
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

SECOND EDITION

Programming iOS 5

Matt Neuburg

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Programming iOS 5, Second Edition
by Matt Neuburg

Copyright © 2012 Matt Neuburg. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Brian Jepson
Production Editor: Kristen Borg
Proofreader: O’Reilly Production Services

Indexer: Matt Neuburg
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Matt Neuburg

March 2012: Second Edition.

Revision History for the Second Edition:
2011-12-23 Early release
2012-03-12 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449319342 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming iOS 5, the image of a kingbird, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31934-2

[M]

1331571373

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449319342
http://www.allitebooks.org

Table of Contents

Preface . xvii

Part I. Language

1. Just Enough C . 3
Compilation, Statements, and Comments 4
Variable Declaration, Initialization, and Data Types 6
Structs 8
Pointers 10
Arrays 13
Operators 14
Flow Control and Conditions 16
Functions 20
Pointer Parameters and the Address Operator 23
Files 25
The Standard Library 27
More Preprocessor Directives 28
Data Type Qualifiers 29

2. Object-Based Programming . 31
Objects 31
Messages and Methods 32
Classes and Instances 33
Class Methods 36
Instance Variables 37
The Object-Based Philosophy 38

3. Objective-C Objects and Messages . 43
An Instance Reference Is a Pointer 43

Instance References, Initialization, and nil 44

iii

www.allitebooks.com

http://www.allitebooks.org

Instance References and Assignment 47
Instance References and Memory Management 49

Messages and Methods 49
Sending a Message 50
Declaring a Method 51
Nesting Method Calls 52
No Overloading 53
Parameter Lists 53
Unrecognized Selectors 54

Typecasting and the id Type 56
Messages as Data Type 59
C Functions 60
CFTypeRefs 62
Blocks 63

4. Objective-C Classes . 67
Class and Superclass 67
Interface and Implementation 69
Header File and Implementation File 71
Class Methods 73
The Secret Life of Classes 74

5. Objective-C Instances . 77
How Instances Are Created 77

Ready-Made Instances 77
Instantiation from Scratch 78
Nib-Based Instantiation 81

Polymorphism 82
The Keyword self 84
The Keyword super 86
Instance Variables and Accessors 89
Key–Value Coding 91
Properties 91
How to Write an Initializer 94

Part II. IDE

6. Anatomy of an Xcode Project . 99
New Project 100
The Project Window 101

The Navigator Pane 103
The Utilities Pane 107

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

The Editor 109
The Project File and Its Dependents 111
The Target 114

Build Phases 114
Build Settings 115
Configurations 117
Schemes and Destinations 118

From Project to App 120
Build Settings 122
Property List Settings 122
Nib Files and Storyboard Files 123
Other Resources 124
Code 126
Frameworks and SDKs 128

7. Nib Management . 133
A Tour of the Nib-Editing Interface 134

The Dock 135
Canvas 136
Inspectors and Libraries 138

Nib Loading and File’s Owner 140
Making and Loading a Nib 142
Outlet Connections 143

More Ways to Create Outlets 148
More About Outlets 150

Action Connections 151
Additional Initialization of Nib-Based Instances 155

8. Documentation . 157
The Documentation Window 158
Class Documentation Pages 159
Sample Code 163
Other Resources 164

Quick Help 164
Symbols 165
Header Files 165
Internet Resources 166

9. Life Cycle of a Project . 169
Choosing a Device Architecture 169
Localization 173
Editing Your Code 174

Autocompletion 175

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Snippets 176
Live Syntax Checking and Fix-it 177

Navigating Your Code 177
Debugging 180

Caveman Debugging 180
The Xcode Debugger 183

Unit Testing 188
Static Analyzer 189
Clean 189
Running in the Simulator 190
Running on a Device 192
Device Management 196
Version Control 196
Instruments 198
Distribution 202
Ad Hoc Distribution 204
Final App Preparations 206

Icons in the App 206
Other Icons 207
Launch Images 208
Screenshots 209
Property List Settings 209

Submission to the App Store 211

Part III. Cocoa

10. Cocoa Classes . 217
Subclassing 217
Categories 220

Splitting a Class 221
Private Method Declarations 222

Protocols 223
Optional Methods 227
Some Foundation Classes 229

Useful Structs and Constants 229
NSString and Friends 230
NSDate and Friends 232
NSNumber 232
NSValue 233
NSData 233
Equality and Comparison 234
NSIndexSet 234

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

NSArray and NSMutableArray 235
NSSet and Friends 236
NSDictionary and NSMutableDictionary 237
NSNull 239
Immutable and Mutable 239
Property Lists 240

The Secret Life of NSObject 240

11. Cocoa Events . 245
Reasons for Events 246
Subclassing 246
Notifications 248

Receiving a Built-In Notification 249
Unregistering 251
NSTimer 253

Delegation 253
Data Sources 257
Actions 258
The Responder Chain 263

Deferring Responsibility 264
Nil-Targeted Actions 264

Application Lifetime Events 265
Swamped by Events 270

12. Accessors and Memory Management . 275
Accessors 275
Key–Value Coding 277
Memory Management 281

Principles of Cocoa Memory Management 281
The Golden Rules of Memory Management 282
What ARC Is and What It Does 285
How Cocoa Objects Manage Memory 288
Autorelease 290
Memory Management of Instance Variables (Non-ARC) 293
Memory Management of Instance Variables (ARC) 297
Retain Cycles and Weak References 299
Nib Loading and Memory Management 306
Memory Management of Global Variables 307
Memory Management of Pointer-to-Void Context Info 308
Memory Management of CFTypeRefs 310

Properties 313

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

13. Data Communication . 319
Model–View–Controller 319
Instance Visibility 321

Visibility by Instantiation 322
Visibility by Relationship 323
Global Visibility 324

Notifications 325
Key–Value Observing 327

Part IV. Views

14. Views . 335
The Window 335
Subview and Superview 338
Frame 341
Bounds and Center 343
Layout 346
Transform 349
Visibility and Opacity 353

15. Drawing . 355
UIImage and UIImageView 355
Graphics Contexts 359
UIImage Drawing 363
CGImage Drawing 364
CIFilter and CIImage 367
Drawing a UIView 370
Graphics Context Settings 372
Paths and Drawing 373
Clipping 377
Gradients 378
Colors and Patterns 380
Graphics Context Transforms 382
Shadows 384
Points and Pixels 385
Content Mode 385

16. Layers . 389
View and Layer 390
Layers and Sublayers 392

Manipulating the Layer Hierarchy 393
Positioning a Sublayer 394

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

CAScrollLayer 395
Layout of Sublayers 396

Drawing in a Layer 396
Content Resizing and Positioning 399
Layers that Draw Themselves 401

Transforms 403
Depth 406

Shadows, Borders, and More 409
Layers and Key–Value Coding 411

17. Animation . 413
Drawing, Animation, and Threading 414
UIImageView and UIImage Animation 417
View Animation 419

Animation Blocks 419
Modifying an Animation Block 420
Transition Animations 424
Block-Based View Animation 425

Implicit Layer Animation 430
Animation Transactions 431
Media Timing Functions 432

Core Animation 434
CABasicAnimation and Its Inheritance 434
Using a CABasicAnimation 436
Keyframe Animation 439
Making a Property Animatable 440
Grouped Animations 441
Transitions 445
The Animations List 447

Actions 449
What an Action Is 449
The Action Search 450
Hooking Into the Action Search 451
Nonproperty Actions 454

Emitter Layers 455

18. Touches . 463
Touch Events and Views 464
Receiving Touches 466
Restricting Touches 467
Interpreting Touches 468
Gesture Recognizers 473

Gesture Recognizer Classes 473

Table of Contents | ix

Multiple Gesture Recognizers 477
Subclassing Gesture Recognizers 479
Gesture Recognizer Delegate 481

Touch Delivery 483
Hit-Testing 484
Initial Touch Event Delivery 489
Gesture Recognizer and View 490
Touch Exclusion Logic 491
Recognition 492
Touches and the Responder Chain 493

Part V. Interface

19. View Controllers . 497
The View Controller Hierarchy 500
View Controller and View Creation 504

Manual View 507
Generic Automatic View 509
View in a Separate Nib 511
Nib-Instantiated View Controller 514
Storyboard-Instantiated View Controller 517

Rotation 519
Rotation Events 521
Initial Orientation 523

Presented View Controller 526
Presented View Animation 531
Presentation Styles 532
Presented Views and Rotation 534

Tab Bar Controllers 536
Tab Bar Items 537
Configuring a Tab Bar Controller 538

Navigation Controllers 540
Bar Button Items 544
Navigation Items 546
Toolbar Items 549
Configuring a Navigation Controller 549

Page View Controller 551
Container View Controllers 554
Storyboards 557
View Controller Lifetime Events 562
View Controller Memory Management 564

x | Table of Contents

20. Scroll Views . 569
Creating a Scroll View 570
Scrolling 573

Paging 576
Tiling 577

Zooming 579
Zooming Programmatically 581
Zooming with Detail 581

Scroll View Delegate 584
Scroll View Touches 586
Scroll View Performance 591

21. Table Views . 593
Table View Cells 596

Built-In Cell Styles 597
Custom Cells 603

Table View Data 611
The Three Big Questions 612
Table View Sections 616
Refreshing Table View Data 619
Variable Row Heights 621

Table View Selection 623
Table View Scrolling and Layout 629
Table View Searching 630
Table View Editing 636

Deleting Table Items 639
Editable Content in Table Items 640
Inserting Table Items 642
Rearranging Table Items 644
Dynamic Table Content 645

Table View Menus 646

22. Popovers and Split Views . 649
Configuring and Displaying a Popover 651
Managing a Popover 656
Dismissing a Popover 657
Popover Segues 660
Automatic Popovers 661
Split Views 663

23. Text . 671
UILabel 672
UITextField 673

Table of Contents | xi

Editing and the Keyboard 676
Configuring the Keyboard 680
Text Field Delegate and Control Event Messages 681
The Text Field Menu 683

UITextView 685
Core Text 688

24. Web Views . 697
Loading Content 698
Communicating with a Web View 704

25. Controls and Other Views . 707
UIActivityIndicatorView 707
UIProgressView 708
UIPickerView 711
UISearchBar 713
UIControl 716

UISwitch 718
UIStepper 718
UIPageControl 719
UIDatePicker 720
UISlider 722
UISegmentedControl 725
UIButton 727
Custom Controls 731

Bars 734
UINavigationBar 734
UIToolbar 738
UITabBar 738

Appearance Proxy 743

26. Modal Dialogs . 747
Alert View 748
Action Sheet 750
Dialog Alternatives 754
Local Notifications 755

Part VI. Some Frameworks

27. Audio . 763
System Sounds 763
Audio Session 764

xii | Table of Contents

Interruptions 768
Routing Changes 769

Audio Player 770
Remote Control of Your Sound 773
Playing Sound in the Background 775
Further Topics in Sound 777

28. Video . 781
MPMoviePlayerController 782
MPMoviePlayerViewController 788
UIVideoEditorController 789
An Introduction to AV Foundation Video 791

29. Music Library . 797
Exploring the Music Library 797
The Music Player 801
The Music Picker 806

30. Photo Library and Image Capture . 809
UIImagePickerController 809

Choosing from the Photo Library 809
Using the Camera 811

Image Capture With AV Foundation 815
The Assets Library Framework 817

31. Address Book . 823
Address Book Database 823
Address Book Interface 826

ABPeoplePickerNavigationController 826
ABPersonViewController 828
ABNewPersonViewController 829
ABUnknownPersonViewController 829

32. Calendar . 831
Calendar Database 831
Calendar Interface 838

33. Mail . 845
Mail Message 845
SMS Message 846

Table of Contents | xiii

34. Maps . 847
Displaying a Map 847
Annotations 849
Overlays 856

35. Sensors . 863
Location 864

Map Kit and Core Location 865
Geocoding 866
Location Manager 868

Heading 872
Acceleration and Attitude 873

Shake Events 874
Raw Acceleration 875
Gyroscope 879

Part VII. Final Topics

36. Persistent Storage . 887
The Sandbox 887
Basic File Operations 888
Saving and Reading Files 890
User Defaults 891
File Sharing 893
Document Types 894
Handing Off a Document 896
The Document Architecture 899
XML 904
SQLite 911
Image File Formats 912

37. Basic Networking . 915
HTTP Requests 915
Bonjour 923
Push Notifications 925
Beyond Basic Networking 926

38. Threads . 927
The Main Thread 927
Why Threading Is Hard 930
Three Ways of Threading 931

Manual Threads 933

xiv | Table of Contents

NSOperation 934
Grand Central Dispatch 940

Threads and App Backgrounding 943

39. Undo . 947
The Undo Manager 947
The Undo Interface 950
The Undo Architecture 953

40. Epilogue . 957

Index . 959

Table of Contents | xv

Preface

Aut lego vel scribo; doceo scrutorve sophian.

—Sedulius Scottus

With the advent of version 2 of the iPhone system, Apple proved they could do a re-
markable thing — adapt their existing Cocoa computer application programming
framework to make applications for a touch-based device with limited memory and
speed and a dauntingly tiny display. The resulting Cocoa Touch framework, in fact,
turned out to be in many ways better than the original Cocoa.

A programming framework has a kind of personality, an overall flavor that provides an
insight into the goals and mindset of those who created it. When I first encountered
Cocoa Touch, my assessment of its personality was: “Wow, the people who wrote this
are really clever!” On the one hand, the number of built-in interface widgets was se-
verely and deliberately limited; on the other hand, the power and flexibility of some of
those widgets, especially such things as UITableView, was greatly enhanced over their
Mac OS X counterparts. Even more important, Apple created a particularly brilliant
way (UIViewController) to help the programmer make entire blocks of interface come
and go and supplant one another in a controlled, hierarchical manner, thus allowing
that tiny iPhone display to unfold virtually into multiple interface worlds within a single
app without the user becoming lost or confused.

Even more impressive, Apple took the opportunity to recreate and rationalize Cocoa
from the ground up as Cocoa Touch. Cocoa itself is very old, having begun life as
NeXTStep before Mac OS X even existed. It has grown by accretion and with a certain
conservatism in order to maintain something like backward compatibility. With Cocoa
Touch, on the other hand, Apple had the opportunity to throw out the baby with the
bath water, and they seized this opportunity with both hands.

So, although Cocoa Touch is conceptually based on Mac OS X Cocoa, it is very clearly
not Mac OS X Cocoa, nor is it limited or defined by Mac OS X Cocoa. It’s an inde-
pendent creature, a leaner, meaner, smarter Cocoa. I could praise Cocoa Touch’s de-
liberate use of systematization (and its healthy respect for Occam’s Razor) through
numerous examples. Where Mac OS X’s animation layers are glommed onto views as
a kind of afterthought, a Cocoa Touch view always has an animation layer counterpart.

xvii

Memory management policies, such as how top-level objects are managed when a nib
loads, are simplified and clarified. And so on.

At the same time, Cocoa Touch is still a form of Cocoa. It still requires a knowledge of
Objective-C. It is not a scripting language; it is certainly not aimed at nonprogrammers,
like HyperCard’s HyperTalk or Apple’s AppleScript. It is still huge and complicated.
In fact, it’s rather difficult.

The popularity of the iPhone, with its largely free or very inexpensive apps, and the
subsequent popularity of the iPad, have brought and will continue to bring into the
fold many new programmers who see programming for these devices as worthwhile
and doable, even though they may not have felt the same way about Mac OS X. Apple’s
own annual WWDC developer conventions have reflected this trend, with their em-
phasis shifted from Mac OS X to iOS instruction.

The widespread eagerness to program iOS, however, though delightful on the one
hand, has also fostered a certain tendency to try to run without first learning to walk.
iOS gives the programmer mighty powers that can seem as limitless as imagination
itself, but it also has fundamentals. I often see questions online from programmers who
are evidently deep into the creation of some interesting app, but who are stymied in a
way that reveals quite clearly that they are unfamiliar with the basics of the very world
in which they are so happily cavorting.

It is this state of affairs that has motivated me to write this book, which is intended to
ground the reader in the fundamentals of iOS. I love Cocoa and have long wished to
write about it, but it is iOS and its popularity that has given me a proximate excuse to
do so. Indeed, my working title was “Fundamentals of Cocoa Touch Programming.”
Here I have attempted to marshal and expound, in what I hope is a pedagogically helpful
and instructive yet ruthlessly Euclidean and logical order, the principles on which
sound iOS programming rests, including a good basic knowledge of Objective-C (start-
ing with C itself) and the nature of object-oriented programming, advice on the use of
the tools, the full story on how Cocoa objects are instantiated, referred to, put in com-
munication with one another, and managed over their lifetimes, and a survey of the
primary interface widgets and other common tasks. My hope, as with my previous
books, is that you will both read this book cover to cover (learning something new often
enough to keep you turning the pages) and keep it by you as a handy reference.

This book is not intended to disparage Apple’s own documentation and example
projects. They are wonderful resources and have become more wonderful as time goes
on. I have depended heavily on them in the preparation of this book. But I also find
that they don’t fulfill the same function as a reasoned, ordered presentation of the facts.
The online documentation must make assumptions as to how much you already know;
it can’t guarantee that you’ll approach it in a given order. And online documentation
is more suitable to reference than to instruction. A fully written example, no matter
how well commented, is difficult to follow; it demonstrates, but it does not teach.

xviii | Preface

www.allitebooks.com

http://www.allitebooks.org

A book, on the other hand, has numbered chapters and sequential pages; I can assume
you know C before you know Objective-C for the simple reason that Chapter 1 precedes
Chapter 2. And along with facts, I also bring to the table a degree of experience, which
I try to communicate to you. Throughout this book you’ll see me referring to “common
beginner mistakes”; in most cases, these are mistakes that I have made myself, in ad-
dition to seeing others make them. I try to tell you what the pitfalls are because I assume
that, in the course of things, you will otherwise fall into them just as naturally as I did
as I was learning. You’ll also see me construct many examples piece by piece or extract
and explain just one tiny portion of a larger app. It is not a massive finished program
that teaches programming, but an exposition of the thought process that developed
that program. It is this thought process, more than anything else, that I hope you will
gain from reading this book.

iOS is huge, massive, immense. It’s far too big to be encompassed in a book even of
this size. And in any case, that would be inappropriate and unnecessary. There are
entire areas of Cocoa Touch that I have ruthlessly avoided discussing. Some of them
would require an entire book of their own. Others you can pick up well enough, when
the time comes, from the documentation. This book is only a beginning — the funda-
mentals. But I hope that it will be the firm foundation that will make it easier for you
to tackle whatever lies beyond, in your own fun and rewarding iOS programming fu-
ture.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

Preface | xix

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming iOS 5 by Matt Neuburg
(O’Reilly). Copyright 2012 Matt Neuburg, 978-1-4493-1934-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North

xx | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920023562.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments for the First Edition
It’s a poor craftsman who blames his tools. No blame attaches to the really great tools
by which I have been assisted in the writing of this book. I am particularly grateful to
the Unicomp Model M keyboard (http://pckeyboard.com), without which I could not
have produced so large a book so painlessly. I was also aided by wonderful software,
including TextMate (http://macromates.com) and AsciiDoc (http://www.methods.co.nz/
asciidoc). BBEdit (http://www.barebones.com) helped with its diff display. Screenshots
were created with Snapz Pro X (http://www.ambrosiasw.com) and GraphicConverter
(http://www.lemkesoft.com); diagrams were drawn with OmniGraffle (http://www.om
nigroup.com).

The splendid O’Reilly production process converted my AsciiDoc text files into PDF
while I worked, allowing me to proofread in simulated book format. Were it not for
this, and the Early Release program that permitted me to provide my readers with
periodic updates of the book as it grew, I would never have agreed to undertake this
project in the first place. I would like particularly to thank Tools maven Abby Fox for
her constant assistance.

I have taken advice from two tech reviewers, Dave Smith and David Rowland, and have
been assisted materially and spiritually by many readers who submitted errata and
encouragement. I was particularly fortunate in having Brian Jepson as editor; he pro-
vided enthusiasm for the O’Reilly tools and the electronic book formats, a watchful
eye, and a trusting attitude; he also endured the role of communications pipeline when
I needed to prod various parts of the O’Reilly machine. I have never written an O’Reilly
book without the help of Nancy Kotary, and I didn’t intend to start now; her sharp eye

Preface | xxi

http://shop.oreilly.com/product/0636920023562.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://pckeyboard.com
http://macromates.com
http://www.methods.co.nz/asciidoc
http://www.methods.co.nz/asciidoc
http://www.barebones.com
http://www.ambrosiasw.com
http://www.lemkesoft.com
http://www.omnigroup.com
http://www.omnigroup.com

has smoothed the bristles of my punctuation-laden style. For errors that remain, I take
responsibility, of course.

Notes on the Second Printing
For the second printing of this book, screenshots have been rendered more legible, and
a major technical error in the presentation of key–value coding in Chapter 5 has been
corrected. In addition, numerous small emendations have been made; many of these
have resulted from errata submissions by my readers, whom I should like to thank once
again for their continued assistance and kind support. Please note that these changes
have altered the pagination of the printed and PDF editions of the book.

Acknowledgments for the Second Edition
Not surprisingly, I’d like to thank once again my editor, Brian Jepson, who made me
write this new edition. You can put down the whip now, Brian. Thanks also to the
O’Reilly team for their many-faceted assistance, and always to my readers for their
enthusiasm, encouragement, loyalty, and suggestions.

Notes on the Second Edition
In order to describe the relationship of the second edition of this book with the first
edition, it will help if I first recap the recent history of iOS and Xcode versions.

At the time I started writing the first edition this book, system versions 3.1.3 (on the
iPhone) and 3.2 (on the iPad) were current. As I was working on the book, iOS 4 and
the iPhone 4 came into being, but iOS 4 didn’t yet run on the iPad. Subsequently iOS
4.2 emerged; this was the first system able to run on both the iPhone and the iPad. At
the same time, Xcode was improved up to 3.2.5. iOS 4 was the first version of the system
to support multitasking, which necessitated much scurrying about on the part of de-
velopers, to adapt their apps to the new world order.

Just in time for my final revisions of the first edition, Xcode 3.2.6 and iOS 4.3 were
released, along with the first public version of the long-awaited Xcode 4. Xcode 4 was
a thorough overhaul of the IDE: menus, windows, and preferences are quite different
from Xcode 3.2.x. Both Xcode 4 and Xcode 3.2.x can coexist on the same machine (up
through Snow Leopard) and can be used to work on the same project; moreover, Xcode
3.2.x has some specialized capabilities that Xcode 4 lacks, so some long-standing de-
velopers may well continue to use it. This situation presents a dilemma for an author
describing the development process. However, for iOS programming, I recommend
adoption of Xcode 4, and the first edition of this book assumed that the reader had
adopted it.

xxii | Preface

Such was the situation in May 2011, when the first edition was formally released, de-
scribing how to program iOS 4.

Less than five months later, in October 2011, Apple released iOS 5. Some of the features
that are new in iOS 5 are dramatic and pervasive, and it is this fact which has necessi-
tated a full revision of this book. At the same time, Apple also released Xcode 4.2, and
this book assumes that you are using that version of Xcode (or later), since it is the
earliest version of Xcode on which iOS 5 development is officially possible. (It may be
that, by deep trickery, one can develop for iOS 5 using an earlier version of Xcode, but
that would constitute unsupported behavior.) The first edition had a few mentions of
menu commands and other interface in Xcode 3.2.x, but they have been excised from
this edition. Xcode 4.2 comes in two flavors, depending whether you’re running Snow
Leopard (Mac OS X 10.6) or Lion (Mac OS X 10.7) on your development machine;
they are supposed to behave more or less identically, but in fact each has its own bugs,
so feel free to try both.

As I was finishing the second edition, in February 2012, Xcode 4.3 was released (for
Lion only). Its chief innovation has to do with the organization of files on disk: instead
of arriving as an installer that creates a top-level Developer folder to hold its many
ancillary files and folders, Xcode 4.3 contains the Developer folder inside its file package
(you can see it with the Finder’s Show Package Contents command). So when I speak
of the Developer folder in this book, you would need to understand that I mean some-
thing like /Applications/Xcode.app/Contents/Developer. I have not found any other ma-
jor differences between Xcode 4.2 and Xcode 4.3, and in this book I will sometimes say
“Xcode 4.2” to mean Xcode 4.2 or later.

The chief purpose of this new edition, then, is to bring the book up to date for iOS 5.
You, the reader, might be coming to iOS programming for the first time, so this edition
assumes no prior knowledge of iOS 4 or any previous version. On the other hand, you,
like me, could be making the transition from iOS 4 to iOS 5, so this edition lays some
special emphasis on features that are new in iOS 5. This emphasis could also be useful
to new iOS programmers who are thinking of writing apps that can also run under iOS
4. My goal, however, is not to burden the reader with outdated information. The vast
majority of devices that could run iOS 4 have probably been updated to iOS 5, and you
will probably be right in assuming that there will plenty of iOS 5 users out there, without
your having to bother to target earlier systems. And from a pedagogical point of view,
it seems counterproductive to describe how things used to be — especially as, if you’re
really interested, you can always consult the previous edition of this book! For this
reason, some references to the state of things before iOS 4.2 have been excised from
this edition.

Here is a case in point, showing my attitude and pedagogical approach with regard to
new iOS 5 features in this edition. iOS 5 introduces ARC (automatic reference count-
ing), which changes the way in which Objective-C programmers manage object mem-
ory so profoundly as to render Objective-C a different language. Use of ARC is optional
in programming iOS, but it is extraordinarily helpful to have it turned on, and in this

Preface | xxiii

book I therefore assume throughout that you do have it turned on. In Chapter 12, where
I discuss memory management, I still describe what life is like without ARC, as I did
in the previous edition; but, outside that chapter, all code examples, unless specifically
state otherwise, are supposed to be running under ARC. If you start a new Xcode project
with File → New Project and pick any iOS application template, then if “Use Automatic
Reference Counting” is checked in the second screen, you’re using ARC.

iOS 5 also introduces storyboards. A storyboard file is similar to a nib file: it’s a place
where Xcode lets you “draw” parts of the interface. The main difference is that a single
storyboard file can do the work of multiple nib files. Nib files and storyboard files are
not identical, nor are they used identically, but because of their similarity, when I speak
of a nib file generically, in this book, I mean a nib or storyboard file, indifferently. I’ll
try to indicate this at the time, but the reader will forgive me if I don’t keep saying “nib
or storyboard” all the time.

In closing, I should like to say a few words to the people who have, in my opinion,
gratuitously criticized the previous edition of this book on one or more of the following
grounds:

a. It isn’t a “cookbook” (a book full of step-by-step instructions for creating full
working applications).

b. It devotes hundreds of pages to fundamentals.

c. It doesn’t get the reader started early on with hands-on programming; there isn’t
even a “Hello, World” tutorial.

All of that is perfectly true. It is also quite deliberate. As both the table of contents and
this preface are at pains to make clear, this is not that type of book. To paraphrase
Butler’s Law, this book is the type of book it is, and not some other type. That’s why
I wrote this book in the first place. The books of the type that these critics seem to want
this book to be exist by the score; books of the type that this book is, however, seemed
to me not to exist at all. As with all my other books, so with this one: when I couldn’t
find the book I wanted, I wrote it myself. I expect this book to be useful to those who
need this type of book. People who prefer some other type of book should get some
other type of book, and not mar my book’s web page by criticizing it for not being what
it was never intended to be.

The purpose of this book is to proceed by focusing on the underlying knowledge needed
for an actual understanding of iOS programming. That is precisely the opposite of a
cookbook. This book has no simple recipes ready for you to drop into your own code
and come up with an app. I don’t give you some fish; I teach you what a fish is and
what you need to know to obtain one. The number of books out there that skip blithely
past the fundamentals, leaving the reader to pick up Objective-C somehow independ-
ently, is painfully huge. The result is that numerous learners are encouraged to try their
hand at programming when, to judge from the nature of the questions they ask and the
confusion they exhibit, they don’t understand what they are doing.

xxiv | Preface

This book acts as a corrective, which in turn requires that space be devoted to funda-
mentals. The book does not hold a gun to your head and force you to read all about all
of those fundamentals; if you already know everything there is to know about C, about
Objective-C, about Xcode, about Cocoa, about views and drawing or whatever (but
do you? do you really?), then by all means, skip those opening chapters. But don’t
begrudge to the people who need them the explanations that this book contains, as
those are the people at whom they are aimed.

That explains why there’s no attempt, in this book, to rush the reader into hands-on
programming. My book does not pander to a desire for the false, cheap gratification of
making believe that one is a programmer merely because one can parrot some instruc-
tions. My book is about knowledge — hard-won, rigorously gained knowledge. It’s
about gaining an understanding of what you are doing when you program iOS 5. It
calls for a substantial investment of time and thought, and many pages elapse before
any practical programming is demonstrated.

Perhaps part of the misunderstanding here is that the critic has not noticed, or has not
understood, the sentence earlier in this Preface stating that my book is written in “a
pedagogically helpful and instructive yet ruthlessly Euclidean and logical order.” Some
people may not know or appreciate what “Euclidean” means. It means “in the manner
of Euclid.” Euclid wrote our first surviving mathematical textbook, and it is distin-
guished by the following remarkable characteristic, among others: if concept or asser-
tion B depends upon concept or assertion A, A comes first. Nothing is postponed;
Euclid never says, “I’ll explain/prove/discuss this point later, but for now, just take my
word for it.” I have attempted to copy Euclid’s model. So, to take an obvious example,
all real iOS apps use view controllers. It’s true, then, that the reader isn’t told what’s
involved in constructing a real iOS app until Chapter 19 is reached and view controllers
are discussed. But to understand view controllers, you need to know what’s being con-
trolled, namely, a view; hence Chapter 14 and the rest of Part IV. And to grasp the
relationship between a view controller and its view, you need to know about Cocoa’s
architectural patterns, such as lifetime events and the responder chain; hence Chap-
ter 11 and the rest of Part III. Moreover, a view controller’s view is often loaded from
a nib; hence Chapter 7. And all of that requires a knowledge of the programming lan-
guage you’ll be using, Objective-C; hence Chapter 3. But Objective-C is C; hence
Chapter 1. So to reach view controllers any sooner would have been impossible. I rest
my case.

Anyway, the complaint that the reader of my book doesn’t get to run any code is fac-
tually false. The book is crammed full of substantial code examples — all of which are
available for download from my GitHub site (https://github.com/mattneub), so you can
obtain them, run them in Xcode, and play with them to your heart’s content. So you
can and should, in fact, be running code right from the outset. Nevertheless, the pur-
pose of the code in this book is not for the fun of running it. All of my code is to support
your understanding of whatever concepts I’m explaining at that point in the book.

Preface | xxv

https://github.com/mattneub

In any case, perfectly good hands-on “Hello, World” tutorials are a dime a dozen;
they’re plastered all over the Internet, including at Apple’s own site (http://developer
.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhone101/Articles/). You
don’t need me to show you that the process of writing a trivial iPhone application is
fun and easy.

Still, for those who feel strongly that I haven’t done my job unless I supply a “Hello,
World” example, here is one, complete with step-by-step instructions:

1. Install Xcode, and launch the Xcode application.

2. Choose File → New → New Project.

3. In the “Choose a template” dialog, under “iOS” on the left (not “Mac OS X”), click
Application. On the right, click Empty Application. Click Next.

4. For Product Name, type Hello. Enter a company identifier if there isn’t one already,
such as com.yourLastName.yourFirstName. Choose Device Family: iPhone. Uncheck
all three checkboxes. Click Next.

5. Navigate to the Desktop. Uncheck “Create local git repository.” Click Create.

6. The project window opens. Press Command-1. At the left, click AppDelegate.m.

7. Work in the editor in the middle of the window. Look for the words “Override
point for customization after application launch.” Place the cursor to the right of
those words and hit Return a few times, to make some white space. Click in that
white space and type these lines of code:

UILabel* label = [[UILabel alloc] init];
label.text = @"Hello, world!";
[label sizeToFit];
CGRect f = label.frame;
f.origin = CGPointMake(100,100);
label.frame = f;
[self.window addSubview:label];

8. Press Command-R. If you see a dialog asking whether you want to save, accept.

9. After a while, the iOS Simulator application appears, containing a white window
with “Hello, world!” in it.

Congratulations. You’ve made a “Hello, world” example. Wasn’t that easy? Wasn’t it
boring? Wasn’t it pointless? And are you any the wiser as to what, in fact, you just did?
To find out — and, even more important, to know enough to be able to progress further
on your own — read this book.

xxvi | Preface

http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhone101/Articles/
http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhone101/Articles/

PART I

Language

Apple has provided a vast toolbox for programming iOS to make an app come to life
and behave the way you want it to. That toolbox is the API (application programming
interface). To use the API, you must speak the API’s language. That language, for the
most part, is Objective-C, which itself is built on top of C; some pieces of the API use
C itself. This part of the book instructs you in the basics of these languages:

• Chapter 1 explains C. In general, you will probably not need to know all the ins
and outs of C, so this chapter restricts itself to those aspects of C that you need to
know in order to use both Objective-C and the C-based areas of the API.

• Chapter 2 prepares the ground for Objective-C, by discussing object-based pro-
gramming in general architectural terms. It also explains some extremely important
words that will be used throughout the book, along with the concepts that lie
behind them.

• Chapter 3 introduces the basic syntax of Objective-C.

• Chapter 4 continues the explanation of Objective-C, discussing the nature of
Objective-C classes, with emphasis on how to create a class in code.

• Chapter 5 completes the introduction to Objective-C, discussing how instances
are created and initialized, along with an explanation of such related topics as
polymorphism, instance variables, accessors, self and super, key–value coding,
and properties.

We’ll return in Part III to a description of further aspects of the Objective-C language
— those that are particularly bound up with the Cocoa frameworks.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

Just Enough C

Do you believe in C? Do you believe in anything that has
to do with me?

—Leonard Bernstein and Stephen Schwartz, Mass

To program for iOS, you need to speak to iOS. Everything you say to iOS will be in
accordance with the iOS API. (An API, for application programming interface, is a list
or specification of things you are allowed to say when communicating.) Therefore, you
will need some knowledge of the C programming language, for two reasons:

• Most of the iOS API involves the Objective-C language, and most of your iOS
programming will be in the Objective-C language; and Objective-C is a superset
of C. This means that Objective-C presupposes C; everything that is true of C
trickles up to Objective-C. A common mistake is to forget that “Objective-C is C”
and to neglect a basic understanding of C.

• Some of the iOS API involves C rather than Objective-C. Even in Objective-C code,
you often need to use C data structures and C function calls. For example, a rec-
tangle is represented as a CGRect, which is a C struct, and to create a CGRect from
four numbers you call CGRectMake, which is a C function. The iOS API docu-
mentation will very often show you C expressions and expect you to understand
them.

The best way to learn C is to read The C Programming Language (PTR Prentice Hall,
1988) by Brian W. Kernighan and Dennis M. Ritchie, commonly called K&R (Ritchie
was the creator of C). It is one of the best computer books ever written: brief, dense,
and stunningly precise and clear. K&R is so important for effective iOS (and Mac OS
X) programming that I keep a physical copy beside me at all times while coding, and I
recommend that you do the same. Another useful manual is The C Book, by Mike
Banahan, Declan Brady and Mark Doran, available online at http://publications.gbdirect
.co.uk/c_book/.

You don’t have to know all about C in order to use Objective-C effectively, though;
and that’s a good thing. C is not a large or difficult language, but it has some tricky

3

http://publications.gbdirect.co.uk/c_book/
http://publications.gbdirect.co.uk/c_book/

corners and can be extremely subtle, powerful, and low-level. Also, it would be im-
possible, and unnecessary, for me to describe all of C in a single chapter. C is described
far more fully and correctly in K&R, The C Book, and elsewhere than I could possibly
do it. Sooner or later, you’re probably going to have technical questions about C that
this chapter doesn’t (and shouldn’t) make any attempt to answer. So I emphasize that
you really, really ought to have K&R or something similar at hand and resort to it as
needed.

What I can do, and what this chapter will attempt to do, is tell you what aspects of C
are important to understand at the outset, before you even start using Objective-C for
iOS programming. That’s why this chapter is “Just Enough C”: it’s just enough to get
you going, comfortably and safely.

If you know no C at all, I suggest that, as an accompaniment to this chapter, you also
read parts of K&R (think of this as “C: The Good Parts Version”). Here’s my proposed
K&R syllabus:

• Quickly skim K&R Chapter 1, the tutorial.

• Carefully read K&R Chapters 2 through 4.

• Read the first three sections of K&R Chapter 5 on pointers and arrays. You don’t
need to read the rest of Chapter 5 because you won’t typically be doing any pointer
arithmetic, but you do need to understand clearly what a pointer is, as Objective-
C is all about objects and every reference to an object is a pointer; you’ll be seeing
and using that * character constantly.

• Read also the first section of K&R Chapter 6, on structures (structs); as a beginner,
you probably won’t define any structs, but you will use them quite a lot, so you’ll
need to know the notation (for example, as I’ve already said, a CGRect is a struct).

• Glance over K&R Appendix B, which covers the standard library, because you may
find yourself making certain standard library calls, such as the mathematical func-
tions; forgetting that the library exists is a typical beginner mistake.

Just to make things a little more confusing, the C defined in K&R is not precisely the
C that forms the basis of Objective-C. Developments subsequent to K&R have resulted
in further C standards (ANSI C, C89, C99), and the Xcode compiler extends the C
language in its own ways. By default, Xcode projects are treated as GNU99, which is
itself an extension of C99 (though you could specify another C standard if you really
wanted to). Fortunately, the most important differences between K&R’s C and Xcode’s
C are small, convenient improvements that are easily remembered, so K&R remains
the best and most reliable C reference.

Compilation, Statements, and Comments
C is a compiled language. You write your program as text; to run the program, things
proceed in two stages. First your text is compiled into machine instructions; then those

4 | Chapter 1: Just Enough C

machine instructions are executed. Thus, as with any compiled language, you can make
two kinds of mistake:

• Any purely syntactic errors (meaning that you spoke the C language incorrectly)
will be caught by the compiler, and the program won’t even begin to run.

• If your program gets past the compiler, then it will run, but there is no guarantee
that you haven’t made some other sort of mistake, which can be detected only by
noticing that the program doesn’t behave as intended.

The C compiler is fussy, but you should accept its interference with good grace. The
compiler is your friend: learn to love it. It may emit what looks like an irrelevant or
incomprehensible error message, but when it does, the fact is that you’ve done some-
thing wrong and the compiler has helpfully caught it for you. Also, the compiler can
warn you if something seems like a possible mistake, even though it isn’t strictly illegal;
these warnings, which differ from outright errors, are also helpful and should not be
ignored.

I have said that running a program requires a preceding stage: compilation. But in fact
there is a third stage that precedes compilation: preprocessing. (It doesn’t really matter
whether you think of preprocessing as a stage preceding compilation or as the first stage
of compilation.) Preprocessing modifies your text, so when your text is handed to the
compiler, it is not identical to the text you wrote. Preprocessing might sound tricky and
intrusive, but in fact it proceeds only according to your instructions and is helpful for
making your code clearer and more compact.

Xcode allows you to view the effects of preprocessing on your program text (choose
Product → Generate Output → Generate Preprocessed File), so if you think you’ve made
a mistake in instructing the preprocessor, you can track it down. I’ll talk more later
about some of the things you’re likely to say to the preprocessor.

C is a statement-based language; every statement ends in a semicolon. (Forgetting the
semicolon is a common beginner’s mistake.) For readability, programs are mostly writ-
ten with one statement per line, but this is by no means a hard and fast rule: long
statements (which, unfortunately, arise very often because of Objective-C’s verbosity)
are commonly split over multiple lines, and extremely short statements are sometimes
written two or three to a line. You cannot split a line just anywhere, however; for
example, a literal string can’t contain a return character. Indentation is linguistically
meaningless and is purely a matter of convention (and C programmers argue over those
conventions with near-religious fervor); Xcode helps “intelligently” by indenting au-
tomatically, and you can use its automatic indentation both to keep your code readable
and to confirm that you’re not making any basic syntactic mistakes.

Comments are delimited in K&R C by /* ... */; the material between the delimiters
can consist of multiple lines (K&R 1.2). In modern versions of C, a comment also can
be denoted by two slashes (//); the rule is that if two slashes appear, they and everything
after them on the same line are ignored:

Compilation, Statements, and Comments | 5

int lower = 0; // lower limit of temperature table

These are sometimes called C++-style comments and are much more convenient for
brief comments than the K&R comment syntax.

Throughout the C language (and therefore, throughout Objective-C as well), capitali-
zation matters. All names are case-sensitive. There is no such data type as Int; it’s
lowercase “int.” If you declare an int called lower and then try to speak of the same
variable as Lower, the compiler will complain. By convention, variable names tend to
start with a lowercase letter.

Variable Declaration, Initialization, and Data Types
C is a strongly typed language. Every variable must be declared, indicating its data type,
before it can be used. Declaration can also involve explicit initialization, giving the
variable a value; a variable that is declared but not explicitly initialized is of uncertain
value (and should be regarded as dangerous until it is initialized). In K&R C, declara-
tions must precede all other statements, but in modern versions of C, this rule is relaxed
so that you don’t have to declare a variable until just before you start using it:

int height = 2;
int width = height * 2;
height = height + 1;
int area = height * width;

The basic built-in C data types are all numeric: char (one byte), int (four bytes), float
and double (floating-point numbers), and varieties such as short (short integer), long

Choosing a Compiler
The compiler situation in Xcode is rather complicated. Originally, Xcode’s compiler
was the free open source GCC (http://gcc.gnu.org). More recently, Xcode has phased
in use of another free open source compiler, LLVM (http://llvm.org). Changing com-
pilers is scary, so Apple has proceeded in stages, as follows:

• A hybrid compiler, LLVM-GCC, provides the advantages of LLVM compilation,
but the code is parsed with GCC for maximum backward compatibility.

• A pure LLVM compiler (also referred to as Clang) does its own parsing and pro-
vides more intelligent and helpful error messages and warnings.

As Xcode 3.2.x evolved, LLVM-GCC was eventually considered the best choice, but
Apple was hesitant to make it the default compiler, so GCC remained the default. When
Xcode 4 emerged, LLVM-GCC was the default compiler, but GCC remained available.
Finally, in Xcode 4.2, LLVM 3.0 became the default compiler, and pure GCC was
withdrawn; in Xcode 4.3, LLVM has advanced to version 3.1. (The choice of compiler
is a project-level build setting; see Chapter 6.)

