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Introducing C# 

The C# programming language (pronounced ‘see sharp’) can be used for many kinds of 

applications, including web sites, desktop applications, games, phone apps, and command 

line utilities. C# has been center stage for Windows developers for about a decade now, 

so when Microsoft announced that Windows 8 would introduce a new1 style of 

application, optimized for touch-based interaction on tablets, it was no surprise that C# 

was one of the four languages to offer full support from the start for these Metro style 

applications, as they’re called, (the others being C++, JavaScript, and Visual Basic). 

Although Microsoft invented C#, the language and its runtime are documented by the 

standards body ECMA, enabling anyone to implement C#. This is not merely 

hypothetical. The open source Mono project at http://www.mono-project.com/ provides 

tools for building C# applications that run on Linux, iOS and Android. 

Why C#? 

Although there are many ways you can use C#, other languages are always an option. 

Why might you choose C# over these? It will depend on what you need to do, and what 

you like and dislike in a programming language. Speaking for myself, I find that C# 

provides considerable power and flexibility, and works at a high enough level of 

abstraction that I don’t expend vast amounts of effort on little details not directly related 

to the problems my programs are trying to solve. (I’m looking at you, C++.) 

Much of C#’s power comes from the range of programming techniques it supports. For 

example, it offers object-oriented features, generics, and functional programming. It 

supports both dynamic and static typing. It provides powerful list- and set-oriented 

features thanks to LINQ. The most recent version of the language adds intrinsic support 

for asynchronous programming. 

                                                           

1 New to Windows, at any rate. 
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Some of the most important benefits of using C# come from its runtime, which provides 

services such as security sandboxing, runtime type checking, exception handling, thread 

management, and perhaps its most important feature, automated memory management. 

The runtime provides a garbage collector that frees developers from much of the work 

associated with recovering memory that the program is no longer using. 

Of course, languages do not exist in a vacuum—high quality libraries with a broad range 

of features are essential. There are some elegant and academically beautiful languages 

that are glorious right up until you want to do something prosaic such as talking to a 

database, or determining where to store user settings. No matter how strong a set of 

programming idioms a language offers, it also needs to provide full and convenient 

access to the underlying platform’s services. C# is on very strong ground here, thanks to 

the .NET Framework. 

The .NET Framework encompasses both the runtime and the libraries that C# programs 

use on Windows. The runtime part is called the Common Language Runtime (usually 

abbreviated to CLR) because it supports not just C#, but any .NET language. Numerous 

languages can run in .NET. Microsoft’s development environment, Visual Studio, 

provides Visual Basic and F#, for example, and there are open source .NET-based 

implementations of Python and Ruby (called IronPython and IronRuby). The CLR has a 

Common Type System (CTS) enabling code from multiple languages to interoperate 

freely, which means that .NET libraries can usually be used from any .NET language—

F# can consume libraries written in .NET, C# can use Visual Basic libraries, and so on. 

The .NET Framework includes an extensive class library. This library provides wrappers 

for many features of the underlying operating system, but it also provides a considerable 

amount of functionality of its own. It contains over 10,000 classes, each with numerous 

members. 

Some parts of the .NET Framework class library are specific to 

Windows. There are library features dedicated to building Windows 

desktop applications, for example. However, other parts are more 

generic, such as the HTTP client classes, which would be relevant on 

any operating system. The ECMA specification for the runtime used by 

C# defines a set of library features which are not dependent on any 

particular operating system. The .NET Framework class library 

supports all these features of course, as well as offering Microsoft-

specific ones. 

The libraries built into the framework are not the whole story—many other frameworks 

provide their own .NET class libraries. SharePoint has an extensive .NET API, for 

example. And of course, libraries do not have to be associated with frameworks. There’s 

a large ecosystem of .NET libraries, some commercial and some free and open source. 

There are mathematical utilities, parsing libraries, and user interface components to name 

just a few. 

Even if you get unlucky and need to use an OS feature that doesn’t have any .NET library 

wrappers, C# offers various mechanisms for working with older style APIs such as 

Win32 and COM. Some aspects of the interoperability mechanisms are a little clunky, 

and if you need to deal with an existing component, you might need to write a thin 

wrapper that presents a more .NET-friendly face. (You can still write the wrapper in C#. 

You’d just be putting the awkward interop details in one place, rather than letting them 

pollute your whole codebase.) However, if you design a new COM component carefully, 

you can make it straightforward to use directly from C#. Windows 8 introduces a new 
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style of API for writing Metro style tablet applications, an evolution of COM called 

WinRT, and unlike interop with older native Windows APIs, using WinRT from C# feels 

very natural. 

In summary, with C# we get a strong set of abstractions built into the language, a 

powerful runtime, and easy access to an enormous amount of library and platform 

functionality. 

Why Not C#? 

To understand a language, it’s useful to compare it with some alternatives, so it’s worth 

looking at some of the reasons you might choose some other language. Its nearest 

competitor is arguably Visual Basic, another native .NET language which offers most of 

the same benefits as C#. The choice here is mostly a matter of syntax. C# is part of the C 

family of languages, and if you are familiar with at least one language from that group 

(which includes C, C++, Objective C, Java, and JavaScript) you will feel instantly at 

home with C#’s syntax. However, if you do not know any of those languages, but you are 

at home with pre-.NET versions of Visual Basic, or with the scripting variants such as 

Microsoft Office’s Visual Basic for Applications (VBA), then the .NET version of Visual 

Basic would certainly be easier to learn. 

Visual Studio offers another language designed specifically for the .NET Framework, 

called F#. This is a very different language from C# and Visual Basic, and it seems to be 

aimed mostly at calculation-intensive applications such as engineering, and the more 

technical areas of finance. It is primarily a functional programming language, with its 

roots firmly in academia. (Its closest non-.NET relative is a programming language called 

OCaml, which is popular in universities, but has never been a commercial hit.) It is good 

for expressing particularly complex computations, so if you’re working on applications 

that spend much more of their time thinking than doing, F# may be for you. 

Then there’s C++, which has always been a mainstay of Windows development. The C++ 

language is always evolving, and in the recently published C++11 standard (ISO/IEC 

standard 14882:2011, to use its formal name), the language gained several features that 

make it significantly more expressive than earlier versions. It’s now much easier to use 

functional programming idioms, for example. In many cases, C++ code can provide 

significantly better performance than .NET languages, partly because C++ lets you get 

closer to the underlying machinery of the computer, and partly because the CLR has 

much higher overheads than the rather frugal C++ runtime. Also, many Win32 APIs are 

less hassle to use in C++ than C#, and the same is true of some (although not all) COM-

based APIs. For example, C++ is the language of choice for using the most recent 

versions of Microsoft’s advanced graphics API, DirectX. Microsoft’s C++ compiler even 

includes extensions that allow C++ code to integrate with the world of .NET, meaning 

that C++ can use the entire .NET Framework class library (and any other .NET libraries). 

So on paper, C++ is a very strong contender. But one of its greatest strengths is also a 

weakness: the level of abstraction in C++ is much closer to the underlying operation of 

the computer than in C#. This is part of why C++ can offer better performance, and is 

able to consume certain APIs more easily, but it also tends to mean that C++ requires 

considerably more work to get anything done. Even so, the tradeoff can leave C++ 

looking preferable to C# in some scenarios. 

Because the CLR supports multiple languages, you don’t have to pick 

just one for your whole project. It’s common for primarily C#-based 
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projects to use C++ to deal with a non-C#-friendly API, using the .NET 

extensions for C++ (officially called C++/CLI) to present a C#-friendly 

wrapper. The freedom to pick the best tool for the job is useful, but 

there is a price. The mental ‘context switch’ developers have to 

perform when moving between languages takes its toll, and could 

outweigh the benefits. Mixing languages works best when each 

language has a very clearly defined role in the project, such as dealing 

with gnarly APIs. 

Of course Windows is not the only platform, and the environment in which your code 

runs is likely to influence your language choice. Sometimes you will have to target a 

particular system, e.g., Windows on the desktop, or perhaps iOS on handheld devices, 

because that’s what most of your users happen to be using. But if you’re writing a web 

application, you can choose more or less any server-side language and OS, and still write 

an application that works just fine for users running any operating system on their 

desktop, phone or tablet. So even if Windows is ubiquitous on desktops in your 

organization, you don’t necessarily have to use Microsoft’s platform on the server. 

Frankly, there are numerous languages that make it possible to build excellent web 

applications, so the choice will not come down to language features. It is more likely to 

be driven by the expertise you have in house. If you have a development shop full of 

Ruby experts, choosing C# for your next web application might not be the most effective 

use of the available talent. 

So not every project will use C#. But since you’ve read this far, presumably you’re still 

considering using C#. So what is C# like? 

C#’s Defining Features 

Although C#’s most superficially obvious feature is its C-family syntax, perhaps its most 

distinctive feature is that it was the first language designed to be a native in the world of 

the CLR. As the name suggests, the Common Language Runtime is designed to be 

flexible enough to support many languages, but there’s an important difference between a 

language that has been extended to support the CLR and one that puts it at the center of 

its design. The .NET extensions in Microsoft’s C++ compiler make this very clear—the 

syntax for using those features is visibly different from standard C++, making a clear 

distinction between the native world of C++ and the outside world of the CLR. But even 

without different syntax2, there will still be friction when two worlds have different ways 

of working. For example, if you need a collection of numbers, should you use a standard 

C++ collection class such as vector<int> or one from the .NET Framework such as 

List<int>? Whichever you choose, it will be the wrong one some of the time: C++ 

libraries won’t know what to do with a .NET collection, while .NET APIs won’t be able 

to use the C++ type. 

                                                           

2 Microsoft’s first set of .NET extensions for C++ attempted to resemble ordinary C++ more 

closely. In the end, it turned out to be less confusing to use a distinct syntax for something that is 

quite different from ordinary C++, so they deprecated the first system (Managed C++) in favour of 

the newer, more distinctive syntax, which is called C++/CLI. 
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C# embraces the .NET Framework, both the runtime and the libraries, so these dilemmas 

do not arise. In the scenario just discussed, List<int> has no rival. There is no friction 

when using .NET Libraries because they are built for the same world as C#. 

That much is also true of Visual Basic, but that language retains links to a pre-.NET 

world. The .NET version of Visual Basic is in many respects a quite different language 

than its predecessors, but Microsoft went to some lengths to retain many aspects of older 

versions. The upshot is that it has several language features that have nothing to do with 

how the CLR works, and are a veneer that the Visual Basic compiler provides on top of 

the runtime. There’s nothing wrong with that, of course. That’s what compilers usually 

do, and in fact C# has steadily added its own abstractions. But the first version of C# 

presented a model that was very closely related to the CLR’s own model, and the 

abstractions it has added since have been designed to fit well with the CLR. This gives 

C# a distinctive feel from other languages. 

This means that if you want to understand C#, you need to understand the CLR, and the 

way in which it runs code. (By the way, I will mainly talk about Microsoft’s 

implementations in this book, but there are specifications that define language and 

runtime behavior for all C# implementations. See the sidebar, "C#, the CLR, and 

Standards".) 

C#, the CLR, and Standards 
The CLR is Microsoft’s implementation of the runtime for .NET languages such 

as C# and Visual Basic. Other implementations such as Mono do not use the 

CLR, but they have something equivalent. The standards body ECMA has 

published OS-independent specifications for the various elements required by a 

C# implementation, and these define more generic names for the various parts. 

There are two documents: ECMA-334 is the C# Language Specification and 

ECMA-335 defines the Common Language Infrastructure (CLI), the world in 

which C# programs run. These have also since been published by the 

International Standards Organization as ISO/IEC 23270:2006 and ISO/IEC 

23271:2006. However, as those numbers suggest, these standards are now rather 

old. They correspond to version 2.0 of .NET and C#. Microsoft has published its 

own C# specification with each new release, and at the time of writing this, 

ECMA is working on an updated CLI specification, so be aware that the ratified 

standards are now some way behind the state of the art. Newer features are still 

publicly documented, but only in draft form for the CLI. 

Version drift notwithstanding, it’s not quite accurate to say that the CLR is 

Microsoft’s implementation of the CLI because the scope of the CLI is slightly 

broader. ECMA-335 defines not just the runtime behavior (which it calls the 

Virtual Execution System, or VES), but also the file format for executable and 

library files, the Common Type System (CTS), and a subset of that type system 

that languages are expected to be able to support to guarantee interoperability 

between languages, called the Common Language Specification (CLS). 
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So you could say that Microsoft’s CLI is the entire .NET Framework rather than 

just the CLR, although .NET includes a lot of additional features not in the CLI 

specification. (For example, the class library that the CLI demands comprises 

only a small subset of .NET’s much larger library.) The CLR is effectively 

.NET’s VES, but you hardly ever see the term VES used outside of the 

specification, which is why I mostly talk about the CLR in this book. However, 

the terms CTS and CLS are more widely used, and I’ll refer to them again in this 

book. 

In fact, Microsoft has released more than one implementation of the CLI. The 

.NET Framework is the commercial quality product, and implements more than 

just the features of the CLI. They also released a codebase called the Shared 

Source CLI (SSCLI, also known by its codename, Rotor), which, as the name 

suggests, is the source code for an implementation of the CLI. This aligns with 

the latest official standards, so it has not been updated since 2006. 

Managed Code and the CLR 

For years, the most common way for a compiler to work was to process source code, and 

to produce output in a form that could be executed directly by the computer’s CPU. 

Compilers would produce machine code—a series of instructions in whatever binary 

format was required by the kind of CPU the computer had. Many compilers still work 

this way, but the C# compiler does not. Instead, it uses a model called managed code. 

With managed code, the runtime generates the machine code that the CPU executes, not 

the compiler. This enables the runtime to provide services that are hard or even 

impossible to provide under the more traditional model. The compiler produces an 

intermediate form of binary code, the Intermediate Language (IL), and the runtime 

provides the executable binary at runtime. 

Perhaps the most visible benefit of the managed model is that the compiler’s output is not 

tied to a single CPU architecture. You can write a .NET component that can run on the 

32-bit x86 architecture that PCs have used for decades, but which will also work well in 

the newer 64-bit update to that design (x64), and also on completely different 

architectures such as ARM and Itanium. With a language that compiles directly to 

machine code, you’d need to build different binaries for each of these. Not only can you 

compile a single .NET component that can run on any of them, it would even be able to 

run on platforms that weren’t supported at the time you compiled the code, if a suitable 

runtime becomes available in the future. More generally, any kind of improvement to the 

CLR’s code generation—whether that’s support for new CPU architectures, or just 

performance improvements for existing ones—are instantly of benefit to all .NET 

languages. 

The exact moment at which the CLR generates executable machine code can vary. 

Typically it uses an approach called just in time (JIT) compilation, in which each 

individual function is compiled at runtime, the first time it runs. However, it doesn’t have 

to work this way. In principle, the CLR could use spare CPU cycles to compile functions 

it thinks you may use in the future (based on what your program did in the past). Or you 

can get more aggressive: a program’s installer can request machine code generation 

ahead of time so that the program is compiled before it first runs. Conversely, the CLR 

can sometimes regenerate code some time after the initial JIT compilation. Diagnostics 

tools can trigger this, but the CLR could also choose to recompile code to better optimize 

it for the way the code is being used. Recompilation for optimization is not a documented 
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feature, but the virtualized nature of managed execution is designed to make such things 

possible in a way that’s invisible to your code. Occasionally, it can make its presence felt. 

For example, virtualized execution leaves some latitude for when and how the runtime 

performs certain initialization work, and you can sometimes see the results of its 

optimizations causing things to happen in a surprising order. 

Processor-independent JIT compilation is not the main benefit offered by managed code. 

The greatest payoff is the set of services the runtime provides. One of the most important 

of these is memory management. The runtime provides a garbage collector, a service that 

automatically frees memory that is no longer in use. This means that in most cases, you 

do not need to write code that explicitly returns memory to the operating system once you 

have finished using it. Depending on which languages you have used before, either this 

will be wholly unremarkable, or it will make a profound difference to how you write 

code. 

Although the garbage collector does take care of most memory 

handling issues, you can defeat its heuristics, and that sometimes 

happens by accident. We will look at the GC’s operation in more detail 

in Chapter 7. 

Managed code has ubiquitous type information. The file formats dictated by the CLI 

require this to be present, because it enables certain runtime features. For example, the 

.NET Framework provides various automatic serialization services, in which objects can 

be converted into binary or textual representations of their state, and those representations 

can later be turned back into objects, perhaps on a different machine. This sort of service 

relies on a complete and accurate description of an object’s structure, something that’s 

guaranteed to be present in managed code. Type information can be used in other ways. 

For example, unit test frameworks can use it to inspect code in a test project and discover 

all of the unit tests you have written. This relies on the CLR’s reflection services, which 

are the topic of Chapter 13. 

The availability of type information enables an important security feature. The runtime 

can check code for type safety, and in certain situations, it will reject code that performs 

unsafe operations. (One example of unsafe code is the use C-style pointers. Pointer 

arithmetic can subvert the type system, which in turn can allow you to bypass security 

mechanisms. C# supports pointers, but the resultant unsafe code that fail the type safety 

checks.) You can configure .NET to allow only certain code known to be trustworthy to 

use unsafe features. This makes it possible to support the download and local execution 

of .NET code from potentially untrustworthy sources (e.g., some random web site) 

without risk of compromising the user’s machine. The Silverlight web browser plugin 

uses this model by default, because it provides a way to deploy .NET code to a web site 

that client machines can download and run, and needs to ensure that it does not open up a 

security hole. It relies on the type information in the code to verify that all the type safety 

rules are met. 

Although C#’s close connection with the runtime is one of its main defining features, it’s 

not the only one. Visual Basic has a similar connection with the CLR, but C# is 

distinguished from Visual Basic by more than just syntax: it has a somewhat different 

philosophy. 
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Generality Trumps Specialization 

C# favors general-purpose language features over specialized ones. Over the years, 

Microsoft has expanded C# several times, and the language’s designers always have 

specific scenarios in mind for new features. However, they try have always tried hard to 

ensure that each new element they add is useful beyond just the scenario for which it was 

designed. 

For example, one of the goals for C# 3.0 was that database access should feel well 

integrated with the language. The resulting technology, Language Integrated Query 

(LINQ), certainly supports that goal, but Microsoft achieved this without adding any 

direct support for data access to the language. Instead, a series of quite diverse-seeming 

capabilities were added. These included better support for functional programming 

idioms, the ability to add new methods to existing types without resorting to inheritance, 

support for anonymous types, the ability to obtain an object model representing the 

structure of an expression, and the introduction of query syntax. The last of these has an 

obvious connection to data access, but the rest are harder to relate to the task at hand. 

Nonetheless, these can be used collectively in a way that makes certain data access tasks 

significantly simpler. But the features are all useful in their own right, so as well as 

supporting data access they enable a much wider range of scenarios. For example, 

version 3.0 of C# made it very much easier to process lists, sets, and other groups of 

objects, because the new features work for collections of things from any origin, not just 

databases. 

Perhaps the clearest illustration of this philosophy of generality was a language feature 

that C# chose not to implement, but which Visual Basic did. In VB, you can write XML 

directly in your source code, embedding expressions to calculate values for certain bits of 

content at runtime. This compiles into code that generates the completed XML at 

runtime. VB also has intrinsic support for queries that extract data from XML documents. 

These same concepts were considered for C#. Microsoft Research developed extensions 

for C# supporting embedded XML which were demonstrated publicly some time before 

the first release of Visual Basic to support this. Nevertheless, this feature didn’t 

ultimately make it into C#. It is a relatively narrow facility, only useful when creating 

XML documents. As for querying XML documents, C# supports this through its general-

purpose LINQ features, and does not add any XML-specific support. XML’s star has 

waned since this language concept was mooted, having been usurped in many cases by 

JSON (which will doubtless be eclipsed by something else in years to come). Had 

embedded XML made it into C#, it would by now feel like a slightly anachronistic 

curiosity. 

Having said that, C# 5.0 has a new feature that looks relatively specialized. In fact, it has 

only one purpose. However, it’s an important purpose. 

Asynchronous Programming 

The most significant new feature in C# 5.0 is support for asynchronous programming. 

.NET has always offered asynchronous APIs, i.e., ones that do not wait for the operation 

they perform to finish before returning. Asynchrony is particularly important with I/O 

operations, which can take a long time and often don’t require any active involvement 

from the CPU except at the start and end of an operation. Simple, synchronous APIs that 

do not return until the operation completes can be inefficient. They tie up a thread while 
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waiting, which can cause suboptimal performance in servers, and they’re also unhelpful 

in client-side code where they can make a user interface unresponsive. 

The problem with the more efficient and flexible asynchronous APIs has always been 

that they are considerably harder to use than their synchronous counterparts. But now, if 

an asynchronous API conforms to a certain pattern, you can write C# code that looks 

almost as simple as the synchronous alternative would. 

Although asynchronous support is a rather specialized aspect of C#, it’s still fairly 

adaptable. It can use the Task Parallel Library (TPL) introduced in .NET 4.0, but the 

same language feature can also work with the new asynchronous mechanisms that 

Windows 8 uses in WinRT (the API for writing Metro applications). And if you want to 

write your own custom asynchronous mechanisms, you can arrange for these to be 

consumable by the native asynchronous features of the C# language. 

I’ve now described some of the defining features of C#, but Microsoft provides more 

than just a language and runtime. There’s also a development environment that can help 

you write, test, debug, and maintain your code. 

Visual Studio 

Visual Studio is Microsoft’s development environment. There are various editions 

ranging from free to eye-wateringly expensive. All versions provide the basic features 

such as a text editor, build tools, and a debugger, as well as providing visual editing tools 

for user interfaces. It’s not strictly necessary to use Visual Studio—the .NET build 

system that it uses is available from the command line, so you could use any text editor. 

But it is the development environment that most C# developers use, so I’ll start with a 

quick introduction to working in Visual Studio. 

You can download the free version of Visual Studio (which Microsoft 

calls the Express edition) from http://www.microsoft.com/express 

Any non-trivial C# project will have multiple source code files, and in Visual Studio 

these will belong to a project. Each project builds a single output, or target. The build 

target might be as simple as a single file—a C# project might produce an executable file 

or a library3 for example—but some projects produce more complicated outputs. For 

instance, some project types build web sites. A web site will normally comprise multiple 

files, but collectively, these files represent a single entity: one web site. Each project’s 

output will typically be deployed as a unit, even if it consists of multiple files. 

Project files usually have extensions ending in proj. For example, C# projects have a 

.csproj extension, while C++ projects use .vcxproj. If you examine these files with a text 

editor, you’ll find that they usually contain XML. (That’s not always true. Visual Studio 

is extensible, and each type of project is defined by a project system that can use 

whatever format it likes, but the built-in languages use XML.) These files list the contents 

of the project, and configure how it should be built. The XML format that Visual Studio 

                                                           

3 Executables typically have a .exe file extension in Windows, while libraries use .dll (historically 

short for Dynamic Link Library). These are almost identical, the only difference being that a .exe 

file specifies an application entry point. Both kinds of file can export features to be consumed by 

other components. These are both examples of assemblies, the subject of Chapter 12. 
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uses for C# project files can also be processed by the msbuild tool, which enables you to 

build projects from the command line. 

You will often want to work with groups of projects. For example, it is good practice to 

write tests for your code, but most test code does not need to be deployed as part of the 

application, so we typically put automated tests into separate projects. And we may want 

to split our code up for other reasons. Perhaps the system you’re building has a desktop 

application and a web site, and you have common code you’d like to use in both 

applications. In this case, you’d need one project that builds a library containing the 

common code, another producing the desktop application executable, another to build the 

web site, and three more projects containing the unit tests for each of the main projects. 

Visual Studio helps you to work with multiple related projects through what it calls a 

solution. A solution is simply a collection of projects, and while they are usually related, 

they don’t have to be—a solution is really just a container. You can see the currently 

loaded solution and all the projects it contains in Visual Studio’s Solution Explorer. 

Figure 1-1 shows a solution with two projects. The body of this panel is a tree view, and 

you can expand each project to see the files that make up that project. This panel is 

normally open at the top right of Visual Studio, but it’s possible to hide or close it. You 

can re-open it with the View→Solution Explorer menu item. 

 

Figure 1-1. Solution Explorer 

Visual Studio can only load projects as part of a solution, so when you create a brand new 

project, you can add it to an existing solution, but if you don’t, Visual Studio will create 

one for you; if you try to open an existing project file, Visual Studio will look for an 

associated solution, and if it can’t find one it will insist that you either provide one, or let 

it create one. That’s because lots of operations in Visual Studio are scoped to the 

currently-loaded solution. When you build your code, it’s normally the solution that you 

build. Configuration settings, such as a choice between Debug and Release builds, are 

controlled at the solution level. Global text searches can search all the files in the 

solution. 

A solution is just another text file, with a .sln extension. Oddly, it’s not an XML file—

solution files contain plain text, although also in a format that msbuild understands. If you 

look at the folder containing your solution, you’ll also notice a .suo file. This is a binary 

file that contains per-user settings such as a record of which files you have open, and 

which project or projects to launch when starting debug sessions. That ensures that when 
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you open a project, everything is more or less where you left it when you last used it. 

These are per-user settings, so you do not normally check .suo files into source control. 

A project can belong to more than one solution. In a large codebase, it’s common to have 

multiple .sln files with different combinations of projects. You would typically have a 

master solution that contains every single project, but not all developers will want to 

work with all the code all of the time. Someone working on the desktop application in our 

hypothetical example will also want the shared library, but probably has no interest in 

loading the web project. Larger solutions take longer to load and compile, but they may 

also require the developer to do extra work—web projects require the developer to have a 

local web server available, for example. Visual Studio supplies a simple one, but if the 

project makes use of features specific to a particular server (such as Microsoft’s IIS) then 

you’d need to have that server installed and configured to be able to load the web project. 

For a developer who was only planning to work on the desktop app, that would be an 

annoying waste of time. So it would make sense to create a separate solution with just the 

projects needed for working on the desktop application. 

With that in mind, I’ll show how to create a new project and solution, and I’ll then walk 

through the various features Visual Studio adds to a new C# project as an introduction to 

the language. I’ll also show how to add a unit test project to the solution. 

This next section is intended for developers who are new to Visual 

Studio—this book is aimed at experienced developers, but does not 

assuming any prior experience in C#. The majority of the book is 

suitable if you have some C# experience and are looking to learn more, 

but if that’s you, you might want to skim through this next section 

quickly, because you will already be familiar with the development 

environment by now. 

Anatomy of a Simple Program 

To create a new project, you can use Visual Studio’s File→New→Project menu item, or 

if you prefer keyboard shortcuts, type Ctrl-Shift-N. This opens the New Project dialog, 

shown in Figure 1-2. On the left-hand side is a tree view categorizing projects by 

language, and then project type. I’ve selected C# of course, and I’ve chosen the Windows 

category, which includes not just projects for desktop applications, but also for libraries 

(DLLs) and console applications. I’ve selected the latter. 
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Figure 1-2. The New Project dialog 

Different editions of Visual Studio offer different sets of templates. 

Also, even within a single edition, the structure of the treeview on the 

left of the New Project dialog will vary according to the choice you 

make when you first run Visual Studio. It offers various different 

configurations according to your language preference. I chose C#, but 

if you selected something else, C# may be buried one level further 

down under “Other Languages”. 

[I will provide a non-ClearType version of this, and all the other VS images in this 

chapter for the final draft] 

Towards the bottom of the dialog, the Name field affects three things. It controls the 

name of the .csproj file on disk. It also determines the filename of the compiled output, 

although you can change that later. Finally, it sets the default namespace for newly-

created code, which I’ll explain when I show the code. Visual Studio offers a checkbox 

letting you decide how the associated solution is created. If you set it to unchecked, the 

project and solution will have the same name and will live in the same folder on disk. But 

if you plan to add multiple projects to your new solution, you will typically want the 

solution to be in its own folder, with each project stored in a subfolder. If you check the 

Create directory for solution checkbox, Visual Studio will set things up that way, and it 

also enables the Solution name textbox so you can give the solution a different name 

from the first project if necessary. 

I’m intending to add a unit test project to the solution as well as the program, so I’ve 

checked the checkbox. I’ve set the project name to HelloWorld, and Visual Studio has set 

the solution name to match, which I’m happy with here. Clicking OK creates a new C# 

project. So I currently have a solution with a single project in it. 
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Adding a Project to an Existing Solution 

To add a unit test project to the solution, I can go to the Solution Explorer panel, right-

click on the solution node (the one at the very top) and choose Add→New Project. 

Alternatively, I can open the New Project dialog again, and this time, because I’ve 

already got a solution open, it will offer me an extra choice: I can either add the new 

project to the current solution, or create a new one. 

Apart from that detail, this is the same New Project dialog I used for the first project, and 

this time, I’ll select Visual C#→Test from the categories on the left, and then pick the 

Unit Test Project project template. This will contain tests for my HelloWorld project, so 

I’ll call it HelloWorld.Tests. (Nothing demands that naming convention by the way—I 

could have called it anything.) Clicking OK, Visual Studio creates a second project, and 

both are now listed in Solution Explorer, which will look similar to Figure 1-1. 

The purpose of this test project will be to ensure that the main project does what it’s 

supposed to. I happen to prefer the style of development where you write your tests 

before you write the code being tested, so we’ll start with the test project. (This is 

sometimes called Test Driven Development, or TDD.) To be able to do its job, my test 

project will need access to the code in the HelloWorld project. Visual Studio has no way 

of guessing which projects in a solution may depend on which other projects. Even 

though there are only two here, if it tried to guess which depends on the other, it would 

most likely guess wrong, because HelloWorld will produce an .exe file, while unit test 

projects happen to produce a .dll. The most obvious guess would be that the .exe would 

depend on the .dll, but here we have the somewhat unusual requirement that our library 

(which is actually a test project) depends on the code in our application. 

Referencing One Project from Another 

To tell Visual Studio about the relationship between these two projects, we right-click on 

the HelloWorld.Test project’s References node in Solution Explorer, and select the Add 

Reference menu item. This shows the Reference Manager dialog, which you can see in 

Figure 1-3. On the left, you choose the sort of reference you want—in this case, I’m 

setting up a reference to another project in the same solution, so I have expanded the 

Solution section and selected Projects. This lists all the other projects in the middle, and 

there’s just one in this case, so I check the HelloWorld item and click OK. 
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Figure 1-3. The Reference Manager dialog 

When you add a reference, Visual Studio expands the References node in Solution 

Explorer, so that you can see the new reference. As Figure 1-4 shows, this will not be the 

only reference—a newly created project has references to several standard system 

components. It does not reference everything in the .NET Framework class library 

though. Visual Studio will choose the initial set of references based on the project type. 

Unit test projects get a very small set. More specialized applications such as desktop user 

interfaces or web applications will get additional references for the relevant parts of the 

framework. You can always add a reference to any component in the class library using 

the Reference Manager dialog. If you were to expand the Assemblies section, visible at 

the top left of Figure 1-3, you’d see two items, Framework and Extensions. The first 

gives you access to everything in the .NET Framework class library, while the second 

provides access to other .NET components that have been installed on your machine. 

(E.g., if you have installed other .NET-based SDKs, their components will appear here.) 

 

Figure 1-4. References node showing project reference 
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Writing a Unit Test 

Now I need to write a test. Visual Studio has provided me with a test class to get me 

started in a file called UnitTest1.cs, but that’s not a very informative name. I need to call 

it something else. There are various schools of thought as to how you should structure 

your unit tests. Some developers advocate one test class for each class you wish to test, 

but I like the style where you write a class for each scenario in which you want to test a 

particular class, with one method for each of the things that should be true about your 

code in that scenario. As you’ve probably guessed from the project names I’ve chosen, 

our program will only have one behavior: it will display a “Hello, world!” message when 

it runs. So I’ll rename the UnitTest1.cs source file to WhenProgramRuns.cs. This test 

should verify that the program prints out the required message when it runs. The test 

itself is very simple, but unfortunately, getting to the point where we can run the test is a 

bit more involved. Example 1-1 shows the whole source file; the test is near the end, in 

bold. 

Example 1-1. A unit test class for our first program 

using System; 

using Microsoft.VisualStudio.TestTools.UnitTesting; 

 

namespace HelloWorld.Tests 

{ 

    [TestClass] 

    public class WhenProgramRuns 

    { 

        private string _consoleOutput; 

 

        [TestInitialize] 

        public void Initialize() 

        { 

            var w = new System.IO.StringWriter(); 

            Console.SetOut(w); 

 

            Program.Main(new string[0]); 

 

            _consoleOutput = w.GetStringBuilder().ToString().Trim(); 

        } 

 

        [TestMethod] 

        public void SaysHelloWorld() 

        { 

            Assert.AreEqual("Hello, world!", _consoleOutput); 

        } 

    } 

} 

I will explain each of the features in this file once I’ve shown the program itself. For 

now, the most interesting part of this is that it defines some behavior we want our 

program to have. The test states that the program’s output should be the message “Hello, 

world!” If it’s not, this test will report a failure. The test itself is pleasingly simple, but 

the code that sets things up for the test is a little awkward. The problem here is that the 

obligatory first example that all programming books are required by law to show isn’t 

very amenable to unit testing of individual classes, because you can’t really test anything 

less than the whole program. We want to verify that the program prints out a particular 

message to the console. In a real application, you’d probably devise some sort of 
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abstraction for output, and your unit tests would provide a fake version of that abstraction 

for test purposes. But I want my application (which Example 1-1 merely tests) to keep to 

the spirit of the standard “Hello, world!” example. To avoid overcomplicating my 

program, I’ve made my test intercept console output so that I can check that the program 

printed what it was supposed to. (Chapter 16 will describe the features I’m using from the 

System.IO namespace to achieve this.) 

There’s a second challenge. Normally, a unit test will, by definition, test some isolated 

and usually small part of the program. But in this case, the program is so simple that there 

is only one feature of interest, and that feature executes when we run the program. This 

means my test will need to invoke the program’s entry point. I could have done that by 

launching my HelloWorld program in a whole new process, but capturing its output 

would have been rather more complex than the in-process interception done by Example 

1-1. Instead, I’m just invoking the program’s entry point directly. In a C# application, the 

entry point is usually a method called Main defined in a class called Program. Example 

1-2 shows the relevant line from Example 1-1, passing an empty array to simulate 

running the program with no command line arguments. 

Example 1-2. Calling a method 

Program.Main(new string[0]); 

Unfortunately, there’s a problem with that. A program’s entry point is typically only 

accessible to the runtime—it’s an implementation detail of your program, and there’s not 

normally any reason to make it publicly accessible. However, I’ll make an exception 

here, because that’s where the only code in in this example will live. So to get the code to 

compile, we’ll need to make a change to our main program. Example 1-3 shows the 

relevant line from the code from the Program.cs file in the HelloWorld project. (I’ll show 

the whole thing shortly.) 

Example 1-3. Making the program entry point accessible 

public class Program 

{ 

    public static void Main(string[] args) 

    { 

... 

I’ve added the public keyword to the start of two lines to make the code accessible to 

the test, enabling Example 1-1 to compile. There are other ways I could have achieved 

this. I could have left the class as it is, made the method internal, and then applied the 

InternalsVisibleToAttribute to my program to grant access just to the test 

suite. But internal protection and assembly level attributes are topics for later chapters (3 

and 15 respectively) so I decided to keep it simple for this first example. I’ll show the 

alternative approach in Chapter 15. 

Microsoft’s unit testing framework defines a helper class called 

PrivateType, which provides a way to invoke private methods for 

test purposes, and I could have used that instead of making the entry 

point public. However, it’s considered bad practice to invoke private 

methods directly from tests, because a test should only have to verify 

the observable behavior of the code under test. Testing specific details 

of how the code has been structured is rarely helpful. 
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I’m now ready to run my test. To do this, I open the Unit Test Explorer panel with the 

Unit Tests→Windows→Unit Test Explorer menu item. Next, I build the project with the 

Build→Build Solution menu. Once I’ve done that, the Unit Test explorer shows a list of 

all the unit tests defined in the solution. It finds my SayHelloWorld test as you can 

see in Figure 1-5. Clicking on Run All runs the test, which, of course, fails, because 

we’ve not actually put any code in our main program yet. You can see the error at the 

bottom of Figure 1-5. It says it was expecting a “Hello, world!” message, but that there 

was no console output. 

 

Figure 1-5. Unit Test Explorer 

So it’s time to look at our HelloWorld program, and to add the missing code. When I 

created the project, Visual Studio generated various files, including Program.cs, which 

contains the program’s entry point. Example 1-4 shows this file, including the 

modifications I made in Example 1-3. I shall explain each element in turn, as it provides a 

useful introduction to some important elements of C# syntax and structure. 

Example 1-4. Program.cs 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.Threading.Tasks; 

 

namespace HelloWorld 

{ 

    public class Program 

    { 

        public static void Main(string[] args) 

        { 

        } 

    } 

} 
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The file begins with a series of using directives. These are optional, but almost all source 

files contain them, and they tell the compiler which namespaces we’d like to use, raising 

the obvious question: what’s a namespace? 

Namespaces 

Namespaces bring order and structure to what would otherwise be a horrible mess. The 

.NET Framework class library contains over 10,000 classes, and there are many more 

classes out there in 3rd party libraries, not to mention the classes you will write yourself. 

There are two problems that can occur when dealing with this many named entities. First, 

it becomes hard to guarantee uniqueness unless everything either has a very long name, 

or the names include sections of random gibberish. Second, it can become challenging to 

discover the API you need—unless you know or can guess the right name, it’s difficult to 

find what you need from an unstructured list of thousands of things. Namespaces solve 

both of these problems. 

Most .NET types are defined in a namespace. Microsoft-supplied types have distinctive 

namespaces. When the types are part of the .NET Framework, the containing namespaces 

start with System, and when they’re part of some Microsoft technology which is not a 

core part of .NET, they usually begin with Microsoft. Libraries from other vendors 

tend to start with the company name, while open source libraries often use their project 

name. You are not forced to put your own types into namespaces, but it’s recommended 

that you do. C# does not treat System as a special namespace, so nothing stops you 

using that for your own types, but it’s a bad idea because it will tend to confuse other 

developers. You should pick something more distinctive for your own code, such as your 

company or project name. 

The namespace usually gives a clue as to the purpose of the type. For example, all the 

types that relate to file handling can be found in the System.IO namespace, while those 

concerned with networking are under System.Net. Namespaces can form a hierarchy. 

So the framework’s System namespace doesn’t just contain types. It also holds other 

namespaces, such as System.Net, and these often contain yet more namespaces, such 

as System.Net.Sockets and System.Net.Mail. These examples show that 

namespaces act as a sort of description, which can help you navigate the library. If you 

were looking for regular expression handling, for example, you might look through the 

available namespaces, and notice the System.Text namespace. Looking in there, 

you’d find a System.Text.RegularExpressions namespace, at which point 

you’d be pretty confident that you were looking in the right place. 

Namespaces also provide a way to ensure uniqueness. The namespace in which a type is 

defined is part of that type’s full name. This lets libraries use short, simple names for 

things. For example, the regular expression API includes a Capture class representing 

the results from a regular expression capture. If you are working on software that deals 

with images, the term ‘capture’ is more commonly used to mean the acquisition of some 

image data, and you might feel that Capture is the most descriptive name for a class in 

your own code. It would be annoying to have to pick a different name just because the 

best one is already taken, particularly if your image acquisition code has no use for 

regular expressions, meaning that you weren’t even planning to use that Capture type.  

But in fact it’s fine. Both types can be called Capture, and they will still have different 

names. The full name of the regular expression capture class is effectively 

System.Text.RegularExpressions.Capture, and likewise your class’s full 
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name would include its containing namespace, e.g. 

SpiffingSoftworks.Imaging.Capture. 

If you really want to, you can write the fully qualified name of a type every time you use 

it, but most developers don’t want to do anything quite so tedious, which is where the 

using directives at the start of Example 1-4 come in. These state the namespaces whose 

types this source file intends to use. You will normally edit this list to match your file’s 

requirements, but Visual Studio provides a small selection of commonly used ones to get 

you started. It chooses different sets in different contexts. If you add a class representing 

a user interface control, for example, Visual Studio would include various UI-related 

namespaces in the list. 

With using declarations like these in place, you can just use the short, unqualified name 

for a class. When we finally add the line of code that enables our HelloWorld example to 

do its job, we’ll be using the System.Console class, but because of the first using 

directive, we’ll be able to refer to it as just Console. In fact, that’s the only class we’ll 

be using, so we could remove all the other using directives. 

Earlier, you saw that a project’s References describe which libraries it 

uses. You might think that References are redundant—can’t the 

compiler work out which external libraries we are using from the 

namespaces? It could if there were a direct correspondence between 

namespaces and libraries, but there isn’t. There is sometimes an 

apparent connection—System.Web.dll contains classes in the 

System.Web namespace for example. But there often isn’t—the class 

library includes System.Core.dll but there is no System.Core 

namespace. So it is necessary to tell Visual Studio which libraries your 

project depends on, as well as saying which namespaces any particular 

source file uses. We will look at the nature and structure of library files 

in more detail in Chapter 12. 

Even with namespaces, there’s potential for ambiguity. You might use two namespaces 

that both happen to define a class of the same name. If you want to use that class, then 

you will need to be explicit, referring to it by its full name. If you need to use such 

classes a lot in the file, you can still save yourself some typing: you only need to use the 

full name once because you can define an alias. Example 1-5 uses this to resolve a clash 

that I’ve run into a few times: .NET’s user interface framework, the Windows 

Presentation Foundation (WPF) defines a Path class for working with Bézier curves, 

polygons and other shapes, but there’s also a Path class for working with filesystem 

paths, and if you want to write code that produces a graphical representation of the 

contents of a file, you will need both namespaces, meaning that the simple name Path is 

ambiguous if unqualified. But as Example 1-5 shows, you can define distinctive aliases 

for each. 

Example 1-5. Resolving ambiguity with aliases 

using System.IO; 

using System.Windows.Shapes; 

 

using IoPath = System.IO.Path; 

using WpfPath = System.Windows.Shapes.Path; 

With these aliases in place, you can use IoPath as a synonym for the file-related Path 

class, and WpfPath for the graphical one. 
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Going back to our HelloWorld example, directly after the using directives comes a 

namespace declaration. Whereas using directives declare which namespaces our code 

will consume, a namespace declaration declares the namespace in which our own code 

lives. Example 1-6 shows the relevant code from Example 1-4. This is followed by an 

opening brace ({). Everything between this and the closing brace at the end of the file 

will be in the HelloWorld namespace. By the way, you can refer to types in your own 

namespace without qualification, without needing a using directive. 

Example 1-6. Namespace declaration 

namespace HelloWorld 

{ 

Visual Studio generates a namespace declaration with the same name as your project. 

You’re not required to keep this—a project can contain any mixture of namespaces, and 

you are free to edit the namespace declaration. But if you do want to use something other 

than the project name consistently throughout your project, you should tell Visual Studio 

because it’s not just the first file, Program.cs, that gets this generated declaration. By 

default, Visual Studio adds a namespace declaration based on your project name every 

time you add a new file. You can tell it to use a different namespace for new files by 

editing the project’s properties. If you double click on the Properties node inside a 

project in Solution Explorer, this opens the properties for the project, and if you go to the 

Application tab there’s a Default namespace textbox. It will use whatever you put in there 

for namespace declarations of any new files. (It won’t change the existing files though.) 

Nested namespaces 

The .NET Framework class library nests namespaces, and sometimes quite extensively. 

The System namespace contains numerous important types, but most types are in more 

specific namespaces such as System.Net, or System.Net.Sockets. If the 

complexity of your project demands it, you can also nest your own namespaces. There 

are two ways you can do this. You can nest namespace declarations, as Example 1-7 

shows. 

Example 1-7. Nesting namespace declarations 

namespace MyApp 

{ 

    namespace Storage 

    { 

        ... 

    } 

} 

Alternatively, you can just specify the full namespace in a single declaration, as Example 

1-8 shows. This is the more commonly used style. 

Example 1-8. Nested namespace with a single declaration 

namespace MyApp.Storage 

{ 

    ... 

} 

Any code you write in a nested namespace will be able to use types not just from that 

namespace, but also its containing namespaces without qualification. Code in either 

Example 1-7 or Example 1-8 would be not need either explicit qualification or using 
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directives to use types either in the MyApp.Storage namespace, or the MyApp 

namespace. 

When you define nested namespaces, the convention is to define a folder for each 

namespace. If you create a project called MyApp, by default Visual Studio will put new 

classes in the MyApp namespace when you add them to the project, and if you create a 

new folder in the project (which you can do in Solution Explorer) called, say, Storage, 

Visual Studio will put any new classes you create in that folder into the 

MyApp.Storage namespace. Again, you’re not required to keep this—Visual Studio 

just adds a namespace declaration when creating the file, and you’re free to change it. 

The compiler does not care if the namespace does not match your folder hierarchy. But 

since the convention is supported by Visual Studio, life will be easier if you follow it. 

Classes 

Inside the namespace declaration, our Program.cs file defines a class. Example 1-9 

shows this part of the file (which includes the public keywords I added earlier). The 

class keyword is followed by the name, and of course the full name of the type is 

effectively HelloWorld.Program, because this code is inside the namespace 

declaration. As you can see, C# uses braces ({}) to delimit all sorts of things—we already 

saw this for namespaces, and here you can see the same thing with the class and also the 

method it contains. 

Example 1-9. A class with a method 

public class Program 

{ 

    public static void Main(string[] args) 

    { 

    } 

} 

Classes are C#’s mechanism for defining entities that combine state and behavior, a 

common object-oriented idiom. But as it happens, this class contains nothing more than a 

single method. C# does not support global methods—all code has to be written as a 

member of some type. So this particular class isn’t very interesting—its only job is to act 

as the container for the program’s entry point. We’ll see some more interesting uses for 

classes in Chapter 3. 

Program Entry Point 

By default, the C# compiler will look for a method called Main, and use that as the entry 

point automatically. If you really want to you can tell the compiler to use a different 

method, but most programs stick with the convention. Whether you designate the entry 

point by configuration or convention, the method has to meet certain requirements, all of 

which are evident in Example 1-9. 

The program entry point must be a static method, meaning that it is not necessary to 

create an instance of the containing type (Program in this case) in order to invoke the 

method. It is not required to return anything, as signified by the void keyword here, 

although if you want to you can return int instead, which allows the program to return 

an exit code that the operating system will report when the program terminates. And the 

method must either take no arguments at all (which would be denoted by an empty pair of 
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parentheses after the method name) or, as in Example 1-9, the method can accept a single 

argument: an array of text strings containing the command line arguments. 

Some C family languages include the filename of the program itself as 

the first argument, on the grounds that it’s part of what the user typed at 

the command prompt. C# does not follow this convention. If the 

program is launched without arguments, the array’s length will be zero. 

The method declaration is followed by the method body which is currently empty. We’ve 

now looked at everything that Visual Studio generated for us in this file, so all that 

remains is to add some code inside the braces delimiting the method body. Remember, 

our test is failing, because our program fails to meet its one requirement: to print out a 

certain message to the console. This requires the single line of code shown in Example 1-

10, placed inside the method body. 

Example 1-10. Printing a message 

Console.WriteLine("Hello, world!"); 

With this in place, if I run the tests again, the unit test explorer shows a tick by my test 

and reports that all tests have passed. So apparently the code is working. And we can 

verify that informally by running the program. You can do that from Visual Studio’s 

Debug menu. The Start Debugging option runs the program in the debugger, although 

you’ll find it runs so quickly that it finishes before you have a chance to see the output. 

So you might want to choose Start Without Debugging—this runs without attaching the 

Visual Studio debugger, but it also runs the program in such a way as to leave the console 

window that shows the program’s output visible after the program finishes. So if you run 

the program this way (which you can also do with the Ctrl-F5 keyboard shortcut) you’ll 

see it display the traditional message in a window that stays open until you press a key. 

Unit Tests 

Now that our program is working, I want to go back to the first code I wrote, the test, 

because that file illustrates some C# features that our main program does not. If you go 

back to Example 1-1, it starts in a pretty similar way to the main program: we have a 

series of using directives, and then a namespace declaration, the namespace being 

HelloWorld.Tests this time, matching the test project name. But the class looks 

different. Example 1-11 shows the relevant part of Example 1-1. 

Example 1-11. Test class with attribute 

[TestClass] 

public class WhenProgramRuns 

{ 

Immediately before the class declaration is the text [TestClass]. This is an attribute. 

Attributes are annotations you can apply to classes, methods, and other features of the 

code. Most of them do nothing on their own—the compiler records the fact that the 

attribute is present in the compiled output, but that is all. Attributes are only useful when 

something goes looking for them, so they tend to be used by frameworks. In this case, 

I’m using Microsoft’s unit testing framework, and it goes looking for classes annotated 

with this TestClass attribute. It will ignore classes that do not have this annotation. 

Attributes are typically specific to a particular framework, and you can define your own, 

as we’ll see in Chapter 15. 

 22 



O’Reilly Media, Inc.  3/13/2012 

 23 

The two methods in the class are also annotated with attributes. Example 1-9 shows the 

relevant excerpts from Example 1-1. The test runner will execute any methods marked 

with [TestInitialize] once for every test the class contains, and does so before 

running the actual test method itself. And as you have no doubt guessed, the 

[TestMethod] attribute tells the test runner which methods represent tests. 

Example 1-12. Annotated methods 

[TestInitialize] 

public void Initialize() 

... 

 

[TestMethod] 

public void SaysHelloWorld() 

... 

There’s one more feature in Example 1-1: the class contents begin with a field, shown in 

Example 1-13. Fields hold data. In this case, the Initialize method stores the 

console output that it captures while the program runs in this _consoleOutput field, 

where it is available for test methods to inspect. This particular field has been marked as 

private, indicating that it is for this particular class’s own use. The C# compiler will 

only permit code that lives in the same class to access this data. 

Example 1-13. A field 

private string _consoleOutput; 

And with that, we’ve examined every element of a program, and the test project that 

verifies that it works as intended. 

Summary 

You’ve now seen the basic structure of C# programs. I created a Visual Studio solution 

containing two projects, one for tests, and one for the program itself. This was a simple 

example, so each project only had one source file of interest. Both were of similar 

structure. Each began with using directives indicating which types the file uses. A 

namespace declaration stated the namespace that the file populates, and this contained a 

class containing one or more methods or other members such as fields. 

We will look at types and their members in much more detail in Chapter 3, but first, 

Chapter 2 will deal with the code that lives inside methods, where we express what we 

want our programs to do. 
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2 

Basic Coding in C# 

All programming languages have to provide certain capabilities. It must be possible to 

express the calculations and operations that our code should perform. Programs need to 

be able to make decisions based on their input. Sometimes we will need to perform tasks 

repeatedly. These fundamental features are the very stuff of programming, and this 

chapter will show how these things work in C#. 

Depending on your background, some of this chapter’s content may seem very familiar. 

C# is said to be from the “C family” of languages. C is a hugely influential programming 

language, and numerous languages have borrowed much of its syntax. There are direct 

descendants such as C++ and Objective C. There are also more distantly related 

languages, including Java and JavaScript, that have no compatibility with, but still ape 

many aspects of C’s syntax. If you are familiar with any of these languages, you will 

recognize most of the basic language features we are about to explore. 

We saw the basic structure of a program in Chapter 1. In this chapter, I will be looking 

just at code inside methods. C# requires a certain amount of structure: code is made up of 

statements that live inside a method, which belongs to a type, which is typically inside a 

namespace, all inside a file that is part of a Visual Studio project. For clarity, most of the 

examples in this chapter will show the code of interest in isolation, as in Example 2-1. 

Example 2-1. The code, and nothing but the code 

Console.WriteLine("Hello, world!"); 

Unless I say otherwise, a short extract like that is shorthand for showing the code in 

context inside a suitable program. So Example 2-1 is short for Example 2-2. 

Example 2-2. The whole code 

using System; 

 

namespace Hello 

{ 

    class Program 

    { 

        static void Main() 

        { 
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            Console.WriteLine("Hello, world!"); 

        } 

    } 

} 

Although I’ll be introducing fundamental elements of the language in this section, this 

book is for people who are already familiar with at least one programming language, so 

I’ll be relatively brief with the most ordinary aspects of the language, and will go into 

most detail on the aspects peculiar to C#. 

Local Variables 

The inevitable “Hello, world!” example is missing a pretty crucial feature as programs 

go: it doesn’t really deal with information. Useful programs normally fetch, process, and 

produce information, so the ability to define and identify information is one of the most 

important features of a language. Like most languages, C# lets you define local variables, 

which are named elements inside a method that each hold a piece of information. 

In the C# specification, the term variable can refer to local variables, 

but also to fields in objects, and array elements. This section is 

concerned entirely with local variables, but it gets tiring to keep reading 

the ‘local’ prefix. So from now on in this section ‘variable’ means a 

local variable. 

C# is a statically-typed language which is to say that any element of code that represents 

or produces information, such as a variable, or an expression, has its data type determined 

at compile time. This is different than dynamically-typed languages such as JavaScript, in 

which types are determined at runtime.1  

The easiest way to see C#’s static typing in action is with simple variable declarations 

such as the ones in Example 2-3. Each of these starts with the data type—the first two 

variables are of type string, and the next two are int. 

Example 2-3. Variable declarations 

string part1 = "the ultimate question"; 

string part2 = "of something"; 

int theAnswer = 42; 

int something; 

The data type is followed immediately by the variable’s name. The name must begin with 

either a letter or an underscore, which can be followed by any combination of the 

characters described in the ‘Identifier and Pattern Syntax’ annex of the Unicode 

specification. If you’re just using text in the ASCII range, that means letters, decimal 

digits, and underscores. If you’re using Unicode’s full range, this also includes various 

accents, diacritics, and numerous somewhat obscure punctuation marks. These same rules 

determine what constitutes a legal identifier for any user-defined entity in C#, such as a 

class or a method. 

                                                           

1 C# does in fact offer dynamic typing as an option with its dynamic keyword, but it takes the 

slightly unusual step of fitting that into a statically-typed point of view: dynamic variables have a 

static type of dynamic. Chapter 14 will explain all that. 
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Example 2-3 shows that there are a couple of forms of variable declaration. The first 

three variables include an initializer, providing the variable’s initial value, but as the final 

variable shows, this is optional. That’s because you can assign new values into variables 

at any point. Example 2-4 continues on from Example 2-3, and shows that you can assign 

a new value into a variable regardless of whether it had an initial value. 

Example 2-4. Assigning values to previously declared variables 

part2 = " of life, the universe, and everything"; 

something = 123; 

Because variables have a static type, the compiler will reject attempts to assign the wrong 

kind of data. So if we were to follow on from Example 2-3 with the code in Example 2-5, 

the compiler would complain. It knows that the theAnswer variable’s type is int, 

which is a numeric type, so it will report an error when we attempt to assign a text string 

into it. 

Example 2-5. An error: the wrong type 

theAnswer = "The compiler will reject this"; 

You’d be allowed to do this in a dynamic language such as JavaScript, because in those 

languages, a variable’s type is defined by whatever’s in that variable at any particular 

moment. Not so in C#, unless you declare a variable as dynamic, which I’ll get to in 

Chapter 14. 

The static type doesn’t always provide a complete picture, thanks to 

inheritance. I’ll be discussing this in Chapter 6, but for now, it’s 

enough to know that some types are open to extension through 

inheritance, and if a variable uses such a type, then it’s possible for it to 

refer to some object of a type derived from the variable’s static type. 

Interfaces, described in Chapter 3, provide a similar kind of flexibility. 

However, the static type always determines what operations you are 

allowed to perform on the variable. If you want to use additional 

features specific to some derived type, you won’t be able to do so 

through a variable of the base type. 

You don’t have to state the variable type explicitly. You can let the compiler work it out 

for you by using the keyword var in place of the data type. Example 2-6 shows the first 

three variable declarations from Example 2-3, but using var instead of explicit data 

types. 

Example 2-6. Implicit variable types with the var keyword 

var part1 = "the ultimate question"; 

var part2 = "of something"; 

var theAnswer = 42; 

This code often misleads people who know some JavaScript, because that also has a var 

keyword that you can use in a similar-looking way. But var does not work the same way 

in C# as in JavaScript: these variables are still all statically typed. All that’s changed is 

that we haven’t said what the type is—we’re letting the compiler deduce it for us. It looks 

at the initializers, and can see that the first two variables are strings while the third is an 

integer. (That’s why I left out the fourth variable from Example 2-3, something. That 

doesn’t have an initializer, so the compiler would have no way of inferring its type. If you 

try to use the var keyword without an initializer, you’ll get a compiler error.) 
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You can demonstrate that variables declared with var are statically typed by attempting 

to assign something of a different type into them. We could repeat the same thing we 

tried in Example 2-5, but this time with a var-style variable. Example 2-7 does this, and 

it will produce exactly the same compiler error, because it’s the same mistake—we’re 

trying to assign a text string into a variable of an incompatible type. That variable, 

theAnswer, has a type of int here, even though we didn’t say so explicitly. 

Example 2-7. An error: the wrong type (again) 

var theAnswer = 42; 

theAnswer = "The compiler will reject this"; 

To var, or not to var? 
A var-style variable declaration is exactly equivalent to a variable declaration 

with an explicit type, which raises a question: which should you use? In a sense, 

it doesn’t matter, because they are equivalent. However if you like your code to 

be consistent, you’ll probably want to pick one style and stick to it. Opinion 

varies as to which is the ‘best’ style. 

Some developers dislike expending more keystrokes than they absolutely have 

to. They may refer contemptuously to the extra text required for explicit variable 

types as unproductive ‘ceremony’ that should be replaced with the more 

succinct var keyword. The compiler can work out the type for you, so you 

should let it do the work instead of doing it yourself, or so the argument goes. 

Your author takes a different view. I find that I spend more time reading my 

code than I did writing it—activities such as debugging, refactoring, or 

modifying the functionality seem to dominate. Anything that makes those 

activities easier is worth the frankly minimal time it takes to write the type 

names explicitly. Code that uses var everywhere slows you down, because you 

have to work out what the type really is in order to understand the code. 

Although the compiler saved you some work when you wrote the code, that gain 

is quickly wiped out by the additional thought required every time you go back 

and look at the code. So unless you’re the sort of developer who only ever writes 

new code, leaving others to clean up after you, the var everywhere philosophy 

seems to have little to commend it. 

That said, there are some situations in which I will use var. One is in code 

where explicit typing would mean writing the name of the type twice. For 

example, if you initialize a variable with a new object, you could write this: 

List<int> numbers = new List<int>(); 

In this case, there’s no downside to using var, because the type name is right 

there in the initializer, so you won’t need to expend any mental effort to work 

out the type when reading the implicit version: 

var numbers = new List<int>(); 

There are similar examples involving casts, and generic methods; the principle 

here is that as long as the type name appears explicitly in the variable 

declaration, it’s OK to use var to avoid writing the type twice. 

 4 
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The other situations in which I use var are where it is necessary. As we shall 

see in later chapters, C# supports anonymous types, and as the name suggests, 

it’s not actually possible to write the name of such a type. In these situations, 

you may be compelled to use var. (In fact, the var keyword was only 

introduced to C# when anonymous types were added.) 

One last thing worth knowing about declarations is that you can declare, and optionally 

initialize, multiple variables in a single line. If you want multiple variables of the same 

type, this may reduce clutter in your code. Example 2-8 declares three variables of the 

same type in a single declaration. 

Example 2-8. Multiple variables in a single declaration 

double a = 1, b = 2.5, c = -3; 

In summary, a variable holds some piece of information of a particular type, and the 

compiler prevents us from putting data of an incompatible type into that variable. Of 

course, variables are only useful because we can refer back to them later in our code. 

Example 2-9 starts with the variable declarations we saw in earlier examples, and then 

goes on to use the values of those variables to initialize some more variables, and then 

prints out the results. 

Example 2-9. Using variables 

string part1 = "the ultimate question"; 

string part2 = "of something"; 

int theAnswer = 42; 

 

part2 = "of life, the universe, and everything"; 

 

string questionText = "What is the answer to " + part1 + ", " + part2 + "?"; 

string answerText = "The answer to " + part1 + ", " + 

                       part2 + ", is: " + theAnswer; 

 

Console.WriteLine(questionText); 

Console.WriteLine(answerText); 

By the way, this code relies on the fact that C# defines a couple of meanings for the + 

operator when used with strings. When you ‘add’ two strings together, it concatenates 

them. When you ‘add’ a number to the end of a string (as the initializer for 

answerText does), C# generates code that converts the number to a string before 

appending it. So Example 2-9 produces this output: 

What is the answer to the ultimate question, of life, the universe, and everythi 

ng? 

The answer to the ultimate question, of life, the universe, and everything, is:  

42 

In this book, text longer than 80 columns is wrapped across multiple 

lines to fit. If you try these examples, they will look different if your 

console windows are configured for a different width. 

When you use a variable, its value is whatever you last assigned into it. If you attempt to 

use a variable before you have assigned a value, as Example 2-10 does, the C# compiler 

will report an error. 

Example 2-10. Error: using an unassigned variable 
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int willNotWork; 

Console.WriteLine(willNotWork); 

Compiling that produces this error for the second line: 

error CS0165: Use of unassigned local variable 'willNotWork' 

The compiler uses a slightly pessimistic system (which it calls the definite assignment 

rules) for determining whether a variable has a value yet. It’s not possible to create an 

algorithm that can determine such things for certain in every possible situation.2 Since 

the compiler has to err on the side of caution, there are some situations in which the 

variable will have a value by the time the offending code runs, and yet the compiler still 

complains. The solution is to write an initializer, so that the variable always contains 

something. For an unused initial value, you’d typically use 0 for numeric values, and 

false for Boolean variables. In Chapter 3, I’ll introduce reference types, and as the 

name suggests, a variable of such a type can hold a reference to an instance of the type. If 

you need to initialize such a variable before you’ve got something for it to refer to, you 

can use the keyword null, a special value signifying a reference to nothing. 

The definite assignment rules determine the parts of your code in which the compiler 

considers a variable to contain a valid value, and will therefore let you read from it. 

Writing into a variable is less restricted, but of course, any given variable is only 

accessible from certain parts of the code. Let’s look at the rules that govern this. 

Scope 

A variable’s scope is the range of code in which you can refer to that variable by its 

name. Local variables are not the only things with scope. Methods, properties, types, and 

in fact anything with a name all have scope. These require a slightly broader definition of 

scope: it’s the region in which you can refer to the entity by its name without needing 

additional qualification. When I write Console.WriteLine I am referring to the 

method by its name (WriteLine), but I need to qualify it with a class name 

(Console) because the method is not in scope. But with a local variable, scope is 

absolute: either it’s accessible without qualification or it’s not accessible at all. 

Broadly speaking, a local variable’s scope starts at its declaration, and finishes at the end 

of its containing block. A block is a region of code delimited by a pair of braces ({}). A 

method body is a block, so a variable defined in one method is not visible in another 

method, because it is out of scope. If you attempt to compile Example 2-11, you’ll get an 

error complaining that “The name 'thisWillNotWork' does not exist 

in the current context”. 

Example 2-11. Error: out of scope 

static void SomeMethod() 

{ 

    int thisWillNotWork = 42; 

} 

 

static void AnotherMethod() 

                                                           

2 See Alan Turing’s seminal work on computation for details. Charles Petzold’s “The Annotated 

Turing” from John Wiley & Sons is an excellent guide to the relevant paper. 

www.allitebooks.com

http://www.allitebooks.org
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{ 

    Console.WriteLine(thisWillNotWork); 

} 

Methods often contain nested blocks, particularly when you work with the loop and flow 

control constructs we’ll be looking at later in this chapter. At the point where a nested 

block starts, everything that is in scope in the outer block continues to be in scope inside 

that nested block. Example 2-12 declares a variable called someValue, and then 

introduces a nested block as part of an if statement. The code inside this block is able to 

access that variable declared in the containing block. 

Example 2-12. Variable declared outside block, used within block 

int someValue = GetValue(); 

if (someValue > 100) 

{ 

    Console.WriteLine(someValue); 

} 

The converse is not true. If you declare a variable in a nested block, its scope does not 

extend outside of that block. So Example 2-13 will fail to compile, because the 

willNotWork variable is only in scope within the nested block. The final line of code 

will produce a compiler error because it’s trying to use that variable outside of that block. 

Example 2-13. Error: trying to use a variable not in scope 

int someValue = GetValue(); 

if (someValue > 100) 

{ 

    int willNotWork = someValue - 100; 

} 

Console.WriteLine(willNotWork); 

This probably all seems fairly straightforward, but things get a bit more complex when it 

comes to potential naming collisions. C# sometimes catches people by surprise here. 

Variable name ambiguity 

Consider the code in Example 2-14. This declares a variable called anotherValue 

inside a nested block. As you know, that variable is only in scope to the end of that nested 

block. After that block ends, we try to declare another variable with the same name. 

Example 2-14. Error: surprising name collision overlap 

int someValue = GetValue(); 

if (someValue > 100) 

{ 

    int anotherValue = someValue - 100; 

    Console.WriteLine(anotherValue); 

} 

 

int anotherValue = 123; 

This causes a compiler error on the final line: 

error CS0136: A local variable named 'anotherValue' cannot be declared in this 

scope because it would give a different meaning to 'anotherValue', which is already 

used in a 'child' scope to denote something else 

 7 
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This seems odd. At the final line, the supposedly conflicting earlier declaration is not in 

scope, because we’re outside of the nested block in which it was declared. Furthermore, 

the second declaration is not in scope within that nested block, because the declaration 

comes after the block. The scopes do not overlap, but despite this, we’ve fallen foul of 

C#’s rules for avoiding name conflicts. To see why this example fails, we first need to 

look at a less surprising example. 

C# tries to prevent ambiguity by disallowing code where one name might refer to more 

than one thing. Example 2-15 shows the sort of problem it aims to avoid. Here we’ve got 

a variable called errorCount, and the code starts to modify this as it progresses, but 

part way through, it introduces a new variable in a nested block, also called 

errorCount. It would be possible to imagine a language that allowed this—you could 

have a rule that says that when multiple items of the same name are in scope, you just 

pick the one whose declaration happened last. 

Example 2-15. Error: hiding a variable 

int errorCount = 0; 

if (problem1) 

{ 

    errorCount += 1; 

 

    if (problem2) 

    { 

        errorCount += 1; 

    } 

 

    int errorCount = GetErrors();  // Compiler error 

    if (problem3) 

    { 

        errorCount += 1; 

    } 

} 

In fact, the compiler does not allow this, because code that did this would be easy to 

misunderstand. This is an artificially short method because it’s a fake example in a book, 

so the problem is clear. If the code were a bit longer, it would be very easy to miss the 

nested variable declaration, and not to realize that errorCount refers to something 

different at the end of the method than it did earlier on. C# simply disallows this to avoid 

misunderstanding. 

But why does Example 2-14 fail? The scopes of the two variables don’t overlap. Well, it 

turns out that the rule that outlaws Example 2-15 is not based on scopes. It is based on a 

subtly different concept called a declaration space. A declaration space is a region of 

code in which a single name must not refer to two different entities. Each method defines 

a declaration space for variables. Nested blocks also introduce declaration spaces, and it 

is illegal for a nested declaration space to declare a variable with the same name as one in 

its parent’s declaration space. And that’s the rule we’ve fallen foul of here—the 

outermost declaration space in Example 2-15 contains a variable named errorCount, 

and a nested block’s declaration space tries to introduce another variable of the same 

name. 

If that all seems a bit dry, it may be helpful to know why there’s a whole separate set of 

rules for name collisions instead of basing it on scopes. The intent of the declaration 

space rules is that it mostly shouldn’t matter where you put the declaration. If you were to 
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move all of the variable declarations in a block to the start of that block—and some 

organizations have coding standards that mandate this sort of layout—the idea of these 

rules is that this shouldn’t change what the code means. Clearly this wouldn’t be possible 

if Example 2-15 were legal. And this explains why Example 2-14 is illegal. Although the 

scopes don’t overlap, they would if you moved all variable declarations to the top of their 

containing blocks. 

Local variable instances 

A variable is a feature of the source code, so a particular variable has a distinct identity: it 

is declared in exactly one place in the source code, and goes out of scope at exactly one 

well-defined place. However, that doesn’t mean that it corresponds to a single storage 

location in memory. It is possible for multiple invocations of a single method to be in 

progress simultaneously, either through recursion or multithreading. 

Each time a method runs, it gets a separate set of storage locations to hold the values 

corresponding to the local variables for that run. So in multi-threaded code, threads will 

not interfere with each other when working with variables. Likewise, in recursive code, 

each nested call gets its own set of locals that will not interfere with any of its callers. 

Be aware that the C# compiler does not make any particular guarantee about where local 

variables live. They might well live on the stack, but they don’t have to. When we look at 

anonymous methods in later chapters, you’ll see that local variables sometimes need to 

outlive the method that declares them, because they remain in scope for nested methods 

that will run as callbacks in the future. 

By the way, before we move on, be aware that just as variables are not the only things to 

have scope, they are also not the only things to which declaration space rules apply. 

Other language features that we’ll be looking at later, including classes, methods, and 

properties, also have scoping and name uniqueness rules. 

Statements and Expressions  

Variables let us define the information that our code works with, but to do anything with 

those variables, we will need to write some code. This will mean writing statements and 

expressions. 

Statements 

When we write a C# method, we are writing a sequence of statements. Informally, the 

statements in a method describe the actions we want the method to perform. Each line in 

Example 2-16 is a statement. It might be tempting to think of a statement as an 

instruction to do one thing (e.g., initialize a variable, or invoke a method). Or you might 

take a more lexical view, where anything ending in a semicolon is a statement. However, 

both descriptions are simplistic, even though they happen to be true for this particular 

example. 

Example 2-16. Some statements 

int a = 19; 

int b = 23; 

int c; 

c = a + b; 

Console.WriteLine(c); 
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C# recognizes many different kinds of statements. The first three lines of Example 2-16 

are declaration statements, statements which declare and optionally initialize a variable. 

The fourth and fifth lines are expression statements (and we’ll be looking at expressions 

shortly). But some statements have more structure than the ones in this example. 

When you write a loop, that’s an iteration statement. When you use the if or select 

mechanisms described later in this chapter to choose between various possible actions, 

those are selection statements. In fact the C# specification distinguishes between 14 

different categories of statement. Most fit broadly into the scheme of describing either 

what the code should do next, or, for features such as loops or conditional statements, 

describing how it should do what it does next. Statements of that second kind usually 

contain one or more embedded statements describing the action to perform in a loop, or 

the action to perform when an if statement’s condition is met. 

There’s one special case though. A block is a kind of statement. This makes statements 

like loops more useful than they would otherwise be because a loop iterates over just a 

single embedded statement. That statement can be a block, and since a block itself is a 

sequence of statements (delimited by curly brackets: {}), this is what enables loops to 

contain more than one statement. 

This illustrates why the two simplistic points of view stated earlier—“expressions are 

actions” and “expressions are things that end in semicolons”—are wrong. Compare 

Example 2-16 with Example 2-17. Both do the same thing because the various actions 

we’ve said we want to perform remain exactly the same. However, Example 2-17 

contains one extra statement. The first two statements are the same, but they are followed 

by a third statement, a block, which contains the final three statements from Example 2-

16. The extra statement, the block, doesn’t end in a semicolon, nor does it perform any 

action. It might seem pointless, but it can sometimes be useful to introduce a nested block 

like this to avoid name ambiguity errors. So statements can be structural, rather than 

causing anything to happen at runtime. 

Example 2-17. A block 

int a = 19; 

int b = 23; 

{ 

    int c; 

    c = a + b; 

    Console.WriteLine(c); 

} 

While your code will contain a mixture of statement types, it will inevitably end up 

containing at least a few expression statements. These are, quite simply, statements that 

consist of a suitable expression, followed by a semicolon. What’s a suitable expression? 

What’s an expression for that matter? I’d better answer that before coming back to what 

constitutes a valid expression for a statement. 

Expressions 

The official definition of a C# expression is rather dry: “a sequence of operators and 

operands.” Admittedly, language specifications tend to be like that, but in addition to this 

sort of formal prose, the C# specification contains some very readable informal 

explanations of the more formally expressed ideas. (It describes statements as the means 

by which “the actions of a program are expressed” for example, before going on to pin 
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that down with less approachable but more technically precise language.) I’m quoting 

from the formal definition of an expression at the start of this paragraph, so perhaps the 

informal explanation in the introduction will be more helpful. That part says that 

expressions “are constructed from operands and operators.” That’s certainly less precise 

than the other definition, but no easier to understand. The problem is that there are 

several kinds of expression, and they do different jobs, so there isn’t a single, general, 

informal description. 

It’s tempting to describe an expression as some code that produces a value. That’s not 

true for all expressions, but the majority of expressions you’ll write will fit this 

description, so I’ll focus on this for now, and I’ll come to the exceptions later. 

The simplest expressions with values are literals, where we just write the value we want, 

such as "Hello, world!" or 2. You can also use the name of a variable as an 

expression. Expressions can also involve operators, which describe calculations or other 

computations to be performed. Operators have some fixed number of inputs, or operands. 

Some take a single operand. For example, you can negate a number by putting a minus 

sign in front of it. Some take two: the + operator lets you form an expression which adds 

together the results of the two operands on either side of the + symbol. 

Some symbols have different roles depending on the context. The 

minus sign is not just used for negation. It acts as a two-operand 

subtraction operator if it appears between two expressions. 

In general, operands are also expressions. So when we write 2 + 2, that’s an expression 

that contains two more expressions, the pair of ‘2’ literals on either side of the + symbol. 

This means that we can write arbitrarily complicated expressions by nesting expressions 

within expressions within expressions. Example 2-18 exploits this to evaluate the 

quadratic formula (the standard technique for solving quadratic equations). 

Example 2-18. Expressions within expressions 

double a = 1, b = 2.5, c = -3; 

double x = (-b + Math.Sqrt(b * b - 4 * a * c)) / (2 * a); 

Console.WriteLine(x); 

Look at the declaration statement on the second line. Its initializer expression’s overall 

structure is a division operation. But that division operator’s two operands are also 

expressions. Its left hand operand is a parenthesized expression, which tells the compiler 

that I want that whole expression (-b + Math.Sqrt(b * b - 4 * a * c)) to 

be the first operand. This subexpression contains an addition, whose left hand operand is 

a negation expression whose single operand is the variable b. The addition’s right hand 

side takes the square root of another, more complex expression. And the division’s left-

hand operand is another parenthesized expression, containing a multiplication. Figure 2-1 

illustrates the full structure of the expression. 
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Figure 2-1. The structure of an expression 

One important detail of this last example is that method invocations are a kind of 

expression. The Math.Sqrt method used in Example 2-18 is a .NET Framework class 

library function that calculates the square root of its input and returns the result. What’s 

perhaps more surprising is that invocations of methods that don’t return a value, such as 

Console.WriteLine, are also, technically, expressions. And there are a few other 

constructs that don’t produce values but which are still considered to be expressions, 

including a reference to a type (e.g. the Console in Console.WriteLine) or to a 

namespace. These sorts of constructs take advantage of a set of common rules (e.g., 

scoping, how to resolve what a name refers to, etc.). However, all the non-value-

producing expressions can only be used in certain specific circumstances. (You can’t use 

one as an operand in another expression, for example.) So although it’s not technically 

correct to define an expression as a piece of code that produces a value, the ones that do 

are the ones we use when describing the calculations we want our code to perform. 

So we can now return to the question: what can we put in an expression statement? 

Roughly speaking, the expression has to do something; it cannot just calculate a value. So 

although 2 + 2 is a valid expression, you’ll get an error if you try to turn it into an 

expression statement by sticking a semicolon on the end. That expression calculates 

something but doesn’t do anything with the result. To be more precise, you can use the 

following kinds of expressions as statements: method invocation, assignment, increment, 

decrement, and new object creation. We’ll be looking at increment and decrement later in 

 12 
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this chapter, and we’ll be looking at objects in later chapters, so that leaves invocation 

and assignment. 

So a method invocation is allowed to be an expression statement. This can involve nested 

expressions of other kinds, but the whole thing must be a method call. Example 2-19 

shows some valid examples. Notice that the C# compiler doesn’t check whether the 

method call really has any lasting effect—the Math.Sqrt function is a pure function, in 

the sense that it does nothing other than returning a value based entirely on its inputs. So 

invoking it and then doing nothing with the result doesn’t really do anything at all—it’s 

no more of an action than the expression 2 + 2. But as far as the C# compiler is 

concerned, any method call is allowed as an expression statement. 

Example 2-19. Method invocation expressions as statements 

Console.WriteLine("Hello, world!"); 

Console.WriteLine(12 + 30); 

Console.ReadKey(); 

Math.Sqrt(4); 

It seems inconsistent that C# forbids us from using an addition expression as a statement 

while allowing Math.Sqrt. Both attempt to perform a calculation and then discard the 

result? Wouldn’t it be more consistent if C# only allowed calls to methods that return 

nothing to be used for expression statements? That would rule out the final line of 

Example 2-19, which would seem like a good idea because that code does nothing useful. 

However, sometimes you want to ignore the return value. Example 2-19 calls 

Console.ReadKey(), which waits for a keypress and returns a value indicating 

which key was pressed. If my program’s behavior depends on which particular key the 

user pressed, I’ll need to inspect the method’s return value, but if I just want to wait for 

any key at all, it’s OK to ignore the return value. If C# didn’t allow methods with return 

values to be used as expression statements, I wouldn’t be able to do this. The compiler 

doesn’t know which methods make for pointless statements because they have no side 

effects such as Math.Sqrt, and which might make sense, such as 

Console.ReadKey, so it allows any method. 

For an expression to be a valid expression statement, it is not enough merely to contain a 

method invocation. Example 2-20 shows some expressions that call methods and then go 

on to use those as part of addition expressions. So these will cause compiler errors. 

Example 2-20. Errors: some expressions that don’t work as statements 

Console.ReadKey().KeyChar + "!"; 

Math.Sqrt(4) + 1; 

Earlier I said that one of the kinds of expression we’re allowed to use as a statement is an 

assignment. It’s not obvious that assignments should be expressions, but they are, and 

they do produce a value: the result of an assignment expression is the value being 

assigned into the variable. This means it’s legal to write code like that in Example 2-21. 

The second line here uses an assignment expression as an argument for a method 

invocation which prints out the value of that expression. The code prints out 123 twice. 

Example 2-21. Assignments are expressions 

int number; 

Console.WriteLine(number = 123); 

Console.WriteLine(number); 
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This shows that evaluating an expression can do more than just producing a value. Some 

expressions have side effects. We’ve just seen that an assignment is an expression, and it 

of course has the effect of changing what’s in a variable. Method calls are expressions 

too, and although you can write pure functions that do nothing besides calculating their 

result from their input, like Math.Sqrt, many methods do something with lasting 

effects, such as printing data to the console, updating a database, or launching a missile. 

This means that we might care about the order in which the operands of an expression get 

evaluated. 

An expression’s structure imposes some constraints on the order in which operators do 

their work. For example, I can use parentheses to enforce ordering. The expression 

10 + (8 / 2) has the value 14, while the expression (10 + 8) / 2 has the value 

9, even though both have exactly the same literal operands and arithmetic operators. The 

parentheses here determine whether the division is performed before or after the 

subtraction.3 However, this is separate from the question of the order in which the 

operands are evaluated. For these simple expressions, it doesn’t matter because I’ve used 

literals, so we can’t really tell when they get evaluated. But what about an expression in 

which operands call some method? Example 2-22 contains code of this kind. 

Example 2-22. Operand evaluation order 

class Program 

{ 

    static int X(string label, int i) 

    { 

        Console.Write(label); 

        return i; 

    } 

 

    static void Main(string[] args) 

    { 

        Console.WriteLine(X("a", 1) + X("b", 1) + X("c", 1) + X("d", 1)); 

        Console.WriteLine(); 

        Console.WriteLine( 

            X("a", 1) + 

            X("b", (X("c", 1) + X("d", 1) + X("e", 1))) + 

            X("f", 1)); 

    } 

} 

This defines a method, X, which takes two arguments. It prints out the first, and just 

returns the second. I’ve then used this in a couple of expressions, and it lets us see exactly 

when the operands that call X are evaluated. Some languages choose not to define this 

order, making the behavior of such a program unpredictable, but C# does in fact specify 

an order here. The rule is that within any expression, the operands are evaluated from left 

to right. So for the first Console.WriteLine in Example 2-22, we see it print 

abcd4. Nested expressions complicate things a little, although the same rule applies. 

