server

(1) Request page (.aspx)

(2) Send page (HTML)

(3) XMLHttpRequest

(4) Send text/XML

A First ASP.NET AJAX Example: Hello User | 15

Now call this web service in your web browser, but append /js to the URL. As shown
in Figure 1-8, this URL actually returns JavaScript code. In fact, this code imple-
ments a JavaScript proxy class (to be covered in more detail in Chapter 5). Most
important, the code produces a variable named WebService that provides a reference
to the web service.

Example 1-1. The web service

WebService.asmx

<%@ WebService Language="C#" Class="WebService" %>

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;

[WebService(Namespace = "http://hauser-wenz.de/AspNetAJAX/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.Web.Script.Services.ScriptService]
public class WebService : System.Web.Services.WebService {

[WebMethod]
public string sayHello(string name) {
return "Hello " + name + ", says the server!";
}

}

Figure 1-8. ASP.NET AJAX creates this JavaScript code automatically

16 | Chapter 1: ASP.NET AJAX, Ajax, and ASP.NET

You will see that the ASP.NET AJAX template already created a file, Default.aspx,
with some contents that you will expand in the following steps. Following is the code
you will see in this file:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 </div>
 </form>
</body>
</html>

The first thing you will likely notice is a new control: <asp:ScriptManager>. This con-
trol is the central element of every ASP.NET AJAX web page. We will explore Script-
Manager control in greater detail later in this chapter (see “The ScriptManager
Control”).

Be sure the Default.aspx file is still open in the editor and reference the web service in
the following fashion within the ScriptManager element. When the page runs, this
reference will generate a JavaScript proxy so that your page can use the code gener-
ated dynamically by the web service code:

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="WebService.asmx" />
 </Services>
</asp:ScriptManager>

At this point, you need to bring in some HTML elements. Add a text box and an
HTML button to the existing <form> element (within the <div> element, if you want
to adhere to XHTML standards):

<input type="text" id="name" name="name" />
<input type="button" value="Call Service" onclick="callService(this.form);" />

The onclick event handler of the button calls a custom JavaScript function named
callService() and passes a reference to the current form. The callService()
method is where the web service is invoked. To call the web service’s sayHello()
method, the code can use the JavaScript proxy object, which is exposed via an auto-
matically generated variable named WebService. (The name WebService matches the
name of the web service class you created earlier.)

A First ASP.NET AJAX Example: Hello User | 17

The sayHello() method expects not only a string, but also references to up to three
handler functions; one to call when the web service succeeds (callComplete), one to
call when an error occurs (callError), and a third to call if the call times out. (For
this example, we’ll use only the first two.)

Next, place the following code within a client-side <script> element on your page:

function callService(f) {
 WebService.sayHello(
 f.elements["name"].value,
 callComplete,
 callError);
}

Finally, you need to provide the two handler functions for the callComplete and
callError events. To do this, add the following code to the client script block that
you just created:

function callComplete(result) {
 window.alert(result);
}
function callError(result) {
 window.alert("Error! " + result);
}

Example 1-2 shows the complete code for the Default.aspx file.

Example 1-2. A simple ASP.NET AJAX page that calls a web service

Default.aspx

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script language="Javascript" type="text/javascript">
 function callService(f) {
 WebService.sayHello(
 f.elements["name"].value,
 callComplete,
 callError);
 }

 function callComplete(result) {
 window.alert(result);
 }

18 | Chapter 1: ASP.NET AJAX, Ajax, and ASP.NET

Figure 1-9 shows the results when the page is loaded and the Call Service button is
clicked.

 function callError(result) {
 window.alert("Error! " + result);
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager
 ID="ScriptManager1"
runat="server">
 <Services>
 <asp:ServiceReference Path="WebService.asmx" />
 </Services>
 </asp:ScriptManager>
 <div>
 <input type="text" id="name" name="name" />
 <input type="button" value="Call Service" onclick="callService(this.form);" />
 </div>
 </form>

</body>
</html>

Figure 1-9. The application works as expected

Example 1-2. A simple ASP.NET AJAX page that calls a web service (continued)

The ScriptManager Control | 19

Run the page (F5, or Ctrl+F5 in VWD). As you can see in the browser, the results are
predictable—not only with Internet Explorer, but also with other relevant browsers.
Click the Call Service button several times, and note carefully that the button does
not result in a postback, even though the page is communicating with the web ser-
vice on the server.

The ScriptManager Control
Now that you’ve completed the first exercise, here is some more background infor-
mation about how it worked, and how the other ASP.NET AJAX examples through-
out this book work.

The central element of an ASP.NET AJAX-powered ASP.NET page is the
ScriptManager control. This control takes care of loading the required JavaScript
libraries for ASP.NET AJAX.

If you run an ASP.NET AJAX application and then examine the resulting source
code in the browser, you will see that the code has changed quite a bit from what it
looked like when you were editing it. The <asp:ScriptManager> element will have
been replaced with the following code (although the undecipherable data contained
in the URL will be different on your system):

<script src="/AJAXEnabledWebSite1/WebResource.axd?d=Jd4j-
uCaCWzJ5gY8Rtbjnw2&t=632962478475625000" type="text/javascript"></script>

<script src="/AJAXEnabledWebSite1/ScriptResource.axd?d=4vKPTV3rK3vcGz1fNEcIXI-
FjnEGgHGMpqfUlmBk4NA5KxnrqcWXFT6hln9QkTuglOUzzonzRPSF5F3_-
0aWhWOb3FCqEciv4AZjgqdK5us1&t=633074690770156250" type="text/javascript">
</script>
<script src="/AJAXEnabledWebSite1/ScriptResource.axd?d=4vKPTV3rK3vcGz1fNEcIXI-
FjnEGgHGMpqfUlmBk4NA5KxnrqcWXFT6hln9QkTuglOUzzonzRPSF5F3_-0aWhdU1qTQPzcChFvbHT6FrI-
81&t=633074690770156250" type="text/javascript"></script>

ASP.NET AJAX also generated JavaScript code that initializes some parts of the Ajax
framework for you.

When building the web application in debug mode, the JavaScript
code created by ASP.NET is nicely formatted and some errors are
caught. This is convenient for developing purposes, but is not required
(in fact, is recommended against) when the web site is deployed, since
it makes the JavaScript code and therefore the page’s size larger.

This ScriptManager element must be present on all pages that use ASP.NET AJAX
features.

20 | Chapter 1: ASP.NET AJAX, Ajax, and ASP.NET

If you are using ASP.NET 2.0 master pages and most of your pages use the ASP.NET
AJAX framework, you might consider putting the ScriptManager control on your
master page instead of on the individual pages. However, this can cause difficulties
when you need to reference additional JavaScript files or web services (like the
“Hello User” example earlier) on a content page. Only one ScriptManager control is
allowed per page, so you would need to reference the JavaScript file or web service
on every page that use ASP.NET AJAX features, even on those that do not need these
external resources.

For this scenario, ASP.NET AJAX provides the ScriptManagerProxy control. This
control provides ScriptManager functionality when there is already another
ScriptManager present.

<asp:ScriptManagerProxy ID="ScriptManagerProxy1" runat="server">
 <Scripts>
 <asp:ScriptReference Path="MyScript.js" />
 </Scripts>
</asp:ScriptManagerProxy>

The ScriptManagerProxy control can also be useful if you are creating an ASP.NET
user control that includes AJAX functionality in cases where there is a ScriptManager
control on the host page.

This was just the first step. There’s much more to come in the following chapters!

Loading Additional JavaScript Files
The ScriptManager can also be used to load additional JavaScript libraries, either those
that come with ASP.NET AJAX or even your own scripts:

<asp:ScriptManager ID="ScriptManager1" runat="server">
<Scripts>
<asp:ScriptReference Path="MyScript.js" />

</Scripts>
</asp:ScriptManager>

Note that in the source code from the browser ASP.NET AJAX uses a mechanism to
verify whether all external JavaScript files have been properly loaded. If you write cus-
tom JavaScript scripts, be sure to add the following code segment to the end of every
.js file:

if (typeof(Sys) != "undefined") {
 Sys.Application.notifyScriptLoaded();
}

This segment notifies ASP.NET AJAX that the end of the file has been reached and sig-
nals the Ajax framework that all external scripts are fully loaded.

For Further Reading | 21

Summary
This chapter introduced ASP.NET AJAX, explained its relationship to Ajax and
ASP.NET 2.0, and guided you through its installation and the installation of other
software you need for this book, including the AdventureWorks database. You also
created your first working ASP.NET AJAX example and learned about the
ScriptManager control, one of two key server controls that ship with ASP.NET
AJAX. In the next chapter, you’ll have a look at the JavaScript you will need to work
with ASP.NET AJAX.

For Further Reading
http://ajax.asp.net/

ASP.NET AJAX home page

http://ajax.asp.net/downloads/default.aspx?tabid=47
ASP.NET AJAX downloads

http://ajax.asp.net/docs/InstallingASPNETAJAX.aspx
ASP.NET AJAX installation instructions in the Microsoft documentation

http://blogs.msdn.com/webdevtools/archive/2007/07/28/upgrading-asp-net-ajax-1-0-
websites-and-web-applications-to-net-framework-3-5.aspx

Important information for upgrading ASP.NET AJAX web sites created with
Visual Studio 2005 to Visual Studio 2008/.NET Framework 3.5

http://weblogs.asp.net/scottgu/archive/2007/08/04/fixes-for-common-vs-2008-and-net-
3-5-beta2-issues.aspx

A list of some known issues in Visual Studio 2008 Beta 2 and their possible
workarounds

www.allitebooks.com

http://ajax.asp.net/
http://ajax.asp.net/downloads/default.aspx?tabid=47
http://ajax.asp.net/docs/InstallingASPNETAJAX.aspx
http://blogs.msdn.com/webdevtools/archive/2007/07/28/upgrading-asp-net-ajax-1-0-websites-and-web-applications-to-net-framework-3-5.aspx
http://weblogs.asp.net/scottgu/archive/2007/08/04/fixes-for-common-vs-2008-and-net-3-5-beta2-issues.aspx
http://www.allitebooks.org

22

Chapter 2CHAPTER 2

JavaScript 2

Interactivity is key to making web pages more useful, dynamic, and interesting to the
user. The ability to embed scripts in web pages is key to making them more interac-
tive. Scripts can be used to respond to events, such as when a page loads or a user
clicks a button. Scripts are also how you work with and process data sent to and
from the server via HTTP requests and responses.

For most web developers, JavaScript is the language of choice as it is the only one
supported by all major browsers. A sound knowledge of JavaScript is important to
make the most of ASP.NET AJAX. However, an Ajax framework such as ASP.NET
AJAX makes it easy to use the technology without requiring extensive familiarity of
its details. In fact, ASP.NET AJAX can even help developers who are not at all famil-
iar with JavaScript thanks to the framework approach. Still, as ASP.NET AJAX is
simply a framework, without the ability to use JavaScript, you are limited to the
functionality offered by the ASP.NET AJAX controls. Some client scenarios may
actually require more work in ASP.NET AJAX than creating a custom JavaScript.
Therefore, the best strategy for an Ajax-enabled web site is to use the best of both
worlds: the ASP.NET AJAX framework that you extend with your JavaScript coding
skills.

Of course this book is about ASP.NET AJAX, so a complete tutorial of JavaScript
here is beyond our scope. The aim of this chapter is to provide you with a good foun-
dation so you can use and understand the examples in this book. The following
details on JavaScript are far from complete and focus only on its most important fea-
tures. For more information on JavaScript, please refer to the resources listed in the
“For Further Reading” section at the end of this chapter.

JavaScript | 23

JavaScript: A History
The JavaScript language was created by Netscape engineer Brendan Eich in the 1990s.
Originally called Mocha, it made its first appearance in 1995 as part of the third beta
version of Netscape Navigator 2.0. Later that year, Netscape arranged with Sun
Microsystems—the originator and owner of the Java language—to use the name Java-
Script (prior to this, for some time it was known as LiveScript). This has caused confu-
sion ever since as with the single exception that they’re both C-style languages,
JavaScript and Java share no other similarities. Sun still owns the trademark to the
name JavaScript.

JavaScript allowed HTML pages to be truly dynamic. It offered instant form data vali-
dation, graphical effects, user interaction, and much more. At a time when bandwidth
was limited (most users were on slow dial-up lines) and server roundtrips were costly,
JavaScript gave web developers a tool to make their sites more interactive. When Java-
Script took off, Microsoft added scripting capabilities to its own browser, Internet
Explorer, as well. For copyright reasons they named their version of the language
JScript. It was, for all intents and purposes, a JavaScript work-alike.

In 1997, the browser war between Netscape Navigator (at the time, still the market
leader) and Internet Explorer (soon to become the market leader) reached a climax. In
June, Netscape 4 was released and included JavaScript Version 1.2 with new capabili-
ties. In the same month, the Ecma (a private standards organization) published the
ECMA-262 standard, which formalized the scripting language (see http://www.ecma-
international.org/publications/standards/Ecma-262.htm). JavaScript, therefore, is an
implementation of ECMA-262 or ECMAScript.

In October of that same year, Internet Explorer 4 was released. However, its support
was limited to JavaScript 1.1. (It also supported VBScript, a scripting language based
on Visual Basic; we do not address VBScript here because it runs only in Internet
Explorer and is therefore not relevant for browser-agnostic client scripting.) At that
point, the browsers were quite incompatible, particularly when it came to implement-
ing effects like positioning and moving elements. The mix of technologies used to
achieve these kinds of effects has been dubbed Dynamic HTML (DHTML). Despite
popular belief, DHTML is not a standard at all, but a fabricated term, just like Ajax.

Then, things changed dramatically. Netscape scrapped a near-ready Version 5 of its
browser and decided to rewrite it from scratch. This led to an immature Version 6 of
Netscape, based on the new open source Mozilla project and the Gecko rendering
engine. The delays and the quality issues of the browser (and of course some other fac-
tors, as well) cost Netscape their market share, and Internet Explorer took the lead.

—continued—

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

24 | Chapter 2: JavaScript

The JavaScript Language
JavaScript is loosely based on the C programming language, so programmers com-
ing from a C, C++, C#, or Java background can usually learn the syntax in a short
amount of time. There are some aspects of JavaScript that make it quite accessible.
For example, it is not strongly typed — the programmer doesn’t assign data types.
Instead, JavaScript assigns them at runtime. In addition, JavaScript to some extent
supports object-oriented programming. However, it does not rely on it, as do other
languages such as C# or Java.

JavaScript can be embedded in web pages in three ways: in scripts, in event hand-
lers, and in URLs. The syntax used in each case is different.

Embedding a script in a web page
Scripts are typically embedded in an HTML page using the HTML <script> ele-
ment. You can also use the src attribute of <script> to target a URL if you want
to load an external script file.

The major browsers all assume that JavaScript is the default language whenever
they encounter a <script> tag on a web page. However, to satisfy W3C (World
Wide Web Consortium) standards and the needs of less-used or older browsers
(including outdated versions), it’s always best to specify the language using the
syntax shown here:

<script language="JavaScript" type="text/javascript">
 ...
</script>

Using a script to handle an event
JavaScript code can be used for the value of an event handler in an HTML tag
attribute (e.g., <input type="button" onclick="doSomething();" />).

However, development of Internet Explorer stalled with Version 6, and the Firefox
browser (the browser itself was also based on Mozilla, but additional features, such as
mail or news reader were not) started claiming some of Internet Explorer’s market
share. Internet Explorer 7 was the first new release in about six years, so the race is on
again.

From a JavaScript point of view, not very much has changed in recent years. After the
death of Netscape 4, the major browsers—Internet Explorer and Mozilla, along with
Safari, Konqueror, and Opera—are compatible in their support for JavaScript,
although some differences and issues remain.

The lack of innovation in browsers has also held back widespread use of JavaScript.
Even books on the topic received very few updates in the last couple of years. However,
this all changed with the invention of the term Ajax (more on this in Chapter 3).
Although the technology behind Ajax has existed since 1998, it only recently moved
into mainstream web programming. Chapter 3 covers this in more detail.

The JavaScript Language | 25

Using JavaScript in a URL
JavaScript can appear in a URL that uses the special javascript: pseudoprotocol,
making it easy to use JavaScript in hyperlinks (e.g., <a href="javascript:
doSomething();">click me).

The first two options are the most commonly used and are demonstrated in the
following sections that will also introduce you to key elements of the JavaScript
language.

Common JavaScript Methods
JavaScript provides two methods that we will use repeatedly in the examples pre-
sented in this chapter:

document.write("Text")
This method writes the given text to the browser window.

window.alert("Text")
This second method opens up a modal window to display an informational
message.

Example 2-1 shows markup for a page that uses the second method to display an
alert.

When Browsers Don’t Support JavaScript
Years ago, the <script> element was used in a different fashion:

<script language="JavaScript" type="text/javascript"><!--
 ...//--></script>

The HTML comment (<!-- and -->) was used to force browsers without JavaScript
capabilities to ignore the JavaScript code. (The two slashes before the end of the
HTML comment (//-->) denote a JavaScript comment, which caused JavaScript to
ignore the closing HTML comment tag.)

However, this is all history. Even browsers that do not support JavaScript now know
to ignore <script> elements.

Example 2-1. Using JavaScript

JavaScript.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>JavaScript</title>
 <script language="JavaScript" type="text/javascript">
window.alert("Hello from JavaScript!");

26 | Chapter 2: JavaScript

Figure 2-1 presents the result you can expect when Example 2-1 executes. In Inter-
net Explorer 6 SP 2 onward, you might get a security warning for running active con-
tent in the browser from the local filesystem. This message will not appear if the
script resides on a remote web server.

Variables
JavaScript variables are defined using the var keyword. They do not require a nam-
ing convention such as a prefix to specify their type, as is true in languages such as
Perl or PHP. Variables are global unless they are defined in a function. They do not
have a fixed data type, which allows them to change their type at runtime. However,
JavaScript provides a few built-in data types that you’re likely to use repeatedly,
including the four listed below:

• Number (1, -2, 3.14159)

• String ("Hello", 'World')

• Boolean (true, false)

• RegEx (/d+/)

 </script>
</head>
<body>
</body>
</html>

Figure 2-1. The modal window created by the JavaScript alert function

Example 2-1. Using JavaScript (continued)

The JavaScript Language | 27

There are other data type objects as well. For instance, Date is used for
date values. However, this is not an actual data type, but a class that
can be used to access the current date and perform calculations
with it.

As shown here, values are assigned to a variable using the = operator.

var i = 0; //Create variable, set its value to 0
i = "JavaScript"; //Set variable value to a string
i = false; //Set variable value to a Boolean

Unlike other languages, such as PHP or Perl, there is no functional difference
between single and double quotes in Java-Script. Note that the terminal character (;)
is optional, but it’s recommended to avoid unintentionally combining statements.

Depending on their current type, JavaScript variables support the class methods
associated with that type. For instance, every string you create supports the
substring() method, which can locate parts of the string, and the indexOf()
method, which can find the occurrence of a substring in the current string.

Arrays
An array is a variable containing a list of values. But because JavaScript is not
strongly typed, an array can contain different data types. There are two ways to cre-
ate an array. One is to use new Array() and provide some values. Array indexes are
zero-based, so the following code snippet adds a seventh element to a list:

var days = new Array("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday");
days[6] = "Saturday";

Alternatively, today’s browsers also let you create an array using the shortcut below:

var days = ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday"];

Control Structures
JavaScript supports the standard set of control structures, including switch, if...
else, and various loops (for, for...in, foreach, while, do...loop, and do...until).
Let’s begin with the if statement. Example 2-2 generates a random number using
Math.random()(something we’ll use again later in this book), a built-in function we
will use to create a new random number between 0 (inclusive) and 1 (exclusive).
Multiplying the value by 6 gives us a random number between 0 (inclusive) and 6
(exclusive). Rounding the number up using the Math.ceil() method generates a
value between 1 and 6 (both inclusive), simulating the roll of a single die.

28 | Chapter 2: JavaScript

Figure 2-2 shows the results of running the script.

Example 2-2 makes use of some additional JavaScript elements that are explained
below.

Boolean operators
! (exclamation point) the logical negation operator in JavaScript; || is the logi-
cal or operator; && is the logical and operator.

Comparison operators
== checks for equality (whereas = is the assignment operator); other comparison
operators include >=, >, <, <=, and !=. A special operator is ===, which not only
compares values, but data types as well; its negation is !==.

Example 2-2. Using if. . .else and Math.random

JavaScript-if.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>JavaScript</title>
 <script language="JavaScript" type="text/javascript">
 var rand = Math.random();
 rand = Math.ceil(6 * rand);
if (rand % 2 == 1) {

 document.write("Odd number: ");
 } else {
 document.write("Even number: ");
 }
 document.write(rand);
 </script>
</head>
<body>
</body>
</html>

Figure 2-2. Rolling a (virtual) die with JavaScript

The JavaScript Language | 29

JavaScript supports a tertiary operator that is a very convenient shortcut for perform-
ing an if...else operation. The expression

var output = (rand % 2 == 1) ? "odd" : "even";

is equivalent to:

if (rand % 2 == 1) {
 var output = "odd";
} else {
 var output = "even";
}

Rather than using a series of if statements to check the same expression over and
over, you can use the switch statement. Have a look at Example 2-3 to see how it
works.

As you can see, only a break statement exits the switch statement. Without it, the
JavaScript interpreter would run through the remaining statements even if the switch
expression matches one of the case values.

Loops are quite convenient for controlling the number of times code is repeated. For
example, the for loop can be used for iterating through arrays. Each array has a
property (length) that retrieves the number of elements in the array. The for loop in
Example 2-4 displays all data in an array.

Example 2-3. Using switch

JavaScript-switch.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>JavaScript</title>
 <script language="JavaScript" type="text/javascript">
 var rand = Math.random();
 rand = Math.ceil(6 * rand);
 switch (rand) {
 case 1:
 case 3:
 case 5:
 document.write("Odd number: ");

break;
 default:
 document.write("Even number: ");
 }
 document.write(rand);
 </script>
</head>
<body>
</body>
</html>

30 | Chapter 2: JavaScript

Figure 2-3 shows the result of running the script in Example 2-4.

Example 2-4 introduces some additional language features. The expression i++ used to
iterate the for loop is a short form for i = i + 1 (i++ is a related expression). Note that
the + operator can be used not only to add numbers but to concatenate strings as well.

JavaScript also provides a for...in loop, which works similar to a foreach state-
ment in C# and related languages. Example 2-5 demonstrates its use. At each iter-
ation, the loop variable reads the current element. If you use a foreach statement
to retrieve objects, you get access to all properties and methods of the objects.

Example 2-4. Using a for loop

JavaScript-for.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>JavaScript</title>
 <script language="JavaScript" type="text/javascript">
 var days = ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday"];
 for (var i=0; i < days.length; i++) {
 document.write(days[i] + "
");
 }
 </script>
</head>
<body>
</body>
</html>

Figure 2-3. The for loop iterates through the array elements

The JavaScript Language | 31

For arrays, you get the individual array indexes. Therefore, with the days array
from the preceding example, the values during an iteration over the array are 0 to 6,
not "Sunday" through "Saturday".

JavaScript provides several other loop statements that each perform similar opera-
tions: they run either while a particular condition exists or until a condition is met.
Example 2-6 illustrates the most commonly used of these loops, the while loop.

Example 2-5. Using a for.. . in loop

JavaScript-for-in.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>JavaScript</title>
 <script language="JavaScript" type="text/javascript">
 var days = ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday"];
for (var day in days) {

 document.write(days[day] + "
");
 }
 </script>
</head>
<body>
</body>
</html>

Example 2-6. Using a while loop

JavaScript-while.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>JavaScript</title>
 <script language="JavaScript" type="text/javascript">
 var days = ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday"];
 var i = 0;
while (i < days.length) {

 document.write(days[i] + "
");
 i++;
 }
 </script>
</head>
<body>
</body>
</html>

www.allitebooks.com

http://www.allitebooks.org

32 | Chapter 2: JavaScript

Built-in Methods, Custom Functions, and Event Handling
JavaScript comes with a set of built-in objects, but you can create custom functions
(and objects) as well. A function is identified with the function keyword. Because
you cannot specify a data type for the return value (and as a consequence, there is no
void keyword), a function does not necessarily have to return a value. If you do wish
to return a value, however, use the return statement.

Example 2-7 demonstrates the replace() method available for all strings, which pro-
vides regular expression support. As you will see, the script converts several HTML-
specific syntax characters to their associated escape-coded entities. The script makes
several calls in succession to replace(). First, the & character is replaced by its associ-
ated entity (&), then, one by one, the remaining characters (<, >, ", and ') are
converted, or “escaped.” In the end, any string handled by the script will be trans-
formed into its associated HTML markup, just as the ASP.NET method Server.
HtmlEncode() would do.

When it executes, Example 2-7 outputs <hr />, which is displayed as <hr /> in
the browser, but does not create a horizontal rule.

Although JavaScript does not support function overloading; the number of argu-
ments in a function is not fixed. If more arguments are provided in the function sig-
nature than are submitted by the caller, the extra arguments are assigned the value
null.

Example 2-7. Writing a custom function

JavaScript-function.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>JavaScript</title>
</head>
<body>
 <script language="JavaScript" type="text/javascript">
function HtmlEscape(s) {

 var result = s.replace(/&/g, "&")
 .replace(/</g, "<")
 .replace(/>/g, ">")
 .replace(/"/g, """)
 .replace(/'/g, "'");

return result;
 }
 document.write(HtmlEscape("<hr />"));
 </script>
</body>
</html>

The JavaScript Language | 33

However, as demonstrated in Example 2-8, if more arguments are submitted than
expected, the arguments property (short for <Functionname>.arguments) provides
access to all of them.

Figure 2-4 shows the output that results when Example 2-8 executes.

JavaScript also supports anonymous functions, functions with no name. Anonymous
functions are sometimes used in JavaScript to handle events. For instance, the onload
attribute of the <body> tag can be assigned JavaScript code that is executed once the
HTML of the page has been completely loaded. (This is, in fact, possible for all
events tied to HTML markup.) This is JavaScript’s built-in event handling.

Example 2-8. Writing a custom function with a variable number of arguments

JavaScript-function-arguments.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>JavaScript</title>
</head>
<body>
 <script language="JavaScript" type="text/javascript">
 function OutputList() {
 document.write("");
 for (var i=0; i < arguments.length; i++) {
 document.write("" +
 arguments[i] +
 "");
 }
 document.write("");
 }
 OutputList("one", "two", "three");
 </script>
</body>
</html>

Figure 2-4. The custom function generates the bulleted list

34 | Chapter 2: JavaScript

You can bind code to an event by concatenating on and the event name and assign-
ing code to be executed when the event occurs. There are other ways to bind code to
events, but anonymous methods and HTML attributes are the two most popular
choices.

The snippet below displays a window with the word “Loaded” when a page is
loaded:

<body onload="alert('Loaded.');">

Or, more generically stated, the syntax would look as shown below:

<body onload="Functionname();">

You can also bind an event to a handler in code. The base object of a page is called
window, so you can set window.onload to a function, as shown in the following
example:

function Functionname() {
 // do stuff
}
window.onload = Functionname;

If you do not need to use the function for any other reason, you can assign an anony-
mous function to the event name directly. This will allow you to shorten the preced-
ing example to that presented below:

window.onload = function() {
 // do stuff
}

Finnally, we present an example of an anonymous function that includes parameters:

window.onload = function(a, b) {
 // do stuff with a and b
}

This approach is quite convenient and, as you will see, is used frequently by the
ASP.NET AJAX framework.

Object-Oriented Programming (OOP)
JavaScript is an object-based language, but not an object-oriented (OOP) one. There
are aspects of JavaScript that are OOP-like, but support for conventional OOP tech-
niques is limited. For instance, visibility of class members (public, private,
protected, etc.) can be implemented only in a limited way. Nevertheless, it is
possible to create classes in JavaScript and even to provide rudimentary support for
class inheritance.

A class in JavaScript is implemented by creating a function. The code within this func-
tion is the class constructor. It contains the declarations and definitions of all instance
members (i.e., all public and private properties and methods). The keyword this can

Object-Oriented Programming (OOP) | 35

be used as a reference to the current class instance, thus providing the constructor
(and class methods) access to the properties of the current class. This also makes it
possible for the class code to set properties and define methods, which are then also
available to code outside the class.

Example 2-9 shows a simple class that implements a book. Note that we are using
data in private properties which cannot be accessed from outside the class. Next, we
define public getter and setter methods to provide access these properties. This is
commonly called encapsulation and allows a standardized access to properties and
offers the possibility to validate values before assigning them to properties.

Example 2-9. Using JavaScript’s OOP features

JavaScript-class.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>JavaScript</title>
</head>
<body>
 <script language="JavaScript" type="text/javascript">
function Book(isbn, author, title) {

 var _isbn = isbn;
 var _author = author;
 var _title = title;

this.get_isbn = function() {
 return _isbn;
 }

this.set_isbn = function(value) {
 _isbn = value;
 }

this.get_author = function() {
 return _author;
 }

this.set_author = function(value) {
 _author = value;
 }

this.get_title = function() {
 return _title;
 }

this.set_title = function(value) {
 _title = value;
 }

this.toString = function() {
 return this.get_author() + ": " + this.get_title() + " (" + this.get_isbn() + ")";
 }
 }

36 | Chapter 2: JavaScript

This code in this example will output the following text:

National Geographic: Atlas of the World (0792275438)

Since JavaScript does not support access modifiers (just think of private, protected,
and public in C#), we use local variables to implement the private properties. As
mentioned, all properties assigned to instances of this are accessible from outside
the class; variables that are declared inside the class remain private. The latter vari-
ables can be used only from within the class and are not exposed for use by others.
This is the only way to implement data hiding and create something similar to pri-
vate methods and properties.

Inheritance is possible in JavaScript to a limited extent. The prototype property can
be used to define a method or property that is available to all instances of inherited
objects. The following code would add a new method to all arrays:

Array.prototype.empty = function() {
 this.length = 0;
}

Use the following expression to define one class that inherits from another class:

DerivedClass.prototype = new BaseClass();

Example 2-10 extends the Book class with a DigitalBook class, adding one more pri-
vate field (implemented as a local variable, _size, and accessible via getter and setter
methods) and overriding the toString() method. Note that in JavaScript there are
no protected properties (properties that can be accessed from subclasses), so all field
variables from the base class must be defined again. (“Subclass” is presented here in
the context of JavaScript—since JavaScript does not support “real” OOP inherit-
ance, there is no such thing as subclasses, but you can create a similar behavior, as in
this example.) However, the existing get and set methods are still available. In order
to access them, use the call() method of the base object (similar to accessing base
within a C# class).

 var atlas = new Book("0792275438", "National Geographic");
 atlas.set_title("Atlas of the World");
 document.write(atlas.toString());
 </script>
</body>
</html>

Example 2-10. Using inheritance with JavaScript

JavaScript-class-prototype.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>JavaScript</title>

Example 2-9. Using JavaScript’s OOP features (continued)

Object-Oriented Programming (OOP) | 37

</head>
<body>
 <script language="JavaScript" type="text/javascript">
 function Book(isbn, author, title) {
 var _isbn = isbn;
 var _author = author;
 var _title = title;

 this.get_isbn = function() {
 return _isbn;
 }
 this.set_isbn = function(value) {
 _isbn = value;
 }
 this.get_author = function() {
 return _author;
 }
 this.set_author = function(value) {
 _author = value;
 }
 this.get_title = function() {
 return _title;
 }
 this.set_title = function(value) {
 _title = value;
 }

 this.toString = function() {
 return this.get_author() + ": " + this.get_title() + " (" + this.get_isbn() + ")";
 }
 }

 //class to derive from Book
 function DigitalBook(isbn, author, title, size) {
 Book.call(this, isbn, author, title);

var _size = (size != null) ? size : 0;
 this.get_size = function() {
 return _size;
 }
 this.set_size = function(value) {
 _size = value;
 }

 this.toString = function() {
 return this.get_author() + ": " + this.get_title() + " (" + this.get_isbn() + ")" +
 " - " + this.get_size() + " KB";
 }
 }
DigitalBook.prototype = new Book(); //Derive from book

 var atlas = new DigitalBook("0123456789", "International Graphics",
"Atlas of the City");

Example 2-10. Using inheritance with JavaScript (continued)

38 | Chapter 2: JavaScript

Figure 2-5 shows the results displayed when you execute Example 2-10.

Accessing Page Elements
Although recent browsers support the W3C DOM as a means of accessing elements
within the current HTML page, there are, as you will see later, easier ways to work
with elements on a page (see “DOM Methods,” later in this chapter, for more infor-
mation). Two of them are covered within this section.

Accessing Form Elements
JavaScript’s document object grants access to all elements on the current page.
document is a representation of the DOM that is accessible to JavaScript. To make
access as convenient as possible, there are several subproperties that allow direct
access to special page elements:

document.embeds
An array containing all embedded media (via <embed>) on the current page

document.forms
An array containing all <form> elements on the page

document.frames
An array containing all frames on the current page

document.images
An array containing all images on the current page

document.links
An array containing all hyperlinks on the current page

 atlas.set_size(1024);
 document.write(atlas.toString());
 </script>
</body>
</html>

Figure 2-5. The toString() method of the derived object

Example 2-10. Using inheritance with JavaScript (continued)

Accessing Page Elements | 39

The most commonly used property is document.forms, which allows access to all
<form> elements on the current page, such as text boxes and buttons. Usually, there
is only a single form on a page. However, the document.forms[0] property grants
access to all elements within the first form. Then, the form object supports an
elements[] array to access individual form elements. By accessing form elements, it’s
possible to add special features to a web page, such as a script to perform client-side
form data validation as demonstrated below:

<form>
 <input type="text" name="TextBox1" />
</form>

The expression document.forms[0].elements["TextBox1"] accesses the form element
called TextBox1 within the first form on the page. (A shortcut is document.forms[0].
TextBox1; however, this does not work if special characters—spaces or hyphens—are
used in the form element’s name attribute.) Depending on the type of the form element
(e.g., text fields, radio buttons, checkboxes), accessing its value, whether it is text in the
text field, or a selected radio button, can differ, but usually the value attribute will con-
tain this information, just as the value HTML attribute does for most form fields.

Example 2-11 displays the output of the data entered into a text field after the user
clicks on a button. Here is the markup for the button:

<input type="button" onclick="ShowText(this.form);" />

When you click the button, the ShowText() function is called. The parameter is this.
form, which is a reference to the element’s parent form. This makes accessing the
data a bit easier as you can avoid using document.forms[0] in the called function.
Example 2-11 shows the complete example.

Example 2-11. Accessing form elements

JavaScript-form-textbox.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>JavaScript</title>
 <script language="JavaScript" type="text/javascript">
 function ShowText(f) {
 alert("Entered text: " + f.elements["TextBox1"].value);
 }
 </script>
</head>
<body>
 <form action="">
 <input type="text" name="TextBox1" />
 <input type="button" value="Show text" onclick="ShowText(this.form);" />
 </form>
</body>
</html>

40 | Chapter 2: JavaScript

Figure 2-6 shows the result displayed when the script runs.

Table 2-1 shows the properties used to access the most commonly used values within
the most common form field types. For example, the value of a text box defined with
the markup <input type="text" name="Name" /> can be accessed using the expres-
sion document.forms[0].elements["Name"].value (assuming that the text box resides
in the first or only form in the document).

Figure 2-6. The form data is shown in a window

Table 2-1. HTML form fields and associated properties

Form field HTML markup Property

Text fields and password fields <input type="text">
<input type="password">
<textarea>

value: Gets and sets the data in the
field

Radio buttons <input type="radio"> checked: Gets and sets whether the
radio button is checked or not

Checkboxes <input type="checkbox"> checked: Gets and sets whether the
checkbox is checked or not

Selection lists <select> selectedIndex: Gets and sets the
index of the first selected element (or
-1 if nothing is selected)

options: Array containing all list
options

Selection list options <option> selected: Gets and sets whether an
option is selected or not

value: Value of an option

Accessing Page Elements | 41

Accessing Arbitrary Elements
For reading form data, document.forms is very convenient. One of the main tasks for
JavaScript—especially when used as part of an Ajax implementation—is to display
data in an element such as a paragraph (<p>) or text span (or <label>). You
can do this by following the steps below:

1. Using the name attribute, provide a unique identifier for the paragraph or span
element. This is not required or used for the HTTP request when the form is
submitted, but often used for accessing element values in JavaScript.

2. In JavaScript, get a reference to the element using the expression document.
getElementById().

3. Set the element’s innerHTML property to display data within the element.

Example 2-12 shows data once again being taken from a text field, but this time writ-
ing it into a element.

Example 2-12. Putting HTML and text into an element

JavaScript-form-label.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>JavaScript</title>
 <script language="JavaScript" type="text/javascript">
 function HtmlEscape(s) {
 var result = s.replace(/&/g, "&")
 .replace(/</g, "<")
 .replace(/>/g, ">")
 .replace(/"/g, """)
 .replace(/'/g, "'");
 return result;
 }

 function ShowText(f) {
 var label = document.getElementById("Label1");
 label.innerHTML = HtmlEscape(f.elements["TextBox1"].value);
 }
 </script>
</head>
<body>
 <form action="">
 <input type="text" name="TextBox1" />
 <input type="button" value="Show text" onclick="ShowText(this.form);" />
 <p>Entered text: ---</p>
 </form>
</body>
</html>

www.allitebooks.com

http://www.allitebooks.org

42 | Chapter 2: JavaScript

By default, the element just contains three hyphens (-). When the user clicks
on the button, the dashes are replaced with the HTML-encoded data from the text
field. Figure 2-7 shows the result.

DOM Methods
In most scenarios involving interaction with elements on an HTML page, using the
special JavaScript document.forms object and its friends or using document.
getElementById() (which returns an element with the given ID) with the innerHTML
property suffices. Yet there are some cases where access to the DOM itself is
required. The list below describes some of the most important ones:

getElementsByTagName(name)
Returns an array with all elements of the given element name in the page

createElement(name)
Creates a new DOM node with the given element name

createAttribute(name)
Creates a new attribute for the node with the given attribute name

createTextNode(text)
Creates a new text DOM node (text within an element) with the given text

appendChild(node)
Appends the node as a child of the current element

Appendix B contains a complete list of supported methods for access-
ing the DOM.

Figure 2-7. The text is HTML-encoded and put into the element

For Further Reading | 43

Example 2-13 shows how to use some of these methods to recreate the preceding
example, but this time dynamically creating a new element and a text node. In
this example, the appendChild() method comes into play. First, the text child is
added to the element. Next, the element is added to the paragraph.

Summary
In this chapter, you learned the essentials of JavaScript client-side programming. In
the following chapters, you will be introduced to additional JavaScript features.
However, this chapter has introduced you to all the fundamental concepts that are
required to understand the rest of the book.

For Further Reading
Flanagan, David. JavaScript: The Definitive Guide, Fifth Edition (O’Reilly)

A complete programmer’s guide and reference for the JavaScript language

Flanagan, David. JavaScript Pocket Reference, Second Edition (O’Reilly)
A concise but thorough overview of the language

Example 2-13. Using DOM with JavaScript

JavaScript-DOM.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>JavaScript</title>
 <script language="JavaScript" type="text/javascript">
 function ShowText(f) {
 var paragraph = document.getElementsByTagName("p")[0];
 var label = document.createElement("span");
 var text = document.createTextNode(f.elements["TextBox1"].value);
 label.appendChild(text);
 paragraph.appendChild(label);
 }
 </script>
</head>
<body>
 <form action="">
 <input type="text" name="TextBox1" />
 <input type="button" value="Show text" onclick="ShowText(this.form);" />
 <p>Entered text: </p>
 </form>
</body>
</html>

44

Chapter 3CHAPTER 3

Ajax 3

Ajax is the set of technologies upon which ASP.NET AJAX is built. And although
ASP.NET AJAX does its best to hide the technical details of Ajax, to understand
what is possible with ASP.NET AJAX and to create advanced applications that
extend the framework for your own needs, you must have a detailed knowledge of
Ajax.

The term “Ajax” was coined by Jesse James Garrett in early 2005 in his essay “A
New Approach to Web Applications” (http://www.adaptivepath.com/publications/
essays/archives/000385.php). However, only the term is new, not the technology
itself. Although XML can be part of an Ajax application (but doesn’t need to be!),
and some CSS may also be in the mix, the foundation of any Ajax-powered applica-
tion is JavaScript.

In this chapter, you’ll create web pages that involve both client script in the browser
and web server processing. Therefore, the examples in this chapter and the rest of the
book will involve working with ASP.NET and with .aspx pages. We’ll also cover the
three most important JavaScript technologies used to deliver Ajax behaviors to web
apps. These technologies are outlined below:

XMLHttpRequest
The JavaScript object that takes care of making (asynchronous) HTTP calls

XMLDocument
The JavaScript object used to parse and access XML data

JavaScript Object Notation (JSON)
A data format that can be used instead of XML to exchange data between client
and server without the burden of XML parsing

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php

The XMLHttpRequest Object | 45

The XMLHttpRequest Object
The foundation of Ajax is the XMLHttpRequest object, which enables you to make
HTTP requests and receive responses without performing a full page postback and
refresh.

A significant portion of the web browser market supports XMLHttpRequest and there-
fore is Ajax-compatible. According to a study conducted in November 2005 by Net
Applications (http://www.netapplications.com), approximately 99 percent of the
browsers in use are Internet Explorer 5 or later, Mozilla 1.0 or later, Firefox 1.0 or
later, Opera 8 or later, Safari 1.2 or later, or KDE 3 or later. So does this mean that
almost everybody can experience Ajax applications?

The answer, unfortunately, is no. Depending on which study you trust, between 5 to 15
percent of web users have disabled JavaScript in their browser, perhaps because of
recurring reports of security vulnerabilities in browsers or because of corporate policies.

History of the XMLHttpRequest Object
The first implementation of XMLHttpRequest can be found in the 1999 release of Inter-
net Explorer 5. That release included an ActiveX object called XMLHttpRequest that did
just what the name suggests; make an HTTP request and get a message back. (The for-
mat of the returned message could be an XML message, but that was not a require-
ment.) Originally, Internet Explorer engineers needed this functionality for the web
frontend to Outlook (Outlook Web Access [OWA]), so they could make OWA behave
more like a desktop application. As useful as it was, for some time the addition of the
XMLHttpRequest object to Internet Explorer went unnoticed by web programmers.
However, competing browser developers later incorporated a compatible version in
their own applications. Because only Internet Explorer supports ActiveX controls,
other browsers implemented the XMLHttpRequest object natively in their browser.

After Internet Explorer, the first browser to support XMLHttpRequest was the Mozilla 1.0
browser (not to be confused with the code name for early Netscape browsers). Subse-
quent versions of Mozilla as well as derivatives, such as the Camino browser for Mac
OS X and Firefox, implement XMLHttpRequest. Apple then added appropriate support
in the 1.2 version of their Safari browser. Safari is based on the KHTML renderer that
is part of Konqueror, the web browser of the KDE desktop environment for Linux.
Apple engineers later back-ported support for the XMLHttpRequest object to Konqueror
as well.

Opera 8.0 and later also included XMLHttpRequest support in their browser, as did the
rather exotic system, Open Laszlo, from IBM.

http://www.netapplications.com

46 | Chapter 3: Ajax

As a result, it’s possible that a significant portion of your users cannot use applica-
tions that rely on JavaScript, which includes Ajax applications, in spite of the wide-
spread adoption of up-to-date browsers. Therefore, you always need a fallback plan
for those times when your application encounters an Ajax-resistant browser.

Programming the XMLHttpRequest Object
How you instantiate the XMLHttpRequest object depends on the browser in which
your code executes. For Internet Explorer 5 and later versions, the code shown in the
following snippet does the work. It tries two methods to instantiate XMLHttpRequest,
because different versions of Internet Explorer have different versions of the
Microsoft XML library installed on the system. To avoid error messages when one of
the methods fails, two try-catch blocks are used:

var XMLHTTP = null;
try {
 XMLHTTP = new ActiveXObject("Msxml2.XMLHTTP");
} catch (e) {
 try {
 XMLHTTP = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (e) {
 }
}

For browsers other than Internet Explorer, a simpler syntax is available:

XMLHTTP = new XMLHttpRequest();

So, all that is required is to determine which browser type is in use and then instanti-
ate the XMLHttpRequest object accordingly. For instance, the following code checks
whether an ActiveX object can be instantiated by testing the ActiveXObject property
of the window object; if this code works, the browser must be Internet Explorer.

if (window.ActiveXObject) {
 // it's probably IE
}

XMLHttpRequest and Standards
Despite being supported on most browsers, the XMLHttpRequest object is still nonstand-
ard since it is not part of the ECMAScript specification. There is, however, a W3C
specification that defines similar functionality, namely dynamically loading and send-
ing XML back to the server. The specification is called “DOM Level 3 Load and Save,”
and has been a W3C recommendation since April 2004 (http://www.w3.org/TR/
DOM-Level-3-LS). This standard has not yet been implemented in any popular
browser, and it will probably take time before browser developers start working on it.

On the other hand, W3C recently started an initiative to standardize XMLHttpRequest.
Refer to http://www.w3.org/TR/XMLHttpRequest for more information.

http://www.w3.org/TR/DOM-Level-3-LS
http://www.w3.org/TR/DOM-Level-3-LS
http://www.w3.org/TR/XMLHttpRequest

The XMLHttpRequest Object | 47

Similarly, you can use the following snippet to check for the presence of an
XMLHttpRequest object, which, if found, indicates you are using Mozilla and its deriv-
atives, or that you are using Opera, Konqueror, or Safari:

if (XMLHttpRequest) {
 // it's probably not IE
}

However, as shown in Figure 3-1, checking for the XMLHttpRequest object directly
causes Internet Explorer to display the error message “XMLHttpRequest is undefined.”
This has changed with release of Internet Explorer 7, which provides a native
XMLHttpRequest object.

What’s needed instead is an approach that uses all of the tests shown here. The Java-
Script typeof operator is used to determine the type of an expression and returns
“undefined” as a string if the expression evaluates to “undefined.” The snippet that
follows enables you to detect browsers that are not Internet Explorer:

if (typeof XMLHttpRequest != "undefined") {
 //it's not IE <= 6
}

Here’s code for a function, getXMLHTTP(), that aggregates the previous snippets to
return an XMLHttpRequest object regardless of which Ajax-enabled, JavaScript-
activated browser is used.

Figure 3-1. Internet Explorer does not like our code

48 | Chapter 3: Ajax

function getXMLHTTP() {
 var XMLHTTP = null;
 try {
 XMLHTTP = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (e) {
 try {
 XMLHTTP = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (e) {
 if (typeof XMLHttpRequest != "undefined") {
 XMLHTTP = new XMLHttpRequest();
 }
 }
 }
 return XMLHTTP;
}

Another approach is to use standard JavaScript to determine browser capabilities
and check window.XMLHttpRequest instead of just XMLHttpRequest to find out whether
the native XMLHttpRequest object is supported by the browser. Using this technique,
the function to return the object can be written slightly differently, as shown in the
following code:

function getXMLHTTP() {
 var XMLHTTP = null;
 if (window.ActiveXObject) {
 try {
 XMLHTTP = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (e) {
 try {
 XMLHTTP = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (e) {
 }
 }
 } else if (window.XMLHttpRequest) {
 try {
 XMLHTTP = new XMLHttpRequest();
 } catch (e) {
 }
 }
 return XMLHTTP;
}

The XMLHttpRequest object, no matter which browser created it, has a set of proper-
ties and methods that are used for sending HTTP requests and receiving the server’s
response. In most scenarios, you must follow these four steps to create an HTTP
request and evaluate the return values:

1. Create an XMLHttpRequest object as shown in the preceding examples.

2. Call the object’s open() method to prepare the request.

The open() method expects up to five parameters, but usually you only need the
first two: the method type of the request (usually "GET" or "POST"), and the tar-
get URL (relative or absolute).

The XMLHttpRequest Object | 49

The third parameter of open() defaults to true, meaning that the request is an
asynchronous one. If you set it to false, the request is synchronous, meaning
that the script halts until the response has completed. Generally, you want the
asynchronous behavior, so you either omit the parameter or set it to true. If the
HTTP request requires authentication, you can use the fourth and fifth parameter
to provide a username and a password.

3. Provide a reference to a callback function in the onreadystatechange property.

This function will be called when the server returns an HTTP response to the
HTTP request.

4. Send the HTTP request using the send() method.

This starts the HTTP request. If you are using asynchronous communication, the
script continues executing and the user can continue to interact with the page.

Since all JavaScript code is evaluated on the client-side, there is no reli-
able way to prevent users from having a look at the source code. Sev-
eral measures can be taken that can help the situation a bit, including
JavaScript code to disable right-clicking, or client-side JavaScript code
obfuscation. However, all of these can be defeated. In general, your
JavaScript code is not safe, so it is not a good idea to put sensitive
information like a username and a password verbatim into the Java-
Script code. Therefore, the fourth and fifth parameter of open() are
very rarely used. Even if you collect the credentials from the user, you
still need to use SSL in order to avoid sensitive data being sent in plain
text over an unsecured network.

Setting the onreadystatechange property of the XMLHttpRequest object provides the
callback mechanism for the HTTP response. The property name suggests its function,
which is to specify the action to be taken when a change occurs in the value of another
XMLHttpRequest property, readyState, as listed in Table 3-1. The readyState property
indicates the state of the XMLHttpRequest object, which can be set to five possible values.

Whenever the value of readyState changes, the function provided in the
onreadystatechange property is called. In this function, you first check the value of
readyState. Typically, you are testing to determine whether the value is 4, which
indicates that the request has returned.

Table 3-1. Possible values for readyState

Value of readyState Description

0 Object is uninitialized

1 Request is loading

2 Request is fully loaded

3 Request is waiting for user interaction

4 Request is complete

50 | Chapter 3: Ajax

When a function is called in response to a change in readyState, some other proper-
ties of the XMLHttpRequest object come into play. The status property contains the
HTTP status returned by the request; if everything worked, the status is 200. The
statusText property holds the associated textual description of the HTTP status. As
an example, for HTTP status 200, the value of statusText is "OK". Checking the
status property, however, is a more reliable method, because different web servers
might return different text for the status codes.

Two properties provide access to the return value from the server:

responseText
Returns the response data as a string

responseXML
Returns the response data as an XML document (detailed later in this chapter in
“The XMLDocument Object”)

The following script is a small example that illustrates how to use the XMLHttpRequest
object. In the example, the request is made to an ASP.NET page named ajax.aspx. In
the first step, the getXMLHTTP() function detailed earlier is used to create the
XMLHttpRequest object. If it succeeds (that is, the return value of the function is not
null), a GET request is sent to the server with the parameter sendData=ok (an arbitrary
value, just for this example). Next, the onreadystatechange property is set to a func-
tion, and finally the request is sent to the server.

var XMLHTTP = getXMLHTTP();
if (XMLHTTP != null) {
 XMLHTTP.open("GET", "ajax.aspx?sendData=ok");
 XMLHTTP.onreadystatechange = stateChanged;
 XMLHTTP.send(null);
}

The stateChanged() function might look something like the following (with error
reporting omitted). This script displays whatever text the server has sent as the
response.

function stateChanged() {
 if (XMLHTTP.readyState == 4 &&
 XMLHTTP.status == 200) {
 window.alert(XMLHTTP.responseText);
 }
}

Note that the function called when readyState changes does not accept any parameters.
Therefore, the XMLHttpRequest object must be global. Otherwise, you cannot access it
from within the function invoked by the asynchronous call.

Of course, you must also have server code to handle the request made by the
XMLHttpRequest object. The following C# code shows a Page_Load event handler in an
ASP.NET page that can respond to the asynchronous request made by the
XMLHttpRequest object:

The XMLHttpRequest Object | 51

void Page_Load() {
 if (Request.QueryString["sendData"] != null &&
 Request.QueryString["sendData"] == "ok")
 {
 Response.Write("Hello from the server!");
 Response.End();
 }
}

Example 3-1 shows how you can put all of these pieces together (both client script
and server code) into a single page named ajax.aspx.

To see this example in action, you must run it as a page named ajax.aspx
using a web server (IIS or the ASP.NET Development Server that comes
with Visual Studio and VWD) on a computer where the .NET Frame-
work is installed.

Anonymous JavaScript Functions
To provide the client-side functionality when readyState changes, instead of referencing
a standalone function you can use JavaScript anonymous functions. These are functions
without names that are declared as part of an expression. The following example shows
how this can look.

var XMLHTTP = getXMLHTTP();
if (XMLHTTP != null) {
 XMLHTTP.open("GET", "ajax.aspx?sendData=ok");
 XMLHTTP.onreadystatechange = function() {
 if (XMLHTTP.readyState == 4 &&
 XMLHTTP.status == 200) {
 window.alert(XMLHTTP.responseText);
 }
 };
 XMLHTTP.send(null);
}

Example 3-1. A simple example combining Ajax and ASP.NET

ajax.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 void Page_Load()
 {
 if (Request.QueryString["sendData"] != null &&
 Request.QueryString["sendData"] == "ok")

www.allitebooks.com

http://www.allitebooks.org

52 | Chapter 3: Ajax

 {
 Response.Write("Hello from the server!");
 Response.End();
 }
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Ajax with ASP.NET</title>

 <script language="Javascript" type="text/javascript">
function getXMLHTTP() {
 var XMLHTTP = null;
 if (window.ActiveXObject) {
 try {
 XMLHTTP = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (e) {
 try {
 XMLHTTP = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (e) {
 }
 }
 } else if (window.XMLHttpRequest) {
 try {
 XMLHTTP = new XMLHttpRequest();
 } catch (e) {
 }
 }
 return XMLHTTP;
}

var XMLHTTP = getXMLHTTP();
if (XMLHTTP != null) {
 XMLHTTP.open("GET", "ajax.aspx?sendData=ok");
 XMLHTTP.onreadystatechange = stateChanged;
 XMLHTTP.send(null);
}

function stateChanged() {
 if (XMLHTTP.readyState == 4 &&
 XMLHTTP.status == 200) {
 window.alert(XMLHTTP.responseText);
 }
}
 </script>

</head>
<body>
 <p>Wait and see ...</p>
</body>
</html>

Example 3-1. A simple example combining Ajax and ASP.NET (continued)

The XMLHttpRequest Object | 53

If you see the text “Wait and see...” but the browser never displays a
dialog box with “Hello from the server!,” double-check that you are
working with the filename ajax.aspx.

As you can see in Figures 3-2, 3-3, and 3-4, this code works beautifully in Internet
Explorer, Firefox, and Konqueror (using Mono for ASP.NET), the most commonly
used browsers. It should work equally well in any other browser you choose to test,
as long as JavaScript is turned on.

Figure 3-2. The example works in Internet Explorer

Figure 3-3. The example works in Firefox

54 | Chapter 3: Ajax

This is one of the few places in this book where I’ve taken screenshots
for more than one browser. Generally, the listings in this book work
with ASP.NET 2.0 on the server and any JavaScript-enabled browser
on the client of reasonably recent release. Most screenshots in this
book are taken with Firefox 2.0. If we noticed discrepancies in using
the examples with different browsers, this is noted.

If you want to use a POST command for the HTTP request, set the first parameter of
the open() method as needed. Using POST is especially important when you are
sending 500 bytes or more of data (you might exceed the maximum URL length for
the server) or when you want to avoid caching by proxy servers. The data you want
to send is provided in the send() function, in name-value pairs and URL-encoded (if
needed) as shown in the following snippet:

XMLHTTP.open("POST", "ajax.aspx");
XMLHTTP.onreadystatechange = stateChanged;
XMLHTTP.send("sendData=ok&returnValue=123");

Data sent with a POST command can be read on the server, in the case of ASP.NET
using Request.Form for POST instead of the Request.QueryString property used to
read GET requests.

For web service calls that use the SOAP protocol, you may have to send XML
directly, without URL-encoding. However, for this to work with the Safari and Kon-
queror browsers (and therefore to maximize your potential audience), you have to
explicitly set the request content type to text/xml. (Other browsers do not require
this content specification.) The following snippet shows how to do this:

Figure 3-4. The example works in Konqueror and other browsers

The XMLDocument Object | 55

XMLHTTP.open("POST", "ajax.aspx");
XMLHTTP.onreadystatechange = stateChanged;
XMLHTTP.setRequestHeader("Content-Type", "text/xml");
XMLHTTP.send("<soap:Envelope>...</soap:Envelope>");

A complete reference of properties and methods of the XMLHttpRequest
object is available in Appendix A.

A word regarding security: by default, XMLHttpRequest can access resources only in
the same domain as the page that contains the client script. Unfortunately, this lim-
its the capabilities of the technology since there is no easy way to call a web service
using Ajax, unless it resides on your own domain. Mozilla browsers support access-
ing remote servers in another domain by explicitly prompting the user for additional
privileges. Figure 3-5 shows the message that prompts the user for privileges. How-
ever, this approach generates several additional issues of its own and is not browser-
agnostic, which is why this is very rarely in use today and not used in this book. So,
all HTTP requests illustrated in this book are to the server from which the page itself
originates.

The XMLDocument Object
The responseXML property of the XMLHttpRequest object expects the return value of
the remote call to be in the form of an XMLDocument object. This requires the server
code to return well-formed XML data so that the client script can parse it. However,
it is easy to access this XML data because you have full DOM support.

Figure 3-5. Requesting additional privileges in Mozilla browsers

56 | Chapter 3: Ajax

JavaScript supports a set of DOM features to access specific nodes in the XML file or
to navigate the tree structure of the XML document. Appendix B contains a com-
plete list of methods and properties of the XMLDocument object. The following
example shows how to use several of them. For the purposes of this example, the
return data of the server request is the XML data shown here:

<book title="Programming ASP.NET AJAX" author="Christian Wenz">
 <chapters>
 <chapter number="1" title="Introduction" />
 <chapter number="2" title="JavaScript" />
 <chapter number="3" title="Ajax" />
 </chapters>
</book>

It is important that when XML is returned, the Content-type HTTP
header of the response is explicitly set to "text/xml". If this header is
omitted, some browsers (most notably, Mozilla and its derivatives)
refuse to parse the return data, and the responseXML object is set to
null. The following C# code in an ASP.NET page shows how to set
the content type appropriately:

void Page_Load()
{
 if (Request.QueryString["sendData"] != null &&
 Request.QueryString["sendData"] == "ok")
 {
 string xml = "<book title=\"Programming ASP.NET AJAX\"

author=\"Christian Wenz\"><chapters><chapter number=\"1\"
title=\"Introduction\"
/><chapter number=\"2\" title=\"JavaScript\" /><chapter
number=\"3\" title=\"Ajax\"
/></chapters></book>";

Response.ContentType = "text/xml";
 Response.Write(xml);
 Response.End();
 }
}

In the client JavaScript for this example, some of the XML data is extracted and then
printed out, such as the attributes of the root node and the information about the
various chapters of the book object.

Printing out is intentionally not done using document.write() because that would
clear the current page, which works more or less in Mozilla browsers, but Internet
Explorer does not seem to support that. Instead, the script creates new HTML ele-
ments. There are two general approaches: set the contents of existing elements or
create new elements.

To set the contents of an element, set the innerHTML property of an HTML element.
Consider an HTML document that contains the following <p> element:

<p id="output">Wait and see ...</p>

The XMLDocument Object | 57

With the following JavaScript code, you can replace the content of the element:

document.getElementById("output").innerHTML = "Now you see!";

Alternatively, you can create new elements and add them to the page. The snippet
below creates an empty bulleted list:

<ul id="list">

The following JavaScript code adds two elements to the list:

var list = document.getElementById("list");
var listItem1 = document.createElement("li");
var listItemText1 = document.createTextNode("Item 1");
listItem1.appendChild(listItemText1);
list.appendChild(listItem1);
var listItem2 = document.createElement("li");
var listItemText2 = document.createTextNode("Item 2");
listItem2.appendChild(listItemText2);
list.appendChild(listItem2);

Back to the task at hand, reading out data from the XML document. There are actu-
ally two approaches you can use. As shown below, the first is to directly access tags
by their names and then read their attributes.

var xml = XMLHTTP.responseXML;
var root = xml.documentElement;
document.getElementById("output").innerHTML =
 root.getAttribute("title") +
 " by " +
 root.getAttribute("author");

var list = document.getElementById("list");
var chapters = xml.getElementsByTagName("chapter");
for (var i=0; i<chapters.length; i++) {
 var listItem = document.createElement("li");
 var listItemText = document.createTextNode(
 chapters[i].getAttribute("number") +
 ": " +
 chapters[i].getAttribute("title"));
 listItem.appendChild(listItemText);
 list.appendChild(listItem);
}

Alternatively, you can walk the XML tree using the structure of the XML document.
In the following code snippet, the <chapters> element is selected using
getElementsByTagName(), but then the script navigates along the tree, looking at all
subelements of the first <chapters> element. When a <chapter> node is found, its
attributes are printed out.

var xml = XMLHTTP.responseXML;
var root = xml.documentElement;
document.getElementById("output").innerHTML =
 root.getAttribute("title") +
 " by " +

58 | Chapter 3: Ajax

 root.getAttribute("author");

var list = document.getElementById("list");
var chapters = xml.getElementsByTagName("chapters")[0];
for (var i=0; i<chapters.childNodes.length; i++) {
 if (chapters.childNodes[i].nodeName == "chapter") {
 var listItem = document.createElement("li");
 var listItemText = document.createTextNode(
 chapters.childNodes[i].getAttribute("number") +
 ": " +
 chapters.childNodes[i].getAttribute("title"));
 listItem.appendChild(listItemText);
 list.appendChild(listItem);
 }
}

But this is not the end of our work. Internet Explorer once again behaves differently
on some systems (depending on loading or execution speed), especially with the sec-
ond approach. The reason: the XMLHttpRequest call is executed “too fast” (from the
point of view of our example), so that the whole HTML document might not have
been parsed by the time the example code runs. Therefore, it is mandatory that the
Ajax magic start only when the document has been fully loaded and parsed. You can
do this using an anonymous function, as shown below:

var XMLHTTP;
window.onload = function() {
 XMLHTTP = getXMLHTTP();
 if (XMLHTTP != null) {
 XMLHTTP.open("GET", "xmldocument2.aspx?sendData=ok");
 XMLHTTP.onreadystatechange = stateChanged;
 XMLHTTP.send(null);
 }
}

The preceding code snippet does the XMLHttpRequest call only when the whole
HTML page has been loaded.

To sum it up, Example 3-2 shows the complete code for the first approach, which is
provided in the file xmldocument.aspx in the code download repository for this book
(http://www.oreilly.com/catalog/9780596514242). The second approach (not illus-
trated here) can be found in the file xmldocument2.aspx.

Example 3-2. Reading and writing data using JavaScript, Ajax, and DOM

xmldocument.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 void Page_Load()

http://www.oreilly.com/catalog/9780596514242

The XMLDocument Object | 59

 {
 if (Request.QueryString["sendData"] != null &&
 Request.QueryString["sendData"] == "ok")
 {
 string xml = "<book title=\"Programming ASP.NET AJAX\" author=\"Christian Wenz\">
<chapters><chapter number=\"1\" title=\"Introduction\" /><chapter number=\"2\" title=\
"JavaScript\" /><chapter number=\"3\" title=\"Ajax\" /></chapters></book>";
 Response.ContentType = "text/xml";
 Response.Write(xml);
 Response.End();
 }
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>Ajax with ASP.NET</title>

 <script language="Javascript" type="text/javascript">
function getXMLHTTP() {
 var XMLHTTP = null;
 if (window.ActiveXObject) {
 try {
 XMLHTTP = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (e) {
 try {
 XMLHTTP = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (e) {
 }
 }
 } else if (window.XMLHttpRequest) {
 try {
 XMLHTTP = new XMLHttpRequest();
 } catch (e) {
 }
 }
 return XMLHTTP;
}

var XMLHTTP;
window.onload = function() {
 XMLHTTP = getXMLHTTP();
 if (XMLHTTP != null) {
 XMLHTTP.open("GET", "xmldocument.aspx?sendData=ok");
 XMLHTTP.onreadystatechange = stateChanged;
 XMLHTTP.send(null);
 }
}

function stateChanged() {
 if (XMLHTTP.readyState == 4 &&
 XMLHTTP.status == 200) {

Example 3-2. Reading and writing data using JavaScript, Ajax, and DOM (continued)

60 | Chapter 3: Ajax

The results of running this script are shown in Figure 3-6.

 var xml = XMLHTTP.responseXML;
 var root = xml.documentElement;

 document.getElementById("output").innerHTML =
 root.getAttribute("title") +
 " by " +
 root.getAttribute("author");

 var list = document.getElementById("list");
 var chapters = xml.getElementsByTagName("chapter");
 for (var i=0; i<chapters.length; i++) {
 var listItem = document.createElement("li");
 var listItemText = document.createTextNode(
 chapters[i].getAttribute("number") +
 ": " +
 chapters[i].getAttribute("title"));
 listItem.appendChild(listItemText);
 list.appendChild(listItem);
 }
 }
}
 </script>

</head>
<body>
 <p id="output">Wait and see ...</p>
 <ul id="list">
</body>
</html>

Figure 3-6. The XML data in a readable form

Example 3-2. Reading and writing data using JavaScript, Ajax, and DOM (continued)

JSON | 61

JSON
In addition to the XMLHttpRequest object and XML, a third major technology often
used for Ajax applications is JavaScript Object Notation (JSON, http://www.json.org/).
With JSON, JavaScript objects or data can be persisted (serialized) in a short and
easily understandable way, without requiring a lot of JavaScript code to either write
or read the data (also true for XML). JSON makes use of a previously often-
overlooked feature of JavaScript, or more accurately, of the ECMAScript language
specification, also known as ECMA-262.

JSON is used internally by current versions of ASP.NET AJAX and generally can be
used to exchange complex data with a server. This allows JavaScript to understand
it, and it helps avoid the sometimes cumbersome parsing process of XML. The fol-
lowing code uses JSON to define a book object:

{"book": {
 "title": "Programming ASP.NET AJAX",
 "author": "Christian Wenz",
 "chapters": {
 "chapter": [
 {"number": "1", "title": "Introduction"},
 {"number": "2", "title": "JavaScript"},
 {"number": "3", "title": "Ajax"}
]
 }
}}

This is the same data that you saw defined using XML earlier in this chapter. The
object with the book property contains title, author, and chapters properties.
The chapters property contains several chapter subelements, each with a number and
a title property. This can be best visualized when looking at it as XML data.

<book title="Programming ASP.NET AJAX" author="Christian Wenz">
 <chapters>
 <chapter number="1" title="Introduction" />
 <chapter number="2" title="JavaScript" />
 <chapter number="3" title="Ajax" />
 </chapters>
</book>

Example 3-3 shows how you can parse JSON data.

Example 3-3. Using JSON to easily create objects

json.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

http://www.json.org/

62 | Chapter 3: Ajax

Figure 3-7 shows the result of running this script.

As you can see in Figure 3-7, the data from the JSON notation—the names of the three
chapters—is printed out in the browser. The curly braces that appear in Example 3-3
are used to specify object properties, and square brackets are used to define array lists.

<head>
 <title>JSON</title>
</head>
<body>

 <script language="JavaScript" type="text/javascript">
 var json = '{"book": { "title": "Programming ASP.NET AJAX", "author": "Christian
Wenz","chapters": {"chapter": [{"number": "1", "title": "Introduction"}, {"number": "2",
"title": "JavaScript"}, {"number": "3", "title": "Ajax"}]} }}';

 var obj = eval("(" + json + ")");
 for (var i=0; i < obj.book.chapters.chapter.length; i++) {
 document.write(
 "<p>" +
 obj.book.chapters.chapter[i].number +
 ": " +
 obj.book.chapters.chapter[i].title +
 "</p>"
);
 }
 </script>

</body>
</html>

Figure 3-7. The result of evaluating the JSON notation

Example 3-3. Using JSON to easily create objects (continued)

JSON | 63

However, you will also note something that looks very dangerous from a security
point of view. The following line of code evaluates the JSON code at runtime:

eval("var obj = " + json + ";");

This line of code uses the built-in eval() JavaScript function, which dynamically
evaluates code at runtime. Some programmers consider runtime evaluation bad style,
but there is an even worse problem here, namely that eval() implicitly trusts the
code it is running. In the example, the JSON notation is part of the script, so you can
trust it. In Ajax applications, usually the JSON data comes from the same server as
the client page. The trust implicit in the eval() function may be misplaced, espe-
cially when you do not control the page the JSON object comes from or when the
machine on which the script runs has been misconfigured (i.e., by spyware that redi-
rects requests from one server to another). Therefore, be careful when using eval();
only use it on code you can really trust.

Using (and Avoiding) Client-Side Caching
Browsers love to cache as it makes pages load faster. Webmasters love to cache as it
can take a load off a server. Developers, however, sometimes hate caching. If an out-
dated version of the page is delivered, it can make debugging very frustrating. In the
Ajax world, this is a very common problem. There are two easy solutions to the cach-
ing problem. One solution is to append a fake GET parameter to the URL used for the
XMLHttpRequest object, which does not affect the results, yet avoids any caching
because it changes the URL with each request. The following snippet shows one way
to do this.

XMLHTTP.open("GET", "xmldocument.aspx?sendData=ok&token="
 + Math.random());

The snippet appends something like &token=0.19964476288175226 to the URL, making
it unique. Alternatively, you can set an additional request header for the HTTP request,
If-Modified-Since, to a date in the past, and the browser will fetch the new version
each time, as illustrated below:

XML.setRequestHeader(
 "If-Modified-Since",
 "Tuesday, 1 Jan 1980 12:00:00 GMT");

During development, use one of these techniques to facilitate debugging. On produc-
tion systems, however, the built-in browser caching mechanism may increase the per-
formance of your application (if it does not generate side effects with your application),
and server-side caching can be even more effective. It always depends on the specific
scenario in which you want to implement caching.

64 | Chapter 3: Ajax

Summary
This chapter covered three of the technologies that make Ajax work. Of special
importance is the XMLHttpRequest object. You also learned how to process complex
data returned by the server using JavaScript and either XML or JSON.

For Further Reading
http://www.adaptivepath.com/publications/essays/archives/000385.php

The article that started it all

http://www.json.org/
Unofficial home page for JSON

Perry, Bruce W. Ajax Hacks (O’Reilly)
Tips and tricks for Ajax apps

McLaughlin, Brett. Head Rush Ajax (O’Reilly)
A fast-paced introduction to Ajax

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.json.org/

PART II

II.ASP.NET AJAX Extensions

Chapter 4, Using ASP.NET AJAX JavaScript Extensions

Chapter 5, Web Services

Chapter 6, UpdatePanel: Refreshing Only Parts of a Page

Chapter 7, Using the ASP.NET AJAX Profile Service

Chapter 8, Using the ASP.NET AJAX Authentication Service

Chapter 9, Localizing and Globalizing Applications

67

Chapter 4 CHAPTER 4

Using ASP.NET AJAX
JavaScript Extensions4

In addition to delivering a considerable amount of Ajax functionality in an easy-to-
use framework, ASP.NET AJAX provides a number of additions to JavaScript that
can make client coding easier. Among these are OOP-style constructs, such as
namespaces, inheritance, and interfaces, as well as client-side reimplementations that
resemble .NET constructs such as StringBuilder. Also, selected JavaScript objects
are enriched with new features.

ASP.NET AJAX Shortcuts and Helper Functions
By including the ASP.NET AJAX ScriptManager control into a web page, you auto-
matically get a number of useful helper functions and shortcuts to important Java-
Script features. Some of these new functions just save you some typing. Some of
them, however, offer a much greater advantage: they are browser-agnostic. For
instance, Internet Explorer on one side and all other modern browsers on the other
side each provide their unique way to attach event listeners (see Chapter 2). The
code in ASP.NET AJAX detects the browser type and automatically uses the appro-
priate function on every system.

Shortcuts
The method most often used by developers to create a modern JavaScript-powered
web site is document.getElementById(). Several Ajax toolkits provide a shortcut for
this rather lengthy method name called $(). ASP.NET AJAX tries to coexist with
other frameworks and therefore is using a new name: $get().

Whereas this saves only a few characters, the new event handling helper functions
are of greater value. When programmatically assigning a handler function to an
event, you can use the $addHandler() function.

function $addHandler (element, eventName, handler) { }

68 | Chapter 4: Using ASP.NET AJAX JavaScript Extensions

You need to provide the element attribute to attach the handler to the eventName
(without the “on” prefix!), and the actual handler (as a function reference or an
anonymous function). Below is an example that pops up a warning window when a
user clicks on a button:

$addHandler("Button1", "click", function() { alert("Ouch!"); });

When you want to assign handlers for several events for an element,
you can either use several $addHandler() calls, or you use
$addHandlers(), providing the element and an array of events and
handler functions as arguments.

To remove a specific handler, use the $removeHandler() function demonstrated
here:

function $removeHandler(element, eventName, handler) {}

Note that you have to pass the event-handler function again when removing the
handler. Therefore, it is more convenient in most cases to call the $clearHandlers()
function, which removes all handlers for a given element:

function $clearHandlers(element) {}

The ASP.NET AJAX team tried very hard to recreate to a certain extent the ASP.NET
page lifecycle in JavaScript. JavaScript itself only supports a load event, which is not
enough for some applications. It also has a serious flaw: the event is fired when the
HTML markup of the current page has been fully loaded. However, ASP.NET AJAX
sites load several external JavaScript libraries. They are usually not available yet when
the HTML has been fully rendered by the browser. Therefore, using the JavaScript
load event to start any ASP.NET AJAX coding is too early in the client page lifecycle.

Adding Event Handlers, the Alternative Way
Apart from the $addHandler(), $removeHandler() and $clearHandlers() functions,
ASP.NET AJAX also supports a special pattern for attaching handlers to element
events: the add_xxx() methods. For instance, Sys.Application is the ASP.NET AJAX
JavaScript object that represents the current page. In order to execute code after the
page has been fully loaded, you can code as shown here:

Sys.Application.add_load(function() {
 /* ... */
}).

This is quite useful when using special client classes for DOM elements that are cur-
rently part of the ASP.NET AJAX Futures CTP. We will cover this in greater detail in
Chapter 15.

ASP.NET AJAX Shortcuts and Helper Functions | 69

The load event defined by ASP.NET AJAX only runs when all external JavaScript
files have been fully loaded. In order to execute code after the event has been fired,
you have two options. You can either use the Sys.Application.add_load() method
(as described in the sidebar, “Adding Event Handlers, the Alternative Way”), or you
can write a JavaScript function named pageLoad(). When ASP.NET AJAX deter-
mines that all external files have been fully loaded, it executes the pageLoad() func-
tion, if it exists on the current page—quite similar to the way ASP.NET executes the
server-side Page_Load() method if it exists. This method provides a safe way to start
using ASP.NET AJAX as early as possible.

function pageLoad() {
 /* ...*/
}

At the end of a page, when the user closes the browser or navigates to another URL,
the unload event occurs. You can execute code when this happens by writing a func-
tion called pageUnload().

function pageUnload() {
 /* ...*/
}

ASP.NET AJAX automatically executes such a function at the appropriate time, if it
has been implemented.

DOM Element Methods
For DOM elements, ASP.NET AJAX provides special methods for common scenar-
ios like applying CSS classes. These methods are defined in the Sys.UI.DomElement
class. For common features like setting CSS classes or removing them, CSS class
methods take some keyboarding weight off developers’ shoulders.