6 | Chapter 1: Just Enough C

http://gcc.gnu.org
http://llvm.org

(long integer), unsigned short, and so on. iOS makes use of some further numeric types
derived from the C numeric types (by way of the typedef statement, K&R 6.7); the most
important of these are NSInteger (along with NSUInteger) and CGFloat. You don’t
need to use these explicitly unless an API tells you to, and even when you do, just think
of NSInteger as int and CGFloat as float, and you’ll be fine.

To cast (or typecast) a variable’s value explicitly to another type, precede the variable’s
name with the other type’s name in parentheses:

int height = 2;
float fheight = (float)height;

In that particular example, the explicit cast is unnecessary because the integer value
will be cast to a float implicitly as it is assigned to a float variable, but it illustrates the
notation. You’ll find yourself typecasting quite a bit in Objective-C, mostly in order to
subdue the worries of the compiler (examples appear in Chapter 3).

Another form of numeric initialization is the enum (K&R 2.3). It’s a way of assigning
names to a sequence of numeric values and is useful when a value represents one of
several possible options. The Cocoa API uses this device a lot. For example, the three
possible types of status bar animation are defined like this:

typedef enum {
 UIStatusBarAnimationNone,
 UIStatusBarAnimationFade,
 UIStatusBarAnimationSlide,
} UIStatusBarAnimation;

That definition assigns the value 0 to the name UIStatusBarAnimationNone, the value 1
to the name UIStatusBarAnimationFade, and the value 2 to the name UIStatusBar-
AnimationSlide. The upshot is that you can use the suggestively meaningful names
without caring about, or even knowing, the arbitrary numeric values they represent.
It’s a useful idiom, and you may well have reason to define enums in your own code.

There appears to be a native text type (a string) in C, but this is something of an illusion;
behind the scenes, it is actually a null-terminated array of char. For example, in C you
can write a string literal like this:

"string"

But in fact this is stored as 7 bytes, the numeric (ASCII) equivalents of each letter
followed by a byte consisting of 0 to signal the end of the string. This data structure,
called a C string, is rather tricky, and if you’re lucky you’ll rarely or never encounter
one while programming iOS. In general, when working with strings, you’ll use an
Objective-C object type called NSString. An NSString is totally different from a C string;
it happens, however, that Objective-C lets you write a literal NSString in a way that
looks very like a C string:

@"string"

Variable Declaration, Initialization, and Data Types | 7

Notice the at-sign! This expression is actually a directive to the Objective-C compiler
to form an NSString object. A common mistake is forgetting the at-sign, thus causing
your expression to be interpreted as a C string, which is a completely different animal.

Because the notation for literal NSStrings is modeled on the notation for C strings, it
is worth knowing something about C strings, even though you won’t generally en-
counter them. For example, K&R lists a number of escaped characters (K&R 2.3),
which you can also use in a literal NSString, including the following:

\n

A Unix newline character

\t

A tab character

\"

A quotation mark (escaped to show that this is not the end of the string literal)

\\

A backslash

NSStrings are natively Unicode-based, but because Objective-C is C,
including non-ASCII characters in a literal NSString was, until quite
recently, remarkably tricky, and you needed to know about such things
as the \x and \u escape sequences. Now, however, it is perfectly legal to
type a non-ASCII character directly into an NSString literal, and you
should ignore old Internet postings (and even an occasional sentence in
Apple’s own documentation) warning that it is not.

K&R also mention a notation for concatenating string literals, in which multiple string
literals separated only by white space are automatically concatenated and treated as a
single string literal. This notation is useful for splitting a long string into multiple lines
for legibility, and Objective-C copies this convention for literal NSStrings as well, ex-
cept that you have to remember the at-sign:

@"This is a big long literal string "
@"which I have broken over two lines of code.";

Structs
C offers few simple native data types, so how are more complex data types made? There
are three ways: structures, pointers, and arrays. Both structures and pointers are going
to be crucial when you’re programming iOS. You’re less likely to need a C array, because
Objective-C has its own NSArray object type, but it will arise in a couple of examples
later in this book.

8 | Chapter 1: Just Enough C

A C structure, usually called a struct (K&R 6.1), is a compound data type: it combines
multiple data types into a single type, which can be passed around as a single entity.
Moreover, the elements constituting the compound entity have names and can be ac-
cessed by those names through the compound entity, using dot-notation. The iOS API
has many commonly used structs, typically accompanied by convenience functions for
working with them.

For example, the iOS documentation tells you that a CGPoint is defined as follows:

struct CGPoint {
 CGFloat x;
 CGFloat y;
};
typedef struct CGPoint CGPoint;

Recall that a CGFloat is basically a float, so this is a compound data type made up of
two simple native data types; in effect, a CGPoint has two CGFloat parts, and their
names are x and y. (The rather odd-looking last line merely asserts that one can use the
term CGPoint instead of the more verbose struct CGPoint.) So we can write:

CGPoint myPoint;
myPoint.x = 4.3;
myPoint.y = 7.1;

Just as we can assign to myPoint.x in order to set this part of the struct, we can say my-
Point.x to get this part of the struct. It’s as if myPoint.x were the name of a variable.
Moreover, an element of a struct can itself be a struct, and the dot-notation can be
chained. To illustrate, first note the existence of another iOS struct, CGSize:

struct CGSize {
 CGFloat width;
 CGFloat height;
};
typedef struct CGSize CGSize;

Put a CGPoint and a CGSize together and you’ve got a CGRect:

struct CGRect {
 CGPoint origin;
 CGSize size;
};
typedef struct CGRect CGRect;

So suppose we’ve got a CGRect variable called myRect, already initialized. Then my-
Rect.origin is a CGPoint, and myRect.origin.x is a CGFloat. Similarly, myRect.size is
a CGSize, and myRect.size.width is a CGFloat. You could change just the width part
of our CGRect directly, like this:

myRect.size.width = 8.6;

Instead of initializing a struct by assigning to each of its elements, you can initialize it
at declaration time by assigning values for all its elements at once, in curly braces and
separated by commas, like this:

Structs | 9

CGPoint myPoint = { 4.3, 7.1 };
CGRect myRect = { myPoint, {10, 20} };

You don’t actually have to be assigning to a struct-typed variable to use a struct ini-
tializer; you can use an initializer anywhere the given struct type is expected, but you
might also have to cast to that struct type in order to explain to the compiler what your
curly braces mean, like this:

CGContextFillRect(con, (CGRect){myPoint, {10, 20}});

In that example, CGContextFillRect is a function. I’ll talk about functions later in this
chapter, but the upshot of the example is that what comes after the first comma has to
be a CGRect, and can therefore be a CGRect initializer provided this is accompanied
by a CGRect cast.

Pointers
The other big way that C extends its range of data types is by means of pointers (K&R
5.1). A pointer is an integer (of some size or other) with a meaning: it designates the
location in memory where the real data is to be found. Knowing the structure of that
data and how to work with it, as well as allocating a block of memory of the required
size beforehand and disposing of that block of memory when it’s no longer needed, is
a very complicated business. Luckily, this is exactly the sort of complicated business
that Objective-C is going to take care of for us. So all you really have to know in order
to use pointers is what they are and what notation is used to refer to them.

Let’s start with a simple declaration. If we wanted to declare an integer in C, we could
say:

int i;

That line says, “i is an integer.” Now let’s instead declare a pointer to an integer:

int* intPtr;

That line says, “intPtr is a pointer to an integer.” Never mind how we know there really
is going to be an integer at the address designated by this point; here, I’m concerned
only with the notation. It is permitted to place the asterisk in the declaration before the
name rather than after the type:

int *intPtr;

You could even put a space on both sides of the asterisk (though this is rarely done):

int * intPtr;

I prefer the first form, but I do occasionally use the second form, and Apple quite often
uses it, so be sure you understand that these are all ways of saying the same thing. No
matter how the spaces are inserted, the name of the type is still int*. If you are asked
what type is intPtr is, the answer is int* (a pointer to an int); the asterisk is part of the
name of the type of this variable. If you needed to cast a variable p to this type, you’d

10 | Chapter 1: Just Enough C

cast like this: (int*)p. Once again, it is possible that you’ll see code where there’s a
space before the asterisk, like this: (int *)p.

Pointers are very important in Objective-C, because Objective-C is all about objects
(Chapter 2), and every variable referring to an object is itself a pointer. For example,
I’ve already mentioned that the Objective-C string type is called NSString. So the way
to declare an NSString variable is as a pointer to an NSString:

NSString* s;

An NSString literal is an NSString value, so we can even declare and initialize this
NSString object, thus writing a seriously useful line of Objective-C code:

NSString* s = @"Hello, world!";

In pure C, having declared a pointer-to-integer called intPtr, you are liable to speak
later in your code of *intPtr. This notation, outside of a declaration, means “the thing
pointed to by the pointer intPtr.” You speak of *intPtr because you wish to access the
integer at the far end of the pointer; this is called dereferencing the pointer.

But in Objective-C, this is generally not the case. In your code, you’ll be treating the
pointer to an object as the object. So, for example, having declared s as a pointer to an
NSString, you will not then proceed to speak of *s; rather, you will speak simply of s,
as if it were the string. All the Objective-C stuff you’ll want to do with an object will
expect the pointer, not the object at the far end of the pointer; behind the scenes,
Objective-C itself will take care of the messy business of following the pointer to its
block of memory and doing whatever needs to be done in that block of memory. This
fact is extremely convenient for you as a programmer, but it does cause Objective-C
users to speak a little loosely; we tend to say that “s is an NSString,” when of course it
is actually a pointer to an NSString.

You must never let this convenience lull you into forgetting the crucial fact that a pointer
is a pointer. The logic of how pointers work is different from the logic of how simple
data types work. The difference is particularly evident with assignment. Assignment to
a simple data type changes the data value. Assignment to a pointer repoints the pointer.
Suppose ptr1 and ptr2 are both pointers, and you say:

ptr1 = ptr2;

Now ptr1 and ptr2 are pointing at the same thing. Any change to the thing pointed to
by ptr1 will also change the thing pointed to by ptr2, because they are the same thing.
Meanwhile, whatever ptr1 was pointing to before the assignment is now not being
pointed to by ptr1; it might, indeed, be pointed to by nothing (which could be bad). A
firm understanding of these facts is crucial when working in Objective-C (Figure 1-1).

The most general type of pointer is pointer-to-void (void*), the generic pointer. It is legal
to use a generic pointer wherever a specific type of pointer is expected. In effect, pointer-
to-void casts away type checking as to what’s at the far end of the pointer. Thus, the
following is legal:

Pointers | 11

int* p1; // and pretend p1 has a value
void* p2;
p2 = p1;
p1 = p2;

Figure 1-1. Pointers and assignment

12 | Chapter 1: Just Enough C

www.allitebooks.com

http://www.allitebooks.org

Arrays
A C array (K&R 5.3) consists of multiple elements of the same data type. An array
declaration states the data type of the elements, followed by the name of the array,
along with square brackets containing the number of elements:

int arr[3]; // means: arr is an array consisting of 3 ints

To refer to an element of an array, use the array’s name followed by the element number
in square brackets. The first element of an array is numbered 0. So we can initialize an
array by assigning values to each element in turn:

int arr[3];
arr[0] = 123;
arr[1] = 456;
arr[2] = 789;

Alternatively, you can initialize an array at declaration time by assigning a list of values
in curly braces, just as with a struct. In this case, the size of the array can be omitted
from the declaration, because it is implicit in the initialization (K&R 4.9):

int arr[] = {123, 456, 789};

Curiously, the name of an array is the name of a pointer (to the first element of the
array). Thus, for example, having declared arr as in the preceding examples, you can
use arr wherever a value of type int* (a pointer to an int) is expected. This fact is the
basis of some highly sophisticated C idioms that you almost certainly won’t need to
know about (which is why I don’t recommend that you read any of K&R Chapter 5
beyond section 3).

C arrays rarely arise in practice when programming iOS, because you’ll work mostly
with the NSArray object type instead. But here’s a case where they do. The function
CGContextStrokeLineSegments is declared like this:

void CGContextStrokeLineSegments (
 CGContextRef c,
 const CGPoint points[],
 size_t count
);

The second parameter is an array (meaning a C array) of CGPoints. That’s what the
square brackets tell you. So to call this function, you’d need to know at least how to
make an array of CGPoints. You might do it like this:

CGPoint arr[] = {{4,5}, {6,7}, {8,9}, {10,11}};

Having done that, you can pass arr as the second argument in a call to CGContextStroke-
LineSegments.

Also, a C string, as I’ve already mentioned, is actually an array. For example, the
NSString method stringWithUTF8String: takes (according to the documentation) “a
NULL-terminated C array of bytes in UTF8 encoding;” but the parameter is declared

Arrays | 13

not as an array, but as a char*. Those are the same thing, and are both ways of saying
that this method takes a C string.

(The colon at the end of the method name stringWithUTF8String: is not a misprint;
many Objective-C method names end with a colon. I’ll explain why in Chapter 3.)

Operators
Arithmetic operators are straightforward (K&R 2.5), but watch out for the rule that
“integer division truncates any fractional part.” This rule is the cause of much novice
error in C. If you have two integers and you want to divide them in such a way as to
get a fractional result, you must represent at least one of them as a float:

int i = 3;
float f = i/2; // beware! not 1.5

To get 1.5, you should have written i/2.0 or (float)i/2.

The integer increment and decrement operators (K&R 2.8), ++ and --, work differently
depending on whether they precede or follow their variable. The expression ++i replaces
the value of i by 1 more than its current value and then uses the resulting value; the
expression i++ uses the current value of i and then replaces it with 1 more than its
current value. This is one of C’s coolest features.

C also provides bitwise operators (K&R 2.9), such as bitwise-and (&) and bitwise-or
(|); they operate on the individual binary bits that constitute integers. Of these, the one
you are most likely to need is bitwise-or, because the Cocoa API often uses bits as
switches when multiple options are to be specified simultaneously. For example, there
are various ways in which a UIView can be resized automatically as its superview is
resized, and you’re supposed to provide one or more of these when setting a UIView’s
autoresizingMask property. The autoresizing options are listed in the documentation
as follows:

enum {
 UIViewAutoresizingNone = 0,
 UIViewAutoresizingFlexibleLeftMargin = 1 << 0,
 UIViewAutoresizingFlexibleWidth = 1 << 1,
 UIViewAutoresizingFlexibleRightMargin = 1 << 2,
 UIViewAutoresizingFlexibleTopMargin = 1 << 3,
 UIViewAutoresizingFlexibleHeight = 1 << 4,
 UIViewAutoresizingFlexibleBottomMargin = 1 << 5
};
typedef NSUInteger UIViewAutoresizing;

The << symbol is the left shift operator; the right operand says how many bits to shift
the left operand. So pretend that an NSUInteger is 8 bits (it isn’t, but let’s keep things
simple and short). Then this enum means that the following name–value pairs are
defined (using binary notation for the values):

14 | Chapter 1: Just Enough C

UIViewAutoresizingNone

00000000

UIViewAutoresizingFlexibleLeftMargin

00000001

UIViewAutoresizingFlexibleWidth

00000010

UIViewAutoresizingFlexibleRightMargin

00000100

UIViewAutoresizingFlexibleTopMargin

00001000

and so on. The reason for this bit-based representation is that these values can be
combined into a single value (a bitmask) that you pass to set the autoresizingMask. All
Cocoa has to do in order to understand your intentions is to look to see which bits in
the value that you pass are set to 1. So, for example, 00001010 would mean that UIView-
AutoresizingFlexibleTopMargin and UIViewAutoresizingFlexibleWidth are true (and
that the others, by implication, are all false).

The question is how to form the value 00001010 in order to pass it. You could just do
the math, figure out that binary 00001010 is decimal 10, and set the autoresizingMask
property to 10, but that’s not what you’re supposed to do, and it’s not a very good idea,
because it’s error-prone and makes your code incomprehensible. Instead, use the
bitwise-or operator to combine the desired options:

myView.autoresizingMask =
 UIViewAutoresizingFlexibleTopMargin | UIViewAutoresizingFlexibleWidth;

This notation works because the bitwise-or operator combines its operands by setting
in the result any bits that are set in either of the operands, so 00001000 | 00000010 is
00001010, which is just the value we’re trying to convey.

Simple assignment (K&R 2.10) is by the equal sign. But there are also compound as-
signment operators that combine assignment with some other operation. For example:

height *= 2; // same as saying: height = height * 2;

The ternary operator (?:) is a way of specifying one of two values depending on a
condition (K&R 2.11). The scheme is as follows:

(condition) ? exp1 : exp2

If the condition is true (see the next section for what that means), the expression exp1
is evaluated and the result is used; otherwise, the expression exp2 is evaluated and the
result is used. For example, you might use the ternary operator while performing an
assignment, using this schema:

myVariable = (condition) ? exp1 : exp2;

Operators | 15

What gets assigned to myVariable depends on the truth value of the condition. There’s
nothing happening here that couldn’t be accomplished more verbosely with flow con-
trol (see the next section), but the ternary operator can greatly improve clarity, and I
use it a lot.

Flow Control and Conditions
Basic flow control is fairly simple and usually involves a condition in parentheses and
a block of conditionally executed code in curly braces. These curly braces constitute a
new scope, into which new variables can be introduced. So, for example:

if (x == 7) {
 int i = 0;
 i += 1;
}

After the closing curly brace in the fourth line, the i introduced in the second line has
ceased to exist, because its scope is the inside of the curly braces. If the contents of the
curly braces consist of a single statement, the curly braces can be omitted, but I would
advise beginners against this shorthand, as you can confuse yourself. A common be-
ginner mistake (which will be caught by the compiler) is forgetting the parentheses
around the condition. The full set of flow control statements is given in K&R Chapter
3, and I’ll just summarize them schematically here (Example 1-1).

Example 1-1. The C flow control constructs

if (condition) {
 statements;
}

if (condition) {
 statements;
} else {
 statements;
}

if (condition) {
 statements;
} else if (condition) {
 statements;
} else {
 statements;
}

while (condition) {
 statements;
}

do {
 statements;
} while (condition);

16 | Chapter 1: Just Enough C

for (before-all; condition; after-each) {
 statements;
}

The if...else if...else structure can have as many else if blocks as needed, and
the else block is optional. Instead of an extended if...else if...else if...else
structure, when the conditions would consist of comparing various values against a
single value, you can use the switch statement; be careful, though, as it is rather con-
fusing and can easily go wrong (see K&R 3.4 for full details). The main trick is to
remember to end every case with a break statement, unless you want it to “fall through”
to the next case (Example 1-2).

Example 1-2. A switch statement

NSString* key;
switch (tag) {
 case 1: { // i.e., if tag == 1
 key = @"lesson";
 break;
 }
 case 2: { // i.e., if tag == 2
 key = @"lessonSection";
 break;
 }
 case 3: { // i.e., if tag == 3
 key = @"lessonSectionPartFirstWord";
 break;
 }
}

The C for loop needs some elaboration for beginners (Example 1-1). The before-all
statement is executed once as the for loop is first encountered and is usually used for
initialization of the counter. The condition is then tested, and if true, the block is exe-
cuted; the condition is usually used to test whether the counter has reached its limit.
The after-each statement is then executed, and is usually used to increment or decre-
ment the counter; the condition is then immediately tested again. Thus, to execute a
block using integer values 1, 2, 3, 4, and 5 for i, the notation is:

int i;
for (i = 1; i < 6; i++) {
 // ... statements ...
}

The need for a counter intended to exist solely within the for loop is so common that
C99 permits the declaration of the counter as part of the before-all statement; the
declared variable’s scope is then inside the curly braces:

for (int i = 1; i < 6; i++) {
 // ... statements ...
}

Flow Control and Conditions | 17

The for loop is one of the few areas in which Objective-C extends C’s flow-control
syntax. Certain Objective-C objects represent enumerable collections of other objects;
“enumerable” basically means that you can cycle through the collection, and cycling
through a collection is called enumerating the collection. To make enumerating easy,
Objective-C provides a for...in operator, which works like a for loop:

SomeType* oneItem;
for (oneItem in myCollection) {
 // ... statements
}

On each pass through the loop, the variable oneItem (or whatever you call it) takes on
the next value from within the collection. As with the C99 for loop, oneItem can be
declared in the for statement, limiting its scope to the curly braces:

for (SomeType* oneItem in myCollection) {
 // ... statements
}

To abort a loop from inside the curly braces, use the break statement. To abort the
current iteration from within the curly braces and proceed to the next iteration, use the
continue statement. In the case of while and do, continue means to perform immediately
the conditional test; in the case of a for loop, continue means to perform immediately
the after-each statement and then the conditional test.

C also has a goto statement that allows you to jump to a named (labeled) line in your
code (K&R 3.8); even though goto is notoriously “considered harmful,” there are sit-
uations in which it is pretty much necessary, especially because C’s flow control is
otherwise so primitive.

It is permissible for a C statement to be compounded of multiple state-
ments, separated by commas, to be executed sequentially. The last of
the multiple statements is the value of the compound statement as a
whole. This construct, for instance, lets you perform some secondary
action before each test of a condition or perform more than one
after-each action (an example appears in Chapter 17).

We can now turn to the question of what a condition consists of. C has no separate
boolean type; a condition either evaluates to 0, in which case it is considered false, or
it doesn’t, in which case it is true. Comparisons are performed using the equality and
relational operators (K&R 2.6); for example, == compares for equality, and < compares
for whether the first operand is less than the second. Logical expressions can be com-
bined using the logical-and operator (&&) and the logical-or operator (||); using these
along with parentheses and the not operator (!) you can form complex conditions.
Evaluation of logical-and and logical-or expressions is short-circuited, meaning that if
the left condition settles the question, the right condition is never even evaluated.

18 | Chapter 1: Just Enough C

Don’t confuse the logical-and operator (&&) and the logical-or operator
(||) with the bitwise-and operator (&) and the bitwise-or operator (|)
discussed earlier. Writing & when you mean && (or vice versa) can result
in surprising behavior.

The operator for testing basic equality, ==, is not a simple equal sign; forgetting the
difference is a common novice mistake. The problem is that such code is legal: simple
assignment, which is what the equal sign means, has a value, and any value is legal in
a condition. So consider this piece of (nonsense) code:

int i = 0;
while (i = 1) {
 i = 0;
}

You might think that the while condition tests whether i is 1. You might then think:
i is 0, so the while body will never be performed. Right? Wrong. The while condition
does not test whether i is 1; it assigns 1 to i. The value of that assignment is also 1, so
the condition evaluates to 1, which means true. So the while body is performed. More-
over, even though the while body assigns 0 to i, the condition is then evaluated again
and assigns 1 to i a second time, which means true yet again. And so on, forever; we’ve
written an endless loop, and the program will hang. (And, depending on what compiler
and settings you’re using, you might not even get a warning of trouble ahead.)

C programmers actually revel in the fact that testing for zero and testing for false are
the same thing and use it to create compact conditional expressions, which are con-
sidered elegant and idiomatic. I don’t recommend that you make use of such idioms,
as they can be confusing, but I must admit that even I do occasionally resort to this sort
of thing:

NSString* s = nil;
// ...
if (s) {
 // ...
}

The idea of that code is to test whether the NSString object s, between the time it was
declared and the start of the if-block, has been set to an actual string. Because nil is a
form of 0, the condition is asking whether s is non-nil. Some Objective-C programmers
would take me to task for this style of writing code; if I want to test whether s is nil,
they would say, I should test it explicitly:

if (s == nil)

In fact, some would say, it is even better to write the terms of the comparison in the
opposite order:

if (nil == s)

Why? Because if I were to omit accidentally the second equal sign, thus turning the
equality comparison into an assignment, the first expression would compile (and mis-

Flow Control and Conditions | 19

behave, because I am now assigning nil to s), but the second expression would certainly
be caught by the compiler as an error, because assigning a value to nil is illegal.

Objective-C introduces a BOOL type, which you should use if you need to capture or
maintain a condition’s value as a variable, along with constants YES and NO (actually
representing 1 and 0), which you should use when setting a boolean value. Don’t com-
pare anything against a BOOL, not even YES or NO, because a value like 2 is true in a
condition but is not equal to YES or NO. Just use the BOOL directly as a condition, or
as part of a complex condition, and all will be well. For example:

BOOL snil = (nil == s);
// ...
if (snil) // ... not: if (snil == YES)

Functions
C is a function-based language (K&R 4.1). A function is a block of code defining what
should happen; when other code calls (invokes) that function, the function’s code does
happen. A function returns a value, which is substituted for the call to that function.

Here’s a definition of a function that accepts an integer and returns its square:

int square(int i) {
 return i * i;
}

Now I’ll call that function:

int i = square(3);

Because of the way square is defined, that is exactly like saying:

int i = 9;

That example is extremely simple, but it illustrates many key aspects of functions.

Let’s analyze how a function is defined:

int square (int i) {
 return i * i;
}

We start with the type of value that the function returns; here, it returns an int.

Then we have the name of the function, which is square.

Then we have parentheses, and here we place the data type and name of any values
that this function expects to receive. Here, square expects to receive one value, an
int, which we are calling i. The name i (along with its expected data type) is a
parameter; when the function is called, its value will be supplied as an argument. If
a function expects to receive more than one value, multiple parameters in its defi-
nition are separated by a comma (and when the function is called, the arguments
supplied are likewise separated by a comma).

20 | Chapter 1: Just Enough C

Finally, we have curly braces containing the statements that are to be executed when
the function is called.

Those curly braces constitute a scope; variables declared within them are local to the
function. The names used for the parameters in the function definition are also local
to the function; in other words, the i in the first line of the function definition is the
same as the i in the second line of the function definition, but it has nothing to do with
any i used outside the function definition (as when the result of the function call is
assigned to a variable called i). The value of the i parameter in the function definition
is assigned from the corresponding argument when the function is actually called; in
the previous example, it is 3, which is why the function result is 9. Supplying a function
call with arguments is thus a form of assignment. Suppose a function is defined like this:

int myfunction(int i, int j) { // ...

And suppose we call that function:

int result = myfunction(3, 4);

That function call effectively assigns 3 to the function’s i parameter and 4 to the func-
tion’s j parameter.

When a return statement is encountered, the value accompanying it is handed back as
the result of the function call, and the function terminates. It is legal for a function to
return no value; in such a case, the return statement has no accompanying value, and
the definition states the type of value returned by the function as void. It is also legal
to call a function and ignore its return value even if it has one. For example, we could
say:

square(3);

That would be a somewhat silly thing to say, because we have gone to all the trouble
of calling the function and having it generate the square of 3 — namely 9 — but we
have done nothing to capture that 9. It is exactly as if we had said:

9;

You’re allowed to say that, but it doesn’t seem to serve much purpose. On the other
hand, the point of a function might be not so much the value it returns as other things
it does as it is executing, so then it might make perfect sense to ignore its result.

The parentheses in a function’s syntax are crucial. Parentheses are how C knows there’s
a function. Parentheses after the function name in the function definition are how C
knows this is a function definition, and they are needed even if this function takes no
parameters. Parentheses after the function name in the function call are how C knows
this is a function call, and they are needed even if this function call supplies no argu-
ments. Using the bare name of a function is possible, because the name is effectively a
kind of variable (and I’ll talk later about why you might want to do that), but it doesn’t
call the function.

Functions | 21

Let’s return to the simple C function definition and call that I used as my example
earlier. Suppose we combine that function definition and the call to that function into
a single program:

int square(int i) {
 return i * i;
}
int i = square(3);

That is a legal program, but only because the definition of the square function precedes
the call to that function. If we wanted to place the definition of the square function
elsewhere, such as after the call to it, we would need at least to precede the call with a
declaration of the square function (Example 1-3). The declaration looks just like the
first line of the definition, but it is a statement, ending with a semicolon, rather than a
left curly brace.

Example 1-3. Declaring, calling, and defining a function

int square(int i);
int i = square(3);
int square(int i) {
 return i * i;
}

The parameter names in the declaration do not have to match the parameter names in
the definition, but all the types (and, of course, the name of the function) must match.
The types constitute the signature of this function. In other words, it does not matter
if the first line, the declaration, is rewritten thus:

int square(int j);

What does matter is that, both in the declaration and in the definition, square is a
function taking one int parameter and returning an int.

In Objective-C, when you’re sending a message to an object (Chapter 2), you won’t
use a function call; you’ll use a method call (Chapter 3). But you will most definitely
use plenty of C function calls as well. For example, earlier we initialized a CGPoint by
setting its x element and its y element and by assigning its elements values in curly
braces. But what you’ll usually do to make a new CGPoint is to call CGPointMake, which
is declared like this:

CGPoint CGPointMake (
 CGFloat x,
 CGFloat y
);

Despite its multiple lines and its indentations, this is indeed a C function declaration,
just like the declaration for our simple square function. It says that CGPointMake is a C
function that takes two CGFloat parameters and returns a CGPoint. So now you know
(I hope) that it would be legal (and typical) to write this sort of thing:

CGPoint myPoint = CGPointMake(4.3, 7.1);

22 | Chapter 1: Just Enough C

www.allitebooks.com

http://www.allitebooks.org

Pointer Parameters and the Address Operator
I’ve mentioned several times that your variables referring to Objective-C objects are
going to be pointers:

NSString* s = @"Hello, world!";

Although it is common to speak loosely of s as an NSString (or just as a string), it is
actually an NSString* — a pointer to an NSString. Therefore, when a C function or an
Objective-C method expects an NSString* parameter, there’s no problem, because
that’s exactly what you’ve got. For example, one way to concatenate two NSStrings is
to call the NSString method stringByAppendingString:, which the documentation tells
you is declared as follows:

- (NSString *)stringByAppendingString:(NSString *)aString

The space between the class name and the asterisk is optional, so this declaration is
telling you (after you allow for the Objective-C syntax) that this method expects one
NSString* parameter and returns an NSString*. That’s splendid because those kinds of
pointers are just what you’ve got and just what you want. So this code would be legal:

NSString* s1 = @"Hello, ";
NSString* s2 = @"World!"
NSString* s3 = [s1 stringByAppendingString: s2];

The idea, then, is that although Objective-C is chock-a-block with pointers and aster-
isks, they don’t make things more complicated, as long as you remember that they
are pointers.

Sometimes, however, a function expects as a parameter a pointer to something, but
what you’ve got is not a pointer but the thing itself. Thus, you need a way to create a
pointer to that thing. The solution is the address operator (K&R 5.1), which is an
ampersand before the name of the thing.

For example, there’s an NSString method for reading from a file into an NSString, which
is declared like this:

+ (id)stringWithContentsOfFile:(NSString *)path
 encoding:(NSStringEncoding)enc
 error:(NSError **)error

Now, never mind what an id is, and don’t worry about the Objective-C method dec-
laration syntax. Just consider the types of the parameters. The first one is an
NSString*; that’s no problem, as every reference to an NSString is actually a pointer to
an NSString. An NSStringEncoding turns out to be merely an alias to a primitive data
type, an NSUInteger, so that’s no problem either. But what on earth is an NSError**?

By all logic, it looks like an NSError** should be a pointer to a pointer to an NSError.
And that’s exactly what it is. This method is asking to be passed a pointer to a pointer
to an NSError. Well, it’s easy to declare a pointer to an NSError:

NSError* myError;

Pointer Parameters and the Address Operator | 23

But how can we obtain a pointer to that? With the address operator! So our code might
look, schematically, like this:

NSString* myPath = // something or other;
NSStringEncoding myEnc = // something or other;
NSError* myError = nil;
NSString* result = [NSString stringWithContentsOfFile: myPath
 encoding: myEnc
 error: &myError];

The important thing to notice is the ampersand. Because myError is a pointer to an
NSError, &myError is a pointer to a pointer to an NSError, which is just what we’re
expected to provide. Thus, everything goes swimmingly.

This device lets Cocoa effectively return two results from this method call. It returns a
real result, which we have captured by assigning it to the NSString pointer we’re calling
result. But if there’s an error, it also wants to set the value of another object, an NSError
object; the idea is that you can then study that NSError object to find out what went
wrong. (Perhaps the file wasn’t where you said it was, or it wasn’t stored in the encoding
you claimed it was.) By passing a pointer to a pointer to an NSError, you give the method
free rein to do that. Before the call to stringWithContentsOfFile:, myError was initial-
ized to nil; during the call to stringWithContentsOfFile:, Cocoa can, if it likes, repoint
the pointer, thus giving myError a meaningful NSError value that describes the error.
(Repointing a pointer in this way is sometimes called indirection.)

So the idea is that you first check result to see whether it’s nil. If it isn’t, fine; it’s the
string you asked for. If it is, you then study the NSError that myError is now pointing
to, to learn what went wrong. This pattern is frequently used in Cocoa.

You can use the address operator to create a pointer to any named variable. A C function
is technically a kind of named variable, so you can even create a pointer to a function!
This is an example of when you’d use the name of the function without the parentheses:
you aren’t calling the function, you’re talking about it. For example, &square is a pointer
to the square function. In Chapter 9, I describe a situation in which this is a useful thing
to do.

Another operator used in connection with pointers, or when memory must be allocated
dynamically, is sizeof. It may be followed by a type name in parentheses or by a variable
name; a variable name needn’t be in parentheses, but it can be, so most programmers
ignore the distinction and use parentheses routinely, as if sizeof were a function.

For example, the documentation shows the declaration for AudioSessionSetProperty
like this:

OSStatus AudioSessionSetProperty (
 AudioSessionPropertyID inID,
 UInt32 inDataSize,
 const void *inData
);

24 | Chapter 1: Just Enough C

Never mind what an AudioSessionPropertyID is; it’s merely a value that you obtain
and pass on. UInt32 is one of those derived numeric types I mentioned earlier. The
discussion has already dealt with pointer-to-void and how to derive a pointer using the
address operator. But look at the name of the second parameter; the function is asking
for the size of the thing pointed to by the third parameter. Here’s an actual call to this
function (from Chapter 27):

UInt32 ambi = kAudioSessionCategory_AmbientSound;
AudioSessionSetProperty(kAudioSessionProperty_AudioCategory, sizeof(ambi), &ambi);

Files
The little dance of declaring a function before calling it (Example 1-3) may seem rather
absurd, but it is of tremendous importance in the C language, because it is what allows
a C program to be arbitrarily large and complex.

As your program grows, you can divide and organize it into multiple files. This kind of
organization can make a large program much more maintainable — easier to read,
easier to understand, easier to change without accidentally breaking things. A large C
program therefore usually consists of two kinds of file: code files, whose filename ex-
tension is .c, and header files, whose filename extension is .h. The build system will
automatically “see” all the files and will know that together they constitute a single
program, but there is also a rule in C that code inside one file cannot “see” another file
unless it is explicitly told to do so. Thus, a file itself constitutes a scope; this is a delib-
erate and valuable feature of C, because it helps you keep things nicely pigeonholed.

The way you tell a C file to “see” another file is with the #include directive. The hash
sign in the term #include is a signal that this line is an instruction to the preproces-
sor. In this case, the word #include is followed by the name of another file, and the
directive means that the preprocessor should simply replace the directive by the entire
contents of the file that’s named.

So the strategy for constructing a large C program is something like this:

• In each .c file, put the code that only this file needs to know about; typically, each
file’s code consists of related functionality.

• In each .h file, put the function declarations that multiple .c files might need to
know about.

• Have each .c file include those .h files containing the declarations it needs to know
about.

So, for example, if function1 is defined in file1.c, but file2.c might need to call
function1, the declaration for function1 can go in file1.h. Now file1.c can include
file1.h, so all of its functions, regardless of order, can call function1, and file2.c can also
include file1.h, so all of its functions can call function1 (Figure 1-2). In short, header
files are a way of letting code files share knowledge about one another without actually

Files | 25

sharing code (because, if they did share code, that would violate the entire point of
keeping the code in separate files).

But how does the compiler know where, among all these multiple .c files, to begin
execution? Every real C program contains, somewhere, exactly one function called
main, and this is always the entry point for the program as a whole: the compiler sets
things up so that when the program executes, main is called.

The organization for large C programs that I’ve just described will also be, in effect, the
organization for your iOS programs. (The chief difference will be that instead of .c files,
you’ll use .m files, because .m is the conventional filename extension for telling Xcode
that your files are written in Objective-C, not pure C.) Moreover, if you look at any iOS
Xcode project, you’ll discover that it contains a file called main.m; and if you look at
that file, you’ll find that it contains a function called main. That’s the entry point to
your application’s code when it runs.

The big difference between your Objective-C code files and the C code files I’ve been
discussing is that instead of saying #include, your files will say #import. The #import
preprocessor directive is not mentioned in K&R. It’s an Objective-C addition to the
language. It’s based on #include, but it is used instead of #include because it
(#import) contains some logic for making sure that the same material is not included
more than once. Such repeated inclusion is a danger whenever there are many cross-
dependent header files; use of #import solves the problem neatly.

Furthermore, your iOS programs consist not only of your code files and their corre-
sponding .h files, but also of Apple’s code files and their corresponding .h files. The
difference is that Apple’s code files (which are what constitutes Cocoa, see Part III) have
already been compiled. But your code must still #import Apple’s .h files so as to be able

Figure 1-2. How a large C program is divided into files

26 | Chapter 1: Just Enough C

to see Apple’s declarations. If you look at an iOS Xcode project, you’ll find that
any .h files it contains by default, as well as its main.m file, contain a line of this form:

#import <UIKit/UIKit.h>

That line is essentially a single massive #import that copies into your program the dec-
larations for the entire basic iOS API. Moreover, each of your .m files #imports its cor-
responding .h file, including whatever the .h file #imports. Thus, all your code files
include the basic iOS declarations.

For example, earlier I said that CGPoint was defined like this:

struct CGPoint {
 CGFloat x;
 CGFloat y;
};
typedef struct CGPoint CGPoint;

After the preprocessor operates on all your files, your .m files actually contain that
definition of CGPoint. (You can even choose Product → Generate Output → Generate
Preprocessed File, as I mentioned earlier, to confirm that this is true.) And that is why
your code is able to use a CGPoint!

The #import directive, like the #include directive (K&R 4.11), can specify a file in angle
brackets or in quotation marks:

#import <UIKit/UIKit.h>
#import "MyHeader.h"

Here’s what those two forms of syntax mean:

Quotation marks
Look for the named file in the same folder as this file (the .m file in which the
#import line occurs).

Angle brackets
Look for the named file among the various header search paths supplied in the
build settings. (These search paths are set for you automatically, and you normally
won’t need to modify them.)

In general, you’ll use angle brackets to refer to a header file owned by the Cocoa API
and quotation marks to refer to a header file that you wrote. If you’re curious as to what
an #import directive imports, select it (in Xcode) and choose File → Open Quickly to
display the contents of the designated header file.

The Standard Library
You also have at your disposal a large collection of built-in C library files. A library file
is a centrally located collection of C functions, along with a .h file that you can include
in order to make those functions available to your code.

The Standard Library | 27

For example, suppose you want to round a float up to the next highest integer. The
way to do this is to call some variety of the ceil function. You can read the ceil man
page by typing man ceil in the Terminal. The documentation tells you what #include
to use to incorporate the correct header and also shows you the function declarations
and tells you what those functions do. A small pure C program might thus look like this:

#include <math.h>
float f = 4.5;
int i = ceilf(f); // now i is 5

In your iOS programs, math.h is included for you as part of the massive UIKit
#import, so there’s no need to include it again. But some library functions might require
an explicit #import.

The standard library is discussed in K&R Appendix B. But the modern standard library
has evolved since K&R; it is a superset of K&R’s library. The ceil function, for example,
is listed in K&R appendix B, but the ceilf function is not. Similarly, if you wanted to
generate a random number (which is likely if you’re writing a game program that needs
to incorporate some unpredictable behavior), you probably wouldn’t use the rand
function listed in K&R; you’d use the random function, which supersedes it.

Forgetting that Objective-C is C and that the C library functions are available to your
code is a common beginner mistake.

More Preprocessor Directives
Of the many other available preprocessor directives, the one you’ll use most often is
#define. It is followed by a name and a value; at preprocess time, the value is substituted
for the name down through this code file. As K&R very well explain (K&R 1.4), this is
a good way to prevent “magic numbers” from being hidden and hard-coded into your
program in a way that makes the program difficult to understand and maintain.

For example, in an iOS app that lays out some text fields vertically, I might want them
all to have the same space between them. Let’s say this space is 3.0. I shouldn’t write
3.0 repeatedly throughout my code as I calculate the layout; instead, I write:

#define MIDSPACE 3.0

Now instead of the “magic number” 3.0, my code uses a meaningful name, MIDSPACE;
at preprocessor time, the text MIDSPACE is replaced with the text 3.0. So it amounts to
the same thing, but if I decide to change this value and try a different one, all I have to
change is the #define line, not every occurrence of the number 3.0.

A #define simply performs text substitution, so any expression can be used as the value.
Sometimes you’ll want that expression to be an NSString literal. In Cocoa, NSString
literals can be used as a key to a dictionary or the name of a notification. (Never mind
for now what a dictionary or a notification is.) This situation is an invitation to error.
If you have a dictionary containing a key @"mykey" and you mistype this elsewhere in

28 | Chapter 1: Just Enough C

your code as @"myKey" or @"mikey", the compiler won’t complain, but your program
will misbehave. The solution is to define a name for this literal string:

#define MYKEY @"mykey"

Now use MYKEY throughout your code instead of @"mykey", and if you mistype MYKEY the
preprocess substitution won’t be performed and the compiler will complain, catching
the mistake for you.

The #define directive can also be used to create a macro (K&R 4.11.2), a more elaborate
form of text substitution. You’ll encounter a few Cocoa macros in the course of this
book, but they will appear indistinguishable from functions; their secret identity as
macros won’t concern you.

The #warning directive deliberately triggers a warning in Xcode at compile time; this
can be a way to remind yourself of some impending task or requirement:

#warning Don't forget to fix this bit of code

There is also a #pragma mark directive that’s useful with Xcode; I talk about it when
discussing the Xcode programming environment (Chapter 9).

Data Type Qualifiers
A variable’s data type can be declared with a qualifier before the name of the type,
modifying something about how that variable is to be used. For example, the declara-
tion can be preceded by the term const, which means (K&R 2.4) that it is illegal to
change the variable’s value; the variable must be initialized in the same line as the
declaration, and that’s the only value it can ever have.