The final Console.WriteLine adds the results of three calls to X, however, the 

                                                           

3 In the absence of parentheses, C# has rules of precedence that determine the order in which 

operators are evaluated. For the full (and not very interesting) details, consult the C# specification, 

but in this case, division has higher precedence than addition, so without parentheses, the 

expression would evaluate to 14. 
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second of those calls to X takes as its argument an expression that adds the results of 

three more calls to X. Starting at the top level additions, the first operand, X("a", 1), 

will be evaluated. Then it will start to evaluate the second operand, which is that second 

method call expression. The same rule applies for this subexpression: it will evaluate its 

operands—the method arguments in this case—from left to right. The first is the constant 

"b", and the second is the nested expression containing three further calls to X, which 

will also be evaluated from left to right. Once it has evaluated those, it can complete the 

call to X for which that result was the second operand—the call with a first argument of 

"b". And once that’s done, the left-to-right evaluation of the top level of additions 

continues with the final argument. So we see output of acdebf5. So looking at the 

expression as a whole, the various method calls were not evaluated in the order in which 

they were written, but that’s because they were at various different levels of nesting. 

Taking any single expression in isolation, it evaluated its operands from left to right, and 

it’s only because those operands are expressions in their own right that we see nested 

ordering. 

Comments and Whitespace 

Most programming languages allow source files to contain text that is ignored by the 

compiler, and C# is no exception. As with most C family languages, it supports two 

styles of comments for this purpose. There are single-line comments, in which you write 

two / characters in a row, and everything from there to the end of the line will be ignored 

by the compiler. 

Example 2-23. Single line comments 

Console.WriteLine("Say");        // This text will be ignored but the code on 

Console.WriteLine("Anything");   // the left is still compiled as usual. 

C# also supports delimited comments. These can span multiple lines—you start a 

comment of this kind with /* and the compiler will ignore everything that follows until it 

encounters the first */ character sequence. In Example 2-24, a comment begins in the 

middle of the first line, and ends at the end of the fourth. 

Example 2-24. Multiline comments 

Console.WriteLine("This will run");   /* This comment includes not just the 

Console.WriteLine("This won't");       * text on the right, but also the text 

Console.WriteLine("Nor will this");   /* on the left except the first and last 

Console.WriteLine("Nor this");         * lines. */ 

Console.WriteLine("This will also run"); 

Notice that the /* character sequence appears twice in this example. When this sequence 

appears in the middle of a comment, it does nothing special—comments don’t nest. Even 

though we’ve seen two /* sequences, the first */ is enough to end the comment. This is 

occasionally frustrating, but it’s the norm for C family languages. 

Occasionally, it’s useful to take a block of code out of action temporarily, in a way that’s 

easy to put back. Turning the code into a comment is an easy way to do this, but a 

delimited comment is a bad way to do it, because if the region you commented out 

happens to include a delimited comment, you won’t be able to comment out anything 

beyond its closing */ without starting another comment. So we normally use the single-

line comment for this purpose. 
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Visual Studio can comment out regions of code for you. If you select 

several lines of text, and type Ctrl-K followed immediately by Ctrl-C, it 

will add // to the start of every line in the selection. And you can 

uncomment a region with Ctrl-K, Ctrl-U. If you chose something other 

than C# as your preferred language when you first ran Visual Studio, 

these actions may be bound to different key sequences but they are also 

available on the Edit→Advanced menu, and also on the Text Editor 

toolbar, one of the standard toolbars that Visual Studio shows by 

default. 

Speaking of ignored text, for the most part C# ignores extra whitespace. Not all 

whitespace is insignificant, because you need at least some space to separate tokens that 

consist entirely of alphanumeric symbols. For example, you can’t write staticvoid as 

the start of a method declaration—you’d need at least one space (or tab, newline, or other 

space-like character) between static and void. But with non-alphanumeric tokens, 

spaces are optional, and in most cases, a single space is equivalent to any amount of 

whitespace and new lines. This means that the three statements in Example 2-25 are all 

equivalent. 

Example 2-25. Insignificant whitespace 

Console.WriteLine("Testing"); 

Console . WriteLine("Testing"); 

Console. 

    WriteLine("Testing") 

  ; 

There a couple of cases where C# is more sensitive to whitespace. Inside a string literal, 

space is significant, because whatever spaces you write will be present in the string value. 

Also, while C# mostly doesn’t care whether you put each element on its own line, or you 

put all your code in one massive line or, as seems more likely, something in between, 

there is an exception: preprocessing directives are required to appear on their own lines. 

Preprocessing Directives 

If you’re familiar with the C language or its direct descendants, you may have been 

wondering if C# has a preprocessor. It doesn’t have a separate preprocessing stage, and 

does not offer macros. However, it does have a handful of directives similar to those 

offered by the C preprocessor, although it is only a very limited selection.  

Compilation Symbols 

C# offers a #define directive which lets you define a compilation symbol. These 

symbols are commonly used to compile code in different ways for different situations. 

For example, you might want some code to be present only in debug builds, or perhaps 

you need to use different code on different platforms to achieve a particular effect. Often, 

you won’t use the #define directive though—it’s more common to define compilation 

symbols through the compiler build settings. Visual Studio lets you configure different 

symbol values for each build configuration. To control this, double click the project’s 

Properties node in Solution Explorer, and in the property page that this opens, go to the 

Build tab. If you’re running the compiler from the command line, there are switches to 

set such things. 
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Visual Studio sets certain symbols by default in newly created projects. 

It will typically create two configurations, Debug and Release. It 

defines a DEBUG compilation symbol in the Debug configuration but 

not in the Release configuration. It defines a symbol called TRACE in 

both Debug and Release builds. Certain project types get addition 

symbols. Silverlight projects will have a SILVERLIGHT symbol 

defined in all configurations, for example. 

Compilation symbols are typically used in conjunction with the #if, #else, #elif, 

and #endif directives. Example 2-26 uses some of these directives to ensure that 

certain lines of code only get compiled in debug builds. 

Example 2-26. Conditional compilation 

#if DEBUG 

    Console.WriteLine("Starting work"); 

#endif 

    DoWork(); 

#if DEBUG 

    Console.WriteLine("Finished work"); 

#endif 

C# provides a more subtle mechanism to support this sort of thing, called a conditional 

method. The compiler recognizes an attribute defined by the .NET Framework, called 

ConditionalAttribute, for which it provides special compile-time behaviors. You 

can annotate any method with this attribute. Example 2-27 uses it to indicate that the 

annotated method should only be used when the DEBUG compilation symbol is defined. 

Example 2-27. Conditional method 

[System.Diagnostics.Conditional("DEBUG")] 

static void ShowDebugInfo(object o) 

{ 

    Console.WriteLine(o); 

} 

If you call a method that has been annotated in this way, the C# compiler will effectively 

remove the code that makes that call in builds that do not have the relevant symbol 

defined. So if you write code that calls this ShowDebugInfo method, the compiler 

strips out all those calls in non-debug builds. So you can get the same effect as Example 

2-26, without cluttering up your code with directives. 

The .NET Framework’s Debug and Trace classes in the System.Diagnostics 

namespace uses this feature. The Debug class offers various methods that are conditional 

on the DEBUG compilation symbol, while the Trace class has methods conditional on 

TRACE. If you leave the default settings for a new Visual Studio project in place, any 

diagnostic output produced through the Trace class will be available in both Debug and 

Release builds, but any code that calls a method on the Debug class will not get 

compiled into Release builds. 

The Debug class’s Assert method is also conditional on DEBUG. 

Assert lets you specify a condition that must be true at runtime, and 

it throws an exception if the condition is false. There are two things 

developers new to C# often mistakenly put in a Debug.Assert: 
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checks that should in fact occur in all builds, and expressions with side 

effects that the rest of the code depends on. This leads to bugs, because 

the compiler will strip this code out in non-Debug builds. 

#error and #warning 

C# lets you choose to generate compiler errors or warnings with the #error and 

#warning directives. These are typically used inside of conditional regions, as Example 

2-28 shows, although an unconditional #warning could be useful as a way to remind 

yourself that you’ve not written some particularly important bit of the code yet. 

Example 2-28. Generating a compiler error 

#if SILVERLIGHT 

  #error Silverlight is not a supported platform for this source file 

#endif 

#line 

The #line directive is useful in generated code. When the compiler produces an error or 

a warning, it normally states where the problem occurred, providing the filename, a line 

number, and an offset within that line. But if the code in question was generated 

automatically using some other file as input, and if that other file contains the root cause 

of the problem, it may be more useful to report an error in the input file, rather than the 

generated file. A #line directive can instruct the C# compiler to act as though the error 

occurred at the line number specified, and optionally, as if the error were in an entirely 

different file. Example 2-29 shows how to use it. The error after the directive will be 

reported as though it came from line 123 of a file called Foo.cs. 

Example 2-29. The #line directive and a deliberate mistake 

#line 123 "Foo.cs" 

    intt x; 

The filename part is optional, enabling you to fake just line numbers. You can tell the 

compiler to revert to reporting warnings and errors without fakery by writing #line 

default. 

There’s another use for this directive. Instead of a line number (and optional file name) 

you can instead write just #line hidden. This only affects the debugger behavior: 

when single stepping, Visual Studio will run straight through all the code after such a 

directive without stopping until it encounters a non-hidden #line directive. 

#pragma 

The #pragma directive allows you to disable selected compiler warnings. The reason for 

the slightly idiosyncratic name is that it’s modeled on more general compiler control 

mechanisms found in other C-like languages. And it’s possible that future versions of C# 

may add other features based on this directive. (In fact when the compiler encounters a 

pragma it does not understand, it generates a warning, not an error, on the grounds that an 

unrecognized pragma might be valid for some future compiler version, or some other 

vendor’s compiler.) 
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Example 2-30 shows how to use a #pragma to prevent the compiler from issuing the 

warning that would normally occur if you declare a variable that you do not then go on to 

use. 

Example 2-30. Disabling a compiler warning 

#pragma warning disable 168 

    int a; 

You should generally avoid disabling warnings. The main use for this feature is in 

generated code scenarios. Code generation can often end up creating items which are not 

used, and pragmas may offer the only way to get a clean compilation. But when you’re 

writing code by hand, it should usually be possible to avoid warnings in the first place. 

#region and #endregion 

Finally, we have two preprocessing directives that do nothing. If you write #region 

directives, the only thing the compiler does is ensure that they have corresponding 

#endregion directives. Mismatches cause compiler errors, but the compiler ignores 

correctly paired #region and #endregion directives. 

These directives exist entirely for the benefit of text editors that choose to recognize 

them. Visual Studio uses them to provide the ability to collapse sections of the code down 

to a single line on screen. The C# editor automatically allows certain features to be 

expanded and collapsed, such as methods, and class definitions, but if you define regions 

with these two directives, it will also allow those to be expanded and collapsed. Some 

people find this useful, as by collapsing all the regions, you can see a file’s structure at a 

glance. It may all fit on the screen at once, thanks to the regions being reduced to a single 

line. On the other hand, some people hate collapsed regions, because they present speed 

bumps on the way to being able to look at the code. 

Intrinsic Data Types 

The .NET Framework defines thousands of types in its class library, and you can write 

your own, so C# can work with an unlimited number of data types. However, a handful 

of data types get special treatment from the compiler. You saw earlier in Example 2-9 

that if you have a string, and you try to add a number to it, the compiler will generate 

code that converts the number to a string and appends it to the first string. In fact, the 

behavior is more general than that—it’s not limited to numbers. If you have a string, and 

you add to it some value of any type that’s not a string, the compiler just calls the 

ToString method on whatever you’re trying to add, and then calls the 

String.Concat method to combine the string with the result. All types offer a 

ToString method, so this means you can append values of any type to a string. 

That’s handy, but it only works because the C# compiler knows about strings, and 

provides special services for them. (There’s a part of the C# specification that defines this 

special string handling for the + operator.) C# provides various special services not just 

for strings, but also certain numeric data types, Booleans, and a type called object. 
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Numeric Types 

C# supports integer and floating point arithmetic. There are both signed and unsigned 

versions of the integer types, and they come in various sizes, as Table 2-1 shows. The 

most commonly used integer type is int, not least because it is large enough to represent 

a usefully wide range of values, without being too large to work efficiently on all CPUs 

that support .NET. (Larger data types might not be handled natively by the CPU, and can 

also have undesirable characteristics in multithreaded code: reads and writes are atomic 

for 32-bit types4, but may not be for larger ones.) 

Table 2-1. Integer types 

C# Type CLR Name Signed Size in 

bits 

Inclusive Range 

byte System.Byte No 8 0-255 

sbyte System.SByte Yes 8 −128 - 127 

ushort System.UInt16 No 16 0 - 65535 

short System.Int16 Yes 16 −32768 - 32767 

uint System.UInt32 No 32 0-4294967295 

int System.Int32 Yes 32 −2147483648 - 2147483647 

ulong System.UInt64 No 64 0 - 18446744073709551615 

long System.Int64 Yes 64 −9223372036854775808 - 

9223372036854775807 

The second column in Table 2-1 shows the name of the type in the CLR. Different 

languages have different naming conventions, and C# uses names from its C family roots 

for numeric types. But those don’t fit with the naming conventions that .NET has for its 

data types. So as far as the runtime is concerned the names in the second column are the 

real names—there are various APIs that can report information about types at runtime, 

and they report these CLR names, not the C# ones. The names are synonymous in C# 

source code, so you’re free to use the runtime names if you want to, but the C# names are 

arguably a better stylistic fit—keywords in C family languages are all lower case. Since 

the compiler handles these types differently than most, it’s arguably good to have them 

stand out. 

Not all .NET languages support unsigned numbers, so the .NET 

Framework class library tends to avoid them, as should you if you are 

writing a library designed for use from multiple languages. A runtime 

such as the CLR that supports multiple languages faces a tradeoff 

between offering a type system rich enough to cover most languages’ 

needs, and forcing an overcomplicated type system on simple 

languages. To resolve this, .NET’s type system, the CTS, is reasonably 

                                                           

4 Strictly speaking, this is only guaranteed for correctly-aligned 32-bit types. However, C# aligns 

them correctly by default, and you’d normally only encounter misaligned data in interop scenarios, 

which are discussed in chapter 22. 
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comprehensive, but languages don’t have to support all of it. The 

Common Language Specification (CLS) identifies a relatively small 

subset of the CTS that all languages should support. Signed integers are 

in the CLS but unsigned ones are not. You can use non-CLS types 

freely in your private implementation details but you should limit your 

public API to CLS types if you want to interoperate with other 

languages. 

C# also supports floating point numbers. There are two types: float and double, 

which are 32-bit and 64-bit numbers in the standard IEEE 754 formats, and as the CLR 

names in Table 2-2 suggest, these correspond to what are commonly called single 

precision and double precision numbers. Floating point values do not work in the same 

way as integers, so the range is expressed differently in this table. It shows the smallest 

non-zero values and the largest values that can be represented. (These can be either 

positive or negative.) 

Table 2-2. Floating point types 

C# Type CLR Name Size in 

bits 

Precision Range (Magnitude) 

Float System.Single 32 23 bits (~7 

decimal 

digits) 

1.5×10-45 to 3.4×1038 

Double System.Double 64 52 bits (~15 

decimal 

digits) 

5.0×10-324 to 1.7×10308 

There’s a third numeric representation that C# recognizes, called decimal (or 

System.Decimal in .NET). This is a 128-bit value, so it can offer greater precision 

than the other formats, but it is designed for calculations that require predictable handling 

of decimal fractions. Neither float nor double can offer that. If you write code that 

initializes a variable of type float to 0 and then adds 0.1 to it 9 times in a row, you 

might expect to get a value of 0.9, but in fact you’ll get 0.9000001. That’s because IEEE 

754 floating point stores numbers in binary, which cannot represent all decimal fractions. 

Some are fine—the decimal 0.5 works fine in binary—written in base 2 it’s 0.1. But the 

decimal 0.1 turns into a recurring number in binary. (Specifically, it’s 0.0 followed by the 

recurring sequence 0011.) This means float and double can only represent an 

approximation of 0.1, and more generally, only a few decimals can be represented 

completely accurately. This isn’t always instantly obvious, because when floating point 

numbers are converted to text, they are rounded to a decimal approximation that can 

mask the discrepancy. But over multiple calculations, the inaccuracies tend to add up, and 

eventually produce surprising looking results. 

For some kinds of calculations this doesn’t really matter—in simulations or signal 

processing, for example, some noise and error is expected. But accountants tend to be 

less forgiving—little discrepancies like this can make it look like money has magically 

vanished or appeared. We need calculations that involve money to be absolutely accurate, 

which makes floating point a terrible choice for such work. So C# also offers the 

decimal type, which is able to offer a well-defined level of decimal precision. 
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A decimal stores numbers as a sign bit (positive or negative) and a pair of integers. 

There’s a 96-bit integer, and the value of the decimal is this first integer (negated if the 

sign bit says so) multiplied by 10 raised to the power of the second integer which is a 

number in the range of 0 to −28.5 96 bits is enough to represent any 28 digit decimal 

integer (and some, but not all 29-digit numbers). That’s why the second integer, the one 

representing the power of 10 by which the first is multiplied, has to be between zero and 

minus 28: it effectively says where the decimal point goes. This format makes it possible 

to represent any decimal with 28 or fewer digits accurately. 

When you write a literal numeric value, you can choose the type. If you write a plain 

integer such as 123, its type will be either int, uint, long, or ulong—the compiler 

picks the first type from that list with a range that contains the value. (So 123 would be 

int, 3000000000 would be uint, 5000000000 would be long etc.) If you write a 

number with a decimal point such as 1.23, its type is double. 

You can tell the compiler that you want a specific type by adding a suffix. So 123U is a 

uint, 123L is a long, and 123UL is a ulong. Suffix letters are case- and order-

independent, so instead of 123UL, you could instead write 123Lu, or 123uL, or any 

other permutation. For double, float, and decimal, use the D, F, and M suffixes 

respectively. 

These last three types all support a decimal exponential literal format for large numbers, 

where you put the letter E in the constant followed by the power. For example, the literal 

value 1.5E-20 is the value 1.5 multiplied by 10-20. (This happens to be of type 

double, because that’s the default for a number with a decimal point, regardless of 

whether it’s in exponential format. You could write 1.5E-20F and 1.5E-20M for 

float and decimal constants with equivalent values.) 

It’s often useful to be able to write integer literals in hexadecimal, because the digits map 

better onto the binary representation used at runtime. This is particularly important when 

different bit ranges of a number represent different things. For example, you may need to 

deal with a numeric return code from a COM component. These codes use the topmost 

bit to indicate success or failure, and the next few bits to indicate the origin of the error, 

and the remaining bits to identify the specific error. For example, the COM error code, 

E_ACCESSDENIED has the value -2,147,024,891. It’s hard to see the structure in 

decimal, but in hexadecimal, it’s easier: 80070005. The 007 part indicates that this was 

originally a plain Win32 error that has been translated into a COM error, and then the 

remaining bits indicate that the Win32 error code was 5 (ERROR_ACCESS_DENIED). 

C# lets you write integer literals in hexadecimal for scenarios like these, where the hex 

representation is more readable. You just prefix the number with 0x, so in this case you 

would write 0x80070005. 

Numeric conversions 

Each of the built-in numeric types uses a different representation for storing numbers in 

memory. Converting from one form to another requires some work—even the number 1 

                                                           

5 24 of a decimal’s 128 bits are therefore unused. Making it smaller would cause alignment 

difficulties, and using the additional bits for extra precision would have a significant performance 

impact, because integers whose length is a multiple of 32 bits are easier for a 32-bit CPU to deal 

with than the alternatives. 
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looks quite different if you inspect its binary representations as a float, an int, and a 

decimal. However, C# is able to generate code that converts between formats, and it 

will often do so automatically. Example 2-31 shows some scenarios in which this will 

happen. 

Example 2-31. Implicit conversions 

int i = 42; 

double di = i; 

Console.WriteLine(i / 5); 

Console.WriteLine(di / 5); 

Console.WriteLine(i / 5.0); 

The second line assigns the value of an int variable into a double variable. The C# 

compiler will generate the necessary code to convert the integer value into its equivalent 

(or nearest approximately equivalent) floating point value. More subtly, the last two lines 

will perform similar conversions, as we can see from the output of that code: 

8 

8.4 

8.4 

This shows that the first division produced an integer result—dividing the integer 

variable i by the integer literal 5 caused the compiler to generate code that performs 

integer division, so the result is 8. But the other two divisions produced a floating point 

result. In the second case, we’ve divided the double variable di by an integer literal 5. 

C# converts that 5 to floating point before performing the division. And in the final line, 

we’re dividing an integer variable by a floating point literal. This time, it’s the variable’s 

value that gets turned from an integer into a floating point value before the division takes 

place. 

In general, when you perform arithmetic calculations that involve a mixture of numeric 

types, C# will pick the type with the largest range, and promote values of types with a 

narrower range into that larger one before performing the calculations. (Arithmetic 

operators generally require all their operands to be the same type, so one type has to 

‘win’ for any particular operator.) For example, double can represent any value that 

int can, and many that it cannot, so double is the more expressive type.6 

C# will perform numeric conversions implicitly whenever the conversion is a promotion 

(i.e., the target type has a wider range than the source) because there is no possibility of 

the conversion failing. However, it will not implicitly convert in the other direction. The 

second and third lines of Example 2-32 will fail to compile, because they attempt to 

assign expressions of type double into an int, which is a narrowing conversion, 

meaning that the source might contain values that are out of the target’s range. 

Example 2-32. Errors: implicit conversions not available 

int i = 42; 

int willFail = 42.0; 

int willAlsoFail = i / 1.0; 

                                                           

6 Promotions are not in fact a feature of C#. C# has a more general mechanism: conversion 

operators. Promotions are built on top of this—C# defines intrinsic implicit conversion operators 

for the built-in data types. The promotions discussed here occur as a result of the compiler 

following its usual rules for conversions. 
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It is possible to convert in this direction, just not implicitly. You can use a cast, where 

you specify the name of the type to which you’d like to convert in parentheses. Example 

2-33 shows a modified version of Example 2-32, where we’ve stated explicitly that we 

want a conversion to int, and we either don’t mind that this conversion might not work 

correctly, or we have reason to believe that in this specific case the value will be in range. 

Note that a cast applies just to the first expression that follows it, rather the whole 

expression, so I’ve had to use parentheses on the final line. That makes the cast apply to 

the parenthesized expression; otherwise, it would apply just to the i variable, and since 

that’s already an int, it would have no effect. 

Example 2-33. Explicit conversions with casts 

int i = 42; 

int i2 = (int) 42.0; 

int i3 = (int) (i / 1.0); 

So narrowing conversions require explicit casts, and conversions that cannot lose 

information occur implicitly. However, with some combinations of types, neither is 

strictly more expressive than the other. What should happen if you try to add an int to a 

uint? Or an int to a float? These types are all 32 bits in size, so none of them can 

possibly offer more than 232 distinct values, but they have different ranges, which means 

that each has values it can represent that the other types cannot. For example, you can 

represent the value 3,000,000,001 in a uint, but it’s too large for an int, and can only 

be approximated in a float. As floating point numbers get larger, the values that can be 

represented get further apart—a float can represent 3,000,000,000 and also 

3,000,001,024, but nothing in between. So for the value 3,000,000,001, uint seems 

better than float. But what about −1? That’s a negative number, so uint can’t cope 

with that. Then there are very large numbers that float can represent that are out of 

range for both int and uint. Each of these types has its strengths and weaknesses, and 

it makes no sense to say that in general, one of them is better than the rest. 

Perhaps surprisingly, C# allows some implicit conversions even in these potentially lossy 

scenarios. It only cares about range, not precision: implicit conversions are allowed if the 

target type has a wider range than the source type. So you can convert from either int or 

uint to float, because although float is unable to represent some values exactly, 

there are no int or uint values that it cannot at least approximate. But implicit 

conversions are not allowed in the other direction because there are some values that are 

simply too big—unlike float, the integer types can’t offer approximations for bigger 

numbers. 

You might be wondering what happens if you force a narrowing conversion to int with 

a cast, as Example 2-33 does, in situations where the number is out of range. The answer 

depends on the type from which you are casting. Conversion from one integer type to 

another works differently than conversion from floating point to integer. In fact, the C# 

specification does not define what you get when floating point numbers that are too big 

get cast to an integer type—the result could be anything. But when casting between 

integer types, the binary representation is simply reinterpreted. If the two types are of 

different sizes, the binary will be either truncated or padded to make it the right size for 

the target type, and then the bits are just treated as if they are of the target type. This is 

occasionally useful, but can more often produce surprising results, so you can choose an 

alternative behavior for any out-of-range cast by making it a checked conversion. 
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Checked contexts 

C# defines the checked keyword, which you can put in front of either a statement or an 

expression, making it a checked context. This means that certain arithmetic operations, 

including casts, are checked for range overflow at runtime. If you cast a value to an 

integer type in a checked context, and the value is too high or low to fit, an error will 

occur—the code will throw a System.OverflowException. 

As well as checking casts, a checked context will also detect range overflows in ordinary 

arithmetic. Addition, subtraction, and other operations can take a value beyond the range 

of its data type. For integers, this typically causes the value to ‘roll over’, so adding 1 to 

the maximum value produces the minimum value, and vice versa for subtraction. 

Occasionally, this wrapping can be useful. For example, if you want to determine how 

much time has elapsed between two points in the code, one way to do this is to use the 

Environment.TickCount property.7 (This is more reliable than using the current 

date and time, because that can change as a result of the clock being adjusted, or when 

moving between time zones. The tick count just keeps increasing at a steady rate. That 

said, in real code you’d probably use the class library’s Stopwatch class.) Example 2-

34 shows one way to do this. 

Example 2-34. Exploiting unchecked integer overflow 

int start = Environment.TickCount; 

DoSomeWork(); 

int end = Environment.TickCount; 

 

int totalTicks = end - start; 

Console.WriteLine(totalTicks); 

The tricky thing about Environment.TickCount is that it occasionally ‘wraps 

round’. It counts the number of milliseconds since the system last rebooted, and since its 

type is int, it will eventually run out of range. A span of 25 days is 2.16 billion 

milliseconds, too large a number to fit in an int. Imagine the tick count is 

2,147,483,637, which is 10 short of the maximum value for int. What would you expect 

it to be 100ms later? It can’t be 100 higher (2,147,483,727) because that’s too big a value 

for an int. We’d expect it to get to the highest possible value after 10ms, so after 11ms 

it’ll roll round to the minimum value, so after 100ms we’d expect the tick count to be 89 

above the minimum value (which would be −2,147,483,559). 

The tick count is not necessarily precise to the nearest millisecond in 

practice. It often stands still for milliseconds at a time before leaping 

forward in increments of 10ms, 15ms, or even more. However, the 

value still rolls around, you just might not be able to observe every 

possible tick value as it does so. 

Interestingly, Example 2-34 handles this perfectly. If the tick count in start was 

obtained just before the count wrapped, and the one in end was obtained just after, end 

will contain a much lower value than start, which seems backwards, and the difference 

between them will be large—larger than the range of an int. However, when we 

                                                           

7 A property is a member of a type that represents a value that can either be read or modified or 

both; properties will be described in detail in Chapter 3. 
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subtract start from end, the overflow rolls over in a way that exactly matches the way 

the tick count rolls over, meaning we end up getting the correct result regardless. For 

example, if the start contains a tick count from 10ms before rollover, and end is from 

90ms afterwards, subtracting the relevant tick counts (i.e. subtracting −2,147,483,558 

from 2,147,483,627) seems like it should produce a result of 4,294,967,185, but because 

of the way the subtraction overflows, we actually get a result of 100, which corresponds 

to the elapsed time of 100ms. 

But most of the time, this sort of integer overflow is undesirable. It means that when 

dealing with large numbers, you can get results that are completely incorrect. A lot of the 

time this is not a big risk because you’ll be dealing with fairly small numbers, but if 

there’s any possibility that your calculations might encounter overflow, you might want 

to use a checked context. Any arithmetic performed in a checked context will throw an 

exception when overflow occurs. You can request this in an expression with the 

checked operator, as Example 2-35 shows. Everything inside the parentheses will be 

evaluated in a checked context, so you’ll see an OverflowException if the addition 

of a and b overflows. The checked keyword does not apply to the whole statement 

here, so if an overflow happens as a result of adding c, that will not cause an exception. 

Example 2-35. Checked expression 

int result = checked(a + b) + c; 

You can also turn on checking for an entire block of code with a checked statement, 

which is a block preceded by the checked keyword, as Example 2-36 shows. Checked 

statements always involved a block—you could not just add the checked keyword in 

front of the int keyword in Example 2-35 to turn that into a checked statement. You’d 

also need to wrap the code in braces. 

Example 2-36. Checked statement 

checked 

{ 

    int r1 = a + b; 

    int r2 = r1 - (int) c; 

} 

C# also has an unchecked keyword. You can use this inside a checked block to 

indicate that a particular expression or nested block should not be a checked context. This 

makes life easier if you want everything except for one particular expression to be 

checked—rather than having to label everything except the chosen part as checked, you 

can put all the code into a checked block, and then exclude the one piece that wants to 

allow overflow without errors. 

You can configure the C# compiler to put everything into a checked context by default, 

so that only explicitly unchecked expressions and statements will be able to overflow 

silently. In Visual Studio, you can configure this by opening the project properties, going 

to the Build tab, and clicking the Advanced… button. From the command line, you can 

use the compiler’s /checked option. Be aware that there’s a significant cost—checking 

can make individual integer operations several times slower. The impact on your 

application as a whole will be smaller, because programs don’t spend their whole time 

performing arithmetic, but the cost may still be non-trivial. Of course, as with any 

performance matter, you should measure the practical impact. You may find that the 

performance cost is an acceptable price to pay for the guarantee that you will find out 

about unexpected overflows. 
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BigInteger 

There’s one last numeric type worth being aware of. BigInteger was introduced in 

.NET 4.0. It’s part of the .NET Framework class library, and gets no special recognition 

from the C# compiler. However, it defines arithmetic operators and conversions, meaning 

that you can use it just like the built-in data types. It will compile to slightly less compact 

code—the compiled format for .NET programs can represent integers and floating point 

values natively, but BigInteger has to rely on the more general purpose mechanisms 

used by ordinary class library types. In theory it is likely to be significantly slower too, 

although in an awful lot of code, the speed at which you can perform basic arithmetic on 

integers is not a liming factor, so it’s quite possible that you won’t notice. And as far as 

the programming model goes, it looks and feels like a normal numeric type in your code. 

As the name suggests, a BigInteger represents an integer. Its unique selling point is 

that it will grow as large as is necessary to accommodate values. So unlike the built-in 

numeric types, this has no theoretical limit on its range. Example 2-37 uses it to calculate 

values in the Fibonacci sequence, printing out every 100,000th value. This quickly 

produces numbers far too large to fit into any of the other integer types. I’ve shown the 

full source here to illustrate that this type is defined in the System.Numerics 

namespace. In fact BigInteger is in a separate DLL that Visual Studio does not 

reference by default, so you’ll need to add a reference to the System.Numerics 

component to get this to run. 

Example 2-37. Using BigInteger 

using System; 

using System.Numerics; 

 

class Program 

{ 

    static void Main(string[] args) 

    { 

        BigInteger i1 = 1; 

        BigInteger i2 = 1; 

        Console.WriteLine(i1); 

        int count = 0; 

        while (true) 

        { 

            if (count++ % 100000 == 0) 

            { 

                Console.WriteLine(i2); 

            } 

            BigInteger next = i1 + i2; 

            i1 = i2; 

            i2 = next; 

        } 

    } 

} 

Although BigInteger imposes no fixed limit, there are practical limits. You might 

produce a number that’s too big to fit in the available memory, for example. Or more 

likely, the numbers may grow large enough that the amount of CPU time required to 

perform even basic arithmetic becomes prohibitive. But until you run out of either 

memory or patience, BigInteger will grow to accommodate numbers as large as you 

like. 
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Booleans 

C# defines a type called bool, or as the runtime calls it, System.Boolean. This 

offers only two values: true and false. Whereas some C-family languages allow 

numeric types to stand in for Boolean values, with conventions such as 0 meaning true 

and anything else meaning false, C# will not accept a number. It demands that true/false 

values be represented by a bool. For example, in an if statement, you cannot write 

if (someNumber) to get some code to run only when someNumber is non-zero. If 

that’s what you want, you need to say so explicitly by writing 

if (someNumber != 0). 

Strings and Characters 

The string type (synonymous with the CLR System.String type) represents a 

sequence of text characters. Each character in the sequence is of type char, which is a 

16-bit value representing a single UTF-16 code unit. 

.NET strings are immutable. There are many operations that sound as though they will 

modify a string, such as concatenation, or the ToUpper and ToLower methods offered 

by instances of the string type, but all of these generate a new string, leaving the 

original one unmodified. This means that it’s always safe to pass strings as arguments to 

code you didn’t write, and you can be certain that your strings cannot be changed by that 

code. 

The downside of immutability is that string processing can be inefficient. If you need to 

do work which performs a series of modifications to a string, such as building it up 

character by character, you will end up allocating a lot of memory, because you’ll get a 

separate string for each modification. In these situations you can use a type called 

StringBuilder. (This is not a type that gets any special recognition from the C# 

compiler, unlike string.)  This is conceptually similar to a string—it is a sequence 

of characters, and offers various useful string manipulation methods—but it is 

modifiable. 

Object 

The last intrinsic data type recognized by the C# compiler is object (or 

System.Object as the CLR calls it). This is the base class of almost8 all C# types. A 

variable of type object is able to refer to a value of any type that derives from 

object. This includes all numeric types, the bool and string types, and any custom 

types you can define using the keywords we’ll look at in the next chapter such as class 

and struct. And it also includes all the types defined by the .NET Framework class 

library. 

So object is the ultimate general purpose container. You can refer to almost anything 

with an object variable. We shall return to this in Chapter 6 when we look at 

inheritance. 

                                                           

8 There are some specialized exceptions, such as pointer types. 



O’Reilly Media, Inc.  3/13/2012 

Operators 

Earlier you saw that expressions are sequences of operators and operands. I’ve shown 

some of the types that can be used as operands, so now it’s time to see what operators C# 

offers. Table 2-3 shows the operators that support common arithmetic operations. 

Table 2-3. Basic arithmetic operators 

Name Example 

Identity (unary plus) +x 

Negation (unary minus) -x 

Post-increment x++ 

Post-decrement x-- 

Pre-increment ++x 

Pre-decrement --x 

Multiplication x * y 

Division x / y 

Remainder x % y 

Addition x + y 

Subtraction x – y 

If you’re familiar with any other C family language, all of these should seem familiar. If 

you are not, the most peculiar ones will probably be the increment and decrement 

operators. These all have side effects: they add or subtract one from the variable to which 

they are applied (meaning they can only be applied to variables). With the post-increment 

and post-decrement, although the variable gets modified, the containing expression ends 

up getting the original value. So if x is a variable containing the value 5, the value of 

x++ is also 5, even though the x variable will have a value of 6 after evaluating the x++ 

expression. The pre- forms evaluate to the modified value, so if x is initially 5, ++x 

evaluates to 6, which is also the value of x after evaluating the expression. 

Although the operators in Table 2-3 are used in arithmetic, some are available on certain 

non-numeric types. As you saw earlier, the + symbol represents concatenation when 

working with strings. And as you’ll see in Chapter 9, the addition and subtraction 

operators are also used for combining and removing delegates. 

C# also offers some operators that perform certain binary operations on the bits that make 

up a value, shown in Table 2-4. C# does not support these operations on floating point 

types. 

Table 2-4. Binary integer operators 

Name Example 

Bitwise negation ~x 

Bitwise AND x & y 

Bitwise OR x | y 
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Name Example 

Bitwise XOR x ^ y 

Shift left x << y 

Shift right x >> y 

The bitwise negation operator inverts all bits in an integer—any binary digit with a value 

of 1 becomes 0 and vice versa. The shift operators move all the binary digits left or right 

by one position. A left shift sets the bottom digit to 0. Right shifts of unsigned integers 

set the top digit with zero, and right shifts of signed integers leave the top digit as it is, 

i.e., negative numbers remain negative because they keep their top bit set, while positive 

numbers keep their top bit as zero, so they also retain their sign. 

The bitwise AND, OR, and XOR (exclusive OR) operators perform Boolean logic 

operations on each bit of the two operands, when applied to integers. These three 

operators are also available when the operands are of type bool. (It’s as though these 

operators treat a bool as a 1-digit binary number.) There are some additional operators 

available for bool values, shown in Table 2-5. The ! operator does to a bool what the 

~ operator does to each of the bits in an integer. 

Table 2-5. Operators for bool 

Name Example 

Logical negation (also known as NOT) !x 

Conditional AND x && y 

Conditional OR x || y 

If you have not used other C-family languages, the conditional versions of the AND and 

OR operators may not be familiar to you. These only evaluate their second operands if 

necessary. For example, when evaluating (a && b), if the expression a is false, the 

code generated by the compiler will not even attempt to evaluate b, because the result 

will be false no matter what value b has. Conversely, the conditional OR operator does 

not bother to evaluate its second operand if the first is true, because the result will be 

true regardless of the second operand’s value. This is significant if the second 

operand’s expression either has side effects (e.g., it includes a method invocation) or 

might produce an error. For example, you often see code of the form shown in Example 

2-38. 

Example 2-38. The conditional AND operator 

if (s != null && s.Length > 10) 

... 

This checks to see if the variable s contains the special value null, meaning that it 

doesn’t currently refer to any value. The use of the && operator here is important, because 

if s is null, evaluating the expression s.Length would cause a runtime error. If we 

had used the & operator, the compiler would have generated code that always evaluates 

both operands, meaning that we would see a NullReferenceException at runtime 

if s is null, but by using the conditional operator, we avoid that, because the second 

operand, s.Length > 10, will only be evaluated if s is not null. 
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Example 2-38 tests to see if a property is greater than 10 by using the > operator. This is 

one of several relational operators, which allow us to make comparisons between values. 

They all take two operands, and produce a bool result. Table 2-6 shows these, and they 

are supported for all numeric types. Some operators are available on some other types 

too. For example, you can compare string values with the == and != operators. (There is 

no built-in meaning for the other relational operators with string because different 

countries have different ideas about the order in which to sort strings. If you want to 

compare strings, .NET offers the StringComparer class, which requires you to select 

the rules by which you’d like your strings ordered.) 

Table 2-6. Relational operators 

Name Example 

Less than x < y 

Greater than x > y 

Less than or equal x <= y 

Greater than or equal x >= y 

Equal x == y 

Not equal x != y 

As with most C-family languages, the equality operator is a pair of equals symbols. This 

is because a single equals symbol also produces a valid expression, and it means 

something else: it’s an assignment, and assignments are expressions too. This can lead to 

an unfortunate problem in C-family languages: it’s all too easy to write if (x = y) 

when you meant if (x == y). Fortunately, this will usually produce a compiler error 

in C#, because C# has a special type to represent Boolean values. In languages that allow 

numbers to stand in for Booleans, both of pieces of code are legal even if x and y are 

numbers. (The first means to assign the value of y into x, and then to execute the body of 

the if statement if that value is non-zero. That’s very different than the second one, 

which doesn’t change the value of anything, and only executes the body of the if 

statement if x and y are equal.) But in C#, the first example would only be meaningful if 

x and y were both of type bool.9 

Another feature that’s common to the C family is the conditional operator. (This is 

sometimes also called the ternary operator, because it’s the only operator in the language 

that takes three operands.) It chooses between two expressions. More precisely, it 

evaluates its first operand, which must be a Boolean expression and then returns the value 

of either the second or third operand depending on whether the value of the first was true 

or false respectively. Example 2-39 uses this to pick the larger of two values. (This is just 

for illustration. In practice, you’d normally use .NET’s Math.Max method which does 

the same thing, but is rather more readable.) 

Example 2-39. The conditional operator 

                                                           

9 Language pedants will note that this is not exactly right. It will also be meaningful in certain 

situations where custom implicit conversions to bool are available. We’ll be getting to custom 

conversions in Chapter 3. 
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int max = (x > y) ? x : y; 

This illustrates why C and its successors have a reputation for terse syntax. If you are 

familiar with any language from this family, Example 2-39 will be easy to read, but if 

you’re not, its meaning might not be instantly clear. This will evaluate the expression 

before the ? symbol, (x > y) in this case, and that’s required to be an expression that 

produces a bool. If that is true, the expression between the ? and : symbols is used (x 

in this case), and otherwise, the expression after the : symbol (y here) is used. 

The parentheses in Example 2-39 are optional. I put them in because I 

think they make the code easier to read. 

The conditional operator is similar to the conditional AND and OR operators, in that it 

will only evaluate the operands it has to. It always evaluates its first operand, but it will 

never evaluate both the second and third operands. That means you can handle null 

values by writing something like Example 2-40. This does not risk causing a 

NullReferenceException because it will only evaluate the third operand if s is 

not null. 

Example 2-40. Exploiting conditional evaluation 

int characterCount = s == null ? 0 : s.Length; 

However, in some cases, there are simpler ways of dealing with null values. Suppose 

you have a string, and if it’s null, you’d like to use the empty string instead. You 

could write (s == null ? "" : s). But you could just use the null coalescing 

operator instead, because it’s designed for precisely this job. This operator, shown in 

Example 2-41 (it’s the ?? symbol) evaluates its first operand, and if that’s non-null, 

that’s the result of the expression. But if the first operand is null, it evaluates its second 

operand, and uses that instead. 

Example 2-41. The null coalescing operator 

string neverNull = s ?? ""; 

One of the main benefits offered by both the conditional and the null coalescing operators 

is that they allow you to write a single expression in cases where you would otherwise 

have needed to write considerably more code. This can be particularly useful if you’re 

using the expression as an argument to a method, as in Example 2-42. 

Example 2-42. Conditional expression as method argument 

FadeVolume(gateOpen ? MaxVolume : 0.0, FadeDuration, FadeCurve.Linear); 

Compare this with what you’d need to write if the conditional operator did not exist. You 

would need an if statement. (I’ll get to if statements in the next section, but since this 

book is not for novices, I’m assuming you’re familiar with the rough idea.) And you’d 

either need to introduce a local variable as Example 2-43 does, or you’d need to duplicate 

the method call in the two branches of the if/else, changing just the first argument. So 

terse though the conditional and null coalescing operators are, once you’re used to them 

they can remove a lot of clutter from your code. 

Example 2-43. Life without the condition operator 

double targetVolume; 

if (gateOpen) 

{ 

    targetVolume = MaxVolume; 
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} 

else 

{ 

    targetVolume = 0.0; 

} 

FadeVolume(targetVolume, FadeDuration, FadeCurve.Linear); 

One last set of operators to look at are the compound assignment operators. These 

combine assignment with some other operation, and they are available for the +, -, *, /, 

%, <<, >>, &, ^, and | operators. So you don’t have to write the sort of code shown in 

Example 2-44. 

Example 2-44. Assignment and addition 

x = x + 1; 

We can write this assignment statement more compactly as the code in Example 2-45. All 

the compound assignment operators take this form—you just stick an = on the end of the 

original operator. 

Example 2-45. Compound assignment (addition) 

x += 1; 

As well as being more succinct, this can be less offensive to those of a sensitive 

mathematical disposition. Example 2-44 looks like a mathematical equation, but one that 

is complete nonsense. (This doesn’t stop it being perfectly legal as C# of course—we are 

requesting an operation with side effects, rather than stating a truth. It only looks weird 

because C family languages use the = symbol to denote assignment rather than equality.) 

Example 2-45 doesn’t even resemble any common basic mathematical notation. More 

usefully, it is a distinctive syntax that makes it very clear that we are modifying the value 

of a variable in some particular way. So although those two snippets perform identical 

work, many developers find the second idiomatically preferable. 

That’s not quite a comprehensive list of operators. There are a few more specialized ones 

that I’ll get to once we’ve looked at the areas of the language for which they were 

defined. (Some relate to classes and other types, some to inheritance, some to collections, 

and some to delegates. There are chapters coming up on all of these.) By the way, 

although I’ve been describing which operators are available on which types (e.g., 

numeric vs. Boolean), it’s possible to write a custom type that defines its own meanings 

for most of these. That’s how the .NET Framework’s BigInteger type can support the 

same arithmetic operations as the built-in numeric types. I’ll show how to do this in 

Chapter 3. 

Flow Control 

Most the code we have examined so far executes statements in the order they are written, 

and stops when it reaches the end. If that were the only possible way in which execution 

could flow through our code, C# would not be very useful. So as you’d expect, it has a 

variety of constructs for writing loops, and for deciding which code to execute based on 

input conditions. 
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Boolean Decisions with if Statements 

An if statement decides whether or not to run some particular statement depending on 

the value of a bool expression. For example, the if statement in Example 2-46 will 

only execute the block statement that prints a message if the age variable’s value is less 

than 18. 

Example 2-46. Simple if statement 

if (age < 18) 

{ 

    Console.WriteLine("You are too young to buy alcohol in a bar in the UK."); 

} 

You don’t have to use a block statement with an if statement. You can use any 

statement type as the body. A block is only necessary if you want the if statement to 

govern the execution of multiple statements. However, many coding style guidelines 

recommend using a block in all cases. This is partly for consistency, but also because it 

avoids a possible error when modifying the code at a later date: if you have a non-block 

statement as the body of an if, and then you add an additional statement after that, 

intending it to be part of the same body, it can be easy to forget to wrap it in a block, 

leading to code like that in Example 2-47. The indentation suggests that the developer 

meant for the final statement to be part of the if statement’s body, but C# ignores 

indentation, and so that final statement will always run. If you are in the habit of always 

using a block, you won’t make this mistake. 

Example 2-47. Probably not what was intended 

if (launchCodesCorrect) 

    TurnOnMissileLaunchedIndicator(); 

    LaunchMissiles(); 

An if statement can optionally include an else part, which is followed by another 

statement, which only runs if the if statement’s expression evaluates to false. So 

Example 2-48 will print either the first or the second message, depending on whether the 

optimistic variable is true or false. 

Example 2-48. If and else 

if (optimistic) 

{ 

    Console.WriteLine("Glass half full"); 

} 

else 

{ 

    Console.WriteLine("Glass half empty"); 

} 

The else keyword can be followed by any statement, and again, this is typically a 

block. However, there’s one scenario in which most developers do not use a block for the 

body of the else part, and that’s when they use another if statement. Example 2-49 

shows this—its first if statement has an else part, which has another if statement as 

its body. 

Example 2-49. Picking one of several possibilities 

if (temperatureInCelsius < 52) 

{ 
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    Console.WriteLine("Too cold"); 

} 

else if (temperatureInCelsius > 58) 

{ 

    Console.WriteLine("Too hot"); 

} 

else 

{ 

    Console.WriteLine("Just right"); 

} 

This code still looks like it uses a block for that first else, but that block is actually the 

statement that forms the body of a second if statement. It’s that second if statement 

that is the body of the else. If we were to stick rigidly to the rule of giving each if and 

else body its own block, we’d rewrite Example 2-49 as Example 2-50. This seems 

unnecessarily fussy, because the main risk that we’re trying to avert by using blocks 

doesn’t really apply in Example 2-49. 

Example 2-50. Overdoing the blocks 

if (temperatureInCelsius < 52) 

{ 

    Console.WriteLine("Too cold"); 

} 

else 

{ 

    if (temperatureInCelsius > 58) 

    { 

        Console.WriteLine("Too hot"); 

    } 

    else 

    { 

        Console.WriteLine("Just right"); 

    } 

} 

Although we can chain if statements together as shown in Example 2-49, C# offers a 

more specialized statement that can sometimes be easier to read. 

Multiple Choice with switch Statements 

A switch statement defines multiple groups of statements, and either runs one group, or 

does nothing at all, depending on the value of an expression. The expression can be any 

integer type, a string, a char, or any enumeration type (which we’ll be looking at in 

Chapter 3). As Example 2-51 shows, you put the expression inside parentheses after the 

switch keyword, and after that there’s a region delimited by braces containing series of 

case sections, defining the behavior for each anticipated value for the expression. 

Example 2-51. A switch statement with strings 

switch (workStatus) 

{ 

case "ManagerInRoom": 

    WorkDiligently(); 

    break; 

 

case "HaveNonUrgentDeadline": 
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case "HaveImminentDeadline": 

    CheckTwitter(); 

    CheckEmail(); 

    CheckTwitter(); 

    ContemplateGettingOnWithSomeWork(); 

    CheckTwitter(); 

    CheckTwitter(); 

    break; 

 

case "DeadlineOvershot": 

    WorkFuriously(); 

    break; 

 

 

default: 

    CheckTwitter(); 

    CheckEmail(); 

    break; 

} 

As you can see, a single section can serve multiple possibilities—you can put several 

different case lines at the start of a section, and the statements in that section will run if 

any of those cases apply. You can also write a default section, which will run if none 

of the cases apply. By the way, you’re not required to provide a default section. A 

switch statement does not have to be comprehensive, so if there is no case that 

matches the expression’s value, and there is no default section, the switch statement 

simply does nothing. 

Unlike if statements, which take exactly one statement for the body, a case may be 

followed by multiple statements without needing to wrap them in a block. The sections in 

Example 2-51 are delimited by break statements, which causes execution to jump to the 

end of the switch statement. This is not the only way to finish a section—strictly 

speaking, the rule imposed by the C# compiler is that the end point of the statement list 

for each case must not be reachable, so anything that causes execution to leave the 

switch statement is acceptable. You could use a return statement instead, or throw 

an exception, or you could even use a goto statement. 

Some C family languages (C, for example) allow fall-through, meaning that if execution 

is allowed to reach the end of the statements in a case section, execution will continue 

with the next one. Example 2-52 shows this style, and it is not allowed in C#, because of 

the rule that requires the end of a case statement list not to be reachable. 

Example 2-52. C-style fall-through, illegal in C# 

switch (x) 

{ 

case "One": 

    Console.WriteLine("One"); 

case "Two":  // This line will not compile 

    Console.WriteLine("One or two"); 

    break; 

} 

C# outlaws this because the vast majority of case sections do not fall through, and when 

they do it’s often a mistake caused by simply forgetting to write a break statement (or 

some other statement to break out of the switch). Accidental fall-through is likely to 
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produce unwanted behavior, so C# requires more than the mere omission of a break: if 

you want fall-through, you must ask for it explicitly. As Example 2-53 shows, we use the 

unloved goto keyword to express that we really do want one case to fall through into the 

next one. 

Example 2-53. Fall through in C# 

switch (x) 

{ 

case "One": 

    Console.WriteLine("One"); 

    goto case "Two"; 

case "Two": 

    Console.WriteLine("One or two"); 

    break; 

} 

Incidentally, the goto statement is not strictly limited to switch statements—you can 

add labels to your code and jump around within your methods. However, goto is 

heavily frowned upon, so fall through seems to be the only use for it that is considered 

respectable in modern society. 

Loops: while and do 

C# supports the usual C family loop mechanisms. Example 2-54 shows a while loop. 

This takes a bool expression. It evaluates that expression, and if the result is true, it will 

execute the statement that follows. So far, this is just like an if statement, but the 

difference is that once the loop’s embedded statement is complete, it then evaluates the 

expression again, and if it’s true again, it will execute the embedded statement a second 

time. And it will keep doing this until the expression evaluates to false. As with if 

statements, the body of the loop does not need to be a block, but it usually is. 

Example 2-54. A while loop 

while (!reader.EndOfStream) 

{ 

    Console.WriteLine(reader.ReadLine()); 

} 

The body of the loop may decide to finish the loop early. A break statement will break 

out of the loop. It does not matter whether the while expression is true or false—

executing a break statement will always terminate the loop. 

C# also offers the continue statement. Like a break statement, this terminates the 

current iteration, but unlike break, it will then re-evaluate the while expression, so 

iteration may continue. Both continue and break jump straight to the end of the 

loop, but you could think of continue as jumping directly to the point just before the 

loop’s closing }, while break jumps to the point just after. By the way, continue and 

break are also available for all of the other loop styles I’m about to show. 

Because a while statement evaluates its expression before each iteration, it’s possible 

for a while loop not to run its body at all. Sometimes, you may want to write a loop that 

runs at least once, only evaluating the bool expression after the first iteration. You can 

do this with a do loop, as shown in Example 2-55. 
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Example 2-55. A do loop 

char k; 

do 

{ 

    Console.WriteLine("Press x to exit"); 

    k = Console.ReadKey().KeyChar; 

} 

while (k != 'x'); 

Notice that Example 2-55 ends in a semicolon, denoting the end of the statement. 

Compare this with the line containing the while keyword Example 2-54, which does 

not, despite otherwise looking very similar. That may look inconsistent, but it’s not a 

typo. Putting a semicolon at the end of the line with the while keyword in Example 2-

54 would be legal, but would change the meaning—it would indicate that we want the 

body of the while loop to be an empty statement. The block that followed would then 

be treated as a brand new statement to execute after the loop completes. The code would 

get stuck in an infinite loop unless the reader were already at the end of the stream. (The 

compiler will issue a warning about a “Possible mistaken empty statement” if you do that 

by the way.) 

C-Style for Loops 

Another style of loop that C# inherits from C is the for loop. This is similar to while, 

but it adds two features to that loop’s bool expression: it provides a place to declare 

and/or initialize one or more variables that will remain in scope for as long as the loop 

runs, and it provides a place to perform some operation each time round the loop (in 

addition to the embedded statement that forms the body of the loop). So the structure of a 

for loop looks like this: 

for (initializer; condition; iterator) body 

A very common application of this is to do something to all the elements in an array. 

Example 2-56 shows a for loop that multiplies every element in an array by 2. The 

condition part works in exactly the same way as in a while loop—it determines whether 

the embedded statement forming the loop’s body runs, and it will be evaluated before 

each iteration. Again, the body doesn’t strictly have to be a block, but usually is. 

Example 2-56. Modifying array elements with a for loop 

for (int i = 0; i < myArray.Length; i++) 

{ 

    myArray[i] *= 2; 

} 

The initializer in this example declares a variable called i and initializes it to 0. This 

initialization happens just once of course—this wouldn’t be very useful if it reset the 

variable to 0 every time round the loop, because the loop would never end. This 

variable’s lifetime effectively begins just before the loop starts, and finishes when the 

loop finishes. The initializer does not need to be a variable declaration—you can use any 

expression statement. 

The iterator in Example 2-56 just adds 1 to the loop counter. It runs at the end of each 

loop iteration, after the body runs, and before the condition is re-evaluated. (So if the 

condition is initially false, not only does the body not run, the iterator will never be 

evaluated.) C# does nothing with the result of the iterator expression—it is useful only 
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for its side effects. So it doesn’t matter whether you write i++, ++i, i += 1, or even 

i = i + 1. 

The iterator is a redundant construct, because it doesn’t let you do anything that you 

couldn’t have achieved by putting the exact same code in a statement at the end of the 

loop’s body instead.10 However, there may be readability benefits. A for statement puts 

the code that defines how we loop in one place, separate from the code that defines what 

we do each time round the loop, which might help someone reading the code to 

understand what it does. They don’t have to scan down to the end of a long loop to find 

the iterator statement (although a long loop body that trails over pages of code is 

generally considered to be bad practice, so this is last benefit is a little dubious). 

Both the initializer and the iterator can contain lists, as Example 2-57 shows, although 

this isn’t terribly useful—it will run all iterators every time round, so in this example, i 

and j will have the same value as each other throughout. 

Example 2-57. Multiple initializers and iterators 

for (int i = 0, j = 0; i < myArray.Length; i++, j++) 

... 

You can’t write a single for loop that performs a multi-dimensional iteration. If you 

want that, you would simply nest one loop inside another, as Example 2-58 illustrates. 

Example 2-58. Nested for loops 

for (int j = 0; j < height; ++j) 

{ 

    for (int i = 0; i <  width; ++i) 

    { 

        ... 

    } 

} 

Although Example 2-56 shows a common enough idiom for iterating through arrays, you 

will often use a different, more specialized construct. 

Collection Iteration with foreach Loops 

C# offers a style of loop which is not universal in C family languages. The foreach 

loop is designed for iterating through collections. A foreach loop fits this pattern: 

foreach (item-type iteration-variable in collection) body 

The collection is an expression whose type matches a particular pattern recognized 

by the compiler. The .NET Framework’s IEnumerable<T> interface, which we’ll be 

looking at in Chapter 5, matches this pattern, although the compiler doesn’t actually 

require an implementation of that interface—it just requires the collection to implement a 

GetEnumerator method that resembles the one defined by that interface. Example 2-

59 uses foreach to print all the strings in an array; all arrays provide the method that 

foreach requires. 

                                                           

10 A continue statement complicates matters, because it provides a way to move to the next 

iteration without getting all the way to the end of the loop body. Even so, you could still reproduce 

the effect of the iterator when using continue statements, it would just require more work. 
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Example 2-59. Iterating over a collection with foreach 

string[] messages = GetMessagesFromSomewhere(); 

foreach (string message in messages) 

{ 

    Console.WriteLine(message); 

} 

This loop will run the body once for each item in the array. The iteration variable 

(message, in this example) is different each time round the loop, and will refer to the 

item for the current iteration. 

In one way, this is less flexible than the for-based loop shown in Example 2-56: a 

foreach loop cannot modify the collection it iterates over. That’s because not all 

collections support modification. IEnumerable<T> demands very little of its 

collections, as it does not require modifiability, random access, or even the ability to 

know up front how many items the collection provides. (In fact, IEnumerable<T> is 

able to support never-ending collections. For example, it’s perfectly legal to write an 

implementation that returns random numbers for as long as you care to keep fetching 

values.) 

But foreach offers two advantages over for. One advantage is subjective, and 

therefore debatable: it’s slightly more readable. But significantly, it’s also more general. 

If you’re writing methods that do things to collections, those methods will be more 

broadly applicable if they use foreach than for, because you’ll be able to accept an 

IEnumerable<T>. Example 2-60 can work with any collection that contains strings, 

rather than being limited to arrays. 

Example 2-60. General purpose collection iteration 

public static void ShowMessages(IEnumerable<string> messages) 

{ 

    foreach (string message in messages) 

    { 

        Console.WriteLine(message); 

    } 

} 

Summary 

In this chapter, I showed the nuts and bolts of C# code—variables, statements, 

expressions, basic data types, operators, and flow control. Now it’s time to take a look at 

the broader structure of a program. All code in C# programs must belong to a type, and 

types are the topic of the following chapter. 
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Types 

C# does not limit us to the built-in data types shown in Chapter 2. You can define your 

own types. In fact, you have no choice: if you want to write code at all, C# requires you 

to define a type to contain that code. Everything we write, and any functionality we 

consume from the .NET Framework Class Library (or any other .NET library) will 

belong to a type. 

C# recognizes multiple kinds of type. I’ll begin with the most important. 

Classes 

Whether you’re writing your own types, or using other people’s, most of the types you 

work with in C# will be classes. A class can contain both code and data, and it can 

choose to make some of its features publicly accessible to anyone who cares to use it, 

while keeping other features only accessible to code within the class. So classes offer a 

mechanism for encapsulation—they can define a clear public programming interface for 

other people to use, while keeping internal implementation details inaccessible. 

If you’re familiar with object-oriented languages, this will all seem very ordinary. If 

you’re not, then you might want to read a more introductory-level book first, because this 

book is not meant to teach programming. (“Learning C#” by Jesse Liberty, published by 

O’Reilly provides an introduction to the basic coding concepts used in C#.) So I’ll just 

describe the details specific to C# classes. 

You’ve already seen some examples of classes, but let’s look at the structure in a bit 

more detail. Example 3-1 shows a simple class. 

Example 3-1. A simple class 

public class Counter 

{ 

    private int _count; 

 

    public int GetNextValue() 

    { 
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        _count += 1; 

        return _count; 

    } 

} 

Class definitions always contain the class keyword followed by the name of the class. 

C# does not demand that the name matches the containing file, nor does it limit you to 

having one class in a file. Having said that, most C# projects make the class and file 

names match by convention. Class names follow the same rules for identifiers as 

variables, which I described in Chapter 2. 

[I’d like to add a page reference—the relevant section is the paragraph immediately after 

Example 2-3] 

The first line of Example 3-1 contains an additional keyword: public. Class definitions 

can optionally specify accessibility, which determines what other code is allowed to use 

the class. Ordinary classes have just two choices here: public and internal, with the 

latter being the default. (As I’ll show later, you can nest classes inside other types, and 

nested classes have a slightly wider range of accessibility options.) An internal class is 

only available for use within the component that defines it. So if you are writing a class 

library, you are free to define classes that exist purely as part of your library’s 

implementation: by marking them as internal, you prevent the rest of the world from 

using them. 

You can choose to make your internal types visible to selected external 

components. Microsoft does this with their libraries. The .NET 

Framework Class Library is spread across many DLLs, each of which 

defines many internal types, but some internal features are used by 

other DLLs from the library. This is made possible by annotating a 

component with the [assembly: 

InternalsVisibleTo("<name>")] attribute, specifying the 

name of the component with which you wish to share. (This would 

normally go in the AssemblyInfo.cs source file, which hides inside the 

Properties node in Solution Explorer.) For example, you might want to 

make every class in your application visible to a unit test project, so 

that you can write unit tests for code that you don’t intend to make 

publicly available. 

The Counter class in Example 3-1 has chosen to be public, but that doesn’t mean it 

has to have everything on show. It defines two members—a field called _count that 

holds an int, and a method called GetNextValue that operates on the information in 

that field. As you can see, both of these members have accessibility qualifiers too. And as 

is very common with object-oriented programming, this class has chosen to make the 

data member private, exposing public functionality through a method. 

Accessibility modifiers are optional for members, just as they are for classes, and again, 

they default to the most restrictive option available: private in this case. So I could 

have left off the private keyword in Example 3-1 without changing the meaning, but I 

prefer to be explicit. (If you leave it unspecified, people reading your code may wonder 

whether the omission was deliberate or accidental.) 

Naming Conventions 
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Microsoft defines a set of conventions for publicly visible identifiers, which they 

(mostly) conform to in their class libraries. I usually follow these conventions in 

my code. You can get a free tool, FxCop which can verify, amongst other things, 

that a library conforms to these conventions. This ships as part of the Windows 

SDK, and is also built into the ‘static analysis’ tools that come with some 

editions of Visual Studio. Or if you just want to read a description of the rules, 

they’re part of the design guidelines for .NET class libraries at 

http://msdn.microsoft.com/library/ms229042 

In these conventions, the first letter of a class name is capitalized, and if the 

name contains multiple words, each new word is also capitalized. (For historical 

reasons, this convention is called Pascal Casing, or sometimes PascalCasing 

without a space, as a self-referential example.) Although it’s legal in C# for 

identifiers to contain underscores, the conventions don’t allow them in class 

names. Methods also use PascalCasing, as do properties. Fields are rarely 

public, but when they are, they use the same casing. 

Methods parameters use a different convention known as camelCasing, in which 

upper case letters are used at the start of all but the first word. The name 

describes the way this convention produces one or more humps in the middle of 

the word. 

Microsoft’s naming conventions remain silent for implementation details. (The 

original purpose of these rules, and the FxCop tool was to ensure a consistent 

feel across the whole public API of the .NET Framework class library. The ‘Fx’ 

is short for Framework.) So there is no standard for how private fields are 

named. Example 3-1 uses an underscore prefix. I’ve done this because I like 

fields to look different from local variables, so that I can tell easily what sort of 

data my code is working with, and it can also help to avoid situations where 

method parameter names clash with field names. However, some people find 

this convention ugly and prefer not to distinguish fields visibly. Some other 

people find it insufficiently obvious and prefer the more in-your-face m_ (a 

lowercase m followed by an underscore) prefix. 

Fields hold data. They are a kind of variable, but unlike a local variable, whose scope and 

lifetime is determined by its containing method, a field is tied to its containing type. 

Example 3-1 has been able to refer to the _count field by its unqualified name, because 

fields are in scope within their defining class. But what about the lifetime? We know that 

each invocation of a method gets its own set of local variables. How many sets of a 

class’s fields are there? There are a couple of choices, but in this case, it’s one per 

instance. Example 3-2 uses the Counter class from Example 3-1 to illustrate this. 

Notice that this code is in a separate class, to demonstrate that we can use the Counter 

class’s public method from other classes. By convention Visual Studio puts the program 

entry point, Main, in a class called Program, so I’ve done the same in this example. 

[Production note: when laying out this example, I’d prefer to avoid a page break 

occurring in the lines that consist of Console.WriteLine if that’s possible. I’ve put blank 

lines in to help show the different phases of operations, but they would just look a bit 

confusing and messy if split across a page break, as happened with one draft of this.] 

Example 3-2. Using a custom class 

class Program 

{ 

    static void Main(string[] args) 
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    { 

        Counter c1 = new Counter(); 

        Counter c2 = new Counter(); 

        Console.WriteLine("c1: " + c1.GetNextValue()); 

        Console.WriteLine("c1: " + c1.GetNextValue()); 

        Console.WriteLine("c1: " + c1.GetNextValue()); 

 

        Console.WriteLine("c2: " + c2.GetNextValue()); 

 

        Console.WriteLine("c1: " + c1.GetNextValue()); 

    } 

} 

This uses the new operator to create new instances of my class. Since I use new twice, I 

get two Counter objects, and each has its own _count field. So we get two 

independent counts, as the program’s output shows: 

c1: 1 

c1: 2 

c1: 3 

c2: 1 

c1: 4 

As you’d expect, it begins counting up, and then a new sequence starts at 1 when we 

switch to the second counter. But when we go back to the first counter it carries on from 

where it left off. This demonstrates that each instance has its own _count. But what if 

we don’t want that? Sometimes you will want to keep track of information that doesn’t 

relate to any single object. 

Static Members 

We add the static keyword to a member declaration to declare that the member is not 

associated with any particular instance of the class. Example 3-3 shows a modified 

version of the Counter class from Example 3-1. I’ve added two new members, both 

static, for tracking and reporting counts across all instances. 

Example 3-3. Class with static members 

public class Counter 

{ 

    private int _count; 

    private static int _totalCount; 

 

    public int GetNextValue() 

    { 

        _count += 1; 

        _totalCount += 1; 

        return _count; 

    } 

 

    public static int TotalCount 

    { 

        get 

        { 

            return _totalCount; 

        } 

    } 
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} 

TotalCount reports the count, but it doesn’t do any work—it just returns a value that 

the class keeps up to date, and as I’ll explain later in the "Properties" section, this makes 

it an ideal candidate for being a property rather than a method. The static field 

_totalCount keeps track of the total number of calls to GetNextValue, unlike the 

non-static _count, which just tracks calls to the current instance. Notice that I’m free to 

use that static field inside GetNextValue in exactly the same way as I use the non-

static _count. The difference in behavior is clear if I add the line of code shown in 

Example 3-4 to the end of the Main method in Example 3-2. 

Example 3-4. Using a static property 

Console.WriteLine(Counter.TotalCount); 

This line prints out 5, the sum of the two counts. Notice that to access a static member, I 

just write ClassName.MemberName. In fact, Example 3-4 uses two static members—

as well as my class’s TotalCount property, it uses the Console class’s static 

WriteLine method. 

Because I’ve declared TotalCount as a static property, the code it contains only has 

access to other static members. If it tried to use the non-static _count field, or call the 

non-static GetNextValue method, the compiler would complain. Replacing 

_totalCount with _count in the TotalCount property results in this error: 

error CS0120: An object reference is required for the non-static field, method, 

 or property 'ConsoleApplication1.Counter._count' 

Since non-static fields are associated with a particular instance of a class, C# needs to 

know which instance to use. With a non-static method or property, that’ll be whichever 

instance the method or property itself was invoked on. So in Example 3-2, I wrote either 

c1.GetNextValue() or c2.GetNextValue() to choose which of my two objects 

to use. C# passed the reference stored in either c1 or c2 respectively as an implicit first 

argument. You can get hold of that using the this keyword, by the way. Example 3-5 

shows an alternative way we could have written the first line of GetNextValue from 

Example 3-3, indicating explicitly that we believe _count is a member of the instance 

on which the GetNextValue method was invoked. 

Example 3-5. The this keyword 

this._count += 1; 

Explicit member access through this is sometimes necessary due to name collisions. 

Although all the members of a class are in scope for any code in the same class, the code 

in a method does not share a declaration space with the class. Remember from Chapter 2 

that a declaration space is a region of code in which a single name must not refer to two 

different entities, and since methods do not share theirs with the containing class, you are 

allowed to declare local variables and method parameters that have the same name as 

class members. This can easily happen if you don’t use a convention such as an 

underscore prefix for field names. You don’t get an error in this case—locals and 

parameters just hide the class members. But if you qualify access with this, you can get 

at class members even if there are locals with the same name in scope. Incidentally, some 

developers qualify all member access with this, presumably because they find the _ 

and m_ prefixes insufficiently obtrusive. 
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Of course, static methods don’t get to use the this keyword, because they are not 

associated with any particular instance. 

Static Classes 

Some classes only provide static members. For example, the System.Threading 

namespace provides various classes that offer multithreading utilities. For example, 

there’s the Interlocked class, which provides various atomic, lock-free, read-modify-

write operations, and there’s also the LazyInitializer class, which provides helper 

methods for performing deferred initialization in a way that guarantees to avoid double 

initialization in multithreaded environments. These classes only provide services through 

static methods. It makes no sense to create instances of these types because there’s no 

useful per-instance information they could hold. 

You can declare that your class is intended to be used this way by putting the static 

keyword in front of the class keyword. This compiles the class in a way that prevents 

instances of it from being constructed. Anyone attempting to construct instances of a 

class designed to be used this way clearly hasn’t understood what it does, so the compiler 

error will be a useful prod in the direction of the documentation. 

Reference Types 

Any type defined with the class keyword will be a reference type, meaning that any 

variable of this type is merely a reference to an instance of the type. Consequently, 

assignments don’t copy the object, they just copy the reference. Consider Example 3-6, 

which contains almost the same code as Example 3-2, except instead of using the new 

keyword to initialize the c2 variable, it just initializes it with a copy of c1. 

Example 3-6. Copying references 

Counter c1 = new Counter(); 

Counter c2 = c1; 

Console.WriteLine("c1: " + c1.GetNextValue()); 

Console.WriteLine("c1: " + c1.GetNextValue()); 

Console.WriteLine("c1: " + c1.GetNextValue()); 

 

Console.WriteLine("c2: " + c2.GetNextValue()); 

 

Console.WriteLine("c1: " + c1.GetNextValue()); 

Because this example uses new just once, there is only one Counter instance, and the 

two variables both refer to this same instance. So we get different output: 

c1: 1 

c1: 2 

c1: 3 

c2: 4 

c1: 5 

It’s not just locals that do this—if you use a reference type as the type for any other kind 

of variable, such as a field or property, you will again see that assignment copies the 

reference, and not the whole object. This is different from the behavior we saw with the 

built-in numeric types in Chapter 2. With those, each variable contains a value, not a 

reference to a value, so assignment necessarily involves copying the value. This value 
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copying behavior is not available for most reference types—see the "Copying Instances" 

sidebar. 

Copying Instances 
Some C family languages define a standard way to make a copy of an object. 

For example, in C++ you can write a copy constructor, and you can overload the 

assignment operator, and there are rules for how these are applied when 

duplicating an object. In C#, some types are copyable, and it’s not just the built-

in numeric types. Later in this chapter you’ll see how to define a struct, which is 

a custom value type. Structs are always copyable, but there is no way to 

customize this process: assignment just copies all the fields, and if any fields are 

of reference type, this just copies the reference. This is sometimes called a 

‘shallow’ copy, because it only copies the contents of the struct, and does not 

make copies of any of the things the struct refers to. 

There is no intrinsic mechanism for making a copy of a class instance. The .NET 

Framework does define an API for duplicating objects through its 

ICloneable interface, but this is not very widely supported. It’s a 

problematic API because it doesn’t specify how to handle objects with 

references to other objects. Should a clone also duplicate the objects to which it 

refers (a deep copy) or just copy the references (a shallow copy)? In practice, 

types that wish to allow themselves to be copied often just provide an ad hoc 

method for the job, rather than conforming to any pattern. 

Now it would be possible to redesign Counter to make it feel a bit more like the built-

in types. (Whether we should is questionable, but it’ll be instructive to see where it takes 

us. We can assess whether it was a good idea when we get there.) One approach could 

make it immutable, meaning that it sets all of its fields during initialization and then never 

modifies them again. This is the tactic used by the built-in string type. You can ask the 

compiler to help you with this—if you use the readonly keyword in a field declaration, 

the compiler will generate an error if you attempt to modify that field from outside of a 

constructor. 

Immutability doesn’t give you copy-by-value semantics of course—assignment still just 

copies references, but if the object can never change state, then any particular reference 

will refer to a value that never changes, making it harder to tell the difference between 

copying a reference and copying a value. If you want to increment an immutable 

Counter, then you would need to produce a brand new instance, initialized with the 

incremented value. That’s quite similar to how numbers work: an addition expression that 

adds 1 to an int, produces a brand new int value as the result.1 You could achieve a 

similar effect by writing a custom implementation of the ++ operator for your own type. 

Example 3-7 shows how that might look. 

Example 3-7. An immutable counter 

public class Counter 

{ 

    private readonly int _count; 

                                                           

1 This does not necessarily require new memory, so this is more efficient than it sounds. New value 

instances often overwrite existing ones. 
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    private static int _totalCount; 

 

    public Counter() 

    { 

        _count = 0; 

    } 

 

    private Counter(int count) 

    { 

        _count = count; 

    } 

 

    public Counter GetNextValue() 

    { 

        _totalCount += 1; 

        return new Counter(_count + 1); 

    } 

 

    public static Counter operator ++(Counter input) 

    { 

        return input.GetNextValue(); 

    } 

 

    public int Count 

    { 

        get 

        { 

            return _count; 

        } 

    } 

 

    public static int TotalCount 

    { 

        get 

        { 

            return _totalCount; 

        } 

    } 

} 

I’ve had to modify the GetNextValue method to return a new instance, because it’s no 

longer able to modify _count. This means my implementation of the ++ operator can 

just defer to GetNextValue. Example 3-8 shows how we can use this. 

Example 3-8. Using an immutable counter 

Counter c1 = new Counter(); 

Counter c2 = c1; 

c1++; 

Console.WriteLine("c1: " + c1.Count); 

c1++; 

Console.WriteLine("c1: " + c1.Count); 

c1 = c1.GetNextValue(); 

Console.WriteLine("c1: " + c1.Count); 

 

c2++; 

Console.WriteLine("c2: " + c2.Count); 
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c1++; 

Console.WriteLine("c1: " + c1.Count); 

Notice that the code now only uses the new operator once. So after the c2 is declared it 

holds a reference to the same object that c1 refers to. But because these are immutable 

objects, we’ve had to change the way we update the counter. I can use either the ++ 

operator or GetNextValue, but in either case we end up creating a new instance of the 

type, and the reference that was previously in the variable is replaced with a reference to 

this new object. (Unlike with int, this new instance will always involve allocating new 

memory, but I’ll show how to change that in the "Structs" section.) So although c1 and 

c2 started out referring to the same object as they did in Example 3-6, this time the 

output shows that we still get two independent sequences: 

c1: 1 

c1: 2 

c1: 3 

c2: 1 

c1: 4 

Of course, all that’s happening here is that the new keyword is getting used multiple 

times, it’s just hiding in the ++ operator and GetNextValue method. Conceptually, 

that’s not very different from the fact that incrementing an integer produces a new integer 

value that is one higher; the number 5 does not stop being the number 5 just because you 

decided to calculate 5+1, just as a Counter with a count of 5 doesn’t stop having that 

count just because you decided to ask for its successor. 

However, there is one big difference between how immutable objects and the intrinsic 

numeric values work. Any single instance of a reference type has an identity, by which I 

mean that it is possible to ask whether two references refer to the exact same instance. I 

could have two variables that each refer to Counter objects which have a count of 1, 

which might mean they refer to the same Counter, but it’s possible that they refer to 

different objects that happen to have the same value. 

Example 3-9 arranges for three variables to refer to counters with the same count, and 

then compares their identities. By default, the == operator does exactly this sort of object 

identity comparison when its operands are reference types. However, types are allowed to 

redefine the == operator. The string type changes == to perform value comparisons, 

so if you pass two distinct string objects as the operands of ==, the result will be true if 

they contain identical text. If you want to force comparison of object identity, you can 

use the static object.ReferenceEquals method. 

Example 3-9. Comparing references 

Counter c1 = new Counter(); 

c1++; 

Counter c2 = c1; 

Counter c3 = new Counter(); 

c3++; 

 

Console.WriteLine(c1.Count); 

Console.WriteLine(c2.Count); 

Console.WriteLine(c3.Count); 

Console.WriteLine(c1 == c2); 

Console.WriteLine(c1 == c3); 

Console.WriteLine(c2 == c3); 
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Console.WriteLine(object.ReferenceEquals(c1, c2)); 

Console.WriteLine(object.ReferenceEquals(c1, c3)); 

Console.WriteLine(object.ReferenceEquals(c2, c3)); 

The first three lines of output confirm that all three counters have the same count: 

1 

1 

1 

True 

False 

False 

True 

False 

False 

It also illustrates that while they have the same count, only c1 and c2 are considered to 

be the same thing. That because after incrementing c1, we assign it into c2, meaning 

that c1 and c2 will both refer to the same object, which is why the first comparison 

succeeds. But c3 refers to a different object entirely that happens to have the same value, 

which is why the second comparison fails. (I’ve used both the == and 

object.ReferenceEquals comparisons here to illustrate that they do the same 

thing in this case, because Counter has not defined a custom meaning for ==.) 

We could try the same thing with int instead of a Counter, as Example 3-10 shows. 

Example 3-10. Comparing values 

int c1 = new int(); 

c1++; 

int c2 = c1; 

int c3 = new int(); 

c3++; 

 

Console.WriteLine(c1); 

Console.WriteLine(c2); 

Console.WriteLine(c3); 

Console.WriteLine(c1 == c2); 

Console.WriteLine(c1 == c3); 

Console.WriteLine(c2 == c3); 

Console.WriteLine(object.ReferenceEquals(c1, c2)); 

Console.WriteLine(object.ReferenceEquals(c1, c3)); 

Console.WriteLine(object.ReferenceEquals(c2, c3)); 

Console.WriteLine(object.ReferenceEquals(c1, c1)); 

As before, we can see that all three variables have the same value: 

1 

1 

1 

True 

True 

True 

False 

False 

False 

False 
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This also illustrates that the int type does define a special meaning for ==. This 

compares the values, so those three comparisons succeed. But 

object.ReferenceEquals never succeeds for value types—in fact, I’ve added an 

extra, fourth comparison here, where I compare c1 with c1, and even that fails! That 

surprising result is due to the fact that it’s not even meaningful to perform a reference 

comparison with int, because it’s not a reference type. The compiler has had to perform 

implicit conversions for the last three lines of Example 3-10: it has wrapped each 

argument to object.ReferenceEquals in something called a box, and we’ll be 

looking at those in Chapter 7. 

There’s another difference between reference types and types like int that’s rather 

easier to demonstrate. Any reference type variable can contain a special value, null, 

meaning that the variable does not refer to any object at all. You cannot assign this value 

into any of the built-in numeric types (although see the sidebar, "Nullable<T>"). 

Nullable<T> 
.NET defines a wrapper type called Nullable<T>, which adds nullability to 

value types. Although an int variable cannot hold null, a Nullable<int> 

can. The angle brackets after the type name indicate that this is a generic type—

you can plug in various different types into that T placeholder—and I’ll talk 

about those more in Chapter 4. 

The compiler provides special handling for Nullable<T>. It lets you use a 

more compact syntax, so you can write int? instead. C# has special handling 

for nullable numerics inside arithmetic expressions. For example, if you write a 

+ b where a and b are both int?, the result is an int? which will be null if 

either operand was null, and will otherwise contain the sum of the values. This 

also works if only one of the operands is an int? and the other is an ordinary 

int. 

While you can set an int? to null, it’s not a reference type. It’s more like a 

combination of an int and a bool. 

The difference between our immutable class and int clearly illustrates that the built-in 

numeric types are not the same sort of thing as a class. A variable of type int is not a 

reference to an int. It contains the value of the int—there is no indirection. In some 

languages, this choice between reference-like and value-like behavior is determined by 

the way in which you use a type, but in C#, this is a fixed feature of the type. Any 

particular type is either a reference type or a value type. The built-in numeric types are all 

value types, as is bool whereas a class is always a reference type. But this is not a 

distinction between built-in and custom types. You can write custom value types. 