Sys.UI.DomElement.addCssClass(element, className)
Adds a CSS class (className) to an HTML element.

Sys.UI.DomElement.containsCssClass(element, className)
Checks whether the CSS class definition of an element contains a certain CSS class.

Sys.UI.DomElement.removeCssClass
Removes a CSS class (className) from an HTML element.

Sys.UI.DomElement.toggleCssClass(element, className)
Checks whether the CSS class definition of an element contains a certain CSS
class (className). If it does, it removes this CSS class, otherwise it appends the
CSS class. Apart from CSS classes, ASP.NET AJAX provides helper methods for
some of the most often accessed properties of general HTML elements: width,
height, and position.

Sys.UI.DomElement.getBounds(element)
Returns an object with the properties x, y, height, width, containing the x coordi-
nate, y coordinate, height, and width of the given element.

70 | Chapter 4: Using ASP.NET AJAX JavaScript Extensions

Sys.UI.DomElement.getLocation(element)
Returns an object with the properties x and y, containing the x and y coordi-
nates of the given element.

Sys.UI.DomElement.setLocation(element, x, y)
Sets the x and y coordinates of the given element.

Another method defined within Sys.UI.DomElement is getElementById()—
but you already know the shortcut for that, $get().

Extensions to Existing JavaScript Objects
Chapter 2 described how to add methods to JavaScript base objects like Date. This
feature has also been used heavily by the ASP.NET AJAX developers. As a result,
JavaScript base types in the following list have been enriched with additional features:

• Array

• Boolean

• Date

• Error

• Number

• Object

• String

None of these extensions alone is worth writing home about, but taken together,
they can provide some real value if you write a lot of JavaScript code. Remember that
a key idea of any Ajax framework is to dramatically reduce the amount of custom
JavaScript code that needs to be written on top of the framework.

Instead of a complete list, we’ll present just one easily written example. The new
Array.forEach() method applies a function to each element of a given array.

function Array$forEach(a, fnct) {
 for (var i = 0; i = a.length; i++) {
 if (typeof(a[i]) != "undefined") {
 fnct.call(null, a[i], i, a);
 }
 }
}

However, the built-in ASP.NET AJAX forEach() method saves some typing, a bit of
debugging, and a lot of extra maintenance work.

An excellent overview of the new JavaScript object properties are avail-
able at no cost as PDF and XPS files. See the “For Further Reading”
section at the end of this chapter for details on how to get those files.

ASP.NET AJAX OOP Features for JavaScript | 71

ASP.NET AJAX OOP Features for JavaScript
In Chapter 2, we learned JavaScript does have some OOP capabilities, but they are
no match for those in programming languages like Visual Basic or C#. However, it’s
relatively easy to add new features to JavaScript using JavaScript itself, something the
ASP.NET AJAX team has exploited.

To facilitate OOP development, ASP.NET AJAX adds to JavaScript some OOP-type
features, which are covered in this chapter. These include namespaces, abstract
classes, and interfaces. The additional features are designed to help you design and
write more structured client-side code. They can apply not only to Ajax applica-
tions, but also to any JavaScript code you write.

Namespaces
A key ASP.NET AJAX JavaScript OOP extension is the addition of namespace func-
tionality. Namespaces enable you to encapsulate functionality into logical groups
under a single name. They help avoid name collisions with functions that have the
same name but fulfill different purposes. The JavaScript language specification does
not specify namespaces, so the language itself cannot offer this functionality. How-
ever, ASP.NET AJAX uses a simple technique to emulate namespaces. You can
create a new class (which serves as the “namespace”), then make another (new) class
accessible as a property of the namespace class. This allows you to access your class
using NamespaceClassName.YourClassName.

One of the base classes in ASP.NET AJAX runtime is the Type class. Two methods of
this class come in handy when creating the ASP.NET AJAX namespaces:

Type.registerNamespace(name)
Registers a namespace

Class.registerClass(name, base type, interface type)
Registers a class as a member of the namespace

To demonstrate this technique, let’s create an OReilly namespace for a group of
classes used in this book. Suppose that one of them is named Software with two
properties: name and vendor. First, you must register the OReilly namespace:

Type.registerNamespace("OReilly");

Next, you create the Software class as a member of OReilly using the following code
snippet:

OReilly.Software = function(name, vendor) {
 var _name = (name != null) ? name : "unknown";
 var _vendor = (vendor != null) ? vendor : "unknown";

 this.getName = function() {
 return _name;
 }

72 | Chapter 4: Using ASP.NET AJAX JavaScript Extensions

 this.setName = function(name) {
 _name = name;
 }

 this.getVendor = function() {
 return _vendor;
 }
 this.setVendor = function(vendor) {
 _vendor = vendor;
 }
}

The class constructor expects values for the two properties. To per-
form data hiding, the class member values are saved as separate vari-
ables, and the class implements setter and getter methods for the
properties. Note that JavaScript does not support private or protected
properties. Therefore, all class members are public. The data hiding
implemented here does not provide protection from unauthorized
access; it is just a helper tool to structure code and make the data
access coherent. Of course most technologies that do support private
or protected still allow access to those properties using reflection.

Finally, OReilly.Software must be registered as a class so that you can use it in your
applications. You do this with the registerClass() method. This method can take
up to three parameters:

name
The name of the class

base type
The base type of the class, if any, as a reference to the type

interface type
The interface type of the class, if any, as a reference to the type

The OReilly.Software class does not have a base type and does not implement an
interface type. The call to registerClass() registers the class, omitting the second
and third parameters:

Type.registerClass("OReilly.Software");

ASP.NET AJAX implements several types, but the one you will use
most often is Sys.IDisposable (because you can write a dispose()
method that is called automatically when the script ends), even though
JavaScript has only a simple garbage collector. However, you do not
necessarily need to implement an interface. If you do not use an inter-
face, the call to Type.registerClass() is subsequently not necessary to
access the new class. For more advanced features, this method call is
mandatory (see the following sections).

ASP.NET AJAX OOP Features for JavaScript | 73

Now, you can instantiate the Software class using the new keyword to get and set its
properties. Example 4-1 creates two instances; one for Microsoft Internet Explorer
and one for Mozilla Foundation Firefox. Example 4-1 also uses a very handy feature
of ASP.NET AJAX. After both the page and all libraries used by ASP.NET AJAX
have been fully loaded, the pageLoad() function is executed (if it exists on the page).
Remember that window.onload does not take loading of external files like JavaScript
libraries into account. Therefore you should always use pageLoad() when using
ASP.NET AJAX for that task.

Example 4-1. Using ASP.NET AJAX namespaces

ClientNamespaces.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>

 <script language="Javascript" type="text/javascript">
 function pageLoad() {
 var s = "";

 Type.registerNamespace("OReilly");
 OReilly.Software = function(name, vendor) {
 var _name = (name != null) ? name : "unknown";
 var _vendor = (vendor != null) ? vendor : "unknown";

 this.getName = function() {
 return _name;
 }
 this.setName = function(name) {
 _name = name;
 }

 this.getVendor = function() {
 return _vendor;
 }
 this.setVendor = function(vendor) {
 _vendor = vendor;
 }
 }

 Type.registerClass("OReilly.Software");

 var ie = new OReilly.Software("Internet Explorer", "Microsoft");
 s = ie.getName() + " from " + ie.getVendor() + "
";

 var ff = new OReilly.Software();
 ff.setName("Firefox");

74 | Chapter 4: Using ASP.NET AJAX JavaScript Extensions

Figure 4-1 shows the result displayed when the page is loaded.

Although ASP.NET AJAX namespace classes are not real namespaces, they can make
it easier for you to structure complex JavaScript code, with very little overhead.

Class Inheritance
As detailed in Chapter 2, the prototype property provides limited support for class
inheritance in JavaScript. ASP.NET AJAX provides more abstraction. The
prototype mechanism is supported for namespace classes that were registered using
Class name.registerClass(). As a second parameter for registerClass(), you can
specify a base class. Here is where you specify from which class the current class derives.

 ff.setVendor("Mozilla Foundation");
 s += ff.getName() + " from " + ff.getVendor();

 document.getElementById("output").innerHTML = s;
 }
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <div id="output">
 </div>
 </form>
</body>
</html>

Figure 4-1. Instantiating two objects within the same namespace

Example 4-1. Using ASP.NET AJAX namespaces (continued)

ASP.NET AJAX OOP Features for JavaScript | 75

Derived classes

Let’s create a class that inherits from Software. One very specific type of software is a
web browser, so let’s create a Browser class. In addition to the features of the generic
Software class, a browser would benefit from some extra properties. An
isJavaScriptSupported property can provide information about whether a particular
browser is capable of running JavaScript.

OReilly.Browser = function(name, vendor, isJavaScriptSupported) {
 //...
}

Here’s how to register the class. Note how the new class (the string parameter)
derives from the old OReilly.Software class (no string!).

OReilly.Browser.registerClass("OReilly.Browser", OReilly.Software);

Of course, it would be possible to create getter and setter methods for name and
vendor once again, and to write the constructor code as well. However, one of the
benefits of class inheritance (actually, the major benefit) is that you can reuse func-
tionality. Because OReilly.Browser inherits from OReilly.Software, you can use
the getter and setter methods (i.e., the properties) that are already there, as well as
the _name and _vendor “private” members. You do, however, need to add getter and
setter methods and private members for the new isJavaScriptSupported property, as
shown here:

var _isJavaScriptSupported = (isJavaScriptSupported != null) ?
 isJavaScriptSupported : false;

this.getIsJavaScriptSupported = function() {
 return _isJavaScriptSupported;
}
this.setIsJavaScriptSupported = function(isJavaScriptSupported) {
 _isJavaScriptSupported = isJavaScriptSupported;
}

All that remains is for us to write the constructor. But instead of writing it again from
scratch, you can reuse the base class constructor. To do so, ASP.NET AJAX pro-
vides the initializeBase() method. The first parameter is the instance of which the
base class will be initialized; usually, you provide this as the value. The second para-
meter is an array of arguments to be passed to the base constructor (the base con-
structor defines which arguments it expects). In our case, this array consists of the
browser name and vendor.

OReilly.Browser.initializeBase(this, new Array(name, vendor));

You can save a few characters and use JSON to create the array:

OReilly.Browser.initializeBase(this, [name,vendor]);

76 | Chapter 4: Using ASP.NET AJAX JavaScript Extensions

Example 4-2 shows the code needed to create and use the new derived Browser class.

Example 4-2. Using ASP.NET AJAX class inheritance

ClientInheritance.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>

 <script language="Javascript" type="text/javascript">
 function pageLoad() {
 var s = "";

 Type.registerNamespace("OReilly");
 OReilly.Software = function(name, vendor) {
 var _name = (name != null) ? name : "unknown";
 var _vendor = (vendor != null) ? vendor : "unknown";

 this.getName = function() {
 return _name;
 }
 this.setName = function(name) {
 _name = name;
 }

 this.getVendor = function() {
 return _vendor;
 }
 this.setVendor = function(vendor) {
 _vendor = vendor;
 }
 }
 Type.registerClass("OReilly.Software");

 OReilly.Browser = function(name, vendor, isJavaScriptSupported) {
OReilly.Browser.initializeBase(this, new Array(name, vendor));

 var _isJavaScriptSupported = (isJavaScriptSupported != null) ?
 isJavaScriptSupported : false;

 this.getIsJavaScriptSupported = function() {
 return _isJavaScriptSupported;
 }
 this.setIsJavaScriptSupported = function(isJavaScriptSupported) {
 _isJavaScriptSupported = isJavaScriptSupported;
 }

 }
 OReilly.Browser.registerClass("OReilly.Browser", OReilly.Software);

ASP.NET AJAX OOP Features for JavaScript | 77

Figure 4-2 shows the results displayed when the page is loaded and its JavaScript
runs.

Just in case you are wondering, the Lynx text browser does have a
“vendor.” The copyright holder is the University of Kansas.

 var ie = new OReilly.Browser("Internet Explorer", "Microsoft", true);
 s = ie.getName() + " from " + ie.getVendor() +
 (ie.getIsJavaScriptSupported() ? " (w/ JS)" : " (w/o JS)") +
 "
";

 var lynx = new OReilly.Browser("Lynx");
 lynx.setIsJavaScriptSupported(false);
 s += lynx.getName() + " from " + lynx.getVendor() +
 (lynx.getIsJavaScriptSupported() ? " (w/ JS)" : " (w/o JS)");

 document.getElementById("output").innerHTML = s;
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <div id="output">
 </div>
 </form>
</body>
</html>

Figure 4-2. Instantiating objects derived from the same base class

Example 4-2. Using ASP.NET AJAX class inheritance (continued)

78 | Chapter 4: Using ASP.NET AJAX JavaScript Extensions

Accessing base methods

When we talk about class inheritance, a logical question is whether methods can be
overridden in derived classes. The answer is yes. The next question: is there any way
to access the equivalent method of the base class, (i.e., the overridden method)? Even
better, the answer is again yes, ASP.NET AJAX allows you to do so. To demonstrate
this, let’s add a toString() method to OReilly.Software that outputs the product
and vendor names stored by the class. The prototype property ensures automated
inheritance and also helps demonstrate access to the base method later on.

OReilly.Software.prototype.toString = function() {
 return this.getName() + " from " + this.getVendor();
}

You could also directly access the properties _name and _vendor as vari-
ables. Using the getter methods is just a personal preference. There is
no functional difference in doing so.

In the OReilly.Browser class, you could write a similar toString() method:

OReilly.Browser.prototype.toString = function() {
 return this.getName() + " from " + this.getVendor() +
 (this.getIsJavaScriptSupported() ? " (w/ JS)" : " (w/o JS)");
}

However, it is once again advisable to reuse existing code, in this case, the base
class’s toString() method. ASP.NET AJAX provides you with callBaseMethod(), a
helper method to call a method from the parent class that can take up to three
parameters:

instance
The instance whose parent’s method to call (usually this)

methodName
The name of the method (as a string)

baseArguments
Parameters for the method, if any (as an array)

In this case, the toString() method of OReilly.Browser can be implemented as the
following code demonstrates:

OReilly.Browser.prototype.toString = function() {
 return OReilly.Browser.callBaseMethod(this, "toString") +
 (this.getIsJavaScriptSupported() ? " (w/ JS)" : " (w/o JS)");
}

Now, the code to output the browser information can be reduced a bit to these com-
mands below:

var s = "";
var ie = new OReilly.Browser("Internet Explorer", "Microsoft", true);
s = ie.toString() + "
";

ASP.NET AJAX OOP Features for JavaScript | 79

var lynx = new OReilly.Browser("Lynx", null, false);
s += lynx.toString();
document.getElementById("output").innerHTML = s;

Example 4-3 shows the complete listing.

Example 4-3. Accessing a base class method

ClientBaseMethods.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>

 <script language="Javascript" type="text/javascript">
 function pageLoad() {
 var s = "";

 Type.registerNamespace("OReilly");
 OReilly.Software = function(name, vendor) {
 var _name = (name != null) ? name : "unknown";
 var _vendor = (vendor != null) ? vendor : "unknown";

 this.getName = function() {
 return _name;
 }
 this.setName = function(name) {
 _name = name;
 }

 this.getVendor = function() {
 return _vendor;
 }
 this.setVendor = function(vendor) {
 _vendor = vendor;
 }
 }
 Type.registerClass("OReilly.Software");

 OReilly.Browser = function(name, vendor, isJavaScriptSupported) {
 OReilly.Browser.initializeBase(this, new Array(name, vendor));
 var _isJavaScriptSupported = (isJavaScriptSupported != null) ?
isJavaScriptSupported : false;
 this.getIsJavaScriptSupported = function() {
 return _isJavaScriptSupported;
 }
 this.setIsJavaScriptSupported = function(isJavaScriptSupported) {
 _isJavaScriptSupported = isJavaScriptSupported;
 }

80 | Chapter 4: Using ASP.NET AJAX JavaScript Extensions

Note that when you run this page, the output of this code is identical to that shown
in Figure 4-2.

Interfaces
The final OOP-like feature made available to JavaScript by ASP.NET AJAX is inter-
faces. An interface does not contain any implementation at all but instead specifies
the members that subclasses must implement. Even if you inherit from an interface,
there is no implementation you can use. Instead, you must create the methods that
are defined in the interface. This is a good way for developers to keep class structure
and implementation details separated in their code.

As you have probably already guessed, the method for creating an interface is
Type.registerInterface(). The interface name you just created is provided as the
third (optional) parameter of registerClass(). So, starting with the interface itself,
we will use the following code:

 }
 OReilly.Browser.registerClass("OReilly.Browser", OReilly.Software);

 OReilly.Software.prototype.toString = function() {
 return this.getName() + " from " + this.getVendor();
 }
 OReilly.Browser.prototype.toString = function() {
 return OReilly.Browser.callBaseMethod(this, "toString") +
 (this.getIsJavaScriptSupported() ? " (w/ JS)" : " (w/o JS)");
 };

 var ie = new OReilly.Browser("Internet Explorer", "Microsoft", true);
 s = ie.toString() + "
";

 var lynx = new OReilly.Browser("Lynx", null, false);
 s += lynx.toString();

 document.getElementById("output").innerHTML = s;
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <div id="output">
 </div>
 </form>
</body>
</html>

Example 4-3. Accessing a base class method (continued)

ASP.NET AJAX OOP Features for JavaScript | 81

OReilly.IProduct = function() {
 this.toString = Function.abstractMethod;
}
Type.registerInterface("OReilly.IProduct");

Here, OReilly.Product is an abstract class. Unfortunately, the final version of ASP.NET
AJAX does not support abstract classes (pre-release versions did). Therefore, there is
no technical difference between abstract classes and regular classes.

In the following example, the OReilly.Product class introduces and implements the
properties name and vendor.

OReilly.Product = function(name, vendor) {
 var _name = (name != null) ? name : "unknown";
 var _vendor = (vendor != null) ? vendor : "unknown";

 this.getName = function() {
 return _name;
 }
 this.setName = function(name) {
 _name = name;
 }
 this.getVendor = function() {
 return _vendor;
 }
 this.setVendor = function(vendor) {
 _vendor = vendor;
 }
}
Type.registerClass("OReilly.Product");

The next class to be implemented is OReilly.Software. Since we do not want to
instantiate this class directly (we have subclasses like OReilly.Browser for that),
this can now also be turned into an abstract class. It derives from OReilly.Product
(to get name and vendor), but it also implements OReilly.IProduct (for the
toString() method). After declaring the class, we register it with the following
call to Type.registerClass():

OReilly.Software.registerClass("OReilly.Software", OReilly.Product,
OReilly.IProduct);

The rest of the code remains unchanged. It is quite long, so you might consider put-
ting it into an external .js file for legibility of the .aspx file. Example 4-4 shows the
complete listing.

Example 4-4. Using interfaces to structure code

ClientInterface.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

82 | Chapter 4: Using ASP.NET AJAX JavaScript Extensions

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>

 <script language="Javascript" type="text/javascript">
 function pageLoad() {
 var s = "";

 Type.registerNamespace("OReilly");

 OReilly.IProduct = function() {
 this.toString = Function.abstractMethod;
 }
 Type.registerInterface("OReilly.IProduct");

 OReilly.Product = function(name, vendor) {
 var _name = (name != null) ? name : "unknown";
 var _vendor = (vendor != null) ? vendor : "unknown";

 this.getName = function() {
 return _name;
 }
 this.setName = function(name) {
 _name = name;
 }
 this.getVendor = function() {
 return _vendor;
 }
 this.setVendor = function(vendor) {
 _vendor = vendor;
 }
 }
 Type.registerClass("OReilly.Product");

 OReilly.Software = function(name, vendor) {
 var _name = (name != null) ? name : "unknown";
 var _vendor = (vendor != null) ? vendor : "unknown";
 this.getName = function() {
 return _name;
 }
 this.setName = function(name) {
 _name = name;
 }
 this.getVendor = function() {
 return _vendor;
 }
 this.setVendor = function(vendor) {
 _vendor = vendor;
 }
 }
 OReilly.Software.registerClass("OReilly.Software", OReilly.Product, OReilly.IProduct);
 OReilly.Software.prototype.toString = function() {
 return this.getName() + " from " + this.getVendor();

Example 4-4. Using interfaces to structure code (continued)

Client Versions of .NET Classes | 83

Client Versions of .NET Classes
In addition to adding OOP-like features for JavaScript coding, ASP.NET AJAX achieves
two goals through client class implementions that are analogs of some .NET classes:

• Functionality missing in JavaScript is provided as part of ASP.NET AJAX.

• .NET developers with little JavaScript experience can use some familiar ele-
ments in their code.

In my opinion, this is one of the areas where upcoming ASP.NET AJAX versions will
most certainly add more features, so the following list of classes is neither exhaustive
nor final. Two useful features that are already available are Sys.StringBuilder and
enumerations.

 }

 OReilly.Browser = function(name, vendor, isJavaScriptSupported) {
 OReilly.Browser.initializeBase(this, new Array(name, vendor));
 var _isJavaScriptSupported = (isJavaScriptSupported != null) ? vendor : false;
 this.getIsJavaScriptSupported = function() {
 return _isJavaScriptSupported;
 }
 this.setIsJavaScriptSupported = function(isJavaScriptSupported) {
 _isJavaScriptSupported = isJavaScriptSupported;
 }
 }
 OReilly.Browser.registerClass("OReilly.Browser", OReilly.Software);
 OReilly.Browser.prototype.toString = function() {
 return OReilly.Browser.callBaseMethod(this, "toString") +
 (this.getIsJavaScriptSupported() ? " (w/ JS)" : " (w/o JS)");
 }

 var ie = new OReilly.Browser("Internet Explorer", "Microsoft", true);
 s = ie.toString() + "
";
 var lynx = new OReilly.Browser("Lynx", null, false);
 s += lynx.toString();
 document.getElementById("output").innerHTML = s;
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <div id="output">
 </div>
 </form>
</body>
</html>

Example 4-4. Using interfaces to structure code (continued)

84 | Chapter 4: Using ASP.NET AJAX JavaScript Extensions

Sys.StringBuilder
One of the new features introduced in .NET 1.0 that really improved performance
was the introduction of the StringBuilder class. The downside, however, is that
applications are usually full of code such as that illustrated below:

string s = "", t;
while () {
 t = <value>;
 s += t;
}

The problem lies in the statement s += t, which is equivalent to s = s + t. When-
ever this code is executed, a copy of s and a copy of t are created in memory, concat-
enated, then saved back into s. However, it’s inefficient to create a copy of s to
achieve these results. Therefore, StringBuilder uses an optimized algorithm for
string concatenation.

In JavaScript, this approach does not have any measurable effect on memory (in fact,
the implementation seems to be a tick slower than the standard approach). Then
again, performance is not as critical an issue for client script as it is for server code.
Nevertheless, for consistency with your server coding techniques, you can rely on
your knowledge of .NET coding techniques and use StringBuilder on the client.
Example 4-5 puts the StringBuilder class to work. It concatenates some strings to
build an HTML chessboard.

Example 4-5. Using an ASP.NET AJAX StringBuilder

ClientStringBuilder.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>

 <script language="Javascript" type="text/javascript">
 window.onload = function() {
 var sb = new Sys.StringBuilder();
 for (var i = 8; i >= 1; i--) {
 for (var j = 97; j <= 104; j++) {
 sb.append(String.fromCharCode(j));
 sb.append(i);
 sb.append(" ");
 }
 sb.appendLine();
 sb.appendLine();
 }
 document.getElementById("output").innerHTML = "<pre>" + sb.toString() + "</pre>";

Client Versions of .NET Classes | 85

The built-in JavaScript function String.fromCharCode() converts an ASCII code to its
associated character, so the inner for loop runs from "a" through "h". As Figure 4-3
reveals, the code in Example 4-7 creates a simple chessboard.

Enumerations
Another .NET type that is emulated by ASP.NET AJAX for JavaScript is Enum. You
can create a custom enumeration using the createEnum() method. The API for this
changed quite a bit during the Atlas and ASP.NET AJAX development cycle. In its
current form, you can create an enumeration as shown in the following listing, but
you cannot iterate over it. You can create a namespace, if you wish to use one:

Type.registerNamespace("ORA.MyEnums");

Then, create the enum object, assigning it an (empty) function:

ORA.MyEnums.Ajax = function() {};

 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <div id="output"></div>
 </form>
</body>
</html>

Figure 4-3. A chessboard (with some potential)

Example 4-5. Using an ASP.NET AJAX StringBuilder (continued)

86 | Chapter 4: Using ASP.NET AJAX JavaScript Extensions

Next, define all values in the enumeration, using the syntax below:

ORA.MyEnums.Ajax.prototype = {
 "Asynchronous": 0,
 "JavaScript": 1,
 "and": 2,
 "XML": 3
};

Finally, the enumeration needs to be registered:

ORA.MyEnums.Ajax.registerEnum("ORA.MyEnums.Ajax");

Example 4-6 shows a complete example that creates the enumeration and then
accesses it.

Example 4-6. Using an ASP.NET AJAX Enum

ClientEnum.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>

 <script language="Javascript" type="text/javascript">
 function pageLoad() {
 Type.registerNamespace("ORA.MyEnums");
 ORA.MyEnums.Ajax = function() {};
 ORA.MyEnums.Ajax.prototype = {
 "Asynchronous": 0,
 "JavaScript": 1,
 "and": 2,
 "XML": 3
 };
 ORA.MyEnums.Ajax.registerEnum("ORA.MyEnums.Ajax");

 document.getElementById("output").innerHTML +=
 ORA.MyEnums.Ajax.Asynchronous + " " +
 ORA.MyEnums.Ajax.JavaScript + " " +
 ORA.MyEnums.Ajax.and + " " +
 ORA.MyEnums.Ajax.XML;
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <div id="output"></div>
 </form>

For Further Reading | 87

This code outputs the string "0 1 2 3 " (the keys for the enumeration entries) in the
<div> element.

Enumerations are also used internally by ASP.NET AJAX to define mouse button
values (the following code snippet has been edited and reformatted for clarity).

Sys.UI.MouseButton = function() { };
Sys.UI.MouseButton.prototype = {
 leftButton:0,
 middleButton:1,
 rightButton:2
};
Sys.UI.MouseButton.registerEnum("Sys.UI.MouseButton");

Summary
The ASP.NET AJAX client script library implements several convenient features not
present in standard JavaScript, including OOP-like functionality and client-side
equivalents of .NET Framework features. These features can be used by any Java-
Script programmer, without repercussions to ASP.NET or the server-side features of
ASP.NET AJAX.

For Further Reading
http://www.kevlindev.com/tutorials/javascript/inheritance

Online tutorial for JavaScript’s OOP capabilities

http://aspnetresources.com/blog/ms_ajax_cheat_sheets_batch2.aspx
“Cheat sheets” for ASP.NET AJAX’s JavaScript extensions

http://ajax.asp.net/docs/ClientReference/Global/default.aspx
Documentation for helper functions and JavaScript base type extensions

http://quickstarts.asp.net/Futures/ajax/doc/cssselectors.aspx
The ASP.NET AJAX Futures provides JavaScript helper functions to select ele-
ments based on CSS rules

</body>
</html>

Example 4-6. Using an ASP.NET AJAX Enum (continued)

http://www.kevlindev.com/tutorials/javascript/inheritance
http://aspnetresources.com/blog/ms_ajax_cheat_sheets_batch2.aspx
http://ajax.asp.net/docs/ClientReference/Global/default.aspx
http://quickstarts.asp.net/Futures/ajax/doc/cssselectors.aspx

88

Chapter 5CHAPTER 5

Web Services 5

In the very first “Hello World” application in Chapter 1, we used a web service to
exchange data between a client and server. However, to use web services with Java-
Script to their fullest, you need to master some additional skills. These include error
handling, inline web services (web service methods in the current .aspx page, also
called page methods), and using web services and JavaScript without the help of the
.NET Framework.

In this chapter, you will learn some special features of ASP.NET AJAX’s web ser-
vices support, including error handling and maintaining session state. You will also
see how to use non-ASP.NET web services with JavaScript.

Error Handling
Up to now, when working with web services, we expected our remote calls to work
each time. However, the fact that an exception could be thrown has not yet been
considered.

When using web services from remote servers (which, for the purposes of this dicus-
sion means servers on another domain), developers often do not include exception-
handling code. One reason is that a web service can be implemented with any tech-
nology, and every technology has its own way of running exceptions. Some do not
raise exceptions at all.

However in the case of ASP.NET AJAX and Ajax, using web services is a bit differ-
ent. We cannot directly use a remote service, since the security model prohibits us
from doing so. By default, JavaScript and the XMLHttpRequest object only allow access
to URIs within the same domain as the current page. Thus, when you work with
ASP.NET AJAX, you are calling a web service that is in the same domain, meaning
it’s a web service based on .NET technology (or WCF, the new Windows Communi-
cation Foundation). As a consequence, you know which exception model is used.

Error Handling | 89

ASP.NET AJAX allows you to access exceptions in JavaScript code thrown by a web
service. To demonstrate this, let’s write a simple math service that divides two num-
bers. You have probably already guessed where this is leading: if the user tries to trig-
ger a divide-by-zero exception, the service throws DivideByZeroException.
Example 5-1 shows the code for a web service (MathService.asmx) that throws this
exception. One point to remember; web services that can be used from ASP.NET
AJAX require the [ScriptService] and [WebMethod] attributes.

Now, let’s assemble a page that calls this web service. We need two input fields in
which to enter the values we would like to divide. We also need two output contain-
ers: one for the result of the division and one for eventual error messages. A button
then calls the client-side function, which in turn, calls the web service.

<nobr>
 <input type="text" id="a" name="a" size="2" />
 /
 <input type="text" id="b" name="b" size="2" />
 =

</nobr>

<input type="button" value="Divide Numbers" onclick="callService(this.form);" />

<div id="output" style="width: 600px; height: 300px;">
</div>

Example 5-1. A web service that throws an exception

MathService.asmx

<%@ WebService Language="C#" Class="MathService" %>

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;

[WebService(Namespace = "http://hauser-wenz.de/AspNetAJAX/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.Web.Script.Services.ScriptService]
public class MathService : System.Web.Services.WebService {

 [WebMethod]
 public float DivideNumbers(int a, int b) {
 if (b == 0) {
 throw new DivideByZeroException();
 } else {
 return (float)a / b;
 }
 }

}

90 | Chapter 5: Web Services

As for server controls on the page, we need two: the ScriptManager element and,
embedded into it, the reference to the web service we want to use.

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="MathService.asmx" />
 </Services>
</asp:ScriptManager>

Now when you call the web service, you can use the proxy object MathService that was
generated automatically. Remember the parameters when calling a web method: first
the parameter(s) of the web method, then the callback function for call completion.

However, this time we submit one more parameter to the DivideNumbers() method.
After a callback to handle call completion, we provide another callback. The new
one is executed when an error occurs, which includes timeouts as well.

function callService(f) {
 document.getElementById("c").innerHTML = "";
 MathService.DivideNumbers(
 parseInt(f.elements["a"].value),
 parseInt(f.elements["b"].value),
 callComplete,
 callError
);
}

This error handling function retrieves an error object that contains five methods:

get_exceptionType()
Retrieves the type of the exception

get_message()
Retrieves the error message of the exception

get_stackTrace()
Retrieves the stack trace of the error

get_statusCode()
Retrieves the status code sent from the server

get_timeOut()
Determines whether a timeout has occurred

This information is output in the <div> element that we created specifically for
receiving it:

function callError(result) {
 document.getElementById("output").innerHTML =
 "" +
 result.get_exceptionType() +
 ": " +
 result.get_message() +
 "
" +
 result.get_stackTrace();
}

Error Handling | 91

The rest of the example is straightforward. When the call to the web service com-
pletes successfully, output the result of the division in the element.
Example 5-2 shows the complete code for the page.

Example 5-2. A page that displays exceptions thrown by MathService.asmx

Error.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script language="Javascript" type="text/javascript">
 function callService(f) {
 document.getElementById("c").innerHTML = "";
 document.getElementById("output").innerHTML = "";
 MathService.DivideNumbers(
 parseInt(f.elements["a"].value),
 parseInt(f.elements["b"].value),
 callComplete,
 callError);
 }

 function callComplete(result) {
 document.getElementById("c").innerHTML = result;
 }

 function callError(result) {
 document.getElementById("output").innerHTML =
 "" +
 result.get_exceptionType() +
 ": " +
 result.get_message() +
 "
" +
 result.get_stackTrace();
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="MathService.asmx" />
 </Services>
 </asp:ScriptManager>
 <div>
 <nobr>
 <input type="text" id="a" name="a" size="2" />

92 | Chapter 5: Web Services

Now when you divide 6 by 7, you get, as expected, 0.8571429. However, if you try
to divide 6 by 0, the web service throws the predicted exception. Figure 5-1 shows
the output, including a short stack trace.

 /
 <input type="text" id="b" name="b" size="2" />
 =

 </nobr>

 <input type="button" value="Divide Numbers" onclick="callService(this.form);" />

 <div id="output" style="width: 600px; height: 300px;">
 </div>
 </div>
 </form>
</body>
</html>

Figure 5-1. Information about the exception is shown

About (Not) Displaying Error Messages
Showing error messages in the client is a nice tool for debugging an application, but it
can be really dangerous in a production environment. Error messages may contain sen-
sitive information, like connection strings. Even if you do not display this information,
ASP.NET AJAX may send this information to the client anyway. There are two steps
you can take to prevent this. First, do not show detailed error messages like stack traces
on the client. Second, when throwing exceptions on the server, try to embed as little
information as possible in these exceptions.

Example 5-2. A page that displays exceptions thrown by MathService.asmx (continued)

Page Methods | 93

Page Methods
You have probably found that putting all the web methods for an application in a
separate file is a bit cumbersome. From an architectural point of view, this type of
file management seems like a good idea. But with simple scripts or applications (like
most of the examples in this book), the extra .asmx file clutters up the project.

With very little extra code (ultimately, even less code), you can put all of your code
in one place, namely in your main .aspx file (or its code-behind class file). This tech-
nique takes two steps. First, you import the web services namespace into the page
file, using an @ Import directive as shown here:

<%@ Import Namespace="System.Web.Services" %>

Second, you put the code for the web method on your page. To identify it as a web
service method (well, more accurately, as a method that works like a web method),
use the [WebMethod] attribute as you would do in an .asmx file. However, the inline
web service methods support of ASP.NET AJAX has the following requirements
as well:

• The method must be marked with the ScriptMethod attribute, defined in
System.Web.Script.Services.

• The method must be declared as public.

• The method must be declared as static.

Following is the code for a simple method that supports all of these requirements:

<script runat="server">
 [WebMethod]
 [System.Web.Script.Services.ScriptMethod]
public static float DivideNumbers(int a, int b)

 {
 if (b == 0)
 {
 throw new DivideByZeroException();
 }
 else
 {
 return (float)a / b;
 }
 }
</script>

ASP.NET AJAX automatically searches for all such methods and encapsulates them in
the client PageMethods class. So, to call the method, use PageMethods.DivideNumbers() as
illustrated here:

function callService(f) {
 document.getElementById("c").innerHTML = "";
 PageMethods.DivideNumbers(
 parseInt(f.elements["a"].value),
 parseInt(f.elements["b"].value),

94 | Chapter 5: Web Services

 callComplete,
 callError);
}

The final step is to enable calling inline web service methods. ASP.NET AJAX
calls them “page methods,” and the ScriptManager control supports the
EnablePageMethods property to enable page methods support:

<asp:ScriptManager ID="a1" runat="server" EnablePageMethods="true" />

Example 5-3 shows the complete code for an ASP.NET page in which both the page
code and the web service method code is in one file.

Example 5-3. Web service code and ASP.NET AJAX code together in one file

Inline.aspx

<%@ Page Language="C#" %>
<%@ Import Namespace="System.Web.Services" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 [WebMethod]
 [System.Web.Script.Services.ScriptMethod]
 public static float DivideNumbers(int a, int b)
 {
 if (b == 0)
 {
 throw new DivideByZeroException();
 }
 else
 {
 return (float)a / b;
 }
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script language="Javascript" type="text/javascript">
 function callService(f) {
 document.getElementById("c").innerHTML = "";
 PageMethods.DivideNumbers(
 parseInt(f.elements["a"].value),
 parseInt(f.elements["b"].value),
 callComplete,
 callError);
 }

 function callComplete(result) {
 document.getElementById("c").innerHTML = result;

Maintaining Session State | 95

Figure 5-2 shows the results that are displayed when you load the page, enter two
numbers, and click the Divide Numbers button.

Maintaining Session State
Web services are sometimes criticized as being great technology that has nothing to
do with the Web itself. But since .NET web services are seamlessly integrated with
ASP.NET, if you’re using ASP.NET, you’re can enable scenarios that web services
technology by itself cannot offer.

With .NET web services, for example, you can maintain session state. And even if
you are using Ajax, this session state is still available to you from your ASP.NET
AJAX application. For instance, ASP.NET AJAX would enable different Ajax applica-
tions on the same server share information from the same user.

 }

 function callError(result) {
 document.getElementById("output").innerHTML =
 "" +
 result.get_exceptionType() +
 ": " +
 result.get_message() +
 "
" +
 result.get_stackTrace();
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server"
EnablePageMethods="true">
 </asp:ScriptManager>
 <div>
 <nobr>
 <input type="text" id="a" name="a" size="2" />
 /
 <input type="text" id="b" name="b" size="2" />
 =
 </nobr>

 <input type="button" value="Divide Numbers" onclick="callService(this.form);" />

 <div id="output" style="width: 600px; height: 300px;">
 </div>
 </div>
 </form>
</body>
</html>

Example 5-3. Web service code and ASP.NET AJAX code together in one file (continued)

96 | Chapter 5: Web Services

Implementing this is easier than describing it. The EnableSession property of the
[WebMethod] attribute does the trick—exactly as if you were coding a .NET web
method:

 [WebMethod(EnableSession=true)]

You can then directly access the ASP.NET Session object and write data to and read
from it. Since the web methods need to be static, you have to use HttpContext.Current.
Session, not just Session, which is available only to actual instances of the Page class.

The next code snippet illustrates two functions: one stores the current time in a ses-
sion, the other determines the difference between the current time and the time-
stamp in the session. If there is no timestamp in the session, -1 is returned.

[WebMethod(EnableSession = true)]
[System.Web.Script.Services.ScriptMethod]
public static bool SaveTime()
{
 HttpContext.Current.Session["PageLoaded"] = DateTime.Now;
 return true;
}

[WebMethod(EnableSession = true)]
[System.Web.Script.Services.ScriptMethod]
public static double CalculateDifference()
{
 if (HttpContext.Current.Session["PageLoaded"] == null) {
 return -1;
 } else {
 DateTime then = (DateTime)HttpContext.Current.Session["PageLoaded"];
 TimeSpan diff = DateTime.Now.Subtract(then);
 return diff.TotalSeconds;
 }
}

Figure 5-2. One file, one web service, one division operation

Maintaining Session State | 97

Now let’s return to our application for handling the division of two numbers. When
the page containing the code from the preceding snippet loads and the SaveTime()
method is called, the current time is stored in session state. When division of the two
numbers you enter is executed, the time difference is calculated. So, it is possible to
determine how long a user had the form open before the division is requested
(which, of course, could be done in plain JavaScript as well, but for the sake of dem-
onstration we are using the server detour).

The following JavaScript code calls the web service method to store the time when
the page is first loaded by calling the SaveTime() method. Because we don’t need any
return value, we can route the callback to a function that doesn’t do anything.

function pageLoad(){
 PageMethods.SaveTime(doNothing, doNothing);
}

function doNothing(result) {
 //nothing :-)
}

As you’ve seen earlier, you’ll need a callService() method to call the
CalculateDifference() web service method. The following code makes two calls to
web service methods. The first calculates the time difference between the initial page
load and the current time; the second performs the same math calculation we have
been using.

function callService(f) {
 document.getElementById("c").innerHTML = "";
 PageMethods.CalculateDifference(
 showDifference,
 callError);
 PageMethods.DivideNumbers(
 parseInt(f.elements["a"].value),
 parseInt(f.elements["b"].value),
 callComplete,
 callError);
}

Finally, you need some markup to display the time difference. We will use the output
<div> container. Note that the return value -1 from the web method means that there
was no timestamp in the session, so there is no time difference to display.

function showDifference(result) {
 if (result != -1) {
 document.getElementById("output").innerHTML =
 "The form has been open for " + result + " seconds";
 }
}

Example 5-4 shows the complete markup and script you need to implement this
example, with changes shown in bold. Note that you must again set the
EnablePageMethods="true" attribute of the ScriptManager control. If the attribute is
not set, the page methods will not work.

98 | Chapter 5: Web Services

Example 5-4. Maintaining session state with ASP.NET AJAX and ASP.NET

WebServiceSession.aspx

<%@ Page Language="C#" %>
<%@ Import Namespace="System.Web.Services" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 [WebMethod(EnableSession = true)]
 [System.Web.Script.Services.ScriptMethod]
 public static bool SaveTime()
 {
 HttpContext.Current.Session["PageLoaded"] = DateTime.Now;
 return true;
 }

 [WebMethod(EnableSession = true)]
 [System.Web.Script.Services.ScriptMethod]
 public static double CalculateDifference()
 {
 if (HttpContext.Current.Session["PageLoaded"] == null) {
 return -1;
 } else {
 DateTime then = (DateTime)HttpContext.Current.Session["PageLoaded"];
 TimeSpan diff = DateTime.Now.Subtract(then);
 return diff.TotalSeconds;
 }
 }

 [WebMethod]
[System.Web.Script.Services.ScriptMethod] public static float DivideNumbers(int a, int b)

 {
 if (b == 0)
 {
 throw new DivideByZeroException();
 }
 else
 {
 return (float)a / b;
 }
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script language="Javascript" type="text/javascript">
 function pageLoad() {
 PageMethods.SaveTime(doNothing, doNothing);
 }

Maintaining Session State | 99

 function doNothing(result) {
 //nothing :-)
 }

 function callService(f) {
 document.getElementById("c").innerHTML = "";
 PageMethods.CalculateDifference(
 showDifference,
 callError);
 PageMethods.DivideNumbers(
 parseInt(f.elements["a"].value),
 parseInt(f.elements["b"].value),
 callComplete,
 callError);
 }
function showDifference(result) {
 if (result != -1) {
 document.getElementById("output").innerHTML =
 "The form has been open for " + result + " seconds";
 }
 }

 function callComplete(result) {
 document.getElementById("c").innerHTML = result;
 }

 function callError(result) {
 if (result == null) {
 window.alert("Error!");
 } else {
 document.getElementById("output").innerHTML =
 "" +
 result.get_exceptionType() +
 ": " +
 result.get_message() +
 "
" +
 result.get_stackTrace();
 }
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server"
 EnablePageMethods="true">
 </asp:ScriptManager>
 <div>
 <nobr>
 <input type="text" id="a" name="a" size="2" />
 /
 <input type="text" id="b" name="b" size="2" />

Example 5-4. Maintaining session state with ASP.NET AJAX and ASP.NET (continued)

100 | Chapter 5: Web Services

When the DivideNumbers() method is called in the browser, you’ll notice two things dif-
fer from earlier examples. First, the web site sends out a session cookie (unless you spec-
ified cookieless session management in the Web.config file). If your browser prompts
you before accepting cookies, you’ll see a dialog box like the one displayed in
Figure 5-3. Second, the session data is preserved during calls to the web service
(Figure 5-4).

Exchanging Complex Data with the Server
So far, we have used only strings or primitive types (strings, Booleans, numbers) to
exchange between client and server. However, you can use more complex data as
well. JavaScript cannot compete with the rich type system offered by the .NET
Framework, but the JSON format (introduced in Chapter 3) offers at least rudimen-
tary support for arrays and objects.

ASP.NET AJAX comes with JSON serialization and deserialization features. So let us
add a new feature to the division web service from Examples 5-1 and 5-2. We’ll create a
new web method that returns two pieces of information in one; the result of the divi-
sion and a current timestamp from the server. For this to work, we first create a new
class in MathService.asmx that provides us with the object we will later return:

 =
 </nobr>

 <input type="button" value="Divide Numbers" onclick="callService(this.form);" />

 <div id="output" style="width: 600px; height: 300px;">
 </div>
 </div>
 </form>
</body>
</html>

Figure 5-3. ASP.NET now sends out a session cookie on behalf of the page

Example 5-4. Maintaining session state with ASP.NET AJAX and ASP.NET (continued)

Exchanging Complex Data with the Server | 101

public class DivisionData
{
 public float result;
 public string calculationTime;
}

The method illustrated below then creates and returns the object:

[WebMethod]
public DivisionData ExtendedDivideNumbers(int a, int b) {
 if (b == 0) {
 throw new DivideByZeroException();
 } else {
 float res = (float)a / b;
 string stamp = DateTime.Now.ToLongTimeString();
 DivisionData d = new DivisionData();
 d.result = res;
 d.calculationTime = stamp;
 return d;
 }
}

In order to make the returned object accessible for JavaScript, ASP.NET AJAX must
serialize the data into proper JSON. The GenerateScriptType attribute (defined in
System.Web.Script.Services [where the ScriptService and ScriptMethod attributes
are also located]) instructs ASP.NET AJAX to pick the correct object definition:

[System.Web.Script.Services.GenerateScriptType(typeof(DivisionData))]

That’s all the extra work that is required on the server. Example 5-5 contains the
updated code for MathService.asmx.

Figure 5-4. Using session state to store a time for calculating elapsed time between page load and
user request

Example 5-5. The updated MathService file

MathService.asmx

<%@ WebService Language="C#" Class="MathService" %>

102 | Chapter 5: Web Services

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;

public class DivisionData
{
 public float result;
 public string calculationTime;
}

[WebService(Namespace = "http://hauser-wenz.de/AspNetAJAX/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.Web.Script.Services.ScriptService]
[System.Web.Script.Services.GenerateScriptType(typeof(DivisionData))]
public class MathService : System.Web.Services.WebService
{

 [WebMethod]
 public float DivideNumbers(int a, int b)
 {
 if (b == 0)
 {
 throw new DivideByZeroException();
 }
 else
 {
 return (float)a / b;
 }
 }

 [WebMethod]
 public DivisionData ExtendedDivideNumbers(int a, int b)
 {
 if (b == 0)
 {
 throw new DivideByZeroException();
 }
 else
 {
 float res = (float)a / b;
 string stamp = DateTime.Now.ToLongTimeString();
 DivisionData d = new DivisionData();
 d.result = res;
 d.calculationTime = stamp;
 return d;
 }
 }

}

Example 5-5. The updated MathService file (continued)

Exchanging Complex Data with the Server | 103

On the client, the deserialization of the DivisionData object is entirely done automat-
ically. The result from the web services call has the same properties, result and
calculationTime, as the DivisionData object. Example 5-6 shows the required Java-
Script code to call the extended web service.

Example 5-6. A page that receives complex objects from a web method

Complex.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script language="Javascript" type="text/javascript">
 function callService(f) {
 document.getElementById("c").innerHTML = "";
 document.getElementById("output").innerHTML = "";
 MathService.ExtendedDivideNumbers(
 parseInt(f.elements["a"].value),
 parseInt(f.elements["b"].value),
 callComplete,
 callError);
 }

 function callComplete(result) {
 document.getElementById("c").innerHTML =
 result.result +
 " (calculated at " +
 result.calculationTime +
 ")";
 }

 function callError(result) {
 document.getElementById("output").innerHTML =
 "" +
 result.get_exceptionType() +
 ": " +
 result.get_message() +
 "
" +
 result.get_stackTrace();
 }
 </script>

</head>

104 | Chapter 5: Web Services

Figure 5-5 displays both the division result and the time output of this script.

If you sniff the HTTP traffic that this script generates, you can clearly see how the
complex data is transformed into JSON (see Figure 5-6).

So far, you’ve learned about special web services features offered by ASP.NET AJAX
that would be extremely hard to do with JavaScript alone. The ASP.NET AJAX
framework integrates very well with .NET web services, making it very convenient to
bridge the JavaScript (client) and ASP.NET (server) technologies.

<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="MathService.asmx" />
 </Services>
 </asp:ScriptManager>
 <div>
 <nobr>
 <input type="text" id="a" name="a" size="2" />
 /
 <input type="text" id="b" name="b" size="2" />
 =

 </nobr>

 <input type="button" value="Divide Numbers" onclick="callService(this.form);" />

 <div id="output" style="width: 600px; height: 300px;">
 </div>
 </div>
 </form>
</body>
</html>

Figure 5-5. The complex information from the server is shown

Example 5-6. A page that receives complex objects from a web method (continued)

Consuming Web Services with JavaScript | 105

Consuming Web Services with JavaScript
The automatic mechanisms that ASP.NET AJAX provides for accessing web services
are quite easy to use as they take care of most of the work. However, there are situa-
tions when these mechanisms do not work. For example, imagine you have to call a
(same domain) web service that is not written in .NET, but in another server-side
technology such as PHP or Java. Or, imagine that you cannot use ASP.NET AJAX for
some reason (for instance, due to company policies regarding third-party modules or
disagreement with the 1icense). As this book goes beyond using ASP.NET AJAX to
write Ajax-empowered ASP.NET applications (and the underlying technologies), this
section covers alternative ways to call remote web services from JavaScript.

Before we go into detail, you have to remember once again that the security model of
JavaScript forbids cross-domain scripting. This means that you cannot access remote
sites using JavaScript (implicitly using XMLHttpRequest).

There are two possible ways to call a web service programmatically using JavaScript.
You can either bet on XMLHttpRequest, or write a suitable SOAP HTTP request and
then evaluate the data returned from the server. This is quite complicated and very
error-prone. A much better approach is to use built-in technology or official add-ons
to the browsers that solve this problem for you.

Figure 5-6. The complex information is serialized in JSON

106 | Chapter 5: Web Services

Unfortunately, the two major browser types—Internet Explorer and Mozilla (includ-
ing Firefox, Epiphany, Camino, and others)—have completely different approaches
to calling web services. Therefore, we must now follow divergent paths and cover
each of these browsers individually. At the end of this section, we’ll join the two
models back together to create a more-or-less single browser-agnostic script.

Web Services and Internet Explorer
Some years ago, Microsoft started working on script code that would make calling
web services from within its browser possible. Basically, the code instantiates
XMLHttpRequest, sets the required HTTP headers for a SOAP request, creates the
body of the request, waits for the SOAP response, and transforms that back into
something JavaScript can use. In addition, the code can parse the Web Services
Description Language (WSDL) description of the web service and generate a local
proxy object.

The idea is simple; the implementation is not. The final version of the code (version
1.0.1.1120) consists of nearly 2,300 lines of code. Unfortunately, in 2002, Microsoft
abandoned the component it had written. This is a pity, as it still works well today.
Luckily, the code is still available in the archives of MSDN, at http://msdn.microsoft.com/
archive/en-us/samples/internet/behaviors/library/webservice/default.asp.

Download the file webservice.htc and save it to the directory where your example
scripts reside. The file extension .htc stands for “HTML control,” otherwise known
as an Internet Explorer behavior. Using a CSS style supported only in Internet
Explorer, you can load the file into your application.

<div id="WebService" style="behavior:url(webservice.htc);"></div>

The name you provide in the id attribute can then be used in JavaScript to access
both the HTML control and the web service to which it is linked.

This “linking” can be achieved by providing a link to the WSDL description of the
web services you want to use. The method of the .htc file you need for this task is
useService(). You also need to provide a unique identifier to access the specific web
service later on.

WebService.useService("MathService.asmx?WSDL", "MathService");

Next, you call the web service. However, the order of the parameters of the associated
method, callService(), is a bit different from the proxy object created by ASP.NET
AJAX. The required parameters are :

• A reference to the callback method

• The name of the web method to be called

• The parameter(s) to be submitted to the web service

Note that error handling is not supported (unlike with ASP.NET AJAX where excep-
tion information is provided to the client script).

http://msdn.microsoft.com/archive/en-us/samples/internet/behaviors/library/webservice/default.asp
http://msdn.microsoft.com/archive/en-us/samples/internet/behaviors/library/webservice/default.asp

Consuming Web Services with JavaScript | 107

In the case of the MathService web service, the call illustrated here executes the
division:

WebService.MathService.callService(
 callComplete,
 "DivideNumbers",
 6, 7);

The callback function then receives the result as an object whose value attribute con-
tains the return value of the web service:

function callComplete(result) {
 document.getElementsById("c").innerHTML = result.value;
}

Example 5-7 shows the complete code for this example.

Example 5-7. Calling a web service from Internet Explorer

MathServiceInternetExplorer.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>ASP.NET AJAX</title>

 <script language="Javascript" type="text/javascript">
 function callService(f) {
 document.getElementById("c").innerHTML = "";
 WebService.useService("MathService.asmx?WSDL", "MathService");
 WebService.MathService.callService(
 callComplete,
 "DivideNumbers",
 f.elements["a"].value, f.elements["b"].value);
 }

 function callComplete(result) {
 document.getElementById("c").innerHTML = result.value;
 }
 </script>

</head>
<body>
 <div id="WebService" style="behavior:url(webservice.htc);">
 </div>
 <form method="post" onsubmit="return false;">
 <div>
 <nobr>
 <input type="text" id="a" name="a" size="2" />
 :
 <input type="text" id="b" name="b" size="2" />
 =

 </nobr>

108 | Chapter 5: Web Services

You will get some very strange errors if you do not place the web
service behavior at the beginning of the <body> element, including
error messages claiming that WebService is not defined (although a
window.alert(WebService) call works).

Web Services and Mozilla Browsers
Relatively recent versions of Mozilla browsers also contain support for web services
as a built-in extension to the browser. Unfortunately, the component for handling
web services does not seem to have received much attention recently from the com-
munity, but at least it does its job well. However, it is virtually undocumented, and
you’ll find a lot of strange advice on how to make it work. The approach we’ll use in
this section does the job, but involves quite a bit of extra code.

Mozilla’s SOAPCall class handles all communication with a remote service. As it uses
SOAP 1.1, you need to set the SOAPAction header (which, conveniently, is a property
of the SOAPCall class) and the URL of the web service file. Following is the code to do
this as it relates to our example:

var soapcall = new SOAPCall();
soapcall.actionURI = "http://hauser-wenz.de/AspNetAJAX/DivideNumbers";
soapcall.transportURI = "http://localhost:1234/AJAXEnabledWebSite1/MathServiceDocEnc.
asmx";

The value of the transportURI property must be an absolute URL.
Make sure you change the URI (especially the port number, if using
the development server of Visual Studio/Visual Web Developer) to
your local system.

All parameters that you provide to the web service are of type SOAPParameter. In the
class constructor, you provide first the value of the parameter, then its name.

var p1 = new SOAPParameter(6, "a");
var p2 = new SOAPParameter(7, "b");

Now comes the tricky part. If you omit the next step, the SOAP call is sent (and the
returned values are received), but on the server, the service receives only empty para-
meters. In the case of our division calculation, this leads to a “divide by zero” excep-
tion, but this time an unwanted one.

 <input type="button" value="Divide Numbers" onclick="callService(this.form);" />
 </div>
 </form>
</body>
</html>

Example 5-7. Calling a web service from Internet Explorer (continued)

Consuming Web Services with JavaScript | 109

The trick is to manually set the correct encoding for the integer values. To do so, you
need to load the appropriate namespaces for the SOAP integer data type. Then, set
the schemaType property of the parameters you want to send to the web service to the
generated data type. Here’s the code to complete those steps:

var senc = new SOAPEncoding();
assenc = senc.getAssociatedEncoding(
 "http://schemas.xmlsoap.org/soap/encoding/",
 false);
var scoll = assenc.schemaCollection;
var stype = scoll.getType(
 "integer",
 "http://www.w3.org/2001/XMLSchema");
p1.schemaType = stype;
p2.schemaType = stype;

Next, you need to assemble the web service call. The encode() method takes care of
that, but only after you have provided several parameters, as shown in the following
snippet:

soapcall.encode(
 0, //default value for SOAP version 1.1
 "DivideNumbers", //name of web method
 "http://hauser-wenz.de/AspNetAJAX/", //Namespace
 0, //number of additional headers
 new Array(), //additional headers
 2, //number of parameters
 new Array(p1, p2) //parameters
);

Finally, you need to asynchronously invoke the web service using the asyncInvoke()
method. As a parameter you must provide a reference to the callback function.

soapcall.asyncInvoke(callComplete);

Three parameters are received by the callback function:

• The XML resulting from the web service call

• The SOAPCall object (in case you are interested in its SOAP headers)

• The HTTP status code of the call

The only remaining task is to extract the information you need from the returned
XML. So, let’s have a look at a sample of the XML that is returned from a call to
MathService—data you can retrieve using software like the Windows tool Fiddler
(http://www.fiddlertool.com/fiddler) or the Mozilla extension Live HTTP headers
(http://livehttpheaders.mozdev.org/):

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap
.org/soap/envelope/">
 <soap:Body>

http://www.fiddlertool.com/fiddler
http://livehttpheaders.mozdev.org/

110 | Chapter 5: Web Services

 <DivideNumbersResponse xmlns="http://hauser-wenz.de/AspNetAJAX/">
 <DivideNumbersResult>0.857142866</DivideNumbersResult>
 </DivideNumbersResponse>
 </soap:Body>
</soap:Envelope>

Refer to Appendix A for more information on getting access to the
HTTP requests sent by Ajax applications and on debugging Ajax
applications in general.

Working from the representation of the XML data, we can see that the following
steps are required to access the actual return value, 0.857142866:

• Use the property body to get access to the <soap:Body> element

• Use the property firstChild to access the <DivideNumberResponse> element

• Use firstChild again to access the <DivideNumbersResult> element

• Use a third firstChild reference to access the text node under the
<DivideNumbersResult> element

• Use the data property to access the text within the text node

The JavaScript code you need to retrieve the result of the web service call is illus-
trated here:

function callComplete(result, soapcall, status) {
 document.getElementById("c").innerHTML =
 result.body.firstChild.firstChild.firstChild.data;
}

Putting all of these elements together, you get the code shown in Example 5-8. Note
that you need to have an Internet connection for this to work, since Mozilla accesses
the SOAP schema information.

Example 5-8. Calling a web service in Mozilla browsers

MathServiceMozilla.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>ASP.NET AJAX</title>

 <script language="Javascript" type="text/javascript">
 function callService(f) {
 document.getElementById("c").innerHTML = "";
 var soapcall = new SOAPCall();
 soapcall.actionURI = "http://hauser-wenz.de/AspNetAJAX/DivideNumbers";
 soapcall.transportURI = "http://localhost:1234/AJAXEnabledWebSite1/MathService.asmx";

Consuming Web Services with JavaScript | 111

 var p1 = new SOAPParameter(parseInt(f.elements["a"].value), "a");
 var p2 = new SOAPParameter(parseInt(f.elements["b"].value), "b");

 var senc = new SOAPEncoding();
 assenc = senc.getAssociatedEncoding(
 "http://schemas.xmlsoap.org/soap/encoding/",
 false);
 var scoll = assenc.schemaCollection;
 var stype = scoll.getType(
 "integer",
 "http://www.w3.org/2001/XMLSchema");
 p1.schemaType = stype;
 p2.schemaType = stype;

 soapcall.encode(
 0, //default value for SOAP version 1.1
 "DivideNumbers", //name of web method
 "http://hauser-wenz.de/AspNetAJAX/", //Namespace
 0, //number of additional headers
 new Array(), //additional headers
 2, //number of parameters
 new Array(p1, p2) //parameters
);
 soapcall.asyncInvoke(callComplete);
 }
 function callComplete(result, soapcall, status) {
 document.getElementById("c").innerHTML =
 result.body.firstChild.firstChild.firstChild.data;
 }
 </script>

</head>
<body>
 <form method="post" onsubmit="return false;">
 <div>
 <nobr>
 <input type="text" id="a" name="a" size="2" />
 :
 <input type="text" id="b" name="b" size="2" />
 =

 </nobr>

 <input type="button" value="Divide Numbers" onclick="callService(this.form);" />
 </div>
 </form>
</body>
</html>

Example 5-8. Calling a web service in Mozilla browsers (continued)

112 | Chapter 5: Web Services

Web Services with Both Browsers
To wrap up our look at techniques for accessing web services using JavaScript in
either Internet Explorer or in the Mozilla family of browsers, let’s combine both
approaches in a single page. To do this, you first have to decide how to implement
browser detection. As discussed in Chapter 2, the best way of doing so is to check for
browser capabilities, not for browser types. In Example 5-9, we use the approach
that worked for us in Chapter 2 where you learned how to create the XMLHttpRequest
object. The goal is to try to create one of the browser-specific objects. If that suc-
ceeds, we continue as planned. If it fails, we use a method that works in the other
browser. We’ll use two nested try...catch constructs to make the calls.

Remote Web Services with Mozilla
The Mozilla security model does allow you to call remote services. However, the script
prompts the user for additional privileges (see Figure 5-7). The specific privilege
required in this case is UniversalBrowserRead, meaning that the browser may read from
anywhere (including remote servers and the local filesystem).

netscape.security.PrivilegeManager.enablePrivilege(
 "UniversalBrowserRead");

The default configuration of Mozilla, Firefox, and other browsers only grants this priv-
ilege for local files (using the file:// protocol), so this approach is basically applicable
only to intranet applications. Figure 5-7 shows the message Mozilla browsers display
when these elevated privileges are requested.

Figure 5-7. Firefox requests additional privileges to call the remote service

file://

Consuming Web Services with JavaScript | 113

Example 5-9 shows the complete markup and script needed to carry out the task. Be
sure to test this code in different browsers, and remember to set the soapcall.
transportURI property to the URL of the site (and, if required, port) that you’re using.

Example 5-9. Calling a web service in either Internet Explorer or Mozilla

MathService.htm

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>ASP.NET AJAX</title>

 <script language="Javascript" type="text/javascript">
 function callService(f) {
 document.getElementById("c").innerHTML = "";

try {
 WebService.useService("MathService.asmx?WSDL", "MathService");
 WebService.MathService.callService(
 callComplete,
 "DivideNumbers",
 parseInt(f.elements["a"].value), parseInt(f.elements["b"].value));

} catch (e) {
try {

 var soapcall = new SOAPCall();
 soapcall.actionURI = "http://hauser-wenz.de/AspNetAJAX/DivideNumbers";
 soapcall.transportURI = "http://localhost:1234/AJAXEnabledWebSite1/MathService.
asmx";

 var p1 = new SOAPParameter(parseInt(f.elements["a"].value), "a");
 var p2 = new SOAPParameter(parseInt(f.elements["b"].value), "b");

 var senc = new SOAPEncoding();
 assenc = senc.getAssociatedEncoding(
 "http://schemas.xmlsoap.org/soap/encoding/",
 false);
 var scoll = assenc.schemaCollection;
 var stype = scoll.getType(
 "integer",
 "http://www.w3.org/2001/XMLSchema");
 p1.schemaType = stype;
 p2.schemaType = stype;

 soapcall.encode(
 0, //default value for SOAP version 1.1
 "DivideNumbers", //name of web method
 "http://hauser-wenz.de/AspNetAJAX/", //Namespace
 0, //number of additional headers
 new Array(), //additional headers
 2, //number of parameters
 new Array(p1, p2) //parameters
);

114 | Chapter 5: Web Services

As you can see in Figures 5-8 and 5-9, Example 5-9 works in both major browser types.

All that remains is to reflect on whether it is all worth it—do you really want to use a
browser-specific approach to call a web service? Web sites whose server platform is
ASP.NET can stick with ASP.NET AJAX. Since ASP.NET AJAX is easy to deploy, the
approach taken in the final section should be seen as a last resort only, especially
since development of the Mozilla web service functionality is obviously stalled.

Summary
This chapter featured several scenarios for web services: first, we covered error hand-
ling and maintaining session state, then we exchanged complex data between client
applications and web service. Finally, you saw how to access non-ASP.NET web ser-
vices with JavaScript.

 soapcall.asyncInvoke(callComplete);
} catch (e) {
window.alert("Your browser is not supported.");

}
}

 }

 function callComplete(result, soapcall, status) {
if (result.value != null) {

 document.getElementById("c").innerHTML = result.value;
} else {

 document.getElementById("c").innerHTML =
 result.body.firstChild.firstChild.firstChild.data;

}
 }
 </script>

</head>
<body>
 <div id="WebService" style="behavior: url(webservice.htc);">
 </div>
 <form method="post" onsubmit="return false;">
 <div>
 <nobr>
 <input type="text" id="a" name="a" size="2" />
 :
 <input type="text" id="b" name="b" size="2" />
 =
 </nobr>

 <input type="button" value="Divide Numbers" onclick="callService(this.form);" />
 </div>
 </form>
</body>
</html>

Example 5-9. Calling a web service in either Internet Explorer or Mozilla (continued)

For Further Reading | 115

For Further Reading
http://msdn.microsoft.com/archive/en-us/samples/internet/behaviors/library/webservice/
default.asp

Archived version of webservice.htc

http://ajax.asp.net/docs/tutorials/ASPNETAJAXWebServicesTutorials.aspx
Web Services tutorial in the Microsoft ASP.NET AJAX documentation

Figure 5-8. The script now works in Internet Explorer

Figure 5-9. The script also works in Mozilla browsers like Firefox

http://msdn.microsoft.com/archive/en-us/samples/internet/behaviors/library/webservice/default.asp
http://ajax.asp.net/docs/tutorials/ASPNETAJAXWebServicesTutorials.aspx

116

Chapter 6CHAPTER 6

UpdatePanel: Refreshing Only
Parts of a Page 6

A summary of Ajax advantages would most certainly include this description:
“changes a section of a web page without performing a postback.” In previous chap-
ters, you learned how to do this by retrieving data from the server and then using
JavaScript and the DOM to use this data to populate an element on the page.

One very neat feature of ASP.NET AJAX is its ability to perform partial page
updates. That means that one section of a page is updated, as with a page reload, but
without a complete page postback/refresh. As an added bonus, no JavaScript is
required (from the developer); ASP.NET AJAX takes care of that.

All of this magic is made possible by the ASP.NET AJAX UpdatePanel control, which
lets you confine postbacks to a particular area of a page, such as the input fields of a
form. The UpdatePanel control can, for instance, get data from a web service—such
as a stock ticker or weather service—and periodically update results.

In addition to saving you a great deal of frustration, using this control can save you a
lot of coding, testing, and debugging time as well. It is perhaps one of the most excit-
ing features of the ASP.NET AJAX framework.

In this chapter, you’ll learn how you can use the UpdatePanel control to cut down on
postbacks of an entire page and improve the responsiveness of your application.

Making a Page Region Updatable
Not surprisingly, the ASP.NET AJAX control UpdatePanel is the main theme of this
chapter. Everything inside an update panel operates like a page within a page. The
contents of the panel are refreshed from the server (using XMLHttpRequest under the
covers, of course). However, from the perspective of server page programming, it
looks like a typical page refresh. If you are accessing Page.IsPostBack, this carries the
value true when an portion of a page that can be updated is refreshed from the
server. All other events that are raised during ordinary postbacks are also raised for
update panel refreshes.

Making a Page Region Updatable | 117

You can think of an UpdatePanel as an iframe (an internal frame in a
web site, using the <iframe> HTML element) within a page. This sec-
tion is reloaded and refreshed on its own. However, the main advan-
tage in comparison to using a conventional iframe is that the ASP.NET
page life cycle events are still raised, so programmatically, you only
have one page, not two. This makes coding much easier and the archi-
tecture much less complex.

Updating a Section
The UpdatePanel control contains a content template (<ContentTemplate>), which, in
turn, contains the controls and elements that make up the panel. A good demonstra-
tion is the ASP.NET 2.0 GridView element (the successor to the DataGrid element in
ASP.NET 1.0). It’s easy to configure a GridView control with sorting and editing
using ASP.NET 2.0 and Visual Studio 2005 (including Visual Web Developer
Express Edition). However, whenever you do anything with the grid—sorting, pag-
ing, changing into edit mode and back—a postback to the server occurs, including
the mandatory page refresh. Placing a GridView control within the <ContentTemplate>
section of UpdatePanel provides the same functionality without the page reloads.
XMLHttpRequest and ASP.NET AJAX do the required magic. (In fact, GridView sup-
ports the EnableSortingAndPagingCallbacks property, which implements a similar
behavior. But you will discover how little code you actually need to add to avoid
page refreshes for any ASP.NET control.)

Technically, ASP.NET AJAX embeds the contents of
<ContentTemplate> in a <div> element. If you would like to use an
inline HTML element () instead of a block element (<div>), set
the RenderMode property of UpdatePanel to "Inline" (the property
defaults to "Block").

Here is the GridView control within an UpdatePanel control (again assuming the
AdventureWorks database). Note that this markup requires that the connection
string for accessing the AdventureWorks database is stored in Web.config. Visual Stu-
dio and Visual Web Developer automatically take care of that for you if you drag and
drop a table from Database Explorer (Server Explorer in Visual Studio) to the page in
Design view. Note in this example Database Explorer displays Purchasing.Vendor as
Vendor (Purchasing).

<asp:UpdatePanel id="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:GridView ID="GridView1" runat="server"
 AllowPaging="True"
 AllowSorting="True"
 AutoGenerateColumns="False"
 DataKeyNames="VendorID" DataSourceID="SqlDataSource1"
 EmptyDataText="There is no data to display.">

118 | Chapter 6: UpdatePanel: Refreshing Only Parts of a Page

 [...]
 </asp:GridView>
 <asp:SqlDataSource ID="SqlDataSource1"
 runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString1 %>"...
>
 [...]
 </asp:SqlDataSource>
 </ContentTemplate>
</asp:UpdatePanel>

Once you provide an ID for the UpdatePanel control, you can even take advantage of
SmartTag support in Design view. However, the only SmartTag action currently
available is adding the ScriptManager to the page. The real convenience lies in the
ability to drag a data table from Database Explorer into the UpdatePanel control.
Figure 6-1 shows the UpdatePanel control in Design view.

To demonstrate that there is really no full-page refresh, we’ll add a Label control to
the page.

<asp:Label ID="CurrentTime" runat="server" />

This control will display the current time on the server. If there is a page refresh,
code such as the following will update the Label control.

protected void Page_Load(object sender, EventArgs e)
{
 CurrentTime.Text = DateTime.Now.ToLongTimeString();
}

Example 6-1 shows the complete code for this example.

Figure 6-1. The UpdatePanel control in Design view

Example 6-1. AGridView control that is updated without a page refresh

UpdatePanel.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

 protected void Page_Load(object sender, EventArgs e)
 {

Making a Page Region Updatable | 119

 CurrentTime.Text = DateTime.Now.ToLongTimeString();
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>

 <asp:Label ID="CurrentTime" runat="server" />
<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>

 <asp:GridView ID="GridView1" runat="server" AllowPaging="True"
AllowSorting="True"
 AutoGenerateColumns="False" DataKeyNames="VendorID"
DataSourceID="SqlDataSource1"
 EmptyDataText="there is no data to display.">
 <Columns>
 <asp:CommandField ShowEditButton="True" />
 <asp:BoundField DataField="VendorID" HeaderText="VendorID"
ReadOnly="True" SortExpression="VendorID" />
 <asp:BoundField DataField="AccountNumber" HeaderText="AccountNumber"
SortExpression="AccountNumber" />
 <asp:BoundField DataField="Name" HeaderText="Name" SortExpression="Name"/>
 <asp:BoundField DataField="CreditRating" HeaderText="CreditRating"
SortExpression="CreditRating" />
 <asp:CheckBoxField DataField="PreferredVendorStatus"
HeaderText="PreferredVendorStatus"
 SortExpression="PreferredVendorStatus" />
 <asp:CheckBoxField DataField="ActiveFlag" HeaderText="ActiveFlag"
SortExpression="ActiveFlag" />
 <asp:BoundField DataField="PurchasingWebServiceURL"
HeaderText="PurchasingWebServiceURL"
 SortExpression="PurchasingWebServiceURL" />
 <asp:BoundField DataField="ModifiedDate" HeaderText="ModifiedDate"
SortExpression="ModifiedDate" />
 </Columns>
 </asp:GridView>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server" ConnectionString="<%$
ConnectionStrings:AdventureWorksConnectionString1 %>"
 DeleteCommand="DELETE FROM [Purchasing].[Vendor] WHERE [VendorID] =
@VendorID"
 ProviderName="<%$ ConnectionStrings:AdventureWorksConnectionString1
.ProviderName %>"
 SelectCommand="SELECT [VendorID], [AccountNumber], [Name], [CreditRating],
[PreferredVendorStatus], [ActiveFlag], [PurchasingWebServiceURL], [ModifiedDate]
FROM [Purchasing].[Vendor]"
 UpdateCommand="UPDATE [Purchasing].[Vendor] SET [AccountNumber] =
@AccountNumber, [Name] = @Name, [CreditRating] = @CreditRating,

Example 6-1. AGridView control that is updated without a page refresh (continued)

120 | Chapter 6: UpdatePanel: Refreshing Only Parts of a Page

The previous example expects you to have the AdventureWorks
connection string saved in Web.config, under the name
AdventureWorksConnectionString1. This is the name Visual Studio
automatically uses when dropping a table from AdventureWorks into the
page, and this connection string is also embedded into the Web.config
from the sample downloads for this book. However, you might want to
check whether exactly this name is used when you try this example on
your own.

As Figures 6-2 and 6-3 show, the GridView control functioned just as you’d expect,
but the timestamped Label control does not change. This proves that indeed, all
communication happens in the background.

When you use the drag-and-drop feature of Visual Studio and drop the
Vendor table onto the page in Design view, you may get an ASP.NET
error message in the browser (especially when using a pre-SP1 version
of Visual Studio or VWD). In spite of Vendor being a unique table
name, it is defined with a namespace in the database. The correct
name is Purchasing.Vendor. Therefore, you may need to go through
the automatically generated code and change all occurrences of
[Vendor] with [Purchasing].[Vendor].

Use these effects carefully, and always be aware of potential side effects. For
instance, file uploads are problematic when done within an UpdatePanel control.

[PreferredVendorStatus] = @PreferredVendorStatus, [ActiveFlag] = @ActiveFlag,
[PurchasingWebServiceURL] = @PurchasingWebServiceURL, [ModifiedDate] =
@ModifiedDate WHERE [VendorID] = @VendorID">
 <UpdateParameters>
 <asp:Parameter Name="AccountNumber" Type="String" />
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="CreditRating" Type="Byte" />
 <asp:Parameter Name="PreferredVendorStatus" Type="Boolean" />
 <asp:Parameter Name="ActiveFlag" Type="Boolean" />
 <asp:Parameter Name="PurchasingWebServiceURL" Type="String" />
 <asp:Parameter Name="ModifiedDate" Type="DateTime" />
 <asp:Parameter Name="VendorID" Type="Int32" />
 </UpdateParameters>
 <DeleteParameters>
 <asp:Parameter Name="VendorID" Type="Int32" />
 </DeleteParameters>
 </asp:SqlDataSource>

</ContentTemplate>
</asp:UpdatePanel>

 </form>
</body>
</html>

Example 6-1. AGridView control that is updated without a page refresh (continued)

Making a Page Region Updatable | 121

If a regular <iframe> HTML element suffices, you do not need to rely on ASP.NET
AJAX which makes your application a bit harder to debug if something goes
wrong. See the “For Further Reading” section at the end of this chapter for pointers
to a list of incompatible UpdatePanel controls.