You can use a const variable as an alternative way (instead of #define) to prevent “magic
numbers” and similar expressions. For example:

const NSString* MYKEY = @"Howdy";

The Cocoa API itself makes heavy use of this device. For example, in some circum-
stances Cocoa will pass a dictionary of information to your code. The documentation
tells you what keys this dictionary contains. But instead of telling you a key as a string,
the documentation tells you the key as a const NSString variable name:

UIKIT_EXTERN NSString *const UIApplicationStatusBarOrientationUserInfoKey;

(Never mind what UIKIT_EXTERN means.) This declaration tells you that UIApplication-
StatusBarOrientationUserInfoKey is the name of an NSString, and you are to trust that
its value is set for you. You are to go ahead and use this name whenever you want to
speak of this particular key, secure in the knowledge that the actual string value will be
substituted. You do not have to know what that actual string value is. In this way, if
you make a mistake in typing the variable name, the compiler will catch the mistake
because you’ll be using the name of an undefined variable.

Data Type Qualifiers | 29

Another commonly used qualifier is static. This term is unfortunately used in two
rather different ways in C; the way I commonly use it is inside a function. Inside a
function, static indicates that the memory set aside for a variable should not be re-
leased after the function returns; rather, the variable remains and maintains its value
for the next time the function is called. A static variable is useful, for example, when
you want to call a function many times without the overhead of calculating the result
each time (after the first time). First test to see whether the static value has already been
calculated: if it hasn’t, this must be the first time the function is being called, so you
calculate it; if it has, you just return it. Here’s a schematic version:

int myfunction() {
 static int result = 0; // 0 means we haven't done the calculation yet
 if (result == 0) {
 // calculate result and set it
 }
 return result;
}

A very common use of a static variable in Objective-C is to implement a singleton
instance returned by a class factory method. If that sounds complicated, don’t worry;
it isn’t. Here’s an example from my own code, which you can grasp even though we
haven’t discussed Objective-C yet:

+ (CardPainter*) sharedPainter {
 static CardPainter* sp = nil;
 if (nil == sp)
 sp = [[CardPainter alloc] init];
 return sp;
}

That code says: If the CardPainter instance sp has never been created, create it, and in
any case, now return it. Thus, no matter how many times this method is called, the
instance will be created just once and that same instance will be returned every time.

30 | Chapter 1: Just Enough C

CHAPTER 2

Object-Based Programming

My object all sublime.

—W. S. Gilbert, The Mikado

Objective-C, the native language for programming the Cocoa API, is an object-oriented
language; in order to use it, the programmer must have an appreciation of the nature
of objects and object-based programming. There’s little point in learning the syntax of
Objective-C message sending or instantiation without a clear understanding of what a
message or an instance is. That is what this chapter is about.

Objects
An object, in programming, is based on the concept of an object in the real world. It’s
an independent, self-contained thing. These objects, unlike purely inert objects in the
real world, have abilities. So an object in programming is more like a clock than a rock;
it doesn’t just sit there, but actually does something. Perhaps one could compare an
object in programming more to the animate objects of the real world, as opposed to
the inanimate objects, except that — unlike real-world animate things — a program-
ming object is supposed to be predictable: in particular, it does what you tell it. In the
real world, you tell a dog to sit and anything can happen; in the programming world,
you tell a dog to sit and it sits. (This is why so many of us prefer programming to dealing
with the real world.)

In object-based programming, a program is organized into many discrete objects. This
organization can make life much easier for the programmer. Each object has abilities
that are specialized for that object. You can think of this as being a little like how an
automobile assembly line works. Each worker or station along the line does one thing
(screw on the bumpers, or paint the door, or whatever) and does it well. You can see
immediately how this organization helps the programmer. If the car is coming off the
assembly line with the door badly painted, it is very likely that the blame lies with the
door-painting object, so we know where to look for the bug in our code. Or, if we decide

31

to change the color that the door is to be painted, we have but to make a small change
in the door-painting object. Meanwhile, other objects just go on doing what they do.
They neither know nor care what the door-painting object does or how it works.

Objects, then, are an organizational tool, a set of boxes for encapsulating the code that
accomplishes a particular task. They are also a conceptual tool. The programmer, being
forced to think in terms of discrete objects, must divide the goals and behaviors of the
program into discrete tasks, each task being assigned to an appropriate object. Of
course, objects can cooperate with one another, and the ways in which this cooperation
can be arranged are innumerable. The assembly-line analogy illustrates one such ar-
rangement — first, object 1 operates upon the end-product; then it hands it off to object
2, and object 2 operates upon the end-product, and so on — but that arrangement
won’t be appropriate to most tasks. Coming up with an appropriate arrangement —
an architecture — for the cooperative and orderly relationship between objects is one
of the most challenging aspects of object-based programming.

Messages and Methods
Nothing in a computer program happens unless it is instructed to happen. In a C pro-
gram, all code belongs to a function and doesn’t run unless that function is called. In
an object-based program, all code belongs to an object, and doesn’t run unless that
object is told to run that code. All the action in an object-based program happens
because an object was told to act. What does it mean to tell an object something?

An object, in object-based programming, has a well-defined set of abilities — things it
knows how to do. For example, imagine an object that is to represent a dog. We can
design a highly simplified, schematic dog that knows how to do an extremely limited
range of things: eat, come for a walk, bark, sit, lie down, sleep. The purpose of these
abilities is so that the object can be told, as appropriate, to exercise them. So, again,
we can imagine our schematic dog, rather like some child’s toy robot, responding to
simple commands: Eat! Come for a walk! Bark!

In object-based programming, a command directed to an object is called a message. To
make the dog object eat, we send the eat message to the dog object. This mechanism
of message sending is the basis of all activity in the program. The program consists
entirely of objects, so its activity consists entirely of objects sending messages to one
another.

For objects to send messages to one another, objects must know about one another in
some appropriate way at some appropriate time. Ensuring such mutual knowledge is
part of the architectural design process I spoke of earlier. Returning for a moment to
the assembly-line architecture, it’s no use saying that object 1 operates on the end-
product and then object 2 operates on the end-product; that isn’t going to happen all
by itself. It has to be arranged somehow. We can imagine various architectures for
arranging it. Perhaps we will set things up so that object 1 knows about object 2, and

32 | Chapter 2: Object-Based Programming

www.allitebooks.com

http://www.allitebooks.org

as the last step in its own operation, sends a message to object 2, handing it the end-
product and telling it to commence its own operation. Or perhaps we will have a
conveyor-belt object, which will hand the end-product to object 1 and tell it to com-
mence its operation, wait until object 1 finishes with it, and then hand the end-product
to object 2 and tell it to commence its operation. Each of these is a perfectly reasonable
architectural pattern, and many others are possible; it is the programmer’s job to im-
plement an architecture that not only makes the program work appropriately, but also
makes the program itself clear and easy for the programmer to work on. But the problem
of making sure that within that architecture, each object knows about — technically,
has a reference to — any other object to which it might need to send a message can be
quite tricky (so much so, indeed, that an entire chapter of this book, Chapter 13, is
devoted to it).

A moment ago, I said that in a C program, all code belongs to a function. The object-
based analogue to a function is called a method. So, for example, a dog object might
have an eat method. When the dog object is sent the eat message, it responds by calling
the eat method.

It may sound as if I’m not drawing any clear distinction between a message and a
method. But there is a difference. A message is what one object says to another. A
method is a bundle of code that gets called. The connection between the two is not
perfectly direct. You might send a message to an object that corresponds to no method
of that object. For example, you might tell the dog to recite the soliloquy from Hamlet.
I’m not sure what will happen if you do that; the details are implementation-dependent.
(The dog might just sit there silently. Or it might get annoyed and bite you. Or, I
suppose, it might nip off, read Hamlet, memorize the soliloquy, and recite it.) But that
implementation-dependence is exactly the point of the distinction between message
and method.

Nevertheless, in general the distinction between sending a message and calling a
method won’t usually be important in real life. Most of the time, when you’re using
Objective-C, your reason for sending a message to an object will be that that object
implements the corresponding method and you are expecting to call that method. So
sending a message to an object and calling a method of an object will appear to be the
same act.

Classes and Instances
We come now to an extremely characteristic and profound feature of object-based
programming. Just like in the real world, every object in the object-based programming
world is of some type. This type, called a class, is the object-based analogy to the data
type in C. Just as a simple variable in C might be an int or a float, an object in the object-
based programming world might be a Dog (or an NSString). In the object-based pro-
gramming world, the idea of this arrangement is to ensure that more than one individual
object can be relied upon to act the same way.

Classes and Instances | 33

There can, for example, be more than one dog. You might have a dog called Fido and
I might have a dog called Rover. But both dogs know how to eat, come for a walk, and
bark. In object-based programming, they know this because they both belong to the
Dog class. The knowledge of how to eat, come for a walk, and bark is part of the Dog
class. Your dog Fido and my dog Rover possess this knowledge solely by virtue of being
Dog objects.

From the programmer’s point of view, what this means is simple: all the code you write
is put into a class. All the methods you write will be part of some class or other. You
don’t program an individual dog object: you program the Dog class.

But I just got through saying that an object-based program works through the sending
of messages to individual objects. So even though the programmer does not write the
code for an individual dog object, there still needs to be an individual dog object in
order for there to be something to send a message to. It is the Dog class that knows
how to bark, but it is an individual dog object that is told to bark, and that actually
does bark. So the question is: if all Dog code lives in a Dog class, where do individual
dogs come from?

The answer is that they have to be created in the course of the program as it runs. When
the program starts out, it contains code for a Dog class, but no individual dog objects.
If any barking by any dogs is to be done, the program must first create an individual
dog object. This object will belong to the Dog class, so it can be sent the bark message.
An individual object belonging to the Dog class (or any class) is an instance of that class.
To manufacture, from a class, an actual individual object that is an instance of that
class, is to instantiate that class.

So every individual object, such as I talked about in the preceding sections — every
individual object, that is, to which a message can be sent — is an instance of some class.
Classes exist from the get-go, as part of the fact that the program exists in the first place;
they are where the code is. Instances are manufactured, deliberately and individually,
as the program runs. Each instance is manufactured from a class, it is an instance of
that class, and it has methods by virtue of the fact that the class has those methods.
The instance can then be sent a message; what it will do in response depends on what
code the class contains in its methods. The instance is the individual thing that can be
sent messages; the class, with its methods, is the locus of the thing’s ability to respond
to messages (Figure 2-1).

This relationship between instance and class begins to sound rather ethereal or meta-
physical. Instances and classes seem to be programming-language analogies to what a
philosopher would call particulars and universals. Indeed, the whole setup reminds
one of nothing so much as Plato’s theory of Forms. For Plato, this world of ours is the
world of individual things, but those things derive their natures by virtue of archetypal
Forms that live off in another world. I’m not the only person ever to make this com-
parison to Platonic Forms — it is, indeed, implicit in the design of object-based lan-
guages and has been evoked explicitly in discussions of such languages ever since

34 | Chapter 2: Object-Based Programming

Smalltalk. But the comparison is still an apt one. As I said many years ago in my book
REALbasic: The Definitive Guide:

Indeed, object-oriented programming seems to fulfill Plato’s philosophical program an-
nounced in the Euthyphro (6e, my translation):

SOCRATES. Now, you recall that I asked you to explain to me, not this or that particular
pious thing, but that Form Itself through which all pious things are pious? You did say,
I believe, that it was through one Form that impious things are impious and pious things
are pious; don’t you remember?

EUTHYPHRO. Yes, I do.

SOCRATES. All right, then; so, explain to me what is this Form Itself, so that by keeping
my eyes upon it and using it as a model, I may declare that whatever you or anyone else
does that is of this sort, is pious, and that whatever is not, is not.

The problems with Plato’s characterization are well known: the Form seems to be a
“thing” separate from the particular things of the world around us, the notion “through”
is crucial but slippery, and Plato seems to equivocate rather glibly between the Form’s
being responsible for a thing’s being such and such and our ability to know that a thing
is such and such; thus, his program is almost certainly doomed to failure as an explan-
ation of how the world works. But he is perfectly accurate about how an object-oriented
program works! If an instance is of the Pious type, there really is a separate Pious class
that really is responsible for the instance being such as it is.

Because every individual object is an instance of a class, to know what messages you
can officially send to that object, you need to know at least what methods its class has
endowed it with. The public knowledge of this information is that class’s API. (A class
may also have methods that you’re not really supposed to call from outside that object;

Figure 2-1. Class and instance

Classes and Instances | 35

http://oreilly.com/catalog/9780596001773/

these would not be public and other objects couldn’t officially send those messages to
an instance of that class.) That’s why Apple’s own Cocoa documentation consists
largely of pages listing and describing the methods supplied by some class. For example,
to know what messages you can send to an NSString object (instance), you’d start by
studying the NSString class documentation. That page is really just a big list of methods,
so it tells you what an NSString object can do. That isn’t everything in the world there
is to know about an NSString, but it’s a big percentage of it.

Class Methods
Up to now I’ve been keeping something back, and if you’ve been paying close attention,
you may have caught me at it, because it looks as though I’ve contradicted myself. I
said that nothing happens in a program unless a message is sent to an object. But I also
said that there are no instances until they are created as the program runs. The con-
tradiction is that if messages can be sent only to instances, it appears that no instances
can ever be created (because, when the program starts up, there are no instances to
which you can send the message asking for an instance to be created).

The truth that I’ve been keeping back, which complicates things only a little, is that
classes are themselves objects and can be sent messages. This revelation solves the
contradiction completely. No instances exist as the program starts up, but the classes
do. The classes may live off in a world of Platonic Forms, but they can still be sent
messages. And one of the most important things you can ask a class to do by sending
it a message is to instantiate itself.

You cannot, however, ask an instance to instantiate itself. It thus begins to look as if
there must be two kinds of message: messages that you are allowed to send to a class
(such as telling the Dog class to instantiate itself) and messages that you are allowed to
send to an instance (such as telling an individual dog to bark). That is exactly true.
More precisely, all code lives as a method in a class, but methods are of two kinds: class
methods and instance methods. If a method is a class method, you can send that mes-
sage to the class. If a method is an instance method, you can send that message to an
instance of the class.

In Objective-C syntax, class methods and instance methods are distinguished by the
use of a plus sign or a minus sign. For example, Apple’s NSString class documentation
page listing the methods of the NSString class starts out like this:

+ string
– init

The string method is a class method. The init method is an instance method.

In general, though not exclusively, class methods tend to be factory methods — that
is, methods for generating an instance. This makes sense, because making an instance
of itself is one of the main things you’re likely to want to ask a class to do. You might
think that a class really needs only one class method for generating an instance of itself,

36 | Chapter 2: Object-Based Programming

and that is rigorously true, but classes tend to provide multiple factory methods purely
as a convenience to the programmer. For example, here are three NSString class meth-
ods:

+ string
+ stringWithFormat:
+ stringWithContentsOfFile:encoding:error:

They all make instances. The first class method, string, generates an empty NSString
instance (a string with no text). The second class method, stringWithFormat:, generates
an NSString instance based on text that you provide, which can include transforming
other values into text; for example, you might use it to start with an integer 9 and
generate an NSString instance @"9". The third class method reads the contents of a file
and generates an NSString instance from those contents. When you come to write your
own classes, you too might well create multiple class methods that act as instance
factories for your own future programming convenience.

Instance Variables
Now that I’ve revealed that classes are objects and can be sent messages, you might be
wondering why there need to be instances at all. Why doesn’t the mere existence of
classes as objects suffice for object-based programming? Why would you ever bother
to instantiate any of the classes? Why wouldn’t you write all your code as class methods,
have the program send messages from one class object to another, and be done with it?

The answer is that instances have a feature that classes do not: instance variables. An
instance variable is just what the name suggests: it’s a variable belonging to an instance.
Like instance methods, instance variables are defined as part of the class. But the
value of an instance variable is set as the program runs and belongs to one instance
alone. In other words, different instances can have different values for the same instance
variable.

For example, suppose we have a Dog class and we decide that it might be a good idea
for every dog to have a name. Just as you can learn a real-world dog’s name by reading
the tag on its collar, we want to be able to assign every dog instance a name and,
subsequently, to learn what that name is. So, in designing the Dog class, we declare
that this class has an instance variable called name, whose value is a string (probably an
NSString, as we’re using Objective-C). Now when our program runs we can instantiate
Dog and assign the resulting dog instance a name (that is, we can assign its name instance
variable a value). We can also instantiate Dog again and assign that resulting dog in-
stance a name. Let’s say these are two different names: one is @"Rover" and one is
@"Fido". Then we’ve got two instances of Dog, and they are significantly different; they
differ in the value of their name instance variables (Figure 2-2).

So an instance is a reflection of the instance methods of its class, but that isn’t all it is;
it’s also a collection of instance variables. The class is responsible for what instance

Instance Variables | 37

variables the instance has, but not for the values of those variables. The values can
change as the program runs and apply only to a particular instance. An instance is a
cluster of particular instance variable values.

In short, an instance is both code and data. The code it gets from its class and in a sense
is shared with all other instances of that class, but the data belong to it alone. The data
can persist as long as the instance persists. The instance has, at every moment, a state
— the complete collection of its own personal instance variable values. An instance is
a device for maintaining state. It’s a box for storage of data.

The Object-Based Philosophy
In my REALbasic book, I summarized the nature of objects in two phrases: encapsu-
lation of functionality, and maintenance of state:

Encapsulation of functionality
Each object does its own job, and presents to the rest of the world — to other
objects, and indeed in a sense to the programmer — an opaque wall whose only
entrances are the methods to which it promises to respond and the actions it
promises to perform when the corresponding messages are sent to it. The details
of how, behind the scenes, it actually implements those actions are secreted within
itself; no other object needs to know them.

Maintenance of state
Each individual instance is a bundle of data that it maintains. Typically that data
is private, which means that it’s encapsulated as well; no other object knows what

Figure 2-2. Instance variables

38 | Chapter 2: Object-Based Programming

that data is or in what form it is kept. The only way to discover from outside what
data an object is maintaining is if there’s a method that reveals it.

As an example, imagine an object whose job is to implement a stack — it might be an
instance of a Stack class. A stack is a data structure that maintains a set of data in LIFO
order (last in, first out). It responds to just two messages: push and pop. Push means to
add a given piece of data to the set. Pop means to remove from the set the piece of data
that was most recently pushed and hand it out. It’s like a stack of plates: plates are
placed onto the top of the stack or removed from the top of the stack one by one, so
the first plate to go onto the stack can’t be retrieved until all other subsequently added
plates have been removed (Figure 2-3).

The stack object illustrates encapsulation of functionality because the outside world
knows nothing of how the stack is actually implemented. It might be an array, it might
be a linked list, it might be any of a number of other implementations. But a client
object — an object that actually sends a push or pop message to the stack object —
knows nothing of this and cares less, provided the stack object adheres to its contract

Figure 2-3. A stack

The Object-Based Philosophy | 39

of behaving like a stack. This is also good for the programmer, who can, as the program
develops, safely substitute one implementation for another without harming the vast
machinery of the program as a whole. And just the other way round, the stack object
knows nothing and cares less about who is telling it to push or to pop, and why. It just
hums along and does its job in its reliable little way.

The stack object illustrates maintenance of state because it isn’t just the gateway to the
stack data — it is the stack data. Every object that has a reference to the stack object
has the same access to its data, the same ability to push or to pop. (And that’s all it can
do. The stack data is effectively inside the stack object; no one else can see it. All that
another object can do is push or pop.) If a certain object is at the top of our stack object’s
stack right now, then whatever object sends the pop message to this stack object will
receive that object in return. If no object sends the pop message to this stack object,
then the object at the top of the stack will just sit there, waiting.

As a second example of the philosophy and nature of object-based programming at
work, I’ll revert to another imaginary scenario I used in my REALbasic book. Pretend
we’re writing an arcade game where the user is to “shoot” at moving “targets,” and the
score increases every time a target is hit. We immediately have a sense of how we might
organize our code using object-based programming and can see how object-based pro-
gramming will fulfill its nature and purpose:

• There will be a Target class. Every target object will be an instance of this class.
This decision makes sense because we want every target to behave the same way.
A target will need to know how to draw itself; that knowledge will be part of the
Target class, which makes sense because all targets will draw themselves in the
same way. Thus we have the relationship between class and instance.

• Targets may draw themselves the same way, but they may also differ in appearance.
Perhaps some targets are blue, others are red, and so on. This difference between
individual targets can be expressed as an instance variable. Call it color. Every time
we instantiate a target, we’ll assign it a color. The Target class’s code for drawing
an individual target will look at that target’s color instance variable and use it when
filling in the target’s shape. Clearly, we could extend this individualization as much
as we like: targets could have different sizes, different shapes, and so on, and all of
these parametric distinctions could be made on an individual basis through the use
of instance variables. Thus we have both encapsulation of functionality and main-
tenance of state. A target has a state, the parameters that describe how it should
look, and also has the ability to draw itself, expressing that state visually.

• When a target is hit by the user, it will explode. So perhaps the Target class will
have an explode instance method; thus, every target knows how to explode. One
thing that should happen whenever a target explodes is that the user’s score should
increase. So let’s imagine a score object — an instance of the Score class. Give every
target object a reference to this score object so that it can send a message to it.
When a target explodes, one of the things its explode instance method will do is

40 | Chapter 2: Object-Based Programming

send an increase message to the score object. Thus we have both encapsulation of
functionality and maintenance of state. The score object responds indifferently to
any object that sends it the increase message; it doesn’t need to know why it’s
being sent that message. Nor does the score object even need to know that targets
exist, or indeed that it’s part of a game. It just sits there maintaining the score, and
when it receives the increase message, it increases it.

This chapter has described only the rudiments of object-based philosophy — enough
to communicate the correct mind-set. Using object-based programming effectively to
make a program clear and maintainable is something of an art; your abilities will im-
prove with experience. Eventually, you may want to do some further reading on how
to construct an object-based program most effectively. I recommend in particular two
classic, favorite books. Refactoring, by Martin Fowler (Addison-Wesley, 1999), de-
scribes how you can get a sense that you might need to rearrange what methods belong
to what classes (and how to conquer your fear of doing so). Design Patterns, by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (also known as “the Gang
of Four”), is the bible on architecting object-based programs, listing all the ways you
can arrange objects with the right powers and the right knowledge of one another
(Addison-Wesley, 1994).

The Object-Based Philosophy | 41

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3

Objective-C Objects and Messages

One of the first object-based programming languages to achieve maturity and wide-
spread dissemination was Smalltalk. It was developed during the 1970s at Xerox PARC
under the leadership of Alan Kay and started becoming widely known in 1980. The
purpose of Objective-C, created by Brad Cox and Tom Love in 1986, was to build
Smalltalk-like syntax and behavior on top of C. Objective-C was licensed by NeXT in
1988 and was the basis for its application framework API, NeXTStep. Eventually, NeXT
and Apple merged, and the NeXT application framework evolved into Cocoa, the
framework for Mac OS X applications, still revolving around Objective-C. That history
explains why Objective-C is the base language for iOS programming. (It also ex-
plains why Cocoa class names often begin with “NS” — it stands for “NeXTStep.”)

Having learned the basics of C (Chapter 1) and the nature of object-based programming
(Chapter 2), you are ready to meet Objective-C. This chapter describes Objective-C
structural fundamentals; the next two chapters provide more detail about how
Objective-C classes and instances work. (A few additional features of the language are
discussed in Chapter 10.) As with the C language, my intention is not to describe the
Objective-C language completely, but to provide a practical linguistic grounding,
founded on my own experience of those aspects of the language that need to be firmly
understood as a basis for iOS programming.

An Instance Reference Is a Pointer
In C, every variable must be declared to be of some type. In an object-based language
such as Objective-C, an instance’s type is its class. The C language includes very few
basic data types. To facilitate the multiplicity of class types required by its object-based
nature, Objective-C takes advantage of C pointers. So, in Objective-C, if a variable is
an instance of the class MyClass, that variable is of type MyClass* — a pointer to a
MyClass. In general, in Objective-C, a reference to an instance is a pointer and the name
of the data type of what’s at the far end of that pointer is the name of the instance’s class.

43

Note the convention for capitalization. Variable names tend to start with
a lowercase letter; class names tend to start with an uppercase letter.

As I mentioned in Chapter 1, the fact that a reference to an instance is a pointer in
Objective-C will generally not cause you any difficulties, because pointers are used
consistently throughout the language. For example, a message to an instance is directed
at the pointer, so there is no need to dereference the pointer. Indeed, having established
that a variable representing an instance is a pointer, you’re likely to forget that this
variable even is a pointer and just work directly with that variable:

NSString* s = @"Hello, world!";
NSString* s2 = [s uppercaseString];

Having established that s is an NSString*, you would never dereference s (that is, you
would never speak of *s) to access the “real” NSString. So it feels as if the pointer is the
real NSString. Thus, in the previous example, once the variable s is declared as a pointer
to an NSString, the uppercaseString message is sent directly to the variable s. (The
uppercaseString message asks an NSString to generate and return an uppercase version
of itself; so, after that code, s2 is @"HELLO, WORLD!")

The tie between a pointer, an instance, and the class of that instance is so close that it
is natural to speak of an expression like MyClass* as meaning “a MyClass instance,”
and of a MyClass* value as “a MyClass.” A Objective-C programmer will say simply
that, in the previous example, s is an NSString, that uppercaseString returns “an
NSString,” and so forth. It is fine to speak like that, and I do it myself (and will do it in
this book) — provided you remember that this is a shorthand. Such an expression
means “an NSString instance,” and because an instance is represented as a C pointer,
it means an NSString*, a pointer to an NSString.

Although the fact that instance references in Objective-C are pointers does not cause
any special difficulty, you must still be conscious of what pointers are and how they
work. As I emphasized in Chapter 1, when you’re working with pointers, you must
keep in mind the special meaning of your actions. So here are some basic facts about
pointers that you should keep in mind when working with instance references in
Objective-C.

Forgetting the asterisk in an instance declaration is a common beginner
mistake, and will net you a mysterious compiler error message, such as
“Interface type cannot be statically allocated.”

Instance References, Initialization, and nil
Merely declaring an instance reference’s type doesn’t bring any instance into exis-
tence. For example:

44 | Chapter 3: Objective-C Objects and Messages

NSString* s; // only a declaration; no instance is pointed to

After that declaration, s is typed as a pointer to an NSString, but it is not in fact pointing
to an NSString. You have created a pointer, but you haven’t supplied an NSString for
it to point to. It’s just sitting there, waiting for you to point it at an NSString, typically
by assignment (as we did with @"Hello, world!" earlier). Such assignment initializes
the variable, giving it an actual meaningful value of the proper type.

You can declare a variable as an instance reference in one line of code and initialize it
later, like this:

NSString* s;
// ... time passes ...
s = @"Hello, world!";

But this is not common. It is much more common, wherever possible, to declare and
initialize a variable all in one line of code:

NSString* s = @"Hello, world!";

Declaration without initialization, before the advent of iOS 5 and ARC (Chapter 12),
created a dangerous situation:

NSString* s;

What is s after a mere declaration like that? It could be anything. But it is claiming to
be a pointer to an NSString, and so your code might proceed to treat it as a pointer to
an NSString. But it is pointing at garbage. A pointer pointing at garbage is liable to
cause serious trouble down the road when you accidentally try to use it as an in-
stance. Sending a message to a garbage pointer, or otherwise treating it as a meaningful
instance, can crash your program. Even worse, it might not crash your program: it might
cause your program to behave very, very oddly instead — and figuring out why can be
difficult.

For this reason, if you aren’t going to initialize an instance reference pointer at the
moment you declare it by assigning it a real value, it’s a good idea to assign it nil:

NSString* s = nil;

A small but delightful bonus feature of using ARC is that this assignment is performed
for you, implicitly and invisibly, as soon as you declare a variable without initializing it:

NSString* s; // under ARC, s is immediately set to nil for you

This prevents the existence of a garbage pointer, and could save you from yourself by
preventing a crash when you accidentally use s as an instance without initializing it.
Nevertheless, long years of habit have trained me to initialize or explicitly set to nil an
instance pointer as soon as I declare it, and you’ll see that I continue to do so in examples
in this book.

What is nil? It’s simply a form of zero — the form of zero appropriate to an instance
reference. The nil value simply means: “This instance reference isn’t pointing to any

An Instance Reference Is a Pointer | 45

instance.” Indeed, you can test an instance reference against nil as a way of finding out
whether it is in fact pointing to a real instance. This is an extremely common thing to do:

if (nil == s) // ...

As I mentioned in Chapter 1, the explicit comparison with nil isn’t strictly necessary;
because nil is a form of zero, and because zero means false in a condition, you can
perform the same test like this:

if (!s) // ...

I do in fact write nil tests in that second form all the time, but some programmers would
take me to task for bad style. The first form has the advantage that its real meaning is
made explicit, rather than relying on a cute implicit feature of C. The first form places
nil first in the comparison so that if the programmer accidentally omits an equal sign,
performing an assignment instead of a comparison, the compiler will catch the error
(because assignment to nil is illegal).

Many Cocoa methods use a return value of nil, instead of an expected instance, to
signify that something went wrong. You are supposed to capture this return value and
test it for nil in order to discover whether something did go wrong. For example, the
documentation for the NSString class method stringWithContentsOfFile:encoding:
error: says that it returns “a string created by reading data from the file named by
path using the encoding, enc. If the file can’t be opened or there is an encoding error,
returns nil.” So, as I described in Chapter 1, your next move after calling this method
and capturing the result should be to test that result against nil, just to make sure you’ve
really got an instance now:

NSString* path = // ... whatever;
NSStringEncoding enc = // ... whatever;
NSError* err = nil;
NSString* s = [NSString stringWithContentsOfFile:path encoding:enc error:&err];
if (nil == s) // oops! something went wrong...

You should now be wondering about the implications of a nil-value pointer for sending
a message to a noninstance. For example, you can send a message to an NSString in-
stance like this:

NSString* s2 = [s uppercaseString];

That code sends the uppercaseString message to s. So s is supposedly an NSString
instance. But what if s is nil? With some object-based programming languages, sending
a message to nil constitutes a runtime error and will cause your program to terminate
prematurely (REALbasic and Ruby are examples). But Objective-C doesn’t work like
that. In Objective-C, sending a message to nil is legal and does not interrupt execution.
Moreover, if you capture the result of the method call, it will be a form of zero — which
means that if you assign that result to an instance reference pointer, it too will be nil:

NSString* s = nil; // now s is nil
NSString* s2 = [s uppercaseString]; // now s2 is nil

46 | Chapter 3: Objective-C Objects and Messages

Whether this behavior of Objective-C is a good thing is a quasi-religious issue and a
subject of vociferous debate among programmers. It is useful, but it also extremely easy
to be tricked by it. The usual scenario is that you accidentally send a message to a nil
reference without realizing it, and then later your program doesn’t behave as expected.
Because the point where the unexpected behavior occurs is later than the moment when
the nil pointer arose in the first place, the genesis of the nil pointer can be difficult to
track down (indeed, it often fails to occur to the programmer that a nil pointer is the
cause of the trouble in the first place).

Short of peppering your code with tests to ascertain that your instance reference point-
ers are not accidentally nil, which is not generally a good idea, there isn’t much you
can do about this. This behavior is strongly built into the language and is not going to
change. It’s just something you need to be aware of.

If, on the other hand, a method call can return nil, be conscious of that fact. Don’t
assume that everything will go well and that it won’t return nil. On the contrary, if
something can go wrong, it probably will. For example, to omit the nil test after calling
stringWithContentsOfFile:encoding:error: is just stupid. I don’t care if you know per-
fectly well that the file exists and the encoding is what you say it is — test the result for
nil!

Instance References and Assignment
As I said in Chapter 1, assigning to a pointer does not mutate the value at the far end
of the pointer; rather, it repoints the pointer. Moreover, assigning one pointer to an-
other repoints the pointer in such a way that both pointers are now pointing to the very
same thing. Failure to keep these simple facts firmly in mind can have results that range
from surprising to disastrous.

For example, instances in general are usually mutable: they typically have instance
variables that can change. If two references are pointing at one and the same instance,
then when the instance is mutated by way of one reference, that mutation also affects
the instance as seen by the other reference. To illustrate, pretend that we’ve imple-
mented the Stack class described in the previous chapter:

Stack* myStack1 = // ... create Stack instance and initialize myStack1 ... ;
Stack* myStack2 = myStack1;
[myStack1 push: @"Hello"];
[myStack1 push: @"World"];
NSString* s = [myStack2 pop];

After we pop myStack2, s is @"World" even though nothing was ever pushed onto my-
Stack2 (and the stack myStack1 contains only @"Hello" even though nothing was ever
popped off of myStack1). That’s because we did push two strings onto myStack1 and
then pop one string off myStack2, and myStack1 is myStack2 — in the sense that they are
both pointers to the very same stack instance. That’s perfectly fine, as long as you
understand and intend this behavior.

An Instance Reference Is a Pointer | 47

In real life, you’re likely to pass an instance off to some other object, or to receive it
from some other object:

Stack* myStack = // ... create Stack instance and initialize myStack ... ;
// ... more code might go here ...
[myObject doSomethingWithThis: myStack]; // pass myStack to myObject

After that code, myObject has a pointer to the very same instance we’re already pointing
to as myStack. So we must be careful and thoughtful. The object myObject might mutate
myStack right under our very noses. Even more, the object myObject might keep its ref-
erence to the stack instance and mutate it later — possibly much later, in a way that
could surprise us. This is possible because instances can have instance variables that
point to other objects, and those pointers can persist as long as the instances themselves
do. This kind of shared referent situation can be intentional, but it is also something
to watch out for and be conscious of (Figure 3-1).

Another possible misunderstanding is to imagine that the assignment myStack2 = my-
Stack1 somehow makes a new, separate instance that duplicates myStack1. That’s not
at all the case. It doesn’t make a new instance; it just points myStack2 at the very same
instance that myStack1 is pointing at. It may be possible to make a new instance that
duplicates a given instance, but the ability to do so is not a given and it is not going to
happen through mere assignment. (For how a separate duplicate instance might be
generated, see the NSCopying protocol and the copy method mentioned in Chapter 10.)

Figure 3-1. Two instances end up with pointers to the same third instance

48 | Chapter 3: Objective-C Objects and Messages

Instance References and Memory Management
The pointer nature of instance references in Objective-C also has implications for man-
agement of memory. The scope, and in particular the lifetime, of variables in pure C is
typically quite straightforward: if you bring a piece of variable storage into existence
by declaring that variable within a certain scope, then when that scope ceases to exist,
the variable storage ceases to exist. That sort of variable is called automatic (K&R 1.10).
So, for example:

void myFunction() {
 int i; // storage for an int is set aside
 i = 7; // 7 is placed in that storage
} // the scope ends, so the int storage and its contents vanish

But in the case of a pointer, there are two pieces of memory to worry about: the pointer
itself, which is an integer signifying an address in memory, and whatever is at the far
end of that pointer. Nothing about the C language causes the destruction of what a
pointer points to when the pointer itself is automatically destroyed as it goes out of
scope:

void myFunction() {
 NSString* s = @"Hello, world!"; // storage for a pointer is set aside
 NSString* s2 = [s uppercaseString]; // storage for another pointer is set aside
} // the two pointers go out of existence...
// ... but what about the two NSStrings they point to?

Some object-based programming languages in which a reference to an instance is a
pointer do manage automatically the memory pointed to by instance references
(REALbasic and Ruby are examples). But Objective-C, at least the way it’s implemented
when you’re programming for iOS, is not one of those languages. Because the C lan-
guage has nothing to say about the automatic destruction of what is pointed to by a
reference to an instance, Objective-C implements an explicit mechanism for the man-
agement of memory. I’ll talk in a later chapter (Chapter 12) about what that mechanism
is and what responsibilities for the programmer it entails. Fortunately, under ARC,
those responsibilities are fewer than they used to be; but memory must still be managed,
and you must still understand how memory management works.

Messages and Methods
An Objective-C method is defined as part of a class. It has three aspects:

Whether it’s a class method or an instance method
If it’s a class method, you call it by sending a message to the class itself. If it’s an
instance method, you call it by sending a message to an instance of the class.

Its parameters and return value
As with a C function, an Objective-C method takes some number of parameters;
each parameter is of some specified type. And, as with a C function, it may return

Messages and Methods | 49

a value, which is also of some specified type; if the method returns nothing, its
return type is declared as void.

Its name
An Objective-C method’s name must contain as many colons as it takes parame-
ters. The name is split after each colon in a method call or declaration, so it is usual
for the part of the name preceding each colon to describe the corresponding pa-
rameter.

Sending a Message
As you’ve doubtless gathered, the syntax for sending a message to an object involves
square brackets. The first thing in the square brackets is the object to which the message
is to be sent; this object is the message’s receiver. Then follows the message:

NSString* s2 = [s uppercaseString]; // send "uppercaseString" message to s ...
// ... (and assign result to s2)

If the message is a method that takes parameters, each corresponding argument value
comes after a colon:

[myStack1 push: @"Hello"]; // send "push:" message to myStack1 ...
// ...with one argument, the NSString @"Hello"

To send a message to a class (calling a class method), you can represent the class by
the literal name of the class:

NSString* s = [NSString string]; // send "string" message to NSString class

To send a message to an instance (calling an instance method), you’ll need a reference
to an instance, which (as you know) is a pointer:

NSString* s = @"Hello, world!"; // and now s is initialized as an NSString instance
NSString* s2 = [s uppercaseString]; // send "uppercaseString" message to s

You can send a class method to a class, and an instance method to an instance, no
matter how you got hold of and represent the class or the instance. For example,
@"Hello, world!" is itself an NSString instance, so it’s legal to say:

NSString* s2 = [@"Hello, world!" uppercaseString];

If a method takes no parameters, then its name contains no colons, like the NSString
instance method uppercaseString. If a method takes one parameter, then its name
contains one colon, which is the final character of the method name, like the hypo-
thetical Stack instance method push:. If a method takes two or more parameters, its
name contains that number of colons. In the minimal case, its name ends with that
number of colons. For example, a method taking three parameters might be called here-
AreThreeStrings:::. To call it, we split the name after each colon and follow each colon
with an argument, which looks like this:

[someObject hereAreThreeStrings: @"string1" : @"string2" : @"string3"];

50 | Chapter 3: Objective-C Objects and Messages

That’s a legal way to name a method, but it isn’t very common, mostly because it isn’t
very informative. Usually the name will have more text; in particular, the part before
each colon will describe the parameter that follows that colon.

For example, there’s a UIColor class method for generating an instance of a UIColor
from four CGFloat numbers representing its red, green, blue, and alpha (transparency)
components, and it’s called colorWithRed:green:blue:alpha:. Notice the clever con-
struction of this name. The colorWith part tells something about the method’s purpose:
it generates a color, starting with some set of information. All the rest of the name, Red:
green:blue:alpha:, describes the meaning of each parameter. And you call it like this:

UIColor* c = [UIColor colorWithRed: 0.0 green: 0.5 blue: 0.25 alpha: 1.0];

The space after each colon in the method call is optional. (Space before a colon is also
legal, though in practice one rarely sees this.)

The rules for naming an Objective-C method, along with the conventions governing
such names (like trying to make the name informative about the method’s purpose and
the meanings of its parameters), lead to some rather long and unwieldy method names,
such as getBytes:maxLength:usedLength:encoding:options:range:remainingRange:.
Such verbosity of nomenclature is characteristic of Objective-C. Method calls, and even
method declarations, are often split across multiple lines to prevent a single line of code
from becoming so long that it wraps within the editor, as well as for clarity.

Declaring a Method
The declaration for a method has three parts:

• Either + or -, meaning that the method is a class method or an instance method,
respectively.

• The data type of the return value, in parentheses.

• The name of the method, split after each colon. Following each colon is the cor-
responding parameter, expressed as the data type of the parameter, in parentheses,
followed by a placeholder name for the parameter.

So, for example, Apple’s documentation tells us that the declaration for the UIColor
class method colorWithRed:green:blue:alpha: is:

+ (UIColor*) colorWithRed: (CGFloat) red green: (CGFloat) green
 blue: (CGFloat) blue alpha: (CGFloat) alpha

(Note that I’ve split the declaration into two lines, for legibility and to fit onto this page.
The documentation puts it all on a single line.)

Make very sure you can read this declaration! You should be able to look at it and say
to yourself instantly, “The name of this method is colorWithRed:green:blue:alpha:.
It’s a class method that returns a UIColor and takes four CGFloat parameters.”

Messages and Methods | 51

It is not uncommon, outside of code, to write a method’s name along with the plus sign
or the minus sign, to make it clear whether this is a class method or an instance method.
So you might speak informally of “-uppercaseString,” just as a way of reminding your-
self or a reader that this is an instance method. Again outside of code, it is not uncom-
mon, especially when communicating with other Objective-C programmers, to speak
of a method’s name along with the class in which this method is defined. So you might
say “NSString’s -uppercaseString,” or even something like “-[NSString uppercase-
String].” Notice that that isn’t code, or even pseudo-code, because you are not actually
speaking of a method call, and in any case you could never send the uppercaseString
message to the NSString class; it’s just a compact way of saying, “I’m talking about the
uppercaseString that’s an instance method of NSString.”

Nesting Method Calls
Wherever in a method call an object of a certain type is supposed to appear, you can
put another method call that returns that type. Thus you can nest method calls. A
method call can appear as the message’s receiver:

NSString* s = [[NSString string] uppercaseString]; // silly but legal

That’s legal because NSString’s class method string returns an NSString instance (for-
mally, an NSString* value, remember), so we can send an NSString instance method to
that result. Similarly, a method call can appear as an argument in a method call:

[myStack push: [NSString string]]; // ok if push: expects an NSString* parameter

However, I must caution you against overdoing that sort of thing. Code with a lot of
nested square brackets is very difficult to read (and to write). Furthermore, if one of
the nested method calls happens to return nil unexpectedly, you have no way to detect
this fact. It is often better, then, to be even more verbose and declare a temporary
variable for each piece of the method call. Just to take an example from my own code,
instead of writing this:

NSArray* arr = [[MPMediaQuery albumsQuery] collections];

I might write this:

MPMediaQuery* query = [MPMediaQuery albumsQuery];
NSArray* arr = [query collections];

Even though the first version is quite short and legible, and even though in the second
version the variable query will never be used again — it exists solely in order to be the
receiver of the collections message in the second line — it is worth creating it as a
separate variable. For one thing, it makes this code far easier to step through in the
debugger later on, when I want to pause after the albumsQuery call and see whether the
expected sort of result is being returned.

