
www.allitebooks.com

http://www.allitebooks.org

Programming Drupal 7 Entities

Expose local or remote data as Drupal 7 entities
and build custom solutions

Sammy Spets

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Programming Drupal 7 Entities

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1190613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78216-652-8

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Sammy Spets

Reviewers
James Roughton

Michelle Williamson

Acquisition Editor
James Jones

Lead Technical Editor
Harsha Bharwani

Technical Editors
Sanhita Sawant

Dennis John

Project Coordinator
Suraj Bist

Proofreader
Dirk Manuel

Indexer
Priya Subramani

Graphics
Ronak Dhruv

Production Coordinator
Kirtee Shingan

Cover Work
Kirtee Shingan

www.allitebooks.com

http://www.allitebooks.org

About the Author

Since 2004, Sammy Spets has been finding pleasure in his life making Drupal do
wild things. During that time, Sammy volunteered to be a core maintainer for Drupal
6 and a maintainer of the ecommerce module, which was the commerce module of
choice way back when. For the ecommerce module, Sammy made design changes to
the payment system, built a few modules to support payment gateways, and added
PostgreSQL support, among other things.

In 2008, IDG Australia contracted Sammy to design and lead the development of a
hybrid Drupal/legacy platform. The platform allowed IDG developers to gradually
migrate their websites and web applications over to Drupal 6, which was still in beta.
In addition to the platform, Sammy was tasked with creating a module suite for the
IDG staff to create surveys and reports on them. This module suite was built prior to
webform, and leveraged the power of the Drupal 6 Form API in all its glory. Sammy
also trained IDG developers to develop modules and themes in Drupal 6.

Early in 2009, a short contract with Demonz Media in Sydney, Australia brought about
some patches to Ubercart, which Demonz gladly contributed back to the community.

Following that, Sammy travelled to Louisville, Kentucky, USA where he contributed
code to improve the developer experience for developers extending Ubercart by
using its API. Ryan Szrama introduced Sammy to Chick-fil-A and Lyle Mantooth
introduced Sammy to Korean food and some amazing fried chicken.

In 2011, Sammy joined the Magicspark team, building Drupal sites and maintaining
servers. During this time, Sammy built a services platform to feed webform data to
Marketo and LoopFuse from client Drupal sites via Magicspark's servers. In addition
to this, Sammy redeveloped the UI on the Where to Buy page of the Redwood
Systems website using OpenLayers mapping.

Aside from the geeky stuff, Sammy loves to cook, fine-tune recipes, play pool, carve
turns on a snowboard, hit the gym, ride motorcycles, dine fine, and drink champagne.

Programming Drupal 7 Entities, Packt Publishing, is the first book Sammy has authored.
Sammy was the technical reviewer for Migrating to Drupal 7, Packt Publishing.

Sammy can be contacted by e-mail at sammys@sammyspets.com.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

I would like to thank Jason Chinn from Magicspark for his understanding, his belief
in me, and giving me spare time to write this book. Thank you to my Mum, Anja
Spets, for her unconditional support over the years. To my Dad, Raimo Spets; I
know you would have been proud to see this book published; may you rest in peace.
Thank you to Raija and Markku Tujula for taking care of my Mum.

Thank you to Arphaphorn Phromput (Waew) for filling my life with peace, fun, and
companionship. Last, but not least, I thank my great friends, Martijn Blankers and
Job de Graaff, for pretending to be interested when listening to me rant about this
book. You both are awesome! Beer time!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

James Roughton, received his Bachelor of Science degree in Business
Administration from Christopher Newport College and his Masters degree in Safety
Science from Indiana University of Pennsylvania (IUP). In addition, he is a Certified
Safety Professional (CSP), a Registered Canadian Safety Professional (R-CRSP), and
a Certified Hazard Material Management (M-CHMM). He also holds several training
certifications: Certified Environmental Trainer (CET) and a Certified Instructional
Technologist (CIT) with a certification in Six Sigma Black Belt. He recently became
certified as an InBound Marketer in Social media.

He is an accomplished author and manages his own websites,
www.safetycultureplus.com; and www.jamesroughton.com. He has received
awards for his efforts in safety, and was named the Project Safe Georgia Safety
Professional in 2008 and the Georgia ASSE Chapter Safety Professional of the Year
(SPY) 1998-1999. James is an active member of the Safety Advisory Board of the
Departments of Labor/Insurance of Georgia, and has been an adjunct instructor
for several universities.

James has been very active in developing expertise in social media productivity and
its use in communication of safety culture and safety management system concepts
and information. In his latest project, he as just co-authored a new book entitled
Safety Culture: An Innovated Leadership Approach, Butterworth-Heinemann.

You can use the following links to connect with him:

• YouTube: http://www.youtube.com/subscription_center?add_
user=mrjamesroughton

• Twitter: http://twitter.com/jamesroughton
• LinkedIn: http://www.linkedin.com/in/jamesroughtoncsp
• Google +: https://plus.google.com/u/0/102851102730471202754

James is an independent consultant on safety and social media productivity. He has
previously reviewed another book on Drupal.

www.allitebooks.com

http://www.allitebooks.org

Michelle Williamson began her journey with computers in 1994 as the result of
a traumatizing mishap involving a 15-page graduate class paper and an unformatted
floppy disk. She spent 5 years as a staunch Luddite before becoming obsessed with
web development and technology in general. She has been a freelance web developer
since 2000, starting out on Microsoft platforms, then drinking the open source
Kool-Aid in 2008, and since then has devoted her time primarily to Drupal
development. She's an incessant learner and is addicted to head-scratching
challenges, and looks forward to experiencing the continued evolution of
mobile technology.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Understanding Entities 7

Introducing entities 8
Entity and solution modules 9
Introducing entity types, bundles, and fields 9

Types 10
Bundles 10
Fields 11
Drupal core entity structure 11

Powerful entity use cases 12
User profiles 12
Internationalization 13
Commerce products 13

Our use case 13
Summary 14

Chapter 2: Developing with Entity Metadata Wrappers 15
Introducing entity metadata wrappers 15
Creating an entity metadata wrapper object 16
Standard entity properties 17
Entity introspection 18
Using an entity metadata wrapper 18

Create 18
Drush commands 18
Code snippet 19

Retrieve 19
Drush commands 19
Code snippet 19

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Update 21
Drush commands 21
Code snippet 21

Delete 21
Drush commands 21
Code snippet 21

Safely using text property values 22
Self-imposed limitation of entity programming 22
References 22
A note about EntityFieldQuery 23
Summary 23

Chapter 3: Developing with Non-fieldable Entities 25
What are non-fieldable entities? 25
File entities 26
Vocabulary entities 30
Recipe site vocabularies 31
Summary 33

Chapter 4: Developing with Fieldable Entities 35
What are fieldable entities? 35
Node entities 36
Comment entities 39
Term entities 40
Summary 46

Chapter 5: Developing with Fields 47
Field types 47
Single-value and multi-value fields 48
Structure fields 50

Field type-specific code 51
File and image fields 52
Link fields 52
Datetime fields 53
Putting it all together 54

Converting the recipe content type to use fields 55
Creating fields 56
Exporting fields to a feature 58
Copying the code to the recipe module 60
Tweaking recipe.module and recipe.info 61
Upgrading recipe module 63

Summary 68

Table of Contents

[iii]

Chapter 6: Developing with Field Collections 69
Before Drupal 7 69
Creating a field collection field 71
Field collection entities 74
Adding a field collection to a node 76
Attaching a field collection to a content type 77

Exporting field collection and fields 78
Copying the code to the recipe module 80
Tweaking recipe.module 80
Updating code is unnecessary 82

Summary 82
Chapter 7: Expose Local Entities 83

Motivation for exposing entities 83
Fast track your data exposure 84
Allow fields on your entity 85
Give it multiple bundles 86
Administration interface and exportability 87

Storing bundle information 87
Exposing bundle information and handling access rights 91
Adding the support code 94

Summary 100
Chapter 8: Expose Remote Entities 101

Introducing the Remote Entity API 101
Requirements for exposing remote entities 102
Implementing remote entity exposure 103

Database schema 104
Connection code 104
Remote query code 105
Entity exposure code 105
Entity metadata API integration 107
Import and administration code 108

Running 108
Adding write support 109
Customization for your use case 110
Summary 110

Index 111

Preface
Drupal 7 brought about many innovations for developers, themers, and site
builders. Entities are, without a doubt, the most fundamental innovation, and
their birth produced the biggest impact in the way in which Drupal sites are
built and modules are developed. The entity paradigm made available a powerful
and unified API, making it easy to build solutions with minimal code catering for
specific data structures.

This book peels the onion layers away, showing you how to Create, Retrieve, Update,
and Delete (CRUD) entities in general; how to use entity metadata wrappers; how to
utilize common entity types such as Nodes, Comments and Field Collections; and how
to expose local or remote data to Drupal and contributed modules. Each chapter offers,
you some code examples showing you how to do things with each of the entity types.
All that without making your eyes water.

What this book covers
Chapter 1, Understanding Entities, differentiates entity and solution modules, and
introduces entity types, bundles, and fields, followed by entity structures and some
use cases where the entity paradigm is powerful.

Chapter 2, Developing with Entity Metadata Wrappers, delves into development using
entity metadata wrappers for safe CRUD operations and entity introspection.

Chapter 3, Developing with Non-fieldable Entities, unveils non-fieldable entities and how
they can be manipulated in code. File and Vocabulary entity types implemented in
core are dissected and used as examples.

Chapter 4, Developing with Fieldable Entities, covers fieldable entities and how they can
be manipulated in code. Core-implemented Node, Comment, and Term entity types
are pulled apart and used as examples.

Preface

[2]

Chapter 5, Developing with Fields, discusses the differences between single-value
and multi-value fields, explains structure fields, and then uncloaks the properties
of common field types: date, file, image, link, number, text, and term reference.
Practical examples also covered are: how to access fields of an entity, how to add
fields to an entity, and how to migrate data into fields.

Chapter 6, Developing with Field Collections, introduces field collections and how they
are programmatically manipulated, declared, and created.

Chapter 7, Expose Local Entities, discloses how easy it is to expose a database table
as either a non-fieldable or fieldable entity, and then explains how to enable
exporting, importing, and cloning of bundle configurations.

Chapter 8, Expose Remote Entities, covers the requirements of exposing remote data as
entities. It also describes how to expose batch-imported remote data as entities in our
example site.

What you need for this book
To complete the practical exercises in this book, you will need to have the following
in your environment:

•	 A Web server capable of running Drupal 7, with PHP 5.2.4 or higher installed
•	 A MySQL database server that is accessible from the web server
•	 System-wide installation of Drush 5.x

You can avoid tweaking the Drupal settings if you use a MySQL server on your web
server (localhost) and have a MySQL user account with the following credentials:

•	 Username: drupal_entities
•	 Password: W43wSu4Ym44K

Who this book is for
This book is aimed at readers with PHP development experience, along with
some experience installing websites on a server. Familiarity with Drush and
GIT is also recommended.

Preface

[3]

Using the example code
Example code for this book contains a GIT repository, and chapters 2 to 8 each have
a branch. The branches are named chapter_02 through to chapter_08. There is a
branch named complete, which contains the completed code that you would achieve
after finishing all practical examples.

At the beginning of each chapter you need to check out a branch by using the
following command:

$ git checkout chapter_02

It's a good idea to configure a different site for each chapter on your web server.
Otherwise, you can commit changes you make to the code before checking out
another chapter branch.

Refer to the readme file supplied with the code for information about installing
the example code.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

$options = array('sanitize' => TRUE);
$output1 = $entity->myproperty->value($options);
$options = array('decode' => TRUE);
$output2 = $entity->myproperty->value($options);

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

$output = 'First property: ';
$output .= $wrapper->property[0]->value();
foreach ($wrapper->property as $vwrapper) {
 $output .= $vwrapper->value();
}

Preface

[4]

Any command-line input or output is written as follows:

$ drush eu ingredient 1 Salt

$ drush help eu

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You'll also
see that all properties are read-only on the wrapper. This is denoted by the R in the
Type column".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Understanding Entities
Developing Drupal code has always been interesting and fun because the APIs
change a lot between Drupal releases. Other CMS platforms have adopted a more
static API approach, resulting in a much slower innovations. One such Drupal
innovation has been the entity paradigm that simplified data manipulation. This
enabled developers to build more powerful solutions and liberate their brains to
remember more important things such as anniversaries and birthdays. Exposing
custom data as entities can be done with simpler code and less repetition. Those
entities can then be utilized by all modules with very little developer effort. The
result: "Good Codes!"

In this chapter we will cover the following topics:

• Introduce entities and how the entity paradigm makes code more flexible,
useful, simple, and robust

• Understand the difference between entity modules and solution modules
• Introduce entity types, bundles, and fields
• Learn the structure of entities exposed by Drupal core
• Highlight some use cases where the entity paradigm is powerful
• Introduce the use case that will be implemented in this book

www.allitebooks.com

http://www.allitebooks.org

Understanding Entities

[8]

Introducing entities
Let's start off by clearing up something very confusing. The word entity can be used
to describe different perspectives of Drupal data and code. For clarity, we will use
the following perspectives for this introduction:

• Structure: This is the description of the names, types, and sizes of data
inside a container

• Interface: This is the channel through which code interacts with data inside
a container

• Box: This is the structure and interface wrapped together so they can be
manipulated, stored, or transferred as a single unit

Plastic food containers in our homes come in all shapes and sizes; with or without lids,
clear or opaque. This is the container's interface perspective. Through this interface,
we can take content out, put content in, and know what type of content it has.

Food containers can contain anything, and you can use spacers to separate the
content in interesting ways. This is the structure perspective.

In our homes, these containers are all dealt with in a similar way or; in other words,
a unified way. We can take them off the shelf, put them on the shelf, and even cook
the content in a microwave (with the lid ajar of course). This is the box perspective.

Some of Drupal's boxes were, and still are, nodes, comments, users, terms, and
vocabularies. These boxes were difficult to deal with collectively in a unified way,
because their properties and methods differed a lot. In much the same way, food
containers are not interchangeable. For example, some are microwave safe, while
others are not. There aren't enough variations in food containers to cause difficulties,
but there are in Drupal boxes. In the past, Drupal boxes had varying structures and
many interfaces, making interchangeability impossible. The result: spaghetti code.
The good news is that Drupal developers could do something about this.

These clever folks realized that making the interface the same, regardless of the
structure, means that every box can be treated the same. They could end the
spaghetti madness by creating an abstraction, offering a unified interface for
Drupal data! This revelation resulted in an explosion of innovations, and Drupal
entities were born.

Chapter 1

[9]

Some of these clever folks had even predicted the power of such an abstraction.
A unified data interface simplifies code and makes more data available for
manipulation. In addition to this, new data structures exposed to Drupal could
be manipulated by existing code with little or no additional code. In other words,
developers can create a new entity and the many Drupal features leveraging entities
will access the new entity in full, with very little effort.

Last, but definitely not least, a unified interface reduces bugs and improves
maintainability because less specialized code is used.

Entity and solution modules
The Drupal community uses the following two categories for modules dealing
with entities:

• Entity modules: These expose and manage the structure and interface by
supplying any classes needed above and beyond the mechanisms provided
by Drupal core in order to store and manipulate the entity. For example,
comment, file, node, taxonomy, and user modules.

• Solution modules: They implement functionality and site features using
entities (boxes) as their data source. For example, rules, search, token, and
views modules.

A module can be both an entity module and a
solution module at the same time!

Introducing entity types, bundles, and
fields
The three conceptual components of an entity are as follows:

• Types
• Bundles
• Fields

Let's look at these components in detail, from a solution module developer's
perspective.

Understanding Entities

[10]

Types
Semantically, an entity type defines the name, base structure, and interface of an
entity. The entity type is tied to a table of data from which fields automatically
become the entity properties.

In code, an entity type simply consists of metadata and classes. Drupal core uses
its classes and the entity type metadata to expose entity data to code that uses
a well-known structure-independent interface. This enables modules to Create
Retrieve Update Delete (CRUD) and query different entity structures by using
the same code.

Because the interface is consistent between entity types, it's quite safe to say that only
the structure varies between them.

Bundles
The next rung up the conceptual ladder is a bundle, which is simply a name. A bundle
can be considered an entity subtype and, when paired with the entity type, becomes
an entity instance. It is possible for an entity type to only have one bundle, and this is
used when a developer does not need more than one instance.

One real-world analogy would be to use vegetable as the entity type and then define
aboveground and underground as the subtypes. Both subtypes have dimensions and
other common properties, and those are defined in the vegetable entity type.

You might be wondering why the subtypes chosen are weird and not something like
broccoli and spinach. The reason is because subtypes must be structurally different
in order to warrant the division. Structurally similar things don't need a subtype.
We had to recognize a distinguishing characteristic that makes the properties of each
entity different. Underground vegetables have roots coming out of them, so only they
will have properties related to roots.

Similarly, Drupal has an entity type named node and two example subtypes are blog
posts and events. Both bundles have an author and a creation date, but we probably
want an image attached to the blog post and a start timestamp attached to the event.
The common properties are part of the entity type; the uncommon properties are
attached to bundles.

Chapter 1

[11]

Fields
Drupal 7 fields came from Drupal 6 Content Construction Kit (CCK) fields.
Even though CCK fields did cause a Darwin, inspired module extermination,
they benefited the Drupal landscape by paving the way to entities. CCK fields
made it possible to attach use case-specific fields to content types (nodes) without
writing a single line of code. A site builder could attach a field by using the site's
administration UI. In Drupal 7, field implementation was moved to Drupal core,
and fields now attach to bundles of all entity types not just nodes.

As already mentioned, an entity's structure is based on the properties of the entity
type. The structure is then extended by its fields. Fields are attached to an entity
bundle by a developer in code or by a duly authorized user using the Manage fields
user interface.

Entities can either accept fields or not accept them. This is known, in Drupal
parlance, as fieldability or, in other words, the ability to attach fields. Entities are
considered as either fieldable or non-fieldable. An entity's fieldability is defined in
the entity type declaration.

Fields are attached to bundles and not to entity types. This is
an important distinction that may save design or debugging
time. Another important note is that fieldability can not be
different for two bundles of the same entity type.

More details about fields is given in Chapter 5, Developing with Fields.

Drupal core entity structure
Entities exposed by Drupal core are comment, file, node, term, user, and
vocabulary. Their structure is shown in the following table. Although in these
entities fieldability does correlate with multiple bundle support, it is possible to
have a fieldable single-bundle entity.