Figure 6-2. Triggering a postback of the GridView control

Figure 6-3. Triggering the postback does not change the timestamp on top

122 | Chapter 6: UpdatePanel: Refreshing Only Parts of a Page

Updating a Section at Timed Intervals
There are times when you might want to refresh the contents of an UpdatePanel con-
trol at regular intervals, not simply in response to a user input. I remember an online
chat I conducted some years ago on the subject of ASP.NET. One of the attendees
asked how to use the Timer control he found in Visual Studio for ASP.NET pages.
I answered the question by explaining the client-server model and JavaScript’s
options for time delays.

Now, with the benefit of a few years and ASP.NET AJAX at my disposal, I would
give a different answer. The Timer element that comes with ASP.NET AJAX creates
an abstraction layer for the associated JavaScript methods, window.setTimeout() and
window.setInterval(). You provide an interval (measured in milliseconds) as the
JavaScript methods expect, after which a Tick event occurs. Here is a Timer element
that creates a new Tick event every five seconds:

<asp:Timer Interval="5000" runat="server" />

With the timer control, you can now trigger a refresh of the UpdatePanel whenever
the tick event is raised—in other words, at regular intervals. This can be done pro-
grammatically, but as usual, there is a declarative way as well.

Within the UpdatePanel control, the <Triggers> element can be used to define event
triggers. UpdatePanel. Whenever the trigger event occurs, the UpdatePanel runs
through its refresh cycle. The following two properties must be set:

ControlID
The name of the control that raises the event

EventName
The name of the event that triggers the refresh

There are two kinds of triggers:

AsyncPostBackTrigger
Trigger working asynchronously—the preferred choice

PostBackTrigger
Trigger working synchronously—avoid this choice, if possible

To demonstrate the use of the timer with the UpdatePanel control, we’ll move the Label
control from the preceding example for displaying the current time into the
UpdatePanel control. This will lead to the following: when the page first loads, the
Label control is set to the current time.

Every five seconds, the Tick event in the TimerControl occurs, which updates the
contents of the UpdatePanel control (this is handled automatically by ASP.NET
AJAX).

Making a Page Region Updatable | 123

Example 6-2 shows the complete code for this example.

Figure 6-4 shows the results displayed when you load the page and allow it to update
at intervals.

Programmatically Updating a Section at Timed Intervals
The most important method exposed by the UpdatePanel control is Update(). As is
fairly self-evident, it updates the panel. One way to use this method is to handle the
TimerControl element’s Tick event:

<asp:Timer ID="FiveSeconds" Interval="5000"
 OnTick="UpdateContents"
 runat="server" />

Example 6-2. Updating a panel at specific time intervals

UpdatePanelTimer.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

 protected void Page_Load(object sender, EventArgs e)
 {
 CurrentTime.Text = DateTime.Now.ToLongTimeString();
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>

<asp:Timer ID="FiveSeconds" Interval="5000" runat="server" />
<asp:UpdatePanel ID="UpdatePanel1" runat="server">

 <ContentTemplate>
 <asp:Label ID="CurrentTime" runat="server" />
 </ContentTemplate>

<Triggers>
<asp:AsyncPostBackTrigger ControlID="FiveSeconds" EventName="Tick" />

</Triggers>
</asp:UpdatePanel>

 </form>
</body>
</html>

124 | Chapter 6: UpdatePanel: Refreshing Only Parts of a Page

Then, on the server side, you can write an ordinary ASP.NET event handler that calls
the UpdatePanel control’s Update method:

protected void UpdateContents(object o, EventArgs e)
{
 if (new Random().Next(0, 4) == 1) {
 UpdatePanel1.Update();
 }
}

This code updates the panel (and by extension the display that the user sees) on aver-
age every fourth request. The Timer control causes a refresh call every five seconds.
The code then randomly decides whether the current refresh call should update the
panel. In the real world, you would probably check whether some data has changed
(in the database, in a file), then trigger the update, if necessary.

The ASP.NET AJAX UpdatePanel control supports two modes, which you set in the
UpdateMode attribute of the control:

Always
The contents of the UpdatePanel control are refreshed whenever a postback
occurs (default behavior).

Conditional
The contents of the UpdatePanel control are only refreshed when a trigger is
used, the UpdatePanel’s Update() method is called (as in this example), or when
the parent panel of a nested UpdatePanel control is updated.

Generally, the Conditional mode transfers less data between client and server, opti-
mizing the UpdatePanel control’s performance. So, whenever possible (i.e., if you use
triggers or Update()), use UpdateMode="Conditional".

Example 6-3 shows the complete code for an UpdatePanel control being refreshed at
a random interval, with changes in vold.

Figure 6-4. The timestamp is updated every five seconds

Making a Page Region Updatable | 125

Remember that every Tick event leads to network traffic, which might
dramatically increase the load of your server. This is one of the differ-
ences between the ASP.NET AJAX Timer control and the WinForms
Timer control. So use <asp:Timer> judiciously, but as often as
necessary.

Example 6-3. Programmatically updating a panel

UpdatePanelTimerCode.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
private void UpdateContents(object o, EventArgs e)
{
if (new Random().Next(0, 4) == 1)
{
UpdatePanel1.Update();

}
}

 protected void Page_Load(object sender, EventArgs e)
 {
 CurrentTime.Text = DateTime.Now.ToLongTimeString();
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <asp:UpdatePanel ID="UpdatePanel1" runat="server"

UpdateMode="Conditional">
 <ContentTemplate>
 <asp:Timer ID="FiveSeconds" Interval="5000"

OnTick="UpdateContents"
 runat="server" />
 <asp:Label ID="CurrentTime" runat="server" />
 </ContentTemplate>
 </asp:UpdatePanel>
 </form>
</body>
</html>

126 | Chapter 6: UpdatePanel: Refreshing Only Parts of a Page

Displaying a Wait Screen
Another nice feature of UpdatePanel is its ability to display a wait screen while new
data in the panel is loaded from the server—particularly if generating this data on
the server takes a lot of time (consider complex database operations, for instance). A
simple “loading” banner tells the user that his request is being processed and may
hinder repeated form submissions.

In the following example, we emulate a slow server script that causes ASP.NET
AJAX to display a wait screen while the server script is executed.

First, the slow server script is written. Basically, all this script does is wait five
seconds.

void WaitFiveSeconds(object o, EventArgs e)
{
 System.Threading.Thread.Sleep(5000);
}

The script is triggered by a button within an UpdatePanel control. When the button is
clicked, the server script runs for five seconds.

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:Button ID="Button1" runat="server"
 Text="Do something" OnClick="WaitFiveSeconds" />
 </ContentTemplate>
</asp:UpdatePanel>

Finally, the wait screen is implemented. For this task, ASP.NET AJAX provides the
UpdateProgress control. Within this control, the <ProgressTemplate> element expects
HTML (or ASP.NET) markup. Whenever the UpdatePanel on the page is refreshed,
the contents of the UpdateProgress control’s <ProgressTemplate> template is shown.
After the UpdatePanel has been refreshed, the content from <ProgressTemplate> is
made invisible again. Some web sites use an hourglass image in their waiting screens;
others just display text such as “loading...”.

<asp:UpdateProgress ID="UpdateProgress1" runat="server">
 <ProgressTemplate>
 <div style="position: absolute; left: 200px; top: 150px; border: solid 2px
black;">
 Loading ... Please stand by ...
 </div>
 </ProgressTemplate>
</asp:UpdateProgress>

You need to link UpdatePanel and UpdateProgress; the latter control exposes the
AssociatedUpdatePanelID property for this task. Example 6-4 contains the complete
code for this example. Figure 6-5 shows the output when the page is run and the but-
ton is clicked, causing a five-second-long refresh within the UpdatePanel.

Making a Page Region Updatable | 127

When the asynchronous postbacks take very little time, the
UpdateProgress control is displayed very briefly, creating an irritating
flashing effect. In that case you might want to use the DisplayAfter
property of UpdateProgress. This property waits a predefined number of
milliseconds before displaying the contents of the UpdateProgress’
<ContentTemplate>. Set this to a reasonable delay—for instance, one sec-
ond—to avoid the flashing effect. The default value is 500 milliseconds.

Example 6-4. A wait screen for the UpdatePanel

UpdateProgress.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 void WaitFiveSeconds(object o, EventArgs e)
 {
 System.Threading.Thread.Sleep(5000);
 Label1.Text = DateTime.Now.ToLongTimeString();
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:Button ID="Button1" runat="server"
 Text="Do something" OnClick="WaitFiveSeconds" />

 <asp:Label ID="Label1" runat="server" />
 </ContentTemplate>
 </asp:UpdatePanel>
 <asp:UpdateProgress ID="UpdateProgress1" runat="server"

AssociatedUpdatePanelID="UpdatePanel1">
 <ProgressTemplate>
 <div style="position: absolute; left: 200px; top: 150px; border: solid 2px
black; padding:4px;">
 Loading, please stand by ...
 </div>
 </ProgressTemplate>
 </asp:UpdateProgress>
 </form>
</body>
</html>

128 | Chapter 6: UpdatePanel: Refreshing Only Parts of a Page

Managing the Asynchronous Requests
The PageRequestManager class is responsible for handling the asynchronous requests
ASP.NET AJAX is managing when using the UpdatePanel control. The most impor-
tant feature is to abort a pending HTTP postback request. Remember the
UpdateProgress control from the previous section? A waiting screen is always a good
idea, but if the request times out or just takes too long, you need to react after a cer-
tain amount of time.

In order to abort a request, you first need to access the appropriate
PageRequestManager instance. There is only once such instance per page. To retrieve
it, use the following JavaScript code:

Sys.WebForms.PageRequestManager.getInstance();

You can attach event handlers to the PageRequestManager instance. The following
events are supported:

beginRequest
Before the postback request is sent to the server.

endRequest
After the postback request has been completed.

initializeRequest
The request is initialized.

pageLoaded
The page has been refreshed due to a postback.

pageLoading
The postback data has been received, but the page has not been updated yet.

Figure 6-5. The wait screen appears while the contents of the UpdatePanel control are refreshed

Making a Page Region Updatable | 129

These events occur in the following order: initializeRequest, beginRequest,
pageLoading, pageLoaded, and endRequest.

The following example will allow the user to cancel a pending postback by clicking a
button. The button itself will also create a postback on its own. Therefore, the previ-
ous postback must be aborted when the new postback is about to be initialized. In
order to do that, some code must be executed when the initializeRequest event
occurs:

var manager = Sys.WebForms.PageRequestManager.getInstance();
manager.add_initializeRequest(abortPendingPostback);

The JavaScript function, abortPendingPostback(), automatically gets two arguments
(similar to event handler methods in .NET): the object that fired the event, and addi-
tional arguments, if applicable. In the case of the PageRequestManager, the additional
arguments are of great importance. You can use the get_postBackElement() method
to access the element that causes the current postback.

In addition, these two PageRequestManager instance methods come in handy:

abortPostback()
Aborts the postback

get_isInAsyncPostBack()
Checks whether the PageRequestManager is currently working on an asynchro-
nous postback

This makes canceling a pending postback possible. Use the code from Example 6-4
as a start, and add a new button to cancel the postback:

<asp:Button ID="Button2" runat="server"
 Text="Abort postback" Style="display:none;" />

When the button that actually runs the server code is clicked, this abort button is
made visible:

<asp:Button ID="Button1" runat="server"
 Text="Do something" OnClick="WaitFiveSeconds"
 OnClientClick="$get('Button2').style.display='';" />

Now, the JavaScript logic sets in. The abortPendingPostback() function first deter-
mines whether PageRequestManager is currently working on a postback. Then, it has a
look at the sender’s id attribute to determine which button was clicked. (The
abortPendingPostback() method is called when any of the two buttons is clicked,
since both trigger a postback.)

If the “abort” button is clicked, the pending request is aborted:

function abortPendingPostback(sender, eventArgs) {
 var manager = Sys.WebForms.PageRequestManager.getInstance();
 if (manager.get_isInAsyncPostBack() &&
 eventArgs.get_postBackElement().getAttribute("id") == "Button2") {
 manager.abortPostBack();
 }
}

130 | Chapter 6: UpdatePanel: Refreshing Only Parts of a Page

The only thing left to do is to make the second button disappear when the request
actually runs through:

Button2.Style["display"] = "none";

Refer to Example 6-5 for the complete code for the cancelable asynchronous HTTP
request. Figure 6-6 shows how that looks in a browser.

Example 6-5. A cancelable wait screen for the UpdatePanel

UpdateProgressAbort.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 void WaitFiveSeconds(object o, EventArgs e)
 {
 System.Threading.Thread.Sleep(5000);
 Label1.Text = DateTime.Now.ToLongTimeString();
 Button2.Style["display"] = "none";
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
 <script type="text/javascript">
 function pageLoad() {
 var manager = Sys.WebForms.PageRequestManager.getInstance();
 manager.add_initializeRequest(abortPendingPostback);
 }

 function abortPendingPostback(sender, eventArgs) {
 var manager = Sys.WebForms.PageRequestManager.getInstance();
 if (manager.get_isInAsyncPostBack() &&
 eventArgs.get_postBackElement().getAttribute("id") == "Button2") {
 manager.abortPostBack();
 }
 }
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:Button ID="Button1" runat="server"
 Text="Do something" OnClick="WaitFiveSeconds"
 OnClientClick="$get('Button2').style.display='';" />

Summary | 131

Summary
This chapter introduced one of the most valuable features of ASP.NET AJAX: the
UpdatePanel control. It also covered the related controls, Timer and UpdateProgress,
the latter of which implements a wait screen that is a commonly used effect in Ajax
applications.

 <asp:Button ID="Button2" runat="server"
 Text="Abort postback" Style="display:none;" />
 <asp:Label ID="Label1" runat="server" />
 </ContentTemplate>
 </asp:UpdatePanel>
 <asp:UpdateProgress ID="UpdateProgress1" runat="server"
 AssociatedUpdatePanelID="UpdatePanel1">
 <ProgressTemplate>
 <div style="position: absolute; left: 200px; top: 150px; border: solid 2px
black; padding: 4px;">
 Loading, please stand by ...

 </div>
 </ProgressTemplate>
 </asp:UpdateProgress>
 </form>
</body>
</html>

Figure 6-6. The request can now be aborted by clicking the button

Example 6-5. A cancelable wait screen for the UpdatePanel (continued)

132 | Chapter 6: UpdatePanel: Refreshing Only Parts of a Page

For Further Reading
Gibbs, Matt and Bertrand LeRoy. ASP.NET AJAX UpdatePanel Control (O’Reilly)

More detail about the UpdatePanel control.

http://ajax.asp.net/docs/overview/UpdatePanelOverview.aspx
Microsoft documentation on UpdatePanel; look under “Controls that Are Not
Compatible with UpdatePanel Controls” for a list of controls that do not work
with UpdatePanel.

http://ajax.asp.net/docs/overview/UpdatePanelOverview.aspx

133

Chapter 7 CHAPTER 7

Using the ASP.NET AJAX Profile Service7

User profiles are storage mechanisms that can store data for both known (authenti-
cated) and unknown (anonymous) users on the server. ASP.NET 2.0 comes with
support for user profiles utilizing a type-safe API that provides easy read and write
access to this server-side data.

Of course, user profiles are neither a new idea nor something particularly special.
HTTP cookies, for example, provide a means to maintain data on the client. For per-
formance reasons though, most profile schemes do not store the full complement of
user information on the client, but only use a unique identifier (ID). This ID is then
sent back and forth between client and server. The ID serves as (primary) key for a
data store to retrieve the actual information. Microsoft began providing mechanisms
to facilitate this starting with Windows NT and ASP (Active Server Pages). But the
ASP.NET 2.0 implementation incorporates several advantages over previous offer-
ings, including the aforementioned type-safe access.

ASP.NET AJAX comes with a JavaScript API that allows client-side code to access
server-side profile data. As a result, JavaScript can read and write profile data,
enabling it to create dynamic, profile-driven web pages while using as few page
refresh cycles as possible. In the background, the JavaScript code uses the web ser-
vices support of ASP.NET AJAX to call a server component, which then accesses the
profile data. As with many other components of ASP.NET AJAX, this is not a techni-
cal revolution, but it does represent a big savings in development time. Apart from
using the profile service, ASP.NET AJAX also provides access to other server applica-
tion services, such as the ASP.NET Membership API (see Chapter 8) and ASP.NET
web services (see Chapter 5).

Preparing the Web Site
To take advantage of ASP.NET AJAX profile support, it must first be enabled. To
enable it, the Web.config file must have additional elements defined. Within the
<system.web> node (available in the default Web.config file of ASP.NET AJAX web

134 | Chapter 7: Using the ASP.NET AJAX Profile Service

sites based on the Visual Studio template), the <profile> element is used to define a
set of properties you would like to use in your application. This is, by the way, not
an ASP.NET AJAX feature, but a part of ASP.NET 2.0.

By default, profile support in ASP.NET 2.0 works only for authenticated users. How-
ever, by using the <anonymousIdentification> element, you can generate a unique
token for unauthenticated users to identify their server-side profile data:

<configuration>
 [...]
 <system.web>
 <anonymousIdentification enabled="true" />

For the actual profile data, you can define properties in two ways, individually or as
groups. The following code snippet shows both an individual username property and
a grouped UserData property. The UserData property consists of myUserName and
myPassword.

 <profile>
 <properties>
 <add name="userName" allowAnonymous="true" />
 <group name="UserData">
 <add name="myUserName" allowAnonymous="true" />
 <add name="myPassword" allowAnonymous="true" />
 </group>
 </properties>
 </profile>
 [...]
 </system.web>
 [...]

The userName property attribute, allowAnonymous, enables unauthenti-
cated users to utilize this property. This setting is not available, how-
ever, for groups as a whole (<group> element)—you have to set this
property for every individual group element.

Finally, you have to enable the component that grants JavaScript access to the pro-
file information. Add the <system.web.extensions> element (specific to ASP.NET
AJAX!) to the end of the Web.config file, just above the closing </configuration> tag,
and configure it as shown here:

 <system.web.extensions>
 <scripting>
 <webServices>
 <profileService
 enabled="true"
 readAccessProperties="userName,UserData.myUserName,UserData.myPassword"
 writeAccessProperties="userName,UserData.myUserName,UserData.myPassword" />
 </webServices>
 </scripting>
 </system.web.extensions>
</configuration>

Accessing Profile Data | 135

In the <profileService> property, a list must be provided defining all properties from
which the application can read and to which it can write. The properties that you
expose to client script can be a subset of all the profile properties defined in the
application. In addition, for client-script access, ASP.NET distinguishes between
read and write access. Note the dot syntax (<group>.<property>) for profile informa-
tion in groups.

Now you are ready and can read and write profile information using JavaScript.

Accessing Profile Data
Profile-related ASP.NET AJAX functionality is defined in the client Sys.Services.
ProfileService class. The first step for every application using profile support is to
load profile information by using the Sys.Services.ProfileService.load() method,
which expects four parameters:

propertyNames
The properties to be loaded. If set to null or to an empty string, all exposed pro-
file properties are retrieved from the server.

loadCompletedCallback
The method to call when the profile loading succeeds.

failedCallback
The method to call if profile loading fails (similar to the error callback for web
service calls).

userContext
Optional information that is submitted as an argument to the callback functions.

After loading the profile information, accessing properties is easy. Using Sys.
Services.ProfileService.properties.<property name>, you have read and write
access to a property—as long as the Web.config configuration allows it. In our exam-
ple, the following expression accesses the userName profile property:

Sys.Services.ProfileService.properties.userName

However, setting a profile property does not actually save this information on the
server; it only makes it available to the current script. In order to persist this informa-
tion, the save() method must be called. It expects four arguments, just as load()
does:

propertyNames
The properties to be saved. If set to null or to an empty string, all properties
available to client script are sent to the server.

saveCompletedCallback
The method to call when the profile saving succeeds.

136 | Chapter 7: Using the ASP.NET AJAX Profile Service

failedCallback
The method to call in the event the profile saving fails.

userContext
Optional information that is submitted as an argument to the callback functions.

The following is an example of how to use this API.

A login form where the user name (and possibly also the password) is persisted
(maintained). As usual, the script begins with a ScriptManager:

<asp:ScriptManager ID="ScriptManager1" runat="server" />

Next, we need a login form consisting of the three typical login elements; user name
text field, password text field, and a button. Also, an HTML label is used to output
status information from our JavaScript profile calls:

User name: <input type="text" id="txtUsername" runat="server" />

Password: <input type="password" id="txtPassword" runat="server" />

<input type="button" id="Button1" runat="server" value="Login"
 onclick="alert('not implemented!');" />

Now, the client script functionality is implemented. When the page and the ASP.NET
AJAX libraries have been fully loaded, all profile data is retrieved from the server, using
the load() method:

function pageLoad() {
 Sys.Services.ProfileService.load(
 "",
 profileLoaded,
 profileError,
 "load");
}

The profileLoadedError() function just outputs an error message in the status label,
providing (hopefully) helpful information:

function profileError(result, context) {
 $get("statusText").firstChild.nodeValue =
 "Could not "+ context + " profile (" +
 result.get_message() +
 "). Check the configuration in web.config!";
}

Note how the user context from the load() call is used in the callback function so
that the error message will start with “Could not load profile.” As you’ve probably
already guessed, this flexibility allows the profileError() method to be reused later
as error handling for profile saving, but with a different context argument.

If the profile information has been successfully loaded, a user name is available. This
data is then written into the text field:

Accessing Profile Data | 137

function profileLoaded() {
 $get("statusText").firstChild.nodeValue = "Profile data loaded.";
 if (Sys.Services.ProfileService.properties.userName != null) {
 $get("txtUsername").value = Sys.Services.ProfileService.properties.userName;
 }
}

At this point, the path back is still missing. When the user enters another user name
into the form, this data needs to be returned to the server and saved in the profile.
The saveProfile() function starts this process:

function saveProfile() {
 Sys.Services.ProfileService.properties.userName = $get("txtUsername").value;
 Sys.Services.ProfileService.save(
 null,
 profileSaved,
 profileError,
 "save");
}

The profileError() function is reused, but the profileSaved() function is new. Its
purpose is to output the new status information:

function profileSaved() {
 $get("statusText").firstChild.nodeValue = "Profile data saved.";
}

All that remains missing from the application is the saveProfile() function. This
function must be called when the user changes the user name—that is, by handling
an event for the text box’s changed event. (You could also consider other scenarios,
e.g., only saving the user name when the login button is clicked.) It is easy to wire up
this behavior with JavaScript. One way might be to use the $addHandler() method
ASP.NET AJAX provides:

$addHandler(
 $get("txtUsername"),
 "change",
 saveProfile);

Example 7-1 presents the complete code. Remember, you must add the elements
described earlier to the Web.config file so that profile properties are enabled and
exposed to client applications.

Example 7-1. Reading and writing profile data

Profile.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

138 | Chapter 7: Using the ASP.NET AJAX Profile Service

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
 <script type="text/javascript">
 function pageLoad() {
 $addHandler(
 $get("txtUsername"),
 "change",
 saveProfile);
 Sys.Services.ProfileService.load(
 null,
 profileLoaded,
 profileError,
 "load");
 }

 function profileLoaded() {
 $get("statusText").firstChild.nodeValue = "Profile data loaded.";
 if (Sys.Services.ProfileService.properties.userName != null) {
 $get("txtUsername").value = Sys.Services.ProfileService.properties.userName;
 }
 }

 function profileError(result, context) {
 $get("statusText").firstChild.nodeValue =
 "Could not " + context + " profile (" +
 result.get_message() +
 "). Check the configuration in web.config!";
 }

 function saveProfile() {
 Sys.Services.ProfileService.properties.userName = $get("txtUsername").value;
 Sys.Services.ProfileService.save(
 null,
 profileSaved,
 profileError,
 "save");
 }

 function profileSaved() {
 $get("statusText").firstChild.nodeValue = "Profile data saved.";
 }

 </script>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>

Example 7-1. Reading and writing profile data (continued)

Accessing Profile Group Data | 139

When this example is run, the login form is initially empty. (The very first time
you run the example you might notice a longer than normal delay; this is because
ASP.NET is setting up the profile database.) When you enter a user name and press
Tab, the name you enter is saved. From then on, any time you load the page (by
refreshing the browser or even closing the browser and then rerunning the example),
the user name you entered is preloaded into the User name text box, as Figure 7-1
shows.

After running this example, look in the App_Data directory of your web site. There,
the profile database has been created as the file ASPNETDB.MDF. If you open it, you
will see that in the aspnet_Profile database there is an entry for the user name (see
Figure 7-2).

Accessing Profile Group Data
When you use grouped profile data, accessing this information differs only a little
from individual profile properties. Use a dot to separate the group name from the
property name:

Sys.Services.ProfileService.properties.<group name>.<property name>

 User name: <input type="text" id="txtUsername" runat="server" />

 Password: <input type="password" id="txtPassword" runat="server" />

 <input type="button" id="Button1" runat="server" value="Login"
 onclick="alert('not implemented!');" />

 </div>
 </form>
</body>
</html>

Figure 7-1. The User name text field is now prefilled

Example 7-1. Reading and writing profile data (continued)

140 | Chapter 7: Using the ASP.NET AJAX Profile Service

Also recall you cannot make a whole profile group readable or writable in Web.config,
but that you have to provide all group elements individually:

<profileService
 enabled="true"
 readAccessProperties="UserData.myUserName,UserData.myPassword"
 writeAccessProperties="UserData.myUserName,UserData.myPassword" />

We can now expand Example 7-1 to include saving the password alongside the user
name in the profile. It requires only a little extra code—specifically two save func-
tions, one for each property.

function saveProfile1() {
 Sys.Services.ProfileService.properties.UserData.myUserName =
$get("txtUsername").value;
 Sys.Services.ProfileService.save(
 null,

Figure 7-2. The MDF file contains the profile data

Profiles with ASP.NET AJAX: Under the Hood
If you watch the HTTP traffic closely while running the example, you can monitor
ASP.NET AJAX as it calls a web service in the background to retrieve the profile infor-
mation and to write it back to the server. Figure 7-3 shows the typical HTTP traffic
using the popular Firebug plugin for Firefox browsers (http://www.getfirebug.com/).

http://www.getfirebug.com/

Accessing Profile Group Data | 141

 profileSaved,
 profileError,
 {"operation": "save", "property": "username"});
}

function saveProfile2() {
 Sys.Services.ProfileService.properties.UserData.myPassword =
$get("txtPassword").value;
 Sys.Services.ProfileService.save(
 null,
 profileSaved,
 profileError,
 {"operation": "save", "property": "password"});
}

As you can see, the context is once again used, but this time we’re using an object
instead of a simple string. The object’s operation property contains either "save" or
"load" (in the save functions, of course, only the former value), and the property
member is used to transmit which profile information has been saved. This serves
two purposes: only one error handling function is required, and also only one hand-
ling function is required to respond to a successful save. Let’s first have a look at the
latter handler:

function profileSaved(success, context) {
 $get("statusText").firstChild.nodeValue =
 "Profile data (" + context.property + ") saved.";
}

Figure 7-3. ASP.NET AJAX uses its own web services support to access profile data

142 | Chapter 7: Using the ASP.NET AJAX Profile Service

The special context information must also be taken into account when calling the
load() method:

Sys.Services.ProfileService.load(
 "",
 profileLoaded,
 profileError,
{"operation": "load"});

Finally, the profileError() function must be altered:

function profileError(result, context) {
 $get("statusText").firstChild.nodeValue =
 "Could not " + context.operation + " profile (" +
 result.get_message() +
 "). Check the configuration in web.config!";
}

Example 7-2 contains the complete code for this application, while Figure 7-4 shows
a possible output.

Example 7-2. Reading and writing profile group data

ProfileGroup.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
 <script type="text/javascript">
 function pageLoad() {
 $addHandler(
 $get("txtUsername"),
 "change",
 saveProfile1);
 $addHandler(
 $get("txtPassword"),
 "change",
 saveProfile2);
 Sys.Services.ProfileService.load(
 null,
 profileLoaded,
 profileError,
 {"operation": "load"});
 }

 function profileLoaded() {
 if (Sys.Services.ProfileService.properties.UserData != null) {
 $get("statusText").firstChild.nodeValue = "Profile data loaded.";
 $get("txtUsername").value =
Sys.Services.ProfileService.properties.UserData.myUserName;
 $get("txtPassword").value =

Accessing Profile Group Data | 143

Sys.Services.ProfileService.properties.UserData.myPassword;
 } else {
 $get("statusText").firstChild.nodeValue = "No data available.";
 }
 }

 function profileError(result, context) {
 $get("statusText").firstChild.nodeValue =
 "Could not " + context.operation + " profile (" +
 result.get_message() +
 "). Check the configuration in web.config!";
 }

 function saveProfile1() {
 Sys.Services.ProfileService.properties.UserData.myUserName =
$get("txtUsername").value;
 Sys.Services.ProfileService.save(
 null,
 profileSaved,
 profileError,
 {"operation": "save", "property": "username"});
 }

 function saveProfile2() {
 Sys.Services.ProfileService.properties.UserData.myPassword =
$get("txtPassword").value;
 Sys.Services.ProfileService.save(
 null,
 profileSaved,
 profileError,
 {"operation": "save", "property": "password"});
 }

 function profileSaved(success, context) {
 $get("statusText").firstChild.nodeValue = "Profile data (" + context.property
+ ") saved.";
 }

 </script>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 User name: <input type="text" id="txtUsername" runat="server" />

 Password: <input type="password" id="txtPassword" runat="server" />

 <input type="button" id="Button1" runat="server" value="Login"
 onclick="alert('not implemented!');" />

 </div>
 </form>
</body>
</html>

Example 7-2. Reading and writing profile group data (continued)

144 | Chapter 7: Using the ASP.NET AJAX Profile Service

Note that passwords should never be saved in clear text. The ASP.NET
2.0 authentication mechanism (which will be covered in the next chap-
ter), for instance, stores passwords in an encrypted form by default.
And although the passwords are not retained in clear text on the cli-
ent, they are unprotected on the server. Using HTTPS makes at least
the transmission of the passwords secure.

Summary
This chapter used the ASP.NET 2.0 Profile Service, but without any server code.
Instead, we used the JavaScript API provided by ASP.NET AJAX, accessing profile
data with only client code.

For Further Reading
http://ajax.asp.net/docs/tutorials/UsingProfileInformationTutorial.aspx

The JavaScript Profile API in the Microsoft ASP.NET AJAX documentation

http://www.ondotnet.com/pub/a/dotnet/2004/10/25/libertyonwhidbey.html
Online article on ASP.NET 2.0 profiles

Figure 7-4. Now both the user name and password are persisted

http://ajax.asp.net/docs/tutorials/UsingProfileInformationTutorial.aspx
http://www.ondotnet.com/pub/a/dotnet/2004/10/25/libertyonwhidbey.html

145

Chapter 8 CHAPTER 8

Using the ASP.NET AJAX
Authentication Service8

One of the design goals of ASP.NET 2.0 was to reduce the time required to imple-
ment common web site tasks. Among these tasks are user and access management
operations, including user login, terminating user sessions, creating roles, and so on.
Actually, creating a protected web site based on ASP.NET 2.0 is very simple: create
users and employ the ASP.NET web controls such as Login, and you are more or less
done.

Some of these access-management features can also be implemented from Java-
Script, thanks to the ASP.NET AJAX authentication service. The list of these sup-
ported features is rather short, but nevertheless, very convenient. ASP.NET AJAX
supports ASP.NET 2.0 forms authentication. As a result, JavaScript code can vali-
date user credentials. However, actual content protection must be done on the
server. Always remember that JavaScript can be deactivated, which renders it insuffi-
cient to secure sensitive data.

Preparing the Application
In order to use the ASP.NET AJAX authentication service, you need users within
your application. The ASP.NET Web Application Administration Tool that comes
with Visual Studio and Visual Web Developer provides a very easy way to create
users. First, run the tool using the ASP.NET Configuration command in the Web
Site menu (see Figure 8-1).

Click the Security link, then, on the next page, click “Select authentication type.”
There, change the current authentication type by selecting “From the internet” (see
Figure 8-2), which basically means ASP.NET forms authentication instead of Win-
dows authentication. When you’re done, click Done.

Next, click on the “Create user” link and enter the credentials for at least one new
user (see Figure 8-3).

146 | Chapter 8: Using the ASP.NET AJAX Authentication Service

If you happen to have Web.config open in your IDE before running the ASP.NET
configuration tool, Visual Studio (or Visual Web Developer) will prompt you to
reload the file. This is because your actions in the tool prompted the addition of the
following line in Web.config, within the <system.web> node:

<authentication mode="Forms" />

Figure 8-1. The ASP.NET Configuration Tool (looks better in Internet Explorer, though)

Figure 8-2. Set the correct authentication type

Preparing the Application | 147

There is one more configuration setting that you need to add to Web.config. This
one, unfortunately, must be done without the help of a GUI tool. In the previous
chapter, the <system.web.extensions> node was added to Web.config. Within this
node, add an <authenticationService> element and set its enabled attribute to true,
which gives you the following result:

<configuration
 [...]
 <system.web.extensions>
 <scripting>
 <webServices>
 <profileService
 enabled="true"
 readAccessProperties="userName,UserData.myUserName,UserData.myPassword"
 writeAccessProperties="userName,UserData.myUserName,UserData.myPassword" />
 <authenticationService enabled="true" />
 </webServices>
 </scripting>
 </system.web.extensions>

</configuration>

This sets up the necessary JavaScript code that connects the client to the server API.

Make sure that you configure your application according to the
instructions presented at the beginning or this chapter and in the pre-
vious chapter, so that both the profile API and the authentication API
are supported and the used profile properties are supported.

Figure 8-3. Create a new user (or two or three)

148 | Chapter 8: Using the ASP.NET AJAX Authentication Service

Login and Logout
The Sys.Services.AuthenticationService class contains two methods to support
ASP.NET AJAX Forms Authentication: login() and logout(). Let’s start with user
login. This method allows no fewer than eight arguments:

userName
The user name

password
The associated password

isPersistent
Whether to log the user in permanently using a persistent cookie (defaults to false)

redirectUrl
The URL to which to redirect the browser after logging the user in, or null for
no redirection (default)

customInfo
Currently not used

loginCompletedCallback
Function to call after successful login

failedCallback
Function to call after unsuccessful login

userContext
Data to pass to the callback functions

There are two choices for implementing the authentication:

1. Call login() and let JavaScript redirect to another page by setting redirectUrl.

2. Call login() and use the loginCompletedCallback and failedCallback callback
functions to handle the authentication result.

Quite often, the latter option is the preferred one. A redirection hints at data protec-
tion by JavaScript, which, as mentioned earlier, is not a very secure approach.

Logging out is done with the logout() method. It supports “only” four arguments:

redirectUrl
The URL to which to redirect the browser after logging the user out, or null for
no redirection (default)

logoutCompletedCallback
Function to call after successful logout

failedCallback
Function to call after unsuccessful logout

userContext
Data to be passed to the callback functions

Login and Logout | 149

These two functions will now be added to the ProfileGroup.aspx file presented in
Chapter 7, creating a new file, Authentication.aspx. As you recall, the ProfileGroup.aspx
page provides the user with a login form and stores the user name and password in
profile variables. To that point, the login form’s button element did not contain any
functionality. We will now add that functionality. First we need to strip the dummy
JavaScript code associated with the button so the following markup remains:

<input type="button" id="Button1" runat="server" value="Login" />

In the pageLoad() function, a click event handler is provided for the button:

 $addHandler(
 $get("Button1"),
 "click",
 doClick);

The doClick() function referenced in the above code snippet then checks the status
of the button caption. If it is "Login", the application tries to log the user in; if it is
"Logout", it attempts to log the user out.

The main challenge now is to set the appropriate arguments for the login() and
logout() methods. Since the user credentials are stored in the profile anyway, no
persistent login is necessary. We also do not want to redirect the user after logging
her in or out. Finally, we will apply the trick learned in Chapter 7 and set the
userContext argument to values that will allow us to use the same callback functions
for both login and logout.

function doClick() {
 switch ($get("Button1").value) {
 case "Login":
 Sys.Services.AuthenticationService.login(
 $get("txtUsername").value,
 $get("txtPassword").value,
 false,
 null,
 null,
 loginComplete,
 loginError,
 "login");
 break;
 case "Logout":
 Sys.Services.AuthenticationService.logout(
 null,
 loginComplete,
 loginError,
 "logout");
 break;
 }
}

150 | Chapter 8: Using the ASP.NET AJAX Authentication Service

The loginError() function handles unsuccessful login and logout attempts, such as
invalid credentials, missing user name, or an incorrect server configuration. An
appropriate error message is shown in the HTML label:

function loginError(result, context) {
 $get("statusText").firstChild.nodeValue =
 "Could not " + context + " (" +
 result.get_message() + ").";
}

Finally, the loginComplete() function prints out a status message. Additionally, it
changes the login form. After the user has successfully logged in, both text fields are
disabled and the caption of the button is changed from "Login" to "Logout". Once
the user logs out, the button’s caption goes back to "Login" and the two text fields
are again active.

function loginComplete(result, context) {
 switch (context) {
 case "login":
 if (result == true) {
 $get("txtUsername").disabled = true;
 $get("txtPassword").disabled = true;
 $get("Button1").value = "Logout";
 $get("statusText").firstChild.nodeValue = "Logged in";
 } else {
 $get("statusText").firstChild.nodeValue = "Login failed";
 }

 break;
 case "logout":
 $get("txtUsername").disabled = false;
 $get("txtPassword").disabled = false;
 $get("Button1").value = "Login";
 $get("statusText").firstChild.nodeValue = "Logged out";
 break;
 }
}

Example 8-1 shows the complete code for this example. Remember to make the
appropriate changes to the Web.config file before you try to run this example.

Example 8-1. Authentication users with JavaScript

Authentication.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>

Login and Logout | 151

 <script type="text/javascript">
 function pageLoad() {
 $addHandler(
 $get("Button1"),
 "click",
 doClick);
 $addHandler(
 $get("txtUsername"),
 "change",
 saveProfile1);
 $addHandler(
 $get("txtPassword"),
 "change",
 saveProfile2);
 Sys.Services.ProfileService.load(
 "",
 profileLoaded,
 profileError,
 {"operation": "load"});
 }

 function profileLoaded() {
 if (Sys.Services.ProfileService.properties.UserData != null) {
 $get("statusText").firstChild.nodeValue = "Profile data loaded.";
 $get("txtUsername").value =
Sys.Services.ProfileService.properties.UserData.myUserName;
 $get("txtPassword").value =
Sys.Services.ProfileService.properties.UserData.myPassword;
 } else {
 $get("statusText").firstChild.nodeValue = "No data available.";
 }
 }

 function profileError(result, context) {
 $get("statusText").firstChild.nodeValue =
 "Could not " + context.operation + " profile (" +
 result.get_message() +
 ". Check the configuration in web.config!";
 }

 function saveProfile1() {
 Sys.Services.ProfileService.properties.UserData.myUserName =
$get("txtUsername").value;
 Sys.Services.ProfileService.save(
 null,
 profileSaved,
 profileError,
 {"operation": "save", "property": "username"});
 }

 function saveProfile2() {
 Sys.Services.ProfileService.properties.UserData.myPassword =

Example 8-1. Authentication users with JavaScript (continued)

152 | Chapter 8: Using the ASP.NET AJAX Authentication Service

$get("txtPassword").value;
 Sys.Services.ProfileService.save(
 null,
 profileSaved,
 profileError,
 {"operation": "save", "property": "password"});
 }

 function profileSaved(success, context) {
 $get("statusText").firstChild.nodeValue = "Profile data (" + context.property
+ ") saved.";
 }

 function doClick() {
 switch ($get("Button1").value) {
 case "Login":
 Sys.Services.AuthenticationService.login(
 $get("txtUsername").value,
 $get("txtPassword").value,
 false,
 null,
 null,
 loginComplete,
 loginError,
 "login");
 break;
 case "Logout":
 Sys.Services.AuthenticationService.logout(
 null,
 loginComplete,
 loginError,
 "logout");
 break;
 }
 }

 function loginComplete(result, context) {
 switch (context) {
 case "login":
 if (result == true) {
 $get("txtUsername").disabled = true;
 $get("txtPassword").disabled = true;
 $get("Button1").value = "Logout";
 $get("statusText").firstChild.nodeValue = "Logged in";
 } else {
 $get("statusText").firstChild.nodeValue = "Login failed";
 }
 break;
 case "logout":

Example 8-1. Authentication users with JavaScript (continued)

Login and Logout | 153

Figure 8-4 shows the form before the user logs in. Figure 8-5 displays the inactive
text fields and the changed button resulting from a successful login.

 $get("txtUsername").disabled = false;
 $get("txtPassword").disabled = false;
 $get("Button1").value = "Login";
 $get("statusText").firstChild.nodeValue = "Logged out";
 break;
 }
 }

 function loginError(result, context) {
 $get("statusText").firstChild.nodeValue =
 "Could not " + context + " (" +
 result.get_message() + ").";
 }

 </script>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 User name: <input type="text" id="txtUsername" runat="server" />

 Password: <input type="password" id="txtPassword" runat="server" />

 <input type="button" id="Button1" runat="server" value="Login" />

 </div>
 </form>
</body>
</html>

Figure 8-4. Before logging in

Example 8-1. Authentication users with JavaScript (continued)

154 | Chapter 8: Using the ASP.NET AJAX Authentication Service

Summary
This chapter used ASP.NET 2.0 forms authentication without the assistance of any
server code. JavaScript and ASP.NET AJAX was all that has been used. This allows,
among other things, logging users in without a page refresh.

For Further Reading
http://ajax.asp.net/docs/tutorials/UsingFormsAuthenticationTutorial.aspx

Information on the Forms Authentication JavaScript API in the Microsoft ASP.NET
AJAX documentation

http://msdn2.microsoft.com/en-us/library/ms998310.aspx
MSDN article on ASP.NET 2.0 Forms Authentication

Figure 8-5. Before logging out

http://ajax.asp.net/docs/tutorials/UsingFormsAuthenticationTutorial.aspx
http://msdn2.microsoft.com/en-us/library/ms998310.aspx

155

Chapter 9 CHAPTER 9

Localizing and Globalizing Applications9

Let me tell you an embarrassing story...

When the publisher sends me complimentary copies of one of my books, I usually
give them to friends, or raffle them away in my blog, or just put them in the base-
ment archives. To be clear, I do not have a fetish for collecting my own books. How-
ever, there is one notable exception: I am extremely fond of acquiring foreign
language editions of my books. But publishers don’t always get copies of translated
books. Needless to say, if they’re not available to the publisher, I’m not going to get
a complimentary copy. And even if they do have some to give out, it seems to take an
eternity to get one. So, whenever I hear that one of my books has been translated, I
fire up my web browser and go hunting.

Usually, I surf to some online bookstore in a language I do not understand and try
my best to provide my address and credit card information to the appropriate fields.
I consider myself lucky, as my personal data has not yet been stolen (I have a special
card just for “obscure orders,” as I call them), and from time to time I get a ship-
ment that went through quite a trek to get to me.

But why do I have to struggle anyway? In a globalized world, web site owners will
most certainly get visitors that do not share their language, or that of the web site
itself. In my opinion, there are two reasons why most web sites are monolingual.
First, translating a site is quite expensive and—depending on the target audience of
the site—is often not worth the gain. Second, there are technical obstacles. If you
want to avoid using the copy-and-paste “design method” to create multilingual sites,
you need automation that allows you to translate a site with little effort. Thanks to
the growing importance and proliferation of JavaScript and Ajax applications, trans-
lation features are also becoming both more important and common.

As always, it is possible to create home-grown solutions for these scenarios, but
ASP.NET AJAX comes with some support for localization and globalization. This
allows you to use various languages in your ASP.NET AJAX-enabled web sites and
to create web sites that can react according to the user’s browser language setting.

156 | Chapter 9: Localizing and Globalizing Applications

(In case you weren’t aware, the browser can pass a list of preferred languages to the
web server. You will read more about this later in the chapter.)

Localization
Web site localization is the process of adapting the content to a locale (language and
region settings of a system), most often to the locale of the user. A quite common
abbreviation for localization is l10n, which stands for “l, then 10 letters, then n”
(a so-called numeronym).

A web site provides different spots that might be localized. There is the actual text on
the site; in addition, the currency, time, and date formats are candidates for localiza-
tion. ASP.NET provides several localization features (see “For Further Reading” at
the end of this chapter). ASP.NET AJAX uses some of these features to enable local-
ization for JavaScript code, as well.

Localizing Scripts
An easy approach to localization is to write script custom tailored for the task. For
example, you would need to determine the locale, and then load a specific script library
depending on that locale. ASP.NET can handle one half of this task, and ASP.NET
AJAX can take care of the rest.

The following brief sample script uses JavaScript to output the current date in a
localized format. The JavaScript file Dayname.js defines two variables:

dateformat
String with a (local) format for a date, using the placeholders ss (day of week),
dd (day), mm (month), and yyyy (year)

daynames
Array with localized name of the seven days of the week

Example 9-1 shows the contents of the Dayname.js file.

This file can be easily translated. Example 9-2 shows the same file, but this time with
German date information. Both the date format and the day names are different.

Example 9-1. Localized English date information

Dayname.js

var dateformat = "ss, yyyy-mm-dd";

var daynames = ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday"];

Localization | 157

The important thing is the filename for the localized file. Right before the file exten-
sion (.js), you add the language and optionally the locale in the format lang-loc,
where lang is a two-letter language code and loc is a two-letter locale code. Lan-
guage, of course, specifies in what language the text appears. The locale is used to
determine how to format (Different speakers of the same language might have differ-
ent conventions for formatting—i.e., between the United States and the United King-
dom.) For example, American English is en-US, British English is en-UK, German
(Germany) is de-DE, German (Austria) is de-AT, and so on. The codes are estab-
lished by the ISO, and by convention, the language code is lowercase and the locale
code is uppercase. The file in Example 9-2 is called Dayname.de-DE.js, indicating
that it pertains to German and Germany.

Now let’s create a new .aspx page that uses these localized files. To begin, the page
contains a element, which will be used to dynamically output the localized
date. Notice the nonbreaking space character () within the element; it
is important for the JavaScript code. A regular space would not work due to an Inter-
net Explorer behavior.

We can now add some JavaScript code that uses the dateformat and daynames vari-
ables defined in the external JavaScript file to create a localized date representation:

<script type="text/javascript">
 function pageLoad() {
 var d = new Date();
 var datestring = dateformat.replace("ss", daynames[d.getDay()])
 .replace("dd", d.getDate())
 .replace("mm", d.getMonth() + 1)
 .replace("yyyy", d.getFullYear());
 $get("date").firstChild.nodeValue = datestring;
 }
</script>

So far, we have seen nothing special. But now both ASP.NET and ASP.NET AJAX
will do their magic. First, ASP.NET AJAX loads the external JavaScript file, and then
(this is the magic) it finds the appropriate one for the current language and locale,
based on the filename. Within the ScriptManager control, use the <Scripts> element
to load the Dayname.js file. Two attributes take care of most of the rest:

Example 9-2. Localized German date information

Dayname.de-DE.js

var dateformat = "ss, dd.mm.yyyy";

var daynames = ["Sonntag", "Montag", "Dienstag", "Mittwoch", "Donnerstag", "Freitag",
"Samstag"];

158 | Chapter 9: Localizing and Globalizing Applications

ResourceUICultures (attribute of <asp:ScriptReference>)
Provides a comma-delimited list of all supported cultures where translations
exist.

EnableScriptLocalization (attribute of <asp:ScriptManager>)
If set to true, activates the ASP.NET AJAX localization support on the current page:

<asp:ScriptManager ID="ScriptManager1" runat="server"
EnableScriptLocalization="true">

 <Scripts>
<asp:ScriptReference Path="Dayname.js" ResourceUICultures="de-DE,fr-FR" />

 </Scripts>
</asp:ScriptManager>

The default (fallback) file is Dayname.js; however if one of the cultures referred to in
ResourceUICultures is used (i.e., the browser requests one of the cultures based on its
settings), the appropriate localized file would be loaded.

So far the page does not set its culture according to the client browser. This is where
ASP.NET comes in. The following Page directive automatically sets the correct UI
culture according to browser preferences:

<%@ Page Language="C#" UICulture="auto" %>

A browser set to use French would load the Dayname.fr-FR.js file; a browser set to
Italian, on the other hand, would load Dayname.js, as no localized Italian JavaScript
file has been provided. That is, Dayname.js is the fallback file for situations where no
matching language can be found.

Example 9-3 contains the complete code for a page that uses the ASP.NET AJAX
localization you’ve just seen. To run the example, you must add at least the
Dayname.js file to the root of your web site.

Figure 9-1 shows the result of displaying the page in a browser set to use English.
Figure 9-2 depicts a browser set to German that displays a typical German date
format.

Example 9-3. Localizing a script

Localization-Inline.aspx

<%@ Page Language="C#" UICulture="auto" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
 <script type="text/javascript">

Localization | 159

Using Satellite Resources from ASP.NET AJAX
Another way of localizing an ASP.NET application is to use so-called satellite
resources (sometimes referred to as satellite assemblies). This refers to a compiled
external resource file that will only be loaded if it is required for the current culture.
ASP.NET AJAX enables web sites to put JavaScript (.js) files into these satellite
assemblies as resources, and the Ajax framework provides a mechanism to use the
resource data from JavaScript code.

 function pageLoad() {
 var d = new Date();
 var datestring = dateformat.replace("ss", daynames[d.getDay()])
 .replace("dd", d.getDate())
 .replace("mm", d.getMonth() + 1)
 .replace("yyyy", d.getFullYear());
 $get("date").firstChild.nodeValue = datestring;
 }
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server"
 EnableScriptLocalization="true">
 <Scripts>
 <asp:ScriptReference Path="Dayname.js" ResourceUICultures="de-DE,fr-FR" />
 </Scripts>
 </asp:ScriptManager>
 <div>

 </div>
 </form>
</body>
</html>

Figure 9-1. The page in English

Example 9-3. Localizing a script (continued)

160 | Chapter 9: Localizing and Globalizing Applications

Example 9-4 uses the localization feature of ASP.NET AJAX as part of a custom
ASP.NET control that you can use in an ASP.NET web page. The control illustrates
two tasks. First, ASP.NET AJAX will be used so the correct satellite assembly will
be loaded. Then the script code within the assembly will access the correct local-
ized data and output text in the language of the user’s browser.

Creating the control requires Visual Studio 2005, because you need to be able to cre-
ate a compiled assembly. If you are using Visual Web Developer Express Edition,
you cannot create the assembly in the IDE. However, you can install Visual C#
Express Edition (another free download) and use that.

To begin, create a new project (see Figure 9-3). Name the project LocalizedDate. The
name is generally not mandatory, but as it will be used throughout this example, you
need to use it as well to follow along.

Figure 9-2. The page in German

Setting the Culture with ASP.NET
Example 9-1 employed automatic detection to determine the culture to be used. How-
ever, ASP.NET AJAX provides other means to set this culture dynamically. You can
provide the user with an interface to change the culture, such as via LinkButton ele-
ments or by providing a drop-down list. (The often-used country flags are not consid-
ered good programming practice, since many languages are spoken in more than one
country, and some countries even have more than one official language.)

To set the UI culture of the current page, use System.Threading.Thread.CurrentThread.
CurrentUICulture. The System.Globalization namespace contains helper methods to
create a suitable culture for the CurrentUICulture property of the current thread. Refer
to “For Further Reading,” at the end of this chapter, for more information about this
ASP.NET feature.

Localization | 161

When using Visual C# Express Edition, create a new project from
scratch. Users of Visual Studio 2005 just need to add a new project to
an existing ASP.NET AJAX web site. In either case, the project type
must be a class library project, as Figure 9-3 illustrates.

First, add references to System.Web and System.Web.Extensions to the project. Then,
add some resource files to the project. As shown in Figure 9-4, you start with the file
DateResources.resx, which is in English (the fallback). Actually, Figure 9-4 shows
only the GUI for editing the DateResources.resx file. Internally, resource files are in
XML format. Example 9-4 shows the (shortened) XML markup for the German
resource file. As you can see, using the GUI is much more convenient and much less
error prone. (To edit the XML of a resource file, go to the Visual Studio Solution
Explorer, right-click the file and then click View Code.) Create the German version
of the resource file and name it DateResources.de.resx.

Figure 9-3. Create a new class library project

Example 9-4. The German resource file

DateResources.de.resx

<?xml version="1.0" encoding="utf-8"?>
<root>

162 | Chapter 9: Localizing and Globalizing Applications

 <xsd:schema id="root" xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xsd:import namespace="http://www.w3.org/XML/1998/namespace" />
 <xsd:element name="root" msdata:IsDataSet="true">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="metadata">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="name" use="required" type="xsd:string" />
 <xsd:attribute name="type" type="xsd:string" />
 <xsd:attribute name="mimetype" type="xsd:string" />
 <xsd:attribute ref="xml:space" />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="assembly">
 <xsd:complexType>
 <xsd:attribute name="alias" type="xsd:string" />
 <xsd:attribute name="name" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="data">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string" minOccurs="0"
msdata:Ordinal="1" />
 <xsd:element name="comment" type="xsd:string" minOccurs="0"
msdata:Ordinal="2" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"
msdata:Ordinal="1" />
 <xsd:attribute name="type" type="xsd:string" msdata:Ordinal="3" />
 <xsd:attribute name="mimetype" type="xsd:string" msdata:Ordinal="4" />
 <xsd:attribute ref="xml:space" />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="resheader">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string" minOccurs="0"
msdata:Ordinal="1" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>

Example 9-4. The German resource file (continued)

Localization | 163

 <resheader name="resmimetype">
 <value>text/microsoft-resx</value>
 </resheader>
 <resheader name="version">
 <value>2.0</value>
 </resheader>
 <resheader name="reader">
 <value>System.Resources.ResXResourceReader, System.Windows.Forms,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
 </resheader>
 <resheader name="writer">
 <value>System.Resources.ResXResourceWriter, System.Windows.Forms,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
 </resheader>
 <data name="dateformat" xml:space="preserve">
 <value>ss, dd.mm.yyyy</value>
 </data>
 <data name="daynames" xml:space="preserve">
 <value>["Sonntag", "Montag", "Dienstag", "Mittwoch", "Donnerstag", "Freitag",
"Samstag"]</value>
 </data>
 <data name="loading" xml:space="preserve">
 <value>Lade Datum ...</value>
 </data>
</root>

Figure 9-4. The English resource file

Example 9-4. The German resource file (continued)

164 | Chapter 9: Localizing and Globalizing Applications

What you can also see from the XML is what information is put into the resource
files:

dateformat
The date format, using placeholders

daynames
The localized names for the days of the week

loading
The text “Loading date...” translated in the individual languages

Make sure you have at least two resource files (English and German). Feel free to add
additional languages at your pleasure. For the day names, use the JSON array syntax
to provide the names (see Chapter 3). Be careful to avoid typos, as this application
involves server code, JavaScript code, and resources, and is very hard to debug.

In Solution Explorer, open the Properties folder of the current project. Inside, you
will find the AssemblyInfo.cs file that provides further information about the library
project. If you do not see that file, click on the Show All Files button as shown in
Figure 9-5.

At the end of AssemblyInfo.cs, add the following two lines:

[assembly: System.Web.UI.WebResource("LocalizedDate.Dayname.js", "application/x-
javascript")]
[assembly: System.Web.UI.ScriptResource("LocalizedDate.Dayname.js",
"LocalizedDate.DateResources", "LocData")]

Figure 9-5. This button makes the AssemblyInfo.cs file visible

Localization | 165

Note the value LocData in the last argument. This name allows you to access all
resource data from JavaScript using the LocData object. The name is arbitrary, but
will be used in the following code examples.

The other values in the preceding snippet contain data that is related to the rest of
the application. LocalizedDate is the name of the project, Dayname.js is the Java-
Script file we will create in the next step, and DateResources will also be used in a
later step to access resource data (from C#).

The file Dayname.js contains JavaScript code that determines the current date and
formats it according to the current locale. As mentioned, LocData grants JavaScript
access to the resource information. LocData.dateformat contains the date format
string, and LocData.daynames contains the array of day names. The latter value is in
JSON format (see Chapter 3), so we need an eval() call to convert this string into a
JavaScript object:

var daynames = eval("(" + LocData.daynames + ")");

Similar to the JavaScript code in Example 9-3, the code in Dayname.js replaces the
placeholders in the dateformat string and displays it in the browser. Note a one sec-
ond delay has been added (to more clearly see the effect). Example 9-5 contains the
complete code for the JavaScript file. Add this code to your project.

Finally, you have to make sure that the Dayname.js file will be embedded in the
assembly. Click on the filename in Solution Explorer. In the Properties window, set
Build Action to Embedded Resource (see Figure 9-6). This will later compile the
JavaScript file directly into the DLL.

You may have noticed that the Dayname.js code uses the $get() function to access
an as yet undefined element called "date". This element will be defined as part of the
control code in the C# class file.

In Solution Explorer, rename the Class1.cs file to LocDateControl.cs (right-click the
filename, then click Rename). Choose the option to update all references. This will be
the C# code for the ASP.NET custom control. Our control will inherit from the .NET
Sys.Web.UI.Control class.

Example 9-5. The JavaScript code in the class library

Dayname.js

Sys.Application.add_load(function() {
 var d = new Date();
 var daynames = eval("(" + LocData.daynames + ")");
 var datestring = LocData.dateformat.replace("ss", daynames[d.getDay()])
 .replace("dd", d.getDate())
 .replace("mm", d.getMonth() + 1)
 .replace("yyyy", d.getFullYear());
 setTimeout('$get("date").firstChild.nodeValue = "' + datestring + '"', 1000);
});

166 | Chapter 9: Localizing and Globalizing Applications

In the LocDateControl class, we overwrite the control’s base CreateChildControls()
method and add our own HTML element, a label called "date":

hgc = new HtmlGenericControl();
hgc.TagName = "span";
hgc.ID = "date";

The text in this element is “Loading data...” or whatever is defined in the lan-
guage of choice. The control must query the embedded resources to get the correct
string. The following code takes care of this:

System.Resources.ResourceManager r = new System.Resources.ResourceManager(
 "LocalizedDate.DateResources",
 this.GetType().Assembly);
hgc.InnerHtml = r.GetString("loading");

Finally, the new control with localized text is added to the page:

Controls.Add(hgc);

Example 9-6 contains the complete code for the class library file.

Figure 9-6. The JavaScript file will be embedded

Example 9-6. The code for the class library

LocDateControl.cs

using System;
using System.Collections.Generic;
using System.Text;
using System.Web.UI;
using System.Web.UI.HtmlControls;

Localization | 167

Now it is time to build the class library project. This will generate a pair of files.
LocalizedDate.dll contains the control implemented in the class library and an assem-
bly that contains the default resource file (from DateResources.resx). For each addi-
tional language, a folder with a satellite assembly has been created. For instance, the
German translation resides in a folder called de and contains the assembly
LocalizedDate.resources.dll.

When using Visual Studio 2005, the new assemblies are usually immediately avail-
able in your ASP.NET AJAX applications (if not, reference the class library explicitly
in the web site). If you are using Visual Web Developer Express and Visual C#
Express Edition, in Visual Web Developer create a Bin folder in the ASP.NET AJAX
application, then in this folder, place a copy of both the LocalizedDate.dll file and all
subdirectories (de, . . .).

Now you can import the control on any ASP.NET page with the following directive:

<%@ Register TagPrefix="OReilly" Assembly="LocalizedDate" Namespace="LocalizedDate"
%>

Since the control does not expose any public properties, it can be included on a page
with very little effort:

<OReilly:LocDateControl ID="ldc1" runat="server" />

The control contains all the JavaScript code required to both display the waiting screen
(“Loading data...”) and to display the localized date. All there is left for ASP.NET

namespace LocalizedDate
{
 public class LocDateControl : Control
 {
 private HtmlGenericControl hgc;

 protected override void CreateChildControls()
 {
 base.CreateChildControls();

 hgc = new HtmlGenericControl();
 hgc.TagName = "span";
 hgc.ID = "date";

 System.Resources.ResourceManager r = new
 System.Resources.ResourceManager(
 "LocalizedDate.DateResources",
 this.GetType().Assembly);
 hgc.InnerHtml = r.GetString("loading");

 Controls.Add(hgc);
 }
 }
}

Example 9-6. The code for the class library (continued)

168 | Chapter 9: Localizing and Globalizing Applications

AJAX to do is to be sure to load the assembly in the ScriptManager control. Both the
assembly name (LocalizedDate) and the canonical embedded JavaScript name
(LocalizedDate.Dayname.js) must be provided in the ScriptReference element. Do
not forget the EnableScriptLocalization attribute of the ScriptManager!

<asp:ScriptManager ID="ScriptManager1" runat="server"
 EnableScriptLocalization="true">
 <Scripts>
 <asp:ScriptReference Assembly="LocalizedDate" Name="LocalizedDate.Dayname.js" />
 </Scripts>
</asp:ScriptManager>

Finally, set the page to automatically determine the correct culture:

<%@ Page Language="C#" UICulture="auto" %>

Example 9-7 contains the complete code for the .aspx page. Figures 9-7 and 9-8 show
the various states of the application, from wait screen to final result.

Example 9-7. Using a satellite assembly with ASP.NET AJAX

Localization-Satellite.aspx

<%@ Page Language="C#" UICulture="auto" %>

<%@ Register TagPrefix="OReilly" Assembly="LocalizedDate" Namespace="LocalizedDate" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server"
 EnableScriptLocalization="true">
 <Scripts>
 <asp:ScriptReference Assembly="LocalizedDate"
Name="LocalizedDate.Dayname.js" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <OReilly:LocDateControl ID="ldc1" runat="server" />
 </div>
 </form>
</body>
</html>

Globalization and Internationalization | 169

Globalization and Internationalization
In addition to providing support for localization, ASP.NET AJAX supports globaliza-
tion, which is sometimes referred to as internationalization (or i18n, if you are fond
of numeronyms). The ScriptManager control supports the EnableScriptGlobalization
property. If this property is set to true, ASP.NET AJAX is capable of automatically
localizing date values. For this to work, the Ajax library extends JavaScript’s Date
object (and other objects—refer to Chapter 4 and Appendix D for more informa-
tion) so that it supports a new method called localeFormat(). This method formats a

Figure 9-7. The localized German page

Figure 9-8. Typical HTTP headers, with Accept-Language highlighted

170 | Chapter 9: Localizing and Globalizing Applications

Date object according to the culture of the client. This culture is sent in the Accept-
Language HTTP header. Figure 9-9 shows HTTP headers sent by a German version of
Firefox. Note that the Accept-Language header includes a list of supported lan-
guages, including their preference weight. In this illustration, German is preferred,
English comes next. English-language browsers, by the way, generally only prefer the
English language in their default configuration, sometimes differentiating between
American, British, and Canadian English. Of course, the language the browser sends
may not be reliable, so the best option is still to let users choose explicitly.

This language preference can be changed by the user. For Firefox, choose Tools ➝

Options, select the Advanced tab and click on the Choose button. In the Languages
dialog box (Figure 9-10), you can rearrange preference order, add additional lan-
guages, or remove existing ones.

Figure 9-9. The original English page

Figure 9-10. Changing the preferred languages in Firefox

Globalization and Internationalization | 171

When using the Internet Explorer, choose Tools › Internet Options, select the Gen-
eral tab and click on the Language button to get the dialog shown in Figure 9-11.

Other browsers provide similar means to adapt their own language behavior.

But back to the topic of ASP.NET AJAX and date globalization. The Date.
localFormat() method uses placeholders and replaces them with localized names for
weekdays and months. The following code outputs something similar to “Wednes-
day, 1. May 2007”, depending on the current browser language setting:

<script type="text/javascript">
 function pageLoad() {
 $get("date").firstChild.nodeValue =
 (new Date()).localeFormat("dddd, dd. MMMM yyyy");
 }
</script>

However, one more step is necessary. The ASP.NET application must set the correct
culture. The culture can be set in Web.config, programmatically, and via markup in
the page. Refer to “For Further Reading,” at the end of this chapter, for more infor-
mation about the available options.

Figure 9-11. Changing the preferred languages in Internet Explorer

172 | Chapter 9: Localizing and Globalizing Applications

In the following sample, the culture is set using the @ Page directive. We could pro-
vide a specific culture, but we prefer to let ASP.NET AJAX figure out the correct set-
ting depending on the Accept-Language HTTP header. The following declaration
takes care of this:

<%@ Page Language="C#" Culture="auto" %>

And that’s it—Example 9-8 shows the complete code, which is conveniently short
this time.

Figure 9-12 shows the result in German, while Figure 9-13 displays the result in
French. Both results have been created by setting the appropriate language prefer-
ences in the browser. You will note that both the day name (place holder dddd) and
the month name (MMMM) have been translated. However, the date format is not fully
localized: the period after the day is common in German, but not in French. To get
around this type of problem, you have to manually localize date information, as was
illustrated in Examples 9-3 and 9-7.

Example 9-8. Globalizing a date

Globalization.aspx

<%@ Page Language="C#" Culture="auto" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
 <script type="text/javascript">
 function pageLoad() {
 $get("date").firstChild.nodeValue =
 (new Date()).localeFormat("dddd, dd. MMMM yyyy");
 }
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server"
 EnableScriptGlobalization="true">
 </asp:ScriptManager>
 <div>

 </div>
 </form>
</body>
</html>

For Further Reading | 173

Summary
In a globalized world, web sites should expect to interact with users from many
different countries, who speak many different languages. This chapter showed you
several techniques to make a web site multilingual and multicultural, courtesy of
ASP.NET AJAX.

For Further Reading
http://msdn2.microsoft.com/en-us/library/76091f86-f967-4687-a40f-de87bd8cc9a0.
aspx

MSDN information about setting the culture and UI culture from ASP.NET

http://ajax.asp.net/docs/tutorials/GlobalizingDateUsingClientScript.aspx
A globalization tutorial in the Microsoft documentation for ASP.NET AJAX

Figure 9-12. The date in German

Figure 9-13. The date in French

http://msdn2.microsoft.com/en-us/library/76091f86-f967-4687-a40f-de87bd8cc9a0.aspx
http://ajax.asp.net/docs/tutorials/GlobalizingDateUsingClientScript.aspx

PART III

III.ASP.NET AJAX Control Toolkit

Chapter 10, Using the Control Toolkit

Chapter 11, Adding Animation to a Web Page

Chapter 12, Autocompleting User Input, Fighting Spam, and More

Chapter 13, Writing Custom Controls and Contributing to the Community

177

Chapter 10 CHAPTER 10

Using the Control Toolkit10

Some critics of ASP.NET 2.0 AJAX say it is nothing more than the UpdatePanel
control plus a couple of JavaScript APIs. Indeed, in order to keep the size of the
ASP.NET AJAX library as small as possible (to make it more acceptable for use by
large sites), functionality that existed in Atlas (the pre-release version of ASP.NET
AJAX) was stripped out of the release version. Of course, not all of it was stripped,
so ASP.NET AJAX alone is still an excellent choice.

The ASP.NET AJAX Control Toolkit was created to allow both Microsoft and the
ASP.NET community to easily add noncore functionality to the framework, indepen-
dent of the ASP.NET AJAX update cycle and outside of official Microsoft support.
The software, including source code, has been released under a shared source license
(the Microsoft Permissive License, also known as MS-PL). Microsoft has also created
a site where company developers and community members can add new functional-
ity. (See the section “For Further Reading” at the end of this chapter.)

This chapter shows how to install and use the ASP.NET AJAX Control Toolkit, and
it introduces you to some of the more useful controls the toolkit contains. However,
because the toolkit continues to evolve with new controls and functionality being
added on a monthly basis, the information here can change quite quickly. You
should always check the ASP.NET AJAX Controls Toolkit site for the latest updates
and information (See the section “For Further Reading” at the end of this chapter.)

Installing the Control Toolkit
Before you can use ASP.NET AJAX controls, you need to add the Toolkit controls to
your development environment. You can download it from the ASP.NET AJAX
home page at http://ajax.asp.net/toolkit/default.aspx?tabid=47. Up-to-date documen-
tation can be found at http://ajax.asp.net/ajaxtoolkit. The toolkit is hosted on Code-
Plex web site (http://www.codeplex.com/AtlasControlToolkit/) and is provided in the
form of a ZIP archive. Actually, two archives: one contains the toolkit plus source
code; the other, smaller archive, does not come with the sources. To simply use the

http://ajax.asp.net/toolkit/default.aspx?tabid=47
http://ajax.asp.net/ajaxtoolkit
http://www.codeplex.com/AtlasControlToolkit/

178 | Chapter 10: Using the Control Toolkit

toolkit, the “NoSource” option will suffice to get you going. If you would like to see
how the components are actually implemented, select the ZIP archive with the
source code.

Figure 10-1 shows the contents of the “NoSource” ZIP archive.

In addition to the EULA and a README file, the ZIP archive contains two folders:

SampleWebSite
An ASP.NET web site that showcases all controls in the toolkit, and the toolkit
documentation

AjaxControlExtender
A VSI (Visual Studio Integration) installer that provides several Toolkit-related
templates for Visual Studio

The sample web site provided with the toolkit also serves as its documentation. The
site is based on ASP.NET 2.0, which makes it possible to see the sample controls in
action. Figure 10-2 shows the documentation web site in the browser. It not only
provides you with a list of controls, their properties, and usage information, but it
also demonstrates each one in action.

Before browsing the site, take a minute to run the AjaxControlExtender.vsi installer.
As Figure 10-3 shows, it can install up to six templates. Of those templates, only the
last two are absolutely necessary to run controls from the Toolkit. Go ahead and
install the entire set though, as you will use them later in Chapter 14. You can ignore
the warning that the templates are not digitally signed.

Figure 10-1. The ASP.NET AJAX Control Toolkit ZIP archive

Installing the Control Toolkit | 179

Figure 10-2. The local ASP.NET AJAX Control Toolkit documentation

Figure 10-3. The VSI Installer for the Toolkit

180 | Chapter 10: Using the Control Toolkit

The VSI installer provides you with a web site template that generates a suitable
Web.config file for a Toolkit-driven site, similar to the ASP.NET AJAX and ASP.NET
AJAX Futures templates.

The first four templates set up the infrastructure for creating custom controls for the
toolkit. Chapter 14 will provide more details about how this can be done.

Now create a new web site in Visual Studio or Visual Web Developer Express Edi-
tion, using the AJAX Control Toolkit Web Site template (see Figure 10-4).

Next, add the controls to the toolbox in Visual Studio. Display the Toolbox in the
Design view of the IDE. Then, right-click the Toolbox and click Add Tab. Name the
new tab ASP.NET AJAX Control Toolkit (the actual name is of course not manda-
tory; any name will do).

Right-click the newly created tab and click Choose Toolbox Items (displayed as
Choose Items in Visual Web Developer). Add the ASP.NET AJAX Control Toolkit
assembly, AjaxControlToolkit.dll. The assembly resides in the Bin folder of the cur-
rent web site based on the ASP.NET AJAX Control Toolkit Web Site template. The
Toolbox now displays some new entries as shown in Figure 10-5. (Note that the
toolbox items won’t be visible until you have a document open, like an ASP.NET
page, where you can use them.)

The toolkit is now ready to use (see Chapters 12 and 13). You can even contribute to
it yourself (see Chapter 14)!

Figure 10-4. The Toolkit template

Using the Control Toolkit | 181

Using the Control Toolkit
Once you’ve added the toolkit to the project, you can use its controls in your web
site. Let’s demonstrate how it works by adding one of its more simple controls to a
web page, the ConfirmButton control. ConfirmButton displays a JavaScript confirma-
tion dialog box (using the window.prompt() method, of course), which asks the user
whether or not to continue the current operation. If the user clicks No, the action is
cancelled. This is useful when an online form is posted by clicking on a LinkButton or
a regular button: if No is clicked, JavaScript is able to cancel the click on the button,
preventing the form from being submitted.

Before you can use any toolkit controls on a page, you have to register the toolkit by
adding the following markup to the page. You can save yourself a little typing

Figure 10-5. The new Toolbox items

182 | Chapter 10: Using the Control Toolkit

though, as this will be done for you automatically if you drag a toolkit component on
the page in either Design or Code view.

<%@ Register Assembly="AkaxControlToolkit" Namespace="AjaxControlToolkit"
TagPrefix="aajaxToolkit" %>

Use the name that you assign to the TagPrefix property each time you reference a
control in the toolkit. If you don’t assign a TagPrefix value, whenever you drag an
extender from the IDE Toolbox to the design surface, the IDE assigns the prefix cc1
by default. The ajaxToolkit prefix is more descriptive. You’ll also need to add a
ScriptManager control to the page for the toolkit controls to work.

Most controls in the ASP.NET AJAX Control Toolkit provide their functionality by
extending the functionality of other controls on the page. (See Chapter 1 for a discus-
sion of the extenders that ship with ASP.NET AJAX.) The specific properties avail-
able for an extender depend on which toolkit control you use, but the overall
approach is the same: you add a control to the page, then add the extender and set
the TargetControlID property with the ID of the target HTML element or ASP.NET
control.

The ConfirmButton control has one additional property called the ConfirmText value.
This contains the text of the message that is displayed when you click the LinkButton
control.

Run the page and click the control with which the ConfirmButton extender is associ-
ated. You’ll be asked if you want to continue. If you choose Yes, the action of the
LinkButton control is executed, meaning the LinkButton link is followed and the form
is submitted. A text is then displayed to confirm that a postback has occurred. Click-
ing No, on the other hand, cancels the action. Example 10-1 contains the complete
code for this example.

Example 10-1. Using the ConfirmButton extender control

ConfirmButton.aspx

<%@ Page Language="C#" %>

<%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit"
TagPrefix="ajaxToolkit" %>

<script runat="server">
 void Page_Load()
 {
 if (Page.IsPostBack)
 {
 Label1.Text = "You have been warned!";
 }
 }
</script>

Using the Control Toolkit | 183

Figure 10-6 shows the result displayed in the browser. When the LinkButton control
is clicked, the pop-up window appears. If No is clicked, the form is not posted to the
server.

The other toolkit extenders work in a similar fashion. Just add the extender control
(create an <ajaxToolkit:controlExtender> element) to the page and set the extender’s
properties.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <asp:LinkButton ID="LinkButton1" runat="server">LinkButton</asp:LinkButton>
 <ajaxToolkit:ConfirmButtonExtender ID="ConfirmButtonExtender1" runat="server"
ConfirmText="Are you sure?! "
 TargetControlID="LinkButton1" />

 <asp:Label ID="Label1" runat="server" />
 </div>
 </form>
</body>
</html>

Figure 10-6. The Confirm text that is displayed when the button is clicked

Example 10-1. Using the ConfirmButton extender control (continued)

184 | Chapter 10: Using the Control Toolkit

From a JavaScript point of view, the effect that the
ConfirmButtonExtender provides is trivial. The following JavaScript
code is all you need to add a prompt to a regular HTML hyperlink
(something the ConfirmButtonExtender control yet cannot do):

<a href="http://atlas.asp.net/"
 onclick="return window.confirm('Are you
sure?!');">Go to the ASP.NET AJAX homepage

This extender shows that ASP.NET AJAX is more than just an Ajax
toolkit—thanks to the Control Toolkit, it is also becoming a Java-
Script toolkit.

Summary
This chapter introduced the ASP.NET AJAX Control Toolkit, installed the package,
and also provided a first example. Be sure to read the following chapters, which will
feature many of the exciting controls and features provided by this open source
project.