Structs 

Sometimes it will be appropriate for a custom type to get the same value-like behavior as 

the built-in numeric types. The most obvious example would be a custom numeric type. 

For example, although the CLR has intrinsic support for some numeric types, we saw that 

the class library adds the BigInteger type for representing arbitrarily large integers. 

The same part of the library also defines a Complex type for representing complex 

numbers. It would be unhelpful if these types behaved significantly differently from the 
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built-in types. Fortunately, they don’t, because they are value types. The way to write a 

custom value type is to use the struct keyword. 

A struct can have most of the same features as a class—it can contain methods, fields, 

properties, constructors, and any of the other members types supported by classes, and we 

can use the same accessibility keywords such as public and internal. However, 

there are a few restrictions, so if we wanted to turn the Counter type I wrote earlier into 

a struct, we can’t just replace the class keyword with struct. (Again, whether we 

should convert it to a struct is questionable. I’ll return to that once we’ve done it.) 

Slightly surprisingly, we’d need to remove the constructor which takes no arguments. 

The compiler always automatically provides a struct with a zero-argument 

constructor, and it is an error to attempt to provide your own. (This only applies to zero-

argument constructors—you’re allowed to define constructors that take arguments.) This 

compiler-generated constructor for a struct initializes all fields to 0, or the nearest 

equivalent value (e.g., false for a bool field, or null for a reference). This makes 

initialization of values very straightforward for the CLR. If you declare an array of some 

value type (whether a built-in type or a custom one), the array’s values go in a single 

contiguous block of memory.2 This is very efficient—for a large array, overhead such as 

heap block headers will take a tiny proportion of the space, with the bulk of the block 

containing the data you care about. Because value types are compelled to have a zero-

argument constructor that does nothing more than set everything to 0, the entire array can 

be initialized quickly with a loop that fills it with zeros. The same is true for when a value 

type appears as a field in some other type—the memory for a newly allocated object gets 

filled with zeros, which has the effect of setting all reference-type fields to null, and all 

values to their default state. Not only is this efficient, it also simplifies initialization—

constructors containing code will only run if you invoke them explicitly. 

Looking at Example 3-7, our Counter class’s no-arguments constructor initializes the 

one and only non-static field to 0, so the compiler-generated constructor we get with a 

struct does what we want anyway. So if we convert Counter to a struct, we can 

just remove that constructor and we won’t lose anything. 

We’ll need to make one more change, or rather, a set of changes with one goal in mind. 

As mentioned earlier, C# defines a default meaning for the == operator for reference 

types: it is equivalent to object.ReferenceEquals, which compares identities. 

That’s not meaningful for value types, so C# does not define any automatic meaning for 

== for a struct. We’re not required to define a meaning, but if you write code that 

attempts to compare values with ==, the compiler will complain if the type hasn’t defined 

an == operator. However, if you add an == operator on its own, the compiler will inform 

you that you are required to define a matching != operator. You might think C# would 

define != as the inverse of  ==, since they appear to mean the opposite. However, some 

types will, in some situations return false for both operators for certain pairs of 

operands, so C# requires us to define both independently. As Example 3-11 shows, these 

are very straightforward for our simple type. 

Example 3-11. Support custom comparison 

                                                           

2 This is an implementation detail by the way, rather than an absolute requirement of how C# has to 

work, but it’s how Microsoft’s implementation currently works. 
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public static bool operator ==(Counter x, Counter y) 

{ 

    return x.Count == y.Count; 

} 

 

public static bool operator !=(Counter x, Counter y) 

{ 

    return x.Count != y.Count; 

} 

 

public override bool Equals(object obj) 

{ 

    if (obj is Counter) 

    { 

        Counter c = (Counter) obj; 

        return c.Count == this.Count; 

    } 

    else 

    { 

        return false; 

    } 

} 

 

public override int GetHashCode() 

{ 

    return _count; 

} 

If you just add the == and != operators, you’ll find that the compiler generates warnings 

recommending that you define two methods called Equals and GetHashCode. 

Equals is a standard method that is available on all .NET types, and if you have defined 

a custom meaning for ==, you should ensure that Equals does the same thing. Example 

3-11 does this, and as you can see, it contains the same logic as the == operator, but it has 

to do some extra work. The Equals method permits comparison with absolutely any 

type, so we first check to see if our Counter is being compared with another Counter. 

This involves some conversion operators that I’ll be describing in more detail in Chapter 

6.I’m using the is operator, which tests to see whether a variable refers to an instance of 

the specified type, and having established that our Counter is definitely being 

compared with another Counter, the(Counter) obj expression that follows lets us 

get hold of the Counter that obj refers to, enabling us to perform the comparison. 

Finally, Example 3-11 implements GetHashCode, which we’re required to do if we 

implement Equals. See the "GetHashCode" sidebar for details. 

GetHashCode 
All .NET types offer a method called GetHashCode. It returns an int that in 

some sense represents the value of your object. Some data structures and 

algorithms are designed to work with this sort of simplified, reduced version of 

an object’s value. A hash table, for example, can find a particular entry in a very 

large table very efficiently, as long as the type of value you’re searching for 

offers a good hash code implementation. Some of the collection classes 

described in Chapter 5 rely on this. The details of this sort of algorithm are 

beyond the scope of this book, but if you search the web for “hash table” you’ll 

find plenty of information. 
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A correct implementation of GetHashCode must meet two requirements. The 

first is that whatever number an instance returns as its hash code, that instance 

must continue to return the same code as long as its own value does not change.  

The second requirement is that two instances that have equal values according to 

their Equals methods must return the same hash code. Any type that fails to 

meet either of these requirements will cause code that uses its GetHashCode 

method to malfunction. The default implementation of GetHashCode meets 

the first requirement but makes no attempt to meet the second—pick any two 

objects that use the default implementation and most of the time they’ll have 

different hash codes. This is why you need to override GetHashCode if you 

override Equals. 

Ideally, objects that have different values should have different hash codes. Of 

course, that’s not always possible—GetHashCode returns an int, which has 

a finite number of possible values. (4,294,967,296 to be precise.) If your data 

type offers more distinct values, then it’s clearly not possible for every 

conceivable value to produce a different hash code. For example, the 64-bit 

integer type, long, obviously supports more distinct values than int. If you 

call GetHashCode on a long with a value of 0, on .NET 4.0 it returns 0, and 

you’ll get the same hash code for a long with a value of 4,294,967,297. This is 

called a hash collision, and they are an unavoidable fact of life. Code that 

depends on hash codes just has to be able to deal with these. 

The rules do not require the mapping from values to hash codes to be fixed 

forever. Just because a particular value produced a particular hash code today 

does not mean you can expect to get the same code for the same value when 

running your program next week. Nor are programs obliged to produce the same 

hash for the same value when running simultaneously on two different 

computers. In fact there are good reasons to avoid that. Criminals who attack 

online computer systems sometimes try to cause hash collisions. Collisions 

decrease the efficiency of hash-based algorithms, so an attack that attempts to 

overwhelm a server’s CPU will be more effective if it can induce collisions for 

values that it knows the server will use in hash-based lookups. Some types in the 

.NET Framework deliberately change the way they produces hashes each time 

you restart a program to avoid this problem. 

Because hash collisions are unavoidable, the rules cannot forbid them, which 

means you could return the same value from GetHashCode every time, 

regardless of the instance’s actual value. So if you always return 0, for example, 

that’s not technically against the rules. It will however tend to produce lousy 

performance from hash tables and the like. Ideally you will want to minimize 

hash collisions. That said, if you don’t expect anything to depend on your type’s 

hash code, there’s not much point in spending time carefully devising a hash 

function that produces well-distributed values. Sometimes a lazy approach, such 

as deferring to a single field like Example 3-11 does, is OK. 

With the modifications in Example 3-11 applied to the class in Example 3-7, and with the 

first constructor removed, we can change it from a class to a struct. Running the 

code in Example 3-9 one more time produces this output: 

1 

1 

1 
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True 

True 

True 

False 

False 

False 

As before, all three counters have a count of 1, which shouldn’t be any surprise. Then we 

have the first three comparisons which, remember, use ==. Since Example 3-11 defines a 

custom implementation that compares values, it should be no surprise to see all the 

comparisons now succeed. And all of the object.ReferenceEquals values fail 

because this is now a value type, just like int. In fact this is the same behavior we saw 

with the code that used int instead of Counter. Variables of type Counter no longer 

hold a reference—they hold the value directly, so reference comparisons are no longer 

meaningful. (Again, the compiler has actually generated implicit conversions here that 

produce boxes, which we will look at in Chapter 7.) 

It’s time to ask an important question: was it a good idea to turn Counter into a value 

type? The answer is no. I’ve been hinting at that all along, but I wanted to illustrate some 

of the problems that can arise if you make something a struct inappropriately. So what 

does make a good struct? 

When to Write a Value Type 

I’ve shown some of the differences in observable behavior between a class and a 

struct, and I’ve illustrated some of the things you need to do differently to write a 

struct, but I’ve not yet explained how to decide which to use. The short answer is that 

there are only two circumstances in which you should write a value type. First, if you 

need to represent something value-like, such as a number, a struct is likely to be ideal. 

Second, if you have determined that a struct has usefully better performance 

characteristics for the scenario in which you will use the type, a struct may not be ideal, 

but might still be a good choice. But it’s worth understanding the pros and cons in 

slightly more detail. And I will also dispel a surprisingly persistent myth about value 

types. 

With reference types, the variable is a distinct entity from the object to which it refers. 

This can be very useful, because we often use objects as models for real things with 

identities of their own. But it has some performance implications. An object’s lifetime is 

not necessarily directly related to the lifetime of a variable that refers to it. You can create 

a new object, and then pass a reference to that object to a method which might store that 

reference in a field of some other object which is itself referred to by some static field. 

The method that originally created the object might then return, so the local variable that 

first referred to the object no longer exists, but the object needs to stay alive because it’s 

still possible to reach it by other means. 

The CLR goes to considerable lengths to ensure that the memory an object occupies is 

not reclaimed prematurely, but that it is eventually freed once the object is no longer in 

use. This is a fairly complex process, and .NET applications can end up consuming a 

considerable amount of CPU time just tracking objects in order to work out when they 

fall out of use. Creating lots of objects increases this overhead. Increasing complexity in 

certain ways can also increase the costs of object tracking—if a particular object only 

remains alive because it is reachable through some very convoluted path, the CLR may 

need to follow that path each time it tries to work out what memory is still in use. Each 
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level of indirection you add generates extra work. A reference is by definition indirect, so 

every reference type variable creates additional work for the CLR. 

Value types can often be handled in a much simpler way. For example, consider arrays. If 

you declare an array of some reference type, you end up with an array of references. This 

is very flexible—elements can be null if you want, and you’re also free to have multiple 

different elements all referring to the same item. But if what you actually need is a simple 

sequential collection of items, that flexibility is just overhead. A collection of 1000 

reference type instances requires 1001 blocks of memory: one block to hold an array of 

references, and then 1000 objects for those references to refer to. But with value types, a 

single block can hold all the values. This makes things simple for memory management 

purposes—either the array is still in use or it isn’t, and there’s no need to go on to check 

the 1000 individual elements separately. 

It’s not just arrays that can benefit from this sort of efficiency. Fields can also benefit. 

Consider a class that contains 10 fields all of type int. The 40 bytes required to hold 

those fields’ values can live directly inside the memory allocated for an instance of the 

containing class. Compare that with 10 fields of some reference type. Although those 

references can be stored inside the object instance’s memory, the objects they refer to 

will be separate objects, so if the fields are all non-null and all refer to different objects, 

you’ll now have 11 blocks of memory—one for the instance that contains all the fields, 

and then one for each of the objects those fields refer to. Figure 3-1 illustrates these 

differences between references and values for both arrays and objects (with smaller 

examples, because the same principle applies even with a handful of instances). 

Value

type array
Reference

type array

1

42

99

123

-1

1

42

99

Object with
value type fields

Object with
reference type fields

 

Figure 3-1. References vs values 

Also, lifetime handling can sometimes be simpler for value types. Often, the memory 

allocated for local variables can be freed as soon as a method returns (although as we’ll 

see in Chapter 9, nested methods mean that it’s not always that simple). This means the 

memory for local variables can sometimes live on the stack, or even inside the CPU’s 

 16 



O’Reilly Media, Inc.  3/13/2012 

registers, which is typically much cheaper than the heap. For reference types, the memory 

for a variable is only part of the story—the object it refers to cannot be handled so easily, 

because that may continue to be reachable by other paths after the method exits. But with 

value types, the variable contains the value, so value types are better able to exploit the 

situations where memory for local variables can be handled efficiently. 

In fact, the memory for a value may be reclaimed even before a method returns. New 

value instances often just overwrite older instances. For example, C# can normally just 

use a single piece of memory to represent a variable, no matter how many different 

values you put in there. Creating a new instance of a value type doesn’t necessarily have 

to mean allocating more memory with value types, whereas with reference types, a new 

instance means a new heap block. This is why it’s OK for each operation we perform 

with a value type—every integer addition or subtraction for example—to produce a new 

instance. 

One of the most persistent myths about value types says that values are 

allocated on the stack, unlike objects. It’s true that objects always live 

on the heap, but value types don’t always live on the stack. (And even 

in the situations where they do, that’s an implementation detail, not a 

fundamental feature of C#.) Figure 3-1 shows two counterexamples. An 

int value inside an array of type int[] does not live on the stack; it 

lives inside the array’s heap block. Likewise, if a class declares a non-

static int field, the value of that int lives inside the heap block for its 

containing object instance. And even local variables of value type don’t 

necessarily end up on the stack. For example, optimizations may make 

it possible for the value of a local variable to live entirely inside the 

CPU’s registers, rather than needing to go on the stack. 

You might be tempted to summarize the preceding few paragraphs as “there are some 

complex details, but in essence, value types are more efficient.” But that would be a 

mistake. There are some situations in which value types are significantly more expensive. 

Remember that a defining feature of a value type is that values get copied on assignment. 

If the value type is big, that will be expensive. For example, the .NET Framework Class 

Library defines the Guid type to represent the 16-byte globally unique identifiers that 

crop up in lots of bits of Windows. This is a struct, so any assignment statement 

involving a Guid is asking to make a copy of a 16-byte data structure. This is likely to be 

more expensive than making a copy of a reference, because the CLR uses a pointer-based 

implementation for references, meaning that you’ll be working something pointer-sized. 

(That’s typically 4 or 8 bytes, but more importantly, it’ll be something that fits naturally 

into a single CPU register.) 

It’s not just assignment that causes values to be copied. Passing a value type argument to 

a method may require a copy. As it happens, with method invocation it is actually 

possible to pass a reference to a value, although as we’ll see later, it’s a slightly limited 

kind of reference, and the restrictions it imposes are sometimes undesirable, so you may 

end up deciding that the cost of the copy is preferable. 

Value types are not automatically going to be more efficient than reference types, so your 

choice should typically be driven by the behavior you require. The most important 

question is this: does the identity of an instance matter to you? In other words, is the 

distinction between one object and another object important? For our Counter example, 

the answer is probably yes: if we want something to keep count for us, it’s simplest if that 
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counter is a distinct thing with its own identity. (Otherwise, our Counter type is no 

more useful than an int.) The code started getting strange as we moved away from that 

model. The original code in Example 3-3 was simpler than where we ended up. 

An important and related question is: does an instance of your type contain state that 

changes over time? Most value types are immutable. This doesn’t mean that variables of 

these types cannot be modified; it just means that to modify the variable, you must 

replace its contents entirely with a different value. For something simple like an int this 

will seem like splitting hairs, but the distinction is important with structs that contain 

multiple fields, such as the Complex type, which represents numbers that combine a real 

and an imaginary component. You cannot change the Imaginary property of an 

existing Complex instance, because the type is immutable. If the value you’ve got isn’t 

the value you want, immutability just means you need to create a new value that is the 

one you want because you can’t tweak the existing instance. 

Immutability does not necessarily mean you should write a struct—the built-in string 

type is immutable, and that’s a class.3 However, because C# often does not need to 

allocate new memory to hold new instances of a value type, value types are able to 

support immutability more efficiently than classes in scenarios where you’re creating lots 

of new values (e.g., in a loop). Immutability is not an absolute requirement for structs—

there are some unfortunate exceptions in .NET’s class library. But mutability tends to 

cause problems with value types, because it’s all too easy to end up modifying some copy 

of the value rather than the instance you wanted to modify. Since value types should 

normally be immutable, a requirement for mutability is usually a good sign that you want 

a class rather than a struct. My Counter type started getting weird when I made it 

immutable—it was natural for it to maintain a count that changed over time, and it 

became much harder to use when we needed a whole new instance each time we wanted 

to change the count. This is another sign that Counter should be a class, not a struct. 

A type should only be a struct if it represents something that is very clearly similar in 

nature to other things that are value types. For example, in the .NET Framework class 

library, BigInteger is a struct, which is unsurprising because it’s a numeric type, and 

all of the built-in numeric types are value types. TimeSpan, is also a value type, which 

makes sense because it’s effectively just a number that happens to represent a length of 

time. In the UI framework WPF, types used for simple geometric data such as Point 

and Rect are structs. But if in doubt, write a class; Counter was more usable as a 

class. 

Members 

Whether you’re writing a class or a struct, there are several different kinds of members 

you can put in a custom type. We’ve seen examples of some already, but let’s take a 

closer and more comprehensive look. 

                                                           

3 The string type cannot be a struct because strings vary in length. However, that’s not a factor 

you need to consider because you can’t write your own variable-length data types in C#. Only with 

strings and array types can two instances of the same type have different sizes. 
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With one exception (static constructors) you can specify the accessibility for all class and 

struct members. Just as a type can be public or internal, so can each member. 

Members may also be declared as private, making them accessible only to code inside 

the type, and this is the default accessibility. And we’ll see in Chapter 6, inheritance adds 

two more accessibility levels for members, protected and protected internal. 

Fields 

You’ve already seen that fields are named storage locations that hold either values or 

references depending on their type. By default, each instance of a type gets its own set of 

fields, but if you want a field to be singular, rather than having one per instance, you can 

use the static keyword. We’ve also seen the readonly keyword, which states that 

the field can only be set during construction, and cannot change thereafter. 

The readonly keyword does not make any absolute guarantees. 

There are mechanisms by which it is possible to contrive a change in 

the value of a readonly field. The reflection mechanisms in Chapter 

13 provide one way to subvert readonly, and unsafe code, described 

in Chapter 23, provides another. The compiler will prevent you from 

modifying a field accidentally, but with sufficient determination, you 

can bypass this protection. And even without such subterfuge, a 

readonly field is free to change during construction. 

C# offers a keyword which seems, superficially, to be similar: you can define a const 

field. However, this is designed for a somewhat different purpose. A readonly field is 

initialized and then never changed, whereas a const field defines a value that is 

invariably the same. A readonly field is much more flexible: it can be of any type, and 

its value can be calculated at runtime. A const field’s value is determined at compile 

time, which limits the available values. For most reference types, the only supported 

const value is null, so in practice, it’s normally only useful to use const with types 

intrinsically supported by the compiler. (Specifically, if you want to use values other than 

null, a const must be either one of the built-in numeric types, a bool, a string, or 

an enumeration type as described later in this chapter.) 

This makes a const field rather more limited than a readonly one, so you could 

reasonably ask: what’s the point? Well although a const field is inflexible, it makes a 

strong statement about the unchanging nature of the value. For example, the .NET 

Framework’s Math class defines a const field of type double called PI that contains 

as close an approximation to the mathematical constant π as a double can represent. 

That’s a value that’s fixed forever—it is a constant in a very broad sense. 

You need to be a bit careful about const fields—the compiler is allowed to assume that 

the value really will never change. Code that reads the value from a readonly field will 

fetch the value from the memory containing the field at runtime. But when you use a 

const field, the compiler is allowed to read the value at compile time and copy it into 

your code as though it were a literal. So if you write a library component that declares a 

const field and you later change its value, this change will not necessarily be picked up 

by code using your library unless that code gets recompiled. 

One of the benefits of a const field is that it is eligible for use in certain contexts in 

which a readonly field is not. For example, the label for a case in a switch 
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statement has to be fixed at compile time, so it cannot refer to a readonly field, but 

you can define a case in terms of a suitably-typed const field. You can also use 

const fields in the expression defining the value of other const fields (as long as you 

don’t introduce any circular references). 

A const field is required to contain an expression defining its value, such as the one 

shown in Example 3-12. 

Example 3-12. A const field 

const double kilometersPerMile = 1.609344; 

This initializer expression is optional for a class’s ordinary and readonly fields. If you 

omit the initializing expression, the field will automatically be initialized to a default 

value. (That’s zero for numeric values, and the equivalents for other types—false, 

null, etc.) Structs are slightly more limited, because their default initialization always 

involves setting all its instance fields to zero, so you are obliged to omit initializers for 

those. Structs do support initializers for non-instance fields though, i.e., const and 

static fields. 

If you do supply an initializer expression for a non-const field, it does not need to be 

evaluable at compile time, so it can do runtime work like calling methods or reading 

properties. Of course, that sort of code can have side effects, so it’s important to be aware 

of the order in which this sort of code runs. 

Non-static field initializers run for each instance you create, and they execute in the order 

in which they appear in the file, immediately before the constructor runs. Static fields 

execute no more than once no matter how many instances of the type you create. They 

also execute in the order in which they are declared, but it’s harder to pin down exactly 

when they will run. If your class has no static constructor, C# guarantees to run field 

initializers before the first time a field in the class is accessed, but it doesn’t necessarily 

wait until the last minute—it retains the right to run field initializers as early as it likes. In 

fact, the exact moment at which this happens has varied across releases of Microsoft’s C# 

implementation. But if a static constructor does exist, then things are slightly clearer: 

static field initializers run immediately before the static constructor runs, but that merely 

raises the questions: what’s a static constructor, and when does that run? So we had better 

take a look at constructors. 

Constructors 

A newly created object may require some information to do its job. For example, The 

Uri class in the System namespace represents a Uniform Resource Identifier (URI) 

such as a URL. Since its entire purpose is to contain and provide information about a 

URI, there wouldn’t be much point in having a Uri object that didn’t know what its URI 

was. So it’s not actually possible to create one without providing a URI. If you try the 

code in Example 3-13, you’ll get a compiler error. 

Example 3-13. Error: failing to provide a Uri with its URI 

Uri oops = new Uri();  // Will fail to compile 

The Uri class defines several constructors, members that contain code that initializes a 

new instance of a type. If a particular class requires certain information to work, you can 

 20 



O’Reilly Media, Inc.  3/13/2012 

 21 

enforce this requirement through constructors. Creating an instance of a class almost 

always involves using a constructor at some point,4 so if the constructors you define all 

demand certain information, developers will have to provide that information if they want 

to use your class. So all of the Uri class’s constructors need to be given the URI in one 

form or another. 

To define a constructor, you first specify the accessibility (public, private, 

internal, etc.) and then the name of the containing type. This is followed by a list of 

parameters in parentheses (which is allowed to be empty). Example 3-14 shows a class 

that defines a single constructor that requires two arguments: one of type decimal, and 

one of type string. The argument list is followed by a block containing code. So 

constructors look a lot like methods, but with the containing type name in place of the 

usual return type and method name. 

Example 3-14. A class with one constructor 

public class Item 

{ 

    public Item(decimal price, string name) 

    { 

        _price = price; 

        _name = name; 

    } 

    private readonly decimal _price; 

    private readonly string _name; 

} 

This constructor is pretty simple: it just copies its arguments to fields. A lot of 

constructors do no more than that. You’re free to put as much code in there as you like, 

but by convention, developers usually expect the constructor not to do very much—its 

main job is to ensure that the object is in a valid initial state. That might involve checking 

the arguments and throwing an exception if there’s a problem, but not much else. You are 

likely to surprise developers who use your class if you write a constructor that does 

something non-trival, such as adding data to a database or sending a message over the 

network. 

Example 3-15 shows how to use a constructor that takes arguments. We just use the new 

operator, passing in suitably typed values as arguments. 

Example 3-15. Using a constructor 

var item1 = new Item(9.99, "Hammer"); 

You can define multiple constructors, but it needs to be possible to distinguish between 

them: you cannot define two constructors that both take the same number of arguments of 

the same types, because there’s no way for the new keyword to choose between them. 

If you do not define any constructors at all, C# will provide a default constructor that is 

equivalent to an empty constructor that takes no arguments. (And as mentioned earlier, if 

you’re writing a struct, you’ll get that even if you do define other constructors.) 

                                                           

4 There’s an exception. If a class supports a CLR feature called serialization, objects of that type 

can be deserialized directly from a data stream, bypassing constructors. But even here, you can 

dictate what data is required. 
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Although the C# specification unambiguously defines a default 

constructor as one generated for you by the compiler, be aware that 

there’s another widely used meaning. Some of Microsoft’s 

documentation uses the term “default constructor” to mean any public, 

parameterless constructor, regardless of whether it was generated by 

the compiler. There’s some logic to this—from the perspective of some 

code using a class, it’s not possible to tell the difference between a 

compiler-generated constructor, and an explicit zero-argument 

constructor, so if the term default constructor is to mean anything 

useful from that perspective, it can only mean a public constructor that 

takes no arguments. However, that’s not how the C# specification 

defines the term. 

The compiler-generated default constructor does nothing beyond the zero-initialization of 

fields that occurs for all objects. However, there are some situations in which it is 

necessary to write your own parameterless constructor. You might need the constructor to 

execute some code. Example 3-16 sets an _id field based on a static field that it 

increments for each new object, to give each instance a distinct ID. This doesn’t require 

any arguments to be passed in, but it does involve running some code. (You couldn’t do 

this in a struct of course, because their no-arguments constructors are always the 

compiler-generated ones that do nothing more than zeroing all the fields.) 

Example 3-16. A non-empty zero-argument constructor 

public class ItemWithId 

{ 

    private static int _lastId; 

    private int _id; 

 

    public ItemWithId() 

    { 

        _id = ++_lastId; 

    } 

} 

There is another way to achieve the same effect as Example 3-16. I could have written a 

static method called GetNextId, and then used that in the _id field initializer. Then I 

wouldn’t have needed to write this constructor. However, there is one advantage to the 

approach in Example 3-16: it turns out that field initializers are not allowed to invoke 

non-static methods. That’s because the object is in an incomplete state during field 

initialization, so it may be dangerous to call non-static methods—they may rely on fields 

having valid values. But an object is allowed to call its own non-static methods inside a 

constructor. The object’s still not fully built yet of course, but it’s closer to completion, 

and so the dangers are reduced. 

There’s a second reason for writing your own zero-argument constructor. If you define at 

least one constructor for a class, this will disable the default constructor generation. If 

you need your class to provide parameterized construction, but you still want to offer a 

no-arguments constructor, you’ll need to write one, even if it’s empty. 

Some frameworks can only use classes that provide a zero-argument 

constructor. If you build a user interface (UI) with WPF, classes that 

can act as custom UI elements usually need such a constructor. 
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If you write a type that offers a lot of constructors, you may find that they have a certain 

amount in common—you may need to perform some common initialization tasks. The 

class in Example 3-16 calculates a numeric identifier for each object in its constructor, 

and if it were to provide multiple constructors, they might all need to do that same work. 

Moving the work into a field initializer would be one way to solve that, but what if only 

some of the constructors wanted to do it? You might have work that was common to most 

constructors, but you might want to make an exception by having one constructor which 

allows the ID to be specified rather than calculated. The field initializer approach would 

no longer be appropriate because you’d want individual constructors to be able to opt in 

or out. Example 3-17 shows a modified version of the code from Example 3-16, defining 

two extra constructors. 

Example 3-17. Optional chaining of constructors 

public class ItemWithId 

{ 

    private static int _lastId; 

    private int _id; 

    private string _name; 

 

    public ItemWithId() 

    { 

        _id = ++_lastId; 

    } 

 

    public ItemWithId(string name) 

        : this() 

    { 

        _name = name; 

    } 

    public ItemWithId(string name, int id) 

    { 

        _name = name; 

        _id = id; 

    } 

 

} 

If you look at the second constructor in Example 3-17, its parameter list is followed by a 

colon, and then this(), which invokes the first constructor. You can invoke any 

constructor that way—Example 3-17 passes no arguments, so it’s invoking the no-

arguments constructor. Example 3-18 shows a different way to structure all three 

constructors, illustrating how to pass arguments. 

Example 3-18. Chained constructor arguments 

public ItemWithId() 

    : this(null) 

{ 

} 

 

public ItemWithId(string name) 

    : this(name, ++_lastId) 

{ 

} 

 

private ItemWithId(string name, int id) 
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{ 

    _name = name; 

    _id = id; 

} 

The two-argument constructor here is now a sort of master constructor—it’s the only one 

that actually does any work. The other constructors just pick suitable arguments for that 

main constructor. Arguably this is a cleaner solution than the previous examples, because 

the work of initializing the fields is done in just one place, rather than having different 

constructors each perform their own smattering of field initialization. 

Notice that I’ve made the two-argument constructor in Example 3-18 private. At first 

glance it can look a bit odd to define a way of building an instance of a class, and then to 

make it inaccessible, but it makes perfect sense when chaining constructors. And there 

are other scenarios in which a private constructor might be useful—we might want to 

write a method that makes a clone of an existing ItemWithId, in which case that 

constructor would be useful, but we probably want to keep it private so that we can retain 

control of exactly how new objects get created. 

The constructors we’ve looked at so far run when a new instance of an object is created. 

Classes and structs can also define a static constructor. This runs at most once in the 

lifetime of the application. You do not invoke it explicitly—C# ensures that it runs 

automatically at some point before you first use the class. So unlike an instance 

constructor, there’s no opportunity to pass arguments. Since static constructors cannot 

take arguments, there can be only one per class. Also, because these are never accessed 

explicitly, you do not declare any kind of accessibility for a static constructor. Example 

3-19 shows a class with a static constructor. 

Example 3-19. Class with static constructor 

public class Bar 

{ 

    private static DateTime _firstUsed; 

    static Bar() 

    { 

        Console.WriteLine("Bar's static constructor"); 

        _firstUsed = DateTime.Now; 

    } 

} 

Just as an instance constructor puts the instance into a useful initial state, the static 

constructor provides an opportunity to initialize any static fields. 

By the way, you’re not obliged to ensure that a constructor (static or instance) initializes 

every field. When a new instance of a class is created, the instance fields are initially all 

set to 0 (or the equivalent, such as false or null). Likewise, a type’s static fields are 

all zeroed out before the class is first used. Unlike with local variables, you only need to 

initialize fields if you want to set them to something other than the default zero-like 

value. 

Even then, you may not need a constructor. A field initializer may be sufficient. 

However, it’s useful to know exactly when constructors and field initializers run. I 

mentioned earlier that the behavior varies according to whether constructors are present, 

so now that we’ve looked at constructors in a bit more detail, we can finally look at the 

whole picture of initialization. 
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At runtime, a type’s static fields will first be set to zero (or equivalent values). Next, the 

field initializers are run in the order in which they are written in the source file. This 

ordering matters if one field’s initializer refers to another. In Example 3-20, fields a and 

b both have the same initializer expression but they end up with different values (1 and 

42 respectively) due to the order in which initializers run. 

Example 3-20. Significant ordering of static fields 

private static int a = b + 1; 

private static int b = 41; 

private static int c = b + 1; 

The exact moment at which static field initializers run depends on whether there’s a static 

constructor. As mentioned earlier, if there isn’t, then the exact moment is not defined—

C# guarantees to run them no later than the first access to one of the type’s fields, but it 

reserves the right to run them arbitrarily early. But the presence of a static constructor 

changes matters: in that case the static field initializers run immediately before the 

constructor. So when does the constructor run? It will be triggered by one of two events, 

whichever occurs first: creating an instance, or accessing any static member of the class. 

For non-static fields, the story is similar: the fields are first all initialized to zero (or 

equivalent values) and then field initializers run in the order in which they appear in the 

source file, and this happens before the constructor runs. Of course, the difference is that 

instance constructors are invoked explicitly, so it’s clear when they will run. 

I’ve written a class whose purpose is to examine this construction behavior, shown in 

Example 3-21. The class, called InitializationTestClass, has both static 

and non-static fields, all of which call a method, GetValue in their initializers. That 

method always returns the same value, 1, but it prints out a message so we can see when 

it is called. The method also defines a no-arguments instance constructor and a static 

constructor, both of which print out messages. 

Example 3-21. Initialization order 

public class InitializationTestClass 

{ 

    public InitializationTestClass() 

    { 

        Console.WriteLine("Constructor"); 

    } 

 

    static InitializationTestClass() 

    { 

        Console.WriteLine("Static constructor"); 

    } 

 

    public static int s1 = GetValue("Static field 1"); 

    public int ns1 = GetValue("Non-static field 1"); 

    public static int s2 = GetValue("Static field 2"); 

    public int ns2 = GetValue("Non-static field 2"); 

 

    private static int GetValue(string message) 

    { 

        Console.WriteLine(message); 

        return 1; 

    } 
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    public static void Foo() 

    { 

        Console.WriteLine("Static method"); 

    } 

} 

 

class Program 

{ 

    static void Main(string[] args) 

    { 

        Console.WriteLine("Main"); 

        InitializationTestClass.Foo(); 

        Console.WriteLine("Construct 1"); 

        InitializationTestClass i = new InitializationTestClass(); 

        Console.WriteLine("Construct 2"); 

        i = new InitializationTestClass(); 

    } 

} 

The Main method prints out a message, calls a static method defined by 

InitializationTestClass, and then constructs a couple of instances. Running 

the program, I see the following output: 

Main 

Static field 1 

Static field 2 

Static constructor 

Static method 

Construct 1 

Non-static field 1 

Non-static field 2 

Constructor 

Construct 2 

Non-static field 1 

Non-static field 2 

Constructor 

Notice that both static field initializers and the static constructor run before the call to the 

static method begins. The field initializers run before the static constructor, and as 

expected, they have run in the order in which they appear in the source file. Because this 

class includes a static constructor, we know when static initialization will begin—it is 

triggered by the first use of that type, which in this example will be when our Main 

method calls InitializationTestClass.Foo. You can see that it happened 

immediately before that point and no earlier, because our Main method managed to print 

out its first message before the static initialization occurred. If this example did not have 

a static constructor, and only had static field initializers, there would be no guarantee that 

that static initialization would happen at the exact same point—the specification would 

allow the initialization to happen earlier. 

You need to be careful about what you do in code that runs during static initialization: it 

may get to run earlier than you expect. For example, suppose your program uses some 

sort of diagnostic logging mechanism, and that you need to configure this when the 

program starts in order to enable logging of messages to the proper location. There’s 

always a possibility that code that runs during static initialization could execute before 

you’ve managed to do this, meaning that diagnostic logging will not yet be working 

correctly. That might make problems in this code hard to debug. Even when you narrow 
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down C#’s options by supplying a static constructor, it’s relatively easy to trigger that 

earlier than you meant too. Any use of any static member of a class will trigger its 

initialization, and you can find yourself in a situation where your static constructor is 

kicked off by static field initializers in some other class that doesn’t have a static 

constructor—this could happen before your Main method even starts. 

You could try to fix this by initializing the logging code in its own static initialization. 

Because C# guarantees to run initialization before the first use of a type, you might think 

that this would ensure that the logging initialization would complete before the static 

initialization of any code that used the logging system. However, there’s a potential 

problem: C# only guarantees when it will start static initialization for any particular class. 

It doesn’t guarantee to wait for it to finish. It cannot make such a guarantee, because if it 

did, code such as that in Example 3-22 would put it in an impossible situation. 

Example 3-22. Circular static dependencies 

public class AfterYou 

{ 

    static AfterYou() 

    { 

        Console.WriteLine("AfterYou static constructor starting"); 

        Console.WriteLine("NoAfterYou.Value: " + NoAfterYou.Value); 

        Console.WriteLine("AfterYou static constructor ending"); 

    } 

 

    public static int Value = 42; 

} 

 

public class NoAfterYou 

{ 

    static NoAfterYou() 

    { 

        Console.WriteLine("NoAfterYou static constructor starting"); 

        Console.WriteLine("AfterYou.Value: " + AfterYou.Value); 

        Console.WriteLine("NoAfterYou static constructor ending"); 

    } 

 

    public static int Value = 42; 

} 

There is a circular relationship between the two types in this example: both have static 

constructors that attempt to use a static field defined by the other class. The exact 

behavior will depend on which of these two classes the program tries to use first. If the 

first to be used is AfterYou, I see the following output: 

AfterYou static constructor starting 

NoAfterYou static constructor starting 

AfterYou.Value: 42 

NoAfterYou static constructor ending 

NoAfterYou.Value: 42 

AfterYou static constructor ending 

As you’d expect, the static constructor for AfterYou runs first, because that’s the class 

my program is trying to use. It prints out its first message, but then it tries to use the 

NoAfterYou.Value field. That means the static initialization for NoAfterYou now 

has to start, so we see the first message from its static constructor. It then goes on to 

retrieve the AfterYou.Value field, even though the AfterYou static constructor 
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hasn’t finished yet. That’s OK because the ordering rules only say when static 

initialization is triggered, and they do not guarantee when it will finish. If they tried to 

guarantee complete initialization, this code would be unable to proceed—the 

NoAfterYou static constructor could not move forward because the AfterYou static 

construction is not yet complete, but that can’t move forward because it would be waiting 

for the NoAfterYou static initialization to finish. 

The moral of this story is that you should not get too ambitious about what you try to 

achieve during static initialization. It’s hard to predict the exact order in which things will 

happen. 

Methods 

Methods are named bits of code that can optionally return a result, and which may take 

arguments. C# makes the fairly common distinction between parameters and arguments: 

a method defines a list of the inputs it expects, the parameters, and the code inside the 

method refers to these parameters by name. The values seen by the code could be 

different each time the method is invoked, and ‘argument’ refers to the specific value 

supplied for a parameter in a particular invocation. 

As you’ve already seen, when an accessibility specifier such as public or private is 

present, this appears at the start of the method declaration. The optional static 

keyword comes next where present. After that, the method declaration states the return 

type. As with many C family languages, methods are not required to return anything, and 

you indicate this by putting the void keyword in place of the return type. Inside the 

method, you use the return keyword followed by an expression to specify the value for 

the method to return. In the case of a void method, you can use the return keyword 

without an expression to terminate the method, although this is optional because a void 

method will return when execution reaches the end of the method. 

C# supports only a single return type. However, it is possible to have a method return 

multiple values, because you can designate parameters as being for output rather than 

input. Example 3-23 returns two values, both produced by integer division. The main 

return value is the quotient, but it also returns the remainder through its final parameter, 

which has been annotated with the out keyword. 

Example 3-23. Returning multiple values with out 

public static int Divide(int x, int y, out int remainder) 

{ 

    remainder = x % y; 

    return x / y; 

} 

When invoking a method of this kind, we are required to indicate explicitly that we are 

aware of how the method uses the argument—we must use the out keyword at the call 

site too, as Example 3-24 shows. (Some C family languages do not make any visual 

distinction between calls that pass values and ones that pass references, but the semantics 

are very different, so C# makes it explicit.) 

Example 3-24. Calling a method with an out parameter 

int r; 

int q = Divide(10, 3, out r); 
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This works by passing a reference to the r variable, so when the Divide method assigns 

a value into remainder, it’s really assigning it into the caller’s r variable. This is an 

int, which is a value type, so it would not normally be passed by reference, and this 

kind of reference is limited. Only method arguments can use this feature. You cannot 

declare a local variable or field that holds such a reference, because the reference is only 

valid for the duration of the call. (A C# implementation could choose to implement this 

by putting the r variable in Example 3-24 on the stack and then passing a pointer to that 

stack location into the Divide method. That’s workable because the reference is only 

required to remain valid until the method returns.) 

An out reference requires information to flow from the method back to the caller: if the 

method returns without assigning something into all of its out arguments, you’ll get a 

compiler error. (This requirement does not apply if the method throws an exception 

instead of returning.) There’s a related keyword, ref, which has similar reference 

semantics, but which allows bidirectional flow of information. With a ref argument, it’s 

as though the method has direct access to the variable the caller passed in—we can read 

its current value, as well as modifying it. (The caller is obliged to ensure that any 

variables passed with ref contain a value before making the call, so in this case, the 

method is not required to modify the values.) If you call a method with a parameter 

annotated with ref instead of out, you have to make it clear at the call site that you 

meant to pass a reference to a variable as the argument, as Example 3-25 shows. 

Example 3-25. Calling a ref method 

long x = 41; 

Interlocked.Increment(ref x); 

By the way, you can use the out and ref keywords with reference types too. That may 

sound redundant, but it can be useful. It provides double indirection—the method 

receives a reference to a variable that holds a reference. Normally when you pass a 

reference-type argument to a method, that method gets access to whatever object you 

choose to pass it, so while the method can use members of that object, it can’t replace it 

with a different object. But if you mark a reference type argument with ref, the method 

has access to your variable, so it could replace it with a reference to a completely 

different object. 

By the way, constructor arguments work in the same way as normal methods, so you can 

use out and ref with constructors too. Also, just to be clear, the out or ref qualifiers 

are part of the method (or constructor) signature. The caller passes an out (or ref) 

argument if and only if the parameters was declared as out (or ref). You can’t decide 

unilaterally to pass an argument by reference to a method that does not expect it. 

Method arguments can be made optional by defining default values. The method in 

Example 3-26 specifies the values that the arguments should have if the caller doesn’t 

supply them. This method can then be invoked with no arguments, one argument, or both 

arguments. 

Example 3-26. A method with optional arguments 

public void Blame(string perpetrator = "the youth of today", 

    string problem = "the downfall of society") 

{ 

     Console.WriteLine("I blame {0} for {1}.", perpetrator, problem); 

} 
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Normally, when invoking a method you specify the arguments in order. However, what if 

you want to call the method in Example 3-26, but you only want to provide a value for 

the second argument, using the default value for the first? You can’t just leave the first 

argument empty—if you tried to write Blame( , "everything"), you’d get a 

compiler error. Instead, you can specify the name of the argument you’d like to supply, 

using the syntax shown in Example 3-27. C# will fill in the arguments you omit with the 

specified default values. 

Example 3-27. Specifying an argument name 

Blame(problem: "everything"); 

Obviously, this only works when invoking methods that define default 

argument values. However, you are free to specify argument names 

when invoking any method—sometimes it can be useful to do this even 

when you’re not omitting any arguments, because it can make it easier 

to see what the arguments are for when reading the code. 

It’s important to understand how C# implements default argument values. When you 

invoke a method without providing all the arguments, as Example 3-27 does, the 

compiler generates code that passes a full set of arguments as normal. It effectively 

rewrites your code, adding back in the arguments you left out. The significance of this is 

that if you write a library that defines default argument values like this, you will run into 

problems if you ever change the defaults. Code that was compiled against the old version 

of the library will have copied the old defaults into the call sites, and won’t pick up the 

new values unless it is recompiled. 

So you will sometimes see an alternative mechanism used for allowing arguments to be 

omitted: overloading, which is a slightly histrionic term for the rather mundane idea that 

a single name or symbol can be given multiple meanings. In fact, we already saw this 

technique with constructors—in Example 3-18, I defined one master constructor that did 

the real work, and then two other constructors that called into that one. We can use the 

same trick with methods as Example 3-28 shows. 

Example 3-28. Overloaded method 

public void Blame(string perpetrator, string problem) 

{ 

    Console.WriteLine("I blame {0} for {1}.", perpetrator, problem); 

} 

 

public void Blame(string perpetrator) 

{ 

    Blame(perpetrator, "the downfall of society"); 

} 

public void Blame() 

{ 

    Blame("the youth of today", "the downfall of society"); 

} 

In one sense, this is slightly less flexible than default argument values, because we no 

longer have any way to specify a value for the problem argument while picking up the 

default perpetrator (although it would be easy enough to solve that by just adding a 

method with a different name). On the other hand, method overloading offers two 

potential advantages: it allows you to decide on the default values at runtime if necessary, 

and it also provides a way to deal with out and ref arguments. Those require references 
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to local variables, so there’s no way to define a default value. But you can always provide 

overloads with and without those arguments if you need to. 

Extension methods 

C# lets you write methods that appear to be new members of existing types. An extension 

method, as these things are called, looks like a normal static method, but with the this 

keyword added to its first parameter. You are only allowed to define extension methods 

as members of a static class. Example 3-29 adds a not especially useful extension method 

to string, called Show. 

Example 3-29. An extension method 

namespace MyApplication 

{ 

    public static class StringExtensions 

    { 

        public static void Show(this string s) 

        { 

            System.Console.WriteLine(s); 

        } 

    } 

} 

I’ve shown the namespace declaration in this example because namespaces are 

significant: extension methods are only available if you’ve either written a using 

directive for the namespace in which the extension is defined, or the code you’re writing 

is defined in the same namespace. In code that does neither of these things, the string 

class will look like normal, and will not acquire the Show method defined by Example 3-

29. However, code such as Example 3-30, which is defined in the same namespace as the 

extension method will find that the method is available. 

Example 3-30. Extension method available due to namespace declaration 

namespace MyApplication 

{ 

    class Program 

    { 

        static void Main(string[] args) 

        { 

            "Hello".Show(); 

        } 

    } 

} 

The code in Example 3-31 is in a different namespace, but it also has access to the 

extension method thanks to a using directive. 

Example 3-31. Extension method available due to using directive 

using MyApplication; 

 

namespace Other 

{ 

    class Program 

    { 

        static void Main(string[] args) 

        { 

            "Hello".Show(); 
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        } 

    } 

} 

Extension methods are not really members of the class for which they are defined of 

course—the string class does not truly gain an extra method in these examples. It’s 

just an illusion maintained by the C# compiler, one that it keeps up even in situations 

where method invocation happens implicitly. This is particularly useful with C# features 

that require certain methods to be available. In Chapter 2, you saw that foreach loops 

depend on a GetEnumerator method. Many of the LINQ features we’ll look at in 

Chapter 10 also depend on certain methods being present, as do the asynchronous 

language features described in Chapter 18. In all cases, you can enable these language 

features for types that do not support them directly by writing suitable extension methods. 

Properties 

Classes and structs can define properties, which are really just methods in disguise. To 

access a property you use a syntax that looks like field access, but which ends up 

invoking a method. Properties can be useful for signaling intent—when something is 

exposed as a property, the implication is that it represents information about the object, 

rather than an operation the object performs, so reading a property is usually inexpensive, 

and should have no significant side effects. Methods on the other hand are more likely to 

cause an object to do something. 

Of course, since properties are just a kind of method, nothing actually enforces this. You 

are free to write a property that takes hours to run and which makes significant changes to 

your application’s state whenever its value is read, but that would be a pretty lousy way 

to design code. 

Properties typically provide a pair of methods: one to get the value and one to set it. 

Example 3-32 shows a very common pattern: a property with get and set methods that 

just provide access to a field. Why not just make the field public? That’s often frowned 

upon because it makes it possible for external code to change an object’s state without the 

object knowing about it. It might be that in future revisions of the code, the object needs 

to do something every time the value changes—perhaps it needs to update the user 

interface. Another reason for using properties is simply that some systems require it—

some UI data binding systems are only prepared to consume properties, for example. 

Also, some types do not support fields—later in this chapter I’ll show how to define an 

abstract type using an interface, and interfaces can contain properties, but not fields. 

Example 3-32. Class with simple property 

public class HasProperty 

{ 

    private int _x; 

    public int X 

    { 

        get 

        { 

            return _x; 

        } 

        set 

        { 

            _x = value; 

        } 
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    } 

} 

The pattern in Example 3-32 is so common that C# can write most of it for you. Example 

3-33 is more or less equivalent—the compiler generates a field for us, and generates get 

and set methods that retrieve and modify the value just like those in Example 3-32. The 

only difference is that code elsewhere in the same class can’t get directly at the field in 

Example 3-33 because the compiler hides it. 

Example 3-33. Automatic property 

public class HasProperty 

{ 

    public int X { get; set; } 

} 

In either case, this is just a fancy syntax for a pair of methods. The get method returns a 

value of the property’s declared type, an int in this case, while the setter takes a single 

argument of that type through an implicit parameter called value—Example 3-32 

makes use of that argument to update the field. You’re not obliged to store the value in a 

field of course. In fact, nothing even forces you to make the get and set methods related 

in any way—you could write a getter than returns random values, and a setter that 

completely ignores the value you supply. However, just because you can doesn’t mean 

you should. In practice, anyone using your class will expect properties to remember the 

values they’ve been given, not least because in use, properties look just like fields, as 

Example 3-34 shows. 

Example 3-34. Using a property 

var o = new HasProperty(); 

o.X = 123; 

o.X += 432; 

Console.WriteLine(o.X); 

If you’re using the full syntax to implement a property, shown in Example 3-32, you can 

leave out either the set or the get to make a read-only or write-only property 

respectively. Read-only properties can be useful for aspects of an object that are fixed for 

its lifetime such as an identifier. Write-only properties are less useful, although they can 

crop up in dependency injection systems. You can’t make a read-only or write-only 

property with the automatic property syntax shown in Example 3-33, because you 

wouldn’t be able to do anything useful with the property. However, you might want to 

define a property where the getter is public but the setter is not. You can do this with 

either the full or the automatic syntax. Example 3-35 shows how this looks with the 

latter. 

Example 3-35. Automatic property with private setter 

public int X { get; private set; } 

Speaking of read-only properties, there’s an important issue to be aware of involving 

properties, value types, and immutability. 

Properties and mutable value types 

As I mentioned earlier, most value types are immutable, but it’s not a requirement. 

Modifiable types can cause a problem if you use them with properties. In general, one of 

the issues with mutable value types is that you can end up accidentally modifying a copy 

of the value rather than the one you meant, and this issue becomes apparent if you define 
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a property that uses a mutable value type. The Point struct in the System.Windows 

namespace is modifiable, so we can use it to illustrate the problem. Example 3-36 defines 

a Location property of this type. 

Example 3-36. A property using a mutable value type 

using System.Windows; 

 

public class Item 

{ 

    public Point Location { get; set; } 

} 

The Point type defines read/write properties called X and Y, so given a variable of type 

Point, you can set these properties. However, if you try to set either of these properties 

via another property, the code will not compile. Example 3-37 does this—it attempts to 

modify the X property of a Point retrieved from an Item object’s Location 

property. 

Example 3-37. Error: cannot modify a property of a value type property 

var item = new Item(); 

item.Location.X = 123; 

This example produces the following error: 

error CS1612: Cannot modify the return value of 'Item.Location' because it is  

not a variable 

C# considers fields to be variables as well as local variables and method arguments, so if 

we were to modify Example 3-36 so that Location was a public field rather than a 

property, Example 3-37 would then compile, and would work as expected. But why 

doesn’t it work with a property? Remember that properties are just methods, so Example 

3-36 is more or less equivalent to Example 3-38. 

Example 3-38. Replacing a property with methods 

using System.Windows; 

 

public class Item 

{ 

    private Point _location; 

    public Point get_Location() 

    { 

        return _location; 

    } 

    public void set_Location(Point value) 

    { 

        _location = value; 

    } 

} 

Since Point is a value type, get_Location has to return a copy—there’s no way it 

can return a reference to the value in the _location field. Since properties are methods 

in disguise, Example 3-36 also has to return a copy of the property value, so if the 

compiler did allow Example 3-37 to compile, we would be setting the X property on the 

copy returned by the property, and not the actual value in the Item object that the 

property represents. Example 3-39 makes this explicit, and it will in fact compile—the 

compiler will let us shoot ourselves in the foot if we make it sufficiently clear that we 

 34 



O’Reilly Media, Inc.  3/13/2012 

really want to. And with this version of the code, it’s quite clear that this will not modify 

the value in the Item object. 

Example 3-39. Making the copy explicit 

var item = new Item(); 

Point location = item.Location 

location.X = 123; 

So why does it work if we use a field instead of a property? The clue is in the compiler 

error: if we want to modify a struct instance, we must do so through a variable. In C# a 

variable is a storage location, and when we refer to a particular field by name, it’s clear 

that we want to work with the storage location that holds that field’s value. But methods 

(and therefore properties) cannot return something that represents a storage location—

they can only return the value that is in a storage location. In other words, C# has no 

equivalent of ref for return values. Fortunately, most value types are immutable, and 

this problem only arises with mutable value types. Avoid those, and you won’t run into 

this problem. 

Since properties are really just methods (typically in pairs), in theory they could accept 

arguments beyond the implicit value argument used by set methods. The CLR allows 

this but C# does not support it except for one special kind of property: an indexer. 

Indexers 

An indexer is a property that takes one or more arguments, and which is accessed with 

the same syntax as is used for arrays. This is useful when writing a class that contains a 

collection of objects. Example 3-40 uses one of the collection classes provided by the 

.NET Framework. It is essentially a variable-length array, and it’s able to feel like a 

native array thanks to its indexer, used on the 2nd and 3rd lines. (I’ll describe arrays in 

detail in Chapter 5.) 

Example 3-40. Using an indexer 

var numbers = new List<int> { 1, 2, 1, 4 }; 

numbers[2] += numbers[1]; 

Console.WriteLine(numbers[0]); 

From the CLR’s point of view, an indexer is a property much like any other, except that it 

has been designated as the default property. This concept is something of a hangover 

from the old COM-based versions of Visual Basic that got carried over into .NET, and 

which C# mostly ignores. Indexers are the only C# feature that treats default properties as 

being special. If a class designates a property as being the default one, and if the property 

accepts at least one argument, C# will let you use that property through the indexer 

syntax. 

The syntax for declaring indexers is somewhat idiosyncratic. Example 3-41 shows a read-

only indexer. You could add a set method to make it read/write, just like with any other 

property. (Incidentally, all properties have names, including the default one. C# calls the 

indexer property Item, and automatically adds the annotation indicating that it’s the 

default property. You won’t normally refer to an indexer by name, but the name will be 

visible in some tools. A lot of the classes in the .NET Framework list their indexer under 

the name Item in the documentation.) 

Example 3-41. Class with indexer 
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public class Indexed 

{ 

    public string this[int index] 

    { 

        get 

        { 

            return index < 5 ? "Foo" : "bar"; 

        } 

    } 

} 

There is some logic to this syntax. The CLR allows any property to accept arguments, so 

in principle, any property could be indexed. So you could imagine a property declaration 

of the form shown in Example 3-42. If that were the supported pattern, then it would 

make some sense to use the this keyword in place of the property name when declaring 

the default property. 

Example 3-42. A hypothetical named, indexed property 

public string X[int index]  // Will not compile! 

{ 

    get ... 

} 

As it happens, C# doesn’t support that more generalized syntax—only the default 

property can be indexed. I only show Example 3-42 because it makes the supported 

indexer syntax seem slightly less peculiar. 

C# supports multi-dimensional indexers. These are simply indexers with more than one 

parameter—since properties are really just methods, you can define indexers with any 

number of parameters. 

Operators 

Classes and structs can define customized meanings for operators. This is sometimes 

referred to as overloading, although it’s slightly different from method overload, which 

allows a single class to define multiple methods with the same name. With operators, 

overloading just means that the operator has different meanings in different contexts; any 

single class only gets to define one meaning for any particular operator. 

I already showed some custom operators—Example 3-7 defined a custom 

implementation for the ++ operator, and Example 3-11 implemented == and !=. You can 

define custom implementations for almost all of the arithmetic, logical, and relational 

operators introduced in Chapter 2. Of the operators shown in Tables 2-3, 2-4, 2-5, and 2-

6, you can define custom meanings for all except the conditional AND (&&) and 

conditional OR (||) operators. Those operators are evaluated in terms of other operators 

however, so by defining logical AND (&), logical OR (|) and also the logical true and 

false operators (described shortly) you can control the way that && and || work for 

your type even though you cannot implement them directly. 

All custom operator implementations follow a certain pattern. They look like static 

methods, but in the place where you’d normally expect the method name, you instead 

have the operator keyword followed by the operator for which you want to define a 

custom meaning. This is followed by a parameter list, and the number of parameters is 

determined by the number of operands the operator requires. Example 3-7 showed an 
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operator with a single parameter, the unary ++ operator. Example 3-43 shows how the 

binary + operator would look for the same class. 

Example 3-43. Implementing the + operator 

public static Counter operator +(Counter x, Counter y) 

{ 

    return new Counter(x.Count + y.Count); 

} 

C# requires certain operators to be defined in pairs. We already saw this with the == and 

!= operator—it is illegal to define one and not the other. Likewise, if you define the > 

operator for your type, you must also define the < operator, and vice versa. The third and 

final such pair is >= and <=. 

When you overload an operator for which a compound assignment operator exists, you 

are in effect defining behavior for both. If you define custom behavior for the + operator, 

the += operator will automatically work too, for example. 

The operator keyword can also define custom conversions, methods that convert your 

custom type to some other type, or vice versa. For example, if we wanted to be able to 

convert Counter objects to and from int, we could add the two methods in Example 

3-44 to the class. 

Example 3-44. Conversion operators 

public static explicit operator int(Counter value) 

{ 

    return value.Count; 

} 

 

public static explicit operator Counter(int value) 

{ 

    return new Counter(value); 

} 

I’ve used the explicit keyword here, which means that these conversions are accessed 

with the cast syntax, as Example 3-45 shows. 

Example 3-45. Using explicit conversion operators 

var c = (Counter) 123; 

var v = (int) c; 

If you use the implicit keyword instead of explicit, your conversion will be able 

to happen without needing a cast. In Chapter 2 we saw that in certain situations, C# will 

automatically promote numeric types. For example, you can use an int where a long is 

expected, perhaps as an argument for a method or in an assignment. Conversion from 

int to long will always succeed, and can never lose information, so the compiler will 

automatically generate code to perform the conversion without requiring an explicit cast. 

If you write implicit conversion operators, the C# compiler will silently use them in 

exactly the same way, enabling your custom type to be used in places where some other 

type was expected. (In fact, the C# specification defines numeric promotions such as 

conversion from int to long as built-in implicit conversions.) 

Implicit conversion operators are something you shouldn’t need to write very often. You 

should only do so when you can meet the same standards as built-in promotions: the 

conversion must always be possible and should never throw an exception. Moreover, the 
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conversion should make sense—implicit conversions are a little sneaky in that they 

allow you to cause methods to be invoked in code that doesn’t look like it’s calling a 

method. So unless you’re intending to confuse other developers, you should only write 

implicit conversions where they seem to make unequivocal sense. 

C# recognizes two more operators: true and false. These are a bit of an oddball pair, 

because although the C# specification defines them as unary operator overloads, they 

don’t correspond directly to any operator you can write in an expression. They come into 

play when evaluating expressions which use your custom type as the operands of a 

conditional Boolean operator (either && or ||). Remember that these operators will only 

evaluate their second operand if the first outcome does not fully determine the result. To 

customize the behavior of these operators, you must define the non-conditional versions 

of the operators (& and |), and you must also define the true and false operators. 

When evaluating &&, C# will use your false operator on the first operand, and if that 

indicates that the first operand is false, then it will not bother to evaluate the second 

operand. If the first operand is not false, it will evaluate the second operand and then pass 

both into your custom & operator. The || operator works in much the same way, but 

with the true and | operators respectively. 

You may be wondering why we need special true and false operators—couldn’t we 

just define an implicit conversion to the bool type? In fact we can, and if we do that 

instead of providing &, |, true, and false, C# will use that to implement && and || 

for our type. However, some types may want to represent values that are neither true nor 

false—there may be a third value representing an unknown state. The true operator 

allows C# to ask the question “is this definitely true?” and for the object to be able to 

answer “no” without implying that it’s definitely false. A conversion to bool does not 

support that. 

No other operators can be overloaded. For example, you cannot define custom meanings 

for the . operator used to access members of a method, or the conditional (? :), the null 

coalescing (??) or the new operators. 

Events 

Structs and classes can declare events. This is a kind of member that enables a type to 

provide notifications when interesting things happen, using a subscription-based model. 

For example, a UI object representing a button might define a Click event, and you can 

write code that subscribes to that event. 

Events depend on delegates, and since Chapter 9 is dedicated to these topics, I won’t go 

into any detail here. I’m only mentioning them because this section on type members 

would otherwise be incomplete. 

Nested Types 

The final kind of member we can define in a class or a struct is a nested type. You can 

define nested classes, structs, or any of the other types described later in this chapter. A 

nested type can do anything its normal counterpart would do, but it gets a couple of 

additional features. 

When a type is nested, you have more choices for accessibility. A type defined at global 

scope can only be public or internal—private would make no sense because we 
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use it to ensure that something is only accessible from within its containing type, and 

there is no containing type when you define something at global scope. But a nested type 

does have a containing type, so if you define a nested type and make it private, that 

type can only be used from inside the type within which it is nested. Example 3-46 shows 

a private class. 

Example 3-46. A private nested class 

private class Program 

{ 

    private static void Main(string[] args) 

    { 

        // Ask the class library where the user's My Documents folder lives 

        string path = 

            Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments); 

        string[] files = Directory.GetFiles(path); 

        var comparer = new LengthComparer(); 

        Array.Sort(files, comparer); 

        foreach (string file in files) 

        { 

            Console.WriteLine(file); 

        } 

    } 

 

    private class LengthComparer : IComparer<string> 

    { 

        public int Compare(string x, string y) 

        { 

            int diff = x.Length - y.Length; 

            return diff == 0 ? x.CompareTo(y) : diff; 

        } 

    } 

} 

Private classes can be useful in scenarios like this where you are using an API that 

requires an implementation of a particular interface. In this case, I’m calling 

Array.Sort to sort a list of filenames by length. (This is not useful, but it looks nice.) 

I’m providing the custom sort order in the form of an object that implements 

IComparer<string>. I’ll describe interfaces in detail in the next section, but this 

interface is just a description of what the Array.Sort method needs us to provide. I’ve 

written a custom class to implement this interface. This class is just an implementation 

detail of the rest of my code, so I really don’t want to make it public. A nested private 

class is just what I need. 

Code in a nested type is allowed to use non-public members of its containing type. 

However, that’s a purely static relationship. An instance of a nested type does not 

automatically get a reference to an instance of its containing type. (If you’re familiar with 

Java, this may surprise you. C# nested classes are equivalent to Java static nested classes, 

and there is no equivalent to an inner class.) So if you need nested instances to have a 

reference to their container, you will need to declare a field to hold that, and arrange for it 

to be initialized—this would work in exactly the same way as any object that wants to 

hold a reference to another object. Obviously, it’s only an option if the outer type is a 

reference type. 
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So far, we’ve only looked at classes and structs, but there are some other ways to define 

custom types in C#. Some of these are complicated enough to warrant getting their own 

chapters, but there are a couple of simpler ones that I’ll discuss here. 

Interfaces 

An interface defines a programming interface, but is entirely devoid of implementation. 

Classes can choose to provide an implementation of an interface. You can write code that 

works in terms of an interface, meaning it will be able to work with anything that 

implements that interface, instead of being limited to working with one particular type. 

For example, the .NET Framework defines an interface called IEnumerable<T>, 

which defines a minimal set of members for representing sequences of values. (It’s a 

generic interface, so it can represent sequences of anything. An 

IEnumerable<string> is a sequence of strings, for example. Generic types are 

discussed in Chapter 4.) If a method has a parameter of type IEnumerable<string>, 

you can pass it a reference to an instance of any type that implements the interface, which 

means that a single method can work with arrays, various collection classes provided by 

the .NET Framework Class Library, certain LINQ features, and many more things 

besides. 

An interface declares methods, properties, and events, but it does not define their 

contents, as Example 3-47 shows. Properties indicate whether getters and/or setters 

should be present, but we have a semicolon in place of the body because there’s no 

implementation. An interface is effectively a list of the members that a type will need to 

provide if it wants to implement the interface. 

Example 3-47. An interface 

public interface IDoStuff 

{ 

    string this[int i] { get; set; } 

    string Name { get; set; } 

    int Id { get; } 

    int SomeMethod(string arg); 

    event RoutedEvent Click; 

} 

The individual members are not allowed accessibility modifiers—accessibility is 

controlled at the level of the interface itself. (Like classes, interfaces are either public 

or internal, unless they are nested, in which case they can have any accessibility.) 

Interfaces cannot contain fields or nested types because interfaces only define the API, 

not the implementation. Also, interfaces cannot declare constructors—an interface only 

gets to say what services an object should supply once it has been constructed. 

By the way, most interfaces in .NET follow the convention that their name starts with an 

uppercase I followed by one or more words in PascalCase form. 

A class declares the interfaces that it implements in a list after a colon following the class 

name as Example 3-48 shows. It should provide implementations of all the members 

listed in the interface, and you’ll get a compiler error if you leave any out. 

Example 3-48. Implementing an interface 

public class DoStuff : IDoStuff 
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{ 

    public string this[int i] { get { return i.ToString(); } } 

    public Name { get; set; } 

    ...etc 

} 

When we implement an interface in C#, we typically define each of that interface’s 

methods as a public member of our class. However, sometimes you may want to avoid 

this. Occasionally some API may require you to implement an interface which you feel 

pollutes the purity of your class’s API. Or, more prosaically, you may already have 

defined a member with the same name and signature as a member required by the 

interface, but which does something different from what the interface requires. Or worse, 

you may need to implement two different interfaces, both of which define members with 

the same name and signature but which require different behavior. You can solve any of 

these problems with a technique called explicit implementation to define members that 

implement a member of a specific interface without being public. Example 3-49 shows 

the syntax for this, with an implementation of one of the methods from the interface in 

Example 3-47. With explicit implementations you do not specify the accessibility, and 

you prefix the member name with the interface name. 

Example 3-49. Explicit implementation of an interface member 

int IDoStuff.SomeMethod(string arg) 

{ 

    ... 

} 

When a type uses explicit interface implementation, those members cannot be used 

through a reference of the type itself. They only become visible when referring to an 

object through a variable of the interface’s type. 

When a class implements an interface, it becomes implicitly convertible to that interface 

type. So you can pass any variable of DoStuff as a method argument of type 

IDoStuff, for example. 

Interfaces are reference types. Despite this, you can implement interfaces on both classes 

and structs. However, you need to be careful when doing so with a struct, because when 

you get hold of an interface-typed reference to a struct, the struct will often end up being 

copied into a box, which is effectively an object that holds a copy of a struct in a way that 

can be referred to via a reference. We’ll look at boxing in Chapter 7. 

Enums 

The enum keyword declares a very simple type that defines a set of named values. 

Example 3-50 shows an enum that define a set of mutually exclusive choices. You could 

say that this ‘enumerates’ the options, which is where the enum keyword gets its name. 

Example 3-50. An enum with mutually exclusive options 

public enum PorridgeTemperature 

{ 

    TooHot, 

    TooCold, 

    JustRight 

} 
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An enum can be used in most places you might use a type—it could be a local variable, a 

field, or a method parameter for example. But one of the most common ways to use an 

enum is in a switch statement, as Example 3-51 shows. 

Example 3-51. Switching with an enum 

switch (porridge.Temperature) 

{ 

case PorridgeTemperature.TooHot: 

    GoOutsideForABit(); 

    break; 

 

case PorridgeTemperature.TooCold: 

    MicrowaveMyBreakfast(); 

    break; 

 

case PorridgeTemperature.JustRight: 

    NomNomNom(); 

    break; 

} 

As this illustrates, to refer to enumeration members you must qualify them with the type 

name. In fact, an enum is really just a fancy way of defining a load of const fields. The 

members are all just int values under the covers. You can even specify the values 

explicitly, as Example 3-52 shows. 

Example 3-52. Explicit enum values 

[System.Flags] 

public enum Ingredients 

{ 

    Eggs = 1, 

    Bacon = 2, 

    Sausages = 4, 

    Mushrooms = 8, 

    Tomato = 0x10, 

    BlackPudding = 0x20, 

    BakedBeans = 0x40, 

    TheFullEnglish = 0x7f 

} 

This example also shows an alternative way to use an enum. The options in Example 3-

52 are not mutually exclusive. As a developer you should recognize most of those 

constant values as being nice round numbers in binary. (And just in case you’ve not 

memorized these numbers, in binary they are 1, 10, 100, 1000, etc. I’ve used hexadecimal 

literals here because they make it easier to see that these are round numbers in binary.) 

This makes it very easy to combine them together—Eggs and Bacon would be 3 (11 in 

binary) while Eggs, Bacon, Sausages, BlackPudding, and BakedBeans (my 

preferred combination) would be 103 (1100111 in binary, or 0x67 in hex). 

When combining flag-based enumeration values, we normally use the 

bitwise OR operator. For example, you could write 

Ingredients.Eggs|Ingredients.Bacon. Not only is this 

significantly easier to read than using the numeric values, it also works 

well with Visual Studio’s search tools—you can find all the places a 
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particular symbol is used by right clicking on its definition and 

choosing Find All References from the context menu. 

When you declare an enum that’s designed to be combined in this way you’re supposed 

to annotate it with the Flags custom attribute, which is defined in the System 

namespace. (Chapter 15 will describe attributes in detail.) Example 3-52 does this, 

although in practice, it doesn’t matter if you forget because the C# compiler doesn’t care, 

and in fact there are very few tools that pay any attention to it. The main benefit is that if 

you call ToString on an enum value, it will notice when the Flags attribute is 

present. For this Ingredients type, ToString would convert the value of 3 to the 

string Eggs, Bacon, whereas without the Flags attribute, it would treat that as an 

unrecognized value and would just return a string containing the digit 3. 

With this sort of flags-style enumeration, you can run out of bits fairly quickly. By 

default enum uses int to represent the value, and with a sequence of mutually exclusive 

values, that’s usually sufficient. It would be a fairly complicated sequence that needed 

billions of different values in a single enumeration type. However, with one bit per flag, 

an int provides space for just 32 flags. Fortunately, you can get a little more breathing 

room, because you can specify a different underlying type—you can use any built-in 

integer type, meaning that you can go up to 64 bits. As Example 3-53 shows, you can 

specify the underlying type after a colon following the enum type name. 

Example 3-53. 64-bit enum 

[System.Flags] 

public enum TooManyChoices : long 

{ 

    ... 

} 

All enum types are value types incidentally, like the built-in numeric types, or any struct. 

But they are very limited. You cannot define any members other than the constant 

values—no methods or properties, for example. 

Enumeration types can sometimes enhance the readability of code. A lot of APIs accept a 

bool to control some aspect of their behavior, but might often have done better to use an 

enum. Consider the code in Example 3-54. It constructs a StreamReader, a class for 

working with streams that contain text. The second constructor argument is a bool. 

Example 3-54. Unhelpful use of bool 

var rdr = new StreamReader(stream, true); 

It’s not remotely obvious what that second argument does. If you happen to be familiar 

with StreamReader, you may know that this argument determines whether byte 

ordering should be set explicitly from the code, or determined from a preamble at the 

start of the stream. (Using the named argument syntax would help here.) And if you’ve 

got a really good memory, you might even know which of those choices true happens 

to select. But most mere mortal developers will probably have to reach for the 

IntelliSense or even the documentation to work out what that argument does. Compare 

that experience with Example 3-55, which shows a different type. 

Example 3-55. Clarity with an enum 

var fs = new FileStream(path, FileMode.Append); 
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This constructor’s second argument uses an enumeration type, which makes for rather 

less opaque code. It doesn’t take an eidetic memory to work out that this code intends to 

append data to an existing file. 

As it happens, this particular API has more than two options, so it couldn’t use a bool. 

FileMode really had to be an enum. But it does illustrate that even in cases where 

you’re selecting between just two choices, it’s well worth considering defining an enum 

for the job, so that it’s completely obvious which choice is being made when you look at 

the code. 

Other Types 

We’re almost done with our survey of types and what goes in them. There’s one kind 

type that I’ll not discuss until Chapter 9: delegates. We use delegates when we need a 

reference to a function, but the details are somewhat involved. 

I’ve also not mentioned pointers. C# supports pointers that work in a pretty similar way 

to C-style pointers, complete with pointer arithmetic. These are a little weird, because 

they are slightly outside of the rest of the type system. For example, in Chapter 2, I 

mentioned that a variable of type object can refer to “almost anything.” The reason I 

had to qualify that is that pointers are the exception—object can work with any C# 

data type except a pointer. I’ll be discussing pointers in Chapter 23. 

But now we really are done. Some types in C# are special, including the intrinsic types, 

structs, interfaces, enums, delegates and pointers, but everything else looks like a class. 

There are a few classes that get special handling in certain circumstances, notably 

attribute classes (Chapter 15) and exception classes, (Chapter 8), but except for certain 

special scenarios, even those are otherwise completely normal classes. Even though 

we’ve seen all the kinds of types that C# supports, there’s one way to define a class that 

I’ve not shown yet. 

Anonymous Types 

If you need a type that is nothing more than a handful of values stored in properties, C# 

can generate a suitable class for you. Example 3-56 shows how to create an instance of an 

anonymous type as such types are called, and shows how to use it. 

Example 3-56. An anonymous type 

var x = new { Title = "Lord", Surname = "Voldemort" }; 

 

Console.WriteLine("Welcome, " + x.Title + " " + x.Surname); 

As you can see, we use the new keyword without specifying a type name. Instead, we 

just place a series of name/value pairs inside braces. The C# compiler will provide a type 

that has one read-only property for each entry inside the braces. So in Example 3-56, the 

variable x will refer to an object that has two properties, Title and Surname, both of 

type string. (You do not state the property types explicitly in an anonymous type. The 

compiler infers the type from the initialization expression in the same way as it does for 

the var keyword.) Since these are just normal properties, we can access them with the 

usual syntax, as the final line of the example shows. 
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The compiler generates a fairly ordinary class definition for each anonymous type. Rather 

usefully, it overrides Equals so that you can compare instances by value, and it also 

provides a matching GetHashCode implementation. The only unusual thing about the 

generated class is that it’s not possible to refer to the type by name in C#. Running 

Example 3-56 in the debugger, I find that the compiler has chosen the name 

<>f__AnonymousType0'2. This is not a legal identifier in C# because of those angle 

brackets (<>) at the start. C# uses names like this whenever it wants to create something 

that is guaranteed not to collide with any identifiers you might use in your own code, or 

which it wants to prevent you from using directly; this sort of identifier is called, rather 

magnificently, an unspeakable name. 

Because you cannot write the name of an anonymous type, you cannot return one from a 

method, or accept one as a value (unless you use an anonymous type as an inferred 

generic type argument, something we’ll see in Chapter 4). So these would seem to be of 

limited value—they are only usable within the method that defines them. They were 

added to the language for LINQ’s benefit: they enable a query to select specific columns 

or properties from some source collection, and also to define custom grouping criteria as 

you’ll see in Chapter 10. 

Partial Types and Methods 

There’s one last topic I want to discuss relating to types, something you will almost 

certainly encounter on a regular basis. C# supports what it calls a partial type declaration. 

This is a very simple concept: it means that the type declaration might span multiple files. 

If you add the partial keyword to a type declaration, C# will not complain if another 

file defines the same type—it will simply act as though all the members defined by the 

two files had appeared in a single declaration in one file. 

This feature exists to make it easier to write code generation tools. Various features in 

Visual Studio can generate bits of your class for you. This is particularly common with 

user interfaces. UI applications typically have markup that defines the layout and content 

of each part of the UI, and you can choose for certain UI elements to be accessible in 

your code. This is usually achieved by adding a field to a class associated with the 

markup file. To keep things simple, all the parts of the class that Visual Studio generates 

go in a separate file from the parts that you write. This means that the generated parts can 

be rebuilt from scratch whenever needed without any risk of overwriting the code that 

you’ve written. Before partial types were introduced to C#, all the code for a class had to 

go in one file, and from time to time, code generation tools would get confused, leading 

to loss of code. 

Partial classes are not limited to code generation scenarios, so you can 

of course use this to split your own class definitions across multiple 

files. However, if you’ve written a class so large and complex that you 

feel the need to split it into multiple source files just to keep it 

manageable, that’s probably a sign that the class is too complex. A 

better response to this problem might be to change your design. 

Partial methods are also designed for code generation scenarios, but they are slightly 

more complex. They allow one file, typically a generated file, to declare a method, and 

for another file to implement the method. (Strictly speaking, the declaration and 

implementation are allowed to be in the same file, but they’re usually not.) This may 
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sound like the relationship between an interface and a class that implements that 

interface, but it’s not quite the same. With partial methods, the declaration and 

implementation are in the same class—they’re only in different files because the class has 

been split across multiple files. 

If you do not provide an implementation of a partial method, the compiler acts as though 

the method isn’t there at all, and any code that invokes the method is simply ignored at 

compile time. The main reason for this is to support code generation mechanisms that are 

able to offer all sorts of notifications, but where you want zero runtime overhead for 

notifications that you don’t need. Partial methods enable this by letting the code generator 

declare a partial method for each kind of notification it provides, and to generate code 

that invokes all of these partial methods where necessary. All code relating to 

notifications for which you do not write a handler method will be stripped out at compile 

time. 

It’s a slightly idiosyncratic mechanism, but it was driven by frameworks that provide 

extremely fine-grained notification and extension points. There are some more obvious 

runtime techniques you could use instead such as interfaces, or some features that I’ll 

cover in later chapters such as callbacks or virtual methods. However, any of these would 

impose a relatively high cost for unused features. Unused partial methods get stripped out 

at compile time, reducing the cost of the bits you don’t use to nothing, which is a 

considerable improvement. 

Summary 

You’ve now seen most of the kinds of types you can write in C#, and the sorts of 

members they support. Classes are the most widely used, but structs are useful if you 

need value-like semantics for assignment and arguments; both support the same member 

types, namely fields, constructors, methods, properties, indexers, events, custom 

operators, and nested types. Interfaces are abstract, so they only support methods, 

properties, indexers, and events. And enums are very limited, providing just a set of 

known values. 

There’s another feature of the C# type system that makes it possible to write very flexible 

types, called generic types. We’ll look at these in the next chapter. 
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4 

Generics 

In Chapter 3, I showed how to write types, and described the various kinds of members 

they can contain. However, there’s an extra dimension to classes, structs, interfaces, and 

methods that I did not show. They can define type parameters, which are placeholders 

into which you can plug different types at compile time. This lets you write just one type 

and then produce multiple versions of it. This is called a generic type. For example, the 

class library defines a generic class called List<T> that acts as a variable-length array. 

T is a type parameter here, and you can use any type as an argument, so List<int> is a 

list of integers, List<string> is a list of strings, and so on. You can also write a 

generic method, which is a method that has its own type arguments, independently of 

whether its containing type is generic. 

Generic types and methods are visually distinctive because they always have angle 

brackets (< and >) after the name. These contain a comma-separated list of parameters or 

arguments. The same parameter/argument distinction applies here as with methods: the 

declaration specifies a list of parameters, and then when you come to use the method or 

type, you supply arguments for those parameters. So List<T> defines a single type 

parameter, T, and List<int> supplies a type argument, int, for that parameter. 

Type parameters can be called whatever you like, within the usual constraints of what 

constitutes a legal identifier in C#. There’s a common but not universal convention of 

using T when there’s only one parameter. For multi-parameter generics, you tend to see 

slightly more descriptive names. For example, the class library defines the 

Dictionary<TKey, TValue> collection class. And sometimes you will see a 

descriptive name like that even when there’s just one parameter, but in any case you will 

tend to see a T prefix, so that the type parameters stand out when you use them in your 

code. 

Generic Types 

Classes, structs, and interfaces can all be generic, as can delegates, which we’ll be 

looking at in Chapter 9. Example 4-1 shows how to define a generic class. The syntax for 
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structs and interfaces is much the same—the type name is followed immediately by a 

type parameter list. 

Example 4-1. Defining a generic class 

public class NamedContainer<T> 

{ 

    public NamedContainer(T item, string name) 

    { 

        Item = item; 

        Name = name; 

    } 

 

    public T Item { get; private set; } 

    public string Name { get; private set; } 

} 

Inside the body of the class, you can use T anywhere you would normally use a type 

name. In this case, I’ve used it as a constructor argument, and also as the type of the 

Item property. I could define fields of type T too. (In fact I have, albeit not explicitly. 

The automatic property syntax generates hidden fields, so my Item property will have 

an associated hidden field of type T.) You can also define local variables of type T. And 

you’re free to use type parameters as arguments for other generic types. My 

NamedContainer<T> could declare a variable of List<T>, for example. 