Understanding Entities

[12]

The following table shows Drupal core entity types, their fieldability, and whether
they support multiple bundles:

Entity type Fieldability Multiple bundles

Comment Y Y
File N N
Node Y Y
Term Y Y
User Y Y
Vocabulary N N

Powerful entity use cases
The entity paradigm has allowed developers to expose their custom data to Drupal
and utilize the full power of many Drupal solution modules, with minimal effort.
The following are some use cases that have transformed immensely since entities
were born:

• User profiles
• Internationalization
• Commerce products

User profiles
Drupal core, before Drupal 7, did not associate users with nodes. Site builders had
to use either the core profile module or a contributed "profile-as-a-node" module,
which tied users to nodes. All of these user profile modules had idiosyncrasies,
limiting their scope or flexibility. To make any "profile-as-a-node" module useful
to site builders, each had to implement their own rules, search, token, and views
(solution module) integration, resulting in too much repetition.

Thanks to the fieldability of Drupal 7 user entities, a user account can be tied to
any entity by a site builder (no code!) using an entity reference field. Through this
reference field, solution modules will automatically be able to traverse from the
user entity to the other entity regardless of the entity types. Because a single entity
reference field can have multiple values, the site builder can create multiple profile
types for different user facets. Solution modules will handle them all automatically!
Developers exposing custom data to Drupal using entities will get all of this for free
or with very little code.

Chapter 1

[13]

Internationalization
At the time of writing, it would be terribly naïve for anyone to say that Drupal's
internationalization (i18n) features are mature. The lack of innovation in this
area can be largely attributed to the lack of a unified interface. The birth of
entities opened the floodgates, and the development of i18n flourished in the
Drupal meadows.

Adding an i18n support to a module is now quite trivial. These translation features
are supported by the mainstream solution modules and multilingual Drupal sites
have become much simpler to build.

Internationalization of Drupal 7 entities requires the
entity_translation module. At the time of writing , this
module is in beta. All entity_translation features are
slated to become part of core in Drupal 8!

Commerce products
Drupal Commerce was custom built for Drupal 7 using entities. Older code combined
the visual representation of a product (description, images, and so on) and the product
details such as Stock-Keeping Unit (SKU) and price. This made it difficult to support
product combinations (multiple products per line item) and product variations (for
example, size and color). The cart and checkout modules were custom forms, and
customizing them required many lines of hook implementations and theme overrides.
Other difficult features were taxes, discounts, and currencies. Along came bucket
loads of contributed modules trying to support every possible feature combination,
plus custom glue code to fill the gaps. The result: spaghetti!

Developers introduced new entities (products, orders, line items, and payments)
along with new fields (price, product reference, and line item reference). Doing so
exposed all data to solution modules and eliminated the many contribution modules
that were previously needed for a basic e-commerce website. Code became simpler
yet it was more flexible!

Our use case
Through out the course of this book, we will gradually update a recipe website,
starting with a basic installation of Drupal 7 preconfigured with modules and content.
For the recipe features, we will use a contribution module named recipe. The module
is written as a node module—the design pattern in use before CCK even existed!
In each chapter, we will gradually bring it closer to being a fully-fledged Drupal 7
module while we learn about programming Drupal entities using "Good Codes!"

Understanding Entities

[14]

Summary
In this chapter, we were introduced to entities, entity types, bundles, and fields with
entity structure dissected. The entity and solution module categories were described,
and we discovered how the entity paradigm makes code more flexible, useful, simple,
and robust. Some powerful use cases were examined in before-and-after styles, to
emphasize how powerful the entity paradigm is. Finally, you were introduced to the
use case we will build as you progress through this book: a recipe website.

Next up, we will cook our first Drupal entity dish without burning it, because we
have a super special spatula: entity metadata wrappers.

Developing with Entity
Metadata Wrappers

Now that you've read the previous chapter, you know everything about entities,
right? Absolutely! Now it's time to play with them by using some well designed
object classes: entity metadata wrappers.

In this chapter we will cover the following topics:

• What entity metadata wrappers are
• Instantiate an entity metadata wrapper for an entity
• CRUD an entity
• Entity introspection
• Commonly used wrapper methods
• Safely using text property values

Introducing entity metadata wrappers
Entity metadata wrappers, or wrappers for brevity, are PHP wrapper classes
for simplifying code that deals with entities. They abstract structure so that a
developer can write code in a generic way when accessing entities and their
properties. Wrappers also implement PHP iterator interfaces, making it easy to
loop through all properties of an entity or all values of a multiple value property.

The magic of wrappers is in their use of the following three classes:

• EntityStructureWrapper

• EntityListWrapper

• EntityValueWrapper

Developing with Entity Metadata Wrappers

[16]

The first has a subclass, EntityDrupalWrapper, and is the entity structure object that
you'll deal with the most. Entity property values are either data, an array of values,
or an array of entities. The EntityListWrapper class wraps an array of values or
entities. As a result, generic code must inspect the value type before doing anything
with a value, in order to prevent exceptions from being thrown.

Creating an entity metadata wrapper
object
Let's take a look at two hypothetical entities that expose data from the following two
database tables:

• ingredient

• recipe_ingredient

The ingredient table has two fields: iid and name. The recipe_ingredient table
has four fields: riid, iid, qty, and qty_unit. The schema would be as follows:

ingredient
iid
name

bigint
varchar

recipe_ingredient
riid
rid

bigint
bigint

iid

qty_unit
qty

bigint

varchar
decimal

Schema for ingredient and recipe_ingredient tables

To load and wrap an ingredient entity with an iid of 1 and, we would use the
following line of code:

$wrapper = entity_metadata_wrapper('ingredient', 1);

To load and wrap a recipe_ingredient entity with an riid of 1, we would use this
line of code:

$wrapper = entity_metadata_wrapper('recipe_ingredient', 1);

Now that we have a wrapper, we can access the standard entity properties.

Chapter 2

[17]

Standard entity properties
The first argument of the entity_metadata_wrapper function is the entity type,
and the second argument is the entity identifier, which is the value of the entity's
identifying property. Note, that it is not necessary to supply the bundle, as
identifiers are properties of the entity type.

When an entity is exposed to Drupal, the developer selects one of the database
fields to be the entity's identifying property and another field to be the entity's label
property. In our previous hypothetical example, a developer would declare iid as
the identifying property and name as the label property of the ingredient entity.
These two abstract properties, combined with the type property, are essential for
making our code apply to multiple data structures that have different identifier fields.

Notice how the phrase "type property" does not format the word "property"? That
is not a typographical error. It is indicating to you that type is in fact the name of
the property storing the entity's type. The other two, identifying property and label
property are metadata in the entity declaration. The metadata is used by code to get
the correct name for the properties on each entity in which the identifier and label
are stored. To illustrate this, consider the following code snippet:

$info = entity_get_info($entity_type);
$key = isset($info['entity keys']['name'])
 ? $info['entity keys']['name'] : $info['entity keys']['id'];
return isset($entity->$key) ? $entity->$key : NULL;

Shown here is a snippet of the entity_id() function in the entity module. As you
can see, the entity information is retrieved at the first highlight, then the identifying
property name is retrieved from that information at the second highlight. That name
is then used to retrieve the identifier from the entity.

Note that it's possible to use a non-integer identifier, so
remember to take that into account for any generic code.

The label property can either be a database field name or a hook. The entity exposing
developer can declare a hook that generates a label for their entity when the label
is more complicated, such as what we would need for recipe_ingredient. For
that, we would need to combine the qty, qty_unit, and the name properties of the
referenced ingredient.

www.allitebooks.com

http://www.allitebooks.org

Developing with Entity Metadata Wrappers

[18]

Entity introspection
In order to see the properties that an entity has, you can call the getPropertyInfo()
method on the entity wrapper. This may save you time when debugging. You can
have a look by sending it to devel module's dpm() function or var_dump:

dpm($wrapper->getPropertyInfo());
var_dump($wrapper->getPropertyInfo());

Using an entity metadata wrapper
The standard operations for entities are CRUD: create, retrieve, update, and delete.
Let's look at each of these operations in some example code. The code is part of the
pde module's Drush file: sites/all/modules/pde/pde.drush.inc.

Downloading the example code

You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com .
If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Each CRUD operation is implemented in a Drush command, and the relevant code is
given in the following subsections. Before each code example, there are two example
command lines. The first shows you how to execute the Drush command for the
operation.; the second is the help command.

Create
Creation of entities is implemented in the drush_pde_entity_create function.

Drush commands
The following examples show the usage of the entity-create (ec) Drush command
and how to obtain help documentation for the command:

$ drush ec ingredient '{"name": "Salt, pickling"}'

$ drush help ec

Chapter 2

[19]

Code snippet
$entity = entity_create($type, $data);
// Can call $entity->save() here or wrap to play and save
$wrapper = entity_metadata_wrapper($type, $entity);
$wrapper->save();

In the highlighted lines we create an entity, wrap it, and then save it. The first line
uses entity_create, to which we pass the entity type and an associative array
having property names as keys and their values. The function returns an object that
has Entity as its base class. The save() method does all the hard work of storing
our entity in the database. No more calls to db_insert are needed!

Whether you use the save() method on the wrapper or on the Entity object
really depends on what you need to do before and after the save() method call.
For example, if you need to plug values into fields before you save the entity, it's
handy to use a wrapper.

Retrieve
The retrieving (reading) of entities is implemented in the drush_pde_print_
entity() function.

Drush commands
The following examples show the usage of the entity-read (er) Drush command
and how to obtain help documentation for the command.

$ drush er ingredient 1
$ drush help er

Code snippet
$header = ' Entity (' . $wrapper->type();
$header .= ') - ID# '. $wrapper->getIdentifier().':';
// equivalents: $wrapper->value()->entityType()
// $wrapper->value()->identifier()

$rows = array();
foreach ($wrapper as $pkey => $property) {
 // $wrapper->$pkey === $property
 if (!($property instanceof EntityValueWrapper)) {
 $rows[$pkey] = $property->raw()

Developing with Entity Metadata Wrappers

[20]

 . ' (' . $property->label() . ')';
 }
 else {
 $rows[$pkey] = $property->value();
 }
}

On the first highlighted line, we call the type() method of the wrapper, which
returns the wrapped entity's type. The wrapped Entity object is returned by the
value() method of the wrapper. Using wrappers gives us the wrapper benefits,
and we can use the entity object directly!

The second highlighted line calls the getIdentifier() method of the wrapper.
This is the way in which you retrieve the entity's ID without knowing the identifying
property name. We'll discuss more about the identifying property of an entity in
a moment.

Thanks to our wrapper object implementing the IteratorAggregate interface, we
are able to use a foreach statement to iterate through all of the entity properties. Of
course, it is also possible to access a single property by using its key. For example,
to access the name property of our hypothetical ingredient entity, we would use
$wrapper->name.

The last three highlights are the raw(), label(), and value() method calls.
The distinction between these is very important, and is as follows:

• raw(): This returns the property's value straight from the database.
• label(): This returns value of an entity's label property. For example, name.
• value(): This returns a property's wrapped data: either a value or another

wrapper.

Finally, the highlighted raw() and value() methods retrieve the property values
for us. These methods are interchangeable when simple entities are used, as there's
no difference between the storage value and property value. However, for complex
properties such as dates, there is a difference. Therefore, as a rule of thumb, always
use the value() method unless you absolutely need to retrieve the storage value.
The example code is using the raw() method only so we that can explore it, and all
remaining examples in this book will stick to the rule of thumb. I promise!

• Storage value: This is the value of a property in the
underlying storage media. for example, database.

• Property value: This is the value of a property at the entity
level after the value is converted from its storage value to
something more pleasing. For example, date formatting of
a Unix timestamp.

Chapter 2

[21]

Multi-valued properties need a quick mention here. Reading these is quite
straightforward, as they are accessible as an array. You can use Array notation to get
an element, and use a foreach to loop through them! The following is a hypothetical
code snippet to illustrate this:

$output = 'First property: ';
$output .= $wrapper->property[0]->value();
foreach ($wrapper->property as $vwrapper) {
 $output .= $vwrapper->value();
}

Update
The updating of entities is implemented in the drush_pde_entity_update() function.

Drush commands
The following examples show the usage of the entity-update (eu) Drush command
and how to obtain help documentation for the command:

$ drush eu ingredient 1 Salt

$ drush help eu

Code snippet
$wrapper->$pname = $pval;
$wrapper->save();

Updating an entity is very easy for simple properties, as can be seen in the preceding
two highlighted lines—an assignment followed by a call to the wrapper's save()
method. Complex properties can be trickier, and these are covered in the relevant
chapters later.

Delete
The deletion of entities is implemented in the drush_pde_entity_delete() function.

Drush commands
The following examples show the usage of the entity-delete (ed) Drush command
and how to obtain help documentation for the command:

$ drush ed ingredient 1

$ drush help ed

Developing with Entity Metadata Wrappers

[22]

Code snippet
$wrapper->delete();

A single call to the wrapper's delete() method is all that's needed to zap an
entity away.

Safely using text property values
Calls to the value() method on the wrapped text property values can pass an array
of options for processing the value before it's returned.

$options = array('sanitize' => TRUE);
$output1 = $entity->myproperty->value($options);
$options = array('decode' => TRUE);
$output2 = $entity->myproperty->value($options);

In the preceding example, myproperty is a text property. Only one of the two
options, sanitize and decode, should be used at at time. If you set both to TRUE,
the value will be sanitize. Both are FALSE by default.

When sanitize is set to TRUE, the text is passed through check_plain, which
ensures that the text is ready to be displayed in HTML. It does so by converting
characters such as angled brackets to HTML entities (nothing to do with Drupal
entities). So, a less than symbol > becomes <. Use the sanitize option if the
value will be fed directly into HTML output.

Setting the decode option is necessary when the value is HTML or PHP. This option
will decode the string , by removing all HTML and PHP tags, and will then convert
all HTML entities into their plaintext equivalents.

Self-imposed limitation of entity
programming
There is one very important thing to mentally note down about entity programming.
It is intended only for low-level data manipulation. Your humble author recommends
that you do not use entity code for rendering content to a browser, because your code
will not play well with modules or themes. If you wish to modify the rendering of
some content, use Drupal's theme layer. The use of entity code within the theme layer
is safe, that provided you put the code within the theme hooks.

Chapter 2

[23]

References
• The entity_metadata_wrapper() function at http://drupalcontrib.

org/api/drupal/contributions!entity!entity.module/function/
entity_metadata_wrapper/7.

• The Entity class API at http://drupalcontrib.org/api/drupal/contrib
utions!entity!includes!entity.inc/class/Entity/7.

• The EntityMetadataWrapper class API at http://drupalcontrib.org/
api/drupal/contributions!entity!includes!entity.wrapper.inc/
class/EntityMetadataWrapper/7.

• The Entity metadata wrappers from the Drupal handbook at http://
drupal.org/node/1021556.

A note about EntityFieldQuery
The EntityFieldQuery class comes bundled with entity module and is a
wonderful method of searching for queries. Unfortunately, your humble author
accidentally omitted it from this book. To get started, take a look at the Drupal
Handbook page at https://drupal.org/node/1343708.

Summary
In this chapter we discovered how easy entity coding can be, thanks to all of the
cleverly designed wrapper classes. We now know what entity metadata wrappers
are, how to CRUD entities by using the wrappers, and how to ensure that the data
coming from entities is safe to use. Next, we will look at and play with non-fieldable
entities in Drupal core!

Developing with Non-fieldable
Entities

Up to this point, we have spent time learning about entities in general by using
hypothetical entities. It is now time to play with some of the entity structures
exposed by Drupal core. In this chapter we will cover the following:

• What non-fieldable entities are
• File entities
• Vocabulary entities
• Programmatically creating a file and a vocabulary
• Programmatically modifying a file and a vocabulary

What are non-fieldable entities?
So far in this book, we have only brushed on non-fieldable entities, so a little more
detail is needed before we can appreciate them for what they are: structurally restricted
data containers.

Wait a second! Aren't entities meant to be flexible so that we can extend them to
our will?! Aren't fields one of the three necessary ingredients of a delicious entity
sandwich?! Well, yes and no. Yes, we do want entities to be flexible and allow us to
bend them to suit different use cases. However, some entities have no known use
cases in which they should have fields, and some entities are better left non-fieldable
until their full scope and supporting code are finalized. In Drupal 7 core, there are
two such entities: vocabulary and file.

Developing with Non-fieldable Entities

[26]

While you may be able to think of a use case in which, say, vocabulary entities would
benefit from having fields, there just wasn't enough need to include support for that
in Drupal 7. Keeping fields off these entities simplified the transition to the entity
paradigm and reduced the time needed to make it all happen. That said, there is
a contributed module named file_entity, working towards making file entities
fieldable, among other features. This functionality, or part of it, will no doubt work
its way into Drupal core eventually. At the time of writing, the earliest will be Drupal
9 as no developers have taken on the project.

For now, let's take a look at these two non-fieldable entity types in detail.

To get a quick look at an entity type's property information,
you can use the dump-entity-properties (dep) Drush
command in the pde module from the downloadable code.

File entities
Drupal 7 introduced some rather important changes for files. First and foremost, they
became entities, although they are not fully-fledged entities. This is most likely due
to how different they are to content. For example, at the time of writing, file entities
don't have any write support through wrappers. All changes must be done using
the entity object itself or the File API. The latter is the best option, as the File API
is quite simple to use. The wrapper save() method still works if you truly wish to
bypass the File API.

In your applications, you will more often read values from file entities than you will
write them. For reading, we should use wrappers or entity properties. The following
table shows the wrapper and entity properties of file entities in Drupal 7:

Chapter 3

[27]

Wrapper
property

Type (Read/
Write)

Description Entity
property

fid integer (R) File ID
name string (R) Name of the file filename

mime string (R) MIME type of the file filemime

size integer (R) Size of the file in kilobytes filesize

url string (R) Web-accessible URL of the file uri

timestamp date/integer
(R**)

Time of the most recent file update

owner user/integer
(R)

User who originally uploaded the file uid

integer (R) Status: temporary (0) or permanent (1) status

The timestamp property can only be set by code
directly changing the database record

Note that some of the wrapper property names differ from the entity property
names (database field names). For those that differ, the entity property name has
been placed in the right-hand side column. You will also notice that the values can
be different between the wrapper property and the entity property; so can the type.
For example, the owner wrapper property will be a user entity wrapper whereas
the uid entity property is just a numeric user ID.

You'll also see that all properties are read-only on the wrapper. This is denoted by
the R in the Type column. The timestamp field is also a special field because none of
the API functions or wrapper code can alter the value that is stored in it. A developer
must directly change the database record to make any change to this field. Finally,
you'll notice the status property is totally missing from the wrapper.