For Further Reading
http://www.codeplex.com/AtlasControlToolkit

ASP.NET AJAX Control Toolkit home page on CodePlex

http://ajax.asp.net/ajaxtoolkit/
Live version of the Control Toolkit

http://www.codeplex.com/AtlasControlToolkit
http://ajax.asp.net/ajaxtoolkit/

185

Chapter 11 CHAPTER 11

Adding Animation to a Web Page11

One key component of the ASP.NET AJAX Control Toolkit is a powerful animation
framework that provides several means to create complex animations without the
need for extensive JavaScript coding. This chapter will examine how to take advan-
tage of that framework. We’ll also touch on a related feature of the Control Toolkit—
drag-and-drop support.

Note, the examples in this chapter require you to have installed the ASP.NET AJAX
Control Toolkit. You will also need to have a web site configured to use the toolkit.
For details on the Control Toolkit, see Chapter 10.

Animation Framework
ASP.NET AJAX offers two choices to create animations with very little effort (both
unsupported). You may choose either ASP.NET AJAX Futures, which provides sev-
eral animation options (refer to Chapter 20 for an in-depth discussion), or you can
use the ASP.NET AJAX Control Toolkit. Equipped with more than just some web
controls for Ajax-y animation effects, the toolkit comes with an entire animation
framework that we will explore through the examples in this chapter. It is hard to say
which option will “win” in the end, but I would personally bet on the Control Tool-
kit, since this is more community-driven than Futures. Time will tell.

Animation Basics
The Control Toolkit animation framework provides web control the AnimationExtender
element. First though, you need the property, TargetControlID, which must contain the
ID of the element to be animated:

<ajaxToolkit:AnimationExtender ID="AnimationExtender1" runat="server"
 TargetControlID="myTargetElement">
 <!-- ... -->
</ajaxToolkit:AnimationExtender>

186 | Chapter 11: Adding Animation to a Web Page

However, the actual animation is defined within the AnimationExtender element.
There you can place XML markup which controls the animation. The root node of
this markup is <Animations>. Within this node you need to provide the following
information:

Events
When to start an animation—that is, a trigger

Animation types and properties
Which animations to use, which includes fades, movement, resizing, and so on
(more on these in a moment)

Example 11-1 demonstrates an animation. Within the <Animations> node, the
<OnLoad> node represents animation(s) that will run when the page has been fully
loaded. There is only one animation within <OnLoad>, in this case, the <FadeOut> ele-
ment. So, the target element fades out, within three seconds (Duration attribute),
using 25 animation steps (Fps attribute, [frames per second]). Figure 11-1 shows the
browser midway through that animation.

Example 11-1. A simple fade-out animation

AnimationFade.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <asp:Label ID="Label1" runat="server" Text="See me fading ..."
 Style="display: inline-block; background-color: Red;" />
 </div>
 <ajaxToolkit:AnimationExtender ID="AnimationExtender1" runat="server"
 TargetControlID="Label1">
 <Animations>
 <OnLoad>
 <FadeOut Duration="3" Fps="25" />
 </OnLoad>
 </Animations>
 </ajaxToolkit:AnimationExtender>
 </form>
</body>
</html>

Animation Framework | 187

Animation events

There are several more triggers in addition to <OnLoad>:

<OnClick>
The user clicks on an element to start the animation.

<OnHoverOut>
The animation starts when the mouse pointer leaves an element.

<OnHoverOver>
The animation starts when the mouse pointer enters an element. (This stops any
<OnHoverOut> animation for the same element.)

<OnMouseOut>
The animation starts when the mouse pointer leaves an element.

<OnMouseOver>
The animation starts when the mouse pointer enters an element. This does not
stop any <OnMouseOut> animation for the same element.

Animation types

The animation framework supports an impressive set of animations:

<Fade>
Fades an element in or out

<FadeIn>
Fades an element in

<FadeOut>
Fades an element out

<Pulse>
Pulsates an element (by fading it in and out repeatedly)

Figure 11-1. The element is fading out

188 | Chapter 11: Adding Animation to a Web Page

<Color>
Changes the color of an element between two values

<Move>
Moves an element

<Resize>
Changes the size of an element

<Scale>
Scales an element

Apart from these visual animations, the animation framework is also capable of “ani-
mating” values. For instance, a value could be animated from 1 to 100. This value
can then be used as the x coordinate of an element, its alpha channel value, its color
code, or as its width (there are even more possibilities). Here are just some of these
animations:

<Discrete>
Animates a value based on a list of given target values

<Interpolated>
Animates a value using equal steps within a given interval

<Length>
Animates a value using equal steps within a given interval, but appends a unit
string (e.g., "px" or "em") to each value

A special case of animation is a so-called action. Actions defined by the animation
framework are executed immediately, not gradually such as the aforementioned ani-
mations. Here are some typical actions:

<EnableAction>
Enables or disables an element

<HideAction>
Hides an element (by using the CSS property display:none)

<StyleAction>
Sets a CSS style property of an element

<OpacityAction>
Sets the opacity of an element

Complex Animations
The implementation of the animation framework only allows one animation within
each animation event node (<OnLoad>, <OnClick>, etc. However, it is possible to join
several relatively simple animations together into one, increasingly complex anima-
tion. This can then be used within <OnLoad> and the other event nodes. Depending
on how the individual animation within an animation group runs, there are different
types of these aggregating animations:

Animation Framework | 189

<Case>
Runs one of a set of animations depending on a condition (comparable to
switch() in C# and Select Case in Visual Basic)

<Condition>
Runs one of animations depending on a condition (comparable to the C# ?
operator)

<Parallel>
Runs all animations at the same time

<Sequence>
Runs all animations sequentially, one at a time

Example 11-2 uses several animations at once. Two animations are run at the same
time (<Parallel> element). The first one is the <FadeOut> animation that you already
know, the second, a <Condition> animation. The condition is Math.random() < 0.5,
which should statistically evaluate to true every other time. Depending on the value
of Math.random() (a random number between 0 and 1), either the style.top or the
style.left property of the element is animated from 0px to 250px. Figure 11-2
shows a possible outcome. (When you run the example, refresh the browser several
times to see the two possible animations.)

Example 11-2. Running several animations at once

AnimationGroup.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <asp:Label ID="Label1" runat="server" Text="See me fading ..."
 Style="display: inline-block; background-color: Red; position: relative;
left: 8px; top: 8px;" />
 </div>
 <ajaxToolkit:AnimationExtender ID="AnimationExtender1" runat="server"
 TargetControlID="Label1">
 <Animations>
 <OnLoad>
 <Parallel>
 <FadeOut Duration="3" Fps="25" />
 <Condition ConditionScript="(Math.random() < 0.5)">
 <Length StartValue="0" EndValue="250" Unit="px"

190 | Chapter 11: Adding Animation to a Web Page

Be careful to use valid XML. In the previous example, the condition
Math.random() < 0.5 must first be properly escaped as the opening
angle bracket has a special meaning within XML. Therefore, the cor-
rect condition is actually Math.random() < 0.5, (as the syntax in
Example 11-2 properly displayed).

Programming Animations
All animations can also be programmatically set. As of time of writing, there is no
full-blown API available that would allow you to add and remove individual anima-
tions at will, but you can assign XML (server code) or JSON (client code) to an
AnimationExtender control.

Let’s start with the server side. The AnimationExtender control exposes the
Animations property. You can assign an XML string with the animation information.
Just make sure you omit the <Animations> node and start right off with the first
event, as Example 11-3 illustrates. This example has the same effect as the previous
one, but adds the animation information to the extender using C# code.

 Property="style" PropertyKey="left" />
 <Length StartValue="0" EndValue="250" Unit="px"
 Property="style" PropertyKey="top" />
 </Condition>
 </Parallel>
 </OnLoad>
 </Animations>
 </ajaxToolkit:AnimationExtender>
 </form>
</body>
</html>

Figure 11-2. Two animations at once

Example 11-2. Running several animations at once (continued)

Animation Framework | 191

This is possible from JavaScript, as well. The only thing that changes here is the for-
mat of the animation configuration. Instead of an XML string, you need to provide a
JSON string. The object signified by this JSON string contains all animation infor-
mation. Use the AnimationName property to provide the name of the animation (which
is identical to the name of the corresponding XML element). The elements within an
XML element are provided as an array in the AnimationChildren property. The fol-
lowing is just such a JSON string, broken up into multiple lines for better legibility:

{
 'AnimationName':'Parallel',
 'AnimationChildren':
 [
 {

Example 11-3. Setting animations on the server side

AnimationServer.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

 protected void Page_Load(object sender, EventArgs e)
 {
 string animations = "<OnLoad><Parallel><FadeOut Duration='3' Fps='25'
/><Condition ConditionScript='(Math.random() < 0.5)'><Length StartValue='0'
EndValue='250' Unit='px' Property='style' PropertyKey='left' />
<Length StartValue='0' EndValue='250' Unit='px' Property='style'
PropertyKey='top' /></Condition></Parallel></OnLoad>";
 AnimationExtender1.Animations = animations;
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <asp:Label ID="Label1" runat="server" Text="See me fading ..."
 Style="display: inline-block; background-color: Red; position: relative;
left: 8px; top: 8px;" />
 </div>
 <ajaxToolkit:AnimationExtender ID="AnimationExtender1" runat="server"
 TargetControlID="Label1" />
 </form>
</body>
</html>

192 | Chapter 11: Adding Animation to a Web Page

 'AnimationName':'FadeOut',
 'Duration':'3',
 'Fps':'25'
 },
 {
 'AnimationName':'Condition',
 'ConditionScript':'(Math.random() < 0.5)',
 'AnimationChildren':
 [
 {
 'AnimationName':'Length',
 'StartValue':'0',
 'EndValue':'250',
 'Unit':'px',
 'Property':'style',
 'PropertyKey':'left'
 },
 {
 'AnimationName':'Length',
 'StartValue':'0',
 'EndValue':'250',
 'Unit':'px',
 'Property':'style',
 'PropertyKey':'top'
 }
]
 }
]
}

You also need a way to access the control on the page, as the AnimationExtender itself
does not have a visual representation. For all elements, ASP.NET AJAX provides the
$find() helper function which lets you access these controls. Once you have a refer-
ence to the control, you can assign the JSON string to one of its animation events.
For example, the set_OnClick() method sets the animation to start when the target
element of the animation is clicked.

Example 11-4 shows the complete code. Again, the result is the same as Examples
11-2 and 11-3, but this time the animation is defined in client script.

Example 11-4. Setting animations on the client side

AnimationClient.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">

Drag-and-Drop | 193

There is much more to the animation framework. In addition to the features demon-
strated in this chapter, it is also extendable, providing a great deal of flexibility and
taking at least some JavaScript burden off developers’ backs. If you are interested in
more documentation, the ASP.NET AJAX Control Toolkit sample web site (called
SampleWebsite) contains a reference as well as a walkthrough.

Drag-and-Drop
Drag-and-drop is considered one of the most difficult tasks for JavaScript develop-
ers. All browsers provide drag-and-drop support, but the subtle differences in imple-
mentations among different browsers are profound. Fortunately, the ASP.NET AJAX
Control Toolkit comes with the DragPanel extender that makes ASP.NET Panel con-
trols “draggable.” To drag-and-drop elements, simply put them into an <asp:Panel>
element then add the DragPanelExtender control to the page. Next, set the following
properties of the extender:

 <title>ASP.NET AJAX</title>
 <script type="text/javascript">
 function pageLoad() {
 var animations =
"{'AnimationName':'Parallel','AnimationChildren':
[{'AnimationName':'FadeOut','Duration':'3','Fps':'25'},
{'AnimationName':'Condition','ConditionScript':
'(Math.random() < 0.5)','AnimationChildren':
[{'AnimationName':'Length','StartValue':'0','EndValue':'250','Unit':'px','Property'
:'style','PropertyKey':'left'},
{'AnimationName':'Length','StartValue':'0','EndValue':'250','Unit':'px','Property':
'style','PropertyKey':'top'}]}]}";
 var extender = $find("AnimationExtender1");
 extender.set_OnLoad(animations);
 }
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <asp:Label ID="Label1" runat="server" Text="See me fading ..."
 Style="display: inline-block; background-color: Red; position: relative;
left: 8px; top: 8px;" />
 </div>
 <ajaxToolkit:AnimationExtender ID="AnimationExtender1" runat="server"
 TargetControlID="Label1" />
 </form>
</body>
</html>

Example 11-4. Setting animations on the client side (continued)

194 | Chapter 11: Adding Animation to a Web Page

TargetControlID
The ID of the panel

DragHandleID
The ID of an element that serves as the drag handle (should ideally be placed
within the panel to be dragged)

Example 11-5 contains two panels: one contains dummy text, the other contains an
inbox with a random number of new emails. This box can be dragged thanks to the
DragPanelExtender control. Figure 11-3 shows the result.

Example 11-5. Making a panel “draggable”

DragPanel.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 protected void Page_Load(object sender, EventArgs e)
 {
 inbox.Text = new Random().Next(0, 100).ToString();
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
 <style type="text/css">
 .box { border: solid 2px black; }
 .mailbox { border: solid 2px black; width: 150px; background-color: white;}
 .mailboxHeader {border: solid 2px black; background-color: blue; font-weight:
bold; cursor: move;}
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <div style="height: 400px; background-color: purple">
 <asp:Panel ID="ContentPanel" CssClass="box" runat="server">
 <h1>My Portal</h1>
 <p>
 Welcome to your personal portal, powered by Microsoft ASP.NET AJAX.
 The mail status window is freely draggable. Welcome to your personal
portal, powered by Microsoft ASP.NET AJAX.
 The mail status window is freely draggable. Welcome to your personal
portal, powered by Microsoft ASP.NET AJAX.
 The mail status window is freely draggable.

Summary | 195

Note the purple area within the page. The DragPanelExtender uses the
current block element in which it resides as the drop zone (the area
where the panel may be dropped). In this case, a <div> element with a
height of 400 pixels is used to create such a drop zone; the purple
background shows where the zone is.

Summary
Not every web application gets better when you add animations. However if you do
need them, try the Animation framework in the ASP.NET AJAX Control Toolkit. And
if drag-and-drop functionality is required, have a look at the DragPanel extender.

 </p>
 <p>
 Welcome to your personal portal, powered by Microsoft ASP.NET AJAX.
 The mail status window is freely draggable. Welcome to your personal
portal, powered by Microsoft ASP.NET AJAX.
 The mail status window is freely draggable. Welcome to your personal
portal, powered by Microsoft ASP.NET AJAX.
 The mail status window is freely draggable.
 </p>
 <p>
 Welcome to your personal portal, powered by Microsoft ASP.NET AJAX.
 The mail status window is freely draggable. Welcome to your personal
portal, powered by Microsoft ASP.NET AJAX.
 The mail status window is freely draggable. Welcome to your personal
portal, powered by Microsoft ASP.NET AJAX.
 The mail status window is freely draggable.
 </p>
 </asp:Panel>
 <asp:Panel CssClass="mailbox" ID="DragPanel" runat="server">
 <div id="DragPanelHandle" runat="server" class="mailboxHeader">New
mail!</div>
 <p>
 You currently have <asp:Label id="inbox" runat="server"></asp:Label>
 mails in your inbox.
 </p>
 </asp:Panel>
 <ajaxToolkit:DragPanelExtender ID="DragPanelExtender1" runat="server"
 TargetControlID="DragPanel" DragHandleID="DragPanelHandle" />
 </div>
 </form>
</body>
</html>

Example 11-5. Making a panel “draggable” (continued)

196 | Chapter 11: Adding Animation to a Web Page

For Further Reading
http://ajax.asp.net/ajaxtoolkit/Animation/Animation.aspx

Documentation for the Animation framework

http://ajax.asp.net/ajaxtoolkit/DragPanel/DragPanel.aspx
Documentation for the DragPanel extender

Figure 11-3. A panel with drag-and-drop features

http://ajax.asp.net/ajaxtoolkit/Animation/Animation.aspx
http://ajax.asp.net/ajaxtoolkit/DragPanel/DragPanel.aspx

197

Chapter 12 CHAPTER 12

Autocompleting User Input,
Fighting Spam, and More12

The ASP.NET AJAX Control Toolkit contains an incredible number of controls—
too many, in fact, to list here. And while the project is ultimately controlled by
Microsoft and does receive support from individual members of the Microsoft AJAX
team, there is no guarantee that APIs and functionality will remain the same. After
all, the company provides no customer support and does accept (in fact encourages)
contributions from third parties. Meanwhile, a printed book can only provide a
snapshot of conditions as they existed at the time of production. So, this chapter will
demonstrate a few of my favorite controls as they were at the time of printing.

The ASP.NET AJAX Control Toolkit is a very dynamic project. All of
it is subject to change at one point or another. However, the Control
Toolkit team strives to keep APIs stable unless there are very good rea-
sons to change them, so you should not expect to come across too
many surprises. This chapter will restrict itself to introductory exam-
ples of the most important (arguably) of these controls. Updates to
these listings will be posted on the web site for this book (see the
Preface).

Creating an Accordion Pane
Many usability studies suggest that users do not like scrolling. With the addition of a
little bit of JavaScript, scrolling may be avoided. The ASP.NET AJAX Control Tool-
kit’s Accordion control coordinates the presentation of several panes simultaneously
but with only one being visible at a time. Using an animation effect, clicking on a
pane displays its contents while hiding the contents of all other panes.

The Accordion control consists of two parts: a header that displays a title that is
always visible, and a content area that can be hidden or displayed as part of the
accordion effect. To implement accordion behavior in a pane, we start by defin-
ing two CSS classes in a new .aspx file, one for the header and one for content.

198 | Chapter 12: Autocompleting User Input, Fighting Spam, and More

These classes define the appearance of the control (and a little bit of its behavior)
and will be used later for the panes and for the content of those panes.

<style type="text/css">
 .accordionHeader { background-color: blue; border: solid; cursor: pointer; }
 .accordionContent { fbackground-color: white; border: solid; }
</style>

The cursor: pointer CSS style is used for the header. When the
mouse pointer hovers over an accordion pane that is using the
accordionHeader CSS class, it changes to a pointing hand, as it would
do over a hyperlink. This informs users that the panes can be clicked.

In the actual Accordion control, these two CSS classes are referenced:

<ajaxToolkit:Accordion ID="Accordion1" runat="server"
 ContentCssClass="accordionContent" HeaderCssClass="accordionHeader">

Within the Accordion control, the <Panes> element holds a list of accordion panes,
represented by AccordionPane controls. Each AccordionPane control expects these two
subelements:

<Header>
The pane’s header

<Content>
The pane’s content

Thanks to IntelliSense, you almost can’t go wrong when you create a page with an
Accordion control. Example 12-1 shows a complete example and Figure 12-1 its out-
put in the browser.

Example 12-1. Using the Accordion control

Accordion.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
 <style type="text/css">
 .accordionHeader { background-color: blue; border: solid; cursor: pointer; }
 .accordionContent { background-color: white; border: solid; }
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>

Maintaining the Relative Position of an Element | 199

Maintaining the Relative Position of an Element
CSS allows you to position HTML elements anywhere on a page using x-y coordi-
nates. However, the position of a control can change as the user scrolls the page.
With a bit of JavaScript, you can maintain the element’s position, so that it appears
at the same relative position in the browser no matter where the user scrolls.

 <ajaxToolkit:Accordion ID="Accordion1" runat="server"
 ContentCssClass="accordionContent" HeaderCssClass="accordionHeader">
 <Panes>
 <ajaxToolkit:AccordionPane ID="AccordionPane1" runat="server">
 <Header>ASP.NET AJAX, Ajax, and ASP.NET</Header>
 <Content>Chapter 1 gives a high-level overview of Ajax and the ASP.NET AJAX
framework and then covers the installation of ASP.NET AJAX,
a review of its structure, and a first simple example.</Content>
 </ajaxToolkit:AccordionPane>
 <ajaxToolkit:AccordionPane ID="AccordionPane2" runat="server">
 <Header>JavaScript</Header>
 <Content>Chapter 2 is a concise introduction to JavaScript. Although
ASP.NET AJAX does its best to hide the details from ASP.NET programmers,
a certain knowledge of JavaScript is required to really master ASP.NET AJAX.</Content>
 </ajaxToolkit:AccordionPane>
 <ajaxToolkit:AccordionPane ID="AccordionPane3" runat="server">
 <Header>Ajax</Header>
 <Content>Chapter 3 explains the technologies beyond the hype.
You learn what happens in the background, how Ajax works, and what it really is all about,
in fewer than 20 pages.</Content>
 </ajaxToolkit:AccordionPane>
 </Panes>
 </ajaxToolkit:Accordion>
 </div>
 </form>
</body>
</html>

Figure 12-1. Creating an accordion effect without any code

Example 12-1. Using the Accordion control (continued)

200 | Chapter 12: Autocompleting User Input, Fighting Spam, and More

As you might probably expect, the ASP.NET AJAX Control Toolkit offers a solution
for this task, the AlwaysVisibleControlExtender control. This extender can be
attached to any control and enables positioning relative to the browser borders. For
instance, the HorizontalSide property of the extender can be set to Center, Left, and
Right; the VerticalSide property can be set to Top, Middle, or Bottom. You can also
provide offset values to the left and top border of the browser in the
HorizontalOffset and VerticalOffset properties. Here is some sample markup for
the extender that positions an HTML element in the top-left corner of the browser:

<ajaxToolkit:AlwaysVisibleControlExtender ID="AlwaysVisibleControlExtender1"
runat="server" TargetControlID="banner" HorizontalSide="Left" VerticalSide="Top" />

Example 12-2 contains a complete listing with the output shown in Figure 12-2. The
figure illustrates how the banner remains in the top-left corner as you scroll the page.

Example 12-2. Using the AlwaysVisibleControlExtender

AlwaysVisible.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div id="banner" style="background-color: white; border: solid; width: 240px;
height: 80px;" runat="server">
 <h2>And here is from our sponsors ...</h2>
 </div>
 <ajaxToolkit:AlwaysVisibleControlExtender ID="AlwaysVisibleControlExtender1"
runat="server"
 TargetControlID="banner" HorizontalSide="Left" VerticalSide="Top" />
 <p>Welcome to the ASP.NET AJAX Control Toolkit sample website. </p>
 <p>Welcome to the ASP.NET AJAX Control Toolkit sample website. </p>
 <p>Welcome to the ASP.NET AJAX Control Toolkit sample website. </p>
 <p>Welcome to the ASP.NET AJAX Control Toolkit sample website. </p>
 <p>Welcome to the ASP.NET AJAX Control Toolkit sample website. </p>
 <p>Welcome to the ASP.NET AJAX Control Toolkit sample website. </p>
 <p>Welcome to the ASP.NET AJAX Control Toolkit sample website. </p>
 <p>Welcome to the ASP.NET AJAX Control Toolkit sample website. </p>
 <p>Welcome to the ASP.NET AJAX Control Toolkit sample website. </p>
 <p>Welcome to the ASP.NET AJAX Control Toolkit sample website. </p>
 </form>
</body>
</html>

Adding Autocomplete Behavior to a TextBox Control | 201

Adding Autocomplete Behavior to a TextBox Control
The use of Ajax technologies has made it possible for web applications to become
more and more like desktop applications. One feature some desktop applications
have, but web sites often lack is autocomplete. When entering information in a text
box, the application looks up data suitable for the field (within most browsers for
instance, a list of previously entered data in similar fields) and offers to fill in the field
for you.

One of the first well-known web applications to support this feature was Google Sug-
gest (http://www.google.com/webhp?complete=1&hl=en). When you start typing in
the text field, the web page suggests popular search terms. It also shows approxi-
mately how many results this search may turn up, as shown in Figure 12-3. By now
you know how this is done; an XMLHttpRequest is sent to a web service, which returns
search terms and the estimated number of results.

ASP.NET AJAX provides a control extender called AutoCompleteExtender that serves
just this purpose; searching data in the background, then presenting the results of
that search as data for a form element. This task involves coding the CSS and Java-
Script necessary to display the suggestions and make them keyboard-navigable. With
an extender from the Control Toolkit, this work has already been done, and you sim-
ply need to apply this feature and create a web service that can return the data. Note
however, that some of the more tricky bits of Google Suggest (including the key-
board navigation) are not fully implemented in the extender.

From the point of view of web control, the only element for which autocompletion
ultimately makes sense is TextBox. Following is a snippet demonstrating the element:

<asp:TextBox ID="vendor" runat="server"></asp:TextBox>

Figure 12-2. The banner appears at the top-left corner, even after scrolling

http://www.google.com/webhp?complete=1&hl=en)

202 | Chapter 12: Autocompleting User Input, Fighting Spam, and More

Next, the AutoCompleteExtender control must be included. Within this element, sev-
eral properties can be used to configure the autocompletion effect. The following ele-
ment attributes are the most important ones:

TargetControlID
The ID of the control you want to perform autocompletion

ServicePath
The path to the web service that generates the autocompletion data

ServiceMethod
The method of the web service that you call to get autocompletion data

Here is some sample markup for the extender:

<ajaxToolkit:AutoCompleteExtender runat="server"
 ServicePath="Vendors.asmx" ServiceMethod="GetVendors"
 TargetControlID="vendor" />

Example 12-3 shows how to create an ASP.NET page with a text box that supports
autocompletion behavior.

Figure 12-3. Google Suggest

Example 12-3. Adding autocompletion behavior to a text box

AutoComplete.aspx

<%@ Page Language="C#" %>

<%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit"
TagPrefix="ajaxToolkit" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

Adding Autocomplete Behavior to a TextBox Control | 203

You must also implement a web service that retrieves the data. The web service must
include a method the extender can call, which requires a specific signature. Here is
the signature:

public string[] <MethodName>(string prefixText, int count)

The method takes two parameters with rather obvious meanings:

prefixText
The text that the user enters into the text field, which must be the prefix of all
matches

count
The maximum number of results to be returned

The return data must be an array of string, so unfortunately, you cannot use a
dataset or something similar.

In the example web service, the AdventureWorks database is queried for the auto-
completion data. The company names of all vendors are returned. As usual, you may

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <asp:TextBox ID="vendor" runat="server"></asp:TextBox>
 <input type="button" value="Display Information"
 onclick="window.alert('not implemented!');" />
 <ajaxToolkit:AutoCompleteExtender runat="server"
 ServicePath="Vendors.asmx" ServiceMethod="GetVendors"
 TargetControlID="vendor" />
 </form>
</body>
</html>

Exploring Data Sent by ASP.NET AJAX
Sniffing the XMLHttpRequest call can help you to find out what data ASP.NET AJAX
sends to the server. And as you can see in Figure 12-4, it is also a helpful measure in
further exploring the inner workings of ASP.NET AJAX when working with server
components.

Example 12-3. Adding autocompletion behavior to a text box (continued)

204 | Chapter 12: Autocompleting User Input, Fighting Spam, and More

have to adapt the connection string to your local system—in the code, we assume
that the SQL Server 2005 Express Edition is available using Windows authentication
at (local)\SQLEXPRESS.

To begin, the web service code checks the search term. For the sake of simplicity,
only letters from a to z (both upper- and lowercase) are allowed. This data check is
mandatory to avoid SQL injection, because the code must execute a search query
with LIKE (see the upcoming sidebar, “Security Alert: Avoiding SQL Injection”). As
an alternative, you could use a parameterized query.

If you use a regular expression to validate input data, consider allowing foreign-
language characters such as German umlauted letters or French accented letters. The
“dangerous” characters from a security standpoint that you do not want to accept
are single quotes, double quotes, square brackets, underscore characters, double
hyphens, semicolons, and percent characters. These characters (and their encoded
versions) all have a special meaning within the query. That’s why it’s better to vali-
date user input using a whitelist approach (allow a predefined set of valid input)
rather than a blacklist approach (disallow a predefined set of invalid input).

The web service also checks the count parameter provided to the method to make
sure it is a positive number and not greater than 100 (to avoid providing an easy way
to launch denial-of-service [DoS] attacks).

Figure 12-4. Tools such as Live HTTP headers reveal the signature

Adding Autocomplete Behavior to a TextBox Control | 205

This is what the web service code that performs these validations looks like:

using System.Text.RegularExpressions;
...
[WebMethod]
public string[] GetVendors(string prefixText, int count)
{
 Regex regex = new Regex("^[a-zA-Z]*$");
 if (!regex.IsMatch(prefixText) || count < 1 || count > 100)
 {
 return null;
 }

Security Alert: Avoiding SQL Injection
SQL injection is one of the most dangerous security vulnerabilities in web applications
today. The issue arises when dynamic data from the user is employed to construct a
SQL query. For example, have a look at the string concatenation in the vendor’s web
service that generates the SQL command:

SqlCommand comm = new SqlCommand(
 "SELECT TOP " +
 count +
 " Name FROM Purchasing.Vendor WHERE Name LIKE '" +
 PrefixText +
 "%'",
 conn);

Now consider count a string, not an integer, or that prefixText is not being checked for
“dangerous” values. This code could turn out dangerous. There are several possibilities
to exploit this, but look at the following value for prefixText:

' OR 2>1 --

Then, the SQL command will look similar to this:

SELECT TOP 10 Name FROM Purchasing.Vendor WHERE Name LIKE '' OR 2 > 1 -- %'

This would return the first 10 entries of the table, not just the first 10 that match some
specific letter. There are still other, far more dangerous exploits.

Usually, you can prevent this attack by using prepared statements: use placeholders for
all user-supplied values in the WHERE clause, then later fill the placeholders with user-
supplied data. Unfortunately, this does not work with our specific query because we
have to append the % wildcard character to the user data. As an alternative, use a pre-
pared statement and append the % wildcard character to the value of the placeholder
(remember to check the placeholder data for special characters like percents [%] and
underscores [_]). Therefore, the code first checks prefixText and exits when any char-
acters are found that are not allowed.

206 | Chapter 12: Autocompleting User Input, Fighting Spam, and More

After the data is validated, the SQL query is dynamically assembled and sent to the
database. A typical query would look like this:

SELECT TOP 10 Name FROM Purchasing.Vendor WHERE NAME LIKE 'Int%'

This assumes that count has the value 10 (which is, in fact, the value ASP.NET AJAX
sends by default) and the user typed Int into the text field. Here is the complete code
for the database query, including returning the results into a dataset:

 SqlConnection conn = new SqlConnection(
 "server=(local)\\SQLEXPRESS; Integrated Security=true; Initial
Catalog=AdventureWorks");
 conn.Open();
 SqlCommand comm = new SqlCommand(
 "SELECT TOP " +
 count +
 " Name FROM Purchasing.Vendor WHERE Name LIKE '" +
 prefixText +
 "%'",
 conn);
 SqlDataAdapter adap = new SqlDataAdapter(comm);
 DataSet ds = new DataSet();
 adap.Fill(ds);

Then the data must be transformed into a string array. This array must contain no
more than count elements (a call to Math.Min() will ensure that only count elements
are returned even if the database contains more elements).

This can easily be achieved using a for loop:

 string[] vendors = new string[Math.Min(count, ds.Tables[0].Rows.Count)];
 for (int i = 0; i < Math.Min(count, ds.Tables[0].Rows.Count); i++)
 {
 vendors[i] = ds.Tables[0].Rows[i].ItemArray[0].ToString();
 }
 return vendors;
}

Example 12-4 shows the complete code for implementing this web service. Recall from
Chapters 1 and 5 that you need the [ScriptService] attribute in order for ASP.NET
AJAX to create the JavaScript proxy for the service.

Example 12-4. A web service that retrieves possible matches

Vendors.asmx

<%@ WebService Language="C#" Class="Vendors" %>

using System;
using System.Web;
using System.Web.Services;

Adding Autocomplete Behavior to a TextBox Control | 207

Let’s take a look at the results in the browser. Load the page and enter a few letters—
at least three (ASP.NET AJAX does not issue a web service call for fewer than three
characters). If some matches are found, they are displayed with a slight delay in the
text box.

using System.Web.Services.Protocols;
using System.Data;
using System.Data.SqlClient;
using System.Text.RegularExpressions;

[WebService(Namespace = "http://hauser-wenz.de/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.Web.Script.Services.ScriptService]
public class Vendors : System.Web.Services.WebService
{

 [WebMethod]
 public string[] GetVendors(string prefixText, int count)
 {
 Regex regex = new Regex("^[a-zA-Z]*$");
 if (!regex.IsMatch(prefixText) || count < 1 || count > 100)
 {
 return null;
 }
 SqlConnection conn = new SqlConnection(
 "server=(local)\\SQLEXPRESS; Integrated Security=true; Initial
Catalog=AdventureWorks");
 conn.Open();
 SqlCommand comm = new SqlCommand(
 "SELECT TOP " +
 count +
 " Name FROM Purchasing.Vendor WHERE Name LIKE '" +
 prefixText +
 "%'",
 conn);
 SqlDataAdapter adap = new SqlDataAdapter(comm);
 DataSet ds = new DataSet();
 adap.Fill(ds);

 string[] vendors = new string[Math.Min(count, ds.Tables[0].Rows.Count)];
 for (int i = 0; i < Math.Min(count, ds.Tables[0].Rows.Count); i++)
 {
 vendors[i] = ds.Tables[0].Rows[i].ItemArray[0].ToString();
 }
 return vendors;
 }

}

Example 12-4. A web service that retrieves possible matches (continued)

208 | Chapter 12: Autocompleting User Input, Fighting Spam, and More

With the web service outlined in Example 12-4, caching may be of
great use, especially when the same terms are searched over and over
again. In set caching, simply change the WebMethod attribute of
GetVendors() to include a cache duration value:

 [WebMethod(CacheDuration = 60)]

The CacheDuration value is measured in seconds, so the preceding
attribute would cache the web service’s results for one minute.

If you are using Microsoft SQL Server as the database backend (as in
this example), you can also create a SqlCacheDependency on the DataSet
objects (for further details, consult the recommended resources in the
“For Further Reading” section at the end of this chapter).

If you do not get any results, try this: there are several companies whose names
begins with the word “International” so entering that word should net a number of
matches. Figure 12-5 shows you some typical results.

Attaching a Calendar to a Text Field
Whether it is hotel booking sites, flight booking sites, or rental car booking sites, any
page where users make reservations needs to provide a text box to enter a date (the
date of arrival and departure for a hotel visit or airline flight itinerary). For conve-
nience, most of those web sites provide a calendar in some fashion or another from
which users may choose a date.

You can implement a calendar for your site using the UpdatePanel and the ASP.NET
Calendar control, but the CalendarExtender in the ASP.NET AJAX Control Toolkit is
more convenient and provides extra features like localization. As you can gather

Figure 12-5. ASP.NET AJAX is suggesting vendor names

Attaching a Calendar to a Text Field | 209

from the name, CalendarExtender is indeed, an extender, so it must be attached to a
control (generally a text box). Have a look at Example 12-5 to see how little code is
necessary to create the effect shown in Figure 12-6. When the user clicks on the text
box, the calendar appears. If the user selects a date, the date is automatically entered
into the text field. When the text box loses focus, the calendar disappears.

Example 12-5. Using the CalendarExtender

Calendar.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <asp:TextBox ID="TextBox1" runat="server" />
 </div>
 <ajaxToolkit:CalendarExtender ID="CalendarExtender1" runat="server"
 TargetControlID="TextBox1" />
 </form>
</body>
</html>

Figure 12-6. The calendar appears when the user clicks into the text field

210 | Chapter 12: Autocompleting User Input, Fighting Spam, and More

Dynamically Collapsing a Single Panel
The section “Creating an Accordion Pane,” earlier in this chapter, showed how to
create an accordion consisting of several panes. Now let’s consider that you only
have one pane. If this pane is represented in an ASP.NET Panel control, the
CollapsiblePanelExtender of the ASP.NET AJAX Control Toolkit can implement
the type of behavior that the Accordion extender creates for multiple panes. In the
CollapsiblePanelExtender, you need to set the following properties:

CollapseControlID
The control that collapses the panel

ExpandControlID
The control that expands the panel

TargetControlID
The control (pane) that will be collapsed and expanded

Usually, the CollapseControlID and ExpandControlID properties have the same values
and point to the header of the panel to expand or collapse. Example 12-6 shows a
complete example, using the cursor: pointer CSS style that you saw earlier in the
Accordion example. In Figure 12-7, you see the animation that expands the panel.
(Of course, a still picture can never capture the real effect!)

Example 12-6. Using the CollapsiblePanelExtender

CollapsiblePanel.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
 <style type="text/css">
 .panelHeader { background-color: blue; border: solid; cursor: pointer; }
 .panelContent { background-color: white; border: solid; }
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <asp:Panel ID="Panel1" runat="server" CssClass="panelHeader">Chapter 1</asp:Panel>
 <asp:Panel ID="Panel2" runat="server" CssClass="panelContent">Chapter 1 gives a
high-level overview of Ajax and the ASP.NET AJAX framework and then covers the
installation of ASP.NET AJAX, a review of its structure, and a first
simple example.</asp:Panel>
 </div>

Displaying a Pop Up Over a Page | 211

Displaying a Pop Up Over a Page
Modal pop ups were among the first JavaScript effects to be widely adopted by web
sites like Google and Amazon who were looking for an interactive edge with their
customers. The window.alert() method implements the effect, however, the layout
of these pop ups could not be changed. Thanks to CSS and the DOM, today you can
create better pop ups, without the need to open new windows.

Modal pop ups are commonly generated by creating a new DOM element (usually a
<div> container), using JavaScript to display the element, then CSS to style it. To
make the pop up modal, you also create a second <div> element that consumes the
complete display area of the browser. Then using the z-order CSS property (which
sets the virtual z coordinate of an element, effectively placing elements in front of or
behind each other), stack both elements over the current content of the page; “100%
display area” <div> first, then the pop up <div>. The stacking part is taken care of by
ASP.NET AJAX; you just have to provide the rest.

Then, the original content of the page is still visible, but since a 100 percent width,
100 percent height <div> element is placed over it, the user cannot click any links
outside the pop up, effectively making the pop up modal.

The first step to implement this is to create the appropriate CSS classes. We need
two: one for the pop up, one for the 100 percent display area <div>. For the first

 <ajaxToolkit:CollapsiblePanelExtender ID="CollapsiblePanelExtender1" runat="server"
 TargetControlID="Panel2" CollapseControlID="Panel1" ExpandControlID="Panel1" />
 </form>
</body>
</html>

Figure 12-7. The panel expands and collapses upon mouse click

Example 12-6. Using the CollapsiblePanelExtender (continued)

212 | Chapter 12: Autocompleting User Input, Fighting Spam, and More

class, we just apply a border, a background color, and a width (the height is deter-
mined automatically by the browser’s rendering engine):

.popup {
 border: solid;
 background-color: yellow;
 width: 200px;
}

The second CSS class also uses a background color, such as gray, but we also set an
opacity value so that the background (the content of the page) is visible through the
<div> element. Internet Explorer supports the filter property for this task, and all
other browsers use the opacity style.

.content {
 background-color: grey;
 filter: alpha(opacity=50);
 opacity: 0.5;
}

Next, we need a server control to display the modal pop up. A link is a good choice:

<asp:HyperLink ID="HyperLink1" runat="server" Text="More ..." NavigateUrl="#" />

Now we create the actual pop up. As shown here, the user could be prompted to log in:

<asp:Panel ID="popupPanel" runat="server" CssClass="popup">
 <p>Login to get more information!

 User <input type="text" /> - Password <input type="password" />
 <input type="button" value="Login" id="Button1" runat="server" />
 </p>
</asp:Panel>

Finally, the ModalPopupExtender from the ASP.NET AJAX Control Toolkit comes into
play. It lets you create a modal pop up that can be put over the current content of the
page. This includes a bit of work, both from the toolkit and from you. You will need
the following properties for ModalPopupExtender:

BackgroundCssClass
The CSS class to use to make the page’s contents look disabled

PopupControlID
The ID of the pop up to display

TargetControlID
The ID of the element that triggers showing the pop up

OKControlID
The ID of the element that lets the pop up disappear

Refer to Example 12-7 for a complete listing. Figure 12-8 displays the pop up that is
positioned over the actual page. (The default position is the center of the page.)

Displaying a Pop Up Over a Page | 213

Example 12-7. Using the ModalPopupExtender

ModalPopup.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
 <style type="text/css">
 .content {
 background-color: gray;
 filter: alpha(opacity=50);
 opacity: 0.5;
 }
 .popup {
 border: solid;
 background-color: yellow;
 width: 200px;
 }
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <asp:Panel ID="contentPanel" runat="server">
 <p>Chapter 1 gives a high-level overview of Ajax and the ASP.NET AJAX
framework and then covers the installation of ASP.NET AJAX, a review of its structure,
and a first simple example.</p>
 <p>Chapter 2 is a concise introduction to JavaScript. Although Atlas does its
 best to hide the details from ASP.NET programmers, a certain knowledge of JavaScript
is required to really master ASP.NET AJAX.</p>
 <p>Chapter 3 explains the technologies beyond the hype. You learn what happens
in the background, how Ajax works, and what it really is all about,
 in fewer than 20 pages.</p>
 <p><asp:HyperLink ID="HyperLink1" runat="server" Text="More ..." NavigateUrl="#" />
</p>
 </asp:Panel>
 <asp:Panel ID="popupPanel" runat="server" CssClass="popup">
 <p>Login to get more information!

 User <input type="text" /> - Password <input type="password" />
 <input type="button" value="Login" id="Button1" runat="server" />
 </p>
 </asp:Panel>
 <ajaxToolkit:ModalPopupExtender ID="ModalPopupExtender1" runat="server"
 PopupControlID="popupPanel" TargetControlID="HyperLink1" OkControlID="Button1"
 BackgroundCssClass="content" />
 </form>
</body>
</html>

214 | Chapter 12: Autocompleting User Input, Fighting Spam, and More

Fighting Spam in Blogs and in Other Entry Forms
Anyone who has a blog or a public guestbook knows how annoying and time consum-
ing spammers can be—particularly spammers without a social life who have too much
time on their hands. Automated robots surf the Web and try to unload their links, or
advertisements, or other undesirable content wherever they find an HTML form.

One common antispam measure in many blogs is a CAPTCHA, for Completely
Automated Public Turing test to tell Computers and Humans Apart. When you try
to submit a URL to Google, to create a Yahoo! account, or to buy tickets at Ticket-
master, you see an image with some distorted characters. The idea is elegantly
simple: only a human can decipher the text—an OCR algorithm will fail. Unfortu-
nately, there are disadvantages: most CAPTCHAs require that the client support
images, so accessibility is a key issue. Also, some CAPTCHAs show text that is so
distorted that even people with keen visual skills fail to understand it.

The NoBot control in the ASP.NET AJAX Control Toolkit tries to provide a weaker,
but more accessible protection for a form. When NoBot is added to a web form, it
adds some security checks to the page submission mechanism. For example, it uses
ASP.NET session management to determine when the user last submitted the form.
If a user repeatedly tries to submit the form without enough time between the HTTP
requests, an error message is generated.

This error message is not automatically shown in the browser. Instead, the IsValid()
method of NoBot checks the form and returns a status message (as an out parameter)
if there has been a problem. This data can then be used on the server to provide the
appropriate error message to the user. Figure 12-9 shows such an error message cre-
ated by the code in Example 12-8. In order to create this error message, the form was
submitted twice in a two-second interval, which was less than the value specified (for
this example, 3) in the ResponseMinimumDelaySeconds property of NoBot.

Figure 12-8. The pop up appears; the page’s content disappears underneath the gray

Fighting Spam in Blogs and in Other Entry Forms | 215

The protection provided by NoBot is in no way sufficient for a site that
is plagued by loads of spam. However, it can prove quite useful to
defeat less sophisticated attacks. It also avoids many of the usability
and/or accessibility problems inherent to CAPTCHAs.

Example 12-8. Using the NoBot control

AntiSpam.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

 protected void ProcessData(object sender, EventArgs e)
 {
 NoBotState state;
 if (!NoBot1.IsValid(out state))
 {
 Label1.Text = "Entry refused (" + HttpUtility.HtmlEncode(state.ToString()) + ")!";
 }
 else
 {
 Label1.Text = "Entry accepted!";
 }
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 Your blog entry comment:
 <asp:TextBox ID="TextBox1" TextMode="MultiLine" runat="server" />

 <asp:Button ID="Button1" runat="server"
 Text="Enter comment" OnClick="ProcessData" />

 <asp:Label ID="Label1" runat="server" />
 </div>
 <ajaxToolkit:NoBot ID="NoBot1" runat="server"
 CutoffMaximumInstances="5" CutoffWindowSeconds="30" ResponseMinimumDelaySeconds="3"
/>
 </form>
</body>
</html>

216 | Chapter 12: Autocompleting User Input, Fighting Spam, and More

Creating a Tabbed Interface
Most desktop applications and many modern browsers utilize tabbed interfaces. In
order to create tabs on a web site, you can use the TabPanel and TabContainer con-
trols in the ASP.NET AJAX Control Toolkit.

Each TabPanel control represents one tab. You can use the HeaderText property to
provide a caption for the tab. In a TabPanel child control, the <ContentTemplate> ele-
ment holds the content of the actual tab, including optional style information:

<ajaxToolkit:TabPanel ID="TabPanel1" runat="server" HeaderText="Chapter 1">
 <ContentTemplate>
 Chapter 1 gives a high-level overview of Ajax and the ASP.NET AJAX
framework and then covers the installation of ASP.NET AJAX, a review of its
structure, and a first simple example.
 </ContentTemplate>
</ajaxToolkit:TabPanel>

The TabContainer control serves as the container for all TabPanel controls. The
ASP.NET AJAX Control Toolkit takes care of the rest. When a user clicks on a tab,
its contents automatically appear. See Example 12-9.

Figure 12-9. The server refuses the data because it was submitted multiple times too quickly

Example 12-9. Using the TabContainer and TabPanel controls

Tab.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

Creating a Tabbed Interface | 217

Figure 12-10 illustrates a tabbed interface comprised of three tabs. There is a catch,
though—at least for the moment. If you disabled JavaScript in your browser,
Example 12-9 will look like Figure 12-11. The reason for that is that the tabs’ con-
tents are hidden when the page is loaded; JavaScript then makes the current tab’s
contents visible. If there is no JavaScript, there are no tabs, either. But who knows, in
an upcoming release of the ASP.NET AJAX Control Toolkit, this might work better
without scripting support. Enjoy experimenting with the controls!

Chapter 17 will show you an alternative way to create a tabbed inter-
face, using the ASP.NET AJAX Futures release.

<head runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <ajaxToolkit:TabContainer ID="TabContainer1" runat="server">
 <ajaxToolkit:TabPanel ID="TabPanel1" runat="server" HeaderText="Chapter 1">
 <ContentTemplate>
 Chapter 1 gives a high-level overview of Ajax and the ASP.NET AJAX
framework and then covers the installation of ASP.NET AJAX, a review of its structure,
and a first simple example.
 </ContentTemplate>
 </ajaxToolkit:TabPanel>
 <ajaxToolkit:TabPanel ID="TabPanel2" runat="server" HeaderText="Chapter 2">
 <ContentTemplate>

Chapter 2 is a concise introduction to JavaScript. Although ASP.NET AJAX does
its best to hide the details from ASP.NET programmers, a certain knowledge of JavaScript
is
required to really master ASP.NET AJAX.
 </ContentTemplate>
 </ajaxToolkit:TabPanel>
 <ajaxToolkit:TabPanel ID="TabPanel3" runat="server" HeaderText="Chapter 3">
 <ContentTemplate>
 Chapter 3 explains the technologies beyond the hype. You learn what happens
in the background, how Ajax works, and what it really is all about, in fewer than 20
pages.
 </ContentTemplate>
 </ajaxToolkit:TabPanel>
 </ajaxToolkit:TabContainer>
 </div>
 </form>
</body>
</html>

Example 12-9. Using the TabContainer and TabPanel controls (continued)

218 | Chapter 12: Autocompleting User Input, Fighting Spam, and More

Summary
This chapter explained a variety of the controls in the ASP.NET AJAX Control Tool-
kit. There are many more controls available, and every release brings new features
and new controls, so make sure to visit the Toolkit home page often!

For Further Reading
http://ajax.asp.net/ajaxtoolkit/

Up-to-date live test page for the Control Toolkit

http://www.google.com/webhp?complete=1&hl=en
Google Suggest

Figure 12-10. A click on the tab displays its contents

Figure 12-11. No JavaScript, no tabs

http://ajax.asp.net/ajaxtoolkit/
http://www.google.com/webhp?complete=1&hl=en

219

Chapter 13 CHAPTER 13

Writing Custom Controls and
Contributing to the Community13

As you have seen in Chapters 10, 11, and 12, the ASP.NET AJAX Control Toolkit
offers a number of valuable controls. This chapter will go one step further by demon-
strating how to use the toolkit infrastructure to write your own controls. You will
also be introduced to some of the methods to contribute to the Toolkit community
at large.

Writing Custom ASP.NET AJAX Controls
The array of controls offered by the ASP.NET AJAX Control Toolkit continues to
expand from release to release. Yet in addition to this already impressive list is a
framework for creating your own custom controls. If you find yourself using the
same JavaScript effects over and over, making them available for reuse via ASP.NET
AJAX is a good idea.

In this section, you’ll create an extender that restricts input into an HTML text box
to a set of predefined characters—functionality not offered by HTML. The ASP.NET
AJAX Control Toolkit provides a project template for Visual Studio 2005 to facili-
tate this work. You begin by installing the template, then modify it and add the logic
for the new extender.

As you’ve seen, the ASP.NET AJAX Control Toolkit comes as one DLL file that con-
tains the complete set of controls. To create a custom control, you will need to com-
pile code. Fortunately, the toolkit is equipped with a Visual Studio template that
makes it easy to generate extenders such as the one we are about to create.

In Chapter 10 you were introduced to the VSI installer that created templates for,
among other things, the ASP.NET AJAX Toolkit-driven web site. These “other
things” were basically C# and VB templates to produce your own custom controls.
When you launch Visual Studio and create a new project, note the ASP.NET AJAX
Control Project template (see Figure 13-1).

220 | Chapter 13: Writing Custom Controls and Contributing to the Community

If you are using Visual Web Developer Express Edition, you can install
the VSI, but you cannot create a new control extender project. The
Express Edition enables you to create only web projects, not custom
control projects. However, the project templates work with Microsoft
Visual Basic 2005 Express Edition and Microsoft Visual C# 2005
Express Edition. Just as with Visual Web Developer Express Edition,
these products are free. If you do not already have one of them installed,
visit the Microsoft Express Editions web site (http://msdn.microsoft.com/
vstudio/express) to download and install one or both. You can then cre-
ate projects that you can compile to produce .NET assemblies (.dll
files). Obviously, the most convenient way to use the VSI is with
Visual Studio 2005. If you can use Visual Studio 2005, you can create
a single solution that contains both the custom extender project as
well as the project for the web site that will use the newly created
extender.

In the following example, we’ll use Visual Studio 2005 and C#. As
noted, the example also works with the Express Edition versions of
Visual Web Developer, Visual C#, and Visual Basic. However, if you
use Visual C# Express Edition or Visual Basic Express Edition, you have
to take an extra step during development: every time you make a change
to the extender code, you need to recompile it in Visual C# Express Edi-
tion or Visual Basic Express Edition, and update the reference.

Figure 13-1. The ASP.NET AJAX Control template

http://msdn.microsoft.com/vstudio/express
http://msdn.microsoft.com/vstudio/express

Writing Custom ASP.NET AJAX Controls | 221

When you create an extender, you will be extending an existing ASP.NET server
control. Therefore, in Visual Studio, open a web site where you can work with the
custom extender and an existing ASP.NET control at the same time. Load an ASP.NET
AJAX web site in Visual Studio. From the File menu, click Add, then New Project.
Choose the ASP.NET AJAX Control Project template, as shown in Figure 13-1. Use
TextBoxMask as the project name for this example.

The new template creates a default project, using the project name (therefore, the
TextBoxMask extender). It consists initially of four files:

TextBoxMaskBehavior.js
The JavaScript code that makes up the extender

TextBoxMaskDesigner.cs
Code used for the Visual Studio designer

TextBoxMaskExtender.cs
The C# code that makes the extender work with the Visual Studio property
inspector at design time, exposing properties so that they can be changed there

Most of your work will go into the most important part of the extender, TextBox-
MaskBehavior.js where all client-side JavaScript logic resides.

But first let’s tweak the two other files for the example. Open the TextBox-
MaskDesigner.cs file and note that it contains nothing more than an empty class.
It looks like the code from Example 13-1.

The TextBoxMaskExtender.cs file contains designer information about the extender.
As you can see in Example 13-2, the code references the TextBoxMaskBehavior.js
file. The default data type for elements used with this extender is Control. However,
as we want to extend a text box, change Control to TextBox.

[TargetControlType(typeof(TextBox))]

Example 13-1. The Designer class

TextBoxMaskDesigner.cs

using System.Web.UI.WebControls;
using System.Web.UI;

namespace TextBoxMask
{
 class TextBoxMaskDesigner : AjaxControlToolkit.Design.
ExtenderControlBaseDesigner<TextBoxMaskExtender>
 {

 }
}

222 | Chapter 13: Writing Custom Controls and Contributing to the Community

Further along in the file you will see the one property the template provides:
MyProperty. Remove this class member and create a ValidChars string property
instead using getter and setter methods. This property will later hold the valid char-
acters that may be entered in the text field.

For these getter and setter methods, use the helper functions GetPropertyValue()
and SetPropertyValue() to access the property value. Also, use the DefaultProperty
attribute to make ValidChars the default property for the extender. Example 13-2
contains the complete code.

Example 13-2. The Extender class

TextBoxMaskProperties.cs

using System;
using System.Web.UI.WebControls;
using System.Web.UI;
using System.ComponentModel;
using System.ComponentModel.Design;
using AjaxControlToolkit;

[assembly: System.Web.UI.WebResource("TextBoxMask.TextBoxMaskBehavior.js",
"text/javascript")]

namespace TextBoxMask
{
 [Designer(typeof(TextBoxMaskDesigner))]
 [ClientScriptResource("TextBoxMask.TextBoxMaskBehavior",
"TextBoxMask.TextBoxMaskBehavior.js")]
 [TargetControlType(typeof(TextBox))]
 [DefaultProperty("ValidChars")]
 public class TextBoxMaskExtender : ExtenderControlBase
 {
 // TODO: Add your property accessors here.
 //
 [ExtenderControlProperty]
 [DefaultValue("")]
 public string ValidChars
 {
 get
 {
 return GetPropertyValue("ValidChars", "");
 }
 set
 {
 SetPropertyValue("ValidChars", value);
 }
 }
 }
}

Writing Custom ASP.NET AJAX Controls | 223

One property that is available by default and does not have to be registered is
TargetControlID, which references the control to which the extender is bound.

Finally, you need to create the JavaScript code that extends the functionality of the
text boxes to which the control is bound. That code will reside in the file TextBox-
MaskBehavior.js.

The template .js file contains some helpful comments with all the steps you need to
take at the places where these steps are required. The first step is to define JavaScript
variables for each property of the extender. The syntax convention is to prefix each
variable with the underscore (_) character and follow it with a lowercase letter:

this._validChars = "";

The next step consists of writing getter and setter methods for all properties, if you
would like to expose this functionality to JavaScript code. This is a simple task you
can carry out mostly with copy and paste. Just keep in mind that JavaScript is case-
sensitive, therefore you need to consistent with case for both the JavaScript variables
and for the C# property names.

get_ValidChars : function() {
 return this._validChars;
},

set_ValidChars : function(value) {
 this._validChars = value;
}

The final step covers the initialization code of the extender. This is the where you
attach JavaScript code to the control in question. For the example, we’re creating an
extender that validates user entry into a text box. It will work in the following fash-
ion: the extender exposes a property that enables the page developer to specify a
string containing the characters the text box will accept. For example, if the prop-
erty is set to "0123456789", the text box will accept only numeric characters.

In the example, we want a validation function to be executed when the user presses a
key. If the user presses a key that is not one of the permitted characters, the event
must be cancelled so that the associated character does not display in the text box.

The event handler must be put in the initialize() method of the
TextBoxMaskBehavior class (the template has already created both the class and the
method).

You may also want to put code in the existing dispose() method. This
method is called for cleanup purposes. Typically, during the dispose
event you release any resources that the control has used, which
includes unbinding any event handlers.

224 | Chapter 13: Writing Custom Controls and Contributing to the Community

We let ASP.NET AJAX scan the browser’s capabilities to determine how to look for
and handle a user keystroke. The $addhandler() method takes care of most of this
work. First, you need to put it in the initialize() method. The code to attach the
method to the event looks like this:

this._keydownHandler = Function.createDelegate(this, this._onkeydown);
$addHandler(this.get_element(),"keydown", this._keydownHandler);

In the dispose() method, you can remove the handler again, this time using the
$removehandler() method in the following fashion:

$removeHandler(this.get_element(), "keydown", this._keydownHandler);
this._keydownHandler = null;

Finally, you must write the actual JavaScript code for the extender. The code first
determines which key has been pressed, depending on the browser type. Then the
code looks for the key in the list of valid characters. If the key is not in that list, the
method ends with return false, which cancels the key event and prevents the char-
acter from displaying in the text box. If the key is in the list, the method exits with
return true and the key event is propagated.

The method also returns true when the key codes 8, 9, 16, 35, 36, 37,
38, 39, 40, 45, or 46 are detected—these are the codes for the Backspace
key, the Tab key, Shift, Home, End, the four arrow keys, insert, and
delete. Another special case is the digits on the numeric keypad (key
codes 96 through 105); the JavaScript String.fromCharCode() method
does not convert these back to the associated digits. Therefore, any key
code between 96 and 105 will be converted into the key code for the
appropriate digit key on the regular keyboard.

For Internet Explorer, returning false from a handler method does not suffice to pre-
vent the entered key from displaying in the text box. You must call the
preventDefault() method of the key down event.

this._onkeydown : function(e) {
 var key = e.rawEvent.keyCode;
 if (key >= 96 && key <= 105) {
 key -= 48;
 }
 if (key == 8 || key == 9 || key == 16
 || (key >= 35 && key <= 40) || key == 45 || key == 46
 || _validChars.indexOf(String.fromCharCode(key)) != -1) {
 return true;
 } else {
 e.preventDefault();
 return false;
 };
}

Writing Custom ASP.NET AJAX Controls | 225

And that’s it, as far as JavaScript is concerned. Example 13-3 contains the complete
code for your extender. For reference purposes, all comments from the control tem-
plate remain intact.

Example 13-3. The JavaScript code for the extender

TextBoxMaskBehavior.js

// README
//
// There are two steps to adding a property:
//
// 1. Create a member variable to store your property
// 2. Add the get_ and set_ accessors for your property.
//
// Remember that both are case sensitive!
//

Type.registerNamespace('TextBoxMask');

TextBoxMask.TextBoxMaskBehavior = function(element) {

 TextBoxMask.TextBoxMaskBehavior.initializeBase(this, [element]);

 // TODO : (Step 1) Add your property variables here
 //
 this._validChars = null;

}

TextBoxMask.TextBoxMaskBehavior.prototype = {

 initialize : function() {
 TextBoxMask.TextBoxMaskBehavior.callBaseMethod(this, 'initialize');

 // TODO: add your initalization code here
 this._keydownHandler = Function.createDelegate(this, this._onkeydown);
 $addHandler(this.get_element(), "keydown", this._keydownHandler);
 },

 dispose : function() {
 // TODO: add your cleanup code here
 $removeHandler(this.get_element(), "keydown", this._keydownHandler);
 this._keydownHandler = null;

 TextBoxMask.TextBoxMaskBehavior.callBaseMethod(this, 'dispose');
 },

 _onkeydown : function(e) {
 var key = e.rawEvent.keyCode;
 if (key >= 96 && key <= 105) {

226 | Chapter 13: Writing Custom Controls and Contributing to the Community

Now, let’s build the project. This will create the TextBoxMask.dll file and include the
.js file as an embedded resource available to the Scriptmanager control at runtime.
Usually, the TextBoxMask extender automatically appears in the toolbox. However,
you typically need to add this item to your web site project manually. To do this in
Solution Explorer, right-click the name of your ASP.NET AJAX web site and choose
Add Reference. In the Projects tab, load the TextBoxMask.dll assembly. The assem-
bly is then copied automatically to the Bin directory.

If you are using Visual Web Developer Express Edition, you cannot
simply reference the custom control project. Rather, you must add a
reference to the TextBoxMask.dll assembly. In Solution Explorer,
right-click the web site name and then click Add Reference. In the Add
Reference dialog box, click the Browse button, and then browse to the
build folder for your custom control project. A typical location for the
project output to reside is as follows:

C:\Documents and Settings\<name>\My Documents\Visual Studio
2005\Projects\TextBoxMask\TextBoxMask\bin\Release

Select the TextBoxMask.dll file, then click OK. (If Visual Web Devel-
oper prompts you to overwrite existing .dlls, click No.)

 key -= 48;
 }
 if (key == 8 || key == 9 || key == 16
 || (key >= 35 && key <= 40) || key == 45 || key == 46
 || this._validChars.indexOf(String.fromCharCode(key)) != -1) {
 return true;
 } else {
 e.preventDefault();
 return false;
 }
 },

 // TODO: (Step 2) Add your property accessors here
 //
 get_ValidChars : function() {
 return this._validChars;
 },

 set_ValidChars : function(value) {
 this._validChars = value;
 }

}

TextBoxMask.TextBoxMaskBehavior.registerClass('TextBoxMask.TextBoxMaskBehavior',
AjaxControlToolkit.BehaviorBase);

Example 13-3. The JavaScript code for the extender (continued)

Writing Custom ASP.NET AJAX Controls | 227

A reference to the .dll file is added to your web project. Whenever you recompile the
custom control in Visual C# or Visual Basic, you need to update the reference in
Visual Web Developer. To do so, in Solution Explorer, open the Bin folder, right-
click TextBoxMask.dll, and select Update Reference. If you have a page open that
uses the control, you may need to close and reopen the page.

If you are using Visual Studio 2005, rebuilding the C# extender
project automatically updates the reference in the web site project.

In the web site project, create a new ASP.NET page. Register a tag prefix for the
extender at the top of your ASP.NET page by entering the following markup:

<%@ Register Assembly="TextBoxMask" Namespace="TextBoxMask" TagPrefix="cc1"%>

Finally, embed the TextBoxMask control on your page—don’t forget the
ScriptManager control. Add a text box and then bind the extender to its text field by
setting the extender’s TargetControlID property. The code in Example 13-4 creates a
text box that accepts only digits, specified by the string in the ValidChars property.
This is a bit tricky to implement with pure JavaScript, so the TextBoxMask extender
can really save you time and effort. And as an added benefit, the resulting extender is
highly reusable.

Example 13-4. Using the custom extender

TextBoxMask.aspx

<%@ Page Language="C#" %>
<%@ Register Assembly="TextBoxMask" Namespace="TextBoxMask" TagPrefix="cc1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />

<cc1:TextBoxMaskExtender ID="TextBoxMaskExtender1" runat="server"
TargetControlID="TextBox1" ValidChars="1234567890" />

 <div>
 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
 </div>
 </form>
</body>
</html>

228 | Chapter 13: Writing Custom Controls and Contributing to the Community

Figure 13-2 shows how the page looks in a browser. And although you cannot see
what happens when you try to press a nondigit key (result: nothing), the screenshot
does give you an idea of how this extender can be used to allow only certain content
in a page.

Additional features you could add to this extender (which implements a whitelist
approach) include a blacklist mechanism—all characters are allowed except those
that you explicitly exclude. You could also implement an extender that enables you
to specify a character mask. The extender could then validate user data against the
mask.

Contributing to the Control Toolkit
So far, you have seen how to create a component using the ASP.NET AJAX Control
Toolkit infrastructure. From there, you could submit the new extender to be
included as a permanent part of the Control Toolkit project. It will be reviewed by
the toolkit team and, if crafted well enough, eventually it could be accepted into the
toolkit for use by the community at large. However, there are easier ways to contrib-
ute to the community effort. For instance, you could provide patches for the toolkit:
code snippets that fix a bug or add a new feature. The toolkit team provides you with
a convenient tool that allows you to both download the most up to date version,
then send in your patches. In this section, we will guide you through that process,
actually fixing a feature request that existed at the time of writing (the focus here will
be on the process, not on the feature or its code).

First, you need the toolkit patch utility available at http://ajax.asp.net/ajaxtoolkit/
patchtool/. Be sure to install both the .NET Framework 2.0 and the Visual J# .Net
Redistributable Package 2.0 (the utility page has links to each of them). Figure 13-3
shows you the patch utility page.

Figure 13-2. The text field now accepts only digits

http://ajax.asp.net/ajaxtoolkit/patchtool/
http://ajax.asp.net/ajaxtoolkit/patchtool/

Contributing to the Control Toolkit | 229

Click the Install button to begin the process. A screen appears asking you to confirm
the installation (Figure 13-4). Upon confirmation, the application and tools are
downloaded and installed (Figure 13-5).

Figure 13-3. The Ajax Control Toolkit Patch Utility page

Figure 13-4. The patch utility will be installed

230 | Chapter 13: Writing Custom Controls and Contributing to the Community

The installer adds the patch utility to the Windows Start menu and launches the appli-
cation. You are then presented with two options in the start dialog (Figure 13-6):

Create a Patch
Assists in downloading the ASP.NET AJAX Control Toolkit to begin work on a
patch

Prepare Patch for Submission
Bundles a patch to be uploaded to the toolkit project page at CodePlex

Figure 13-5. The patch utility is being downloaded

Figure 13-6. The start dialog of the patch utility

Contributing to the Control Toolkit | 231

Choose the Create a Patch option. After a short while, you will receive a list of all
available ASP.NET AJAX Control Toolkit versions (Figure 13-7). You could down-
load and use the latest release version, but the best option is to use the most up-to-
date code. Otherwise, changes you apply to one file might conflict with other recent
changes to the same file. The first download presented is always the most recent one.

Upon acceptance of the license agreement (Figure 13-8), the selected version is
downloaded. The patch utility then prompts you to select a directory in which to
unzip the downloaded code. When clicking the “Choose folders to include” link,
you will be presented a list of branches to unzip, as shown in Figure 13-9. Select only
the Development Branch; the Release Branch and Orcas Branch are, for all intents
and purpose, not accessible. Even some control toolkit members are not allowed to
check in code for these two branches.

After unzipping the toolkit, the patch utility automatically opens the project in
Visual Studio (assuming the default option remained set to “Open the project in
Visual Studio upon completion”). Visual Studio might then prompt you with one or
two security warnings (as shown in Figure 13-10); use the “Load project normally”
option to have full access to the project.

The next step is probably the hardest: creating the patch itself. Open the toolkit
source code, add functionality or fix issues, save your changes, rebuild the project,
and then test the code.

Figure 13-7. Select a toolkit version—the most recent one is recommended

232 | Chapter 13: Writing Custom Controls and Contributing to the Community

Figure 13-8. Read the license, and then the source code is downloaded

Figure 13-9. You only need to download the Development Branch

Contributing to the Control Toolkit | 233

When you are finished, start the patch utility again. This time, choose the second
option in the start dialog, Prepare Patch for Submission. The utility prompts you to
confirm that you did, in fact, test and comment your code (see Figure 13-11). If you
added additional functionality, you should provide test results for that as well. Refer
to the toolkit test web site to view existing tests and to add new ones.

The next step requires the name of the directory where you previously downloaded
the ASP.NET AJAX Control Toolkit. By default, the patch utility chooses the path
from the last download (see Figure 13-12).

You will then be presented a list of files that you modified (Figure 13-13). Uncheck all
files that are not absolutely necessary—for example, change to the Web.config file.
Clicking the Diff link next to each file prepares a comparison of your updated file with
the original file, and displays a detailed listing of any changes you made (Figure 13-14).

You are nearly there. Now it’s time to supply a meaningful description for your patch
(Figure 13-15) and provide the toolkit team your contact information in case they
want to get in touch with you. Be aware, however, that this information is publicly
visible. Finally, click on the Finish button to save the patch in a ZIP file (see
Figure 13-16).

One final step: visit the CodePlex page for the ASP.NET AJAX Control Toolkit (http://
www.codeplex.com/AtlasControlToolkit) and navigate to the work item, which you’ve
modified (entry in the bug tracking system). If no work item exists yet, create one.

Figure 13-10. You can ignore this warning when opening the project in Visual Studio

http://www.codeplex.com/AtlasControlToolkit
http://www.codeplex.com/AtlasControlToolkit

234 | Chapter 13: Writing Custom Controls and Contributing to the Community

Figure 13-11. A checklist before packaging the patch

Figure 13-12. Where do you want to save the patch?

Contributing to the Control Toolkit | 235

Figure 13-13. A list of files that have been changed

Figure 13-14. The difference between the old and the new file

236 | Chapter 13: Writing Custom Controls and Contributing to the Community

Figure 13-15. Providing information about the patch

Figure 13-16. The final step to package the patch

For Further Reading | 237

Then, upload your patch and write a short comment describing it (see Figure 13-17). A
member of the ASP.NET AJAX Control Toolkit team will get back to you if any ques-
tions arise, or your patch will simply be accepted and applied.

There are more incentives planned for contributors, including points for patches
and, for the most active patch developers, invitations to join the toolkit project as an
official contributor. Hope to see you in the project soon!

Summary
In this chapter, you learned how to install and use the ASP.NET AJAX Control Tool-
kit. You also learned how to create your own custom control using the toolkit. A
modified and extended version of the example highlighted in this chapter is now part
of the toolkit. Look for the FilteredTextBox control and try it out!

For Further Reading
http://ajax.asp.net/default.aspx?tabid=47&subtabid=477

The Microsoft site for the ASP.NET AJAX Control Toolkit contains release notes
and live demos.

http://www.codeplex.com/Wiki/View.aspx?ProjectName=AtlasControlToolkit
The community site for the toolkit is located at the CodePlex site, the new
Microsoft site for shared source projects.

http://www.microsoft.com/resources/sharedsource/licensingbasics/sharedsourcelicenses.
mspx

The Microsoft Permissive License is posted at the toolkit site, but this site
explains it and provides an overview of other Microsoft shared source licenses.

Figure 13-17. Upload the patch to a CodePlex work item

http://ajax.asp.net/default.aspx?tabid=47&subtabid=477
http://www.codeplex.com/Wiki/View.aspx?ProjectName=AtlasControlToolkit
http://www.microsoft.com/resources/sharedsource/licensingbasics/sharedsourcelicenses.mspx

PART IV

IV.ASP.NET AJAX Futures

Chapter 14, Client Controls

Chapter 15, Binding and Validating Data

Chapter 16, Using Behaviors and Components

Chapter 17, Using Server Data

Chapter 18, Using Remote Web Services

Chapter 19, Using Animations

Chapter 20, Fixing Bookmarks and Back/Forward Buttons

Chapter 21, Web Parts

241

Chapter 14 CHAPTER 14

Client Controls14

This chapter covers client-side controls that ship with the ASP.NET AJAX Futures.
These controls mimic the behavior of ASP.NET web controls and allow for consis-
tent development on both the server and the client. In addition, they support conve-
nient features, such as data binding, which you’ll explore in Chapter 16.

Introducing ASP.NET AJAX Client Controls
The core release of ASP.NET AJAX 1.0 does not include purely client-based con-
trols. However, these controls are found in the Futures release and are implemented
in the Sys.Preview.UI namespace. Sys.Preview.UI is the client-side equivalent of the
similarly named and well-known Web.UI namespace in ASP.NET.

In pre-release versions of ASP.NET AJAX, the client-side namespace
was named Web.UI and Sys.UI.

Sys.Preview.UI contains a large number of ASP.NET AJAX HTML controls and web
controls. The functionality of ASP.NET AJAX controls is similar but not identical to
that of ASP.NET server controls. They provide a consistent, browser-independent
model that enables JavaScript code to access and change client control properties.
This would require considerable knowledge of JavaScript if attempted using controls
outside theASP.NET AJAX framework. It would also take quite a knack for scripting
workarounds to account for browser inconsistencies.

Table 14-1 lists controls available in the Futures release. The table lists the HTML
elements with which the ASP.NET AJAX control works, along with the equivalent
JavaScript DOM object or method you would otherwise use.

242 | Chapter 14: Client Controls

Using ASP.NET AJAX Controls
The ASP.NET AJAX framework uses two approaches with respect to the controls in
Sys.Preview.UI. In one approach, some controls provide abstractions that make it
easier to use JavaScript for various tasks. These are not controls in the ordinary sense
of displaying a UI on the page. In the second approach, controls provide JavaScript
access to HTML elements on the current page. Both ways are demonstrated in this
section.

Accessing JavaScript Methods
One example of a control that abstracts JavaScript functionality is the client-side
implementation of a message box using Sys.Preview.UI.Window. The JavaScript lan-
guage supports three types of modal message boxes:

window.alert()
Message box with an OK button

window.confirm()
Message box with OK/Cancel or Yes/No buttons

window.prompt()
Message box with an input field and an OK button

Table 14-1. ASP.NET AJAX controls

ASP.NET AJAX control Description HTML element JavaScript equivalent

Sys.Preview.UI.Window Implements
JavaScript pop-up
windows

N/A window.alert(),
window.confirm(),
window.prompt()

Sys.Preview.UI.Label Implements a span
or label element

, <label> Label

Sys.Preview.UI.Image Implements an image Image

Sys.Preview.UI.HyperLink Implements a link Link

Sys.Preview.UI.Button Implements a button <input type="button">,
<input type="submit">,
<input type="reset">,
<button>

button

Sys.Preview.UI.CheckBox Implements a
checkbox

<input type=
"checkbox">

Checkbox

Sys.Preview.UI.Selector Implements a list box
or drop-down list

<select> Select

Sys.Preview.UI.TextBox Implements a text
field

<input type="text">,
<inputtype="password">,
<textarea>

text, password,
textarea

Using ASP.NET AJAX Controls | 243

Inside the ASP.NET AJAX Sys.Preview.UI.Window class, the functionality for calling
window.alert() or window.confirm() is encapsulated in the messageBox() method.
The default behavior is to present a window.alert() box. This corresponds to the
message box style Sys.Preview.UI.MessageBoxStyle.OK. The alternative is to use the
Sys.Preview.UI.MessageBoxStyle.OKCancel style, which uses window.confirm() under
the covers.

But what about the window.prompt() window? To be consistent with Visual Basic,
this is implemented via the inputBox() method instead of the messageBox() method.

The following example implements all three variants of client modal window. Three
client-side buttons are used to call the ASP.NET AJAX functionality:

<input type="button" value="MessageBoxOK" onclick="MessageBoxOKClick();" />
<input type="button" value="MessageBoxOKCancel" onclick="MessageBoxOKCancelClick();"
/>
<input type="button" value="InputBox" onclick="InputBoxClick();" />

Each of the three functions—click1(), click2(), and click3()—call a method of
the ASP.NET AJAX Sys.Preview.UI.window object, as shown in the following code:

<script language="JavaScript" type="text/javascript">
function MessageBoxOKClick() {
 Sys.Preview.UI.Window.messageBox("Using Sys.Preview.UI.Window");
}
function MessageBoxOKCancelClick() {
 Sys.Preview.UI.Window.messageBox("Using Sys.Preview.UI.Window",
Sys.Preview.UI.MessageBoxStyle.OKCancel);
}

function InputBoxClick() {
 Sys.UI.Window.inputBox("Using Sys.Preview.UI.Window", "<enter text here>");
}
</script>

To use ASP.NET AJAX functionality in a page, you must include the ASP.NET AJAX
library. The ASP.NET AJAX ScriptManager element takes care of that:

<asp:ScriptManager runat="server">

This loads the core ASP.NET AJAX library. However, in order to use functionality
from Sys.Preview.UI, the Futures library must also be loaded. Unlike the core
library, this is done manually, using this syntax:

 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview" Name="PreviewScript.js" />
 </Scripts>
</asp:ScriptManager>

Example 14-1 shows the code you need for the first ASP.NET AJAX example in this
chapter. Remember, to run any functionality involving the Futures release and the
Sys.Preview.UI assembly, you must create a web site that is configured to include
Futures functionality. For a refresher on how to do this, see Chapter 1.