52 | Chapter 3: Objective-C Objects and Messages

Incorrect number or pairing of nested square brackets can net you some
curious messages from the compiler. For example, too many pairs of
square brackets ([[query collections]]) or an unbalanced left square
bracket ([[query collections]) is reported as “Expected identifier.”

No Overloading
The data type returned by a method, together with the data types of each of its param-
eters in order, constitute that method’s signature. It is illegal for two methods of the
same type (class method or instance method) to exist in the same class with the same
name but different signatures.

So, for example, you could not have two MyClass instance methods called myMethod,
one of which returns void and one of which returns an NSString. Similarly, you could
not have two MyClass instance methods called myMethod:, both returning void, one
taking a CGFloat parameter and one taking an NSString parameter. An attempt to
violate this rule will be stopped dead in its tracks by the compiler, which will announce
a “duplicate declaration” error. The reason for this rule is that if two such conflicting
methods were allowed to exist, there would be no way to determine from a method
call to one of them which method was being called.

You might think that the issue could be decided by looking at the types involved in the
call. If one myMethod: takes a CGFloat parameter and the other myMethod: takes an
NSString parameter, you might think that when myMethod: is called, Objective-C could
look at the actual argument and realize that the former method is meant if the argument
is a CGFloat and the latter if the argument is an NSString. But Objective-C doesn’t
work that way. There are languages that permit this feature, called overloading, but
Objective-C is not one of them.

Parameter Lists
It isn’t uncommon for an Objective-C method to require an unknown number of pa-
rameters. A good example is the NSArray class method arrayWithObjects:, which looks
from the name as if it takes one parameter but in fact takes any number of parameters,
separated by comma. The parameters are the objects of which the NSArray is to consist.
The trick here, however, which you must discover by reading the documentation, is
that the list must end with nil. The nil is not one of the objects to go into the NSArray
(nil isn’t an object, so an NSArray can’t contain nil); it’s to show where the list ends.

So, here’s a correct way to call the arrayWithObjects: method:

NSArray* pep = [NSArray arrayWithObjects:@"Manny", @"Moe", @"Jack", nil];

The declaration for arrayWithObjects: uses three dots to show that a comma-separated
list is legal:

+ (id)arrayWithObjects:(id)firstObj, ... ;

Messages and Methods | 53

Without the nil terminator, the program will not know where the list ends, and bad
things will happen when the program runs, as it goes hunting off into the weeds of
memory, incorporating all sorts of garbage into the NSArray that you never meant to
have incorporated. Forgetting the nil terminator is a common beginner error, but not
as common as it used to be: by a bit of deep-C voodoo, the Objective-C compiler now
notices if you’ve forgotten the nil, and warns you (“missing sentinel in method dis-
patch”). Even though it’s just a warning, don’t run that code.

The C language has explicit provision for argument lists of unspecified length, which
Objective-C methods such as arrayWithObjects: are using behind the scenes. I’m not
going to explain the C mechanism, because I don’t expect you’ll ever write a method
or function that requires it; see K&R 7.3 if you need the gory details.

Unrecognized Selectors
Objective-C messaging is dynamic, meaning that the compiler takes no formal respon-
sibility for whether a particular object is a legal recipient of a given message. That’s
because whether an object can deal with a message sent to it isn’t decided until the
program actually runs and the message actually arrives. Objective-C has various devices
for dealing at runtime with a message that doesn’t correspond directly to a method,
and for all the compiler knows, one of them might come into play in this case. For
example, at the time the program runs, the recipient of the message might be nil — and
it’s harmless to send any message to nil.

Thus, it is theoretically legal to direct a message at an object with no corresponding
method. The only guardian against this possibility is the compiler. Before ARC, the
compiler was not a very strong guardian in this respect. For example:

NSString* s = @"Hello, world!";
[s rockTheCasbah]; // without ARC, compiler warns

An NSString has no method rockTheCasbah. But the (non-ARC) compiler will not stop
you from running a program containing this code; it’s legal. The compiler will warn
you, but it won’t stop you. There are actually two possible warnings:

• If no rockTheCasbah method is defined anywhere in your code, the compiler will
say: “Instance method ‘-rockTheCasbah’ not found (return type defaults to ‘id’).”
Without going into the details, what the compiler means is: “I know of no instance
method rockTheCasbah, so I can’t check its signature against the return type and
arguments you’re actually using, so I’ll just make some loose assumptions and let
it pass.”

• If a rockTheCasbah method is defined somewhere in your code, the compiler will
say: “‘NSString’ may not respond to ‘rockTheCasbah’.” This means: “There’s a
rockTheCasbah method, all right, but you seem to be sending the rockTheCasbah
method to an instance of a class that doesn’t have it as an instance method.”

54 | Chapter 3: Objective-C Objects and Messages

This is a good example of what I meant in Chapter 2 when I said that sending a message
and calling a method were not the same thing. The compiler is saying that NSString
has no rockTheCasbah instance method, but that it isn’t going to stop you from sending
an NSString a rockTheCasbah message. At runtime, the object that receives the rockThe-
Casbah message might be able to deal with it, for all the compiler knows.

With ARC, however, the compiler is much stricter. The example above won’t compile
at all under ARC! The compiler declares a fatal compilation error: “Receiver type
‘NSString’ for instance message does not declare a method with selector ‘rockTheCas-
bah’.” There is no NSString method rockTheCasbah, and by golly the compiler isn’t
going to let you send the rockTheCasbah message to an NSString, and that’s final.

This is another of those delightful secondary benefits of using ARC. In order to do what
it primarily does (manage memory), ARC must insist on more information about classes
and their methods than the Objective-C standard calls for. Here, ARC is demanding
that you prove that an NSString can respond to rockTheCasbah, or it won’t let you run
this code at all. (Nevertheless, if you really want to, you can slip past even ARC’s strin-
gent guardianship; I’ll explain how in the next section.)

Let us assume for a moment, however, that we are compiling without ARC, or that we
have somehow tricked even ARC into letting us compile successfully. Warning or no
warning, we are now ready to run a program that sends the rockTheCasbah message to
an NSString, and damn the consequences. What might those consequences be? Quite
simply, if you send a message to an object that can’t deal with it, your program will
crash at that moment. So, for example, our attempt to send an NSString the rockThe-
Casbah message will crash our program, with a message (in the console log) of this form:
“-[NSCFConstantString rockTheCasbah]: unrecognized selector sent to instance
0x3048.”

The important thing here is the phrase unrecognized selector. The term “selector” is
roughly equivalent to “message,” so this is a way of saying a certain instance was sent
a message it couldn’t deal with. The console message also tries to tell us what instance
this was. 0x3048 is the value of the instance pointer; it is the address in memory to which
our NSString* variable s was actually pointing. (Never mind why the NSString is de-
scribed as an NSCFConstantString; this has to do with NSString’s implementation
behind the scenes.)

(Strictly speaking, I should not say that a situation like this will “crash our program.”
What it will actually do is to generate an exception, an internal message as the program
runs signifying that something bad has happened. It is possible for Objective-C code
to “catch” an exception, in which case the program will not crash. The reason the
program crashes, technically, is not that a message was sent to an object that couldn’t
handle it, but that the exception generated in response wasn’t caught. That’s why the
crash log may also say, “Terminating app due to uncaught exception.”)

Messages and Methods | 55

Typecasting and the id Type
One way to silence the compiler when it warns in the way I’ve just described is by
typecasting. A typecast, however, is not a viable way of fixing the problem unless it also
tells the truth. It is perfectly possible to lie to the compiler by typecasting; this is not
nice, and is not likely to yield nice consequences.

For example, suppose we’ve defined a class MyClass that does contain an instance
method rockTheCasbah. As a result, it is fine with the compiler if you send the rockThe-
Casbah message to a MyClass, although it is not fine to send the rockTheCasbah message
to an NSString. So you can silence the compiler by claiming that an NSString instance
is a MyClass instance:

NSString* s = @"Hello, world!";
[(MyClass*)s rockTheCasbah];

The typecast silences the compiler; there is no warning. Notice that the typecast is not
a value conversion; it’s merely a claim about what the type will turn out to be at runtime.
You’re saying that when the program runs, s will magically turn out to be a MyClass
instance. Because MyClass has a rockTheCasbah instance method, that silences the
compiler. Of course, you’ve lied to the compiler, so when the program runs it will crash
anyway, in exactly the same way as before! You’re still sending an NSString a message
it can’t deal with, so the very same exception about sending an unrecognized selector
to an NSCFConstantString instance will result. So don’t do that!

Sometimes, however, typecasting to silence the compiler is exactly what you do want
to do. This situation quite often arises in connection with class inheritance. We haven’t
discussed class inheritance yet, but I’ll give an example anyway. Let’s take the built-in
Cocoa class UINavigationController. Its topViewController method is declared to re-
turn a UIViewController instance. In real life, though, it is likely to return an instance
of some class you’ve created. So in order to call a method of the class you’ve created
on the instance returned by topViewController without upsetting the compiler, you
have to reassure the compiler that this instance really will be an instance of the class
you’ve created. That’s what I’m doing in this line from one of my own apps:

[(RootViewController*)[navigationController topViewController] setAlbums: arr];

The expression (RootViewController*) is a typecast in which I’m assuring the compiler
that at this moment in the program, the value returned by the topViewController
method call will in fact be an instance of RootViewController, which is my own defined
class. The typecast silences the compiler when I send this instance the setAlbums: mes-
sage, because my RootViewController class has a setAlbums: instance method and the
compiler knows this. And the program doesn’t crash, because I’m not lying: this top-
ViewController method call really will return a RootViewController instance.

Objective-C also provides a special type designed to silence the compiler’s worries
about object data types altogether. This is the id type. An id is a pointer, so you don’t

56 | Chapter 3: Objective-C Objects and Messages

say id*. It is defined to mean “an object pointer,” plain and simple, with no further
specification. Thus, every instance reference is also an id.

Use of the id type causes the compiler to stop worrying about the relationship between
object types and messages. The compiler can’t know anything about what the object
will really be, so it throws up its hands and doesn’t warn about anything. Moreover,
any object value can be assigned or typecast to an id, and vice versa. The notion of
assignment includes parameter passing. So you can pass a value typed as an id as an
argument where a parameter of some particular object type is expected, and you can
pass any object as an argument where a parameter of type id is expected. (I like to think
of an id as analogous to both type AB blood and type O blood: it is both a universal
recipient and a universal donor.) So, for example:

NSString* s = @"Hello, world!";
id unknown = s;
[unknown rockTheCasbah];

The second line is legal, because any object value can be assigned to an id. The third
line doesn’t generate any compiler warning, because any message can be sent to an
id. (Of course the program will still crash when it actually runs and unknown turns out
to be an NSString and incapable of receiving of the rockTheCasbah message.)

That trick works even under ARC, with one caveat. ARC is willing to let that code
compile — but only if a matching rockTheCasbah method is defined somewhere in your
code (even if it isn’t an NSString method). If there’s no such method, ARC will stop
you with a different error: “No known instance method for selector ‘rockTheCasbah’.”
This is another way of saying the same thing the non-ARC compiler said earlier: “I
know of no instance method rockTheCasbah, so I can’t check its signature against the
return type and arguments you’re actually using.” But instead of implicitly adding, “So
I’ll just make some loose assumptions and let it pass,” ARC is stricter. After all, even
without knowing what class unknown will turn out to be when the program runs, ARC
can be pretty sure that that class won’t have a rockTheCasbah method, because no known
class has a rockTheCasbah method. So ARC, like a good guardian, continues to bar the
way.

If, however, a matching rockTheCasbah method is defined somewhere in your code, even
though it isn’t an NSString method, ARC now takes its hands off the tiller entirely, and
permits the program to compile and run without warning. You are now sending a
message to an id, and an id can legally receive any message. If you crash at runtime,
that’s your problem; ARC can’t save you from yourself.

If an id’s ability to receive any message reminds you of nil, it should. I have already said
that nil is a form of zero; I can now specify what form of zero it is. It’s zero cast as an
id. Of course, it still makes a difference at runtime whether an id is nil or something
else; sending a message to nil won’t crash the program, but sending an unknown mes-
sage to an actual object will.

Typecasting and the id Type | 57

Thus, id is a device for turning off the compiler’s type checking altogether. Concerns
about what type an object is are postponed until the program is actually running. All
the compiler can do is intelligently analyze your code to see if you might be making a
mistake that could matter at runtime. Using id turns off this part of the compiler’s
intelligence and leaves you to your own devices.

I do not recommend that you make extensive use of id to live in a world of pure dy-
namism. The compiler is your friend; you should let it use what intelligence it has to
catch mistakes in your code. Thus, I almost never declare a variable or parameter as an
id. I want my object types to be specific, so that the compiler can help check my code.

On the other hand, the Cocoa API does make frequent use of id, because it has to. For
example, consider the NSArray class, which is the object-based version of an array. In
pure C, you have to declare what type of thing lives in an array; for example, you could
have “an array of int.” In Objective-C, using an NSArray, you can’t do that. Every
NSArray is an array of id, meaning that every element of the array can be of any object
type. You can put a specific type of object into an NSArray because any specific type
of object can be assigned to an id (id is the universal recipient). You can get any specific
type of object back out of an NSArray because an id can be assigned to any specific
type of object (id is the universal donor).

So, for example, NSArray’s lastObject method is defined as returning an id. So, given
an NSArray arr, I can fetch its last element like this:

id unknown = [arr lastObject];

However, after that code, unknown can now be sent any message at all, and we are
dispensing with the compiler’s type checking. Therefore, if I happen to know what type
of object an array element is, I always assign or cast it to that type. For example, let’s
say I happen to know that arr contains nothing but NSString instances (because I put
them there in the first place). Then I will say:

NSString* s = [arr lastObject];

The compiler doesn’t complain, because an id can be assigned to any specific type of
object (id is the universal donor). Moreover, from here on in, the compiler regards s
as an NSString, and uses its type checking abilities to make sure I don’t send s any non-
NSString messages, which is just what I wanted. And I didn’t lie to the compiler; at
runtime, s really is an NSString, so everything is fine.

The compiler’s type checking is called static typing, as opposed to the dynamic behavior
that takes place when the program actually runs. What I’m saying here, then, is that I
prefer to take advantage of static typing as much as possible.

The Cocoa API will sometimes return an id from a method call where you might not
expect it. It’s good to be conscious of this, because otherwise the compiler can mislead
you into thinking you’re doing something safe when you’re not. For example, consider
this code:

UIColor* c = [NSString string];

58 | Chapter 3: Objective-C Objects and Messages

This is clearly a mistake — you’re assigning an NSString to a UIColor variable, which
is likely to lead to a crash later on — but the compiler is silent. Why doesn’t the compiler
warn here? It’s because the NSString string class method is declared like this:

+ (id)string

The string method returns an NSString, but its return value is typed as an id. An id
can be assigned where any object type is expected, so the compiler doesn’t complain
when it’s assigned to a UIColor variable. This fact is a common source of programmer
mistakes (especially if the programmer is me).

Earlier, I said that it is illegal for the same class to define methods of the same type
(class method or instance method) with the same name but different signatures. But I
did not say what happens when two different classes declare conflicting signatures for
the same method name. This is another case in which it matters whether you’re using
static or dynamic typing. If you’re using static typing — that is, the type of the object
receiving the message is specified — there’s no problem, because there’s no doubt
which method is being called (it’s the one in that object’s class). But if you’re using
dynamic typing, where the object receiving the message is an id, you might get a warn-
ing from the compiler; and if you’re using ARC, you’ll get a downright error: “Multiple
methods named ‘rockTheCasbah’ found with mismatched result, parameter type or
attributes.” This is another reason why method names are so verbose: it’s in order to
make each method name unique, preventing two different classes from declaring con-
flicting signatures for the same method.

Accidentally defining your own method with the same name as an ex-
isting Cocoa method can cause mysterious problems. For example, in
a recent online query, a programmer was confused because the compiler
complained that his call to initWithObjects: lacked a nil terminator,
even though his initWithObjects: didn’t need a nil terminator. No, his
initWithObjects: didn’t, but Cocoa’s did, and the compiler couldn’t
distinguish them because this message was being sent to an id. He
should have picked a different name.

Messages as Data Type
Objective-C is so dynamic that it doesn’t have to know until runtime what message to
send to an object or what object to send it to. Certain important methods actually accept
both pieces of information as parameters. For example, consider this method declara-
tion from Cocoa’s NSNotificationCenter class:

- (void)addObserver:(id)notificationObserver selector:(SEL)notificationSelector
 name:(NSString *)notificationName object:(id)notificationSender

We’ll discuss later what this method does (when we talk about notifications in Chap-
ter 11), but the important thing to understand here is that it constitutes an instruction
to send a certain message to a certain object at some later, appropriate time. For ex-

Messages as Data Type | 59

ample, our purpose in calling this method might be to arrange to have the message
tickleMeElmo: sent at some later, appropriate time to the object myObject.

So let’s consider how we might actually make this method call. The object to which
the message will be sent is here called notificationObserver, and is typed as an id
(making it possible to specify any type of object to send the message to). So, for the
notificationObserver parameter, we’re going to pass myObject. The message itself is
the notificationSelector parameter, which has a special data type, SEL (for “selector,”
the technical term for a message name). The question now is how to express the message
name tickleMeElmo:.

You can’t just put tickleMeElmo: as a bare term; that doesn’t work syntactically. You
might think you could express it as an NSString, @"tickleMeElmo:", but surprisingly,
that doesn’t work either. It turns out that the correct way to do it is like this:

@selector(tickleMeElmo:)

The term @selector() is a directive to the compiler, telling it that what’s in parentheses
is a message name. Notice that what’s in parentheses is not an NSString; it’s the bare
message name. And because it is the name, it must have no spaces and must include
any colons that are part of the message name.

So the rule is extremely easy: when a SEL is expected, you’ll usually pass a @selector
expression. Failure to get this syntax right, however, is a common beginner error. No-
tice also that this syntax is an invitation to make a typing mistake, especially because
there is no checking by the compiler. If myObject implements a tickleMeElmo: method
and I accidentally type @selector(tickleMeElmo), forgetting the colon or making any
other mistake in specifying the message name, there is no compiler error; the problem
won’t be discovered until the program runs and something bad happens. (In this case,
if the tickleMeElmo message without the colon is ever sent to myObject, the app will
probably crash with an unrecognized selector exception.)

C Functions
Although your code will certainly call many Objective-C methods, it will also probably
call quite a few C functions. For example, I mentioned in Chapter 1 that the usual way
of initializing a CGPoint based on its x and y values is to call CGPointMake, which is
declared like this:

CGPoint CGPointMake (
 CGFloat x,
 CGFloat y
);

Make certain that you can see at a glance that this is a C function, not an Objective-C
method, and be sure you understand the difference in the calling syntax. To call an
Objective-C method, you send a message to an object, in square brackets, with each

60 | Chapter 3: Objective-C Objects and Messages

argument following a colon in the method’s name; to call a C function, you use the
function’s name followed by parentheses containing the arguments.

You might even have reason to write your own C functions as part of a class, instead
of writing a method. A C function has lower overhead than a full-fledged method; so
even though it lacks the object-oriented abilities of a method, it is sometimes useful to
write one, as when some utility calculation must be called rapidly and frequently. Also,
once in a while you might encounter a Cocoa method or function that requires you to
supply a C function as a “callback.”

An example is the NSArray method sortedArrayUsingFunction:context:. The first pa-
rameter is typed like this:

NSInteger (*)(id, id, void *)

That expression denotes, in the rather tricky C syntax used for these things, a pointer
to a function that takes three parameters and returns an NSInteger. The three param-
eters of the function are an id, an id, and a pointer-to-void (which means any C pointer).
The address operator (see Chapter 1) can be used to obtain a pointer to a C function.
So to call sortedArrayUsingFunction:context: you’d need to write a C function that
meets this description, and use its name, preceded by an ampersand, as the first argu-
ment.

To illustrate, I’ll write a “callback” function to sort an NSArray of NSStrings on the last
character of each string. (This would be an odd thing to do, but it’s only an example!)
The NSInteger returned by the function has a special meaning: it indicates whether the
first parameter is to be considered less than, equal to, or larger than the second. I’ll
obtain it by calling the NSString compare: method, which returns an NSInteger with
that same meaning. Example 3-1 defines the function and shows how we’d call sorted-
ArrayUsingFunction:context: with that function as our callback (assume that arr is an
NSArray of strings).

Example 3-1. Using a pointer to a callback function

NSInteger sortByLastCharacter(id string1, id string2, void* context) {
 NSString* s1 = (NSString*) string1;
 NSString* s2 = (NSString*) string2;
 NSString* string1end = [s1 substringFromIndex:[s1 length] - 1];
 NSString* string2end = [s2 substringFromIndex:[s2 length] - 1];
 return [string1end compare:string2end];
}

NSArray* arr2 = [arr sortedArrayUsingFunction:&sortByLastCharacter context:NULL];

(NULL is the C equivalent of nil, a pointer to nothing; where nil is zero typed as id,
NULL is zero typed as void*. The context argument is expected to be a void*, which
is a C value, so I’ve supplied NULL rather than nil. In fact, nil would have worked —
the two are to some extent implicitly interchangeable — but they are not identical, so

C Functions | 61

it’s a good idea to try to keep them straight. For one thing, you can’t send a message
to NULL.)

CFTypeRefs
Many Objective-C objects have lower-level C counterparts, along with C functions for
manipulating them. For example, besides the Objective-C NSString, there is also some-
thing called a CFString; the “CF” stands for “Core Foundation,” which is a lower-level
C-based API. A CFString is an opaque C struct (“opaque” means that the elements
constituting this struct are kept secret, and that you should operate on a CFString only
by means of appropriate functions). As with an NSString or any other object, in your
code you’ll typically refer to a CFString by way of a C pointer; the pointer to a CFString
has a type name, CFStringRef (a “reference to a CFString,” evidently). You work with
a CFString in pure C, by calling functions.

You might, on occasion, actually have to work with a Core Foundation type even when
a corresponding object type exists. For example, you might find that NSString, for all
its power, fails to implement a needed piece of functionality, which is in fact available
for a CFString. Luckily, an NSString (a value typed as NSString*) and a CFString (a
value typed as CFStringRef) are interchangeable: you can use one where the other is
expected, though you will have to typecast in order to quiet the worries of the compiler.
The documentation describes this interchangeability by saying that NSString and
CFString are “toll-free bridged” to one another.

To illustrate, I’ll use a CFString to convert an NSString representing an integer to that
integer (this use of CFString is unnecessary, and is just by way of demonstrating the
syntax; NSString has an intValue method):

NSString* answer = @"42";
int ans = CFStringGetIntValue((CFStringRef)answer); // non-ARC

The typecast prevents the compiler from complaining, and works because NSString is
toll-free bridged to CFString — in effect, behind the scenes, an NSString is a CFString.

Under ARC, that code won’t compile unless you supply a little more information. ARC,
as we’ll see in Chapter 12, is about memory management; but ARC manages only
Objective-C objects, not their C counterparts. So although ARC manages the memory
for an NSString, it leaves memory management for a CFStringRef up to you; and in
order to compile that code, it needs you to show it that you understand the memory
management status of this value as it crosses the toll-free bridge. You do so like this:

NSString* answer = @"42";
int ans = CFStringGetIntValue((__bridge CFStringRef)answer); // ARC

The extra qualifier __bridge means: “Don’t worry, ARC, I know I’m crossing the toll-
free bridge, and I assure you that this has no implications for memory management.”
On the other hand, there are situations where crossing the toll-free bridge does have

62 | Chapter 3: Objective-C Objects and Messages

implications for memory management, and you may rest assured that I’ll discuss them
in Chapter 12.

The pointer-to-struct C data types, whose name typically ends in “Ref”, may be referred
to collectively as CFTypeRef, which is actually just the generic pointer-to-void. Thus,
crossing the toll-free bridge may usefully be thought of as a cast between an object
pointer and a generic pointer — that is, in general terms, from id to void* or from
void* to id. Even where there is no toll-free bridging between specific types (as there is
with NSString and CFString), there is always bridging at the top of the hierarchy, so to
speak, between NSObject (the base object class, as explained in Chapter 4) and
CFTypeRef.

It is sometimes necessary to assign a CFTypeRef to an id variable or
parameter. For example, a CALayer’s setContents: method (Chap-
ter 16) expects an id parameter, but the actual value must be a CGImage-
Ref. This is legal, because a pointer is just a pointer, but the compiler
will complain unless you also typecast to an id, along with a __bridge
qualifier if you’re using ARC.

Blocks
A block is an extension to the C language, introduced in Mac OS X 10.6 and available
in iOS 4.0 or later. It’s a way of bundling up some code and handing off that entire
bundle as an argument to a C function or Objective-C method. This is similar to what
we did in Example 3-1, handing off a pointer to a function as an argument, but instead
we’re handing off the code itself. The latter has some major advantages over the former,
which I’ll discuss in a moment.

As an example, I’ll rewrite Example 3-1 to use a block instead of a function pointer.
Instead of calling sortedArrayUsingFunction:context:, I’ll call sortedArrayUsing-
Comparator:, which takes a block as its parameter. The block is typed like this:

NSComparisonResult (^)(id obj1, id obj2)

That’s similar to the syntax for specifying the type of a pointer to a function, but a caret
character is used instead of an asterisk character. So this means a block that takes two
id parameters and returns an NSComparisonResult (which is merely an NSInteger,
with just the same meaning as in Example 3-1). We can define the block and hand it
off as the argument to sortedArrayUsingComparator: all in a single move, as in Exam-
ple 3-2.

Blocks | 63

Example 3-2. Using a block instead of a callback function

NSArray* arr2 = [arr sortedArrayUsingComparator: ^(id obj1, id obj2) {
 NSString* s1 = (NSString*) obj1;
 NSString* s2 = (NSString*) obj2;
 NSString* string1end = [s1 substringFromIndex:[s1 length] - 1];
 NSString* string2end = [s2 substringFromIndex:[s2 length] - 1];
 return [string1end compare:string2end];
}];

The syntax of the inline block definition is:

^ (id obj1, id obj2) {

First, the caret character.

Then, parentheses containing the parameters.

Finally, curly braces containing the block’s content.

Thanks to the block, as you can see, we’ve combined the definition of the callback
function with its use. Of course, you might object that this means the callback isn’t
reusable; if we had two calls to sortedArrayUsingComparator: using the same callback,
we’d have to write out the callback in full twice. To avoid such repetition, or simply
for clarity, a block can be assigned to a variable:

NSComparisonResult (^sortByLastCharacter)(id, id) = ^(id obj1, id obj2) {
 NSString* s1 = (NSString*) obj1;
 NSString* s2 = (NSString*) obj2;
 NSString* string1end = [s1 substringFromIndex:[s1 length] - 1];
 NSString* string2end = [s2 substringFromIndex:[s2 length] - 1];
 return [string1end compare:string2end];
};
NSArray* arr2 = [arr sortedArrayUsingComparator: sortByLastCharacter];
NSArray* arr4 = [arr3 sortedArrayUsingComparator: sortByLastCharacter];

The return type in an inline block definition is usually omitted. If in-
cluded, it follows the caret character, not in parentheses. If omitted, you
may have to use typecasting in the return line to make the returned type
match the expected type. For a complete technical syntax specification
for blocks, see http://clang.llvm.org/docs/BlockLanguageSpec.txt.

The power of blocks really starts to emerge when they are used instead of a selector
name. In an example earlier in this chapter, we talked about how you could pass
@selector(tickleMeElmo:) as the second argument to addObserver:selector:name:
object: as a way of saying, “When the time comes, please call my tickleMeElmo:
method.” We also talked about how error-prone this syntax was: make a typing error,
and your tickleMeElmo: method mysteriously won’t be called. Moreover, such code is
hard to maintain; there’s the tickleMeElmo: method sitting there, completely separate
from the code that calls addObserver:selector:name:object:, yet existing only to specify
what should happen at the later time when our message arrives. It might well be clearer

64 | Chapter 3: Objective-C Objects and Messages

http://clang.llvm.org/docs/BlockLanguageSpec.txt

and more compact to call addObserverForName:object:queue:usingBlock: and specify
there and then as a block what should happen at message time, with no separate method
callback. (I’ll talk about this problem again in Chapter 11.)

Variables in scope at the point where a block is defined keep their value within the
block at that moment, even though the block may be executed at some later moment.
(Technically, we say that a block is a closure.) It is this aspect of blocks that makes them
useful for specifying functionality to be executed at some later time, or even in some
other thread.

Here’s an example that will appear in Chapter 17. It will make perfect sense to you in
its proper context, so I won’t explain it fully now; but the point is that outside any
blocks we have a UIView object v in scope, along with a CGPoint p and another CGPoint
pOrig, and we can use the two CGPoint values to mutate v inside two blocks (called
anim and after), even though these blocks won’t be executed until some indeterminate
moment in the future, at the start and end of an animation:

CGPoint p = v.center;
CGPoint pOrig = p;
p.x += 100;
void (^anim) (void) = ^{
 v.center = p;
};
void (^after) (BOOL) = ^(BOOL f) {
 v.center = pOrig;
};
NSUInteger opts = UIViewAnimationOptionAutoreverse;
[UIView animateWithDuration:1 delay:0 options:opts
 animations:anim completion:after];

If a variable outside a block is in scope within the block, and if that variable is an object
reference, messages can be sent to it and the object may be mutated, as we did with the
UIView object v in that example. But if we try, inside a block, to assign directly to a
variable outside the block, we can’t do it; the variable is protected, and the compiler
will stop us (“variable is not assignable”):

CGPoint p;
void (^aBlock) (void) = ^{
 p = CGPointMake(1,2); // error
};

On rare occasions, you may need to turn off this protection; you can do so by declaring
the variable using the __block qualifier. Here’s an example that will appear in Chap-
ter 35. We cycle through an array until we find the value we want; when we find it, we
set a variable (dir) to that value. That variable is declared outside the block, because
we intend to use its value after executing the block; therefore we qualify the variable’s
declaration with __block, so that we can assign to it from inside the block:

CGFloat h = newHeading.magneticHeading;
__block NSString* dir = @"N";
NSArray* cards = [NSArray arrayWithObjects:
 @"N", @"NE", @"E", @"SE",

Blocks | 65

 @"S", @"SW", @"W", @"NW",
 nil];
[cards enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 if (h < 45.0/2.0 + 45*idx) {
 dir = obj;
 *stop = YES;
 }
}];
// now we can use dir

(Note also the assignment to a dereferenced pointer-to-BOOL. When the method to
which we are submitting a block is going to call the block repeatedly as the equivalent
of a for loop, we can’t abort the loop with a break statement, because this isn’t a real
for loop. So the method will commonly specify that our block should take a pointer-
to-BOOL parameter; the idea is that we can set this BOOL by indirection to YES, and
the method will notice this as it prepares to call the block for the next iteration, and
will stop instead.)

Another use of the __block qualifier is to allow a block to capture the value of a variable
that is set by the very same method call that takes the block as an argument. Here’s an
example that will appear in Chapter 38:

__block UIBackgroundTaskIdentifier bti = [[UIApplication sharedApplication]
 beginBackgroundTaskWithExpirationHandler: ^{
 [[UIApplication sharedApplication] endBackgroundTask:bti];
}];

The method beginBackgroundTaskWithExpirationHandler: takes a block and returns a
UIBackgroundTaskIdentifier, which is really just an integer. We want to use that integer
inside the block. If we don’t declare the integer variable with the __block qualifier, the
block will capture the variable’s value at the time the block is defined, which is before
the beginBackgroundTaskWithExpirationHandler: method call is actually executed. Af-
ter the method call is executed, the variable is set to its true value, the value we want
to use inside the block; because we declared the variable with __block, the block has
access to that true value.

Note that this trick works only because the block is being stored (by the receiver of the
beginBackgroundTaskWithExpirationHandler: message) for later execution. If the block
were to be executed right now, before returning from the beginBackgroundTaskWith-
ExpirationHandler: call, the result of that call would not yet have been set.

66 | Chapter 3: Objective-C Objects and Messages

CHAPTER 4

Objective-C Classes

This chapter describes some linguistic and structural features of Objective-C having to
do with classes; in the next chapter, we’ll do the same for instances.

Class and Superclass
In Objective-C, as in many other object-oriented languages, a mechanism is provided
for specifying a relationship between two classes: they can be subclass and superclass
of one another. For example, we might have a class Quadruped and a class Dog and
make Quadruped the superclass of Dog. A class may have many subclasses, but a class
can have only one immediate superclass. (I say “immediate” because that superclass
might itself have a superclass, and so on in a rising chain, until we get to the ultimate
superclass, called the base class, or root class.)

Because a class can have many subclasses but only one superclass, we can imagine all
classes in a program as being arranged in a tree that splits into branches, such that each
branch splits into smaller branches, each smaller branch splits into even smaller
branches, and so on. Or we can imagine all the classes arranged in a hierarchy, such as
might be displayed in an outline, with a single ultimate superclass, then all of its im-
mediate subclasses in the next level below that, then each of their immediate subclasses
in the next level below that, and so on. Indeed, before you write a line of your own
code, Cocoa already consists of exactly such a vast repertoire of classes arranged in
exactly such a hierarchical relationship. Xcode will actually display this relationship
for you: choose View → Navigators → Show Symbol Navigator and click Hierarchical,
with the first and third icons in the filter bar darkened (Figure 4-1).

The reason for the class–subclass relationship is to allow related classes to share func-
tionality. Suppose, for example, we have a Dog class and a Cat class, and we are con-
sidering defining a walk method for both of them. We might reason that both a dog
and a cat walk in pretty much the same way, by virtue of both being quadrupeds. So it
might make sense to define walk as a method of the Quadruped class, and make both
Dog and Cat subclasses of Quadruped. The result is that both Dog and Cat can be sent

67

the walk message, even if neither of them has a walk method, because each of them has
a superclass that does have a walk method. We say that a subclass inherits the methods
of its superclass.

The purpose of subclassing is not merely so that a class can inherit another class’s
methods; it’s so that it can define methods of its own. Typically, a subclass consists of
the methods inherited from its superclass and then some. If Dog has no methods of its
own, it is hard to see why it should exist separately from Quadruped. But if a Dog
knows how to do something that not every Quadruped knows how to do — let’s say,
bark — then it makes sense as a separate class. If we define bark in the Dog class, and
walk in the Quadruped class, and make Dog a subclass of Quadruped, then Dog inherits
the ability to walk from the Quadruped class and also knows how to bark.

It is also permitted for a subclass to redefine a method inherited from its superclass.
For example, perhaps some dogs bark differently from other dogs. We might have a
class NoisyDog, for instance, that is a subclass of Dog. Dog defines bark, but NoisyDog
also defines bark, and defines it differently from how Dog defines it. This is called
overriding. The very natural rule is that if a subclass overrides a method inherited from
its superclass, then when the corresponding message is sent to an instance of that sub-
class, it is the subclass’s version of that method that is called.

Figure 4-1. Browsing the built-in class hierarchy in Xcode 4

68 | Chapter 4: Objective-C Classes

Interface and Implementation
As you already know from Chapter 2, all your code is going to go into some class or
other. So the first thing we must do is specify what is meant by putting code “into a
class” in Objective-C. How does Objective-C say, linguistically and structurally, “This
is the code for such-and-such a class”?

To write the code for a class, you must actually provide two chunks or sections of code,
called the interface and the implementation. Here’s the complete minimum code re-
quired to define a class called MyClass. This class is so minimal that it doesn’t even
have any methods of its own:

@interface MyClass
@end
@implementation MyClass
@end

The @interface and @implementation compiler directives show the compiler where the
interface and implementation sections begin for the class that’s being defined, MyClass;
the corresponding @end lines show where each of those sections end.

In real life, the implementation section is where any methods for MyClass would be
defined. So here’s a class that’s actually defined to do something:

@interface MyClass
@end
@implementation MyClass
- (NSString*) sayGoodnightGracie {
 return @"Good night, Gracie!";
}
@end

Observe how a method is defined. The first line is just like the method declaration,
stating the type of method (class or instance), the type of value returned, and the name
of the method along with the types of any parameters and local names for those pa-
rameters (see Chapter 3). Then come curly braces containing the code to be executed
when the method is called, just as with a C function (see Chapter 1).

However, this class is still pretty much useless, because it can’t be instantiated. In
Cocoa, knowledge of how to be instantiated, plus how to do a number of other things
that any class should know how to do, resides in the base class, which is the NSObject
class. Therefore, all Cocoa classes must be based ultimately on the NSObject class, by
declaring as the superclass for your class either NSObject or some other class that
inherits from NSObject (as just about any other Cocoa class does). The syntax for this
declaration is a colon followed by the superclass name in the @interface line, like this:

Interface and Implementation | 69

@interface MyClass : NSObject
@end
@implementation MyClass
- (NSString*) sayGoodnightGracie {
 return @"Good night, Gracie!";
}
@end

NSObject is not the only Cocoa base class. It used to be, but there is
now another, NSProxy. NSProxy is used only in very special circum-
stances and is not discussed in this book. If you have no reason for your
class to inherit from any other class, make it inherit from NSObject.

In its fullest form, the interface section might contain some more material. In particular,
if we want to declare our methods, those method declarations go into the interface
section. A method declaration matches the name and signature for the method defini-
tion and ends with a semicolon (required):

@interface MyClass : NSObject
- (NSString*) sayGoodnightGracie;
@end
@implementation MyClass
- (NSString*) sayGoodnightGracie {
 return @"Good night, Gracie!";
}
@end

There are also instance variables to be considered. If our class is to have any instance
variables (other than those inherited from its superclass), they must be declared (al-
though, as we shall see in Chapter 5 and Chapter 12, it is possible in some circumstances
to skip explicit declaration of a publicly accessible instance variable and declare it im-
plicitly instead). Before iOS 5.0, such explicit declaration had to take place in curly
braces at the start of the interface section:

@interface MyClass : NSObject {
 // instance variable declarations go here
}
- (NSString*) sayGoodnightGracie;
@end
@implementation MyClass
- (NSString*) sayGoodnightGracie {
 return @"Good night, Gracie!";
}
@end

However, starting in iOS 5.0, it is permitted to put instance variable declarations in
curly braces at the start of the implementation section instead. This is a more logical
place for variable declarations to go, because, as I’ll explain in the next section, the
interface section is usually visible to other classes, but there is no reason why instance

70 | Chapter 4: Objective-C Classes

variables need to be visible to other classes, as they are usually private. Therefore, I
prefer the new style, and will use it consistently throughout this book:

@interface MyClass : NSObject
- (NSString*) sayGoodnightGracie;
@end
@implementation MyClass {
 // instance variable declarations go here (starting in iOS 5)
}
- (NSString*) sayGoodnightGracie {
 return @"Good night, Gracie!";
}
@end

I’ll go into more detail about instance variables in the next chapter.

Header File and Implementation File
It’s perfectly possible for the interface and implementation of a class to appear in the
same file, or for multiple classes to be defined in a single file, but this is not the usual
convention. The usual convention is one class, two files: one file containing the interface
section, the other file containing the implementation section. For example, let’s sup-
pose you are defining a class MyClass. Then you have two files, MyClass.h and My-
Class.m. (The file naming is not magical or necessary; it’s just part of the convention.
The file extensions are pretty much necessary, though, because the build process and
Xcode itself rely on them.) The interface section goes into MyClass.h, which is called
the header file. The implementation section goes into MyClass.m, which is called the
implementation file. This separation into two files is not inconvenient, because Xcode,
expecting you to follow this convention, makes it easy to jump from editing a .h file to
the corresponding .m file and vice versa (Navigate → Jump to Next Counterpart). Fi-
nally, the implementation file imports the header file (see Chapter 1 on the #import
directive); this effectively unites the full class definition, making the definition legal
even though it is split between two files.

With this arrangement in place, further imports become easy to configure. The header
file imports the basic header file for the entire Cocoa framework; in the case of an iOS
program, that’s UIKit.h (again, see Chapter 1). There is no need for the implementation
file to import UIKit.h, because the header file imports it, and the implementation file
imports the header file. If a class needs to know about another class that isn’t already
imported in this way, its implementation file imports that class’s header file. Exam-
ple 4-1 summarizes this conventional schema.

Example 4-1. Conventional schema for defining a class

// [MyClass.h]

#import <UIKit/UIKit.h>

@interface MyClass : NSObject

Header File and Implementation File | 71

- (NSString*) sayGoodnightGracie;
@end

// [MyClass.m]

#import "MyClass.h"
#import "OtherClass.h"

@implementation MyClass {
 // instance variable declarations go here
}
- (NSString*) sayGoodnightGracie {
 return @"Good night, Gracie!";
}
@end

The result of this arrangement is that everything has the right visibility. No file ever
imports an implementation file; that way, what’s inside a class’s implementation file is
private to that class. If something about a class needs to be public, such as a method
that you want other classes to be able to call, it is declared in the header file, and other
classes import that header file in their implementation files (as I do with Other-
Class.h in Example 4-1); this keeps the chain of imports clear and simple.

A header file is also an appropriate place to define constants. In Chapter 1, for example,
I talked about the problem of mistyping the name of a notification or dictionary key,
which is a literal NSString, and how you could solve this problem by defining a name
for such a string:

#define MYKEY @"mykey"

The question then arises of where to put that definition. If only one class needs to know
about it, the definition can go near the start of its implementation file (it doesn’t need
to be inside the implementation section). But if multiple classes need to know about
this name, then a header file is an appropriate location; every implementation file that
imports this header file will acquire the definition, and you can use the name MYKEY in
that implementation file.

A slight problem arises when a header file needs to mention one of your other classes.
Suppose, for example, that MyClass has a public method that takes or returns an
instance of MyOtherClass. So MyClass.h needs to speak of MyOtherClass*. But My-
Class.h does not import MyOtherClass.h, so MyClass.h doesn’t know about MyOther-
Class, and the compiler will complain. To silence the compiler without violating the
arrangement of imports (by importing MyOtherClass.h in the header file MyClass.h),
use the @class directive. The word @class is followed by a comma-separated list of class
names, ending with a semicolon. So MyClass.h might start out like this:

#import <UIKit/UIKit.h>
@class MyOtherClass;

Then the interface section would follow, as before. The @class directive simply tells the
compiler, “Don’t worry, MyOtherClass really is the name of a class.” That’s all the

72 | Chapter 4: Objective-C Classes

compiler needs to know in order to permit the mention of the type MyOtherClass* in
the header file.