The class that Example 4-1 defines is, like any generic type, not a complete type. A 

generic type declaration is unbound, meaning that there are type parameters that must be 

filled in to provide a complete definition of the type. Basic questions such as how much 

memory a NamedContainer<T> instance will require cannot be answered without 

knowing what T is—the hidden field for the Item property would need 4 bytes if T were 

an int, but 16 bytes if it were a decimal. The CLR cannot produce executable code 

for a type if it does not even know how the contents will be arranged in memory. So to 

use this, or any other generic type, we must provide type arguments. Example 4-2 shows 

how. When type arguments are supplied, the result is sometimes called a constructed 

type. (Slightly confusingly, this has nothing to do with constructors, the special kind of 

member we looked at in Chapter 3. In fact, Example 4-2 uses those too—it invokes the 

constructors of a couple of constructed types.) 

Example 4-2. Using a generic class 

var a = new NamedContainer<int>(42, "The answer"); 

var b = new NamedContainer<int>(99, "Number of red balloons"); 

var c = new NamedContainer<string>("Programming C#", "Book title"); 

You can use a constructed generic type anywhere you would use a normal type. For 

example, you can use them as the types for method parameters and return values, 

properties, or fields. You can even use one as a type argument for another generic type, 

as Example 4-3 shows. 

Example 4-3. Constructed generic types as type arguments 

// ...where a, and b come from Example 4-2. 

var namedInts = new List<NamedContainer<int>>() { a, b }; 

var namedNamedItem = new NamedContainer<NamedContainer<int>>(a, "Wrapped");     

Each distinct combination of type arguments forms a distinct type. (Or in the case of a 

generic type with just one parameter, each different type you supply as an argument 
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constructs a distinct type.) This means that NamedContainer<int> is a different 

type than NamedContainer<string>. That’s why there’s no conflict in using 

NamedContainer<int> as the type argument for another NamedContainer as the 

final line of Example 4-3 does—there’s no infinite recursion here. 

Because each different set of type arguments produces a distinct type, there is no implied 

compatibility between different forms of the same generic type. You cannot assign a 

NamedContainer<int> into a variable of type NamedContainer<string> or 

vice versa. It makes sense that those two types are incompatible, because int and 

string are quite different types. But what if we used object as a type argument? As 

Chapter 2 described, you can put almost anything in an object variable. If you write a 

method with a parameter of type object, it’s OK to pass a string, so you might 

expect a method that takes a NamedContainer<object> to be happy with a 

NamedContainer<string>. By default, that won’t work, but some generic types 

can declare that it wants to support such compatibility relationships. The mechanisms that 

support this (called covariance and contravariance) are closely related to the type 

system’s inheritance mechanisms. Chapter 6 is all about inheritance and type 

compatibility, so I shall discuss how that works with generic types in that chapter. 

Because the type arguments form part of the identity of a type, it’s possible to introduce 

multiple types with the same name as long as they have different numbers of type 

arguments. So you could define a generic class called say, Operation<T>, and then 

another class, Operation<T1, T2>, and also Operation<T1, T2, T3> and so 

on, all in the same namespace, without introducing any ambiguity. When using these 

types, it’s clear from the number of arguments which type was meant—

Operation<int> clearly uses the first, while Operation<string, double> 

uses the second, for example. And for the same reason, you can also have a non-generic 

type with the same name as a generic type. So an Operation class would be distinct 

from generic types of the same name. 

My NamedContainer<T> example doesn’t do anything to instances of its type 

argument, T—it never invokes any methods, or uses any properties or other members of 

T. All it does is accept a T as a constructor argument, which it stores away for later 

retrieval. This is also true of the generic types I’ve pointed out in the .NET Framework 

class library—I’ve mentioned some collection classes, which are all variations on the 

same theme of containing data for later retrieval. There’s a reason for this: a generic class 

can find itself working with any type, so it can presume very little about its type 

arguments. However, if you want to be able to presume certain things about your type 

arguments, you can specify constraints. 

Constraints 

C# allows you to request that certain type arguments fulfill certain requirements. For 

example, suppose you want to be able to create new instances of the type on demand. 

Example 4-4 shows a simple class that provides deferred construction—it makes an 

instance available through a static property, but does not attempt to construct that 

instance until the first time you read the property. 

Example 4-4. Creating a new instance of a parameterized type 

// For illustration only. Consider using Lazy<T> in a real program. 

public static class Deferred<T> 
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    where T : new() 

{ 

    private static T _instance; 

 

    public static T Instance 

    { 

        get 

        { 

            if (_instance == null) 

            { 

                _instance = new T(); 

            } 

            return _instance; 

        } 

    } 

} 

You wouldn’t write a class like this in practice, because the class 

library offers Lazy<T>, which does the same job, but with more 

flexibility. Lazy<T> can work correctly in multithreaded code, which 

Example 4-4 will not. Example 4-4 is just to illustrate how constraints 

work. Don’t use it! 

For this class to do its job, it needs to be able to construct an instance of whatever type is 

supplied as the argument for T. The get accessor uses the new keyword, and since it 

passes no arguments, it clearly requires the type to provide a parameterless constructor. 

But not all types do, so what happens if we try to use a type without a suitable constructor 

as the argument for Deferred<T>? The compiler will reject it, because it violates a 

constraint that this generic type has declared for T. Constraints appear just before the 

class’s opening brace, and they begin with the where keyword. The constraint in 

Example 4-4 states that T is required to supply a zero-argument constructor. 

If that constraint had not been present, the class in Example 4-4 would not compile—you 

would get an error on the line that attempts to construct a new T. A generic type (or 

method) is only allowed to use features that it has specified through constraints, or which 

are universally available. (All types offer a ToString method, for example, so you can 

invoke that on any instance without needing to specify a constraint.) 

C# offers only a very limited suite of constraints. You cannot demand a constructor that 

takes arguments, for example. In fact, C# supports only four kinds of constraint on a type 

argument: a type constraint, a reference type constraint, a value type constraint, and the 

new() constraint. We just saw that last one, so let’s look at the rest. 

Type Constraints 

You can constrain the argument for a type parameter to be compatible with a particular 

type. For example, you could use this to demand that the argument type implements a 

particular interface. Example 4-5 shows the syntax. 

Example 4-5. Using a type constraint 

using System; 

using System.Collections.Generic; 

 

public class GenericComparer<T> : IComparer<T> 
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    where T : IComparable<T> 

{ 

    public int Compare(T x, T y) 

    { 

        return x.CompareTo(y); 

    } 

} 

I’ll just explain the purpose of this example before describing how it takes advantage of a 

type constraint. This class provides a bridge between two styles of value comparison that 

you’ll find in .NET. Some data types provide their own comparison logic, but at times it 

can be more useful for comparison to be a separate function implemented in its own 

class. These two styles are represented by the IComparable<T> and IComparer<T> 

interfaces, which are both part of the class library. (They are in the System and 

System.Collections.Generics namespaces respectively.) I showed 

IComparer<T> in Chapter 3—an implementation of this interface can compare two 

objects or values of type T. The interface defines a single Compare method that takes 

two arguments and returns either a negative number, 0, or a positive number if the first 

argument is respectively less than, equal to, or greater than the second. 

IComparable<T> is very similar, but its CompareTo method takes just a single 

argument, because with this interface, you are asking an instance to compare itself to 

some other instance. 

Some of the .NET class library’s collection classes require you to provide an 

IComparer<T> to support ordering operations such as sorting. They use the model in 

which a separate object performs the comparison because this offers two advantages over 

the IComparable<T> model. First, it enables you to use data types that don’t 

implement IComparable<T>. Second, it allows you to plug in different sorting orders. 

(For example, suppose you want to sort some strings with a case-sensitive order. The 

string type implements IComparable<string>, but that provides a case-

insensitive order.) So IComparer<T> is the more flexible model. However, what if you 

are using a data type that implements IComparable<T>, and you’re perfectly happy 

with the order that provides. What would you do if you’re working with an API that 

demands an IComparer<T>? 

Actually, the answer is that you’d probably just use the .NET Framework class library 

feature designed for this very scenario, Comparer<T>.Default. If T implements 

IComparable<T>, that property will return an IComparer<T> that does precisely 

what you want. So in practice, you wouldn’t need to write the code in Example 4-5 

because the .NET Framework has already written it for you. However, it’s instructive to 

see how you’d write your own version because it illustrates how to use a type constraint. 

The line starting with the where keyword states that this generic class requires any 

argument for its type parameter T to implement IComparable<T>. Without this, the 

Compare method would not compile—it invokes the CompareTo method on an 

argument of type T. That method is not present on all objects, and the C# compiler only 

allows this because we’ve constrained T to be an implementation of an interface that does 

offer such a method. 

Interface constraints are relatively rare. If a method needs a particular argument to 

implement a particular interface, you wouldn’t normally need a generic type constraint. 

You can just use that interface as the argument’s type. However, Example 4-5 can’t do 

this. You can demonstrate this by trying Example 4-6. It won’t compile. 
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Example 4-6. Will not compile: interface not implemented 

public class GenericComparer<T> : IComparer<T> 

{ 

    public int Compare(IComparable<T> x, T y) 

    { 

        return x.CompareTo(y); 

    } 

} 

The compiler will complain that I’ve not implemented the IComparer<T> interface’s 

Compare method. Example 4-6 has a Compare method, but its signature is wrong—

that first argument should be a T. I could also try the correct signature without specifying 

the constraint, as Example 4-7 shows. 

Example 4-7. Will not compile: missing constraint 

public class GenericComparer<T> : IComparer<T> 

{ 

    public int Compare(T x, T y) 

    { 

        return x.CompareTo(y); 

    } 

} 

That will also fail to compile, because the compiler can’t find that CompareTo method 

I’m trying to use. It’s the constraint for T in Example 4-5 that enables the compiler to 

know what that method really is. 

Type constraints don’t have to be interfaces by the way. You can use any type. For 

example, you can constrain a particular argument always to derive from a particular base 

class. More subtly, you can also define one parameter’s constraint in terms of another 

type parameter. Example 4-8 requires the first type argument to derive from the second, 

for example. 

Example 4-8. Constraining one argument to derive from another 

public class Foo<T1, T2> 

    where T1 : T2 

... 

Type constraints are fairly specific—they require either a particular inheritance 

relationship, or the implementation of specific interfaces. However, you can define 

slightly less specific constraints. 

Reference Type Constraints 

You can constrain a type argument to be a reference type. As Example 4-9 shows, this 

looks similar to a type constraint. You just put the keyword class instead of a type 

name. 

Example 4-9. Constraint requiring a reference type 

public class Bar<T> 

    where T : class 

... 

This constraint prevents the use of value types such as int, double, or any struct as 

the type argument. Its presence enables your code to do three things that would not 
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otherwise be possible. First, it means that you can write code that tests whether variables 

of the relevant type are null. If you’ve not constrained the type to be a reference type, 

there’s always a possibility that it’s a value type, and those can’t have null values. The 

second capability is that you can use the as operator, which we’ll look at in Chapter 6. 

This is really just a variation on the first feature—the as keyword requires a reference 

type because it can produce a null result. 

The third feature that a reference type constraint enables is the ability to use the 

constrained parameter as the argument for some other generic type or method that has the 

same constraint. This is a little obscure, so it may be useful to look at an example. I often 

find myself writing tests that create an instance of the class I’m testing, and which also 

need one or more fake objects to stand in for real objects that the object under test wants 

to interact with. Using these stand-ins reduces the amount of code any single test has to 

exercise, and can make it easier to verify the behavior of the object being tested. For 

example, my test might need to verify that my code sends messages to a server at the 

right moment, but I don’t want to have to run a real server during a unit test, so I provide 

an object that implements the same interface as the class that would transmit the message, 

but which won’t really send the message. This is such a common pattern for a test, that it 

might be useful to put the code into a reusable base class, and by using generics, that 

class can work for any combination of the type being tested and the type being faked. 

Example 4-10 shows a simplified version of a kind of helper class I sometimes write in 

these situations. 

Example 4-10. Constrained by another constraint 

using Microsoft.VisualStudio.TestTools.UnitTesting; 

using Moq; 

 

public class TestBase<TSubject, TFake> 

    where TSubject : new() 

    where TFake : class 

{ 

    public TSubject Subject { get; private set; } 

    public Mock<TFake> Fake { get; private set; } 

 

    [TestInitialize] 

    public void Initialize() 

    { 

        Subject = new TSubject(); 

        Fake = new Mock<TFake>(); 

    } 

} 

There are various ways to build fake objects for test purposes. You could just write new 

classes that implement the same interface as your real objects, or you could use a library 

that generates them for you. One such library is called Moq (an open source project 

available for free from http://code.google.com/p/moq/), and that’s where the Mock<T> 

class in Example 4-10 comes from. It’s capable of generating a fake implementation of 

any interface, or of any non-sealed class. It will provide empty implementations of all 

members by default, and you can configure more interesting behaviors if necessary. You 

can also verify whether the code under test used the fake object in the way you expected. 

How is that relevant to constraints? The Mock<T> class specifies a reference type 

constraint on its own type argument, T. This is due to the way in which it creates 

dynamic implementations of types at runtime—it’s a technique that can only work for 
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reference types. That means that when I use Mock<T> in Example 4-10, I need to make 

sure that whatever type argument I pass is a reference type. But the type argument I’m 

using is one of my class’s type parameters: TFake. So I don’t know what type that will 

be—that’ll be up to whoever is using my class. 

For my class to compile without error, I have to ensure that I have met the constraints of 

any generic types that I use. I have to guarantee that Mock<TFake> is valid, and the 

only way to do that is to add a constraint on my own type that requires TFake to be a 

reference type. And that’s what I’ve done on the 3rd line of the class definition in 

Example 4-10. Without that, the compiler would report errors on the two lines that refer 

to Mock<TFake>. 

To put it more generally, if you want to use one of your own type parameters as the type 

argument for a generic that specifies a reference type constraint, you’ll need to specify 

the same constraint on your own type parameter. 

Value Type Constraints 

Just as you can constrain a type argument to be a reference type, you can also constrain it 

to be a value type. The syntax is similar to that for a reference type constraint, but with 

the struct keyword. 

Example 4-11. Constraint requiring a value type 

public class Quux<T> 

    where T : struct 

... 

Before now, we’ve only seen the struct keyword in the context of custom value types, 

but despite how it looks, this constraint permits any of the built-in numeric types such as 

int, as well as custom structs. That’s because they all derive from the same 

System.ValueType base class. 

The .NET Framework’s Nullable<T> type imposes this constraint. Recall from 

Chapter 3 that Nullable<T> provides a wrapper for value types that allows a variable 

to hold either a value, or no value. (C# provides a special syntax for this type: you can put 

a ? on the end of any value type name. For example, int? means Nullable<int>.) 

The only reason this type exists is to provide nullability for types that would not 

otherwise be able to hold a null value. So it only makes sense to use this with a value 

type—reference type variables can already be set to null without needing this wrapper. 

The value type constraint prevents you from using Nullable<T> with types for which 

it is unnecessary. 

If you’d like to impose multiple constraints for a single type argument you can just put 

them in a list, as Example 4-12 shows. There are a couple of ordering restrictions: if you 

have a reference or value type constraint, the class or struct keyword must come 

first in the list. If the new() constraint is present, it must be last. 

Example 4-12. Multiple constraints 

public class Spong<T> 

    where T : IEnumerable<T>, IDisposable, new() 

... 
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When your type has multiple type parameters, you can specify multiple constraints by 

writing one where clause for each type parameter you wish to constrain. In fact we saw 

this earlier—Example 4-10 defines constraints for both of its parameters. 

Zero-like Values 

There are a few features that all types support, and which therefore do not require a 

constraint. This includes the set of methods defined by the object base class, which I’ll 

show in Chapter 6. But there’s a more basic feature which can sometimes come in useful 

in generic code. 

Variables of any type can be initialized to a default value. As you have seen in the 

preceding chapters, there are some situations in which the CLR does this for us. For 

example, all the fields in a newly-constructed object will have a known value even if we 

don’t write field initializers, and don’t supply values in the constructor. Likewise, a new 

array of any type will have all of its elements initialized to a known value. The CLR does 

this by filling the relevant memory with zeros. The exact interpretation depends on the 

data type. For any of the built-in numeric types, the value will quite literally be the 

number zero. But for non-numeric types, it’s something else. For bool, the default is 

false, and for a reference type, it is null. 

Sometimes, it can be useful for generic code to be able to reset a variable back to this 

initial default zero-like value. But you cannot use a literal expression to do this in most 

situations. You cannot assign null into a variable whose type is specified by a type 

parameter, unless that parameter has been constrained to be a reference type. And you 

cannot assign the literal 0 into any such variable because there is no way to constrain a 

type argument to be a numeric type. 

Instead, you can request the zero-like value for any type using the default keyword. 

(This is the same keyword we saw inside a switch statement in Chapter 2, but used in a 

completely different way. C# keeps up the C-family tradition of defining multiple, 

unrelated meanings for each keyword.) If you write default(SomeType) where 

SomeType is either a type or a type parameter, you will get the default initial value for 

that type: zero if it is a numeric type, and the equivalent for any other type. For example, 

the expression default(int) has value of 0, default(bool) is false, and 

default(string) is null. You can use this with a generic type parameter to get the 

default value for the corresponding type argument, as Example 4-13 shows. 

Example 4-13. Getting the default (zero-like) value of a type argument 

static void PrintDefault<T>() 

{ 

    Console.WriteLine(default(T)); 

} 

Inside a generic type or method that defines a type parameter T, the expression 

default(T) will produce the default, zero-like value for T, whatever T may be, 

without requiring any constraints. So you could use the generic method in Example 4-13 

to verify that the defaults for int, bool, and string are the values I stated. And since 

I’ve just shown you an example, this seems like a good time to talk about generic 

methods. 
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Generic Methods 

As well as generic types, C# also supports generic methods. In this case, the generic type 

parameter list follows the method name, and precedes the method’s normal parameter 

list. Example 4-14 shows a method with a single type parameter. It uses that parameter as 

its return type, and also as the element type for an array to be passed in as the method’s 

argument. This method returns the final element in the array, and because it’s generic, it 

will work for any array element type. 

Example 4-14. A generic method 

public static T GetLast<T>(T[] items) 

{ 

    return items[items.Length - 1]; 

} 

You can define generic methods inside either generic types, or non-

generic types. If a generic method is a member of a generic type, all of 

the type parameters from the containing type are in scope inside the 

method, as well as the type parameters specific to the method. 

Just as with a generic type, you can use a generic method by specifying its name along 

with its type arguments. 

Example 4-15. Invoking a generic method 

int[] values = { 1, 2, 3 }; 

int last = GetLast<int>(values); 

Generic methods are very similar to generic types, but with type parameters that are only 

in scope within the method declaration and body. You can specify constraints in much 

the same way as with generic types. The constraints appear after the method’s parameter 

list and before its body, as Example 4-16 shows. 

Example 4-16. A generic method with a constraint 

public static T MakeFake<T>() 

    where T : class 

{ 

    return new Mock<T>().Object; 

} 

There’s one significant way in which generic methods differ from generic types though: 

you don’t always need to specify a generic method’s type arguments explicitly. 

Type Inference 

The C# compiler is often able to infer the type arguments for a generic method. So I 

could modify Example 4-15 by removing the type argument list from the method 

invocation, as Example 4-17 shows. This does not change the meaning of the code in any 

way. 

Example 4-17. Generic method type argument inference 

int[] values = { 1, 2, 3 }; 

int last = GetLast(values); 
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When presented with this sort of ordinary-looking method call, if there’s no non-generic 

method of that name available, the compiler starts looking for suitable generic methods. 

If the method in Example 4-14 is in scope, the compiler then attempts to deduce the type 

arguments. This is a pretty simple case. The method expects an array of some type T, and 

we’ve passed an array of type int, so it’s not a massive stretch to work out that this code 

should be treated as a call to GetLast<int>. 

It gets more complex with more intricate cases. The C# specification has about 6 pages 

dedicated to the type inference algorithm, but it’s all to support one goal: letting you 

leave out type arguments when they would be redundant. By the way, type inference is 

always performed at compile time, so it’s based on the static type of the method 

arguments. 

Inside Generics 

If you are familiar with C++ templates, you will by now have noticed that C# generics 

are quite different than templates. Superficially they have some similarities, and can be 

used in similar ways—both are suitable for implementing collection classes, for example. 

However, there are some template-based techniques that simply won’t work in C#, such 

as the code in Example 4-18. 

Example 4-18. A template technique that doesn’t work in C# generics 

public static T Add<T>(T x, T y) 

{ 

    return x + y;  // Will not compile 

} 

You can do this sort of thing in a C++ template but it will not work in C#, and you cannot 

fix it completely with a constraint. You could add a type constraint requiring T to derive 

from some type that defines a custom + operator, which would get this to compile, but it 

would be pretty limited—it would only work for types derived from that base type. In 

C++, you can write a template that will add together two items of any type that supports 

addition, whether that’s a built-in type or a custom one. Moreover, C++ templates don’t 

need constraints—the compiler is able to work out for itself whether a particular type will 

work as a template argument. 

The limitations of C# generics are an upshot of how they are designed to work, so it’s 

useful to understand the mechanism. (These limitations are not specific to Microsoft’s 

CLR by the way. They are an inevitable result of how generics fit into the design of the 

CLI.) 

Generic methods and types are compiled without knowing which types will be used as 

arguments. This is the fundamental difference between C# generics and C++ templates—

in C++, the compiler gets to see every instantiation of a template. But with C#, you can 

instantiate generic types without access to any of the relevant source code, long after the 

code has been compiled. After all, Microsoft wrote the generic List<T> class years 

ago, but you could write a brand new class today, and plug that in as the type argument 

just fine. (You might point out that the C++ standard library’s std::vector has been 

around even longer. However, the C++ compiler has access to the source file that defines 

the class, which is not true of C# and List<T>. C# only sees the compiled library.) 

 11 



O’Reilly Media, Inc.  3/13/2012 

The upshot of this is that the C# compiler needs to have enough information to be able to 

generate type-safe code at the point at which it compiles generic code. Take Example 4-

18. It cannot know what the + operator means here, because it would be different for 

different types. With the built-in numeric types, that code would need to compile to the 

specialized IL instructions for performing addition. If that code were in a checked context 

(i.e., using the checked keyword shown in Chapter 2), we’d already have a problem, 

because the code for adding integers with overflow checking uses different IL opcodes 

for signed and unsigned integers. But since this is a generic method we may not be 

dealing with the built-in numeric types at all—perhaps we are dealing with a type that 

defines a custom + operator, in which case the compiler would need to generate a method 

call. (Custom operators are just methods under the covers.) Or if the type in question 

turns out not to support addition, the compiler should generate an error. 

There are several possible outcomes, depending on the actual types involved. That would 

be fine if the types were known to the compiler, but it has to compile the code for generic 

types and methods without knowing which types will be used as arguments. 

You might argue that perhaps Microsoft could have supported some sort of tentative 

semi-compiled format for generic code, and in a sense, they did. When introducing 

generics, Microsoft modified the type system, file format, and IL instructions to allow 

generic code to use placeholders representing type parameters to be filled in when the 

type is fully constructed. So why not extend it to handle operators? Why not let the 

compiler generate errors at the point at which you attempt to use a generic type instead of 

insisting on generating errors when the generic code itself is compiled? Well it turns out 

to be possible to plug new sets of type arguments in at runtime—the reflection API that 

we’ll look at in Chapter 13 lets you construct generic types. So there isn’t necessarily a 

compiler available at the point at which an error would become apparent, because not all 

versions of .NET make a C# compiler available at runtime. And in any case, what should 

happen if a generic class was written in C# but was consumed by a completely different 

language, one that didn’t support operator overloading, perhaps? Which language’s rules 

should apply when it comes to working out what to do with that + operator? Should it be 

the language in which the generic code was written, or the language in which the type 

argument was written? (What if there are multiple type parameters, and for each 

argument you use a type written in a different language?) Or perhaps the rules should 

come from the language that decided to plug the type arguments into the generic type or 

method, but what about cases where one piece of generic code passes its arguments 

through to some other generic entity? Even if you could decide which of these 

approaches would be best, it supposes that the rules used to determine what a line of code 

actually means are available at runtime, a presumption that once again founders on the 

fact that the relevant compilers will not necessarily be installed on the machine running 

the code. 

.NET generics solve this problem by requiring the meaning of generic code to be fully 

defined when the generic code is compiled, by the language in which the generic code 

was written. If the generic code involves using methods or other members, they must be 

resolved statically, i.e., the identity of those members must be determined precisely at 

compile time. Critically, that means compile time for the generic code itself, not for the 

code consuming the generic code. These requirements explain why C# generics are not as 

flexible as a consumer-compile-time substitution model. The payoff is that you can 

compile generics into libraries in binary form, and they can be used by any language, 

with completely predictable behavior. 
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Summary 

The most important use case for generics back when they were first introduced was to 

make it possible to write type-safe collection classes. .NET did not have generics at the 

beginning, so the collection classes available in version 1.0 used the general-purpose 

object type. This meant you had to cast objects back to their real type every time you 

extracted one from a collection. It also meant that value types were not handled 

efficiently in collections—as we’ll see in Chapter 7, referring to values through an 

object requires the generation of ‘boxes’ to contain the values. Generics solve these 

problems well. They make it possible to write collection classes such as List<T>, 

which do not require casts to be useful. Moreover, because the CLR is able to construct 

generic types at runtime, it can generate code optimized for whatever type a collection 

contains. So collection classes can handle value types such as int much more efficiently 

than before generics were introduced. We’ll look at some of these collection types in the 

next chapter. 
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6 

Inheritance 

C# classes support the popular object-oriented code reuse mechanism known as 

inheritance. When you write a class, you can optionally specify a base class. Your class 

will derive from this, meaning that everything in the base class will be present in your 

class, as well as any members you add. 

Classes support only single inheritance. Interfaces offer a form of multiple inheritance. 

Value types do not support inheritance at all. One reason for this is that value types are 

not normally used by reference, which removes one of the main benefits of inheritance: 

runtime polymorphism. Inheritance is not necessarily incompatible with value-like 

behavior—some languages manage it—but it often has problems. For example, assigning 

a value of some derived type into a variable of its base type ends up losing all of the 

fields that the derived type added, a problem known as slicing. C# sidesteps this by 

restricting inheritance to reference types. When you assign a variable of some derived 

type into a variable of a base type, you’re copying a reference, not the object itself, so the 

object remains intact. Slicing is only an issue if the base class offers a method that clones 

the object, and doesn’t provide a way for derived classes to extend that (or it does, but 

some derived class fails to extend it). 

Classes specify a base class using the syntax shown in Example 6-1—the base type 

appears after a colon that follows the class name. This example assumes that a class 

called SomeClass has been defined elsewhere in the project. 

Example 6-1. Specifying a base class 

public class Derived : SomeClass 

{ 

} 

 

public class AlsoDerived : SomeClass, IDisposable 

{ 

    public void Dispose() { } 

} 

As Example 6-1 also illustrates, if the class implements any interfaces, these are also 

listed after the colon. If you want to derive from a class, and you want to implement 
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interfaces as well, the base class must appear first, as the second class shown in Example 

6-1 illustrates. 

You can derive from a class which in turn derives from another class. The 

MoreDerived class in Example 6-2 derives from Derived which in turn derived 

from Base. 

Example 6-2. Inheritance chain 

public class Base 

{ 

} 

 

public class Derived : Base 

{ 

} 

 

public class MoreDerived : Derived 

{ 

} 

This means that MoreDerived technically has multiple base classes: it derives from 

both Derived (directly) and Base (indirectly, via Derived). This is not multiple 

inheritance because there is only a single chain of inheritance—any single class derives 

directly from at most one base class. 

Since a derived class inherits everything the base class has—all its fields, methods, and 

other members, both public and private—an instance of the derived class can do anything 

an instance of the base class could do. This is the classic is a relationship that inheritance 

implies in many languages. Any instance of MoreDerived is a Derived, and also a 

Base. C#’s type system recognizes this relationship. 

Inheritance and Conversions 

C# provides various built-in implicit conversions. In Chapter 2, we saw the conversions 

for numeric types, but there are also ones for reference types. If some type D derives from 

B (either directly or indirectly) then a reference of type D can be converted implicitly to a 

reference of type B. This is follows from the fact that any instance of D is a B. (This is 

sometimes called the Liskov Substitution Principle or LSP, and it’s a very common 

feature of object-oriented systems.) This implicit conversion enables polymorphism: any 

code written to work in terms of B will be able to work with any type derived from B. 

Obviously there is no implicit conversion in the opposite direction—although a variable 

of type B could refer to an object of type D, there’s no guarantee that it will. There could 

be any number of types derived from B, and a B variable could refer to an instance of any 

of them. Nevertheless, you will sometimes want to attempt to convert a reference from a 

base type to a derived type, an operation sometimes referred to as a downcast. Perhaps 

you know for a fact that a particular variable holds a reference of a certain type. Or 

perhaps you’re not sure, and would like your code to provide additional services for 

specific types. C# offers three ways to do this. 

The most obvious way to attempt a downcast is to use the cast syntax, the same syntax 

we use for performing non-implicit numeric conversions, as Example 6-3 shows. 
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Example 6-3. Feeling downcast 

public void UseAsDerived(Base baseArg) 

{ 

    var d = (Derived) baseArg; 

 

    ... go on to do something with d 

} 

This conversion is not guaranteed to succeed—that’s why it’s not built in as an implicit 

conversion. If you try this when the baseArg argument refers to something that’s not an 

instance of Derived, nor something derived from Derived, the conversion will fail, 

throwing an InvalidCastException. 

A cast is therefore only appropriate if you’re confident that the object really is of the type 

you expect, and you consider it to be an error if it turns out not to be. This is useful when 

an API accepts an object that it will later give back to you. Many asynchronous APIs do 

this, because in cases where you launch multiple operations concurrently, you need some 

way of working out which particular one finished when you get a completion notification 

(although as we’ll see in later chapters, there are various ways to tackle that problem). 

Since these APIs don’t know what sort of data you’ll want associate with an operation, 

they usually just take a reference of type object, and you would typically use a cast to 

turn it back into a reference of the required type when the reference is eventually handed 

back to you. 

Sometimes, you will not know for certain whether an object is of a particular type. In this 

case, you can use the as operator instead, which allows you to attempt a conversion 

without risking an exception. If the conversion fails, this operator just returns null. 

Example 6-4. The as operator 

public void MightUseAsDerived(Base b) 

{ 

    var d = b as Derived; 

 

    if (d != null) 

    { 

        ... go on to do something with d 

    } 

} 

Finally, it can occasionally be useful to know whether a reference refers to an object of a 

particular type, without actually wanting to use any members specific to that type. For 

example, you might want to skip some particular piece of processing for a certain derived 

class. The is operator, shown in Example 6-5, tests whether an object is of a particular 

type, and returns true if it is, and false otherwise. 

Example 6-5. The is operator. 

if (!(b is WeirdType)) 

{ 

    ... do the processing that everything except WeirdType requires 

} 

When converting with a cast or the as operator, or when using the is operator, you 

don’t necessarily need to specify the exact type. These operations will succeed as long as 

a reference of the object’s real type could be implicitly converted to the type you’re 

looking for. For example, given the Base, Derived, and MoreDerived types that 
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Example 6-2 defines, suppose you have a variable of type Base that currently contains a 

reference to an instance of MoreDerived. Obviously you could cast the reference to 

MoreDerived (and both as and is would also succeed for that type) but as you’d 

probably expect, converting to Derived would work too. 

These three mechanisms also work for interfaces. When you try to convert a reference to 

an interface type reference, conversion will succeed if the object referred to implements 

the relevant interface. 

Interface Inheritance 

Interfaces support inheritance, but it’s not quite the same as class inheritance. The syntax 

is similar, but as Example 6-6 shows, an interface can specify multiple base interfaces, 

because C# supports multiple inheritance for interfaces. The reason .NET supports this 

despite only offering single implementation inheritance is that most of the complications 

and potential ambiguities that can arise with multiple inheritance do not apply to purely 

abstract types. 

Example 6-6. Interface inheritance 

interface IBase1 

{ 

    void Base1Method(); 

} 

 

interface IBase2 

{ 

    void Base2Method(); 

} 

 

interface IBoth : IBase1, IBase2 

{ 

    void Method3(); 

} 

As with class inheritance, interfaces inherit all of their bases’ members, so the IBoth 

interface here includes Base1Method and Base2Method, as well as its own 

Method3. 

Implicit conversions exist from derived interface types to their bases. For example, a 

reference of type IBoth can be assigned to a variable of type IBase1 and also 

IBase2. 

A more subtle feature of interface inheritance is that any class that implements a derived 

interface is required to implement that interface’s base interfaces. As Example 6-7 shows, 

the class only needs to state that it implements the derived interface, but the compiler will 

act as though IBase1 and IBase2 were in the interface list. 

Example 6-7. Implementing a derived interface 

public class Impl : IBoth 

{ 

    public void Base1Method() 

    { 

    } 
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    public void Base2Method() 

    { 

    } 

 

    public void Method3() 

    { 

    } 

} 

It may seem facile to state that implementing an interface implies implementing its bases. 

After all, the Impl in Example 6-7 has to implement Base1Method and 

Base2Method because the derived interface IBoth includes all of those. Also, any 

reference of type Impl is implicitly convertible to IBoth, which in turn is implicitly 

convertible to IBase1 and IBase2. However, these facts alone do not explain all the 

observable behavior. The fact that the class also implements all of the base interfaces 

makes a difference. To see why, imagine a hypothetical world in which it is possible to 

implement IBoth but not IBase1 and IBase2 (despite implementing all their 

members). 

Now in general, if a reference of some class C is implicitly convertible to some type T1, 

and that in turn is implicitly convertible to type T2 this does not necessarily mean that C 

is implicitly convertible to T2. Implicit conversions are not transitive (in the set theory 

sense) so C# will not chain together multiple conversions to find a path from the 

available type to the required type. It will only use one. In our proposed hypothetical 

world, if Impl did implement IBoth without implementing its bases, it would not be 

possible to convert a reference of type Impl implicitly to IBase1 directly. You could 

convert implicitly to IBoth, and then you could implicitly convert that IBoth to an 

IBase1. So you can get there, but it would require two separate steps. Back in the real 

world, references of type Impl are implicitly convertible to IBase1, and that’s only 

because IBoth obliges it to implement IBase1.  

There’s another way in which we can see that Impl does implement all three interfaces. 

The reflection API, which is the subject of Chapter 13, provides a way to discover what 

interfaces a type implements. And even though the declaration of Impl in Example 6-7 

only lists one interface, IBoth, the reflection API reports three interfaces. This result is 

indistinguishable from what you would see if Impl had explicitly declared its support for 

IBase1 and IBase2 as well. 

Generics 

If you derive from a generic class, you must you supply the type arguments it requires. 

You can either provide concrete types, or, if your derived class is generic, it can use its 

own type parameters as arguments. Example 6-8 shows both techniques, and also 

illustrates that when deriving from a class with multiple type parameters, you can use a 

mixture of techniques, specifying one type argument directly, and punting on the other. 

Example 6-8. Deriving from a generic base class 

public class GenericBase1<T> 

{ 

    public T Item { get; set; } 

} 

 

 5 



O’Reilly Media, Inc.  3/13/2012 

public class GenericBase2<TKey, TValue> 

{ 

    public TKey Key { get; set; } 

    public TValue Value { get; set; } 

} 

 

public class NonGenericDerived : GenericBase1<string> 

{ 

} 

 

public class GenericDerived<T> : GenericBase1<T> 

{ 

} 

 

public class MixedDerived<T> : GenericBase2<string, T> 

{ 

} 

Although you are free to use any of your type parameters as type arguments for a base 

class, you cannot derive from a type parameter. This is slightly disappointing if you are 

used to languages that permit such things, but the C# language specification simply 

forbids it.  

Covariance and Contravariance 

In Chapter 4, I mentioned that generic types have special rules for type compatibility, 

referred to as covariance and contravariance. These rules determine whether references of 

certain generic types are implicitly convertible to one another when implicit conversions 

exist between their type arguments. 

Covariance and contravariance are applicable only to the generic type 

arguments of interfaces and delegates. (Delegates are described in 

Chapter 9.) You cannot define a covariant class or struct. 

Consider the simple Base and Derived classes shown earlier in Example 6-2, and look 

at the method in Example 6-9, which accepts any Base. (It does nothing with it, but 

that’s not relevant here—what matters is what its signature says it can use.) 

Example 6-9. A method accepting any Base 

public static void UseBase(Base b) 

{ 

} 

We already know that as well as accepting a reference to any Base, this can also accept a 

reference to an instance of any type derived from Base, such as Derived. Bearing that 

in mind, consider the method in Example 6-10. 

Example 6-10. A method accepting any IEnumerable<Base> 

public static void AllYourBase(IEnumerable<Base> bases) 

{ 

} 

This requires an object that implements the IEnumerable<T> generic interface 

described in Chapter 5, where T is Base. What would you expect to happen if we 

attempted to pass an object that did not implement IEnumerable<Base>, but which 
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did implement IEnumerable<Derived>? Example 6-11 does this, and it compiles 

just fine. 

Example 6-11. Passing an IEnumerable<T> of a derived type 

IEnumerable<Derived> derivedBases = 

    new Derived[] { new Derived(), new Derived() }; 

AllYourBase(derivedBases); 

Intuitively, this makes sense. The AllYourBase method is expecting an object that can 

supply a sequence of objects that are all of type Base. An IEnumerable<Derived> 

fits the bill because it supplies a sequence of Derived objects, and any Derived 

object is also a Base. However, what about the code in Example 6-12? 

Example 6-12. A method accepting any ICollection<Base> 

public static void AddBase(ICollection<Base> bases) 

{ 

    bases.Add(new Base()); 

} 

Recall from Chapter 5 that ICollection<T> derives from IEnumerable<T>, and 

it adds the ability to modify the collection in certain ways. This particular method 

exploits that by adding a new Base object to the collection. That would mean trouble for 

the code in Example 6-13. 

Example 6-13. Error: trying to pass an ICollection<T> with a derived type 

ICollection<Derived> derivedList = new List<Derived>(); 

AddBase(derivedList);  // Will not compile 

Any code that uses the derivedList variable will expect every object in that list to be 

of type Derived (or something derived from it, such as the MoreDerived class from 

Example 6-2). But the AddBase method in Example 6-12 attempts to add a plain Base 

instance. That can’t be correct, and the compiler doesn’t allow it. The call to AddBase 

will produce a compiler error complaining that references of type 

ICollection<Derived> cannot be converted implicitly to references of type 

ICollection<Base>. 

How does the compiler know that it’s not OK to do this, while the very similar-looking 

conversion from IEnumerable<Derived> to IEnumerable<Base> is allowed? 

It’s not because Example 6-12 contains code that would cause a problem by the way. 

You’d get the same compiler error even if the AddBase method were completely empty. 

The reason we don’t get an error is that the IEnumerable<T> interface declares its 

type argument T as covariant. You saw the syntax for this in Chapter 5, but I didn’t draw 

attention to it, so Example 6-14 shows the relevant part from that interface’s definition 

again. 

Example 6-14. Covariant type parameter 

public interface IEnumerable<out T> : IEnumerable 

That out keyword does the job. (Again, C# keeps up the C-family tradition of giving 

each keyword multiple unrelated jobs—we last saw this keyword in the context of 

method parameters that can return information to the caller.) Intuitively, describing the 

type argument T as ‘out’ makes sense, in that the IEnumerable<T> interface only ever 
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provides a T—it does not define any members that accept a T. (The interface uses this 

type parameter in just one place: its read-only Current property.) 

Compare that with ICollection<T>. This derives from IEnumerable<T>, so 

clearly it’s possible to get a T out of it, but it’s also possible to pass a T into its Add 

method. So ICollection<T> cannot annotate its type argument with out. (If you 

were to try to write your own similar interface, the compiler would produce an error if 

you declared the type argument as being covariant. Rather than just taking your word for 

it, it checks to make sure you really can’t pass a T in anywhere.) The compiler rejects the 

code in Example 6-13 because T is not covariant in ICollection<T>. 

The terms covariant and contravariant come from a branch of mathematics called 

category theory. The parameters that behave like IEnumerable<T>’s T are called 

covariant (as opposed to contravariant) because implicit reference conversions for the 

generic type work in the same direction as conversions for the type argument: Derived 

is implicitly convertible to Base, and since T is covariant in IEnumerable<T>, 

IEnumerable<Derived> is implicitly convertible to IEnumerable<Base>. 

Predictably, contravariance works the other way round, and as you’ve probably guessed, 

we denote it with the in keyword. It’s easiest to see this in action with code that uses 

members of types, so Example 6-15 shows a marginally more interesting pair of classes 

than the earlier examples. 

Example 6-15. Class hierarchy with actual members 

public class Shape 

{ 

    public Rect BoundingBox { get; set; } 

} 

 

public class RoundedRectangle : Shape 

{ 

    public double CornerRadius { get; set; } 

} 

Example 6-16 defines two classes that use these shape types. Both implement 

IComparer<T>, which I introduced in Chapter 4. The BoxAreaComparer compares 

two shapes based on the area of their bounding box—whichever shape covers the larger 

area will be deemed the ‘larger’ by this comparison. The 

CornerSharpnessComparer on the other hand compares rounded rectangles by 

looking at how pointy their corners are. 

Example 6-16. Comparing shapes 

public class BoxAreaComparer : IComparer<Shape> 

{ 

    public int Compare(Shape x, Shape y) 

    { 

        double xArea = x.BoundingBox.Width * x.BoundingBox.Height; 

        double yArea = y.BoundingBox.Width * y.BoundingBox.Height; 

 

        return Math.Sign(xArea - yArea); 

    } 

} 

 

public class CornerSharpnessComparer : IComparer<RoundedRectangle> 
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{ 

    public int Compare(RoundedRectangle x, RoundedRectangle y) 

    { 

        // Smaller corners are sharper, so smaller radius is 'greater' for 

        // the purpose of this comparison, hence the backwards subtraction. 

        return Math.Sign(y.CornerRadius - x.CornerRadius); 

    } 

} 

References of type RoundedRectangle are implicitly convertible to Shape, so what 

about IComparer<T>? Our BoxAreaComparer can compare any shapes, and 

declares this by implementing IComparer<Shape>. The comparer’s type argument T 

is only ever used in the Compare method, and that is happy to be passed any Shape. It 

will not be fazed if we pass it a pair of RoundedRectangle references, so our class is 

a perfectly adequate IComparer<RoundedRectangle>. An implicit conversion 

from IComparer<Shape> to IComparer<RoundedRectangle> therefore makes 

sense, and is allowed. However, the CornerSharpnessComparer is more fussy. It 

makes use of the CornerRadius property, which is only available on rounded 

rectangles, not on any old Shape. Therefore, no implicit conversion exists from 

IComparer<RoundedRectangle> to IComparer<Shape>. 

This is backwards. Implicit conversion is available between IEnumerable<T1> and 

IEnumerable<T2> when an implicit reference conversion from T1 to T2 exists. But 

implicit conversion between IComparer<T1> and IComparer<T2> is available 

when an implicit reference conversion exists in the other direction: from T2 to T1. That 

reversed relationship is the reason this is called contravariance. Example 6-17 shows an 

excerpt of the definition for IComparer<T> showing this contravariant type parameter. 

Example 6-17. Contravariant type parameter 

public interface IComparer<in T> 

Most generic type parameters are neither covariant nor contravariant. 

ICollection<T> cannot be variant, because it contains some members that accept a 

T, and some that return one. An ICollection<Shape> might contain shapes that are 

not RoundedRectangles, so you cannot pass it to a method expecting an 

ICollection<RoundedRectangle>, because such a method would expect every 

object it retrieves from the collection to be a rounded rectangle. Conversely, an 

ICollection<RoundedRectangle> cannot be expected to allow shapes other 

than rounded rectangles to be added, and so you cannot pass an 

ICollection<RoundedRectangle> to a method that expects an 

ICollection<Shape> because that method may try to add other kinds of shapes. 

Sometimes, generics do not support covariance or contravariance even 

in situations where they would make sense. One reason for this is that 

although the CLR has supported variance since generics were 

introduced in .NET 2.0, C# did not fully support it until version 4.0. 

Before that release (in 2010) it was not possible to write a covariant or 

contravariant generic in C#, and you would have got an error if you had 

tried to apply the in and out keywords to type parameters in earlier 

versions. The .NET Framework class library was modified in 4.0: 

various classes that didn’t previously support variance, but for which it 

made sense, were changed to offer it. However, there are plenty of 
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other class libraries out there, and if these were written before .NET 

4.0, there’s a good chance that they won’t define any kind of variance. 

Arrays are covariant, just like IEnumerable<T>. This is rather odd, given that we can 

write methods like the one in Example 6-18. 

Example 6-18. Changing an element in an array 

public static void UseBaseArray(Base[] bases) 

{ 

    bases[0] = new Base(); 

} 

If I were to call this with the code in Example 6-19, I would be making the same mistake 

as I did in Example 6-13, where I attempted to pass an ICollection<Derived> to a 

method that wanted to put something that was not Derived into the collection. But 

while Example 6-13 does not compile, Example 6-19 does, due to the surprising 

covariance of arrays. 

Example 6-19. Passing an array with derived element type 

Derived[] derivedBases = { new Derived(), new Derived() }; 

UseBaseArray(derivedBases); 

This makes it look as though we could sneak a reference into an array to an object that is 

not an instance of the array’s element type—in this case, putting a reference to a non-

Derived Base in Derived[]. But that would be a violation of the type system. Does 

this mean the sky is falling? 

In fact, C# correctly forbids such a violation, but it does so at runtime. Although a 

reference to an array of type Derived[] can be implicitly converted to a reference of 

type Base[], any attempt to set an array element in a way that is inconsistent with the 

type system will throw an ArrayTypeMismatchException. So Example 6-18 

would throw that exception when it tried to assign a reference to a Base into the 

Derived[] array. 

Type safety is maintained, and rather conveniently, if we write a method that only reads 

from an array, we can pass arrays of some derived element type and it will work. The 

downside is that the CLR has to do extra work at runtime when you modify array 

elements to ensure that there is no type mismatch. It may be able to optimize the code to 

avoid having to check every single assignment, but there is still some overhead, meaning 

that arrays are not quite as efficient as they might be. 

This somewhat peculiar arrangement dates back to the time before .NET had formalized 

concepts of covariance and contravariance—these came in with generics, which were 

introduced in .NET 2.0 (in 2005; it took C# half a decade to catch up with the 

framework). Perhaps if generics had been around from the start, arrays would be less odd, 

although having said that, their peculiar form of covariance is the only mechanism built 

into the framework that provides a way to pass a collection covariantly to a method that 

wants to read from it using indexing. There is no read-only indexed collection interface in 

the framework, and therefore no standard indexed collection interface with a covariant 

type parameter. (IList<T> is read/write.) 

While we’re on the subject of type compatibility and the implicit reference conversions 

that inheritance makes available, there’s one more type we should look at: the object 

type. 
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System.Object 

The System.Object type, or object as we usually call it in C#, is useful because it 

can act as a sort of universal container: a variable of this type can hold a reference to 

almost anything. I’ve mentioned this before, but I haven’t yet explained why it’s true. 

The reason this works is that almost everything derives from object. 

If you do not specify a base class when writing a class, the C# compiler automatically 

uses object as the base. As we’ll see shortly, it chooses different bases for certain 

kinds of types such as structs, but even those derive from object indirectly. (As ever, 

pointer types are an exception—these do not derive from object.) 

The relationship between interfaces and objects is slightly more subtle. Interfaces do not 

derive from object, because an interface can only specify other interfaces as its bases. 

However, a reference of any interface type is implicitly convertible to a reference of type 

object. This conversion will always be valid, because all types that are capable of 

implementing interfaces ultimately derive from object. Moreover, C# chooses to make 

the members that the object class defines available through interface references even 

though the object class’s members are not strictly speaking members of the interface. 

This means that any references of any kind always offer the following methods defined 

by object: ToString, Equals, GetHashCode and GetType. 

The Ubiquitous Methods of object 

I’ve used ToString in numerous examples already. The default implementation returns 

the object’s type name, but many types provide their own implementation of ToString, 

returning a more useful textual representation of the object’s current value. The numeric 

types return a decimal representation of their value for example, while bool returns 

either “True” or “False”. 

I discussed Equals and GetHashCode in Chapter 3, but I’ll provide a quick recap 

here. Equals allows an object to be compared with any other object. The default 

implementation just performs an identity comparison, i.e., it returns true only when an 

object is compared with itself. Many types provide an Equals method that performs 

value-like comparison—for example, two distinct string objects may contain identical 

text, in which case they will report being equal to one another. (Should you need it, the 

identity-based comparison is always available through the object class’s static 

ReferenceEquals method.) Incidentally, object also defines a static version of 

Equals that takes two arguments. This checks whether the arguments are null, 

returning true if both are null, false if only one or other is null, and otherwise it 

defers to the first argument’s Equals method. And as discussed in Chapter 3, 

GetHashCode returns an integer that is a reduced representation of the object’s value, 

which is used by hash-based mechanisms such as the Dictionary<TKey, TValue> 

collection class. Any pair of objects for which Equals returns true must return the 

same hash codes. 

The GetType method provides a way to discover things about the object’s type. It 

returns a reference of type Type. That’s part of the reflection API, which is the subject of 

Chapter 13. 
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 12 

Besides these public members, available through any reference, object defines two 

more members that are not universally accessible. An object only has access to these 

members on itself. They are Finalize and MemberwiseClone. The Finalize 

method is called for you by the CLR to notify you that your object is no longer in use and 

the memory it uses is about to be reclaimed. In C# we do not normally work directly with 

the Finalize method, because C# presents this mechanism through destructors, as I’ll 

show in Chapter 7. MemberwiseClone creates a new instance of the same type as your 

object, initialized with copies of all of your object’s fields. If you need a way to create a 

clone of an object, this may be easier than writing code that copies all the contents across 

by hand. 

The reason these last two methods are only available from inside the object is that you 

might not want other people cloning your object, and it would be unhelpful if external 

code could call the Finalize method, fooling your object into thinking that it was 

about to be freed if in fact it wasn’t. The object class limits the accessibility of these 

members. But they’re not private—that would mean that only the object class itself could 

access them, because private members are not visible even to derived classes. Instead, 

object makes theses members protected, an accessibility specifier designed for 

inheritance scenarios. 

Accessibility and Inheritance 

By now you will already be familiar with most of the accessibility levels available for 

types and their members. Elements marked as public are available to all, private 

members are only accessible from within the type that declared them, and internal 

members are available to any code defined in the same component.1 But with inheritance, 

we get two other accessibility options. 

A member marked as protected is available inside the type that defined it, and also 

inside of any derived types. But protected members are not visible from the 

outside—for code using an instance of your type, protected members may as well be 

private. 

There’s another protection level for type members: protected internal. (You can 

write internal protected if you prefer—the order makes no difference.) This 

makes the member more accessible than either protected or internal on its own. 

The member will be accessible to all derived types and to all code that shares an 

assembly. 

You may be wondering about the obvious conceptual counterpart: 

members that are only available to types that are both derived from and 

defined in the same component as the defining type. The CLR does 

support such a protection level, but C# does not provide any way to 

specify it. 

You can specify protected or protected internal for any member of a type, 

not just methods. Even nested types can use these accessibility specifiers. 

                                                           

1 More precisely, the same assembly. Chapter 12 describes assemblies. 
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Although protected (and protected internal) members are not available 

through an ordinary variable of the defining type, they are still part of the type’s public 

API, in the sense that anyone who has access to your classes will be able to use these 

members. As with most languages that support a similar mechanism, protected 

members in C# are typically used to provide services that derived classes might find 

useful. If you write a public class that supports inheritance, then anyone can derive 

from it and gain access to its protected members. Removing or changing 

protected members would therefore risk breaking code that depends on your class 

just as surely as removing or changing public members would. 

When you derive from a class, you cannot make your class more visible than its base. If 

you derive from an internal class, for example, you cannot declare your class to be 

public. Your base class forms part of your class’s API, and so anyone wishing to use 

your class will also in effect be using its base class, so if the base is inaccessible, your 

class will also be inaccessible, which is why C# does not permit a class to be more visible 

than its base. For example, if you derive from a protected nested class, your derived 

class could be protected or private, but not public, nor internal, nor 

protected internal. 

This restriction does not apply to the interfaces you implement. A 

public class is free to implement internal or private 

interfaces. However, it does apply to an interface’s bases: a public 

interface cannot derive from an internal interface. 

When defining methods, there’s another keyword you can add for the benefit of derived 

types: virtual. 

Virtual Methods 

A virtual method is one that a derived type can replace. Several of the methods defined 

by object are virtual: the ToString, Equals, GetHashCode, and Finalize 

methods are all designed to be replaced. The code required to produce a useful textual 

representation of an object’s value will differ considerably from one type to another, as 

will the logic required to determine equality and produce a hash code. Types typically 

only define a finalizer if they need to do some specialized cleanup work when they go out 

of use. 

Not all methods are virtual. In fact, C# makes methods non-virtual by default. The 

object class’s GetType method is not virtual, so you can always trust the information 

it returns to you because you know that you’re calling the GetType method supplied by 

the .NET Framework, and not some type-specific substitute designed to fool you. To 

declare that a method should be virtual, use the virtual keyword as Example 6-20 

shows. 

Example 6-20. A class with a virtual method 

public class BaseWithVirtual 

{ 

    public virtual void ShowMessage() 

    { 

        Console.WriteLine("Hello from BaseWithVirtual"); 

    } 

 13 



O’Reilly Media, Inc.  3/13/2012 

} 

There’s nothing unusual about the syntax for invoking a virtual method. As Example 6-

21 shows, it looks just like calling any other method. 

Example 6-21. Using a virtual method 

public static void CallVirtualMethod(BaseWithVirtual o) 

{ 

    o.ShowMessage(); 

} 

The difference between virtual and non-virtual method invocations is that a virtual 

method call decides at runtime which method to invoke. The code in Example 6-21 will, 

in effect, inspect the object passed in, and if the object’s type supplies its own 

implementation of ShowMessage, it will call that instead of the one defined in 

BaseWithVirtual. The method is chosen based on the actual type the target object 

turns out to have at runtime, and not the static type (determined at compile time) of the 

expression that refers to the target object. 

Since virtual method invocation selects the method based on the type of 

the object on which you invoke the method, static methods cannot be 

virtual. 

Derived types are not obliged to replace virtual methods of course. Example 6-22 shows 

two classes that derive from the one in Example 6-20. The first leaves the base class’s 

implementation of ShowMessage in place. The second overrides it. Note the 

override keyword—C# requires us to state explicitly that we are intending to override 

a virtual method. 

Example 6-22. Overriding virtual methods 

public class DeriveWithoutOverride : BaseWithVirtual 

{ 

} 

 

public class DeriveAndOverride : BaseWithVirtual 

{ 

    public override void ShowMessage() 

    { 

        Console.WriteLine("This is an override"); 

    } 

} 

Having defined these types, we can now use the method in Example 6-21. Example 6-23 

calls it three times, passing in a different type of object each time. 

Example 6-23. Exploiting virtual methods 

CallVirtualMethod(new BaseWithVirtual()); 

CallVirtualMethod(new DeriveWithoutOverride()); 

CallVirtualMethod(new DeriveAndOverride()); 

This produces the following output: 

Hello from BaseWithVirtual 

Hello from BaseWithVirtual 

This is an override 
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Obviously, when we pass an instance of the base class, we get the output that the base 

class’s ShowMessage method prints. We also get that with the derived class that has 

not supplied an override. It’s only the final class, which overrides the method, that 

produces different output. 

This is all very similar to interfaces—virtual methods provide another way to write 

polymorphic code. Example 6-21 can use a variety of different types, which can modify 

the behavior if necessary. The big difference is that the base class can supply a default 

implementation for each virtual method, something that interfaces cannot do. 

Abstract Methods 

You can define a virtual method without providing a default implementation. C# calls 

this an abstract method. If a class contains one or more abstract methods, the class is 

incomplete because it doesn’t provide all of the methods it defines. Classes of this kind 

are also described as being abstract, and it is not possible to construct instances of an 

abstract class—attempting to use the new operator with an abstract class will cause a 

compiler error. Sometimes when discussing classes it’s useful to make it clear that some 

particular class is not abstract, for which we normally use the term concrete class. 

If you derive from an abstract class, then unless you provide implementations for all the 

abstract methods, your derived class will also be abstract. You must state your intention 

to write an abstract class with the abstract keyword—if this is absent from a class that 

has unimplemented abstract methods (either ones it has defined itself, or ones it has 

inherited from its base class) the C# compiler will report an error.  Example 6-24 shows 

an abstract class that defines a single abstract method. Abstract methods are by definition 

virtual; there wouldn’t be much use in defining a method that has no body, and which 

didn’t provide a way for derived classes to supply a body. 

Example 6-24. An abstract class 

public abstract class AbstractBase 

{ 

    public abstract void ShowMessage(); 

} 

As with interface members, abstract method declarations just define the signature, and do 

not contain a body. Unlike with interfaces, each abstract member has its own 

accessibility—you can declare abstract methods as public, internal, protected 

internal, or protected. (It makes no sense to make an abstract or virtual method 

private, because the method will be inaccessible to derived types and therefore 

impossible to override.) 

Although classes that contain abstract methods are required to be 

abstract, the converse is not true. It is legal, albeit unusual, to define a 

class as abstract even if it would be a viable non-abstract class. This 

prevents the class from being constructed. A class that derives from this 

will be concrete without needing to override any abstract methods. 

Abstract classes have the option to declare that they implement an interface without 

needing to provide a full implementation. You can’t just declare the interface and omit 

members though. You must explicitly declare all of its members, marking any that you 

want to leave unimplemented as being abstract, as Example 6-25 shows. This forces 

derived types to supply the implementation. 
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Example 6-25. Abstract interface implementation 

public abstract class MustBeComparable : IComparable<string> 

{ 

    public abstract int CompareTo(string other); 

} 

There’s clearly some overlap between abstract classes and interfaces. Both provide a way 

to define an abstract type that code can use without needing to know the exact type that 

will be supplied at runtime. Each option has its pros and cons. Interfaces have the 

advantage that a single type can implement multiple interfaces; a class only gets to 

specify a single base class. But abstract classes can provide default implementations for 

some or even all methods. This makes abstract classes more amenable to evolution as you 

release new versions of your code. 

Imagine what would happen if you had written and released a library that defined some 

public interfaces, and in the second release of the library, you decided that you wanted to 

add some new members to some of these interfaces. This might not cause a problem for 

customers using your code—any place where they use a reference of that interface type 

will be unaffected by the addition of new features. However, what if some of your 

customers have written implementations of your interfaces? Suppose, for example, that in 

a future version of .NET, Microsoft decided to add a new member to the 

IEnumerable<T> interface. 

That would be a disaster. This interface is widely used, but also widely implemented. 

Classes that already implement IEnumerable<T> would become invalid because they 

would not provide this new member, so old code would fail to compile, and code already 

compiled would throw MissingMethodException errors at runtime. Or worse, 

some classes might by chance already have a member with the same name and signature 

as the newly-added method. The compiler would treat that existing member as part of the 

implementation of the interface, even though the developer who wrote the method did not 

write it with that intention. So unless the existing code coincidentally happens to do 

exactly what the new member requires, we’d have a problem, and we wouldn’t get a 

compiler error. 

Consequently, the widely accepted rule is that you do not alter interfaces once they have 

been published. If you have complete control over all of the code that uses an interface, 

you can get away with modifying the interface because you can make any necessary 

modifications to code that consumes it. But once the interface has become available for 

use in codebases you do not control—once it has been published—it’s no longer possible 

to change it without being likely to break someone else’s code. 

Abstract base classes do not have to suffer from this problem. Obviously, introducing 

new abstract members would cause exactly the same sorts of issues, but introducing new 

virtual methods is considerably less problematic. With a non-abstract virtual method, you 

supply a default implementation, so it doesn’t matter if a derived class does not 

implement it. 

But what if, after releasing version 1.0 of a component, you add a new virtual method in 

v1.1 which turns out to have the same name and signature as a method that one of your 

customers happens to have added in a derived class? Perhaps in version 1.0, your 

component defines the rather uninteresting base class shown in Example 6-26. 

Example 6-26. Base type version 1.0 

public class LibraryBase 
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{ 

} 

If you release this library, perhaps as a product in its own right, or maybe as part of some 

SDK for your application, a customer might write a derived type such as the one in 

Example 6-27. They’ve written a Start method which is clearly not meant to override 

anything in the base class. 

Example 6-27. Class derived from version 1.0 base 

public class CustomerDerived : LibraryBase 

{ 

    public void Start() 

    { 

        Console.WriteLine("Derived type's Start method"); 

    } 

} 

Of course, you won’t necessarily get to see every line of code that your customers write, 

so you might be unaware of that Start method. So in version 1.1 of your component, 

you might decide to add a new virtual method, also called Start, as Example 6-28 

shows. 

Example 6-28. Base type version 1.1 

public class LibraryBase 

{ 

    public virtual void Start() { } 

} 

Imagine that your system calls this method as part of some initialization procedure. 

You’ve defined a default empty implementation so that types derived from 

LibraryBase that don’t need to take part in that procedure don’t have to do anything. 

Types that wish to participate will override this method. But what happens with the class 

in Example 6-27? Clearly the developer who wrote that did not intend to participate in 

your new initialization mechanism, because that didn’t even exist at the time at which the 

code was written. It could be bad if your code calls the CustomerDerived class’s 

Start method, because the developer presumably only expects it to be called when her 

code decides to call it. Fortunately, the compiler will detect this problem. If the customer 

attempts to compile Example 6-27 against version 1.1 of your library (Example 6-28) the 

compiler will warn her that something is not right: 

warning CS0114: 'CustomerDerived.Start()' hides inherited member  

'LibraryBase.Start()'. To make the current member override that implementation, 

add the override keyword. Otherwise add the new keyword. 

This is why the C# compiler requires the override keyword when we replace virtual 

methods. It wants to know whether we were intending to override an existing method, so 

that if we weren’t, it can warn us about collisions. 

It reports a warning rather than an error, because it provides a behavior that is likely to be 

safe when this situation has arisen due to the release of a new version of a library. The 

compiler guesses, correctly in this case, that the developer who wrote the 

CustomerDerived type didn’t mean to override the LibraryBase class’s Start 

method. So rather than having the CustomerDerived type’s Start method override 

the base class’s virtual method, it hides it. A derived type is said to hide a member of a 

base class when it introduces a new member with the same name. 
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Hiding methods is quite different than overriding them. When hiding occurs, the base 

method is not replaced. Example 6-29 shows how the hidden Start method remains 

available. It creates a CustomerDerived object, and places a reference to that object 

in two variables of different types: one of type CustomerDerived, and one of type 

LibraryBase. It then calls Start through each of these. 

Example 6-29. Hidden vs virtual method 

var d = new CustomerDerived(); 

LibraryBase b = d; 

 

d.Start(); 

b.Start(); 

When using the d variable, the call to Start ends up calling the derived type’s Start 

method, the one that has hidden the base member. But the b variable’s type is 

LibraryBase, so that invokes the base Start method. If CustomerDerived had 

overridden the base class’s Start method instead of hiding it, both of those method 

calls would have invoked the override. 

When name collisions occur because of a new library version, this hiding behavior is 

usually the right thing to do. If the customer’s code has a variable of type 

CustomerDerived, then that code will want to invoke the Start method specific to 

that derived type. However, the compiler produces a warning, because it doesn’t know 

for certain that this is the reason for the problem. It might be that you did mean to 

override the method, and you just forgot to write the override keyword. 

Like many developers, I don’t like to see compiler warnings, and I try to avoid checking 

in code that produces them. But what should you do if a new library version puts you in 

this situation? The best long-term solution is probably to change the name of the method 

in your derived class so that it doesn’t clash with the method in the new version of the 

library. However, if you’re up against a deadline, you may want a more expedient 

solution. So C# lets you declare that you know that there’s a name clash, and that you 

definitely want to hide the base member, not override it. As Example 6-30 shows, you 

can use the new keyword to state that you’re aware of the issue, and you definitely want 

to hide the base class member. The code will still behave in the same way, but you’ll no 

longer get the warning because you’ve assured the compiler that you know what’s going 

on. But this is an issue you should fix at some point, because sooner or later, the 

existence of two methods with the same name on the same type that mean different things 

is likely to cause confusion. 

Example 6-30. Avoiding warnings when hiding members 

public class CustomerDerived : LibraryBase 

{ 

    public new void Start() 

    { 

        Console.WriteLine("Derived type's Start method"); 

    } 

} 

Just occasionally, you may see the new keyword used in this way for reasons other than 

handling library versioning issues. For example, the ISet<T> interface that I showed in 

Chapter 5 uses it to introduce a new Add method. ISet<T> derives from 

ICollection<T>, an interface that already provides an Add method, which takes an 
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instance of T, and has a void return type. ISet<T> makes a subtle change to this 

shown in Example 6-31. 

Example 6-31. Hiding to change the signature 

public interface ISet<T> : ICollection<T> 

{ 

    new bool Add(T item); 

    ... other members omitted for clarity 

} 

The ISet<T> interface’s Add method tells you whether the item you just added was 

already in the set, something the base ICollection<T> interface’s Add method 

doesn’t support. ISet<T> needs its Add to have a different return type, bool instead of 

void, so it defines Add with the new keyword to indicate that it should hide the 

ICollection<T> one. Both methods are still available—if you have two variables, 

one of type ICollection<T> and the other of type ISet<T>, both referring to the 

same object, you’ll be able to access the void Add through the former, and the bool 

Add through the latter. (Microsoft didn’t have to do this. They could have called the new 

Add method something else—AddIfNotPresent, for example. But it’s arguably less 

confusing just to have the one method name for adding things to a collection, particularly 

since you’re free to ignore the return value, at which point the new Add looks 

indistinguishable from the old one. And most ISet<T> implementations will implement 

the ICollection<T>.Add method by calling straight through to the ISet<T>.Add 

method, so it makes sense that they have the same name.) 

So far, I’ve only discussed method hiding in the context of compiling old code against a 

new version of a library. What happens if you have old code compiled against an old 

library but which ends up running against a new version? That’s a scenario you are 

highly likely to run into when the library in question is the .NET Framework class 

library. Suppose you are using 3rd party components that you only have in binary form 

(e.g., ones you’ve bought from a company that does not supply source code). The 

supplier will have built these to use some particular version of .NET. If you upgrade your 

application to run with a new version of .NET, you might not be able to get hold of newer 

versions of the 3rd party components—maybe the vendor hasn’t released them yet, or 

perhaps they’ve gone out of business. 

If the components you’re using were compiled for, say, .NET 4.0, and you use them in a 

project built for .NET 4.5, all of those older components will end up using the .NET 4.5 

versions of the framework class library. The .NET Framework has a versioning policy 

that arranges for all the components that a particular program uses to get the same version 

of the framework class library, regardless of which version any individual component 

may have been built for. So it’s entirely possible that some component, OldControls.dll, 

contains classes that derive from classes in the .NET 4.0 Framework, and which define 

members that collide with the names of members newly added in .NET 4.5. 

This is more or less the same scenario as I described earlier, except that the code that was 

written for an older version of a library is not going to be recompiled. We’re not going to 

get a compiler warning about hiding a method, because that would involve running the 

compiler, and we only have the binary for the relevant component. What happens now? 

Fortunately, we don’t need the old component to be recompiled. The C# compiler sets 

various flags in the compiled output for each method it compiles, indicating things like 

whether the method is virtual or not, and whether the method was intended to override 
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some method in the base class. When you put the new keyword on a method, the 

compiler sets a flag indicating that the method is not meant to override anything in the 

base class. The CLR calls this the newslot flag. When C# compiles a method such as the 

one in Example 6-27, which does not specify either override or new, it also sets this 

same newslot flag for that method, because at the time the method was compiled, there 

was no method of the same name on the base class. As far as both the developer and the 

compiler were concerned, the CustomerDerived class’s Start was written as a 

brand new method which was not connected to anything on the base class. 

So when this old component gets loaded in conjunction with a new version of the 

framework library defining the base class, the CLR can see what was intended—it can 

see that as far as the author of the CustomerDerived class was concerned Start is 

not meant to override anything. It therefore treats CustomerDerived.Start as a 

distinct method from LibraryBase.Start—it hides the base method just like it did 

when we were able to recompile. 

By the way, everything I’ve said about virtual methods can also apply to properties, 

because a property’s accessors are just methods. So you can define virtual properties, and 

derived classes can override or hide these in exactly the same way as with methods. I 

won’t be getting to properties until Chapter 9, but those are also methods in disguise, so 

those can also be virtual. 

Just occasionally, you may want to write a class that overrides a virtual method, and then 

prevents derived classes from overriding it again. For this, C# defines the sealed 

keyword, and in fact, it’s not just methods that can be sealed. 

Sealed Methods and Classes 

Virtual methods are deliberately open to modification through inheritance. A sealed 

method is the opposite—it is one that cannot be overridden. Methods are sealed by 

default in C#: methods cannot be overridden unless declared virtual. But when you 

override a method, you can seal it, closing it off for further modification. Example 6-32 

uses this to provide a custom ToString implementation that cannot be further 

overridden by derived classes. 

Example 6-32. A sealed method 

public class FixedToString 

{ 

    public sealed override string ToString() 

    { 

        return "Arf arf!"; 

    } 

} 

You can also seal an entire class, preventing anyone from deriving from it. Example 6-33 

shows a class that not only does nothing, it prevents anyone from extending it to do 

something useful. (You’d normally only seal a class that does something. This example is 

just to illustrate where the keyword goes.) 

Example 6-33. A sealed class 

public sealed class EndOfTheLine 

{ 

} 
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Some types are inherently sealed. Value types, for example, do not support inheritance, 

so structs and enums are effectively sealed. The built-in string class is also sealed. 

There are two normal reasons for sealing either classes or methods. One is that you want 

to guarantee some particular invariant, and if you leave your type open to modification, 

you will not be able to guarantee that invariant. For example, instances of the string 

type are immutable. The string type itself does not provide any way to modify an 

instance’s value, and because nobody can derive from string, you can guarantee that if 

you have a reference of type string, you have a reference to an immutable object. This 

makes it safe to use in scenarios where you don’t want the value to change—for example, 

when you use an object as a key to a dictionary (or anything else that relies on a hash 

code) you need the value not to change because if the hash code changes while the item is 

in use as a key, the container will malfunction. 

The other usual reason for leaving things sealed is that designing types that can 

successfully be modified through inheritance is hard, particularly if your type will be 

used outside of your own organization. Simply opening things up for modification is not 

sufficient—if you decide to make all your methods virtual, it might make it easy for 

people using your type to modify its behavior, but you will have made a rod for your 

back when it comes to maintaining the base class. Unless you control all of the code that 

derives from your class, it will be almost impossible to change anything in the base 

because you will never know which methods may have been overridden in derived 

classes, making it very hard to ensure that your class’s internal state is consistent at all 

times. Developers writing derived types will doubtless do their best not to break things, 

but they will inevitably rely on aspects of your class’s behavior that are undocumented. 

So in opening up every aspect of your class for modification through inheritance, you rob 

yourself of the freedom to change your class. 

You should typically be very selective about which methods, if any, you make virtual. 

And you should also document whether callers are allowed to replace the method 

completely, or whether they are required to call the base implementation as part of their 

override. Speaking of which, how do you do that? 

Accessing Base Members 

Everything that is in scope in a base class and which is not private will also be in scope 

and accessible in a derived type. So for the most part, if you want to access some member 

of the base class, you just access it as if it were a normal member of your class. You can 

either access members through the this reference, or just refer to them by name without 

qualification. 

However, there are some situations in which it is useful to be able to refer explicitly to a 

base class member. In particular, if you have overridden a method, calling that method by 

name will invoke your override. If you want to call back to the original method that you 

overrode, there’s a special syntax for that, shown in Example 6-34. 

Example 6-34. Calling the base method after overriding 

public class CustomerDerived : LibraryBase 

{ 

    public override void Start() 

    { 

        Console.WriteLine("Derived type's Start method"); 
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        base.Start(); 

    } 

} 

By using the base keyword we are opting out of the normal virtual method dispatch 

mechanism. If we had written just Start(), that would have been a recursive call, 

which would be undesirable here. By writing base.Start(), we get the method that 

would have been available on an instance of the base class, the method that we overrode. 

In this example I’ve called the base class’s implementation after completing my own 

work. C# doesn’t care when you call the base—you could call it as the first thing the 

method does, or as the last, or half way through the method. You could even call it 

several times, or not at all. It is up to the author of the base class to document whether 

and when the base class implementation of the method should be called by an override. 

You can use the base keyword for other members too, such as properties and events. 

However, access to base constructors works slightly differently. 

Inheritance and Construction 

Although a derived class inherits all the members of its base class, this does not mean the 

same thing for constructors as it does for everything else. With other members, if they are 

public in the base class, they will be public members of the derived class too, accessible 

to anyone who uses your derived class. But constructors are special, because someone 

using your class cannot construct it by using one of the constructors defined by the base 

class. 

It’s obvious enough why that should be: if you want an instance of some type D, then 

you’ll want it to be a fully-fledged D with everything in it properly initialized. Suppose 

that D derives from B. If you were able to use one of B’s constructors directly, it wouldn’t 

do anything to the parts specific to D. A base class’s constructor won’t know about any of 

the fields defined by a derived class, so it cannot initialize them. If you want a D, you’ll 

need a constructor that knows how to initialize a D. So with a derived class, you can only 

use the constructors offered by that derived class, regardless of what constructors the base 

class might provide. 

In the examples I’ve shown so far in this chapter, I’ve been able to ignore this because of 

the default constructor that C# provides. As you saw in Chapter 3, if you don’t write a 

constructor, C# writes one for you that takes no arguments. It does this for derived 

classes too, and the generated constructor will invoke the default constructor of the base 

class. But this changes if I start writing my own constructors. Example 6-35 defines a 

pair of classes, where the base defines an explicit no-arguments constructor, and the 

derived class defines one that requires an argument. 

Example 6-35. No default constructor in derived class 

public class BaseWithZeroArgCtor 

{ 

    public BaseWithZeroArgCtor() 

    { 

        Console.WriteLine("Base constructor"); 

    } 

} 
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public class DerivedNoDefaultCtor : BaseWithZeroArgCtor 

{ 

    public DerivedNoDefaultCtor(int i) 

    { 

        Console.WriteLine("Derived constructor"); 

    } 

} 

Because the base class has a zero-argument constructor, I can construct it with new 

BaseWithZeroArgCtor(). But I cannot do this with the derived type—I can only 

construct that by passing an argument, e.g. new DerivedNoDefaultCtor(123). 

So as far as the publically visible API of DerivedNoDefaultCtor is concerned, the 

derived class appears not to have inherited its base class’s constructor. 

However, it has in fact inherited it, as you can see by looking at the output you get if you 

construct an instance of the derived type: 

Base constructor 

Derived constructor 

When I construct an instance of DerivedNoDefaultCtor, the base class’s 

constructor runs immediately before the derived class’s constructor. Since the base 

constructor ran, clearly it was available. All of the base class’s constructors are available 

to a derived type, but they must be accessed via derived constructors. In Example 6-35, 

the base constructor was invoked implicitly: all constructors are required to invoke a 

constructor on their base class, and if you don’t specify which to invoke, the compiler 

invokes the base’s zero-argument constructor for you. 

What if the base doesn’t define a parameterless constructor? In that case you’ll get a 

compiler error if you derive a class that does not specify which constructor to call. 

Example 6-36 shows a base class with no zero-argument constructor. (The presence of 

any explicit constructors disables the compiler’s normal generation of a default 

constructor, and since this base class only supplies a constructor that takes arguments, 

this means there is no zero-argument constructor.) It also shows and a derived class with 

two constructors, both of which call into the base constructor explicitly, using the base 

keyword. 

Example 6-36. Invoking a base constructor explicitly 

public class BaseNoDefaultCtor 

{ 

    public BaseNoDefaultCtor(int i) 

    { 

        Console.WriteLine("Base constructor: " + i); 

    } 

} 

 

public class DerivedCallingBaseCtor : BaseNoDefaultCtor 

{ 

    public DerivedCallingBaseCtor() 

        : base(123) 

    { 

        Console.WriteLine("Derived constructor (default)"); 

    } 

 

    public DerivedCallingBaseCtor(int i) 

        : base(i) 
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    { 

        Console.WriteLine("Derived constructor: " + i); 

    } 

} 

The derived class here decides to supply a parameterless constructor even though the 

base class doesn’t have one—it supplies a fixed value for the argument the base requires. 

The second just passes its argument through to the base. 

Here’s a frequently asked question: how do I provide all the same 

constructors as my base class, just passing all the arguments straight 

through? The answer is: write all the constructors by hand. There is no 

way to get C# to generate a set of constructors in a derived class that 

look identical to the ones that the base class offers. You need to do it 

the long-winded way. 

As Chapter 3 showed, a class’s field initializers run before its constructor. The picture is 

slightly more complicated once inheritance is involved because there are multiple classes 

and multiple constructors. The easiest way to predict what will happen is to understand 

that although instance field initializers and constructors have separate syntax, C# ends up 

compiling all the initialization code for a particular class into the constructor. This code 

performs the following steps: first, it runs any field initializers specific to this class (so 

this step does not include base field initializers—the base class will take care of itself); 

next, it calls the base class constructor; finally, it runs the body of the constructor. The 

upshot of this is that in a derived class, your instance field initializers will run before any 

base class construction has occurred—not just before the base constructor body, but even 

before the base’s instance fields have been initialized. Example 6-37 illustrates this. 

Example 6-37. Exploring construction order 

public class BaseInit 

{ 

    protected static int Init(string message) 

    { 

        Console.WriteLine(message); 

        return 1; 

    } 

 

    private int b1 = Init("Base field b1"); 

 

    public BaseInit() 

    { 

        Init("Base constructor"); 

    } 

 

    private int b2 = Init("Base field b2"); 

} 

 

public class DerivedInit : BaseInit 

{ 

    private int d1 = Init("Derived field d1"); 

 

    public DerivedInit() 

    { 

        Init("Derived constructor"); 

    } 
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    private int d2 = Init("Derived field d2"); 

} 

I’ve put the field initializers on either side of the constructor just to prove that their 

position relative to non-field members is irrelevant. The order of the fields matters, but 

only with respect to one another. Constructing an instance of the DerivedInit class 

produces this output: 

Derived field d1 

Derived field d2 

Base field b1 

Base field b2 

Base constructor 

Derived constructor 

This verifies that the derived type’s field initializers run first, and then the base field 

initializers, followed by the base constructor and then finally the derived constructor. In 

other words, although constructor bodies start with the base class, instance field 

initialization happens in reverse. 

That’s why you don’t get to invoke instance methods in field initializers. Static methods 

are available, but instance methods are not, because the class is a long way from being 

ready. It could be problematic if one of the derived type’s field initializers were able to 

invoke a method on the base class, because the base class has performed no initialization 

at all at that point—not only has its constructor body not run, its field initializers haven’t 

run either. If instance methods were available during this phase, we’d have to write all of 

our code to be very defensive, because we could not assume that our fields contain 

anything useful. 

As you can see, the constructor bodies run relatively late in the process, which is why we 

are allowed to invoke methods from them. But there’s still potential danger here. What if 

the base class defines a virtual method and invokes that method on itself in its 

constructor? If the derived type overrides that, we’ll be invoking the method before the 

derived type’s constructor body has run. (Its field initializers will have run at that point, 

though. In fact, this is the main benefit of the fact the field initializers run in what seems 

to be reverse order—it means that derived classes have a way of performing some 

initialization before the base class’s constructor has a chance to invoke a virtual method.) 

If you’re familiar with C++ you might hazard a guess that when the base constructor 

invokes a virtual method, it’ll run the base implementation. But C# does it differently: a 

base class’s constructor will invoke the derived class’s override in that case. This is not 

necessarily a problem, and it can occasionally be useful, but it means you need to think 

carefully and document your assumptions clearly if you want your object to invoke 

virtual methods on itself during construction. 

Special Base Types 

The .NET Framework class library defines a few base types that have special significance 

in C#. The most obvious is System.Object, which I’ve already described in some 

detail. 

There’s also System.ValueType. This is the abstract base type of all value types, so 

any struct you define, and also all of the built-in value types such as int and bool 
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derive from ValueType. Ironically, ValueType itself is a reference type; only types 

that derive from ValueType are value types. Like most types, ValueType derives 

from System.Object. There is an obvious conceptual difficulty here: in general, 

derived classes are everything their base class is, plus whatever functionality they add. So 

given that object and ValueType are both reference types, it may seem odd that 

types derived from ValueType are not. And for that matter it’s not obvious how an 

object variable can hold a reference to an instance of something that’s not a reference 

type. I will resolve all of these issues in Chapter 7. 