244 | Chapter 14: Client Controls

Figure 14-1 shows the result when you click the InputBox button.

This is nice functionality, but not of any particular value, as only very basic Java-
Script functionality is encapsulated by the ASP.NET AJAX controls in use. However,
other controls exist that provide more application functionality.

Example 14-1. Modal JavaScript windows with ASP.NET AJAX

ControlMessageBox.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
 function MessageBoxOKClick() {
 Sys.Preview.UI.Window.messageBox("Using Sys.Preview.UI.Window");
 }

 function MessageBoxOKCancelClick() {
 Sys.Preview.UI.Window.messageBox("Using Sys.Preview.UI.Window",
Sys.Preview.UI.MessageBoxStyle.OKCancel);
 }

 function InputBoxClick() {
 Sys.Preview.UI.Window.inputBox("Using Sys.Preview.UI.Window", "<enter text here>");
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server">
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview" Name="PreviewScript.js" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="button" value="MessageBoxOK" onclick="MessageBoxOKClick();" />
 <input type="button" value="MessageBoxOKCancel"
onclick="MessageBoxOKCancelClick();" />
 <input type="button" value="InputBox" onclick="InputBoxClick();" />
 </div>
 </form>
</body>
</html>

Using ASP.NET AJAX Controls | 245

Accessing HTML Elements
ASP.NET AJAX controls also enable you to put HTML elements in the page and
access them using an object-oriented, client-side approach. This means that even
though you are using HTML elements, you can use a client-side abstraction layer to
access their contents.

Initially, the syntax for using ASP.NET AJAX to access HTML elements can seem a
bit strange. Let’s consider a page that contains a element such as the
following:

This is a label

Using JavaScript, you could access this element with the following code:

var label = document.getElementById("Label1")

But ASP.NET AJAX provides a nice shortcut to the method, $get():

var label = $get("Label1")

Properties for this element, including style information, could then be set. With Java-
Script, you would need to write different code for different browsers. As stated ear-
lier, this requires a fairly substantial knowledge of JavaScript and the DOM, beyond
merely mastering the syntax.

The ASP.NET AJAX way is different. You do need to know the appropriate ASP.NET
AJAX control class for the client-side element, but not too much more than that
(refer back to Table 14-1). In this case, for the element, you use Sys.Preview.
UI.Label. The code must instantiate the class and provide the ID of the HTML ele-
ment. However, the ID will be specified in a unique fashion—the aforementioned
$get() method, with the actual ID in parentheses:

var label = new Sys.Preview.UI.Label($get("Label1"));

Figure 14-1. Clicking a button opens a JavaScript window

246 | Chapter 14: Client Controls

In effect, you are casting the object to a type when you get a reference to it.

Next, register the delegates and event handlers by calling the initialize() method.
This step, though not mandatory for this specific example, is generally recom-
mended for most other scenarios.

label.initialize();

If you do not use event handling (as in the next few examples), you can skip the call
to initialize().

Labels
The ASP.NET AJAX Label control supports the two additional methods that follow.
Both are illustrated in Example 14-2.

get_text()
Retrieves the current text of the element

set_text()
Sets (changes) the text in the element

JavaScript and the browser DOM don’t offer an equivalent to ASP.NET’s
InnerText property. The property that both get_text() and set_text()
access is innerHTML, so you always need to keep an eye open for special
characters and escape them when necessary to avoid side effects.

Example 14-2 shows you how to manipulate a label control. The example demon-
strates three actions:

1. It creates the client-side Sys.Preview.UI.Label object.

2. It reads the old text using the get_text() property method.

3. It writes new text using the set_text() property method.

Example 14-2. Using an ASP.NET AJAX Label control

ControlLabel.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
 function pageLoad() {
 var label = new Sys.Preview.UI.Label($get("Label1"));
 var d = new Date();

Using ASP.NET AJAX Controls | 247

After the page loads, the current time is determined and then placed in the
element. Figure 14-2 displays the result. To see a new result, refresh the browser.

Images
The HTML element represents an image on the page. The Sys.Preview.UI.
Image class implements an ASP.NET AJAX version of a client-side image (repre-
sented in the DOM with the Image object). In addition to the common methods
listed earlier in this chapter, the ASP.NET AJAX Image class supports the following
property methods:

 var time = d.getHours() + ":" + d.getMinutes() + ":" + d.getSeconds();
 label.set_text(label.get_text() + time);
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server">
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview" Name="PreviewScript.js" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 time goes here:
 </div>
 </form>
</body>
</html>

Figure 14-2. The current time appears in the label

Example 14-2. Using an ASP.NET AJAX Label control (continued)

248 | Chapter 14: Client Controls

get_alternateText()
Retrieves the value of the alt attribute

set_alternateText()
Changes the value of the alt attribute

get_height()
Gets the height of the image

set_height()
Sets the height of the image

get_width()
Gets the width of the image

set_width()
Sets the width of the image

get_imageURL()
Retrieves the relative or absolute URL of the image (src attribute)

set_imageURL()
Changes the relative or absolute URL of the image (src attribute)

Once again, standard DOM properties are encapsulated in a class. You don’t need to
learn much JavaScript, just become accustomed to the methods exposed by ASP.NET
AJAX. Example 14-3 shows you how to manipulate the empty element on the
page. Initially it appears like this:

By default, the XHTML validation in Visual Studio will complain about missing
attributes, but you will be using JavaScript code to set the required src and alt
attributes.

Example 14-3. Using an ASP.NET AJAX Image control

ControlImage.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
function pageLoad() {
var image = new Sys.Preview.UI.Image($get("Image1"));
image.set_imageURL("ajaxlogo.png");
image.set_alternateText("ASP.NET AJAX logo");

}
 </script>

Using ASP.NET AJAX Controls | 249

Figure 14-3 shows the result. For this example, you need the file ajaxlogo.png (taken
from http://ajax.asp.net/images/ajax-poster-photo-logo.png) to reside in the root direc-
tory of the web site. You can find the file in the code downloads for this book (http://
www.oreilly.com/catalog/9780596514242).

Hyperlinks
In HTML, the <a> element is used to link to other pages and to documents, and it is
also used for bookmarks. In ASP.NET AJAX, hyperlinks are represented with the
Sys.Preview.UI.HyperLink class. This class implements the get_navigateURL() and
set_navigateURL() property methods to set the link target (only the target URL, not
the target frame or window). It also provides a click event to which you can
respond. (Event handling is covered later in this chapter in the section “Handling
Control Events.”)

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server">
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview" Name="PreviewScript.js" />
 </Scripts>
 </asp:ScriptManager>
 <div>

 </div>
 </form>
</body>
</html>

Figure 14-3. The Image control; the Properties window shows the alternate text

Example 14-3. Using an ASP.NET AJAX Image control (continued)

http://ajax.asp.net/images/ajax-poster-photo-logo.png
http://www.oreilly.com/catalog/9780596514242
http://www.oreilly.com/catalog/9780596514242

250 | Chapter 14: Client Controls

In Example 14-4, an empty link (<a>) is created, with the link target added
dynamically. In the example, the link is the same ASP.NET AJAX logo image used in
the preceding example.

It is not possible to set the text of the link directly via the Link control. A link might
not necessarily be a text link, but may also contain an image or another element.
Therefore, the text of the link can be thought of as another object. If you want to set
the link text, you need to place another element (with ID) inside the link.

Figure 14-4 shows the result.

Example 14-4. Using an ASP.NET AJAX Link control

ControlHyperLink.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
function pageLoad() {
var link = new Sys.Preview.UI.HyperLink($get("Link1"));
link.set_navigateURL("http://ajax.asp.net/");
var image = new Sys.Preview.UI.Image($get("Image1"));
image.set_imageURL("ajaxlogo.png");
image.set_alternateText("ASP.NET AJAX logo");

}
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server">
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview" Name="PreviewScript.js" />
 </Scripts>
 </asp:ScriptManager>
 <div>

 </div>
 </form>
</body>
</html>

Using ASP.NET AJAX Controls | 251

Buttons
HTML supports various kinds of buttons. Some examples are <input type="submit">
to submit a form; <input type="reset"> to clear a form (reset it to its original state);
and finally, <input type="button"> and <button> to declare buttons with no pre-
defined behavior that you can enrich with JavaScript. ASP.NET AJAX implements
buttons with Sys.Preview.UI.Button. The following methods are supported:

get_argument()
Retrieves any argument that is sent along with the command when the button is
clicked

set_argument()
Sets the argument of the button

get_command()
Retrieves the command that is sent when the button is clicked

set_command()
Sets the command of the button

Whenever you set the argument or command properties, the built-in event-handling
mechanism (described later in this chapter) is activated. A different approach for
binding functionality to buttons can be found in Chapter 16.

Figure 14-4. An Image control is now a hyperlink

252 | Chapter 14: Client Controls

Checkboxes
HTML uses <input type="checkbox"> for checkboxes. Checkboxes exist in either one
of two states: checked or not checked. These states can be set using JavaScript,
meaning ASP.NET AJAX can provide this functionality as well. The set_checked()
method can change the state of a checkbox (by providing a Boolean value), and
get_checked() retrieves the current state. The associated class in ASP.NET AJAX is
Sys.Preview.UI.CheckBox.

Example 14-5 uses HTML to create a checkbox, and ASP.NET AJAX/JavaScript to
set its checked state to true.

Figure 14-5 shows the result displayed.

Example 14-5. Using an ASP.NET AJAX CheckBox control

ControlCheckBox.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
 function pageLoad() {

var checkbox = new Sys.Preview.UI.CheckBox($get("CheckBox1"));
checkbox.set_checked(true);

 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server">
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview" Name="PreviewScript.js" />
 </Scripts>
 </asp:ScriptManager>
 <div>

<input type="checkbox" id="CheckBox1" />
 <label for="CheckBox1">click me!</label>
 </div>
 </form>
</body>
</html>

Using ASP.NET AJAX Controls | 253

Selection Lists
HTML selection lists (<select>...</select>) come in two forms: a drop-down list
that requires the user action to display all list elements, or a selection list in which
some of the elements are already visible. Both types of lists are covered by ASP.NET
AJAX with the Sys.Preview.UI.Selector class. Unlike JavaScript’s treatment of a
<select> element, ASP.NET AJAX classes do not provide the ability to set the indi-
vidual values of the list’s elements.

If the data for the list exists in the form of a .NET DataTable object,
data binding is a possibility (otherwise, you would have to provide the
list entries via markup). Chapter 17 explains this approach.

For now, however, we can demonstrate the get_selectedValue() method, which
determines the value attribute of the currently selected item in the list.

When a form is sent to the server via HTTP GET or POST, it is not
essential to set the value attribute, because the post process passes the
caption of the element (the text between <option> and </option>) for
value. However, JavaScript views a list item with no value property as
empty. Therefore, you should always set the value property for all list
elements.

Since event handling isn’t covered until later in this chapter, the change event of the list
in Example 14-6 is not captured. Instead, the state of the list is analyzed every second.
This is done using the JavaScript function, setInterval(). This polling technique is
used only for the sake of this example. Chapter 16 will detail a much better way to
keep two elements in sync, namely through the use of data binding.

Figure 14-5. ASP.NET AJAX has checked the checkbox

254 | Chapter 14: Client Controls

function pageLoad() {
 window.setInterval(
 function() {
 //Access the list and output its selected value
 },
 1000);
}

Example 14-6 shows how to use ASP.NET AJAX to check for a current selection and
display its value in a element (Sys.Preview.UI.Label).

Example 14-6. Using an ASP.NET AJAX Select control

ControlSelector.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
 var label;
 var select;

 function pageLoad() {
label = new Sys.Preview.UI.Label($get("Label1"));
select = new Sys.Preview.UI.Selector($get("Select1"));

 // Poll every second to determine whether a value has been selected.
 window.setInterval(
 function() {

label.set_text(select.get_selectedValue());
 },
 1000);
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server">
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview" Name="PreviewScript.js" />
 </Scripts>
 </asp:ScriptManager>
 <div>

<select id="Select1" size="3">
<option value="1">one</option>
<option value="2">two</option>
<option value="3">three</option>

</select>

Using ASP.NET AJAX Controls | 255

Figure 14-6 shows the result.

Using get_selectedValue() may be convenient, but only for single-
selection lists. If the list is set for multiple selections (<select
multiple="multiple">), you the value of the first selected list element
is returned, not all selected elements. To check all selected elements,
you would need to use JavaScript code to loop through all the items
individually, as shown in the following snippet:

var op = document.forms[0].elements["Select1"].options;
for (var i=0; i < op.length; i++) {
 if (op[i].selected) {
 //element is selected
 } else {
 //element is not selected
 }
}

Text Fields
A single-line text box is represented in HTML using <input type="text">. This ele-
ment can be managed using the ASP.NET AJAX class Sys.Preview.UI.TextBox. The
functionality provided by ASP.NET AJAX covers keyboard event handling and, of
course, both read and write access for the text of the element itself. The methods for
the latter are get_text() and set_text().

Selected value: <label id="Label1"></label>
 </div>
 </form>
</body>
</html>

Figure 14-6. The selected value is written to the Label control

Example 14-6. Using an ASP.NET AJAX Select control (continued)

256 | Chapter 14: Client Controls

Example 14-7 displays the data entered into the text field using the same polling
approach as in the preceding example (setInterval()) to periodically copy the con-
tents of the text box to an ASP.NET AJAX Label control.

Figure 14-7 shows the result.

Single-line text fields (<input type="text">), multiline text fields
(<textarea>), and password fields (<input type="password">) have one
thing in common: from a JavaScript point of view, they are controlled
in the same way. The value property provides read and write access to
the contents of the field. So, you can use Sys.Preview.UI.TextBox for
all three kinds of form fields.

Example 14-7. Using an ASP.NET AJAX TextBox control

ControlTextBox.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
 function pageLoad() {
 window.setInterval(
 function() {
 var label = new Sys.Preview.UI.Label($get("Label1"));
 var textbox = new Sys.Preview.UI.TextBox($get("TextBox1"));
 label.set_text(textbox.get_text());
 },
 1000);
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server">
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview" Name="PreviewScript.js" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="TextBox1" />

 Entered value: <label id="Label1"></label>
 </div>
 </form>
</body>
</html>

Using ASP.NET AJAX Controls | 257

Base Methods
As discussed earlier in “Introducing ASP.NET AJAX Client Controls,” ASP.NET
AJAX supports common methods for each control within Sys.Preview.UI. Most of
these set a property that JavaScript exposes for all controls. Two examples of this are
the get_accessKey() and set_accessKey() methods that control the DOM accesskey
property.

Methods with somewhat more visible results are those for controlling the CSS class
of an element. This makes changing the layout of elements on the fly very easy. Here
are the supported methods:

addCssClass()
Adds a CSS class to an element

removeCssClass()
Removes one CSS class from an element

toggleCssClass()
Adds the class to an element if it is not already there; otherwise, removes the class

Example 14-8 demonstrates the toggleCssClass() method. It also determines the
current CSS class. To do so, the get_element() method of the label object returns the
actual DOM element. The className property of the DOM element contains the list
of CSS classes currently used.

In the page, the following three CSS classes are defined and can complement each
other (i.e., every class covers another style):

<style type="text/css">
.style1 { font-family: Monospace; }
.style2 { border-style: solid; }
.style3 { color: #00f; }
</style>

Figure 14-7. The text in the text box appears in the label

258 | Chapter 14: Client Controls

The JavaScript code in the example selects one of these classes at random and then
calls toggleCssClass(). A Label control periodically displays the current class or
classes being used.

Figure 14-8 shows the result.

Example 14-8. Using the base CSS methods for ASP.NET AJAX controls

ControlCSS.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
 <style type="text/css">
 .style1 { font-family: Monospace; }
 .style2 { border-style: solid; }
 .style3 { color: #00f; }
 </style>

 <script language="JavaScript" type="text/javascript">
 function pageLoad() {
 window.setInterval(

function() {
var label = new Sys.Preview.UI.Label($get("Label1"));
var rnd = Math.ceil(3 * Math.random());
label.toggleCssClass("style" + rnd);
label.set_text(label.get_element().className);

},
 1000);
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server">
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview" Name="PreviewScript.js" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 CSS class(es):
 <label id="Label1">
 </label>
 </div>
 </form>
</body>
</html>

Handling Control Events | 259

Handling Control Events
ASP.NET AJAX provides its client controls with an event handling mechanism. The
mechanism works a bit differently than you might expect, but it’s still intuitive.

The first and most important step is to call the initialize() method of the element
whose events you want to handle. This enables all the mechanisms that are inter-
nally used to capture events. Setting up events becomes a two-step process:

1. Write an event handling function that is called when the event occurs. As with
the .NET Framework, the event handling function takes two arguments: one
containing the object that raised the event, the other an event-specific object
that, depending on the event, might contain additional information about the
event.

2. Link the event handling function to the element using <element>.add_<event
name>(<method name>). The syntax is roughly reminiscent of the .NET Frame-
work implementation of delegates.

Events for Buttons
Remember the example with the three modal pop-up windows from the beginning of
this chapter? There, the JavaScript code that displayed the windows was added
declaratively in the HTML button. This can also be done using the ASP.NET AJAX
library, but in that case, you would not have gained much from using ASP.NET
AJAX when compared to the “pure” JavaScript approach, except for the certainty
that the ASP.NET AJAX library is fully loaded before attaching any JavaScript code
to an element. However, the whole idea of the ASP.NET AJAX framework is to bring
server-side and client-side development closer to each other and to bring new OOP

Figure 14-8. Two styles were applied at random

260 | Chapter 14: Client Controls

capabilities and browser independence to the client. Therefore, using ASP.NET
AJAX for tasks that you can do as easily in JavaScript still has benefits.

Example 14-9 revisits the “three windows” example from Example 4-1, using ASP.NET
AJAX event handling. The HTML buttons are referenced using the Sys.Preview.UI.
Button class, and the associated event is (somewhat obviously) click.

Example 14-9. Using ASP.NET AJAX Button control events

ControlEventButton.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
 function pageLoad() {
 var button1 = new Sys.Preview.UI.Button($get("MessageBoxOK"));
 var button2 = new Sys.Preview.UI.Button($get("MessageBoxOKCancel"));
 var button3 = new Sys.Preview.UI.Button($get("InputBox"));

 button1.initialize();
 button2.initialize();
 button3.initialize();

 button1.add_click(MessageBoxOKClick);
 button2.add_click(MessageBoxOKCancelClick);
 button3.add_click(InputBoxClick);
 }

 function MessageBoxOKClick() {
 Sys.Preview.UI.Window.messageBox("Using Sys.Preview.UI.Window");
 }
 function MessageBoxOKCancelClick() {
 Sys.Preview.UI.Window.messageBox("Using Sys.Preview.UI.Window",
Sys.Preview.UI.MessageBoxStyle.OKCancel);
 }
 function InputBoxClick() {
 Sys.Preview.UI.Window.inputBox("Using Sys.Preview.UI.Window", "<enter text here>");
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server">
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview" Name="PreviewScript.js" />
 </Scripts>

Handling Control Events | 261

There are two alternatives for adding an event handler to an element.
First, you can call the $addHandler() function to assign a handler:

$addHandler(button1.get_element(), 'click', MessageBoxOK);

You’ve actually seen that addHandler function in action in previous
chapters of this book, and we discussed it briefly in Chapter 4.

If you have more than one handler for an element, the $addHandlers()
function comes in handy:

$addHandlers(
 <current element>.get_element(),
 {
 <event>: <handler function>,
 <another event>: <another handler function>
 }
);

Events for Lists
An event that is implemented for many ASP.NET AJAX client controls, and one that
does not exist in this form in JavaScript, is propertyChanged. It is used generically for
all controls to indicate that something has changed: a key was pressed, a list item
was selected, and so on. In that case, the event passes you the name of the property
that has changed.

It is also possible to work with individual change events for each form element so
that you know exactly what values have changed. For example, when the selected
element in a selection list changes, it raises the selectionChanged event (in JavaScript,
the event is called change). Illustrating this event is again an opportunity to rewrite
one of the previous examples (see Example 14-7). This time, we do not have to peri-
odically check the selection list for changes; instead, we capture the associated event.
Remember to call initialize(), otherwise, the event cannot be captured.
Example 14-10 shows code that handles a Selector control’s selectionChanged event.

 </asp:ScriptManager>
 <div>
 <input type="button" value="MessageBoxOK" id="MessageBoxOK" />
 <input type="button" value="MessageBoxOKCancel" id="MessageBoxOKCancel" />
 <input type="button" value="InputBox" id="InputBox" />
 </div>
 </form>
</body>
</html>

Example 14-10. Using ASP.NET AJAX selection list events

ControlEventSelector.aspx

<%@ Page Language="C#" %>

Example 14-9. Using ASP.NET AJAX Button control events (continued)

262 | Chapter 14: Client Controls

The performance of this code is much better than in the previous version of this
example, as the application reacts immediately when the selection in the list is
changed, not just at the end of each 1,000-millisecond interval. See Figure 14-9 for a
browser screenshot.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
 var select;
 var label;

 function pageLoad() {
 select = new Sys.Preview.UI.Selector($get("Select1"));
 label = new Sys.Preview.UI.Label($get("Label1"));

select.initialize();
select.add_selectionChanged (listHasChanged);

 }
function listHasChanged(sender, args) {
label.set_text(select.get_selectedValue());

}
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server">
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview" Name="PreviewScript.js" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <select id="Select1" size="3">
 <option value="1">one</option>
 <option value="2">two</option>
 <option value="3">three</option>
 </select>

 Selected value: <label id="Label1"></label>
 </div>
 </form>
</body>
</html>

Example 14-10. Using ASP.NET AJAX selection list events (continued)

For Further Reading | 263

Summary
This chapter showed you what ASP.NET AJAX offers in the client-side Sys.Preview.UI
namespace—in particular, ways to write ASP.NET AJAX-specific JavaScript to work
with HTML elements. It also covered event handling in ASP.NET AJAX. The next
chapter will show you how to bind data to client-side elements so that you do not
have to set the values manually. Data binding also enables you to sync elements—
that is, to link them together so that a change in one element is reflected in the other,
and vice versa.

For Further Reading
http://quickstarts.asp.net/Futures/ajax/doc/intro.aspx

Pre-release Microsoft documentation on ASP.NET AJAX Futures Controls

Figure 14-9. Clicking on the list immediately displays the selected item

http://quickstarts.asp.net/Futures/ajax/doc/intro.aspx

264

Chapter 15CHAPTER 15

Binding and Validating Data 15

Data binding is the means by which a control (i.e., an HTML page element) is bound
to data. Typically this is done so that it can be displayed to the user. For example,
with data binding, you can tie the contents of a text box to a label element, or trans-
form the data a user enters into something else (for instance, HTML) and process it
further. Very often, data binding draws information from a database. This chapter
covers the basics of ASP.NET AJAX data binding; Chapter 17 explains how to use
ASP.NET AJAX to access data on the server.

The examples in Chapter 14 did not use declarative code to assign values to controls
on the page, although the declarative coding model is one of the advantages of a
framework like ASP.NET AJAX. Also, we found it necessary to use one or two hacks
(or, put in more diplomatic terms, “less elegant” methods), such as using
setInterval() to keep two HTML elements in sync. In this chapter, you’ll learn xml-
script, a declarative markup that ships with the Futures release of ASP.NET AJAX.

Data Binding
Data binding links data with an HTML element which maintains it for visual repre-
sentation. In ASP.NET, data binding is used with controls such as the GridView,
FormView, and DetailsView. Though of course, it’s also possible to tie data to other
objects, such as a bulleted list.

ASP.NET AJAX offers two approaches to data binding. One is programmatic, the
other uses a unique kind of XML markup that ASP.NET AJAX interprets on the fly.

Using Code for Data Bindings
Programmatic data binding sounds more complicated than it actually is. Basically,
you need to instantiate a class, then set some properties. The client-side class that is
used for all ASP.NET AJAX bindings is Sys.Preview.Binding.

Data Binding | 265

After you have created the binding by instantiating the class, you provide the follow-
ing information:

A data context
The name of the element that contains the data to bind to

A data path
The name of the property to use as binding source

A property
The name of the property to use as the binding target

A transformer
Optional code that converts the source data in some fashion before writing it to
the target

A binding direction
A value specifying that the data is incoming, outgoing, or both

Some of this terminology will be new to ASP.NET users, such as the distinction
between a data path and a property. It was selected to be compatible with the vocab-
ulary that will be used for Windows Presentation Foundation (WPF) in Windows
Vista. But the approach is quite straightforward: a binding object to which you can
add the target element (this is why you need both the source element and its data
path, but only the target property).

The data can be changed optionally during the binding process using a transformer.
You can choose from the built-in transformers offered by ASP.NET AJAX, or you
can define your own custom transformers as well. The transformers that ship with
the Futures release include:

Sys.Preview.BindingBase.Transformers.Invert
Converts true to false and false to true

Sys.Preview.BindingBase.Transformers.ToString
Converts the value to a string, just as String.Format() would do; this permits
the use of placeholders

Sys.Preview.BindingBase.Transformers.Adds
Adds a value to the source value

Sys.Preview.BindingBase.Transformers.Multiply
Multiplies the source value by another value

Sys.Preview.BindingBase.Transformers.Compare
Compares the source value with a value and returns true if equal or false if not

Sys.Preview.BindingBase.Transformers.CompareInverted
Compares the source value with a value and returns false if equal or true if not

Some of these transformers take an argument that can be set with the set_
transformerArgument() method (for instance, the format for the ToString transformer).

266 | Chapter 15: Binding and Validating Data

Programmatic data binding using a built-in transformer

Let’s return to actual code. Once again, in the interest of saving time and energy, we
will recycle an existing example, this one from Chapter 14. Recall in Example 14-8,
we created a text box and label. Changes in the text box also changed the text of the
Label control. Now, we would like to connect these two controls using bindings.
First, we need two elements in the HTML markup, such as the snippet below:

<input type="text" id="TextBox1" />

<label id="Label1"></label>

Next, we need code to instantiate them in JavaScript:

function pageLoad() {
 var textbox = new Sys.Preview.UI.TextBox($get("TextBox1"));
 var label = new Sys.Preview.UI.Label($get("Label1"));

Now we’re ready for binding. We first instantiate the Sys.Binding class:

 var binding = new Sys.Preview.Binding();

Then we must attach the binding’s data source (data context). In this example, we
are referencing the TextBox control:

 binding.set_dataContext(textbox);

As the goal is to place text within the text box, the correct data path (property name)
is text:

 binding.set_dataPath("text");

The data will be written into the Label control’s text property:

 binding.set_property("text");

Now let’s move on to a transformation. For this example we will use, ToString:

 binding.add_transform(Sys.Preview.BindingBase.Transformers.ToString);

By default, the input data is used as the transformation argument. You can provide
additional text to the argument as well, such as labels, sentence prefixes and suf-
fixes, or even formatting information:

 binding.set_transformerArgument("Text entered: {0}");

The binding is nearly complete. Next, you need to provide the target element, using
the set_target() method:

 binding.set_target(label);

Now to the tricky (and final) stage. Both controls and the binding must be initialized:

 textbox.initialize();
 label.initialize();
 binding.initialize()
}

Data Binding | 267

Why is this tricky? It’s all in the timing. initialize()needs to be
called at the very end of the code, after you have created and attached
the binding. If you call initialize() at an earlier stage, the binding
will not be covered by the initialization and nothing will happen. In
the previous chapter, intialize() was used for event handling, where
no such constraints exist. A method can be called at any point. Here,
however, it is important that the initialize() call is placed last. The
order in which the other binding methods are called is inconsequen-
tial. In previous versions of ASP.NET AJAX/Atlas, it was not neces-
sary to initialize the binding, so be aware of this when upgrading
legacy code.

Finally, do not forget to load the PreviewScript.js file where all those bindings are
implemented:

<asp:ScriptManager runat="server">
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js"
Assembly="Microsoft.Web.Preview" />
 </Scripts>
</asp:ScriptManager>

The complete code is shown in Example 15-1. When you enter some text in the text
field, nothing happens at first. When you leave the text field, either by using the Tab
key or by clicking outside the field, the propertyChanged event is triggered, the bind-
ing is executed, and your input appears in the label, as shown in Figure 15-1.

Example 15-1. Using ASP.NET AJAX data binding with a transformer

ControlBindingTextBox.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
 function pageLoad() {
 var textbox = new Sys.Preview.UI.TextBox($get("TextBox1"));
 var label = new Sys.Preview.UI.Label($get("Label1"));

 var binding = new Sys.Preview.Binding();
 binding.set_dataContext(textbox);
 binding.set_dataPath("text");
 binding.set_property("text");
 binding.add_transform(Sys.Preview.BindingBase.Transformers.ToString);
 binding.set_transformerArgument("Text entered: {0}");
 binding.set_target(label);

268 | Chapter 15: Binding and Validating Data

Binding direction

By default, a binding is “incoming,” meaning that the data is copied from the source
to the target. Imagine that you replace the Label control with a second text box and
implement the binding as before. Then changes in the first text box are copied into
the second one, but not vice versa. This behavior can be changed, however, by call-
ing the Binding object’s set_direction() method. The following values are possible:

Sys.Preview.BindingDirection.In
The data is copied from the source to the target (default).

Sys.Preview.BindingDirection.Out
The data is copied from the target to the source. This is particularly useful to
reverse the effect of certain transformers.

 textbox.initialize();
 label.initialize();
 binding.initialize();
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js" Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="TextBox1" />

 <label id="Label1"></label>
 </div>
 </form>
</body>
</html>

Figure 15-1. The Label control’s text is bound to the TextBox control’s text property

Example 15-1. Using ASP.NET AJAX data binding with a transformer (continued)

Data Binding | 269

Sys.Preview.BindingDirection.InOut
Changes to the data-bound properties in either target or source are copied to the
other control.

The following command would make the binding bidirectional:

binding.set_direction(Sys.Preview.BindingDirection.InOut);

The binding direction is also important when using the Add or Multiply transform-
ers. If you are using Sys.Preview.BindingDirection.InOut, ASP.NET AJAX processes
the transformers backward, interpreting an Add transformer as subtract, and a
Multiply transformer as divide.

Creating a custom transformer

If the built-in ASP.NET AJAX transformers are insufficient for your needs, it is easy
to create a custom one. For example, the HTML markup in the text box of
Example 15-1 is not escaped when the text is set in the Label control. If a user enters
HTML in the text box, the markup (for instance, Text) is applied as HTML in
the Label control instead of being displayed (in the example, this would make the
text appear in boldface). If the text contains JavaScript, the code will be executed
instead of displayed.

To avoid this behavior, you must write a custom transformer that converts HTML
control characters, such as angle brackets and quotation marks—into their corre-
sponding HTML entities.

Looking at the ASP.NET AJAX JavaScript source code (Atlas.js, to be exact), you can
find out how such a transformer is implemented. The function signature for a trans-
formation expects two parameters. The first, a sender and an event, is usually not
used. The second parameter contains the data to be transformed:

function myTransformer(sender, args) {
 var value = args.get_value();
 ...

After the transformation, the value must be written back to the event argument using
its set_value() method:

 ...
 args.set_value(value);
}

Here is a possible implementation of a transformer that escapes HTML markup
using JavaScript regular expressions. The g modifier at the end of the expression
ensures that all occurrences of ampersands, angle brackets, or quotes are replaced.

function customHtmlEncode(sender, args) {
 var value = args.get_value();
 var newValue = value.replace(/&/g, "&")
 .replace(/</g, "<")
 .replace(/>/g, ">")

270 | Chapter 15: Binding and Validating Data

 .replace(/"/g, """)
 .replace(/'/g, "'");
 args.set_value(newValue);
}

The last step is to add this function as the transformer for the data binding, just as
you would do with a built-in transformer. Example 15-2 shows the complete code
for a page that uses a custom transformer. Figure 15-2 displays the results.

Example 15-2. Using a custom transformer

ControlBindingCustom.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
 function pageLoad() {
 var textbox = new Sys.Preview.UI.TextBox($get("TextBox1"));
 var label = new Sys.Preview.UI.Label($get("Label1"));

 var binding = new Sys.Preview.Binding();
 binding.set_dataContext(textbox);
 binding.set_dataPath("text");
 binding.set_property("text");
 binding.add_transform(customHtmlEncode);
 binding.set_target(label);

 textbox.initialize();
 label.initialize();
 binding.initialize();
 }

 function customHtmlEncode(sender, args) {
 var value = args.get_value();
 var newValue = value.replace(/&/g, "&")
 .replace(/</g, "<")
 .replace(/>/g, ">")
 .replace(/"/g, """)
 .replace(/'/g, "'");
 args.set_value(newValue);
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">

Data Binding | 271

Using Markup for Data Binding: xml-script
The programmatic approach to data binding works beautifully, but a declarative
approach has advantages as well. For example, with a declarative approach the issues
that arise with use of the initialize() method (explained in the previous section)
simply do not exist.

With its preview releases of ASP.NET AJAX, Microsoft introduced xml-script, a spe-
cial markup format for adding functionality to ASP.NET AJAX pages. The ASP.NET
AJAX team believed that using inline XML was a good way to provide needed infor-
mation that the client’s JavaScript interpreter can evaluate at runtime. It also offers
developers a standards-compatible markup that is easy to read and might at one
point even enjoy tool support. On the downside, there is no IntelliSense support for
xml-script in Visual Studio. (For more details on this decision, read the blog entry at
http://www.nikhilk.net/AtlasXMLScript.aspx). Somewhere along the line though,
Microsoft decided to not pursue xml-script further. It is still available in the Futures
release (and will therefore be used in this section), but chances that it will be pro-
moted to the core ASP.NET AJAX Extensions are minimal.

 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js" Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="TextBox1" />

 <label id="Label1"></label>
 </div>
 </form>
</body>
</html>

Figure 15-2. The HTML markup is escaped in the label

Example 15-2. Using a custom transformer (continued)

http://www.nikhilk.net/AtlasXMLScript.aspx

272 | Chapter 15: Binding and Validating Data

The basic layout of xml-script is similar to the following:

<script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components />
 </page>
</script>

ASP.NET AJAX relies on a markup element, <script>, but introduces the special
type text/xml-script. This element is used to define ASP.NET AJAX functionality
declaratively, data binding being a case in point. Within the <script> element, the
<page> element is used to provide information about ensuing elements on the page
and their bindings. The <components> section enables you to declaratively instantiate
ASP.NET AJAX controls for elements on the page, such as you learned to do pro-
grammatically. The names of the tags for the supported HTML tags are very similar
to the class names in Sys.Preview.UI, except the HTML tag names use camel casing,
in which the initial word is lowercase and subsequent words uppercase (e.g.,
checkBox). The following is a list of the elements you can use in the <components> sec-
tion to reference HTML elements:

<control>
Generic element for any control

<label> or
A text label

<image>
An image

<hyperLink>
A link

<button>
A button

<checkBox>
A checkbox

<selector>
A selection list

<textBox>
A text field

To identify which of these tags represents which element on the page, you set the id
property to the ID of the corresponding element:

<label id="Label1" />

Data bindings

A data binding is represented by the <binding> element, This element is declared as a
child of the data binding control. Within the <binding> element, you can set the

Data Binding | 273

properties listed in Table 15-1. These will be familiar to you from the examples ear-
lier in this chapter.

It is probably obvious what the function of each of these properties is. One conve-
nience you will appreciate is you do not need to provide the full namespace for
transformers and directions. Instead, you can abbreviate using, for example,
ToString in place of Sys.Preview.Binding.Transformers.ToString, or InOut rather
than Sys.Preview.BindingDirection.InOut.

Using this xml-script markup, it is possible to bind data without writing code. One
important fact though: referencing an HTML element in xml-script is equivalent to
calling initialize() on it. Put another way, for any control that you must initialize,
you must reference it in xml-script. Therefore, you also have to reference the text box
in the xml-script markup, even though the binding is attached to the <label> ele-
ment. Example 15-3 shows how this is done.

Table 15-1. Properties for the <binding> element

Property Description

dataContext Element with the data to bind

dataPath Property to be used as the binding source

property Property to be used as the binding target

transformerArgument Argument for the transformer

transform Transformer to be used

direction Direction in which to bind

Example 15-3. Using ASP.NET AJAX bindings via xml-script markup

ControlBindingDeclarative.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server">
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js" Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="TextBox1" />

 <label id="Label1"></label>
 </div>

274 | Chapter 15: Binding and Validating Data

If you are using a custom transformer, you do need code, but only for
the transformer itself. You provide the transform function’s name in
the transform attribute, and the custom transformer is called when the
binding occurs.

Event handling

Chapter 15 detailed client control event handling for ASP.NET AJAX. With xml-
script, you can configure event handling in a fully declarative way.

As with data binding, everything takes place in the <components> section of the xml-
script block. For each event (for example, click), there is an associated XML tag
(<click>). Each event element supports the following three child elements:

<setPropertyAction> element
Sets properties of an element

<invokeMethodAction> element
Calls a method

<button click="someFunction">
Declaratively adds an event handler

Let’s begin with <setPropertyAction>. We will use a slightly modified version of
Example 14-9, which changes CSS classes dynamically. This time, the CSS class is
changed by setting the class property of the associated element.

The <setPropertyAction> tag supports the following attributes:

 </form>
 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <textBox id="TextBox1" />
 <label id="Label1">
 <bindings>
 <binding dataContext="TextBox1"
 dataPath="text"
 property="text"
 transform="ToString"
 transformerArgument="Text entered: {0}" />
 </bindings>
 </label>
 </components>
 </page>
 </script>
</body>
</html>

Example 15-3. Using ASP.NET AJAX bindings via xml-script markup (continued)

Data Binding | 275

target
The element to access

property
The property to set

propertyKey
This property supports “dot” syntax (.) when using subproperties, such as
style.borderStyle property must then be set to "element".

value
The new value

As an example, we want an action to be triggered when the user clicks a button. The
<click> event is what you need to capture. The following code snippet changes
the border style of a label when Button1 is pressed.

<label id="Label1" />
<button id="Button1">
 <click>
 <setProperty target="Label1"
 property="element"
 propertyKey="style.borderStyle"
 value="dotted" />
 </click>
</button>

This leads to the markup shown in Example 15-4, in which two buttons are defined,
each with a different setPropertyAction definition. Figure 15-3 displays the result.

Example 15-4. Setting properties via xml-script

ControlDeclarativeProperty.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js" Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <label id="Label1">This text will be reformatted</label>
 </div>

276 | Chapter 15: Binding and Validating Data

Method invocation

Setting a property is convenient, but the ability to invoke a method when an event
occurs is a must-have feature. As you might expect, this is also possible in xml-script.
It requires two elements:

• The <invokeMethodAction> element

• The <parameters> element

 <input type="button" id="Button1" value="Solid" />
 <input type="button" id="Button2" value="Dotted" />
 </form>
 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <label id="Label1" />
 <button id="Button1">
 <click>
 <setPropertyAction target="Label1"
 property="element"
 propertyKey="style.borderStyle"
 value="solid" />
 </click>
 </button>
 <button id="Button2">
 <click>
 <setPropertyAction target="Label1"
 property="element"
 propertyKey="style.borderStyle"
 value="dotted" />
 </click>
 </button>
 </components>
 </page>
 </script>
</body>
</html>

Figure 15-3. When you click a button, the CSS class of the text changes

Example 15-4. Setting properties via xml-script (continued)

Data Binding | 277

<invokeMethodAction> supports the following attributes:

method
Specifies which method to call

target
Specifies the object whose method you are calling

You are not restricted merely to built-in functionality. For example, you can use the
invokeMethodAction definition to call a web service method. Let’s create a simple web
service that returns one of two values: style1 or style2. Example 15-5 illustrates the
code.

Next, we want to use this web service to format an element according to the CSS
class determined on the server. Here are the two CSS classes:

<style type="text/css">
 .style1 { font-family: Monospace; border-style: dotted; color: #0f0; }
 .style2 { font-family: Sans-Serif; border-style: solid; color: #0ff; }
</style>

The first step in xml-script is to define the web service so ASP.NET AJAX initializes
it. To do this, we’ll use the <serviceMethodRequest> element, which takes the follow-
ing attributes:

id
An identification that is used to refer to this web service method from other
places in xml-script.

url
The URL of the web service.

Example 15-5. The random CSS class web service

RandomCssClass.asmx

<%@ WebService Language="C#" Class="RandomCssClass" %>

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.Web.Script.Services.ScriptService]
public class RandomCssClass : System.Web.Services.WebService {

 [WebMethod]
 public string getRandomCssClass() {
 Random r = new Random();
 return "style" + r.Next(1, 3);
 }

}

278 | Chapter 15: Binding and Validating Data

methodName
The name of the web service method.

useGet
Whether to use HTTP GET to call the web service. Set this to false, since HTTP
GET is disabled by default.

<serviceMethodRequest id="randomCssMethod"
 url="RandomCssClass.asmx"
 methodName="getRandomCssClass"
 useGet="false">

Whereas buttons can raise an event, such as click, a web service method request can
handle the <complete> event, which is triggered once the web service returns data.
When handling this event, we want to set the CSS class of a label appropriately. This
is a case for <setPropertyAction>:

 <completed>
 <setPropertyAction target="Label1"
 property="element"
 propertyKey="className">

The last step is crucial. We once again use ASP.NET AJAX data binding to bind the
result of the web service call to the className property of the label. In the previous
example, we set the property value of labels to hardcoded values. However, in the
next example, we’re setting a property to a dynamic value, which in this case is the
result of the method call. For that, we need data binding.

Determining the values for dataContext ("randomCssMethod", the ID of the
<serviceMethodRequest> element) and property ("value") is quite easy, but
the dataPath value of result is something you need to look up (this is a reserved
term). This leads to the following markup:

 <bindings>
 <binding dataContext="randomCssMethod"
 dataPath="result"
 property="value" />
 </bindings>
 </setPropertyAction>
 </completed>
</serviceMethodRequest>

Finally, the method must be invoked when the button is clicked. By default, web ser-
vice calls support the userContext property (see Chapter 5) to provide additional data
to the call. The <parameters> element contains all parameters, in the form of attributes,
so submitting one or more parameters to such a function is easy. These attributes have
the format parametername=parametervalue, and as a result, subelements are not
required.

The markup shown in the following snippet calls the web service method and pro-
vides an empty user context (which is the default, so you could actually omit
userContext altogether).

Data Binding | 279

<button id="Button1">
 <click>
 <invokeMethodAction target="randomCssMethod" method="invoke">
 <parameters userContext="" />
 </invokeMethodAction>
 </click>
</button>

That was a lot of effort, and scripting such as this is quite error-prone. For example,
syntax errors in xml-script will surely catch your attention because the script does
not work, but beyond that you do not get any additional clues. So, you might con-
sider using an XML validator to check the xml-script. Example 15-6 contains the
complete code, and Figure 15-4 shows the result in the browser.

Example 15-6. Invoking methods, web services, and data binding via xml-script

ControlDeclarativeMethod.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
 <style type="text/css">
 .style1 { font-family: Monospace; border-style: dotted; color: #0f0; }
 .style2 { font-family: Sans-Serif; border-style: solid; color: #0ff; }
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="RandomCssClass.asmx" />
 </Services>
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js" Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <label id="Label1">This text will be reformatted</label>
 </div>
 <input type="button" id="Button1" value="Random style" />
 </form>
 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <label id="Label1" />
 <button id="Button1">
 <click>
 <invokeMethodAction target="randomCssMethod" method="invoke">
 <parameters userContext="" />
 </invokeMethodAction>

280 | Chapter 15: Binding and Validating Data

Although the web service is already referenced in xml-script, you still
have to create the JavaScript proxy via the ScriptManager control,
using the <Services> and <asp:ServiceReference> elements.

Data Validation
In addition to providing controls for data binding, the ASP.NET AJAX Futures release
ships with its own client controls for validating user-entered data, a feature that many
ASP.NET developers find useful. ASP.NET AJAX supports the following validators:

 </click>
 </button>
 <serviceMethodRequest id="randomCssMethod"
 url="RandomCssClass.asmx"
 methodName="getRandomCssClass"
 useGet="false">
 <completed>
 <setPropertyAction target="Label1"
 property="element"
 propertyKey="className">
 <bindings>
 <binding dataContext="randomCssMethod"
 dataPath="result"
 property="value" />
 </bindings>
 </setPropertyAction>
 </completed>
 </serviceMethodRequest>
 </components>
 </page>
 </script>
</body>
</html>

Figure 15-4. Clicking the button assigns a random CSS class to the label

Example 15-6. Invoking methods, web services, and data binding via xml-script (continued)

Data Validation | 281

requiredFieldValidator
Checks whether the user has entered a value into a control

regexValidator
Checks the data in a control against a regular expression to match a pattern

typeValidator
Checks the data in a control against a data type

rangeValidator
Checks the data in a control against a value range

customValidator
Checks the data in a control using a custom validation function

If you are working with an UpdatePanel control, you can use server-
based ASP.NET validators to check input in any server controls within
the panel. However, you need an updated version of these controls
that is compatible with ASP.NET AJAX. For details, see the following
blog entry by Matt Gibbs: http://blogs.msdn.com/mattgi/archive/2007/
05/12/validators-update-available.aspx.

To implement data validation, you need:

• A control to validate

• A way to display an error message if the validation fails

• Code or markup to do the validation

In the following sections you’ll see how to put each of the ASP.NET AJAX validators
to work, including how to generate your own custom validation.

Checking a Required Field
The commonly used requiredFieldValidator class checks whether a control con-
tains data. The following markup generates both an input field and a span in which
to display any validator-generated:

<input type="text" id="TextBox1" />
*

As you can see, the label for the error message is not hidden by default. ASP.NET
AJAX takes care of hiding it automatically.

In the xml-script for the page, add markup for the controls taking part in the vali-
dation—only the user-input elements, though, not any controls for displaying
errors. In the <validators> subelement of an input control, specify the validator to
use. The errorMessage property contains the text to display if validation fails.
However, the ASP.NET AJAX validator is different than its ASP.NET counterpart.

http://blogs.msdn.com/mattgi/archive/2007/05/12/validators-update-available.aspx
http://blogs.msdn.com/mattgi/archive/2007/05/12/validators-update-available.aspx

282 | Chapter 15: Binding and Validating Data

In ASP.NET AJAX, the value of the errorMessage property is used as a tool tip that
appears when you hold the mouse pointer over the error text (that is, over the
ASP.NET AJAX validator control).

While we’re on the subject of error text, there is no equivalent for the Text property
of ASP.NET validation controls. The error text that appears in the label is the text
that is already there. The following example shows the xml-script for defining a
required field validator associated with a TextBox control:

<textBox id="TextBox1">
 <validators>
 <requiredFieldValidator errorMessage="** TextBox1 value missing" />
 </validators>
</textBox>

The second step is to use the <validationErrorLabel> element. This element takes
the following attributes:

id
The ID of the control to display errors

associatedControl
The ID of the element to validate

A complete page with validation is shown in Example 15-7.

Example 15-7. Using a validator for required fields

ControlValidationRequiredField.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js" Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="TextBox1" />
 *

 <input type="submit" />
 </div>
 </form>
 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>

Data Validation | 283

Load the page, enter some data in the text field, and then leave the field (which raises
the change event—don’t click the button to submit the page). Now, enter the field
again, delete its contents and exit the field. The change event is raised once more, this
time triggering the validation control. As shown in Figure 15-5, error displays appear
as a tool tip and as a (longer) text message in a display label.

In this case, the validator displays an error if the user doesn’t enter data, but the user
can still submit the page. The validator is informational only. Later in the chapter
we’ll see how to prevent a page from being submitted if validation doesn’t pass.

Checking Against a Regular Expression
Using a regular expression to check data validity functions just like the ASP.NET
RegularExpressionValidation control, but the name of the XML element and its
attributes are different. The regex property (or attribute, depending on whether you
are using code or markup) provides the regular expression against which the valida-
tor checks the data:

<regexValidator regex="/\d*/" errorMessage="** digits only" />

The code shown in Example 15-8 contains two validators: one checks whether there
is anything in the text field, the other allows only digits. You could also achieve this
using a data type check, but I want to demonstrate the regexValidator control here.

 <textBox id="TextBox1">
 <validators>
 <requiredFieldValidator errorMessage="** TextBox1 value missing" />
 </validators>
 </textBox>
 <validationErrorLabel id="Error1" associatedControl="TextBox1" />
 </components>
 </page>
 </script>
</body>
</html>

Figure 15-5. The error text, including more information in the tool tip

Example 15-7. Using a validator for required fields (continued)

284 | Chapter 15: Binding and Validating Data

Checking the Data Type
The <typeValidator> element checks the data type of a value. The only data type cur-
rently supported is Number, but other types might be added in future releases. The
type property of the <typeValidator> element contains the data type:

<typeValidator type="Number" errorMessage="** numbers only" />

The code shown in Example 15-9 uses both a requiredFieldValidator and
typeValidator to check for numeric values only.

Example 15-8. Using an ASP.NET AJAX validator with a regular expression

ControlValidationRegex.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js" Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="TextBox1" />
 *

 <input type="submit" />
 </div>
 </form>
 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <textBox id="TextBox1">
 <validators>
 <requiredFieldValidator errorMessage="** TextBox1 value missing" />
 <regexValidator regex="/\d*/" errorMessage="** digits only" />
 </validators>
 </textBox>
 <validationErrorLabel id="Error1" associatedControl="TextBox1" />
 </components>
 </page>
 </script>
</body>
</html>

Data Validation | 285

Checking a Range
Sometimes a value must not only be numeric, but must also have a value that falls
within a certain range (for instance, this is often true for time intervals or dates). For
these tasks, you can use the <rangeValidator> element. The lower and upper limits
are set in the lowerBound and upperBound properties. The following markup shows
how to check for a value between 1 and 6:

<rangeValidator lowerBound="1" upperBound="6" errorMessage="** 1 to 6 only" />

Example 15-9. Using avalidator for a data type check

ControlValidationType.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js"
 Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="TextBox1" />
 *

 <input type="submit" />
 </div>
 </form>
 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <textBox id="TextBox1">
 <validators>
 <requiredFieldValidator errorMessage="** TextBox1 value missing" />
 <typeValidator type="Number" errorMessage="** numbers only" />
 </validators>
 </textBox>
 <validationErrorLabel id="Error1"
 associatedControl="TextBox1" />
 </components>
 </page>
 </script>
</body>
</html>

286 | Chapter 15: Binding and Validating Data

Example 15-10 builds on the preceding example. The data is checked not only with a
requiredFieldValidator and a typeValidator, but now with a rangeValidator as well.

Custom Validation
To achieve the greatest flexibility, you can write a custom function to validate user
data. The signature for your validation function is as follows:

function <name>(sender, args) { }

Example 15-10. Using a validator to verify a valid range

ControlValidationRange.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js"
 Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="TextBox1" />
 *

 <input type="submit" />
 </div>
 </form>
 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <textBox id="TextBox1">
 <validators>
 <requiredFieldValidator errorMessage="** TextBox1 value missing" />
 <typeValidator type="Number" errorMessage="** numbers only" />
 <rangeValidator lowerBound="1" upperBound="6" errorMessage="** 1 to 6 only" />
 </validators>
 </textBox>
 <validationErrorLabel id="Error1"
 associatedControl="TextBox1" />
 </components>
 </page>
 </script>
</body>
</html>

Data Validation | 287

The first parameter contains the element which caused the validation, but more
important is the second parameter that provides the validation value, which can be
retrieved using get_value(). After validation, call the set_isValid() method. If vali-
dation succeeds, pass true as a parameter. If it fails, pass false.

Just for purposes of illustration, let’s consider that for some inexplicable reason only
square numbers may now be entered into the text field. The following function per-
forms the validation:

function validateSquare(sender, args) {
 var value = args.get_value();
 args.set_isValid(Math.sqrt(value) == Math.floor(Math.sqrt(value)));
}

In the xml-script, the <customValidator> element must include a validateValue
attribute that references your new custom validation function:

<customValidator validateValue="validateSquare" errormessage="** square numbers
only" />

Example 15-11 shows the complete code for this custom validator.

The Visibility Mode of a Validation Control
We have yet to cover a particular property of validation controls, visibilityMode. To
be more accurate, it is a property of the <validationErrorLabel> element and takes one
of two possible values (via the Sys.UI.VisibilityMode enumeration):

• Collapse

• Hide

The display style (or in JavaScript: element.style.display) is set to this mode. If no
visibility mode is provided, "none" is used (which makes the error message invisible
and also makes the area it consumed on the page available to other elements). This
controls how the validation error Label control is hidden when the page has been
loaded.

Example 15-11. Using a custom validator

ControlValidationCustom.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>

288 | Chapter 15: Binding and Validating Data

Programmatic Validation
The declarative approach fares well in practice, but there is a programmatic
approach to validation as well (which basically adds the validation at runtime).

It still requires some declarations though, such as we can see in the following
snippet:

<textBox id="TextBox1">
</textBox>
<validationErrorLabel id="Error1"
 associatedControl="TextBox1" />

 <script type="text/javascript">
 function validateSquare(sender, args) {
 var value = args.get_value();
 args.set_isValid(Math.sqrt(value) == Math.floor(Math.sqrt(value)));
 }
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js" Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="TextBox1" />
 *

 <input type="submit" />
 </div>
 </form>
 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <textBox id="TextBox1">
 <validators>
 <requiredFieldValidator errorMessage="** TextBox1 value missing" />
 <typeValidator type="Number" errorMessage="** numbers only" />
 <customValidator validateValue="validateSquare" errorMessage="** square
numbers only" />
 </validators>
 </textBox>
 <validationErrorLabel id="Error1" associatedControl="TextBox1" />
 </components>
 </page>
 </script>
</body>
</html>

Example 15-11. Using a custom validator (continued)

Data Validation | 289

You can then create the validator using JavaScript code. Two steps are required:

1. Add the validator: element.get_validators().add(validator).

2. If you want to use a callback function (a function to be called when the valida-
tion has occurred), use element.add_validated(function).

You cannot make the element available for validation with the usual new Sys.
Preview.UI.XXX approach. Instead, you must use the peculiar-looking syntax that was
presented during the discussion on preventing form submissions:

var textbox = $get("TextBox1").control;

The client-side element is accessed using the dollar sign, then you may access its
control property. Example 15-12 shows a complete page utilizing a programmatic
approach to validation. This example performs the same required-field validation
highlighted in Example 15-7, but it adds the validator to the text box using Java-
Script code.

Example 15-12. Using a custom validator programmatically

ControlValidationCustomProgrammatic.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
 <script type="text/javascript">
 function pageLoad() {
 var textbox = $get("TextBox1").control;
 validator = new Sys.Preview.UI.RequiredFieldValidator();
 validator.set_errorMessage("** enter some data");
 textbox.get_validators().add(validator);
 textbox.add_validated(validationComplete);
 }

 function validationComplete(sender, args) {
 }
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js" Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="TextBox1" />
 *

290 | Chapter 15: Binding and Validating Data

This also works for more complex validators, including the custom validator. The
syntax for declaring a custom validation function is the following:

validator.add_validateValue(validation function);

Example 15-13 demonstrates how to add validators to input controls both declara-
tively and programmatically. The required field and type validators are added
declaratively; the custom validator is added programmatically. The result is the same
as has been demonstrated in earlier examples.

 <input type="submit" />
 </div>
 </form>
 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <textBox id="TextBox1">
 </textBox>
 <validationErrorLabel id="Error1"
 associatedControl="TextBox1" />
 </components>
 </page>
 </script>
</body>
</html>

Example 15-13. Adding validation declaratively and programmatically

ControlValidationRequiredFieldProgrammatic.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
 <script language="JavaScript" type="text/javascript">
 function validateSquare(sender, args) {
 var value = args.get_value();
 args.set_isValid(Math.sqrt(value) == Math.floor(Math.sqrt(value)));
 }
 function pageLoad() {
 var textbox = $get("TextBox1").control;
 validator = new Sys.Preview.UI.CustomValidator();
 validator.set_errorMessage("Square numbers only");
 validator.add_validateValue(validateSquare);
 textbox.get_validators().add(validator);
 textbox.add_validated(validationComplete);
 }
 function validationComplete(sender, args) {

Example 15-12. Using a custom validator programmatically (continued)

Data Validation | 291

Validation Groups
Validation controls can be grouped together allowing multiple controls to be vali-
dated as a single unit. Validation groups are created using the <validationGroup> ele-
ment. All the validators in a group perform their test individually, but the group can
be tested as a whole. If any individual validation check fails, the entire group fails.
Not surprisingly, on the other hand, if all the controls validate, then the group
passes. Grouping is particularly useful for being able to enable and disable sets of val-
idators conditionally. In the following example you will see how to make an element
visible only if all validator conditions are met.

The validation group exposes a method, isValid() to determine whether the valida-
tion failed or not. This can be used in conjunction with data binding to display a
message depending on whether the validation succeeds or fails.

 }
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js" Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="TextBox1" />
 *

 <input type="submit" />
 </div>
 </form>
 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <textBox id="TextBox1">
 <validators>
 <requiredFieldValidator errorMessage="** TextBox1 value missing" />
 <typeValidator type="Number" errorMessage="** numbers only" />
 </validators>
 </textBox>
 <validationErrorLabel id="Error1"
 associatedControl="TextBox1" />
 </components>
 </page>
 </script>
</body>
</html>

Example 15-13. Adding validation declaratively and programmatically (continued)

292 | Chapter 15: Binding and Validating Data

First, you must provide an element to display the message:

<div id="Errors">-no errors-</div>

Next, bind this element’s visible property to the validation group’s isValid()
method. If all the validators in the group have passed, the <div> element will be
visible.

<label id="Errors">
 <bindings>
 <binding dataContext="group" dataPath="isValid" property="visible" />
 </bindings>
</label>

To make the <div> element visible if the validation fails, use the Invert transformer:

<binding dataContext="group" dataPath="isValid" property="visible"
transform="Invert" />

At this point, apart from the actual validators, only one thing is missing: the valida-
tion group itself. The group is represented by the <validationGroup> element. It
needs an ID (the preceding markup for data binding is using "group" as the target
ID), and within the group element, all form elements that take part in the validation
are referenced, as shown here:

<validationGroup id="group" >
 <associatedControls>
 <reference component="TextBox1" />
 <reference component="TextBox2" />
 </associatedControls>
</validationGroup>

Example 15-14 shows a page with a validation group. In the page, the <div> element
displays -no errors- when all the text boxes have passed validation. The first text
box has a required field validator, meaning the <div> element is displayed only when
that text box has received some input. The second text box requires a numeric value
that’s a square number. Figure 15-6 displays the result.

Example 15-14. Using a validation group bound to a label

CustomValidationGroup.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
 <script language="JavaScript" type="text/javascript">
 function validateSquare(sender, args) {
 var value = args.get_value();
 args.set_isValid(Math.sqrt(value) == Math.floor(Math.sqrt(value)));
 }

Data Validation | 293

 </script>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js" Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 Anything: <input type="text" id="TextBox1" />
 *

 A square: <input type="text" id="TextBox2" />
 *

 <input type="submit" />
 </div>
 <div id="Errors">-no errors-</div>
 </form>
 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <textBox id="TextBox1">
 <validators>
 <requiredFieldValidator errorMessage="** TextBox1 value missing" />
 </validators>
 </textBox>
 <validationErrorLabel id="Error1"
 associatedControl="TextBox1" />
 <textBox id="TextBox2">
 <validators>
 <requiredFieldValidator errorMessage="** TextBox2 value missing" />
 <typeValidator type="Number" errorMessage="** numbers only" />
 <customValidator validateValue="validateSquare" errorMessage="** square
numbers only" />
 </validators>
 </textBox>
 <validationErrorLabel id="Error2"
 associatedControl="TextBox2" />
 <validationGroup id="group">
 <associatedControls>
 <reference component="TextBox1" />
 <reference component="TextBox2" />
 </associatedControls>
 </validationGroup>
 <label id="Errors">
 <bindings>
 <binding dataContext="group" dataPath="isValid" property="visible" />
 </bindings>
 </label>
 </components>

Example 15-14. Using a validation group bound to a label (continued)

294 | Chapter 15: Binding and Validating Data

Preventing Form Submission
The validation controls that come with the ASP.NET AJAX Futures release are quite
useful, but they do not include a form submission mechanism. So, even if a valida-
tion fails, a form can be submitted. Usually this is no great concern, as all form data
must be revalidated on the server anyway (JavaScript could be deactivated, so you
can never truly rely on client-side validation). However, the usability of the form may
be better if it can only be submitted when all values are correct.

Adding this functionality requires a bit of custom code, but it’s not difficult. We will
start with Example 15-7 (the validator for required fields) and add the feature to pre-
vent form submission. The trick is to hook an event that is raised by the <form> tag.
Thanks to the event handler system, we can execute JavaScript code when the form
is being submitted (the event submit is triggered). If this code is return false, the
form submission is cancelled. This is how the <form> tag is modified:

<form id="form1" runat="server" onsubmit="return validateForm();">

The validateForm() method returns false if the form is incomplete, otherwise, it
returns true. This can be easily achieved by using the get_isInvalid() helper
method, which is defined as a method of the text box control (use the control prop-
erty of the associated HTML element):

function validateForm() {
 var textbox = $get("TextBox1").control;
 return !(textbox.get_isInvalid());
}

The complete code is displayed in Example 15-15.

 </page>
 </script>
</body>
</html>

Figure 15-6. The label appears only when all text boxes are filled correctly

Example 15-14. Using a validation group bound to a label (continued)

Data Validation | 295

Expanding this code for more form elements is straightforward; the validateForm()
function then simply returns something like this:

!(formelement1.get_isInvalid() || formelement2.get_isInvalid() || ...)

Example 15-15. Using a validation group bound to a label

CustomValidationGroup.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
 <script type="text/javascript">
 function validateForm() {
 var textbox = $get("TextBox1").control;
 return !(textbox.get_isInvalid());
 }
 </script>
</head>
<body>
 <form id="form1" runat="server" onsubmit="return validateForm();">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js" Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="TextBox1" />
 *

 <input type="submit" />
 </div>
 </form>
 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <textBox id="TextBox1">
 <validators>
 <requiredFieldValidator errorMessage="** TextBox1 value missing" />
 </validators>
 </textBox>
 <validationErrorLabel id="Error1" associatedControl="TextBox1" />
 </components>
 </page>
 </script>
</body>
</html>

296 | Chapter 15: Binding and Validating Data

Summary
In this chapter, you were introduced to data binding and the client-side validation
controls that are a part of ASP.NET AJAX Futures release. When compared to
ASP.NET validation controls, they lack some features. Using the ASP.NET AJAX
controls is also a bit unusual when compared with their server equivalents. They
do not integrate in the form submission mechanism of the browser, which means
that the form can be submitted even if errors exist. Finally, and most important, vali-
dation works only on the client side and only with JavaScript. ASP.NET validation
controls work on both the server-side and the client-side and therefore cannot be cir-
cumvented by merely disabling JavaScript. This makes them the preferable choice if
the option is available. However, if the web site uses ASP.NET AJAX for all client-
side effects, the ASP.NET AJAX validators integrate well with other ASP.NET AJAX
features.

For Further Reading
http://blogs.msdn.com/mattgi/archive/2007/05/12/validators-update-available.aspx

Blog entry by Matt Gibbs regarding an updated version of the validators that
also work within UpdatePanel controls

http://quickstarts.asp.net/Futures/ajax/doc/bindings.aspx
Pre-release Microsoft documentation on data bindings

http://quickstarts.asp.net/Futures/ajax/doc/validation.aspx
Pre-release Microsoft documentation on validators

http://blogs.msdn.com/mattgi/archive/2007/05/12/validators-update-available.aspx
http://quickstarts.asp.net/Futures/ajax/doc/bindings.aspx
http://quickstarts.asp.net/Futures/ajax/doc/validation.aspx

297

Chapter 16 CHAPTER 16

Using Behaviors and Components16

Handling events with script code or xml-script can be a practical way to create user
experiences that are more interactive, but sometimes this approach just requires too
much code. This is especially true when you wish to tie a specific action to a particu-
lar control, such as one that is a reaction to a user clicking or hovering over it. Fortu-
nately, ASP.NET AJAX offers viable alternatives that will be introduced and
discussed in this chapter: ASP.NET AJAX behaviors and components.

Whereas ASP.NET AJAX behaviors contain JavaScript functionality and are always
tied to visible HTML page elements, ASP.NET AJAX components, which consist of
JavaScript, might or might not have a graphical representation. One example of this,
the Timer control was discussed in Chapter 6, which demonstrated an instance of a
component that is not represented graphically on the page.

In this chapter, we will explore the behaviors and components that ship with the
ASP.NET AJAX Futures release and demonstrate how to use them.

Using Behaviors
ASP.NET AJAX behaviors are similar to those introduced by Microsoft for Internet
Explorer in that you can attach a predefined ASP.NET AJAX behavior to an HTML
element just as you can attach an Internet Explorer behavior. For instance, one behav-
ior that ships with Internet Explorer allows you to do something when the mouse
pointer hovers over an element, such as a button, perhaps altering its color or font.

The ASP.NET AJAX Futures release actually ships with only one behavior—Sys.
Preview.UI.ClickBehavior. Other behaviors are defined in additional ASP.NET
AJAX Futures libraries that can be reference in your application. These include:

• Sys.Preview.UI.FloatingBehavior (defined in PreviewDragDrop.js, discussed later
in this chapter)

• Sys.Preview.UI.OpacityBehavior (defined in PreviewGlitz.js in Chapter 19)

• Sys.Preview.UI.LayoutBehavior (also defined in PreviewGlitz.js)

298 | Chapter 16: Using Behaviors and Components

Using the Click Behavior
Sys.Preview.UI.ClickBehavior ties a click on an element to an executable action (the
name kind of says it all).

The example shown in this section demonstrates this in more detail. This example
simulates tabbed browsing, a popular feature of browsers such as Firefox, Opera,
and Internet Explorer 7.

This example creates tabs for the purposes of demonstrating a simple
way to work with behaviors. If you want to include tabs in your appli-
cation, use the Tabs control from the Control Toolkit. Refer to
Chapter 12 for a detailed discussion.

Two <div> elements represent the two tabs; the user can toggle between them using
two elements:

<div>
 Tab 1
 Tab 2
</div>
<div id="Panel1" style="visibility: visible; position: absolute; top: 35px; left:
10px">
 This is the first tab.

 It is full of ASP.NET AJAX information.

 Although it seems to be full of dummy text.
</div>
<div id="Panel2" style="visibility: hidden; position: absolute; top: 35px; left:
10px">
 This is the second tab.

 It is full of ASP.NET AJAX information as well.

 Although it seems to be full of dummy text, too.
</div>

The rest of the page will consist of declarative elements only, so no code is required.
Once again, xml-script will come in handy. First, the two <div> elements must be
registered to make them accessible later to behaviors. Recall there is no client-side
web control in Sys.Preview.UI that represents a <div> panel, but a generic <control>
element can be used, as shown in the following snippet:

<control id="Panel1" />
<control id="Panel2" />

The behaviors must be attached to the individual elements that constitute the
actual tabs. First, the elements must be registered:

<label id="Show1">
...
</label>

Using Behaviors | 299

Then, a set of subelements comes into play:

• A <behaviors> element, which will contain all behaviors to be attached to the
element.

• An element for each behavior to implement. For this example, a <clickBehavior>
element must be used.

• Within this element, a <click> subelement must be defined, which identifies the
event associated with this behavior. (It is possible for some behaviors to monitor
more than one event.) Here’s the markup for one element, or, one tab:

<label id="Show1">
 <behaviors>
 <clickBehavior>
 <click>
 ...
 </click>
 </clickBehavior>
 </behaviors>
</label>

At this point, the <setPropertyAction> or <invokeMethodAction> elements introduced
in Chapter 15 enter the stage. When a user clicks the first element, the first
panel is made visible, and the second invisible. Here’s the markup to accomplish
this:

<label id="Show1">
 <behaviors>
 <clickBehavior>
 <click>

<setPropertyAction target="Panel1" property="visible" value="true" />
<setPropertyAction target="Panel2" property="visible" value="false" />

 </click>
 </clickBehavior>
 </behaviors>
</label>

When the second element is clicked, the first panel becomes invisible and the
second, visible. Example 16-1 shows the complete markup required to implement a
tabbed page.

Example 16-1. Using the click behavior

BehaviorClick.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">

300 | Chapter 16: Using Behaviors and Components

 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server" ID="ScriptManager1">
 <Scripts>
 <asp:ScriptReference name="PreviewScript.js"
assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 Tab 1
 Tab 2
 </div>
 <div id="Panel1" style="visibility: visible; position: absolute; top: 35px;
left: 10px">
 This is the first tab.

 It is full of ASP.NET AJAX information.

 Although it seems to be full of dummy text.
 </div>
 <div id="Panel2" style="visibility: hidden; position: absolute; top: 35px; left:
10px">
 This is the second tab.

 It is full of ASP.NET AJAX information, as well.

 Although it seems to be full of dummy text, too.
 </div>
 </form>

 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <control id="Panel1" />
 <control id="Panel2" />
 <label id="Show1">
 <behaviors>
 <clickBehavior>
 <click>
 <setPropertyAction target="Panel1"
property="visible" value="true" />
 <setPropertyAction target="Panel2"
property="visible" value="false" />
 </click>
 </clickBehavior>
 </behaviors>
 </label>
 <label id="Show2">
 <behaviors>
 <clickBehavior>
 <click>
 <setPropertyAction target="Panel1"
property="visible" value="false" />
 <setPropertyAction target="Panel2"

Example 16-1. Using the click behavior (continued)

Using Behaviors | 301

Figure 16-1 shows the page displayed by the markup in Example 16-1.

Unlike when hovering over a hyperlink, the mouse cursor does not
change when hovering over the click area. If you would like this effect
on your page, it can be implemented using the CSS style cursor: hand:

<span id="Show1" style="background-color: Fuchsia;
cursor: hand">Tab 1

<span id="Show2" style="background-color: Fuchsia;
cursor: hand">Tab 2

Using the Drag-and-Drop Behavior
Unlike the click behavior described earlier, the drag-and-drop behavior of the
Futures release does not have a self-descriptive name, such as DragDropBehavior, or
something similar. Rather, it labors under the ambiguous name FloatingBehavior.
Drag-and-drop is a feature that is widely used by web portals nowadays, but is not
part of the PreviewScript.js JavaScript library that ships with the ASP.NET AJAX
Futures CTP. Instead, the functionality resides in the extra file PreviewDragDrop.js
(there is the term “DragDrop”).

Implementing drag-and-drop using ASP.NET AJAX is simple. First, you need an
ASP.NET Panel control to drag. An HTML <div> would work as well, but using
the Panel makes it easy to put a random value within, as you will see in a moment.

property="visible" value="true" />
 </click>
 </clickBehavior>
 </behaviors>
 </label>
 </components>
 </page>
 </script>
</body>
</html>

Figure 16-1. Clicking on the labels loads the associated tab

Example 16-1. Using the click behavior (continued)

302 | Chapter 16: Using Behaviors and Components

In this example, we use the panel to create a small status bar to simulate a display
that shows the number of messages in a user’s inbox:

<asp:Panel CssClass="mailbox" ID="DragPanel" runat="server">
 <p>
 You currently have <asp:Label id="inbox" runat="server"></asp:Label>
 e-mail messages in your inbox.
 </p>
</asp:Panel>

In this case, the “inbox” will contain a random number of new email messages (as
appears to be the number of messages showing on the Windows XP login screen).
The code to create our random number of messages is as follows:

<script runat="server">

 protected void Page_Load(object sender, EventArgs e)
 {
 inbox.Text = new Random().Next(0, 100).ToString();
 }
</script>

The CSS-style class mailbox, referenced by the Panel control, does not contain any-
thing extraordinary, but it should include a border and a width setting:

<style type="text/css">
.mailbox { border: solid 2px black; width: 150px; }
</style>

Now all that’s left is to add a <floatingBehavior> element into xml-script and associ-
ate it with the panel. Set the handle property to the ID of the element that serves as
the drag handle. In our case, the whole mail status panel is the drag handle, so you
can reuse the ID.

<script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <control id="DragPanel">
 <behaviors>
 <floatingBehavior handle="DragPanel" />
 </behaviors>
 </control>
 </components>
 </page>
</script>

Example 16-2 presents the complete code.

Example 16-2. Adding drag-and-drop behavior to a panel

DragDrop.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

Using Behaviors | 303

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 protected void Page_Load(object sender, EventArgs e)
 {
 inbox.Text = new Random().Next(0, 100).ToString();
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
 <style type="text/css">
 .box { border: solid 2px black; }
 .mailbox { border: solid 2px black; width: 150px; }
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference name="PreviewScript.js"
assembly="Microsoft.Web.Preview" />
 <asp:ScriptReference name="PreviewDragDrop.js"
assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <asp:Panel ID="ContentPanel" CssClass="box" runat="server">
 <h1>My Portal</h1>
 <p>
 Welcome to your personal portal, powered by Microsoft ASP.NET AJAX.
 The mail status window is freely draggable. Welcome to your personal portal,
powered by ASP.NET AJAX.
 The mail status window is freely draggable. Welcome to your personal portal,
powered by ASP.NET AJAX.
 The mail status window is freely draggable.
 </p>
 [...]
 </asp:Panel>
 <asp:Panel CssClass="mailbox" ID="DragPanel" runat="server">
 <p>
 You currently have <asp:Label id="inbox" runat="server"></asp:Label>
 mails in your inbox.
 </p>
 </asp:Panel>

 </form>
<script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <control id="DragPanel">
 <behaviors>
 <floatingBehavior handle="DragPanel" />

Example 16-2. Adding drag-and-drop behavior to a panel (continued)

304 | Chapter 16: Using Behaviors and Components

Run the example and view it in the browser. You can drag and drop the inbox wher-
ever you like within the confines of the defined page (for example, you can’t drag the
panel to the bottom of the screen, because that would place it outside the HTML-
defined page). As you can see in Figure 16-2, the underlying panel and text is visible
through the panel as it is dragged about the page. Note that the panel will return to
its original position when you refresh the page. Later in this chapter you will learn
how to maintain its position between browser sessions.

Using the Drag-and-Drop Extender
Some behaviors are also available as web controls. FloatingBehavior has a web con-
trol counterpart, DragOverlayExtender. This is a nonvisual control that you can put
on a page to enrich (“extend”) a control with drag-and-drop capabilities. You do not
need xml-script and can use server-code to access the extender’s properties.

Inside the extender, you will need the following properties:

Enabled
Activates the effect

TargetControlID
References the panel you want to define as draggable

 </behaviors>
 </control>
 </components>
 </page>
</script>
</body>
</html>

Figure 16-2. You can drag the inbox around

Example 16-2. Adding drag-and-drop behavior to a panel (continued)

Using Behaviors | 305

In case you are wondering why this component contains an Enabled
property, this gives you the ability to switch the effect on and off pro-
grammatically in script code.