Another concept introduced in Drupal 7 is the distinction between managed and
unmanaged files. Managed files are known by Drupal and these are the entities that
are most often used. Unmanaged files are useful in use cases where you want to do
something outside of Drupal's API reach.

www.allitebooks.com

http://www.allitebooks.org

Developing with Non-fieldable Entities

[28]

Creating a file entity by using the File API is typically done by using the file_save_
data() function. The following code snippet comes from the system_retrieve_
file() API function.

$local = $managed
 ? file_save_data($result->data, $path, $replace)
 : file_unmanaged_save_data($result->data, $path, $replace);

Notice here that this function supports the creation of both managed and
unmanaged files. Let's take a look inside file_save_data.

if ($uri = file_unmanaged_save_data($data, $destination, $replace)) {
 // Create a file object.
 $file = new stdClass();
 $file->fid = NULL;
 $file->uri = $uri;
 $file->filename = drupal_basename($uri);
 $file->filemime = file_get_mimetype($file->uri);
 $file->uid = $user->uid;
 $file->status = FILE_STATUS_PERMANENT;
 // If we are replacing an existing file re-use its database
record.
 if ($replace == FILE_EXISTS_REPLACE) {
 $existing_files = file_load_multiple(array(), array('uri' =>
$uri));
 if (count($existing_files)) {
 $existing = reset($existing_files);
 $file->fid = $existing->fid;
 $file->filename = $existing->filename;
 }
 }
 // If we are renaming around an existing file (rather than a
directory),
 // use its basename for the filename.
 elseif ($replace == FILE_EXISTS_RENAME && is_file($destination)) {
 $file->filename = drupal_basename($destination);
 }

 return file_save($file);
}

Chapter 3

[29]

The first highlight through to the second highlight shows the manual way of
creating file entities. There is no use of entity_create. To create a file named
helloworld.txt by using the entity, use the following code:

global $user;

$filename = 'helloworld.txt';
$uri = 'public://'.$filename;
$content = "Hello, world!\nI am Programming Drupal Entities!\n";

$uri = file_unmanaged_save_data($content, $uri, FILE_EXISTS_REPLACE);
$data = array(
 'fid' => NULL,
 'uri' => $uri,
 'filename' => drupal_basename($uri),
 'filemime' => file_get_mimetype($uri),
 'uid' => $user->uid,
 'status' => FILE_STATUS_PERMANENT,
);
$entity = entity_create('file', $data);
$wrapper = entity_metadata_wrapper('file', $entity);
$wrapper->save();

The preceding code provides a useful illustration but it is not really worth using
anymore, as you can achieve much more with less code. In practice you would do
the following instead:

$filename = 'helloworld.txt';
$uri = 'public://'.$filename;
$content = "Hello, world!\nI am Programming Drupal Entities!\n";
$file = file_save_data($content, $uri, FILE_EXISTS_REPLACE);
$wrapper = entity_metadata_wrapper('file', $file);

As you can see, we get a wrapper object in less lines by using the File API.

Seeing that updating status is impossible using wrappers, we must directly use
the entity. Let's pretend that we want to flag the file for removal on a later cron
run. This is done by setting the file entity's status to FILE_STATUS_TEMPORARY.
The code would be as follows:

$wrapper = entity_metadata_wrapper('file', $fid);
$wrapper->value()->status = FILE_STATUS_TEMPORARY;
$wrapper->save();

Developing with Non-fieldable Entities

[30]

Alternatively, we can use the entity object itself:

$entity = entity_load_unchanged('file', $fid);
$entity->status = FILE_STATUS_TEMPORARY;
$entity->save();

As a quick reminder, to delete an entity using a wrapper, you can use the
following code:

$wrapper->delete();

Calling this on a file entity wrapper also deletes the file on disk.

Vocabulary entities
Vocabulary entities are a little strange. Developers opted to use the type name
taxonomy_vocabulary instead of just vocabulary when they implemented the entity
type in core. This is worth remembering so you don't get tripped up. The following
table shows the properties of vocabulary entities in Drupal 7:

Wrapper
property

Type (Read/
Write)

Description Entity property

vid integer (R) Vocabulary ID
name string (R/W) Name
machine_name string (R/W) Machine name
description string (R/W) Description
term_count integer (R) Number of terms in the

vocabulary
N/A

N/A integer Hierarchy type: disabled (0),
single (1), or multiple (2)

hierarchy

N/A string Module that created the
vocabulary

module

N/A integer Weight of this vocabulary entity
versus other vocabulary entities

weight

For most cases, the hierarchy property is best left untouched. The taxonomy
module will automatically adjust this property to match how you organize terms
using the UI.

Chapter 3

[31]

To create a vocabulary named cuisine we would use the following code:

$data = array(
 'name' => 'Cuisine',
 'machine_name' => 'cuisine',
 'description' => 'Contains terms representing different cuisines.',
);
$entity = entity_create('taxonomy_vocabulary', $data);
$wrapper = entity_metadata_wrapper('taxonomy_vocabulary', $entity);
$wrapper->save();

The last three lines are quite ok if you plan on using the wrapper for other things.
If you don't need to use a wrapper, these lines can be shrunk to the following line:

$status = taxonomy_vocabulary_save((object) $data);

API wins again! Let's put this into action in our recipe module overhaul.

Recipe site vocabularies
In its 7.0-1.x implementation, the recipe contribution module has no vocabularies
by default. Site builders can easily add their own vocabularies to match their use
case. However, it would be quite cool if the recipe module created two vocabularies
out of the box: cuisine and difficulty.

We will now add code to the recipe module's install file. The code will create these
vocabularies for new and existing sites. Open the recipe.install file (sites/all/
modules/customized/recipe/recipe.install) and add the following code to the
bottom of the file:

/**
 * Implements hook_install().
 */
function recipe_install() {
 recipe_install_vocabularies();
}

/**
 * Install default vocabularies introduced in 7.x-2.x.
 *
 * @return
 * FALSE if the operation was successful otherwise the vocabulary
 * machine_name that failed.
 */

Developing with Non-fieldable Entities

[32]

function recipe_install_vocabularies() {
 $vocabularies = array(
 array(
 'name' => 'Cuisine',
 'machine_name' => 'cuisine',
 'description' =>
 'Contains terms representing different cuisines.',
),
 array(
 'name' => 'Difficulty',
 'machine_name' => 'difficulty',
 'description' =>
 'Contains terms representing difficulty levels.',
),
);
 foreach ($vocabularies as $vdata) {
 // Make sure we're not overwriting existing vocabularies
 $v = taxonomy_vocabulary_machine_name_load($vdata['machine_
name']);
 if (!$v
 && taxonomy_vocabulary_save((object) $vdata) === FALSE) {
 // We got a problem
 return $vdata['machine_name'];
 }
 }

 return FALSE;
}

/**
 * Install default vocabularies introduced in 7.x-2.x.
 */
function recipe_update_7200(&$sandbox) {
 if ($machine_name = recipe_install_vocabularies()) {
 throw new DrupalUpdateException('Error occurred when attempting to
create vocabulary: '.$machine_name);
 }
}

The code we used was simply an install hook, a handler function, and an update
hook. The highlighted line creates a vocabulary. Note that we used neither the entity
code nor the wrapper code, just the good old core API. To see what you've done,
scoot into your website document root using your shell and update the site database
using Drush:
$ drush updatedb

Chapter 3

[33]

Surf over to admin/structure/taxonomy and you'll see the new vocabularies. The
properties of vocabulary entities in Drupal 7 are shown in the following screenshot:

There may be times when you want to load a vocabulary by using its
machine name. To do so, you can call the taxonomy_vocabulary_
machine_name_load() function, and then feed the returned value
into the entity_metadata_wrapper() function.

Updating a vocabulary can be done by using the standard CRUD techniques
outlined in Chapter 2, Developing with Entity Metadata Wrappers. A quick reminder;
for updates, use the following code:

$wrapper = entity_metadata_wrapper('taxonomy_vocabulary', $vid);
$wrapper->description = 'New description';
$wrapper->save();

For deletion, use the following code:

$wrapper = entity_metadata_wrapper('taxonomy_vocabulary', $vid);
$wrapper->delete();

That wraps up the core-exposed non-fieldable entities and how they can be used
during development.

Summary
In this chapter, we took a look at non-fieldable entities exposed by Drupal core,
learned that they are not fully-fledged entities, and also learned how to develop code
using them. We then added some code to create vocabularies in our first change to
the recipe contributed module.

Next, we will enjoy the aroma from a huge loaf of fieldable entities baking in Drupal
core oven.

Developing with Fieldable
Entities

Now we can sink our teeth into the main course: fieldable entities. In this chapter
we'll cover the following:

• What are fieldable entities
• Node entities
• Comment entities
• Term entities
• Programmatically CRUD node, comment, and term entities

Let's get started!

What are fieldable entities?
By now you probably don't need an explanation, but in brief, fieldable entities are
entities to which fields can be attached. In Drupal 7 core they are nodes, comments,
and terms.

The cool thing about these fieldable entities is that they all have bundles, so you can
have more flexibility. For example, consider the comments on different content types
on the same site:

• Attach an image field to comments made on support issue posts
• Attach a rating field to comments on each product display page

As you can see, the content types are different, yet we are attaching a field to
comments associated with those content types. Bundles! Very cool! Even more
cool is the fact that all of this requires zero code!

Developing with Fieldable Entities

[36]

Lucky for us we still have a job, because there's always some custom requirement.
Let's break out the stand mixer, combine all of these fieldable entities, and bake some
more "Good Codes!"

Node entities
Node entities are the bread and butter of Drupal—the content types around which
sites are built. They are also the most complex core-exposed entities, because they
have a large number of properties. Let's take a look at the wrapper and entity
properties of node entities in Drupal 7:

Wrapper
property

Type (Read/
Write)

Description Entity property

nid integer (R) Node ID
vid integer (R) Revision ID
is_new string (R) Whether or not

the node is new
N/A

type string (R/W) Node type
(bundle name)

title string (R/W) Title
language token (R/W) Language of the

content
url string (R) URL for viewing

node
N/A

edit_url string (R) URL for editing
node

N/A

status integer (R/W) Publishing status
promote Boolean

(R/W)
TRUE to promote
the node to the
front page

sticky Boolean
(R/W)

TRUE to display
the node at the
top of lists

created date/integer
(R/W)

Date the node
was created

changed date/integer
(R)

Date the node
was last changed

author user/integer
(R/W)

Author uid

Chapter 4

[37]

Wrapper
property

Type (Read/
Write)

Description Entity property

source node/integer
(R)

Original-
language source
node

N/A

log text (R/W) Log message for
new revision

N/A

revision Boolean
(R/W)

TRUE if a new
revision is to be
created when the
node is saved

N/A

comment integer (R/W) Comments
allowed: no (0),
closed/read-only
(1), or open (2)

N/A

comment_count integer (R) Total number of
comments posted

N/A

comment_
count_new

integer (R) Number of
comments unseen
by current the
user

N/A

body text_
formatted
(R/W)

Body of the node

body is a special case because it is actually a field

CRUD operations on node entities are the same as on other entities; only the body
field needs thorough attention.

The value of body fields can be retrieved in the same way as for all other properties:

$body_value = $wrapper->body->value();

However, it won't return the content of the body field as we would expect. The body
field has a compound type instead of a scalar type. A property or field with a scalar
type will return a scalar value when you call the value() function. Scalar values are
integers, strings, and things like that. A property or field with a compound type will
return an array when you call the value() function.

www.allitebooks.com

http://www.allitebooks.org

Developing with Fieldable Entities

[38]

Sending $body_value in the previous line through print_r would display
the following:

Array
(
 [value] => Body of my node.
 [summary] => Summary of my node.
 [format] => plain_text
 [safe_value] => <p>Body of my node.</p>
 [safe_summary] => <p>Summary of my node.</p>
)

As you can see, there are sub-values within the body field. These are:

• value: Raw body content as saved in the database
• summary: Raw summary content as saved in the database
• format: Input format of the body
• safe_value: Computed body content that is HTML safe
• safe_summary: Computed summary content that is HTML safe

We could use these values directly by using code similar to this:

$wrapper->body->value->value()

Developers have a choice to use either a raw output or a sanitized (HTML safe)
output. We will refer to this as the processing type. Unfortunately, these outputs are
accessed inconsistently throughout the different field types. For example, one field
type returns raw output for a call to value() whereas a different field type outputs
sanitized output. Wipe the sweat off your brow and take a deep breath. There's a
way around it, and those of you who guess it right get a candy bar.

We can get what we want by calling value() and giving it an option to specify the
processing type. For each processing type the code is as follows:

• raw: $wrapper->body->summary->value(array('decode' => TRUE));
• sanitized: $wrapper->body->summary->value(array('sanitize' =>

TRUE));

So, that was easy right? Indeed it was. That's all of the tricks necessary if your code
deals with a known entity type or field type. If you need to do anything generic,
write code targeting the field type, as the field type must declare a fixed set of
property names and types.

Chapter 4

[39]

Don't forget though...programming at the entity-level should have nothing to
do with output rendering. Entity-level code must only deal with low-level data.
Rendering for the browser is always handled by the theme layer!

Comment entities
Drupal provides comment entities to allow users to attach comments to node entities.
Let's take a look at the wrapper and entity properties of comment entities in Drupal 7:

Wrapper
property

Type (Read/Write) Description Entity property

cid integer (R) Comment ID
hostname string (R) IP address of the

posting computer
name string (R/W) Author's name N/A
mail string (R/W) Author's e-mail address
homepage string (R/W) Author's homepage
subject string (R/W) Subject of the comment
url string (R) URL for viewing

comment
N/A

edit_url string (R) URL for editing
comment

N/A

created date/integer
(R/W)

Date comment was
created

parent comment/integer
(R)

Parent comment's ID pid

node node/integer
(R/W)

Node the comment was
posted to

nid

author user/integer
(R/W)

Author uid

status integer (R/W) Published status: no (0)
or yes (1)

comment_
body

text_formatted
(R/W)

Content of the comment Comment body is a
special case because
it is actually a field

The comment_body field is similar to the body field in node entities. The only
difference is that it doesn't have a summary. Refer to the previous section for
information about that.

Developing with Fieldable Entities

[40]

Now that we've covered both node and user entities, we can take a look at the entity
reference properties of a comment entity: author and node. When using wrappers,
the author property becomes a user wrapper and the node property becomes a node
wrapper. Via these, you can easily access properties of the author's user account or
the node to which the comment was posted. Some examples are as follows:

$mail = $wrapper->author->mail->value();
$title = $wrapper->node->title->value(array('decode' => TRUE));

The first line in the preceding code returns the author's e-mail address (if they are
a registered user), and the second line returns the node title. Changing the author
is simple:

$wrapper->author = $new_author_uid;
$wrapper->save();

Comments can also be posted by anonymous users. In this case, the value of the uid
field is zero. To check that, do the following:

if ($wrapper->author->raw() === '0') {
 $mail = $wrapper->mail->value(array('decode' => TRUE));
 $name = $wrapper->name->value(array('decode' => TRUE));
}

An important thing to note here is that raw actually returns the user's ID as a
string value. The underlying field is an integer, but the wrapper code turns this
into a string. That is the reason for the quotes and the use of === for the equality
comparison.

Anonymous users will have values in the name and mail properties, as they
don't have a user account to refer to. The code that accesses these properties are
highlighted in the previous code snippet.

Term entities
Similar to the vocabulary entities, terms have a special type name: taxonomy_term.
The properties of taxonomy_term entities are shown in the following table:

Wrapper
property

Type (Read/Write) Description Entity
property

tid integer (R) Term ID
name string (R/W) Name
description string (R/W) Description

Chapter 4

[41]

Wrapper
property

Type (Read/Write) Description Entity
property

weight integer (R/W) Weight; value for the
order of terms

node_count integer (R) Number of nodes tagged
with the term

url uri/string (R) URL N/A
vocabulary taxonomy_vocabulary/

integer (R/W)
Vocabulary vid

parent list<taxonomy_term>
(R/W)

Parent terms N/A

parents_all list<taxonomy_term>
(R/W)

Ancestor terms N/A

Properties of taxonomy_term entities are quite straightforward. Notable properties
are vocabulary, parent, and parents_all.

We can use vocabulary to chain through to the taxonomy_vocabulary entity
containing this term.

$v_name = $wrapper->vocabulary->name->value(array('decode' => TRUE));

Code carefully when using the parent and parents_all properties. The following is
some sample code that assumes a hierarchy of cuisines that looks like the following:

Example cuisine term hierarchy

Developing with Fieldable Entities

[42]

The parents property only contains the direct parents of the term. You read that
correctly—it is a plural. Terms in Drupal can have multiple parents, so a term can
live in two parts of the hierarchy. On the other hand, the parents_all property
contains the entire term path to the vocabulary root including the term itself. To
illustrate this, take a look at the following code and output.

$wrapper = entity_metadata_wrapper('taxonomy_term',$cameroon_tid);
foreach ($wrapper->parent as $pwrapper) {
 print($pwrapper->name->value())."\n";
}
print "\n";
foreach ($wrapper->parents_all as $pwrapper) {
 print($pwrapper->name->value())."\n";
}
/* OUTPUT:
Central African

Cameroon
Central African
African
*/

Our recipe website needs to have some terms installed for the new vocabularies
that we created in the previous chapter. To do so, we amend the code as follows:

/**
 * Implements hook_install().
 */
function recipe_install() {
 recipe_install_vocabularies();
 recipe_install_terms();
}

Add the highlighted line to the recipe_install() function. Next, paste the
following code at the bottom of the file.