C# does not permit you to derive explicitly from ValueType. If you want to write a 

type that derives from ValueType, that’s what the struct keyword is for. You can 

declare a variable of type ValueType, but since the type doesn’t define any public 

members, a ValueType reference doesn’t enable anything you can’t do with an 

object reference. The only observable difference is that with a variable of that type you 

can assign instances of any value type into it but not instances of a reference type. Aside 

from that, it’s identical to object. Consequently, it’s fairly rare to see ValueType 

mentioned explicitly in C# code. 

Enumeration types also all derive from a common abstract base type: System.Enum. 

Since enums are value types, you’ll be unsurprised to hear that Enum derives from 

ValueType. As with ValueType you would never derive from Enum explicitly—you 

use the enum keyword for that. Unlike ValueType, Enum does add some useful 

members. For example, its GetValues method returns an array of all the enumeration’s 

values, while GetNames returns an array with all those values converted to strings. It 

also offers some static methods, such as Parse, which converts from the string 

representation back to the enumeration value. 

As Chapter 5 described, arrays all derive from a common base class, System.Array, 

and you’ve already seen the features that offers. 

The System.Exception base class is special: C# only permits you to throw 

exceptions of this type or types that derive from this. (Exceptions are the topic of Chapter 

8.) 

Delegate types all derive from a common base type System.MulticastDelegate, 

which in turn derives from System.Delegate. I’ll discuss these in Chapter 9. 

Those are all the base types that correspond to special types in the CTS. There’s one 

more base type to which the C# compiler assigns special significance, and that’s 

System.Attribute. In Chapter 1, I applied certain annotations to methods and 

classes to tell the unit test framework to treat them specially. These attributes all 

correspond to types—so I applied the [TestClass] attribute to a class, and in doing so 

I was using a type called TestClassAttribute. Types designed to be used as 

attributes are all required to derive from System.Attribute. Some of them are 

recognized by the compiler—for example, there are some that control the version 

numbers that the compiler puts into the file headers of the EXE and DLL files it 

produces. I’ll show all of this in Chapter 15. 
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Summary 

C# supports single implementation inheritance, and only with classes—you cannot derive 

from a struct at all. However, interfaces can declare multiple bases, and a class can 

implement multiple interfaces. Implicit reference conversions exist from derived types to 

base types, and generic types can choose to offer related implicit reference conversions 

using either covariance or contravariance. All types derive from System.Object, 

guaranteeing that certain standard members are available on all variables. We saw how 

virtual methods allow derived classes to modify selected members of their bases, and 

how sealing can disable that. We also looked at the relationship between a derived type 

and its base when it comes to accessing members, and constructors in particular. 

Our exploration of inheritance is complete, but it has raised some new issues such as the 

relationship between value types and references, and the role of finalizers. So in the next 

chapter, I’ll talk about the relationship between references and an object’s lifecycle, along 

with the way the CLR bridges the gap between references and value types. 
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Object Lifetime 

One of the benefits of .NET’s managed execution model is that the runtime can automate 

most of your application’s memory management. I have shown numerous examples that 

create objects with the new keyword, and none of these have explicitly freed the memory 

consumed by these objects. 

In most cases, you do not need to take any action to reclaim memory. The runtime 

provides a garbage collector (GC), a mechanism that automatically discovers when 

objects are no longer in use, and recovers the memory they had been occupying so that it 

can be used for new objects. However, there are certain usage patterns that can cause 

performance issues, or even defeat the GC entirely, so it’s useful to understand how it 

works. This is particularly important with long-running processes that could run for days. 

(Short-lived processes may be able to tolerate a few memory leaks.) 

Although most code can remain oblivious to the garbage collector, it is sometimes useful 

to be notified when an object is about to be collected, which C# makes possible through 

destructors. The underlying runtime mechanism that supports this is called finalization, 

and it has some important pitfalls, so I’ll show how and how not to use destructors. 

The garbage collector is designed to manage memory efficiently, but memory is not the 

only limited resource you may need to deal with. Some things have a small memory 

footprint in the CLR, but represent something relatively expensive, such as a database 

connection or a handle from a Win32-style API. The GC doesn’t always deal with these 

effectively, so I’ll explain IDisposable, the interface designed for dealing with things 

that need to be freed more urgently than memory. 

Value types often have completely different rules governing their lifetime—some local 

variable values live only for as long as their containing method runs, for example. 

Nonetheless, value types sometimes end up acting like reference types, and being 

managed by the garbage collector. I will discuss why that can be useful, and I will 

explain the boxing mechanism that makes it possible. 
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Garbage Collection 

The CLR maintains a heap, a service that provides memory for objects and values whose 

lifetime is managed by the garbage collector. Each time you construct an instance of a 

class with new, the CLR allocates a new heap block for that object. The garbage collector 

decides when to deallocate that block. 

A heap block contains all the non-static fields for the object. The CLR also adds a header 

which is not directly visible to your program. This includes a pointer to a structure 

describing the object’s type. This supports operations that depend on the real type of an 

object. For example, if you call GetType on a reference of type object, the CLR uses 

this pointer to find out the type. It’s also used to work out which method to use when you 

invoke a virtual method or an interface member. The CLR also uses this to know how 

large the heap block is—the header does not include the block size, because the CLR can 

work that out from the object’s type. (Most types are fixed size. There are only two 

exceptions, strings and arrays, which the CLR handles as special cases.) The header 

contains one other field which is used for a variety of diverse purposes, including 

multithreaded synchronization, and default hash code generation. Heap block headers are 

just an implementation detail, and other CLI implementations could choose different 

strategies. However, it’s useful to know what the overhead is. On a 32-bit system, the 

header is 8 bytes long, and if you’re running in a 64-bit process, it takes 16 bytes. So an 

object that contained just one field of type double (an 8-byte type) would consume 16 

bytes in a 32-bit process, and 24 bytes in a 64-bit process. 

Although objects (i.e., instances of a class) always live on the heap, instances of value 

types are different: some live on the heap, and some don’t. The CLR stores some value-

typed local variables on the stack, for example, but if the value is in an instance field of a 

class, the class instance will live on the heap, and that value will therefore live inside that 

object on the heap. And in some cases, a value will have an entire heap block to itself. 

If you are accessing something through a reference-typed variable, then you are accessing 

something on the heap. This does not include all out or ref style method arguments by 

the way. Although those are references of a kind, a ref int argument is a reference to 

a value type, and that’s not the same thing as a reference type. For the purposes of this 

discussion, a reference is something you can store in a variable of a type that derives 

from object, but which does not derive from ValueType. 

The managed execution model used by C# (and all .NET languages) means the CLR 

knows about every heap block your code creates, and also about every field, variable, and 

array element in which your program stores references. This information enables the 

runtime to determine at any time which objects are reachable, i.e., those which the 

program could conceivably get access to in order to use its fields and other members. If 

an object is not reachable, then by definition the program will never be able to use it 

again. To illustrate how the CLR determines reachability, I’ve written a simple method 

that fetches web pages from my blog, shown in Example 7-1. 

Example 7-1. Using and discarding objects 

public static string GetBlogEntry(string relativeUri) 

{ 

    var baseUri = new Uri("http://www.interact-sw.co.uk/iangblog/"); 

    var fullUri = new Uri(baseUri, relativeUri); 

    using (var w = new WebClient()) 

    { 
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        return w.DownloadString(fullUri); 

    } 

} 

The CLR analyses the way in which we use local variables and method arguments. 

Although the relativeUri argument is in scope for the whole method, we use it just 

once as an argument when constructing the second Uri, and then never use it again. A 

variable is described as live from the first point where it receives a value up until the last 

point at which it is used. Method arguments are live from the start of the method until 

their final usage, unless they are unused, in which case they are never live. Variables 

become live later—baseUri becomes live once it has been assigned its initial value, 

and then ceases to be live with its final usage, at the same point as relativeUri. 

Liveness is an important property in determining whether a particular object is still in 

use. 

To see the role that liveness plays, suppose that when Example 7-1 reaches the line that 

constructs the WebClient, the CLR doesn’t have enough free memory to hold the new 

object. It could request more memory from the OS at this point, but it also has the option 

to try and free up memory from objects that are no longer in use, meaning that our 

program wouldn’t need to consume any more memory than it’s already using.1 The next 

section describes the process that the CLR uses when it takes that second option. 

Determining Reachability 

The CLR starts by determining all of the root references in your program. A root is a 

storage location, such as a local variable, which could contain a reference, and which is 

known to have been initialized, and that your program could use at some point in the 

future, without needing to go via some other object reference first. Not all storage 

locations are considered to be roots. If an object contains an instance field of some 

reference type, that field is not a root because before you can use it, you’d need to get 

hold of a reference to the containing object, and it’s possible that the object itself is not 

reachable. However, a reference type static field is a root reference, because the program 

can read the value in that field at any time—the only situation in which that field will 

become inaccessible in the future is when the program exits. 

Local variables are more interesting. (So are method arguments; everything I say about 

locals in this section also applies to arguments.) Sometimes they are roots, but sometimes 

not. It depends on where exactly in the method execution has got to. A local variable can 

only be a root if the flow of execution is currently inside the region in which that variable 

is live. So in Example 7-1, baseUri is only a root reference after it has had its initial 

value assigned, and before the call to construct the second Uri, which is a rather narrow 

window. The fullUri variable is a root reference for slightly longer because it 

becomes live after receiving its initial value, and continues to be live during the 

construction of the WebClient on the following line, and its liveness only ends once 

DownloadString has been called. 

                                                           

1 The CLR doesn’t always wait until runs out of memory. I will discuss the details later. For now, 

the important point is that from time to time, it will try to free up some space. 
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When a variable’s last use is as an argument in a method or constructor 

invocation, it ceases to be live when the method call begins. At that 

point, the method being called takes over—its own arguments are live 

at the start. However, they will typically cease to be live before the 

method returns. This means that in Example 7-1, the object referred to 

by fullUri may cease to be accessible through any root references 

before the call to DownloadString returns. 

Since the set of live variables changes as the program executes, the set of root references 

also evolves, so the CLR needs to be able to form a snapshot of the relevant program 

state. The exact details are undocumented, but the garbage collector is able to suspend all 

threads that are running managed code when necessary to guarantee correct behavior. 

Live variables and static fields are not the only kinds of roots. Temporary objects created 

as a result of evaluating expressions need to stay alive for as long as necessary to 

complete the evaluation, so there can be some root references that don’t correspond 

directly to any named entities in your code. And there are other types of root. For 

example, the GCHandle class lets you create new roots explicitly, which can be useful 

in interop scenarios, to enable some unmanaged code to get access to a particular object. 

There are also situations in which roots are created implicitly. Interop with COM objects 

can establish root references without explicit use of GCHandle—if the CLR needs to 

generate a COM wrapper for one of your .NET objects, that wrapper will effectively be a 

root reference. Calls into unmanaged code may also involve passing pointers to memory 

on the heap, which will mean that the relevant heap block needs to be treated as reachable 

for the duration of the call. The CLI specification does not dictate the exact list of ways in 

which root references come into existence, and the CLR does not comprehensively 

document all the kinds it can create, but the broad principle is that roots will exist where 

necessary to ensure that objects that are still in use remain reachable. 

Having built up a complete list of current root references for all threads, the garbage 

collector works out which objects can be reached from these references. It looks at each 

reference in turn, and if non-null, the GC knows that the object it refers to is reachable. 

There may be duplicates—multiple roots may refer to the same object, so the GC keeps 

track of which objects it has already seen. For each newly-discovered object, the GC adds 

all of the instance fields of reference type in that object to the list of references it needs to 

look at, again, discarding any duplicates. (This includes any hidden fields generated by 

the compiler, such as those for automatic properties, which I described in Chapter 3.) 

This means that if an object is reachable, so are all the objects to which it holds 

references. The GC repeats this process until it runs out of new references to examine. 

Any objects that it has not discovered to be reachable are therefore unreachable, because 

the GC is simply doing what the program does: a program can only use objects that are 

accessible either directly or indirectly through its variables, temporary local storage, 

static fields, and other roots. 

Going back to Example 7-1, what would all this mean if the CLR decides to run the GC 

when we construct the WebClient? The fullUri variable is still live so the Uri it 

refers to is reachable, but the baseUri is no longer live. We did pass a copy of 

baseUri into the constructor for the second Uri, and if that had held onto a copy of the 

reference, then it wouldn’t matter that baseUri is not live—as long as there’s some way 

to get to an object by starting from a root reference, then the object is reachable. But as it 

happens, the second Uri won’t do that, so the first Uri the example allocates would be 
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deemed to be unreachable, and the CLR would be free to recover the memory it had been 

using. 

One important upshot of how reachability is determined is that the GC is unfazed by 

circular references. This is one reason .NET uses GC instead of reference counting 

(which is COM’s approach). If you have two objects that refer to each other, a reference 

counting scheme will consider both objects to be in use because each is referred to at 

least once. But the objects may be unreachable—if there are no other references to the 

objects, the application will not have any way to use them. Reference counting fails to 

detect this, so it could cause memory leaks, but with the scheme used by the CLR’s GC, 

the fact that they refer to each other is irrelevant—the garbage collector will never get to 

either of them, so it will correctly determine that they are no longer in use. 

Accidentally Defeating the Garbage Collector 

Although the GC can discover ways that your program could reach an object, it has no 

way to prove that it necessarily will. Take the impressively idiotic piece of code in 

Example 7-2. Although you’d never write code this bad, it makes a common mistake. It’s 

a problem that usually crops up in more subtle ways, but I want show it in a more 

obvious example first. Once I’ve shown how it prevents the GC from freeing objects that 

we’re not going to be using, I’ll describe a less straightforward but more realistic scenario 

in which this same problem often occurs. 

Example 7-2. An appallingly inefficient piece of code 

static void Main(string[] args) 

{ 

    var numbers = new List<string>(); 

    long total = 0; 

    for (int i = 1; i < 100000; ++i) 

    { 

        numbers.Add(i.ToString()); 

        total += i; 

    } 

    Console.WriteLine("Total: {0}, average: {1}", 

        total, total / numbers.Count); 

} 

This adds together the numbers from 1 to 100,000 and then prints their average. The first 

mistake here is that we don’t even need a loop, because there’s a simple and very well-

known closed-form solution for this sort of sum: n*(n+1)/2, with n being 100,000 in 

this case. That mathematical gaffe notwithstanding, this does something even more 

stupid: it builds up a list containing every number it adds, but all it does with that list is to 

retrieve its Count property to calculate an average at the end. Just to make things worse, 

the code converts each number into a string before putting it in the list. It never actually 

uses those strings. 

Obviously this is a contrived example. That said, I wish I could say I’d never encountered 

anything this bafflingly pointless in real programs. Sadly, I’ve come across genuine 

examples at least this bad, although they were all better obfuscated—when you encounter 

this sort of thing in the wild, it normally takes half an hour or so to work out that it really 

is doing something as staggeringly pointless as this. However, my point here is not to 

lament standards of software development. The purpose of this example is to show how 

you can run into a shortcoming of the garbage collector. 
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Suppose the loop in Example 7-2 has been running for a while—perhaps it’s on its 

90,000th iteration, and is trying to add an entry to the numbers list. Suppose that the 

List<string> has used up its spare capacity and the Add method will therefore need 

to allocate a new, larger internal array. The CLR may decide at this point to run the 

garbage collector to see if it can free up some space. What will happen? 

Example 7-2 creates three kinds of objects: it constructs a List<string> at the start, it 

creates a new string each time round the loop by calling ToString() on an int, 

and more subtly, it will cause the List<string> to allocate a string[] to hold 

references to those strings, and because we keep adding new items, it will have to 

allocate larger and larger arrays. (That array is an implementation detail of 

List<string>, so we can’t see it directly.) So the question is: which of these objects 

will the GC be able to discard to make space for a larger array in the call to Add? 

Our program’s numbers variable remains live until the final line of the program, and 

we’re looking at an earlier point in the code, so the List<string> object is reachable. 

The string[] array object it is currently using must also be reachable: it’s allocating a 

newer larger one, but it will need to copy the contents of the old one across to the new 

one so the list must still have a reference to that current array stored in one of its fields. 

So that array is still reachable, which in turn means that every string element the array 

refers to will also be reachable. Our program has created 90,000 strings so far, and the 

garbage collector will find all of them by starting at our numbers variable, looking at 

the fields of the List<string> object that refers to, and then looking at every element 

in the array that one of the list’s private fields refers to. 

The only allocated items that the GC might be able to collect are old string[] arrays 

that the List<string> created back when the list was smaller, and which it no longer 

has a reference to. By the time we’ve added 90,000 items, the list will probably have 

resized itself quite a few times. So depending on when the GC last ran, it will probably be 

able to find a few of these now-unused arrays. But more interesting here is what it cannot 

free. 

The program never uses the 90,000 strings it creates, so ideally, we’d like the GC to free 

up the memory they occupy—they will be taking up a few megabytes. We can see very 

easily that these strings are not used because this is such a short program. But the GC will 

not know that—it bases its decisions on reachability, and it correctly determines that all 

90,000 strings are reachable by starting at the numbers variable. And as far as the GC is 

concerned, it’s entirely possible that the list’s Count property, which we use after the 

loop finishes, will look at the contents of the list. You and I happen to know that it won’t 

because it doesn’t need to, but that’s because we know what the Count property means. 

For the GC to infer that our program will never use any of the list’s elements directly or 

indirectly, it would need to know what List<string> does inside its Add and Count 

methods. This would mean analysis with a level of detail far beyond the mechanisms I’ve 

described, which could make garbage collections considerably more expensive. 

Moreover, even with the serious step up in complexity required to detect which reachable 

objects this example will never use, in more realistic scenarios the GC would be unlikely 

to be able to make predictions that were any better than relying on reachability alone. 

For example, a much more plausible way to run into this problem is in a cache. If you 

write a class that caches data that is expensive to fetch or calculate, imagine what would 

happen if your code only ever added items to the cache, and never removed them. All of 

the cached data would be reachable for as long as the cache object itself is reachable. The 
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problem is that your cache will consume more and more space, and unless your computer 

has sufficient memory to hold every piece of data that your program could conceivably 

need to use, it will eventually run out of memory. 

A naïve developer might complain that this is supposed to be the garbage collector’s 

problem. The whole point of GC is meant to be that I don’t need to think about memory 

management, so why am I running out of memory all of a sudden? But of course the 

problem is that the GC has no way of knowing which objects it’s safe to remove. It is not 

clairvoyant, so it cannot accurately predict which cached items your program may need in 

the future—if the code is running in a server, future cache usage could depend on what 

requests the server receives, something the GC cannot predict. So although it’s possible 

to imagine memory management smart enough to analyze something as simple as 

Example 7-2, in general this is not a problem the GC can solve. So if you add objects to 

collections and you keep those collections reachable, the GC will treat everything in 

those collections as being reachable. It’s your job to decide when to remove items. 

Collections are not the only situation in which you can fool the garbage collector. As I’ll 

show in Chapter 9, there’s a common scenario in which careless use of events can cause 

memory leaks. More generally, if your program makes it possible for an object to be 

reached, the GC has no way of working out whether you’re going to use that object again, 

so it has to be conservative. 

Having said that, there is a technique for mitigating this with a little help from the GC. 

Weak References 

Although the garbage collector will follow ordinary references in a reachable object’s 

fields, it’s possible to hold a weak reference. The garbage collector does not follow weak 

references, so if the only way to reach an object is through weak references, the garbage 

collector behaves as though the object is not reachable, and will remove it. A weak 

reference provides a way to tell the CLR: don’t keep this object around on my account, 

but for as long as something else needs it, I’d like to be able to get access to it. 

There are two classes for managing weak references. WeakReference<T> is new to 

.NET 4.5. If you’re using an older version of .NET, you’ll need to use the non-generic 

WeakReference. The newer class takes advantage of generics to provide a cleaner 

API than the original, which was introduced back in .NET 1.0 before generics came 

along. In fact the newer class has a somewhat different API. I’ll show that first, and then 

I’ll talk about the older class. Example 7-3 shows a cache that uses 

WeakReference<T>. 

Example 7-3. Using weak references in a cache 

public class WeakCache<TKey, TValue> where TValue : class 

{ 

    private Dictionary<TKey, WeakReference<TValue>> _cache = 

        new Dictionary<TKey, WeakReference<TValue>>(); 

 

    public void Add(TKey key, TValue value) 

    { 

        _cache.Add(key, new WeakReference<TValue>(value)); 

    } 

 

    public bool TryGetValue(TKey key, out TValue cachedItem) 

    { 
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        WeakReference<TValue> entry; 

        if (_cache.TryGetValue(key, out entry)) 

        { 

            bool isAlive = entry.TryGetTarget(out cachedItem); 

            if (!isAlive) 

            { 

                _cache.Remove(key); 

            } 

            return isAlive; 

        } 

        else 

        { 

            cachedItem = null; 

            return false; 

        } 

    } 

} 

This cache stores all values via a WeakReference<T>. Its Add method simply passes 

the object to which we’d like a weak reference as the constructor argument for a new 

WeakReference<T>. The TryGetValue method attempts to retrieve a value 

previously stored with Add. It first checks to see if the dictionary contains a relevant 

entry. If it does, that entry’s value will be the WeakReference<T> we created earlier. 

My code calls that weak reference’s TryGetTarget method, which will return true if 

the object is still available, and false if it has been collected. 

Availability doesn’t necessarily imply reachability. The object may 

have become unreachable since the most recent GC. Or there may not 

even have been a GC since the object was allocated. TryGetTarget 

doesn’t care whether the object is reachable right now, it only cares 

whether it has been collected yet. 

If the object is available, it provides it through an out parameter, and the value it 

provides back will be a strong reference. So if this method returns true, we don’t need to 

worry about any race condition in which the object becomes unreachable moments 

later—the fact that we’ve now stored that reference in the variable the caller supplied via 

the cachedItem reference will keep the target alive. If TryGetTarget returns false, 

my code removes the relevant entry from the dictionary, because it represents an object 

that no longer exists. Example 7-4 tries this code out, forcing a couple of garbage 

collections so we can see it in action. 

Example 7-4. Exercising the weak cache 

var cache = new WeakCache<string, byte[]>(); 

 

var data = new byte[100]; 

cache.Add("d", data); 

 

byte[] fromCache; 

Console.WriteLine("Retrieval: " + cache.TryGetValue("d", out fromCache)); 

Console.WriteLine("Same ref?  " + object.ReferenceEquals(data, fromCache)); 

fromCache = null; 

 

GC.Collect(); 

Console.WriteLine("Retrieval: " + cache.TryGetValue("d", out fromCache)); 

Console.WriteLine("Same ref?  " + object.ReferenceEquals(data, fromCache)); 
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fromCache = null; 

 

data = null; 

GC.Collect(); 

Console.WriteLine("Retrieval: " + cache.TryGetValue("d", out fromCache)); 

Console.WriteLine("Non-null?  " + (fromCache != null)); 

This begins by creating an instance of my cache class, and then adding a reference to a 

100-byte array to the cache. It also stores a reference to the same array in a local variable 

called data, which remains live until its final usage near the bottom of the code, in 

which I set its value to null. The example tries to retrieve the value from the cache 

immediately after adding it, and also uses object.ReferenceEquals just to check 

that the value we get back really refers to the same object that we put in. Then I force a 

garbage collection, and try again. (This sort of artificial test code is one of the very few 

situations in which you’d want to do this—see the "Forcing Garbage Collection" section 

later for details.) Since the data variable still holds a reference to the array, and is still 

live, the array is still reachable, so we would expect the value still to be available from 

the cache. Next I set data to null, so my code is no longer keeping that array 

reachable. The only remaining reference is a weak one, so when I force another GC, we 

expect the array to be collected, so the final lookup in the cache should fail. To verify 

this, I check both the return value, expecting false, and the value returned through the 

out parameter, which should be null. And that is exactly what happens when running 

the program, as you can see: 

Retrieval: True 

Same ref?  True 

Retrieval: True 

Same ref?  True 

Retrieval: False 

Non-null?  False 

If you’re using an older version of .NET (v4.0 or earlier), you’ll need to use the non-

generic WeakReference class to create a weak reference. Its constructor also takes a 

reference to the object to which you’d like to maintain a weak reference. However, 

retrieving the reference works slightly differently. This class provides an IsAlive 

property, which will return false if the GC has determined that the object is no longer 

reachable. Note that if it returns true, that’s no guarantee that the object is still reachable. 

This property merely tells you whether the object has been collected by the GC yet. 

The WeakReference’s Target property returns a reference to the object. (This 

property is of type object, because this is the non-generic version, so you’ll need to 

cast it.) This returns a strong reference (i.e., a normal one) so if you store this in either a 

local variable, or a field of a reachable object, or if you merely use its value in an 

expression, that will have the effect of making the object reachable again, so you do not 

need to worry about the object being removed in between you retrieving the reference 

from Target and using it. However, there is a race condition between IsAlive and 

Target: it’s entirely possible that in between testing the IsAlive property, and 

reading Target, a garbage collection could occur, meaning that although IsAlive 

returned true, the object is no longer available. Target returns null if the object has 

gone, so you should always test for that. IsAlive is only interesting if you want to 

discover whether an object has gone but don’t actually want to do anything with it if it’s 

still there. (For example, if you have a collection containing weak references, you might 

periodically want to purge all of the entries whose objects are no longer alive.) 
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The generic WeakReference<T> does not provide an IsAlive 

property. This avoids a potential misuse that can arise with the non-

generic version. An easy mistake to make would be to test the 

IsAlive property, and then just assume that if it returns true, 

Target will necessarily return a non-null value. If a GC happens at 

exactly the wrong moment, that won’t be true. The generic version 

avoids this problem by forcing you to use the atomic TryGetValue 

method. If you want to test for availability without using the target, just 

call TryGetValue and then don’t use the reference it returns. 

Later, I will describe finalization, which complicates matters by introducing a twilight 

zone in which the object has been determined to be unreachable, but has not yet gone. 

Objects that are in this state are typically of little use, so by default, a weak reference 

(either generic or non-generic) will treat objects waiting for finalization as though they 

have already gone. This is called a short weak reference. If for some reason you need to 

know whether an object has really gone (rather than merely being on its way out), both 

weak reference classes have constructor overloads, some of which can create a long weak 

reference, which provides access to the object even in this zone between unreachability 

and final removal. 

Reclaiming Memory 

So far, I’ve described how the CLR determines which objects are no longer in use, but 

not what happens next. Having identified the garbage, the runtime must then collect it. 

The CLR uses slightly different strategies for small and large objects. (It defines a large 

object as one bigger than 85,000 bytes.) Most allocations involve small objects, so I’ll 

write about those first. 

The CLR tries to keep the heap’s free space contiguous. Obviously that’s easy when the 

application first starts up, because there’s nothing but free space, and it can keep things 

contiguous by allocating memory for each new object directly after the last one. But after 

the first garbage collection occurs, the heap is unlikely to look so neat. Most objects have 

short lifetimes, and it’s common for the majority of objects allocated after any one GC to 

be unreachable by the time the next GC runs. However, some will still be in use. From 

time to time, applications create objects that hang around for longer, and of course 

whatever work was in progress when the GC ran will probably be using some objects, so 

the most recently-allocated heap blocks are likely still to be in use. This means that the 

end of the heap might look something like Figure 7-1, where the grey rectangles are the 

reachable blocks, while the white ones show blocks that are no longer in use. (In practice, 

the GC would not normally kick in until you had allocated a lot more blocks than this. An 

accurate diagram would be more cluttered, but would otherwise look similar.) 

Older Newer  

Figure 7-1. Section of heap with some reachable objects 

One possible allocation strategy would be to start using these empty blocks as new 

memory is required, but there would be a couple of problems with that. First, it tends to 

be wasteful, because the blocks the application requires will probably not fit precisely 
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into the holes available. Second, finding a suitable empty block can be somewhat 

expensive, particularly if there are lots of gaps and you’re trying to pick one that will 

minimize waste. It’s not impossibly expensive of course—lots of heaps work this way—

but it’s a lot more costly than the initial situation where each new block could be 

allocated directly after the last one because all the spare space was contiguous. The 

expense of heap fragmentation is non-trivial, so the CLR typically tries to get the heap 

back into a state where the free space is contiguous. As Figure 7-2 shows, it moves all the 

reachable objects towards the start of the heap, so that all the free space is at the end, 

which puts it back in the favorable situation of being able to allocate new heap blocks one 

after another in the contiguous lump of free space. 

The runtime has to ensure that any references to these relocated blocks 

continue to work after the blocks have moved. The CLR happens to 

implement references as pointers (although the CLI spec does not 

require this—a reference is just a value that identifies some particular 

instance on the heap). It already knows where all the references to any 

particular block are because it had to find them to discover which 

blocks were reachable. It adjusts all these pointers when it moves the 

block. 

Older Newer  

Figure 7-2. Section of heap after compaction 

Besides making heap block allocation a relatively cheap operation, compaction offers 

another performance benefit. Because blocks are allocated into a contiguous area of free 

space, objects that were created in quick succession will typically end up right next to 

each other in the heap. This is significant because the caches in modern CPUs tend to 

favor locality, i.e., they perform best when related pieces of data are stored close 

together. 

The low cost of allocation and the high likelihood of good locality can sometimes mean 

that garbage collected heaps offer better performance than traditional heaps that require 

the program to free memory explicitly. This may seem surprising, given that the GC 

appears to do a lot of extra work that is unnecessary in a non-collecting heap. Some of 

that ‘extra work’ is illusory—something has to keep track of which objects are in use, and 

traditional heaps just push that housekeeping overhead into our code. However, 

relocating existing memory blocks comes at a price, so the CLR uses some tricks to 

minimize the amount of copying it needs to do. 

The older an object is, the more expensive it will be for the CLR to compact the heap 

once it finally becomes unreachable. If the most recently allocated object is unreachable 

when the GC runs, compaction is free for that object: there are no more objects after it so 

nothing needs to be moved. Compare that with the very first object your program 

allocates—if that becomes unreachable, compaction would mean moving every reachable 

object on the heap. More generally, the older an object is, the more objects will be sat 

after it, so the more data will need to be moved to compact the heap. Copying 20MB of 

data to save 20 bytes does not sound like a great tradeoff. So the CLR will often defer 

compaction for older parts of the heap. 
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To decide what counts as ‘old’ the CLR divides the heap into generations. The 

boundaries between generations move around at each GC, because generations are 

defined in terms of how many GCs an object has survived. Any object that was allocated 

after the previous GC is in generation 0, because it has not yet survived any collections. 

When the GC next runs, any generation 0 objects that are still reachable will be moved as 

necessary to compact the heap, and will then be deemed to be in generation 1. 

Objects in generation 1 are not yet considered to be old. The GC typically runs while the 

code is right in the middle of doing things—after all, it runs when space on the heap is 

being used up, and that won’t happen if the program is idle. So there’s a high chance that 

some of the recently-allocated objects represent work in progress, and will become 

unreachable shortly. Generation 1 acts a sort of holding zone while we wait to see which 

objects are short-lived and which are longer lived. 

As the program continues to execute, the GC will run from time to time, promoting new 

objects that survive into generation 1. Some of the objects in generation 1 will become 

unreachable. However, the GC does not necessarily compact this part of the heap 

immediately—it may allow a few generation 0 collections and compactions in between 

each generation 1 compaction, but it will happen eventually. Objects that survive this 

stage are moved into generation 2, which is the oldest generation. 

The CLR attempts to recover memory from generation 2 much less frequently than from 

other generations. Years of research and analysis have shown that in most applications, 

objects that survive into generation 2 are likely to remain reachable for a long time, so if 

they do eventually become unreachable, it’s likely that the object is very old, and so will 

the objects around it be. This means that compacting this part of the heap to recover the 

memory is costly for two reasons: not only will this old object probably be followed by a 

large number of other objects, requiring a large volume of data to be copied, the memory 

it occupied might not have been used for a long time, meaning it’s probably no longer in 

the CPU’s cache, slowing down the copy even further. And the caching costs will 

continue after collection, because if the CPU has had to shift megabytes of data around in 

old areas of the heap, this will probably have the side effect of cleaning out the CPU’s 

cache—cache sizes can be as small as 512KB at the very low-power, low-cost end of the 

spectrum, and can be 30MB more in high-end server-oriented chips, but in the mid-range 

anything from 2MB to 16MB of cache is typical, and many .NET applications’ heaps will 

be larger than that. Most of the data the application had been using would have been in 

the cache right up until the generation 2 GC, but would be gone once the GC has 

finished. So when the GC completes, and normal execution resumes, the code will run in 

slow motion for a while until the data the application needs is loaded back into the cache. 

Generations 0 and 1 are sometimes referred to as the ephemeral generations, because they 

mostly contain objects that exist only for a short while. The contents of these parts of the 

heap will often be in the CPU’s cache because they will have been accessed recently, so 

compaction is not particularly expensive for these sections. Moreover, because most 

objects have a short lifetime, the majority of memory that the garbage collector is able to 

collect will be from objects in these first two generations, so these are likely to offer the 

greatest reward (in terms of memory recovered) in exchange for the CPU time expended. 

So it’s common to see several ephemeral collections a second in a busy program, but it’s 

also common for several minutes to elapse between each generation 2 collection. 

The CLR has another trick up its sleeve for generation 2 objects. They often don’t change 

very much, so there’s a high likelihood that during the first phase of a GC, in which the 

runtime detects which objects are reachable, it would be repeating some work it did 
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earlier, because it will follow exactly the same references and will produce the same 

results for significant subsections of the heap. So the CLR will sometimes use the 

operating system’s memory protection services to detect when older heap blocks are 

modified. This can enable it to rely on summarized results from earlier GC operations 

instead of having to redo all of the work every time. 

How does the GC decide whether to collect just from generation 0, rather than 1 or even 

2? Collections for all three generations are triggered by using up a certain amount of 

memory. So for generation 0 allocations, once you have allocated some particular number 

of bytes since the last GC, a new GC will occur. The objects that survive this will move 

into generation 1, and the CLR keeps track of the number of bytes added to generation 1 

since the last generation 1 collection, and if that exceeds a threshold, generation 1 will be 

collected too. Generation 2 works in the same way. The thresholds are not documented, 

and in fact they’re not even constant—the CLR monitors your allocation patterns and 

modifies these thresholds to try and find a good balance for making efficient use of 

memory, minimizing the CPU time spent in the GC, and avoiding the excessive latency 

that could arise if the CLR waited a very long time between collections, leaving huge 

amounts of work to do when the collection finally occurs. 

This explains why, as mentioned earlier, the CLR doesn’t necessarily 

wait until it has actually run out of memory before triggering a GC. It 

may be more efficient to run one sooner. 

You may be wondering how much of the preceding information is useful. After all, the 

bottom line would appear to be that the CLR ensures that heap blocks are kept around for 

as long as they are reachable, and that some time after they become unreachable it will 

eventually reclaim their memory, and it employs a strategy designed to do this efficiently. 

Are the details of this generational optimization scheme relevant to a developer? They 

are, insofar as they tell us that some coding practices are likely to be more efficient than 

others. 

The most obvious upshot of the process is that the more objects you allocate, the harder 

the GC will have to work. But you’d probably guess that without knowing anything about 

the implementation. More subtly, larger objects cause the GC to work harder—

collections for each generation are triggered by the amount of memory your application 

uses. So bigger objects don’t just increase memory pressure, they also end up consuming 

more CPU cycles as a result of triggering more frequent GCs. 

Perhaps the most important fact to emerge from an understanding of the generational 

collector is that the length of an object’s lifetime has an impact on how hard the garbage 

collector has to work. Objects that live for a very short time are handled very efficiently, 

because the memory they use will be recovered quickly in a generation 0 or 1 collection, 

and the amount of data that needs to be moved to compact the heap will be small. Objects 

that live for an extremely long time are also OK because they will end up in generation 2. 

They will not to be moved about very often, because collections are infrequent for that 

part of the heap. Furthermore, the CLR may be able to use the Windows memory 

manager’s write detection feature to manage reachability discovery for old objects more 

efficiently. However, although very short-lived and very long-lived objects are handled 

efficiently, objects that live long enough to get into generation 2 but not much longer are 

a problem. Microsoft occasionally describes this occurrence as a mid-life crisis. 

If your application has a lot of objects making it into generation 2 which go on to become 

unreachable, the CLR will need to perform collections on generation 2 more often than it 
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otherwise might. (In fact, generation 2 is only collected during a full collection, which 

also collects free space previously used by large objects.) These are usually significantly 

more expensive than other collections. Compaction requires more work with older 

objects, but also, more housekeeping is required when disrupting the generation 2 heap—

the picture the CLR has built up about reachability within this section of the heap may 

need to be rebuilt, and the GC will need to disable the write detection used to enable that 

while it compacts the heap, which incurs a cost. There’s a good chance that most of this 

part of the heap will not be in the CPU’s cache either, so working with it can be slow. 

Full garbage collections consume significantly more CPU time than collections in the 

ephemeral generations. In user interface applications, this can cause delays long enough 

to be irritating for the user, particularly if parts of the heap had been paged out. In server 

applications, full collections may cause significant blips in the typical time taken to 

service a request. Such problems are not the end of the world of course, and as I’ll 

describe later, recent versions of the CLR have made significant improvements in this 

area. Even so, minimizing the number of objects that survive to generation 2 is good for 

performance. You would need to consider this when designing code that caches 

interesting data in memory—a cache aging policy that failed to take the GC’s behavior 

into account could easily behave inefficiently and if you didn’t know about the perils of 

middle-aged objects, it would be hard to work out why. Also, as I’ll show later in this 

chapter, the mid-life crisis issue is one reason you might want to avoid C# destructors 

where possible. 

I have left out some heap operation details by the way. For example, I’ve not talked about 

how the GC typically dedicates sections of the address space to the heap in fixed-size 

chunks, nor the details of how it commits and releases memory. Interesting though these 

mechanisms are, they have much less relevance to how you design your code than an 

awareness of the assumptions that a generational garbage collector makes about typical 

object lifetimes. 

There’s one last thing to talk about on the topic of collecting memory from unreachable 

objects. As mentioned earlier, large objects work differently. There’s a separate heap 

called, appropriately enough, the Large Object Heap (LOH) and the CLR uses this for 

any object larger than 85,000 bytes. That’s just the object itself, and not the sum total of 

all the memory an object allocates during construction. An instance of the 

GreedyObject class in Example 7-5 would be tiny—it only needs enough space for a 

single reference, plus the heap block overhead. In a 32-bit process, that would be 4 bytes 

for the reference and 8 bytes of overhead, and double that in a 64-bit process. However, 

the array to which it refers is 400,000 bytes long, so that would go on the LOH, while the 

GreedyObject itself would go on the ordinary heap. 

Example 7-5. A small object with a large array 

public class GreedyObject 

{ 

    public int[] MyData = new[100000]; 

} 

It’s technically possible to create a class whose instances are large enough to require the 

LOH, but it’s unlikely to happen outside of generated code or highly contrived examples. 

In practice, most LOH heap blocks will contain arrays. 

The biggest difference between the LOH and the ordinary heap is that the GC does not 

compact the LOH, because copying large objects is expensive. It works more like a 

traditional C heap: the CLR maintains a list of free blocks, and decides which block to 
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use based on the size requested. However, the list of free blocks is populated by the same 

unreachability mechanism as is used by the rest of the heap. 

Garbage Collector Modes 

Although the CLR will tune some aspects of the GC’s behavior at runtime (e.g, by 

dynamically adjusting the thresholds that trigger collections for each generation), it offers 

several modes designed to suit different kinds of applications. These fall into two broad 

categories: workstation and server, but there are variations within each. Workstation is 

the default. To configure server mode, you will need an application configuration file. 

(Web applications usually have one by default, called web.config. Outside of the 

ASP.NET web framework, the configuration file is normally called app.config, and many 

Visual Studio project templates provide this file automatically.) Example 7-6 shows a 

configuration file that enables server GC mode. 

Example 7-6. Configuring server GC 

<?xml version="1.0" ?> 

<configuration> 

     <runtime> 

        <gcServer enabled="true" /> 

     </runtime> 

</configuration> 

The workstation modes are designed, predictably enough, for the workloads that client-

side code typically has to deal with, in which the process is usually working on either one 

task, or a small number of tasks at any one time. Workstation mode offers two variations: 

non-concurrent and concurrent. The non-concurrent mode is designed to optimize 

throughput on a single processor with a single core. In fact, this is the only option on such 

machines—neither concurrent workstation mode nor server mode is available on such 

hardware. But where multiple logical processors are available, the workstation GC 

defaults to concurrent mode. (If for some reason you want to disable concurrent mode on 

a multi-processor machine, you can add <gcConcurrent enabled="false" /> 

inside the <runtime> element of your configuration file.) 

In concurrent mode, the GC minimizes the amount of time for which it suspends threads 

during a garbage collection. There are certain phases of the GC in which the CLR has to 

suspend execution to ensure consistency, and for collections from the ephemeral 

generations, threads will be suspended for the majority of the operation. This is usually 

fine because these collections normally run very quickly—they take a similar amount of 

time to a page fault that didn’t cause any disk activity. (These non-blocking page faults 

happen fairly often on Windows, and are fast enough that a lot of developers seem to be 

unaware that they even occur.) Full collections are the problem, and it’s these that the 

concurrent mode handles differently. 

For client-side code, the greatest concern is to avoid delays long enough to be visible to 

users. The purpose of concurrent GC is to enable code to continue to execute while some 

parts of the collection occur. Not all of the work done in a collection really needs to bring 

everything to a halt. To maximize opportunities for concurrency, concurrent mode uses 

more memory than the non-concurrent mode, and also reduces overall throughput, but for 

interactive applications, that’s usually a good tradeoff if the perceived performance 

improves. Users are more sensitive to delays in response than they are to suboptimal 

average utilization of the CPU. 
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As well as concurrent collection, you will also see Microsoft’s documentation refer to 

background collection. This is not a separate mode, and there is no distinct setting 

because it’s just something that happens in concurrent workstation mode. Background 

collection is an enhancement, introduced in .NET 4.0, that addresses a specific 

shortcoming of concurrent collection: although threads can continue to run while a full 

collection is performed, prior to .NET 4.0 they would come to a halt if they used up their 

generation 0 quota—the GC was unable to start an ephemeral collection until the full 

collection had finished, so if the application allocated memory while a concurrent GC 

was in progress, things could still grind to a halt. The background collection feature fixes 

this by allowing ephemeral collections to occur without waiting for the full collection to 

complete, and it also allows the heap to grow by allocating more memory from the OS 

while a background GC is in progress. This means the GC is more often able to deliver 

on the promise of minimizing interruptions. 

Server mode is significantly different than workstation mode. It is only available when 

you have multiple logical processors (e.g., a multi-core CPU, or multiple physical CPUs). 

Its availability has nothing to do with which version of Windows you’re running by the 

way—server mode is available on non-server editions and server editions alike if you 

have suitable hardware, and workstation mode is always available. Each processor gets 

its own section of the heap, so when a thread is working on its own problem 

independently of the rest of the process, it can allocate heap blocks with minimal 

contention. In server mode, the CLR creates several threads dedicated to garbage 

collection work, one for each logical CPU in the machine. These run with higher priority 

than normal threads, so when garbage collections do occur, all available CPU cores go to 

work on their own heaps, which can provide better throughput than workstation mode 

with large heaps. 

Objects created by one thread can still be accessed by others—

logically, the heap is still a unified service. Server mode is just an 

implementation strategy that is optimized for workloads where all the 

threads work on their own jobs mostly in isolation. It also works best if 

the jobs all have similar heap allocation patterns. 

There are some problems that can arise with server mode. It works best when only one 

process on the machine uses this mode, because it is set up to try to use all CPU cores 

simultaneously during collections, and it also tends to use considerably more memory 

than workstation mode. If a single server hosts multiple .NET processes that all do this, 

contention for resources could reduce efficiency. Another issue with server GC is that it 

favors throughput over response time. In particular, collections happen less frequently, 

because this tends to increase the throughput benefits that multi-CPU collections can 

offer, but it also means that each individual collection takes longer. 

The duration of a full collection in server mode can create problems on applications with 

large heaps—it can cause serious delays in responsiveness on a web site, for example. 

There are a couple of ways you can mitigate this. You can request notifications shortly 

before the collection occurs (using the GC class’s 

RegisterForFullGCNotification, WaitForFullGCApproach and 

WaitForFullGCComplete methods), and if you have a server farm, a server that’s 

running a full GC may be able to ask the load balancer to avoid passing it requests until 

the GC completes. Alternatively, with .NET 4.5 or later, you can use background 

collection—in .NET 4.0, concurrent background collections were only available in 

workstation mode, but .NET 4.5 adds these to server mode. Since background collections 
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allow application threads to continue to run and even to perform generation 0 and 1 

collections while the full collection proceeds in the background, it significantly improves 

the application’s response time during collections, while still delivering the throughput 

benefits of server mode. 

Accidentally Defeating Compaction 

Heap compaction is an important feature of the CLR’s garbage collector, because it has a 

strong positive impact on performance. Certain operations can prevent compaction, and 

that’s something you’ll want to minimize, because fragmentation can increase memory 

use and reduce performance significantly. 

To be able to compact the heap, the CLR needs to be able to move heap blocks around. 

Normally it can do this because it knows all of the places in which your application refers 

to heap blocks, and it can adjust all the references when it relocates a block. But what if 

you’re calling a Windows API that works directly with the memory you provide? For 

example, if you read data from a file or a network socket, how will that interact with 

garbage collection? 

If you use system calls that read or write data using devices such as the disk or network 

interface, these normally work directly with your application’s memory. If you read data 

from the disk, the operating system will typically instruct the disk controller to put the 

bytes directly into the memory your application passed to the API. The OS will perform 

the necessary calculations to translate the virtual address into a physical address. (Virtual 

memory means that the value your application puts in a pointer is only indirectly related 

to the actual address in your computer’s RAM.) The OS will lock the pages into place for 

the duration of the IO request, to ensure that the physical address remains valid. It will 

then supply the disk system with that address. This enables the disk controller to copy 

data from the disk directly into memory, without needing any further involvement from 

the CPU. This is very efficient, but runs into problems when it encounters a compacting 

heap. What if the block of memory is a byte[] array on the heap? Suppose a GC occurs 

in between us asking to read the data, and the disk being able to supply the data. (If it’s a 

mechanical disk with spinning platters, it can take 10ms or more to start supplying data, 

which is an age in CPU terms, so the chances are fairly high.) If the GC were to decide to 

relocate our byte[] array to compact the heap, the physical memory address that the 

OS gave to the disk controller would be out of date, so when the controller started putting 

data into memory, it would be writing to the wrong place. At best it would put the bytes 

into what is now some free space at the end of the heap, but it could well overwrite some 

unrelated object that’s using the space previously occupied by the byte[] array. 

There are three ways the CLR could deal with this. One would be to make the GC wait—

heap relocations could be suspended while I/O operations are in progress. But that’s a 

non-starter—a busy network server can run for days without ever entering a state in 

which no I/O operations are in progress. In fact, the server doesn’t even need to be busy. 

It might allocate several byte[] arrays to hold the next few incoming network requests, 

and would typically try to avoid getting into a state where it didn’t have at least one such 

buffer available. The OS would have pointers to all of these and may well have supplied 

the network card with the corresponding physical address so that it can get to work the 

moment data starts to arrive. So even if the server is idle, it still has certain buffers that 

cannot be relocated. 
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An alternative would be for the CLR to provide a separate non-moving heap for these 

sorts of operations. Perhaps we could allocate a fixed block of memory for an I/O 

operation, and then copy the results into the byte[] array on the GC heap once the I/O 

has finished. But that’s also not a brilliant solution. Copying data is expensive—the more 

copies you make of incoming or outgoing data, the slower your server will run, so you 

really want network and disk hardware to copy the data directly to or from its natural 

location. And if this hypothetical fixed heap was more than an implementation detail of 

the CLR, if it was available for application code to use directly to minimize copying, that 

might open the door to all the memory management bugs that garbage collection is 

supposed to banish. 

So the CLR uses a third approach: it selectively prevents heap block relocations. The 

garbage collector is free to run while I/O operations are in progress, but certain heap 

blocks can be pinned. Pinning a block sets a flag that tells the GC that the block cannot 

currently be moved. So if the garbage collector encounters such a block, it will simply 

leave it where it is, but will attempt to relocate everything around it. 

There are three ways C# code normally causes heap blocks to be pinned. You can do so 

explicitly using the fixed keyword. This allows you to obtain a raw pointer to a storage 

location such as a field or an array element, and the compiler will generate code that 

ensures that for as long as a fixed pointer is in scope, the heap block to which it refers 

will be pinned. A more common way to pin a block is through interop, i.e., calls into 

unmanaged code, such as a method on a COM component, or a Win32 API. If you make 

an interop call to an API that requires a pointer to something, the CLR will detect when 

that points to a heap block, and it will automatically pin the block. (By default, the CLR 

will unpin it automatically when the method returns. If you’re calling an asynchronous 

API, you can use the GCHandle class mentioned earlier to pin a heap block until you 

explicitly unpin it.) I will describe interop and raw pointers in Chapter 23. 

The third and most common way to pin heap blocks is also the least direct: many class 

library APIs call unmanaged code on your behalf, and will pin the arrays you pass in as a 

result. For example, the class library defines a Stream class that represents a stream of 

bytes. There are several implementations of this abstract class. Some streams work 

entirely in memory, but some wrap I/O mechanisms, providing access to files, or to the 

data being sent or received through a network socket. The abstract Stream base class 

defines methods for reading and writing data via byte[] arrays, and the I/O-based 

stream implementations will often pin the heap blocks containing those arrays for as long 

as necessary. 

If you are writing an application that does a lot of pinning (e.g., a lot of network I/O) you 

may need to think carefully about how you allocate the arrays that get pinned. Pinning 

does the most harm for recently-allocated objects, because these live in the area of the 

heap where most compaction activity occurs. Pinning recently allocated blocks tends to 

cause the ephemeral section of the heap to fragment. Memory that would normally have 

been recovered almost instantly must now wait for blocks to become unpinned, meaning 

that by the time the collector can get to those blocks, a lot more other blocks will have 

been allocated after them, meaning that a lot more work is required to recover the 

memory. 

If pinning is causing your application problems there will be a few common symptoms. 

The percentage of CPU time spent in the GC will be relatively high—anything over 10% 

is considered to be bad. But that alone does not necessarily implicate pinning—it could 

be the result of middle-aged objects causing too many full collections. So you can 
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monitor the number of pinned blocks on the heap2 to see if these are the specific culprit. 

If it looks like excessive pinning is causing you pain, there are two ways to avoid this. 

One is to design your application so that you only ever pin blocks that live on the large 

object heap. Remember, the LOH is not compacted, so pinning does not impose any 

cost—the GC wasn’t going to move the block in any case. The challenging part of this is 

that it forces you to do all of your I/O with arrays that are at least 85,000 bytes long. 

That’s not necessarily a problem because most I/O APIs can be told to work with a 

subsection of the array. So if you actually wanted to work with 4,096 byte blocks, you 

could create one array large enough to hold at least 21 of those blocks. You’d need to 

write some code to keep track of which slots in the array were in use, but if it fixes a 

performance problem, it may be worth the effort. 

If you choose to mitigate pinning by attempting to use the LOH, you 

need to remember that it is an implementation detail. Future versions of 

.NET could conceivably change the threshold of what constitutes a 

large object, and they could even remove the LOH entirely. So you’d 

need to look at this aspect of your design for each new release of .NET. 

The other way to minimize the impact of pinning is to try to ensure that pinning mostly 

happens only to objects in generation 2. If you allocate a pool of buffers and reuse them 

for the duration of the application, this will mean that you’re pinning blocks that the GC 

is fairly unlikely to want to move, keeping the ephemeral generations free to be 

compacted at any time. The earlier you allocate the buffers the better, because the older 

an object is, the less likely the GC is to want to move it. 

Forcing Garbage Collection 

The GC class provides a Collect method that allows you to force a garbage collection 

to occur. You can pass a number indicating the generation you would like to collect, and 

the overload that takes no arguments performs a full collection. You will very rarely have 

any good reason to call GC.Collect. I’m mentioning it here because it comes up a lot 

on the web, which could easily make it seem more useful than it is. 

Forcing a GC can cause problems. The GC monitors its own performance and tunes its 

behavior in response to your application’s allocation patterns. But to do this, it needs to 

allow enough time between collections to get an accurate picture of how its current 

settings are working. If you force collections to occur too often, it will not be able to tune 

itself, and the outcome will be twofold: the garbage collector will run more often than 

necessary, and when it does run its behavior will be suboptimal. Both problems are likely 

to increase the amount of CPU time spent in the GC. 

So when would you force a collection? If you happen to know that your application has 

just finished some work, and is about to go idle, it might be worth considering forcing a 

collection. Garbage collections are triggered by activity, so if you know that your 

application is about to go to sleep—perhaps it’s a service that has just finished running a 

batch job, and will not do any more work for another few hours—you know that it won’t 

                                                           

2 The Performance Monitor tool built into Windows can report numerous useful statistics for 

garbage collection and other CLR activities, including the percentage of CPU time spent in the GC, 

the number of pinned objects, and the number of generation 0, 1, and 2 collections. 
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be allocating any new objects and will therefore not trigger the GC automatically. So 

forcing a GC would provide an opportunity to return memory to the operating system 

before going to sleep. That said, if this is your scenario, it might be worth looking at 

mechanisms that would enable your process to exit entirely—Windows provides various 

ways in which jobs or services that are only required from time to time can be unloaded 

completely when they are inactive. But if that technique is inapplicable for some 

reason—perhaps your process has high startup costs, or needs to stay running to receive 

incoming network requests—a forced full collection might be the next best option. 

It’s worth being aware that there is one way that a GC can be triggered without your 

application needing to do anything. When the system is running low on memory, 

Windows broadcasts a message to all running processes. The CLR handles this message, 

and forces a garbage collection when it occurs. So even if your application does not 

proactively attempt to return memory, memory might be reclaimed eventually if 

something else in the system needs it. 

Destructors and Finalization 

The CLR performs a lot of work on our behalf to find out when our objects are no longer 

in use. It’s possible to get it to notify you of this—instead of simply removing 

unreachable objects, the CLR can first tell an object that it is about to be removed. The 

CLR calls this finalization, but C# presents it through a special syntax: to exploit 

finalization you must write a destructor. 

If your background is in C++, do not be fooled by the name. As you 

will see, a C# destructor is a different than a C++ destructor in some 

important ways. 

Example 7-7 shows the syntax for a destructor. This code compiles into an override of a 

method called Finalize, which as Chapter 6 mentioned, is a special method defined by 

the object base class. Finalizers are required always to call the base implementation of 

Finalize that they override. C# generates that call for us to prevent us from violating 

the rule, which is why it doesn’t let us simply write a Finalize method directly. 

Finalizers are not invoked directly—they are called by the CLR, so we do not specify an 

accessibility level for the destructor. 

Example 7-7. Class with destructor 

public class LetMeKnowMineEnd 

{ 

    ~LetMeKnowMineEnd() 

    { 

        Console.WriteLine("Goodbye, cruel world"); 

    } 

} 

The CLR does not guarantee to run finalizers on any particular schedule. First of all, it 

needs to detect that the object has become unreachable, which won’t happen until the GC 

runs. If your program is idle, that might not happen for a long time—the GC only runs 

either when your program is doing something, or if system-wide memory pressure causes 

the GC to spring into life. It’s entirely possible that minutes, hours, or even days could 

pass between your object becoming unreachable and the CLR noticing that it has become 

unreachable. 
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Even when the CLR does detect unreachability it still doesn’t guarantee to call the 

finalizer straight away. Finalizers run on a dedicated thread, and this finalization thread 

runs with low priority, meaning that it will only run when the system has at least one 

logical CPU with nothing better to do. Also, since there’s only one finalization thread, 

regardless of which GC mode you choose, a slow finalizer will cause other finalizers to 

wait. 

In most cases, the CLR doesn’t even guarantee to run finalizers at all. When a process 

exits, the runtime will wait for a short while for finalizers to complete, but if the 

finalization thread hasn’t managed to run all extant finalizers within two seconds of the 

program trying to finish, it just gives up and exits anyway. (As the "Critical Finalizers" 

section later in this chapter explains, there are certain exceptions, but the majority of 

finalizers get no guarantees.) 

In summary, finalizers can be delayed indefinitely if your program is either idle or busy, 

and are not guaranteed to run. But it gets worse—you can’t actually do very much that is 

useful in a finalizer. 

You might think that a finalizer would be a good place to ensure that certain work is 

properly completed. For example, if your object writes data to a file, but buffers that data 

so as to be able to write a small number of large chunks rather than writing in tiny dribs 

and drabs (because large writes are often more efficient), you might think that finalization 

is the obvious place to ensure that any data in your buffers has been safely flushed out to 

disk. But think again. 

During finalization, an object cannot trust any of the other objects it has references to. If 

your object’s destructor runs, your object must have become unreachable. This means it’s 

highly likely that any other objects yours refers to have also become unreachable. The 

CLR is likely to discover the unreachability of groups of related objects simultaneously—

if your object created three or four objects to help it do its job, the whole lot will become 

unreachable at the same time. The CLR makes no guarantees about the order in which it 

runs finalizers (except for critical finalizers which, as I’ll explain later, get some weak 

guarantees). This means it’s entirely possible that by the time your destructor runs, all the 

objects you were using have already been finalized. So if they also perform any last 

minute cleanup, it’s too late to use them. For example, the FileStream class, which 

derives from Stream and provides access to a file, closes its file handle in its destructor. 

So if you were hoping to flush your data out to the FileStream, it’s too late—the file 

stream may well already be closed. 

So destructors are of remarkably little use: you can have no idea if or when they will run, 

and you can’t use other objects inside a destructor. So what use are they? 

To be fair, although the CLR does not guarantee to run most finalizers, 

it will usually run them in practice. The absence of guarantees only 

matters in relatively extreme situations so they’re not quite as bad as 

I’ve made them sound. Even so, this doesn’t mitigate the fact that you 

cannot, in general, rely on other objects in your destructor. 

The only reason finalization exists at all is to make it possible to write .NET types that 

are wrappers for the sorts of entities that are traditionally represented by handles—things 

like files, and sockets. These are created and managed outside of the CLR—files and 

sockets require the operating system kernel to allocate resources; libraries may also 

provide handle-based APIs, and they will typically allocate memory on their own private 
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heaps to store information about whatever the handle represents. The CLR cannot see 

these activities—all it sees is a .NET object with a field containing an integer, and it has 

no idea that the integer is a handle for some resource outside of the CLR. So it doesn’t 

know that it’s important that the handle be closed when the object falls out of use. This is 

where finalizers come in—they are a place to put code that tells the system that’s external 

to the CLR that the entity represented by the handle is no longer in use. The inability to 

use other objects is not a problem in this scenario. 

If you are writing code that wraps a handle, you should normally use 

one of the built-in classes that derive from SafeHandle described in 

Chapter 23, or if absolutely necessary, derive your own. This base class 

extends the basic finalization mechanism with some handle-oriented 

helpers, but it also uses the critical finalization mechanism discussed 

later to guarantee that the finalizer will run. Furthermore, it gets special 

handling from the interop layer to avoid premature freeing of resources. 

It’s possible to use finalization for diagnostic purposes, although you should not rely on 

it, because of the unpredictability and unreliability already discussed. Some classes 

contain a finalizer which does nothing other than check that the object had not been 

abandoned in a state where it had unfinished work. For example, if you had written a 

class that buffers data before writing it to a file as described above, you would need to 

define some method that callers should use when they are done with your object (perhaps 

called Flush or Close), and you could write a finalizer that checks to see if the object 

was put into a safe state before being abandoned, raising an error if not. This would 

provide a way to discover when programs had forgotten to clean things up correctly. (The 

.NET Framework’s Task Parallel Library, which I’ll describe in Chapter 17, uses this 

technique. When an asynchronous operation throws an exception, it uses a finalizer to 

discover when the program that launched it fails to get around to detecting that 

exception.) 

If you write a finalizer, you should disable it when your object is in a state where it no 

longer requires finalization, because finalization has its costs. If you offer a Close or 

Flush method, finalization is unnecessary once these have been called, so you should 

call the GC class’s SuppressFinalize class to let the GC know that your object no 

longer needs to be finalized. If your object’s state subsequently changes, you can call the 

ReRegisterForFinalize method to re-enable it. 

The greatest cost of finalization is that it guarantees that your object will survive at least 

into the first generation and possibly longer. Remember, all objects that survive from 

generation 0 make it into generation 1. If your object has a finalizer, and you have not 

disabled it by calling SuppressFinalize, the CLR cannot get rid of your object until 

it has run its finalizer. And since finalizers run asynchronously on a separate thread, the 

object has to remain alive even though it has been found to be unreachable. So the object 

is not yet collectable, even though it is unreachable. It therefore lives on into generation 

1. It will usually be finalized shortly afterwards, meaning that the object will then become 

a waste of space until a generation 1 collection occurs. Those happen rather less 

frequently than generation 0 collections. If your object had already made it into 

generation 1 before becoming unreachable, a finalizer increases the chances of getting 

into generation 2 just before it is about to fall out of use. A finalized object therefore 

makes inefficient use of memory, which is a reason to avoid finalization, and a reason to 

disable it whenever possible in objects that do sometimes require it. 
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Even though SuppressFinalize can save you from the most 

egregious costs of finalization, an object that uses this technique still 

has higher overheads than an object with no finalizer at all. The CLR 

does some extra work when constructing finalizable objects to keep 

track of which have not yet been finalized. (Calling 

SuppressFinalize just takes your object back out of this tracking 

list.) So although suppressing finalization is much better than letting it 

occur, it’s better still if you don’t ask for it in the first place. 

A slightly weird upshot of finalization is that an object that the GC discovered was 

unreachable can make itself reachable again. It’s possible to write a destructor that stores 

the this reference in a root reference, or perhaps in a collection that is reachable via a 

root reference. Nothing stops you from doing this, and the object will continue to work 

(although its finalizer will not run a second time if the object becomes unreachable again) 

but it’s a slightly odd thing to do. This is referred to as resurrection, and just because you 

can do it doesn’t mean you should. It is best avoided. 

Critical Finalizers 

Although in general, finalizers are not guaranteed to run, there are exceptions: you can 

write a critical finalizer. A finalizer is critical if and only if it belongs to a class that 

derives from the CriticalFinalizerObject base class. The CLR makes two 

useful guarantees for objects of this kind. First, the CLR will give the finalizer an 

opportunity to run, even in situations where the usual time limit for finalization has been 

exhausted. Second, within any group of objects that were discovered to be unreachable at 

the same time, the CLR will run critical finalizers after it has finished running non-

critical ones, meaning that if you write a finalizable object with a reference to an object 

with a critical finalizer, it is safe to use that object in your own finalizer. 

The CLR disallows certain operations inside critical finalizers. They are not allowed to 

construct new objects or throw exceptions, and they can only invoke methods if those 

methods follow the same constraints. These constraints mean the CLR can still guarantee 

to run critical finalizers even in relatively extreme situations, such as when shutting down 

a process due to low memory. The constraints prevent you from using critical finalization 

as a general-purpose mechanism for overcoming the limitations of ordinary finalization. 

It is a highly constrained mechanism designed to make it possible to close handles 

reliably. 

Earlier, I mentioned the SafeHandle class, which is the preferred way to wrap handles 

in .NET. It can guarantee to free handles because it derives from 

CriticalFinalizerObject. If you rely on this class or one of the classes derived 

from it to ensure your handles get freed, your own classes may not need to derive from 

CriticalFinalizerObject, so your own finalizer would not be subject to the 

critical finalization constraints. Also, because of the ordering guarantees, you could be 

sure that a handle wrapped in a SafeHandle will still be valid when your finalizer runs 

because the critical finalizer in SafeHandle won’t have run yet. Better yet, by using a 

SafeHandle, you may be able to get away without needing write your own finalizer at 

all. 

I hope that by now, I have convinced you that destructors do not provide a useful general 

purpose mechanism for shutting down objects cleanly. They are mostly only useful for 
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dealing with handles for things that live outside of the CLR’s control. If you need timely, 

reliable cleanup of resources, there’s a better mechanism. 

IDisposable 

The class library defines an interface called IDisposable. The CLR does not treat this 

interface as being in any way special, but C# has some built-in support for it. 

IDisposable is a very simple abstraction—as Example 7-8 shows, it defines just one 

member, the Dispose method. 

Example 7-8. The IDisposable interface 

public interface IDisposable 

{ 

    void Dispose(); 

} 

The idea behind IDisposable is very simple. If your code uses an object that 

implements this interface, you should call Dispose once you have finished using that 

object. This provides the object with an opportunity to free up any resources it may have 

allocated. If it was using resources represented by handles, it will typically close those 

handles immediately rather than waiting for finalization to kick in (and would suppress 

finalization at the same time). If the object was using services on some remote machine in 

a stateful way—perhaps holding a connection open to a server to be able to make 

requests—it would immediately let the remote system know that it no longer requires the 

services, in whatever way is necessary (e.g., by closing the connection). 

There is a persistent myth that calling Dispose causes the garbage 

collector to do something. You may read on the web that Dispose 

finalizes the object, or even that it causes the object to be garbage 

collected. This is nonsense. The CLR does not handle IDisposable 

or Dispose differently than any other interface or method. 

IDisposable is important because it’s possible for an object to consume very little 

memory, and yet to tie up some expensive resources. For example, consider an object that 

represents a connection to a database. Such an object might not need many fields—it 

could even have just a single field containing a handle representing the connection. From 

the CLR’s point of view this is a pretty cheap object, and we could allocate hundreds of 

the things without triggering a garbage collection. But in the database server, things 

would look different—it might need to allocate a considerable amount of memory for 

each incoming connection. Connections might even be strictly limited by licensing terms. 

(This illustrates that ‘resource’ is a fairly broad concept—it means pretty much anything 

that you might run out of.) 

Relying on garbage collection to notice when database connection objects are no longer 

in use is likely to be a bad strategy. The CLR will know that we’ve allocated, say, 50 of 

the things, but if that only consumes a few hundred bytes in total, it will see no reason to 

run the GC. And yet our application may be about to grind to a halt—if we only have 50 

connection licenses for the database, the next attempt to create a connection will fail. And 

even if there’s no licensing limitation, we could still be making highly inefficient use of 

database resources by opening far more connections than we need. 
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It’s imperative that we close connection objects as soon as we can, without waiting for 

the GC to tell us which ones are out of use. This is where IDisposable comes in. It’s 

not just for database connections, of course. It’s critically important for any object that is 

a front for something that lives outside of the CLR such as a file or a network connection. 

Even for resources that are not especially constrained, IDisposable provides a way to 

tell objects when we are finished with them so they can shut down cleanly, solving the 

problem described earlier for the object that performs internal buffering. 

If a resource is expensive to create, you will typically want to reuse it. 

This is often the case with database connections, so the usual practice is 

to maintain a pool of connections. Instead of closing a connection when 

you’re finished with it, you return it to the pool, making it available for 

reuse. (.NET’s data access APIs can do this for you, as I’ll show in 

Chapter 19.) The IDisposable model is still useful here. When you 

ask a resource pool for a resource, it usually provides a wrapper around 

the real resource, and when you dispose that wrapper, it returns the 

resource to the pool instead of freeing it. So calling Dispose is really 

just a way of saying “I’m done with this” and it’s up to the 

IDisposable implementation to decide what to do next. 

Implementations of IDisposable are required to tolerate multiple calls to Dispose. 

Although this means consumers can call Dispose multiple times without harm, they 

should not attempt to use an object after it has been disposed. In fact, the class library 

defines a special exception that objects can throw if you misuse them in this way: 

ObjectDisposedException. (I will discuss exceptions in Chapter 8.) 

You’re free to call Dispose directly of course, but C# also supports IDisposable in 

two ways: foreach loops and using statements. A using statement is a way to 

ensure that you reliably dispose an object that implements IDisposable once you’re 

done with it. Example 7-9 shows how to use it. 

Example 7-9. A using statement 

using (FileStream reader = File.OpenText(@"C:\temp\File.txt")) 

{ 

    Console.WriteLine(reader.ReadToEnd()); 

} 

This is equivalent to the code in Example 7-10. The try and finally keywords are 

part of C#’s exception handling system, which I’ll discuss in detail in Chapter 8. In this 

case, they’re being used to ensure that the code inside the finally block executes even 

if something goes wrong in the code inside the try block. This also ensures that 

Dispose gets called even if you execute a return statement in the middle of the 

block, or even use the goto statement to jump out of it. 

Example 7-10. How using statements expand 

{ 

    FileStream reader = File.OpenText(@"C:\temp\File.txt")) 

    try 

    { 

        Console.WriteLine(reader.ReadToEnd()); 

    } 

    finally 

    { 
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        if (reader != null) 

        { 

            ((IDisposable) reader).Dispose(); 

        } 

    } 

} 

If the using statement’s variable type is a value type, C# will not generate the code that 

checks for null, and will just invoke Dispose directly. 

If you need to use multiple disposable resources within the same scope, you can stack 

multiple using statements in front of a single block. Example 7-11 uses this to copy the 

contents of one file to another. 

Example 7-11. Stacking using statements 

using (Stream source = File.OpenRead(@"C:\temp\File.txt")) 

using (Stream copy = File.Create(@"C:\temp\Copy.txt")) 

{ 

    source.CopyTo(copy); 

} 

Stacking of using statements is not a special syntax. It’s just an upshot of the fact that a 

using statement is always followed by single embedded statement which will be 

executed before Dispose gets called. Normally that statement is a block, but in 

Example 7-11, the first using statement’s embedded statement is the second using 

statement. 

A foreach loop generates code that will use IDisposable if the enumerator 

implements it. Example 7-12 shows a foreach loop that uses just such an enumerator. 

Example 7-12. A foreach loop 

foreach (string file in Directory.EnumerateFiles(@"C:\temp")) 

{ 

    Console.WriteLine(file); 

} 

The Directory class’s EnumerateFiles method returns an 

IEnumerable<string>. As you saw in Chapter 5, this has a GetEnumerator 

method that returns an IEnumerator<string>, an interface which inherits from 

IDisposable. Consequently, the C# compiler will produce code equivalent to 

Example 7-13. 

Example 7-13. How foreach loops expand 

{ 

    IEnumerator<string> e = 

        Directory.EnumerateFiles(@"C:\temp").GetEnumerator(); 

    try 

    { 

        while (e.MoveNext()) 

        { 

            string file = e.Current; 

            Console.WriteLine(file); 

        } 

    } 

    finally 

    { 
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        if (e != null) 

        { 

            ((IDisposable) e).Dispose(); 

        } 

    } 

} 

There are a few variations the compiler can produce, depending on the collection’s 

enumerator type. If it’s a value type that implements IDisposable, the compiler won’t 

generate the check for null in the finally block (just like in a using statement). If 

the static type of the enumerator does not implement IDisposable, the outcome 

depends on whether the type is open for inheritance. If it is sealed, or if it is a value type, 

the compiler will not generate code that attempts to call Dispose at all. If it is not 

sealed, the compiler generates code in the finally block that tests at runtime whether 

the enumerator implements IDisposable, and then calls Dispose if it does, and 

does nothing otherwise. 

Although Example 7-13 represents how C# 5.0 compiles foreach 

loops, I should point out that earlier versions of the compiler did 

something subtly different. (It doesn’t affect IDisposable handling. 

I mention it here for completeness.) Notice that the iteration variable, 

file, is declared inside the while loop, so each iteration effectively 

gets a new variable. This used to be declared before the while loop, 

so there was one variable used throughout, and its value changed with 

each iteration. Most of the time, this makes no discernible difference, 

but in Chapter 9, we’ll see a scenario in which this matters. 

The IDisposable interface is easiest to consume when you obtain a resource and 

finish using it in the same method, because you can write a using statement (or where 

applicable, a foreach loop) to ensure that you call Dispose. But sometimes, you will 

write a class which creates a disposable object and puts a reference to it in a field, 

because it needs to be able to use that object over a longer timescale. For example, you 

might write a logging class, and if a logger object writes data to a file, it might hold onto 

a FileStream object. C# provides no automatic help here, so it’s up to you to ensure 

that any contained objects get disposed. You would write your own implementation of 

IDisposable which disposed the other objects. As Example 7-14 shows, this is not 

rocket science. Note that this example sets _file to null, so it will not attempt to 

dispose the file twice. This is not strictly necessary, because the FileStream will 

tolerate multiple calls to Dispose. But it does give the Logger object an easy way to 

know that it is in a disposed state, so if we were to add some real methods, we could 

check _file and throw an ObjectDisposedException if it is null. 

Example 7-14. Disposing a contained instance 

public sealed class Logger : IDisposable 

{ 

    private FileStream _file; 

 

    public Logger(string filePath) 

    { 

        _file = File.CreateText(filePath); 

    } 
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    public void Dispose() 

    { 

        if (_file != null) 

        { 

            _file.Dispose(); 

            _file = null; 

        } 

    } 

    // A real class would go on to do something with the FileStream of course 

} 

This example dodges an important problem. The class is sealed, which avoids the issue of 

how to cope with inheritance. If you write an unsealed class that implements 

IDisposable, you should provide a way for a derived class to add its own disposal 

logic. The most straightforward solution would be to make Dispose virtual so that a 

derived class can override it, performing its own cleanup in addition to calling your base 

implementation. However, there is a slightly more complicated pattern that you will see 

from time to time in .NET. 

Some objects implement IDisposable and also have a finalizer. Since the 

introduction of SafeHandle and related classes in .NET 2.0, it’s relatively unusual for 

a class to need to provide both (unless it derives from SafeHandle). Only wrappers for 

handles normally need finalization, and classes that use handles now typically defer to a 

SafeHandle to provide that, rather than implementing their own finalizers. However, 

there are exceptions, and some library types implement a pattern designed to support both 

finalization and IDisposable, allowing you to provide custom behaviors for both in 

derived classes. For example, the Stream base class works this way. 

The pattern is to define a protected overload of Dispose that takes a single bool 

argument. The base class calls this from its public Dispose method and also its 

destructor, passing in true or false respectively. That way, you only have to override one 

method, the protected Dispose. It can contain any logic common to both finalization 

and disposal, such as closing handles, but you can also perform any disposal-specific or 

finalization-specific logic because the argument tells you which sort of cleanup is being 

performed. Example 7-15 shows how this might look. 

Example 7-15. Custom finalization and disposal logic 

public class MyFunkyStream : Stream 

{ 

    // For illustration purposes only. Usually better 

    // to use some type derived from SafeHandle. 

    private IntPtr _myCustomLibraryHandle; 

    private Logger _log; 

 

    protected override void Dispose(bool disposing) 

    { 

        base.Dispose(disposing); 

 

        if (_myCustomLibraryHandle != IntPtr.Zero) 

        { 

            MyCustomLibraryInteropWrapper.Close(_myCustomLibraryHandle); 

            _myCustomLibraryHandle = IntPtr.Zero; 

        } 

        if (disposing) 

        { 
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            if (_log != null) 

            { 

                _log.Dispose(); 

                _log = null; 

            } 

        } 

    } 

 

    ... overloads of Stream's abstract methods would go here 

} 

This hypothetical example is a custom implementation of the Stream abstraction that 

uses some external non-.NET library that provides handle-based access to resources. We 

want to close the handle when the public Dispose method is called, but if that hasn’t 

happened by the time our finalizer runs, we want to close the handle then. So the code 

checks to see if the handle is still open and closes it if necessary, and it does this whether 

the call to the Dispose(bool) overload happened as a result of the object being 

explicitly disposed, or being finalized—we need to ensure that the handle is closed in 

either case. However, this class also appears to use an instance of the Logger class from 

Example 7-14. Because that’s an ordinary object, we shouldn’t attempt to use it during 

finalization, so we only attempt to dispose it if our object is being disposed. If we are 

being finalized, then although Logger itself is not finalizable, it uses a FileStream, 

which is finalizable, and it’s quite possible that the FileStream finalizer will already 

have run by the time our MyFunkyStream class’s finalizer runs, so it would be a bad 

idea to call methods on the Logger. 

When a base class provides this virtual protected form of Dispose, it should call 

GC.SuppressFinalization in its public Dispose. The Stream base class does 

this. More generally, if you find yourself writing a class that offers both Dispose and a 

finalizer, then whether or not you choose to support inheritance with this pattern, you 

should in any case suppress finalization when Dispose is called. 

Boxing 

While I’m discussing garbage collection and object lifetime, there’s one more topic I 

should talk about in this chapter: boxing. Boxing is the process that enables a variable of 

type object to refer to a value type. An object variable is only capable of holding a 

reference to something on the heap, so how can it refer to an int? What happens when 

the code in Example 7-16 runs? 

Example 7-16. Using an int as an object 

class Program 

{ 

    static void Show(object o) 

    { 

        Console.WriteLine(o.ToString()); 

    } 

 

    static void Main(string[] args) 

    { 

        int num = 42; 

        Show(num); 

    } 
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} 

The Show method expects an object, and I’m passing it num, which is a local variable of 

the value type int. In these circumstances, C# generates a box, which is essentially a 

reference type wrapper for a value. The CLR can automatically provide a box for any 

value type, although if it didn’t, you could write something that does the same job—

Example 7-17 shows a hand-built box. 

Example 7-17. Not actually how a box works 

// Not a real box, but similar in effect. 

public class Box<T> 

    where T : struct 

{ 

    public readonly T Value; 

    public Box(T v) 

    { 

        Value = v; 

    } 

 

    public override string ToString() 

    { 

        return Value.ToString(); 

    } 

 

    public override bool Equals(object obj) 

    { 

        return Value.Equals(obj); 

    } 

 

    public override int GetHashCode() 

    { 

        return Value.GetHashCode(); 

    } 

} 

This is a fairly ordinary class that contains a single instance of a value type as its only 

field. If you invoke the standard members of object on the box, this class’s overrides 

make it look as though you invoked them directly on the field itself. So if I passed new 

Box<int>(num) as the argument to Show in Example 7-16, I would be asking to 

construct a new Box<int>, copying the value of num into the box, and Show would 

receive a reference to that box. When Show called ToString, the box would call the 

int field’s ToString, so you’d expect the program to print out 42. 

In fact, we don’t need to write Example 7-17, because the CLR will build the box for us. 

It will create an object on the heap that contains a copy of the boxed value, and which 

forwards the standard object methods to the boxed value. And it does something that 

we can’t. If you ask a box its type by calling GetType, it will return the same type 

object as you’d get if you called GetType directly on an int variable—I can’t do that 

with my custom Box<T> because GetType is not virtual. Also, getting back the 

underlying value is easier than it would be with a hand-built box, because unboxing is an 

intrinsic CLR feature. 

If you have a reference of type object, and you cast it to int, the CLR checks to see if 

the reference does indeed refer to a boxed int, and if it does, it returns a copy of the 

boxed value. So inside the Show method of Example 7-16, I could write (int) o to get 
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back a copy of the original value whereas if I were using the class in Example 7-17, I’d 

need the more convoluted ((Box<int>) o).Value. 

Boxes are automatically available for all structs, not just the built-in value types. If the 

struct implements any interfaces, the box will provide all the same interfaces. (That’s 

another trick that Example 7-17 cannot perform.) 

Some implicit conversions cause boxing. You can see this in Example 7-16—I have 

passed an expression of type int where object was required, without needing an 

explicit cast. Implicit conversions also exist between a value and any of the interfaces 

that value’s type implements. For example, you can assign a value of type int into a 

variable of type IComparable<int> without needing a cast. This causes a box to be 

created, because variables of any interface type are like variables of type object: they 

can only hold a reference to an item on the garbage collected heap. 

Implicit boxing can occasionally cause problems for either of two reasons. First, it makes 

it easy to generate extra work for the garbage collector—the CLR does not make any 

attempt to cache boxes, so if you write a loop that executes 100,000 times, and that loop 

contains an expression that uses an implicit boxing conversion, you’ll end up generating 

100,000 boxes, which the GC will have to clean up just like anything else on the heap. 

Second, each box operation (and each unbox) copies the value, which might not provide 

the semantics you were expecting. Example 7-18 illustrates some potentially surprising 

behavior. 