If, on the other hand, MyClass is to be a subclass of some other class, then MyClass’s
header file must import that superclass’s header file (or some other header file that
imports that superclass’s header file); otherwise, it would be unable to speak of that
superclass. For instance, in Example 4-1, MyClass.h imports UIKit.h; thus it knows
about NSObject, so that MyClass can declare NSObject as its superclass. Similarly, if
a class wants to declare that it adopts a certain protocol, its header file must import the
file that defines the protocol; otherwise, it would be unable to speak of that protocol
(Chapter 10).

The Global Namespace

When defining classes, choose your class names wisely to prevent name
collisions. Objective-C has no namespaces; there’s a single vast name-
space containing all names. You don’t want your own class name (or,
for that matter, any other top-level constant name) to match a name
defined in Cocoa. Instead of namespaces, there’s a convention: each
Cocoa framework prefixes its names with a particular pair of capital
letters (NSString and NSArray, CGFloat and CGRect, and so on). Apple
suggests that you use a prefix of your own as well; in fact, when you
create a new project in Xcode, you’re offered an opportunity to specify
a prefix, which will appear before the automatically created class names.
Don’t use any of Apple’s prefixes. Nothing limits your prefix to two
letters, or requires that both letters be uppercase. In fact, because all of
Apple’s own prefixes are two uppercase letters, “My” as a prefix is safe.

Class Methods
Class methods are useful in general for two main purposes:

Cocoa’s Own Header Files
The Cocoa classes themselves also follow the convention described in Example 4-1:
each class is separated into a header file (containing the interface) and an implemen-
tation file. However, the Cocoa class implementation files are not visible to you. This
is one of the major limitations of Cocoa; unlike many programming frameworks, you
can’t see the source code for Cocoa — it’s secret. To figure out how Cocoa works, you
have to rely purely on the documentation (and experimentation). You can, however,
see the Cocoa header files, and indeed you are expected to look at them, as they can
be a useful form of documentation (see Chapter 8).

Class Methods | 73

Factory methods
A factory method is a method that dispenses an instance of that class. For example,
the UIFont class has a class method fontWithName:size:. You supply a name and
a size, and the UIFont class hands you back a UIFont instance corresponding to a
font with that name and size.

Global utility methods
Classes are global (visible from all code, Chapter 13), so a class is a good place to
put a utility method that anyone might need to call and that doesn’t require the
overhead of an instance. For example, the UIFont class has a class method family-
Names. It returns an array of strings (that is, an NSArray of NSString instances)
consisting of the names of the font families installed on this device. Because this
method has to do with fonts, the UIFont class is as good a place as any to put it.

Most methods that you write will be instance methods, but now and then you might
write a class method. When you do, your purpose will probably be similar to those
examples.

The Secret Life of Classes
A class method may be called by sending a message directly to the name of a class. For
example, the familyNames class method of UIFont that I mentioned a moment ago might
be called like this:

NSArray* fams = [UIFont familyNames];

Clearly, this is possible because a class is an object (Chapter 2), and the name of the
class here represents that object.

You don’t have to do anything to create a class object. One class object for every class
your program defines is created for you automatically as the program starts up. (This
includes the classes your program imports, so there’s a MyClass class object because
you defined MyClass, and there’s an NSString class object because you imported UI-
Kit.h and the whole Cocoa framework.) It is to this class object that you’re referring
when you send a message to the name of the class.

Your ability to send a message directly to the bare name of a class is due to a kind of
syntactic shorthand. You can use the bare class name only in two ways (and we already
know about both of them):

To send a message to
In the expression [UIFont familyNames], the bare name UIFont is sent the family-
Names message.

To specify an instance type
In the expression NSString*, the bare name NSString is followed by an asterisk to
signify a pointer to an instance of this class.

74 | Chapter 4: Objective-C Classes

Otherwise, to speak of a class object, you need to obtain that object formally. One way
to do this is to send the class message to a class or instance. For example, [My-
Class class] returns the actual class object. Some built-in Cocoa methods expect a
class object parameter (whose type is described as Class). To supply this as an argu-
ment, you’d need to obtain a class object formally. Take, for example, introspection
on an object to inquire what its class is. The isKindOfClass: instance method is declared
like this:

- (BOOL)isKindOfClass:(Class)aClass

So that means you could call it like this:

if ([someObject isKindOfClass: [MyClass class]]) // ...

A class object is not an instance, but it is definitely a full-fledged object. Therefore, a
class object can be used wherever an object can be used. For example, it can be assigned
to a variable of type id:

id classObject = [MyClass class];

You could then call a class method by sending a message to that object, because it is
the class object:

id classObject = [MyClass class];
[classObject someClassMethod];

All class objects are also members of the Class class, so you could say this:

Class classObject = [MyClass class];
[classObject someClassMethod];

The Secret Life of Classes | 75

CHAPTER 5

Objective-C Instances

Instances are the heart of the action in an Objective-C program. Most of the methods
you’ll define when creating your own classes will be instance methods; most of the
messages you’ll send in your code will call instance methods. This chapter describes
how instances come into existence and how they work.

How Instances Are Created
Your class objects are created for you automatically as your program starts up, but
instances must be created deliberately as the program runs. The entire question of
where instances come from is thus crucial. Ultimately, every instance comes into exis-
tence in just one way: someone turns to a class and ask that class to instantiate itself.
But there are three different ways in which this can occur: ready-made instances, in-
stantiation from scratch, and nib-based instantiation.

Ready-Made Instances
One way to create an instance is indirectly, by calling code that does the instantiation
for you. You can think of an instance obtained in this indirect manner as a “ready-made
instance.” (That’s my made-up phrase, not an official technical term.) For example,
consider this simple code:

NSString* s2 = [s uppercaseString];

The documentation for the NSString instance method uppercaseString says that it re-
turns an NSString* that is “an uppercased representation of the receiver.” In other
words, you send the uppercaseString message to an NSString, and you get back a
different, newly created NSString. After that line of code, s2 points to an NSString
instance that didn’t exist beforehand.

The NSString produced by the uppercaseString method is a ready-made NSString in-
stance. Your code didn’t say anything about instantiation; it just sent the uppercase-
String message. But clearly someone said something about instantiation, because in-

77

stantiation took place; this is a newly minted NSString instance. That someone is pre-
sumably some code inside the NSString class. But we don’t have to worry about the
details. We are guaranteed of receiving a complete ready-made ready-to-roll NSString,
and that’s all we care about.

Similarly, any class factory method instantiates the class and dispenses the resulting
instance as a ready-made instance. So, for example, the NSString class method string-
WithContentsOfFile:encoding:error: reads a file and produces an NSString represent-
ing its contents. All the work of instantiation has been done for you. You just accept
the resulting string and away you go.

A Cocoa class factory method is likely to have its return value typed as
id. As I mentioned in Chapter 3, this can lead to trouble if you mistak-
enly assign the resulting instance where a different class of object is
expected; the compiler doesn’t complain (because id is the universal
donor) but you can mysteriously crash later when the wrong message is
sent to the instance.

Not every method that returns an instance returns a new instance, of course. For ex-
ample, this is how you ask an array (an NSArray) for its last element:

id last = [myArray lastObject];

The NSArray myArray didn’t create the object that it hands you. That object already
existed; myArray was merely containing it, as it were — it was holding the object, point-
ing to it. Now it’s sharing that object with you, that’s all.

Similarly, many classes dispense one particular object. For example, your app has ex-
actly one instance of the UIApplication class (we call this the singleton UIApplication
instance); to access it, you send the sharedApplication class method to the UIAppli-
cation class:

UIApplication* theApp = [UIApplication sharedApplication];

This singleton instance existed before you asked for it; indeed, it existed before any
code of yours could possibly run. You don’t care how it was brought into being; all you
care is that you can get hold of it when you want it. I’ll talk more about globally available
singleton objects of this kind in Chapter 13.

Instantiation from Scratch
The alternative to requesting a ready-made instance is to tell a class, yourself, directly,
to instantiate itself. There is basically one way to do this: you send a class the alloc
message. The alloc class method is implemented by the NSObject class, the root class
from which all other classes inherit. It causes memory to be set aside for the instance
so that an instance pointer can point to it. (Management of that memory is a separate
issue, discussed in Chapter 12.)

78 | Chapter 5: Objective-C Instances

You must never, never, never call alloc by itself. You must immediately call another
method, an instance method that initializes the newly created instance, placing it into
a known valid state so that it can be sent other messages. Such a method is called an
initializer. Moreover, an initializer returns an instance — usually the same instance,
initialized. Therefore you can, and always should, call alloc and the initializer in the
same line of code. The minimal initializer is init. So the basic pattern, known informally
as “alloc-init,” looks like Example 5-1.

Example 5-1. The basic pattern for instantiation from scratch

SomeClass* aVariable = [[SomeClass alloc] init];

You cannot instantiate from scratch if you do not also know how to initialize, so we
turn immediately to a discussion of initialization.

Initialization

Every class defines (or inherits) at least one initializer. This is an instance method; the
instance has just been created (by calling alloc on the class), and it is to this newly
minted instance that the initializer message must be sent. An initialization message
must be sent to an instance immediately after that instance is created by means of the
alloc message, and it must not be sent to an instance at any other time.

The basic initialization pattern, as shown in Example 5-1, is to nest the alloc call in
the initialization call, assigning the result of the initialization (not the alloc!) to a vari-
able. One reason for this is that if something goes wrong and the instance can’t be
created or initialized, the initializer will return nil; therefore it’s important to capture
the result of the initializer and treat that, not the result of alloc, as the pointer to the
instance.

To help you identify initializers, all initializers are named in a conventional manner.
The convention is that all initializers, and only initializers, begin with the word init.
The ultimate bare-bones initializer is called simply init, and takes no parameters. Other
initializers do take parameters, and usually begin with the phrase initWith followed by
descriptions of their parameters. For example, the NSArray class documentation lists
these methods:

– initWithArray:
– initWithArray:copyItems:
– initWithContentsOfFile:
– initWithContentsOfURL:
– initWithObjects:
– initWithObjects:count:

Let’s try a real example. A particularly easy and generally useful initializer for NSArray
is initWithObjects:. It takes a list of objects; the list must be terminated by nil. In
Chapter 3, we illustrated this by creating an NSArray from three strings, by means of
a class factory method that returned a ready-made instance:

NSArray* pep = [NSArray arrayWithObjects:@"Manny", @"Moe", @"Jack", nil];

How Instances Are Created | 79

Now we’ll do what amounts to exactly the same thing, except that we’ll create the
instance ourselves, from scratch:

NSArray* pep = [[NSArray alloc] initWithObjects:@"Manny", @"Moe", @"Jack", nil];

In that particular case, there exist both a factory method and an initializer that work
from the same set of data. Ultimately, it makes no difference which you use; given the
same arguments, both approaches result in NSArray instances that are indistinguish-
able from one another. It will turn out in the discussion of memory management
(Chapter 12) that there might be a reason to choose instantiation from scratch over
ready-made instances (though not, perhaps, under ARC).

In looking in the documentation for an initializer, don’t forget to look upward through
the class hierarchy. For example, the class documentation for UIWebView lists no
initializers, but UIWebView inherits from UIView, and in UIView’s class documenta-
tion you’ll discover initWithFrame:. Moreover, the init method is defined as an in-
stance method of the NSObject class, so every class inherits it and every newly minted
instance can be sent the init message. Thus it is a given that if a class defines no ini-
tializers of its own, you can initialize an instance of it with init. For example, the
UIResponder class documentation lists no initializers at all (and no factory methods).
So to create a UIResponder instance from scratch, you’d call alloc and init.

In just the single case where init is the initializer you want to call, you
can collapse the successive calls to alloc and init into a call to new. In
other words, [MyClass new] is a synonym for [[MyClass alloc] init].

The designated initializer

If a class does define initializers, one of them may be described in the documentation
as the designated initializer. (There’s nothing about a method’s name that tells you it’s
the designated initializer; you must peruse the documentation to find out.) For exam-
ple, in the UIView class documentation, the initWithFrame: method is described as the
designated initializer. A class that does not define a designated initializer inherits its
designated initializer; the ultimate designated initializer, inherited by all classes without
any other designated initializer anywhere in their superclass chain, is init.

The designated initializer is the initializer on which any other initializers depend, in
this class or any subclasses: ultimately, they must call it. The designated initializer might
have the most parameters, allowing the most instance variables to be set explicitly, with
the other initializers supplying default values for some instance variables, for conve-
nience. Or it might just be the most basic form of initialization. But in any case, it is a
bottleneck through which all other initializers pass. Here are some examples:

• The NSDate class documentation says that initWithTimeIntervalSinceReference-
Date: is the designated initializer, and that initWithTimeIntervalSinceNow: calls it.

80 | Chapter 5: Objective-C Instances

• The UIView class documentation says that initWithFrame: is the designated ini-
tializer. UIView contains no other initializers, but some of its subclasses do.
UIWebView, a UIView subclass, has no initializer, so initWithFrame: is its inher-
ited designated initializer. UIImageView, a UIView subclass, has initializers such
as initWithImage:, but none of them is a designated initializer; so initWithFrame:
is its inherited designated initializer as well, and initWithImage: must call initWith-
Frame:.

Moreover, a class that implements a designated initializer will override the designated
initializer inherited from its superclass. The idea is typically that even the inherited
designated initializer, if called, will call this class’s designated initializer. For example,
UIView overrides the inherited init to call its own designated initializer, initWith-
Frame:, with a value of (CGRect){{0, 0}, {0, 0}}.

Nib-Based Instantiation
The third means of instantiation is through a nib file (or storyboard file). A nib file is
where Xcode lets you “draw” parts of the user interface. Most Xcode projects will
include at least one nib file, which will be built into the app bundle, and will then be
loaded as the app runs. A nib file consists, in a sense, of the names of classes along with
instructions for instantiating and initializing them. When the app runs and a nib file is
loaded, those instructions are carried out — those classes are instantiated and initial-
ized.

For example, suppose you’d like the user to be presented with a view containing a
button whose title is “Howdy.” Xcode lets you arrange this graphically by editing a nib
file: you drag a button from the Object library into the view, place it at a certain position
in the view, and then set its title to “Howdy” (Figure 5-1). In effect, you create a drawing
of what you want the view and its contents to look like.

When the app runs, the nib file loads, and that drawing is turned into reality. To do
this, the drawing is treated as a set of instructions for instantiating objects. The button
that you dragged into the view is treated as a representative of the UIButton class. The

Figure 5-1. Dragging a button into a view

How Instances Are Created | 81

UIButton class is told to instantiate itself, and that instance is then initialized, giving it
the same position you gave it in the drawing (the instance’s frame), the same title you
gave it in the drawing (the instance’s title), and putting it into the window. In effect,
the loading of your nib file is equivalent to this code (assuming that view is a reference
to the view object):

UIButton* b =
 [UIButton buttonWithType:UIButtonTypeRoundedRect]; // factory method, instantiate
[b setTitle:@"Howdy!" forState:UIControlStateNormal]; // set up title
[b setFrame: CGRectMake(100,100,100,35)]; // set up frame
[view addSubview:b]; // place button in view

The fact that nib files are a source of instances, and that those instances are brought
into existence as the nib file is loaded, is a source of confusion to beginners. I’ll discuss
nib files and how they are used to generate instances in much more detail in Chapter 7.

Polymorphism
The compiler, even in the world of static typing, is perfectly happy for you to supply a
subclass instance where a superclass type is declared. To see this, let’s start with the
first line of the previous example:

UIButton* b = [UIButton buttonWithType:UIButtonTypeRoundedRect];

UIButton is a subclass of UIControl, which is a subclass of UIView. So it would be
perfectly legal and acceptable to say this:

UIButton* b = [UIButton buttonWithType:UIButtonTypeRoundedRect];
UIView* v = b;

The variable b is a UIButton instance, but I’m assigning it to a variable declared as a
UIView. That’s legal and acceptable because UIView is an ancestor (up the superclass
chain) of UIButton. Putting it another way, I’m behaving as if a UIButton were a UI-
View, and the compiler accepts this because a UIButton is a UIView.

What’s important when the app runs, however, is not the declared class of a variable,
but the actual class of the object to which that variable points. Even if I assign the
UIButton instance b to a UIView variable v, the object to which the variable v points is
still a UIButton. So I can send it messages appropriate to a UIButton. For example:

UIButton* b = [UIButton buttonWithType:UIButtonTypeRoundedRect];
UIView* v = b;
[v setTitle:@"Howdy!" forState:UIControlStateNormal];

That code will cause the compiler to complain, because UIView doesn’t implement set-
Title:forState:; under ARC, in fact, that code won’t even compile. So I’ll calm the
compiler’s fears by typecasting:

UIButton* b = [UIButton buttonWithType:UIButtonTypeRoundedRect];
UIView* v = b;
[(UIButton*)v setTitle:@"Howdy!" forState:UIControlStateNormal];

82 | Chapter 5: Objective-C Instances

The typecast calms the compiler’s fears, but the important thing is what happens when
the program runs. What happens is that this code works just fine! It works fine not
because I typecast v to a UIButton (typecasting doesn’t magically convert anything to
anything else; it’s just a hint to the compiler), but because v really is a UIButton. So
when the message setTitle:forState: arrives at the object pointed to by v, everything
is fine. (If v had been a UIView but not a UIButton, on the other hand, the program
would have crashed at that moment.)

An object, then, responds to a message sent to it on the basis of what it really is, not
on the basis of anything said about what it is — and what it really is cannot be known
until the program actually runs and the message is actually sent to that object.

Now let’s turn the tables. We called a UIButton a UIView and sent it a UIButton mes-
sage. Now we’re going to call a UIButton a UIButton and send it a UIView message.

What an object really is depends not just upon its class but also upon that class’s
inheritance. A message is acceptable even if an object’s own class doesn’t implement a
corresponding method, provided that the method is implemented somewhere up the
superclass chain. For example, returning again to the same code:

UIButton* b = [UIButton buttonWithType:UIButtonTypeRoundedRect];
[b setFrame: CGRectMake(100,100,100,35)];

This code works fine, too. But you won’t find setFrame: in the documentation for the
UIButton class. That’s because you’re looking in the wrong place. A UIButton is a
UIControl, and a UIControl is a UIView. To find out about setFrame:, look in the
UIView class’s documentation. (Okay, it’s more complicated than that; you won’t find
setFrame: there either. But you will find a term frame which is called a “property,” and
this amounts to the same thing, as I’ll explain later in this chapter.) So the setFrame:
message is sent to a UIButton, but it corresponds to a method defined on a UIView.
Yet it works fine, because a UIButton is a UIView.

A common beginner mistake is to consult the documentation without
following the superclass chain. If you want to know what you can say
to a UIButton, don’t just look in the UIButton class documentation: also
look in the UIControl class documentation, the UIView class docu-
mentation, and so on.

To sum up: we treated a UIButton object as a UIView, yet we were still able to send it
a UIButton message. We treated a UIButton as a UIButton, yet we were still able to
send it a UIView message. What matters when a message is sent to an object is not how
the variable pointing to that object is declared but what class the object really is. What
an object really is depends upon its class, along with that class’s inheritance from the
superclass chain; these facts are innate to the object and are independent of how the
variable pointing to the object presents itself to the world. This independent mainte-
nance of object type integrity is the basis of what is called polymorphism.

Polymorphism | 83

But it is not quite the whole of polymorphism. To understand the whole of polymor-
phism, we must go further into the dynamics of message sending.

The Keyword self
A common situation is that code in an instance method defined in a class must call
another instance method defined within the same class. We have not yet discussed how
to do this. A method is called by sending a message to an object; in this situation, what
object would that be? The answer is supplied by a special keyword, self. Here’s a simple
example:

@implementation MyClass

- (NSString*) greeting {
 return @"Goodnight, Gracie!";
}

- (NSString*) sayGoodnightGracie {
 return [self greeting];
}

@end

When the sayGoodnightGracie message is sent to a MyClass instance, the sayGoodnight-
Gracie method runs. It sends the greeting message to self. As a result, the greeting
instance method is called; it returns the string @"Goodnight, Gracie!", and this same
string is then returned from the sayGoodnightGracie method.

The example seems straightforward enough, and it is. In real life, your code when you
define a class will sometimes consist of a few public instance methods along with lots
of other instance methods on which they rely. The instance methods within this class
will be calling each other constantly. They do this by sending messages to self.

Behind this simple example, though, is a subtle and important mechanism having to
do with the real meaning of the keyword self. The keyword self does not actually
mean “in the same class.” It’s an instance, after all, not a class. What instance? It’s this
same instance. The same as what? The same instance to which the message was sent
that resulted in the keyword self being encountered in the first place.

So let’s consider in more detail what happens when we instantiate MyClass and send
the sayGoodnightGracie message to that instance:

MyClass* thing = [[MyClass alloc] init];
NSString* s = [thing sayGoodnightGracie];

We instantiate MyClass and assign the instance to a variable thing. We then send the
sayGoodnightGracie message to thing, the instance we just created. The message arrives,
and it turns out this instance is a MyClass. Sure enough, MyClass implements a say-
GoodnightGracie method, and this method is called. As it runs, the keyword self is
encountered. It means “the instance to which the original message was sent in the first

84 | Chapter 5: Objective-C Instances

place.” That, as it happens, is the instance pointed to by the variable thing. So now the
greeting message is sent to that instance (Figure 5-2).

This mechanism may seem rather elaborate, considering that the outcome is just what
you’d intuitively expect. But the mechanism needs to be elaborate in order to get the
right outcome. This is particularly evident when superclasses are involved and a class
overrides a method of its superclass. To illustrate, suppose we have a class Dog with
an instance method bark. And suppose Dog also has an instance method speak, which
simply calls bark. Now suppose we subclass Dog with a class Basenji, which overrides
bark (because Basenjis can’t bark). What happens when we send the speak message to
a Basenji instance, as in Example 5-2?

Example 5-2. Polymorphism in action

@implementation Dog

- (NSString*) bark {
 return @"Woof!";
}

- (NSString*) speak {
 return [self bark];
}

Figure 5-2. The meaning of self

The Keyword self | 85

@end

@implementation Basenji : Dog

- (NSString*) bark {
 return @""; // empty string, Basenjis can't bark
}

@end

// [so, in some other class...]

Basenji* b = [[Basenji alloc] init];
NSString* s = [b speak];

If the keyword self meant “the same class where this keyword appears,” then when
we send the speak message to a Basenji instance, we would arrive at the implementation
of speak in the Dog class, and the Dog class’s bark method would be called. This would
be terrible, because it would make nonsense of the notion of overriding; we’d return
@"Woof!", which is wrong for a Basenji. But that is not what the keyword self means.
It has to do with the instance, not the class.

So here’s what happens. The speak message is sent to our Basenji instance, b. The
Basenji class doesn’t implement a speak method, so we look upward in the class hier-
archy and discover that speak is implemented in the superclass, Dog. We call Dog’s
instance method speak, the speak method runs, and the keyword self is encountered.
It means “the instance to which the original message was sent in the first place.” That
instance is still our Basenji instance b. So we send the bark message to the Basenji
instance b. The Basenji class implements a bark instance method, so this method is
found and called, and the empty string is returned (Figure 5-3).

Of course, if the Basenji class had not overridden bark, then when the bark message was
sent to the Basenji instance, we would have looked upward in the class hierarchy
again and found the bark method implemented in the Dog class and called that. Thus,
thanks to the way the keyword self works, inheritance works correctly both when there
is overriding and when there is not.

If you understand that example, you understand polymorphism. The mechanism I’ve
just described is crucial to polymorphism and is the basis of object-oriented program-
ming. (Observe that I now speak of object-oriented programming, not just object-based
programming as in Chapter 2. That’s because, in my view, the addition of polymor-
phism is what turns object-based programming into object-oriented programming.)

The Keyword super
Sometimes (quite often, in Cocoa programming) you want to override an inherited
method but still access the overridden functionality. To do so, you’ll use the keyword
super. Like self, the keyword super is something you send a message to. But its meaning

86 | Chapter 5: Objective-C Instances

has nothing to do with “this instance” or any other instance. The keyword super is
class-based, and it means: “Start the search for messages I receive in the superclass of
this class” (where “this class” is the class where the keyword super appears).

You can do anything you like with super, but its primary purpose, as I’ve already said,
is to access overridden functionality — typically from within the very functionality that
does the overriding, so as to get both the overridden functionality and some additional
functionality.

For example, suppose we define a class NoisyDog, a subclass of Dog. When told to
bark, it barks twice:

Figure 5-3. Class inheritance, overriding, self, and polymorphism

The Keyword super | 87

@implementation NoisyDog : Dog

- (NSString*) bark {
 return [NSString stringWithFormat: @"%@ %@", [super bark], [super bark]];
}

@end

That code calls super’s implementation of bark, twice; it assembles the two resulting
strings into a single string with a space between, and returns that (using the stringWith-
Format: method). Because Dog’s bark method returns @"Woof!", NoisyDog’s bark
method returns @"Woof! Woof!". Notice that there is no circularity or recursion here:
NoisyDog’s bark method will never call itself.

A nice feature of this architecture is that by sending a message to the keyword super,
rather than hard-coding @"Woof!" into NoisyDog’s bark method, we ensure maintain-
ability: if Dog’s bark method is changed, the result of NoisyDog’s bark method will
change to match. For example, if we later go back and change Dog’s bark method to
return @"Arf!", NoisyDog’s bark method will return @"Arf! Arf!" with no further
change on our part.

In real Cocoa programming, it will very often be Cocoa’s own methods that you’re
overriding. For example, the UIViewController class, which is built into Cocoa, im-
plements a method viewDidAppear:, defined as follows:

- (void)viewDidAppear:(BOOL)animated

The documentation says that UIViewController is a class for which you are very likely
to define a subclass (so as to get all of UIViewController’s mighty powers — we’ll find
out what they are in Chapter 19 — along with your own custom behavior). The doc-
umentation proceeds to suggest that in your subclass of UIViewController you might
want to override this method, but cautions that if you do, “you must call super at some
point in your implementation.” The phrase “call super” is a kind of shorthand, meaning
“pass on to super the very same call and arguments that were sent to you.” So your own
implementation might look like this:

@implementation MyViewController : UIViewController
// ...
- (void) viewDidAppear: (BOOL) animated {
 [super viewDidAppear: animated];
 // ... do more stuff here ...
}

The result is that when viewDidAppear: is called in a MyViewController instance, we
do both the standard stuff that its superclass UIViewController does in response to
viewDidAppear: and the custom stuff pertaining our own class MyViewController. In
this particular case, we don’t even know exactly what the UIViewController stuff is,
and we don’t care. When the documentation tells you to call super when overriding,
call super when overriding!

88 | Chapter 5: Objective-C Instances

Instance Variables and Accessors
In Chapter 3, I explained that one of the main reasons there are instances and not just
classes is that instances can have instance variables. Instance variables, you remember,
are declared when you define the class, and in Chapter 4 I said that these declarations
go into the curly-braces part of the class’s interface section or, starting in iOS 5, its
implementation section. But the value of an instance variable differs for each instance.

The term “instance variable” arises so often that it is often abbreviated
to ivar. I’ll use both terms indiscriminately from now on.

Let’s write a class that uses an instance variable. Suppose we have a Dog class and we
want every Dog instance to have a number, which should be an int. (For example, this
number might correspond to the dog’s license number, or something like that.) So the
interface section for the Dog class might look like this:

@interface Dog : NSObject {
 int number;
}
// public method declarations go here
@end

Or, if we’re using iOS 5’s new convention (and I propose to do so henceforward), we
could declare number in the implementation section for the Dog class, like this:

@implementation Dog {
 // ivars can now be declared in the implementation section
 int number;
}
// method implementations go here
@end

(You might ask why, for this example, I don’t use instead the concept of giving the dog
a name. The reason is that a name would be an NSString instance, which is an object;
instance variables that are pointers to objects raise some additional issues I don’t want
to discuss just now. But instance variables that are simple C data types raise no such
issues. We’ll return to this matter in Chapter 12.)

By default, instance variables are protected, meaning that other classes (except for sub-
classes) can’t see them. So if, somewhere else, I instantiate a Dog, I won’t be able to
access that Dog instance’s number instance variable. This is a deliberate feature of
Objective-C; you can work around it if you like, but in general you should not. Instead,
if you want to provide public access to an instance variable, write an accessor method
and make the method declaration public.

Within a class, on the other hand, that class’s own instance variables are global. Any
Dog method can just use the variable name number and access this instance variable,

Instance Variables and Accessors | 89

just like any other variable. But code that does this can be confusing when you’re read-
ing it; suddenly there’s a variable called number and you don’t understand what it is,
because there’s no nearby declaration for it. So I often use a different notation, like this:
self->ivarName. The “arrow” operator, formed by a minus sign and a greater-than sign,
is called the structure pointer operator, because of its original use in C (K&R 6.2).

So let’s write, in Dog’s implementation section, a method that allows setting a value
for the number ivar:

- (void) setNumber: (int) n {
 self->number = n;
}

Of course, we must also declare setNumber: in Dog’s interface section:

@interface Dog : NSObject
- (void) setNumber: (int) n;
@end

We can now instantiate a Dog and assign that instance a number:

Dog* fido = [[Dog alloc] init];
[fido setNumber: 42];

We can now set a Dog’s number, but we can’t get it (from outside that Dog instance).
To correct this problem, we’ll write a second accessor method, one that allows for
getting the value of the number ivar:

- (int) number {
 return self->number;
}

Again, we declare the number method in Dog’s interface section. (You’re not going to
be confused, are you, by the fact that Dog has both a number method and a number
instance variable? This doesn’t confuse the compiler, because they are used in com-
pletely different ways in code, so it shouldn’t confuse you either.) Now we can both
set and get a Dog instance’s number:

Dog* fido = [[Dog alloc] init];
[fido setNumber: 42];
int n = [fido number];
// sure enough, n is now 42!

This architecture is very typical. Your class can have as many ivars as you like, but if
you want them to be publicly accessible, you must provide accessor methods. Luckily,
Objective-C 2.0 — which is what you’re using to program for iOS — provides a mech-
anism for generating accessor methods automatically (discussed in Chapter 12), so you
won’t have to go through the tedium of writing them by hand every time you want to
make an ivar publicly accessible. (Though, to be honest, I don’t see why you shouldn’t
have to go through that tedium; before Objective-C 2.0, we all had to, so why shouldn’t
you? We also had to clean the roads with our tongues on the way to school. And we
liked it! You kids today, you don’t know what real programming is.)

90 | Chapter 5: Objective-C Instances

Key–Value Coding
Objective-C provides a means for translating from a string to an instance variable ac-
cessor, called key–value coding. Such translation is useful, for example, when the name
of the desired instance variable will not be known until runtime. So instead of calling
[fido number], we might have a string @"number" that tells us what accessor to call. This
string is the “key.” The key–value coding equivalent of calling a getter is valueFor-
Key:; the equivalent of calling a setter is setValue:forKey:.

Thus, for example, suppose we wish to get the value of the number instance variable
from the fido instance. We can do this by sending valueForKey: to fido. However, even
though the number instance variable is an int, the value returned by valueForKey: is an
object — in this case, an NSNumber, the object equivalent of a number (see Chap-
ter 10). If we want the actual int, NSNumber provides an instance method, intValue,
that lets us extract it:

NSNumber* num = [fido valueForKey: @"number"];
int n = [num intValue];

Similarly, to use key–value coding to set the value of the number instance variable in the
fido instance, we would say:

NSNumber* num = [NSNumber numberWithInt:42];
[fido setValue: num forKey: @"number"];

In this case there is no advantage to using key–value coding over just calling the ac-
cessors. But suppose we had received the value @"number" in a variable (as the result of
a method call, perhaps). Suppose that variable is called something. Then we could say:

id result = [fido valueForKey: something];

Thus we could access a different instance variable under different circumstances. This
powerful flexibility is possible because Objective-C is such a dynamic language that a
message to be sent to an object does not have to be formed until the program is already
running.

When you call valueForKey: or setValue:forKey:, the correct accessor method is called
if there is one. Thus, when we use @"number" as the key, a number method and a set-
Number: method are called if they exist. (This is one reason why your accessors should
be properly named.) On the other hand, if there isn’t an accessor method, the instance
variable is accessed directly. Such direct access violates the privacy of instance variables,
so there’s a way to turn off this feature for a particular class if you don’t like it. (I’ll
explain what it is, with more about key–value coding, in Chapter 12.)

Properties
A property is a syntactical feature of Objective-C 2.0 designed to provide an alternative
to the standard syntax for calling an instance variable accessor. In other words, a prop-

Properties | 91

erty is merely syntactic sugar for calling an accessor method. I’ll use the Dog class as
an example. If the Dog class has a getter method called number and a setter method
called setNumber:, then the Dog class might also declare a number property. If it does,
then instead of saying things like this:

[fido setNumber: 42];
int n = [fido number];

You can talk like this:

fido.number = 42;
int n = fido.number;

As you can see, this is a very pleasant syntax. You use dot-notation to chain the property
name to the instance, and you can use the resulting expression either on the left side
of an equal sign (to set the instance variable’s value) or elsewhere (to fetch the instance
variable’s value). Remember, though, that you can do this only if the class you’re talking
to has declared a property corresponding to the accessor methods in question. Re-
member also that your use of property syntax is not compulsory. If Dog has a number
property, it has getter and setter methods number and setNumber:, and you are free to
call them directly if you like. When you use a property in code, it is translated behind
the scenes into a call to the corresponding getter or setter method, so it’s all the same
if you call the corresponding getter or setter method explicitly.

To use a property within the class that declares that property, you must use self ex-
plicitly. So, for example:

self.number = 42;

Do not confuse a property with an instance variable. An expression like
self->number = n, or even simply number = n, sets the instance variable
directly (and is possible only within the class, because instance variables
are protected by default). An expression like fido.number or
self.number involves a property and is equivalent to calling a getter or
setter method. That getter or setter method may access an instance vari-
able, and that instance variable may have the same name as the property,
but that doesn’t make them the same thing.

I have not yet told you how to declare a property corresponding to an instance variable.
Plus, there are many options when declaring a property that affect how it can be used
and what it means. All of that will be taken up in Chapter 12. But I’m telling you about
properties now because they are so widely used in Cocoa and because you’ll see them
so frequently in the documentation. For example, in Chapter 1, I talked about setting
a UIView’s autoresizingMask property:

myView.autoresizingMask =
 UIViewAutoresizingFlexibleTopMargin | UIViewAutoresizingFlexibleWidth;

92 | Chapter 5: Objective-C Instances

How did I know I could talk that way? Because the UIView documentation says that
UIView declares an autoresizingMask property. Near the top of the documentation
page, we see this line:

autoresizingMask property

And further down, we get the details:

autoresizingMask

An integer bit mask that determines how the receiver resizes itself when its bounds
change.

@property(nonatomic) UIViewAutoresizing autoresizingMask

That last line is the property declaration. Never mind for now what nonatomic means;
the point is that autoresizingMask is a property. That’s how I knew I could use property
syntax as a way of calling a setter method; alternatively, I could have called the set-
AutoresizingMask: method explicitly.

Similarly, earlier in this chapter I called UIView’s setFrame: method, even though no
such method is mentioned in the UIView documentation. What the UIView docu-
mentation does say is this:

frame

The frame rectangle, which describes the view’s location and size in its superview’s co-
ordinate system.

@property(nonatomic) CGRect frame

The documentation is telling me that I can call a UIView setter method either by as-
signing to a frame property using dot-notation or by calling setFrame: explicitly.

Objective-C uses dot-notation for properties, and C uses dot-notation for structs; these
can be chained. So, for example, UIView’s frame is a property whose value is a struct
(a CGRect); thus, you can say myView.frame.size.height, where frame is a property that
returns a struct, size is a component of that struct, and height is a component of
that struct. But a struct is not a pointer, so you cannot (for example) set a frame’s height
directly through a chain starting with the UIView, like this:

myView.frame.size.height = 36.0; // compile error, "Expression is not assignable"

Instead, if you want to change a component of a struct property, you must fetch the
property value into a struct variable, change the struct variable’s value, and set the entire
property value from the struct variable:

CGRect f = myView.frame;
f.size.height = 0;
myView.frame = f;

Properties | 93

How to Write an Initializer
Now that you know about self and super and instance variables, we can return to a
topic that I blithely skipped over earlier. I described how to initialize a newly minted
instance by calling an initializer, and emphasized that you must always do so, but I said
nothing about how to write an initializer in your own classes. You will wish to do so
only when you want your class to provide a convenient initializer that goes beyond the
functionality of the inherited initializers. Often your purpose will be to accept some
parameters and use them to set the initial values of some instance variables.

For example, in our example of a Dog with a number, let’s say we don’t want any Dog
instances to come into existence without a number; every Dog must have one. So having
a value for its number ivar is a sine qua non of a Dog being instantiated in the first place.
An initializer publicizes this rule and helps to enforce it — especially if it is the class’s
designated initializer. So let’s decide that this initializer will be Dog’s designated ini-
tializer.

Moreover, let’s say that a Dog’s number should not be changed. Once the Dog has
come into existence, along with a number, that number should remain attached to that
Dog instance for as long as that Dog instance persists.

So delete the setNumber: method and its declaration, thus destroying any ability of other
classes to set a Dog instance’s number after it has been initialized. Instead, we’re going
to set a Dog’s number as it is initialized, using a method we’ll declare like this:

- (id) initWithNumber: (int) n

Our return value is typed as id, not as a pointer to a Dog, even though in fact we will
return a Dog object. This is a convention that we should obey. The name is conventional
as well; as you know, the init beginning tells the world this is an initializer.

Now I’m just going to show you the actual code for the initializer (Example 5-3). Much
of this code is conventional — a dance you are required to do. You should not question
this dance: just do it. I’ll describe the meaning of the code, but I’m not going to try to
justify all the parts of the convention.

Example 5-3. Conventional schema for an initializer

- (id) initWithNumber: (int) n {
 self = [super init];
 if (self) {
 self->number = n;
 }
 return self;
}

The parts of the convention are:

We send some sort of initialization message, calling a designated initializer. If the
method we are writing is our class’s designated initializer, this message is sent to

94 | Chapter 5: Objective-C Instances

super and calls the superclass’s designated initializer. Otherwise, it is sent to self
and calls either this class’s designated initializer or another initializer that calls this
class’s designated initializer. In this case, the method we are writing is our class’s
designated initializer, and the superclass’s designated initializer is init.

We capture the result of the initialization message to super, and assign that result
to self. It comes as a surprise to many beginners (and not-so-beginners) that one
can assign to self at all or that it would make sense to do so. But one can assign to
self (because of how Objective-C messaging works behind the scenes), and it makes
sense to do so because in certain cases the instance returned from the call to super
might not be same as the self we started with.

If self is not nil, we initialize any instance variables we care to. This part of the code
is typically the only part you’ll customize; the rest will be according to the pattern.
Observe that I don’t use any setter methods (or properties); in initializing an instance
variable not inherited from the superclass, you should assign directly to the instance
variable.

We return self.

All instance variables are set to a form of zero by alloc. Therefore, any
instance variables not initialized explicitly in an initializer remain 0. This
means, among other things, that by default a BOOL instance variable
is NO and an object reference instance variable is nil. It is common
practice to take advantage of these defaults in your program; if the de-
fault values are satisfactory initial values, you won’t bother to set them
in your designated initializer.

But we are not finished. Recall from earlier in this chapter that a class that defines a
designated initializer should also override the inherited designated initializer (in this
case, init). And you can see why: if we don’t, someone could say
[[Dog alloc] init] and create a dog without a number — the very thing our initializer
is trying to prevent. Just for the sake of the example, I’ll make the overridden init assign
a negative number as a signal that there’s a problem. Notice that we’re still obeying the
rules: this initializer is not the designated initializer, so it calls this class’s designated
initializer.

- (id) init {
 return [self initWithNumber: -9999];
}

Just to complete the story, here’s some code showing how we now would instantiate
a Dog:

Dog* fido = [[Dog alloc] initWithNumber:42];
int n = [fido number];
// n is now 42; our initialization worked!

How to Write an Initializer | 95

PART II

IDE

By now, you’re doubtless anxious to jump in and start writing an app. To do that, you
need a solid grounding in the tools you’ll be using. The heart and soul of those tools
can be summed up in one word: Xcode. In this part of the book we explore Xcode, the
IDE (integrated development environment) in which you’ll be programming iOS.
Xcode is a big program, and writing an app involves coordinating a lot of pieces; this
part of the book will help you become comfortable with Xcode. Along the way, we’ll
generate a simple working app through some hands-on tutorials.

• Chapter 6 tours Xcode and explains the architecture of the project, the collection
of files from which an app is generated.

• Chapter 7 is about nibs. A nib is a file containing a drawing of your interface.
Understanding nibs — knowing how they work and how they relate to your code
— is crucial to your use of Xcode and to proper development of just about any app.

• Chapter 8 pauses to discuss the Xcode documentation and other sources of infor-
mation on the API.

• Chapter 9 explains editing your code, testing and debugging your code, and the
various steps you’ll take on the way to submitting your app to the App Store. You’ll
probably want to skim this chapter quickly at first, returning to it as a detailed
reference later while developing and submitting an actual app.

CHAPTER 6

Anatomy of an Xcode Project

Xcode is the application used to develop an iOS app. An Xcode project is the entire
collection of files and settings needed in order to construct an app. The source for an
app is an Xcode project. To develop and maintain an app, you must know how to
manipulate an Xcode project. That means you must know your way around a project,
as displayed by Xcode. By the same token, you must know your way around Xcode
sufficiently to manipulate a project.

The term “Xcode” is actually used in two ways. It’s the name for the
entire suite of developer tools — the Xcode tools — and it’s the name
of one application within that suite, the application in which you edit
and build your app. This ambiguity should generally present little dif-
ficulty.