/**
 * Installs recipe module's default terms that are read from
 * text files in the module's includes folder.
 */
function recipe_install_terms() {
 foreach (array_keys(recipe_vocabularies()) as $machine_name) {
 $v = taxonomy_vocabulary_machine_name_load($machine_name);
 $wrapper = entity_metadata_wrapper('taxonomy_vocabulary', $v);

Chapter 4

[43]

 if ($wrapper->term_count->value() == 0) {
 $path = drupal_get_path('module', 'recipe')
 . '/includes/terms_' . $v->machine_name . '.txt';
 $lines = file($path, FILE_SKIP_EMPTY_LINES);
 recipe_install_term_tree($wrapper, $lines);
 }
 }
}

/**
 * Installs a term tree.
 * @param $vwrapper
 * EntityMetadataWrapper of a taxonomy_vocabulary entity.
 * @param $lines
 * Array of lines from the term text file. The iterator must be set
 * to the line to parse.
 * @param $last
 * Either NULL or the parent term ID.
 * @param $depth
 * Current depth of the tree.
 */
function recipe_install_term_tree($vwrapper, &$lines,
 $last = NULL, $depth = 0) {
 $wrapper = NULL;

 while ($line = current($lines)) {
 $name = trim($line);
 $line_depth = max(strlen($line) - strlen($name) - 1, 0);

 if ($line_depth < $depth) {
 return;
 }
 else if ($line_depth > $depth) {
 $tid = $wrapper ? $wrapper->tid->value() : NULL;
 recipe_install_term_tree($vwrapper, $lines, $tid, $depth+1);
 }
 else {
 $data = array(
 'name' => $name,
 'vid' => $vwrapper->vid->value(),
 'parent' => array($last ? $last : 0),
);

Developing with Fieldable Entities

[44]

 $term = entity_create('taxonomy_term', $data);
 $wrapper
 = entity_metadata_wrapper('taxonomy_term', $term);
 $wrapper->save();
 next($lines);
 }
 }
}

/**
 * Installs terms into default vocabularies.
 */
function recipe_update_7201(&$sandbox) {
 recipe_install_terms();
}

In the preceding code, term names are read from text files that have tab indentation
to symbolize the term hierarchy. A snippet of the terms_cuisine.txt file is shown
as follows:

African
 Central African
 Cameroon
 Congo
 East African
 Burundi
 Kenya
 Maasai
 Tanzania
 Uganda

Each line of the file is analyzed and the creation of a term entity occurs in the
highlighted lines. All that's needed for the correct creation of a term entity is to
specify the name, vid, and parent properties. For terms without a hierarchy, you
need to set the parent term ID to zero. If you don't provide the parent term like this,
you will not get an error, but the term will not be saved properly. In addition, you
can specify a description and a text format, as shown in the following code snippet:

$data = array(
 'name' => $name,
 'vid' => $vid,
 'parent' => array(0),
 'description' => $description,
 'format' => 'plain_text',
);

Chapter 4

[45]

$term = entity_create('taxonomy_term', $data);
entity_save('taxonomy_term', $term);

You'll notice that entity_save has been used instead. This is an alternative if you
don't need the wrapper.

Once you have added the previous code, open up your terminal and navigate to
your website document root folder and update the site database by using Drush:

$ drush updatedb

Navigate your browser to admin/structure/taxonomy/cuisine and you'll see
the new terms in the Cuisine vocabulary, as shown in the following screenshot:

Cuisine terms after updating the database with the new recipe module updates

That wraps up everything for core-exposed fieldable entities.

Developing with Fieldable Entities

[46]

Summary
This chapter delved into the fieldable entities exposed by Drupal 7 core: comment,
node, and term entities. We also added some code to our recipe website that installs
default terms into the Cuisine and Difficulty vocabularies.

In the next chapter, we will whizz up some flexibility with fields.

Developing with Fields
Now that we've covered the core-exposed entities, we can unveil the most powerful
part of the Drupal entity paradigm: fields. In this chapter we'll look at the following:

• Different field types: date, file, image, link, number, text, and
term reference

• The difference between multi-value and single-value fields
• Structure fields
• Programmatically accessing the fields of an entity
• Programmatically adding fields to an entity
• Programmatically migrating data into fields

Field types
We will look at the most commonly-used field types in Drupal 7: text, numeric,
date, link, file, and image in the following table:

Field type Type name Core/Contributed Module name
date datetime contributed date

date (ISO
format)

date contributed date

date (UNIX
timestamp)

datestamp contributed date

decimal number_decimal core number

file file core file

float number_float core number

image image core image

www.allitebooks.com

http://www.allitebooks.org

Developing with Fields

[48]

Field type Type name Core/Contributed Module name
Integer number_integer core number

link link contributed link

Long text text_long core text

Long text and
summary

text_with_summary core text

Text text core text

The previous table displays field types, whether it's in core or in a contributed
module, and the name of the Drupal 7 module in which the field is implemented.

You might be wondering why options and list modules are not included in the
previous table. It is because they are not field types, and their responsibility is to
provide widgets on the entity edit forms. Remember to differentiate the widget
you see from the underlying field type when coding.

Single-value and multi-value fields
Fields can either be single-value or multi-value fields. This means that they either
store one value or multiple values. Through wrappers, most single-value fields are
easy to code using techniques already discussed for entity properties. On the other
hand, multi-value fields are arrays and need to be dealt with using either array
notation or through the use of iterators (for example, foreach loops).

When coding with any field, it's important to determine whether it is single-value
or multi-value before proceeding. This could be done by using the following
code snippet:

$field_name = 'field_blah';
if (is_array($wrapper->$field_name->value())) {
 // ... code for a multi-value field
}

However, there are fields, where the previous code will give you a false positive. For
example, the body field of a node. As a result, a more robust approach is needed. To
do so we can employ the Field API as follows, assuming $field_name is already valid:

$field_info = field_info_field($field_name);
if (isset($field_info['cardinality'])
 && $field_info['cardinality'] != 1) {
 // ... code for a multi-value field
}

Chapter 5

[49]

Multi-value fields have a cardinality of either -1, for unlimited values, or the number
of values stored. Thus, anything other than one will be a multi-value field. There is
another, far easier way to check for multi-value fields: inspecting the field wrapper
class. A field wrapper class is the wrapper of a field, and is accessed by using
$wrapper->field. For multi-value fields, the class will be EntityListWrapper.
To check for multi-value fields we use the instanceof operator. In the following
snippet we assume again that $field_name is already valid.

if ($wrapper->$field_name instanceof EntityListWrapper) {
 // ... code for a multi-value field
}

A field wrapper class can either be an EntityListWrapper, an
EntityDrupalWrapper, an EntityStructureWrapper, or an EntityValueWrapper
object instance. EntityListWrapper is essentially an array of wrappers.
EntityDrupalWrapper is an entity wrapped up. EntityStructureWrapper wraps
anything that isn't an entity and has more than one property. EntityValueWrapper
wraps a single value.

The first part of the code is as follows:

function pde_field_value($field_wrapper) {
 try {
 if ($field_wrapper instanceof EntityListWrapper) {
 // Handle EntityListWrapper multi-value fields
 $output = array();
 foreach ($field_wrapper as $value) {
 $output[] = pde_field_value($value);
 }
 }
 else if ($field_wrapper instanceof EntityDrupalWrapper) {
 $output = pde_entity_value($field_wrapper);
 }
 else if ($field_wrapper instanceof EntityStructureWrapper) {
 $output = pde_structure_value($field_wrapper);
 }
 else {
 $output = pde_output(
 $field_wrapper->value(array('decode' => TRUE)));
 }
 }

Developing with Fields

[50]

 catch (EntityMetadataWrapperException $e) {
 return '';
 }
 return $output;
}

function pde_output($msg) {
 return $msg . "\n";
}

The highlighted code checks for an EntityListWrapper instance by using the
instanceof operator. As we discovered earlier, this catches multi-value fields,
and the code iterates through each of the field's values, calling itself with each
one ($value).

After that, you'll notice two more checks for object instances, then an else clause.
The else clause at the end prints the value of the EntityValueWrapper objects by
calling the value() method. Before this else clause, the object instance check blocks
call handler functions that print an entity or a structure, respectively.

The second highlighted line catches EntityMetadataWrapperException
exceptions thrown when a field does not have a value. This allows us to gracefully
handle the situation.

Structure fields
Now that we've successfully distinguished single-value and multi-value fields, we
have to get around one last, very nasty trap before we can cook code with wrapped
fields. The trap: some fields are neither lists of values nor just values. For these fields
we can't use the value() method directly and have to resort to other means. We will
call these types of fields structure fields.

Structure field wrappers are either of the EntityDrupalWrapper class or the
EntityStructureWrapper class. The former class means that the field wrapper
is wrapping an entity. In our example, code for printing EntityDrupalWrapper
values would look as follows:

function pde_entity_value($entity_wrapper) {
 return pde_output($entity_wrapper->label());
}

We are relying on the entity's label() method to provide the appropriate output.
All CRUD of the entity are the same as we covered in earlier chapters.

Chapter 5

[51]

You'll notice in the code snippet of pde_field_value that the check for
EntityDrupalWrapper is done before EntityStructureWrapper. This is important
because EntityDrupalWrapper is a subclass of EntityStructureWrapper and
a wrapped entity will be an instance of both the classes.

Field type-specific code
Remember at the beginning of your entity journey, you learned that entities reduce
repetitive code to a minimum and that's what makes them so cool? Code snippets in
this chapter have highlighted this characteristic quite well. Unfortunately, there is
some unfinished business in Drupal's entity implementation and, as a result, we have
to resort to some old school code to handle these special cases. Fortunately, it will be
easy to write because there are so few!

Of all the fields that we are looking at in this chapter, only the following five
underlying field types are in need of special handling:

• datetime

• file

• link

• image

• text_with_summary

Each of these is a wrapper of the EntityStructureWrapper class. All the other field
types are a wrapper of the EntityValueWrapper class. The following table shows
these field types and their associated wrapper types, which is returned by calling
the type() method on the field's wrapper:

Field type Wrapper type

datetime struct

file field_item_file

link field_item_link

image field_item_image

text_with_summary text_formatted

We've already covered text_formatted fields in depth, when we looked at node
body and comment body properties. Another cool thing is the handling for file
and link fields is the same. Let's take a peek at the file/image, link, and datetime
fields in some code snippets, followed by the whole pde_structure_value()
function and its underlings.

Developing with Fields

[52]

File and image fields
File and image fields are only here because they missed the "implemented as
EntityDrupalWrapper" boat and gained a level of indirection. If we were to call the
getPropertyInfo() method on the field wrapper, we would see that there is a file
property and the property type is file. When the property type matches an entity
type name, we can start to get excited and try one more thing: call the get_class
PHP function, passing it the property. Behold! It's an EntityDrupalWrapper class!

The file property of either field_item_file or field_item_image wrappers is a file
entity wrapper so, in our example, we can call the previously mentioned pde_entity_
value() function and pass the file property, as shown in the following line of code:

pde_entity_value($struct_wrapper->file);

We can instead throw it back to pde_field_value, as given in the following line
of code:

pde_field_value($struct_wrapper->file);

Link fields
Next in order of complexity are link fields. Calling getPropertyInfo() on these
will show you that they have title and url text properties. In our example, we will
print a HTML link by using the following code:

$url = $struct_wrapper->url->value(array('decode' => TRUE));
$title = $struct_wrapper->title->value(array('decode' => TRUE));
if (empty($title)) {
 $title = $url;
}
return pde_output(l($title, $url));

Chapter 5

[53]

Datetime fields
Fields of type datetime are quite complex and care must be taken to ensure that
things work as expected. Inspecting the wrapper properties and struct properties
shows us how to access all of the data. A wrapper property is a property of the
wrapper and is accessed directly from the wrapper. A struct property is a property
of the data returned by the value() method of the field wrapper.

Wrapper properties Struct properties
value value

value2 value2

duration

timezone

timezone_db

date_type

The following code shows us how to retrieve date and time:

$output = $date_wrapper->value->value(array('decode' => TRUE));
if ($date_wrapper->duration->value(array('decode' => TRUE))) {
 $output .= ' - '
 . $date_wrapper->value2->value(array('decode' => TRUE));
}

// $date_wrapper->value() returns the array of data available
$date_value = $date_wrapper->value();
$output .= ' ' . $date_value['timezone'];

The first line retrieves the start date, value; the second line consults the duration
to see if it's necessary to print the end date, value2. These are all accessed by using
the wrapper properties just named. The last line outputs the timezone string, which
comes from a struct property. Notice that we have to retrieve the structure first, by
using the value() method before this.

Developing with Fields

[54]

Putting it all together
Here's the pde_structure_value() function, and the rest of the code needed to
finish off the example. The code can be found in the sites/all/modules/pde/
pde/pde.drush.inc file.

function pde_structure_value($struct_wrapper) {
 $field_type = $struct_wrapper->type();

 switch ($field_type) {
 case 'field_item_link':
 $url = $struct_wrapper->url->value(array('decode' => TRUE));
 $title
 = $struct_wrapper->title->value(array('decode' => TRUE));
 if (empty($title)) {
 $title = $url;
 }
 return pde_output(l($title, $url));
 case 'field_item_image':
 case 'field_item_file':
 // Special case!
 // File entity: $field_wrapper->file
 return pde_field_value($struct_wrapper->file);
 case 'struct':
 return pde_struct_value($struct_wrapper);
 case 'text_formatted':
 return pde_output(
 $struct_wrapper->value->value(array('decode' => TRUE)));
 default:
 throw new Exception(
 'No idea how to handle structure type '.$field_type);
 }
}

function pde_struct_value($struct_wrapper) {
 $struct_type = $struct_wrapper->value->type();
 switch ($struct_type) {
 case 'date':
 return pde_date_value($struct_wrapper);
 default:
 throw new Exception(
 'No idea how to handle struct type '.$struct_type);
 }
}

Chapter 5

[55]

function pde_date_value($date_wrapper) {
 $output = $date_wrapper->value->value(array('decode' => TRUE));
 if ($date_wrapper->duration->value(array('decode' => TRUE))) {
 $output .= ' - '
 . $date_wrapper->value2->value(array('decode' => TRUE));
 }

 // $date_wrapper->value() returns the array of data available
 $date_value = $date_wrapper->value();
 $output .= ' ' . $date_value['timezone'];

 return pde_output($output);
}

In the pde_structure_value() function, we switch on the field wrapper type
and either funnel execution to a type handler or render the output in place. Links
are output as HTML anchor tags. The pde_struct_value() function could be
deemed as bloat, as date is the only struct type field we've dealt with. It's there for
possible expansion.

This is a simple, yet illustrative example of the data structures in play throughout the
common field implementations. There are differences that can make coding tedious
at times. Hopefully, with the previous information, you will be able to bake your
Drupal pie without it exploding in your oven— or in your face!

Converting the recipe content type to use
fields
Our conversion of the recipe module to use fully-fledged entities can continue now,
and we will convert all of the database fields in the recipe table to entity fields.
Converting the structure is only a part of the task. There are many code changes
necessary to ensure that all supporting code correctly manipulates the new structure.
The steps we will take to upgrade the module code are as follows:

1. Create the fields using the UI.
2. Export them to code inside a feature.
3. Put the exported declarations into recipe module and convert field name

prefixes to recipe_.

Developing with Fields

[56]

4. Tweak the recipe module code so that the old fields don't clobber the new
ones in the field admin UI, and add link, number, text, and token modules
as dependencies.

5. Add the update code in order to attach the new fields to recipe nodes, and
then for any existing recipe nodes copy data from the recipe table into the
new fields.

Creating fields
Create the fields in the same way as you would when building any content type.
Surf to admin/structure/types/manage/recipe/fields and add each field.
When creating the field type, the label and the field name will be the same for all
fields except the Yield units, Preparation time, Cooking time, and Additional
notes fields. Make sure that you change these to field_yield_unit, field_
preptime, field_cooktime, and field_notes, respectively.

The following table lists the new field specifications for recipe module. You'll also
notice that the field type in parentheses next to the field's machine name and under
the label will be any non-default settings that you need to specify.

Old field name New field specification

recipe_description field_description (Long text)
Label: Description

recipe_yield field_yield (Decimal)
Label: Yield
Minimum: 0

recipe_yield_unit field_yield_unit (Text)
Label: Yield units

recipe_notes field_notes (Long text)
Label: Additional notes

recipe_source field_source (Text)
Label: Source

N/A field_source_link (Link)
Label: Source link
Link Title: Static Title
Static Title: [node:field_source]

Chapter 5

[57]

Old field name New field specification

recipe_instructions field_instructions (Long text)
Label: Instructions

recipe_preptime field_preptime (Integer)
Label: Preparation time
Minimum: 0
Suffix: minutes

recipe_cooktime field_cooktime (Integer)
Label: Cooking time
Minimum: 0
Suffix: minutes

We have added one extra field to ease linking to external web sources:
recipe_source_link. This field uses a token to automatically take the
link title from the Source field.

Once you're done adding the fields, you'll have a huge number of fields showing.
These will look as shown in the following screenshot:

Manage fields page of recipe content type after fields are added

www.allitebooks.com

http://www.allitebooks.org

Developing with Fields

[58]

Exporting fields to a feature
Surf over to admin/structure/features/create and enter information into the
General Information fieldset at the top, so that it matches this screenshot:

Top fieldset of the create feature page

We are calling the feature Recipe2, and it will automatically have a machine name
of recipe2. Now you can move to the Components fieldset and expand Field
instances (field_instance) by clicking on the text. Select the checkbox in front of each
field beginning with node-recipe-recipe_. Each time that you select a checkbox, it
is wise to wait a moment for the dependencies to be automatically selected for you
and for the UI to be updated before selecting the next one. The UI moves around a
little and clicking too fast may result in unwanted checkboxes being selected. Once
you are done, it will look as shown in the following screenshot:

Chapter 5

[59]

Component selection for the feature export

Click on the Download feature button and you will download a TAR file containing
the feature. Don't download or extract the feature TAR file into the development site
because it may cause havoc!

Developing with Fields

[60]

Copying the code to the recipe module
In your terminal, go to the folder into which the feature was downloaded and extract
the feature file by using the following command:
$ tar xf recipe2.tar

Getting a directory listing of the feature's folder, you'll see files named recipe2.
features.field_base.inc and recipe2.features.field_instance.inc. Copy
recipe2.features.field_base.inc into the recipe module's folder and rename
the copy to recipe.field.inc. The recipe module folder can be found at sites/
all/modules/customized/recipe inside your development site's document root.
Now copy the recipe2_field_default_field_instances() function in recipe2.
features.field_instance.inc to the bottom of recipe.field.inc.
Open recipe.field.inc in your editor and you'll see the following code:

<?php
/**
 * @file
 * recipe2.features.field_base.inc
 */

/**
 * Implements hook_field_default_field_bases().
 */
function recipe2_field_default_field_bases() {
 $field_bases = array();
 ...
 // Exported field_base: 'field_cooktime'
 $field_bases['field_cooktime'] = array(
 'active' => 1,
 'cardinality' => 1,
 'deleted' => 0,
 'entity_types' => array(),
 'field_name' => 'field_cooktime',
 'foreign keys' => array(),
 'indexes' => array(),
 'locked' => 1,
 'module' => 'number',
 'settings' => array(
 'entity_translation_sync' => FALSE,
),
 'translatable' => 0,
 'type' => 'number_integer',
);
 ...