Example 7-18. Illustrating the pitfalls of mutable structs 

public struct DisposableValue : IDisposable 

{ 

    private bool _disposedYet; 

 

    public void Dispose() 

    { 

        if (!_disposedYet) 

        { 

            Console.WriteLine("Disposing for first time"); 

            _disposedYet = true; 

        } 

        else 

        { 

            Console.WriteLine("Was already disposed"); 

        } 

    } 

} 

 

class Program 

{ 

    static void CallDispose(IDisposable o) 

    { 

        o.Dispose(); 

    } 

 

    static void Main(string[] args) 

    { 

        var dv = new DisposableValue(); 

        Console.WriteLine("Passing value variable:"); 

        CallDispose(dv); 

        CallDispose(dv); 
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        CallDispose(dv); 

 

        IDisposable id = dv; 

        Console.WriteLine("Passing interface variable:"); 

        CallDispose(id); 

        CallDispose(id); 

        CallDispose(id); 

 

        Console.WriteLine("Calling Dispose directly on value variable:"); 

        dv.Dispose(); 

        dv.Dispose(); 

        dv.Dispose(); 

    } 

} 

The DisposableValue struct implements the IDisposable interface we saw 

earlier. It keeps track of whether it has been disposed already. The program contains a 

method that calls Dispose on any IDisposable instance. The program declares a 

single variable of type DisposableValue and passes this to CallDispose three 

times. Here’s the output from that part of the program: 

Passing value variable: 

Disposing for first time 

Disposing for first time 

Disposing for first time 

On all three occasions, the struct seems to think this is the first time we’ve called 

Dispose on it. That’s because each call to CallDispose created a new box—we are 

not really passing the dv variable, we are passing a newly boxed copy each time, so the 

CallDispose method is working on a different instance of the struct each time. This is 

consistent with how value types normally work—even when they’re not boxed, when you 

pass them as arguments, you end up passing a copy (unless you use the ref keyword). 

The next part of the program ends up generating just a single box—it assigns the value 

into another local variable of type IDisposable. This uses the same implicit 

conversion as we did when passing the variable directly as an argument, so this creates 

yet another box, but it only does so once, and we then pass the same reference to this 

particular box three times over, which explains why the output from this phase of the 

program looks different: 

Passing interface variable: 

Disposing for first time 

Was already disposed 

Was already disposed 

These three calls to CallDispose all use the same box, which contains an instance of 

our struct, and so after the first call it remembers that it has been disposed already. 

Finally, our program calls Dispose directly on the local variable, producing this output: 

Calling Dispose directly on value variable: 

Disposing for first time 

Was already disposed 

Was already disposed 

No boxing is involved at all here, so we are modifying the state of the local variable. 

Someone who only glanced at the code might not have expected this output—we have 

already passed the dv variable to a method that called Dispose on its argument, so it 
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might be surprising to see that it thinks it hasn’t been disposed first time round. But once 

you understand that CallDispose requires a reference and therefore cannot use a 

value directly, it’s clear that every call to Dispose before this point has operated on 

some boxed copy, and not the local variable. (Obviously if we were to pass dv as an 

argument to CallDispose again, we’d expect it to say it was already disposed, 

because that call would generate yet another boxed copy, but this time, we’re copying a 

value that’s already in the state of having been disposed.) 

The behavior is all straightforward when you understand what’s going on, but it requires 

you to be mindful that you’re dealing with a value type, and to understand when boxing 

causes implicit copying. This is one of the reasons Microsoft discourages developers 

from writing value types that can change their state—if a value cannot change, then a 

boxed value of that type also cannot change. It matters less whether you’re dealing with 

the original or a boxed copy, so there’s less scope for confusion. 

Boxing used to be a much more common occurrence in early versions of .NET. Before 

generics arrived in .NET 2.0, collection classes all worked in terms of object, so if you 

wanted a resizable list of integers, you’d end up with a box for each int in the list. 

Generic collection classes do not cause boxing—a List<int> is able to store unboxed 

values directly. 

Summary 

In this chapter, I described the heap that the runtime provides. I showed the strategy that 

the CLR uses to determine which heap objects can still be reached by your code, and the 

generation-based mechanism it uses to reclaim the memory occupied by objects that are 

no longer in use. The garbage collector is not clairvoyant, so if your program keeps an 

object reachable, the GC has to assume that you might use that object in the future. This 

means you will sometimes need to be careful to make sure you don’t cause memory leaks 

by accidentally keeping hold of objects for too long. We looked at the finalization 

mechanism, and its various limitations and performance issues, and we also looked at 

IDisposable, which is the preferred system for cleaning up non-memory resources. 

Finally, we saw how value types can act like reference types thanks to boxing. 

In the next chapter, I will show how C# presents the CLR’s error handling mechanisms. 
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8 

Exceptions 

Some operations can fail. If your program is reading data from a file stored on an external 

drive, someone might disconnect the drive. Your application might try to construct an 

array only to discover that the system does not have enough free memory. Intermittent 

wireless network connectivity can cause network requests to fail. One widely used way 

for a program to discover these sorts of failures is for each API to return a value 

indicating whether the operation succeeded. This requires developers to be vigilant if all 

errors are to be detected, because programs must check the return value of every 

operation. This is certainly a viable strategy, but it can obscure the code—the logical 

sequence of work to be performed when nothing goes wrong can get buried by all of the 

error checking, making the code harder to maintain. C# supports another popular error 

handling mechanism that can avoid this problem: exceptions. 

When an API reports failure with an exception, this disrupts the normal flow of 

execution, leaping straight to the nearest suitable error handling code. This enables a 

degree of separation between error handling logic and the code that tries to perform the 

task at hand. This can make code easier to read and maintain, although it does have the 

downside of making it harder to see all the possible ways in which the code may execute. 

Exceptions can also report problems with operations where a return code might not be 

practical. For example, the runtime can detect and report problems for various operations, 

even something as simple as using a reference. Reference type variables can contain 

null, and if you try to invoke a method on a null reference, it will fail. The runtime 

reports this with an exception. 

Most errors in .NET are represented as exceptions. However, some APIs offer you a 

choice between return codes and exceptions. For example, the int type has a Parse 

method that takes a string and attempts to interpret its contents as a number, and if you 

pass it some non-numeric text (e.g., "Hello") it will indicate failure by throwing a 

FormatException. If you don’t like that you can call TryParse instead, which 

does exactly the same job, but if the input is non-numeric, it simply returns false 

instead of throwing an exception. (Since the method’s return value has the job of 

reporting success or failure, the method provides the integer result via an out 

parameter). Numeric parsing is not the only operation to use this pattern, in which a pair 
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of methods (Parse and TryParse in this case) provide a choice between exceptions 

and return values. As you saw in Chapter 5, dictionaries offer a similar choice. The 

indexer throws an exception if you use a key that’s not in the dictionary, but you can also 

look up values with TryGetValue, which returns false on failure, just like TryParse. 

Although this pattern crops up in a few places, for the majority of APIs exceptions are the 

only choice. 

If you are designing an API that could fail, how should it report failure? Should you use 

exceptions, a return value, or both? Microsoft’s class library design guidelines contain 

instructions that seem unequivocal: 

“Do not return error codes. Exceptions are the primary means of reporting errors in 

frameworks.” 

But how does that square with the existence of int.TryParse? The guidelines have a 

section on performance considerations for exceptions that says this: 

“Consider the TryParse pattern for members that may throw exceptions in common 

scenarios to avoid performance problems related to exceptions.” 

Failing to parse a number is not necessarily an error. For example, you might want your 

application to allow the month to be specified numerically or as text. So there are 

certainly common scenarios in which the operation might fail, but the guideline has 

another criterion: you should only offer the TryParse approach when the operation is 

fast compared to the time taken to throw and handle an exception. 

Exceptions can typically be thrown and handled in a fraction of a millisecond, so they’re 

not desperately slow—nothing like as slow as reading data from disk for example, but 

they’re not blindingly fast either. I find that on my computer, a single thread can parse 

five-digit numeric strings at a rate of roughly ten million strings per second, and it’s 

capable of rejecting non-numeric strings at about the same speed if I use TryParse. 

The Parse method handles numeric strings just as fast, but it’s about 400 times slower 

at rejecting non-numeric strings than TryParse, thanks to the cost of exceptions. Of 

course, converting strings to integers is a pretty fast operation, so this makes exceptions 

look particularly bad, but that’s why this pattern is most common on operations that are 

naturally fast. 

Exceptions can be particularly slow when debugging. This is partly 

because the debugger has to decide whether to break in, but it’s 

particularly pronounced with the first unhandled exception your 

program hits in Visual Studio’s debugger. This can give the impression 

that exceptions are considerably more expensive than they really are. 

The numbers in the preceding paragraph are based on observed runtime 

behavior without debugging overheads. Having said that, those 

numbers slightly understate the costs, because handling an exception 

tends to cause the CLR to run bits of code and access data structures it 

would not otherwise need to use, which can have the effect of pushing 

useful data out of the CPU’s cache. This can cause code to run slower 

for a short while after the exception has been handled, until the non-

exceptional code and data can make its way back into the cache. 

Most APIs do not offer a TryXxx form, and will report all failures as exceptions, even in 

cases where failure might be common. For example, the file APIs do not provide a way to 

open an existing file for reading without throwing an exception if the file is missing. 
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(You can use a different API to test whether the file is there first, but that’s no guarantee 

of success. It’s always possible for some other process to delete the file between you 

asking whether it’s there and attempting to open it.) Since filesystem operations are 

inherently slow, the TryXxx pattern would not offer a worthwhile performance boost 

here even though it might make logical sense. 

Exception Sources 

Class library APIs are not the only source of exceptions. They can be thrown in any of 

the following scenarios: 

• Your program uses a class library API, which detects a problem 

• Your own code detects a problem 

• The runtime detects the failure of an operation, e.g. arithmetic overflow in a checked 

context, or an attempt to use a null reference, or an attempt to allocate an object for 

which there is not enough memory 

• The runtime detects a situation outside of your control that affects your code, e.g., 

your thread is being aborted due to application shutdown 

Although these all use the same exception handling mechanisms, the places in which the 

exceptions emerge are different. I’ll describe where to expect each sort of exception in 

the following sections. 

Exceptions from APIs 

With an API call, there are several kinds of problems that could result in exceptions. You 

may have provided arguments that make no sense, such as a null reference where a non-

null one is required, or an empty string where the name of a file was expected. Or the 

arguments might look OK individually, but not collectively. For example, you could call 

an API that copies data into an array, asking it to copy more data than will fit. You could 

describe these as ‘that will never work’ style errors, and they are usually the result of 

mistakes in the code. 

A subtly different class of problems arises when the arguments all look plausible, but the 

operation turns out not to be possible given the current state of the world—for example, 

you might ask to open a particular file but the file may not be present, or perhaps it exists 

but some other program already has it open and has demanded exclusive access to the 

file. Yet another variation is that things may start well, but conditions can change, so 

perhaps you opened a file successfully and have been reading data for a while, but then 

the file becomes inaccessible. As suggested earlier, someone may have unplugged a disk, 

or the drive could have failed due to overheating or age. 

Asynchronous programming adds yet another variation. In Chapters 17 and 18, I’ll show 

various asynchronous APIs—ones where work can progress after the method that started 

it has returned. Work that progresses asynchronously can also fail asynchronously, in 

which case the library might have to wait until your code next calls into it before it can 

report the error. 

Despite the variations, in all these cases the exception will come from some API that your 

code calls. (Even with asynchronous errors, exceptions emerge either when you try to 
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collect the result of an operation, or when you explicitly ask whether an error has 

occurred.) Example 8-1 shows some code where exceptions of this kind could emerge. 

Example 8-1. Getting an exception from a library call 

static void Main(string[] args) 

{ 

    using (var r = new StreamReader(@"C:\Temp\File.txt")) 

    { 

        while (!r.EndOfStream) 

        { 

            Console.WriteLine(r.ReadLine()); 

        } 

    } 

} 

There’s nothing categorically wrong with this program, so we won’t get any exceptions 

complaining about arguments being self-evidently wrong. If your computer’s C: drive 

has a Temp folder, and if that contains a File.txt file, and if the user running the program 

has permission to read that file, and if nothing else on the computer has already acquired 

exclusive access to the file, and if there are no problems such as disk corruption that 

could make any part of the file inaccessible, and if no new problems (such as the drive 

catching fire) develop while the program runs, this code will work just fine: it will print 

each line of text in the file. But that’s a lot of ifs. 

If there is no such file, the StreamReader constructor will not complete. Instead, it 

will throw an exception. This program makes no attempt to handle that, so the application 

would terminate. If you ran the program outside of Visual Studio’s debugger, you would 

see the following output: 

Unhandled Exception: System.IO.FileNotFoundException: Could not find file 

'C:\Temp\File.txt'. 

   at System.IO.__Error.WinIOError(Int32 errorCode, String maybeFullPath) 

   at System.IO.FileStream.Init(String path, FileMode mode, FileAccess access, 

Int32 rights, Boolean useRights, FileShare share, Int32 bufferSize, FileOptions 

options, SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean bFromProxy, 

Boolean useLongPath) 

   at System.IO.FileStream..ctor(String path, FileMode mode, FileAccess access, 

FileShare share, Int32 bufferSize, FileOptions options) 

   at System.IO.StreamReader..ctor(String path, Encoding encoding, Boolean 

detectEncodingFromByteOrderMarks, Int32 bufferSize) 

   at System.IO.StreamReader..ctor(String path) 

   at ConsoleApplication1.Program.Main(String[] args) in 

C:\dev\ConsoleApplication1\Program.cs:line 13 

This tells us what error occurred, and it shows the full call stack of the program at the 

point at which the problem happened. Windows would also show its error reporting 

dialog, and depending on how your computer is configured, it may even report the crash 

to Microsoft’s error reporting service. If you run the same program in Visual Studio’s 

debugger, that will tell you about the exception, and it will also highlight the line on 

which the error occurred, as Figure 8-1 shows. 

[I will produce a non-ClearType version of this image in due course.] 
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Figure 8-1. Visual Studio reporting an exception 

What we’re seeing here is the default behavior that occurs when a program does nothing 

to handle exceptions: if a debugger is attached, it will step in, and if not, the program just 

crashes. I’ll show how to handle exceptions soon, but this illustrates that you cannot 

simply ignore them. 

The call to the StreamReader constructor is not the only line that could throw an 

exception in Example 8-1 by the way. The code calls ReadLine multiple times, and any 

of those calls could fail. In general, any member access could result in an exception, even 

just reading a property, although class library designers usually try to minimize the extent 

to which properties throw exceptions. If you make an error of the ‘that will never work’ 

kind, then a property might throw an exception, but usually not for errors of the ‘this 

particular operation didn’t work’ kind. For example, the documentation states that the 

EndOfStream property used in Example 8-1 would throw an exception if you tried to 

read it after having disposed the StreamReader object—an obvious coding error—but 

if there are problems reading the file, StreamReader will only throw exceptions from 

methods or the constructor. 

Exceptions from Your Code 

The second potential source of errors mentioned earlier is when your own code detects a 

problem and decides to throw an exception. I’ll be showing examples of that later. For 

now, I’m just describing where you can expect exceptions to come from, and from that 

perspective, this sort of exception is fairly similar to ones that emerge from a class 

library. In fact, class libraries use the same mechanisms for throwing exceptions that you 

can. When you throw your own exceptions, it will always be clear exactly where in the 

code exceptions may arise: they will originate on the lines of code from which you 
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explicitly throw exceptions, and will emerge from the methods that contain those lines of 

code. 

Failures Detected by the Runtime 

The third source of exceptions is when the CLR itself detects that some operation has 

failed. Example 8-2 shows a method in which this could happen. As with Figure 8-1, 

there’s nothing innately wrong with this code (other than not being very useful). It’s 

perfectly possible to use this without causing problems. However, if someone passes in 

zero as the second argument, the code will attempt an illegal operation. 

Example 8-2. A potential runtime-detected failure 

static int Divide(int x, int y) 

{ 

    return x / y; 

} 

The CLR will detect when this division operation attempts to divide by zero, and will 

throw a DivideByZeroException. This will have the same effect as an exception 

from an API call: if the program makes no attempt to handle the exception, it will crash, 

or the debugger will break in. 

Division by zero is not always illegal. Floating point types support 

special values representing positive and negative infinity, which is what 

you get when you divide a positive or negative value by zero; if you 

divide zero by itself, you get the special Not a Number value. None of 

the integer types support these special values, so integer division by 

zero is always an error. 

The final source of exceptions I described earlier is also the detection of certain failures 

by the runtime, but they work slightly differently. They are not necessarily triggered 

directly by anything that your code did on the thread on which the exception occurred. 

These are sometimes referred to as asynchronous exceptions, and they can in theory be 

thrown at literally any point in your code, making it hard to ensure that you can deal with 

them correctly. However, these only tend to be thrown in fairly catastrophic 

circumstances, often when your program is about to be shut down in any case, so only 

very specialized code needs to deal with these. I will return to them later. 

I’ve described the usual situations in which exceptions are thrown, and you’ve seen the 

default behavior, but what if you want your program to do something other than crash? 

Handling Exceptions 

When an exception is thrown, the CLR looks for code to handle the exception. The 

default exception handling behavior only comes into play if there are no suitable handlers 

anywhere on the entire call stack. To provide a handler, we use C#’s try and catch 

keywords, as Example 8-3 shows. 

Example 8-3. Handling an exception 

try 

{ 

    using (StreamReader r = new StreamReader(@"C:\Temp\File.txt")) 
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 7 

    { 

        while (!r.EndOfStream) 

        { 

            Console.WriteLine(r.ReadLine()); 

        } 

    } 

} 

catch (FileNotFoundException) 

{ 

    Console.WriteLine("Couldn't find the file"); 

} 

The block immediately following the try keyword is usually called a try block, and if 

the program throws an exception while it’s inside such a block, the CLR looks for 

matching catch blocks. Example 8-3 has just a single catch block, and in the parentheses 

following the catch keyword, you can see that this particular block is intended to 

handle exceptions of type FileNotFoundException. 

You saw earlier that if there is no C:\Temp\File.txt file, the StreamReader constructor 

throws a FileNotFoundException. In Example 8-1 that caused our program to 

crash, but because Example 8-3 has a catch block for that exception, the CLR will run 

that catch block. At this point, it will consider the exception to have been handled, so the 

program does not crash. Our catch block is free to do whatever it wants, and in this case 

my code just displays a message indicating that it couldn’t find the file. 

Exception handlers do not need to be in the method in which the exception originated. 

The CLR walks up the stack until it finds a suitable handler. If the failing 

StreamReader constructor call were in some other method that was called from inside 

the try block in Example 8-3, our catch block would still run (unless that method 

provided its own handler for the same exception). 

Exception Objects 

Exceptions are objects, and their type derives from the Exception base class.1 This 

defines properties providing information about the exception, and some exception types 

have additional properties specific to the problem. Your catch block can get a reference 

to the exception if it needs information about what went wrong. Example 8-4 shows a 

modification to the catch block from Example 8-3. In the parentheses after the catch 

keyword, as well as specifying the exception type, we also provide an identifier name (x) 

with which we can refer to the exception object. This enables the code to read a property 

specific to the FileNotFoundException class: FileName. 

Example 8-4. Using the exception in a catch block 

try 

{ 

                                                           

1 Strictly speaking, the CLR allows any type as an exception. However, C# can only throw 

Exception-derived types. Some languages let you throw other types, but it is strongly 

discouraged. C# can handle exceptions of any type, but only because the compiler automatically 

sets a RuntimeCompatibility attribute on all components it produces, asking the CLR to 

wrap non-Exception-derived exceptions in a RuntimeWrappedException.  
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    ... same code as Example 8-3 ... 

} 

catch (FileNotFoundException x) 

{ 

    Console.WriteLine("Couldn't find the file '{0}'", x.FileName); 

} 

This will print out the name of the file that could not be found. With this simple program 

we already knew which file we were trying to open, but you could imagine this property 

being helpful in a more complex program that dealt with multiple files. 

The general purpose members defined by the base Exception class include the 

Message property, which returns a string containing a textual description of the 

problem. The default error handling for console applications displays this text; the text 

“Could not find file 'C:\Temp\File.txt'.” that we saw when first running Example 8-1 

came from the Message property. This property is important when diagnosing 

unexpected exceptions. 

Exception also defines an InnerException property. This is often null, but it 

comes into play when one operation fails as a result of some other failure. Sometimes, 

exceptions that occur deep inside a library would make little sense if they were allowed 

to propagate all the way up to the caller. For example, .NET provides a library for parsing 

XAML files. (XAML is a markup language used by various .NET user interface 

frameworks. I’ll describe it in Chapter 21.) XAML is extensible, so it’s possible that your 

code (or perhaps some 3rd party code) will run as part of the process of loading a XAML 

file, and this extension code could fail—suppose a bug in your code causes an 

IndexOutOfRangeException to thrown while trying to access an array element. It 

would be somewhat mystifying for that exception to emerge out of Microsoft’s API, so 

regardless of the underlying cause of the failure, the library throws a 

XamlParseException. This means that if you want to handle the failure to load a 

XAML file, you know exactly which exception to handle, but the underlying cause of the 

failure is not lost: when some other exception caused the failure, it will be in the 

InnerException. 

All exceptions contain information about where the exception was thrown. The 

StackTrace property provides the call stack as a string. As you’ve already seen, the 

default exception handler for console applications prints that. There’s also a 

TargetSite property, which tells you which method was executing. It returns an 

instance of the reflection API’s MethodBase class. See Chapter 13 for details on 

reflection. 

Multiple Catch Blocks 

A try block can be followed by multiple catch blocks. If the first catch does not match 

the exception being thrown, the CLR will look at the next one, then the next, and so on. 

Example 8-5 supplies handlers for both FileNotFoundException and 

IOException. 

Example 8-5. Handling multiple exception types 

try 

{ 

    using (StreamReader r = new StreamReader(@"C:\Temp\File.txt")) 

    { 
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        while (!r.EndOfStream) 

        { 

            Console.WriteLine(r.ReadLine()); 

        } 

    } 

} 

catch (FileNotFoundException x) 

{ 

    Console.WriteLine("Couldn't find the file '{0}'", x.FileName); 

} 

catch (IOException x) 

{ 

    Console.WriteLine("IO error: '{0}'", x.Message); 

} 

An interesting feature of this example is that FileNotFoundException derives from 

IOException. I could remove the first catch block, and this would still handle the 

exception correctly, just with a less specific message, because the CLR considers a catch 

block to be a match if it handles the base type of the exception. So Example 8-5 has two 

viable handlers for a FileNotFoundException, and in these cases, C# requires the 

more specific one to come first. If I were to swap them over so that the IOException 

handler came first, I’d get this compiler error for the FileNotFoundException 

handler: 

error CS0160: A previous catch clause already catches all exceptions of this or 

of a super type ('System.IO.IOException') 

If you write a catch block for the Exception base type, that will catch all exceptions. 

In most cases, this is the wrong thing to do—unless there is some specific and useful 

thing you can do with an exception, you should normally let it pass. Otherwise, you risk 

masking a problem. If you let the exception carry on, it’s more likely to get to a place 

where it will be noticed, increasing the chances that you will fix the problem properly at 

some point. The one case in which a catch-all exception handler might make sense is if 

it’s at a point where the only place left for the exception to go would be the default 

handling supplied by the system. (That might mean the Main method for a console 

application, but for multithreaded applications, it might mean the code at the top of a 

newly-created thread’s stack.) It might be appropriate in these locations to catch all 

exceptions in order to be able to write the details to a log file or some similar diagnostic 

mechanism. Even then, once you’ve logged it you would probably want to rethrow the 

exception, as described later in this chapter. 

For critically important services, you might be tempted to write code 

that swallows the exception so that your application can limp on. This 

is not a good idea—if an exception you did not anticipate occurs, your 

application’s internal state may no longer be trustworthy, because your 

code might have been half way through an operation when the failure 

occurred. If you cannot afford for the application to go offline, the best 

approach is to arrange for it to restart automatically after a failure. A 

Windows Service can be configured to do this automatically, and IIS 

has a similar feature. Third party products are also available if these 

mechanisms do not suit your needs. 
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Nested Try Blocks 

If an exception occurs in a try block that does not provide a suitable handler, the CLR 

will keep looking. It will walk up the stack if necessary, but you can have multiple sets of 

handlers in a single method by nesting one try/catch inside another try block, as Example 

8-6 shows. PrintFirstLineLength nests a try/catch pair inside the try block of 

another try/catch pair. Nesting can also be done across methods—the Main method will 

catch any NullReferenceException that emerges from the 

PrintFirstLineLength method (which will be thrown if the file is completely 

empty—the call to ReadLine will return null in that case). 

Example 8-6. Nested exception handling 

static void Main(string[] args) 

{ 

    try 

    { 

        PrintFirstLineLength(@"C:\Temp\File.txt"); 

    } 

    catch (NullReferenceException) 

    { 

        Console.WriteLine("NullReferenceException"); 

    } 

} 

 

static void PrintFirstLineLength(string fileName) 

{ 

    try 

    { 

        using (var r = new StreamReader(fileName)) 

        { 

            try 

            { 

                Console.WriteLine(r.ReadLine().Length); 

            } 

            catch (IOException x) 

            { 

                Console.WriteLine("Error while reading file: {0}", 

                    x.Message); 

            } 

        } 

    } 

    catch (FileNotFoundException x) 

    { 

        Console.WriteLine("Couldn't find the file '{0}'", x.FileName); 

    } 

} 

The reason I nested the IOException handler here was to make it apply to one 

particular part of the work: it only handles errors that occur while reading the file, after it 

has been opened successfully. It might sometimes be useful to respond to that scenario 

differently than an error that prevented you from opening the file in the first place. 

The cross-method handling here is somewhat contrived. The 

NullReferenceException could be avoided by testing the return value of 

ReadLine for null. However, the underlying CLR mechanism this illustrates is 
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extremely important. A particular try block can define catch blocks just for those 

exceptions it knows how to handle, letting the rest escape up to higher levels. 

Letting exceptions carry on up the stack is often the right thing to do. Unless there is 

something useful your method can do in response to discovering an error, it’s going to 

need to let its caller know there’s a problem, so unless you want to wrap the exception in 

a different kind of exception, you may as well let it through. 

If you’re familiar with Java you may be wondering if C# has anything 

equivalent to checked exceptions. It does not. Methods do not formally 

declare the exceptions they throw, so there’s no way the compiler can 

tell you if you have failed either to handle them or declare that your 

method might in turn throw them. 

You can also nest a try block inside a catch block. This is important if there are ways in 

which your error handler can itself fail. For example, if your exception handler logs 

information about a failure to disk, that would fail if there’s a problem with the disk.  

It’s possible to write a try block that never catches anything. It’s illegal to write a try 

block that isn’t followed directly by something, but that something doesn’t have to be a 

catch block: it can be a finally block. 

Finally Blocks 

A finally block contains code that always runs once its associated try block has finished. 

It runs whether execution left the try block simply by reaching the end, or by returning 

from the middle, or by throwing an exception. The finally block will run even if you use 

a goto statement to jump right out of the block. Example 8-7 shows a finally block in 

use. 

Example 8-7. A finally block 

using Microsoft.OfficeInterop.PowerPoint; 

 

[STAThread] 

static void Main(string[] args) 

{ 

    var pptApp = new Application(); 

    var pres = pptApp.Presentations.Open(args[0]); 

    try 

    { 

        ProcessSlides(pres); 

    } 

    finally 

    { 

        pres.Close(); 

    }     

} 

This is an excerpt from a utility I wrote to process the contents of a Microsoft Office 

PowerPoint file. This just shows the outermost code—I’ve omitted the actual detailed 

processing code because it’s not relevant here (although if you’re curious, it exports 

animated slides as video clips). I’m showing it because it uses finally. This example 

uses COM interop (which I’ll describe in detail in Chapter 23) to control the PowerPoint 

application. This example closes the file once it has finished, and the reason I put that 
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code in a finally block is that I don’t the program to leave things open if something goes 

wrong part way through. It’s important because of the way COM automation works. It’s 

not like opening a file, where the operating system automatically closes everything when 

the process terminates. If this program exits suddenly, PowerPoint will not close 

whatever had been opened—it just assumes that you meant to leave things open. I don’t 

want that, and closing the file in a finally block is a reliable way to avoid it. 

Normally you’d write a using statement for this sort of thing, but PowerPoint’s COM-

based automation API doesn’t support .NET’s IDisposable interface. In fact as we 

saw in the previous chapter, the using statement works in terms of finally blocks under 

the covers, as does foreach, so you’re relying on the exception handling system’s 

finally mechanism even when you write using statements and foreach loops. 

Finally blocks run correctly when your exception blocks are nested. If 

some method throws an exception which is handled by a method that’s, 

say, five levels above it in the call stack, and if some of the methods in 

between were in the middle of using statements, foreach loops, or 

try blocks with associated finally blocks, all of these intermediate 

finally blocks (whether explicit, or generated implicitly by the 

compiler) will execute before the handler runs. 

Handling exceptions is only half of the story, of course. Your code may well detect 

problems, and exceptions may be an appropriate mechanism for reporting them. 

Throwing Exceptions 

Throwing an exception is very straightforward. You simply construct an exception object 

of the appropriate type, and then use the throw keyword. Example 8-8 does this when it 

is passed a null argument. 

Example 8-8. Throwing an exception 

public static int CountCommas(string text) 

{ 

    if (text == null) 

    { 

        throw new ArgumentNullException("text"); 

    } 

    return text.Count(ch => ch == ','); 

} 

The CLR does all of the work for us. It captures the information required for the 

exception to be able to report its location through properties like StackTrace and 

TargetSite. (It doesn’t calculate their final values, because these are relatively 

expensive to produce. It just makes sure that it has the information it needs to be able to 

produce them if asked.) It then hunts for a suitable try/catch block, and if any finally 

blocks need to be run, it’ll execute those. 

Rethrowing Exceptions 

Sometimes it is useful to write a catch block that performs some work in response to an 

error, but which allows the error to continue once that work is complete. There’s an 

obvious, but wrong way to do this, illustrated in Example 8-9. 
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Example 8-9. How NOT to rethrow an exception 

try 

{ 

    DoSomething(); 

} 

catch (IOException x) 

{ 

    LogIOError(x); 

    // This next line is BAD! 

    throw x;  // Do not do this 

} 

This will compile without errors, and it will even appear to work, but it has a serious 

problem: it loses the context in which the exception was originally thrown. The CLR 

treats this as a brand new exception and will reset the location information. The 

StackTrace and TargetSite will report that the error originated inside your catch 

block. This could make it hard to diagnose the problem, because you won’t be able to see 

where it was originally thrown. Example 8-10 shows how you can avoid this problem. 

Example 8-10. Rethrowing without loss of context 

try 

{ 

    DoSomething(); 

} 

catch (IOException x) 

{ 

    LogIOError(x); 

    throw; 

} 

The only difference (aside from removing the warning comments) is that I’m using the 

throw keyword without specifying which object to use as the exception. You’re only 

allowed to do this inside a catch block, and it rethrows whichever exception the catch 

block was in the process of handling. This means that the Exception properties that 

report the location from which the exception was thrown will still refer to the original 

throw location, and not the rethrow. 

The feature built into Windows known as Windows Error Reporting (WER) complicates 

things slightly.2 This is the component that leaps into action when an application crashes, 

and which, depending on how your machine is configured, can offer options including 

restarting the application, reporting the crash to Microsoft, debugging it, or just 

terminating it. In addition to all that, when a Windows application crashes, WER captures 

several pieces of information to identify the crash location. For .NET applications, this 

includes the name, version, and timestamp of the component that failed, the exception 

type that was thrown, and it identifies not just the method, but also the offset into that 

method’s IL from which the exception was thrown. These pieces of information are 

sometimes referred to as the bucket values. If the application crashes twice with the same 

values, those two crashes go into the same bucket, meaning that they are considered to be 

in some sense the same crash. 

                                                           

2 Some people refer to WER by the name of an older Windows crash reporting mechanism: Dr. 

Watson. Some reduce this further to just Watson, or more cryptically, “a house call from the Dr.” 
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Crash bucket values are not exposed as public properties of exceptions, but you can see 

them in the Windows event log. In the Event Viewer application, these log entries show 

up in the “Application” section under “Windows Logs” and the Source and Event ID 

columns for these entries will contain “Windows Error Reporting” and 1001 respectively. 

WER reports various kinds of crashes, so if you open a WER log entry, it will contain an 

Event Name value. For .NET crashes, this will be CLR20r3. The assembly name and 

version are easy enough to spot, as is the exception type. The method is more obscure: 

it’s on the line labeled P7, but it’s just a number based on the method’s metadata token; if 

you want to find out what method that refers to, the ILDASM tool supplied with Visual 

Studio has a command line option to report the metadata tokens for all your methods. 

Computers can be configured to upload crash reports to an error reporting service, and 

usually, just the bucket values get sent, although the services can request additional data. 

Bucket analysis can be useful when deciding how to prioritize bug fixes: it makes sense 

to start with the largest bucket because that’s the crash your users are seeing most often. 

(Or at least, it’s the one seen most often by users who have not disabled crash reporting. I 

always enable this on my computers, because I want the bugs I encounter in the programs 

I use to be fixed first.) 

The way to get access to accumulated crash bucket data depends on the 

kind of application you’re writing. For a line-of-business application 

that only runs inside your enterprise, you will probably want to run an 

error reporting server of your own, but if the application runs outside of 

your administrative control, you can use Microsoft’s own crash servers. 

There’s a certificate-based process for verifying that you are entitled to 

the data, but once you’ve jumped through the relevant hoops, Microsoft 

will show you all reported crashes for your applications, sorted by 

bucket size. 

Certain exception handling tactics can defeat the crash bucket system. If you write 

common error handling code that gets involved with all exceptions, there’s a risk that 

WER will think that your application only ever crashes inside that common handler, 

which would mean that crashes of all kinds would go into the same bucket. This is not 

inevitable, but to avoid it, you need to understand how your exception handling code 

affects WER crash bucket data. 

If an exception rises to the top of the stack without being handled, WER will get an 

accurate picture of exactly where the crash happened, but things may go wrong if you 

catch an exception before eventually allowing it (or some other exception) to continue up 

the stack. The behavior depends on which version of .NET you use. Before .NET 4.0, 

rethrowing an exception would only preserve the original location for the WER bucket 

values if you used the approach in Example 8-10, and not with the bad approach shown 

in Example 8-9. Slightly surprisingly, .NET 4.0 and .NET 4.5 preserves the location for 

WER in both cases. (From a .NET perspective, Example 8-9 loses the exception context 

for all versions—the StackTrace will show the rethrow location. Example 8-10 will 

preserve this.) It’s a similar story when you wrap an exception as the 

InnerException of a new one—before .NET 4.0, WER would use the site of the 

outer exception for the bucket values, but with 4.0 and 4.5, if the exception that crashes 

an application had a non-null InnerException, that inner exception’s location is used 

for the crash bucket. 
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This means that in .NET 4.0 or later, it’s relatively easy to preserve the WER bucket. The 

only ways to lose the original context are either to handle the exception completely (i.e., 

not to crash) or to write a catch block that handles the exception and then throws a new 

one without passing the original one in as an InnerException. But if for some reason 

you have to use an older version of .NET, you need to be more careful—a bad rethrow of 

the kind shown in Example 8-9 will lose the context for both .NET and WER; throwing a 

new exception while wrapping the original as the InnerException will keep the full 

call stack available from a .NET perspective, but WER will only see the location at which 

the outer exception was thrown. 

The behavior I’ve just described for pre-.NET 4.0 is based on how 

those versions work on a system with all available service packs and 

updates installed at the time of writing this. Some web sites and books 

contradict this, claiming that even Example 8-10 would prevent WER 

from recording the original location of the underlying fault. This may 

have been true with the original release of .NET 2.0, does not appear to 

be true with current service packs applied. So be aware that these sorts 

of details can change from time to time. 

Although Example 8-10 preserves the original context, this approach has a limitation: 

you can only rethrow the exception from inside the block in which you caught it. As 

asynchronous programming becomes more prevalent, it will become more common for 

exceptions to occur on some random worker thread. We need a reliable way to capture 

the full context of an exception, and to be able to rethrow it with that full context some 

arbitrary amount of time later, possibly from a different thread. 

.NET 4.5 introduces a new class that solves these problems: 

ExceptionDispatchInfo. If you call its static Capture method from a catch 

block, passing in the current exception, it captures the full context, including the 

information required by WER. The Capture method returns an instance of 

ExceptionDispatchInfo. When you’re ready to rethrow the exception, you can 

call this object’s Throw method, and the CLR will rethrow the exception with the 

original context fully intact. Unlike the mechanism shown in Example 8-10, you don’t 

need to be inside a catch block when you rethrow. You don’t even need to be on the 

thread from which the exception was originally thrown. 

Failing Fast 

Some situations call for drastic action. If you detect that your application is in a 

hopelessly corrupt state, throwing an exception may not be sufficient, because there’s 

always the chance that something may handle it and then attempt to continue. This risks 

corrupting persistent state—perhaps the invalid in-memory state could lead to your 

program writing bad data into a database. It may be better to bail out immediately before 

you do any lasting damage. 

The Environment class provides a FailFast method. If you call this, the CLR will 

write a message to the Windows event log and will then terminate your application, 

providing details to the Windows Error Reporting service if that has been enabled on the 

computer. You can pass a string to be included in the event log entry, and you can also 

pass an exception, in which case the exception’s details will also be written to the log, 

including the WER bucket values for the point at which the exception was thrown. 
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Exception Types 

When your code detects a problem and throws an exception, you need to choose which 

type of exception to throw. You can define your own exception types, but the .NET 

Framework class library defines a large number of exception types, so in a lot of 

situations, you can just pick an existing type. There are hundreds of exception types, so a 

full list would be inappropriate here—if you want to see the complete set, the online 

documentation for the Exception class lists the derived types. However, there are 

certain ones that it’s important to know about. 

The class library defines an ArgumentException class, which is the base of several 

exceptions that indicate that a method has been called with bad arguments. Example 8-8 

used ArgumentNullException, and there’s also 

ArgumentOutOfRangeException. The base ArgumentException defines a 

ParamName property which contains the name of the parameter that was supplied with a 

bad argument. This is important for multi-argument methods because the caller will need 

to know which one was wrong. All these exception types have constructors that let you 

specify the parameter name, and you can see one of these in use in Example 8-8. The 

base ArgumentException is a concrete class, so if the argument is wrong in a way 

that is not covered by one of the derived types, you can just throw the base exception, 

providing a textual description the problem. 

Besides the general purpose types just described, some APIs derive more specialized 

argument exceptions. For example, the System.Globalization namespace defines 

an exception type called CultureNotFoundException that derives from 

ArgumentException. You can do something similar, and there are two reasons for 

doing this. If there is additional information you can supply about why the argument is 

invalid, you will need a custom exception type so you can attach that information to the 

exception. (CultureNotFoundException provides three properties describing 

aspects of the culture information for which it was searching.) Alternatively, it might be 

that a particular form of argument error could be handled specially by a caller. Often, an 

argument exception simply indicates a programming error, but in situations where it 

might indicate an environment or configuration problem (e.g., not having the right 

language packs installed), developers might want to handle that specific issue differently. 

Using the base ArgumentException would be unhelpful in that case, because it 

would be hard to distinguish between the particular failure they want to handle, and any 

other problem with the arguments. 

Some methods may want to perform work that could produce multiple errors. Perhaps 

you’re running some sort of batch job, and if some individual tasks in the batch fail, 

you’d like to abort those, but to carry on with the rest, reporting all the failures at the end. 

For these scenarios, it’s worth knowing about AggregateException. This extends 

the InnerException concept of the base Exception, adding an 

InnerExceptions property that returns a collection of exceptions. 

Another commonly used type is InvalidOperationException. You would throw 

this if someone tries to do something with your object that it cannot support in its current 

state. For example, suppose you have written a class that represents a request that can be 

sent to a server. You might design this in such a way that each instance can only be used 

once, so if the request has already been sent, trying to modify the request further would 

be a mistake, and this would be an appropriate exception to throw. Another important 
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example is if your type implements IDisposable, and someone tries to use an 

instance after it has been disposed. That’s a sufficiently common case that there’s a 

specialized type derived from InvalidOperationException called 

ObjectDisposedException. 

You should be aware of the distinction between NotImplementedException and 

the similar-sounding but semantically different NotSupportedException. The latter 

should be thrown when an interface demands it. For example, the IList<T> interface 

defines methods for modifying collections, but does not require collections to be 

modifiable—instead it says that read-only collections should throw 

NotSupportedException from members that would modify the collection. An 

implementation of IList<T> can throw this, and still be considered to be complete, 

whereas NotImplementedException means something is missing. You will most 

often see this in code generated by Visual Studio. The IDE can generate stub methods if 

you ask it to generate an interface implementation, or provide an event handler. It 

generates this code to save you from having to type in the full method declaration, but it’s 

still your job to implement the body of the method, so Visual Studio will often supply a 

method that throws this exception so that you do not accidentally leave an empty method 

in place. 

You would normally want to remove all code that throws 

NotImplementedException before shipping, replacing it with appropriate 

implementations. However, there is a situation in which you might want to leave it in 

place. Suppose you’ve written a library containing an abstract base class, and your 

customers write classes that derive from this. When you release new versions of the 

library, you can add new methods to that base class. Now imagine that you want to add a 

new library feature for which it would seem to make sense to add a new abstract method 

to your base class. That would be a breaking change—existing code that successfully 

derives from the old version of the class would no longer work. You can avoid this 

problem by providing a virtual method instead of an abstract method, but what if there’s 

no useful default implementation that you can provide? In that case you might write a 

base implementation that throws a NotImplementedException. Code built against 

the old version of the library will not attempt to use the new feature, so it would never 

even attempt to invoke the method. But if a customer tried to use the new library feature 

without overriding the relevant method in their class, they would then get this exception. 

In other words, this provides a way to enforce a requirement of the form: you must 

override this method if and only if you want to use the feature it represents. 

There are of course other, more specialized exceptions built in, and you should always try 

to find an exception that matches the problem you wish to report. However, you will 

sometimes need to report an error for which the class library does not supply a suitable 

exception. In this case, you will need to write your own exception class. 

Custom Exceptions 

The minimum requirement for a custom exception type is that it should ultimately derive 

from Exception. However, there are some design guidelines. The first thing to 

consider is the base class, and if you look at the built-in exception types, you’ll notice 

that many of them derive only indirectly from Exception, through either 

ApplicationException or SystemException. You should avoid both of these. 

They were originally introduced with the intention of distinguishing between exceptions 
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produced by applications and ones produced by the system. However, this did not prove 

to be a useful distinction. Some exceptions could be thrown by both in different 

scenarios, and in any case, it was not normally useful to write a handler that caught all 

application exceptions but not all system ones, or vice versa. The class library design 

guidelines now tell you to avoid these two base types. 

Custom exception classes normally derive directly from Exception, unless they 

represent a specialized form of some existing exception. For example, we already saw 

that ObjectDisposedException is a special case of 

InvalidOperationException, and the class library defines several more 

specialized derivatives of that same base class, such as 

ProtocolViolationException for networking code. If the problem you wish 

your code to report is clearly an example of some existing exception type, but it still 

seems useful to define a more specialized type, then you should derive from that existing 

type. 

Although the Exception base class has a parameterless constructor, you should not 

normally use it. Exceptions should provide a useful textual description of the error, so 

your custom exception’s constructors should all call one of the Exception constructors 

that take a string. You can either hard-code the message string
3 in your derived class, or 

define a constructor that accepts a message, passing it on to the base class; it’s common 

for exception types to provide both, although that might be a waste of effort if your code 

only uses one of the constructors. It depends on whether your exception might be thrown 

by other code, or just yours. 

It’s also common to provide a constructor that accepts another exception, which will 

become the InnerException property value. Again, if you’re writing an exception 

entirely for your own code’s use, there’s not much point in adding this constructor until 

you need it, but if your exception is part of a library, this is a common feature. Example 

8-11 shows a hypothetical example that offers various constructors, along with an 

enumeration type which is used by the property the exception adds. 

Example 8-11. A custom exception 

public class DeviceNotReadyException : InvalidOperationException 

{ 

    public DeviceNotReadyException(DeviceStatus status) 

        : this("Device must be in Ready state", status) 

    { 

    } 

 

    public DeviceNotReadyException(string message, DeviceStatus status) 

        : base(message) 

    { 

        Status = status; 

    } 

 

    public DeviceNotReadyException(string message, DeviceStatus status, 

                                                           

3 You could also consider looking up a localized string with the facilities in the 

System.Resources namespace instead of hard-coding it. The exceptions in the .NET 

Framework class library all do this. It’s not mandatory, because not all programs run in multiple 

regions, and even for those that do, exception messages will not necessarily be shown to end users. 
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                                   Exception innerException) 

        : base(message, innerException) 

    { 

        Status = status; 

    } 

 

    public DeviceStatus Status { get; private set; } 

} 

 

public enum DeviceStatus 

{ 

    Disconnected, 

    Initializing, 

    Failed, 

    Ready 

} 

The justification for a custom exception here is that this particular error has something 

more to tell us besides the fact that something was not in a suitable state. It provides 

information about the object’s state at the moment at which the operation failed. 

Although Example 8-11 is representative of typical custom exception types, it is 

technically missing something. If you look at the base Exception type, you’ll see that 

it implements ISerializable, and is marked with the [Serializable] attribute. 

This is a special attribute recognized by the runtime: it gives the CLR permission to 

convert the object into a byte stream, which can later be converted back into an object, 

perhaps in a different process, and maybe even on a different machine. The runtime can 

automate these conversions entirely, but the ISerializable interface allows objects 

to customize the process. 

The .NET Framework class library design guidelines recommend that exceptions should 

be serializable. This enables them to cross between appdomains. An appdomain is an 

isolated execution context. Programs that run in separate processes are always in separate 

appdomains, but it’s possible to divide a single process into multiple appdomains. A fatal 

crash that terminates one appdomain need not bring down the entire process. 

Appdomains also provide a security boundary that prevents code in one appdomain from 

obtaining and using a direct reference to an object in another appdomain even if it’s in the 

same process. Certain application hosting systems, such as the ASP.NET web framework 

can use appdomains to host multiple applications in a single process while keeping them 

isolated. By making an exception serializable, you make it possible for the exception to 

cross appdomain boundaries—the object cannot be used directly across the boundary, but 

serialization enables a copy of the exception to be built in the target appdomain. This 

means an exception thrown by a hosted application can be caught and logged by the host 

even if the host had pushed the application into its own separate appdomain. 

If you don’t need to support this scenario, you don’t need to make your exceptions 

serializable, but for completeness, I’ll just describe the changes you would need to make. 

First, serialization support is not inherited—just because your base class is serializable, 

that doesn’t automatically mean your class is. So you would need to add the 

[Serializable] attribute in front of the class declaration. Then, because 

Exception opts into custom serialization, we have to follow suit, which means 

overriding the one and only member of ISerializable, but also providing a special 

constructor that the runtime will use when deserializing your type. Example 8-12 shows 

the members you would need to add to make the custom exception in Example 8-11 
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support serialization. The GetObjectData method simply stores the current value of 

the exception’s Status property in a name/value container that the CLR supplies during 

serialization. It retrieves this value in the constructor that gets called during 

deserialization. 

Example 8-12. Adding serialization support 

public override void GetObjectData(SerializationInfo info, 

                                   StreamingContext context) 

{ 

    base.GetObjectData(info, context); 

    info.AddValue("Status", Status); 

} 

 

public DeviceNotReadyException(SerializationInfo info, 

                               StreamingContext context) 

    : base(info, context) 

{ 

    Status = (DeviceStatus) info.GetValue("Status", typeof(DeviceStatus)); 

} 

Another feature to consider with a custom exception is whether to set the base 

Exception class’s HResult property. This is a protected property, so it’s not 

something a .NET exception handler would ever use, but it becomes significant if your 

exception reaches an interop boundary. (.NET interop services are described in Chapter 

23.) If your .NET code is called through an interop mechanism, a .NET exception cannot 

propagate out into unmanaged code. Instead, the HResult property will determine the 

error code that unmanaged callers see. The property should therefore return the COM 

error code that is the nearest equivalent to the error that the exception represents. Not all 

.NET exceptions will have corresponding error codes. Some of the built in ones do: 

FileNotFoundException sets HResult to 0x80070002 for example. If you’re 

familiar with COM errors (which have the type HRESULT in the Win32 SDK) you’ll 

know that the 0x8007 prefix indicates that this is actually a Win32 error code wrapped as 

an HRESULT, so this is the COM equivalent of the Win32 ERROR_FILE_NOT_FOUND 

error code. 

The base class will provide a value, so you don’t have to set this. If you derive directly 

from Exception, HResult will be 0x80131500. (0x8013 is the COM error prefix for 

.NET errors.) Example 8-11 derives from InvalidOperationException, which 

sets its HResult to 0x80131509. As it happens, there is a better Win32 equivalent for 

the particular problem our exception represents: ERROR_NOT_READY, which has the 

value 0x15, so the HRESULT equivalent would be 0x80070015. If there’s any chance that 

the exception might make it to an interop boundary at which it would need to be 

interpreted correctly, then we should set the HResult property to that value in the 

exception’s constructors. 

Unhandled Exceptions 

Earlier, you saw the default behavior that a console application exhibits when your code 

throws an exception that it does not handle. It displays the exception’s type, message, and 

stack trace and then terminates the process. This happens whether the exception went 

unhandled on the main thread or a thread you created explicitly, or even a thread pool 

thread that the CLR created for you. (This was not always true. Before .NET 2.0, threads 
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created for you by the CLR would implicitly swallow exceptions without either reporting 

them or crashing. You may occasionally encounter applications that still work this way: if 

the application configuration file contains a legacyUnhandledExceptionPolicy 

element with an enabled="1" attribute, the old .NET v1 behavior returns, meaning 

that unhandled exceptions can vanish silently.) 

The CLR provides a way to discover when unhandled exceptions reach the top of the 

stack. The AppDomain class provides an UnhandledException event which the 

CLR raises when this happens on any thread. I’ll be describing events in Chapter 9, but 

jumping ahead a little, Example 8-13 shows how to handle this event, and also throws an 

unhandled exception to try the handler out. 

Example 8-13. Unhandled exception notifications 

static void Main(string[] args) 

{ 

    AppDomain.CurrentDomain.UnhandledException += OnUnhandledException; 

 

    // Crash deliberately to illustrate UnhandledException event 

    throw new InvalidOperationException(); 

} 

 

private static void OnUnhandledException(object sender, 

    UnhandledExceptionEventArgs e) 

{ 

    Console.WriteLine("An exception went unhandled: {0}", e.ExceptionObject); 

} 

When the handler is notified, it’s too late to stop the exception—the CLR will terminate 

the process shortly after calling your handler. The main reason this event exists is to 

provide a place to put logging code so that you can record some information about the 

failure for diagnostic purposes. In principle, you could also attempt to store any unsaved 

data to facilitate recovery if the program restarts, but you should be careful: if your 

unhandled exception handler gets called, then by definition your program is in a suspect 

state, so whatever data you save may be invalid. 

Some application frameworks provide their own ways to deal with unhandled exceptions. 

For example, desktop applications for Windows need to run a message loop to respond to 

user input and system messages. This is typically supplied by some UI framework (e.g., 

Windows Forms or WPF). The framework’s message loop inspects each message and 

may decide to call one or more methods in your code, and it will usually wrap each call 

in a try block, so that it can catch any exceptions your code may throw. One reason for 

this is that the default behavior of printing out details to the console is not very useful for 

applications that don’t show a console window. The frameworks may show error 

information in a window instead. And web frameworks such as ASP.NET, need a 

different mechanism: at a minimum they should generate a response that indicates a 

server-side error in the way recommended by the HTTP specification. 

This means that the UnhandledException event that Example 8-13 uses may not be 

raised when an unhandled exception escapes from your code, because it may be caught 

by a framework. If you are using an application framework, you should check to see if it 

provides its own mechanism for dealing with unhandled exceptions. For example, 

ASP.NET applications can have a global.asax file with various global event handlers, 

and if this contains an Application_Error method, you can deal with unhandled 

exceptions in there. WPF has its own Application class, and its 
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DispatcherUnhandledException event is the one to use. Likewise, Windows 

Forms provides an Application class with a ThreadException member. 

Even when using these frameworks, their unhandled exception mechanisms only deal 

with exceptions that occur on threads the frameworks control. If you create a new thread 

and throw an unhandled exception on that, it would show up in the AppDomain class’s 

UnhandledException event, because frameworks don’t control the whole CLR. 

Debugging and Exceptions 

By default, Visual Studio’s debugger will step in if an unhandled exception occurs while 

it is attached, but if the CLR is able to find a handler for an exception, the debugger will 

allow that to run without interruption. This can be a problem in situations where 

frameworks perform their own unhandled exception management—from the CLR’s 

perspective, an exception may appear to have been handled because some UI 

framework’s message loop had a try/catch in place when it called your handler. To some 

extent, frameworks can mitigate this by collaborating with the debugger—if you write a 

click event handler for a button in a WPF application, and you throw an exception from 

that handler, the debugger will in fact step in because WPF is in cahoots with Visual 

Studio. However, in more complicated scenarios, it’s possible that by the time the 

debugger decides to step in, you are some way away from the original exception, because 

it has been wrapped in some other exception. 

For example, if you write a particular kind of reusable WPF user interface component 

called a user control, and if it throws an exception in its constructor, the debugger will 

not necessarily break in at the point at which that exception is thrown. If you use your 

user control from within XAML, the XAML parser will catch the exception and will, as 

mentioned earlier, wrap it as the InnerException of a XamlParseException. 

The debugger will typically break in only when that wrapper exception is thrown, and not 

when your code threw the original exception. You’ll be able to find out where the 

original error occurred by inspecting the InnerException, but you won’t be able to 

look at the local variables or any other state that was in place at the point at which the 

problem occurred, because the thread has moved on. 

For this reason, I frequently reconfigure Visual Studio so that it breaks in as soon as 

exceptions are thrown, even if a handler is available. This means that the debugger can 

show you the full context in which the exception occurred. You can set this behavior with 

the Exceptions dialog, shown in Figure 8-2. This is available from the Debug menu.  
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Figure 8-2. Visual Studio’s Exceptions dialog 

If you check the box in the Thrown column, the debugger will break in any time any 

exception is thrown. (This dialog handles all different kinds of code. For .NET 

applications, you’d check the box on the Common Language Runtime Exceptions line.) If 

the Thrown box is not checked, the User-unhandled column lets you choose whether to 

break in when the exception is handled by code you didn’t write (e.g., in a catch block 

supplied a class library component), or only to break in when the exception is entirely 

unhandled. You won’t always see that second column by the way—it depends on Visual 

Studio being able to make a distinction between your code and other code, which it can 

only do if the “Just My Code” feature has been enabled in the debugging page of the 

Options dialog. That option is incompatible with some features, including the one that 

automatically downloads the source code of the .NET Framework class libraries so that 

you can step through that as well (also configured with the Options dialog). But the 

Thrown column will always be present. 

One problem with debugging exceptions as soon as they are thrown is that some code 

throws a lot of benign exceptions. Some frameworks seem to do this more than others—

ASP.NET seems to throw and then immediately catch a few inconsequential exceptions 

as a matter of course during startup, whereas WPF rarely throws exceptions unless 

something is wrong. So depending on the sort of application you’re writing, you may 

need to be more selective. If you expand the Common Language Runtime Exceptions 

node, it shows a treeview of exception types broken down by namespace, so you can 

configure different behavior for different exceptions. You can add custom exception 

types to this dialog with its Add button to customize behavior for your own exception 

types. Unfortunately, there’s no way to configure location-specific behavior—so if you 

know a particular application or framework will always throw and catch an exception in a 

particular place and you’d always like to ignore that, but you want to see the same 

exception type any other place it gets thrown, you can’t. 

Asynchronous Exceptions 

Back at the start of this chapter, I mentioned that the CLR can throw certain exceptions at 

any point during your code’s execution, and that these exceptions may be caused by 
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factors outside of your control. These are called asynchronous exceptions, although they 

have nothing to do with asynchronous programming or the async keyword described in 

Chapter 18. In this context, ‘asynchronous’ merely means that the events that cause these 

exceptions can happen independently of what your code may be doing at the time. 

The exceptions that can occur asynchronously are ThreadAbortException, 

OutOfMemoryException, and StackOverflowException. The first of these 

can occur if some other thread decides to abort yours. The CLR will do that if necessary 

when shutting down an appdomain, but you can also do it programmatically by calling 

the relevant Thread object’s Abort method. The other two are more surprising—you 

might not expect these to be able to emerge at any point in the code. Surely you’d only 

run out of memory while attempting to allocate memory? And surely you’d only see a 

stack overflow if attempting some operation that needs more stack such as a function 

call? Well, the CLR reserves the right to grow the stack dynamically in the middle of a 

method to make space for temporary storage, and it also reserves the right to perform 

other memory allocations at any time for any reason it sees fit. That’s why these other 

two exceptions are considered asynchronous—your code could indirectly cause heap or 

stack use at any time, even if you did not explicitly ask for it. 

Asynchronous exceptions present a challenge when it comes to cleaning up resources 

because they can occur inside finalizers and finally blocks (including implicit ones such 

as those generated by a using statement). If your code calls into unmanaged code and 

obtains handles, how can it guarantee to free those handles in the face of asynchronous 

exceptions? Even if you’ve carefully written using statements, finally blocks, and 

finalizers to ensure that handles are freed in a timely fashion where possible, and 

eventually in any event, what can you do if an asynchronous exception occurs inside your 

finally block or finalizer just as you were about to close a handle? 

You can solve this problem with a constrained execution region (CER). A CER is a block 

of code which the CLR guarantees will never encounter an asynchronous exception. The 

runtime can only offer this guarantee if your code avoids certain operations. You must 

not allocate memory explicitly with new or implicitly with a boxing operation. You must 

not attempt to acquire a lock for multithreading synchronization purposes. You cannot 

access a multidimensional array. Indirect method invocation is, in most cases, not 

allowed: a CER cannot use delegates or raw function pointers, you cannot invoke 

methods through the reflection API, and use of virtual methods is limited. (It’s possible to 

invoke virtual methods, but you need to tell the CLR which particular implementations 

you plan to invoke before entering the CER.) In fact, use of other methods in general is 

limited—any method called by your CER is subject to the same limitations. 

The purpose of all these constraints is to make it possible for the CLR to determine in 

advance whether it has enough memory to run the whole CER. It ensures that all of the 

code the CER will execute has already been JIT compiled. Any temporary storage on the 

heap or stack that the method could require will be allocated in advance, ruling out the 

possibility of an OutOfMemoryException or a StackOverflowException 

while the region runs. Thread aborts are blocked for the duration of the CER. (Of course, 

it won’t necessarily prevent any of these exceptions, it just means that if they are going to 

occur, they will happen either before the CER begins to run, or after it has finished.) 

There are three ways to write a CER. The first is to write a type that derives from 

CriticalFinalizerObject (directly, or indirectly, e.g. via SafeHandle) as 

discussed in Chapter 7. The finalizer of such a type is a CER, and the CLR won’t allow 

the object to be created unless it is able to commit in advance to running the finalizer 
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eventually. The other two ways both involve the RuntimeHelpers class. This has a 

static PrepareConstrainedRegions method, and if you call this immediately 

before a try keyword, the CLR will treat all of that block’s corresponding catch and 

finally blocks as CERs, and will commit to being able to execute any of them before 

starting to run the try block. (The try block itself will not be a CER.) The 

RuntimeHelpers class also provides an 

ExecuteCodeWithGuaranteedCleanup method which takes two delegates. The 

first delegate is executed normally, but the second is treated as a CER, and will be 

prepared before the first delegate is invoked, to guarantee that it can be run in any event. 

Constrained execution regions are part of a broader set of CLR features sometimes 

referred to collectively as the reliability features. These are designed to ensure 

predictable behavior in the face of extreme scenarios such as running out of memory, or 

sudden appdomain termination. Writing code that is reliable in these situations is 

difficult, and the benefits may sometimes be doubtful—if your system has run out of 

memory, you may well have bigger problems at this point. These reliability features were 

added to make it possible for SQL Server to host the CLR, and to run unmanaged code 

without compromising the high availability standards people demand from their 

databases. Where possible, it’s best to rely on code that uses these features for you, such 

as the various types that derive from SafeHandle. A full discussion of the use of these 

reliability features, and the specialized hosting environments for which they are designed 

such as SQL Server, is beyond the scope of this book. 

Summary 

In .NET, errors are usually reported with exceptions, apart from in certain scenarios 

where failure is expected to be common and the cost of exceptions is likely to be high 

compared to the cost of the work at hand. Exceptions allow error handling code to be 

separated out from code that does work. They also make it harder to ignore errors—

unexpected errors will propagate up the stack and eventually cause the program to 

terminate and produce an error report. Catch blocks allow us to handle those exceptions 

that we can anticipate. (You can also use them to catch all exceptions indiscriminately, 

but that’s usually a bad idea—if you don’t know why a particular exception occurred, 

you cannot know for certain how to recover from it safely.) Finally blocks provide a way 

to perform cleanup safely regardless of whether code executes successfully or encounters 

exceptions. The .NET Framework class library defines numerous useful exception types, 

but if necessary we can write our own. 

In the chapters so far, we’ve looked at the basic elements of code, classes and other 

custom types, collections, and error handling. There’s one last feature of the C# type 

system to look at, and that’s a special kind of object called a delegate. 
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9 

Delegates, Lambdas, and Events 

The most common way to use an API is to invoke the methods and properties its classes 

provide, but sometimes, things need to work in reverse. In Chapter 5, I showed the search 

features offered by arrays and lists. To use these, I wrote a method that returned true 

when its argument met my criteria, and the relevant APIs called my method for each item 

they inspected. Not all callbacks are immediate. Asynchronous APIs can call a method in 

our code when long-running work completes. In a client-side application, I want my code 

to run when the user interacts with certain visual elements in particular ways, such as 

clicking a button. 

Interfaces and virtual methods can enable callbacks. In Chapter 4, I showed the 

IComparer<T> interface, which defines a single CompareTo method. This is called 

by methods like Array.Sort when we want a customized sort ordering. You could 

imagine a UI framework that defined an IClickHandler interface with a Click 

method, and perhaps also DoubleClick. The framework could require us to implement 

this interface if we want to be notified of button clicks. 

In fact, none of .NET’s UI frameworks use the interface-based approach, because it gets 

cumbersome when you need multiple kinds of callback. Single and double clicks are the 

tip of the iceberg for user interactions—in WPF application, each user interface element 

can provide over 100 kinds of notifications. Most of the time, you only need to handle 

one or two events from any particular element, so an interface with 100 methods to 

implement would be annoying. 

Splitting notifications across multiple interfaces could mitigate this inconvenience. Also, 

a base class with virtual methods might help, because it could provide default, empty 

implementations for all callbacks, meaning we’d only need to override the ones we were 

interested in. But even with these improvements, there’s a serious drawback with this 

object-oriented approach. Imagine a user interface with four buttons. In a hypothetical UI 

framework that used the approach I’ve just described, if you wanted different Click 

handler methods for each button, you’d need four distinct implementations of the 

IClickHandler interface. A single class can only implement any particular interface 

once, so you’d need to write four classes. That seems very cumbersome when all we 

really want to do is tell a button to call a particular method when clicked. 
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C# provides a much simpler solution in the form of a delegate, which is a reference to a 

method. If you want a library to call your code back for any reason, you will normally 

just pass a delegate referring to the method you’d like it to call. I showed an example of 

that in Chapter 5, which I’ve reproduced in Example 9-1. This finds the index of the first 

non-zero element in an int[] array. 

Example 9-1. Searching an array using a delegate 

public static int GetIndexOfFirstNonEmptyBin(int[] bins) 

{ 

    return Array.FindIndex(bins, IsGreaterThanZero); 

} 

 

private static bool IsGreaterThanZero(int value) 

{ 

    return value > 0; 

} 

At first glance, this seems very simple: the second parameter to Array.FindIndex 

requires a method that it can call to ask whether a particular element is a match, so I 

passed my IsGreaterThanZero method as an argument. But what does it really 

mean to pass a method, and how does this fit in with .NET’s type system, the CTS? 

Delegate Types 

Example 9-2 shows the declaration of the FindIndex method used in Example 9-1. 

The first parameter is the array to be searched, but it’s the second one we’re interested 

in—that’s where I passed a method. 

Example 9-2. Method with a delegate parameter 

public static int FindIndex<T>( 

      T[] array, 

      Predicate<T> match 

  ) 

The method argument’s type is Predicate<T>, where T is also the array element type. 

(Example 9-1 uses an int[], so the second argument will be a Predicate<int>.) 

Example 9-3 shows how this type is defined. This is the whole of the definition, not 

simply an excerpt; if you wanted to write a type that was equivalent to Predicate<T>, 

that’s all you’d need to write. 

Example 9-3. The Predicate<T> delegate type 

public delegate bool Predicate<in T>(T obj); 

Breaking Example 9-3 down, we begin, like most type definitions, with the accessibility, 

and we can use all the same keywords we could for other types such as public, or 

internal. (Like any type, delegate types can be nested inside some other type, so they 

can also be private or protected.) Next is the delegate keyword, which just 

tells the C# compiler that we’re defining a delegate type. The rest of the definition looks, 

not coincidentally, just like a method declaration. We have a return type of bool. You 

put the type name where you’d normally see the method name. The angle brackets 

indicate that this is a generic type with a single contravariant type argument T, and the 

method signature has a single parameter of that type. 
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Instances of delegate types are usually just called delegates, and they refer to methods. A 

method is compatible with (i.e., can be referred to by an instance of) a particular delegate 

type if its signature matches. The IsGreaterThanZero method in Example 9-1 takes 

an int and returns a bool, so it is compatible with Predicate<int>. The match 

does not have to be precise. If implicit reference conversions are available for parameter 

types, you can use a more general method. For example, a method with a return type of 

bool, and a single parameter of type object, would obviously be compatible with 

Predicate<object>, but because this method can accept string arguments, it 

would also be compatible with Predicate<string>. (It would not be compatible 

with Predicate<int> though because there’s no implicit reference conversion from 

int to object. There’s an implicit boxing conversion, but that’s not the same thing.) 

Creating a Delegate 

You can use the new keyword to create a delegate. Where you’d normally pass 

constructor arguments, you can supply the name of a compatible method. Example 9-4 

constructs a Predicate<int>, so it needs a method with a bool return type that 

takes an int. The IsGreaterThanZero method in Example 9-1 fits the bill. (You’d 

only be able to write this code where IsGreaterThanZero is in scope, i.e., inside the 

same class.) 

Example 9-4. Constructing a delegate 

var p = new Predicate<int>(IsGreaterThanZero); 

In practice, we rarely use new for delegates. It’s only necessary in cases where the 

compiler cannot infer the delegate type. Expressions that refer to methods are unusual in 

that they have no innate type—the expression IsGreaterThanZero is compatible 

with Predicate<int>, but there are other compatible delegate types. You could 

define your own non-generic delegate type that takes an int and returns a bool. Later 

in this chapter, I’ll show the Func family of delegate types, and you could store a 

reference to IsGreaterThanZero in a Func<int, bool> delegate. So 

IsGreaterThanZero does not have a type of its own, which is why the compiler 

needs to know which particular delegate type we want. Example 9-4 assigns the delegate 

into a variable declared with var, which tells the compiler nothing about what type to 

use, which is why I’ve had to tell it explicitly with the constructor syntax. 

In cases where the compiler knows what type is required, it can implicitly convert the 

method name to the target delegate type. In Example 9-5, the variable has an explicit 

type, so the compiler knows a Predicate<int> is required. This is equivalent to 

Example 9-4. Example 9-1 relies on the same mechanism—the compiler knows that the 

second argument to FindIndex is Predicate<T>, and because we supply a first 

argument of type int[], it deduces that T is int, so it knows the second argument’s 

full type is Predicate<int>. Having worked that out, it uses the same built-in 

implicit conversion rules to construct the delegate as Example 9-5. 

Example 9-5. Implicit delegate construction 

Predicate<int> p = IsGreaterThanZero; 

When code refers to a method by name like this, the name is technically called a method 

group, because multiple overloads may exist for a single name. The compiler narrows 

this down by looking for the best possible match, in a similar way to how it chooses an 
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overload when you invoke a method. As with method invocation, it’s possible that there 

will be either no matches or multiple equally good matches, in which case the compiler 

will produce an error. 

Method groups can take several forms. In the examples shown so far, I have used an 

unqualified method name, which only works when the method in question is in scope. If 

you want to refer to a method defined in some other class, you would need to qualify it 

with the class name, as Example 9-6 shows. 

Example 9-6. Delegates to methods in another class 

internal class Program 

{ 

    static void Main(string[] args) 

    { 

        Predicate<int> p1 = Comparisons.IsGreaterThanZero; 

        Predicate<int> p2 = Comparisons.IsLessThanZero; 

    } 

} 

 

internal class Comparisons 

{ 

    public static bool IsGreaterThanZero(int value) 

    { 

        return value > 0; 

    } 

 

    public static bool IsLessThanZero(int value) 

    { 

        return value < 0; 

    } 

} 

Delegates don’t have to refer to static methods. They can refer to an instance method. 

There are a couple of ways you can make that happen. One is simply to refer to an 

instance method by name from a context in which that method is in scope. The 

GetIsGreaterThanPredicate method in Example 9-7 returns a delegate that 

refers to IsGreaterThan. Both are instance methods, so IsGreaterThan can only 

be used with an object reference, but GetIsGreaterThanPredicate has an 

implicit this reference, and the compiler automatically provides that to the delegate that 

it implicitly creates. 

Example 9-7. Implicit instance delegate 

public class ThresholdComparer 

{ 

    public int Threshold { get; set; } 

 

    public bool IsGreaterThan(int value) 

    { 

        return value > Threshold; 

    } 

 

    public Predicate<int> GetIsGreaterThanPredicate() 

    { 

        return IsGreaterThan; 

    } 

} 
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Alternatively, you can be explicit about which instance you want. Example 9-8 creates 

three instances of the ThresholdComparer class from Example 9-7, and then creates 

three delegates referring to the IsGreaterThan method, one for each instance. 

Example 9-8. Explicit instance delegate 

var zeroThreshold = new ThresholdComparer { Threshold = 0 }; 

var tenThreshold = new ThresholdComparer { Threshold = 10 }; 

var hundredThreshold = new ThresholdComparer { Threshold = 100 }; 

 

Predicate<int> greaterThanZero = zeroThreshold.IsGreaterThan; 

Predicate<int> greaterThanTen = tenThreshold.IsGreaterThan; 

Predicate<int> greaterThanOneHundred = hundredThreshold.IsGreaterThan; 

You don’t have to limit yourself to simple expressions of the form 

variableName.MethodName. You can take any expression that evaluates to an 

object reference, and then just append .MethodName, and if the object has one or more 

methods called MethodName, that will be a valid method group. 

C# will not let you create a delegate that refers to an instance method without specifying 

either implicitly or explicitly which instance you mean, and it will always initialize the 

delegate with that instance. 

When you pass a delegate to some other code, that code does not need 

to know whether the delegate’s target is a static or an instance method. 

And for instance methods it does not need to supply the instance. 

Delegates that refer to instance methods always know which instance 

they refer to, as well as which method. 

There’s another way to create a delegate that can be useful if you do not necessarily know 

which method or object you will use until runtime. The Delegate class has a static 

CreateDelegate method that lets you pass the delegate type, target object, and target 

method as arguments. There are a few ways of specifying the targets, so it has various 

overloads. They all take the delegate type’s Type object as the first argument. (The 

Type class is part of the reflection API. I will explain it in detail, along with the 

typeof operator, in Chapter 13. As far as CreateDelegate is concerned, it’s just a 

way to refer to a particular type.) Example 9-9 uses an overload which also takes the 

target instance and the name of the method. 

Example 9-9. CreateDelegate 

var greaterThanZero = (Predicate<int>) Delegate.CreateDelegate( 

    typeof(Predicate<int>), zeroThreshold, "IsGreaterThan"); 

The other overloads include support for omitting the target object, which you would use 

for a static method, and for requesting case insensitivity for the method name. There are 

also overloads that accept the reflection API’s MethodInfo object to identify the 

method instead of a string. 

So a delegate combines two pieces of information: it identifies a specific function, and if 

that’s an instance function, the delegate also contains an object reference. But some 

delegates do more. 
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Multicast Delegates 

If you look at any delegate type with a reverse engineering tool such as ILDASM, you’ll 

see that whether it’s a type supplied by the .NET Framework class library, or one you’ve 

defined yourself, it derives from a base type called MulticastDelegate. As the 

name suggests, this means delegates can refer to more than one method. This is mostly 

only of interest in notification scenarios where you may need to invoke multiple methods 

when some event occurs. However, all delegates support this whether you need it or not. 

Even delegates with non-void return types derive from MulticastDelegate. That 

doesn’t usually make much sense. For example, code that requires a Predicate<T> 

will normally inspect the return value. Array.FindIndex uses it to find out whether 

an element matches our search criteria. If a single delegate refers to multiple methods, 

what’s FindIndex supposed to do with multiple return values? As it happens, it will 

execute all the methods, but will ignore the return values of all except the final method 

that runs. (As you’ll see in the next section, that’s the default behavior you get if you 

don’t provide any special handling for multicast delegates.) 

The multicast feature is available through the Delegate class’s static Combine 

method. This takes any two delegates and returns a single delegate. When the resulting 

delegate is invoked, it is as though you invoked the two original delegates one after the 

other. This works even when the arguments already refer to multiple methods—you can 

chain together ever larger multicast delegates. If the same method is referred to in both 

arguments, the resulting combined delegate will invoke it twice. 

Delegate combination always produces a new delegate. The Combine 

method does not modify the delegates you pass it. 

In fact, we rarely call Delegate.Combine explicitly, because C# has built-in support 

for combining delegates. You can use the + or += operators. Example 9-10 shows both, 

combining the three delegates from Example 9-8 into a single multicast delegate. The two 

resulting delegates are equivalent—this just shows two ways of writing the same thing. 

Both cases compile into a couple of calls to Delegate.Combine. 

Example 9-10. Combining delegates 

Predicate<int> megaPredicate1 = 

    greaterThanZero + greaterThanTen + greaterThanOneHundred; 

 

Predicate<int> megaPredicate2 = greaterThanZero; 

megaPredicate2 += greaterThanTen; 

megaPredicate2 += greaterThanOneHundred; 

You can also use the - or -= operators, which produce a new delegate that is a copy of 

the first operand, but with its last reference to the method referred to by the second 

operand removed. As you might guess, this turns into a call to Delegate.Remove. 

Delegate removal behaves in a potentially surprising way if the 

delegate you remove refers to multiple methods. Subtraction of a 

multicast delegate only succeeds if the delegate from which you are 

subtracting contains all of the methods in the delegate being subtracted 

sequentially and in the same order. Given the delegates in Example 9-

10, subtracting (greaterThanTen + 
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greaterThanOneHundred) from megaPredicate1 would 

work, but subtracting (greaterThanZero + 

greaterThanOneHundred) would not, because although 

megaPredicate1 contains references to the same two methods, and 

in the same order, the sequence is not exactly the same— 

megaPredicate1 has an additional delegate in the middle. 

Invoking a Delegate 

So far I’ve shown how to create a delegate, but what if you’re writing your own API that 

needs to call back into a method supplied by your caller? In other words, how do you 

consume a delegate? First, you would need to pick a delegate type. You could use one 

supplied by the class library, or if necessary, you can define your own. You can use this 

delegate type for a method parameter or a property. Example 9-11 shows what to do 

when you want to call the method (or methods) the delegate refers to. 

Example 9-11. Invoking a delegate 

public static void CallMeRightBack(Predicate<int> userCallback) 

{ 

    bool result = userCallback(42); 

    Console.WriteLine(result); 

} 

As this not terribly realistic example shows, you can use a variable of delegate type as 

though it were a function. Any expression that produces a delegate can be followed by an 

argument list in parentheses. The compiler will generate code that invokes the delegate. If 

the delegate has a non-void return type, the invocation expression’s value will be 

whatever the underlying method returns (or in the case of a delegate referring to multiple 

methods, whatever the final method returns). 

Delegates are special types in .NET, and they work quite differently than classes or 

structs. The compiler generates a superficially normal-looking class definition with 

various members that we’ll look at shortly, but the members are all empty—C# produces 

no IL for any of them. The CLR provides the implementation at runtime. It does the work 

required to invoke the target method, including invoking all of the methods in multicast 

scenarios. 

Although delegates are special types with runtime-generated code, 

there is ultimately nothing magical about invoking a delegate. The call 

happens on the same thread, and exceptions propagate through methods 

that were invoked via a delegate in exactly the same way as they would 

if the method were invoked directly. Invoking a delegate with a single 

target method works as though your code had called the target method 

in the conventional way. Invoking a multicast delegate is just like 

calling each of its target methods in turn. 

If you want to get all the return values from a multicast delegate, you can take control of 

the invocation process. Example 9-12 retrieves an invocation list for a delegate, which is 

an array containing a single-method delegate for each of the methods to which the 

original multicast delegate refers. If the original delegate contained only a single method, 

this list will contain just that one delegate, but if the multicast feature is being exploited, 
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this provides a way to invoke each in turn. This enables the example to look at what each 

individual predicate says. 

Example 9-12 relies on a trick with foreach. The 

GetInvocationList method returns an array of type 

Delegate[]. The foreach loop nonetheless specifies an iteration 

variable type of Predicate<int>. This causes the compiler to 

generate a loop that casts each item to that type as it retrieves it from 

the collection. 

Example 9-12. Invoking each delegate individually 

public static void DemocracyInAction(Predicate<int> userCallbacks) 

{ 

    int ayes = 0; 

    int noes = 0; 

    foreach (Predicate<int> p in userCallbacks.GetInvocationList()) 

    { 

        bool result = p(42); 

        if (result) 

        { 

            ayes += 1; 

        } 

        else 

        { 

            noes += 1; 

        } 

    } 

    if (ayes > noes) 

    { 

        Console.WriteLine("The ayes have it"); 

    } 

    else if (noes > ayes) 

    { 

        Console.WriteLine("The noes have it"); 

    } 

    else 

    { 

        Console.WriteLine("It's a tie"); 

    } 

} 

There’s one more way to invoke a delegate that is occasionally useful. The base 

Delegate class provides a DynamicInvoke method. You can call this on a delegate 

of any type without needing to know at compile time exactly what arguments are 

required. It takes a params array of type object[], so you can pass any number of 

arguments. It will verify the number and type of arguments at runtime. This can enable 

certain late binding scenarios, although since C# 4 introduced intrinsic dynamic features 

(discussed in Chapter 14), it’s more likely that you’d just use those in any new code. 

Common Delegate Types 

The .NET Framework class library provides several useful delegate types, and you will 

often be able to use these instead of needing to define your own. For example, it defines a 

set of generic delegates named Action with varying numbers of type parameters—

 8 
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Action<T>, Action<T1, T2>, Action<T1, T2, T3> etc. These all follow a 

common pattern: for each type parameter, there’s a single method parameters of that 

type. Example 9-13 shows the first four, including the zero-argument form. 

Example 9-13. The first few Action delegates 

public delegate void Action(); 

public delegate void Action<in T1>(T1 arg1); 

public delegate void Action<in T1, in T2 >(T1 arg1, T2 arg2); 

public delegate void Action<in T1, in T2, in T3>(T1 arg1, T2 arg2, T3 arg3); 

Although this is clearly an open-ended concept—you could imagine delegates of this 

form with any number of arguments—the CTS doesn’t provide a way to define this sort 

of type as a pattern, so the class library has to define each form as a separate type. 

Consequently, there’s no 200-argument form of Action. The upper limit depends on the 

version of .NET. For the ordinary editions of .NET found on servers and desktops, 

version 3.5 only went as high as four arguments, but .NET 4 and 4.5 both go up to 16 

arguments, as does the version of .NET available for Windows 8 Metro-style apps.  

In Silverlight, which has its own release schedule and version numbering scheme, version 

3 stopped at four arguments, but versions 4 and later also go up to 16 arguments.1 

The one obvious limitation with Action is that these types have a void return type, so 

they cannot refer to methods that return values. But there’s a similar family of delegate 

types, Func, that allow any return type. Example 9-14 shows the first few delegates in 

this family, and as you can see, they’re pretty similar to Action. They just get an 

additional final type parameter, TResult, which specifies the return type. 