Xcode is a powerful, complex, and extremely large program. My approach when in-
troducing Xcode to new users is to suggest that they adopt a kind of deliberate tunnel
vision: if you don’t understand something, don’t worry about it, and don’t even look
at it (and don’t touch it, because you might change something important). That’s the
approach I’ll take here. This and subsequent chapters will undertake a simplified survey
of Xcode, charting a somewhat restricted path, focusing on aspects of Xcode that you
most need to understand immediately and resolutely ignoring those that you don’t.

For full information, study Apple’s own documentation (choose Help → Xcode Help);
it may seem overwhelming at first, but what you need to know is probably in there
somewhere. There are also entire books devoted to describing and explaining Xcode.

The structure of the Xcode installation changed starting with Xcode 4.3.
When I speak of the Developer folder, or use a file path starting with /
Developer, I’m referring to a top-level install folder in Xcode 4.2 and
before, but a folder inside the Xcode application bundle in Xcode 4.3
and later.

99

New Project
Even before you’ve written any code, an Xcode project is quite elaborate. To see this,
let’s make a new, essentially “empty” project; you’ll see instantly that it isn’t empty at
all.

1. Start up Xcode and choose File → New → New Project.

2. The “Choose a template” dialog appears. The template is your project’s initial set
of files and settings. When you pick a template, you’re really picking an existing
folder full of files; it will be one of the folders at some depth inside /Developer/
Platforms/iPhoneOS.platform/Developer/Library/Xcode/Templates/Project Tem-
plates/Application. This folder will essentially be copied, and a few values will be
filled in, in order to create your project.

So, in this case, on the left, under iOS (not Mac OS X!), choose Application. On
the right, select Single View Application. Click Next.

3. You are now asked to provide a name for your project (Product Name). Let’s call
our new project Empty Window.

In a real project, you should give some thought to the project’s name, as you’re
going to be living in close quarters with it. As Xcode copies the template folder,
it’s going to use the project’s name to “fill in the blank” in several places, including
some filenames and some settings, such as the name of the app. Thus, whatever
you type at this moment is something you’ll be seeing in a lot of places throughout
your project, for as long as you work with this project. So use a name that is either
your app’s final name or at least approximates it.

It’s fine to use spaces in a project name. Spaces are legal in the folder name, the
project name, the app name, and the various names of files that Xcode will generate
automatically; and in the few places where spaces are problematic (such as the
bundle identifier, discussed in the next paragraph), the name you type as the Prod-
uct Name will have its spaces converted to hyphens.

4. Just below the Product Name field is the Company Identifier field. The first time
you create a project, this field will be blank, and you should fill it in. The goal here
is to create a unique string; your app’s bundle identifier, which is shown in gray
below the company identifier, will consist of the company identifier plus a version
of the project’s name, and because every project should have a unique name, the
bundle identifier will also be unique and will thus uniquely identify this project
along with the app that it produces and everything else connected with it. The
convention is to start the company identifier with com. and to follow it with a string
(possibly with multiple dot-components) that no one else is likely to use. For ex-
ample, I use com.neuburg.matt.

5. Make sure the Device Family pop-up menu is set to iPhone. Make sure that Use
Automatic Reference Counting is checked but that the other two checkboxes are

100 | Chapter 6: Anatomy of an Xcode Project

unchecked. Ignore the Class Prefix field for now; it should be empty, with its default
value “XYZ” shown in grey. Click Next.

6. You’ve now told Xcode how to construct your project. Basically, it’s going to copy
the Single View Application.xctemplate folder from within the Project Templates/
Application folder I mentioned earlier. But you need to tell it where to copy this
folder to. That’s why Xcode is now presenting a Save As dialog. You are to specify
the location of a folder that is about to be created — a folder that will be the project
folder for this project.

The project folder can go just about anywhere, and you can move it after creating
it. So the location doesn’t matter much; I usually create new projects on the Desk-
top.

7. Xcode 4 also offers to create a git repository for your project. In real life, this can
be a great convenience, but for now, uncheck that checkbox. Click Create.

8. The Empty Window project folder is created on disk (on the Desktop, if that’s the
location you just specified), and the project window for the Empty Window project
opens in Xcode.

The project we’ve just created is a working project; it really does build an iOS app called
Empty Window. To see this, make sure that the Scheme pop-up menu in the project
window’s toolbar reads Empty Window → iPhone 5.0 Simulator (though the exact
system version number might be different), and choose Product → Run. After a while,
the iOS Simulator application opens and displays your app running — an empty grey
screen.

To build a project is to compile its code and assemble the compiled code,
together with various resources, into the actual app. Typically, if you
want to know whether your code compiles and your project is consis-
tently and correctly constructed, you’ll build the project (Product →

Build). To run a project is to launch the built app, in the Simulator or
on a connected device; if you want to know whether your code works
as expected, you’ll run the project (Product → Run), which automati-
cally builds first if necessary.

The Project Window
An Xcode project must embody a lot of information about what files constitute the
project and how they are to be used when building the app, such as:

• The source files (your code) that are to be compiled

• Any resources, such as icons, images, or sound files, as well as nib and storyboard
files, that are to be part of the app

• Any frameworks to which the code must be linked as the app is built

The Project Window | 101

• All settings (instructions to the compiler, to the linker, and so on) that are to be
obeyed as the app is built

Xcode presents this information in graphical form, and this is one reason why a project
window is so elaborate, and why learning to navigate and understand it takes time.
Also, this single window must let you access, edit, and navigate your code, as well as
reporting the progress and results of such procedures as building or debugging an app.
In short, the single project window displays a lot of information and embodies a lot of
functionality. You won’t lose your way, however, if you just take a moment to explore
this window and see how it is constructed.

Figure 6-1 shows the project window, configured in rather an extreme manner, in order
to display as many parts of the window as possible. In real life, you’d probably never
show all these parts of the window at the same time, except very briefly, unless you had
a really big monitor.

1. On the left is the Navigator pane. Show and hide it with View → Navigators →
Show/Hide Navigator (Command-0) or with the first button in the View segmented
control in the toolbar.

2. In the middle is the Editor pane (or simply “editor”). A project window always
contains at least one Editor pane. I could have displayed this window with multiple
Editor panes, but I was afraid that might make you run screaming from the room.

3. On the right is the Utilities pane. Show and hide it with View → Utilities → Show/
Hide Utilities (Command-Option-0) or with the third button in the View segmen-
ted control in the toolbar.

Figure 6-1. The project window, on steroids

102 | Chapter 6: Anatomy of an Xcode Project

4. At the bottom is the Debugger pane. Show and hide it with View → Show/Hide
Debug Area (Shift-Command-Y) or with the second button in the View segmented
control in the toolbar.

All Xcode keyboard shortcuts can be customized; see the Key Bindings
pane of the Preferences window. Keyboard shortcuts that I cite are the
defaults.

The Navigator Pane
All navigation of the project window begins ultimately with the Navigator pane, the
column of information at the left of the window. It is possible to toggle the visibility of
the Navigator pane (View → Navigators → Hide/Show Navigator, or Command-0); for
example, once you’ve used the Navigator pane to reach the item you want to see or
work on, you might hide the Navigator pane temporarily to maximize your screen real
estate (especially on a smaller monitor). You can change the Navigator pane’s width
by dragging the vertical line at its right edge.

The Navigator pane itself can display seven different sets of information; thus, there
are actually seven navigators. These are represented by the seven icons across its top;
to switch among them, use these icons or their keyboard shortcuts (Command-1,
Command-2, and so on). You will quickly become adept at switching to the navigator
you want; their keyboard shortcuts will become second nature. If the Navigator pane
is hidden, pressing a navigator’s keyboard shortcut both shows the Navigator pane and
switches to that navigator.

Depending on your settings in the Behaviors pane of Xcode’s preferences, a navigator
might show itself automatically when you perform a certain action. For example, by
default, when you build your project, if warning messages or error messages are gen-
erated, the Issue navigator will appear. This automatic behavior will not prove trou-
blesome, because it is generally precisely the behavior you want, and if it isn’t, you can
change it; plus you can easily switch to a different navigator at any time.

The most important general use pattern for the Navigator pane is: you select something
in the Navigator pane, and that thing is displayed in the main area of the project win-
dow. Let’s begin experimenting immediately with the various navigators:

Project navigator (Command-1)
Click here for basic navigation through the files that constitute your project. For
example, in the Empty Window folder (these folder-like things in the Project nav-
igator are actually called groups) click AppDelegate.m to view its code (Figure 6-2).

At the top level of the Project navigator, with a blue Xcode icon, is the Empty
Window project itself; click it to view the settings associated with your project and

The Project Window | 103

its targets. Don’t change anything here without knowing what you’re doing! I’ll
talk later in this chapter about what these settings are for.

Symbol navigator (Command-2)
A symbol is a name, typically the name of a class or method. Depending on which
of the three icons in the filter bar at the bottom of the Symbol navigator you high-
light, you can view Cocoa’s built-in symbols or the symbols defined in your project.
The former can be a useful form of documentation; the latter can be helpful for
navigating your code. For example, highlight the first two icons in the filter bar
(the first two are dark-colored, the third is light), and see how quickly you can
reach the definition of AppDelegate’s applicationDidBecomeActive: method.

Feel free to highlight the filter bar icons in various ways to see how the contents of
the Symbol navigator change. Note too that you can type in the search field in the
filter bar to limit what appears in the Symbol navigator; for example, try typing
“active” in the search field, and see what happens.

Search navigator (Command-3)
This is a powerful search facility for finding text globally in your project, and even
in the headers of Cocoa frameworks. You can also summon the Search navigator
with Edit → Find → Find in Workspace (Shift-Command-F). To access the full set
of options, click the magnifying glass and choose Show Find Options. For example,
try searching for “delegate” (Figure 6-3). Click a search result to jump to it in your
code.

Issue navigator (Command-4)
You’ll need this navigator primarily when your code has issues. This doesn’t refer
to emotional instability; it’s Xcode’s term for warning and error messages emitted
when you build your project.

Figure 6-2. The Project navigator

104 | Chapter 6: Anatomy of an Xcode Project

To see the Issue navigator in action, you’ll need to give your code an issue. For
example, navigate (as you already know how to do, in at least three different ways)
to the file AppDelegate.m, and in the blank line after the last comment at the top
of the file, above the #import line, type howdy. Build (Command-B), saving if you’re
prompted to. The Issue navigator will display numerous error messages, showing
that the compiler is totally unable to cope with this illegal word appearing in an
illegal place. Click an issue to see it within its file. In your code, issue “balloons”
may appear to the right of lines containing issues; if you’re distracted or hampered
by these, toggle their visibility with Editor → Issues → Hide/Show All Issues. (Now
that you’ve made Xcode miserable, select “howdy” and delete it; build again, and
your issues will be gone. If only real life were this easy!)

Debug navigator (Command-5)
By default, this navigator will appear when your code is paused while you’re de-
bugging it. There is not a strong distinction in Xcode between running and de-
bugging; the milieu is the same. (The difference is mostly a matter of whether
breakpoints are obeyed; more about that, and about debugging in general, in
Chapter 9.) However, if your code runs and doesn’t pause, the Debug navigator
by default won’t come into play.

To see the Debug navigator in action, you’ll need to give your code a breakpoint.
Navigate once more to the file AppDelegate.m, select in the line that says
return YES, and choose Product → Debug → Add Breakpoint at Current Line to
make a blue breakpoint arrow appear on that line. Run the project. (If the project
is already running, the Stop dialog may appear; click Stop to terminate the current

Figure 6-3. The Search navigator

The Project Window | 105

run and begin a new one.) By default, as the breakpoint is encountered, the Nav-
igator pane switches to the Debug navigator, and the Debug pane appears at the
bottom of the window.

This overall layout (Figure 6-4) will rapidly become familiar as you debug your
projects. The Debug navigator displays the call stack, with the names of the nested
methods in which the pause occurs; as you would expect, you can click on a method
name to navigate to it. You can shorten or lengthen the list with the slider at the
bottom of the pane. The Debug pane, which can be shown or hidden at will (View →
Hide/Show Debug Area, or Shift-Command-Y) consists of two subpanes, either of
which can be hidden using the segmented control at the top right of the pane.

• On the left, the variables list is populated with the variables in scope for the
selected method in the call stack (and you can optionally display processor
registers as well).

• On the right is the console, where the debugger displays text messages; that’s
how you learn of exceptions thrown by your running app. Exceptions are ex-
tremely important to know about, and this is your only way to know about
them, so keep an eye on the console as your app runs. Note also that View →
Debug Area → Activate Console shows the console pane if only the variables
list is displayed.

You can also use the console to communicate via text with the debugger. This
can often be a better way to explore variable values during a pause than the
variables list.

Breakpoint navigator (Command-6)
This navigator lists all your breakpoints. At the moment you’ve only one, but when
you’re actively debugging a large project, you’ll be glad of this navigator. Also, this

Figure 6-4. The Debug layout

106 | Chapter 6: Anatomy of an Xcode Project

is where you create special breakpoints (such as symbolic breakpoints), and in
general it’s your center for managing existing breakpoints. We’ll return to this topic
in Chapter 9.

Log navigator (Command-7)
This navigator lists your recent major actions, such as building or running (de-
bugging) your project. Click on a listing to see the log file generated when you
performed that action. The log file might contain information that isn’t displayed
in any other way, and also it lets you dredge up messages from the recent past
(“What was that exception I got while debugging a moment ago?”).

For example, by clicking on the listing for a successful build, and by choosing to
display All and All Messages using the filter switches at the top of the log, we can
see the steps by which a build takes place (Figure 6-5). To reveal the full text of a
step, click on that step and then click the Expand Transcript button that appears
at the far right (and see also the menu items in the Editor menu).

When navigating by clicking in the Navigator pane, modifications to your click can
determine where navigation takes place. For the settings that govern these click mod-
ifications, see the General pane of Xcode’s preferences. For example, if you haven’t
changed the original settings, Option-click navigates in an assistant pane (discussed
later in this chapter), and double-click navigates by opening a new window.

The Utilities Pane
The Utilities pane, the column at the right of the project window, consists partly of
inspectors that provide information about, and in some cases let you change the spec-
ifications of, the current selection, and partly of libraries that function as a source of
objects you may need while editing your project. Its importance emerges mostly when
you’re working in the nib editor (Chapter 7), and you’ll probably keep it hidden the
rest of the time. But if you have sufficient screen real estate, you might like to keep it
open while editing code, because Quick Help, a form of documentation (Chapter 8),
is displayed here as well; plus, the Utilities pane is the source of code snippets (Chap-

Figure 6-5. Viewing a log

The Project Window | 107

ter 9). To toggle the visibility of the Utilities pane, choose View → Utilities → Hide/Show
Utilities (Command-Option-0). You can change the Utilities pane’s width by dragging
the vertical line at its left edge.

Many individual inspectors and libraries are discussed in subsequent chapters. Here,
I’ll just describe the overall physical characteristics of the Utilities pane.

The Utilities pane consists of a set of palettes. Actually, there are so many of these
palettes that they are clumped into multiple sets, divided into two major groups: the
top half of the pane and the bottom half of the pane. You can change the relative heights
of these two halves by dragging the horizontal line that separates them.

The top half
What appears in the top half of the Utilities pane depends on what’s selected in
the current editor. There are two main cases:

A code file is being edited
The top half of the Utilities pane shows either the File inspector or Quick Help.
Toggle between them with the icons at the top of this half of the Utilities pane,
or with their keyboard shortcuts (Command-Option-1, Command-Option-2).
The File inspector is rarely needed, but Quick Help can be useful as docu-
mentation. The File inspector consists of multiple sections, each of which can
be expanded or collapsed by clicking its header.

A nib or storyboard file is being edited
The top half of the Utilities pane shows, in addition to the File inspector and
Quick Help, the Identity inspector (Command-Option-3), the Attributes in-
spector (Command-Option-4), the Size inspector (Command-Option-5), and
the Connections inspector (Command-Option-6). Like the File inspector,
these can consist of multiple sections, each of which can be expanded or col-
lapsed by clicking its header.

The bottom half
The bottom half of the Utilities pane shows one of four libraries. Toggle between
them with the icons at the top of this half of the Utilities pane, or with their key-
board shortcuts. They are the File Template library (Command-Option-Con-
trol-1), the Code Snippet library (Command-Option-Control-2), the Object library
(Command-Option-Control-3), and the Media library (Command-Option-Con-
trol-4). The Object library is the most important; you’ll use it heavily when editing
a nib or storyboard.

To see a help pop-up describing the currently selected item in a library, press
Spacebar.

108 | Chapter 6: Anatomy of an Xcode Project

The Editor
In the middle of the project window is the editor. This is where you get actual work
done, reading and writing your code (Chapter 9), or designing your interface in a nib
or storyboard file (Chapter 7). The editor is the core of the project window. You can
eliminate the Navigator pane, the Utilities pane, and the Debug pane, but there is no
such thing as a project window without an editor (though you can cover the editor
completely with the Debug pane).

The editor provides its own form of navigation, the jump bar across the top. I’ll talk
more later about the jump bar, but for now, observe that not only does it show you
hierarchically what file is currently being edited, but also it allows you to switch to a
different file. In particular, each path component in the jump bar is also a pop-up menu.
These pop-up menus can be summoned by clicking on a path component, or by using
keyboard shortcuts (shown in the second section of the View → Standard Editor sub-
menu). For example, Control-4 summons a hierarchical pop-up menu, which can be
navigated entirely with the keyboard, allowing you to choose a different file in your
project to edit. Thus you can navigate your project even if the Project navigator isn’t
showing.

It is extremely likely, as you develop a project, that you’ll want to edit more than one
file simultaneously, or obtain multiple views of a single file so that you can edit two
areas of it simultaneously. This can be achieved in three ways: assistants, tabs, and
secondary windows.

Assistants
You can split the editor into multiple editors by summoning an assistant pane. To
do so, click the second button in the Editor segmented control in the toolbar, or
choose View → Assistant Editor → Show Assistant Editor (Command-Option-Re-
turn). Also, by default, adding the Option key to navigation opens an assistant
pane; for example, Option-click in the Navigator pane, or Option-choose in the
jump bar, to navigate by opening an assistant pane (or to navigate in an existing
assistant pane if there is one). To remove the assistant pane, click the first button
in the Editor segmented control in the toolbar, or choose View → Standard Editor →
Show Standard Editor (Command-Return), or click the “x” button at the assistant
pane’s top right.

Your first task will be to decide how you want multiple editor panes arranged with
respect to one another. To do so, choose from the View → Assistant Editor sub-
menu. I usually prefer All Editors Stacked Vertically, but it’s purely a matter of
personal taste and convenience.

Once you’ve summoned an assistant pane, you can split it further into additional
assistant panes. To do so, click the “+” button at the top right of an assistant pane.
To dismiss an assistant pane, click the “x” button at its top right.

The Project Window | 109

What makes an assistant pane an assistant, and not just a form of split-pane editing,
is that it can bear a special relationship to the primary editor pane. The primary
editor pane is the one whose contents, by default, are determined by what you click
on in the Navigator pane; an assistant pane, meanwhile, can respond to what file
is being edited in the primary editor pane by changing intelligently what file it (the
assistant pane) is editing. This is called tracking.

To see tracking in action, open a single assistant pane and set the first component
in its jump bar to Counterparts (Figure 6-6). Now use the Project navigator to select
AppDelegate.m; the primary editor pane displays this file, and the assistant auto-
matically displays AppDelegate.h. Next, use the Project navigator to select App-
Delegate.h; the primary editor pane displays this file, and the assistant automati-
cally displays AppDelegate.m. There’s a lot of convenience and power lurking here,
which you’ll explore as you need it.

Tabs
You can embody the entire project window interface as a tab. To do so, choose
File → New → New Tab (Command-T), revealing the tab bar (just below the tool-
bar) if it wasn’t showing already. Use of a tabbed interface will likely be familiar
from applications such as Safari. You can switch between tabs by clicking on a tab,
or with Command-Shift-}. At first, your new tab will look largely identical to the
original window from which it was spawned. But now you can make changes in a
tab — change what panes are showing or what file is being edited, for example —
without affecting any other tabs. Thus you can get multiple views of your project.

Secondary windows
A secondary project window is similar to a tab, but it appears as a separate window
instead of a tab in the same window. To create one, choose File → New → New
Window (Command-Shift-T). Alternatively, you can promote a tab to be a window

Figure 6-6. Telling an assistant pane to display counterparts

110 | Chapter 6: Anatomy of an Xcode Project

by dragging it right out of its current window. Yet another way to make a secondary
project window is to choose Navigate → Open In and navigate left in the resulting
dialog until the dialog offers to make a new window.

There isn’t a strong difference between a tab and a secondary window; which you use,
and for what, will be a matter of taste and convenience. I find that the advantage of a
secondary window is that you can see it at the same time as the main window, and that
it can be small. Thus, when I have a file I frequently want to refer to, I often spawn into
a secondary window an editor displaying that file, making it fairly small and without
any additional panes.

The Project File and Its Dependents
The first item in the Project navigator (Command-1) represents the project file on disk
(in our new project, this is called Empty Window). Hierarchically dependent upon it
are items that contribute to the building of the project (Figure 6-7).

Many of these items, including the project file itself, correspond to items on disk in the
project folder. To survey this correspondence, let’s examine the project folder in the
Finder simultaneously with the Xcode project window. Select the project file listing in
the Project navigator and choose File → Show in Finder.

The Finder displays the contents of your project folder (Figure 6-8). The most important
of these is Empty Window.xcodeproj. This is the project file. All Xcode’s knowledge
about your project — what files it consists of and how to build the project — is stored
in this file.

Figure 6-7. The Project navigator again

The Project File and Its Dependents | 111

To open a project from the Finder, double-click the project file. This
will launch Xcode if it isn’t already running.

Never, never, never touch anything in a project folder by way of the
Finder, except for double-clicking the project file to open the project.
Don’t put anything directly into a project folder. Don’t remove anything
from a project folder. Don’t rename anything in a project folder. Don’t
touch anything in a project folder! Do all your interaction with the
project through the project window in Xcode.

The reason for the foregoing warning is that in order to work properly, the project
expects things in the project folder to be a certain way. If you make any alterations to
the project folder directly in the Finder, behind the project’s back, you can upset those
expectations and break the project. When you work in the project window, it is Xcode
itself that makes any necessary changes in the project folder, and all will be well. (When
you’re an Xcode power user, you’ll know when you can disobey this rule. Until then,
just obey it blindly and rigorously.)

Consider now the groups and files shown in the Project navigator as hierarchically
dependent upon the project file, and how they correspond to reality on disk as por-
trayed in the Finder. (Recall that group is the technical term for the folder-like objects
shown in the Project navigator.)

The first thing you’ll notice is that groups in the Project navigator don’t necessarily
correspond to folders on disk in the Finder, and folders on disk in the Finder don’t
necessarily correspond to groups in the Project navigator.

• The Empty Window group is, to some extent, real; it corresponds directly to the
Empty Window folder on disk. If you were to create additional files (which, in real
life, you would almost certainly do in the course of developing your project), you

Figure 6-8. The project folder

112 | Chapter 6: Anatomy of an Xcode Project

would likely put them in the Empty Window group in the Project navigator so that
they’d be in the Empty Window folder on disk. (Doing so, however, is not a re-
quirement; your files can live anywhere and your project will still work fine.)

• The Supporting Files group, on the other hand, corresponds to nothing on disk;
it’s just a way of clumping some items together in the Project navigator, so that
they can be located easily and can be shown or hidden together. The things in-
side this group are real, however; you can see that the four files Empty Window-
Info.plist, InfoPlist.strings, Empty Window-Prefix.pch, and main.m do exist on disk
— they’re just not inside anything called Supporting Files. Rather, they’re at the
top level of the Empty Window folder.

• Two files, InfoPlist.strings and ViewController.xib, appear in the Finder inside a
folder called en.lproj, which doesn’t appear in the Project navigator. The folder
en.lproj has to do with localization, which I’ll discuss in Chapter 9.

You may be tempted to find all this confusing. Don’t! Remember what I said about not
involving yourself with the project folder on disk in the Finder. Keep your attention on
the Project navigator, make your modifications to the project there, and all will be well.

By convention, as you add other files to your project that are not code but need to be
copied into the app as it is built, such as sound and image files, you would usually put
them into yet another group — probably, though not necessarily, a group inside the
Empty Window group. You might call this group Resources. (I usually do.) And as your
project grows further, you should feel free to create even more groups to help organize
your files. To make a new group, choose File → New → New Group. To rename a group,
select it in the Project navigator and press Return to make the name editable.

When I say “feel free,” I mean it. You want navigating your project to be easy and
intuitive. That’s what groups are for. They are just ways of making the Project navigator
work well for you. As we’ve seen, they don’t necessarily affect how the actual files are
stored on disk. Even more important, they don’t affect how the app is built. It is not
the placement of files in groups or in the Finder that causes them to be built into the
app; it’s their inclusion in the appropriate target build phase, as I’ll explain later in this
chapter.

The things in the Frameworks group and the Products group don’t correspond to any-
thing in the project folder, but they do correspond to real things that the project needs
to know about in order to build and run:

Frameworks
This group, by convention, lists frameworks (Cocoa code) that your code calls.
Frameworks exist on disk, but they are not built into your app when it is con-
structed; they don’t have to be, because they are present on the target device (an
iPhone, iPod touch, or iPad). Instead, the frameworks are linked to the app, mean-
ing that the app knows about them and expects to find them on the device when
it runs. Thus, all the framework code is omitted from the app itself, saving con-
siderable space.

The Project File and Its Dependents | 113

Products
This group, by convention, holds an automatically generated reference to the built
app.

The Target
A target is a collection of parts along with rules and settings for how to build a product
from them. It is a major determinant of how an app is built. Whenever you build, what
you’re really building is a target.

Select the Empty Window project at the top of the Project navigator, and you’ll see two
things on the left side of the editor: the project itself, and a list of your targets. In this
case, there is only one target, called Empty Window (just like the project itself). But
there could be more than one target, under certain circumstances. For example, you
might want to write an app that can be built as an iPhone app or as an iPad app — two
different apps that share a lot of the same code. So you might want one project con-
taining two targets.

If you select the project in the left side of the editor, you edit the project. If you select
the target in the left side of the editor, you edit the target. I’ll use those expressions a
lot in later instructions.

Build Phases
Edit the target and click Build Phases at the top of the editor (Figure 6-9). These are
the stages by which your app is built. By default, there are three of them with content
— Compile Sources, Link Binary With Libraries, and Copy Bundle Resources — and
those are the only stages you’ll usually need, though you can add others. The build
phases are both a report to you on how the target will be built and a set of instructions
to Xcode on how to build the target; if you change the build phases, you change the
build process.

The meanings of the three build phases are pretty straightforward:

Compile Sources
Certain files (your code) are compiled, and the resulting compiled code (a single
file called the binary) is copied into the app.

Link Binary With Libraries
Certain libraries, usually frameworks, are linked to the compiled code, so that it
will expect them to be present on the device when the app runs.

Copy Bundle Resources
Certain files are copied into the app, so that your code or the system can find them
there when the app runs. For example, if your app had an icon, it would need to
be copied into the app so the device could find and display it.

114 | Chapter 6: Anatomy of an Xcode Project

By opening the build phases in the editor, you can see the files to which each phase
applies. The first phase, Compile Sources, presently compiles three files (main.m, App-
Delegate.m, and ViewController.m). The second phase, Link Binary With Libraries,
presently links three libraries (frameworks). The third phase, Copy Bundle Resources,
presently copies two files (InfoPlist.strings, along with ViewController.xib, a nib file).

You can alter these lists. If something in your project was not in Copy Bundle Resources
and you wanted it copied into the app during the build process, you could drag it from
the Project navigator into the Copy Bundle Resources list, or (easier) click the “+”
button beneath the Copy Bundle Resources list to get a helpful dialog listing everything
in your project. If something in your project was in Copy Bundle Resources and you
didn’t want it copied in the app, you would delete it from the list; this would not delete
it from your project, from the Project navigator, or from the Finder, but only from the
list of things to be copied into your app.

Build Settings
Build phases are only one aspect of how a target knows how to build the app. The other
aspect is build settings. To see them, edit the target and click Build Settings at the top
of the editor (Figure 6-10). Here you’ll find a long list of settings, most of which you’ll
never touch. But Xcode examines this list in order to know what to do at various stages
of the build process. Build settings are the reason your project compiles and builds the
way it does.

Figure 6-9. Build phases

The Target | 115

You can determine what build settings are displayed by clicking Basic or All. The set-
tings are combined into categories, and you can close or open each category heading
to save room. If you know something about a setting you want to see, such as its name,
you can use the search field at the top right to filter what settings are shown.

You can determine how build settings are displayed by clicking Combined or Levels;
in Figure 6-10, I’ve clicked Levels, in order to discuss what levels are. It turns out that
not only does a target contain values for the build settings, but the project also contains
values for the same build settings; furthermore, Xcode has certain built-in default build
setting values. The Levels display shows all of these levels at once, so you can under-
stand the derivation of the actual values used for every build setting.

To understand the chart, read from right to left. For example, the Base SDK build setting
(whose meaning I’ll discuss in Chapter 9) is set to be iOS 5.0 by the built-in Xcode
default (the rightmost column). Then, however, the project comes along with a different
value for this build setting, namely Latest iOS (second column from the right). The
target does not override this value (third column from the right). Therefore the actual
value used will be Latest iOS (fourth column from the right, “Resolved”). It happens
that the latest iOS is iOS 5.0 at the moment, so the end result is just the same as if the
project had not overridden Xcode’s built-in default value for this setting; but in theory
an iOS 5.1 SDK could someday be installed on this machine, and now the project would
use iOS 5.1 as its Base SDK even though Xcode’s default setting continues to specify
iOS 5.0.

If you wanted to change this value, you could, here and now. You could change the
value at the project level or at the target level. I’m not suggesting that you should do
so; indeed, you will rarely have occasion to manipulate build settings directly, as the
defaults are usually acceptable. Nevertheless, you can change build setting values, and
this is where you would do so. For details on what the various build settings are, consult
Apple’s documentation, especially the Xcode Build Setting Reference. Also, you can
select a build setting and show Quick Help in the Utilities pane to learn more about it.

Figure 6-10. Target build settings

116 | Chapter 6: Anatomy of an Xcode Project

Configurations
There are actually multiple lists of build setting values — though only one such list
applies when a build is performed. Each such list is called a configuration. Multiple
configurations are needed because you build in different ways at different times for
different purposes, and thus you’ll want certain build settings to take on different values
under different circumstances.

By default, there are two configurations:

Debug
This configuration is used throughout the development process, as you write and
run your app.

Release
This configuration is used for late-stage testing, when you want to check perfor-
mance on a device.

Configurations exist at all because the project says so. To see where the project says
so, edit the project and click Info at the top of the editor (Figure 6-11). Note that these
configurations are just names. You can make additional configurations, and when you
do, you’re just adding to a list of names. The importance of configurations emerges
only when those names are coupled with build setting values. Configurations can affect
build setting values both at the project level and at the target level.

For example, return to the target build settings (Figure 6-10) and type “Optim” into
the search field. Now you can look at the Optimization Level build setting. The Debug
configuration value for Optimization Level is None: while you’re developing your app,
you build with the Debug configuration, so your code is just compiled line by line in a
straightforward way. The Release configuration value for Optimization Level is Fastest,
Smallest; when your app is ready to ship, you build it with the Release configuration,
so that the resulting binary is faster and smaller, which is great for your users installing
and running the app on a device, but would be no good while you’re developing the
app because breakpoints and stepping in the debugger wouldn’t work properly. (A not
uncommon beginner error is building with the Release configuration and then won-
dering why the debugger isn’t pausing at breakpoints any more.)

Figure 6-11. Configurations

The Target | 117

Schemes and Destinations
So far, I have said that there are configurations, and I have explained that you may need
to switch between configurations in order to get the build setting values appropriate
for your current purpose. But I have not said how the configuration is determined as
you actually build. It’s determined by a scheme.

A scheme unites a target (or multiple targets) with a build configuration, with respect
to the purpose for which you’re building. A new project, such as Empty Window, comes
by default with a single scheme, named after the project’s single target. Thus this
project’s single scheme is called, by default, Empty Window. To see it, choose Product
→ Edit Scheme. The scheme editor dialog opens. Make sure that Info at the top of the
dialog is selected.

On the left side of the scheme editor are listed various actions you might perform from
the Product menu. Click an action to see its corresponding settings in this scheme. The
first action, the Build action, is different from the other actions, because it is common
to all of them (the other actions all implicitly involve building); thus the Build action
merely determines what target(s) will be built when each of the other actions is per-
formed, and for our simple project this is trivial, because we’ve only one target and we
always need it built. So, now consider the Run action.

When you click the Run action at the left, the editor displays the settings that will be
used when you build and run (Figure 6-12). As you can see, the Build Configuration
pop-up menu is set to Debug. That explains where the current build configuration
comes from. At the moment, whenever you build and run, you’re using the Debug build
configuration and the build setting values that correspond to it, because you’re using
this scheme, and that’s what this scheme says to do when you build and run.

Now dismiss the scheme editor, and consider how you might proceed if you wanted
to build and run using the Release build configuration. (The Debug build configuration
settings may affect the behavior of the built app, so you want to test the app as an actual
user would experience it.) One way would be to return to the scheme editor and change
the build configuration for the Run action for this scheme. Xcode makes this conve-
nient: hold the Option key as you choose Product → Run (or as you click the Run button
in the toolbar). The scheme editor appears, containing a Run button. So now you can
make any changes you like, such as setting the Build Configuration pop-up menu to
Release for the Run action, and proceed directly to build and run the app by clicking
Run.

(If you’re following along and you did make this change, open the scheme editor again
and set the Build Configuration pop-up for the Run action in our Empty Window
scheme back to Debug.)

On the other hand, if you were to find yourself often wanting to switch between building
and running with the Debug configuration and building and running with the Release
configuration, you might create a distinct, additional scheme that uses the Release

118 | Chapter 6: Anatomy of an Xcode Project

debug configuration for the Run action. This is easy to do: in the scheme editor, click
Duplicate Scheme. The name of the new scheme is editable; let’s call it Release. Change
the Build Configuration pop-up for the Run action in our new scheme to Release, and
dismiss the scheme editor.

Now you have two schemes, Empty Window (whose build configuration for running
is Debug) and Release (whose build configuration for running is Release). To switch
between them easily, you can use the Scheme pop-up menu in the project window
toolbar (Figure 6-13) before you build and run.

The Scheme pop-up menu lists each scheme, along with each destination on which you
might run your built app. A destination is effectively a machine that can run your app.
For example, you might want to run the app in the Simulator or on a physical device.
There is no configuration of destinations; you are automatically assigned destinations,

Figure 6-12. The scheme editor

Figure 6-13. The Scheme pop-up menu

The Target | 119

depending on what system your project is set to run on and what devices are connected
to your computer.

Destinations and schemes have nothing to do with one another; your app is built the
same way regardless of your chosen destination. The presence of destinations in the
Scheme pop-up menu is intended as a convenience, allowing you to use the pop-up
menu to choose either a scheme or a destination, or both, in a single move. To switch
easily among destinations without changing schemes, click near the right end of the
Scheme pop-up menu. To switch among schemes, possibly also determining the des-
tination (as shown in Figure 6-13), click near the left end of the Scheme pop-up menu.
You can also switch among schemes or among destinations by using the scheme editor.

From Project to App
An app file is really a special kind of folder called a package (and a special kind of
package called a bundle). The Finder normally disguises a package as a file and does
not dive into it to reveal its contents to the user, but you can bypass this protection and
investigate an app bundle with the Show Package Contents command. By doing so,
you can study the structure of your built app bundle.

We’ll use the Empty Window app that we built earlier as a sample minimal app to
investigate. You’ll have to locate it in the Finder; by default, it should be somewhere
in your user Library/Developer/Xcode/DerivedData folder, as shown in Figure 6-14. (If
you’re using Lion, I presume you know how to reveal the user Library directory. In
theory, you should be able to select the app under Products in Xcode’s Navigation pane
and choose File → Show in Finder, but there seems to be a long-standing bug preventing
this.)

In the Finder, Control-click the Empty Window app, and choose Show Package Con-
tents from the contextual menu.

Figure 6-14. The built app, in the Finder

120 | Chapter 6: Anatomy of an Xcode Project

Looking inside our minimal app bundle (Figure 6-15), we see that it contains just five
files:

Empty Window
Our app’s compiled code (the binary). When the app is launched, the binary is
linked to the various frameworks, and the code begins to run (starting with the
entry point in the main function).

Info.plist
A configuration file in a strict text format (a property list file). It is derived from the
project file Empty Window-Info.plist. It contains instructions to the system about
how to treat and launch the app. For example, if our app had an icon, Info.plist
would tell the system its name, so that the system could dive into the app bundle,
find it, and display it. It also tells the system things like the name of the binary, so
that the system can find it and launch the app correctly.

PkgInfo
A tiny text file reading APPL????, signifying the type and creator codes for this app.
The PkgInfo file something of a dinosaur; it isn’t really necessary for the functioning
of an iOS app and is generated automatically. You’ll never need to touch it.

InfoPlist.strings
A text file intended for text appearing in our Info.plist that might need to be trans-
lated into different languages. It is copied directly from InfoPlist.strings in the
project. We haven’t edited this file, and our app currently appears only in English,
so this file is of no interest at the moment (strings files are discussed in Chapter 9).

ViewController.nib
Currently, our app’s only nib file. It contains instructions for generating the initial
contents of our app’s main window (currently just a grey rectangle). It is created
(“compiled”) from the ViewController.xib file in the project; a .xib file and a .nib
file are different forms of the same thing.

In real life, an app bundle will contain more files, but the difference will mostly be one
of degree, not kind. For example, our project might have additional nib files, icon image
files, and image or sound files. All of these would make their way into the app bundle.

Figure 6-15. Contents of the app package

From Project to App | 121

You are now in a position to appreciate, in a general sense, how the components of our
project are treated and assembled into an app, and what responsibilities accrue to you,
the programmer, in order to ensure that the app is built correctly. The rest of this
chapter outlines what goes into the building of an app from a project.

Build Settings
We have already talked about how build settings are determined. Xcode itself, the
project, and the target all contribute to the resolved build setting values, some of which
may differ depending on the build configuration. Before building, you, the program-
mer, will have already specified a scheme; the scheme determines the build configura-
tion, the specific set of build setting values that will apply as the build proceeds.

Property List Settings
Your project contains a property list file that will be used to generate the built app’s
Info.plist file. The target knows what file it is because it is named in the Info.plist File
build setting. For example, in our project, the value of the Info.plist File build setting
has been set automatically to Empty Window/Empty Window-Info.plist. (Take a look
at the build settings and see!)

Because the name of the file in your project from which the built app’s
Info.plist file is generated will vary, depending on the name of the
project, I’ll refer to it generically as the project’s Info.plist.

The property list file is a collection of key–value pairs. You can edit it, and you may
well need to do so. There are two main ways to edit your project’s Info.plist:

• Select the file in the Project navigator and edit in the editor. By default, the key
names (and some of the values) are displayed descriptively, in terms of their func-
tionality; for example, it says “Bundle name” instead of the actual key, which is
CFBundleName. But you can view the actual keys by choosing Editor → Show Raw
Keys & Values (you might have to click in the editor to enable this menu item).

• Edit the target, and click Info at the top of the editor. This pane shows effectively
the same information as editing the Info.plist in the editor.

I’m not going to enumerate all the key–value pairs you might want to edit in your
project’s property list file, but I’ll just call attention to a few that you will almost cer-
tainly want to edit (and I’ll talk about others in Chapter 9 and elsewhere):

Bundle display name (CFBundleDisplayName)
The name that appears under your app’s icon on the device screen; this name needs
to be short in order to avoid truncation.

122 | Chapter 6: Anatomy of an Xcode Project

Bundle identifier (CFBundleIdentifier)
Your app’s unique identifier, used throughout the development process and when
submitting to the App Store. I talked earlier in this chapter about how this is derived
from your company name when you create a project.

For a complete list of the possible keys and their meanings, see Apple’s document
Information Property List Key Reference.

Nib Files and Storyboard Files
You edit a nib file (technically, this will probably be a .xib file) to describe graphically
some objects that you want instantiated when the nib file loads (Chapter 5). Your app
is likely to have at least one nib file. By breaking your interface into multiple nib files,
you simplify the relationship between each nib file and your code; also, if nibs that
aren’t needed when your app launches aren’t loaded until they are needed, you speed
up your app’s launch time, and you streamline your app’s memory usage (because nib
objects are not instantiated until the nib is loaded, and can then be destroyed when
they are no longer needed).

Your app might have also one or more storyboard files (a .storyboard file). A storyboard
file is like many nib files in one: in it, you describe graphically the various interfaces
(called scenes) that you want to appear as the user works with your app. Just as with
multiple nib files, a storyboard scene is transformed into actual interface only when it
is needed for display, and the memory needed to maintain that interface can be given
back when that interface is no longer showing. A single storyboard file may in fact
replace all the nib files in your app; but there are cases where you might use one or
more nib files and one or more storyboard files.

The target knows about your nib files because they appear in its Copy Bundle Resources
build phase. In the case of a nib file in .xib format, the file is not merely copied into the
app bundle; Xcode also translates (compiles) it into a smaller .nib file (using the
ibtool tool). Similarly, Xcode translates (compiles) a .storyboard file into a
smaller .storyboardc file in the built app (again, using the ibtool tool).

Nib files located inside your app bundle are typically loaded when they are needed as
the app runs, usually because code tells them to load. If you elect to use a storyboard
as the basis of your main interface, however, it will need to load before any code has a
chance to do so. Such a storyboard file is called the main storyboard file. This situation
is handled through the Info.plist file; it contains a key “Main storyboard file base name”
(UIMainStoryboardFile), and the system sees this and loads the designated storyboard
file automatically as the app launches. (Instead of a main storyboard file, it is possible
to have a main nib file that loads automatically when the app launches; this was the
standard approach for apps created with Xcode 3.2.x and Xcode 4.0, but none of the
current Xcode project templates exemplify this approach, so I don’t discuss it in this
edition of the book.)