Chapter 5

[61]

Highlighted in the previous snippet, you'll see there are three instances of the
cooking time field's machine name, field_cooktime. Machine names for all fields
need to have their prefixes changed from field_ to recipe_ plus, we need to lock
the fields so that they can't be deleted. This will require the following four search and
replace operations:

• -field_ to -recipe_
• > 'field_ to > 'recipe_
• :field_ to :recipe_
• 'locked' => 0 to 'locked' => 1

In the second search and replace directive be sure to put the space between > and '.
Now remove the 2 from both function names, and then save the file and we're done!

Tweaking recipe.module and recipe.info
Add the following lines to recipe.info so that all dependencies are installed:

dependencies[] = link
dependencies[] = number
dependencies[] = text
dependencies[] = token

Tweaks to recipe.module are quite vast as there are many places where the old
implementation used the fields directly. For now, we will just make two edits. The
first is to place the following code at the top of recipe_field_extra_fields()
function:

if (variable_get('recipe_fields_installed', FALSE)) {
 return array(
 'node' => array(
 'recipe' => array(
 'form' => array(
 'recipe_ingredients' => array(
 'label' => t('Ingredients'),
 'description' => t('Recipe module element'),
 'weight' => -3,
),
),
 'display' => array(
 'recipe_ingredients' => array(
 'label' => t('Ingredients'),

Developing with Fields

[62]

 'description' => t('Recipe module element'),
 'weight' => -3,
),
),
),
),
);
}

The recipe_field_extra_field() function notifies Drupal about custom lines,
which the module wants in the manage field table or manage display UI. This
allows an administrator to reorder any custom widgets on the node edit form and
node display. Custom widgets can be injected into forms in a hook_form_alter
implementation. What we've done previously is to still show the ingredients
custom field on those pages since we are not overhauling that at this point. The first
line checks the schema version of recipe module to see if the updates have been
performed. We create the update code in the next step.

Our final edit to recipe module is to add the highlighted key/value pair to the
recipe_node_info() function, so that it now looks as shown in the following code:

/**
 * Implementation of hook_node_info().
 */
function recipe_node_info() {
 return array(
 'recipe' => array(
 'name' => t('Recipe'),
 'base' => 'recipe',
 'description' => t('Share your favorite recipes with your fellow
cooks.'),
 'locked' => TRUE,
)
);
}

The locked directive prevents an administrator from changing the content type's
machine name or deleting the content type. At this point we won't audit the module
to check the code can handle a machine name change. Locking the node type will
keep our heads above water if the code is unsafe.

We also replace the recipe_form hook implementation to create the node edit form
correctly and also add recipe_form_recipe_node_form_alter, which alters the
node form by injecting the ingredients fieldset and widgets in much the same way as
recipe_form did previously.

Chapter 5

[63]

You can see the code changes in recipe.module, when you check out the
chapter_05 branch. It might be handy to make a copy of the file from chapter_04
and run a diff to see the changes. In particular, notice the call to node_content_form
in recipe_form() function.

We also need to amend the recipe_load() function to no longer load values into
the node objects.

For a challenge, try to find the changes made to recipe_load()
in the chapter_06 branch version of recipe.module. Hint: It's
a different hook name because the module will only use Drupal 7
fields for its content.

Upgrading recipe module
A site already using recipe module will need an upgrade path in order to create and
attach Drupal 7 fields matching the names and types of the legacy recipe content. We
can then copy the legacy data into the new fields. To create and attach the fields, we
need to edit the recipe.install file, and add the following block of code to
the recipe_install_fields() function skeleton:

// Get info we will need to put fields into the same place
// they were in the non-field implementation
$winfo = field_info_extra_fields('node', 'recipe', 'form');
$dinfo = field_info_extra_fields('node', 'recipe', 'display');

foreach (recipe_field_default_fields() as $info) {
 $field_name = $info['field_config']['field_name'];
 $instance = &$info['field_instance'];

 // Don't install this twice
 if (field_info_instance('node', $field_name, 'recipe')) {
 continue;
 }

 // Set the weight of the field in all display modes
 if (isset($dinfo[$field_name]['display'])) {
 foreach ($dinfo[$field_name]['display']
 as $view_mode => $settings) {
 $instance['display'][$view_mode]['weight']
 = $settings['weight'];
 }
 }

Developing with Fields

[64]

 // Set the weight of the editing widget
 if (isset($winfo[$field_name])) {
 $instance['widget']['weight'] = $winfo[$field_name]['weight'];
 }

 // Add the field to the recipe content type
 field_create_field($info['field_config']);
 field_create_instance($instance);
}

Non-highlighted lines of code copy legacy field weights (ordering) to the new field
declarations that we implemented earlier in recipe_field_default_fields().
Field API function field_info_extra_fields() is used to retrieve weights
(ordering) and display settings for the legacy data. Following that, we adjust the
new field declaration weights for all display modes and for the edit form.

To complete the code block, we then call field_create_field() to save the field
configuration , and make a call to field_create_instance() to attach the field to
recipe entities.

We also add some term reference fields to recipe entities so that we can associate
our new terms to recipe entities. Inside the recipe_install_fields functions
and directly below the code that we just added, paste the following code block:

// term reference fields
foreach (recipe_vocabularies() as $machine_name => $info) {
 $field_name = 'term_' . $machine_name;

 if (field_info_instance('node', $field_name, 'recipe')) {
 continue;
 }
 $field = array(
 'field_name' => $field_name,
 'type' => 'taxonomy_term_reference',
 'settings' => array(
 'allowed_values' => array(
 array(
 'vocabulary' => $machine_name,
 'parent' => 0
),
),
),
);

Chapter 5

[65]

 field_create_field($field);

 $instance = array(
 'field_name' => $field_name,
 'entity_type' => 'node',
 'label' => $info['name'],
 'bundle' => 'recipe',
 'required' => true,
 'widget' => array(
 'type' => 'options_select'
),
 'display' => array(
 'default' => array('type' => 'hidden'),
 'teaser' => array('type' => 'hidden')
)
);

 field_create_instance($instance);
}

The preceding code block splits the field creation and the instance creation
(field attachment), meanwhile showing the structure of the field configuration
($field) and field instance ($instance) declarations. The field_create_field()
and field_create_instance() function calls are highlighted again.

Add the following code block at the end of the recipe.install file in order to call
the recipe_install_fields() function during a site upgrade:

/**
 * Install fields needed by recipe module.
 */
function recipe_update_7202(&$sandbox) {
 recipe_install_fields();
}

To complete the upgrade, we must copy data from the legacy fields to the Drupal 7
fields. Beneath the code you added, paste the following code:

/**
 * Migrates recipe data from old schema into fields.
 */
function recipe_update_7203(&$sandbox) {
 if (!isset($sandbox['progress'])) {
 $sandbox['progress'] = 0;
 $sandbox['current_nid'] = 0;
 $sandbox['max']

Developing with Fields

[66]

 = db_query(
 "SELECT COUNT(DISTINCT nid) FROM {node} WHERE type = :type",
 array(':type' => 'recipe')
)->fetchField();
 }

 $query = db_select('node', 'n');
 $query->join('recipe', 'r', 'n.nid = r.nid');
 $query->fields('r')
 ->condition('n.type', 'recipe')
 ->range($sandbox['progress'], 10);
 $result = $query->execute();

 foreach ($result as $record) {
 $sandbox['current_nid'] = $record->nid;
 $nwrapper = entity_metadata_wrapper('node', $record->nid);

 if (valid_url($record->source, TRUE)) {
 // Put the URL into the link field
 $nwrapper->field_source_link->url = $record->source;
 }
 $nwrapper->field_source = $record->source;
 $nwrapper->field_yield = $record->yield;
 $nwrapper->field_yield_unit = $record->yield_unit;
 $nwrapper->field_description->value = $record->description;
 $nwrapper->instructions->value = $record->instructions;
 $nwrapper->field_notes->value = $record->notes;
 $nwrapper->field_preptime = $record->preptime;
 $nwrapper->field_cooktime = $record->cooktime;

 $sandbox['progress']++;
 }

 $sandbox['#finished']
 = empty($sandbox['max'])
 ? TRUE : ($sandbox['progress'] / $sandbox['max']);
}

This function is the meat and potatoes of the update and it batch processes all of
the existing nodes to migrate data from the recipe database table to the new fields.
The three highlighted lines are all setting the value property of the field wrapper.
These are all fields of type text_formatted. You may recall these are structure
fields, so we need special handling here. What isn't handled in the previous code
are text formats for these long text fields, because there isn't full support for that in
recipe module. Remember to deal with that in any code that you write.

Chapter 5

[67]

In the recipe_install() function, you need to also add the following line in order
to install the fields when the recipe module is installed for the first time.

recipe_install_fields();

Now you can update your site database by using Drush, which will install and
upgrade all the fields during a database update. Use the following command:

$ drush updatedb

On the Manage fields page at admin/structure/types/manage/recipe/fields
you'll now see the following:

Recipe node manage field page after the update

Developing with Fields

[68]

Summary
In this chapter we learned all about the common fields in Drupal 7: date, file,
image, link, number, text, and term reference. We learned to differentiate
between single-value and multi-value fields, and we then programmatically
accessed all of the covered field types. Finally, we programmatically created fields,
added them to a content type, and migrated data into them. Next, we will take a
good look at programming field collections—another powerful Drupal 7 concept
made possible thanks to the entity paradigm.

Developing with Field
Collections

We've almost covered all there is to know about Drupal 7 entities. One last common
entity type needs our attention: field collections. In this chapter we:

• Describe field collection entities, and how they fit into the Drupal landscape
• Programmatically access a field collection's content
• Programmatically add a field collection entity to a node
• Programmatically add a field collection to a content type

Before Drupal 7
In Drupal days of yore, there were two main ways of grouping fields together and
attaching them to a node as a field. We could even have had that field be multi-value,
allowing multiple groups of the same fields to be referenced.

Developing with Field Collections

[70]

This is illustrated in the following screenshot:

Example of field groups in a multi-value field

The previous screenshot shows an ingredients multi-value field with a table of five
possible values. Each value or row is a group of the following fields:

• Quantity
• Units
• Ingredient name
• Processing/Notes

Each row can be moved up or down to change their order. To move them, the user
drags the crossed arrow icon on the left of each row to a new position.

Chapter 6

[71]

In Drupal 6, this type of data model was built by using multigroups that came along
with CCK 3.x. Prior to that, such a model had to be built using a multi-value node
reference field. Node references resulted in a poor user experience, because the node
being referenced could not be edited directly on the edit form of the referencing
node. In addition, referenced nodes soaked up storage space because properties,
such as author, were often not needed.

Thanks to the entity paradigm, field collections were possible, and these gave us
lightweight storage and a better user experience. Field collections are essentially
a multi-value field storing entity references. When you create a new field collection,
you are declaring a field collection entity bundle. That entity bundle's edit form is
injected into the node edit form by the Field Collection module. This enables a user
to edit the values directly on the referencing node's edit form, using an interface
similar to that shown in the previous screenshot. When the edit form is submitted,
any new values result in a new entity being created to store those values. That entity
is then referenced in the field collection field of the node being saved.

Creating a field collection field
Our practical examples will require a field collection that will eventually replace
the legacy ingredients hogwash in the old code. Let's create a new ingredients field
collection in the recipe node.

After you have installed your Chapter 6 development site, surf over to admin/
structure/types/manage/recipe/fields. In the Add new field section of the
form you'll now see Field collection listed in the field type select list. In the Label text
box, enter Ingredients. The machine name will automatically be generated as
field_ingredients. This is fine for now. Select Field collection as the type,
Embedded as the widget, and move the field up to be above recipe_ingredients,
and then click on Save. Choose unlimited for the number of values, and keep the
defaults for the remaining settings.

Developing with Field Collections

[72]

After you finish, your model will look as shown in the following screenshot:

Manage fields page of recipe content type after adding the ingredients field collection

Now we can add fields to the field collection by going to the field collection
Manage fields page. Navigate to admin/structure/field-collections/field-
ingredients/fields, and add fields matching the following new field specifications
for the recipe_ingredients field collection:

Chapter 6

[73]

New field specifications Allowed values for field_unit_key

field_quantity (Decimal)
Label: Quantity
Minimum: 0

bunch|bunch (bn)

can|can (cn)

carton|carton (ct)

centigram|centigram (cg)

centiliter|centiliter (cl)

clove|clove (clv)

cup|cup (c)

dash|dash (ds)

deciliter|deciliter (dl)

drop|drop (dr)

us fluid ounce|fluid ounce (fl
oz)

us gallon|gallon (gal)

gram|gram (g)

kilogram|kilogram (kg)

liter|liter (l)

loaf|loaf (lf)

milligram|milligram (mg)

milliliter|milliliter (ml)

ounce|ounce (oz)

package|package (pk)

pinch|pinch (pn)

us liquid pint|pint (pt)

pound|pound (lb)

us liquid quart|quart (q)

slice|slice (sli)

tablespoon|tablespoon (T)

teaspoon|teaspoon (t)

unit|unit

unknown|unknown

field_unit_key (List (text))
Label: Unit
Allowed values: see right column
Widget: Select list

field_ingredient (Entity Reference)
Label: Ingredient
Widget: Autocomplete
Target type: File
Sort by: A property of the base table of the
entity
Sort property: filename
Size of text field: 25

field_note (Text)
Label: Processing/Notes
Size of text field: 33

Note that we have a new field type: entity reference. We have selected File
entities as the target type for field_ingredient as a placeholder; we will change
this in the next chapter.

Developing with Field Collections

[74]

Field collection entities
Field collection entities are those referenced by the field collection field just
discussed. Each individual field collection is an independent entity bundle, so all
of them can have different fields attached. A field collection entity type has the
following wrapper and entity properties:

Wrapper
property

Type (Read/
Write)

Description Entity property

item_id integer (R) Field collection item ID
revision_id integer (R) Revision ID
field_name string (R) Whether or not the node is new
archived integer

(R/W)
Node type (bundle name)

url string (R) URL for viewing the field
collection

N/A

host_entity entity (R/W) Entity containing the field
collection

N/A

N/A integer
(R/W)

TRUE if this is the default
revision

default_
revision

Convert the first if block in pde_field_value() to the following code:

if (isset($info[$pkey]['field']) && $info[$pkey]['field']) {
 $value = pde_field_value($wrapper->$pkey);
 if (is_array($value)) {
 foreach ($value as $i => $v) {
 $key = $pkey."[$i] (" . $wrapper->$pkey->type() . ')';
 $rows[$key] = $v;
 }
 }
 else {
 $key = "$pkey (" . $wrapper->$pkey->type() . ')';
 $rows[$key] = $value;
 }
}

The changes improve the output formatting for multi-value fields in our Drush
print-entity command. Now we will see multiple rows of field_name[n] for
each value within the multi-value field. The n is the delta, or index, of the field value
within the multi-value field.

Chapter 6

[75]

We also need to add some special handling for field collections. As they are
entities, let's change pde_entity_value() to print the full set of properties and
fields of an entity. The pde_drush_print_entity() function already prints these,
but we want the entity properties and fields to be printed on the right side of the
table rather than as a nested table.

function pde_entity_value($entity_wrapper) {
 $info = $entity_wrapper->getPropertyInfo();

 $output = pde_output('identifier: '
 . $entity_wrapper->getIdentifier());
 $output .= pde_output('label: ' . $entity_wrapper->label());
 $output .= pde_output('type: ' . $entity_wrapper->type());

 foreach ($entity_wrapper as $pkey => $pwrapper) {
 if (isset($info[$pkey]['field']) && $info[$pkey]['field']) {
 $msg = $info[$pkey]['label'];
 }
 else {
 $msg = $pkey;
 }
 $msg .= ': ';

 if ($entity_wrapper->$pkey instanceof EntityDrupalWrapper) {
 $msg .= pde_output($entity_wrapper->$pkey->label());
 }
 else if ($entity_wrapper->$pkey instanceof EntityListWrapper) {
 $items = array();
 foreach ($entity_wrapper->$pkey as $key => $value) {
 $item_value = "[$key] ";
 if ($value instanceof EntityDrupalWrapper) {
 $item_value .= $value->label();
 }
 else {
 $item_value .= pde_field_value($value);
 }
 $items[] = $item_value;
 }

 $msg .= "\n\t";
 if (!count($items)) {
 $msg .= "<empty>";
 }
 $msg .= implode("\n\t", $items) . "\n";

Developing with Field Collections

[76]

 }
 else {
 $msg .= pde_field_value($entity_wrapper->$pkey);
 }
 $output .= $msg;
 }
 return $output;
}

This is quite a huge change from the previous implementation.The reason for
this is that we get an infinite loop if we simply call the pde_field_value()
function for each field. To prevent infinite loops we need to avoid sending entities
to pde_field_value(), and instead we use the output from the label() method.
The first highlighted line does so, when the field wrapper wraps an entity.

We also output multi-value fields in a pretty way by looping through all of the
values, and use the label() method output for entities or, for everything else,
the output from the pde_field_value() function. These are the second and third
highlighted lines.

For all other fields we use the output from pde_field_value()as shown in the
fourth highlighted line.

Adding a field collection to a node
There's nothing too challenging about adding a field collection to a node, because
a field collection is an entity. You simply create the field collection entity and then
attach it to the node.

Let's look at two examples of using the field_ingredients field collection that we
just created. For these examples assume that node 2 exists, but has nothing added in
field_ingredients. The first example, which uses no wrapper code, is as follows:

$node = node_load(2);
$data = array(
 'field_name' => 'field_ingredients',
);
// Create the field collection
$fc = entity_create('field_collection_item', $data);
// Set the host entity and field values then save
$fc->setHostEntity('node', $node);
$fc->field_quantity[LANGUAGE_NONE][0]['value'] = 1.0;
$fc->field_unit_key[LANGUAGE_NONE][0]['value'] = 'gram';
$fc->field_ingredient[LANGUAGE_NONE][0]['value'] = 'Salt';
$fc->field_note[LANGUAGE_NONE][0]['value'] = 'coarse';
$fc->save();

Chapter 6

[77]

The same thing, but this time using wrappers, is shown in the following code:

$target_wrapper = entity_metadata_wrapper('node', 2);
$data = array(
 'field_name' => 'field_ingredients',
);
// Create the field collection
$fc = entity_create('field_collection_item', $data);
$fc_wrapper =
 entity_metadata_wrapper('field_collection_item', $fc);
// Set the host entity and field values then save
$fc_wrapper->host_entity = $target_wrapper;
$fc_wrapper->field_quantity = 1.0;
$fc_wrapper->field_unit_key = 'gram';
$fc_wrapper->field_ingredient = 'Salt';
$fc_wrapper->field_note = 'coarse';
$fc_wrapper->save();

The comments in the code tell the story. The wrapper version has one, highlighted,
extra line. The highlighted code in the non-wrapper version is slightly terser than
the wrapper version.