Example 9-14. The first few Func delegates 

public delegate TResult Func<out TResult>(); 

public delegate TResult Func<in T1, out TResult>(T1 arg1); 

public delegate TResult Func<in T1, in T2, out TResult>(T1 arg1, T2 arg2); 

public delegate TResult Func<in T1, in T2, in T3, out TResult>( 

    T1 arg1, T2 arg2, T3 arg3); 

Again, version 3.5 of the full CLR and version 3 of Silverlight support up to four 

arguments. Versions 4 and later of both go up to 16 arguments, as does the Windows 8 

Metro version of .NET. 

These two families of delegates would appear to have most requirements covered. Unless 

you’re writing monster methods with more than 16 arguments, when would you ever 

need anything else? Why does the class library define a separate Predicate<T> when 

it could just use Func<T, bool> instead? In some cases the answer is history: many 

delegate types have been around since before these general-purposes types were added. 

But that’s not the only reason—new delegate types continue to be added even now. The 

reason is that sometimes, it’s useful to define a specialized delegate type to indicate 

particular semantics. 

If you have a Func<T, bool>, all you know is that you’ve got a method that takes a T 

and returns a bool. But with a Predicate<T>, there’s an implied meaning: it makes a 

                                                           

1 The latest version of Windows phone at the time of writing this is v7.1, and it is based on 

Silverlight 3, so it also only goes up to four arguments. 
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decision about that T instance, and returns true or false accordingly; not all methods that 

take a single argument and return a bool necessarily fit that pattern. By providing a 

Predicate<T>, you’re not just saying that you have a method with a particular 

signature, you’re saying you have a method that serves a particular purpose. (As it 

happens, Predicate<T> was introduced before Func<T,bool>, so history is in fact 

the main reason why some APIs us it. However semantics still matter—there are some 

newer APIs for which Func<T,bool> was an option which nonetheless opted for 

Predicate<T>.) 

The .NET Framework class library defines a huge number of delegate types, most of 

which are even more specialized than Predicate<T>. For example, the System.IO 

namespace and its descendants define several that relate to very specific events, such as 

SerialPinChangedEventHandler, which is only used when working with old-

fashioned serial ports such as the once-ubiquitous RS232 interface. 

Type Compatibility 

Delegate types do not derive from one another. Any delegate type you define in C# will 

derive directly from MulticastDelegate, as do all of the delegate types in the class 

library. However, the type system supports certain implicit reference conversions for 

generic delegate types through covariance and contravariance. The rules are very similar 

to those for interfaces. As the in keyword in Example 9-3 showed, the type argument T 

in Predicate<T> is contravariant, which means that if an implicit reference 

conversion exists between two types, A and B, an implicit reference conversion also 

exists between the types Predicate<B> and Predicate<A>. Example 9-15 shows 

an implicit conversion that this enables. 

Example 9-15. Delegate covariance 

public static bool IsLongString(object o) 

{ 

    var s = o as string; 

    return s != null && s.Length > 20; 

} 

 

 

static void Main(string[] args) 

{ 

    Predicate<object> po = IsLongString; 

    Predicate<string> ps = po; 

    Console.WriteLine(ps("Too short")); 

} 

The Main method first creates a Predicate<object> referring to the 

IsLongString method. Any target method for this predicate type is capable of 

inspecting any object of any kind, so it’s clearly able to meet the needs of code that 

requires a predicate capable of inspecting strings, so it makes sense that the implicit 

conversion to Predicate<string> should succeed, which it does thanks to 

contravariance. Covariance also works in the same way as it does with interfaces, so it 

would typically be associated with a delegate’s return type. (We denote covariant type 

parameters with the out keyword.) All of the built-in Func delegate types have a 

covariant type argument representing the function’s return type called TResult. (The 
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type parameters for the function’s parameters are all contravariant. This is also true for all 

of the type arguments for the Action delegate types.) 

The variance-based delegate conversions are implicit reference 

conversions. This means that when you convert the reference type, the 

result still refers to the same delegate instance. (Not all implicit 

conversions do this. Implicit numeric conversions create an instance of 

the target type; implicit boxing conversions create a new box on the 

heap.) So in Example 9-15, po and ps refer to the same delegate on the 

heap. 

You might also expect delegates that look the same to be compatible. For example, a 

Predicate<int> can refer to any method that a Func<int, bool> can use, and 

vice versa, so you might expect an implicit conversion to exist between these two types. 

You might be further encouraged by the “Delegate compatibility” section in the C# 

specification which says that delegates with identical parameter lists and return types are 

compatible. (In fact it goes further, saying that certain differences are allowed. For 

example, I mentioned earlier that argument types may be different as long as certain 

implicit reference conversions are available.) However, if you try the code in Example 9-

16, it won’t work. 

Example 9-16. Illegal delegate conversion 

Predicate<string> pred = IsLongString; 

Func<string, bool> f = pred;  // Will fail with compiler error 

An explicit cast doesn’t work either—if you manage to avoid the compiler error you’ll 

just get a runtime error instead. The CTS considers these to be incompatible types, so a 

variable declared with one delegate type cannot hold a reference to a different delegate 

type even if their method signatures are compatible. This is not the scenario for which 

C#’s delegate compatibility rules are designed—they are mainly used to determine 

whether a particular method can be stored in a particular delegate. 

The lack of type compatibility between ‘compatible’ delegate types may seem odd, but 

structurally identical delegate types don’t necessarily have the same semantics. That’s 

why some APIs choose a specialized delegate type such as Predicate<T> when a 

more general-purpose one would have worked. If you find yourself needing to perform 

this sort of conversion, it may be a sign that something is not quite right in your code’s 

design.2 

Having said that, it is possible to create a new delegate that refers to the same method as 

the original if the new type is compatible with the old type. It’s always best to stop and 

ask why you find yourself needing to do that, but it’s occasionally necessary, and at first 

glance, it seems simple. Example 9-17 shows one way to do it. However, as the 

remainder of this section shows, it’s a bit more complex than it looks, and this is not 

actually the most efficient solution (which is another reason you might want to see if you 

can modify the design to avoid needing to do this in the first place). 

Example 9-17. A delegate referring to another delegate 

                                                           

2 Alternatively, you may just be one of nature’s dynamic language enthusiasts, with an allergy to 

expressing semantics through static types. If that’s the case, C# may not be the language for you, 

although check out C#’s dynamic features in Chapter 13 before deciding. 
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Predicate<string> pred = IsLongString; 

var pred2 = new Func<string, bool>(pred); 

The problem with Example 9-17 is that it adds an unnecessary level of indirection. The 

second delegate does not refer to the same method as the first one, it actually refers to the 

first delegate—so instead of a delegate that’s a reference to IsLongString, the 

pred2 variable ends up referring to delegate that is a reference to a delegate that is a 

reference to IsLongString. This is because the compiler treats Example 9-17 as 

though you had written the code in Example 9-18. (All delegate types have an Invoke 

method. It is implemented by the CLR, and it does the work necessary to invoke all of the 

methods to which the delegate refers.) 

Example 9-18. A delegate explicitly referring to another delegate 

Predicate<string> pred = IsLongString; 

var pred2 = new Func<string, bool>(pred.Invoke); 

In either Example 9-17 or Example 9-18, when you invoke the second delegate through 

the pred2 variable, it will in turn invoke the delegate referred to by pred, which will 

end up invoking the IsLongString method. The right method gets called, just not as 

directly as we might like. If you know that the delegate refers to a single method (i.e., 

you’re not using the multicast capability) Example 9-19 produces a more direct result. 

Example 9-19. New delegate for the current target 

Predicate<string> pred = IsLongString; 

var pred2 = (Func<string, bool>) Delegate.CreateDelegate( 

    typeof(Func<string, bool>), pred.Target, pred.Method); 

This retrieves the target object and method from the pred delegate and uses it to create a 

new Func<string, bool> delegate. The result is a new delegate that refers directly 

to the same IsLongString method as pred. (The Target will be null because this 

is a static method, but I’m still passing it to CreateDelegate because I wanted to 

show code that works for both static and instance methods.) If you need to deal with 

multicast delegates, Example 9-19 won’t work because it presumes that there’s only one 

target method. You would need to call CreateDelegate in a similar way for each 

item in the invocation list. This isn’t a scenario that comes up very often, but for 

completeness, Example 9-20 shows how it’s done. 

Example 9-20. Converting a multicast delegate 

public static TResult DuplicateDelegateAs<TResult>(MulticastDelegate source) 

{ 

    Delegate result = null; 

    foreach (Delegate sourceItem in source.GetInvocationList()) 

    { 

        var copy = Delegate.CreateDelegate( 

            typeof(TResult), sourceItem.Target, sourceItem.Method); 

        result = Delegate.Combine(result, copy); 

    } 

 

    return (TResult) (object) result; 

} 

In Example 9-20, the argument for the TResult type parameter has to 

be a delegate, so you may be wondering why I did not add a constraint 

for this type parameter. The obvious syntax to try would be where 

 12 



O’Reilly Media, Inc.  3/13/2012 

TResult : delegate. However, this doesn’t work, and nor do the 

next two obvious choices: type constraints of Delegate or 

MulticastDelegate. Unfortunately, C# does not provide a way to 

write a constraint that requires a type argument to be a delegate. 

These last few examples have depended upon various members of delegate types: 

Invoke, Target and Method. The last two of these come from the Delegate class, 

which is the base class of MulticastDelegate, from which all delegate types derive. 

The Target property’s type is object. It will be null if the delegate refers to a static 

method, and otherwise, it will refer to the instance on which the method will be invoked. 

The Method property’s type is MethodInfo. This is part of the reflection API, and it 

identifies a particular method. As Chapter 13 will show, you can use this to discover 

things about the method at runtime, but in the last two examples, we’re just using it 

ensure that a new delegate refers to the same method as an existing one. 

The third member, Invoke, is generated by the compiler. This is one of a few standard 

members that the C# compiler produces when you define a delegate type. 

Behind the Syntax 

Although as Example 9-3 showed, it takes just a single line of code to define a delegate 

type, the compiler turns this into a type that defines three methods and a constructor. Of 

course, the type also inherits members from its base classes. All delegates derive from 

MulticastDelegate, although all of the interesting instance members come from its 

base class, Delegate. (Delegate inherits from object, delegates all have the 

ubiquitous object methods too.) Even GetInvocationList, clearly a multicast-

oriented feature, is defined by the Delegate base class. 

The split between Delegate and MulticastDelegate is the 

meaningless and arbitrary result of a historical accident. The original 

plan was to support both multicast and unicast delegates, but towards 

the end of the pre-release period for .NET 1.0 this distinction was 

dropped, and now all delegate types support multicast instances. This 

happened sufficiently late in the day that Microsoft felt it was too risky 

to merge the two base types into one, so the split remained even though 

it serves no purpose. 

I’ve already shown all of the public instance members that Delegate defines. 

(DynamicInvoke, GetInvocationList, Target and Method.) Example 9-21 

shows the signatures of the compiler-generated constructor and methods for a delegate 

type. The details vary from one type to the next; these are the generated members in the 

Predicate<T> type. 

Example 9-21. The members of a delegate type 

public Predicate(object target, IntPtr method) 

 

public bool Invoke(T obj) 

 

public IAsyncResult BeginInvoke(T obj, AsyncCallback callback, object state) 

public bool EndInvoke(IAsyncResult result) 
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Any delegate type you define will have four similar members, and none of them will have 

bodies. The compiler generates the declarations, but the implementation is supplied 

automatically by the CLR. 

The constructor takes the target object, which is null for static methods, and an IntPtr 

identifying the method. Notice that this is not the MethodInfo returned by the 

Method property. Instead, the constructor takes a function token, an opaque binary 

identifier for the target method. The CLR can provide binary metadata tokens for all 

members and types, but there’s no C# syntax for working with them, so we don’t 

normally see them. When you construct a new instance of a delegate type, the compiler 

automatically generates IL that fetches the function token. The reason delegates use 

tokens internally is that tokens can be more efficient than working with reflection API 

types such as MethodInfo. 

The Invoke method is the one that calls the delegate’s target method (or methods). You 

can use this explicitly from C#, as Example 9-22 shows. It is almost identical to Example 

9-11, the only difference being that the delegate variable is followed by .Invoke. This 

generates exactly the same code as Example 9-11, so whether you write Invoke, or just 

use the syntax that treats delegate identifiers as though they were method names is a 

matter of style. As a former C++ developer, I’ve always felt at home with the Example 9-

11 syntax, because it’s similar to using function pointers in that language, but there’s an 

argument that writing Invoke explicitly makes it easier to see that the code is using a 

delegate. 

Example 9-22. Using Invoke explicitly 

public static void CallMeRightBack(Predicate<int> userCallback) 

{ 

    bool result = userCallback.Invoke(42); 

    Console.WriteLine(result); 

} 

The Invoke method is the home for a delegate type’s method signature. When you 

define a delegate type, this is where the return type and parameter list you specify end up. 

When the compiler needs to check whether a particular method is compatible with a 

delegate type (e.g., when you create a new delegate of that type) the compiler compares 

the Invoke method with the method you’ve supplied. 

All delegate types have a pair of methods that offer asynchronous invocation. If you call 

BeginInvoke, the delegate will queue up a work item on the CLR’s thread pool which 

will execute the target method. BeginInvoke returns without waiting for that 

invocation to complete (or even to begin). The BeginInvoke method’s parameter list 

usually starts with all the same parameters as Invoke—just a single parameter of type T 

in the case of a Predicate<T>. If a delegate’s signature has any out parameters, 

these will be omitted, because the method needs to run before it can return data through 

an out argument, and the whole point of BeginInvoke is that it doesn’t wait for the 

method to complete. BeginInvoke adds two more parameters. The first is an 

AsyncCallback, which is a delegate type, and if you pass a non-null argument, the 

CLR will use this to call you back once the asynchronous execution has finished. The 

other argument is of type object, and whatever value you pass here will be handed 

back to you when the operation completes. The delegate doesn’t do anything else with 

it—it’s just for your benefit, and it can be a convenient way to keep track of which 

operation is which if multiple similar operations are in progress simultaneously. 
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The EndInvoke method provides a way to get the result of an operation launched with 

BeginInvoke. The delegate’s return value becomes the return value of EndInvoke. 

We see bool here in Example 9-21 because that’s the return type for Predicate<T>. 

If you define a delegate with any out or ref parameters, those will also show up on 

EndInvoke—anything that the method produces as a result goes here. If the operation 

throws an unhandled exception while running on the thread pool, the CLR catches and 

stores it, and rethrows it when you call EndInvoke. If you call EndInvoke before the 

operation completes, it will block, not returning until the operation finishes. 

You can launch multiple simultaneous asynchronous operations against the same 

delegate, so EndInvoke needs some way of knowing which particular invocation you’d 

like to collect the results for. To enable this, BeginInvoke returns an 

IAsyncResult. This is an object that identifies a particular asynchronous operation in 

progress. If you ask to be notified when the operation is complete by supplying a non-null 

AsyncCallback argument to BeginInvoke, it passes this IAsyncResult to your 

completion callback. The EndInvoke takes an IAsyncResult as its argument, which 

is how it knows which invocation’s results to return. IAsyncResult also defines an 

AsyncState property, which is where the final object argument you passed to 

BeginInvoke ends up. 

If you call BeginInvoke, it is mandatory that you make a 

corresponding call to EndInvoke at some point, even if there is no 

return value (or if there is but you don’t care about it). Failure to call 

EndInvoke can cause the CLR to leak resources. 

Using BeginInvoke and EndInvoke to run a delegate’s target method on a thread 

pool thread is called asynchronous delegate invocation. (You’ll also sometimes come 

across the inaccurate term “asynchronous delegates.” That’s a misnomer, because it 

implies that asynchronicity is a feature of the delegate. In fact, all delegates support both 

synchronous and asynchronous invocation, so this is a feature of how you use the 

delegate—it’s the invocation that’s asynchronous, not the delegate.) Although this was a 

popular way to perform asynchronous work with early versions of .NET, it’s no longer so 

widely used, for three reasons. First, .NET 4.0 introduced the Task Parallel Library 

(TPL), which provides a more flexible and powerful abstraction for the services of the 

thread pool. Second, these methods implement an older pattern known as the 

Asynchronous Programming Model which does not fit directly with the new 

asynchronous language features of C#. Finally, the largest benefit of asynchronous 

delegate invocation was that it provided an easy way to pass a set of values from one 

thread to another—you could just pass whatever you needed as the arguments for the 

delegate—but this was obviated in C# 2.0 by the introduction of inline methods. 

Inline Methods 

C# lets you create delegates without needing to write a separate method explicitly, by 

defining an inline method, a method defined inside another method. (If the method 

returns a value, you’ll also sometimes see it called an anonymous function.) For simple 

methods, this can remove a lot of clutter, but what makes this particularly useful is how it 

exploits the fact that delegates are more than just a reference to a method. Delegates can 

also include context, in the form of the target object for an instance method. The C# 
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compiler uses this to enable inline methods to get access to any variables that were in 

scope in the containing method at the point at which the inline method appears. 

For historical reasons, C# provides two ways to define an inline method. The older way 

involves the delegate keyword, and is shown in Example 9-23. This form of inline 

method is known as an anonymous method.3 I’ve put each argument for FindIndex on 

a separate line to make the inline method (the second argument) stand out, but C# does 

not require this.  

Example 9-23. Anonymous method syntax 

public static int GetIndexOfFirstNonEmptyBin(int[] bins) 

{ 

    return Array.FindIndex( 

        bins, 

        delegate (int value) { return value > 0; } 

    ); 

} 

In some ways, this resembles the normal syntax for defining methods. The parameter list 

appears in parentheses, and is followed by a block containing the body of the method 

(which can contain as much code as you like by the way, and it is free to contain nested 

blocks, local variables, loops, and anything else you can put in a normal method). But 

instead of a method name, we just have the keyword delegate. The compiler infers the 

return type. In this case, it knows that FindIndex is expecting a Predicate<T> as 

the second argument, so it knows that the return type has to be bool. 

In fact, the compiler knows more. I’ve passed FindIndex an int[] array, so the 

compiler knows that the type argument T is int, so we need a Predicate<int>. 

This means that in Example 9-23, I had to type in information—the type of the delegate’s 

argument—that the compiler already knew. C# version 3.5, introduced a more compact 

inline method syntax that takes better advantage of what the compiler can deduce, shown 

in Example 9-24. 

Example 9-24. Lambda syntax 

public static int GetIndexOfFirstNonEmptyBin(int[] bins) 

{ 

    return Array.FindIndex( 

        bins, 

        value => value > 0 

    ); 

} 

This form of inline method is called a lambda expression, and it is named after a branch 

of mathematics that is the basis of a function-based model for computation. There is no 

particular significance to the choice of the Greek letter lambda (λ). It was the accidental 

result of the limitations of 1930s printing technology. The inventor of lambda calculus, 

Alonzo Church, originally wanted a different notation, but when he came to published his 

first paper on the subject, the typesetting machine operator decided to print λ instead, 

                                                           

3 Unhelpfully, there are two similar terms which somewhat arbitrarily mean almost but not quite the 

same thing. To clarify, the C# specification defines the term anonymous function as an alternative 

name for an inline method with a non-void return type, while an anonymous method is an inline 

method defined with the delegate keyboard. 
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because that was the closest available approximation to Church’s notation that the 

machine could produce. Despite these inauspicious origins, this arbitrarily chosen term 

has become ubiquitous. LISP, an early and influential programming language, used the 

name lambda for expressions that are functions, and since then many languages have 

followed suit, including C#. 

Example 9-24 is exactly equivalent to Example 9-23, I’ve just been able to leave various 

things out. The => token unambiguously marks this out as being a lambda, so the 

compiler does not need that cumbersome and ugly delegate keyword just to recognize 

this as an inline method. The compiler knows that the method has to take an int, so 

there’s no need to specify the parameter’s type—I just provided the parameter’s name: 

value. For simple methods that consist of just a single expression, the lambda syntax 

lets you omit the block and the return statement. This all makes for very compact 

lambdas, but in some cases, you might not want to omit quite so much, so as Example 9-

25 shows, there are various optional features. Every lambda in that example is equivalent. 

Example 9-25. Lambda variations 

Predicate<int> p1 = value => value > 0; 

Predicate<int> p2 = (value) => value > 0; 

Predicate<int> p3 = (int value) => value > 0; 

Predicate<int> p4 = value => { return value > 0; }; 

Predicate<int> p5 = (value) => { return value > 0; }; 

Predicate<int> p6 = (int value) => { return value > 0; }; 

The first variation is that you can put parentheses around the parameter. This is optional 

with a single parameter, but it is mandatory for multi-parameter lambdas. You can also be 

explicit about the parameters’ types (in which case you will also need parentheses, even 

if there’s only one parameter). And if you like, you can use a block instead of a single 

expression, at which point you also have to use the return keyword if the lambda 

returns a value. The normal reason for using a block would be if you wanted to write 

multiple statements inside the method. 

You can also write a lambda that takes no arguments. As Example 9-26 shows, we just 

put an empty pair of parentheses in front of the => token. (And as this example also 

shows, lambdas that use the greater than or equals operator, >=, can look a bit odd due 

the meaningless similarity between the => and >= tokens.) 

Example 9-26. A zero-argument lambda 

Func<bool> isAfternoon = () => DateTime.Now.Hour >= 12; 

The flexible and very compact syntax means that lambdas have all but displaced the older 

anonymous method syntax. However, the older syntax offers one advantage: it allows 

you to omit the argument list entirely. In some situations where you provide a callback, 

you only need to know that whatever you were waiting for has now happened. This is 

particularly common when using the standard event pattern described later in this 

chapter, because that requires event handlers to be passed arguments even in situations 

where they serve no purpose. For example, when a button is clicked, there’s not much 

else to say beyond the fact that it was clicked, and yet all of the button types in .NET’s 

various UI frameworks pass two arguments to the event handler. Example 9-27 

successfully ignores this by using an anonymous method that omits the parameter list. 

Example 9-27. Ignoring arguments in an anonymous method 

EventHandler clickHandler = delegate { Debug.WriteLine("Clicked!"); }; 
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EventHandler is a delegate type that requires its target methods to take two 

arguments, of type object and EventArgs. If our handler needed access to either, we 

could of course add a parameter list, but the anonymous method syntax lets us leave it out 

if we want. You cannot do this with a lambda. 

Captured Variables 

While inline methods often take up much less space than a full, normal method, they’re 

not just about conciseness. The C# compiler uses a delegate’s ability to refer not just to a 

method, but also to some additional context to provide an extremely useful feature: it can 

make variables from the containing method available to the inline method. Example 9-28 

shows a method that returns a Predicate<int>. It creates this with a lambda that 

uses an argument from the containing method. 

Example 9-28. Using a variable from the containing method 

public Predicate<int> IsGreaterThan(int threshold) 

{ 

    return value => value > threshold; 

} 

This provides the same functionality as the ThresholdComparer class from Example 

9-7, but it now achieves it in a single, simple method, rather than needing to write an 

entire class. In fact the code is almost deceptively simple, so it’s worth looking closely at 

what it does. The IsGreaterThan method returns a delegate instance. That delegate’s 

target method performs a simple comparison—it evaluates the value > threshold 

expression and returns the result. The value variable in that expression is just the 

delegate’s argument—the int passed by whichever code invokes the 

Predicate<int> that IsGreaterThan returns. The second line of Example 9-29, 

invokes that code passing in 200 as the argument for value. 

Example 9-29. Where value comes from 

Predicate<int> greaterThanTen = IsGreaterThan(10); 

bool result = greaterThanTen(200); 

The threshold variable in the expression is trickier. This is not an argument to the 

inline method. It’s the argument of IsGreaterThan, and Example 9-29 passes a value 

of 10 as the threshold argument. However, IsGreaterThan has to return before 

we can invoke the delegate it returns. If the method for which that threshold variable 

was an argument has already returned, you might think that the variable would no longer 

be available by the time we invoke the delegate. In fact, it’s fine because the compiler 

does some work on our behalf. If an inline method uses any arguments, or any local 

variables that were declared by the containing method, the compiler generates a class to 

hold those variables so that they can outlive the method that created them. This is one of 

the reasons that the popular myth that says local variables of value type live on the stack 

is not always true—in this case, the compiler copies the incoming threshold 

argument’s value to a field of an object on the heap, and any code that uses the 

threshold variable ends up using that field instead. Example 9-30 shows the 

generated code that the compiler produces for the inline method in Example 9-28. 

Example 9-30. Code generated for an inline method 

[CompilerGenerated] 

private sealed class <>c__DisplayClass1 
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{ 

    public int threshold; 

 

    public bool <IsGreaterThan>b__0(int value) 

    { 

        return (value > this.threshold); 

    } 

} 

The class and method names all begin with characters that are illegal in C# identifiers, to 

ensure that this compiler-generated code cannot clash with anything we write. (The exact 

names are not fixed by the way—you may find they are slightly different if you try this.) 

This generated code bears a striking resemblance to the ThresholdComparer class 

from Example 9-7, which is unsurprising, because the goal is the same: the delegate 

needs some method that it can refer to, and that method’s behavior depends on a value 

that is not fixed. Inline methods are not a feature of the runtime’s type system, so the 

compiler has to generate a class to provide this kind of behavior on top of the CLR’s 

basic delegate functionality. 

Once you know that this is what’s really happening when you write an inline method, it 

follows naturally that the inner method is able not just to read the variable, but also to 

modify it. This variable is just a field in an object that two methods—the inline method 

and the containing method—have access to. Example 9-31 uses this to maintain a count 

that is updated from an inline method. 

Example 9-31. Modifying a captured variable 

static void Calculate(int[] nums) 

{ 

    int zeroCount = 0; 

    int[] nonZeroNums = Array.FindAll( 

        nums, 

        v => 

        { 

            if (v == 0) 

            { 

                zeroCount += 1; 

                return false; 

            } 

            else 

            { 

                return true; 

            } 

        }); 

    Console.WriteLine( 

        "Number of zero entries: {0}, first non-zero entry: {1}", 

        zeroCount, 

        nonZeroNums[0]); 

} 

Everything in scope for the containing method is also in scope for inline methods. If the 

containing method is an instance method, this includes any instance members of the type, 

so your inline method could access fields, properties and methods. (The compiler 

supports this by adding a field to the generated class to hold a copy of the this 

reference.) The compiler only puts what it needs to in generated classes of the kind 

shown in Example 9-30, and if you don’t use any variables or instance members from the 
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containing scope, it might not even have to generate a class at all, and may be able to 

generate just a method. 

The FindAll method in the preceding examples does not hold onto the delegate after it 

returns—any callbacks will happen while FindAll runs. Not everything works that way 

though. Some APIs perform asynchronous work, and will call you back at some point in 

the future, by which time the containing method may have returned. This means that any 

variables captured by the inline method will live longer than the containing method. In 

general, this is fine because all of the captured variables live in an object on the heap, so 

it’s not as though the inline method is relying on a stack frame that is no longer present. 

The one thing you need to be careful of though is explicitly releasing resources before 

callbacks have finished. Example 9-32 shows an easy mistake to make. This uses an 

asynchronous, callback-based API to discover the HTTP content type of the resource at a 

particular URL. (The BeginGetResponse and EndGetResponse methods in this 

example use a very similar pattern to the BeginInvoke and EndInvoke delegate 

methods I described earlier, incidentally.) 

Example 9-32. Premature disposal 

using (var file = new StreamWriter(@"c:\temp\log.txt")) 

{ 

    var req = WebRequest.Create("http://www.interact-sw.co.uk/"); 

    req.BeginGetResponse(iar => 

    { 

        var resp = req.EndGetResponse(iar); 

 

        // BAD! This StreamWriter will probably have been disposed 

        file.WriteLine(resp.ContentType); 

    }, null); 

 

} // Will probably dispose StreamWriter before callback runs 

The using statement in this example will dispose the StreamWriter as soon as 

execution reaches the point at which the file variable goes out of scope in the outer 

method. The problem is that this file variable is also used in an inner method which 

will in all likelihood run after the thread executing that outer method has left that using 

statement’s block. The problem is that the compiler has no understanding of when the 

inner block will run—it doesn’t know whether that’s a synchronous callback like 

Array.FindAll uses, or an asynchronous one. So it cannot do anything special 

here—it just calls Dispose at the end of the block because that’s what our code told it 

to do. In practice, a using statement is not a good choice here—I would need to write 

code to dispose the stream writer explicitly at a point where I could be certain that I have 

finished with it. 

The new asynchronous language features, discussed in Chapter 18, can 

help avoid this sort of problem. You use that in conjunction with APIs 

that present a particular pattern that makes it possible for the compiler 

to know exactly how long things remain in scope. The constraints 

imposed by that pattern make it possible for a using statement to call 

Dispose at the correct moment. 

In performance-critical code you may need to bear the costs of inline methods in mind. If 

the inline method uses any variables from the outer scope, then each time you create a 

delegate to refer to the inline method, you may be creating two objects instead of one: a 
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delegate instance and an instance of the generated class to hold shared local variables. 

The compiler will reuse these variable holders when it can—if one method contains two 

inline methods, they may be able to share an object, for example. Even with this sort of 

optimization, you’re still creating additional objects, increasing the pressure on the 

garbage collector. It’s not particularly expensive—these are typically small objects—but 

if you’re up against a particularly oppressive performance problem, you might be able to 

eke out some small improvements by writing things in a more long-winded fashion to be 

able to reduce the number of object allocations. 

Variable capture can also occasionally lead to bugs, particularly due to a subtle scope-

related issue with for and foreach loops. In fact, this was sufficiently easy to run into 

that Microsoft has changed how foreach behaves in the most recent version of C#. The 

issue still exists with for, and Example 9-33 runs into it. 

Example 9-33. Problematic variable capture in a for loop 

static void Main(string[] args) 

{ 

    var greaterThanN = new Predicate<int>[10]; 

    for (int i = 0; i < greaterThanN.Length; ++i) 

    { 

        greaterThanN[i] = value => value > i; // Bad use of i 

    } 

 

    Console.WriteLine(greaterThanN[5](20)); 

    Console.WriteLine(greaterThanN[5](6)); 

} 

This example initializes an array of Predicate<int> delegates, where each delegate 

tests whether the value is greater than some number. Specifically, it compares the value 

with i, the loop counter that decides where in the array each delegate goes, so you might 

expect the element at index 5 to refer to a method that compares its argument with 5. If 

that were so, this program would print out True twice. In fact it prints out True and then 

False. It turns out that Example 9-33 produces an array of delegates where every single 

element compares its argument with 10. 

This usually surprises people when they encounter it. With hindsight, it’s easy enough to 

see why this happens when you know how the C# compiler enables a lambda to use 

variables from its containing scope. The for loop declares the i variable, and because it 

is used both by the containing Main method and each delegate the loop creates, the 

compiler will generate class similar to the one in Example 9-30, and the variable will live 

in a field of that class. Since the variable comes into scope when the loop starts, and 

remains in scope for the duration of the loop, the compiler will create one instance of that 

generated class, and it will be shared by all of the delegates. So as the loop increments i, 

this modifies the behavior of all of the delegates, because they all use that same i 

variable. 

Fundamentally, the problem is that there’s only one i variable here. You can fix the code 

by introducing a new variable inside the loop. Example 9-34 copies the value of i into 

another local variable, current, which does not come into scope until an iteration is 

underway, and which goes out of scope at the end of each iteration. So although there is 

only one i variable, which lasts for as long as the loop runs, we get what is effectively a 

new current variable each time round the loop. Because each delegate gets its own 

distinct current variable, this modification means that each delegate in the array 
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compares with a different value, the value that the loop counter had for that particular 

iteration. 

Example 9-34. Modifying a loop to capture the current value 

for (int i = 0; i < greaterThanN.Length; ++i) 

{ 

    int current = i; 

    greaterThanN[i] = value => value > current; 

} 

The compiler still generates a class similar to the one in Example 9-30 to hold the 

current variable that’s shared by the inline and containing methods, but this time it 

will create a new instance of that class each time round the loop, to be able give each 

inline method a different instance of that variable. 

You may be wondering what would happen if you wrote an inline method that used 

variables at multiple scopes. Example 9-35 declares a variable called offset before the 

loop, and the lambda uses both that and a variable whose scope lasts for only one 

iteration. 

Example 9-35. Capturing variables at different scopes 

int offset = 0; 

for (int i = 0; i < greaterThanN.Length; ++i) 

{ 

    int current = i; 

    greaterThanN[i] = value => value > (current + offset); 

} 

In that case, the compiler would generate two classes, one to hold any per-iteration shared 

variables (current, in this example) and one to hold those whose scope spans the 

whole loop (offset, in this case). Each delegate’s target object would be the object 

containing inner scope variables, and that would contain a reference to the outer scope. 

Figure 9-1 shows roughly how this would work, although it has been simplified to show 

just the first five items. The greaterThanN variable contains a reference to an array. 

Each array element contains a reference to a delegate. Each delegate refers to the same 

method, but each one has a different target object, which is how each delegate can 

capture a different instance of the current variable. Each of these target objects refers 

to a single object containing the offset variable captured from the scope outside of the 

loop. 
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Figure 9-1. Figure Caption Text Goes Here 

In versions of C# up to and including v4.0, foreach loops worked in way that would 

cause the same problem, and which needed a similar extra local variable to fix. The 

iteration variable came into scope before the first iteration and remained in scope for the 

whole loop, changing its value at each iteration, leading to the same potential problem as 

a for loop. But this has changed: it is now as though a new iteration variable comes into 

scope each time around the loop, so if you capture that variable in an inline method, you 

get the value for that iteration, not the value of the most recent iteration to have started. 

This change will break any code that relied on the original behavior. However, the 

original behavior was not very useful, and was a frequent cause of bugs, so Microsoft felt 

it was worth making the change. They left the for loop’s behavior unchanged because 

that construct leaves more of the work of iteration to the developer—it just provides 

placeholders for initialization, loop termination testing, and iteration, so unlike with a 

foreach loop, it’s not always clear what would count as the iteration variable. An 

example such as for (var x = new Item(); !file.EndOfStream; 

source.Next()) is legal, and it’s not clear which identifier, if any, should get special 

treatment. So for loops continue to work as they always have. 

Lambdas and Expression Trees 

Lambdas have an additional trick up their sleeves beyond providing delegates. Some 

lambdas can produce a data structure that represents code. This occurs when you use the 

lambda syntax in a context that requires an Expression<T> where T is a delegate 

type. Expression<T> itself is not a delegate type; it is a special type in the .NET 

Framework class library (in the System.Linq.Expressions namespace) that 

triggers this alternative handling of lambdas in the compiler. Example 9-36 uses this type. 

Example 9-36. A lambda expression 
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Expression<Func<int, bool>> greaterThanZero = value => value > 0; 

This example looks very similar to some of the lambdas and delegates I’ve shown already 

in this chapter, but the compiler handles this very differently. It will not generate a 

method—there will be no compiled IL representing the lambda’s body. Instead, the 

compiler will produce code similar to that in Example 9-37. 

Example 9-37. What the compiler does with a lambda expression 

ParameterExpression valueParam = Expression.Parameter(typeof(int), "value"); 

ConstantExpression constantZero = Expression.Constant(0); 

BinaryExpression comparison = Expression.GreaterThan(valueParam, constantZero); 

Expression<Func<int, bool>> greaterThanZero = 

    Expression.Lambda<Func<int, bool>>(comparison, valueParam); 

This code calls various factory functions provided by the Expression class to produce 

an object for each sub-expression in the lambda. This starts with the simple operands—

the value parameter and the constant value 0. These are fed into an object representing 

the ‘greater than’ comparison expression, which in turn becomes the body of an object 

representing the whole lambda expression. 

The ability to produce an object model for an expression makes it possible to write an 

API where the behavior is controlled by the structure and content of an expression. For 

example, some data access APIs can take an expression similar to the ones produced by 

either Example 9-36 or Example 9-37 and use it to generate part of a database query. I’ll 

be talking about C#’s integrated query features in Chapter 10, and data access in Chapter 

19 but Example 9-38 gives a flavor of how a lambda expression can be used as the basis 

of a query. 

Example 9-38. Expressions and database queries 

var expensiveProducts = dbContext.Products.Where(p => p.ListPrice > 3000); 

This example happens to use a .NET feature called the Entity Framework, but other data 

access technologies support the same approach. The Where method in this example 

takes an argument of type Expression<Func<Product,bool>>.4 Product is a 

class that corresponds to an entity in the database, but the important part here is the use of 

Expression<T>. That means that the compiler will generate code that creates a tree of 

objects whose structure corresponds to that lambda expression. The Where method 

processes that expression tree, generating a SQL query which includes this clause: 

WHERE [Extent1].[ListPrice] > cast(3000 as decimal(18)). So 

although I wrote my query as a C# expression, the work required to find matching objects 

will all happen on my database server. 

Lambda expressions were added to C# to enable this sort of query handling as part of the 

set of features known collectively as LINQ (which is the subject of Chapter 10). 

However, as with most LINQ-related features it’s possible to use them for other things. 

For example, at http://www.interact-sw.co.uk/iangblog/2008/04/13/member-lifting you’ll 

find code that takes expressions that retrieve properties, e.g. obj.Prop1.Prop2, and 

                                                           

4 You may be surprised to see Func<Product,bool> here and not Predicate<Product>. 

The Where method is part of a .NET feature called LINQ that makes extensive use of delegates. 

To avoid defining huge numbers of new delegate types, LINQ uses Func types, and for 

consistency across the API, it prefers Func even when other standard types are available. 

http://www.interact-sw.co.uk/iangblog/2008/04/13/member-lifting
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modifies them to tolerate nulls. If either obj or obj.Prop1 were null, evaluating that 

expression would normally produce a NullReferenceException, but it’s possible 

to transform this into an expression that evaluates to null if a null is encountered at any 

stage. However, I’m not convinced the benefits of this sort of expression tinkering 

necessarily outweigh the problems it causes—I wrote that null tolerance example as a 

learning exercise, and what it taught me was that this particular kind of ‘clever’ code is 

more trouble than it’s worth. (That’s why I’ve not shown an equivalent example in this 

book—it’s a lot of code, and it offers rather dubious benefits.) When it comes to 

production code, I’ve only ever used expression trees in conjunction with LINQ, the 

scenario for which they were designed. My experience with them in other areas is that the 

complexity tends to end up with code that’s painful to maintain. That’s not to say that 

you should absolutely avoid it, just that you should be wary. The expense might be 

worthwhile for companies like Microsoft, who are producing frameworks used by 

millions of developers, with a budget to match, but if that doesn’t describe your project, 

you might want to think twice before inflicting the awesome coolness of your expression 

tree wrangling on your customers. 

Events 

Delegates provide the basic callback mechanism required for notifications, but there are 

many mays you could go about using them. Should the delegate be passed as a method 

argument, a constructor argument, or perhaps as a property? How should you support 

unsubscribing from notifications? The CTS formalizes the answers to these questions 

through a special kind of class member called an event, and C# has syntax for working 

with events. Example 9-39 shows a class with one event member. 

Example 9-39. A class with an event 

public class Eventful 

{ 

    public event Action<string> Announcement; 

 

    public void Announce(string message) 

    { 

        if (Announcement != null) 

        { 

            Announcement(message); 

        } 

    } 

} 

As with all members, you can start with an accessibility specifier, and it will default to 

private if you leave that off. Next, the event keyword singles this out as an event. Then 

there’s the event’s type, which can be any delegate type. I’ve used Action<string>, 

although as you’ll soon see, this is an unorthodox choice. Finally, we put the member 

name, so this example defines an event called Announcement. 

To handle an event, you must provide a delegate of the right type, and you must use the 

+= syntax to attach that delegate as the handler. Example 9-40 uses a lambda, but you 

can use any expression that produces, or is implicitly convertible to a delegate of the type 

the event requires. 

Example 9-40. Handling events 
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var source = new Eventful(); 

source.Announcement += m => Console.WriteLine("Announcement: " + m); 

Example 9-39 also shows how to raise an event, i.e., how to invoke all the handlers that 

have been attached to the event. Its Announce method checks the event member to see 

if it is null, and if not, uses the same syntax we would use if Announcement were a 

field containing a delegate that we wanted to invoke. In fact, as far as code inside the 

class is concerned, that’s exactly what an event looks like—it appears to be a field 

containing a delegate.  

So why do we need a special member type if this looks just like a field? Well it only 

looks like a field from inside the defining class. Code outside of the class cannot raise the 

event, so the code shown in Example 9-41 will not compile. 

Example 9-41. How not to raise an event 

var source = new Eventful(); 

source.Announcement("Will this work?"); // No, this will not even compile 

From the outside, the only things you can do to an event are to attach a handler using += 

and to remove one using -=. The syntax for adding and removing event handlers is 

unusual, in that it’s the only case in C# in which you get to use += and -= without the 

corresponding standalone + or - operators being available. The actions performed by += 

and -= on events both turn out to be method calls in disguise. Just as properties are really 

pairs of methods with a special syntax, so are events. They are similar in concept to the 

code shown in Example 9-42. (In fact, the real code includes some moderately complex 

lock-free thread-safe code. I’ve not shown this because the multithreading obscures the 

basic intent.) This won’t have quite the same effect, because the event keyword adds 

metadata to the type identifying the methods as being an event, so this is just for 

illustration. 

Example 9-42. The approximate effect of declaring an event 

private Action<string> Announcement; 

 

// Not the actual code. 

// The real code is more complex, to tolerate concurrent calls 

public void add_Announcement(Action<string> handler) 

{ 

    Announcement += handler; 

} 

public void remove_Announcement(Action<string> handler) 

{ 

    Announcement -= handler; 

} 

Just as with properties, events exist mainly to offer a convenient, distinctive syntax, and 

to make it easier for tools to know how to present the features that classes offer. Events 

are particularly important for user interface elements. In most UI frameworks, the objects 

representing interactive elements can often raise a wide range of events, corresponding to 

various forms of input such as keyboard, mouse, or touch. There are also often events 

relating to behavior specific to a particular control, such as selecting a new item in a list. 

Because the CTS defines a standard idiom by which elements can expose events, visual 

UI designers such as the ones built into Visual Studio can display the available events, 

and offer to generate handlers for you. 
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Standard Event Delegate Pattern 

The event in Example 9-39 is unusual, in that it uses the Action<T> delegate type. This 

is perfectly legal, but in practice, you will rarely see that, because almost all events use 

delegate types that conform to a particular pattern. This pattern requires the delegate’s 

method signature to have two arguments. The first argument’s type is object, and the 

second’s type is either EventArgs, or some type derived from EventArgs. Example 

9-43 shows the EventHandler delegate type in the System namespace, which is the 

simplest and most widely used example of this pattern. 

Example 9-43. The EventHandler delegate type 

public delegate void EventHandler(object sender, EventArgs e); 

The first argument is usually called sender, because the event source passes a reference 

to itself for this argument. This means that if you attach a single handler method to 

multiple event sources, that handler can always know which source raised any particular 

notification. 

The second argument provides a place to put information specific to the event. For 

example, WPF user interface elements define various events for handling mouse input 

that use more specialized delegate types, such as MouseButtonEventHandler, with 

signatures that specify a corresponding specialized event argument offering details about 

the event. For example, MouseButtonEventArgs defines a GetPosition method 

that tells you where the mouse was when the button was clicked, and it defines various 

other properties offering further detail, including ClickCount, and Timestamp. 

Whatever the specialized type of the second argument may be, it will always derive from 

the base EventArgs type. That base type is not very interesting—it does not add any 

members beyond the standard ones provided by object. However, it does make it 

possible to write a general purpose method that can be attached to any event that uses this 

pattern. The rules for delegate compatibility mean that even if the delegate type specifies 

a second argument of type MouseButtonEventArgs, a method whose second 

argument is of type EventArgs is an acceptable target. This can occasionally be useful 

for code generation or other infrastructure scenarios. However the main benefit of the 

standard event pattern is simply one of familiarity—experienced C# developers generally 

expect events to work this way. 

Custom Add and Remove Methods 

Sometimes, you might not want to use the default event implementation generated by the 

C# compiler. For example, a class may define a large number of events, most of which 

will not be used on the majority of instances. User interface frameworks often have this 

characteristic. A WPF user interface can have thousands of elements, every one of which 

offers over a hundred events, but you normally only attach handlers to a few of these 

elements, and even with these, you only handle a fraction of the events on offer. It is 

inefficient for every element to dedicate a field to every available event in this case. 

Using the default field-based implementation for large numbers of rarely-used events 

could add hundreds of bytes to the footprint of each element in a user interface, which 

can have a discernible effect on performance. (In WPF, this could add up to a few 

hundred thousand bytes. That might not sound like much given modern computers’ 

memory capacities, but it can put your code in a place where it is no longer able to make 
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efficient use of the CPU’s cache, causing a nosedive in application responsiveness. Even 

if the cache is several megabytes in size, the fastest parts of the cache are usually much 

smaller, and wasting a few hundred kilobytes in a critical data structure can make a world 

of different to performance.) 

Another reason you might want to eschew the default compiler-generated event 

implementation is that you may want more sophisticated semantics when raising events. 

For example, WPF supports event bubbling: if a UI element does not handle certain 

events, they will be offered to the parent element, then the parent’s parent, and so on up 

the tree until a handler is found or it reaches the top. Although it would be possible to 

implement this sort of scheme with the standard event implementation C# supplies, much 

more efficient strategies are possible when event handlers are relatively sparse. 

To support these scenarios, C# lets you provide your own add and remove methods for an 

event. It will look just like a normal event from the outside—anyone using your class will 

use the same += and -= syntax to add and remove handlers, and it will not be possible to 

tell that it provides a custom implementation. Example 9-44 shows a class with two 

events, and it uses a single dictionary, shared across all instances of the class, to keep 

track of which events have been handled on which objects. The approach is extensible to 

larger numbers of events—the dictionary uses pairs of objects as the key, so each entry 

represents a particular (source, event) pair. (It’s not safe for multi-threaded use by the 

way. This example just illustrates how custom event handlers look—it’s not a fully-

engineered solution.) 

Example 9-44. Custom add and remove for sparse events 

public class ScarceEventSource 

{ 

    // One dictionary shared by all instances of this class, 

    // tracking all handlers for all events. 

    private static readonly 

     Dictionary<Tuple<ScarceEventSource, object>, EventHandler> _eventHandlers 

      = new Dictionary<Tuple<ScarceEventSource, object>, EventHandler>(); 

 

    // Objects used as keys to identify particular events in the dictionary. 

    private static readonly object EventOneId = new object(); 

    private static readonly object EventTwoId = new object(); 

 

 

    public event EventHandler EventOne 

    { 

        add 

        { 

            AddEvent(EventOneId, value); 

        } 

        remove 

        { 

            RemoveEvent(EventOneId, value); 

        } 

    } 

 

    public event EventHandler EventTwo 

    { 

        add 

        { 

            AddEvent(EventTwoId, value); 
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        } 

        remove 

        { 

            RemoveEvent(EventTwoId, value); 

        } 

    } 

 

    public void RaiseBoth() 

    { 

        RaiseEvent(EventOneId, EventArgs.Empty); 

        RaiseEvent(EventTwoId, EventArgs.Empty); 

    } 

 

    private Tuple<ScarceEventSource, object> MakeKey(object eventId) 

    { 

        return Tuple.Create(this, eventId); 

    } 

 

    private void AddEvent(object eventId, EventHandler handler) 

    { 

        var key = MakeKey(eventId); 

        EventHandler entry; 

        _eventHandlers.TryGetValue(key, out entry); 

        entry += handler; 

        _eventHandlers[key] = entry; 

    } 

 

    private void RemoveEvent(object eventId, EventHandler handler) 

    { 

        var key = MakeKey(eventId); 

        EventHandler entry = _eventHandlers[key]; 

        entry -= handler; 

        if (entry == null) 

        { 

            _eventHandlers.Remove(key); 

        } 

        else 

        { 

            _eventHandlers[key] = entry; 

        } 

    } 

 

    private void RaiseEvent(object eventId, EventArgs e) 

    { 

        var key = MakeKey(eventId); 

        EventHandler handler; 

        if (_eventHandlers.TryGetValue(key, out handler)) 

        { 

            handler(this, e); 

        } 

    } 

} 

The syntax for custom events is reminiscent of the full property syntax: we add a block 

after the member declaration that contains the two members, which are called add and 

remove instead of get and set. (Unlike with properties, you are required to supply 

both methods.) This disables the generation of the field that would normally hold the 
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event, meaning that the ScarceEventSource class has no instance fields at all—

instances of this type are as small as it’s possible for an object to be. 

The price for this small memory footprint is a considerable increase in complexity—I’ve 

written about 16 times as many lines of code as I would have needed with compiler-

generated events. Moreover, this technique only provides an improvement if the events 

really are not handled most of the time—if I attached handlers to both events for every 

instance of this class, the dictionary-based storage would consume more memory than 

simply having a field for each event in each instance of the class. So you should only 

consider this sort of custom event handling if you either need non-standard event raising 

behavior, or if you are very sure that you really will be saving memory, and that the 

savings are worthwhile. 

Events and the Garbage Collector 

As far as the garbage collector is concerned, delegates are normal objects like any other. 

If the GC discovers that a delegate instance is reachable, then it will inspect the Target 

property, and whichever object that refers to will also be considered reachable, along 

with whatever objects that object in turn refers to. Although there is nothing remarkable 

about this, there are situations in which leaving event handlers attached can cause objects 

to hang around in memory when you might have expected them to be collected by the 

GC. 

There’s nothing intrinsic to delegates and events that makes them unusually likely to 

defeat the garbage collector. If you do get an event-related memory leak, it will have the 

same structure as any other .NET memory leak: starting from a root reference, there will 

be some chain of references that keeps an object reachable even after you’ve finished 

using it. The only reason events get special blame for memory leaks is that they are often 

used in ways that can cause problems. 

For example, suppose your application maintains some object model representing its 

state, and that your user interface code is in a separate layer that makes use of that 

underlying model, adapting the information it contains for presentation on screen. This 

sort of layering is usually advisable—it’s a bad idea to intermingle code that deals with 

user interactions and code that implements the application’s logic. But a problem can 

arise if the underlying model advertises changes in state that the UI needs to reflect. If 

these changes are advertised through events, your UI code will typically attach handlers 

to those events. 

Now imagine that someone closes one of your application’s windows. You would hope 

that the objects representing that window’s user interface will all be detected as 

unreachable the next time the GC runs. The UI framework is likely to have attempted to 

make that possible. For example, WPF ensures that each instance of its Window class is 

reachable for as long as the corresponding window is open, but once the window has 

been closed, it stops holding any references to the window, to enable all of the UI objects 

for that window to be collected. 

However, if you handle an event from your main application’s model with a method in a 

Window-derived class, and if you do not explicitly remove that handler when the 

window is closed, you will have a problem. As long as your application is still running, 

something somewhere will presumably be keeping your application’s underlying model 

reachable. This means that the target objects of any delegates held by your application 

model (e.g., delegates that were added as event handlers) will continue to be reachable, 
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preventing the garbage collector from freeing them. So if a Window-derived object for 

the now-closed window is still handling events from your application model, that 

window, and all of the UI elements it contains will still be reachable, and will not be 

garbage collected. 

There’s a persistent myth that this sort of event-based memory leak has 

something to do with circular references. The garbage collector copes 

perfectly well with circular references. It’s true that there are circular 

references in these scenarios, but they’re not the issue. The problem is 

caused by accidentally keeping objects reachable after you no longer 

need them. Doing that will cause problems regardless of whether 

circular references are present. 

There are a couple of ways you can deal with this. One is simply to ensure that if your UI 

layer ever attaches handlers to objects that will stay alive for a long time, you should 

make sure that you remove those handlers when the relevant UI element is no longer in 

use. Alternatively, you could use weak references to ensure that if your event source is 

the only thing holding a reference to the target, it doesn’t keep it alive. WPF can help you 

with this—it provides a WeakEventManager class that provides a way to handle an 

event in such a way that the handling object is able to be garbage collected without 

needing to unsubscribe from the event. WPF uses this technique itself when databinding 

the UI to a data source that provides property change notification events. 

Although event-related leaks often arise in user interfaces, they can 

occur anywhere. As long as an event source remains reachable, all of 

its attached handlers will also remain reachable. 

Events vs. Delegates 

Some APIs provide notifications through events, while others just use delegates directly. 

How should you decide which approach to use? In some cases, the decision may be made 

for you because you want to support some particular idiom. For example, if you want 

your API to support the new asynchronous features in C#, you will need to implement the 

pattern described in Chapter 18, which involves taking a delegate as a method argument. 

If you are writing a user interface element, events will most likely be appropriate because 

that’s the predominant idiom. 

In cases where constraints or conventions do not provide an answer, you need to think 

about how the callback will be used. If there will be multiple subscribers for a 

notification, an event could be the best choice. This is not absolutely necessary because 

any delegate is capable of multicast behavior, but by convention, this behavior is usually 

offered through events. If users of your class will need to remove the handler at some 

point, events are also likely to be a good choice. Having said that, the 

IObservable<T> interface might be a better choice if you need more advanced 

functionality. This interface is part of the Reactive Extensions for .NET, and is described 

in Chapter 11. 

You would typically pass a delegate as a method or constructor argument if it only makes 

sense to have a single target method. For example, if the delegate type has a non-void 

return value which the API depends on (such as the bool returned by the predicate 

passed to Array.FindAll) it makes no sense to have multiple targets, or zero targets. 
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An event is the wrong idiom here, because it’s perfectly normal to attach either no 

handlers or multiple handlers to an event. 

Occasionally it might make sense to have either zero or one handler, but never more than 

one. For example, WPF’s CollectionView class can sort, group, and filter data from 

a collection. You configure filtering by providing a Predicate<object>. This is not 

passed as a constructor argument because filtering is optional, so instead, the class 

defines a Filter property. An event would be inappropriate here, partly because 

Predicate<object> does not fit the usual event delegate pattern, but mainly 

because the class needs an unambiguous answer of yes or no, so it does not want to 

support multiple targets. (The fact that all delegate types support multicast means that it’s 

still possible to supply multiple targets of course. But the decision to use a property rather 

than event signals the fact that it’s not useful to attempt to provide multiple callbacks 

here.) 

Delegates vs Interfaces 

Back at the start of this chapter, I argued that delegates offer a less cumbersome 

mechanism for callbacks and notifications than interfaces. So why do some APIs require 

callers to implement an interface to enable callbacks? Why do we have IComparer<T> 

and not a delegate? Actually we have both—there’s a delegate type called 

Comparison<T>, which is supported as an alternative by many of the APIs that accept 

an IComparer<T>. Arrays and List<T> have overloads of their Sort methods 

taking either. 

There are some situations in which the object-oriented approach may be preferable to 

using delegates. An object that implements IComparer<T> could provide properties to 

adjust the way the comparison works. Some callbacks may want to collect and 

summarize information across multiple callbacks, and although you can do that through 

captured variables, it may be easier to get the information back out again at the end if it’s 

available through properties of an object. 

This is really a decision for whoever is writing the code being called back, and not for the 

developer writing the code that makes the call. Delegates ultimately are more flexible 

because they allow the consumer of the API to decide how to structure their code, 

whereas an interface imposes constraints. However, if an interface happens to align with 

the abstractions you want, delegates can seem like an irritating extra detail. This is why 

some APIs present both options, such as the sorting APIs that accept either an 

IComparer<T> or a Comparison<T>. 

One situation in which interfaces might be preferable to delegates is if you need to 

provide multiple related callbacks. The Reactive Extensions for .NET (see Chapter 11) 

define an abstraction for notifications that include the ability to know when you’ve 

reached the end of a sequence of events, or when there has been an error, so in that 

model, subscribers implement an interface with three methods—OnNext, 

OnCompleted and OnError. It makes sense to use an interface because all three 

methods are typically required for a complete subscription.  
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Summary 

Delegates are objects that provide a reference to a method, which can be either static or 

an instance method. With instance methods, the delegate also holds a reference to the 

target object, so the code that invokes the delegate does not need to supply a target. 

Delegates can also refer to multiple methods, although that complicates matters if the 

delegate’s return type is not void. Although delegate types get special handling from the 

CLR, they are still just a reference type, meaning that a reference to a delegate can be 

passed as an argument, returned from a method, and stored in a field, variable or 

property. A delegate type defines a signature for the target method. This is actually 

represented through the type’s Invoke method, but C# can hide this, offering a syntax 

in which you can invoke a delegate expression directly without explicitly referring to 

Invoke. You can construct a delegate that refers to any method with a compatible 

signature. You can also get C# to do more of the work for you—if you write an inline 

method, C# will supply a suitable declaration for you, and can also do work behind the 

scenes to make variables in the containing method available to the inner one. Delegates 

are the basis of events, which provide a formalized publish/subscribe model for 

notifications. 

One C# feature that makes particularly extensive use of delegates is LINQ, which is the 

subject of the next chapter. 
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10 

LINQ 

Language Integrated Query (LINQ) is a powerful set of tools for working with sets of 

information in C#. It is useful in any application that needs to work with multiple pieces 

of data (i.e., almost any application). Although one of its primary goals was to provide 

straightforward access to relational databases, LINQ is applicable to many kinds of 

information. For example, it can also be applied to in-memory object models, HTTP-

based information services, and XML documents. 

LINQ is not a single feature. It relies on several language elements that work together. 

The most conspicuous LINQ-related language feature is the query expression, a form of 

expression that loosely resembles a database query, but which can be used to perform 

queries against any supported source, including plain old objects. As you’ll see, query 

expressions rely heavily on some other language features such as lambdas, extension 

methods, and expression object models. 

Language support is only half the story. LINQ needs class libraries to implement a 

standard set of querying primitives called LINQ operators. Each different kind of data 

requires its own implementation, and a set of operators for any particular type of 

information is referred to as a LINQ provider. The .NET Framework class library has 

several built-in providers, including one for working directly with objects (called LINQ 

to Objects), and a couple for working with databases (LINQ to SQL, which is specific to 

SQL Server, and the more complex but more general-purpose LINQ to Entities). The 

WCF Data Services client library for consuming OData-based web services also has a 

LINQ provider. In short, LINQ is a widely supported idiom in the .NET Framework, and 

it’s extensible, so you will also find open source and other third party providers. 

Most of the examples in this chapter use LINQ to Objects. This is partly because it avoids 

cluttering the examples with extraneous details such as database or service connections, 

but there’s a more important reason. LINQ’s introduction in 2007 significantly changed 

the way I write C#, and that’s entirely because of LINQ to Objects. Although LINQ’s 

syntax makes it look like it’s primarily a data access technology, I have found it to be far 

more useful than that. Having LINQ’s services available on any collection of objects 

makes it useful in every part of your code. 
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Query Expressions 

The most visible feature of LINQ is the query expression syntax. It’s not the most 

important—as we’ll see later, it’s entirely possible to use LINQ productively without 

ever writing a query expression. However, it’s a very natural syntax for many kinds of 

queries, so it takes center stage despite being technically optional. 

At first glance, a query expression loosely resembles a database query, but the syntax 

works with any LINQ provider. Example 10-1 shows a query expression that uses LINQ 

to Objects to search for certain CultureInfo objects. (A CultureInfo provides a 

set of culture-specific information, such as the symbol used for the local currency, what 

language is spoken, and so on. Some systems call this a locale.) This particular query 

looks at the character that denotes what would, in English, be called the decimal point. 

Many countries actually use a comma instead of a period, and in those countries 100,000 

would mean the number one hundred written out to three decimal places; in English-

speaking cultures we would normally write this as 100.000. The query expression 

searches all the cultures known to the system, and returns the ones that use a comma as 

the decimal separator. 

Example 10-1. A LINQ query expression 

IEnumerable<CultureInfo> commaCultures = 

    from culture in CultureInfo.GetCultures(CultureTypes.AllCultures) 

    where culture.NumberFormat.NumberDecimalSeparator == "," 

    select culture; 

 

foreach (CultureInfo culture in commaCultures) 

{ 

    Console.WriteLine(culture.Name); 

} 

The foreach loop in this example shows the results of the query. On my system, this 

prints out the name of 187 cultures, indicating that slightly over half of the 354 available 

cultures use a comma, not a decimal point. Of course, I could easily have achieved this 

without using LINQ. Example 10-2 will produce the same results. 

Example 10-2. The non-LINQ equivalent 

CultureInfo[] allCultures = CultureInfo.GetCultures(CultureTypes.AllCultures); 

foreach (CultureInfo culture in allCultures) 

{ 

    if (culture.NumberFormat.NumberDecimalSeparator == ",") 

    { 

        Console.WriteLine(culture.Name); 

    } 

} 

Both examples have 8 non-blank lines of code, although if you ignore lines that contain 

only braces, Example 10-2 contains just four, two fewer than Example 10-1. Then again, 

if we count statements the LINQ example has just three, compared to four in the loop-

based example. So it’s difficult to argue convincingly that either approach is simpler than 

the other. 

However, Example 10-1 has at least one significant advantage: the code that decides 

which items to choose is well separated from the code that decides what to do with those 
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items. Example 10-2, intermingles these two concerns: the code that picks the objects is 

half outside and half inside the loop. 

Another difference is that Example 10-1 has a more declarative style: it focuses on what 

we want, not how to get it. The query expression describes the items we’d like, without 

mandating that this be achieved in any particular way. For this very simple example, that 

doesn’t matter much, but for more complex examples, and particularly when using a 

LINQ provider for database access, it can be very useful to allow the provider a free hand 

in deciding exactly how to perform the query. 

There are three parts to the query in Example 10-1. It begins, as all query expressions are 

required to begin, with a from clause, which specifies the source of the query. In this 

case, the source is an array of type CultureInfo[], returned by the CultureInfo 

class’s GetCultures method. As well as defining the source for the query, the from 

clause specifies a name, which in this example is culture. This is called the range 

variable, and we can use it in the rest of the query to represent a single item from the 

source. Clauses can run many times—the where clause in Example 10-1 runs once for 

every item in the collection, so the range variable will have a different value each time. 

This is reminiscent of the iteration variable in a foreach loop. In fact the overall 

structure of the from clause is similar—we have the variable that will represent an item 

from a collection, then the in keyword, then the source for which that variable will 

represent individual items. Just as a foreach loop’s iteration variable is only in scope 

inside the loop, the range variable culture is only meaningful inside this query 

expression. 

Although analogies with foreach can be helpful for understanding 

the intent of LINQ queries, you should not take this too literally. For 

example, not all providers directly execute the expressions in a query. 

Some LINQ providers convert query expressions into database queries, 

in which case the C# code in the various expressions inside the query 

does not run in any conventional sense. So although it is true to say that 

the range variable represents a single value from the source, it’s not 

always true to say that that clauses will execute once for every item 

they process, with the range value taking that item’s value. It happens 

to be true for Example 10-1 because it uses LINQ to Objects, but it’s 

not true for all providers. 

The second part of the query in Example 10-1 is a where clause. This is optional; 

conversely, you’re also allowed several in one query. A where clause filters the results, 

and the one in this example states that I only want the CultureInfo objects with a 

NumberFormat that indicates that the decimal separator is a comma. 

The final part of the query is a select clause, and all query expressions end either with 

one of these or a group clause. This determines the final output of the query. This 

example indicates that we want each CultureInfo object that was not filtered out by 

the query. The foreach loop in Example 10-1 that prints out the results of the query 

only uses the Name property, so I could have written a query that only extracted that. As 

Example 10-3 shows, if I do this, I also need to change the loop, because the resulting 

query now produces strings instead of CultureInfo objects. 

Example 10-3. Extracting just one property in a query 
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IEnumerable<string> commaCultures = 

    from culture in CultureInfo.GetCultures(CultureTypes.AllCultures) 

    where culture.NumberFormat.NumberDecimalSeparator == "," 

    select culture.Name; 

 

foreach (string cultureName in commaCultures) 

{ 

    Console.WriteLine(cultureName); 

} 

This raises a question: in general, what type do query expressions have? In Example 10-

1, commaCultures is an IEnumerable<CultureInfo> and in Example 10-3, it’s 

an IEnumerable<string>. The output item type is determined by the final clause of 

the query—the select or, in some cases, the group clause. However, not all query 

expression result in an IEnumerable<T>. It depends on which LINQ provider you 

use—I’ve ended up with IEnumerable<T> because I’m using LINQ to Objects. 

It’s very common to use the var keyword when declaring variables 

that hold LINQ queries. This is necessary if a select clause produces 

instances of an anonymous type, because there is no way to write the 

name of the resulting query’s type. Even if anonymous types are not 

involved, var is still widely used, and there are two reasons. One is 

just a matter of consistency: some people feel that because you have to 

use var for some LINQ queries, you should use it for all of them. A 

slightly better argument is that LINQ query types often have verbose 

and ugly names, and var results in less cluttered code. I have a slight 

preference for var here for the second reason, but will make the type 

explicit if I believe it makes the code easier to understand. 

How did C# know that I wanted to use LINQ to Objects? It’s because I used an array as 

the source in the from clause. More generally, LINQ to Objects will be used when you 

specify any IEnumerable<T> as the source, unless a more specialized provider is 

available. However, this doesn’t really explain how C# discovers the existence of 

providers in the first place, and how it chooses between them. To understand that, you 

need to know what the compiler does with a query expression. 

How Query Expressions Expand 

The compiler converts all query expressions into one or more method calls. Once it has 

done that, the LINQ provider is selected through exactly the same mechanisms that C# 

uses for any other method call. The compiler does not have any built in concept of what 

constitutes a LINQ provider, so it relies on convention. Example 10-4 shows what the 

compiler does with my second query expression, the one in Example 10-3. 

Example 10-4. The effect of a query expression 

IEnumerable<string> commaCultures = 

    CultureInfo.GetCultures(CultureTypes.AllCultures) 

    .Where(culture => culture.NumberFormat.NumberDecimalSeparator == ",") 

    .Select(culture => culture.Name); 

The Where and Select methods are examples of LINQ operators. A LINQ operator is 

nothing more than a method that conforms to one of the standard patterns. I’ll describe 

these patterns later in this chapter, in "Standard LINQ Operators". 
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The code in Example 10-4 is all one statement, and I’m chaining method calls together—

I call the Where method on the return value of GetCultures, and I call the Select 

method on the return value of Where. The formatting looks a little peculiar, but it’s too 

long to go on one line, and even though it’s not terribly elegant, I prefer to put the . at 

the start of the line when splitting chained calls across multiple lines, because it makes it 

much easier to see that each new line continues from where the last one left off. Leaving 

the period at the end of the preceding line looks much neater, but also makes it much 

easier to misread the code. 

The compiler has turned the where and select clauses’ expressions into lambdas. 

Notice that the range variable ends up as an argument to each lambda. This is one 

example of why you should not take the analogy between query expressions and 

foreach loops too literally. Unlike a foreach iteration variable, the range variable 

does not exist as a single conventional variable. In the query, it is just an identifier that 

represents an item from the source, and in expanding the query into method calls, C# may 

end up creating multiple real variables for a single range variable, like it has with the 

arguments for the two separate lambdas here. 

All query expressions boil down to this sort of thing—chained method calls with 

lambdas. Some are more complex than others. The expression in Example 10-1 ends up 

with a simpler structure despite looking almost identical to Example 10-3. Example 10-5 

shows how it expands. It turns out that when a query’s select clause just passes the 

range variable straight through, the compiler interprets that as meaning that we want to 

pass the results of the preceding clause straight through without further processing, so it 

doesn’t add a call to Select. (There is one exception to this: if you write a query 

expression that contains nothing but a from and a select clause, it will generate a call 

to Select even if the select clause is trivial.) 

Example 10-5. How trivial select clauses expand 

IEnumerable<string> commaCultures = 

    CultureInfo.GetCultures(CultureTypes.AllCultures) 

    .Where(culture => culture.NumberFormat.NumberDecimalSeparator == ","); 

The compiler has to work harder if you introduce multiple variables within the query’s 

scope. You can do this is with a let clause. Example 10-6 performs the same job as 

Example 10-3, but I’ve introduced a new variable called numFormat to refer to the 

number format. This makes my where clause shorter and easier to read, and in a more 

complex query that needed to refer to that format object multiple times, this technique 

could remove a lot of clutter. 

Example 10-6. Query with let clause 

IEnumerable<string> commaCultures = 

    from culture in CultureInfo.GetCultures(CultureTypes.AllCultures) 

    let numFormat = culture.NumberFormat 

    where numFormat.NumberDecimalSeparator == "," 

    select culture.Name; 

When you write a query that has more than just a single range variable, the compiler 

automatically generates a hidden class with a field for each of the variables so that it can 

make all the variables available at every stage. To get the same effect with ordinary 

method calls, we’d need to do something similar, and the easiest way to do that would be 

to introduce an anonymous type to contain them, as Example 10-7 shows. 

Example 10-7. How multi-variable query expressions expand (approximately) 
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IEnumerable<string> commaCultures = 

    CultureInfo.GetCultures(CultureTypes.AllCultures) 

    .Select(culture => new { culture, numFormat = culture.NumberFormat }) 

    .Where(vars => vars.numFormat.NumberDecimalSeparator == ",") 

    .Select(vars => vars.culture.Name); 

No matter how simple or complex they get, query expressions are simply a specialized 

syntax for method calls. This suggests how we might go about writing a custom source 

for a query expression. 

Supporting Query Expressions 

Because the C# compiler just converts the various clauses of a query expression into 

method calls, we can write a type that participates in these expressions by defining some 

suitable methods. To illustrate that the C# compiler really doesn’t care what these 

methods do, Example 10-8 shows a class that makes absolutely no sense, but which 

nonetheless keeps C# happy when used from a query expression. The compiler just 

mechanically converts a query expression into a series of method calls, so if suitable-

looking methods exist, the code will compile successfully. 

Example 10-8. Nonsensical Where and Select 

public class SillyLinqProvider 

{ 

    public SillyLinqProvider Where(Func<string, int> pred) 

    { 

        Console.WriteLine("Where invoked"); 

        return this; 

    } 

 

    public string Select<T>(Func<DateTime, T> map) 

    { 

        Console.WriteLine("Select invoked, with type argument " + typeof(T)); 

        return "This operator makes no sense"; 

    } 

} 

I can use an instance of this class as the source of a query expression. That’s crazy 

because this class does not in any way represent a collection of data, but the compiler 

doesn’t care. It just needs certain methods to be present, so if I write the code in Example 

10-9, the compiler will be perfectly happy even though the code doesn’t make any sense. 

Example 10-9. A meaningless query 

var q = from x in new SillyLinqProvider() 

        where int.Parse(x) 

        select x.Hour; 

The compiler converts this into method calls in exactly the same way that it did with the 

more sensible query in Example 10-1. Example 10-10 shows the result. If you’re paying 

close attention, you’ll have noticed that my range variable actually changes type part way 

through—my Where method requires a delegate that takes a string, so in that first 

lambda, x is of type string. But my Select method requires its delegate to take a 

DateTime, so that’s the type of x in that lambda. (And it’s all ultimately irrelevant 

because my Where and Select methods don’t use these lambdas.) Again, this is 

nonsense, but it shows how mechanically the C# compiler converts queries to method 

calls. 
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Example 10-10. How the compiler transforms the meaningless query 

var q = new SillyLinqProvider().Where(x => int.Parse(x)).Select(x => x.Hour); 

Obviously it’s not useful to write code that makes no sense. The reason I’m showing you 

this is to demonstrate that the query expression syntax knows nothing about semantics—

the compiler has no particular expectation of what any of the methods it invokes will do. 

All that it requires is that they accept lambdas as arguments, and return something other 

than void. 

Clearly the real work is happening elsewhere. It’s the LINQ providers themselves that 

make things happen. So now I’ll show what we would need to write to make the queries I 

showed in the first couple of examples work if LINQ to Objects didn’t exist. 

You’ve seen how LINQ to Objects queries are transformed into code such as that shown 

in Example 10-4, but this isn’t the whole story. The where clause becomes a call to the 

Where method, but we’re calling it on an array of type CultureInfo[], a type that 

does not in fact have a Where method. This only works because LINQ to Objects defines 

an extension method—as I showed in Chapter 3, it’s possible to add new methods to 

existing types, and LINQ to Objects does that for the IEnumerable<T> type. To use 

these extension methods, you need a using directive for the System.Linq 

namespace. (The extension methods are all defined by a static class called 

Enumerable, by the way.) Visual Studio adds such a directive to each C# file, so these 

methods are available by default. If you were to remove that directive, the compiler 

would produce this error for the query expression for Example 10-1 or Example 10-3: 

error CS1935: Could not find an implementation of the query pattern for source 

type 'System.Globalization.CultureInfo[]'.  'Where' not found.  Are you missing 

a reference to 'System.Core.dll' or a using directive for 'System.Linq'? 

In general, that error message’s suggestion would be helpful, but in this case, I want to 

write my own LINQ implementation. Example 10-11 does this, and I’ve shown the whole 

source file because extension methods are sensitive to use of namespaces and using 

directives. The contents of the Main method should look familiar—this is the code from 

Example 10-3, but this time, instead of using the LINQ to Objects provider, it will use the 

extension methods from my CustomLinqProvider class. (Normally you make 

extension methods available with a using directive, but because 

CustomLinqProvider is in the same namespace as the Program class, all of its 

extension methods are automatically available to Main.) 

Although Example 10-11 behaves as intended, you should not take this 

as an example of how a LINQ provider normally executes its queries. 

This does illustrate how LINQ providers put themselves in the picture, 

but as I’ll show later, there are some issues with how this code goes on 

to perform the query. Also, it’s obviously not complete—there’s more 

to LINQ than Where and Select. 

Example 10-11. A custom LINQ provider for CultureInfo[] 

using System; 

using System.Globalization; 

 

namespace CustomLinqExample 

{ 

    public static class CustomLinqProvider 
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    { 

        public static CultureInfo[] Where(this CultureInfo[] cultures, 

                                          Predicate<CultureInfo> filter) 

        { 

            return Array.FindAll(cultures, filter); 

        } 

 

        public static T[] Select<T>(this CultureInfo[] cultures, 

                                    Func<CultureInfo, T> map) 

        { 

            var result = new T[cultures.Length]; 

            for (int i = 0; i < cultures.Length; ++i) 

            { 

                result[i] = map(cultures[i]); 

            } 

            return result; 

        } 

    } 

 

    class Program 

    { 

        static void Main(string[] args) 

        { 

            var commaCultures = 

              from culture in CultureInfo.GetCultures(CultureTypes.AllCultures) 

              where culture.NumberFormat.NumberDecimalSeparator == "," 

              select culture.Name; 

 

            foreach (string cultureName in commaCultures) 

            { 

                Console.WriteLine(cultureName); 

            } 

        } 

    } 

} 

As you’re now well aware, the query expression in Main will first call Where on the 

source, and will then call Select on whatever Where returns. As before, the source is 

the return value of GetCultures, which is an array of type CultureInfo[]. That’s 

the type for which CustomLinqProvider defines extension methods, so this will 

invoke CustomLinqProvider.Where. That uses the Array class’s FindAll 

method to find all of the elements in the source array that match the predicate. The 

Where method passes its own argument straight through to FindAll as the predicate, 

and as you know, when the C# compiler calls Where, it passes a lambda based on the 

expression in the LINQ query’s where clause. That predicate will match the cultures 

that use a comma as their decimal separator, so the Where clause returns an array of type 

CultureInfo[] that only contains those cultures. 

Next the code that the compiler created for the query will call Select on the 

CultureInfo[] array returned by Where. Arrays don’t have a Select method, so 

the extension method in CustomLinqProvider will be used. My Select method is 

generic, so the compiler will need to work out what the type argument should be, and it 

can infer this from the expression in the select clause. First, the compiler transforms it 

into a lambda: culture => culture.Name. Because this becomes the second 

argument for Select, the compiler knows that we require a Func<CultureInfo, 
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T>, so it knows that the culture parameter must be of type CultureInfo. This 

enables it to infer that T must be string, because the lambda returns culture.Name, 

and that Name property’s type is string. So the compiler knows that it is invoking 

CustomLinqProvider.Select<string>. (The deduction I just described is not 

specific to query expressions here by the way. The type inference takes place after the 

query has been transformed into method calls. The compiler would have gone through 

exactly the same process if we had started with the code in Example 10-4.) 

The Select method will now produce an array of type string[] (because T is 

string here). It populates that array by iterating through the elements in the incoming 

CultureInfo[], passing each CultureInfo as the argument to the lambda that 

extracts the Name property. So we end up with an array of strings, containing the name 

of each of the cultures that uses a comma as its decimal separator. 

That’s a slightly more realistic example than my SillyLinqProvider, because this 

does now provide the expected behavior. However, although the query produces the same 

strings as it did when using the real LINQ to Objects provider, the mechanism by which 

it did so is somewhat different. My CustomLinqProvider performed each operation 

immediately—the Where and Select methods both returned fully populated arrays. 

LINQ to Objects does something quite different. In fact, so do most LINQ providers. 

Deferred Evaluation 

If LINQ to Objects worked in the same way as my custom provider in Example 10-11, it 

would not cope well with Example 10-12. This has a Fibonacci method that returns a 

never-ending sequence—it will keep providing numbers from the Fibonacci series for as 

long as code keeps asking for them. I have used the IEnumerable<BigInteger> 

returned by this method as the source for a query expression. As you can see, I’ve left the 

default using directive for System.Linq in place at the start, so I’m back to using 

LINQ to Objects here. 

Example 10-12. Query with an infinite source sequence 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Numerics; 

 

class Program 

{ 

    static IEnumerable<BigInteger> Fibonacci() 

    { 

        BigInteger n1 = 1; 

        BigInteger n2 = 1; 

        yield return n1; 

        while (true) 

        { 

            yield return n2; 

            BigInteger t = n1 + n2; 

            n1 = n2; 

            n2 = t; 

        } 

    } 
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    static void Main(string[] args) 

    { 

        var evenFib = from n in Fibonacci() 

                      where n % 2 == 0 

                      select n; 

 

        foreach (BigInteger n in evenFib) 

        { 

            Console.WriteLine(n); 

        } 

    } 

} 

This will use the Where extension method that LINQ to Objects provides for 

IEnumerable<T>. If that worked the same way as my CustomLinqExtension 

class’s Where method for CultureInfo[], this program would never make it as far 

as printing out a single number. My Where method did not return until it had filtered the 

whole of its input and produced a fully populated array as its output. If the LINQ to 

Objects Where method tried that with my infinite Fibonacci enumerator, it would never 

finish. 

In fact, Example 10-12 works perfectly—it produces a steady stream of output consisting 

of the Fibonacci numbers that are divisible by 2. So it’s not attempting to perform the 

filtering when we call Where. Instead, its Where method returns an 

IEnumerable<T> that filters items on demand. It won’t try to fetch anything from the 

input sequence until something asks for a value, at which point it will start retrieve one 

value after another from the source until the filter delegate says that a match has been 

found. It then returns that and doesn’t try to retrieve anything more from the source until 

it is asked for the next item. Example 10-13 shows how you could implement this 

behavior by taking advantage of C#’s yield return feature. 

Example 10-13. A custom deferred Where operator 

public static class CustomDeferredLinqProvider 

{ 

    public static IEnumerable<T> Where<T>(this IEnumerable<T> src, 

                                          Func<T, bool> filter) 

    { 

        foreach (T item in src) 

        { 

            if (filter(item)) 

            { 

                yield return item; 

            } 

        } 

    } 

} 

The real LINQ to Objects implementation of Where is somewhat more complex. It 

detects certain special cases such as arrays and lists, and it handles those in a way that is 

slightly more efficiently than the general-purpose implementation that it falls back to for 

other types. However, the principle is the same for Where and all of the other operators: 

these methods do not perform the specified work. Instead, they return objects which will 

perform the work on demand. It’s only when you attempt to retrieve the results of a query 

that anything really happens. This is called deferred evaluation. 
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Deferred evaluation has the benefit of not doing work until you need it, and it makes it 

possible to work with infinite sequences. However, it also has disadvantages. You may 

need to be careful to avoid evaluating queries multiple times. Example 10-14 makes this 

mistake, causing it to do much more work than necessary. This loops through several 

different numbers, and prints each one out using the currency format of each of the 

cultures that uses a comma as a currency separator. 

If you run this, you may find that most of the lines this code prints will 

contain ? characters, indicating that the console cannot display the 

most of the currency symbols. In fact it can, it just needs permission. 

By default, the Windows console uses an 8-bit code page for 

backwards compatibility reasons. If you run the command chcp 

65001 it will switch into a UTF-8 code page, enabling it to print any 

Unicode characters supported by your chosen console font. You might 

want to configure the console to use either Consolas or Lucida Console 

to take best advantage of that. 