This control allows the inbox panel to be dragged throughout the page (within the
limits described following Example 16-2):

<asp:DragOverlayExtender ID="DragOverlayExtender1" runat="server"
 TargetControlID="DragPanel" Enabled="true" />

Example 16-3 shows the complete example, including another panel with dummy
text to give us a place to drag the inbox.

Example 16-3. Adding drag-and-drop behavior to a panel using an extender

DragDropExtender.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 protected void Page_Load(object sender, EventArgs e)
 {
 inbox.Text = new Random().Next(0, 100).ToString();
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
 <style type="text/css">
 .box { border: solid 2px black; }
 .mailbox { border: solid 2px black; width: 150px; }
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference name="PreviewScript.js"
assembly="Microsoft.Web.Preview" />
 <asp:ScriptReference name="PreviewDragDrop.js"
assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <asp:Panel ID="ContentPanel" CssClass="box" runat="server">
 <h1>My Portal</h1>
 <p>
 Welcome to your personal portal, powered by Microsoft ASP.NET AJAX.
 The mail status window is freely draggable. Welcome to your personal portal,
powered by ASP.NET AJAX.

306 | Chapter 16: Using Behaviors and Components

Personalized Drag-and-Drop
There is a limitation to the previous examples. As has been demonstrated, our simu-
lated inbox panel can move freely about the page. However, if you leave the page and
return to it later, the most recent position of the inbox is not maintained. This limita-
tion can be overcome.

Once again, code reuse is the key. ASP.NET 2.0 already comes with a means for per-
sonalization in the form of profile properties (see “For Further Reading,” at the end
of this chapter, for information regarding ASP.NET 2.0 profiles, and refer to
Chapter 7 to review these capabilities). ASP.NET AJAX supports profile properties in
some of its controls, including DragDropExtender. The DragOverlayExtender compo-
nent property, ProfileProperty, can be set to preserve dragged panel’s location.

To store the position data, create a profile property in the Web.config file with the
following markup:

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
 <system.web>
 <anonymousIdentification enabled="true" />
 <profile>
 <properties>
 <add name="DragPanelPosition" allowAnonymous="true" />
 </properties>
 </profile>
 [...]
 </system.web>

 <system.web.extensions>
 <scripting>
 <webServices>
 <profileService enabled="true"
 writeAccessProperties="DragPanelPosition"

 The mail status window is freely draggable. Welcome to your personal portal,
powered by ASP.NET AJAX.
 The mail status window is freely draggable.
 </p>
 [...]
 </asp:Panel>
 <asp:Panel CssClass="mailbox" ID="DragPanel" runat="server">
 <p>
 You currently have <asp:Label id="inbox" runat="server"></asp:Label>
 mails in your inbox.
 </p>
 </asp:Panel>
 <asp:DragOverlayExtender ID="DragOverlayExtender1" runat="server"
 TargetControlID="DragPanel" Enabled="true" />
 </form>
</body>
</html>

Example 16-3. Adding drag-and-drop behavior to a panel using an extender (continued)

Using Behaviors | 307

 readAccessProperties="DragPanelPosition" />
 [...]
 </webServices>
 </scripting>
 </system.web.extensions>

</configuration>

If you do not include the element <anonymousIdentification
enabled="true” />, only authenticated users (users who are logged in
or otherwise authenticated) receive a profile and can have their panel
position saved.

Apply these changes to the existing Web.config in your application. Then you need to
enable the profile script service on your page by adding the <asp:ProfileService>
element. Be sure to set AutoSave to "true" so the updated panel position is saved
upon every drag-and-drop operation.

<asp:ProfileService ID="ProfileService1" runat="server" AutoSave="true" />

Finally, the DragDropExtender declaration, updated with a reference to the profile
property that will be used to store the location of the box. The ProfileServiceID
property of the DragDropExtender needs to match the ID of the ProfileService con-
trol we have just added to the page.

<asp:DragOverlayExtender ID="DragOverlayExtender1" runat="server"
 TargetControlID="DragPanel" Enabled="true"
 ProfileProperty="DragPanelPosition" ProfileServiceID="ProfileService1" />

When you reload the page, the element is returned to its saved position. If you look
closely, you will see that the page is rendered first with the panel in its default posi-
tion, then it moves to its previously saved position. Example 16-4 illustrates the com-
plete code.

Example 16-4. Adding drag-and-drop behavior to a panel and remembering its position

DragDropExtenderProfile.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 protected void Page_Load(object sender, EventArgs e)
 {
 inbox.Text = new Random().Next(0, 100).ToString();
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">

308 | Chapter 16: Using Behaviors and Components

The first time this example is run, it will take a noticeable amount of time before
anything is displayed in the browser. This is as a result of ASP.NET creating the
database in which it will store profile information. The profile database is created in
the App_Data directory of your web site. It is available in via the ASPNETDB.MDF
file. If you open it, you will notice there is an entry for the panel position in the
aspnet_Profile database (see Figure 16-3). Every time you change the position of the
panel, ASP.NET AJAX will send out an HTTP request to update the profile data (see
Figure 16-4).

 <title>ASP.NET AJAX</title>
 <style type="text/css">
 .box { border: solid 2px black; }
 .mailbox { border: solid 2px black; width: 150px; }
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference name="PreviewScript.js"
assembly="Microsoft.Web.Preview" />
 <asp:ScriptReference name="PreviewDragDrop.js"
assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <asp:Panel ID="ContentPanel" CssClass="box" runat="server">
 <h1>My Portal</h1>
 <p>
 Welcome to your personal portal, powered by Microsoft ASP.NET AJAX.
 The mail status window is freely draggable. Welcome to your personal portal,
powered by ASP.NET AJAX.
 The mail status window is freely draggable. Welcome to your personal portal,
powered by ASP.NET AJAX.
 The mail status window is freely draggable.
 </p>
 [...]
 </asp:Panel>
 <asp:Panel CssClass="mailbox" ID="DragPanel" runat="server">
 <p>
 You currently have <asp:Label id="inbox" runat="server"></asp:Label>
 mails in your inbox.
 </p>
 </asp:Panel>
 <asp:DragOverlayExtender ID="DragOverlayExtender1" runat="server"
 TargetControlID="DragPanel" Enabled="true"
 ProfileProperty="DragPanelPosition" ProfileServiceID="ProfileService1" />
 <asp:ProfileService ID="ProfileService1" runat="server" AutoSave="true" />
 </form>
</body>
</html>

Example 16-4. Adding drag-and-drop behavior to a panel and remembering its position (continued)

Using Behaviors | 309

Figure 16-3. The position of the panel is saved in a profile property

Figure 16-4. ASP.NET AJAX sends an HTTP request in the background to update the profile

310 | Chapter 16: Using Behaviors and Components

Using Components
An ASP.NET AJAX component is encapsulated JavaScript that is not bound to
HTML elements on a page, rather, it stands alone. An ASP.NET AJAX component
aggregates a set of JavaScript functionality to provide a single interface to be used in
code. A behavior must always be bound to a specific element on the page, so a com-
ponent can offer more functionality. The Futures release comes with several compo-
nents, most of them in the area of data controls (as you will see in Chapter 17), but
here we will cover one component that is very practical: a timer component. This is
the xml-script equivalent to the Timer server control demonstrated in Chapter 6, pro-
viding the same functionality, but—in case of xml-script and the Futures release—
without official support from Microsoft.

Drag-and-Drop Best Practices
Implementing drag-and-drop behavior with JavaScript is difficult, particularly if the
code needs to run on all browsers. The ASP.NET AJAX Futures CTP works surpris-
ingly well, however there are a few things you of which you should be aware. First, the
drop point for any element must be within the content area of the current page. This
is one of the reasons why so much dummy text was used in the inbox example: there
needs to be some place to which to drag the inbox. Without it, you might experience
the “Snap Back” effect, where you drop a an item outside the content area of the page,
and the item snaps back to its original position. This effect is particularly pronounced
in older versions of the ASP.NET AJAX Futures CTP.

When scrolling and window resizing come into play, the situation becomes worse as the
scroll position is not always correctly taken into account by the extender. The ASP.NET
AJAX Control Toolkit contains a small JavaScript fix for this problem, which is shown
here in a slightly modified form. Whenever the window is resized, the height of the con-
tent area is reset accordingly:

<script type="text/javascript">
 function fixBodyHeight() {
 document.body.style.height =
Math.max(document.documentElement.scrollHeight,
document.body.scrollHeight) + "px";
 }

 function pageLoad() {
 fixBodyHeight();
 $addHandler(window, "resize", fixBodyHeight);
 }
</script>

Using Components | 311

Using the Timer Component
Apart from using the <asp:Timer> web control (see Chapter 6), there are two alterna-
tive ways to use a timer with the ASP.NET AJAX Futures CTP. You can either use
xml-script, or you can use code.

Let’s start with xml-script. The element used for a timer is called <timer>, which
takes the following properties:

enabled
Set to true to activate the timer

interval
The number of milliseconds after which the timer’s tick event is triggered

The timing units in milliseconds suggest the ASP.NET AJAX Futures
CTP timer is internally using the JavaScript window.setInterval()
method. And indeed, that’s how it’s done.

The remaining script is straightforward. The tick event needs to be handled using
<invokeMethodAction> or <setPropertyAction>:

<timer id="Timer1" interval="5000" enabled="true">
 <tick>
 <invokeMethodAction ... />
 <setPropertyAction ... />
 </tick>
</timer>

An alternative, programmatic approach is to use JavaScript to create a timer object:

var timer = new Sys.Preview.Timer();

Now, you can use setter (and getter) methods to configure the timer:

timer.set_enabled(true);
timer.set_interval(5000);

Do not forget to add a tick event handler:

timer.add_tick(function() {
 // ...
});

Finally, initialize the timer, otherwise it won’t work:

timer.initialize();

Let’s use this control with the tabbed-panels sample (from Example 16-1).
Example 16-5 employs both ways of adding a timer to a page. The first timer uses
xml-script and displays the second tab every five seconds. The second timer is created
with JavaScript code. It displays the first tab, also every five seconds. However, the
code uses window.setTimeout() to delay 2.5 seconds before creating the second timer.

312 | Chapter 16: Using Behaviors and Components

Therefore, each timer is on a 5-second interval, but they are offset by 2.5 seconds, so
that the visible panel changes every 2.5 seconds.

Example 16-5. Two different timers at once

Timer.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
 <script type="text/javascript">
 function pageLoad() {
 setTimeout("setupTimer();", 2500);
 }

 function swapPanels() {
 $get("Panel1").style.visibility = "hidden";
 $get("Panel2").style.visibility = "visible";
 }

 function setupTimer() {
 swapPanels();
 var timer = new Sys.Preview.Timer();
 timer.set_enabled(true);
 timer.set_interval(5000);
 timer.add_tick(swapPanels);
 timer.initialize();
 }
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server" ID="ScriptManager1">
 <Scripts>
 <asp:ScriptReference name="PreviewScript.js"
assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div id="Panel1" style="visibility: visible; position: absolute; top: 35px;
left: 10px">
 This is the first tab.

 It is full of ASP.NET AJAX information.

 Although it seems to be full of dummy text.
 </div>
 <div id="Panel2" style="visibility: hidden; position: absolute; top: 35px; left:
10px">
 This is the second tab.

 It is full of ASP.NET AJAX information, as well.

 Although it seems to be full of dummy text, too.

For Further Reading | 313

Summary
This chapter covered ASP.NET AJAX behaviors, such as click and drag-and-drop. It
also went into ASP.NET AJAX components, which, as was demonstrated, can be ref-
erenced using xml-script. Although controls are implemented internally in Java-
Script, xml-script provides a declarative method to add functionality to your controls
and web site.

For Further Reading
http://quickstarts.asp.net/Futures/ajax/doc/behaviors.aspx

Pre-release Microsoft documentation on ASP.NET AJAX Futures behaviors

 </div>
 </form>

 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <control id="Panel1" />
 <control id="Panel2" />
 <timer id="Timer1" interval="5000" enabled="true">
 <tick>
 <setPropertyAction target="Panel1" property="visible" value="true" />
 <setPropertyAction target="Panel2" property="visible" value="false" />
 </tick>
 </timer>
 </components>
 </page>
 </script>
</body>
</html>

Example 16-5. Two different timers at once (continued)

http://quickstarts.asp.net/Futures/ajax/doc/behaviors.aspx

314

Chapter 17CHAPTER 17

Using Server Data 17

The ASP.NET AJAX features introduced thus far all contribute to a considerable sav-
ings in development time and effort. Yet, there are more, very powerful features and
functionality yet to come.

In this chapter, you’ll learn how to use ASP.NET AJAX to connect to databases and
bind data from these sources to page elements. This functionality isn’t limited to
simple, static controls like text fields, but lets you bind complex data as well. With
ASP.NET AJAX, you can use tables and HTML lists to display data and, as with so
many other features we’ve explored, you can create your own custom data source.

In Chapter 16, you were introduced to client control data binding. However, servers
were not a part of this discussion. This chapter will expand upon what you learned
about data binding, dealing with data from a server. You will write a web service that
retrieves data from the data source and return it. You will then use the client ASP.NET
AJAX controls and xml-script markup to display that data in HTML.

Using a ListView Control
The best way to display data in ASP.NET AJAX is using the ListView control (in xml-
script, the <listView> element). This control can iterate through a list so that the user
can view the result—hence, the name of the control.

Within a <listView> xml-script element, you can define two display templates:

<layoutTemplate>
To specify the layout and appearance of the data

<itemTemplate>
To specify the layout for each individual element (item) of the data

In addition, you set a number of attributes (which will be detailed in the following
section) and can bind the data to the elements. You can choose any suitable HTML
element as a target element. Static lists (numbered or bulleted), selection lists

Using a ListView Control | 315

(<select> element), and tables are the elements most commonly used as they exist
precisely to display lists of data.

Binding a ListView Control to Data
An obvious vehicle for displaying data from a server data source is an unordered list.
The following example will query data from a server database and display it as an
HTML bulleted list.

Before we dig deep into xml-script, let’s add the HTML markup used to display the
data from the data source. First, you’ll need a container, typically a <div> element, to
hold the data-display list. Here’s the markup:

<div id="output">
 vendor list goes here</div>

Next, you need to put the templates (layout and item) in a different container, the
layout container. The style of this container will be set to invisible (display:none).
The layout container does not directly display data, it just serves as a container for
HTML elements that are used to lay the data out and style it. The data will actually
appear in the container that was just illustrated, which initially functions only as a
placeholder.

In the layout container, we need a number of elements (and associated IDs):

• An outer container that represents the <layoutTemplate> element, typically a
<div> element.

• An inner container that reflects the <itemTemplate> element.

• Individual elements that act as placeholders for data items (such as ele-
ments) from the data source.

If you are familiar with the ASP.NET Repeater control, this arrangement is similar
(for example, the layout container is the Repeater control itself). The difference is
that the output container (the original <div> element illustrated above) is a container
for the Repeater control itself.

The following snippet presents an example that can be used for an unordered list (a
 element). As an outer container, a <div> element is used. The individual data
item is displayed using a element (its parent element being the element).
This leads to the following markup serving as the placeholder:

<div style="display:none;"> <!-- hide the placeholders -->
 <div id="vendorsLayout"> <!-- layout template container -->
 <ul id="vendorsItemParent"> <!-- item template container -->
 <li id="vendorsItem">vendor name goes here

 </div>
</div>

316 | Chapter 17: Using Server Data

You can’t eliminate an element by merging the outer, invisible <div>
and the layout template element (vendorsLayout, in the example). If
you do, the output will be invisible, too, even after being inserted into
the output element. You need the additional <div> element (reflecting
<itemTemplate>), which itself isn’t hidden via CSS (only the outer
<div> is).

Before we continue creating a page to display the data, we need to create the data
with which we will work. We will do this by creating a web service. You need some-
thing that exposes the data you want as properties of the object returned by the web
service. The ASP.NET AJAX data binding mechanism for the listView element does
not accept ADO.NET datasets directly. The two most used options are:

• A DataTable object, or specifically, a DataRowCollection inside a DataTable

• A custom class in which all data is put in class members

The custom class gives you more flexibility, but usually also means more code. Using
a DataRowCollection object, on the other hand, is rather easy. A DataSet object is cre-
ated, then its Table[0].Rows property is accessed to return the desired collection of
rows with all data in it. As has been the case since Chapter 1, we will use the Adven-
tureWorks database for sample data. In this example, the fields AccountNumber and
Name from the Vendor table are queried. The code shown in Example 17-1 highlights
the web service that returns the AdventureWorks data as a DataRowCollection object.
Do not forget to use the [ScriptService] attribute for all web services that will be
consumed by ASP.NET AJAX, and the [WebMethod] attribute for individual methods
that will be exposed in the web service.

If you test this web service directly in the browser, you will likely see
the error message, “System.Data.DataRow cannot be serialized
because it does not have a parameterless constructor.” This message
can be ignored. It does not affect the functionality of the web service
when you call it from client script.

Example 17-1. A web service that returns a DataRowCollection object

ListViewVendors.asmx

<%@ WebService Language="C#" Class="Vendors" %>

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Data;
using System.Data.SqlClient;

[WebService(Namespace = "http://hauser-wenz.de/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.Web.Script.Services.ScriptService]
public class Vendors : System.Web.Services.WebService

Using a ListView Control | 317

Pre-release versions of ASP.NET AJAX (Atlas) worked with DataTable
objects directly. ASP.NET AJAX, however, requires that the web ser-
vice return a DataRowCollection object. Otherwise, the server also
sends general information about all columns to the client, which will
cause confusion with the ASP.NET AJAX component responsible for
displaying that data.

When using DataRowCollection, you should be aware that ASP.NET AJAX intro-
duced one issue. When you try to consume the web service from JavaScript, you
receive an error message indicating a circular reference that could not be resolved.
This is caused by the inability of ASP.NET to serialize DataTable objects and
DataRowCollection objects without some assistance. This “assistance” is provided by
a couple of converters that need to be put into Web.config. Look for the
<webServices> section (if it does not exist there, create one within the <scripting>
sub node of the <system.web.extensions> node). This is of particular interest when
migrating Atlas code to ASP.NET AJAX, but is always required.

Now, add the following markup:

<jsonSerialization maxJsonLength="500000000">
 <converters>
 <add name="DataSetConverter"
type="Microsoft.Web.Preview.Script.Serialization.Converters.DataSetConverter,
Microsoft.Web.Preview"/>
 <add name="DataRowConverter"
type="Microsoft.Web.Preview.Script.Serialization.Converters.DataRowConverter,
Microsoft.Web.Preview"/>
 <add name="DataTableConverter"
type="Microsoft.Web.Preview.Script.Serialization.Converters.DataTableConverter,
Microsoft.Web.Preview"/>
 </converters>
</jsonSerialization>

{

 [WebMethod]public DataRowCollection GetVendors()
 {
 SqlConnection conn = new SqlConnection(
 "server=(local)\\SQLEXPRESS; Integrated Security=true; Initial
Catalog=AdventureWorks");
 conn.Open();
 SqlCommand comm = new SqlCommand(
 "SELECT TOP 10 AccountNumber, Name FROM Purchasing.Vendor",
 conn);
 SqlDataAdapter adap = new SqlDataAdapter(comm);
 DataSet ds = new DataSet();
 adap.Fill(ds);
 return ds.Tables[0].Rows;
 }
}

Example 17-1. A web service that returns a DataRowCollection object (continued)

318 | Chapter 17: Using Server Data

This first sets the maximum length of any JSON string during serialization. You can
use a large or small value here, depending on your specific scenario. Then, three con-
verters are added, for DataSet, DataRow, and DataTable objects. These take care of the
data objects we are about to use.

Alternatively, the web service can be written to return a custom array based on the
data, instead of returning a DataRowCollection object directly. As the example web
service you are building is written to use the AccountNumber and Name fields from
AdventureWorks, if you create a custom type, that type must return two string prop-
erties with the names AccountNumber and Name. The following code snippet shows
how you might implement the custom type:

public class Vendor
{
 string _AccountNumber;
 string _Name;

 public string AccountNumber
 {
 get
 {
 return _AccountNumber;
 }
 set
 {
 _AccountNumber = value;
 }
 }

 public string Name
 {
 get
 {
 return _Name;
 }
 set
 {
 _Name = value;
 }
 }

 public Vendor(string AccountNumber, string Name)
 {
 this._AccountNumber = AccountNumber;
 this._Name = Name;
 }

 public Vendor()
 {
 }
}

Using a ListView Control | 319

The empty constructor public Vendor() { } is required so the class
can be serialized. If you omit this class constructor and use this class in
a Web service, you get an error when calling the .asmx file directly in
your browser. However, the web service still works and can be called
from script. This additional constructor makes testing a web service in
the browser easier, but does not add any functionality to the script
that is required.

A rewritten web service that uses the custom type queries the Purchasing.Vendors
table in AdventureWorks and selects items (in our example, the first 10 entries), as
the previous example did:

 [WebMethod]
public Vendor[] GetVendors()
{
 SqlConnection conn = new SqlConnection(
 "server=(local)\\SQLEXPRESS; Integrated Security=true; Initial
Catalog=AdventureWorks");
 conn.Open();
 SqlCommand comm = new SqlCommand(
 "SELECT TOP 10 AccountNumber, Name FROM Purchasing.Vendor",
 conn);
 SqlDataReader dr = comm.ExecuteReader();

Rather than returning a DataRowCollection, the code iterates through the list and cre-
ates a Vendor element for each entry in the data table. This list is then converted into
an array and returned from the service:

 List<Vendor> v = new List<Vendor>();

 while (dr.Read())
 {
 v.Add(new Vendor(
 dr["AccountNumber"].ToString(),
 dr["Name"].ToString()));
 }
 return v.ToArray();
}

This example uses a construct that’s new in the .NET Framework version 2.0: gener-
ics. To use generics, you need to import the associated namespaces (System.
Collections for List support, and System.Collections.Generic). Example 17-2 pre-
sents the completed code for a version of the web service that works with the cus-
tom Vendor type.

Example 17-2. This web service returns a custom type

ListViewVendorsCustom.asmx

<%@ WebService Language="C#" Class="Vendors" %>

320 | Chapter 17: Using Server Data

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Data;
using System.Data.SqlClient;
using System.Collections;
using System.Collections.Generic;

public class Vendor
{
 string _AccountNumber;
 string _Name;

 public string AccountNumber
 {
 get
 {
 return _AccountNumber;
 }
 set
 {
 _AccountNumber = value;
 }
 }

 public string Name
 {
 get
 {
 return _Name;
 }
 set
 {
 _Name = value;
 }
 }

 public Vendor(string AccountNumber, string Name)
 {
 this._AccountNumber = AccountNumber;
 this._Name = Name;
 }
 public Vendor()
 {
 }
}

[WebService(Namespace = "http://hauser-wenz.de/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.Web.Script.Services.ScriptService]
public class Vendors : System.Web.Services.WebService

Example 17-2. This web service returns a custom type (continued)

Using a ListView Control | 321

In the source code downloads for this book, both variants of the web
service—one using a DataRowCollection and one using a custom type—
are included under ListViewVendors.asmx and ListViewVendorsCustom.
asmx. You can use both of them for the following examples; they are
interchangeable.

Now back to the ASP.NET page, where the web service is called. Web services have
already been covered in greater detail in Chapter 5, so here is just a refresher of what
must be done to use them. First, the .asmx file must be referenced in the xml-script.
Then, a client-side proxy is generated—a local object that exposes the behavior of
the remote web service. That means that the local object has the same methods the
remote service has; calling the local methods in turn calls the remote methods. This
call is done asynchronously (just as XMLHttpRequest calls were done in Chapter 3). A
callback function is used to process the results of the call after the web service
returns data.

When including the ASP.NET AJAX ScriptManager, control, be sure to first refer-
ence the web service’s .asmx file. Here’s the markup you need:

<asp:ScriptManager runat="server">
<Services>
<asp:ServiceReference Path="ListViewVendors.asmx" />

 </Services>
</asp:ScriptManager>

{

 [WebMethod]
 public Vendor[] GetVendors()
 {
 SqlConnection conn = new SqlConnection(
 "server=(local)\\SQLEXPRESS; Integrated Security=true;
Initial Catalog=AdventureWorks");
 conn.Open();
 SqlCommand comm = new SqlCommand(
 "SELECT TOP 10 AccountNumber, Name FROM Purchasing.Vendor",
 conn);
 SqlDataReader dr = comm.ExecuteReader();
 List<Vendor> v = new List<Vendor>();

 while (dr.Read())
 {
 v.Add(new Vendor(
 dr["AccountNumber"].ToString(),
 dr["Name"].ToString()));
 }
 return v.ToArray();
 }
}

Example 17-2. This web service returns a custom type (continued)

322 | Chapter 17: Using Server Data

When the page has been loaded, you need to call the web service. However, the term
“when the page has been loaded” is a bit misleading. The following code, for
instance, would not work:

<script type="text/javascript">
 window.onload = function() {
 Vendors.GetVendors(callComplete);
 }
</script>

The load event of an HTML page occurs when the HTML of the page has been fully
loaded. However at this point, it is possible that the ASP.NET AJAX library and the
web service proxy have not yet been fully loaded themselves. Therefore, this code
could fail with JavaScript displaying an error message such as “Vendors is not defined.”
Therefore, it is better to add a delay. You could use JavaScript’s window.setTimeout()
method, or you wait and have the user click a button to get the data, using syntax such
as the following (the function loadVendors() will be implemented in the next step):

<input type="button" value="Load Vendors" onclick="loadVendors();" />

The best way is to use the special pageLoad() method that ASP.NET AJAX provides:

<script type="text/javascript">
 function pageLoad() {
 Vendors.GetVendors(callComplete);
 }
</script>

Then, you can call the web service:

<script type="text/javascript">
 function loadVendors() {
 Vendors.GetVendors(callComplete, callError);
 }

You will receive the results in the first callback function (or an error in the second
one). In the callback function, you need to do the following:

1. Get a reference to the element to which you want to display the data (in the
example, that’s <div id="output" />).

2. Access its control property and call its set_data() method, submitting the result
of the web service call.

This leads to the following code:

 function callComplete(result) {
 $get("output").control.set_data(result);
 }
</script>

Using a ListView Control | 323

There is only one task remaining: create the xml-script markup. This is a little tricky
to do, although starting off is relatively easy. Begin by creating a <script> element,
then nest a <page> element, finally, nest a <components> element:

<script type="text/xml-script">
 <page xmlns="http://schemas.microsoft.com/xml-script/2005">
 <components>
 ...
 </components>
 </page>
</script>

Now within <components>, you can place the <listView> element. This tag requires
several attributes:

itemTemplateParentElementId
The ID of the element that is the parent of the individual item elements. It
sounds confusing, but basically it references the element in the example.

id
The ID of the element where the result will be placed.

The following markup is the result for the unordered list example:

<listView itemTemplateParentElementId="vendorsItemParent" id="output">
...
</listView>

Within <listView>, the layout template and the item template must be defined. The
former is easy—you simply need to reference the outer <div>:

<listView itemTemplateParentElementId="vendorsItemParent" id="output">
<layoutTemplate>
<template layoutElement="vendorsLayout" />

 </layoutTemplate>
 ...
</listView>

The <itemTemplate> is a bit trickier. This time, you need to reference the individual
item. In the example, that item is the element.

<listView itemTemplateParentElementId="vendorsItemParent" id="output">
 <layoutTemplate>
 <template layoutElement="vendorsLayout" />
 </layoutTemplate>
<itemTemplate>
<template layoutElement="vendorsItem">
...
</template>

 </itemTemplate>
</listView>

324 | Chapter 17: Using Server Data

Within the <template> element, you have to define the bindings for each item. Since
you want to output text, you can use the <label> element, which provides a repre-
sentation of the ASP.NET AJAX Label web control. In the markup code, the follow-
ing two properties are required:

dataPath
The name of the class property you want to bind

property
The property of the Label control to which you want to bind

This leads to the following markup:

<listView itemTemplateParentElementId="vendorsItemParent" id="output">
 <layoutTemplate>
 <template layoutElement="vendorsLayout" />
 </layoutTemplate>
 <itemTemplate>
 <template layoutElement="vendorsItem">

<label id="vendorsName">
<bindings>
<binding dataPath="Name" property="text" />

</bindings>
</label>

 </template>
 </itemTemplate>
</listView>

This is a lot of work, and all without the support of IntelliSense. But the result is
rewarding. The final step is to load the PreviewScript.js JavaScript library from the
Futures release that contains the actual client functionality:

<asp:ScriptManager runat="server">
 <Services>
 <asp:ServiceReference Path="ListViewVendors.asmx" />
 </Services>
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js"
Assembly="Microsoft.Web.Preview" />
 </Scripts>
</asp:ScriptManager>

Example 17-3 shows the complete markup and script for the page.

Example 17-3. Binding data to an HTML list

ListViewUnorderedList.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">

Using a ListView Control | 325

 <title>ASP.NET AJAX</title>

 <script type="text/javascript">
 function loadVendors() {
 Vendors.GetVendors(callComplete, callError);
 }

 function callComplete(result) {
 $get("output").control.set_data(result);
 }
 function callError(result) {
 $get("output").innerHTML = "Error: " + result.get_message();
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server">
 <Services>
 <asp:ServiceReference Path="ListViewVendors.asmx" />
 </Services>
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js"
Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <input type="button" value="Load Vendors" onclick="loadVendors();" />
 <div id="output">
 vendor list goes here</div>
 <div style="display:none;">
 <div id="vendorsLayout">
 <ul id="vendorsItemParent">
 <li id="vendorsItem">
vendor name goes here

 </div>
 </div>
 </form>

<script type="text/xml-script">
 <page xmlns="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <listView itemTemplateParentElementId="vendorsItemParent" id="output">
 <layoutTemplate>
 <template layoutElement="vendorsLayout" />
 </layoutTemplate>
 <itemTemplate>
 <template layoutElement="vendorsItem">
 <label id="vendorsName">
 <bindings>
 <binding dataPath="Name" property="text" />

Example 17-3. Binding data to an HTML list (continued)

326 | Chapter 17: Using Server Data

Figure 17-1 displays the results of loading the page and clicking on the Load Ven-
dors button.

The following is a synopsis of what actually happens:

1. When you click the button, the web service is called.

2. Once the web service returns data, the callback function is executed.

3. The JavaScript code iterates through the result set from the web service.

4. According to the data in the xml-script, the placeholders are filled with data and
the list is created in the invisible <div> element.

5. The list is copied (using DOM functions) to the final destination, the output
<div> element.

 </bindings>
 </label>
 </template>
 </itemTemplate>
 </listView>
 </components>
 </page>
</script>

</body>
</html>

Figure 17-1. Upon clicking the button, the list is populated

Example 17-3. Binding data to an HTML list (continued)

Using a ListView Control | 327

Binding Data to an HTML Table
Instead of an unordered list, you can use an HTML table to display data—an ASP.NET
AJAX version of an ASP.NET GridView data control, so to speak. To do so, you need to
change the HTML markup a bit. Instead of the and elements, you will use
<table> and <tr> elements. Also, since a table can show multiple columns, all the data
from the web service can be used, including both the Name and AccountNumber fields.

For every data item, you create a table row (<tr>). Within this row, create two cells
(<td>), one for each database column returned from the web service.

Here is the (hidden) placeholder containing a <table> element to which ASP.NET
AJAX binds server-side data:

<div style="display: none;">
 <div id="vendorsLayout">
 <table id="vendorsItemParent">
 <tr><th>Account Number</th><th>Name</th></tr>
 <tr id="vendorsItem">
 <td>vendor account number goes
here</td>
 <td>vendor name goes here</td>
 </tr>
 </table>
 </div>
</div>

Using an HTML Selection List
Unfortunately, the approach from Example 17-3 does not work with HTML <select>
list elements. Take a look at how a <select> element normally appears:

<select>
 <option value="1">one</option>
 <option value="2">two</option>
 <option value="3">three</option>
</select>

Within an <option> element, no other HTML is allowed. So, you might want to try
something like this:

<select>
 <option value="1">one</option>
 <option value="2">two</option>
 <option value="3">three</option>
</select>

However, this will not work. Therefore, you cannot use the approach from
Example 17-3 to fill a selection list with data from a data source. You can, however,
use one of the other ASP.NET AJAX techniques covered in this book to fill the list
dynamically: the Future release Select client-side control also supports data binding!

328 | Chapter 17: Using Server Data

However, there is a problem. Mozilla browsers display the table, but in Internet
Explorer, the browser remains blank. Internet Explorer is very particular about the
structure of the dynamically generated HTML table. This is an interesting result in
light of the fact that Internet Explorer has a history of being very tolerant of incor-
rect HTML markup.

So, to make the data-bound HTML table work, you have to create the table with a
<thead> and a <tbody> section. The <tbody> section is the parent element of each data
item, as rendered using a <tr> element.

You could also add an optional <tfoot> element, but this must occur before the
<tbody> element. This example does not need <tfoot>.

<table>
 <thead>
 <tr><th>Account Number</th><th>Name</th></tr>
 </thead>
 <tbody id="vendorsItemParent">
 <tr id="vendorsItem">
 <td id="vendorsAccountNumber">vendor account number goes here</td>
 <td id="vendorsName">vendor name goes here</td>
 </tr>
 </tbody>
</table>

In xml-script, you have to add the additional binding for the new placeholder ele-
ment. Then, the example works as before: when you click the HTML button, the
web service is called, its result is parsed into the vendorsLayout element, and the
result is copied into the ouput element. Example 17-4 shows the complete code, with
changes highlighted in bold.

Example 17-4. Binding data to an HTML table

ListViewTable.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
 function loadVendors() {
 Vendors.GetVendors(callComplete, callError);
 }

 function callComplete(result) {
 $get("output").control.set_data(result);
 }
 function callError(result) {

Using a ListView Control | 329

 $get("output").innerHTML = "Error: " + result.get_message();
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server">
 <Services>
 <asp:ServiceReference Path="ListViewVendors.asmx" />
 </Services>
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js"
Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <input type="button" value="Load Vendors" onclick="loadVendors();" />
 <div id="output">
 vendor list goes here</div>
 <div style="display: none;">
 <div id="vendorsLayout">
 <table>
 <thead>
 <tr><th>Account Number</th><th>Name</th></tr>
 </thead>
 <tbody id="vendorsItemParent">
 <tr id="vendorsItem">
 <td id="vendorsAccountNumber">vendor account number goes here</td>
 <td id="vendorsName">vendor name goes here</td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </form>

 <script type="text/xml-script">
 <page xmlns="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <listView itemTemplateParentElementId="vendorsItemParent" id="output">
 <layoutTemplate>
 <template layoutElement="vendorsLayout" />
 </layoutTemplate>
 <itemTemplate>
 <template layoutElement="vendorsItem">
 <label id="vendorsAccountNumber">
 <bindings>
 <binding dataPath="AccountNumber" property="text" />
 </bindings>
 </label>
 <label id="vendorsName">

Example 17-4. Binding data to an HTML table (continued)

330 | Chapter 17: Using Server Data

Figure 17-2 shows the results of displaying the page.

Creating a Custom Data Source
If you want more flexibility for the data access and do not want to stick to the struc-
ture provided by the data source, you can implement a data source yourself, as a
server-side ASP.NET class. Since ASP.NET AJAX relies heavily on web services, you
need to implement a DataService class. The associated class is implemented in the
Microsoft.Web.Preview.Services namespace defined in the Futures release. Within
the DataService class, you need to implement the default methods for a data object.
These methods are listed in the System.ComponentModel.DataObjectMethodType enu-
meration and include the following:

 <bindings>
 <binding dataPath="Name" property="text" />
 </bindings>
 </label>
 </template>
 </itemTemplate>
 </listView>
 </components>
 </page>
 </script>

</body>
</html>

Figure 17-2. Clicking the button generates and fills the table

Example 17-4. Binding data to an HTML table (continued)

Creating a Custom Data Source | 331

• Delete

• Insert

• Select

• Update

Displaying Data from a Custom Data Source
For demonstration purposes, we will first implement a web service SELECT method,
which again retrieves data from the Purchasing.Vendors table in the AdventureWorks
database.

As in previous examples, you can implement a method that returns the desired data.
By using the [DataObjectMethod(DataObjectMethodType.Select)] attribute, you
declare the specific method as the “select” method. The actual naming is arbitrary.
As the data type of the method’s return value, you can again use a custom type, as
shown in Example 17-5.

As an alternative, you can also return a DataTable, which requires less code, as
shown in Example 17-6. Choosing this return type does require a DataTable, not a
DataRowCollection!

Example 17-5. Returning a custom type

ListViewVendorsDataServiceCustomType.asmx, excerpt

[DataObjectMethod(DataObjectMethodType.Select)]
public Vendor[] GetVendors()
{
 SqlConnection conn = new SqlConnection(
 "server=(local)\\SQLEXPRESS; Integrated Security=true; Initial
Catalog=AdventureWorks");
 conn.Open();
 SqlCommand comm = new SqlCommand(
 "SELECT TOP 10 AccountNumber, Name FROM Purchasing.Vendor",
 conn);
 SqlDataReader dr = comm.ExecuteReader();
 List<Vendor> v = new List<Vendor>();

 while (dr.Read())
 {
 v.Add(new Vendor(
 dr["AccountNumber"].ToString(),
 dr["Name"].ToString()));
 }
 return v.ToArray();
}

332 | Chapter 17: Using Server Data

These .asmx files do not contain something explicitly labeled with [WebMethod].
However, when you call one of these web services in the browser directly, you see
that they have two web methods: GetData() and SaveData() (see Figure 17-3). Both
expect a parameters array with additional information. ASP.NET AJAX automati-
cally generates the required parameters, so you just call the methods under the fixed
DataObjectMethodType names; Delete, Insert, Select, and Update.

Example 17-6 comes in two flavors: DataTable and custom type.
You can find in the code downloads for this book under the filenames
ListViewVendorsDataService.asmx and ListViewVendorsDataService-
Custom.asmx. The custom type has .txt appended to its filename to
avoid data type conflicts with ListViewVendorsCustom.asmx.

Over on the ASP.NET side, two items are required: HTML markup to define the out-
put template and xml-script markup to do the data binding. The former is, as before,
an HTML table. Remember to use <thead> and <tbody> to satisfy Internet Explorer.

Example 17-6. Returning a DataTable

ListViewVendorsDataService.asmx

<%@ WebService Language="C#" Class="VendorsDataService" %>
using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Data;
using System.Data.SqlClient;
using Microsoft.Web.Preview.Services;using System.ComponentModel;

[WebService(Namespace = "http://hauser-wenz.de/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.Web.Script.Services.ScriptService]
public class VendorsDataService : DataService
{[DataObjectMethod(DataObjectMethodType.Select)]
 public DataTable GetVendors()
 {
 SqlConnection conn = new SqlConnection(
 "server=(local)\\SQLEXPRESS; Integrated Security=true;
InitialCatalog=AdventureWorks");
 conn.Open();
 SqlCommand comm = new SqlCommand(
 "SELECT TOP 10 AccountNumber, Name FROM Purchasing.Vendor",
 conn);
 SqlDataAdapter adap = new SqlDataAdapter(comm);
 DataSet ds = new DataSet();
 adap.Fill(ds);
 return ds.Tables[0];
 }
}

Creating a Custom Data Source | 333

The following HTML markup serves as the placeholder to which ASP.NET AJAX
binds the data from the custom data source:

<div id="output">
 vendor list goes here</div>
<div style="display: none;">
 <div id="vendorsLayout">
 <table>

<thead>
 <tr><th>Account Number</th><th>Name</th></tr>

</thead>
 <tbody id="vendorsItemParent">
 <tr id="vendorsItem">
 <td id="vendorsAccountNumber">vendor account number goes here</td>
 <td id="vendorsName">vendor name goes here</td>
 </tr>

</tbody>
 </table>
 </div>
</div>

However, the xml-script part requires some changes from the preceding example. It
starts off as usual:

<script type="text/xml-script">
 <page xmlns="http://schemas.microsoft.com/xml-script/2005">
 <components>
 ...
 </components>
 </page>
</script>

Then, the data source needs to be referenced. Since this is no ordinary web service,
the ScriptManager object will not work to reference the web service. Instead, the
<dataSource> xml-script element is used. Provide the URL and an ID—you will need
the latter later on!

Figure 17-3. The methods provided by the base class

334 | Chapter 17: Using Server Data

<script type="text/xml-script">
 <page xmlns="http://schemas.microsoft.com/xml-script/2005">
 <components>

<dataSource id="vendorSource" serviceURL="ListViewVendorsDataService.asmx" />
 ...
 </components>
 </page>
</script>

Next up is the ListView control, and by extension, the <listView> element. The most
important step is to bind the data source from the preceding code snippet to the
ListView control. The properties dataPath and property must be set to data, and
dataContext must reference the ID of the <dataSource> element:

<listView id="vendorsList" itemTemplateParentElementId="vendorsItemParent"
targetElement="output">
 <bindings>

<binding dataContext="vendorSource" dataPath="data" property="data" />
 </bindings>
 ...
</listView>

The <layoutTemplate> and <itemTemplate> elements are the same as before, binding
the data to the <table> element and its subelements.

One thing is missing, however. The data is bound, but has not yet been loaded. The
data source supports the property autoLoad. If set to "true", this automatically calls
the Select method of the data source.

See Example 17-7 for the complete code for this task.

Example 17-7. Displaying data from a custom data source

ListViewDataService.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server">
 <Scripts>
 <asp:ScriptReference Name="PreviewScript.js"
Assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>

Creating a Custom Data Source | 335

 <div id="vendorsList">
 vendor list goes here</div>
 <div style="display: none;">
 <div id="vendorsLayout">
 <table>
 <thead>
 <tr><th>Account Number</th><th>Name</th></tr>
 </thead>
 <tbody id="vendorsItemParent">
 <tr id="vendorsItem">
 <td id="vendorsAccountNumber">vendor account number goes here</td>
 <td id="vendorsName">vendor name goes here</td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </form>

 <script type="text/xml-script">
 <page xmlns="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <dataSource id="vendorSource" serviceURL="ListViewVendorsDataService.asmx"

autoLoad="true" />
 <listView id="vendorsList" itemTemplateParentElementId="vendorsItemParent">
 <bindings>
 <binding dataContext="vendorSource" dataPath="data" property="data" />
 </bindings>
 <layoutTemplate>
 <template layoutElement="vendorsLayout" />
 </layoutTemplate>
 <itemTemplate>
 <template layoutElement="vendorsItem">
 <label id="vendorsAccountNumber">
 <bindings>
 <binding dataPath="AccountNumber" property="text" />
 </bindings>
 </label>
 <label id="vendorsName">
 <bindings>
 <binding dataPath="Name" property="text" />
 </bindings>
 </label>
 </template>
 </itemTemplate>
 </listView>
 </components>
 </page>
 </script>

</body>
</html>

Example 17-7. Displaying data from a custom data source (continued)

336 | Chapter 17: Using Server Data

There is no actual coding involved (except of the DataService web service), just dec-
larations. The output shows the first 10 elements in the Purchasing.Vendors table,
formatted in an HTML <table> element. Therefore, the output of this script is identi-
cal to the one in Figure 17-2.

Summary
This chapter demonstrated how to access server-side data from the client. We imple-
mented a web service, then used ASP.NET AJAX’s data binding and special client
controls such as ListView to display the server information.

For Further Reading
http://quickstarts.asp.net/Futures/ajax/doc/data.aspx

Pre-release Microsoft documentation on using data services from ASP.NET
AJAX

http://astoria.mslivelabs.com/
A Microsoft project codenamed “Astoria” that attempts to enable applications to
expose data as data services

http://download.microsoft.com/download/5/9/c/59cd0dc5-4691-4c3e-840c-
66d865f27692/listview.xps

Specification of a new (server) web control in .NET Framework 3.5, also called
ListView

Managing Data
Displaying data is just the first step. The logical consequence would be to implement
the other methods defined in System.ComponentModel.DataObjectMethodType. Then you
can page through the data, update it, and more. This creates a whole new set of possi-
bilities. However you would achieve better performance and realize more efficiencies
in development by using the ASP.NET GridView control (or any other suitable data
control). If you are concerned about the postbacks and page refreshes that are funda-
mental to the GridView control, have a look at Chapter 6 where a method was pre-
sented that overcomes this limitation—with the use of ASP.NET AJAX, of course.

http://quickstarts.asp.net/Futures/ajax/doc/data.aspx
http://astoria.mslivelabs.com/
http://download.microsoft.com/download/5/9/c/59cd0dc5-4691-4c3e-840c-66d865f27692/listview.xps

337

Chapter 18 CHAPTER 18

Using Remote Web Services18

Chapters 5 and 17 discussed consuming ASP.NET web services with ASP.NET
AJAX. The XMLHttpRequest object that fuels all Ajax applications runs in a restricted
environment and is forbidden access to anything outside the current domain. If you
need data from a remote web service (one that is on a different server), there is only
one solution: create a proxy on your server and then call this proxy from your Java-
Script code. This in turn allows creating mashups. Mashups are web applications that
use data from different sources to “mix ‘n mash” them into something new. This
chapter shows you how to make remote web services data accessible to JavaScript.
From there you can use JavaScript to combine various external sources into some-
thing new.

The ASP.NET AJAX Futures release supports proxy implementation for such web
services calls through a technology referred to as a web service bridge. In the follow-
ing sections, we will create pages that receive data from two of the most popular com-
mercial web services, the Google search web service and the Amazon e-commerce
web service. The techniques shown here can easily be adapted to any other SOAP web
service.

The secret behind this rests in a new file extension that the ASP.NET AJAX Futures
release web site template registers in Web.config: .asbx. Files with this extension can
contain XML markup that provides information about a local (server-based) proxy
class for a web service. The web page’s JavaScript code simply connects with the .asbx
file, which then takes care of communication with the remote service. Figure 18-1
shows this mechanism.

If you are using the ASP.NET AJAX Futures CTP web site template, the Web.config
file is already prepared. Before moving on, be aware that the January 2007, May
2007, and July 2007 releases of ASP.NET AJAX Futures contain a bug, which can be
found in the following line:

<add extension="*.asbx" type="Microsoft.Web.Preview.Services.BridgeBuildProvider"/>

338 | Chapter 18: Using Remote Web Services

The * character is wrong here. This is not an error you would have noticed immedi-
ately, but only later when some scripts inform you that “There is no build provider
registered for the extension ‘.asbx’.” The following fix will solve the problem:

<add extension=".asbx" type="Microsoft.Web.Preview.Services.BridgeBuildProvider"/>

Make this change in any web sites you have that rely on features of the ASP.NET
Futures. You will also need to fix any new Futures-enabled web sites you create. (Alter-
natively, you can change the Web.config file template so that new sites have the correc-
tion already. The templates for Web.config files are in the ASP.NET Futures installation
location, which by default is %programdir%\Microsoft ASP.NET\ASP.NET Futures July
2007\v1.2.61025\web_config.)

Using the Google Web Service
The Google web service provides convenient programmatic access to the search
engine, using both a SOAP and a REST interface. For our example, we will use the
SOAP interface for the ASP.NET AJAX web service bridge.

Using the Google web service requires you to register with Google. To make the
request, go to http://www.google.com/apis/soapsearch. Google will send you a 32-byte
license key, which you will need to send with every search request to the service.

As of this writing, Google has at least temporarily discontinued issu-
ing new license keys. If you already have a key, you can continue to
work with the web service. If you do not have a license key available,
don’t worry; the section “Using the Amazon Web Service,” later in
this chapter, develops two sample applications for which new license
keys are still happily issued.

Of course, it would be a terrible idea to store this (secret!) license key in JavaScript code
in the page. Putting the key in the ASP.NET server code is also not recommended.

Figure 18-1. The client page calls the server bridge, which then calls the remote web service

Server (.asbx)

(1) Call bridge

(4) Return data

(2) Call web method

(3) Return data
Web services

MyDomain.tld AnotherDomain.tld

Client (.aspx)

http://www.google.com/apis/soapsearch

Using the Google Web Service | 339

However, you can put the license key in the <appSettings> section of the Web.config
file, as demonstrated in this snippet:

<appSettings>
 <add key="GoogleLicenseKey" value="***" />
</appSettings>

Obviously, the Web.config file available as part of the source code downloads for this
chapter does not contain this license key yet. you will need to obtain and fill in your
own key. You should also use the encryption feature of Web.config entries to encrypt
your secret API key. This feature is outside the scope of our discussion, so we will
not be including it in the examples that follow in this chapter.

The Google Web API Developer’s Kit is available for download on the Google API
web site. It also contains a WSDL description file named GoogleSearch.wsdl that
describes the web service interface. The tool wsdl.exe (part of the .NET Framework
SDK) can use this WSDL information to generate a proxy class.

Download the GoogleSearch.wsdl file or extract it as part of the Google API SDK. You
can also view the .wsdl file in the browser at http://api.google.com/GoogleSearch.wsdl,

Manual .asbx Registration
If you cannot run the .msi ASP.NET AJAX installer, the .asbx extension will not be
mapped with your IIS web server. In that case, run the IIS management console and
map the .asbx file extension to the aspnet_isapi.dll file, which allows the HTTP verbs
GET, POST, and HEAD. Also, add the following markup to the Web.config file of any
web site that uses a web service bridge so that the bridge files are recognized:

<compilation>
 <buildProviders>
 ...
 <add extension=".asbx" type="Microsoft.Web.Preview.Services.
BridgeBuildProvider"/>
 </buildProviders>
</compilation>
...
<httpHandlers>
 ...
 <add verb="GET,HEAD,POST" path="*.asbx" type="System.Web.Script.Services.
ScriptHandlerFactory, System.Web.Extensions, Version=1.2.61025.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35" validate="false"/>

If you are using IIS 7, add the following element in the <handlers> subnode of the
<system.webServer> node in Web.config:

<add name="ASBXHandler" verb="GET,HEAD,POST" path="*.asbx"
preCondition="integratedMode"
type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions,

Version=1.2.61025.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>

http://api.google.com/GoogleSearch.wsdl

340 | Chapter 18: Using Remote Web Services

then copy and paste it into a local file. Open a Windows Command window and run
the following command (be sure to use an uppercase “GOOGLE,” as this will be a
case-sensitive namespace when you work with it later):

wsdl.exe /namespace:Google GoogleSearch.wsdl

To run the wsdl.exe command at the command line, you might need
to set a PATH variable to the folder containing the .NET SDK utili-
ties. By default, the utilities are in the folder %windir%\Program Files\
Microsoft Visual Studio 8\SDK\v2.0\Bin.

This generates a named GoogleSearch.cs file that contains a class and methods for
calling the Google search API. As Figure 18-2 shows, you will receive some warn-
ings, but you can safely ignore them for this web service. Also, notice that we pro-
vide a namespace for the class to prevent a potential name conflict with other classes
in our web application.

Put the generated class file, GoogleSearchService.cs, in the App_Code folder of an
ASP.NET Futures-enabled web application. (If the web site doesn’t already have
an App_Code folder, create one.) This enables you to use the class without manual
compilation.

In the next step, you have to create a wrapper in server code for the web service
proxy, one that calls the search method. Going into great detail about the Google web
service API is beyond the scope of this book. But the most important information is that

Figure 18-2. Creating the web service proxy for the Google web service

Using the Google Web Service | 341

the web service exposes a doGoogleSearch() method, which accepts two parameters: the
Google license key and the search string. The wrapper just calls this method and
returns the results, as shown in Example 18-1. Create a class file named GoogleSearch-
ServiceWrapper.cs in the App_Code folder, delete any code already in the file, and then
copy the code from Example 18-1 into it.

Now we can use the ASP.NET AJAX web service bridge. To activate the web service
bridge, you need to provide all relevant web service information in an .asbx file.
Create an XML file named Google.asbx in the root of your web site.

In the .asbx file, provide the name of your (custom) namespace where the bridge will
reside (namespace attribute) and the name of the class you want to implement with
the bridge (className attribute).

<bridge namespace="OReilly.AspNetAJAX" className="Google" >

The <proxy> element holds the name of the wrapper class and where to find it:

<proxy type="GoogleSearchServiceWrapper, App_Code" />

Next, all methods in the web service are listed, including the names of the parameters.
All the parameters specified here can be used in JavaScript calls later. However, don’t
forget that the required license key is stored in the Web.config file. The parameter for
the Google license key therefore cannot be set using JavaScript. Instead, you can use
the following syntax to load the key at runtime from the <appSettings> section:

<parameter name="licenseKey" value="% appsettings : GoogleLicenseKey %"
serverOnly="true" />

Example 18-1. A Google web service wrapper class

GoogleSearchServiceWrapper.cs

using Google;

public class GoogleSearchServiceWrapper
{
 public GoogleSearchResult Search(string licenseKey, string query)
 {
 GoogleSearchService gss = new GoogleSearchService();
 return gss.doGoogleSearch(
 licenseKey,
 query,
 0, // offset of the first result
 10, // maximum number of results
 false, // whether to filter similar results
 "", // subset of Google to restrict search to
 false, // whether to filter adult content
 "", // language to restrict search to
 "", // ignored, as is the next parameter
 "");
 }
}

342 | Chapter 18: Using Remote Web Services

The serverOnly="true" syntax makes the licenseKey parameter unavailable for the
JavaScript code, so the value for it is always taken from Web.config.

That wraps it up. Example 18-2 contains the complete code for the bridge file.

Now all that is left to do is to write the ASP.NET AJAX-powered .aspx page. Our
page needs a text box for the search query, a button to run the query, and some
placeholders to display the results.

The markup might look like the following:

<div>
 <input type="text" id="Query" />
 <input type="button" value="Search" onclick="Search();" />
</div>
<div>
 <p>Approx. 0 results.</p>
 <ul id="Results">

</div>

Of course, the page must contain a ScriptManager control. In its <Services> sub-
element, the web service is referenced—naturally, as an .asbx file. Also, the
PreviewScript.js script library (see Chapter 15) is loaded since it will be used in the
JavaScript code.

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="~/Google.asbx" />
 </Services>
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview" Name="PreviewScript.js" />
 </Scripts>
</asp:ScriptManager>

Example 18-2. The web service bridge for the Google web service

Google.asbx

<?xml version="1.0" encoding="utf-8" ?>
<bridge namespace="OReilly.AspNetAJAX" className="Google" >
 <proxy type="GoogleSearchServiceWrapper, App_Code" />
 <method name="Search">
 <input>
 <parameter name="licenseKey"
 value="% appsettings : GoogleLicenseKey %"
 serverOnly="true" />
 <parameter name="query" />
 </input>
 </method>
</bridge>

Using the Google Web Service | 343

This loads the bridge and exposes our OReilly.AspNetAJAX namespace to JavaScript.
You can then call the Search() method from the web service wrapper as you would
call any local web service. Notice how you provide the parameters—you use an
array with the parameter names as the indexes:

OReilly.AspNetAJAX.Google.Search(
 { "query": query },
 callComplete, callError
);

The return data from the web service is a JavaScript representation of the SOAP
objects returned by the server. For a Google search, the return data has a property
(or subelement) named resultElements, which contains an array of all individual
URLs found by this search. Each of these URLs has, among other things, title and
URL properties that we will display in the page.

The complete code in Example 18-3 contains some other nifty JavaScript effects. For
example, when the results from the web service arrive, they are dynamically added to
the selection list (a HTML element). The clearList() helper function clears
that list when a new search is executed. The search results from Google are visible on
the local page (Figure 18-3), thanks to the ASP.NET AJAX web service bridge (see
Figure 18-1 earlier in this chapter).

Example 18-3. Calling the Google web service

Google.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
 function clearList() {
 var list = $get("Results");
 while (list.firstChild != null) {
 list.removeChild(list.firstChild);
 }
 }

 function Search() {
 var query = new Sys.Preview.UI.TextBox($get('Query'))
 $get("Button").disabled = true;
 clearList();
 OReilly.AspNetAJAX.Google.Search(
 { "query": query.get_text() },
 callComplete, callError

344 | Chapter 18: Using Remote Web Services

);
 new Sys.Preview.UI.Label($get('Count')).set_text("...");
 }

 function callComplete(result) {
 new
Sys.Preview.UI.Label($get('Count')).set_text(result.estimatedTotalResultsCount);
 if (result.resultElements != null) {
 for (var i = 0; i < result.resultElements.length; i++) {
 var page = result.resultElements[i];
 var li = document.createElement("li");
 var a = document.createElement("a");
 a.setAttribute("href", page.URL);
 a.innerHTML = page.title;
 li.appendChild(a);
 $get("Results").appendChild(li);
 }
 }
 $get("Button").disabled = false;
 }
 function callError(result) {
 window.alert("Error! " + result.get_message());
 new Sys.Preview.UI.Label($get('Count')).set_text("0");
 $get("Button").disabled = false;
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="~/Google.asbx" />
 </Services>
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview"
Name="PreviewScript.js" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="Query" />
 <input type="button" id="Button" value="Search" onclick="Search();" />
 </div>
 <div>
 <p>Approx. 0 results.</p>
 <ul id="Results">

 </div>
 </form>
</body>
</html>

Example 18-3. Calling the Google web service (continued)

Using the Amazon Web Service | 345

While working on this book, the Google web services server had some
outages from time to time, so don’t immediately assume there is a
problem with your code if you don’t see results right away. It could be
the remote server that causes issues. Refer to Appendix A for informa-
tion on debugging Ajax applications and how to have a look at the
HTTP traffic.

Using the Amazon Web Service
The preceding section showed you how to use the Google web service, a relatively
unsophisticated service with no custom types as parameters and a simple method
that handles everything. In this section, we will cover the more complex Amazon
web service. It supports several types that together make up a search request. Again,
the implementation details of the Amazon web service are of no particular interest,
but the way ASP.NET AJAX can use this data is.

Once again you will need a license key (Amazon calls it an access key). As with the
Google web service, this requires registration; the URL of the Amazon web service
documentation site is http://www.amazon.com/gp/aws/landing.html. As with the Goo-
gle key, you must put the access key in the <appSettings> section of the Web.config
file (Amazon’s key is 20 bytes long).

The sample file you can download for this book does not contain this key, so you
need to put yours in:

<appSettings>
 <add key="AmazonAccessKey" value="***" />
</appSettings>

Figure 18-3. Searching with the Google API and an ASP.NET AJAX web services bridge

http://www.amazon.com/gp/aws/landing.html

346 | Chapter 18: Using Remote Web Services

Similar to the Google example, the next step uses the wsdl.exe tool to create a proxy
class from the WSDL description of the Amazon web service. You can download
the Amazon WSDL file at http://webservices.amazon.com/AWSECommerceService/
AWSECommerceService.wsdl.

Use the following command in a Command window to generate the proxy class,
AWSECommerceService.cs:

wsdl.exe /namespace:Amazon
http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

Copy the resulting .cs file to your application’s App_Code folder. If an error message
appears, it may be caused by the usual list of server hiccups; just use the
AWSECommerceService.cs class provided as part of the this book’s downloads.

Implementing the wrapper class is a bit more difficult this time, as the web service uses
some custom objects. Create a class file named AWSECommerceServiceWrapper.cs in
the site’s App_Code folder. In the class, you must instantiate an ItemSearchRequest
object to which you provide the search term (what to search), the search index
(where to search for it), and the response group (how much data to return):

public Amazon.Items Search(string accessKey, string query)
{
 ItemSearchRequest searchRequest = new ItemSearchRequest();
 searchRequest.Keywords = query;
 searchRequest.ResponseGroup = new string[] { "Small" };
 searchRequest.SearchIndex = "Books";

The next step is to instantiate an ItemSearch object, which provides the Amazon
access key and the newly created ItemSearchRequest object:

 ItemSearch search = new ItemSearch();
 search.AWSAccessKeyId = accessKey;
 search.Request = new ItemSearchRequest[1] { searchRequest };

Finally, you instantiate the main class, AWSECommerceService, and call the ItemSearch()
method, providing the ItemSearch object as a parameter. The return data is an array
of the responses of all search queries sent (it is possible to send multiple queries in
one call).

Since we were sending only one query, we expect only one result:

 AWSECommerceService awse = new AWSECommerceService();
 ItemSearchResponse searchResponse = awse.ItemSearch(search);
 return searchResponse.Items[0];
}

Example 10-8 has the complete code for AWSECommerceServiceWrapper.cs wrap-
per class.

http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl
http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

Using the Amazon Web Service | 347

The rest of this Amazon demo application is more or less the same as the Google
example. An Amazon.asbx file serves as the bridge to the external web service. The
accessKey data is read from Web.config, and the query parameter will come from the
client application. Example 18-5 shows you the XML for the Amazon.asbx file.

Not only is sending data to the Amazon web service complicated, getting the data
out of it is also complex. The wrapper’s return data (which is an array of type
Amazon.Item) contains a list of books. Most of the interesting data in this array is put
in the ItemAttributes property, another custom object.

Example 18-4. The Amazon web service wrapper class

AWSECommerceServiceWrapper.cs

using Amazon;

public class AWSECommerceServiceWrapper
{
 public Amazon.Items Search(string accessKey, string query)
 {
 ItemSearchRequest searchRequest = new ItemSearchRequest();
 searchRequest.Keywords = query;
 searchRequest.ResponseGroup = new string[] { "Small" };
 searchRequest.SearchIndex = "Books";

 ItemSearch search = new ItemSearch();
 search.AWSAccessKeyId = accessKey;
 search.Request = new ItemSearchRequest[1] { searchRequest };

 AWSECommerceService awse = new AWSECommerceService();
 ItemSearchResponse searchResponse = awse.ItemSearch(search);
 return searchResponse.Items[0];
 }
}

Example 18-5. The web service bridge for the Amazon web service

Amazon.asbx

<?xml version="1.0" encoding="utf-8" ?>
<bridge namespace="OReilly.AspNetAJAX " className="Amazon" >
 <proxy type="AWSECommerceServiceWrapper, App_Code" />
 <method name="Search">
 <input>
 <parameter name="accessKey"
 value="% appsettings : AmazonAccessKey %"
 serverOnly="true" />
 <parameter name="query" />
 </input>
 </method>
</bridge>

348 | Chapter 18: Using Remote Web Services

Example 18-6 shows an ASP.NET page that contains code to extract the author(s) of
all books that satisfied the search parameters along with the book title, then put the
results in a element. Figure 18-4 shows the result.

Example 18-6. Calling the Amazon web service

Amazon.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script type="text/javascript">
 function clearList() {
 var list = $get("Results");
 while (list.firstChild != null) {
 list.removeChild(list.firstChild);
 }
 }

 function Search() {
 var query = new Sys.Preview.UI.TextBox($get('Query'))
 $get("Button").disabled = true;
 clearList();
 OReilly.AspNetAJAX.Amazon.Search(
 { "query": query.get_text() },
 callComplete, callError
);
 new Sys.Preview.UI.Label($get('Count')).set_text("...");
 }

 function callComplete(result) {
 new Sys.Preview.UI.Label($get('Count')).set_text(result.TotalResults);
 if (result.Item != null) {
 for (var i = 0; i < result.Item.length; i++) {
 var article = result.Item[i];
 var author = (article.ItemAttributes.Author != null ?
 join(article.ItemAttributes.Author) + ": " : "");
 var title = article.ItemAttributes.Title;
 var li = document.createElement("li");
 var liText = document.createTextNode(author + title);
 li.appendChild(liText);
 $get("Results").appendChild(li);
 }
 }
 $get("Button").disabled = false;
 }

Using the Amazon Web Service | 349

Interestingly, both Google and Amazon offer a SOAP and a REST
interface to their services. Both interfaces provide the same functional-
ity. The REST usage numbers are much higher in both cases than the
SOAP numbers. One reason is certainly the increased complexity of
using SOAP. However, with the ASP.NET AJAX web service bridge,
most of that complexity is taken care of for you.

 function callError(result) {
 window.alert("Error! " + result.get_message());
 new Sys.Preview.UI.Label($get('Count')).set_text("0");
 $get("Button").disabled = false;
 }

 function join(a) {
 var s = "";
 for (var i=0; i < a.length - 1; i++) {
 s += a[i] + "/";
 }
 s += a[a.length - 1];
 return s;
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="~/Amazon.asbx" />
 </Services>
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview"
Name="PreviewScript.js" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="Query" />
 <input type="button" id="Button" value="Search" onclick="Search();" />
 </div>
 <div>
 <p>
 0 results.</p>
 <ul id="Results">

 </div>
 </form>
</body>
</html>

Example 18-6. Calling the Amazon web service (continued)

350 | Chapter 18: Using Remote Web Services

Transforming a Web Service Result with XSLT
The data returned from a web service is generally XML (at least if SOAP or REST is
used). This XML is represented in your ASP.NET AJAX page as a JavaScript object,
from which you can extract what you need, then display using HTML elements.

Another way to convert the web service data from XML to HTML output, though, is
to use an XSL transformation (XSLT). Explaining the use of XSLT is beyond the
scope of this book, but I have cited some excellent sources of information in the “For
Further Reading” section at the end of this chapter. Modern web browsers (Mozilla,
Internet Explorer, Opera 9+) support XSLT via JavaScript, but very inconsistently.
Therefore, a better approach is to perform the transformation in server code. This is
possible using custom .NET code, or by letting ASP.NET AJAX components do all
the work. In this section, we’ll transform the return data from the Google search ser-
vice into an HTML fragment, which will then be displayed on the web page.

The ASP.NET AJAX web service bridge supports two built-in transformers that can
convert objects into another format. The Microsoft.Web.Preview.Services.
XmlBridgeTransformer class converts an object into XML, and the Microsoft.Web.
Preview.Services.XsltBridgeTransformer class performs an XSL conversion of XML
data into any output format (usually, HTML).

As before, we will prepare a bridge, a wrapper class, and JavaScript code in the page
that sets the search in motion. The JavaScript code will send the search request
from the page to the bridge, which will call the wrapper, which performs the search.
The results come back to the wrapper as an object (as we saw earlier, we can work
with the object as an array). The wrapper sends this to the bridge. However, this
time, the bridge does not send the results back down to the page as is.

Figure 18-4. Searching the Amazon catalog using an ASP.NET AJAX bridge

Transforming a Web Service Result with XSLT | 351

Unlike examples earlier in the chapter, the bridge this time performs a pair of trans-
forms on the results. The first transform converts the result object into XML. The
second applies an XSLT transformation to the converted XML to produce HTML.
Indeed, it produces the actual HTML that we want to use to display the result list.
The bridge sends this HTML to the page, where a single line of JavaScript can sim-
ply insert the finished HTML into a waiting container.

We will use variations on the three files that we created for the earlier Google search
example. However, we need one additional item: XSLT created as an .xsl file. This is
the transformation that will be called by the bridge to convert the XML to HTML.

In the root folder of your web application, add a new XSLT file named Google.xsl.
This file will hold the XSLT instructions for transforming Google search results into
HTML.

As in the previous Google example, we want to display the search results as an
HTML list. Therefore, the XSLT must iterate over all the matches returned by
the search as XML, which we can do with an XSL for each loop. There is one
small hurdle though. Every search result resides in a <resultElement> element, the
ASP.NET AJAX XML transformer converts this into <ResultElement>. XSL is low-
ercase, therefore accessing resultElement will not work, we need to use
ResultElement instead:

<xsl:for-each select="//resultElements/ResultElement">
...
</xsl:for-each>

For each search result item, an element is created. The text of the element
is a link (an <a> element) that points to the web page for that particular result. XSLT
processors escape HTML entities, but the Google web service returns the page’s title
as HTML (since the search terms are highlighted in bold). Therefore, we will need to
use the disable-output-encoding attribute for the title.

One other point: since we want to create an HTML fragment, in the XSLT’s <xsl:
output> element we need to include the omit-xml-declaration attribute to prevent
the transformation from creating a result that starts with <?xml ?>. Example 18-7
shows the complete XSLT file.

Example 18-7. The XSLT file for the Google web service

Google.xsl

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" encoding="utf-8" omit-xml-declaration="yes" />

 <xsl:template match="/">

352 | Chapter 18: Using Remote Web Services

For the next step, we need a new entry for the XSL transformation. This will set up
the object transformation to XML (via XmlBridgeTransformer) and the XML transfor-
mation into HTML (via XsltBridgeTransformer). Usually, you would create a new
method in the web service wrapper for the search that generates the results for the
object transformation, but for this example, there is no new business logic to
implement.

You could also use a new bridge file, but then you would have to use a
different class name than earlier, otherwise Visual Studio would com-
plain during compilation (you could still run the page, though).

In prerelease versions of ASP.NET AJAX, within the bridge, the serverName attribute
of the <method> element could be used to redirect requests to the wrapper method:

<method name="SearchXslt" serverName="Search">
...
</method>

This exposes a method called SearchXslt() that is accessible in JavaScript, but it just
executes the existing Search() method in the wrapper.

Recent ASP.NET AJAX versions no longer support that hook. Therefore, you need to
do a server-side redirection by patching the GoogleSearchServiceWrapper.cs file as
shown in Example 18-8.

 <p>
 Approx. <xsl:value-of select="//estimatedTotalResultsCount" /> matches!

 <xsl:for-each select="//resultElements/ResultElement">

<a>
<xsl:attribute name="href">
<xsl:value-of select="URL" />
</xsl:attribute>
<xsl:value-of select="title" disable-output-escaping="yes" />

 </xsl:for-each>

 </p>
 </xsl:template>

</xsl:stylesheet>

Example 18-8. The updated Google search service wrapper

GoogleSearchServiceWrapper.cs

using Google;

Example 18-7. The XSLT file for the Google web service (continued)

Transforming a Web Service Result with XSLT | 353

But back to the bridge file. In the <method> element, the <input> element remains the
same, as the parameters do not change. However, a new <transforms> element is
introduced, which specifies the two transformers. For the XSLT transformer, you
must, of course, provide the XSL file to use. Example 18-9 shows the XML markup
for the updated bridge file.

public class GoogleSearchServiceWrapper
{
 public GoogleSearchResult Search(string licenseKey, string query)
 {
 GoogleSearchService gss = new GoogleSearchService();
 return gss.doGoogleSearch(
 licenseKey,
 query,
 0,
 10,
 false,
 "",
 false,
 "",
 "",
 "");
 }

 public GoogleSearchResult SearchXslt(string licenseKey, string query)
 {
 return Search(licenseKey, query);
 }
}

Example 18-9. The updated XSLT web service bridge for the Google web service

Google.asbx

<?xml version="1.0" encoding="utf-8" ?>
<bridge namespace="OReilly.AspNetAJAX" className="Google" >
 <proxy type="GoogleSearchServiceWrapper, App_Code" />
 <method name="Search">
 <input>
 <parameter name="licenseKey"
 value="% appsettings : GoogleLicenseKey %"
 serverOnly="true" />
 <parameter name="query" />
 </input>
 </method>
 <method name="SearchXslt" serverName="Search">
 <input>
 <parameter name="licenseKey"
 value="% appsettings : GoogleLicenseKey %"
 serverOnly="true" />
 <parameter name="query" />
 </input>

Example 18-8. The updated Google search service wrapper (continued)

354 | Chapter 18: Using Remote Web Services

All that remains to be done is to call this bridge. As the bridge returns an HTML
fragment, the result from the web service call can simply be assigned to the innerHTML
property of a <div> container. This significantly simplifies the JavaScript code.

Example 18-10 shows a complete ASP.NET page with markup and JavaScript code.
The output of this page is identical to that of Example 18-3, which was displayed in
Figure 18-3.

 <transforms>
 <transform type="Microsoft.Web.Preview.Services.XmlBridgeTransformer" />
 <transform type="Microsoft.Web.Preview.Services.XsltBridgeTransformer">
 <data>
 <attribute name="stylesheetFile" value="~/Google.xsl" />
 </data>
 </transform>
 </transforms>
 </method>
</bridge>

Example 18-10. Calling the Google web service with XSLT

GoogleXslt.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
 function clearList() {
 $get("Results").innerHTML = "";
 }

 function Search() {
 var query = new Sys.Preview.UI.TextBox($get('Query'))
 $get("Button").disabled = true;
 clearList();
 OReilly.AspNetAJAX.Google.SearchXslt(
 { "query": query.get_text() },
 callComplete, callError
);
 }

 function callComplete(result) {
 $get("Results").innerHTML = result;
 $get("Button").disabled = false;
 }
 function callError(result) {
 window.alert("Error! " + result.get_message());

Example 18-9. The updated XSLT web service bridge for the Google web service (continued)

Transforming a Web Service Result with XSLT | 355

Of course, this approach also works with the Amazon web service. First, we need to
update the web services bridge file. Example 18-11 shows the new code.

 $get("Button").disabled = false;
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="~/Google.asbx" />
 </Services>
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview"
Name="PreviewScript.js" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="Query" />
 <input type="button" id="Button" value="Search" onclick="Search();" />
 </div>
 <div id="Results">
 </div>
 </form>
</body>
</html>

Example 18-11. The updated Amazon web services bridge

Amazon.asbx

<?xml version="1.0" encoding="utf-8" ?>
<bridge namespace="OReilly.AspNetAJAX" className="Amazon" >
 <proxy type="AWSECommerceServiceWrapper, App_Code" />
 <method name="Search">
 <input>
 <parameter name="accessKey"
 value="% appsettings : AmazonAccessKey %"
 serverOnly="true" />
 <parameter name="query" />
 </input>
 </method>
 <method name="SearchXslt" serverName="Search">
 <input>
 <parameter name="accessKey"
 value="% appsettings : AmazonAccessKey %"
 serverOnly="true" />
 <parameter name="query" />
 </input>
 <transforms>

Example 18-10. Calling the Google web service with XSLT (continued)

356 | Chapter 18: Using Remote Web Services

We must also provide a dummy function in the web service wrapper to redirect calls
of SearchXslt() to Search(), as shown in Example 18-12.

Next, we need an XSL transformation that converts the XML returned from the
Amazon SOAP service into HTML. Example 18-13 presents one possible approach.

 <transform type="Microsoft.Web.Preview.Services.XmlBridgeTransformer" />
 <transform type="Microsoft.Web.Preview.Services.XsltBridgeTransformer">
 <data>
 <attribute name="stylesheetFile" value="~/Amazon.xsl" />
 </data>
 </transform>
 </transforms>
 </method>
</bridge>

Example 18-12. The updated Amazon web services wrapper

AWSECommerceServiceWrapper.cs

using Amazon;

public class AWSECommerceServiceWrapper
{
 public Amazon.Items Search(string accessKey, string query)
 {
 ItemSearchRequest searchRequest = new ItemSearchRequest();
 searchRequest.Keywords = query;
 searchRequest.ResponseGroup = new string[] { "Small" };
 searchRequest.SearchIndex = "Books";

 ItemSearch search = new ItemSearch();
 search.AWSAccessKeyId = accessKey;
 search.Request = new ItemSearchRequest[1] { searchRequest };

 AWSECommerceService awse = new AWSECommerceService();
 ItemSearchResponse searchResponse = awse.ItemSearch(search);
 return searchResponse.Items[0];
 }

 public Amazon.Items SearchXslt(string accessKey, string query)
 {
 return Search(accessKey, query);
 }
}

Example 18-13. The stylesheet to transform Amazon web services results into HTML

Amazon.xsl

<?xml version="1.0" encoding="utf-8"?>

Example 18-11. The updated Amazon web services bridge (continued)

Transforming a Web Service Result with XSLT | 357

Finally, we use code very similar to Example 18-10 to run the transformation.
Example 18-14 contains the complete listing.