Attaching a field collection to
a content type
Programmatically creating a field collection can be done in much the same way as
we did with fields. Because we have already created the field collection, we can
now perform the following steps in order to have these added to recipe nodes at
installation time or after an upgrade:

1. Export the field collection to code inside a feature.
2. Copy the exported declarations into the recipe module and rename

field_ingredients to recipe_ingredients and change the prefixes
of the fields within the field collection to ri_.

3. Tweak the recipe module code to remove the legacy fields from the field
admin UI and node edit forms.

4. Add update code to attach the new field collection to recipe nodes. We will
defer copying data from the recipe_node_ingredient table into the new
field collections until the next chapter.

Developing with Field Collections

[78]

After these changes are completed, the examples in the
previous section would need the field names changed to
match the new names.

Exporting field collection and fields
Point your browser to admin/structure/features/create and enter values into
the General Information section of the form so that it matches the example shown in
the following screenshot:

General Information fieldset of the create feature page

Chapter 6

[79]

In the Components fieldset we expand the Fields section and select the checkbox
for node-recipe-field_ingredients. Continue to select the checkboxes of all
other fields beginning with field_collection_item and node-recipe-recipe.
The Dependencies (dependencies), Field Bases (field_base) and Field Instances
(field_instance) sections will look as shown in the following screenshot:

Part of the Components fieldset of the create feature page

Click on the Download feature button to download the feature to your computer.

Developing with Field Collections

[80]

Copying the code to the recipe module
In your terminal, navigate to the folder into which the feature was downloaded,
and extract the feature file by using the following command:
$ tar xf recipe2.tar

Open recipe2.features.field_base.inc and recipe2.features.field_
instance.inc found in the newly-created recipe2 folder. Copy the recipe2_
field_default_field_bases() and recipe2_field_default_field_
instances() functions to recipe.field.inc after removing all functions in the
latter file. You'll find recipe.field.inc in the recipe module folder sites/all/
modules/customized/recipe of your development site.

In the pasted code, make the following replacements, in the given order:

1. recipe2 to recipe
2. field_ingredients to recipe_ingredients
3. field_ingredient to ri_ingredient
4. field_note to ri_note
5. field_quantity to ri_quantity
6. field_unit_key to ri_unit_key
7. 'locked' => 0 to 'locked' => 1

Tweaking recipe.module
Inside recipe.module we can now empty the array returned by the recipe_field_
extra_fields() function since there are no longer any legacy fields. The top of the
function now looks as shown in the following code snippet:

function recipe_field_extra_fields() {
 if (variable_get('recipe_fields_installed', FALSE)) {
 return array();
 }

 $extra = array();
 $extra['node']['recipe'] = array(
...

The highlighted line shows the empty array. Replace the recipe_form_recipe_
node_form_alter() function with the following code:

/**
 * Implementation of hook_form_FORM_ID_alter().
 */

Chapter 6

[81]

function recipe_form_recipe_node_form_alter(&$form, &$form_state) {
 $language = $form['language']['#value'];
 $children =
 element_children($form['recipe_ingredients'][$language]);
 foreach ($children as $delta) {
 $fcoll = &$form['recipe_ingredients'][$language][$delta];
 $fcoll['ri_quantity'][$language][0]['value']['#size'] = 7;
 }

 $css = '.field-name-recipe-ingredients .form-wrapper { display:
inline-block; }';
 $form['recipe_ingredients']['#attached']['css'] = array(
 $css => array('type' => 'inline'),
);
}

The first block of code sets the visible size of the quantity text field to 7. The second
block makes all of the fields display inline rather than above one another on the node
edit form. Surf to node/add/recipe, and scroll down to see the fruits of your work.

Field collection user interface for entering values

The final change is to recipe.info, where we add the following highlighted
dependency lines:

dependencies[] = entity
dependencies[] = entityreference
dependencies[] = field_collection
dependencies[] = link
dependencies[] = list
dependencies[] = number
dependencies[] = options
dependencies[] = taxonomy
dependencies[] = text
dependencies[] = token

Developing with Field Collections

[82]

Updating code is unnecessary
For the changes we have made, there is no need for us to add any update code at this
point. Calls to the recipe_install_fields() function that we added to the update
and installation code in an earlier chapter will take care of installing and updating
the field collection and its fields.

Summary
In this chapter we discovered field collections, their programmatic reading, creation,
and addition to existing entities. Next, we will make custom database data available
to Drupal 7 by exposing them as entities.

Expose Local Entities
So far in this book, we have played around with entities implemented by Drupal
core and contributed modules. In our next installment, we will use a pressure cooker
to create a typical, slow-cooked dish quickly: exposing custom data to Drupal. In this
chapter, we do the following:

• Expose a database table as a non-fieldable entity
• Expose a database table as a fieldable entity
• Enable exporting, importing, and cloning of bundle configurations

Motivation for exposing entities
Sites that do anything useful tend to have a lot of legacy data that they use
throughout the site. Because these data vary a lot and are tied into business
processes that are unique to each business, it becomes necessary to build custom
solutions per site. Until the entity paradigm existed, each of these custom solutions
required reinvention of the wheel to make the data available to adequate numbers
of solution modules. For example, one database table needed custom code for each
of the token and views modules just so those modules would retrieve table data
correctly. Thankfully, we are past this stone-age style of implementation, because
we have entities!

We will add code to the recipe module piece-by-piece to gradually expose
ingredients as fully-fledged entities that are able to please even the most
discerning site builder's palate.

Expose Local Entities

[84]

Fast track your data exposure
The fastest way to create custom entities is to use the Entity Construction Kit (ECK)
module. ECK will do all of the dirty work for you after you enter an entity type name
and an optional bundle name. After that, you add your fields by using the generated
admin UI. The interface is similar to node field management. However, there's one
thing ECK can't do at the time of writing—expose an existing database table to Drupal.

Exposing an existing database table as entities can be done easily by combining the
entity module's helpers with one single hook implementation: hook_entity_info.
Let's say we want to expose the recipe_ingredient table as a non-fieldable entity.
The table schema would be as shown in the following screenshot:

recipe_ingredient

id
name

serial
varchar

link int

Schema of the recipe_ingredient table in recipe module

The hook_entity_info implementation, recipe_entity_info, inside the
recipe.module file will look like the following:

/**
 * Implements hook_entity_info().
 */
function recipe_entity_info() {
 $info = array();
 $info['recipe_ingredient'] = array(
 'label' => t('Ingredient'),
 'plural label' => t('Ingredients'),
 'description' => t('Recipe ingredients.'),
 'entity class' => 'Entity',
 'controller class' => 'EntityAPIController',
 'base table' => 'recipe_ingredient',
 'fieldable' => FALSE,
 'entity keys' => array(
 'id' => 'id',
 'label' => 'name',
),
);
 return $info;
}

Chapter 7

[85]

What you see in the preceding code snippet is the minimal code needed to expose
data as entities. The key directives within the preceding entity type declaration are
as follows:

• entity class: This is the class used for entities returned from entity_load
• controller class: This is the class used to load entity objects
• base table: This is the database table containing our data
• entity keys: This contains the database field names for the entity ID and

label properties

In our recipe_ingredient table (our base table) we have the id and name fields
storing the entity ID and label respectively. We have specified these in the entity
keys directive. We are also using Entity and EntityAPIController as the entity
and controller class respectively. These are provided by the entity module, and
using them allows us to expose our data quickly. These classes can be overridden
when special handling is needed.

Once you have the code in place, you can write some standard entity creation code
such as the following:

 $data = array(
 'name' => 'Salt',
 'link' => 0,
);
 $entity = entity_create('recipe_ingredient', $data);
 $wrapper = entity_metadata_wrapper('recipe_ingredient', $entity);
 $wrapper->save();

Allow fields on your entity
Making your exposed entity type fieldable is as simple as changing the fieldable
value in the entity type declaration to TRUE:

...
'fieldable' => TRUE,
...

Once this is in place and you have cleared the caches, you can programmatically
add fields to the entity. Remember though, that the bundle name is the same as the
entity type name. For our example, that would be recipe_ingredient. This is fine
for scenarios where your entity type will have the same set of fields for all entities;
in other words, a single bundle. For cases where multiple bundles are required, we
need more tweaks.

Expose Local Entities

[86]

Give it multiple bundles
To allow our entity type to have multiple bundles, we make two changes to the
entity type declaration. We add the bundle directive to the set of entity keys and
the bundles directive containing all bundles:

...
'entity keys' => array(
 'id' => 'id',
 'label' => 'name',
 'bundle' => 'type',
),
'bundles' => array(
 'standard' => array(
 'label' => t('Standard'),
),
),
...

The bundle directive in the entity keys array tells Drupal the database field name
containing the bundle name of each record. The field is typically 32 characters long
and of the varchar type. We will add the type field to the recipe_ingredient table
in an update.

Each bundle is declared within the bundles array of the entity type declaration.
In the previous code snippet, we have declared the standard bundle with only
a label, which is all that is needed for it to work.

Let's create some code to add the type field to the recipe_ingredient table.
Add the following code to the recipe_ingredient table declaration within the
recipe_schema() function in recipe.install:

'type' => array(
 'description' => 'The type of this ingredient.',
 'type' => 'varchar',
 'length' => 32,
 'not null' => TRUE,
 'default' => 'standard',
),

Next, at the bottom of the file, add the following function:

/**
 * Make schema changes for ingredients as entities.
 */
function recipe_update_7205(&$sandbox) {

Chapter 7

[87]

 // Add type field
 $type_schema = array(
 'description' => 'The type of this ingredient.',
 'type' => 'varchar',
 'length' => 32,
 'not null' => TRUE,
 'default' => 'standard',
);
 db_add_field('recipe_ingredient', 'type', $type_schema);
}

After adding this code and updating the database, you can have multiple fieldable
bundles for your entity type.

Administration interface and exportability
All of the previous code forces us to use programmatic ways to manage bundles and
fields of our entity type. We want administrative users to be able to manage bundles
and fields through the web interface. In addition to this, we would like to allow users
to export and import bundle configurations. To do so we need the following things:

• A way to store information about the bundles created by the user
• Expose that information to Drupal as entities with some extra directives
• Provide access handling in order to prevent unauthorized users from

changing our bundles

Storing bundle information
To store the bundle information, we will use a new database table called
recipe_ingredient_type. Add the following table declaration to recipe_schema
in the recipe.install file.

$schema['recipe_ingredient_type'] = array(
 'description'
 => 'Stores information about all defined ingredient types.',
 'fields' => array(
 'id' => array(
 'type' => 'serial',
 'not null' => TRUE,
 'description' => 'Primary Key: Unique ingredient type ID.',
),
 'type' => array(
 'description'
 => 'The machine-readable name of this ingredient type.',

Expose Local Entities

[88]

 'type' => 'varchar',
 'length' => 32,
 'not null' => TRUE,
),
 'label' => array(
 'description'
 => 'The human-readable name of this ingredient type.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => TRUE,
 'default' => '',
),
 'weight' => array(
 'type' => 'int',
 'not null' => TRUE,
 'default' => 0,
 'size' => 'tiny',
 'description' => 'The weight of this ingredient type in relation
to others.',
),
 'data' => array(
 'type' => 'text',
 'not null' => FALSE,
 'size' => 'big',
 'serialize' => TRUE,
 'description' => 'A serialized array of additional data related
to this ingredient type.',
),
 'status' => array(
 'type' => 'int',
 'not null' => TRUE,
 // Set the default to ENTITY_CUSTOM without using the
 // constant as it is not safe to use it at this point.
 'default' => 0x01,
 'size' => 'tiny',
 'description' => 'The exportable status of the entity.',
),
 'module' => array(
 'description' => 'The name of the providing module if the entity
has been defined in code.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => FALSE,
),

Chapter 7

[89]

),
 'primary key' => array('id'),
 'unique keys' => array(
 'type' => array('type'),
),
);

The type and label database fields store the machine name and human-readable
names of the bundle. The data field is required by the Entity API classes , but we
don't use it. The status field is a flag that tracks whether the bundle has been
defined in code or has been custom built or edited through the web interface.

Next, add the following update() function to the bottom of recipe.install.
The code adds the recipe_ingredient_type table to an existing installation of the
recipe module. We have to declare the complete table schema rather than pulling
it from recipe_schema in order to prevent future schema changes from breaking
the upgrades.

/**
 * Make schema changes for ingredients as entities.
 */
function recipe_update_7206(&$sandbox) {
 // Add ingredient type table
 $table_name = 'recipe_ingredient_type';
 $schema[$table_name] = array(
 'description' => 'Stores information about all defined ingredient
types.',
 'fields' => array(
 'id' => array(
 'type' => 'serial',
 'not null' => TRUE,
 'description' => 'Primary Key: Unique ingredient type ID.',
),
 'type' => array(
 'description'
 => 'The machine-readable name of this ingredient type.',
 'type' => 'varchar',
 'length' => 32,
 'not null' => TRUE,
),
 'label' => array(
 'description'
 => 'The human-readable name of this ingredient type.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => TRUE,

Expose Local Entities

[90]

 'default' => '',
),
 'weight' => array(
 'type' => 'int',
 'not null' => TRUE,
 'default' => 0,
 'size' => 'tiny',
 'description' => 'The weight of this ingredient type in
relation to others.',
),
 'data' => array(
 'type' => 'text',
 'not null' => FALSE,
 'size' => 'big',
 'serialize' => TRUE,
 'description' => 'A serialized array of additional data
related to this ingredient type.',
),
 'status' => array(
 'type' => 'int',
 'not null' => TRUE,
 // Set the default to ENTITY_CUSTOM without using the
 // constant as it is not safe to use it at this point.
 'default' => 0x01,
 'size' => 'tiny',
 'description' => 'The exportable status of the entity.',
),
 'module' => array(
 'description' => 'The name of the providing module if the
entity has been defined in code.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => FALSE,
),
),
 'primary key' => array('id'),
 'unique keys' => array(
 'type' => array('type'),
),
);
 db_create_table($table_name, $schema[$table_name]);
}

Chapter 7

[91]

Run the database updates by using Drush, and the new table will be ready for the
next step:
$ drush updatedb

Exposing bundle information and handling
access rights
Bundle information exposure and access rights are both implemented by using extra
directives in hook_entity_info and supporting functions. Let's begin with the top
part of recipe_entity_info:

/**
 * Implements hook_entity_info().
 */
function recipe_entity_info() {
 $info = array();
 $info['recipe_ingredient'] = array(
 'label' => t('Ingredient'),
 'plural label' => t('Ingredients'),
 'description' => t('Recipe ingredients.'),
 'entity class' => 'Entity',
 'controller class' => 'EntityAPIController',
 'base table' => 'recipe_ingredient',
 'fieldable' => TRUE,
 'view modes' => array(
 'full' => array(
 'label' => t('Full content'),
 'custom settings' => FALSE,
),
),
 'entity keys' => array(
 'id' => 'id',
 'bundle' => 'type',
 'label' => 'name',
),
 'bundles' => array(),
 'bundle keys' => array(
 'bundle' => 'type',
),
 'label callback' => 'entity_class_label',
 'uri callback' => 'entity_class_uri',
 'module' => 'recipe',
);

Expose Local Entities

[92]

We have changed the declaration of recipe_ingredient by assigning an empty
array to the bundles directive and dynamically building the array elements from
the recipe_ingredient_type table.

Highlighted lines in recipe_ingredient show the following extra directives that
are needed:

• bundle keys: This has to be declared because we are using a load handler
in the admin URI for each bundle. This directive tells Drupal which entity
object property returns the bundle name. We'll discuss more about this in
a moment.

• label callback: This function is called to retrieve the entity's label. The
entity module implements the entity_class_label function, which calls
the label() method of the loaded entity object.

• uri callback: This function is called to retrieve the entity's URI. The entity
module implements entity_class_uri, which calls the uri() method of
the loaded entity object.

• module: This tells the entity module which module exposes the entity type.
This is used for calling hooks, generating file paths, and for declaring import
dependencies in bundle exports. This directive also helps the entity module
provide default integration with solution modules such as views and token.

The following is part two of recipe_entity_info:

 // Add bundle info but bypass entity_load() as we cannot
 // use it here.
 $types = db_select('recipe_ingredient_type', 'rit')
 ->fields('rit')
 ->execute()
 ->fetchAllAssoc('type');

 foreach ($types as $type => $tinfo) {
 $info['recipe_ingredient']['bundles'][$type] = array(
 'label' => $tinfo->label,
 'admin' => array(
 'path' => 'admin/structure/ingredients/manage/%recipe_
ingredient_type',
 'real path' => 'admin/structure/ingredients/manage/' . $type,
 'bundle argument' => 4,
 'access arguments' => array('administer ingredients'),
),
);
 }

Chapter 7

[93]

This code queries the recipe_ingredient_type table for user-defined bundles, and
uses that information to dynamically build bundle directives. Notice the additional
admin directive that we didn't use before.

The entity module uses the admin directive to build menu items for the bundle
administration interface. The path directive specifies the URI with a load handler
named %recipe_ingredient_type. Drupal's menu system takes this URI
component (that is, index 4 slash delimited) and passes that component value to
the recipe_ingredient_type_load() function. For example, when the user
navigates to admin/structure/ingredients/manage/standard, Drupal calls
recipe_ingredient_type_load() passing it the string value standard.