Example 10-14. Accidental reevaluation of a deferred query 

var commaCultures = 

    from culture in CultureInfo.GetCultures(CultureTypes.AllCultures) 

    where culture.NumberFormat.NumberDecimalSeparator == "," 

    select culture; 

 

object[] numbers = { 1, 100, 100.2, 10000.2 }; 

 

foreach (object number in numbers) 

{ 

    foreach (CultureInfo culture in commaCultures) 

    { 

        Console.WriteLine(string.Format(culture, "{0}: {1:c}", 

                          culture.Name, number)); 

    } 

} 

The problem with this code is that even though the commaCultures variable is 

initialized outside of the number loop, we iterate through it for each number. And 

because LINQ to Objects uses deferred evaluation, that means that the actual work of 

running the query is redone every time round the outer loop. So instead of evaluating that 

where clause once for each culture (354 times on my system) it ends up running four 

times for each culture (1,416 times on my system) because the whole query is evaluated 

once for each of the four items in the numbers array. It’s not a disaster—the code still 

works correctly. But if you do this in a program that runs on a heavily loaded server, it 

will harm your throughput. 

If you know you will need to iterate through the results of a query multiple times, 

consider using either the ToList or ToArray extension methods provided by LINQ to 

Objects. These immediately evaluate the whole query once, producing an IList<T> or 

a T[] array respectively (so you shouldn’t use these methods on infinite sequences, 

obviously). You can then iterate through that as many times as you like without incurring 

any further costs (beyond the minimal cost inherent in reading all the elements of an 

array or list). 
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LINQ, Generics, and IQueryable<T> 

Most LINQ providers use generic types. Nothing enforces this, but it is very common. 

LINQ to Objects uses IEnumerable<T>. Several of the database providers use a type 

called IQueryable<T>. More broadly, the pattern is to have some generic type 

Source<T>, where Source represents some source of items, and T the type of an 

individual item. A source type with LINQ support makes operator methods available on 

Source<T> for any T, and those operators also typically return Source<TResult> 

where TResult may or may not be different than T. 

IQueryable<T> is interesting because it is designed to be used by multiple providers. 

This interface, its base IQueryable, and the related IQueryProvider are shown in 

Example 10-15. 

Example 10-15. IQueryable and IQueryable<T> 

public interface IQueryable : IEnumerable 

{ 

    Type ElementType { get; } 

    Expression Expression { get; } 

    IQueryProvider Provider { get; } 

} 

 

public interface IQueryable<out T> : IEnumerable<T>, IQueryable, IEnumerable 

{ 

} 

 

public interface IQueryProvider 

{ 

    IQueryable CreateQuery(Expression expression); 

    IQueryable<TElement> CreateQuery<TElement>(Expression expression); 

    object Execute(Expression expression); 

    TResult Execute<TResult>(Expression expression); 

} 

The most obvious feature of IQueryable<T> is that it adds no members to its bases. 

That’s because it’s designed to be used entirely via extension methods. The 

System.Linq namespace defines all of the standard LINQ operators for 

IQueryable<T> as extension methods provided by the Queryable class. However, 

all of these simply defer to the Provider property defined by the IQueryable base. 

So unlike LINQ to Objects, where the extension methods on IEnumerable<T> define 

the behavior, an IQueryable<T> implementation is able to decide how to handle 

queries because it gets to supply the IQueryProvider that does the real work. 

However, all IQueryable<T>-based LINQ providers have one thing in common: they 

interpret the lambdas as expression objects, not delegates. Example 10-16 shows the 

declaration of the Where extension methods defined for IEnumerable<T> and 

IQueryable<T>. Compare the predicate parameters. 

Example 10-16. Enumerable vs Queryable 

public static class Enumerable 

{ 

    public static IEnumerable<TSource> Where<TSource>( 

        this IEnumerable<TSource> source, 
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        Func<TSource, bool> predicate) 

    ... 

} 

 

public static class Queryable 

{ 

    public static IQueryable<TSource> Where<TSource>( 

        this IQueryable<TSource> source, 

        Expression<Func<TSource, bool>> predicate) 

    ... 

} 

The Where extension for IEnumerable<T> (LINQ to Objects) takes a 

Func<TSource,bool>, and as you saw in Chapter 9, this is a delegate type. But the 

Where extension method for IQueryable<T> (used by numerous LINQ providers) 

takes Expression<Func<TSource,bool>>, and as you also saw in Chapter 9, this 

causes the compiler to build an object model of the expression and pass that as the 

argument. 

The usual reason for a LINQ provider to use IQueryable<T> is because it wants these 

expression trees. So when a provider uses that interface, it usually means that it’s going 

to inspect your query and convert it into something else, such as a SQL query. 

There are some other common generic types that crop up in LINQ. Some LINQ features 

guarantee to produce items in a certain order and some do not. More subtly, a handful of 

operators produce items in an order that depends upon the order of their input. This can 

be reflected in the types for which the operators are defined, and the types they return. 

LINQ to Objects defines IOrderedEnumerable<T> to represent ordered data, and 

there’s a corresponding IOrderedQueryable<T> type for IQueryable<T>-based 

providers. (Providers that use their own types tend to do something similar—Parallel 

LINQ defines an OrderedParallelQuery<T> for example.) These interfaces derive 

from their unordered counterparts such as IEnumerable<T> and IQueryable<T>, 

so all the usual operators are available, but they make it possible to define operators or 

other methods that need to take the existing order of their input into account. For 

example, in the "Ordering" section later in this chapter, I’ll show a LINQ operator called 

ThenBy, which is only available on sources that are already ordered. 

When looking at LINQ to Objects, this ordered/unordered distinction may seem 

unnecessary, because IEnumerable<T> always produces items in some sort of order. 

But some providers do not necessary do things in any particular order, perhaps because 

they parallelize query execution, or because they get a database to execute the query for 

them, and databases reserve the right to meddle with the order in certain cases if it 

enables them to work more efficiently. 

Standard LINQ Operators 

In this section, I will describe the standard operators that LINQ providers can supply. 

Where applicable, I will also describe the query expression equivalent, although many 

operators do not have a corresponding query expression form. Some LINQ features are 

only available through explicit method invocation. This is even true with certain 

operators that can be used in query expressions, because most operators are overloaded, 

and query expressions can’t use some of the more advanced overloads. 
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LINQ operators are not operators in the usual C# sense—they are not 

symbols such as + or &&. LINQ has its own terminology, and for this 

chapter, an operator is a query capability offered by a LINQ provider. 

In C# it looks like a method. 

All of these operators have something in common: they have all been designed to support 

composition. Operators not only take some type representing a set of items (e.g, an 

IEnumerable<T>) most of them also return something representing a set of items. The 

item type is not always the same—in some cases an operator might take some 

IEnumerable<T> as input, and produce IEnumerable<TResult> as output, 

where TResult does not have to be the same as T. Even so, you can still chain the 

things together in any number of different ways. Part of the reason this works is that 

LINQ operators are like mathematical functions, in that they do not modify their inputs—

they produce a new result that is based on their operands. (Functional programming 

languages typically have the same characteristic.) This means that not only are you free 

to plug operators together in arbitrary combinations without fear of side effects, you are 

also free to use the same source as the input to multiple queries, because no LINQ query 

will ever modify its input. Each operator returns a new query based on its input. 

It is possible to write an IEnumerable<T> implementation in which 

iterating through the items has side effects. However, this is a bad idea, 

particularly if you are using LINQ, because LINQ is designed around 

the assumption that you can enumerate a collection without 

consequences other than consuming resources such as CPU time. 

Nothing enforces this functional style. As you saw with my SillyLinqProvider, the 

compiler doesn’t care what a method representing a LINQ operator does. However, the 

convention is that operators are functional, in order to support composition. The built-in 

LINQ providers all work this way. 

Not all providers provide complete support for all operators. The main providers in the 

.NET Framework such as LINQ to Objects, Entities, or SQL are as comprehensive as 

they can be, but I will show that there are some situations in which certain operators will 

not make sense. 

To demonstrate the operators in action, I need some source data. Many of the examples in 

the following sections will use the code in Example 10-17. 

Example 10-17. Sample input data for LINQ queries 

public class Course 

{ 

    public string Title { get; set; } 

 

    public string Category { get; set; } 

 

    public int Number { get; set; } 

 

    public DateTime PublicationDate { get; set; } 

 

    public TimeSpan Duration { get; set; } 

 

    public static readonly Course[] Catalog = 

    { 
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        new Course 

        { 

            Title = "Elements of Geometry", 

            Category = "MAT", Number = 101, Duration = TimeSpan.FromHours(3), 

            PublicationDate = new DateTime(2009, 5, 20) 

        }, 

        new Course 

        { 

            Title = "Squaring the Circle", 

            Category = "MAT", Number = 102, Duration = TimeSpan.FromHours(7), 

            PublicationDate = new DateTime(2009, 4, 1) 

        }, 

        new Course 

        { 

            Title = "Recreational Organ Transplantation", 

            Category = "BIO", Number = 305, Duration = TimeSpan.FromHours(4), 

            PublicationDate = new DateTime(2002, 7, 19) 

        }, 

        new Course 

        { 

            Title = "Hyperbolic Geometry", 

            Category = "MAT", Number = 207, Duration = TimeSpan.FromHours(5), 

            PublicationDate = new DateTime(2007, 10, 5) 

        }, 

        new Course 

        { 

            Title = "Oversimplified Data Structures for Demos", 

            Category = "CSE", Number = 104, Duration = TimeSpan.FromHours(2), 

            PublicationDate = new DateTime(2012, 2, 21) 

        }, 

        new Course 

        { 

            Title = "Introduction to Human Anatomy and Physiology", 

            Category = "BIO", Number = 201, Duration = TimeSpan.FromHours(12), 

            PublicationDate = new DateTime(2001, 4, 11) 

        }, 

    }; 

} 

Filtering 

One of the simplest operators is Where, which filters its input. You provide a function 

that takes an individual item and returns a bool, and Where returns an object 

representing the items from the input for which the predicate is true. (Conceptually this is 

very similar to the FindAll method available on List<T> and array types, but using 

deferred execution.) 

As you’ve already seen, query expressions represent this with a where clause. However, 

an overload of the Where operator provides an additional feature that is not accessible 

from a query expression. You can write a filter lambda that takes two arguments: an item 

from the input and an index representing that item’s position in the source. Example 10-

18 uses this form to remove every 2nd number from the input, and it also removes courses 

shorter than three hours. 

Example 10-18. Where operator with index 
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IEnumerable<Course> q = Course.Catalog.Where( 

    (course, index) => (index % 2 == 0) && course.Duration.TotalHours >= 3); 

Indexed filtering is only meaningful for ordered data. It always works with LINQ to 

Objects, because that works with IEnumerable<T>, which produces items one after 

another, but not all LINQ providers process items in sequence. For example, if you’re 

using LINQ to Entities, the LINQ queries you write in C# will be handled on the 

database. Unless a query explicitly requests some particular order, a database is usually 

free to process items in whatever order it sees fit, possibly processing items in parallel. In 

some cases, a database may have optimization strategies that enable it to produce the 

results a query requires with a process that bears little resemblance to the original query, 

so it might not even be meaningful talk about, say, the 14th item handled by a WHERE 

clause. Consequently, it you were to write a query similar to Example 10-18 using LINQ 

to Entities, executing the query would cause an exception, complaining that the indexed 

Where operator is not applicable. If you’re wondering why the overload is even 

available from a provider that doesn’t support it, it’s because LINQ to Entities uses 

IQueryable<T>, so all the standard operators are available at compile time; providers 

that choose to use IQueryable<T> can only report the non-availability of operators at 

runtime. 

Even so, you might have expected the exception to emerge when you invoke Where, 

instead of when you try to execute the query (i.e., when you first try to retrieve one or 

more items). However, providers that convert LINQ queries into some other form such as 

a SQL query typically defer all validation until you execute the query. This is because 

some operators may be valid only in certain scenarios, meaning that the provider may not 

know whether any particular operator will work until you’ve finished building the whole 

query. It would be inconsistent if errors caused by non-viable queries sometimes emerged 

while building the query, and sometimes when executing it, so even in cases where a 

provider can know for certain that a particular operator will fail, it will usually wait until 

you execute the query to tell you. 

The Where operator’s filter lambda must take an argument of the item type (the T in 

IEnumerable<T>, for example) and it must return a bool. You may remember from 

Chapter 9 that the class library defines a suitable delegate type called Predicate<T>, 

but I also mentioned in that chapter that LINQ avoids this, and it should now be clear 

why. The indexed version of the Where operator cannot use Predicate<T> because 

there’s an additional argument, so that overload uses Func<T, int, bool>. LINQ 

providers tend to use Func across the board so that operators with similar meanings have 

similar-looking signatures, so although the unindexed form of Where could use 

Predicate<T>, most providers use Func<T, bool> instead, to be consistent with 

the indexed version. (C# doesn’t care which you use—query expressions still work if the 

provider uses Predicate<T>, as my custom Where operator in Example 10-11 

shows, but none of Microsoft’s providers do this.) 

LINQ defines another filtering operator: OfType<T>. This is useful if your source 

contains mixture of different item types—perhaps the source is an 

IEnumerable<object> and you’d like to filter this down to only the items of type 

string. Example 10-19 shows how the OfType<T> operator can produce just those 

objects that are strings. 

Example 10-19. The OfType<T> operator 

static void ShowAllStrings(IEnumerable<object> src) 
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{ 

    var strings = src.OfType<string>(); 

    foreach (string s in strings) 

    { 

        Console.WriteLine(strings); 

    } 

} 

Both Where and OfType<T> will produce empty sequences if none of the objects in 

the source meet the requirements. This is not considered to be an error—empty sequences 

are quite normal in LINQ. Many operators can produce them as output, and most 

operators can cope with them as input. 

Select 

When writing a query, we may want to extract only certain pieces of data from the source 

items. I’ve shown examples that have displayed only the title of a course, or its category, 

even though the query returned a sequence in which each item was the entire course 

object. The select clause at the end of most queries lets us supply a lambda that will be 

used to produce the final output items, and there are a couple of reasons we might want to 

make our select clause do more than simply passing each item straight through. We 

might want to pick just one specific piece of information from each item, or we might 

want to transform it into something else entirely. 

You’ve seen several select clauses already, and I showed in Example 10-3 that the 

compiler turns them into a call to Select. However, as with many LINQ operators, the 

version accessible through a query expression is not the only option. There’s one other 

overload, which provides not just the input item from which to generate the output item, 

but also the index of that item. Example 10-20 uses this to generate a numbered list of 

course titles. 

Example 10-20. Select operator with index 

IEnumerable<string> nonIntro = Course.Catalog.Select((course, index) => 

      string.Format("Course {0}: {1}", index + 1, course.Title)); 

Be aware that the zero-based index passed into the lambda will be based on what comes 

into the Select operator, and will not necessarily represent the item’s original position 

in the source. This might not produce the results you were hoping for in code such as 

Example 10-21. 

Example 10-21. Indexed Select downstream of Where operator 

IEnumerable<string> nonIntro = Course.Catalog 

    .Where(c => c.Number >= 200) 

    .Select((course, index) => string.Format("Course {0}: {1}", 

                                             index, course.Title)); 

This code will select the courses found at indexes 2, 3, and 5 respectively in the 

Course.Catalog array, because those are the courses whose Number property 

satisfies the Where expression. However, this query will number the three courses as 0, 

1, and 2, because the Select operator only sees the items the Where clause let through. 

As far as it is concerned, there are only three items because the Select clause never had 

access to the original source. If you wanted the indices relative to the original collection, 

you’d need to extract those upstream of the Where clause, as Example 10-22 shows. 
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Example 10-22. Indexed Select upstream of Where operator 

IEnumerable<string> nonIntro = Course.Catalog 

    .Select((course, index) => new { course, index }) 

    .Where(vars => vars.course.Number >= 200) 

    .Select(vars => string.Format("Course {0}: {1}", 

                                    vars.index, vars.course.Title)); 

The indexed Select operator is similar to the indexed Where operator. So as you 

would probably expect, not all LINQ providers support it in all scenarios. 

Data shaping and anonymous types 

If you are using a LINQ provider to access a database, the Select operator can offer an 

opportunity to reduce the quantity of data you fetch from the database, which could 

reduce the load on the server. When you use a data access technology such as the Entity 

Framework or LINQ to SQL to execute a query that returns a set of objects representing 

persistent entities, there’s a tradeoff between doing too much work up front, and having 

to do lots of extra deferred work. Should those frameworks fully populate all of the object 

properties that correspond to columns in various database tables? Should they also load 

related objects? In general, it’s more efficient not to fetch data you’re not going to use, 

and data that is not fetched up front can always be loaded later on demand. However, if 

you try to be too frugal in your initial request, you may ultimately end up making a lot of 

extra requests to fill in the gaps, which could outweigh any benefit from avoiding 

unnecessary work. 

When it comes to related entities, the Entity Framework and LINQ to SQL allow you to 

configure what should be prefetched and what should be loaded on demand, but for any 

particular entity that gets fetched, all properties relating to columns are typically fully 

populated. This means queries that request whole entities end up fetching all the columns 

for any row that they touch. 

If you only needed to use one or two columns, this is relatively expensive. Example 10-

23 uses this somewhat inefficient approach. (This is based on one of Microsoft’s example 

databases, the AdventureWorks Light 2008 sample.) It shows a fairly typical LINQ to 

Entities query. 

Example 10-23. Fetching more data than is needed 

var pq = from product in dbCtx.Products 

            where product.ListPrice > 3000 

            select product; 

foreach (var prod in pq) 

{ 

    Console.WriteLine("{0} ({2}): {1}", prod.Name, prod.ListPrice, prod.Size); 

} 

This LINQ provider translates the where clause into an efficient SQL equivalent. 

However, the SQL SELECT clause retrieves all 17 columns from the table. Compare that 

with Example 10-24. This modifies only one part of the query: the LINQ select clause 

now returns an instance of an anonymous type that contains only those properties we 

require. (The loop that follows the query can remain the same. It uses var for its 

iteration variable, which will work fine with the anonymous type, which provides the 

three properties that loop requires.) 

Example 10-24. A select clause with an anonymous type 
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var pq = from product in dbCtx.Products 

            where (product.ListPrice > 3000) 

            select new { product.Name, product.ListPrice, product.Size }; 

The code produces exactly the same results, but it generates a much more compact SQL 

query that requests only the Name, ListPrice, and Size columns. This will produce 

a significantly smaller response because it’s no longer dominated by data we don’t need, 

reducing the load on the network connection to the database server, and also resulting in 

faster processing because the data will take less time to arrive. This technique is called 

data shaping. 

This approach will not always be an improvement. For one thing, it means you are 

working directly with data in the database instead of using entity objects. This might 

mean working at a lower level of abstraction than would be possible if you use the entity 

types, which might increase development costs. Also, in some environments, database 

administrators do not allow ad hoc queries, in which case you won’t have the flexibility 

to use this technique. 

Projecting the results of a query into an anonymous type is not limited to database queries 

by the way. You are free to do this with any LINQ provider, such as LINQ to Objects. It 

can sometimes be a useful way to get structured information out of a query without 

needing to define a class specially. 

Projection and mapping 

The Select operator is sometimes referred to as projection, and it is the same operation 

that many languages call map, which provides a slightly different way to think about the 

Select operator. So far, I’ve presented Select as a way to choose what comes out of 

a query, but another way to look at it is as a way to apply a transformation to every object 

in the source. Example 10-25 uses Select to produce modified versions of a list of 

numbers. It variously doubles the numbers, squares them, and turns them into text. 

Example 10-25. Using Select to transform numbers 

int[] numbers = { 0, 1, 2, 3, 4, 5 }; 

 

IEnumerable<int> doubled = numbers.Select(x => 2 * x); 

IEnumerable<int> squared = numbers.Select(x => x * x); 

IEnumerable<string> numberText = numbers.Select(x => x.ToString()); 

Incidentally, Select is conceptually the same operation as one part of what Google 

calls Map Reduce. (LINQ’s name for reduce is Aggregate.) Of course, the interesting 

thing about Map Reduce is not the map or reduce operations—they are pretty ordinary—

it’s the highly parallelized distributed execution. Microsoft Research developed a 

distributed version of LINQ called DryadLINQ. This was being developed into a product 

called LINQ to HPC (High Performance Computing), but that was sadly abandoned near 

the end of its beta cycle. However, there is some scope for parallelization: one of the 

providers that ships with .NET is Parallel LINQ, which I’ll discuss later. 

SelectMany 

The SelectMany LINQ operator is used in query expressions that have multiple from 

clauses. It’s called SelectMany because instead of selecting a single output item for 

each input item, you provide it with a lambda that produces a whole collection for each 

input item. The resulting query produces all of the objects from all of these collections, as 
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though each of the collections your lambda returns were merged into one. There are a 

couple of ways of thinking about this operator. One is that is provides a means of 

flattening two levels of hierarchy—a collection of collections—into a single level. But 

another way to look at it is as a Cartesian product, that is, a way to produce every 

possible combination from some input sets. 

Example 10-26 shows how to use this operator in a query expression, and Example 10-27 

shows the equivalent of that query expression, using the operator directly. This code 

highlights the Cartesian-product-like behavior. It prints every combination of the letters 

A, B, and C with a single digit from 1 to 5, i.e. A1, B1, C1, A2, B2, C2, etc. 

Example 10-26. Using SelectMany from a query expression 

int[] numbers = { 1, 2, 3, 4, 5 }; 

string[] letters = { "A", "B", "C" }; 

 

IEnumerable<string> combined = from number in numbers 

                               from letter in letters 

                               select letter + number; 

foreach (string s in combined) 

{ 

    Console.WriteLine(s); 

} 

Example 10-27. SelectMany operator 

IEnumerable<string> combined = numbers.SelectMany( 

        number => letters, 

        (number, letter) => letter + number); 

This example uses two fixed collections—the second from clause returns the same 

letters collection every time. However, you can make the expression in the second 

from clause return a value based on the current item from the first from clause. You 

can see in Example 10-27 that the first lambda passed to SelectMany (which actually 

corresponds to the second from clause’s final expression) receives the current item from 

the first collection through its number argument, so you can use that to choose a 

different collection for each item from the first collection. I can use this to exploit 

SelectMany’s flattening behavior. 

I’ve copied a jagged array from an example in Chapter 5 into Example 10-28, which then 

processes it with a query containing two from clauses. Note that the expression in the 

second from clause is now item, the range variable of the first from clause. 

Example 10-28. Flattening a jagged array 

int[][] arrays = 

{ 

    new[] { 1, 2 }, 

    new[] { 1, 2, 3, 4, 5, 6 }, 

    new[] { 1, 2, 4 }, 

    new[] { 1 }, 

    new[] { 1, 2, 3, 4, 5 } 

}; 

 

IEnumerable<int> combined = from item in arrays 

                            from number in item 

                            select number; 
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The first from clause asks to iterate over each item in the top-level array. That item is 

also an array of course, and the second from clause asks to iterate over each of these 

nested arrays. This nested array’s type is int[], so the range variable of the second 

from clause, number, represents an int from that nested array. The select clause 

just returns each of these int values. 

The resulting sequence provides every number in the arrays in turn. It has flattened the 

jagged array into a simple linear sequence of numbers. This behavior is conceptually 

similar to writing a nested pair of loops, one iterating over the outer int[][] array, and 

an inner loop iterating over the contents of each individual int[] array. 

The compiler uses the same overload of SelectMany for Example 10-28 as it does for 

Example 10-27, but there’s an alternative in this case. The final select clause is 

simpler in Example 10-28—it just passes on items from the second collection 

unmodified, which means the simpler overload shown in Example 10-29 does the job 

equally well. With this overload, we just provide a single lambda, which chooses the 

collection that SelectMany will expand for each of the items in the input collection. 

Example 10-29. SelectMany without item projection 

var combined = arrays.SelectMany(item => item); 

That’s a somewhat terse bit of code, so in case it’s not clear how quite how that could end 

up flattening the array, Example 10-30 shows how you might implement SelectMany 

for IEnumerable<T> if you had to write it yourself. 

Example 10-30. One implementation of SelectMany 

static IEnumerable<T2> MySelectMany<T, T2>( 

            this IEnumerable<T> src, Func<T, IEnumerable<T2>> getInner) 

{ 

    foreach (T itemFromOuterCollection in src) 

    { 

        IEnumerable<T2> innerCollection = getInner(itemFromOuterCollection); 

        foreach (T2 itemFromInnerCollection in innerCollection) 

        { 

            yield return itemFromInnerCollection; 

        } 

    } 

} 

Why does the compiler not use the simpler option shown in Example 10-29? The C# 

language specification defines how query expressions are translated into method calls, 

and it only mentions the overload shown in Example 10-26. Perhaps the reason the 

specification doesn’t mention the simpler overload is to reduce the demands C# makes of 

types that want to support this double-from query form—you’d only need to write one 

method to enable this syntax for your own types. However, .NET’s various LINQ 

providers are more generous, providing this simpler overload for the benefit of 

developers who choose to use the operators directly. In fact most providers define two 

more overloads: there are versions of both the SelectMany forms we’ve seen so far 

that also pass an item index to the first lambda. (The usual caveats about indexed 

operators apply, of course.) 

Although Example 10-30 gives a reasonable idea of what LINQ to Objects does in 

SelectMany, it’s not the exact implementation. There are optimizations for special 

cases. Moreover, other providers may use very different strategies. Databases often have 
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built-in support for Cartesian products, so some providers may implement SelectMany 

in terms of that. 

Ordering 

In general, LINQ queries do not guarantee to produce items in any particular order unless 

you explicitly define the order you require. You can do this in a query expression with an 

orderby clause. As Example 10-31 shows, you specify the expression by which you’d 

like the items to be ordered, and a direction—so this will produce a collection of courses 

ordered by ascending publication date. As it happens, ascending is the default, so can 

leave off that qualifier without changing the meaning. As you’ve probably guessed, you 

can specify descending to reverse the order. 

Example 10-31. Query expression with orderby clause 

var q = from course in Course.Catalog 

        orderby course.PublicationDate ascending 

        select course; 

The compiler transforms the orderby clause in Example 10-31 to a call to the 

OrderBy method, and it would use OrderByDescending if you had specified a 

descending sort order. With source types that make a distinction between ordered and 

unordered items, these operators return the ordered type, e.g. 

IOrderedEnumerable<T> for LINQ to Objects, and IOrderedQueryable<T> 

for IQueryable<T>-based providers. 

With LINQ to Objects, these operators have to retrieve every element 

from their input before they can produce any output elements. An 

ascending OrderBy can only know which item to return first once it 

has found the lowest item, and it won’t know for certain which is the 

lowest until it has seen all of them. Some providers will have additional 

knowledge about the data that can enable more efficient strategies. 

(E.g., a database may be able to use an index to return values in the 

order required.) 

The OrderBy and OrderByDescending operators each have two overloads, only 

one of which is available from a query expression. If you invoke the methods directly, 

you can supply an additional parameter of type IComparer<TKey>, where TKey is 

the type of the expression by which the items are being sorted. This is likely to be 

important if you sort based on a string property, because there are several different 

orderings for text, and you may need to choose one based on your application’s locale, or 

you may want to specify a culture-invariant ordering. 

The expression that determines the order in Example 10-31 is very simple—it just 

retrieves the PublicationDate property from the source item. You can write more 

complex expressions if you want to. If you’re using a provider that translates a LINQ 

query into something else, there may be limitations. If the query runs on the database, 

you may be able to refer to other tables—the provider might be able to convert an 

expression such as product.ProductCategory.Name into a suitable join. 

However, you will not be able to run any old code in that expression, because it has to be 

something that the database can execute. But LINQ to Objects just invokes the expression 

once for each object, so you really can put whatever code you like in there. 
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You may want to sort by multiple criteria. You should not do this by writing multiple 

orderby clauses. Example 10-32 makes this mistake. 

Example 10-32. How NOT to apply multiple ordering criteria 

var q = from course in Course.Catalog 

        orderby course.PublicationDate ascending 

        orderby course.Duration descending // BAD! Could discard previous order 

        select course; 

This code orders the items by publication date, and then by duration, but does so as two 

separate and unrelated steps. The second orderby clause only guarantees that the 

results will be in the order specified in that clause, and does not guarantee to preserve 

anything about the order in which the elements came in. If what you actually wanted was 

for the items to be in order of publication date, and for any items with the same 

publication date to be ordered by descending duration, you would need to write the query 

in Example 10-33. 

Example 10-33. Multiple ordering criteria in a query expression 

var q = from course in Course.Catalog 

        orderby course.PublicationDate ascending, course.Duration descending 

        select course; 

LINQ defines separate operators for this multi-level ordering: ThenBy and 

ThenByDescending. Example 10-34 shows how to achieve the same effect as the 

query expression in Example 10-33 by invoking the LINQ operators directly. For LINQ 

providers whose types make a distinction between ordered and unordered collections, 

these two operators will only be available on the ordered form, such as 

IOrderedQueryable<T> or IOrderedEnumerable<T>. If you were to try to 

invoke ThenBy directly on Course.Catalog, you would get a compiler error. 

Example 10-34. Multiple ordering criteria with LINQ operators 

var q = Course.Catalog 

    .OrderBy(course => course.PublicationDate) 

    .ThenByDescending(course => course.Duration); 

You will find that some LINQ operators preserve some aspects of ordering even if you do 

not ask them to. For example, LINQ to Objects will typically produce items in the same 

order in which they appeared in the input unless you write a query that causes it to 

change the order. But this is simply an artifact of how LINQ to Objects works, and you 

should not rely on it in general. In fact even when you are using that particular LINQ 

provider, you should check with the documentation to see whether the order you’re 

getting is guaranteed, or just an accident of implementation. In general, if you care about 

the order, you should always write a query that makes that explicit. 

Containment Tests 

LINQ defines various standard operators for discovering things about what the collection 

contains. Some providers may be able to implement these operators without needing to 

inspect every item. (For example, a database-based provider may use a WHERE clause, 

and the database may be able to use an index to evaluate that without needing to look at 

every element.) However, there are no restrictions—you can use these operators however 

you like, and it’s up to the provider to discover whether it can exploit a shortcut. 
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Unlike most LINQ operators, these return neither a collection nor an 

item from their input. They just return true or false, or in some cases, a 

count. 

The simplest operator is Contains. There are two overloads: one takes an item, while 

the other takes an item and an IEqualityComparer<T> so that you can customize 

how the operator determines whether an item in the source is the same as the specified 

item. Contains returns true if the source contains the specified item and false if it does 

not. (If you use the single-argument version with a collection that implements 

IList<T>, LINQ to Objects will detect that, and its implementation of Contains just 

defers to the collection. If you either use a non-IList<T> collection, or you provide a 

custom equality comparer, it has to examine every item in the collection.) 

If instead of looking for a particular value, you want to know whether a collection 

contains any values that satisfy some particular criteria, you can use the Any operator. 

This takes a predicate, and it returns true if the predicate is true for at least one item in the 

source. If you want to know how many items match some criteria, you can use the 

Count operator. This also takes a predicate, and instead of returning a bool, it returns 

an int. If you are working with very large collections, the range of int may be 

insufficient, in which case you can use the LongCount operator, which returns a 64-bit 

count. (This is likely to be overkill for most LINQ to Objects applications, but it could 

matter when the collection lives in a database.) 

The Any, Count, and LongCount operators have overloads that do not take any 

arguments. For Any, this tells you whether the source contains at least one element, and 

for Count and LongCount, these overloads tell you how many elements the source 

contains. 

Be wary of code such as if (q.Count() > 0). Calculating the 

exact count may require the entire query to be evaluated, and in any 

case, it is likely to require more work than simply answering the 

question: is this empty? If q refers to a LINQ query, writing if 

(q.Any()) is likely to be more efficient. (This is not necessary for 

list-like collections, where retrieving an element count is cheap, and 

may actually be more efficient than the Any operator.) 

A close relative to the Any operator is the All operator. This one is not overloaded—it 

takes a predicate, and it returns true if and only if the source contains no items that do not 

match the predicate. I used an awkward double negative in the preceding sentence for a 

reason: All returns true when applied to an empty sequence, because an empty sequence 

certainly doesn’t contain any elements that fail to match the predicate for the simple 

reason that it doesn’t contain any elements at all. 

[This next paragraph contains some characters with slightly out-there Unicode code 

points. It is brought to you by the quantifiers  and  (codepoints 2203 and 2200), the 
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Element Of character  (codepoint 2208), the Logical And character  (codepoint 2227) 

and the Mathematical Double-Struck Capital,  (codepoint 1D54D). That last one is 

especially awesome because it’s not even in the basic multilingual plane. Word has 

chosen the Cambria Math font to make this work, but presumably we need to be careful 

that these don’t get lost when this goes to production.] 

This may seems like a curiously pig-headed form of logic. It’s reminiscent of the child 

who, when asked “Have you eaten your vegetables?” unhelpfully replies “I ate all the 

vegetables I put on my plate,” neglecting to mention that he didn’t put any vegetables on 

his plate in the first place. It’s not technically untrue, but it fails to provide the 

information the parent was looking for. Nonetheless, the operators work this way for a 

reason: they correspond to some standard mathematical logical operators. Any is the 

existential quantifier, usually written as a backwards E ( ) and pronounced “there exists” 

and All is the universal quantifier, usually written as an upside-down A ( ) and 

pronounced “for all”. Mathematicians long ago agreed on a convention for statements 

that apply the universal quantifier to an empty set. For example, defining  as the set of 

all vegetables I can assert that v : (v  )  putOnPlateByMe(v)} eatenByMe(v), or in 

English, for each vegetable that I put on my plate, it is true to say that I ate that vegetable. 

This statement is deemed to be true if the set is empty, and rather pleasingly, the proper 

term for such a statement is a vacuous truth. Perhaps mathematicians don’t like 

vegetables either. 

Specific Items and Subranges 

It can be useful to write a query that produces just a single item. Perhaps you’re looking 

for the first object in a list that meets certain criteria, or maybe you want to fetch 

information in a database identified by a particular key. LINQ defines several operators 
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that can do this, and some related ones for working with a subrange of the items a query 

might return. 

Use the Single operator when you have a query that you believe should produce 

exactly one result. Example 10-35 shows just such a query—it looks up a course by its 

category and number, and in my sample data, this uniquely identifies a course. 

Example 10-35. Appling the Single operator to a query 

var q = from course in Course.Catalog 

        where course.Category == "MAT" && course.Number == 101 

        select course; 

 

Course geometry = q.Single(); 

Because LINQ queries are built by chaining operators together, we can take the query 

built by the query expression and add on another operator, the Single operator in this 

case. While most operators would return an object representing another query—an 

IEnumerable<T> here since we’re using LINQ to Objects—Single is different. 

Like ToArray and ToList, the Single operator evaluates the query immediately, 

and it then returns the one and only object that the query produced. If the query fails to 

produce exactly one object—perhaps it produces no items, or two—this will throw an 

InvalidOperationException. 

There’s an overload of the Single operator that takes a predicate. As Example 10-36 

shows, this allows us to express the same logic as the whole of Example 10-35 more 

compactly. (As with the Where operator, all the predicate-based operators in this section 

use Func<T,bool>, not Predicate<T>.) 

Example 10-36. Single operator with predicate 

Course geometry = Course.Catalog.Single( 

    course => course.Category == "MAT" && course.Number == 101); 

The Single operator is unforgiving: if your query does not return exactly one item, it 

will fail. There’s a slightly more flexible variant called SingleOrDefault which 

allows a query to return either one item or no items. If the query returns nothing, this 

method returns the default value for the item type, i.e. null if it’s a reference type, zero if 

it’s a numeric type, and false if the type is bool. Multiple matches still cause an 

exception. As with Single, there are two overloads, one with no arguments for use on a 

source that you believe contains no more than one object, and one that takes a predicate 

lambda. 

LINQ defines two related operators, First and FirstOrDefault, each of which 

offer overloads taking no arguments or a predicate. For sequences containing zero or one 

items, these behave in exactly the same way as Single and SingleOrDefault: they 

return the item if there is one, and if there isn’t, First will throw an exception while 

FirstOrDefault will return null or an equivalent value. However, these operators 

respond differently when there are multiple results—instead of throwing an exception, 

they just pick the first result and return that, discarding the rest. This might be useful if 

you want to find the most expensive item in a list—you could order a query by 

descending price and then pick the first result. Example 10-37 uses a similar technique to 

pick the longest course from my sample data. 

Example 10-37. Using First to select the longest course 
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var q = from course in Course.Catalog 

        orderby course.Duration descending 

        select course; 

Course longest = q.First(); 

If you have a query that doesn’t guarantee any particular order for its results, these 

operators will pick one item arbitrarily. 

Do not use First or FirstOrDefault unless you expect there to 

be multiple matches, and you only want to process one of them. Some 

developers use these when they expect only a single match. The 

operators will work of course, but the Single and 

SingleOrDefault operators more accurately express your 

expectations. They will let you know when your expectations were 

misplaced by throwing an exception when there are multiple matches. 

If your code embodies incorrect assumptions, it’s usually best to know 

about it instead of plowing on regardless. 

The existence of First and FirstOrDefault raises an obvious question: can I pick 

the last item? And yes, there are also Last and LastOrDefault operators, and again, 

each offers two overloads, one taking no arguments, and one taking a predicate. 

The next obvious question is: what if I want a particular element that’s neither the first 

nor the last. Your wish is, in this particular instance, LINQ’s command, because it offers 

ElementAt and ElementAtOrDefault operators, both of which take just an index. 

(There are no overloads.) This provides a way to access elements of any 

IEnumerable<T> by index, but be careful: if you ask for the 10,000th element, these 

operators may need to request and discard the first 9,999 elements to get there. As it 

happens, LINQ to Objects detects when the source object implements IList<T>, in 

which case it uses the indexer to retrieve the element directly instead of going the slow 

way round. But not all IEnumerable<T> implementations support random access, so 

these operators can be very slow. In particular, even if your source implements 

IList<T>, once you’ve applied one or more LINQ operators to it, the output of those 

operators will typically not support indexing. So it would be particularly disastrous to use 

ElementAt in a loop of the kind shown in Example 10-38. 

Example 10-38. How NOT to use ElementAt 

var mathsCourses = Course.Catalog.Where(c => c.Category == "MAT"); 

for (int i = 0; i < mathsCourses.Count(); ++i) 

{ 

    // Never do this! 

    Course c = mathsCourses.ElementAt(i); 

    Console.WriteLine(c.Title); 

} 

Even though Course.Catalog is an array, I’ve filtered its contents with the Where 

operator, which returns a query of type IEnumerable<Course> that does not 

implement IList<Course>. The first iteration won’t be too bad—I’ll be passing 

ElementAt an index of 0, so it just returns the first match, and with my sample data, 

the very first item Where inspects will match. But the second time around the loop, 

we’re calling ElementAt again. The query that mathsCourses refers to does not 

keep track of where we got to in the previous loop—it’s an IEnumerable<T>, not an 
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IEnumerator<T>—so this will start again. ElementAt will ask that query for the 

first item, which it will promptly discard, and then it will ask for the next item, and that 

becomes the return value. So the Where query has now been executed twice—the first 

time, ElementAt only asked it for one item, and then the second time it asked it for 

two, so it has processed the first course twice now. The third time round the loop (which 

happens to be the final time) we do it all again but this time, ElementAt will discard 

the first two matches and will return the third, so now it has looked at the first course 

three times, the second one twice, and the third and fourth courses once. (The third course 

in my sample data is not in the MAT category, so the Where query will skip over this 

when asked for the third item.) So to retrieve three items, I’ve evaluated the Where 

query three times, causing it to evaluate my filter lambda seven times. 

In fact it’s worse than that, because the for loop will also invoke that Count method 

each time, and with a non-indexable source such as the one returned by Where, Count 

has to evaluate the entire sequence—the only way the Where operator can tell you how 

many items match is to look at all of them. So this code fully evaluates the query returned 

by Where three times in addition to the three partial evaluations performed by 

ElementAt. We get away with it here because the collection is small, but if I had an 

array with 1,000 elements, all of which turned out to match the filter, we’d be fully 

evaluating the Where query 1,000 times, and performing partial evaluations another 

1,000 times. Each full evaluation calls the filter predicate 1,000 times, and the partial 

evaluations here will do so on average 500 times, so the code would end up executing the 

filter 1,500,000 times. Iterating through the Where query with foreach loop would 

evaluate the query just once, executing the filter expression 1,000 times, and would 

produce the same results. 

So be careful with both Count and ElementAt. If you use them in a loop that iterates 

over the collection on which you invoke them, the resulting code will have O(n²) 

complexity. 

All of the operators I’ve just described return a single item from the source. There are 

two more operators that also get selective about which items to use, but which can return 

multiple items: Skip and Take. Both of these take a single int argument. As the name 

suggests, Skip discards the specified number of elements, and then returns everything 

else from its source. Take returns the specified number of elements from the start of the 

sequence and then discards the rest (so it is similar to TOP in SQL.) 

There are predicate-driven equivalents, SkipWhile and TakeWhile. SkipWhile 

will discard items from the sequence until it finds one that matches the predicate, at 

which point it will return that and every item that follows for the rest of the sequence 

(whether or not the remaining items match the predicate). Conversely, TakeWhile 

returns items until it encounters the first item that does not match the predicate, at which 

point it discards that and the remainder of the sequence. 

Although Skip, Take, SkipWhile and TakeWhile are all clearly order-sensitive, 

they are not restricted to just the ordered types such as IOrderedEnumerable<T>. 

They are also defined for IEnumerable<T>, which is reasonable because even though 

there may be no particular order guaranteed, any IEnumerable<T> always produces 

elements in some order. (The only way you can extract items from an 

IEnumerable<T> is one after another, so there will always be an order, even if it’s 

meaningless.) Moreover, IOrderedEnumerable<T> is not widely implemented 
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outside of LINQ so it’s quite common to have non-LINQ aware objects that produce 

items in a known order but which only implement IEnumerable<T>. These operators 

are useful in these scenarios, so the restriction is relaxed. Slightly more surprisingly, 

IQueryable<T> also supports these operations, but that’s consistent with the fact that 

many database support TOP (roughly equivalent to Take) even on unordered queries. As 

always, individual providers may choose not to support individual operations, so in 

scenarios where there’s no reasonable interpretation of these operators, they will just 

throw an exception. 

A related operator is DefaultIfEmpty<T>. This returns the entire source collection, 

unless it’s empty, in which case this returns a sequence containing a single item that has 

the default, zero-like value for T, i.e., null for a reference type, zero for numbers, etc. 

Aggregation 

The Sum and Average operators add together the values of all the source items. Sum 

returns the total, and Average returns the total divided by the number of items. They are 

available for collections of items of these numeric types: decimal, double, float, 

int, and long. There are also overloads that work with any item type, in conjunction 

with a lambda that takes an item and returns one of those numeric types. That allows us 

to write code such as Example 10-39 which works with a collection of Course objects, 

and calculates the average of a particular value extracted from the object: the course 

length in hours. 

Example 10-39. Average operator with projection 

Console.WriteLine("Average course length in hours: {0}", 

    Course.Catalog.Average(course => course.Duration.TotalHours)); 

LINQ also defines Min and Max operators. You can apply these to any type of sequence, 

although it is not guaranteed to succeed—the particular provider you’re using may report 

an error if it doesn’t know how to compare the types you’ve used. For example, LINQ to 

Objects requires at least one of the objects in the sequence to implement IComparable. 

Min and Max both have overloads that accept a lambda that gets the value to use from 

the source item. Example 10-40 uses this to find the date on which the most recent course 

was published. 

Example 10-40. Max with projection 

DateTime m = mathsCourses.Max(c => c.PublicationDate); 

Notice that this does not return the course with the most recent publication date; it returns 

that course’s publication date. If you want to select the object for which a particular 

property has the maximum value, you would use the OrderByDescending operator 

followed by First, or FirstOrDefault. 

LINQ to Objects defines specialized overloads of Min and Max for sequences that return 

the numeric types that Sum and Average deal with, i.e. decimal, double, float, 

int, and long. It also defines similar specializations for the form that takes a lambda. 

These overloads exist to improve performance by avoiding boxing. The general-purpose 

form relies on IComparable and getting an interface type reference to a value always 

involves boxing that value. For large collections, boxing every single value would put 

considerable extra pressure on the garbage collector. 
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LINQ defines an operator called Aggregate, which generalizes the pattern that Min, 

Max, Sum, and Average all use, which is to produce a single result with a process that 

involves taking every source item into consideration. It’s possible to implement all four 

of these operators in terms of Aggregate. Example 10-41 uses the Sum operator to 

calculate the total duration of all courses, and then uses the Aggregate operator to 

perform the exact same calculation. 

Example 10-41. Sum and equivalent with Aggregate 

double t1 = Course.Catalog.Sum(course => course.Duration.TotalHours); 

double t2 = Course.Catalog.Aggregate( 

    0.0, (hours, course) => hours + course.Duration.TotalHours); 

Aggregation works by building up a value that represents what we know about all the 

items inspected so far, referred to as the accumulator. The type we use will depend on the 

knowledge that we want to accumulate. In this case, I’m just adding all the numbers 

together, so I’ll use a double (because the TimeSpan type’s TotalHours property 

is also a double). 

Initially we have no knowledge, because we haven’t looked at any items yet. We need to 

provide an accumulator value to represent this starting point, so the Aggregate 

operator’s first argument is the seed, an initial value for the accumulator. In Example 10-

41, the accumulator is just a running total, so the seed is 0.0. 

The second argument is a lambda that describes how to update the accumulator to 

incorporate information for a single item. Since my goal here is simply to calculate the 

total time, I just add the duration of the current course to the running total. 

Once Aggregate has looked at every item, this particular overload returns the 

accumulator directly. It will be the total number of hours across all courses in this case. 

The accumulator doesn’t have to use addition. We can implement Max, using the same 

process, but a different accumulation strategy. Instead of maintaining a running total, the 

value representing everything we know so far about the data is simply the highest value 

seen yet. Example 10-42 shows the rough equivalent of Example 10-40. (It’s not exactly 

the same, because Example 10-42 makes no attempt to detect an empty source. Max will 

throw an exception if this source is empty, but this will just return the date 0/0/0000.) 

Example 10-42. Implementing Max with Aggregate 

DateTime m = mathsCourses.Aggregate( 

    new DateTime(), 

   (date, c) => date > c.PublicationDate ? date : c.PublicationDate); 

This illustrates that Aggregate does not impose any single meaning for the value that 

accumulates knowledge—the way you use it depends on what you’re doing. Some 

operations require an accumulator with a bit more structure. Example 10-43 calculates 

the average course duration with Aggregate. 

Example 10-43. Implementing Average with Aggregate 

double average = Course.Catalog.Aggregate( 

    new { TotalHours = 0.0, Count = 0 }, 

    (totals, course) => new 

    { 

        TotalHours = totals.TotalHours + course.Duration.TotalHours, 

        Count = totals.Count + 1 

    }, 
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    totals => totals.TotalHours / totals.Count); 

The average duration requires us to know two things: the total duration, and the number it 

items. So in this example, my accumulator uses a type that can contain two values, one to 

hold the total and one to hold the item count. I’ve used an anonymous type, but I could 

also have used Tuple<double, int>, or even written an ordinary type with a couple 

of properties. (In fact, a custom struct might have been a better choice, because it would 

have avoided allocating a new heap block for the accumulator at each iteration.) 

Example 10-43 relies on the fact that when two separate methods in the 

same component create instances of two structurally identical 

anonymous types, the compiler generates a single type that is used for 

both. The seed produces an instance of an anonymous type consisting 

of a double called TotalHours and an int called Count. The 

accumulation lambda also returns an instance of an anonymous type 

with the same member names and types in the same order. The C# 

compiler deems that these will in fact be the same type, which is 

important here, because Aggregate requires the lambda to accept 

and also return an instance of the accumulator type. If C# did not 

guarantee that the two expressions returning anonymous type instances 

in this example would return the exact same type, we could not depend 

on this code to compile correctly. 

Example 10-43 uses a different overload than earlier example. It takes an extra lambda, 

which is used to extract the return value from the accumulator—the accumulator builds 

up the information I need to produce the result, but the accumulator itself is not the result 

in this example. 

Of course, if all you want to do is calculate the sum, maximum, or average values, you 

wouldn’t use Aggregate—you’d use the specialized operators designed to do those 

jobs. Not only are they simpler, they’re often more efficient. (For example, a LINQ 

provider for a database might be able to generate a query that uses the database’s built-in 

features to calculate the minimum or maximum value.) I just wanted to show the 

flexibility, using examples that are easily understood. But now that I’ve done that, 

Example 10-44 shows a particularly concise example of Aggregate that doesn’t 

correspond to any other built-in operator. This takes a collection of rectangles, and 

returns the bounding box that contains all of those rectangles. 

Example 10-44. Aggregating bounding boxes 

public static Rect GetBounds(IEnumerable<Rect> rects) 

{ 

    return rects.Aggregate(Rect.Union); 

} 

I’m using the Rect structure from the System.Windows namespace. This is part of 

WPF, but it’s a very simple data structure that just contains four numbers—left, right, 

width, and height—so you can use it in non-WPF applications if you like.1 Example 10-

                                                           

1 If you do so, be careful not to confuse it with another WPF type, Rectangle. That’s an 

altogether more complex beast that supports animation, styling, layout, user input, data binding and 
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44 uses the Rect type’s static Union method, which takes two Rect arguments, and 

returns a single Rect that is the bounding box of the two inputs (i.e. the smallest 

possible rectangle that contains both of the input rectangles). 

I’m using the simplest overload of Aggregate here. It does the same thing as the one I 

used in Example 10-41, but it doesn’t require me to supply a seed. It uses the type’s 

default zero-like value as the seed. (So in fact I could have used this simpler overload in 

Example 10-41. The only reason I didn’t was that I wanted to make the existence of a 

seed explicit in that example.) For classes, that would mean null, but Rect is a struct, so 

the seed is an instance of Rect with all its fields set to zero. Example 10-45 is equivalent 

to Example 10-44, I’ve just made the seed value explicit, and I’ve also written a lambda 

to invoke the method, instead of passing the method itself. With this sort of lambda that 

just passes its arguments straight on to an existing method, if you’re using LINQ to 

Objects you can just pass the method name instead, so LINQ will call the target method 

directly rather than going through your lambda. (You can’t do that with expression-based 

providers, because they require a lambda.) Using the method directly is more succinct 

and marginally more efficient, but it also makes for slightly harder to read code, which is 

why I’ve spelled it out in Example 10-45.  

Example 10-45. More verbose and less obscure bounding box aggregation 

return rects.Aggregate(new Rect(), (r1, r2) => Rect.Union(r1, r2)); 

These two examples work the same way. They start with a zero-sized rectangle as the 

seed. For the first item in the list, Aggregate will call Rect.Union, passing in the 

seed and the first rectangle. The Union method detects when one of its arguments is an 

empty rectangle, and just returns a copy of the first rectangle. That becomes the new 

accumulator value. Then for the next item in the source, Aggregate will pass Union 

the accumulator—a copy of the first rectangle—and the second rectangle, so the 

accumulator will become the bounding box of the first two rectangles. And that then gets 

passed to Union along with the third rectangle, and so on. Example 10-46 shows what 

the effect of this Aggregate operation would be if performed on a collection of four 

Rect values. (I’ve represented the four values here as r1, r2, r3, and r4. To pass them 

to Aggregate, they’d need to be inside a collection such as an array.) 

Example 10-46. The effect of Aggregate 

Rect bounds = 

  Rect.Union(Rect.Union(Rect.Union(Rect.Union(new Rect(), r1), r2), r3), r4); 

As I mentioned earlier, Aggregate is LINQ’s name for an operation sometimes called 

reduce. You also sometimes see it called fold. LINQ went with the name Aggregate 

for the same reason it calls its projection operator Select instead of map, the more 

common name in functional programming languages: LINQ’s terminology is more 

influenced by SQL than it is by academic languages. 

                                                                                                                                                

various other WPF features. You would not want to attempt to use Rectangle outside of a WPF 

application. 
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Set Operations 

LINQ defines three operators that use some common set operations to combine two 

sources. Intersect produces a result that contains only those items that were in both 

of the input sources. Except is the opposite: it includes only those items that were in 

one of the sources and not the other. The output of Union contains items that were in 

either (or both) of the input sources.  

Although LINQ defines these set operations, most LINQ source types are not an exact 

abstraction of a set. With a mathematical set, any particular item either belongs to a set or 

it does not. There is no innate concept of the number of times a particular item appears in 

a set. IEnumerable<T> is not like that—it’s a sequence of items, so it’s possible to 

have duplicates, and the same is true of IQueryable<T>. This is not necessarily a 

problem, because some collections will happen never to get into a situation where they 

contain duplicates, and in some cases, the presence of duplicates won’t cause a problem. 

However, it can sometimes be useful to take a collection that contains duplicates and 

remove them, leaving you with something that more closely resembles a set. For this, 

LINQ defines the Distinct operator, which removes duplicates. Example 10-47 

contains a query that extracts the category names from all the courses, and then feeds that 

into the Distinct operator to ensure that each unique category name appears just once. 

Example 10-47. Removing duplicates with Distinct 

var categories = Course.Catalog.Select(c => c.Category).Distinct(); 

All of these set operators are available in two forms, because you can optionally pass any 

of them an IEqualityComparer<T>. This allows you to customize how the 

operators decide whether two items are the same thing. 

Whole-Sequence Order-Preserving Operations 

LINQ defines certain operators whose output includes every item from the source, and 

which preserve or reverse the order. Not all collections necessarily have an order, so 

these operators will not always be supported. However, LINQ to Objects supports all of 

them. The simplest is Reverse, which reverses the order of the elements. 

The Concat operator combines two sequences. It returns a sequence which produces all 

of the elements from the first sequence, followed by all of the elements from the second 

sequence. 

The Zip operator also combines two sequences, but instead of returning one after the 

other, it works with pairs of elements. So the first item it returns will be based on both the 

first item from the first sequence and the first item from the second sequence. The second 

item in the zipped sequence will be based on the second items from each of the 

sequences, and so on. The name Zip is meant to bring to mind how a zipper in an item of 

clothing brings two things together in perfect alignment. (It’s not an exact analogy. When 

a zipper brings together the two parts, the teeth from the two halves interlock in an 

alternating fashion. But the Zip operator does not interleave its inputs like a physical 

zipper’s teeth. It brings items from the two sources together in pairs.) 

While Reverse and Concat just pass their items through unmodified, Zip works with 

pairs of items, and you need to tell it how you’d like them combined. So it takes a lambda 

with two arguments, and it will pass item pairs from the two sources as those arguments, 
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and will produce whatever your lambda returns as output items. Example 10-48 uses a 

selector that combines each pair of items using string concatenation. 

Example 10-48. Combining lists with Zip 

string[] firstNames = { "Ian", "Arthur", "Arthur" }; 

string[] lastNames = { "Griffiths", "Dent", "Pewty" }; 

IEnumerable<string> fullNames = firstNames.Zip(lastNames, 

    (first, last) => first + " " + last); 

foreach (string name in fullNames) 

{ 

    Console.WriteLine(name); 

} 

The two lists that this example zips together contains first names and last names 

respectively. The output looks like this: 

Ian Griffiths 

Arthur Dent 

Arthur Pewty 

If the input sources contain different numbers of items, Zip will stop once it reaches the 

end of the smaller collection, and will not attempt to retrieve any further items from the 

longer collection. 

The SequenceEqual operator bears a resemblance to Zip, in that it works on two 

sequences, and acts on pairs of items found at the same position in the two sequences. 

But instead of passing them to a lambda to be combined, SequenceEqual just 

compares each pair. If this comparison process finds that the two sources contain the 

same number of items, and that for every pair, the two items are equal, then it returns 

true. If the sources are of different lengths, or if even just one pair of items is not equal, it 

returns false. SequenceEqual has two overloads, one that accepts just the list with 

which to compare the source, and another that also takes an 

IEqualityComparer<T>, to customize what you mean by equal. 

Grouping 

Sometimes you will want to do more than just sorting items into a particular order. You 

may want to process all items that have something in common as a group. Example 10-49 

uses a query to group courses by category, printing out a title for each category before 

listing all the courses in that category. 

Example 10-49. Grouping query expressions 

var subjectGroups = from course in Course.Catalog 

                    group course by course.Category; 

 

foreach (var group in subjectGroups) 

{ 

    Console.WriteLine("Category: " + group.Key); 

    Console.WriteLine(); 

 

    foreach (var course in group) 

    { 

        Console.WriteLine(course.Title); 

    } 

    Console.WriteLine(); 
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} 

A group clause takes an expression that determines group membership—in this case, 

any courses whose Category properties return the same value will be deemed to be in 

the same group. A group clause produces a collection in which each item implements 

IGrouping<TKey, TItem>, where TKey is the type of the grouping expression, 

and TItem is the input item type. (Since I’m using LINQ to Objects, and I’m grouping 

by category string, the type of the subjectGroup variable in Example 10-49 will be 

IEnumerable<IGrouping<string, Course>>.) This particular example 

produces three group objects, depicted in Figure 10-1. 

IGrouping<string, Course>
Key: MAT

Elements of Geometry

MAT 101
2009/5/20 3 hoursEnumerator:

Squaring the Circle
MAT 102
2009/4/1 7 hours

Hyperbolic Geometry

MAT 101
2007/10/5 5 hours

Recreational Organ
Transplantation

BIO 101
2002/7/19 4 hours

Introduction to Human
Anatomy & Physiology
BIO 201
2001/4/11 12 hours

Oversimplified Data
Structures for Demos

CSE 104
2012/10/5 5 hours

IGrouping<string, Course>
Key: BIO

Enumerator:

IGrouping<string, Course>
Key: CSE

Enumerator:

 

Figure 10-1. Result of evaluating a grouping query 

Each of the IGrouping<string, Course> items has a Key property, and because 

the query grouped items by the course’s Category property, each key contains a string 

value from that property. There are three different category names in the sample data in 

Example 10-17: MAT, BIO, and CSE, so these are the Key values for the three groups. 

The IGrouping<TKey, TItem> interface derives from IEnumerable<TItem>, 

so each group object can be enumerated to find the items it contains. So in Example 10-

49, the outer foreach loop iterates over the three groups returned by the query, and 

then the inner foreach loop iterates over the Course objects in each of the groups. 

The query expression turns into the code in Example 10-50. 

Example 10-50. Expanding a simple grouping query 

var subjectGroups = Course.Catalog.GroupBy(course => course.Category); 

Query expressions offer some variations on the theme of grouping. With a slight 

modification to the original query, we can arrange for the items in each group to be 

something other than the original Course objects. In Example 10-51, I’ve changed the 
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expression immediately after the group keyword from just course to 

course.Title. 

Example 10-51. Group query with item projection 

var subjectGroups = from course in Course.Catalog 

                    group course.Title by course.Category; 

This still has the same grouping expression, course.Category, so this produces three 

groups as before, but now it’s of type IGrouping<string, string>. If you were 

to iterate over the contents of one of the groups, you’d find each group offers a sequence 

of strings, containing the course names. As Example 10-52 shows, the compiler expands 

this query into a different overload of the GroupBy operator. 

Example 10-52. Expanding a group query with an item projection 

var subjectGroups = Course.Catalog 

    .GroupBy(course => course.Category, course => course.Title); 

Query expressions are required to have either a select or a group as their final clause. 

However, if a query contains a group clause, that doesn’t have to be the last clause. In 

Example 10-51, I modified how the query represents each item within a group (i.e., the 

boxes on the right of Figure 10-1) but I’m also free to customize the objects representing 

each group (the items on the left). By default I get the IGrouping<TKey, TItem> 

objects, but I can change this. Example 10-53 uses the optional into keyword in its 

group clause. This introduces a new range variable, which iterates over the group 

objects, which I can go on to use in the rest of the query. I could follow this with other 

clause types such as orderby or where, but in this case I’ve chosen to use a select 

clause. 

Example 10-53. Group query with group projection 

var subjectGroups = from course in Course.Catalog 

                    group course by course.Category into category 

                    select string.Format("Category '{0}' contains {1} courses", 

                        category.Key, category.Count()); 

The result of this query is an IEnumerable<string>, and if you print out all the 

strings it produces, you get this: 

Category 'MAT' contains 3 courses 

Category 'BIO' contains 2 courses 

Category 'CSE' contains 1 courses 

As Example 10-54 shows, this expands into a call to the same GroupBy overload that 

Example 10-50 uses, and then uses the ordinary Select operator for the final clause. 

Example 10-54. Expanded group query with group projection 

IEnumerable<string> subjectGroups = Course.Catalog 

    .GroupBy(course => course.Category) 

    .Select(category => string.Format("Category '{0}' contains {1} courses", 

                                      category.Key, category.Count())); 

LINQ defines some more overloads for the GroupBy operator that are not accessible 

from the query syntax. Example 10-55 shows an overload that provides a slightly more 

direct equivalent to Example 10-53. 

Example 10-55. GroupBy with key and group projections 
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IEnumerable<string> subjectGroups = Course.Catalog.GroupBy( 

    course => course.Category, 

    (category, courses) => string.Format("Category '{0}' contains {1} courses", 

                                         category, courses.Count())); 

This overload takes two lambdas. The first is the expression by which items are grouped. 

The second is used to produce each group object. Unlike the previous examples, this does 

not use the IGrouping<TKey, TItem> interface. Instead, the final lambda receives 

the key as one argument, and then a collection of the items in the group as the second. 

This is exactly the same information that IGrouping<TKey, TItem> encapsulates, 

but because this form of the operator can pass these as separate arguments, it removes the 

need for objects to represent the groups. 

There’s yet another version of this operator shown in Example 10-56. It combines the 

functionality of all the other flavors. 

Example 10-56. GroupBy operator with key, item, and group projections 

IEnumerable<string> subjectGroups = Course.Catalog.GroupBy( 

    course => course.Category, 

    course => course.Title, 

    (category, titles) => 

         string.Format("Category '{0}' contains {1} courses: {2}", 

                       category, titles.Count(), string.Join(", ", titles))); 

This overload takes three lambdas. The first is the expression by which items are 

grouped. The second determines how individual items in a group are represented—this 

time I’ve chosen to extract the course title. The third lambda is used to produce each 

group object, and as with Example 10-55, this final lambda is passed the key as one 

argument, and its other argument gets the group items, as transformed by the second 

lambda. So rather than the original Course items, this second argument will be an 

IEnumerable<string> containing the course titles, because that’s what the second 

lambda in this example requested. The result of this GroupBy operator is once again a 

collection of strings, but now it looks like this: 

Category 'MAT' contains 3 courses: Elements of Geometry, Squaring the Circle, Hy 

perbolic Geometry 

Category 'BIO' contains 2 courses: Recreational Organ Transplantation, Introduct 

ion to Human Anatomy and Physiology 

Category 'CSE' contains 1 courses: Oversimplified Data Structures for Demos 

I’ve shown four versions of the GroupBy operator. All four take a lambda that selects 

the key to use for grouping, and the simplest overload takes nothing else. The others let 

you control the representation of individual items in the group, or the representation of 

each group, or both. In fact there are four more versions of this operator. They offer all 

the same services as the four I’ve shown already, but also take an 

IEqualityComparer<T>, which lets you customize the logic that decides whether 

two keys are considered to be the same for grouping purposes. 

There is one other operator that groups its outputs, called GroupJoin, but it does so as 

part of a join operation. 
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Joins 

LINQ defines a Join operator that provides a way to use related data from some other 

source, much as a database query can join information from one table with data in 

another table. Suppose our application stored a list of which students had signed up for 

which courses. If you stored that information in a file, you wouldn’t want to copy the full 

details for either the course or the student out into every line—you’d want just enough 

information to identify a student and a particular course. In my example data, courses are 

uniquely identified by the combination of the category and the number. So to record 

who’s signed up for what, we’d need records containing three pieces of information: the 

course category, the course number, and something to identify the student. The class in 

Example 10-57 shows how we might represent such a record in memory. 

Example 10-57. Class associating a student with a course 

public class CourseChoice 

{ 

    public int StudentId { get; set; } 

 

    public string Category { get; set; } 

 

    public int Number { get; set; } 

} 

In your application, once you’ve loaded this information into memory, you may want 

access to the Course objects, rather than just the information identifying the course. We 

can get this with a join clause, as shown in Example 10-58 (which also supplies some 

additional sample data using the CourseChoice class, so that the query has something 

to work with). 

Example 10-58. Query with join clause 

CourseChoice[] choices = 

{ 

    new CourseChoice { StudentId = 1, Category = "MAT", Number = 101 }, 

    new CourseChoice { StudentId = 1, Category = "MAT", Number = 102 }, 

    new CourseChoice { StudentId = 1, Category = "MAT", Number = 207 }, 

    new CourseChoice { StudentId = 2, Category = "MAT", Number = 101 }, 

    new CourseChoice { StudentId = 2, Category = "BIO", Number = 201 }, 

}; 

 

var studentsAndCourses = from choice in choices 

                         join course in Course.Catalog 

                           on new { choice.Category, choice.Number } 

                           equals new { course.Category, course.Number } 

                         select new { choice.StudentId, Course = course }; 

 

foreach (var item in studentsAndCourses) 

{ 

    Console.WriteLine("Student {0} will attend {1}", 

        item.StudentId, item.Course.Title); 

} 

This prints out one line for each entry in the choices array. It shows the title for each 

course, because even though that was not available in the input collection, the join 
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clause located the relevant item in the course catalog. Example 10-59 shows how the 

compiler translates the query in Example 10-58. 

Example 10-59. Using the Join operator directly 

var studentsAndCourses = choices.Join( 

    Course.Catalog, 

    choice => new { choice.Category, choice.Number }, 

    course => new { course.Category, course.Number }, 

    (choice, course) => new { choice.StudentId, Course = course }); 

The Join operator’s job is to find an item in the second sequence that corresponds to the 

item in the first. This correspondence is determined by the first two lambdas—items from 

the two sources will be considered to correspond to one another if the values returned by 

these two lambdas are equal. This example uses an anonymous type, and depends on the 

fact that two structurally identical anonymously typed instances in the same assembly 

share the same type. In other words, those two lambdas both produce objects with the 

same type. The compiler generates an Equals method for any anonymous type that 

compares each member in turn, so the effect of this code is that two rows are considered 

to correspond if their Category and Number properties are both equal. 

I’ve set this example up so that there can only be one match, but what would happen if 

the course category and number did not uniquely identify a course for some reason? If 

there are multiple matches for any single input row, the Join operator will produce one 

output item for each match, so in that case, we’d get more output items than there were 

entries in the choices array. Conversely, if an item in the first source has no 

corresponding item in the second collection, Join will not produce any output for the 

item—it effectively ignores that input item. 

LINQ offers an alternative join type that handles input rows with either zero, or multiple 

corresponding rows differently than the Join operator. Example 10-60 shows the 

modified query expression. (The difference is the addition of into courses on the 

end of the join clause, and the final select clause refers to that instead of the 

course range variable.) This produces output in a different form, so I’ve also modified 

the code that prints out the results. 

Example 10-60. A grouped join 

var studentsAndCourses = 

    from choice in choices 

    join course in Course.Catalog 

      on new { choice.Category, choice.Number } 

      equals new { course.Category, course.Number } into courses 

    select new { choice.StudentId, Courses = courses }; 

 

foreach (var item in studentsAndCourses) 

{ 

    Console.WriteLine("Student {0} will attend {1}", 

        item.StudentId, 

        string.Join(",", item.Courses.Select(course => course.Title))); 

} 

As Example 10-61 shows, this causes the compiler to generate a call to the GroupJoin 

operator, instead of Join. 

Example 10-61. GroupJoin operator 
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var studentsAndCourses = choices.GroupJoin( 

    Course.Catalog, 

    choice => new { choice.Category, choice.Number }, 

    course => new { course.Category, course.Number }, 

    (choice, courses) => new { choice.StudentId, Courses = courses }); 

This form of join produces one result for each item in the input collection by invoking the 

final lambda. Its first argument is the input item, and its second argument will be a 

collection of all the corresponding objects from the second collection. (Compare this with 

Join, which invokes its final lambda once for each match, passing the corresponding 

items one at a time.) This provides a way to represent an input item that has no 

corresponding items in the second collection: the operator can just pass an empty 

collection. 

Both Join and GroupJoin also have overloads that accept an 

IEqualityComparer<T>, so that you can define a custom meaning for equality for 

the values returned by the first two lambdas. 

Conversion 

Sometimes you will need to convert a query of one type to some other type. For example, 

you might have ended up with a collection where the type argument specifies some base 

type (e.g., object), but where you have good reason to believe that the collection 

actually contains items of some more specific type (e.g., Course). When dealing with 

individual objects, you can just use the C# cast syntax to convert the reference to the type 

you believe you’re dealing with. Unfortunately, this doesn’t work for types such as 

IEnumerable<T> or IQueryable<T>. 

Although covariance means that an IEnumerable<Course> is implicitly convertible 

to an IEnumerable<object>, you cannot convert in the other direction even with an 

explicit downcast. If you have a reference of type IEnumerable<object>, 

attempting to cast that to IEnumerable<Course> will only succeed if the object 

implements IEnumerable<Course>. It’s quite possible to end up with a sequence 

that consists entirely of Course objects but which does not implement 

IEnumerable<Course>. Example 10-62 creates just such a sequence, and it will 

throw an exception when it tries to cast to IEnumerable<Course>. 

Example 10-62. How not to cast a sequence 

IEnumerable<object> sequence = Course.Catalog.Select(c => (object) c); 

var courseSequence = (IEnumerable<Course>) sequence; // InvalidCastException 

This is a contrived example of course. I forced the creation of an 

IEnumerable<object> by casting the Select lambda’s return type to object. 

However, it’s easy enough to end up in this situation for real, in only slightly more 

complex circumstances. Fortunately, there’s an easy solution. You can use the Cast<T> 

operator, shown in Example 10-63. 

Example 10-63. How to cast a sequence 

var courseSequence = sequence.Cast<IEnumerable<Course>>(); 

This returns a query that produces every item in its source in order, but it casts each item 

to the specified target type as it does so. This means that although the initial Cast<T> 

might succeed, it’s possible that you’ll get an InvalidCastException some point 
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later when you try to extract values from the sequence. After all, in general, the only way 

the Cast<T> operator can verify that the sequence you’ve given it really does only ever 

produce values of type T is to extract all those values and attempt to cast them. It can’t 

evaluate the whole sequence up front because you might have supplied an infinite 

sequence. How is it to know whether the first billion items your sequence produces will 

be of the right type, but after that you return one of an incompatible type? So its only 

option is to try casting items one at a time. 

Cast<T> and OfType<T> look similar, and developers sometimes 

use one when they should have used the other (usually because they 

didn’t know both existed). OfType<T> does almost the same thing as 

Cast<T>, but it silently filters out any items of the wrong type instead 

of throwing an exception. If you expect and want to ignore items of the 

wrong type, use OfType<T>. If you do not expect items of the wrong 

type to be present at all, use Cast<T>, because if you turn out to be 

wrong, it will let you know by throwing an exception, reducing the risk 

of allowing a potential bug to remain hidden. 

LINQ to Objects defines an AsEnumerable<T> operator. This just returns the source 

without modification—it does nothing. Its purpose is to force the use of LINQ to Objects 

even if you are dealing with something that might have been handled by a different LINQ 

provider. For example, suppose you have something that implements IQueryable<T>. 

That interface derives from IEnumerable<T>, but the extension methods that work 

with IQueryable<T> will take precedence over the LINQ to Objects ones. If your 

intention is to execute a particular query on a database, and then use further client-side 

processing of the results with LINQ to Objects, you can use AsEnumerable<T> to 

draw a line that says: this is where we move things to the client side. 

Conversely, there’s also AsQueryable<T>. This is designed to be used in scenarios 

where you have a variable of static type IEnumerable<T> that you believe might 

contain a reference to an object that also implements IQueryable<T>, and you want 

to ensure that any queries you create use that instead of LINQ to Objects. If you use this 

operator on a source that does not in fact implement IQueryable<T>, it returns a 

wrapper that implements IQueryable<T> but which uses LINQ to Objects under the 

covers. 

Yet another operator for selecting a different flavor of LINQ is AsParallel. This 

returns a ParallelQuery<T>, which lets you build queries to be executed by Parallel 

LINQ (PLINQ). I will discuss PLINQ in Chapter 17. 

There are some operators that convert the query to other types, and which also have the 

effect of executing the query immediately, rather than building a new query chained off 

the back of the previous one. ToArray and ToList return an array or a list 

respectively, containing the complete results of executing the input query. 

ToDictionary and ToLookup do the same but rather than producing a 

straightforward list of the items, they both produce results that support associative 

lookup. ToDictionary returns an IDictionary<TKey, TValue>, so it is 

intended for scenarios where a key corresponds to exactly one value. ToLookup is 

designed for scenarios where a key may be associated with multiple values, so it returns a 

different type ILookup<TKey, TValue>. I did not mention this interface in Chapter 
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5 because it is specific to LINQ. It is essentially the same as the dictionary interface, 

except the indexer returns an IEnumerable<TValue> instead of a single TValue. 

While the array and list conversions take no arguments, the dictionary and lookup 

conversions need to be told what value to use as the key for each source item. You tell it 

by passing a lambda, as Example 10-64 shows. This uses the course’s Category 

property as the key. 

Example 10-64. Creating a lookup 

ILookup<string, Course> categoryLookup = 

    Course.Catalog.ToLookup(course => course.Category); 

foreach (Course c in categoryLookup["MAT"]) 

{ 

    Console.WriteLine(c.Title); 

} 

The ToDictionary operator offers an overload that takes the same argument and 

returns a dictionary. It would throw an exception if you called in the same way that I 

called ToLookup in Example 10-64, because multiple course objects share categories, 

so they would map to the same key. ToDictionary requires each object to have a 

unique key. To produce a dictionary from the course catalog, you’d either need to group 

the data by category first, and have each dictionary entry refer to an entire group, or 

you’d need a lambda that returned a composite key based on both the course category and 

number, because that combination is unique to a course. 

Both operators also offer an overload that takes a pair of lambdas, one that extracts the 

key, and a second that chooses what to use as the corresponding value—you are not 

obliged to use the source item as the value. Finally, there are overloads that also take an 

IEqualityComparer<T>. 

Sequence Generation 

The Enumerable class defines the extension methods for IEnumerable<T> that 

comprise LINQ to Objects. It also offers a few additional (non-extension) static methods 

that can be used to create new sequences. Enumerable.Range takes two int 

arguments, and returns an IEnumerable<int> that produces a sequentially increasing 

series of numbers starting from the value of the first argument, that’s as long as the 

second argument. For example, Enumerable.Range(15, 10) produces a sequence 

containing the numbers 15 to 24 (inclusive). 

Enumerable.Repeat<T> takes a value of type T and a count. It returns a sequence 

that will produce that value the specified number of times. 

Enumerable.Empty<T> returns an IEnumerable<T> that contains no elements. 

This may not sound very useful, because there’s a much less verbose alternative. You 

could write new T[0], which creates an array that contains no elements. (Arrays of 

type T implement IEnumerable<T>.) In fact, that’s exactly what the current 

implementation of Enumerable.Empty<T> appears to return, although you should 

not depend on it being an array because that’s not documented. However, the advantage 

of Enumerable.Empty<T> is that for any given T, it returns the same instance every 

time. This means that if for any reason you end up needing an empty sequence repeatedly 
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in a loop that executes many iterations, Enumerable.Empty<T> is more efficient 

because it puts less pressure on the garbage collector. 

Other LINQ implementations 

Most of the examples I’ve shown in this chapter have used LINQ to Objects, except for a 

handful that have referred to LINQ to Entities, a provider used with databases. In this 

final section I will provide a quick description of some other LINQ-based technologies. 

This is not a comprehensive list, because anyone can write a LINQ provider. 

Entity Framework 

The database examples I have shown have used LINQ to Entities, which is part of the 

Entity Framework (EF). The EF is a data access technology that ships as part of the .NET 

Framework that can map between a database and an object layer. It supports multiple 

database vendors. I will describe the EF in more detail in Chapter 19. For this chapter, it 

is interesting because it is one of the most widely used LINQ providers. 

The EF relies on IQueryable<T>. For each persistent entity type in a data model, the 

EF can provide an object that implements IQueryable<T>, and which can be used as 

the starting point for building queries to retrieve entities of that type and of related types. 

Since IQueryable<T> is not unique to the EF, you will be using the standard set of 

extension methods provided by the Queryable class in the System.Linq 

namespace, but that mechanism is designed to allow each provider to plug in its own 

behavior. 

Because IQueryable<T> defines the LINQ operators as methods that accept 

Expression<T> arguments and not plain delegates types, any expressions you write in 

either query expressions or as lambda arguments to the underlying operator methods will 

turn into compiler-generated code that creates a tree of objects representing the structure 

of the expression. The EF relies on this to be able to generate database queries that fetch 

the data you require. This means that you are obliged to use lambdas—unlike with LINQ 

to Objects, you cannot use anonymous methods or delegates with an EF query. 

Because IQueryable<T> derives from IEnumerable<T>, it’s possible to use LINQ 

to Objects operators on any EF source. You can do this explicitly with the 

AsEnumerable<T> operator, but it could also happen accidentally if you used an 

overload that’s supported by LINQ to Objects and not IQueryable<T>. For example, 

if you attempt to use a delegate instead of a lambda as, say, the predicate for the Where 

operator, this will fall back to LINQ to Objects, and the upshot of that is that LINQ to 

Entities will end up downloading the entire contents of the table and then evaluating the 

Where operator on the client side. This is unlikely to be a good idea. 

LINQ to SQL 

LINQ to SQL is another data access technology. Unlike the EF, it is designed specifically 

for Microsoft’s SQL Server. It has a slightly different philosophy: it is designed as a 

convenient .NET API for accessing information in a database rather than as a layer 

between your database and your objects, so it does not have extensive features for 
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mapping between the structure of data in your database, and the design of your domain 

model. 

LINQ to SQL presents objects representing specific tables in the database. These table 

objects implement IQueryable<T>, so when it comes to writing queries, LINQ to 

SQL works in a similar way to the EF. 

WCF Data Services Client 

WCF Data Services provide the ability to present and consume data over HTTP, using 

the standard Open Data Protocol (OData). This presents data using either XML or JSON, 

and defines a way to express queries that include filtering, ordering, and joining. The 

client-side part of this technology includes an IQueryable<T>-based LINQ provider. 

However, it supports only a fairly small subset of the standard LINQ operators, because 

the OData standard only makes it possible to encode a fairly limited range of queries. 

Parallel LINQ (PLINQ) 

Parallel LINQ is similar to LINQ to Objects, in that it is based on objects and delegates 

rather than expression trees and query translation. But when you start asking for results 

from a query, where possible it will use multithreaded evaluation, using the thread pool to 

try and use the available CPU resources efficiently. Chapter 17 will show PLINQ in 

action. 

LINQ to XML 

LINQ to XML is not a LINQ provider. I’m mentioning here because its name makes it 

sounds like one. It’s really an API for creating and parsing XML documents. It’s called 

LINQ to XML because it was designed to make it easy to execute LINQ queries against 

XML documents, but it achieves this by presenting XML documents through a .NET 

object model, and providing methods that extract features from the document in terms of 

IEnumerable<T>. This enables it to defer to LINQ to Objects to define and execute 

the queries. 

Reactive Extensions 

The .NET Reactive Extensions (or Rx, as they’re often abbreviated) are the subject of the 

next chapter so I won’t say too much about them here, but they are a good illustration of 

how LINQ operators can work on a variety of different types. Rx inverts the model 

shown in this chapter where we ask a query for items once we’re good and ready. So 

instead of writing a foreach loop that iterates over query, or calling one of the 

operators that evaluates the query such as ToArray or SingleOrDefault, an Rx 

source calls us when it’s ready to supply data. 

Despite this inversion, there is a LINQ provider for Rx which supports most of the 

standard LINQ operators. 
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Summary 

In this chapter, I showed the query syntax that supports some of the most commonly used 

LINQ features. This lets us write queries in C# that resemble database queries, but which 

can query any LINQ provider, including LINQ to Objects, which lets us run queries 

against our object models. I showed the standard LINQ operators for querying, all of 

which are available with LINQ to Objects, and most of which are available with database 

providers. I also provided a quick roundup of some of the common LINQ providers for 

.NET applications. 

The last provider I mentioned was Rx. But before we look at Rx’s LINQ provider, the 

next chapter will begin by looking at how Rx itself works. 
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