From Project to App | 123

A universal app — that is, an app that runs both on the iPad and on the
iPhone — typically has nib files or storyboard files in pairs, one to be
loaded on the iPad and the other to be loaded on the iPhone. Thus the
app can have different basic interfaces on the two different types of de-
vice. Naming conventions and Info.plist keys allow the runtime to know
which nib or storyboard to load depending on the device type. For ex-
ample, a second Info.plist key, “Main storyboard file base name (iPad)”
(UIMainStoryboardFile~ipad), specifies the storyboard file to be loaded
at launch time on the iPad.

See Chapter 7 for more details about nib files; both nib files and storyboard files, and
how they are loaded and why, are discussed in detail in Chapter 19.

Other Resources
Our app doesn’t currently have any additional resources — not even an icon file. But
if it did, the target would know about them because they appear in its Copy Bundle
Resources build phase. In general, such resources would be copied unchanged into the
app bundle.

With the exception of the app’s icon and some images with standardized names, all of
which are found and used by the system, additional resources are present because you
want your running app to be able to fetch them out of its bundle. For example, if your
app needs to display a certain image, you’d add the image to your project and make
sure it appears in the Copy Bundle Resources build phase. When the app runs, your
code (or possibly the code implied by a loaded nib file) reaches into the app bundle,
locates the image, and displays it (Chapter 15).

To add a resource to your project, start in the Project navigator and choose File → Add
Files to Empty Window (or whatever the name of the project is). Alternatively, drag
the resource from the Finder into the Project navigator. Either way, a dialog appears
(Figure 6-16) containing a pane in which you make the following settings:

Figure 6-16. Options when adding a resource to a project

124 | Chapter 6: Anatomy of an Xcode Project

Copy items into destination group’s folder (if needed)
You should almost certainly check this checkbox. Doing so causes the resource to
be copied into the project folder. If you leave this checkbox unchecked, your project
will be relying on a file that’s outside the project folder and that you might delete
or change unintentionally. Keeping everything your project needs inside the project
folder is far safer.

Folders
This choice matters only if what you’re adding to the project is a folder. In both
cases, whether the folder is copied into the project folder depends on whether you
checked the checkbox discussed in the previous paragraph; the difference is in how
the project references the folder contents:

Create groups for any added folders
The folder is expressed as a group within the Project navigator, but its contents
all appear individually in the Copy Bundle Resources build phase, so they will
all be copied individually into the app bundle.

Create folder references for any added folders
The folder itself is shown in blue in the Project navigator and appears as a
folder in the Copy Bundle Resources build phase; thus, the build process will
copy the entire folder and its contents into the app bundle. This means that
the resources inside the folder won’t be at the top level of the bundle, but in a
subfolder of it; your code might have to specify the folder name when loading
such a resource. Such an arrangement can be valuable if you have many re-
sources and you want to separate them into categories (rather than clumping
them all at the top level of the app bundle) or if the folder hierarchy among
resources is meaningful to your app.

Add to Targets
Checking this checkbox causes the resource to be added to the target’s Copy Bun-
dle Resources build phase. Thus you will almost certainly want to check it; why
else would you be adding this resource to the project? But if this checkbox is un-
checked and you realize later that a resource listed in the Project navigator needs
to be added to the Copy Bundle Resources build phase, you can add it manually,
as I described earlier.

An alternative way to copy resources from your project into the app bundle is through
a custom Copy Files build phase that you add to your target. To make one, edit the
target, switch to Build Phases, and click Add Build Phase (at the lower right) and choose
Add Copy Files. A Copy Files build phase appears; open its triangle, and you’ll find
you can specify a custom path within the app bundle. For example, if you leave the
Destination pop-up menu set to Resources and type “Pix” in the Subpath field, then
any resources you add to this build phase will be copied into a folder called Pix in the
app bundle.

From Project to App | 125

A custom Copy Files build phase of this sort can be a good way of keeping resources
organized by folder inside your app bundle; I frequently use it for this purpose. Bear in
mind, however, that it is entirely up to you to make sure that the desired resources are
placed inside the appropriate Copy Files build phase (and that they are not placed in
the normal Copy Bundle Resources build phase, because if they are, you’ll end up with
two copies of the resource in your app bundle).

If you copy resources into a subfolder of your app bundle, either with a
folder reference or a custom Copy Files build phase, your code may have
to specify that subfolder in order to fetch the resource from inside the
app bundle.

Code
Code declaring two classes, AppDelegate and ViewController, was created for you
when the project was created; the implementation files for these classes (App-
Delegate.m and ViewController.m) appear in the target’s Compile Sources build phase.
If you create any further class files, you’ll specify that they should be added to the target,
and they too will then have their implementation files listed in the Compile Sources
build phase. This (the contents of the Compile Sources build phase) is how your target
knows what files to compile to create the app’s binary.

The binary that results from compilation of these files is your project’s executable, and
is placed into the app bundle, with its name being by default the same as the name of
the target. The app bundle’s Info.plist file has an “Executable file” (CFBundle-
Executable) key whose value is the name of the binary; this is how the system knows
how to locate the executable and launch the app.

Besides the class code files you create (or that Xcode creates for you), your project
contains a main.m file. This too is in the Compile Sources build phase; it had better be,
because this file contains the all-important main function, the entry point to your app’s
code! Here are the main function’s contents:

int main(int argc, char *argv[])
{
 @autoreleasepool {
 return UIApplicationMain(argc, argv, nil,
 NSStringFromClass([AppDelegate class]));
 }
}

The main function is very simple, but it’s crucial. It calls UIApplicationMain, which sets
everything else in motion. UIApplicationMain is responsible for solving some tricky
problems. As your app starts up, how will any of its code ever run? And how will its
starting repertoire of instances ever be generated? UIApplicationMain takes care of these
issues. First, your app is a C program, and a C program’s main function is always called,

126 | Chapter 6: Anatomy of an Xcode Project

to start the program running; thus, UIApplicationMain will in fact be called. Then,
UIApplicationMain does the following things:

• It creates your very first instance — the shared application instance (later accessible
in code by calling [UIApplication sharedApplication]). The third argument to
UIApplicationMain specifies, as a string, what class the shared application instance
should be an instance of. If nil, which will usually be the case, the default class is
UIApplication; but you can make a subclass of UIApplication and specify that
subclass here by substituting something like this (depending on what the subclass
is called) as the third argument:

NSStringFromClass([MyUIApplicationSubclass class])

• Optionally, it also creates your second instance — the application instance’s del-
egate. Delegation is an important and pervasive Cocoa pattern, described in detail
in Chapter 10, but for now let’s just say that it is crucial that every app you write
have an app delegate instance. The fourth argument to UIApplicationMain specifies,
as a string, what class the app delegate instance should be. If this class is specified,
as here, UIApplicationMain instantiates that class and ties that instance to the
shared application instance as the latter’s delegate. If this class is not specified (the
fourth argument is nil), it is up to you to provide a delegate instance in some other
way; since you cannot do this sufficiently early in code, you would have to do it
through the loading of the main nib file. (Before iOS 5 and Xcode 4.2, this was in
fact the usual way in which the app delegate was instantiated; but Apple has now
changed the default pattern so that the app delegate is generated in code by the
call to UIApplicationMain.)

• If the Info.plist file specifies a main storyboard file or main nib file, UIApplication-
Main loads it. (In the latter case, the nib file’s owner is the shared application in-
stance.)

• An app delegate instance has now been generated, either because UIApplication-
Main instantiated it directly in response to the value of its fourth argument, or
because UIApplicationMain loaded a main nib file which instantiated it.
UIApplicationMain now turns to this app delegate instance and starts calling some
of its code — in particular, it calls application:didFinishLaunchingWithOptions:,
which is typically responsible, in turn, for displaying your app’s initial interface.

• The app is now launched and visible to the user. UIApplicationMain is still running
(like Charlie on the M.T.A., UIApplicationMain never returns), and is now just
sitting there, watching for the user to do something, maintaining the event loop,
which will respond to user actions as they occur.

The call to UIApplicationMain is wrapped in some memory management functionality
(the @autoreleasepool curly braces) that I’ll explain in Chapter 12.

Finally, notice the file Empty Window-Prefix.pch in the Project navigator. This is your
project’s precompiled header file. It isn’t listed in the Compile Sources build phase be-

From Project to App | 127

cause it is actually compiled before that build phase; the target knows about it because
it is pointed to by the Prefix Header build setting.

The precompiled header is a device for making compilation go faster. It’s a header file;
it is compiled once (or at least, very infrequently) and the results are cached (off
in /var/folders/) and are implicitly imported by all your code files. So the precompiled
header should consist primarily of #import directives for headers that never change
(such as the built-in Cocoa headers); it is also a reasonable place to put #defines that
will never change and that are to be shared by all your code.

The default precompiled header file imports <Foundation/Foundation.h> (the Core
Foundation framework header) and <UIKit/UIKit.h> (the Cocoa framework). I’ll talk
in the next section about what that means.

Frameworks and SDKs
A framework is a library of compiled code used by your code. Most of the frameworks
you are likely to use will be Apple’s built-in frameworks; they are built-in in the sense
that they are part of the system on the device where your app will run — they live
in /System/Library/Frameworks, though you can’t tell that on an iPhone or iPad because
there’s no way (normally) to view the file hierarchy directly.

However, your code needs to use these frameworks not only when running on a device
but also when building and when running in the Simulator. To make this possible, part
of the device’s system — in particular, the part containing its frameworks — is dupli-
cated on your computer, in the Developer folder. This duplicated subset of the device’s
system is called an SDK (for “software development kit”) and is something you can see
directly in the Finder. For example, look at /Developer/Platforms/iPhoneOS.platform/
Developer/SDKs/iPhoneOS5.0.sdk/System/Library/Frameworks; behold, there are the
frameworks included on a device running iOS 5.0.

To use a framework in your code, you must do two things:

Import the framework’s header
A framework has a header file, which provides (usually by importing other header
files within the framework) the interface information about classes in that frame-
work. Your code needs this information in order to compile successfully. You im-
port the header with an appropriate #import directive.

Link to the framework
A framework is a package; you must instruct the build system to associate this
package with your app’s executable binary, so that your binary’s calls to code
within that framework can be routed into the framework’s compiled code. This is
necessary in order for your app to run successfully. Such an association is called
linking the binary with the framework, and you instruct the build system to do this
by including the framework in the target’s Link Binary With Libraries build phase.

128 | Chapter 6: Anatomy of an Xcode Project

You might think that linkage is impossible because the framework to which we
ultimately want to link is off on a target device somewhere. But linkage is path-
based, and the path is determined relative to the current SDK. Thus, the linkage
to the UIKit framework uses the path System/Library/Frameworks/UIKit.frame-
work. This path is relative to the current SDK, so if you’re using the iOS 5.0 SDK,
the path during development will be /Developer/Platforms/iPhoneOS.platform/De-
veloper/SDKs/iPhoneOS5.0.sdk/System/Library/Frameworks/UIKit.framework.
But when the app runs on the device, there is no SDK, and the path becomes
absolute, starting at the top level of the device. Thus, when the app runs in the
Simulator, the framework is found successfully on your computer, and when the
app runs on a device, the framework is found successfully on the device.

By default, three frameworks are linked into your target:

Foundation
Many basic Cocoa classes, such as NSString and NSArray and others whose names
begin with “NS,” are part of the Foundation framework. The Foundation frame-
work is imported in the precompiled header file (and, by default, in the headers of
new classes that you create). In turn, it imports the Core Foundation headers and
loads the Core Foundation framework as a subframework; thus, there is no need
for you to import or link explicitly to the Core Foundation framework (which is
full of functions and pointer types whose names begin with “CF,” such as CFString-
Ref).

UIKit
Cocoa classes that are specialized for iOS, whose names begin with “UI,” are part
of the UIKit framework. The UIKit framework is imported in the precompiled
header file (and by templated class code files such as AppDelegate.h).

Core Graphics
The Core Graphics framework defines many structs and functions connected with
drawing, whose names begin with “CG.” It is imported by many UIKit headers, so
you won’t need to import it separately.

You might find that the three default frameworks are sufficient to your needs, or you
might find that you need other frameworks to provide additional functionality. How
will you know that a class or function you want to use resides outside the three default
frameworks? You might get a clue from its name, which won’t begin with “NS,” “UI,”
or “CG”, but more often, if you’re like me, you’ll be alerted by banging up against the
compiler.

For example, let’s say you’ve just found out about animation (Chapter 17) and you’re
raring to try it in your app. So, in your code, you create a CABasicAnimation:

CABasicAnimation* anim = [CABasicAnimation animation];

The next time you try to build your app, the compiler complains that CABasic-
Animation is undeclared (and that it therefore can’t make sense of anim either). That’s

From Project to App | 129

when you realize you need to import a framework header. Near the start of the
CABasicAnimation class documentation is a line announcing that it’s in Quartz-
Core.framework. You might guess (correctly) that the way to import the main Quartz
Core framework header is to put this line near the start of your implementation file:

#import <QuartzCore/QuartzCore.h>

This works to quiet the compiler. Remember, though, that I said that using a framework
requires two things; we’ve done only one of them. So your code still doesn’t build. This
time, you get a build error during the link phase of the build process complaining about
_OBJC_CLASS_$_CABasicAnimation and saying, “Symbol(s) not found.” That mysterious-
sounding error merely means that you’ve forgotten to link your target to the Quartz
Core framework.

To link your target to a framework, edit the target, click Summary at the top of the
editor, and scroll down to the Linked Frameworks and Libraries section. (This is the
same information that appears which you click Build Phases at the top of the editor
and open the Link Binary with Libraries build phase.) Click the “+” button at the left
just below the frameworks. A dialog appears nicely listing the existing frameworks that
are part of the active SDK. Select QuartzCore.framework and click Add. The Quartz
Core framework is added to the target’s Link Binary With Libraries build phase. (It also
appears in the Project navigator; you might like to drag it manually into the Frameworks
group, for the sake of neatness.) Now you can build (and run) your app.

You might wonder why the project isn’t linked by default to all the frameworks, so that
you don’t have to go through this process every time you stray beyond the default three
frameworks. It’s just a matter of time and resources. Importing headers increases the
size of your code; linking to frameworks slows down your app’s launch time. You
should link to only the frameworks needed for your code to run.

Where you import a framework header depends on how you intend to use it. It’s simply
a matter of scope. If a framework’s classes are to be mentioned only within a single
implementation file, then you can import it at the start of that implementation file. If
you want to subclass one of the framework’s classes (or adopt one of its protocols,
Chapter 10), you’ll need to import it at the start of the interface file that declares the
subclass; in that case, every implementation file that imports this interface file imports
the framework header, and there’s no need to import the framework header separately
in the implementation file. Of course, for maximum scope, you can simply import the
framework header in the precompiled header file, making that framework available
throughout your code.

130 | Chapter 6: Anatomy of an Xcode Project

Renaming Things
The name assigned to your project at creation time is used in many places throughout
the project, leading beginners to worry that they can never rename a project without
breaking something. But fear not! To rename a project, select the project listing at the
top of the Project navigator, press Return to make its name editable, type the new name,
and press Return again. Xcode presents a dialog proposing to change some other names
to match, including the target, the built app, the precompiled header file, and the
Info.plist — and, by implication, the build settings specifying these. You can check or
uncheck any name, and click Rename; your project will continue to work correctly.

You can freely change the target name independently of the project name. It is the target
name, not the project name, that is used to derive the name of the product and thus
the bundle name, bundle display name, and bundle identifier mentioned earlier in this
chapter. Thus, when you settle on a real name for your app, it might be sufficient to
set the target name.

Changing the project name (or target name) does not automatically change the scheme
name to match. There is no particular need to do so, but you can change a scheme
name freely; choose Product → Manage Schemes and click on the scheme name to make
it editable.

Changing the project name (or target name) does not automatically change the main
group name to match. There is no particular need to do so, but you can freely change
the name of a group in the Project navigator, because these names are arbitrary; they
have no effect on the build settings or the build process. However, the main group is
special, because (as I’ve already said) it corresponds to a real folder on disk, the folder
that sits beside your project file at the top level of the project folder. You can change
the group’s name (changing the project name does not do this for you automatically),
but you should not delete it, and beginners should not change the name of the folder
on disk to which it corresponds, as that folder name is hard-coded into several build
settings.

You can change the name of the project folder in the Finder at any time, and you can
move the project folder in the Finder at will, because all build setting references to file
and folder items in the project folder are relative.

If you want to change the name of a class or variable, Xcode can assist you with its
Refactoring and Edit All In Scope features (Chapter 9).

From Project to App | 131

CHAPTER 7

Nib Management

A nib file, or simply nib, is a file containing a drawing of a piece of your interface. The
term nib is not really an English word (it has nothing to do with fountain pens, for
example); it is based on the file extension .nib that is used to signify this type of file, an
extension that originated as an acronym (for “NeXTStep Interface Builder”). Nowa-
days, you will usually develop your interface using a file format whose extension
is .xib; when your app is built, your target’s .xib files are translated (“compiled”)
into .nib format (Chapter 6). But a .xib file is still referred to as a nib file. I will speak
of the same nib file as having either a .xib extension (if you’re editing it) or a .nib
extension (if it’s in the built app).

You construct your program in two ways — writing code, and drawing the interface.
But these are really two ways of accomplishing the same ends; drawing the interface
is a way of writing code. When the app runs and your drawing of the interface in a nib
file is loaded, it is translated into instructions for instantiating and initializing the ob-
jects in the nib file. You could equally have instantiated and initialized those same
objects in code. (This point is crucial; see “Nib-Based Instantiation” on page 81.) In-
deed, deciding whether to create an interface object in code or through a nib file is not
always easy; each approach has its advantages. The important thing is to understand
how interface objects drawn in a nib file are instantiated and connected to your code
when the app runs.

(This chapter applies in almost all details equally to storyboards. So do not, under any
circumstances, skip this chapter on the grounds that you intend to use storyboards
instead of nibs! Storyboards do not relieve you of the need to understand nib manage-
ment thoroughly; and in any case, an Xcode programming life without nibs is still
extremely improbable. I’ll address the use of storyboards in Chapter 19.)

Up through Xcode 3.2.x, nib editing was performed in a separate ap-
plication, Interface Builder. Starting in Xcode 4, the functionality of In-
terface Builder was rolled into Xcode itself. Nevertheless, the Xcode in-
terface for nib editing is still commonly referred to as Interface Builder.

133

A Tour of the Nib-Editing Interface
Let’s use an actual nib file to explore the Xcode nib-editing interface. In Chapter 6, we
created a simple Xcode project, Empty Window; it contains a nib file, so we’ll use that.
In Xcode, open the Empty Window project, locate the ViewController.xib listing in the
Project navigator, and click it to edit it.

Figure 7-1 shows the project window after selecting ViewController.xib and making
some additional adjustments. The Navigator pane is hidden; the Utilities pane is show-
ing. Within the Utilities pane, the Size inspector and the Object library are showing.
The interface may be considered in four pieces:

1. At the left of the editor is the dock, showing the nib’s top-level objects. The dock
can be expanded by dragging its right edge or by clicking the right-pointing triangle-
in-a-circle at its lower right; then it shows all of the nib’s objects hierarchically.

2. The remainder of the editor is devoted to the canvas, where you physically design
your app’s interface. The canvas portrays views in your app’s interface and things
that can contain views. (A view is an interface object, which draws itself into a
rectangular area. The phrase “things that can contain views” is my way of including
view controllers, which are represented in the canvas even though they are not
drawn in your app’s interface.)

Figure 7-1. Editing a nib file

134 | Chapter 7: Nib Management

3. The inspectors in the Utilities pane are where you view and edit details of the
currently selected object.

4. The libraries in the Utilities pane, especially the Object library, are your source for
interface objects to be added to the nib.

The Dock
The dock, as I’ve already said, shows the nib’s top-level objects. To see what this means,
you need first to envision the nib as containing objects. Some of these objects — those
that represent views — are arranged in a hierarchy of containment. Objects that are
contained by no other object are top-level objects.

A view can contain other views (its subviews) and can be contained by another view
(its superview); for example, a button might be a subview of a window, and that window
would be that button’s superview. One view can contain many subviews, which might
themselves contain subviews. But each view can have only one immediate superview.
Thus there is a hierarchical tree of subviews contained by their superviews with a single
object at the top. The highest superview of any such hierarchy in the nib is a top-level
object and appears in the dock. That’s why the view object (labeled View in Fig-
ure 7-1) appears in this nib’s dock: it is a view contained by no other view.

A nib file can actually contain two types of top-level object:

Placeholders (proxy objects)
A placeholder, or proxy object, represents an object that already exists in your app’s
code at the time the nib is loaded. Proxy objects appear in a nib file chiefly so that
you can provide communication between objects in your app’s code and objects
instantiated from the nib. You can’t create or delete a proxy object; the dock is
populated automatically with them. Proxy objects are shown above the dividing
line in the dock.

Nib objects
A nib object is an object that is instantiated by the nib — that is, the instance it
represents will be created when your code runs and the nib loads. You can create
new nib objects. Top-level nib objects are shown below the dividing line in the
dock.

The dock can be expanded (by clicking the right-pointing triangle-in-a-circle at its lower
right); it then portrays objects by name (label), and shows as an outline the full hierarchy
of objects in this nib (Figure 7-2). At present, expanding the dock may seem silly,
because there is no hierarchy; all objects in this nib are top-level objects. But when a
nib contains many levels of hierarchically arranged objects, you’re going to be very glad
of the ability to survey them all in a nice outline, and to select the one you’re after,
thanks to the expanded dock. You can also rearrange the hierarchy here; for example,
if you’ve made an object a subview of the wrong view, you can drag it onto the view it
should be a subview of within this outline.

A Tour of the Nib-Editing Interface | 135

You can also select objects using the jump bar at the top of the editor. First, click on
the canvas background so that no object is selected; the entire hierarchy of the objects
in your nib is then shown as a set of hierarchical menus off the rightmost jump bar path
component (Control-6). Again, this may seem like small potatoes now, when your nib
contains just three top-level objects and nothing more, but it will be valuable when
you’ve many nib objects in a hierarchy.

The names (labels) by which nib objects are designated are meaningful only while ed-
iting a nib file; they have no relationship to your code. When the dock is expanded,
each object is portrayed by its label, as shown in Figure 7-2. When the dock is collapsed,
you can see a top-level object’s label by hovering the mouse over it, as shown in Fig-
ure 7-1. If you find an object’s label unhelpful, you can change it: select the object and
edit the Label field (whose placeholder reads “Xcode Specific Label”) in the Identity
section of the Identity inspector (Command-Option-3).

Canvas
The canvas presents a graphical representation of a top-level nib object along with its
subviews, similar to what you’re probably accustomed to in any drawing program. If
a top-level nib object has a graphical representation (not every top-level nib object has
one), you can click on it in the dock to display that representation in the canvas. A little
dot to the left of a top-level object in the collapsed dock indicates that it is currently
being displayed graphically in the canvas.

To remove the canvas representation of a top-level nib object, click the “x” at its upper
left; this merely clears the representation from the canvas — it does not remove the
top-level nib object from the dock (or from the nib), and of course you can always bring
back the graphical representation by clicking that nib object in the dock again. On the
other hand, the canvas is scrollable and automatically accommodates all graphical rep-
resentations within it, so you can keep as many graphical representations open in the
canvas as you like, side by side, and scroll to see each one, regardless of the size of your
monitor; thus you might never need to remove the canvas representation of a top-level
nib object at all.

Our simple Empty Window project’s ViewController.xib contains just one top-level nib
object that has a graphical representation — the root view of the app’s window, called
View. The term “root” here implies that the view occupies the entire window. Because

Figure 7-2. The dock, expanded

136 | Chapter 7: Nib Management

this view is the root view of our app’s window, any changes you make here will be
reflected in the app’s user interface when you run it. To see this, we’re going to add a
subview to it:

1. Ensure that the View in the dock is being displayed in the canvas.

2. Look at the Object library (Control-Option-Command-3). Click the second button
in the segmented control to put the Object library into list view, if it isn’t in list
view already. Locate the Round Rect Button (you can type “button” into the filter
bar at the bottom of the library as a shortcut).

3. Drag the Round Rect Button from the Object library into the View in the canvas
(Figure 7-3). Don’t accidentally drop the button onto the canvas background, out-
side of the View! This would cause the button to become a top-level object, which
is not what you want. If that happens, select the button in the dock and press
Delete, and try again.

A button now appears in the view in the canvas. The move we’ve just performed —
dragging from the Object library into the canvas — is extremely characteristic; you’ll
do it often as you design your interface. Here are two alternative ways to do the same
thing:

• Double-click an object in the Object library; if a view (such as our View) is already
selected in the canvas, a copy of that object becomes a subview of it.

• Type some part of an object’s name in the filter bar; you can then use arrow keys
to select the correct object, if needed, and finally press Return to copy the object
into the canvas. You can switch to the Object library with Control-Option-Com-
mand-3, and this also puts focus in the filter bar, so the whole operation can be
performed with the keyboard.

Next, play around with the button in the view in the canvas. Much as in a drawing
program, the nib editor provides features to aid you in designing your interface. Here
are some things to try:

• Select it: resizing handles appear.

Figure 7-3. Dragging a button into a view

A Tour of the Nib-Editing Interface | 137

• Resize it to make it wider: dimension information appears.

• Drag it near the edge of the view: a guideline appears, showing a standard margin
space between the edge of the button and the edge of the view.

• With the button selected, hold down the Option key and hover the mouse outside
the button: arrows and numbers appear showing the pixel distance between the
button and the edges of the view. (If you accidentally clicked and dragged while
you were holding Option, you’ll now have two buttons. That’s because Option-
dragging an object duplicates it. Select the unwanted button and press Delete to
remove it.)

• Shift-Control-click on the button: a menu appears, letting you select the button or
whatever’s behind it (in this case, the view).

Let’s prove that we really are designing our app’s interface. We’ll run the app to see
that its interface has changed.

1. Make sure that the Breakpoints button in the project window toolbar is not se-
lected, as we don’t want to pause at any breakpoints you may have created while
reading the previous chapter.

2. Make sure the destination in the Scheme pop-up menu is the iPhone Simulator.

3. Choose Product → Run (or click the Run button in the toolbar).

After a heart-stopping pause, the iOS Simulator opens, and presto, our empty window
is empty no longer (Figure 7-4); it contains a round rect button! You can tap this button
with the mouse, emulating what the user would do with a finger; the button highlights
as you tap it.

Inspectors and Libraries
There are four inspectors that appear only when you’re editing a nib and apply to
whatever object is selected in the dock or canvas:

Identity inspector (Command-Option-3)
Far and away the most important section of this inspector is the first one, the
Custom Class. The selected object’s Class setting tells you the object’s class, and
you can use it to change the object’s class. Some situations in which you’ll need to
change the class of an object in the nib appear later in this chapter.

Attributes inspector (Command-Option-4)
Settings here correspond to properties and methods that you might use to configure
the object in code. For example, changing the setting in the Background pop-up
menu in the Attributes inspector for our view corresponds to setting the background-
Color property for the view in code. Similarly, typing a value in the Title field in
the Attributes inspector for our button is like calling the button’s setTitle:for-
State: method.

138 | Chapter 7: Nib Management

The Attributes inspector has sections corresponding to the selected object’s class
inheritance. For example, the UIButton Attributes inspector has three sections,
because a UIButton is also a UIControl (“Control” in the inspector) and a UIView
(“View” in the inspector).

The correspondence between Attributes inspector settings and
Objective-C methods is mostly a matter of guesswork. The Attributes
inspector doesn’t always tell you, and there’s no way to see the code
generated when the nib actually loads.

Size inspector (Command-Option-5)
The X, Y, Width, and Height fields determine the object’s frame (its position and
size within its superview), corresponding to its frame property in code; you can
equally do this in the canvas by dragging and resizing, but numeric precision can
be desirable. The Autosizing box corresponds to the autoresizingMask property,
determining how the object will be repositioned and resized when its superview is
resized; a delightful animation demonstrates visually the implications of your set-
tings. The Arrange pop-up menu contains useful commands for positioning the
selected object.

Figure 7-4. The Empty Window app’s window is empty no longer

A Tour of the Nib-Editing Interface | 139

Connections inspector (Command-Option-6)
I’ll discuss this later in this chapter.

There are two libraries that are of particular importance when you’re editing a nib:

Object library (Control-Option-Command-3)
This library, as we’ve already seen, is your source for types of object that you want
to copy into the nib.

Media library (Control-Option-Command-4)
This library lists media in your project, such as images that you might want to drag
into a UIImageView or directly into your interface (in which case a UIImageView
is created for you).

Nib Loading and File’s Owner
A nib file is useless until your app runs and the nib file is loaded. If a nib is designated
by the Info.plist key “Main nib file base name” (NSMainNibFile, see Chapter 6), it is
loaded automatically as the app launches; but this is an exceptional case, and has now
fallen out of favor — there are no automatically loaded main nib files in the current
project templates. In general, nibs are loaded explicitly as needed while the app runs.
In our Empty Window application, you can actually see where this happens, in App-
Delegate.m:

self.viewController =
 [[ViewController alloc] initWithNibName:@"ViewController" bundle:nil];

That line of code does several things, one of which is that (for reasons to be explained
more fully in Chapter 19) it causes the nib named @"ViewController" (i.e., the nib file
compiled from ViewController.xib, the nib file we’ve been editing) to be loaded, and
the resulting views to be put into our app’s interface — which is how we were able to
obtain the outcome shown in Figure 7-4.

So a nib is not loaded until the app runs and our code decides, at some point in the life
of the app, that that nib is needed. This architecture is a source of great efficiency. For
example, imagine our app has two complete sets of interface, and the user might never
ask to see the second one. It makes obvious sense not to load a nib containing the
second set of interface until the user does ask to see it. By this strategy, a nib is loaded
when its instances are needed, and those instances are destroyed when they are no
longer needed. Thus memory usage is kept to a minimum, which is important because
memory is at a premium in a mobile device. Also, loading a nib takes time, so loading
fewer nibs at launch time makes launching faster.

When a nib loads, some already existing instance is designated its owner. A nib cannot
load without an owner, and the owner must exist before the nib can load. The owner
will often be a UIViewController instance, because a UIViewController already knows
how to load a nib and manage a view that it contains (Chapter 19); and indeed, this is

140 | Chapter 7: Nib Management

the case when our ViewController.xib file is loaded: an instance of the ViewController
class, which is a UIViewController subclass, is created precisely to act as its owner. But
a nib owner can be an instance of any class, and it is important to be conscious of that
fact.

The File’s Owner top-level object in a nib file is a proxy for the instance that will be the
nib’s owner when the nib loads, and its class should be set to that instance’s class. In
the case of our Empty Window project’s ViewController.xib, the File’s Owner’s class
has been correctly set in advance: its class is ViewController (do you see how to confirm
this in the nib editor’s Identity inspector?), corresponding to the fact that a View-
Controller instance will be the nib’s owner when it loads. For nibs that you create, the
File’s Owner’s class might not be set correctly, and you’ll have to set it yourself using
the Identity inspector.

Let’s look at that line of code from AppDelegate.m once again:

self.viewController =
 [[ViewController alloc] initWithNibName:@"ViewController" bundle:nil];

I mentioned earlier that it does several things. The first thing it does (by performing the
“alloc-init” dance) is to instantiate ViewController. The second thing it does, by using
initWithNibName:bundle: as the initializer for that new ViewController instance, is to
tell that instance to load the nib named @"ViewController" with itself as owner. The
class of the actual owner of the nib at the moment it loads thus corresponds to the class
of the File’s Owner proxy in that nib.

When a nib loads, its nib objects are instantiated, meaning its top-level nib objects and
all deeper-level nib objects hierarchically dependent on them. (Proxy objects, by defi-
nition, exist before the nib loads; nib loading does not instantiate them.) For example,
in our nib, the view is instantiated when the nib loads, bringing with it the button inside
it. (Again, see “Nib-Based Instantiation” on page 81; make very sure you understand
this point!) This is what nibs are for — to instantiate objects when they load. To put
it another way, that is what nib loading is — it is the instantiation of the nib objects
described in the nib. At that point, having loaded, the nib’s work is done; the nib does
not, for example, have to be “unloaded.”

The same nib can be loaded multiple times, generating an entirely new
set of instances each time. A common beginner question is, “I have a
view in a nib; how do I make multiple copies of this view?” The simple
solution is to load that nib multiple times. This is common practice. For
example, consider table view cells. Every “row” of a table view is a table
view cell. Let’s say there’s a certain look and behavior you want each
“row” to have. You design the cell in a nib of its own as a UITable-
ViewCell. If the table has to display ten rows, you load that nib ten times
(Chapter 21).

Nib Loading and File’s Owner | 141

Making and Loading a Nib
Let’s create our own nib-loading code, illustrating at the same time the fact that any
instance can be a nib’s owner. To do so, we’ll need a second nib file in our project.

First, we’ll make the nib:

1. Choose File → New → New File.

2. At the left of the dialog, under iOS (not Mac OS X!), choose User Interface, and
select View in the main part of the dialog. Click Next.

3. For the Device Family, specify iPhone. Click Next.

4. Name the file MyNib; make sure you’re saving into the Empty Window project
folder, that the group is Empty Window, and that the target is Empty Window
(and checked). Click Save.

We’ve now created a nib file, MyNib.xib, containing a single top-level nib object, a
UIView. Look at MyNib.xib in the editor to see that this is true.

We’ll also need an instance to act as the nib’s owner. By the time our code will run, we
will already have at least one instance we could use (the AppDelegate instance), but to
illustrate the procedure fully, we’ll create our own class whose sole purpose is to be
instantiated so that this instance can act as the owner of the nib file as it loads:

1. In the Empty Window project in Xcode, choose File → New → New File. The
“Choose a template” dialog for files appears.

2. At the left of the dialog, under iOS (not Mac OS X!), select Cocoa Touch, and select
Objective-C Class in the main part of the dialog. Click Next.

3. Name the file MyClass. The dialog also offers you a chance to specify what super-
class the new class should be a subclass of. Make sure this is NSObject. Click Next.

4. Make sure you’re saving into the Empty Window project folder, that the group is
Empty Window, and that the target is Empty Window (and checked). Click Create.

We’ve now created files MyClass.h and MyClass.m declaring a class called MyClass.

Next, we’ll write code that will load our new nib when the app runs. We need a place
in our little app where our code is guaranteed to run: we’ll use the AppDelegate instance
method application:didFinishLaunchingWithOptions: (in the file AppDelegate.m). Just
before or after the call to makeKeyAndVisible, insert this code to instantiate MyClass
and load MyNib.nib with that instance as its owner:

MyClass* mc = [[MyClass alloc] init];
[[NSBundle mainBundle] loadNibNamed:@"MyNib" owner:mc options:nil];

Xcode will complain about this, because you can’t speak of MyClass without importing
its declaration, so after the existing #import at the start of this file, add this line:

#import "MyClass.h"

142 | Chapter 7: Nib Management

Now build and run the project. Our new MyNib.nib file loads, and its UIView top-level
nib object is instantiated. Unfortunately, you can’t see that this is true! The next section
explains how to obtain visible proof that our nib is loading and that its top-level nib
objects are being instantiated.

Outlet Connections
You know how to load a nib file, thus instantiating its top-level nib objects. But those
instances are useless to you if you don’t know how to get a reference to any of them in
your code! Doing things with an object such as a label or a button or a text field or
whatever (such as setting or getting the text it displays) is easy; but you have to be able
to talk to the object in the first place, meaning that you need a reference to it, a variable
that points to that instance (Chapter 3). Getting a reference to an instance that you
created in code is trivial, because you assigned it to a variable at the time you created
it (Chapter 5). But there’s no such assignment when you load a nib; you just load it
and that’s the end of that:

[[NSBundle mainBundle] loadNibNamed:@"MyNib" owner:mc options:nil];
// no assignment??!! dude, where are my nib-created instances?

To refer in code to instances generated from nib objects when the nib loads, you need
to have previously set up an outlet connection from a proxy object in the same nib.

A connection is a named unidirectional linkage from one object in a nib file (the con-
nection’s source) to another object in the same nib file (the connection’s target). An
outlet is a connection whose name corresponds to an instance variable in the source
object. When the nib loads, and the target object is instantiated, the value of the in-
stance variable is set to the target object. Thus the source object winds up with a ref-
erence to the target object as the value of one of its instance variables.

Connections can link any two objects in a nib file, but a proxy object as the source of
a connection is special because it represents an object that exists before the nib loads.
Thus an outlet from a proxy object causes an object that exists before the nib loads to
end up with a reference to an object that doesn’t exist until after the nib loads — an
object that is in fact instantiated by the loading of the nib.

In the most typical configuration, the proxy object will be the File’s Owner. The idea
is that the instance that owns the nib has an instance variable, and the File’s Owner in
the nib has a corresponding outlet to a nib object; the nib loads, and the owner instance
ends up with an instance variable that refers to the instance generated from the nib
object (Figure 7-5).

To demonstrate, we’ll implement exactly the schema illustrated in Figure 7-5, by mak-
ing an outlet from the File’s Owner to a nib object in MyNib.xib. First, we need a nib
object in MyNib.xib to make an outlet to. For visual impact, we’ll replace the nib’s
existing top-level view with a top-level label, which will draw some text:

Outlet Connections | 143

1. In Xcode, click MyNib.xib to edit it.

2. In the dock, select the View object and delete it.

3. Drag a Label object (UILabel) from the Object library into the dock or the canvas
to become a new top-level object. Its graphical representation appears in the can-
vas.

4. Double-click the word “Label” in the label’s graphical representation in the canvas
and type “Hello, world!” Hit Return to stop editing and to make the label the size
of its text.

The object that will own the nib file when it loads is a MyClass instance. But the nib
doesn’t know this; we need to tell it:

1. Select the File’s Owner proxy object and look at the Identity inspector.

2. The Class, under Custom Class, is NSObject. Change this to MyClass. (If you type
“My,” the word “MyClass” should just appear, as it’s the only class Xcode knows
about whose name starts with “My.” Accept this by pressing Return.)

Now comes the really crucial part. We need two things, in two different places:

Figure 7-5. How an outlet provides a reference to a nib-instantiated object

144 | Chapter 7: Nib Management

The instance variable
In its code, MyClass needs an instance variable whose value will be the label.

The outlet
In the nib, the File’s Owner proxy, representing a MyClass instance, needs an outlet
pointing at the label — an outlet with the same name as the instance variable.

When the app runs and MyNib.nib is loaded with a MyClass instance as its owner, as
we arranged in the preceding section, those two pairs of things will be effectively equa-
ted:

• The MyClass instance will be equated with the File’s Owner proxy in the nib,
because it will be the nib’s owner as it loads.

• MyClass’s instance variable will be equated with the File’s Owner outlet pointing
at the label, because they have the same name.

I’m oversimplifying. It isn’t really the identity of an instance variable’s
name with that of the outlet that makes the match. It’s more compli-
cated than that; the match is made using key–value coding. The rigorous
details appear in Chapter 12.

You thus need to work in two places at once: the nib, and MyClass’s code. Before Xcode
4, this required working separately in two different places, Xcode (where the code was
edited) and Interface Builder (where the nib was edited). But in Xcode 4, the same
program edits both the code and the nib, and furthermore you can see the code and
the nib at the same time, all of which will make creating this pair of things, the instance
variable and the outlet, much easier than it once was.

I want you now to arrange to see two things at once: MyClass.m (the MyClass imple-
mentation file, where we’ll declare the instance variable) and MyNib.xib (where we’ll
create the outlet). You could use two project windows if you wanted, but for simplicity,
let’s use an assistant: while editing MyNib.xib, switch to Assistant view (View → As-
sistant Editor → Show Assistant Editor) as in Figure 7-6. If, when you showed the
assistant pane, it didn’t appear with MyClass’s header file showing, use the jump bar
in the assistant pane to make the assistant pane show MyClass.m.

In MyClass.m (in the assistant pane), at the start of the implementation section, create
curly braces and declare a UILabel instance variable:

@implementation MyClass
{
 IBOutlet UILabel* theLabel;
}
@end

The term IBOutlet is linguistically meaningless; it is #defined as an empty string, so it
is deleted before the compiler ever sees it. It’s purely a hint to Xcode to make it easy
for you to create the outlet. Xcode responds by displaying an empty circle in the gutter

Outlet Connections | 145

to the left of the IBOutlet line; this indicates that although we’re speaking of an outlet
in our code, no corresponding outlet connection yet exists in a nib. We’ll fix that in a
moment.

We have typed the instance variable as a UILabel*, because we happen to know that
this is the type of object that this instance variable will be pointing to; we could also
use id, or any superclass of UILabel. If we do not use one of these alternatives (id,
UILabel, or a superclass of UILabel), we will not be able to form the connection to a
UILabel in the nib.

We have accomplished half our task: we’ve made the instance variable. Now we’re
ready for the other half, namely, to make the outlet connection. There are several ways
to do this, so I’ll just pick one for now and demonstrate the others later:

1. Select File’s Owner in the nib (which, you remember, represents a MyClass in-
stance) and switch to the Connections inspector. Lo and behold, the name of our
instance variable, theLabel, is listed here! This is the work of the IBOutlet hint we
typed earlier.

2. Click in the empty circle to the right of theLabel in the Connections inspector, drag
to the Label object in the canvas (Figure 7-7), and release the mouse. (A kind of
elastic line follows the mouse as you drag from the circle to show that you’re cre-
ating a connection.)

Figure 7-6. Editing a nib, with code in the assistant pane

146 | Chapter 7: Nib Management

With the File’s Owner object selected, look again at the Connections inspector; it shows
that theLabel is connected to the Label nib object, and if you hover the mouse over the
filled circle at the right, the label object in the nib is highlighted. And look at the
IBOutlet line in MyClass.m; the circle in the gutter is now filled in, and if you click that
filled circle, the label is specified in a pop-up menu next to the circle, and the label
object in the nib is highlighted. Mission accomplished! We have made an outlet con-
nection in the nib from the File’s Owner proxy (representing a MyClass instance) to
the Label object, and this outlet connection has the same name as the instance variable
theLabel in MyClass’s code.

Therefore, when the nib loads and a MyClass instance is the nib’s owner, its the-
Label instance variable will be set to the UILabel object that will be instantiated through
the loading of the nib. To prove that this is indeed the case, we’ll do something with
that instance variable in our code. In particular, we’ll stick the UILabel into our win-
dow, thus making it visible. Its visibility will prove that the nib is loading and that the
instance variable is being set by the outlet.