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" encoding="utf-8" omit-xml-declaration="yes" />

 <xsl:template match="/">
 <p>
 <xsl:value-of select="//TotalResults" /> matches found!

 <xsl:for-each select="//Items/Item/ItemAttributes">

 <xsl:value-of select="Author" />:
 <xsl:value-of select="Title" />

 </xsl:for-each>

 </p>
 </xsl:template>

</xsl:stylesheet>

Example 18-14. Calling the Amazon web service with XSLT

AmazonXslt.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
 function clearList() {
 $get("Results").innerHTML = "";
 }

 function Search() {
 var query = new Sys.Preview.UI.TextBox($get('Query'))
 $get("Button").disabled = true;
 clearList();
 OReilly.AspNetAJAX.Amazon.SearchXslt(
 { "query": query.get_text() },
 callComplete, callError
);
 }

 function callComplete(result) {

Example 18-13. The stylesheet to transform Amazon web services results into HTML (continued)

358 | Chapter 18: Using Remote Web Services

Figure 18-5 displays the output. You will note some visual flaws. For example, books
for which no author is listed, such as encyclopedias and other reference works, look
a little disjointed with the colon at the beginning of the entry. This is something that
is easier to compensate with code than with XSL. But there are workarounds for this,
as well.

Using the Yahoo! Web Service (and REST and XPath)
In the final example of this chapter, we will use yet another web service, this time the
Yahoo! web service. This service does not currently provide a SOAP interface, but
uses REST exclusively.

Therefore, on the server, we need to send a GET request instead of a POST SOAP
request. The ASP.NET AJAX Futures release comes with support for this, but first
you need to register with Yahoo! in order to be able to use the service.

 $get("Results").innerHTML = result;
 $get("Button").disabled = false;
 }
 function callError(result) {
 window.alert("Error! " + result.get_message());
 $get("Button").disabled = false;
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="~/Amazon.asbx" />
 </Services>
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview"
Name="PreviewScript.js" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="Query" />
 <input type="button" id="Button" value="Search" onclick="Search();" />
 </div>
 <div id="Results">
 </div>
 </form>
</body>
</html>

Example 18-14. Calling the Amazon web service with XSLT (continued)

Using the Yahoo! Web Service (and REST and XPath) | 359

Yahoo! expects you to register each application, and as a result provides you with
several keys in case you need to use more than one. To apply for such an application
ID, go to http://search.yahooapis.com/webservices/register_application. You need to
sign in to Yahoo! in order to access this page. If you do not currently have a Yahoo!
account, you can set one up at no cost. Then, you will get to the questionnaire
shown in Figure 18-6, where you need to provide background information about the
application. The web page, including the application key, is displayed in Figure 18-7
(which for publishing purposes has been redacted, for understandable reasons).

Figure 18-5. Searching the Amazon catalog using an ASP.NET AJAX bridge and an XSL
transformation

A Moment for REST
REST stands for “REpresential State Transfer,” a concept taken from Roy Fielding’s
University of California PhD dissertation, “Architectural Styles and the Design of Net-
work-based Software Architectures.” (Fielding is one of the authors of the HTTP spec-
ification.) The theory behind REST is not pertinent for our example and we won’t go
into any further detail here. What we do need to know is that REST web service calls
usually work in the following fashion: a GET (!) request is sent to the server, all request
data (which method to call, which arguments to pass) being parts of the URL. The
return data from this GET call is usually XML, but it can also come in different for-
mats—for instance, plain text, CSV, or JSON.

http://search.yahooapis.com/webservices/register_application

360 | Chapter 18: Using Remote Web Services

Store the new application key in your site’s Web.config, under the name
YahooApplicationID. Including the previous examples, Web.config now should con-
tain a section that appears as follows:

Figure 18-6. Providing information regarding your application

Figure 18-7. The newly generated application key (for obvious reasons the key itself is not
shown here)

Using the Yahoo! Web Service (and REST and XPath) | 361

<appSettings>
 <add key="AmazonAccessKey" value="***" />
 <add key="GoogleLicenseKey" value="***" />
 <add key="YahooAppID" value="***" />
</appSettings>

A REST call to the Yahoo! search service is scripted as follows (see Figure 18-8 for
what this XML can look like):

http://api.search.yahoo.com/WebSearchService/V1/webSearch?
appid=***&output=xml&query=***

This URL consists of a base path (http://api.search.yahoo.com/WebSearchService/V1/
webSearch) and several arguments as part of the query string. The .asbx bridge file
we create for this example will configure the application to send a request to such a
URL.

First, the correct proxy type must be used. This time we do not have a SOAP wrap-
per based on a WSDL service description, but can use a provider that ships with the
ASP.NET AJAX Futures release: Microsoft.Web.Preview.Services.BridgeRestProxy.
The serviceURL property of the <proxy> element points to the base path of the Yahoo!
search service:

<?xml version="1.0" encoding="utf-8" ?>
<bridge namespace="OReilly.AspNetAJAX" className="Yahoo">
 <proxy type="Microsoft.Web.Preview.Services.BridgeRestProxy"
 serviceUrl="http://api.search.yahoo.com/WebSearchService/V1/webSearch" />

Figure 18-8. The XML output of the Yahoo! search service REST call

http://api.search.yahoo.com/WebSearchService/V1/webSearch
http://api.search.yahoo.com/WebSearchService/V1/webSearch

362 | Chapter 18: Using Remote Web Services

As in the previous examples, a method is defined with the <method> element. The two
arguments appid and output come from the server, but the query argument (the
actual search term) will be provided by the JavaScript code:

 <method name="Search">
 <input>
 <parameter name="appid"
 value="% appsettings : YahooAppID %"
 serverOnly="true" />
 <parameter name="output"
 value="xml"
 serverOnly="true" />
 <parameter name="query" />
 </input>

This would actually already work. If you called the OReilly.AspNetAJAX.Yahoo.
Search() method, you would get XML quite similar to the one from Figure 18-8 in
return. This XML could then be parsed with JavaScript code, and the data from it
displayed on the web page.

However, parsing XML with JavaScript can be a tedious task, that does not work
equally well on all browsers, and is simply unnecessary here. Another helpful feature
of ASP.NET AJAX Futures is the XPathBridgeTransformer. The approach is similar to
that of of the XsltBridgeTransformer, but this time ASP.NET AJAX does not trans-
form the XML into HTML, but XML into a JavaScript object.

This is the idea: you can use XPath queries to access specific nodes in the resulting
XML. The results of the XPath queries are converted into JavaScript objects and are
then readily available to client script.

Usually, you need the following steps:

1. Use <attribute name="selector" value="XPath expression" /> to query one or
more nodes in the XML.

2. Optional: if you need to use a namespace, use a <dictionary> item to define this
namespace (the following example will demonstrate how this is done).

3. Use a <dictionary> element to select nodes from the XPath result and convert
them into JavaScript object properties.

The XML returned from the Yahoo! search service appears as follows (shortened
version):

<ResultSet xsi:schemaLocation="urn:yahoo:srch
http://api.search.yahoo.com/WebSearchService/V1/WebSearchResponse.xsd">
 <Result>
 <Title>Ajax (programming) - Wikipedia, the free encyclopedia</Title>
 <Url>http://en.wikipedia.org/wiki/AJAX</Url>
 </Result>
 <Result>
 ...
 </Result>
</ResultSet>

http://api.search.yahoo.com/WebSearchService/V1/WebSearchResponse.xsd

Using the Yahoo! Web Service (and REST and XPath) | 363

In order to select all individual results, the XPath query ResultSet/Result or just
Result can be used. However, there is one issue: the XML uses a namespace for
the schema information: urn:yahoo:srch. This namespace has to be defined in the
bridge, as well. This is how you can do it:

 <transforms>
 <transform type="Microsoft.Web.Preview.Services.XPathBridgeTransformer">
 <data>
 <attribute name="selector" value="y:Result" />
 <dictionary name="namespaceMapping">
 <item name="y" value="urn:yahoo:srch" />
 </dictionary>

The y prefix now denotes the urn:yahoo:srch namespace. The previous markup
selects all Result nodes. With a <dictionary> element, you can now access specific
result nodes and properties. In this example, we are interested in the search result’s
title and url, which are denoted by <Title> and <Url> elements. The following
markup selects these elements, and also provides JavaScript property names for them
(resultTitle and resultUrl):

 <dictionary name="selectedNodes">
 <item name="resultTitle" value="y:Title" />
 <item name="resultUrl" value="y:Url" />
 </dictionary>
 </data>
 </transform>
 </transforms>
 </method>
</bridge>

Example 18-15 shows the complete markup for the bridge.

Example 18-15. The web service bridge for the Yahoo! REST web service

Yahoo.asbx

<?xml version="1.0" encoding="utf-8" ?>
<bridge namespace="OReilly.AspNetAJAX" className="Yahoo">
 <proxy type="Microsoft.Web.Preview.Services.BridgeRestProxy"
 serviceUrl="http://api.search.yahoo.com/WebSearchService/V1/webSearch" />
 <method name="Search">
 <input>
 <parameter name="appid"
 value="% appsettings : YahooAppID %"
 serverOnly="true" />
 <parameter name="output"
 value="xml"
 serverOnly="true" />
 <parameter name="query" />
 </input>
 <transforms>
 <transform type="Microsoft.Web.Preview.Services.XPathBridgeTransformer">
 <data>

364 | Chapter 18: Using Remote Web Services

Once the bridge is in place, the rest of the application is “business as usual” and
quite similar to the previous examples. Create a new ASP.NET file, and reference the
.asbx file and the Futures release in the ScriptManager control:

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="~/Yahoo.asbx" />
 </Services>
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview" Name="PreviewScript.js" />
 </Scripts>
</asp:ScriptManager>

Then, add some UI to let users enter a search term. Once the Submit button is
clicked, this code needs to be executed:

function Search() {
 var query = new Sys.Preview.UI.TextBox($get('Query'))
 $get("Button").disabled = true;
 clearList();
 OReilly.AspNetAJAX.Yahoo.Search(
 { "query": query.get_text() },
 callComplete, callError
);
}

In the callComplete() function, the result from the web service call is automatically
provided as the first argument. This argument is a JavaScript array of all search
results (the Yahoo! web service by default returns ten results, unless less matches
were found). Each of these array elements is an object with the properties
resultTitle and resultUrl, as specified in the bridge file. It is then quite easy to use
this data and apply it to the page:

function callComplete(result) {
 for (var i = 0; i < result.length; i++) {
 var li = document.createElement("li");
 var a = document.createElement("a");
 a.setAttribute("href", result[i].resultUrl);

 <attribute name="selector" value="y:Result" />
 <dictionary name="namespaceMapping">
 <item name="y" value="urn:yahoo:srch" />
 </dictionary>
 <dictionary name="selectedNodes">
 <item name="resultTitle" value="y:Title" />
 <item name="resultUrl" value="y:Url" />
 </dictionary>
 </data>
 </transform>
 </transforms>
 </method>
</bridge>

Example 18-15. The web service bridge for the Yahoo! REST web service (continued)

Using the Yahoo! Web Service (and REST and XPath) | 365

 a.innerHTML = result[i].resultTitle;
 li.appendChild(a);
 $get("Results").appendChild(li);
 }
 $get("Button").disabled = false;
}

Example 18-16 shows the complete code for this example, and Figure 18-9 shows the
results (note the good ranking of the ASP.NET AJAX home page when searching for
“Ajax” ;-)).

Example 18-16. Calling the Google REST web service

Yahoo.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
 function clearList() {
 $get("Results").innerHTML = "";
 }

 function Search() {
 var query = new Sys.Preview.UI.TextBox($get('Query'))
 $get("Button").disabled = true;
 clearList();
 OReilly.AspNetAJAX.Yahoo.Search(
 { "query": query.get_text() },
 callComplete, callError
);
 }

 function callComplete(result) {
 for (var i = 0; i < result.length; i++) {
 var li = document.createElement("li");
 var a = document.createElement("a");
 a.setAttribute("href", result[i].resultUrl);
 a.innerHTML = result[i].resultTitle;
 li.appendChild(a);
 $get("Results").appendChild(li);
 }
 $get("Button").disabled = false;
 }
 function callError(result) {
 window.alert("Error! " + result.get_message());
 $get("Button").disabled = false;
 }
 </script>

366 | Chapter 18: Using Remote Web Services

One kind of web service that is quite often used for mashups is maps.
There are many companies offering a map API, including Google,
Yahoo!, and Microsoft. When they have a SOAP or REST interface,
you can use the techniques presented in this chapter to include the
mapping functionality in your web application. Even better, many of
those services have special Ajax interfaces: you only need to use some
JavaScript code and HTML markup and the map is included on your
page, with no server code to be written on your part.

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="~/Yahoo.asbx" />
 </Services>
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview"
Name="PreviewScript.js" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <input type="text" id="Query" />
 <input type="button" id="Button" value="Search" onclick="Search();" />
 </div>
 <div id="Results">
 </div>
 </form>
</body>
</html>

Figure 18-9. The result of the Yahoo! search service

Example 18-16. Calling the Google REST web service (continued)

For Further Reading | 367

Summary
This chapter featured an exciting feature of the ASP.NET AJAX Futures release:
the ability to call external web services, overcoming the security restrictions of the
XMLHttpRequest object via a server bridge.

For Further Reading
http://www.amazon.com/gp/aws/landing.html

Registration for, and documentation of, the Amazon e-commerce web service

http://www.google.com/apis
Registration for, and documentation of, the Google search web service

http://developer.yahoo.com
Yahoo! API developer site

http://www.w3schools.com/xsl/
An XSLT tutorial including an XSL reference

Fitzgerald, Michael. Learning XSLT (O’Reilly)
A great introduction to the technology

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
Roy Fielding’s University of California PhD dissertation, “Architectural Styles
and the Design of Network-Based Software Architectures,” which introduced the
REST principle

Caching Bridge Requests
You might want to consider caching requests using the web service bridge. To do that,
add the following XML element in your .asbx bridge file (anywhere under the <bridge>
node):

<caching >
 <cache type="Microsoft.Web.Preview.Services.BridgeCache" />
</caching>

This might improve the performance of your web service calls, but can be a real
obstacle during development and testing, so you should turn it off until the code works
as planned.

http://www.amazon.com/gp/aws/landing.html
http://www.google.com/apis
http://developer.yahoo.com
http://www.w3schools.com/xsl/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

368

Chapter 19CHAPTER 19

Using Animations 19

Slick transitions between pages or elements make for nice eye candy, but they can be
tricky to implement and can sometimes only be achieved using a variety of transfor-
mations. For example, visual changes in an element’s opacity or position can be
accomplished by gradual shifts in the number value of the element, thus creating the
illusion of animation. A number going from 0 to 100 can be used as the opacity value
of an element to animate a change in appearance from transparent to opaque.

Luckily, the ASP.NET AJAX Futures release comes with several built-in animations.
They are all defined in a library called PreviewGlitz.js (which is embedded in the
Futures assembly).

In this chapter, you’ll learn how to use ASP.NET AJAX animations to change an ele-
ment’s position and opacity. You will also learn the range of animations and how to
work with them.

Using Animations
Since the animations reside in an external library, the PreviewGlitz.js file must be
included manually in any page that uses them. The file also depends on the
PreviewScript.js file, the “core” JavaScript library for the Futures release. There are
several possibilities for including this file. The best way is to add an ASP.NET AJAX
ScriptReference element, as shown in the following snippet:

<asp:ScriptManager runat="server" ID="ScriptManager1">
 <Scripts>

<asp:ScriptReference Name="PreviewGlitz.js" Assembly="Microsoft.Web.Preview" />
 </Scripts>
</asp:ScriptManager>

Table 19-1 lists the animations offered in the PreviewGlitz.js file.

Using Animations | 369

All of these animations can be used declaratively in xml-script, and most of them can
also be accessed programmatically. You’ll learn to use both techniques in the follow-
ing examples.

Every animation has a play() method that starts the animation. Internally, the
method uses a few of properties defined in the class. The following three properties
are the most useful ones:

_duration
How long the animation will run (in seconds)

_fps
The number of animation steps (frames) per second

_target
The target element of the animation

Whenever a step of the animation is executed, the setValue() method is called. How
it operates is up to its implementation. This method can be implemented by each
animation, or the setValue() method of the base animation class in Sys.Preview.UI.
Effects.Animation is used. Depending on the animation, the method’s implementa-
tion involves quite sophisticated calculations or just jumps to the next element in an
array.

For alpha transparency (a graphical concept defining degrees of trans-
parency, which enables effects like semitransparency), Internet
Explorer uses the DXImageTransform.Microsoft.Alpha DirectX filter,
whereas other browsers, such as Mozilla, Firefox, etc., have built-in
support for opacity.

Table 19-1. Animations included in the PreviewGlitz.js library

Animation Description

Sys.Preview.UI.Effects.PropertyAnimation Animates a property (e.g., the left or top position) of an
element

Sys.Preview.UI.Effects.InterpolatedAnimation Animates a property value and interpolates (calculates)
the intermediate animation steps

Sys.Preview.UI.Effects.DiscreteAnimation Animates a value over a specified list of values

Sys.Preview.UI.Effects.NumberAnimation Animates a number value

Sys.Preview.UI.Effects.ColorAnimation Animates the color of an element

Sys.Preview.UI.Effects.LengthAnimation Animates a number and rounds every intermediate step
to a whole number

Sys.Preview.UI.Effects.CompositeAnimation Aggregates several animations in one

Sys.Preview.UI.Effects.FadeAnimation Animates the opacity of an element

370 | Chapter 19: Using Animations

Using an Animation to Create a Fade Effect
You can create an impressive fade effect by changing the opacity of an element. Let’s
start with the programmatic approach. In the pageLoad() function, we create a new
Sys.Preview.UI.Effects.FadeAnimation object:

var ani = new Sys.Preview.UI.Effects.FadeAnimation();

Then we set the target element, a label element, we create on the page:

ani.set_target($get("Label1").control);

The default behavior for the fading animation is that the element fades in. However,
the Sys.Preview.UI.Effects.FadeEffect enumeration defines two options, FadeIn
and FadeOut, which you can change by calling the set_effect() property method:

ani.set_effect(Sys.Preview.UI.Effects.FadeEffect.FadeOut);

Next, define the length of time the animation should run. The default value is one
second; the following code triples that:

ani.set_duration(3);

Finally, we run the animation:

ani.play();

The complete code is illustrated in Example 19-1.

Example 19-1. Using a fading animation

FadeAnimation.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>

 <script language="JavaScript" type="text/javascript">
 function pageLoad() {
 var ani = new Sys.Preview.UI.Effects.FadeAnimation();
 ani.set_target($get("Label1").control);
 ani.set_effect(Sys.Preview.UI.Effects.FadeEffect.FadeOut);
 ani.set_duration(3);
 ani.play();
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server" ID="ScriptManager1">

Using an Animation to Create a Fade Effect | 371

Note that the display: inline-block CSS command is used, Otherwise, Internet
Explorer will not show the animation (for reasons I have been unable to determine).
When the page is loaded, the element fades over the course of three seconds.
Figure 19-1 shows how the page appears as the Label control is fading.

Naturally, this effect can also be implemented in a declarative way. As always, you
create an xml-script element whose name is a camel-case version of the class, so
FadeAnimation becomes a <fadeAnimation> element. It is important to provide an ID
for the animation, because you need to be able to refer to it to start it.

 <Scripts>
 <asp:ScriptReference name="PreviewScript.js"
assembly="Microsoft.Web.Preview" />
 <asp:ScriptReference name="PreviewGlitz.js"
assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <label id="Label1" style="display: inline-block; background-color: Red;">
 See me fading ...</label>
 </div>
 </form>

 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <label id="Label1" />
 </components>
 </page>
 </script>

</body>
</html>

Figure 19-1. The Label is fading into the background

Example 19-1. Using a fading animation (continued)

372 | Chapter 19: Using Animations

You can start it not only with code, but also by using xml-script, as follows:

<application>
 <load>
 <invokeMethodAction target="ani" method="play" />
 </load>
</application>

This approach is explained in greater detail in Chapter 17.

Figure 19-2 shows the complete code, with important page elements in bold. In this
case, we’re not setting an explicit duration, so the animation lasts for the default
value of one second.

Example 19-2. Implementing a fading animation with xml-script

FadeAnimationDeclarative.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server" ID="ScriptManager1">
 <Scripts>
 <asp:ScriptReference name="PreviewScript.js"
assembly="Microsoft.Web.Preview" />
 <asp:ScriptReference name="PreviewGlitz.js"
assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <label id="Label1" style="display: inline-block; background-color: Red;">
 See me fading ...</label>
 </div>
 </form>
 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <label id="Label1" />
 <fadeAnimation id="ani" target="Label1" effect="FadeOut" />
 <application>
 <load>
 <invokeMethodAction target="ani" method="play" />
 </load>
 </application>
 </components>
 </page>
 </script>
</body>
</html>

Using an Animation to Create a Fade Effect | 373

Using an Animation to Move an Element
Changing an element’s opacity is an animation that is tied to a specific task. A
different (and more general) kind of animation provided by ASP.NET AJAX is one
that simply increments the value of a number at set intervals. You can then use the
changing number value in some useful way, typically to set an element property. One
example that immediately comes to mind is animating an element by continually
changing left and top properties.

The ASP.NET AJAX Sys.Preview.UI.Effects.NumberAnimation class animates num-
bers from a start value to an end value. By setting the animation’s duration and
frames-per-second values, you control the number of intermediate steps and how
long the whole animation takes.

We will again use a Label control as an example. The code instantiates the Sys.
Preview.UI.Effects.NumberAnimation class and sets the required properties, except
for the frames per second, where the default value of 25 is used:

var ani = new Sys.Preview.UI.Effects.NumberAnimation();
ani.set_target($get("Label1").control);
ani.set_startValue(0);
ani.set_endValue(300);
ani.set_duration(3);
ani.set_integralValues(true);

In this case, the animation takes three seconds and there are 25 frames
per second, so for each step the value increases by 4. (Three seconds
with 25 frames each makes 75 animation steps; since the number is
animated from 0 to 300, this leads to a step size of 4.) Therefore, all
values are whole numbers—that is, integral. However, there are cases
in which the relationship of duration and intervals does not result in
integral values. Since we want to position the label only at integral
positions, the resulting values must be rounded. The NumberAnimation
class has a built-in support for that in the form of the integralValues
property.

Because the NumberAnimation class is generic—there are no assumptions about how
you will use the changing numeric values—it does not implement a method that you
can call directly to translate the numeric values into an element property. Instead,
you set the NumberAnimation class’s setValue property to a function that performs the
work you want to do. This has the advantage that you can manipulate the numeric
values as needed. For example, some browsers (like the Mozilla-based ones) only
accept values for positioning that include a unit, such as "20px" instead of just "20",
so your setMethod() function can add a unit to the number.

One challenge is referencing the element to be animated without making the code
too specific (for instance, with document.getElementById() or $get(), and a fixed
ID). The animation class enables you to get a reference to the target object using the
get_target() property method, and the result’s element property grants access to the

374 | Chapter 19: Using Animations

associated DOM element (using the get_element() method). You can combine this
reference with your implementation of setValue() and then start the animation.
Your code might look like the following:

ani.setValue = function(value) {
 this.get_target().get_element().style.left = value + "px";
 this.get_target().get_element().style.top = value + "px";
}
ani.play();

Instead of manually setting the position of the label, you can also use the Sys.UI.
DomElement.setLocation() method that ASP.NET AJAX provides, which also takes
care of providing the correct units:

ani.setValue = function(value) {
 Sys.UI.DomElement.setLocation(
 this.get_target().get_element(),
 value,
 value);
}
ani.play();

Example 19-3 shows a complete listing for a page that animates a Label control,
moving it around on the page.

Example 19-3. Moving an element with an animation

NumberAnimation.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
 <script type="text/javascript">
 function pageLoad() {
 var ani = new Sys.Preview.UI.Effects.NumberAnimation();
 ani.set_target($get("Label1").control);
 ani.set_startValue(0);
 ani.set_endValue(300);
 ani.set_duration(3);
 ani.set_integralValues(true);
 ani.setValue = function(value) {
 Sys.UI.DomElement.setLocation(
 this.get_target().get_element(),
 value,
 value);
 }
 ani.play();
 }
 </script>
</head>
<body>

Using an Animation to Create a Fade Effect | 375

Once the page has been loaded, the label element moves across the page at a 45-
degree angle. Notice how the position: relative CSS property is used to make this
possible—you do need to set the position. Figure 19-2 is a snapshot of the result.

Using a Length Animation to Move an Element
The preceding code can also be written declaratively. As noted earlier, to be sure an
animation can work with all browsers, the top and left properties of an element
must not be set to a number but must contain a unit. The NumberAnimation class can
provide the unit only when you create a custom setValue() method.

 <form id="form1" runat="server">
 <asp:ScriptManager runat="server" ID="ScriptManager1">
 <Scripts>
 <asp:ScriptReference name="PreviewScript.js"
assembly="Microsoft.Web.Preview" />
 <asp:ScriptReference name="PreviewGlitz.js"
assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <label id="Label1" style="background-color: Red; position: relative;">
 See me moving ...</label>
 </div>
 </form>
 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <label id="Label1" />
 </components>
 </page>
 </script>
</body>
</html>

Figure 19-2. The element moves across the screen

Example 19-3. Moving an element with an animation (continued)

376 | Chapter 19: Using Animations

However, ASP.NET AJAX also provides a class called LengthAnimation that is capa-
ble of performing the task more directly.

It works like NumberAnimation, but with two differences:

• The values for each animation step are always rounded.

• The value of the unit property (the default is "px") is appended to the numeric
value.

So, the LengthAnimation class looks like a “better” way to move an element than the
NumberAnimation class from the previous example. Both work though, and that’s why
both are shown here.

Still, using the LengthAnimation class to animate a Label control is a bit tricky. The
left and top properties are part of the element’s style, which is not directly accessi-
ble as a property. However, a behavior called <layoutBehavior> provides access to
style this information, and therefore, to the positioning values.

Another useful behavior is <opacityBehavior>, which can be used to
control the opacity of an element if you want to manually create a fade
animation or other animation that involves changing the visibility of
an element.

To move a Label control around the page, add the <layoutBehavior> behavior to the
label in xml-script and assign it an ID:

<label id="Label1">
 <behaviors>
 <layoutBehavior id="Label1Style" />
 </behaviors>
</label>

Then create an animation—or two, since we are modifying two style values:

<lengthAnimation id="ani1" target="Label1Style" duration="3" property="left"
 startValue="0" endValue="300" />
<lengthAnimation id="ani2" target="Label1Style" duration="3" property="top"
 startValue="0" endValue="300" />

In the <application><load> section, you must, of course, start both animations.
Example 19-4 shows the resulting code.

Example 19-4. Moving an element with xml-script

LengthAnimation.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

Using an Animation to Create a Fade Effect | 377

Compositing (Grouping) Animations
When the effect you’re looking for involves more than one animation, the markup
can get ugly: you get several animations that start in sequence (but hopefully are exe-
cuted in parallel). The preceding example (Example 19-4) contained two separate
animations, one for the horizontal value and one for the vertical value, each of which
you had to define separately, including their duration.

<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server" ID="ScriptManager1">
 <Scripts>
 <asp:ScriptReference name="PreviewScript.js"
assembly="Microsoft.Web.Preview" />
 <asp:ScriptReference name="PreviewGlitz.js"
assembly="Microsoft.Web.Preview" />
 </Scripts>
 </asp:ScriptManager>
 <div>
 <label id="Label1" style="background-color: Red; position: relative;">
 See me moving ...</label>
 </div>
 </form>
 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <label id="Label1">
 <behaviors>
 <layoutBehavior id="Label1Style" />
 </behaviors>
 </label>
 <lengthAnimation id="ani1" target="Label1Style" duration="3"
 property="left" startValue="0" endValue="300" />
 <lengthAnimation id="ani2" target="Label1Style" duration="3"
 property="top" startValue="0" endValue="300" />
 <application>
 <load>
 <invokeMethodAction target="ani1" method="play" />
 <invokeMethodAction target="ani2" method="play" />
 </load>
 </application>
 </components>
 </page>
 </script>
</body>
</html>

Example 19-4. Moving an element with xml-script (continued)

378 | Chapter 19: Using Animations

You can simplify things by grouping animations using the Sys.Preview.UI.Effects.
CompositeAnimation class. Grouping animations helps make sure that animations
execute in parallel.

You can do this using the xml-script <compositeAnimation> element. Within the ele-
ment, the <animation> element contains the xml-script definitions for all animations
that should be executed together. You can then specify an id attribute and a duration
attribute for the <compositeAnimation> element that then apply to the group as a
whole:

<compositeAnimation id="ani" duration="3">
 <animations>
 <lengthAnimation target="Label1Style" property="left"
 startValue="0" endValue="300" />
 <lengthAnimation target="Label1Style" property="top"
 startValue="0" endValue="300" />
 <fadeAnimation target="Label1" effect="FadeOut" />
 </animations>
</compositeAnimation>

You can start the composited animation using <invokeMethod>:

<application>
 <load>
 <invokeMethodAction target="ani" method="play" />
 </load>
</application>

Example 19-5 shows the complete code for a page that contains a set of grouped
animations.

Example 19-5. Grouping animations on a page

CompositeAnimation.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager runat="server" ID="ScriptManager1">
 <Scripts>
 <asp:ScriptReference name="PreviewScript.js"
assembly="Microsoft.Web.Preview" />
 <asp:ScriptReference name="PreviewGlitz.js"
assembly="Microsoft.Web.Preview" />

Using an Animation to Create a Fade Effect | 379

This group is composed of three separate animations that each finish at the same
time (see Figure 19-3):

• The element fades out

• The element is moved right

• The element is moved down

Even though the real-world use of animations is a bit limited, ASP.NET AJAX makes
it very convenient to add some entertaining visual effects to a web application. Since
these features all reside in an external JavaScript file, the PreviewScript.js library itself
is not bloated by including this functionality by default.

 </Scripts>
 </asp:ScriptManager>
 <div>
 <label id="Label1" style="display: inline-block; background-color: Red;
position: relative;">
 See me fading and moving ...</label>
 </div>
 </form>
 <script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <label id="Label1">
 <behaviors>
 <layoutBehavior id="Label1Style" />
 </behaviors>
 </label>
 <compositeAnimation id="ani" duration="3">
 <animations>
 <lengthAnimation target="Label1Style" property="left"
 startValue="0" endValue="300" />
 <lengthAnimation target="Label1Style" property="top"
 startValue="0" endValue="300" />
 <fadeAnimation target="Label1" effect="FadeOut" />
 </animations>
 </compositeAnimation>
 <application>
 <load>
 <invokeMethodAction target="ani" method="play" />
 </load>
 </application>
 </components>
 </page>
 </script>
</body>
</html>

Example 19-5. Grouping animations on a page (continued)

380 | Chapter 19: Using Animations

Summary
The ASP.NET AJAX Futures release offers several animations that can be used to
animate or modify elements. These animations can be applied both programmati-
cally and declaratively for maximum flexibility during development.

For Further Reading
http://blogs.msdn.com/phaniraj/archive/2007/03/15/howto-sys-preview-ui-effects-
fadeanimation.aspx

Blog entry on FadeAnimation

Figure 19-3. The label moves and fades at the same time

http://blogs.msdn.com/phaniraj/archive/2007/03/15/howto-sys-preview-ui-effects-fadeanimation.aspx

381

Chapter 20 CHAPTER 20

Fixing Bookmarks and Back/Forward
Buttons20

Ajax applications have a number of distinct advantages over “classic” web applica-
tions, but the disadvantages inherent in the concept should not be ignored. One of
the more glaring shortcomings is that it won’t work without JavaScript and a fairly
modern browser. Right out of the gate, this excludes between 5 and 10 percent of
users (this number can be significantly different depending on your specific target
audience). One of the more annoying shortcomings is its lack of support for browser
bookmarks (“favorites” in Internet Explorer) and the forward and back buttons—
two fundamentals of the browser interface.

Breaking with such traditions is not only considered rude, but usually comes at a
price. In 2006, Live.com was launched. Its search engine module made use of a lot of
Ajax effects. So much so, in fact, that it actually knocked the back button out of
commission. A public outcry ensued, and back button support was added within a
few days. This required a considerable amount of JavaScript sleight-of-hand and
ended up causing some clicking sounds in Internet Explorer (due to information in a
hidden frame being reloaded in some scenarios). More public outcry followed, and a
third version finally stripped the offending functionality. Live.com now works as
expected, with both bookmarking support and forward and back buttons enabled.

The reason for the missing bookmark functionality lies in the fact that Ajax applica-
tions try their best to avoid a complete page refresh. The state of one page may
change, but the URL does not. Therefore, it is usually not feasible to bookmark an
Ajax-enabled page, since the state of that page is not part of the URL. As a result, the
back and forward buttons in the web browser also do not work. You can only navi-
gate between URLs. No new URL is equivalent to no new entry in the history of the
browser (Firefox: chronic), rendering navigation impossible.

As these two problems are related to one another, so too are their solutions. The
main objective is to change the URL whenever the state of a page changes. Changing
the URL in most cases results in reloading the page. This is an effect we wanted to
avoid in the first place. The only exception is changing the hash (the part of the URL
starting at the # sign) of a URL. When the page currently loaded is Page.aspx and

Page.aspx

382 | Chapter 20: Fixing Bookmarks and Back/Forward Buttons

JavaScript code converts that to Page.aspx#anyData, no reload happens (some
browsers scroll back to the top of the page, an effect that is very hard to avoid).

Fixing with Code
The source of the problem—not changing—leads to a simple solution for the book-
mark problem: whenever the state of the current page changes, this state informa-
tion is put in the hash of the current page. Whenever a page is loaded, any data from
the hash of the URL is applied to the page, recreating the state when the page was
bookmarked. Two pieces of JavaScript code are required. The first, shown below,
places information about any changes on a page in the hash:

function somethingChanged() {
 location.hash = "#" + getCurrentPageState();
}

The second piece of code is run when the page is initially loaded. If there is state
information in the hash, it must be applied to the current page:

function pageLoad() {
 if (location.hash.length > 0) {
 applyPageState(location.hash);
 }
}

You need to implement the getCurrentPageState() and applyPageState() functions,
which can be quite an obstacle. The main challenge often is how to serialize the cur-
rent page state and put it in the URL, then how to deserialize it back to the page. No
universal solution exists, but the approach in solving the problem remains the same.

Fixing the back and forward buttons is a bit trickier. Here, browsers behave quite
differently. Mozilla browsers automatically create a history entry when the URL hash
has changed.

For example, an Ajax application loads three URLs, Page.aspx#1, Page.aspx#2, and
Page.aspx#3. When the current page, Page.aspx#3 is loaded and the user clicks on
the back button, the browser loads Page.aspx#2. Actually, only the URL changes,
but the page is not reloaded, so the pageLoad() function is not executed. All that
remains to do is to periodically check the URL to check if any new information has
been added. If so, the new information must be reapplied to the page.

For Internet Explorer, some extra steps are required. The Microsoft browser only
creates a history entry when an HTTP request has been created. Changing the URL
hash does not result in such a request that we of course want to avoid, as it conflicts
with one of the basic goals of this book, avoiding page reloads.

Page.aspx#anyData
Page.aspx#1
Page.aspx#2
Page.aspx#3
Page.aspx#3
Page.aspx#2

Fixing with Code | 383

As is so often the case, there is a workaround. If a page contains an internal frame
(also called iframe, which is derived from the HTML element, <iframe>, that we are
about to use), and this internal frame creates an HTTP request, this HTTP request is
written in the global browser history of the outer page.

This leads directly to a possible solution for the back/forward buttons dilemma. If
the JavaScript code detects Internet Explorer, an <iframe> HTML element is dynami-
cally created and appended to the page. The iframe is made invisible using CSS, as
we do not want any extraneous or unintended visual effects.

Whenever the state of the page changes, a new page is loaded in the iframe, creating
a new browser history entry. Now, when the user then clicks the browser’s back or
forward buttons, the iframe loads the previous or next page. JavaScript code detects
that a new page has been loaded and applies the appropriate page state.

The JavaScript code required for this workaround is not trivial. Moreover, most
Internet Explorer versions generate a clicking sound when loading a new page, which
might be irritating to some users. However, with most Ajax applications, this extra
work is really worth the effort.

Security Alert: Pitfalls with Bookmarks
A page state serialization approach I often find in security audits is to use JSON. Some
web pages that do support bookmarking serialize the page state by writing page ele-
ments and their values or contents into a JSON string such as the following:

{"TextBox1": "My Data", "Label1": "Some other data", "DropDownList1": "2"}

This data is then URL-encoded (using JavaScript’s escape() function) and appended
to the URL. To this point, there is no problem with this approach. However, the diffi-
culties start when the data from the URL is reintegrated in the page. The easiest way to
convert the JSON string back into a JavaScript object is to use JavaScript’s eval() func-
tion as demonstrated below:

var o = eval("(" + location.hash.substring(1) + ")");

Let’s consider this code for a minute. Data from the URL is evaluated as JavaScript
code. This is a classic example of Cross-Site Scripting (XSS) and represents a significant
danger. A malicious attacker could craft some dangerous JavaScript code, append it to
the URL of the page, and then send this URL to victims. If the URL is accessed, it
would execute the JavaScript code in the browser.

Always consider that the URL information could be tainted. Do not use it to place sen-
sitive information, and be particularly careful when reapplying this information to the
page.

384 | Chapter 20: Fixing Bookmarks and Back/Forward Buttons

Fixing Bookmarks and Back/Forward Buttons with
Controls Using UpdateHistory
ASP.NET AJAX is all about exciting JavaScript effects without the tedium and rigor
of too much coding. So, you might have already anticipated that fixes for the book-
marks and back/forward buttons will not need to be coded in JavaScript, but instead
use an external module.

Microsoft’s own Nikhil Kothari (architect on the ASP.NET AJAX team, father of
Script#, known for his very informative weblog http://nikhilk.net/) wrote a control
that comes in very handy here. The UpdateHistory control does not do everything for
you automatically, but it does take care of the most cumbersome aspects, including
all JavaScript code. There is also a component in the Futures Release which will be
covered in the section “Fixing Bookmarks and Back/Forward Buttons with Controls
Using the ASP.NET AJAX Futures,” later in this chapter.

At this writing, version 1.1 of Kothari’s UpdateHistory control is the most current. You
can find the blog entry for this version at http://www.nikhilk.net/UpdateControls11.aspx.
When a new version comes out, the blog entry will point you to the new module.

When you download Kothari’s code, look for the nStuff.UpdateControls.dll file in the
site’s bin directory. Copy it to your ASP.NET AJAX’ bin directory. Alternatively, you
can copy it to the Global Assembly Cache (GAC), as the control is even signed.

Next, create a new .aspx file. The following directive loads the assembly and also
defines a tag prefix:

<%@ Register Assembly="nStuff.UpdateControls" TagPrefix="nk"
Namespace="nStuff.UpdateControls" %>

Among other things, this assembly defines the UpdateHistory control. This is a non-
visual control that can handle history entries and provides hooks when a page is
loaded, either by initially loading it (typing in the URL, clicking on a link) or by
using the back/forward buttons. The following markup includes the control and also
prepares the event handling mechanism for page loading:

<nk:UpdateHistory ID="UpdateHistory1" runat="server" OnNavigate="historyNavigate" />

The UpdateHistory control is limited to server-side hooks only. To call server code
without reloading the whole page, an UpdatePanel control should be used.

As a sample scenario, the ASP.NET 2.0 Wizard control will be used. When it is put
in an UpdatePanel, the back and forward buttons do not work, so navigating back to
a previous step cannot be done using the browser toolbar.

<asp:UpdatePanel ID="UpdatePanel1" runat="server" UpdateMode="Conditional">
 <ContentTemplate>
 <asp:Wizard ID="Wizard1" runat="server" OnActiveStepChanged="stepChanged">
 <WizardSteps>
 <asp:WizardStep runat="server" Title="Step 1">

http://nikhilk.net/
http://www.nikhilk.net/UpdateControls11.aspx

Fixing Bookmarks and Back/Forward Buttons with Controls Using UpdateHistory | 385

 <h1>Ready ...</h1>
 </asp:WizardStep>
 <asp:WizardStep runat="server" Title="Step 2">
 <h1>Set ...</h1>
 </asp:WizardStep>
 <asp:WizardStep runat="server" Title="Step 3">
 <h1>Go!</h1>
 </asp:WizardStep>
 </WizardSteps>
 </asp:Wizard>
 </ContentTemplate>
</asp:UpdatePanel>

There are two items in the preceding markup that should be noted. First, the
UpdateMode of the UpdatePanel control is set to "Conditional"; we later want to use
server-side code to update the panel’s contents when we detect that the back or for-
ward button of the browser has been pressed. Second, whenever the user navigates
to another step of the Wizard (OnActiveStepChanged property), a method called
stepChanged() is executed. In this method, the current step number is written in the
UpdateHistory control.

For this, the AddEntry() method can be called. It expects a string parameter; other
data types have to be previously converted. Here is the code:

protected void stepChanged(object sender, EventArgs e)
{
 UpdateHistory1.AddEntry(((Wizard)sender).ActiveStepIndex.ToString());
}

The historyNavigate() method is called when the page or content on it is loaded.
The UpdateHistory control automatically provides the associated history entry. All
that remains to do is read out this entry and convert it into the appropriate wizard
step. Remember to validate the information to stop attackers when they try to
append invalid data to the URL:

protected void historyNavigate(object sender, HistoryEventArgs e)
{
 int step = 0;
 if (e.EntryName != null)
 {
 int.TryParse(e.EntryName.ToString(), out step);
 }
 if (step >= 0 && step < Wizard1.WizardSteps.Count)
 {
 Wizard1.ActiveStepIndex = step;
 }
 UpdatePanel1.Update();
}

Example 20-1 contains the complete code for this example. In the example, the
UpdateControls assembly is loaded, an UpdateHistory control is added, and the
required code is provided to enable bookmarks and back/forward buttons.

386 | Chapter 20: Fixing Bookmarks and Back/Forward Buttons

Example 20-1. Fixing bookmarks and back/forward buttons

Bookmarks.aspx

<%@ Page Language="C#" %>

<%@ Register Assembly="nStuff.UpdateControls" TagPrefix="nk"
Namespace="nStuff.UpdateControls" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

 protected void stepChanged(object sender, EventArgs e)
 {
 UpdateHistory1.AddEntry(((Wizard)sender).ActiveStepIndex.ToString());
 }

 protected void historyNavigate(object sender, HistoryEventArgs e)
 {
 int step = 0;
 if (e.EntryName != null)
 {
 int.TryParse(e.EntryName.ToString(), out step);
 }
 if (step >= 0 && step < Wizard1.WizardSteps.Count)
 {
 Wizard1.ActiveStepIndex = step;
 }
 UpdatePanel1.Update();
 }

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <nk:UpdateHistory ID="UpdateHistory1" runat="server"
OnNavigate="historyNavigate" />
 <asp:UpdatePanel ID="UpdatePanel1" runat="server" UpdateMode="Conditional">
 <ContentTemplate>
 <asp:Wizard ID="Wizard1" runat="server" OnActiveStepChanged="stepChanged">
 <WizardSteps>
 <asp:WizardStep runat="server" Title="Step 1">
 <h1>Ready ...</h1>
 </asp:WizardStep>
 <asp:WizardStep runat="server" Title="Step 2">
 <h1>Set ...</h1>

Fixing Bookmarks and Back/Forward Buttons with Controls Using UpdateHistory | 387

Figure 20-1 shows how the page looks when it is initially loaded. Note how the URL
changes after the second wizard step is activated (see Figure 20-2). A click on the
browser’s back button would go back to wizard step 1. If you copy the URL from
Figure 20-2 into another browser, this browser would also show wizard step 2 (see
Figure 20-3), so bookmark support is available once again.

 </asp:WizardStep>
 <asp:WizardStep runat="server" Title="Step 3">
 <h1>Go!</h1>
 </asp:WizardStep>
 </WizardSteps>
 </asp:Wizard>
 </ContentTemplate>
 </asp:UpdatePanel>
 </form>
</body>
</html>

Figure 20-1. The initial state of the page

Figure 20-2. The second wizard step has been activated

Example 20-1. Fixing bookmarks and back/forward buttons (continued)

388 | Chapter 20: Fixing Bookmarks and Back/Forward Buttons

Fixing Bookmarks and Back/Forward Buttons with
Controls Using the ASP.NET AJAX Futures
Beginning with the May (2007) CTP of the Futures release, ASP.NET AJAX also
comes with a control to fix the bookmarks and the back/forward buttons issue. This
control is very similar to those previously used in this chapter, however the API
changes a little bit. Since all contents of the Futures are subject to change, this
chapter covers both controls.

There are several differences between the UpdateHistory control and the correspond-
ing control in the Futures release:

• The name of the control changed to History.

• You can write the current state information into the History object using the
AddHistoryPoint() method. This expects both a key and a value, as every his-
tory entry is a Dictionary object.

• You can access the current state information using the State property of the
HistoryEventArgs object. As just mentioned, this is a dictionary.

Example 20-2 shows the updated code, which now uses the Futures control, not
Kothari’s control. Note that we’re using "myHistory" as the key for the state informa-
tion. This value can be chosen arbitrarily; you simply need to use the same value for
reading and writing data. Figure 20-4 shows the new example in the browser; the URL
now contains more information, since a dictionary is used instead of a static string.

Figure 20-3. The second wizard step in Internet Explorer

Example 20-2. Fixing bookmarks and back/forward buttons with the Futures release

BookmarksUpdatePanel.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Fixing Bookmarks and Back/Forward Buttons with Controls Using the ASP.NET AJAX Futures | 389

<script runat="server">

 protected void stepChanged(object sender, EventArgs e)
 {
 History1.AddHistoryPoint("myHistory",
((Wizard)sender).ActiveStepIndex.ToString());
 }

 protected void historyNavigate(object sender, HistoryEventArgs e)
 {
 int step = 0;
 if (e.State.ContainsKey("myHistory"))
 {
 int.TryParse(e.State["myHistory"].ToString(), out step);
 }
 if (step >= 0 && step < Wizard1.WizardSteps.Count)
 {
 Wizard1.ActiveStepIndex = step;
 }
 UpdatePanel1.Update();
 }

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <asp:History ID="History1" runat="server" OnNavigate="historyNavigate" />
 <asp:UpdatePanel ID="UpdatePanel1" runat="server" UpdateMode="Conditional">
 <ContentTemplate>
 <asp:Wizard ID="Wizard1" runat="server" OnActiveStepChanged="stepChanged">
 <WizardSteps>
 <asp:WizardStep runat="server" Title="Step 1">
 <h1>Ready ...</h1>
 </asp:WizardStep>
 <asp:WizardStep runat="server" Title="Step 2">
 <h1>Set ...</h1>
 </asp:WizardStep>
 <asp:WizardStep runat="server" Title="Step 3">
 <h1>Go!</h1>
 </asp:WizardStep>
 </WizardSteps>
 </asp:Wizard>
 </ContentTemplate>
 </asp:UpdatePanel>
 </form>
</body>
</html>

Example 20-2. Fixing bookmarks and back/forward buttons with the Futures release (continued)

390 | Chapter 20: Fixing Bookmarks and Back/Forward Buttons

One advantage of the Futures control is that it also exposes a JavaScript API. So, you
do not even need an UpdatePanel control. If you are using JavaScript to maintain
state information, you can use the History control’s JavaScript API to write state
information (which in turn appends data to the URL hash). Also, the control auto-
matically executes the pageNavigate() JavaScript function. This is the place where
you can then recreate the page’s state using the data from the History control.

For this example, we try to recreate a client-side version of the ASP.NET 2.0 Wizard
control, albeit a limited one. The three wizard steps are modeled in three HTML
table rows, which are all initially invisible:

<table cellspacing="0" cellpadding="0" border="0" style="height: 100%; width: 100%;
 border-collapse: collapse;">
 <tr id="Wizard1_Step1" style="height: 100%; display: none;">
 <td>
 <h1>
 Ready ...</h1>
 </td>
 </tr>
 <tr id="Wizard1_Step2" style="height: 100%; display: none;">
 <td>
 <h1>
 Set ...</h1>
 </td>
 </tr>
 <tr id="Wizard1_Step3" style="height: 100%; display: none;">
 <td>
 <h1>
 Go!</h1>
 </td>
 </tr>
</table>

For navigation between the wizard steps, the three links in the left sidebar are used,
this time using a custom JavaScript implementation:

Figure 20-4. The Wizard with Back/Forward button support—note the longer URL

Fixing Bookmarks and Back/Forward Buttons with Controls Using the ASP.NET AJAX Futures | 391

<table id="Wizard1_SideBarContainer_SideBarList" cellspacing="0"
border="0" style="border-collapse: collapse;">
 <tr>
 <td id="Wizard1_SideBar1">
 <a id="Wizard1_SideBarContainer_SideBarList_ctl00_SideBarButton"
href="javascript:gotoStepClick(1)">
 Step 1</td>
 </tr>
 <tr>
 <td id="Wizard1_SideBar2">
 <a id="Wizard1_SideBarContainer_SideBarList_ctl01_SideBarButton"
href="javascript:gotoStepClick(2)">
 Step 2</td>
 </tr>
 <tr>
 <td id="Wizard1_SideBar3">
 <a id="Wizard1_SideBarContainer_SideBarList_ctl02_SideBarButton"
href="javascript:gotoStepClick(3)">
 Step 3</td>
 </tr>
</table>

The gotoStepClick() function first adds a new history point. The corresponding
JavaScript method for the server-side addHistoryPoint() method of the History con-
trol looks like this:

function gotoStepClick(nr) {
 Sys.Application.get_history().addHistoryPoint({myHistory: nr});

Then the gotoStepClick() function calls another helper function, gotoStep():

 gotoStep(nr);
}

The gotoStep() function takes care of displaying the correct wizard step (and hiding
the other one). Also, the link for the current step is made bold:

function gotoStep(nr) {
 if (nr >= 1 && nr <= 3) {
 $get("Wizard1_Step1").style.display = "none";
 $get("Wizard1_Step2").style.display = "none";
 $get("Wizard1_Step3").style.display = "none";
 $get("Wizard1_SideBar1").style.fontWeight = "normal";
 $get("Wizard1_SideBar2").style.fontWeight = "normal";
 $get("Wizard1_SideBar3").style.fontWeight = "normal";
 $get("Wizard1_Step" + nr).style.display = "";
 $get("Wizard1_SideBar" + nr).style.fontWeight = "bold";
 }
}

The final piece of this sample is the code that recovers the page state when the user
clicks on the forward or back button in the browser. As mentioned earlier, this can be
handled in the pageNavigate() JavaScript function. The second argument that is passed
automatically to this function contains all state variables. The get_state() methods

392 | Chapter 20: Fixing Bookmarks and Back/Forward Buttons

return them. Because we were using myHistory when adding the history point, you can
use get_state().myHistory to retrieve the specific state we set previously.

function pageNavigate(sender, e) {
 var step = 1;
 if (e.get_state().myHistory != null) {
 step = e.get_state().myHistory;
 }
 gotoStep(step);
}

And that’s it! Example 20-3 contains the complete code for the example, and
Figure 20-5 shows the custom wizard in the browser.

Example 20-3. Fixing bookmarks and back/forward buttons with JavaScript code

BookmarksJavaScript.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
 <script type="text/javascript">
 function pageLoad() {
 gotoStep(1);
 }

 function gotoStepClick(nr) {
 Sys.Application.get_history().addHistoryPoint({myHistory: nr});
 gotoStep(nr);
 }

 function gotoStep(nr) {
 if (nr >= 1 && nr <= 3) {
 $get("Wizard1_Step1").style.display = "none";
 $get("Wizard1_Step2").style.display = "none";
 $get("Wizard1_Step3").style.display = "none";
 $get("Wizard1_SideBar1").style.fontWeight = "normal";
 $get("Wizard1_SideBar2").style.fontWeight = "normal";
 $get("Wizard1_SideBar3").style.fontWeight = "normal";
 $get("Wizard1_Step" + nr).style.display = "";
 $get("Wizard1_SideBar" + nr).style.fontWeight = "bold";
 }
 }

 function pageNavigate(sender, e) {
 var step = 1;
 if (e.get_state().myHistory != null) {
 step = e.get_state().myHistory;

Fixing Bookmarks and Back/Forward Buttons with Controls Using the ASP.NET AJAX Futures | 393

 }
 gotoStep(step);
 }
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <asp:History ID="History1" runat="server" />
 <table cellspacing="0" cellpadding="0" border="0" id="Wizard1" style="border-
collapse:collapse;">
 <tr>
 <td style="height:100%;"><table
id="Wizard1_SideBarContainer_SideBarList" cellspacing="0" border="0" style="border-
collapse:collapse;">
 <tr>
 <td id="Wizard1_SideBar1"><a
id="Wizard1_SideBarContainer_SideBarList_ctl00_SideBarButton"
href="javascript:gotoStepClick(1)">Step 1</td>

 </tr><tr>
 <td id="Wizard1_SideBar2"><a
id="Wizard1_SideBarContainer_SideBarList_ctl01_SideBarButton"
href="javascript:gotoStepClick(2)">Step 2</td>
 </tr><tr>
 <td id="Wizard1_SideBar3"><a
id="Wizard1_SideBarContainer_SideBarList_ctl02_SideBarButton"
href="javascript:gotoStepClick(3)">Step 3</td>
 </tr>
 </table></td><td style="height:100%;"><table cellspacing="0"
cellpadding="0" border="0" style="height:100%;width:100%;border-
collapse:collapse;">
 <tr id="Wizard1_Step1" style="height:100%;display:none;">
 <td>

 <h1>Ready ...</h1>
 </td>
 </tr>
 <tr id="Wizard1_Step2" style="height:100%;display:none;">
 <td>

 <h1>Set ...</h1>
 </td>
 </tr>
 <tr id="Wizard1_Step3" style="height:100%;display:none;">
 <td>

 <h1>Go!</h1>
 </td>
 </tr>
 </table></td>

Example 20-3. Fixing bookmarks and back/forward buttons with JavaScript code (continued)

394 | Chapter 20: Fixing Bookmarks and Back/Forward Buttons

 </tr>
 </table>
 </form>
</body>
</html>

Figure 20-5. The simulated Wizard control

Creating Permalinks
A permalink describes a permanent link for a web page, including its state. You have
probably noticed that the URLs of the sample applications in this chapter change
whenever the state changes (and we have included code to handle that). So, whenever
you bookmark the current page, the URL contains all the information to reproduce the
page state.

The History control also offers a helper method to retrieve the bookmark URL infor-
mation. You could, of course, read out the location.href JavaSscript property. You
can also resort to the following methods:

getStateString()
Server method to retrieve the bookmark URL

Sys.Application.get_history().get_stateString()
Client method to retrieve the bookmark URL

Some web pages include a permalink hyperlink. Whenever the page state changes, the
URL of this hyperlink is updated appropriately.

Example 20-3. Fixing bookmarks and back/forward buttons with JavaScript code (continued)

For Further Reading | 395

Summary
This chapter introduced two well-known problems of many Ajax applications: lack
of bookmark support, and nonfunctional back/forward browser buttons. However,
this chapter also provided solutions for these problems. These may require some
extra effort, but can make the usability of an Ajax-powered page so much better.

For Further Reading
http://quickstarts.asp.net/futures/ajax/doc/history.html

Documentation for the History control

Wenz, Christian. Ajax, Software & Support (Entwickler Press)
Introduces code solutions to solve the bookmark and back/forward button
problems

http://quickstarts.asp.net/futures/ajax/doc/history.html

396

Chapter 21CHAPTER 21

Web Parts 21

Using Ajax can help you make web applications behave more like desktop applica-
tions. And the more web applications become like desktop applications, the more
developers tend to design and reuse components to deliver greater functionality to
their pages.

ASP.NET AJAX offers several ways to reuse components toward adding functional-
ity to browser-based clients. The control extenders in the ASP.NET AJAX Control
Toolkit are a prime example. This chapter covers another one, Web Parts, an ASP.NET
feature (introduced in ASP.NET 2.0), that benefits from an extra boost thanks to the
ASP.NET AJAX Futures release.

Using ASP.NET AJAX with ASP.NET Web Parts
This section will show how you can use ASP.NET AJAX with ASP.NET Web Parts to
give users more control over the layout and content of an ASP.NET AJAX page.
ASP.NET Web Parts are a set of controls enabling users to add, remove, and
change elements on a page at runtime. Web Parts offer the ability to create pages such
as the Google personalized home page (http://www.google.com/ig) in ASP.NET.

Web Parts are enabled using client script to support drag-and-drop, expand and col-
lapse, and other similar features. However, a limitation of Web Parts as shipped with
ASP.NET 2.0 is that most of their functionality is available only in Internet Explorer.
Therefore, ASP.NET Web Parts are mostly used in intranet environments that can
rely on working with Internet Explorer.

Of course, Internet Explorer is not the only browser available and many web users
have Firefox or other browsers. So, although Web Parts are a nice feature, they are
not necessarily suitable for broadly-accessed public web sites.

ASP.NET AJAX compensates for this limitation. With the ASP.NET AJAX Futures
release, it is now possible to use Web Parts that are equally functional in Internet

http://www.google.com/ig

Using ASP.NET AJAX with ASP.NET Web Parts | 397

Explorer and Firefox. If you are developing a public web site and need cross-browser
support, ASP.NET AJAX Web Parts are a very appealing option.

In this section, you’ll learn how to implement Web Parts using ASP.NET AJAX. I won’t
provide background information on Web Parts (which is a rather large subject), so if
you want more information about the basics of Web Parts, you might try the docu-
mentation. A good place to start might be the ASP.NET Web Parts pages (http://
msdn2.microsoft.com/en-US/library/e0s9t4ck.aspx).

In the example that that will follow, we’ll use ASP.NET AJAX Web Parts to package
a calendar control and a wizard control, then we’ll enable drag-and-drop functional-
ity for both so the user can arrange them to personal preference in a browser. These
changes are persisted (maintained), so if cookies are activated and the page is visited
again, the two controls will be at the same position as the previous visit.

There are two ways to work with ASP.NET AJAX-specific Web Parts. One is to
remap the existing ASP.NET Web Parts tags to equivalent ASP.NET AJAX tags—in
which case, <asp:WebPartZone> uses the ASP.NET AJAX version of Web Parts. You
might do this if you have existing pages that use Web Parts and you want to extend
the controls to use ASP.NET AJAX but do not want to build the site from scratch
again.

To remap the tags, you can use a <tagMapping> element in the site’s Web.config file.
This element redirects all tag references of a certain type to one of another type.

The following snippet from a Web.config file shows how to remap two ASP.NET
Web Parts tags (defined in the System.Web.UI.WebControls.WebParts.WebPartManager
namespace), to the equivalent ASP.NET AJAX Web Parts (defined in the Microsoft.
Web.Preview.UI.Controls.WebParts.WebPartManager namespace).

<pages>
<!-- Other page settings -->
 <tagMapping>
 <add tagType="System.Web.UI.WebControls.WebParts.WebPartManager"
 mappedTagType="Microsoft.Web.Preview.UI.Controls.WebParts.WebPartManager"/>
 <add tagType="System.Web.UI.WebControls.WebParts.WebPartZone"
 mappedTagType="Microsoft.Web.Preview.UI.Controls.WebParts.WebPartZone"/>
 </tagMapping>
</pages>

This markup remaps the default ASP.NET WebPartManager and WebPartZone types to
their ASP.NET AJAX counterparts. (Generally, the type provided in the tagType
attribute gets mapped to the type provided in the mappedTagType attribute.) This
strategy maps all Web Part tags for the application.

The second way to work with ASP.NET AJAX-specific Web Parts is to simply use the
Web Parts control directly. This enables you to use Web Parts on individual pages
without affecting the application as a whole.

http://msdn2.microsoft.com/en-US/library/e0s9t4ck.aspx
http://msdn2.microsoft.com/en-US/library/e0s9t4ck.aspx

398 | Chapter 21: Web Parts

To do this, you need to register the Microsoft.Web.Preview.UI.Controls.WebParts
namespace. Enter the following markup in the <system.web> element in the Web.config
file:

<pages>
 <!-- Other page settings -->
 <controls>
 <!-- Other control namespaces -->

<add
namespace="Microsoft.Web.Preview.UI.Controls.WebParts"
assembly="Microsoft.Web.Preview"
tagPrefix="ajax" />

 </controls>
</pages>

Now you can access the ASP.NET AJAX Web Part elements using the ajax prefix, for
instance <ajax:WebPartManager>.

In this chapter we will use the former approach (tag mapping), so we do not need to
introduce an additional tag prefix. Be sure you add the <tagMapping> element to the
Web.config file before you run the example in this chapter. Also keep in mind this
will remap all the Web Parts controls in the web site.

Now you can create an ASP.NET page with ASP.NET AJAX Web Parts. As always, a
ScriptManager control is required. You must also add a WebPartManager control to
enable Web Parts support:

<asp:WebPartManager ID="WebPartManager1" runat="server" />

Web Part zones are areas on the page where Web Parts can appear—in effect, con-
tainers for Web Parts. You can drag Web Parts between zones, and you can hide or
show zones to hide or show the Web Parts inside them. You create a zone with the
WebPartZone control whose child element, <ZoneTemplate>, contains the contents of
that Web Part. Here are two Web Part zones, each containing an ASP.NET Calendar
and Wizard control:

<asp:WebPartZone ID="WebPartZone1" HeaderText="Zone 1" runat="server">
 <ZoneTemplate>
 <asp:Calendar ID="Calendar1" runat="server"></asp:Calendar>
 </ZoneTemplate>
</asp:WebPartZone>
<asp:WebPartZone ID="WebPartZone2" HeaderText="Zone 2" runat="server">
 <ZoneTemplate>
 <asp:Wizard ID="Wizard1" runat="server">
 <WizardSteps>
 <asp:WizardStep ID="Step1" runat="server" Title="Step 1" />
 <asp:WizardStep ID="Step2" runat="server" Title="Step 2" />
 </WizardSteps>
 </asp:Wizard>
 </ZoneTemplate>
</asp:WebPartZone>

Using ASP.NET AJAX with ASP.NET Web Parts | 399

To give your Web Part drag-and-drop functionality, you need to set the DisplayMode
property of the WebPartManager control to DesignDisplayMode. The display mode can-
not be set declaratively, but the following server-side C# code comes to the rescue:

void Page_Init ()
{
 WebPartManager1.DisplayMode =
Microsoft.Web.Preview.UI.Controls.WebParts.WebPartManager
.DesignDisplayMode;
}

Because you now have two WebParts namespaces (one for ASP.NET 2.0
and one for ASP.NET AJAX), references to WebPartManager.
DesignDisplayMode are ambiguous. Therefore, you must fully qualify
any reference to the display mode.

Example 21-1 contains the complete code for this example. In Figure 21-1, you can
see the result as displayed in Firefox—dragging and dropping a Web Part is now
supported. The first time you run the example, there will be a delay as ASP.NET
configures the database in which the Web Parts information is stored. When you
drag a Web Part or close a zone, information about the state of the Web Parts is per-
sisted between browser sessions.

Remember you need to configure the tag mapping in the Web.config
file.

Example 21-1. Web Parts with ASP.NET AJAX

WebParts.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
 void Page_Init()
 {
 WebPartManager1.DisplayMode =
Microsoft.Web.Preview.UI.Controls.WebParts.WebPartManager.DesignDisplayMode;
 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>
</head>
<body>

400 | Chapter 21: Web Parts

Moving elements between Web Parts always causes a postback, which
leads to a browser refresh. If you put an ASP.NET AJAX UpdatePanel
control on the page and include the WebPartManager and the two
WebPartZone controls in it, moving the Web Parts controls no longer
requires a full postback. However, you currently can only drag and
drop elements once, then the feature stops working. (If you refresh the
browser, you can move the elements again—one time per browser
refresh.) It is expected that future versions of the ASP.NET AJAX
Futures release will provide a fix that enables you to put an
UpdatePanel control in each WebPartZone.

Mike Harder’s blog (see “For Further Reading,” at the end of this
chapter) describes three scenarios that either work or don’t work with
ASP.NET AJAX web parts:

• Cross-browser web parts work

• Web parts within an UpdatePanel control currently do not work,
but may work with the next version of Visual Studio (Visual
Studio 2008)

• UpdatePanel controls within web parts work

 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <asp:WebPartManager ID="WebPartManager1" runat="server" />
 <table>
 <tr>
 <td>
 <asp:WebPartZone ID="WebPartZone1" HeaderText="Zone 1" runat="server">
 <ZoneTemplate>
 <asp:Calendar ID="Calendar1" runat="server"></asp:Calendar>
 </ZoneTemplate>
 </asp:WebPartZone>
 </td>
 <td>
 <asp:WebPartZone ID="WebPartZone2" HeaderText="Zone 2" runat="server">
 <ZoneTemplate>
 <asp:Wizard ID="Wizard1" runat="server">
 <WizardSteps>
 <asp:WizardStep ID="Step1" runat="server" Title="Step 1" />
 <asp:WizardStep ID="Step2" runat="server" Title="Step 2" />
 </WizardSteps>
 </asp:Wizard>
 </ZoneTemplate>
 </asp:WebPartZone>
 </td></tr>
 </table>
 </div>
 </form>
</body>
</html>

Example 21-1. Web Parts with ASP.NET AJAX (continued)

For Further Reading | 401

Summary
This chapter explored one very unique approach to using (and reusing) ASP.NET
AJAX components. Web parts are rarely used at present, but are gaining momen-
tum. Unlike their ASP.NET 2.0 counterparts, the ASP.NET AJAX Futures CTP, web
parts work in a browser-agnostic fashion.

For Further Reading
http://msdn2.microsoft.com/en-US/library/e0s9t4ck.aspx

MSDN library section for ASP.NET 2.0 Web Parts

http://blogs.msdn.com/mharder/archive/2007/01/23/webparts-and-asp-net-ajax-1-0.
aspx

Blog entry by Mike Harder regarding ASP.NET AJAX and web parts

Figure 21-1. ASP.NET AJAX Futures CTP Web Parts support for drag-and-drop in Mozilla
browsers

http://msdn2.microsoft.com/en-US/library/e0s9t4ck.aspx
http://blogs.msdn.com/mharder/archive/2007/01/23/webparts-and-asp-net-ajax-1-0.aspx

PART V

V.Microsoft AJAX Library

Chapter 22, Using ASP.NET AJAX with Other Server Technologies

405

Chapter 22 CHAPTER 22

Using ASP.NET AJAX with
Other Server Technologies22

As discussed at the outset of this book in Chapter 1, ASP.NET AJAX includes both
client-side and server-side components. The ASP.NET AJAX server components rely
heavily on ASP.NET 2.0 controls, but the client components are delivered as Java-
Script libraries. Even though the client libraries are embedded into pages by the
<script> tag that references WebResource.axd, the libraries are actually standalone .js
files that come in the form of embedded resources in the ASP.NET AJAX Library.

The Microsoft AJAX Library was also first mentioned in Chapter 1. It is a JavaScript-
only subset of the ASP.NET AJAX Library. But as it has no dependency on ASP.NET,
this library can also be used with any other server-side scripting language.

By using this library, you can take advantage of some ASP.NET AJAX features while
using other (non-ASP.NET) server technologies. You are not limited to just the client
scripting features of ASP.NET AJAX, but you can also use its more advanced server fea-
tures. However, to implement ASP.NET AJAX functionality on platforms other than
ASP.NET 2.0 and IIS, some of the ASP.NET AJAX functionality and certain server con-
trols (i.e., ScriptManager), need to be emulated with non-ASP.NET technology.

This chapter demonstrates how to use the ASP.NET AJAX web services support with
PHP. The code for it has come a long way. Initially, Shanku Niyogi wrote a demon-
stration version and published it in his blog (see the “For Further Reading” section at
the end of this chapter). We exchanged a few emails and he posted an updated ver-
sion some time later. In early 2007, Steve Marx (Microsoft’s “Developer Evangelist”
for ASP.NET AJAX) set up a project on Codeplex to illustrate using PHP to plug into
the Microsoft AJAX Library. The code of this CodePlex project is essentially an
updated version of Niyogi’s code.

The following sections demonstrate what is possible with the library and give you an
idea of what’s required for using the library with PHP. We will also have a brief look
at the code. What you will see here is how to build a server-based PHP module that
emulates a web service. You will invoke this pseudo-web service from an ordinary
HTML page (not an .aspx page). We will use JavaScript code to invoke the service
using ASP.NET AJAX functionality to call the PHP module.

406 | Chapter 22: Using ASP.NET AJAX with Other Server Technologies

Using ASP.NET AJAX with PHP
To use ASP.NET AJAX with PHP, you will create an HTML web page. This demon-
stration page contains an HTML text box and sends the text in this box to a web ser-
vice. To add the ASP.NET AJAX functionality we need to make the web-service call,
the ASP.NET AJAX client libraries must be loaded into the HTML page.

Prepare the ASP.NET AJAX library by creating a new folder in your web site named
AjaxLibrary. (For example, if your web site is at C:\Document and Settings\JaneDoe\
AJAXEnabledWebSite1\, you would create a folder named C:\Document and Settings\
JaneDoe\AJAXEnabledWebSite1\AjaxLibrary.) Download the Microsoft AJAX Library
from http://ajax.asp.net/downloads/default.aspx?tabid=47 and copy the System.Web.
Extensions folder into the new AjaxLibrary folder.

Next, download the Microsoft AJAX Library for PHP from http://codeplex.com/
phpmsajax (as with ASP.NET AJAX; the “NoSource” package suffices). Unzip the
library and copy the two PHP files MSAjaxService.php and MSAjaxProxyGenerator.php
into the web site’s root directory.

This chapter assumes that you have PHP working on your computer.
You can download the PHP libraries from http://www.php.net/
downloads.php. You need at least PHP version 5.2.0; earlier versions
do not support some features (such as JSON serialization) that are
required for the web service code. Follow the installation instructions
carefully!

To run a PHP file under IIS, you must use IIS (the ASP.NET Develop-
ment Server will not run .php files). The PHP installation instructions
include information on performing PHP installation on IIS as well as
on other web servers, such as Apache. Do not install PHP files into a
folder that contains spaces in the name—C:\Program Files, for exam-
ple. A space in the ISAPI mapping can render IIS unable to find the
appropriate .dll files.

If you use the PHP .msi installer, the installer configures IIS so that it
dispatches requests for .php files to the PHP ISAPI handler. Other-
wise, you’ll need to map the .php extension manually.

For the PHP part of the example, you need to create a PHP web service that can be
called from ASP.NET AJAX. Actually, the code we are about to develop is not a
“real” SOAP-based web service using WSDL; instead, it is code that is compatible
with the way ASP.NET AJAX communicates with web services.

Create a text file in the root of your web site and name it PHPHelloWorldService.php.
In the PHP file, first load the part of the PHP for Microsoft AJAX library that han-
dles creating a “compatible” web service.

<?php
 require_once 'MSAjaxService.php';

http://codeplex.com/phpmsajax
http://codeplex.com/phpmsajax
http://www.php.net/downloads.php
http://www.php.net/downloads.php

Using ASP.NET AJAX with PHP | 407

The code in MSAjaxService.php creates an extendable class suited for creating ser-
vices that can be called from ASP.NET AJAX. Now, we create a simple PHP class
with a really simple “Hello World” method, quite similar to the one used in
Chapter 1:

 class PHPHelloWorldService extends MSAjaxService {
 function sayHello($name) {
 return "Hello $name, says the server!";
 }
 }

Finally, the PHP script must initiate the new PHPHelloWorldService class and call its
ProcessRequest() method so that PHP handles incoming requests from ASP.NET
AJAX:

 $ps = new PHPHelloWorldService();
 $ps->ProcessRequest();
?>

Example 22-1 contains the complete code for our PHP web service

The main effect of the PHP code is that once again a JavaScript proxy is created.
Figure 22-1 shows the JavaScript code that is generated when you call the URL
PHPHelloWorldService.php/js.

Now you need to write JavaScript code to call this service. Using client script, we
need to load the Microsoft Ajax library you unzipped into the AjaxLibrary sub-
folder. We are using a relative path here—check whether this path also exists in
your web site, and change the path if necessary:

<script type="text/javascript"
 src="AjaxLibrary/System.Web.Extensions/1.0.61025.0/MicrosoftAjax.js"></script>

You also need to load the web service JavaScript proxy. Remember, simply append /js
to the URL of the web service file:

<script type="text/javascript" src="PHPHelloWorldService.php/js"></script>

Example 22-1. The PHP ASP.NET AJAX compatible pseudo-web service

PHPHelloWorldService.php

<?php
 require_once 'MSAjaxService.php';

 class PHPHelloWorldService extends MSAjaxService {
 function sayHello($name) {
 return "Hello $name, says the server!";
 }
 }

 $ps = new PHPHelloWorldService();
 $ps->ProcessRequest();
?>

PHPHelloWorldService.php/js
/js

408 | Chapter 22: Using ASP.NET AJAX with Other Server Technologies

The latter <script> element generates JavaScript code that lets you execute a web
method using the format <classname>.<methodname>, thus in this case
PHPHelloWorldService.sayHello(). Example 22-2 contains the complete code for the
HTML page that calls the PHP service using the Microsoft Ajax Library. Figure 22-2
shows the result in the browser.

Figure 22-1. The new service generates a JavaScript proxy

Example 22-2. Calling the PHP ASP.NET AJAX compatible pseudo-web service

PHPHelloWorldService.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>ASP.NET AJAX</title>

 <script type="text/javascript"
 src="AjaxLibrary/System.Web.Extensions/1.0.61025.0/MicrosoftAjax.js"></script>
 <script type="text/javascript" src="PHPHelloWorldService.php/js"></script>

 <script language="Javascript" type="text/javascript">
 function callService(f) {
 PHPHelloWorldService.sayHello(
 f.elements["name"].value,
 callComplete,
 callError);
 }

 function callComplete(result) {

Summary | 409

Summary
This chapter showed how to use ASP.NET AJAX from PHP, using the Microsoft
AJAX framework from another server technology (and also from another operating
system, if desired). The client-side components of ASP.NET AJAX can easily be
used with other languages since it is all platform-agnostic JavaScript; the server-
side components, on the other hand, need to be emulated. This emulation is of
course language-agnostic, so the example in this book could have also been writ-
ten in JSP, Perl, ColdFusion, or even in classic ASP.

 window.alert(result);
 }
 function callError(result) {
 window.alert("Error! " + result);
 }
 </script>

</head>
<body>
 <form id="form1">
 <div>
 <input type="text" id="name" name="name" />
 <input type="button" value="Call Service" onclick="callService(this.form);" />
 </div>
 </form>

</body>
</html>

Figure 22-2. The window displays data from the PHP service

Example 22-2. Calling the PHP ASP.NET AJAX compatible pseudo-web service (continued)

410 | Chapter 22: Using ASP.NET AJAX with Other Server Technologies

The PHP for Microsoft AJAX project facilitates using ASP.NET AJAX from PHP,
since a lot of the tricky code (e.g., generation of the JavaScript proxy) has already
been implemented for you.