The manage part of the URI is also significant because the entity module appends
manage to the admin ui path of the bundle definition entity. The bundle definition
entity is an entity type that stores the defined bundles of another entity. The following
is the final code block of recipe_entity_info in which we declare our bundle
definition entity named recipe_ingredient_type:

$info['recipe_ingredient_type'] = array(
 'label' => t('Ingredient type'),
 'plural label' => t('Ingredient types'),
 'description' => t('Ingredient types for Recipe module.'),
 'entity class' => 'IngredientType',
 'controller class' => 'EntityAPIControllerExportable',
 'base table' => 'recipe_ingredient_type',
 'fieldable' => FALSE,
 'bundle of' => 'recipe_ingredient',
 'exportable' => TRUE,
 'entity keys' => array(
 'id' => 'id',
 'name' => 'type',
 'label' => 'label',
),
 'access callback' => 'recipe_ingredient_access',
 'module' => 'recipe',
 // Enable the entity API's admin UI.
 'admin ui' => array(
 'path' => 'admin/structure/ingredients',
 'file' => 'recipe.admin.inc',
 'controller class' => 'IngredientTypeUIController',
),
);

 return $info;
}

Expose Local Entities

[94]

The highlighted parts of the recipe_ingredient_type entity type declaration are
as follows:

• IngredientType: This is used to override the Entity class in order to
support entity export

• EntityAPIControllerExportable: This is a subclass of
EntityAPIController that we are using so that our entity
becomes exportable

• bundle of: This tells the entity module that this entity is the bundle
definition entity for recipe_ingredient

• exportable: This is set to TRUE to make these entities exportable
• name: This tells the Entity API to use the specified field as an identifier for

the entity instead of the numeric ID
• access callback: This function is called to check a user's right to

manage entities
• path: This is the URI of the entity administration UI and a base path for the

bundle administration UI of recipe_ingredient mentioned earlier
• file: This is the name of the file (relative to the module) containing the

administration UI controller class declaration and supporting code
• IngredientTypeUIController: This enables overriding of the

EntityDefaultUIController class in order to set the menu item description

Adding the support code
To complete the overhaul, we add some class declarations and functions to
recipe.module and recipe.admin.inc. First, add the following code to
recipe.admin.inc:

/**
 * Generates the recipe_ingredient_type editing form.
 */
function recipe_ingredient_type_form($form, &$form_state, $recipe_
ingredient_type, $op = 'edit') {

 if ($op == 'clone') {
 $recipe_ingredient_type->label .= ' (cloned)';
 $recipe_ingredient_type->type = '';
 }

 $form['label'] = array(
 '#title' => t('Label'),

Chapter 7

[95]

 '#type' => 'textfield',
 '#default_value' => $recipe_ingredient_type->label,
 '#description' => t('The human-readable name of this ingredient
type.'),
 '#required' => TRUE,
 '#size' => 30,
);
 // Machine-readable type name.
 $form['type'] = array(
 '#type' => 'machine_name',
 '#default_value' => isset($recipe_ingredient_type->type) ?
$recipe_ingredient_type->type : '',
 '#maxlength' => 32,
 '#disabled' => $recipe_ingredient_type->isLocked() && $op !=
'clone',
 '#machine_name' => array(
 'exists' => 'recipe_ingredient_get_types',
 'source' => array('label'),
),
 '#description' => t('A unique machine-readable name for this
ingredient type. It must only contain lowercase letters, numbers,
and underscores.'),
);

 $form['actions'] = array('#type' => 'actions');
 $form['actions']['submit'] = array(
 '#type' => 'submit',
 '#value' => t('Save ingredient type'),
 '#weight' => 40,
);
 $form['weight'] = array(
 '#type' => 'weight',
 '#title' => t('Weight'),
 '#default_value' => $recipe_ingredient_type->weight,
 '#description' => t('When showing ingredients, those with lighter
(smaller) weights get listed before ingredients with heavier (larger)
weights.'),
 '#weight' => 10,
);

 if (!$recipe_ingredient_type->isLocked() && $op != 'add' && $op !=
'clone') {
 $form['actions']['delete'] = array(
 '#type' => 'submit',
 '#value' => t('Delete ingredient type'),

Expose Local Entities

[96]

 '#weight' => 45,
 '#limit_validation_errors' => array(),
 '#submit' => array('recipe_ingredient_type_form_submit_delete')
);
 }
 return $form;
}

The preceding code is the Form API code for the entity edit form, and the following
code defines the button submit handlers:

/**
 * Form API submit callback for the save button.
 */
function recipe_ingredient_type_form_submit(&$form, &$form_state) {
 $recipe_ingredient_type
 = entity_ui_form_submit_build_entity($form, $form_state);
 // Save and go back.
 $recipe_ingredient_type->save();
 $form_state['redirect'] = 'admin/structure/ingredients';
}

/**
 * Form API submit callback for the delete button.
 */
function recipe_ingredient_type_form_submit_delete(&$form, &$form_
state) {
 $type = $form_state['recipe_ingredient_type']->type;
 $form_state['redirect']
 = "admin/structure/ingredients/manage/$type/delete";
}

Add the following code to the top of the recipe.module file:
/**
 * Use a separate class for ingredient types so we can specify some
 * defaults modules may alter.
 */
class IngredientType extends Entity {
 public $type;
 public $label;
 public $weight = 0;

 public function __construct($values = array()) {
 parent::__construct($values, 'recipe_ingredient_type');
 }

 /**

Chapter 7

[97]

 * Returns whether the ingredient type is locked, thus may not be
 * deleted or renamed.
 *
 * Ingredient types provided in code are automatically treated as
 * locked, as well as any fixed ingredient type.
 */
 public function isLocked() {
 return isset($this->status) && empty($this->is_new)
 && (($this->status & ENTITY_IN_CODE)
 || ($this->status & ENTITY_FIXED));
 }

 /**
 * Overrides Entity::save().
 */
 public function save() {
 parent::save();
 // Clear field info caches such that any changes to extra fields
 // get reflected.
 field_info_cache_clear();
 }
}

/**
 * UI controller.
 */
class IngredientTypeUIController extends EntityDefaultUIController {
 /**
 * Overrides hook_menu() defaults.
 */
 public function hook_menu() {
 $items = parent::hook_menu();
 $items[$this->path]['description']
 = 'Manage ingredients, including fields.';
 return $items;
 }
}

Expose Local Entities

[98]

The preceding IngredientType class declaration overrides the Entity class
that we normally use to get off the ground quickly. We have implemented the
following methods:

• __construct(): This allows the class to be called without specifying an
entity type

• isLocked(): This helps the UI prevent deletion or editing
• save(): This flushes field information caches after the ingredient type is saved

The IngredientTypeUIController class overriding EntityDefaultUIController
class is simply an example of how to put this into place. A trivial change to the menu
item description is the only override. If you choose not to override the UI controller,
then you should remember to change the controller class directive of admin ui
to EntityDefaultUIController.

In more complicated use cases, it may be necessary to override
EntityDefaultUIController in order to achieve the following:

• Implement extra operations that can be performed on your entities
• Show more details on the entity listing pages

To complete the entity exposure, add the following code under recipe_entity_
info in recipe.module:

/**
 * Access callback for the entity API.
 */
function recipe_ingredient_access($op, $type = NULL, $account = NULL)
{
 return user_access('administer ingredients', $account);
}

/**
 * Gets an array of all ingredient types, keyed by the type name.
 *
 * @param $type_name
 * If set, the type with the given name is returned.
 * @return IngredientType[]
 * Depending whether $type is set, an array of ingredient types or
 * a single one.
 */
function recipe_ingredient_get_types($type_name = NULL) {
 $types = entity_load_multiple_by_name('recipe_ingredient_type',
isset($type_name) ? array($type_name) : FALSE);

Chapter 7

[99]

 return isset($type_name) ? reset($types) : $types;
}

/**
 * Menu load handler.
 */
function recipe_ingredient_type_load($type_name) {
 return recipe_ingredient_get_types($type_name);
}

/**
 * Define default ingredient type configurations.
 *
 * @return
 * An array of default ingredient types, keyed by ingredient type
 * names.
 */
function recipe_default_recipe_ingredient_type() {
 $types['standard'] = new IngredientType(array(
 'type' => 'standard',
 'label' => t('Standard'),
 'weight' => 0,
 // 'status' => ENTITY_FIXED,
));
 return $types;
}

The following is some information about these functions:

• recipe_ingredient_access(): This is an access handler that returns TRUE
when the user has the administer ingredients permission

• recipe_ingredient_get_types(): This is a helper function that loads
information for all ingredient types or for a specified ingredient type

• recipe_ingredient_type_load(): This is a menu item load handler that is
needed for the administration UI

• recipe_default_recipe_ingredient_type(): This is called by the
entity module, and is an implementation of hook_default_recipe_
ingredient_type that informs Drupal about the standard ingredient type

Other modules can also implement hook_default_recipe_ingredient_type in
order to offer their own built-in ingredient types. The highlighted status directive
can be uncommented to prevent any changes to the ingredient type.

Expose Local Entities

[100]

Change the recipe_permissions() function by adding the administer
ingredients permission declaration, so that the start of the function looks
like the following code excerpt:

function recipe_permissions() {
 return array(
 'administer ingredients' => array(
 'title' => t('Administer ingredients'),
 'description' => t('Administer ingredients system-wide.'),
),
 'export recipes' => array(
...

To check whether the standard ingredient type is activated, you can clear the caches
using Drush, and then run the print-entity Drush command in the pde module:
$ drush cc all

$ drush pe standard recipe_ingredient_type

 Entity (recipe_ingredient_type) - ID# standard:

 id : 1

 type : standard

 label : Standard

 weight : 0

 data:

 status : 2

 module : recipe

Notice here that we are using standard instead of the numeric ID of the entity.
This is necessary because we specified name instead of label in the entity keys
directive of the entity type declaration. For more information about when to use the
name instead of the numeric ID, see the documentation for entity_crud_hook_
entity_info in entity.api.php from the entity module.
You can now navigate in your browser to admin/structure/ingredients and play
around with the administration UI of ingredient types!

Summary
In this code-heavy chapter, we covered the exposure of database tables as fieldable
and non-fieldable entities. We also discussed enabling export, import, and cloning of
the entity bundle configurations.

In the next and final chapter, we expose remote data as entities.

Expose Remote Entities
So far, we have cooked up some rather meaty portions of Drupal entity soup. We
will finish the dish with a dollop of:

• Introducing the Remote Entity API
• Requirements for exposing a remote data source as Drupal entities
• Implementing a remote data source as entities in a recipe website

Introducing the Remote Entity API
Use cases may demand remote data be integrated with the Drupal site. Developers
tend to use custom built import scripts or the Feeds module to pull data into entities.
Another option would be to implement a custom entity controller class overriding
the load() and save() methods. The latter is faster to implement, but has no built-
in support for caching. Without caching, users will not see entities during Internet
routing failures, and page loading times may be longer. Once the Feeds module
is configured to import the data into a custom table, we would simply expose the
data like we did in the previous chapter. As there are resources online and books
available about using the Feeds module, it would be silly to cover it in this book.

A new option became possible with the introduction of the Remote Entity API
module. Remote Entity API is intended to reduce the amount of coding necessary
to expose remote entities to Drupal. It even caches remote data locally and, once
exposed by a hook_entity_info implementation, will integrate well with solution
modules that support EntityFieldQuery.

Expose Remote Entities

[102]

Remote Entity API provides the following benefits:

• Fixed entity structure: All remote entities have the same basic properties
independent of the remote data structure

• Remote property mapping: Exposes properties of the remote entity as
properties of the local entity

• Administration UI: Implements a menu item and associated handler for a
page listing remote entities with edit and delete links

• Numeric entity IDs: Regardless of the remote entity's primary key, numeric
entity IDs are exposed allowing full integration with most solution modules

At the time of writing, Remote Entity API is at alpha development stage, meaning
the API is susceptible to change. The code we will extend in this chapter is not
likely to change much and is written well. We will also keep our entities read-only
to simplify things. However, do stay abreast of changes in the Remote Entity API
module and check for addendums of this book.

Requirements for exposing remote
entities
To expose remote data to Drupal using the Remote Entity API module, several
requirements must be satisfied. The requirements are as follows:

• A web service exposing data for retrieve and index REST operations. Other
services and protocols can also be used.

• Connection and resource classes for the Clients module to connect to the
web service.

• Connection and resources configured for the web service.
• A database table for cached entities if caching is desired.
• Implementation of hook_entity_info to expose your entity to Drupal.
• An entity controller supporting remote entities.
• Custom code for caching and data import.

It's important to note that Remote Entity API does not cache remote data in a schema
identical to the remote database. Instead, the API demands a particular base schema
in which remote entity data is serialized into one field. Each entity type must have its
own base table.

Chapter 8

[103]

Implementing remote entity exposure
For the practical part of this chapter, we will expose a USDA food description list as
entities in our recipe website. We will complete a new module named usda_remote,
which depends on the clients and remote_entity modules for connection to
a remote RESTful service exposing Drupal entities using the services_entity
module. We will only concern ourselves with the client side of this setup.

You will find the usda_remote module in the sites/all/modules/customized/
usda_remote folder inside the example code you downloaded earlier. The list of files
within that folder is as follows:

• usda_remote.admin.inc: Contains administration UI code
• usda_remote.batch.inc: Batch entity import code
• usda_remote.clients.inc: Subclass for connection to the remote service
• usda_remote.info: Standard Drupal information file for a module
• usda_remote.install: Install file containing the schema for the database

table needed by Remote Entity API
• usda_remote.module: Drupal module file
• usda_remote.query.inc: Subclasses of RemoteEntityQuery:

USDARemoteSelectQuery, USDARemoteInsertQuery, and
USDARemoteUpdateQuery

Most code we are using is copied from the clients_ms_dynamics_soap module
available on www.drupal.org. There are some empty write-related class methods
so that interfaces are implemented and code compiles. At the time of writing, the
clients_ms_dynamics_soap module is the only publically available module using
Remote Entity API. More will surface as the module matures.

Go ahead and install the code for this chapter. During the installation, you will be
asked for a username and a password for accessing the remote service. In the first
fieldset's description, click on the link to the USDA Nutritional Database Service
registration page, create an account, and then enter those credentials into the form
before proceeding with your installation.

Let's examine or add the necessary code file-by-file to bring the entities to life on our
local site.

Expose Remote Entities

[104]

Database schema
In the usda_remote.install file, you will see the schema for the usda_food_des
database table with the following fields:

• eid: Entity ID field
• remote_id: Remote entity ID that can be textual or numeric
• type: Entity bundle
• entity_data: Serialized remote object data
• created: UNIX timestamp for when the entity was created
• changed: UNIX timestamp for when the entity was changed
• remote_saved: UNIX timestamp for when the entity was remotely saved
• needs_remote_save: Flag indicating the entity needs to be saved remotely
• expires: UNIX timestamp for when the entity expires
• deleted: Flag indicating the entity is to be deleted

All the preceding fields are required by Remote Entity API. Additional fields can be
added for your use case.

Connection code
In order to connect to a remote REST service, we must override the Clients
module's clients_connection_drupal_services_rest_7 class and implement
the ClientsRemoteEntityInterface and ClientsConnectionAdminUIInterface
interfaces. These interfaces are required for Remote Entity API to interface with
the Clients module. It's likely this connection code will not be necessary for most
connections once Remote Entity API matures.

The code in this file has been copied from clients_ms_dynamics_soap.
clients.inc in the clients_ms_dynamics_soap module. The functions copied
are: remote_entity_load(), remote_entity_save(), entity_property_
type_map(), and getRemoteEntityQuery(). Add the following lines to the
getRemoteEntityQuery() function:

switch ($query_type) {
 case 'select':
 return new USDARemoteSelectQuery($this);
 case 'insert':
 return new USDARemoteInsertQuery($this);
 case 'update':
 return new USDARemoteUpdateQuery($this);
}

Chapter 8

[105]

The preceding code returns the appropriate instance of our RemoteEntityQuery
subclass, which we will discuss next. We don't need to modify entity_property_
type_map() because, at the time of writing, the remote query implementation in
Remote Entity API is still being finalized.

Remote query code
Code for remote queries can be found in the usda_remote.query.inc file. The code
is based on the clients_ms_dynamics_soap module's implementation and contains
the following subclasses:

• USDARemoteSelectQuery

• USDARemoteInsertQuery

• USDARemoteUpdateQuery

Only the USDARemoteSelectQuery class contains code, as we are limiting the scope
to read-only operations on the remote entities.

The execute() method has been amended to support the REST service including
the page and pagesize HTTP query string parameters supported by the index
endpoint. The latter will be used to import entities in chunks.

In the usda_remote module, you'll see usda_remote_remote_entity_query_
table_info, which is only implemented to prevent a PHP warning. It should not
be needed when Remote Entity API is released.

Entity exposure code
Inside the usda_remote module, you will see the empty usda_remote_entity_
info() function. In this function, we expose the database table we defined earlier
rather than the source entity schema. We also need additional directives for Remote
Entity API's magic.

Add the following code into the usda_remote_entity_info() function:

$info = array();
$info['usda_food_des'] = array(
 'label' => t('USDA food description'),
 'entity class' => 'Entity',
 'controller class' => 'RemoteEntityAPIDefaultController',
 'metadata controller class'
 => 'RemoteEntityAPIDefaultMetadataController',
 'base table' => 'usda_food_des',
 'fieldable' => FALSE,

Expose Remote Entities

[106]

 'entity keys' => array(
 'id' => 'eid',
 'label' => 'long_desc',
),
 'view modes' => array(
 'full' => array(
 'label' => t('Full content'),
 'custom settings' => FALSE,
),
),
 'label callback' => 'remote_entity_entity_label',
 'uri callback' => 'entity_class_uri',
 'module' => 'usda',
 'access callback' => 'usda_remote_admin_access',
 // Enable the entity API's admin UI.
 'admin ui' => array(
 'path' => 'admin/content/usda',
 'file' => 'usda_remote.admin.inc',
 'controller class' => 'RemoteEntityEntityUIController',
),
 // Remote Entity API directives
 'remote base table' => 'usda_food_des',
 'remote entity keys' => array(
 'remote id' => 'ndb_no',
 'label' => 'long_desc',
),
);

// Setup the property map
$remote_properties = _usda_remote_remote_properties();
foreach ($info as $key => $einfo) {
 $info[$key]['property map'] =
 drupal_map_assoc(array_keys($remote_properties[$key]));
}

return $info;

In the previous entity declaration, you'll see all the variations highlighted. We need to
use different controller classes and a different label callback. After the Remote Entity
API directives comment, we have added the following additional directives:

• remote base table: Can be used to build remote queries or endpoint URLs
• remote entity keys: Maps local properties to remote identifier properties
• property map: A map between all remote properties and local properties

Chapter 8

[107]

Our property map implementation maps remote properties to local properties
with the same name. Some other exposure code defines the user permission in
usda_remote_permission and the access handler usda_remote_admin_access.

Entity metadata API integration
You'll also notice that our property map code mentioned previously refers to an
array returned by _usda_remote_remote_properties(). We had to implement
our own Entity Metadata API integration as the functionality in Remote Entity API
is unfinished at the time of writing. We add the following code to usda_remote_
entity_property_info:

$entity_types = array('usda_food_des');
$remote_properties = _usda_remote_remote_properties();

foreach ($entity_types as $entity_type) {
 $properties = &$info[$entity_type]['properties'];
 $entity_data = &$properties['entity_data'];
 $pp = &$remote_properties[$entity_type];
 $entity_data['type'] = 'remote_entity_'.$entity_type;

 foreach ($pp as $key => $pinfo) {
 $pp[$key]['label'] = $key;
 $pp[$key]['getter callback'] = 'entity_property_verbatim_get';
 }
 $entity_data['property info'] = $pp;
}

This code notifies the Entity Metadata API about the properties found in the
entity_data field storing a serialized copy of remote data. We have set the type of
entity_data in the usda_food_des entity type to remote_entity_usda_food_des.
This is so that it's not treated as a text field causing errors. The inner foreach loop
cycles through the properties of entity_data making each one accessible to wrapper
code. The inner foreach loop and the assignment line after it are optional, as Remote
Entity API automatically makes all remote properties declared in property map
available at the top-level of the entity.

Expose Remote Entities

[108]

Import and administration code
The only thing remaining is an import UI to enable an administrator to import the
remote entities. You will see a menu item declared in the usda_remote_menu()
function along with supporting code in usda_remote.admin.inc and usda_remote.
batch.inc. We set up the batch in the former file's usda_remote_import_form_
submit, and then it invokes a batch function in the latter file. The batch processing
function is usda_remote_import_data(), and it is invoked for each entity type
returned by usda_remote_entity_info().

Replace the comment in usda_remote_import_data() with the following code:

$controller = entity_get_controller($entity_type);
$query = $controller->getRemoteEntityQuery();
$query->pager['page'] = $context['sandbox']['progress'] / $query-
>pager['limit'];

try {
 $entities = $controller->executeRemoteEntityQuery($query);
 $context['sandbox']['current'] = count($entities);
 $context['sandbox']['progress'] += $context['sandbox']['current'];
}
catch (Exception $e) {
 ;
}

In the preceding code, we retrieve the entity controller, and then from it we retrieve
the RemoteEntityQuery subclass instance we implemented earlier. In line three, we
adjust the page number to match our progress then execute the query in the first line
of the try block. We could also adjust the pagesize attribute of the query's pager
property to change the number of records we retrieve.

Running
Once you have all your code in place, clear all Drupal caches. Point your browser to
admin/content/usda/import and, on that page, click on the Import button. Once
the import is complete, you'll be redirected back to the import page. Click on the List
tab (admin/content/usda) and you'll see the imported remote entities.

Chapter 8

[109]

Listing of imported remote USDA food description entities

Adding write support
While write support is out of the scope for this text, a quick mention of how to do it
may help. The usda_remote.query.inc file has two write-related classes that need
some implementation:

• USDARemoteInsertQuery

• USDARemoteUpdateQuery

To give administrators a user interface for editing entities, add code to the form
handler named usda_food_des_form in the usda_remote.admin.inc file.

Expose Remote Entities

[110]

Customization for your use case
The code that we have prepared in this chapter can be easily used as a template for
your own implementations. It must be emphasized that Remote Entity API is still in
development, and you may need to reference chapter addendums online to get your
code working with later releases of the module.

You will find in-depth information about all the supported hooks and hook
extensions of the Remote Entity API in the remote_entity.api.inc file.

Summary
In this chapter, we introduced Remote Entity API and covered the requirements
for exposing remote entities to a Drupal 7 site. We then implemented an example
exposing remote USDA food descriptions to Drupal using Remote Entity API.

This brings our Drupal 7 entity cooking adventure to an end, and together we
have consumed some light snacks along with some slow-cooked hearty stews.
Your humble author hopes you will successfully prepare many Drupal entity
dishes in the future using what you learned from this book.

That's right... "Good Codes!"

Index
Symbols
$field_name 49
__construct() method 98
_usda_remote_remote_properties() 107

A
access callback entity 94
administration code 108
archived property 74
author property 36, 39

B
base table key directive 85
body field

about 37
format 38
safe_summary 38
safe_value 38
summary 38
value 38

body property 37
box perspective 8
bundle

about 10
information, exposing 91-94
information, storing 87-91
multiple bundles 86, 87

bundle definition entity 93
bundle directive 86
bundle keys function 92
bundle of entity 94

C
cart module 13
changed field 104
changed property 36
checkout module 13
cid property 39
code

adding 94-100
copying, to recipe module 60, 61, 80
updating 82

code snippet 19, 21
comment_body field 39
comment_body property 39
comment_count_new property 37
comment_count property 37
comment entity

about 39, 40
author property 40
node property 40

comment entity, property
author property 39
cid property 39
comment_body property 39
created property 39
edit_url property 39
homepage property 39
hostname property 39
mail property 39
name property 39
node property 39
parent property 39
status property 39
subject property 39
url property 39

[112]

comment property 37
commerce products 13
compound type 37
connection code 104
Content Construction Kit (CCK) 11
content type

field collection, attaching 77
controller class key directive 85
created field 104
created property 36, 39
Create Retrieve Update Delete (CRUD) 10

D
data

exposing 84, 85
database schema 104
data field 89
date field 47
date (ISO format) field 47
datetime field 51, 53
date (UNIX timestamp) field 47
decimal field 47
decode option 22
deleted field 104
delete() method 21
description property 30, 40
devel module 18
dpm() function 18
Drupal

history 71
URL 103

Drupal core
bundles 12
entity type 11
fieldability 11

Drush commands 18
drush_pde_entity_delete() function 21
drush_pde_entity_update() function 21
drush_pde_print_entity() function 19
dump-entity-properties (dep) Drush

command 26

E
ECK 84
edit_url property 36, 39
eid field 104

entity
about 8
box perspective 8
bundles 10
comment entity 39, 40
exposing 83
fieldable entity 35, 36
fields 11
fields, allowing 85
file entity 26-29
interface perspective 8
introspection 18
node entity 36-39
non-fieldable 25, 26
programming, limitation 22
properties 17
structure perspective 8
term entity 40-45
types 10
use cases 12
vocabulary entity 30, 31

EntityAPIControllerExportable entity 94
Entity Class API

URL 22
entity class key directive 85
Entity Construction Kit. See ECK
entity-create (ec) Drush command 18
entity, creating

code snippet 18, 19
Drush commands 18

entity_data field 104
EntityDefaultUIController class 98
entity-delete (ed) Drush command 21
entity, deleting

code snippet 21
Drush commands 21

EntityDrupalWrapper class 16, 50
entity exposure code 105-107
entity_id() function 17
entity keys 86
EntityListWrapper class 15, 16
EntityListWrapper instance 50
entity metadata API

integrating 107
entity metadata wrapper

about 15
object, creating 16

[113]

URL 23
using 18

EntityMetadataWrapper class API
URL 23

EntityMetadataWrapperException 50
entity_metadata_wrapper() function

about 17, 33
URL 22

entity metadata wrapper, using
create 18
delete 21
retrieve 19
update 21

entity module 9, 93
entity, property

identifying property 17
label property 17

entity_property_type_map() function 104,
105

entity-read (er) Drush command 19
entity, retrieving

code snippet 19
Drush commands 19

EntityStructureWrapper class
about 15, 50
EntityDrupalWrapper class 16

entity_translation module 13
entity, types

comment 12
file 12
node 12
term 12
user 12
vocabulary 12

entity-update (eu) Drush command 21
entity, updating

code snippet 21
Drush commands 21

entity, use cases
commerce products 13
internationalization 13
Stock-Keeping Unit (SKU) 13
user profiles 12

EntityValueWrapper class 15
EntityValueWrapper object 50
execute() method 105

expires field 104
exportable entity 94

F
Feeds module 101
fid property 27
field

about 11
allowing, on entity 85
creating 56
exporting 78, 79
exporting, to feature 58, 59
multi-value field 48-50
single-value field 48-50
structure fields 50
types 47, 48

fieldability 11
fieldable entity 35, 36
field collection

adding, to node 76
adding, to recipe node 77
archived property 74
attaching, to content type 77
code, copying to recipe module 80
code, updating 82
entities 74, 76
exporting 78, 79
field, creating 71, 72
field_name property 74
host_entity property 74
item_id property 74
recipe.module, tweaking 80, 81
revision_id property 74
url property 74

Field Collection module 71
field_create_field() function 64, 65
field_create_instance() function 64, 65
field_info_extra_fields() 64
field_item_file wrapper 51
field_item_image wrapper 51
field_item_link wrapper 51
field_name property 74
field, types

date field 47
date (ISO format) field 47
datetime field 51, 53

[114]

date (UNIX timestamp) field 47
decimal field 47
file field 47, 51, 52
float field 47
image field 47, 51, 52
Integer field 48
link field 48, 51, 52
Long text and summary field 48
Long text field 48
Text field 48
text_with_summary field 51

file entities, wrapper property
fid property 27
mime property 27
name property 27
owner property 27
size property 27
timestamp property 27
url property 27

file entity 26-29, 94
file field 47, 51, 52
file_save_data() function 28
float field 47

G
getIdentifier() method 20
getPropertyInfo() method 18, 52
getRemoteEntityQuery() function 104

H
help command 18
hierarchy property 30
homepage property 39
host_entity property 74
hostname property 39

I
identifying property 17
image field 47, 51, 52
import 108
Ingredient name field 70
IngredientType class 98
IngredientType entity 94
IngredientTypeUIController class 98

IngredientTypeUIController entity 94
instanceof operator 49
Integer field 48
interface perspective 8
internationalization 13
isLocked() method 98
is_new property 36
item_id property 74
IteratorAggregate interface 20

L
label callback function 92
label() method 20, 50, 76, 92
label property 17
language property 36
link field 48, 51
load() method 101
locked directive 62
log property 37
Long text and summary field 48
Long text field 48

M
machine_name property 30
mail property 39
Managed files 27
mime property 27
module code

upgrading 55
module function 92
modules, dealing with entities

entity modules 9
solution modules 9

multi-value field 48-50
myproperty 22

N
name entity 94
name property 27, 30, 39, 40
needs_remote_save field 104
nid property 36
node

about 10
field collection, adding 76, 77

node_count property 41

[115]

node entity 36-38
node entity, property

author property 36
body property 37
changed property 36
comment_count_new property 37
comment_count property 37
comment property 37
created property 36
edit_url property 36
is_new property 36
language property 36
log property 37
nid property 36
promote property 36
revision property 37
source property 37
status property 36
sticky property 36
title property 36
type property 36
url property 36
vid property 36

node property 39
non-fieldable entities 25, 26

O
owner property 27

P
pager property 108
parent property 39, 41
parents_all property 41, 42
parents property 42
path entity 94
pde_drush_print_entity() function 75
pde_entity_value() function 52, 75
pde_field_value() function 74, 76
pde module 26
pde_structure_value() function 51, 54, 55
print-entity command 74
Processing/Notes field 70
processing type 38
promote property 36
property map directive 106
property value 20

Q
Quantity field 70

R
raw() method 20
recipe content type

code, copying to recipe module 60, 61
converting, to use fields 55
fields, creating 56, 57
fields, exporting to feature 58, 59
recipe.info, tweaking 61-63
recipe.module, tweaking 61-63
recipe.module, upgrading 63

recipe_cooktime 57
recipe_default_recipe_ingredient_type()

function 99
recipe_description 56
recipe_field_default_fields() function 64
recipe_field_extra_field() function 62
recipe_field_extra_fields() function 80
recipe_form() function 63
recipe.info

tweaking 61, 62
recipe_ingredient_access() function 99
recipe_ingredient_get_types() function 99
recipe_ingredient_type_load() function 93,

99
recipe_install_fields() function 63, 65, 82
recipe.install file 31, 65
recipe_install() function 42, 67
recipe_instructions 57
recipe_load() function 63
recipe.module

code, copying 80
recipe_cooktime 57
recipe_description 56
recipe_instructions 57
recipe_notes 56
recipe_preptime 57
recipe_source 56
recipe_yield 56
recipe_yield_unit 56
tweaking 61-63, 80, 81
upgrading 63

recipe.module file 84

[116]

recipe node
field collection, adding 77

recipe_node_info() function 62
recipe_notes 56
recipe_permissions() function 100
recipe_preptime 57
recipe_schema() function 86
recipe site vocabularies 31, 32
recipe_source 56
recipe_yield 56
recipe_yield_unit 56
remote base table directive 106
remote entity

customizing, for use case 110
exposure, implementing 103
exposure, requisites 102
implementing 103

Remote Entity API
about 101
advantages 102

remote_entity.api.inc file 110
remote entity exposure

running 108
write support, adding 109

remote entity exposure, implementing
administration code 108
code 105-107
connection node 104
database schema 104
Entity metadata API, integrating 107
importing 108
remote query code 105

remote entity keys directive 106
remote_entity_load() function 104
RemoteEntityQuery subclass 108
remote_entity_save() function 104
remote_id field 104
remote query code 105
remote_saved field 104
revision_id property 74
revision property 37

S
sanitize option 22
save() method 18, 21, 26, 98, 101
services_entity module 103

single-value field 48-50
size property 27
solution modules 9
source property 37
spaghetti code 8
status field 89
status property 27, 36, 39
sticky property 36
storage value 20
structure fields

field type 51
structure perspective 8
struct wrapper 51
subject property 39
system_retrieve_file() API function 28

T
taxonomy module 30
taxonomy_term entities 41
taxonomy_vocabulary entity 41
taxonomy_vocabulary_machine_name_

load() function 33
term_count property 30
term entity 41-45
term entity, property

description property 40
name property 40
node_count property 41
parent property 41
parents_all property 41
tid property 40
url property 41
vocabulary property 41
weight property 41

Text field 48
text_formatted wrapper 51
text property values

using 22
text_with_summary field 51
tid property 40
timestamp field 27
timestamp property 27
title property 36
type field 104
type() method 19, 51
type property 17, 36

[117]

U
Units field 70
Unmanaged files 27
update() function 89
uri callback function 92
uri() method 92
url property 27, 36, 39, 41, 74
usda_remote.admin.inc file 103
usda_remote.batch.inc file 103
usda_remote.clients.inc file 103
usda_remote_entity_info() function 105, 108
usda_remote_import_data() function 108
usda_remote.info file 103
USDARemoteInsertQuery class 105, 109
usda_remote.install file 103, 104
usda_remote_menu() function 108, 110
usda_remote module 103
usda_remote.module file 103
usda_remote.query.inc file 103, 105, 109
USDARemoteSelectQuery class 105
USDARemoteUpdateQuery class 105, 109
use cases

about 12, 13
customizing, for remote entity 110

user profiles 12

V
value() function 37, 38
value() method 19-22, 50, 53
vid property 30, 36
vocabularies

cuisine 31
difficulty 31

vocabulary entity 30, 31
vocabulary entity, wrapper property

description property 30
machine_name property 30
name property 30
term_count property 30
vid property 30

vocabulary property 41

W
weight property 41
wrapper type

field_item_file wrapper 51
field_item_image wrapper 51
field_item_link wrapper 51
struct wrapper 51
text_formatted wrapper 51

Thank you for buying
Programming Drupal 7 Entities

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Drupal 7 Multilingual Sites
ISBN: 978-1-84951-818-5 Paperback: 140 pages

A hands-on, practical guide for configuring your
Drupal 7 website to handle all languages for your
site users

1. Prepare your Drupal site to handle content in
different languages easily.

2. Apply the numerous multilingual modules
to your Drupal site and configure it for any
number of different languages.

3. Organize the multilingual pieces into logical
areas for easier handling.

Drupal 7 Multi-sites Configuration
ISBN: 978-1-84951-800-0 Paperback: 100 pages

Run multiple websites from a single instance of
Drupal 7

1. Prepare your server for hosting multiple sites.

2. Configure and install several sites on one
instance of Drupal.

3. Manage and share themes and modules across
the multi-site configuration.

Please check www.PacktPub.com for information on our titles

Migrating to Drupal 7
ISBN: 978-1-78216-054-0 Paperback: 158 pages

Learn how to quickly and efficiently migrate content into
Drupal 7 from a variety of sources including Drupal 6
using automated migration and import processes

1. Learn how to import content and data into
your Drupal 7 site from other websites, content
management systems, and databases.

2. Upgrade your Drupal 6 site to Drupal 7 and
migrate your CCK based content into the
Drupal 7 fields based framework.

3. Use modules that will automate the import
and migration process including the Feeds and
Migrate modules.

Instant Drupal Rules How-to
ISBN: 978-1-84951-998-4 Paperback: 74 pages

Discover the power of the Rules framework to turn
your Drupal 7 installation into an action-based,
interactive application

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Leverage the power of Rules and Views Bulk
Operations.

3. Re-use configurations using Components.

4. Create your own Events, Conditions and
Actions.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding Entities
	Introducing entities
	Entity and solution modules
	Introducing entity types, bundles, and fields
	Types
	Bundles
	Fields
	Drupal core entity structure

	Powerful entity use cases
	User profiles
	Internationalization
	Commerce products

	Our use case
	Summary

	Chapter 2: Developing with Entity Metadata Wrappers
	Introducing entity metadata wrappers
	Creating an entity metadata wrapper object
	Standard entity properties
	Entity introspection
	Using an entity metadata wrapper
	Create
	Drush commands
	Code snippet

	Retrieve
	Drush commands
	Code snippet

	Update
	Drush commands
	Code snippet

	Delete
	Drush commands
	Code snippet

	Safely using text property values
	Self-imposed limitation of entity programming
	References
	A note about EntityFieldQuery
	Summary

	Chapter 3: Developing with Non-fieldable Entities
	What are non-fieldable entities?
	File entities
	Vocabulary entities
	Recipe site vocabularies
	Summary

	Chapter 4: Developing with Fieldable Entities
	What are fieldable entities?
	Node entities
	Comment entities
	Term entities
	Summary

	Chapter 5: Developing with Fields
	Field types
	Single-value and multi-value fields
	Structure fields
	Field type-specific code
	File and image fields
	Link fields
	Datetime fields
	Putting it all together

	Converting the recipe content type to use fields
	Creating fields
	Exporting fields to a feature
	Copying the code to the recipe module
	Tweaking recipe.module and recipe.info
	Upgrading recipe module

	Summary

	Chapter 6: Developing with Field Collections
	Before Drupal 7
	Creating a field collection field
	Field collection entities
	Adding a field collection to a node
	Attaching a field collection to a content type
	Exporting field collection and fields
	Copying the code to therecipe module
	Tweaking recipe.module
	Updating code is unnecessary

	Summary

	Chapter 7: Expose Local Entities
	Motivation for exposing entities
	Fast track your data exposure
	Allow fields on your entity
	Give it multiple bundles
	Administration interface and exportability
	Storing bundle information
	Exposing bundle information and handling access rights
	Adding the support code

	Summary

	Chapter 8: Expose Remote Entities
	Introducing the Remote Entity API
	Requirements for exposing remote entities
	Implementing remote entity exposure
	Database schema
	Connection code
	Remote query code
	Entity exposure code
	Entity metadata API integration
	Import and administration code

	Running
	Adding write support
	Customization for your use case
	Summary

	Index