For Further Reading
http://www.shankun.com/AtlasPhp.aspx

The original blog entry, demonstrating how to use Atlas with PHP

http://www.shankun.com/Atlas_Php_2.aspx
A more recent version of Shanku Niyogi’s code, with some bugs fixed

http://codeplex.com/phpmsajax
PHP for Microsoft AJAX Library

http://www.shankun.com/AtlasPhp.aspx
http://www.shankun.com/Atlas_Php_2.aspx
http://codeplex.com/phpmsajax

PART VI

VI.Appendixes

Appendix A, Debugging ASP.NET AJAX Applications

Appendix B, XMLHttpRequest Reference

Appendix C, DOM Reference

Appendix D, ASP.NET AJAX Reference

Appendix E, ScriptManager, UpdatePanel, UpdateProgress, and Timer Declarative
Reference

413

Appendix A APPENDIX A

Debugging ASP.NET AJAX Applications1

In a perfect world, every line of code we write would be flawless. There may actually
be some developers out there who never make mistakes—I am not one of them.
Debugging ASP.NET AJAX applications, or JavaScript applications in general, is
much more difficult than finding errors in “regular” programs. An Ajax application
runs on both the client and the server. This leads to some obstacles for debugging:
some server errors are not shown in the client. Also, very often an error is caused by
the data sent between client and server, which you need to inspect as well.

This appendix presents some useful tools that will enable you to effectively debug
ASP.NET AJAX applications running in the browser (and any JavaScript code). We
will also have a look at debugging features provided by ASP.NET AJAX itself.

Debugging Tools
When asked what the best way is to test JavaScript during the development process,
many developers answer, “Do not use Internet Explorer.” Whereas the most recent
versions of all the major browsers are really quite good, the quality of JavaScript
error reporting differs greatly between them. The reporting for IE suffers the most.
Take a look at the error message for identical JavaScript errors generated by different
browsers. Figure A-1 shows the output in Firefox, which includes a line number, the
name of the file, which caused the error, and also (when clicking on the filename) the
erroneous code in question. Not great, but at least it is something with which you
can work. Figure A-2, on the other hand, shows the output in Internet Explorer, with
a not-so-descriptive error message, a different filename, and also a different line
number.

Please don’t misunderstand; I am sure there are good reasons why Internet Explorer
displays limited and simplified error information. During development though, this
can prove to be wholly inadequate and very frustrating. Therefore, additional tools
are required. In fact, both Internet Explorer and Firefox can take advantage of add-
on tools for debugging.

414 | Appendix A: Debugging ASP.NET AJAX Applications

Figure A-1. A JavaScript error in Firefox

Figure A-2. A JavaScript error in Internet Explorer

Debugging Tools | 415

This appendix focuses on the most popular browsers at the moment:
Internet Explorer and Firefox. Other browsers like Opera and Safari
do not as yet provide a large ecosystem for extensions, however, there
are good solutions available for those programs as well.

Firebug for Firefox
One of the best web development extensions for Firefox browsers is Firebug. It fea-
tures seamless integration into the browser and provides numerous debugging
features for web sites. After installation is complete, press F12 in Firefox to launch
Firebug. When it starts, Firebug gathers and displays all the relevant information for
the current page. Beginning with the DOM (including write access!), it continues
with detailed JavaScript error messages. Firebug even includes a feature that brings
you directly to an offending line of code simply by clicking on an error message. It
also offers a detailed list of all HTTP requests sent by the page (invaluable for debug-
ging XMLHttpRequest calls).

To install Firebug, go to http://www.getfirebug.com/ and click on the Download but-
ton. You may need to allow the getfirebug.com domain to install Firefox add-ons.
Figure A-3 shows Firebug in action.

Figure A-3. The Firebug Firefox extension

http://www.getfirebug.com/
getfirebug.com

416 | Appendix A: Debugging ASP.NET AJAX Applications

Web Development Helper (for Internet Explorer)
For quite some time, debugging JavaScript applications and especially Ajax applica-
tions with Internet Explorer was quite hard. There were some plug-ins, but none of
them offered all the features required for debugging modern web sites. Finally,
Microsoft’s own Nikhil Kothari (architect on the ASP.NET AJAX team and devel-
oper of the UpdateHistory control [presented in chapter 10], among other achieve-
ments) wrote his own tool, the Web Development Helper. You can download it at
http://www.nikhilk.net/projects/WebDevHelperDebuggingTools.aspx. The add-in inte-
grates into both Internet Explorer 6 and 7. To activate it, choose View ➝ Explorer
Bar ➝ Web Development Helper. Internet Explorer displays the add-in on top of the
page. The Web Development Helper not only provides access to page information,
but also to special, ASP.NET-specific features like ViewState and tracing informa-
tion (features Firebug currently lacks). You can also activate HTTP logging, access an
interactive JavaScript console, and even capture a screenshot. Figure A-4 illustrates
the Web Development Helper interface.

Debugging in Visual Studio
Contrary to what some believe, Visual Studio 2005 is capable of debugging Java-
Script code. However there are some issues and traps you need to avoid—and you
need to find a (well-hidden) feature for script debugging that is in the Microsoft IDE.

Before you actually begin debugging, you need to check your browser configuration.
We are assuming that Internet Explorer is launched from Visual Studio; if you are

Figure A-4. The Web Development Helper Internet Explorer add-in

http://www.nikhilk.net/projects/WebDevHelperDebuggingTools.aspx

Debugging in Visual Studio | 417

using another browser by default, use the “Browser With” setting to use IE this time.
Choose Tools ➝ Internet Options and select the Advanced Tab. In Internet Explorer
6 and 7, you will find the following two options:

• Disable Script Debugging (Internet Explorer)

• Disable Script Debugging (Other)

Older Internet Explorer versions contain this option:

• Disable Script Debugging

Whether your browser displays one or two options, uncheck them all, otherwise,
debugging from Visual Studio 2005 will not work. Figure A-5 shows the recom-
mended settings.

Figure A-5. Internet Explorer needs to be configured to allow script debugging

418 | Appendix A: Debugging ASP.NET AJAX Applications

Now, load the .aspx file you want to debug into Visual Studio. There are three
options to make Internet Explorer jump into the debugger while running the file:

• Add a breakpoint from the Debug menu or by pressing F9. However, this does
not work for JavaScript code in a <script> block, only for external .js files.
(There are also some known issues with hitting breakpoints in the debugger—
see the discussion a little later in this section.)

• Add a line in the JavaScript code with the following content: debugger; (works
for Firefox and Internet Explorer, does not work for Safari or Opera).

• Use the Sys.Debug.fail() or Sys.Debug.assert() methods provided by ASP.
NET AJAX (see the section “Debugging Features in ASP.NET AJAX,” later in
this chapter).

After setting up the JavaScript code, run the ASP.NET page from Visual Studio in
debug mode (press F5). If you have not run the debugger before in this Web site, you
will be prompted to change the Web.config file to add a debug option—accept that
option. Wait until the breakpoint is reached, which will—if everything goes as
planned—either lead right back into Visual Studio or to a window similar to the one
shown in Figure A-6.

Figure A-6. Internet Explorer wants to break into a debugger and provides a list

Debugging Features in ASP.NET AJAX | 419

Visual Studio is now active in debug mode. However, in many cases you will not see
the current line of the script that caused the browser to exit to the debugger. Instead,
you might see the message, “There is no source code available for the current loca-
tion” (Figure A-7), or “No debug symbols have been loaded.” This can have several
causes, including the fact that an ASP.NET AJAX page dynamically loads various
JavaScript libraries (i.e., the script files are dynamically appended to the current
page’s DOM and are not hard-linked to the page using <script> elements).

If you encounter an issue as a result of a breakpoint, you can work around it with a
little-known feature in Visual Studio 2005: the Script Explorer. This tool is only
available in debug mode (which might be why few people know about it) and is
accessible via Debug ➝ Windows ➝ Script Explorer. You can also customize the
Visual Studio layout to display the Script Explorer window by default.

To begin, open Script Explorer. From there, you can open all JavaScript files loaded
by the current page and perform the following:

• Step through the code

• Look at current variables

• Execute JavaScript commands on the fly, and much more.

Figure A-8 shows a debugging session using Script Explorer.

The JavaScript handling features of Visual Studio will be improved
with the next version (Visual Studio 2008). At the time of this writing,
the second beta version of Visual Studio 2008 is already available, so
you can have a preview of what the next version might bring.

Debugging Features in ASP.NET AJAX
ASP.NET AJAX comes with additional debugging features that work well with the
techniques covered in this chapter thus far. However, to have access to these ASP.NET
AJAX features, you must use the debug versions of any JavaScript code in your
application.

Figure A-7. Visual Studio does not find the source code—yet

420 | Appendix A: Debugging ASP.NET AJAX Applications

There are two ways to do so. First, set the web page to run in debug mode, either by
adding the <compilation debug="true"> element to Web.config or by pressing F5 in
Visual Studio. Alternatively, set the ScriptMode property of the ScriptManager con-
trol to "Debug". In both cases, this causes ASP.NET AJAX to automatically use the

Figure A-8. Visual Studio’s Script Explorer feature also works with JavaScript

Debugging with Firefox
When you install the Firebug browser extension, you have all you need for debugging,
as Firebug also includes these tools. When a script launches a debugger—the Java-
Script debugger statement, for example—Firebug leaps into action and displays the
current executed line in the script, as shown in Figure A-9.

There is also a very competent JavaScript debugger for Firefox, called Venkman
(download at https://addons.mozilla.org/firefox/addon/216). It provides everything you
can ask of a debugger, except for the integrated IDE experience offered by Visual Stu-
dio. On the other hand, Venkman very handily integrates in the web browser. To
launch the debugger, choose Tools ➝ JavaScript Debugger.

Note that when using Venkman, some Firefox versions have a particularly annoying
bug; you can only open the debugger once per browser session. If this is the case and
you close the debugger window, you may need to restart the browser to be able to open
the window again. It’s much better to leave the debugger window open continuously
while debugging an application. Figure A-10 shows how Venkman appears.

https://addons.mozilla.org/firefox/addon/216

Debugging Features in ASP.NET AJAX | 421

Figure A-9. Firefox also comes with a JavaScript debugger

Figure A-10. Venkman, a JavaScript debugger for Firefox and other Mozilla browsers

422 | Appendix A: Debugging ASP.NET AJAX Applications

versions of the code libraries that support debug tools. Of course this is only viable
for development systems; on a production system, you should use the (smaller and
therefore better performing) release versions of ASP.NET AJAX.

In the debug versions of the libraries, the Sys.Debug class provides five handy meth-
ods for debugging. Most of those methods interact with a JavaScript output console.
There are two different ways ASP.NET AJAX interacts with that console:

• The debug messages appear in the JavaScript console of either the browser or of
a special browser extension (like Firefox). This obviously depends on the
browser used and on the availability of special browser extensions.

• The debug messages appear in an HTML <textarea> element whose ID is
TraceConsole, if such an element exists.

These methods are provided in Sys.Debug:

Sys.Debug.assert(condition, message, displayCaller)
If condition is not met, message is shown in the output console (including the
name of the calling function, if displayCaller is set to true) and the debugger is
launched.

Sys.Debug.clearTrace()
The output console is emptied.

Sys.Debug.fail(message)
message is shown in the output console and the debugger is launched.

Sys.Debug.trace(text)
text is shown in the output console.

Sys.Debug.traceDump(object, name)
The content of object is shown in the output console (including all members,
and an optional name!).

Example A-1 uses some of these methods and is loosely based on the final example
in Chapter 5, in which we called a web service. This example requires the
MathService.asmx file from Chapter 5 to work (the version that supports the
ExtendedDivideNumbers() method).

Before the web service is called, information is sent to the JavaScript console, includ-
ing information about the JavaScript web service proxy object, MathService:

Sys.Debug.trace("Calling MathService");
Sys.Debug.traceDump(MathService, "MathService: ");

Data received from the service is displayed in the console:

Sys.Debug.trace("Received result!");
Sys.Debug.traceDump(result, "result: ");

versions of the code libraries that support debug tools. Of course this is only viable
for development systems; on a production system, you should use the (smaller and
therefore better performing) release versions of ASP.NET AJAX.

In the debug versions of the libraries, the Sys.Debug class provides five handy meth-
ods for debugging. Most of those methods interact with a JavaScript output console.
There are two different ways ASP.NET AJAX interacts with that console:

• The debug messages appear in the JavaScript console of either the browser or of
a special browser extension (like Firefox). This obviously depends on the
browser used and on the availability of special browser extensions.

• The debug messages appear in an HTML <textarea> element whose ID is
TraceConsole, if such an element exists.

These methods are provided in Sys.Debug:

Sys.Debug.assert(condition, message, displayCaller)
If condition is not met, message is shown in the output console (including the
name of the calling function, if displayCaller is set to true) and the debugger is
launched.

Sys.Debug.clearTrace()
The output console is emptied.

Sys.Debug.fail(message)
message is shown in the output console and the debugger is launched.

Sys.Debug.trace(text)
text is shown in the output console.

Sys.Debug.traceDump(object, name)
The content of object is shown in the output console (including all members,
and an optional name!).

Example A-1 uses some of these methods and is loosely based on the final example
in Chapter 5, in which we called a web service. This example requires the
MathService.asmx file from Chapter 5 to work (the version that supports the
ExtendedDivideNumbers() method).

Before the web service is called, information is sent to the JavaScript console, includ-
ing information about the JavaScript web service proxy object, MathService:

Sys.Debug.trace("Calling MathService");
Sys.Debug.traceDump(MathService, "MathService: ");

Data received from the service is displayed in the console:

Sys.Debug.trace("Received result!");
Sys.Debug.traceDump(result, "result: ");

Debugging Features in ASP.NET AJAX | 423

In case of an error, this error is displayed in the JavaScript console, as well (depend-
ing on the browser and its configuration). Additionally, the script exits to the Java-
Script debugger (if available):

function callError(result) {
 Sys.Debug.fail(
 result.get_exceptionType() +
 ": " +
 result.get_message() +
 "\n" +
 result.get_stackTrace());
}

Refer to Example A-1 for the complete code, and to Figure A-11 to see how it might
look in a browser. The beauty of the debugging support of ASP.NET AJAX is that
this code only affects the page in debug mode. If you configure the application or the
page to run in release mode, no data is sent to the JavaScript console. Therefore, you
do not have to remove the debug code from your application, apart from the
<textarea> output console, if applicable. (On the other hand, if you do remove all
Sys.Debug.* calls, your script gets a bit smaller, which is also beneficial to the page’s
performance.)

Example A-1. Using ASP.NET AJAX debugger features

Debug.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>ASP.NET AJAX</title>

 <script language="Javascript" type="text/javascript">
 function callService(f) {
 document.getElementById("c").innerHTML = "";
 Sys.Debug.trace("Calling MathService");
 Sys.Debug.traceDump(MathService, "MathService: ");
 MathService.ExtendedDivideNumbers(
 parseInt(f.elements["a"].value),
 parseInt(f.elements["b"].value),
 callComplete,
 callError);
 }

 function callComplete(result) {
 Sys.Debug.trace("Received result!");
 Sys.Debug.traceDump(result, "result: ");

424 | Appendix A: Debugging ASP.NET AJAX Applications

Summary
This appendix should have dispelled rumors that Ajax applications cannot be
debugged. There are, in fact, several options and tools. And although debugging
Windows applications is still much more convenient, JavaScript is bit by bit getting
there (pardon the pun...).

 document.getElementById("c").innerHTML =
 result.result +
 " (calculated at " +
 result.calculationTime +
 ")";
 }

 function callError(result) {
 Sys.Debug.fail(
 result.get_exceptionType() +
 ": " +
 result.get_message() +
 "\n" +
 result.get_stackTrace());
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server"
 ScriptMode="Debug">
 <Services>
 <asp:ServiceReference Path="MathService.asmx" />
 </Services>
 </asp:ScriptManager>
 <div>
 <nobr>
 <input type="text" id="a" name="a" size="2" />
 :
 <input type="text" id="b" name="b" size="2" />
 =

 </nobr>

 <input type="button" value="Divide Numbers"
onclick="callService(this.form);" />

 <textarea id="TraceConsole" rows="10" cols="50">Debug information:
</textarea>
 </div>
 </form>
</body>
</html>

Example A-1. Using ASP.NET AJAX debugger features (continued)

For Further Reading | 425

For Further Reading
http://ajax.asp.net/docs/overview/ASPNETAJAXDebuggingAndTracingOverview.aspx

Microsoft documentation topic on debugging ASP.NET AJAX web applications.
It includes information on known issues when debugging Internet Explorer.

http://chrispederick.com/work/webdeveloper/
Another useful Firefox browser add-in including JavaScript debugger.

Figure A-11. The JavaScript console information appears both in the text field and in the
Firebug add-on

http://ajax.asp.net/docs/overview/ASPNETAJAXDebuggingAndTracingOverview.aspx
http://chrispederick.com/work/webdeveloper/

426

Appendix BAPPENDIX B

XMLHttpRequest Reference 2

This Appendix assembles all the methods and properties exposed by the
XMLHttpRequest object. Square brackets [] denote an array; parentheses () indicate a
method.

To create an XMLHttpRequest object for Internet Explorer, you must use ActiveX:

XMLHTTP = new ActiveXObject("Microsoft.XMLHTTP");

With other browsers, the XMLHttpRequest object is a built-in type and can be instanti-
ated directly, as in the following snippet:

XMLHTTP = new XMLHttpRequest();

Once the XMLHttpRequest object is instantiated, the following cross-browser methods
and properties are supported.

Methods

Method Description

abort() Terminates the request and discards any response.

getAllResponseHeaders() Returns all headers of the HTTP response.

getResponseHeader(header) Returns the value of the given HTTP response header.

open(method, url, async, username,
password)

Creates and sends an HTTP request with the given method (GET or
POST) to the target URL. The other parameters are optional: whether
or not to use an asynchronous call (default), and credentials for HTTP
authentication. (Note that credentials are sent in clear text; if you are
concerned about security, use HTTPS protocol for the page.)

send(content) Sends the HTTP request; optionally providing data to send along with
it (POST information).

setRequestHeader(name, value) Adds a header with the given name and value to the HTTP request.

Properties | 427

Properties

Property Description

readyState Status of HTTP request (0=uninitialized, 1=loading, 2=loaded, 3=waiting, 4=complete).

responseText Data returned in the HTTP response as text.

responseXML Data returned in the HTTP response as an XML DOM object.

status HTTP status code of the HTTP response.

statusText HTTP status message of the HTTP response.

428

Appendix CAPPENDIX C

DOM Reference 3

This Appendix assembles all DOM methods and properties exposed by JavaScript.
The DOM used is the W3C DOM supported by recent versions of Internet Explorer,
Mozilla, Safari/Konqueror, and Opera. Methods and properties that are not supported
by either of the two “main” browsers—Internet Explorer and Mozilla brands—are not
mentioned.

Square brackets [] denote an array; parentheses () indicate a method.

Generic Methods and Properties
The methods and properties in this section exist for all DOM elements.

Methods

Method Description

appendChild(node) Appends a child node to the element

appendData(data) Appends data (HTML or text) to a node; does not overwrite existing
data

blur() Removes the focus from the element

click() Simulates a click on the element

cloneNode(deep) Creates a copy of the node (if deep is true, all subnodes are copied as
well)

deleteData(start, length) Deletes a number of characters from the data in a node

focus() Gives the focus to the element

getAttribute(attribute) Returns the value of the given attribute

getAttributeNode(attribute) Returns the node containing the given attribute

getElementsByTagName(name) Returns an array of all elements with the given tag name

hasChildNodes() Returns a value that indicates whether the element has subnodes

insertBefore(node) Inserts a node before the element

Generic Methods and Properties | 429

Properties

insertData(position, data) Inserts data (HTML or text) at a certain position

removeAttribute(attribute) Removes the given attribute and its value from the element

removeChild(node) Removes the given subnode from the element

replaceChild(newnode, oldnode) Replaces the given old subnode with the given subnode

replaceData(start, length, newdata) Replaces data (from a given position on, with a given length) with
new data

setAttribute(name, value) Sets the value of the specified attribute to the given value

setAttributeNode(node) Adds a new attribute node, replacing any existing one

Property Description

attributes[] Gets or sets an array that contains the element’s attributes and values

childNodes[] Gets or sets a list of element’s subnodes

className Gets or sets the name of an element’s CSS class

data Gets or sets character data (in a text node)

dir Gets or sets the reading direction of element

firstChild Gets the element’s first subnode

id Gets or sets the ID of the element

innerHTML Gets or sets the HTML content of an element (not W3C-compatible,
but implemented in all relevant browsers)

lang Gets or sets the language (lang attribute) of element

lastChild Gets the element’s last subnode

length Gets or sets the length of the element

localName Gets or sets the local element tag name (without namespace, if any)

namespaceURI Gets or sets the URI of the element’s namespace

nextSibling Gets or sets the element after the current element in the DOM tree

nodeName Gets or sets the tag name of the element node

nodeType Gets or sets the node type of the element node

nodeValue Gets or sets the value in the element node

ownerDocument Gets the document that the element resides in

parentNode Gets the element’s parent node

prefix Gets or sets the namespace prefix used in the node

previousSibling Gets or sets the element before the current element in the DOM tree

style Gets or sets the element’s style information

tabIndex Gets or sets the element’s tab order index

tagName Gets or sets the name of the element’s tag

title Gets or sets the title of the element

Method Description

430 | Appendix C: DOM Reference

Document Methods and Properties
The methods and properties in this section are implemented for the document object.
Methods and properties already covered in the previous section are not repeated.

Methods

Properties

Method Description

clear() Empties the document

close() Ends the write access (started with open()) to the document

createAttribute(attribute) Creates an attribute with the given name

createDocumentFragment() Creates a document fragment

createElement(name) Creates an element with the given tag name

createTextNode(text) Creates a text node with the given text

getElementById(id) Returns the element with the given ID

getElementsByTagName(name) Returns an array with all elements with the given name

open(mime, replace) Opens the document for write access, sets the MIME type, and if the optional
replace parameter is true, replaces the old contents (otherwise, appends data)

write(text) Writes data to the document

writeln(text) Writes data and a linefeed (\r\n) to the document

Property Description

alinkColor Gets or sets the color for active links

anchors[] Gets an array of all anchors in the document

applets[] Gets an array of all Java applets in the document

bgColor Gets or sets the background color of the document

body Gets or sets the body portion of the document

compatMode Gets or sets a value that indicates whether the rendering engine uses a com-
patibility mode for older content

cookie Gets or sets the cookies that the document can access

documentElement Gets or sets the DOM node for the document

domain Gets the domain of the document

embeds[] Gets or sets an array of all embedded objects

fgColor Gets or sets the foreground (text) color of the document

forms[] Gets or sets an array of all form elements in the document; in ASP.NET pages,
there can be only one form element, which is always forms[0]

images[] Gets an array of all images in the document

lastModified Gets the date and time of the last modification of the document on the server

Document Methods and Properties | 431

linkColor Gets or sets the color for links

links[] Gets an array of all links in the document

location Gets URL information about the document

referrer Gets the URL of the document that the user came from to the current document

styleSheets[] Gets an array all CSS style sheets referenced in the document

URL Gets the URL of the document

vlinkColor Gets or sets the color for visited links

Property Description

432

Appendix DAPPENDIX D

ASP.NET AJAX Reference 4

ASP.NET AJAX provides several JavaScript helper APIs and adds new functionality
to existing JavaScript objects. This appendix shows a selective list of the most impor-
tant functions and methods.

Helper Functions
ASP.NET AJAX comes with several useful helper functions. The most important
ones have shortcut function names prefixed with a dollar sign ($).

Object Extensions
ASP.NET AJAX extends some standard JavaScript objects like strings and Booleans
with additional methods. The extensions for the JavaScript Error object are mostly
used internally, but the other object extensions are also suitable for custom code.

Property Description

$addHandler(element, eventName, handler); Adds an event handler for an event to a DOM element

$addHandlers(element, events,
handlerOwner)

Adds several event handlers to a DOM element

$clearHandlers(element) Removes all event handlers attached to a DOM element

$create(type, properties, events,
references, element)

Creates a component and initializes it

$find(id, parent) Searches for a component by its ID

$get(id, element) Searches for a DOM element by its ID

$removeHandler(element, eventName,
handler)

Removes one specific event handler from a DOM element

Object Extensions | 433

Array Extensions
All Array methods need to be called statically (e.g., Array.add()).

Boolean Extensions
The one available Boolean method needs to be called statically (Boolean.parse()).

Date Extensions
Unless otherwise noted, all Date methods need to be called on an object instance (e.g.,
(new Date()).format()).

Method Description

add(array, item) Adds an element to the array

addRange(array, items) Adds elements to the array

clear(array) Empties the array

clone(array) Creates a copy of the array

contains(array, item) Whether the array contains an item or not

dequeue(array) Removes (and returns) the first element of an array

enqueue(array, item) Adds an element to the array (should not be called directly, use
add() instead)

forEach(array, method, contxt) Iterate over an array and call a method for each element

indexOf(array, item, start) Returns the zero-based index of the element in the array, or –1 if not
found

insert(array, index, item) Adds an item at the given position to the array

parse(value) Converts a JSON string into an array

remove(array, item) Removes an item from the array

removeAt(array, index) Removes the item at the given position from the array

Method Description

parse(value) Converts the value into a Boolean

Method Description

format(format) Formats a date according to a format string

localeFormat(format) Formats a date according to a format string and to the current culture;
may also be called statically

parseLocale(value, formats) Parses a string for a date, according to the current culture; may also be
called statically

parseInvariant(value, formats) Parses a string for a date, according to the invariant culture; may also
be called statically

434 | Appendix D: ASP.NET AJAX Reference

Number Extensions
Unless otherwise noted, all Number methods need to be called on an object instance.

Object Extensions
All Object methods need to be called statically (e.g., Object.getType()).

String Extensions
Unless otherwise noted, all String methods need to be called on an object instance.

Method Description

format(format) Formats a number according to the invariant culture

localeFormat(format) Formats a number according to the current culture

parseInvariant(value) Parses a string for a number, according to the invariant culture; may also
be called statically

parseLocale(value) Parses a string for a number, according to the current culture; may also be
called statically

Method Description

getType(instance) Returns the type of the instance

getTypeName(instance) Returns the type name of the instance

Method Description

endsWith(suffix) Whether a string ends with the given suffix or not

format(format, args) Replaces placeholders {0}, {1}, . . . in the string with values provided as
additional parameters; needs to be called statically

localeFormat(format, args) Replaces placeholders {0}, {1}, . . . in the string with values provided as
additional parameter, using the current culture for dates and numbers;
needs to be called statically

startsWith(prefix) Whether a string starts with the given prefix or not

trim() Removes whitespace at both ends of the string

trimLeft() Removes whitespace at the beginning of the string

trimRight() Removes whitespace at the end of the string

435

Appendix E APPENDIX E

ScriptManager, UpdatePanel,
UpdateProgress, and Timer

Declarative Reference5

In this Appendix, the properties of four of the most important ASP.NET AJAX server
controls are covered: ScriptManager, UpdatePanel, UpdateProgress, and Timer. All
available properties are described (when using the controls declaratively), with the
exception of ID and runat="server". Also, properties inherited from Control are
omitted from the list.

ScriptManager
The ScriptManager is the most important control on an ASP.NET AJAX-powered
web site since it is responsible for loading the client libraries and can also generate
web services proxies.

Properties

Property Description

AllowCustomErrorsRedirect Allows (true, default) or disallows (false) whether errors occurring during
an asynchronous postback will lead to a custom redirect (if enabled in
Web.config)

AsyncPostBackErrorMessage Error message when an error occurs during an asynchronous postback

AsyncPostBackSourceElementID ID of the element that triggered the asynchronous postback

AuthenticationService-Path Path of the authentication service

EnablePageMethods Enables (true) or disables (false, default) the use of static inline web meth-
ods (page methods)

EnablePartialRendering Enables (true, default) or disables (false) the partial rendering imple-
mented by UpdatePanel

EnableScriptGlobalization Enables (true) or disables (false, default) the use of cultures from ASP.NET
AJAX

EnableScriptLocalization Enables (true) or disables (false, default) the use of localized content from
ASP.NET AJAX

436 | Appendix E: ScriptManager, UpdatePanel, UpdateProgress, and Timer Declarative Reference

AuthenticationService
The <Authentication> subelement of the ScriptManager control is used to enable
authentication service support; the following property is supported.

ProfileService
The <ProfileService> subelement of the ScriptManager control is used to enable pro-
file service support; the following properties are supported.

Scripts
The <Scripts> subelement of the ScriptManager control contains all client-side
scripts that will be loaded using the <asp:ScriptReference> control. This control sup-
ports the following properties.

LoadScriptsBeforeUI Loads the JavaScript libraries before (true, default) or after (false) the
page’s markup has been loaded

ProfileService-LoadProperties Profile properties available to client script code

ProfileService-Path Path of a profile web service

ScriptMode Whether to use Debug or Release versions of the JavaScript libraries

ScriptPath Root folder for ASP.NET AJAX and custom JavaScript libraries

Property Description

Path Path and filename of the (custom) authentication web service

Property Description

LoadProperties List of profile properties to make available to client script code

Property Description

Assembly Assembly that contains the script

IgnoreScriptPath Whether to ignore the ScriptManager ScriptPath property (true)
or not (false, default)

Name Name of the embedded script resource to use

NotifyScriptLoaded Whether to automatically add code to the end of the script (true, default)
or not (false) to notify the ScriptManager control that the script has
been loaded.

Path Path and filename of the script to load

ResourceUICultures List of UI cultures to use

ScriptMode Whether to use the Debug or Release version of the script

Path Path and filename of the (custom) profile web service

Property Description

UpdateProgress | 437

UpdatePanel
With the UpdatePanel control, a section of an ASP.NET-AJAX-powered page can be
updated independently from the rest of the page; the content resides in the
<ContentTemplate> subelement of <asp:UpdatePanel>.

Properties

Triggers
The <Triggers> subelement of the UpdatePanel control contains triggers that can
cause the refresh of the UpdatePanel’s contents. Two triggers are available with these
properties, <asp:AsyncPostBackTrigger> and <asp:PostBackTrigger>.

UpdateProgress
The UpdateProgress control displays a waiting screen while an UpdatePanel control is
updated. The actual content of the waiting screen resides in the <ProgressTemplate>
subelement of <asp:UpdateProgress>.

Properties

Property Description

ChildrenAsTriggers Whether postbacks in child elements trigger a refresh of the UpdatePanel con-
trol (true, default) or not (false)

RenderMode How to render the contents of the UpdatePanel: in a <div> element (Block,
default) or in a element (Inline)

UpdateMode When to refresh: Always (i.e., whenever a postback occurs) or Conditional
 (i.e., only when a trigger causes the refresh)

Property Description

ControlID ID of the control that can pull the trigger

EventName Event that causes the trigger to be pulled (<asp:AsyncPostBackTrigger>
only)

Property Description

AssociatedUpdatePanelID The ID of the associated UpdatePanel control

DisplayAfter Number of milliseconds after which the waiting screen is shown (defaults to 500).

DynamicLayout Whether to reserve space on the page for the waiting screen (false) or to dynami-
cally make space once the waiting screen needs to appear (true, default).

438 | Appendix E: ScriptManager, UpdatePanel, UpdateProgress, and Timer Declarative Reference

Timer
The Timer control triggers events and creates postbacks at timed intervals.

Properties

Property Description

Enabled Enables (true, default) or disables (false) the timer

Interval Number of milliseconds between Timer actions (defaults to 60000).

439

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
$addHandler() function, 67, 224
$addHandlers() function, 68
$clearHandlers() function, 68
$get() function, 165
$removeHandler() function, 68
@ Page directive, 172

A
aborting requests, 131
accepting cookies, 100
access

arbitrary elements, 41
base methods, 78
form elements, 38
HTML elements, 245
JavaScript methods, 242–245
OWA, 45
page elements, 38–42
profiles

data, 135–139
groups, 139–144

Accordian control, 197–199
actions, 188
addCssClass() method, 257
AddHistoryPoint() method, 388
adding

animation
drag-and-drop, 193–195
framework, 185–190
programming, 190–193

Autocomplete behavior to TextBox
controls, 201–208

breakpoints, 418
controls, Control Toolkit, 180
drag-and-drop behavior, 305
DragPanelExtender controls, 193
handlers, 67, 68
Label controls, 118
resource files, 161
toString() methods, 78

AdventureWorks, 117
installing, 11

Ajax
ASP.NET AJAX and, 3
ASP.NET, combining, 51
JSON, 61–64
XMLDocument object, 55–60
XMLHttpRequest object, 45–55

AjaxControlExtender folder, 178
Always mode, 124
AlwaysVisibleControlExtender control, 200
Amazon web services, 345–367
animation

applying, 368
drag-and-drop, 193–195
elements, modifying, 373–377
events, 187
framework, 185–190
programming, 190–193
types, 187

AnimationChildren property, 191
AnimationExtender control, 190
AnimationExtender element, 185
anonymous JavaScript functions, 51
<anonymousIdentification> element, 134

440 | Index

API (Application Programming Interface),
authentication services, 147

appendChild() method, 42
applications

Ajax, overview of, 3
ASP.NET, 5
authentication

login, 148–154
preparing, 145–147

debugging
ASP.NET AJAX, 419–424
Firebug, 415
tools, 413
Visual Studio 2005, 416–421
Web Development Helper, 416

functionality, applying, 244
globalization, 169–172
JSON, 61–64
localization, 156

satellite resources, 159–169
scripts, 156–159

page methods, 93–95
profiles, accessing, 135–139, 139–144
UpdatePanel control, 116

regions, 116–131
applying

animations, 368
grouping, 377–380

behaviors, 297
ClickBehavior, 298–301
drag-and-drop, 301–310

client controls, 242–259
Control Toolkit, 181–184
functionality, 243
PHP with ASP.NET AJAX, 406–409
remote web services, 337

Amazon, 345–367
Google, 338–344
Yahoo!, 358–367

applyPageState() function, 382
arbitrary elements, accessing, 41
architecture

Ajax, 3
ASP.NET, 5
ASP.NET AJAX, 12–14

arguments, writing custom functions
with, 33

arrays
extensions, 433
JavaScript, 27

.asmx file, 93
ASP.NET

Ajax, combining, 51
ASP.NET AJAX and, 5
Configuration command, 145
Configuration Tool, 146
Web Application Administration

Tool, 145
Web Parts, 396–401

ASP.NET AJAX
animations

applying, 368
grouping, 377–380
modifying elements, 373–377

architecture, 12–14
ASP.NET Web Parts, 396–401
authentication service

login/logout, 148–154
preparing applications, 145–147

base methods, 257–259
behaviors

applying, 297
ClickBehavior, 298–301
drag-and-drop, 301–310

buttons, 251
checkboxes, 252
client controls, 241

applying, 242–259
handling events, 259–263

clients, 83–87
components, 310–313
Control Toolkit, 177

Accordian control, 197–199
applying, 181–184
contributing to the

community, 228–237
customizing controls, 219–228
installation, 177–180

data binding, 264–280
data validation, 280–296
debugging, 419–424
examples, 14–19
extensions to existing objects, 70
hyperlinks, 249
images, 247–249
installation, 7–13
Label control, 246
OOP features for JavaScript, 71–83
PHP, applying with, 406–409

Index | 441

profiles
accessing data, 135–139
accessing groups, 139–144
preparing web sites, 133–135

references, 432–434
satellite resources, 159–169
ScriptManager control, 19–20
selection lists, 253–255
server data, ListView control, 314–330
shortcuts, 67–70
text fields, 255–257

AssemblyInfo.cs file, 164
asynchronous requests, managing, 128–131
asyncInvoke() method, 109
AsyncPostBackTrigger, 122
Atlas, 3
attaching calendars to text fields, 208
attacks, DoS, 204
attributes

EnableScriptLocalization, 168
id, 277
methodName, 278
property, 275
propertyKey, 275
ScriptMethod, 93
target, 275
url, 277
useGet, 278
value, 275

authentication
applications

login/logout, 148–154
preparing, 145–147

service support, 436
Authentication.aspx file, 149
<authenticationService> element, 147
Autocomplete behavior, adding TextBox

controls, 201–208
AutoCompleteExtender control, 201
avoiding

client-side caching, 63
SQL injection, 205

AWSECommerceService class, 346
AWSECommerceService.cs file, 346

B
back/forward buttons, 384–388
BackgroundCssClass property, 212
backgrounds, fade effects, 371

base class library, 4
base methods, 257–259

accessing, 78
base types, 70, 72
baseArguments parameter, 78
behaviors

applying, 297
ClickBehavior, 298–301
drag-and-drop, 301–310

binding
data

to HTML lists, 324
to HTML tables, 327–330

direction, 265, 268
ListView controls to data, 315
markup for, 271–280

<binding> element, 272
blacklist approach, 204
blogs, spam, 214–216
bookmarks

security, 383
troubleshooting, 382

back/forward buttons, 384–388
Futures release, 388–395

Boolean extensions, 433
Boolean operators, 28
breakpoints, adding, 418
bridge files, 342, 347

calling, 354
requests, caching, 365
updating, 355

browsers
compatibility layer, 4
cookies, accepting, 100
JavaScript support, 25
language

modifying, 170
selecting, 170

XMLHttpRequest object, 45
built-in animations

applying, 368
elements, modifying, 373–377
grouping, 377–380

built-in objects, JavaScript, 32–34
built-in transformers, 266–268
bulleted lists, 33
buttons, 251

back/forward, 384–388
events for, 259
Load Vendors, 326

442 | Index

C
caches

bridge file requests, 365
client-side caches, 63
GAC, 8

CalendarExtender control, 208
calendars, attaching text fields to, 208
callComplete() function, 364
calling

Amazon web services, 348
bridge files, 354
Google web services, 343
PHP ASP.NET AJAX web services, 408
remote web services, 105–114
web services

from Internet Explorer, 107
in Mozilla browsers, 110
Yahoo!, 361

callService() method, 106
canceling wait screens, 130
Cascading Style Sheets (see CSS)
checkboxes, 252
checking

data types, 284
ranges, 285
against regular expressions, 283
required fields, 281

classes, 166
AWSECommerceService, 346
derived, 75
Designer, 221
extender, 222
inheritance, 74–80
libraries, 166
PageMethods, 93
PageRequestManager, 128
PHPHelloWorldService, 407
ProfileService, 135
SOAPCall, 108
StringBuilder, 84
sys.Debug, 422
Sys.Preview.Binding, 264
Sys.Preview.UI.Effects.NumberAnimation,

373
Sys.Preview.UI.Window, 243
TextBoxMaskBehavior, 223
wrapper

Amazon web service, 347
Google web service, 341
Yahoo! web service, 358

client controls, 241
applying, 242–259
data validation, 280–296
handling events, 259–263

clients, 12
animation, setting on, 192
ASP.NET AJAX, programing, 3
.NET classes, 83–87

client-side caching, 63
code

for data bindings, 264–271
interfaces, using to structure, 81
troubleshooting, 382

back/forward buttons, 384–388
Futures release, 388–395

CodePlex, uploading patches, 237
CollapseControlID property, 210
CollapsiblePanelExtender control, 210
collapsing panes, 210
combining Ajax and ASP.NET, 51
commands

ASP.NET Configuration, 145
POST, 54

Community Technology Preview (CTP), 6
comparison operators, 28
compatibility layer, 4
complex data, exchanging, 100–105
components, 12

ASP.NET AJAX, 310–313
scripts, 4
toolkits, moving, 182

compositing animations, 377–380
Conditional mode, 124
configuration

animation, 185–190
drag-and-drop, 193–195
programming, 190–193

culture, 160
event handling, 274
globalization, 169–172
patches, 228
permalinks, 394
tabbed interfaces, 216

ConfirmButton control, 181, 182
consuming web services with

JavaScript, 105–114
content template, 117
contributing to the Control Toolkit

community, 228–237

Index | 443

Control Toolkit, 6, 177
Accordian control, 197–199
animation framework, 185
applying, 181–184
contributing to the community, 228–237
controls, customizing, 219–228
DragPanel extender, 193
installation, 177–180

ControlID property, 122
controls

AlwaysVisibleControlExtender, 200
AnimationExtender, 190
ASP.NET AJAX, 5
AutoCompleteExtender, 201
base methods, 257–259
buttons, 251
CalendarExtender, 208
checkboxes, 252
client, 241

applying, 242–259
data validation, 280–296
handling events, 259–263

CollapsiblePanelExtender, 210
ConfirmButton, 181, 182
customizing, 219–228
DragPanelExtender, adding, 193
hyperlinks, 249
images, 247–249
importing, 167
Label, 246

adding, 118
ListView, 314–330
ModalPopupExtender, 212
NoBot, 214
Repeater, 315
ScriptManager, 19–20, 435
scripts, 4
Select, 254
selection lists, 253–255
server, 5
structures, JavaScript, 27–31
TabContainer, 216
TabPanel, 216
text fields, 255–257
text localization, 166
TextBox, adding Autocomplete

behavior, 201–208
Timer properties, 438
UpdateHistory, 384
UpdatePanel, 116, 385

properties, 437
regions, 116–131

UpdateProgress properties, 437
WebPartManager, 398

controlsGridView, 117
converting web services, 350
cookies, sessions, 100
core services, 4
createAttribute() method, 42
createElements() method, 42
createTextNode() method, 42
Cross-Site Scripting (XSS), 383
CSS (Cascading Style Sheets), 3

Accordian control, 198
class methods, 69
HTML elements, positioning, 199–201

CTP (Community Technology Preview), 6
culture, configuring, 160
custom functions, writing, 32
custom types, returning, 331
customization

controls, 219–228
data sources, 330–336
extenders, 227
transformers, 269–271
validation, 287–288

customValidator, 281

D
data binding, 264–280

markup, 271–280
programmatic, 266–268

data context, 265
data paths, 265
data sources, customizing, 330–336
data types, checking, 284
data validation, 280–296
databases

AdventureWorks, 117
sample, installation, 10

dataPath property, 324
DataRowCollection objects, 316
DataTable, 331
dateformat variable, 156
dates

extensions, 433
globalization, 171, 172

daynames variable, 156
debugging tools, 413

ASP.NET AJAX, 419–424
Firebug, 415
Visual Studio 2005, 416–421
Web Development Helper, 416

444 | Index

deleting handlers, 68
denial-of-service (DoS) attacks, 204
derived classes, 75
Design view, Update Panel in, 118
Designer class, 221
Development Branch, downloading, 232
direction, binding, 265, 268
displaying

custom data sources, 334
wait screens, 126–128

<div> element, 90
DivideNumbers() method, 90, 100
doClick() function, 149
document object, 38
Document Object Model (see DOM)
document.getElementById() method, 67
documentation, Control Toolkit, 180
documents, XMLDocument object, 55–60
DOM (Document Object Model), 3

elements, 69
methods, 42–43
references, 428–431

DoS (denial-of-service) attacks, 204
drag-and-drop

animation, 193–195
behavior, 301–310

DragHandleID property, 194
DragOverlayExtender, 304–306
DragPanel extender, 193
DragPanelExtender control, adding, 193
_duration property, 369
dynamically collapsing single panes, 210

E
Eich, Brendan, 23
elements

animation, modifying, 373–377
AnimationExtender, 185
<anonymousIdentification>, 134
arbitrary, accessing, 41
<authenticationService>, 147
<binding>, 272
<div>, 90
DOM, 69
<FadeOut>, 186
<floatingBehavior>, 302
forms, accessing, 38
HTML, 272

accessing, 245
positioning, 199–201

<iframe>, 383
<layoutTemplate>, 315

moving, 374, 375
page, accessing, 38–42
<Panes>, 198
<proxy>, 341
, 43, 91
<system.web.extensions>, 134
<tagElement>, 397
<template>, 324

embedding JavaScript, 24, 166
Enabled property, 304
EnableScriptLocalization attribute, 168
enabling profiles, 133
encapsulation, 35
encode() method, 109
English language, creating resource files, 165
entry forms, spam, 214–216
enumerations, 85
error handling, web services, 88–92
error messages, 92
eval() function, 63
evaluating JSON notation, 62
EventName property, 122
events

animation, 187
for buttons, 259
client controls, handling, 259–263
handlers, adding, 68
handling, 274
key down, 224
for lists, 261
scripts, handling with, 24
Tick, 122
trigger, 122

examples, ASP.NET AJAX, 14–19
exceptions

throwing, 89
web services, error handling, 88–92

exchanging complex data, 100–105
ExpandControlID property, 210
extender class, 222
extenders

customizing, 227
drag-and-drop, 304–306
JavaScript, 225

Extensible Markup Language (see XML)
extensions, 6

arrays, 433
Boolean, 433
dates, 433
Mozilla, 109
numbers, 434
objects, 432, 434
strings, 434

Index | 445

F
<FadeOut> element, 186
failedCallback parameter, 135
Fiddler, 109
fields

checking, 281
form properties, 40
text, 255–257

attaching calendars to, 208
files

.asmx, 93
AssemblyInfo.cs, 164
Authentication.aspx, 149
bridge, 342, 347

caching requests, 365
calling, 354
updating, 355

.htc (HTML control), 106
JavaScript, embedding, 166
MathService.asmx, 101
resources, adding, 161
Web.config, 133

Firebug, 140, 415
Firefox

debugging with, 420
(see also Mozilla)

<floatingBehavior> element, 302
folders

AjaxControlExtender, 178
SampleWebSite, 178

for loops, 29
for...in loops, 30
forms

elements, accessing, 38
fields, properties, 40
spam, 214–216
submission, preventing, 294–296

_fps property, 369
framework, animation, 185–190
functionality, applying, 243
functions

$addHandler(), 67, 224
$addHandlers(), 68
$clearHandlers(), 68
$get(), 165
$removeHandler(), 68
applyPageState(), 382
callComplete(), 364
custom, writing, 32
doClick(), 149
eval(), 63
getCurrentPageState(), 382

getXMLHTTP(), 47
gotoStepClick(), 391
helper, 67

ASP.NET AJAX, 432
JavaScript anonymous, 51
loginError(), 150
lognComplete(), 150
pageLoad(), 69, 149
pageNavigate(), 391
profileError(), 137, 142
profileLoadedError(), 136
saveProfile(), 137
stateChanged(), 50

Futures CTP installation, 11
Futures release, 6

bookmarks, troubleshooting, 388–395
client controls, 241

G
GAC (Global Assembly Cache), 8
Garrett, Jesse James, 44
generating

bulleted lists, 33
pop ups, 211–214

German language, creating resource
files, 161

get_alternateText() method, 248
get_argument() method, 251
get_command() method, 251
get_exceptionType() method, 90
get_height() method, 248
get_imageURL() method, 248
get_message() method, 90
get_selectedValue() method, 255
get_stackTrace() method, 90
get_statusCode() method, 90
get_text() method, 246
get_timeOut() method, 90
get_width() method, 248
getCurrentPageState() function, 382
getElementsByTagName() method, 42
GetPropertyValue() method, 222
getXMLHTTP() function, 47
Global Assembly Cache (GAC), 8
globalization, 169–172
Google Suggest, 201
Google Web API Developer’s Kit, 339
Google web services, 338–344

XSL transformation file, 351
GoogleSearch.wsdl file, 339
gotoStepClick() function, 391

446 | Index

GridView control, 117
groups

animations, 377–380
profiles, accessing, 139–144
validation, 291–294

H
handlers

adding, 67, 68
deleting, 68

handling events, 274
client controls, 259–263
with scripts, 24

Hello User, 14–19
helper functions, 67

ASP.NET AJAX, 432
history

of JavaScript, 23
of XMLHttpRequest object, 45

HistoryEventArgs object, 388
historyNavigate() method, 385
HorizontalSide property, 200
.htc (HTML control) files, 106
HTML (Hypertext Markup Language)

data binding, 264–280
elements, 272

accessing, 245
positioning, 199–201

lists, binding data to, 324
selection lists, 327
tables, binding data to, 327–330
web services, converting, 350

HTTP (Hypertext Transfer Protocol)
headers with Accept-Language, 169
requests, creating, 48
XMLHttpRequest object, 45–55

HttpContext.Current.Session, 96
hyperlinks, 249

images, 251
Hypertext Markup Language (see HTML)
Hypertext Transfer Protocol (see HTTP)

I
id attribute, 277
IDE (Integrated Development Environment)

installation, 7
<iframe> element, 383
images, 247–249

hyperlinks, 251
importing controls, 167

inheritance
classes, 74–80
JavaScript, 36

initialize() method, 223
initializing bindings, 266
injections, avoiding SQL, 205
inputBox() method, 243
installation

ASP.NET AJAX, 7–13
Control Toolkit, 177–180
Firebug, 415
Futures CTP, 11
IDE, 7
sample databases, 10
SQL Server Express, 10
templates, 9

instance parameter, 78
instantiation

ItemSearchRequest object, 346
objects

derived from the same base class, 77
with the same namespace, 74

Integrated Development Environment (see
IDE)

IntelliSense, 5
interfaces, 80–83

tabbed, creating, 216
type parameters, 72

internationalization, 169–172
Internet Explorer

language, modifying, 171
Visual Studio 2005, debugging, 417
Web Development Helper, 416
web services and, 106–108
XMLHttpRequest object, 46
(see also browsers)

invoking methods, 276–280
ItemSearchRequest object, 346
itemTemplateParentElementId, 323

J
JavaScript

animation, configuring, 191
anonymous functions, 51
arrays, 27
ASP.NET AJAX

clients, 83–87
extensions to existing objects, 70
OOP features for, 71–83
shortcuts, 67–70

authentication, 150

Index | 447

bookmarks, troubleshooting, 392
built-in objects, 32–34
control structures, 27–31
DOM methods, 42–43
embedding, 24, 166
extenders, 225
inheritance, 36
libraries, loading, 20
methods, 25

accessing, 242–245
OOP, 34–38
overview of, 24–25
page element access, 38–42
resource files, creating, 165
variables, 26
web services, consuming with, 105–114
(see also scripts)

JavaScript Object Notation (see JSON)
JSON (JavaScript Object Notation), 61–64

serialization/deserializaiton, 100–105

K
keydown events, 224

L
Label controls, 246

adding, 118
labels, fade effects, 371
languages

browsers
modifying, 170
selecting, 170

JavaScript, 42–43
arrays, 27
built-in objects, 32–34
control structures, 27–31
methods, 25
OOP, 34–38
overview of, 24–25
page element access, 38–42
variables, 26

script localization, 156
layers, compatibility, 4
<layoutTemplate> element, 315
length animation, moving elements, 375
libraries

animations, 368
base class, 4
classes, 166

JavaScript, loading, 20
Microsoft Ajax Library, 5, 6

life cycle of web pages, 14
links

data binding, 264–280
hyperlink controls, 249
WSDL descriptions, 106

lists
bulleted, 33
events for, 261
HTML

binding data to, 324
selection, 327

selection, 253–255
ListView control, 314–330
LiveScript, 23
Load Vendors button, 326
load() method, 136, 142
loadCompletedCallback parameter, 135
loading JavaScript files, 20
localization, 156

satellite resources, 159–169
scripts, 156–159

LocDateControl class, 166
login, 148–154
loginComplete() function, 150
loginError() function, 150
logout, 148–154
logout() method, 148
loops

for, 29
for...in, 30
while, 31

M
maintaining session state, 95–101
management

asynchronous requests, 128–131
data, 336

mapping Web Parts, 397
markup, data binding, 271–280
mashups, 3, 337
MathService.asmx file, 101
messageBox() method, 243
messages, error, 92
methodName attribute, 278
methodName parameter, 78
methods

addCssClass(), 257
AddHistoryPoint(), 388

448 | Index

methods (continued)
appendChild(), 42
ASP.NET AJAX, 432–434
asyncInvoke(), 109
base, 257–259

accessing, 78
callService(), 106
createAttribute(), 42
createElements(), 42
createTextNode(), 42
DivideNumbers(), 90, 100
document.getElementById(), 67
DOM, 42–43, 428–431
DOM elements, 69
encode(), 109
get_alternateText(), 248
get_argument(), 251
get_command(), 251
get_exceptionType(), 90
get_height(), 248
get_imageURL(), 248
get_message(), 90
get_selectedValue(), 255
get_stackTrace(), 90
get_statusCode(), 90
get_text(), 246
get_timeOut(), 90
get_width(), 248
GetPropertyValue(), 222
historyNavigate(), 385
initialize(), 223
inputBox(), 243
invocation, 276–280
JavaScript, 25

accessing, 242–245
load(), 136, 142
logout(), 148
messageBox(), 243
open(), 49
page, 93–95
pageLoad(), 322
play(), 369
preventDefault(), 224
ProcessRequest(), 407
registerClass(), 72
removeCssClass(), 257
SaveTime(), 97
Search(), 343
SearchXslt(), 352
send(), 49
set_alternateText(), 248

set_argument(), 251
set_command(), 251
set_direction(), 268
set_height(), 248
set_imageURL(), 248
set_OnClick(), 192
set_text(), 246
set_transformerArgument(), 265
set_width(), 248
SetPropertyValue(), 222
toggleCssClass(), 257
toString(), 38

adding, 78
Update(), 123
window.setInterval(), 122
window.setTimeout(), 122
XMLHttpRequest object, 426

Microsoft Ajax Library, 5, 6
Microsoft SQL Server Management Studio

Express (SSMSE), 11
Microsoft.Web.Preview.UI.Controls.

WebParts namespace, 398
Mocha, 23
modal JavaScript windows, 243
ModalPopupExtender control, 212
modification

animation elements, 373–377
language in browsers, 170

moving
elements, 374, 375
toolkit components, 182
Web Parts, 398

Mozilla
debugging with, 420
web services and, 108–112
XMLHttpRequest object, 47
(see also browsers)

N
name parameter, 72
namespaces, 71–74

Sys.Preview.UI, 241
.NET

classes, client versions of, 83–87
session state, maintaining, 95

NoBot control, 214
NoSource ZIP archive, 178
notation

JSON, 61–64
serialization/deserialization, 100–105

number extensions, 434

Index | 449

O
object-oriented programming (see OOP)
objects

ASP.NET AJAX
clients, 83–87
extensions to existing, 70
OOP features for JavaScript, 71–83

built-in, JavaScript, 32–34
creating, 61
DataRowCollection, 316
document, 38
enumerations, 85
extensions, 432, 434
HistoryEventArgs, 388
ItemSearchRequest, 346
JSON, 61–64

serialization/deserialization, 100–105
Sys.Preview.UI.Effects.FadeAnimation,

370
XMLDocument, 55–60
XMLHttpRequest, 45–55

references, 426
OKControlID property, 212
onreadystatechange property, 49
OOP (object-oriented programming), 4

features for JavaScript, 71–83
JavaScript, 34–38

open() method, 49
opening windows, 245
operators

Boolean, 28
comparison, 28
typeof, 47

Outlook Web Access (see OWA)
OWA (Outlook Web Access), 45

P
packages, ASP.NET AJAX, 6
page elements, accessing, 38–42
page methods, 93–95
Page_Load event handlers, 50
pageLoad() function, 69, 149
pageLoad() method, 322
PageMethods class, 93
pageNavigate() function, 391
PageRequestManager class, 128
PageRequestManager instance, 128
panels, drag-and-drop, 194
panes

Accordian control, 197–199
collapsing, 210

<Panes> element, 198
parameters

base type, 72
baseArguments, 78
failedCallback, 135
instance, 78
interface type, 72
loadCompletedCallback, 135
methodName, 78
name, 72
propertyNames, 135
UserContext, 135

passwords, profiles, 144
patch utility, 228
patches

packaging, 234
saving, 233
uploading, 237

paths, data, 265
permalinks, creating, 394
personalized drag-and-drop, 306–310
PHP, applying with ASP.NET

AJAX, 406–409
PHPHelloWorldService class, 407
PHPHelloWorldService.php file, 406
play() method, 369
plugins, Firebug, 140
PopupControlID property, 212
popups, generating, 211–214
positioning HTML elements, 199–201
POST command, 54
postbacks

triggering, 121, 122
UpdatePanel control, 116

regions, 116–131
PostBackTrigger, 122
preventDefault() method, 224
preventing form submission, 294–296
PreviewDragDrop.js file, 301
PreviewGlitz.js file, 368
ProcessRequest() method, 407
profileError() function, 137, 142
profileLoadedError() function, 136
profiles

accessing, 135–139, 139–144
service support, 436
web sites, preparing, 133–135

ProfileService class, 135
programmatic data binding, 266–268
programmatic validation, 288–291
programmatically updating

sections, 123–126

450 | Index

programming
animation, 190–193
OOP, 4

JavaScript, 34–38
XMLHttpRequest object, 46–55

<ProgressTemplate> template, 126
properties, 265

AnimationChildren, 191
ASP.NET AJAX, 432–434
BackgroundCssClass, 212
<binding> element, 272
CollapseControlID, 210
ControlID, 122
dataPath, 324
DOM, 428–431
DragHandleID, 194
_duration, 369
Enabled, 304
EventName, 122
ExpandControlID, 210
form fields, 40
_fps, 369
HorizontalSide, 200
OKControlID, 212
onreadystatechange, 49
PopupControlID, 212
profiles, defining, 134
property, 324
responseText, 50
responseXML, 50
ScriptManager control, 435
_target, 369
TargetControlID, 185, 194, 210, 212, 304
Time control, 438
triggers, 437
UpdatePanel control, 437
UpdateProgress control, 437
UserData, 134
VerticalSide, 200
XMLHttpRequest object, 426
xml-script, setting, 275

property attribute, 275
property property, 324
propertyKey attribute, 275
propertyNames parameter, 135
<proxy> element, 341

R
random CSS class web service, 277
ranges, checking, 285
rangeValidator, 281

reading
profile data, 137
profile group data, 142

references
ASP.NET AJAX, 432–434
DOM, 428–431
XMLHttpRequest object, 426

regexValidator, 281
regions, UpdatePanel control, 116–131
registerClass() method, 72
registering

Microsoft.Web.Preview.UI.Controls.Web
Parts namespace, 398

toolkits, 181
regular expressions, checking against, 283
remapping Web Parts, 397
remote web services, 337

Amazon, 345–367
calling, 105–114
Google, 338–344
Mozilla browsers, 112
Yahoo!, 358–367

removeCssClass() method, 257
Repeater control, 315
requests

aborting, 131
asynchronous, managing, 128–131
HTTP, creating, 48
XMLHttpRequest object, 45–55

required fields, checking, 281
requiredFieldValidator, 281
resource files, adding, 161
responseText property, 50
responseXML property, 50
REST, 358–367
results of web services, transforming with

XSLT, 350–358
returning custom types, 331

S
sample databases, installation, 10
SampleWebSite folder, 178
satellite resource localization, 159–169
saveProfile() function, 137
SaveTime() method, 97
saving patches, 233
Script Explorer, 419
<script> tag, 24
ScriptManager control, 19–20, 435
ScriptManager server control, 12
ScriptMethod attribute, 93

Index | 451

scripts
controls and components, 4
events, handling with, 24
localization, 156–159
support, 436

Search() method, 343
searching Amazon catalogs, 350
SearchXslt() method, 352
sections, 117–121

displaying wait screens, 126–128
managing asynchronous

requests, 128–131
programmatically at timed

intervals, 123–126
at timed intervals, 122–124

security
bookmarks, 383
JSON, 63
XMLHttpRequest object, 55

Select control, 254
selection lists, 253–255

HTML, 327
selection of languages for browsers, 170
send() method, 49
servers, 12

animation, setting on, 190
controls, 5
ListView control, 314–330

services
ASP.NET, 5
authentication service, 436
core, 4
profile support, 436
(see also web services)

session state, maintaining, 95–101
set_alternateText() method, 248
set_argument() method, 251
set_command() method, 251
set_direction() method, 268
set_height() methods, 248
set_imageURL() method, 248
set_OnClick() method, 192
set_text() method, 246
set_transformerArgument() method, 265
set_width() method, 248
<setPropertyAction> tag, 274
SetPropertyValue() method, 222
short stack trace, 92
shortcuts, ASP.NET AJAX, 67–70
single panes, collapsing panes, 210
SmartTag support, 118

SOAPCall class, 108
Solution Explorer, 164
spam, blogs, 214–216
 element, 43, 91
SQL (Structured Query Language), avoiding

injection, 205
SQL Server Express installation, 10
SSMSE (Microsoft SQL Server Management

Studio Express), 11
standards, XMLHttpRequest object, 46
stateChanged() function, 50
string extensions, 434
StringBuilder class, 84
submission of forms, preventing, 294–296
support

authentication service, 436
profiles

preparing web sites for, 133–135
services, 436

scripts, 436
SmartTag, 118
XMLHttpRequest object, 48

Sys.Debug class, 422
Sys.Preview.Binding class, 264
Sys.Preview.BindingBase.Transformers.Adds,

265
Sys.Preview.BindingBase.Transformers.

Compare, 265
Sys.Preview.BindingBase.Transformers.

CompareInverted, 265
Sys.Preview.BindingBase.Transformers.Invert,

265
Sys.Preview.BindingBase.Transformers.

Multiply, 265
Sys.Preview.BindingBase.Transformers.

ToString, 265
Sys.Preview.BindingDirection.In, 268
Sys.Preview.BindingDirection.InOut, 269
Sys.Preview.BindingDirection.Out, 268
Sys.Preview.UI namespace, 241
Sys.Preview.UI.ClickBehavior, 298–301
Sys.Preview.UI.Effects.FadeAnimation

object, 370
Sys.Preview.UI.Effects.NumberAnimation

class, 373
Sys.Preview.UI.FloatingBehavior, 297,

301–310
Sys.Preview.UI.LayoutBehavior, 297
Sys.Preview.UI.OpacityBehavior, 297
Sys.Preview.UI.Window class, 243
<system.web.extensions> element, 134

452 | Index

T
tabbed interfaces, creating, 216
TabContainer control, 216
tables, HTML, 327–330
TabPanel control, 216
<tagMapping> element, 397
tags

HTML, 272
mapping, 398
<script>, 24
<setPropertyAction>, 274

target attribute, 275
_target property, 369
TargetControlID property, 185, 194, 210,

212, 304
<template> element, 324
templates

content, 117
Control Toolkit, 180
controls, customizing, 220
installation, 9
ListView control, 314
<ProgressTemplate>, 126

text
fields, 255–257

attaching calendars to, 208
hyperlinks, 250
localization, 166

text/xml-script type, 272
TextBox controls, Autocomplete

behavior, 201–208
TextBoxMask extender, 227
TextBoxMaskBehavior class, 223
TextBoxMaskBehavior.js file, 221, 223
TextBoxMaskDesigner.cs file, 221
TextBoxMaskExtender.cs files, 221
throwing exceptions, 89
Tick events, 122
Timer control properties, 438
timers, 310, 311
timestamps

postbacks, triggering, 122
sessions, 96

toggleCssClass() method, 257
toolkits

Control Toolkit, 6, 177
animation framework, 185
applying, 181–184
DragPanel extender, 193
installation, 177–180

registering, 181

tools, 109
ASP.NET Configuration Tool, 146
ASP.NET Web Application

Administration Tool, 145
debugging, 413

ASP.NET AJAX, 419–424
Firebug, 415
Visual Studio 2005, 416–421
Web Development Helper, 416

patch utility, 228
toString() method, 38

adding, 78
transformers, 265

built-in, 266–268
customization, 269–271

transforming web service results, 350–358
trees, XML, 57
triggers

animation, 187
postbacks, 121, 122
properties, 437
types of triggers, 122

troubleshooting
bookmarks

back/forward buttons, 384–388
Futures release, 388–395

code, 382
typeof operator, 47
types

animation, 187
base, 70
custom, returning, 331
of triggers, 122

typeValidator, 281

U
Uniform Resource Locators (see URLs)
Update() method, 123
UpdateHistory control, 384
UpdatePanel control, 116, 385

properties, 437
regions, 116–131

UpdateProgress control properties, 437
updating

bridge files, 355
sections, 117–121

displaying wait screens, 126–128
managing asynchronous

requests, 128–131
programmatically at timed

intervals, 123–126
at timed intervals, 122–124

Index | 453

uploading patches, 237
url attributes, 277
URLs (Uniform Resource Locators),

JavaScript, 25
useGet attribute, 278
user names, profiles, 139
userContext parameter, 135
UserData property, 134

V
validation

customization, 287–288
data, 280–296
groups, 291–294
programmatic, 288–291

validators, 280
value attribute, 275
values, onreadystatechange property, 49
variables

custom functions, writing, 33
dateformat, 156
daynames, 156
JavaScript, 26

VerticalSide property, 200
viewing

custom data sources, 334
wait screens, 126–128

views, Design, 118
Virtual Earth, 3
visibilityMode, 287
Visual Studio 2005, 5

debugging, 416–421
installation, 7

Visual Studio Integration (VSI), 178
Visual Web Developer Express Edition

installation, 7
VSI (Visual Studio Integration), 178

W
wait screens

canceling, 130
displaying, 126–128

WCF (Windows Communication
Foundation), 88

Web Development Helper, 416
web pages

Ajax architecture, 3
animation

drag-and-drop, 193–195
framework, 185–190
programming, 190–193

ASP.NET, 5
ASP.NET AJAX

clients, 83–87
extensions to existing objects, 70
OOP features for JavaScript, 71–83
shortcuts, 67–70

JavaScript
arrays, 27
built-in objects, 32–34
control structures, 27–31
DOM methods, 42–43
methods, 25
OOP, 34–38
overview of, 24–25
page element access, 38–42
variables, 26

life cycles of, 14
popups, generating, 211–214

Web Parts (ASP.NET), 396–401
web services

complex data, exchanging, 100–105
error handling, 88–92
Internet Explorer and, 106–108
JavaScript, consuming with, 105–114
ListView control, 321
Mozilla and, 108–112
page methods, 93–95
PHP, 407
remote, 337

Amazon, 345–367
Google, 338–344
Yahoo!, 358–367

results, transforming with
XSLT, 350–358

session state, maintaining, 95–101
Web Services Description Language

(WSDL), 106
web sites

Control Toolkit, 178
applying, 181–184

globalization, 169–172
localization, 156

satellite resources, 159–169
scripts, 156–159

profiles, preparing for, 133–135
Web.config file, 133
WebPartManager control, 398
while loops, 31
whitelist approach, 204
window.setInterval() method, 122
window.setTimeout() method, 122

454 | Index

windows
modal JavaScript, 243
opening, 245

Windows Communication Foundation
(WCF), 88

Windows Presentation Foundation
(WPF), 265

WPF (Windows Presentation
Foundation), 265

wrapper classes
Amazon web service, 347
Google web service, 341
Yahoo! web service, 358

writing
custom functions, 32
profile data, 137
profile group data, 142

WSDL (Web Services Description
Language), 106

X
XML (Extensible Markup Language)

trees, 57
web services, converting, 350

XMLDocument object, 55–60

XMLHttpRequest object, 45–55
references, 426

xml-script, 4, 271, 273
animation, fading, 372
method invocation, 279
properties, setting, 275

XPath, 358–367
XSL transformation (see XSLT)
XSLT (XSL transformation), transforming

web service results with, 350–358
XSS (Cross-Site Scripting), 383

Y
Yahoo! web service, 358–367

Z
zones, Web Parts, 398

About the Author
ChristianWenz is a trainer and consultant who has written more than 50 books. He
works with both open source and closed source web technologies, has been awarded
a Microsoft MVP for ASP/ASP.NET, and is listed in Zend’s Who’s Who of PHP.
Christian is also listed in Mozilla’s credits (about:credits) and is considered an expert
in browser-agnostic JavaScript.

Colophon
The animal on the cover of Programming ASP.NET AJAX is a black murex snail
(hexaplex nigritus). The black murex is found off the coast of California and Mexico.
As it ages, its shell turns from white to predominately black. However, pure white or
black shells are very rare. Mature black murexes are about 6 inches (15 centimeters)
long.

Black murex snails are carnivorous gastropods. Their diet is composed of bivalve
mollusks, including oysters, clams, and sea anemone. Gastropods kill their prey by
various means, including smothering, tearing, or boring into the shell by using an
acidic mucus to weaken the outside surface.

The murex snail played a crucial role in the culture and trade of the ancient Phoeni-
cians. They crushed the murex in order to extract a purple-red secretion used to dye
fabric. It is estimated that some 10,000 snails were needed to dye one toga. As a
result, only royalty could afford the precious dye for clothing. When the dye was
combined with silk imported from China, the purple garments were worth more
than their weight in gold. Purple has since been equated with royalty, but the red of
papal robes and the blue in the flag of Israel are also derivative of murex snail dye.

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Programming ASP.NET AJAX
	Table of Contents
	Preface
	Who This Book Is For
	How This Book Is Organized
	What You Need to Use This Book
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Books Online
	Acknowledgments (Programming Atlas)
	Acknowledgments (Programming ASP.NET AJAX)

	Part I Basics
	ASP.NET AJAX, Ajax, and ASP.NET
	ASP.NET AJAX and Ajax
	ASP.NET AJAX and ASP.NET
	ASP.NET AJAX Packages

	ASP.NET AJAX Prerequisites and Installation
	Installing the IDE
	Installing ASP.NET AJAX
	Installing the Sample Database

	ASP.NET AJAX Structure and Architecture
	A First ASP.NET AJAX Example: Hello User
	The ScriptManager Control
	Summary
	For Further Reading

	JavaScript
	The JavaScript Language
	Common JavaScript Methods
	Variables
	Arrays
	Control Structures
	Built-in Methods, Custom Functions, and Event Handling

	Object-Oriented Programming (OOP)
	Accessing Page Elements
	Accessing Form Elements
	Accessing Arbitrary Elements

	DOM Methods
	Summary
	For Further Reading

	Ajax
	The XMLHttpRequest Object
	Programming the XMLHttpRequest Object

	The XMLDocument Object
	JSON
	Summary
	For Further Reading

	Part II ASP.NET AJAX Extensions
	Using ASP.NET AJAX JavaScript�Extensions
	ASP.NET AJAX Shortcuts and Helper Functions
	Shortcuts
	DOM Element Methods

	Extensions to Existing JavaScript Objects
	ASP.NET AJAX OOP Features for JavaScript
	Namespaces
	Class Inheritance
	Derived classes
	Accessing base methods

	Interfaces

	Client Versions of .NET Classes
	Sys.StringBuilder
	Enumerations

	Summary
	For Further Reading

	Web Services
	Error Handling
	Page Methods
	Maintaining Session State
	Exchanging Complex Data with the Server
	Consuming Web Services with JavaScript
	Web Services and Internet Explorer
	Web Services and Mozilla Browsers
	Web Services with Both Browsers

	Summary
	For Further Reading

	UpdatePanel: Refreshing Only Parts�of�a�Page
	Making a Page Region Updatable
	Updating a Section
	Updating a Section at Timed Intervals
	Programmatically Updating a Section at Timed Intervals
	Displaying a Wait Screen
	Managing the Asynchronous Requests

	Summary
	For Further Reading

	Using the ASP.NET AJAX Profile Service
	Preparing the Web Site
	Accessing Profile Data
	Accessing Profile Group Data
	Summary
	For Further Reading

	Using the ASP.NET AJAX Authentication�Service
	Preparing the Application
	Login and Logout
	Summary
	For Further Reading

	Localizing and Globalizing Applications
	Localization
	Localizing Scripts
	Using Satellite Resources from ASP.NET AJAX

	Globalization and Internationalization
	Summary
	For Further Reading

	Part III ASP.NET AJAX Control Toolkit
	Using the Control Toolkit
	Installing the Control Toolkit
	Using the Control Toolkit
	Summary
	For Further Reading

	Adding Animation to a Web Page
	Animation Framework
	Animation Basics
	Animation events
	Animation types

	Complex Animations
	Programming Animations

	Drag-and-Drop
	Summary
	For Further Reading

	Autocompleting User Input, Fighting�Spam, and More
	Creating an Accordion Pane
	Maintaining the Relative Position of an Element
	Adding Autocomplete Behavior to a TextBox Control
	Attaching a Calendar to a Text Field
	Dynamically Collapsing a Single Panel
	Displaying a Pop Up Over a Page
	Fighting Spam in Blogs and in Other Entry Forms
	Creating a Tabbed Interface
	Summary
	For Further Reading

	Writing Custom Controls and Contributing to the Community
	Writing Custom ASP.NET AJAX Controls
	Contributing to the Control Toolkit
	Summary
	For Further Reading

	Part IV ASP.NET AJAX Futures
	Client Controls
	Introducing ASP.NET AJAX Client Controls
	Using ASP.NET AJAX Controls
	Accessing JavaScript Methods
	Accessing HTML Elements
	Labels
	Images
	Hyperlinks
	Buttons
	Checkboxes
	Selection Lists
	Text Fields
	Base Methods

	Handling Control Events
	Events for Buttons
	Events for Lists

	Summary
	For Further Reading

	Binding and Validating Data
	Data Binding
	Using Code for Data Bindings
	Programmatic data binding using a built-in transformer
	Binding direction
	Creating a custom transformer

	Using Markup for Data Binding: xml-script
	Data bindings
	Event handling
	Method invocation

	Data Validation
	Checking a Required Field
	Checking Against a Regular Expression
	Checking the Data Type
	Checking a Range
	Custom Validation
	Programmatic Validation
	Validation Groups
	Preventing Form Submission

	Summary
	For Further Reading

	Using Behaviors and Components
	Using Behaviors
	Using the Click Behavior
	Using the Drag-and-Drop Behavior
	Using the Drag-and-Drop Extender
	Personalized Drag-and-Drop

	Using Components
	Using the Timer Component

	Summary
	For Further Reading

	Using Server Data
	Using a ListView Control
	Binding a ListView Control to Data
	Binding Data to an HTML Table

	Creating a Custom Data Source
	Displaying Data from a Custom Data Source

	Summary
	For Further Reading

	Using Remote Web Services
	Using the Google Web Service
	Using the Amazon Web Service
	Transforming a Web Service Result with XSLT
	Using the Yahoo! Web Service (and REST and XPath)
	Summary
	For Further Reading

	Using Animations
	Using Animations
	Using an Animation to Create a Fade Effect
	Using an Animation to Move an Element
	Using a Length Animation to Move an Element
	Compositing (Grouping) Animations

	Summary
	For Further Reading

	Fixing Bookmarks and Back/Forward Buttons
	Fixing with Code
	Fixing Bookmarks and Back/Forward Buttons with Controls Using UpdateHistory
	Fixing Bookmarks and Back/Forward Buttons with Controls Using the ASP.NET AJAX Futures
	Summary
	For Further Reading

	Web Parts
	Using ASP.NET AJAX with ASP.NET Web Parts
	Summary
	For Further Reading

	Part V Microsoft AJAX Library
	Using ASP.NET AJAX with Other�Server�Technologies
	Using ASP.NET AJAX with PHP
	Summary
	For Further Reading

	Part VI Appendixes
	Debugging ASP.NET AJAX Applications
	Debugging Tools
	Firebug for Firefox
	Web Development Helper (for Internet Explorer)

	Debugging in Visual Studio
	Debugging Features in ASP.NET AJAX
	Summary
	For Further Reading

	XMLHttpRequest Reference
	Methods
	Properties

	DOM Reference
	Generic Methods and Properties
	Methods
	Properties

	Document Methods and Properties
	Methods
	Properties

	ASP.NET AJAX Reference
	Helper Functions
	Object Extensions
	Array Extensions
	Boolean Extensions
	Date Extensions
	Number Extensions
	Object Extensions
	String Extensions

	ScriptManager, UpdatePanel, UpdateProgress, and Timer Declarative Reference
	ScriptManager
	Properties
	AuthenticationService
	ProfileService
	Scripts

	UpdatePanel
	Properties
	Triggers

	UpdateProgress
	Properties

	Timer
	Properties

	Index