Return to AppDelegate.m and modify the nib-loading code like this (you added the first
two lines earlier):

MyClass* mc = [[MyClass alloc] init];
[[NSBundle mainBundle] loadNibNamed:@"MyNib" owner:mc options:nil];
UILabel* lab = [mc valueForKey: @"theLabel"];
[self.window.rootViewController.view addSubview: lab];
lab.center = CGPointMake(100,100);
lab.frame = CGRectIntegral(lab.frame);

(We haven’t written an accessor method in MyClass for theLabel, so to save time I used
key–value coding.) Build and run the app. The words “Hello, world!” appear! This
proves that our outlet worked. We loaded a nib and, using an outlet, we obtained a
reference to a nib object and were able to manipulate that object, putting it into our
interface.

Figure 7-7. Connecting an outlet from the Connections inspector

Outlet Connections | 147

Making an instance variable and giving it an IBOutlet hint, but forget-
ting to connect the outlet to anything in the nib, is an unbelievably
common beginner (and not-so-beginner) mistake. Had we made this
mistake, our code would have run without error, but “Hello, world!”
would not appear in the interface because lab would be nil. The unfilled
circle that appears in the gutter next to an IBOutlet line for which no
corresponding nib connection exists is your only clue that something’s
amiss, so watch for it.

More Ways to Create Outlets
I said a moment ago that there were other ways to create the outlet. Let’s try some of
them. Return to our assistant-paned nib editor, select the File’s Owner, switch to the
Connections inspector, and delete the outlet by clicking the little “x” to its left. We’re
going to make this outlet again, a different way:

1. Select the File’s Owner in the dock.

2. Hold down the Control key and drag from the File’s Owner to the label. An elastic
line follows the mouse.

3. A little window (called a HUD, for “heads-up display”) appears, titled Outlets,
listing theLabel as a possibility (Figure 7-8). Click theLabel.

Once again, look at the Connections inspector with the File’s Owner selected to confirm
that this worked. You can even build and run the project again, to prove it to yourself
if you’re in any doubt. Now delete the outlet again; we’re going to make this outlet in
yet a different way:

1. Select the File’s Owner in the dock.

2. Control-click the File’s Owner in the dock. A HUD appears, looking a lot like the
Connections inspector.

3. Drag from the circle to the right of theLabel to the label (Figure 7-9).

Now delete the outlet again; we’re going to make this outlet in another way. This time,
we’re going to operate from the point of view of the label. The Connections inspector
shows all connections emanating from the selected object; it also shows all connections
linking to the selected object. So, select the label and look at the Connections inspector.
It lists “New Referencing Outlet.” This means an outlet from something else to the
thing we’re inspecting, the label. So:

Figure 7-8. Connecting an outlet by Control-dragging from the source object

148 | Chapter 7: Nib Management

1. From the circle at the right of “New Referencing Outlet,” drag to the File’s Owner.
An elastic line follows the mouse.

2. A HUD saying theLabel appears. Click it.

Confirm that, once again, we’ve made an outlet from the File’s Owner to the label.
(And we could also have done the same thing by Control-clicking the label to start with,
to show its Connections HUD.) Now delete the outlet again; we’re going to make this
outlet in another way. This time, we’re going to start with the label, but we’re going to
connect directly to the code which is sitting in the assistant pane:

1. Select the label.

2. Make sure that MyClass.m is showing in the assistant pane and that you can see
the IBOutlet line declaring the instance variable theLabel.

3. Hold down the Control key and drag from the label to that line of code. An elastic
line follows the mouse. When you’ve got the mouse positioned correctly, the words
Connect Outlet will appear. Release the mouse.

Yet again, confirm that we’ve successfully made the desired outlet. And you could also
have done the same thing in reverse; starting with the circle at the left of the IBOutlet
line, you can drag (without holding Control) to the label in the nib.

Now delete the outlet one last time, and (get this) delete the line of code declaring the
instance variable (but leave the curly braces). We’re going to create the outlet and the
instance variable declaration, all in a single amazing move:

1. Select the label.

2. Make sure MyClass.m is showing in the assistant pane.

3. Hold down the Control key and drag from the label to the area within the curly
braces. An elastic line follows the mouse. The words Insert Outlet or Outlet Col-
lection appear. Release the mouse.

4. A little HUD appears, asking for the name of the instance variable that’s about to
be created. Call it theLabel (and make sure the type is UILabel), and press Return.
The IBOutlet line declaring the instance variable is created, and the outlet is formed
to match it.

Figure 7-9. Connecting an outlet by dragging from the Connections HUD

Outlet Connections | 149

More About Outlets
At the risk of seeming to repeat myself, let me emphasize an important thing to re-
member about outlets (and nib connections generally) that often confuses beginners:
they apply to specific instances. Outlets appear in a nib, but a nib is just a template for
specific instances. At the moment a nib loads, then and only then, the one specific
instance which is the nib’s owner (represented by the File’s Owner in the nib) and the
specific instances generated from the nib objects are all in existence together and are
hooked together by their outlets.

All our examples so far have involved a proxy object, but an outlet connection can
connect any two objects in the nib. The only requirement is that the source object be
of a class that has an instance variable whose type matches the class of the target object.
This class might be your own custom class with an ivar that you gave it, as in our earlier
examples, or it might be a built-in Cocoa class with a built-in instance variable that can
be used as an outlet.

Nothing in the documentation for a built-in Cocoa class tells you which
of its instance variables are available as outlets. In general, the only way
to learn what outlets a built-in class provides is to examine a represen-
tative of that class in a nib.

It is also possible to create an outlet collection. This is an NSArray instance variable
matched by multiple connections to objects of the same type. For example, suppose a
class contains this instance variable declaration:

IBOutletCollection(UILabel) NSArray* labels;

Connecting to Code is an Illusion
Making an outlet by connecting directly between code and an interface object in the
nib is extremely cool and convenient, but coolness and convenience do not relieve you
of the necessity of understanding what an outlet is and how it works. No matter what
physical gesture you make in Xcode, and no matter how much Xcode may give you the
illusion that you are somehow connecting an object in the nib to the code, that’s not
really the case. There is no connection between the instance variable in the code and
the object in the nib; there is no identity between the instance variable in the code and
the outlet connection in the nib. There are always, if an outlet is to work properly, two
distinct and separate things: an instance variable in a class, and an outlet in the nib,
with the same name, and coming from an instance of that class. It is the identity of the
names that allows the two to be matched at runtime when the nib loads, so that the
instance variable is properly set at that moment.

150 | Chapter 7: Nib Management

Then it is possible to form multiple labels outlets from an instance of that class in a
nib, each one to a different UILabel in that nib. When the nib loads, those UILabel
instances become the elements of the NSArray labels. The order in which the outlets
are formed is the order of the elements in the array. This is a fairly new feature and I
haven’t written any code that uses it.

Action Connections
An action is a message emitted automatically by a Cocoa UIControl interface object (a
control) when the user does something to it, such as tapping the control. The various
user behaviors that will cause a control to emit an action message are called events. To
see a list of possible events, look at the UIControl class documentation, under “Control
Events.” For example, in the case of a UIButton, the user tapping the button corre-
sponds to the UIControlEventTouchUpInside event. In the case of a UITextField, the user
typing or deleting or cutting or pasting corresponds to the UIControlEventEditing-
Changed event. A complete list of UIControls and what events they report is provided
in Chapter 11.

An action message, then, is a way for your code to respond when the user does some-
thing to a control in the interface, such as tapping a button. But your code will not
receive an action message from a control unless you explicitly make prior arrangements
with that control. You must tell the control what event should trigger an action message,
what instance to send the action message to, and what the action message’s name
should be. There are two ways to make this arrangement: in code, or in a nib.

Either way, we’re going to need a method for the action message to call. There are three
standard signatures for a method that is to be called through an action message; the
most commonly used one takes a single parameter, which will be a reference to the
object that emitted the action message. (For full details, see Chapter 11.) So, for ex-

Connections Between Nibs
You cannot draw a connection from an object in one nib to an object in another nib.
If you expect to be able to do this, you haven’t understood what a nib is! An object in
a nib is only a potential object, becoming a real object when the nib is loaded and the
object is instantiated. This potentiality can be realized never, once, or many times. Two
objects in the same nib will be instantiated together, so it’s clear what a connection
means. But a connection from an object in one nib to an object in another nib would
be meaningless, because there’s no way to say what actual future instances the con-
nection is supposed to connect. The problem of communicating between an instance
instantiated from one nib and an instance instantiated from another nib is just a special
case of the more general problem of how to communicate between instances in a pro-
gram and is discussed in Chapter 13.

Action Connections | 151

ample, you could have a method like this (let’s agree to put it in the implementation
section for ViewController, in ViewController.m):

- (void) buttonPressed: (id) sender {
 UIAlertView* av = [[UIAlertView alloc] initWithTitle:@"Howdy!"
 message:@"You tapped me."
 delegate:nil
 cancelButtonTitle:@"Cool"
 otherButtonTitles:nil];
 [av show];
}

Now, as I mentioned a moment ago, it is possible to arrange in code for button-
Pressed: to be called when the user taps a button. In particular, if b is a reference to the
button, then some ViewController code could say:

[b addTarget:self action:@selector(buttonPressed:)
 forControlEvents:UIControlEventTouchUpInside];

That code means: “Hey there, button! When the user taps on you (UIControlEventTouch-
UpInside), send me (self) a buttonPressed: message.” (See Chapter 3 if you’ve forgotten
about the @selector directive.) Of course, such an instruction assumes that this object
(self) really does implement a buttonPressed: method. (If it doesn’t, then when the
user taps the button, the app will crash.)

However, instead of doing that, we’re going to use the existing button in View-
Controller.xib and arrange in the nib for its action message to be buttonPressed: and to
be sent to a ViewController instance. We’re going to form an action connection in the
nib. We can do this because, as I’ve already mentioned, the File’s Owner proxy in
ViewController.xib is of the ViewController class.

As with outlets, there are several ways to do this; I’ll just show you the main ones and
leave you to discover the rest. (They are all directly comparable to the many ways of
creating an outlet connection.)

1. We need a hint, in our code, that a method with the expected signature exists. This
hint involves substituting IBAction for the method’s void return type. (The substi-
tution is legal because IBAction is #defined as void; Xcode can see the hint in your
code, but the preprocessor will turn IBAction back to void before the compiler ever
sees it.) So, in ViewController.m, change the first line of our buttonPressed: method
implementation to look like this (and save the file):

- (IBAction) buttonPressed: (id) sender {

This causes an empty circle to appear in the gutter next to the IBAction line.

2. Now edit ViewController.xib, select the button in the window, and look at the
Connections inspector. The event for which we’d like to send the action message
is Touch Up Inside. Drag from its circle to the File’s Owner nib object in the dock,
which is to receive the message (Figure 7-10).

152 | Chapter 7: Nib Management

3. A little window listing possible ViewController action methods appears; in this
case, it lists only buttonPressed:. Click on buttonPressed: to form the connection.

To see that the action connection has been formed, look at the Connections inspector.
If you select the button, the Connections inspector reports that the button’s Touch Up
Inside event is connected to the File’s Owner’s buttonPressed: method. If you select
the File’s Owner object, the Connections inspector reports a Received Action where
buttonPressed: is called by the Rounded Rect Button’s Touch Up Inside event. Finally,
look at the code in ViewController.m; the circle next to the IBAction line is filled, and
you can click it to reveal that the connection is from the button.

Finally, to make assurance doubly sure, you can also build and run the project to con-
firm that the action connection is working. In the running app, the button inside the
window now actually does something when the user taps it! It summons an alert.

As with outlets, we could have formed the action connection by Control-dragging from
the button directly to the File’s Owner, instead of involving the Connections inspector.
If you just Control-drag, Interface Builder assumes a default event for you (in this case,
it would assume Touch Up Inside). If that isn’t what you want, start by Control-clicking
on the button to summon a HUD version of the Connections inspector, and drag from
the desired event’s circle just as you would do from the real Connections inspector.

As with outlets, you can also form the action connection directly to code. (But please
reread “Connecting to Code is an Illusion” on page 150; that warning applies equally
to action connections.) In Figure 7-11, we’ve Control-clicked the button to summon
its Connections HUD, and dragged from the Touch Up Inside circle to the button-
Pressed: implementation. And we could equally have gone the other way, dragging
from the unfilled circle next to the IBAction line to the button.

But wait, there’s more! Instead of writing the action method ahead of time, you can ask
Xcode to stub it out for you. To do so, Control-drag from the nib to an empty spot in
ViewController’s implementation section; the words Insert Action appear, and when
you release the mouse, a dialog appears, letting you specify the name of the action
method, the number of arguments it should take, and the control event to be used as
a trigger (Figure 7-12). Xcode inserts the method implementation, but doesn’t put any

Figure 7-10. Connecting an action from the Connections inspector

Action Connections | 153

code between the curly braces; it’s smart, but not smart enough to guess what you want
the method to do!

Figure 7-11. Connecting an action to a method implementation

Figure 7-12. Connecting an action and creating a method implemention

154 | Chapter 7: Nib Management

Additional Initialization of Nib-Based Instances
By the time a nib finishes loading, its instances are fully fledged; they have been ini-
tialized and configured with all the attributes dictated through the Attributes and Size
inspectors, and their outlets have been used to set the values of the corresponding
instance variables. Nevertheless, you might want to append your own code to the ini-
tialization process as an object is instantiated from a loading nib. Most commonly, to
do this, you’ll implement awakeFromNib (possibly subclassing a Cocoa class in order to
do so). The awakeFromNib message is sent to all nib-instantiated objects just after they
are instantiated by the loading of the nib: at the point where this happens, the object
has been initialized and configured and its connections are operational.

For example, our Empty Window app is loading MyNib.xib, extracting a UILabel from
it, and inserting that label into our interface; the result is that the words “Hello, world!”
appear in our window. Let’s modify the behavior of this UILabel so that it does some
additional self-initialization in code. To do that, we will need a class of our own to
which our UILabel will belong. Clearly, this needs to be a UILabel subclass. So:

1. In Xcode, choose File → New → New File and specify that you want a Cocoa Touch
Objective-C class. Click Next.

2. Make the new class a subclass of UILabel. Click Next.

3. Call it MyLabel. Make sure you’re saving into the project folder; set the Empty
Window group and the Empty Window target. Click Save.

4. In MyLabel.m, somewhere in the implementation section, implement awakeFrom-
Nib:

- (void) awakeFromNib {
 [super awakeFromNib];
 self.text = @"I initialized myself!";
 [self sizeToFit];
}

5. That code won’t apply to the label in MyNib.xib unless that label is a MyLabel, so
edit MyNib.xib and change the label’s class to MyLabel (in the Identity inspector).

Now build and run the project. Instead of “Hello, world!” we now see “I initialized
myself!” in the window.

Mac OS X Programmer Alert

If you’re an experienced Mac OS X programmer, you may be accus-
tomed to rarely or never calling super from awakeFromNib; doing so used
to raise an exception, in fact. In iOS, you must always call super in awake-
FromNib. Another major difference is that in Mac OS X, a nib owner’s
awakeFromNib is called when the nib loads, so it’s possible for an object
to be sent awakeFromNib multiple times; in iOS, awakeFromNib is sent to
an object only when that object is itself instantiated from a nib, so it can
be sent to an object a maximum of once.

Additional Initialization of Nib-Based Instances | 155

Sometimes, you might need to interfere with a nib object’s initialization at an even
earlier stage. If this object is a UIView or UIViewController (or a subclass of either),
you can implement initWithCoder:. In your implementation, be sure to call super and
return self as you would do in any initializer. Your purpose here would typically be to
initialize additional instance variables that your subclass has declared, as with any in-
itializer.

Here, for example, is an implementation of MyLabel that declares an instance variable
that is an int called num and manipulates it first in initWithCoder: and then in awakeFrom-
Nib, thus proving that the two are called in that order:

@implementation MyLabel
{
 int num;
}

- (id) initWithCoder:(NSCoder *)aDecoder {
 self = [super initWithCoder:aDecoder];
 if (self) {
 self->num = 42;
 }
 return self;
}

- (void) awakeFromNib {
 [super awakeFromNib];
 self.text = [NSString stringWithFormat: @"The answer is %i", self->num];
 [self sizeToFit];
}
@end

That’s trivial and unnecessary, but it illustrates the principle.

156 | Chapter 7: Nib Management

CHAPTER 8

Documentation

Knowledge is of two kinds. We know a subject ourselves,
or we know where we can find information upon it.

—Samuel Johnson, Boswell’s Life of Johnson

You don't remember Cocoa; you look it up!

—Anonymous programmer, cited by
Beam and Davidson, Cocoa in a Nutshell

No aspect of Cocoa programming is more important than a fluid and nimble relation-
ship with the documentation. There is a huge number of built-in classes, with many
methods and properties and other details. Apple’s documentation, whatever its flaws,
is the definitive official word on how you can expect Cocoa to behave and on the
contractual rules incumbent upon you in working with this massive framework whose
inner workings you cannot see directly.

The Xcode documentation installed on your machine comes in large chunks called
documentation sets (or doc sets, also called libraries). You do not merely install a doc-
umentation set; you subscribe to it, so that when Apple releases a documentation up-
date (because a new version of iOS has been released, or because there has been an
incremental revision of the documentation), you can obtain the updated version.

When you first install Xcode, the bulk of the documentation is not installed on your
machine; viewing the documentation in the documentation window (discussed in the
next section) requires an Internet connection, so that you can see the online docs at
Apple’s site. However, assuming that you checked Documentation in the installer, the
documentation will be installed on your machine; you should start up Xcode immedi-
ately after installation to let it download and install your initial documentation sets.
The process can be monitored, to some extent, in the Downloads pane of the Prefer-
ences window (under Documentation); you can also specify here whether you want
updates installed automatically or whether you want to click Check and Install Now
manually from time to time. This is also where you specify which doc sets you want; I

157

believe that the iOS 5.0 Library and the Xcode Developer Library are all you need for
iOS development. You may have to provide your machine’s admin password when a
doc set is first installed.

The Documentation Window
Your primary access to the documentation is in Xcode, through the Documentation
tab of the Organizer window (Window → Organizer and then click Documentation, or
Help → Documentation and API Reference). I’ll refer to this as the documentation win-
dow, even though it’s really an aspect of the Organizer window.

The documentation window behaves basically as a glorified web browser, because the
documentation consists essentially of web pages. Indeed, most of the same pages can
be accessed at Apple’s developer site, http://developer.apple.com. And any page open
in the documentation window can be opened instead in your web browser: Control-
click for the contextual menu and choose Open Page in Browser. Notice too the con-
textual menu for links within a documentation window, such as Copy Link and Open
Link in Browser. When you’re trying to figure something out, the ability to spawn off
a page as a secondary window in a browser while you go on searching in the Xcode
documentation window can be very useful.

Each doc set has a home page, which you access from the Browse navigator (Editor →
Explore Documentation) or from the first component of the jump bar (Control-4). A
typical home page presents a full list of documents, which can be sorted by column and
filtered by keyword. Some home pages, such as the iOS Library home page, also have
a broad categorical list down the left side, which can similarly be used to filter the
document list. In practice I rarely use these home pages, though they can come in handy
when you’re looking for broad topic introductions (click Guides on the left). The
Browse navigator (and the jump bar) can also be used to explore a doc set by category.

When you encounter a documentation page to which you’re likely to want to return,
make it a bookmark (Editor → Add Bookmark). Bookmarks are accessed through the
Bookmarks navigator (Editor → Documentation Bookmarks). Documentation book-
mark management is simple but effective: you can rearrange bookmarks or delete a
bookmark, and that’s all.

My chief way into the documentation — and, I suspect, most users’ chief way — is by
searching (Editor → Search Documentation). Type a term into the search field (Shift-
Option-Command-?). Click the magnifying glass to choose Show Find Options. It’s
important to set these options correctly:

Match Type
Your choices are Contains, Prefix, and Exact. These determine how your search
terms are understood (as middles of words, starts of words, or whole words, re-
spectively), and you’ll probably want to switch among them fairly often, depending

158 | Chapter 8: Documentation

http://developer.apple.com

on what you’re searching for. For example, if you are typing the start of the name
of a class you want to search for, do a Prefix search, not a Contains search.

Doc Sets
Check only those doc sets that interest you; if you’re doing iOS development, for
example, uncheck any Mac OS X libraries to eliminate inapplicable and duplicate
results.

Languages
Check only those languages you’re likely to be interested in (probably Objective-
C and C).

In Xcode 4, the search doesn’t take place until you press Return. Search results are
displayed in categories, in relevance order, in the navigation pane; click a result to see
that page.

Alternatively, if you’re editing code, select a term in the editor and choose Help →
Search Documentation for Selected Text (Control-Option-Command-/). This com-
mand switches to the documentation window, enters the selected term into the search
field, and performs the search using the current find options, in a single move.

Don’t confuse searching the documentation with finding within the current page. To
find within the current documentation page, make sure the focus is within the page
itself (probably by clicking in the page), and then use the Edit → Find menu commands.
Command-F summons a find bar, as in Safari.

A major difference between the display of a documentation page in Xcode and its dis-
play in Safari is that the latter often shows a Table of Contents column at the left side.
In Xcode, this Table of Contents column is suppressed, which saves space, but makes
it harder to get a sense for where you are in a document or a set of related documents.
The intention is presumably that you should use the jump bar both to get your bearings
and to navigate. The last component in the jump bar may show headings within the
current document; the next-to-last component may show related documents in the
same collection.

Class Documentation Pages
In the vast majority of cases, your target documentation page will be the documentation
for a class. I have frequently spoken already of the importance of class documentation
pages. A common move on your part will be to search on a class name in the docu-
mentation window. If you search on, say, NSString, the search result whose title is
NSString Class Reference is the class documentation for NSString.

Let’s pause to notice the key features of a class documentation page. I’ll use UIButton
as an example (Figure 8-1):

Class Documentation Pages | 159

Inherits from
Lists, and links to, the chain of superclasses. One of the biggest beginner mistakes
is failing to read the documentation up the superclass chain. A class inherits from
its superclasses, so the functionality or information you’re looking for may be in a
superclass. You won’t find out about addTarget:action:forControlEvents: from
the UIButton class page; that information is in the UIControl class page. You won’t
find out that a UIButton has a frame property from the UIButton class page; that
information is in the UIView class page.

Conforms to
Lists, and links to, the protocols implemented by this class. Protocols are discussed
in Chapter 10. Fortunately, a class that conforms to a formal protocol usually lists

Figure 8-1. The start of a typical class documentation page

160 | Chapter 8: Documentation

that protocol’s required methods as links (though the methods themselves are
documented on the protocol’s documentation page).

Methods injected into a class by a category (Chapter 10) are often not
listed on that class’s documentation page and can be very difficult to
discover. This is a major weakness in Apple’s organization and display
of the documentation. A third-party documentation display application
such as AppKiDo can be helpful here (http://homepage.mac.com/aglee/
downloads/appkido.html).

Framework
Tells what framework this class is part of. Your code must link to this framework
in order to use this class (see Chapter 6).

Availability
States the earliest version of the operating system where this class is imple-
mented. For example, EKEventViewController, along with the whole EventKit
framework (consisting of classes for querying the user’s calendar; see Chapter 32)
wasn’t invented until iOS 4.0. So if you want to use this feature in your app, you
must make sure either that your app targets only iOS 4.0 or later or that you take
precautions not to call into this framework on earlier versions of the operating
system. The availability information also confirms that you’re looking at the right
documentation page; if you’re doing iOS programming and this class is available
only on Mac OS X, reading this page is pointless. Note that individual methods
also have availability information.

Companion guide
If a class documentation page lists a companion guide, you might want to click
that link and read that guide. Guides are broad surveys of a topic; they provide
important information (including, often, useful code examples), and they can serve
to orient your thinking and make you aware of your options. (See the UIView class
page for an example.)

Related sample code
If a class documentation page links to sample code, you might want to examine
that code. (But see my remarks on sample code in the next section of this chapter.)

Overview
Some class pages provide extremely important introductory information in the
Overview section, including links to related guides and further information. (See
the UIView class page for an example.)

Tasks
This section lists in categorical order, and links to, the properties and methods that
appear later on the page. (Recall from Chapter 5 that a property is a syntactic
shortcut for calling an accessor method; the documentation lists the property

Class Documentation Pages | 161

http://homepage.mac.com/aglee/downloads/appkido.html
http://homepage.mac.com/aglee/downloads/appkido.html

rather than the accessor.) Often, just looking over this list can give you the hint
you’re looking for.

Properties, Class Methods, Instance Methods
These sections provide the full documentation for this class’s methods. In recent
years, this part of the documentation has become quite splendid, with good hy-
perlinks. Note the following subsections:

The property or method name
This name is suitable for copying and pasting into your code (if, for example,
you need to enter the name of a selector).

The property or method’s purpose
A short summary of what it does.

The formal declaration for the property or method
Read this to learn things like the method’s parameters and return type. (Chap-
ter 12 explains how to read a property declaration.) Suitable for copying and
pasting into your code in order to enter a call to this method, though you are
more likely to use Xcode’s code completion feature where possible (see Chap-
ter 9).

Parameters and return value
Precise information on the meaning and purpose of these.

Discussion
Often contains extremely important further details about how this method
behaves. Always pay attention to this section!

Availability
An old class can acquire new methods as the operating system advances; if a
newer method is crucial to your app, you might want to exclude your app from
running on older operating systems that don’t implement the method.

See also
Lists and links to related methods. Very helpful for giving you a larger per-
spective on how this method fits into the overall behavior of this class.

Related sample code
It can sometimes be worth consulting the sample code to see an example of
how this particular method is used.

Declared in
The relevant header file. It can sometimes be worth looking at the header file,
which may contain helpful comments or other details. Unfortunately, the list-
ing of a header file in the documentation window is not a clickable link. You
can open the header file from your project window, as explained later in this
chapter.

162 | Chapter 8: Documentation

Constants
Many classes define constants that accompany particular methods. For example,
to create a UIButton instance in code, you call the buttonWithType: class method;
the argument value will be a constant, listed under UIButtonType in the Constants
section. (To help you get there, there’s a link from the buttonWithType: method to
the UIButtonType section in Constants.) There’s a formal definition of the con-
stant; you won’t usually care about this (but do see Chapter 1 if you don’t know
how to read it). Then each value is explained, and the value name is suitable for
copying and pasting into your code.

Sample Code
Apple provides plenty of sample code projects. You can view the code directly in the
documentation window; sometimes this will be sufficient, but you can see only one
class implementation or header file at a time, so it’s difficult to get an overview. The
alternative is to open the sample code project in Xcode.

When you look at a sample code page from your browser, there’s a button that reads
Download Sample Code. In fact, the sample code may already be on your computer.
When you look at the same sample code page in the documentation window, the same
button will read Open Project. The sample code on your hard disk is zipped, so even
if the code is already on your computer, you are first asked to specify a “download
folder” in which to save the unzipped project folder. This policy of keeping the sample
code projects zipped on your hard disk is a good one, as it prevents you from acciden-
tally altering the original, and you are free to experiment with the unzipped copy.

If a sample code project was linked against the frameworks of an older
SDK that isn’t installed on your computer, the project will be described
in the Project navigator with the words “missing base SDK.” In earlier
versions of Xcode, this situation could prevent you from building and
running the project, and features that depend on indexing might not
work. In Xcode 4.2 and later, however, the project should build and run
regardless. To remove the “missing base SDK” annotation, edit the tar-
get, switch to Build Settings, and change the outdated Base SDK setting
to Latest iOS.

As a form of documentation, sample code is both good and bad. It can be a superb
source of working code that you can often copy and paste and use with very little
alteration in your own projects. It is usually heavily commented, because the Apple
folks are aware, as they write the code, that it is intended for instructional purposes.
Sample code also illustrates concepts that users have difficulty extracting from the
documentation. (Users who have not grasped UITouch handling, for instance, often
find that the lightbulb goes on when they discover the MoveMe example.) But the logic
of a project is often spread over multiple files, and nothing is more difficult to under-

Sample Code | 163

stand than someone else’s code (except, perhaps, your own code). Moreover, what
learners most need is not the fait accompli of a fully written project but the reasoning
process that constructed the project, which no amount of commentary can provide.

My own assessment is that Apple’s sample code is generally very thoughtful and in-
structive and definitely a major component of the documentation, and that it deserves
more appreciation and usage than it seems to get. But it is most useful, I think, after
you’ve reached a certain level of competence and comfort.

Other Resources
Here is a survey of other useful resources that supplement the documentation.

Quick Help
Quick Help is a condensed rendering of the documentation on some single topic, usu-
ally a symbol name (a class or method). It appears with regard to the current selection
or insertion point automatically in the Quick Help inspector (Option-Command-2) if
the inspector is showing. Thus, for example, if you’re editing code and the insertion
point or selection is within the term CGPointMake, documentation for CGPointMake ap-
pears in the Quick Help inspector if it is visible.

A slightly reduced version of the same Quick Help documentation can displayed as a
small floating window, without the Quick Help inspector, by Option-clicking on a term
in code. Alternatively, select a term and choose Help → Quick Help for Selected Item
(Shift-Control-Command-?). In the Quick Help window, click the “book” icon to open
the full documentation in the documentation window; click the “H” icon to open the
appropriate header file.

Both the Quick Help inspector and the Quick Help window may also contain links.
Some of these may be to various other documentation aids, such as sample code. The
most important link will probably be the first one, the name of the symbol being doc-
umented; this links to the appropriate spot in the full documentation in the documen-
tation window.

Xcode 4 provides no direct path from a symbol in code to its documen-
tation in the documentation window. You must pass through Quick
Help to get there. You can select a term and choose Help → Search Doc-
umentation for Selected Text (Control-Option-Command-/), but this is
hardly the same thing, as it doesn’t jump to the actual API linked from
Quick Help.

If you hold down Option and hover the mouse over code, the term that Quick Help
would document if you were to click at that point appears with a dotted underline.

164 | Chapter 8: Documentation

Quick Help is also available during code completion (Chapter 9), concerning the term
currently being proposed as a completion; the question-mark icon at the right side of
the code completion pop-up menu summons the Quick Help window. Plus, Quick
Help is available in the Quick Help inspector for interface objects selected while editing
a nib, for build settings while editing a project or target, and so forth.

Symbols
A symbol is a nonlocally defined term, such as the name of a class, method, or instance
variable. If you can see the name of a symbol in your code in an editor in Xcode, Com-
mand-click it to jump to the definition for that symbol. Alternatively, select text and
choose Navigate → Jump to Definition (Control-Command-J). If there are multiple
definitions for a term, you’ll get a little pop-up window where you can pick which one
to jump to. If you hold down Command and hover the mouse over code, the symbol
whose definition would be shown if you were to click at that point appears with a solid
underline.

If the symbol is defined in a Cocoa framework, you jump to the header file. If the symbol
is defined in your code, you jump to the class or method definition; this can be very
helpful not only for understanding your code but also for navigating it.

The precise meaning of the notion “jump” depends upon the modifier keys you use in
addition to the Command key, and on your settings in the General pane of Xcode’s
preferences. For example, if you haven’t changed these settings from the default, Com-
mand-click jumps in the same editor, Command-Option-click jumps in an assistant
pane, and Command-double-click jumps in a new window. Similarly, Control-Option-
Command-J jumps in an assistant pane to the definition of the selected term.

Another way to see a list of your project’s symbols, and navigate to a symbol definition,
is with the Symbol navigator (Chapter 6).

Header Files
Sometimes a header file can be a useful form of documentation. It compactly summa-
rizes a class’s instance variables and methods and may contain comments and other
helpful information — information that may be documented nowhere else. A single
header file can contain declarations for multiple class interfaces and protocols. So it
can be an excellent quick reference.

There are various ways to see a header file from an Xcode editor:

• If the class is your own and you’re in the implementation file, choose Navigate →
Jump to Next Counterpart (Control-Command-Up).

• Click the Related Files button at the left of the jump bar (Control-1). The menu
lets you jump to any header files imported in the current file (as well as any files

Other Resources | 165

that import the current file) and to the header files of the current class file’s super-
classes and subclasses and so forth. Hold Option to jump in an assistant pane.

• Select text and choose File → Open Quickly (Shift-Command-O). This command
brings up a dialog listing all source and header files containing a given symbol.

• Command-click a symbol, choose Navigate → Jump to Definition, or pass through
Quick Help, as described in the previous sections.

• Use the Symbol navigator (Chapter 6).

All of these approaches require that a project window be open; File → Open Quickly
requires an active SDK for effective operation, and the others all operate on specific
windows or words in an open project. An alternative that works under all circumstances
is to switch to the Terminal and use the open -h command to open a header file in
Xcode. The argument may represent part of a header file’s name. The command is
interactive if there’s an ambiguity; for example, open -h NSString proposes to open
NSString.h or NSStringDrawing.h (or both, or neither). I wish this command were built
into Xcode itself.

Internet Resources
Programming has become a lot easier since the Internet came along and Google started
indexing it. It’s amazing what you can find out with a Google search. Your problem is
very likely a problem someone else has faced, solved, and written about on the Internet.
Often you’ll find sample code that you can paste into your project and adapt.

Apple’s documentation resources are available at http://developer.apple.com. These re-
sources are updated before the changes are rolled into your doc sets for download.
There are also some materials here that aren’t part of the Xcode documentation on your
computer. As a registered iOS developer, you have access to iTunes videos, including
the videos for all WWDC 2011 sessions, and to Apple’s developer forums (https://
devforums.apple.com). Also, much of Apple’s documentation comes in an alternative
PDF format, suitable for storing and viewing on an iPad.

Apple maintains some public mailing lists (http://lists.apple.com/mailman/listinfo). I
have long subscribed to the Xcode-users group (for questions about use of the Xcode
tools) and the Cocoa-dev group (for questions about programming Cocoa). Cocoa-dev
does permit iOS questions, but it is not heavily used for these. The lists are searchable,
but Apple’s own search doesn’t work very well; you’re better off using Google with a
site:lists.apple.com term, or http://www.cocoabuilder.com, which archives the lists.
Apple has not added a mailing list devoted to iOS programming; that’s what the de-
veloper forums are supposed to be for, but the interface for these is extraordinarily
clunky, and this — plus the lack of openness (to Google and to the world in general)
— has limited their usefulness.

Other online resources, such as forums, have sprung up spontaneously as iOS pro-
gramming has become more popular, and lots of iOS and Cocoa programmers blog

166 | Chapter 8: Documentation

http://developer.apple.com
https://devforums.apple.com
https://devforums.apple.com
http://lists.apple.com/mailman/listinfo
http://www.cocoabuilder.com

about their experiences. I am particularly fond of Stack Overflow (http://www.stacko
verflow.com); it isn’t devoted exclusively to iOS programming, of course, but lots of
iOS programmers hang out there, questions are answered succinctly and correctly, and
the interface lets you focus on the right answer quickly and easily.

Other Resources | 167

http://www.stackoverflow.com
http://www.stackoverflow.com

CHAPTER 9

Life Cycle of a Project

This chapter surveys some of the main stages in the life cycle of a project, from inception
to submission at the App Store. This survey will provide an opportunity to discuss some
additional features of the Xcode development environment. You already know how to
create a project, define a class, and link to a framework (Chapter 6), as well as how to
create and edit a nib (Chapter 7) and how to use the documentation (Chapter 8).

Choosing a Device Architecture
As you create a project, after you pick a project template, in the part of the dialog where
you name your project, the Device Family pop-up menu offers a choice of iPhone, iPad,
or Universal (meaning an app that runs on both iPhone and iPad natively, typically
with a different interface on each type of device).

You are not tied forever to your initial decision, but your life will be easier if you decide
correctly from the outset. The iPhone and iPad differ in their physical characteristics
as well as their programming interfaces. The iPad has a larger screen size, along with
some built-in interface features that don’t exist on the iPhone, such as split views and
popovers (Chapter 22); thus an iPad project’s nib files and some other resources will
differ from those of an iPhone project.

Historically, different types of device also ran different versions of the operating system:
iOS 3.1.3 and before, plus iOS 4.0 and 4.1, were iPhone-only, while iOS 3.2.x was iPad-
only. This made life very complicated for the programmer wishing to target both types
of device; universal apps were particularly difficult to write. Fortunately, starting with
iOS 4.2, Apple unified the system versions; the same system now runs on both device
types, so that if you write a universal app, you probably won’t concern yourself with
possible system differences, although you will still be concerned about device differ-
ences.

Your choice in the Device Family pop-up menu affects what template your new project
will be based on. It also affects your target’s Targeted Device Family build setting:

169

iPad
The app will run only on an iPad.

iPhone
The app will run on an iPhone or iPod touch; it can also run on an iPad, but not
as a native iPad app (it runs in a reduced enlargeable window, which I call the
iPhone Emulator; Apple sometimes refers to this as “compatibility mode”).

iPhone/iPad
The app will run natively on both kinds of device, and should be structured as a
universal app.

Two additional build settings work together and in conjunction with the Targeted
Device Family to determine what systems your device will run on:

Base SDK
The latest system your app can run on: in Xcode 4.2 and later, you have just two
choices, iOS 5.0 and Latest iOS. As of this writing, Latest iOS means iOS 5.0, so
what’s the difference? It’s that, in the latter case, if you update Xcode to develop
for a subsequent system, your existing projects will use that newer system’s SDK
as their Base SDK automatically, without your also having to update their Base
SDK setting. Latest iOS is the default when you create a new project.

iOS Deployment Target
The earliest system your app can run on: this can be any iOS system number from
the current 5.0 all the way back to 3.0. (iOS 3.0 is also the earliest system on which
a universal app will run.) You can change the iOS Deployment Target setting easily
by editing your project or your target; the project’s Info tab has an iOS Deployment
Target pop-up menu, and the target’s Summary tab has a Deployment Target pop-
up menu. These both represent the iOS Deployment Target build setting; you will
probably want to edit the target, because if you edit the project only, the target
setting will override it.

Additional Simulator SDKs
When the Deployment Target is set to a system earlier than 5.0, earlier Simulator SDK
versions may become available in the Scheme pop-up menu. Exactly what versions
appear depends on the contents of /Developer/Platforms/iPhoneSimulator.platform/De-
veloper/SDKs/. In Xcode 4.2 and later, you can download and install the iOS 4.3 Sim-
ulator SDK from the Downloads pane of the Preferences window (under Components).
If you happen to have earlier SDKs left over from previous versions of Xcode, it may be
possible to install them manually — I’ve done this with iPhone Simulator SDKs back
as far as 4.0, and iPad Simulator SDKs back to 4.2 — but this technique is probably
unsupported.

170 | Chapter 9: Life Cycle of a Project

Writing an app whose Deployment Target differs from its Base SDK is something of a
challenge. The problem is that Xcode will happily allow you to compile using any
features of the Base SDK, but an actual system, whether it’s a Simulator SDK or a device,
will crash your app if it uses any features not supported by that system.

For example, if you were to create a new iPad project using the Single View Application
template and set the iOS Deployment Target to 3.2, and run it on an iPad with iOS 3.2
installed, the app would crash on launch, because the template contains this line, which
is encountered as the app starts up:

self.window.rootViewController = self.viewController;

The problem is that the window rootViewController property wasn’t invented until
iOS 4.0. Here’s an example that should be easier for you to test:

[UIButton appearance];

If that line of code is encountered while running in a 5.0 Simulator, all is well; if is
encountered while running in a 4.3 Simulator, you’ll crash, because the appearance
method wasn’t invented until iOS 5.0.

How can you guard against such problems? I would recommend that you not even
attempt backwards compatibility with a device and system on which you cannot test
directly. If you don’t own an iPad running iOS 3.2, it would surely be unwise to set
your Deployment Target to iOS 3.2; the prospect that a compatibility issue might not
be discovered until the app has been let loose upon a world of users is highly unsettling.
Earlier SDKs can help, to be sure; for this particular example, you might discover the
crash by trying to run the project with the iPad 3.2 Simulator under Xcode 4.0. But
there’s more to testing an app than using the Simulator; some apps, or the discovery
of some bugs, might require a device. The fact is that ensuring backward compatibility
is hard, and you might reasonably decide it isn’t worth the effort.

Writing a universal app presents challenges of its own, because of the physical and
system differences between the iPhone and the iPad. As you develop, you must juggle
two versions of many files, such as nibs. Moreover, although you’ll probably want to
share some code between the iPhone and the iPad version of the app, to reduce dupli-
cation, some code will have to be kept separate, because your app will behave differently
on the different types of device. As I already mentioned, you can’t summon a popover
on an iPhone; but the complexities can run considerably deeper, because the interfaces
might behave very differently — tapping a table cell on the iPhone might summon an
entire new screenful of stuff, whereas on the larger iPad, it might only alter what appears
in one region of the screen.

There are various programming devices to govern dynamically what code is encoun-
tered, based on what system or device type the app is running on; thus you can avoid
executing code that will cause a crash in a particular environment, or otherwise make
your app behave differently depending on the runtime circumstances (see also Exam-
ple 29-1):

Choosing a Device Architecture | 171

• The UIDevice class lets you query the current device to learn its system version
(systemVersion) and type (userInterfaceIdiom, either UIUserInterfaceIdiomPhone
or UIUserInterfaceIdiomPad):

if ([UIDevice currentDevice].userInterfaceIdiom == UIUserInterfaceIdiomPhone) {
 // do things appropriate to iPhone
} else {
 // do things appropriate to iPad
}

For an actual example, make a Universal project from the Master–Detail Applica-
tion template (with no storyboard) and look in AppDelegate.m. You’ll see how the
code configures the initial interface differently, including loading a different nib,
depending on the device type we’re running on.

• If your app is linked to a framework and tries to run on a system that lacks that
framework, it will crash at launch time. The solution is to link to that framework
optionally, by changing the Required pop-up menu item in its listing in the target
to Optional (this is technically referred to as weak-linking the framework).

• You can test for the existence of a method using respondsToSelector: and related
NSObject calls:

if ([UIButton respondsToSelector: @selector(appearance)]) {
 // ok to call appearance method
} else {
 // don't call appearance method
}

• You can test for the existence of a class using the NSClassFromString function,
which yields nil if the class doesn’t exist. Also, if the Base SDK is 5.0 or later, and
if the class’s framework is present or weak-linked, you can send the class any mes-
sage (such as [CIFilter class]) and test the result for nil; this works because classes
are themselves weak-linked starting in iOS 5.

// assume Core Image framework is weak-linked
if ([CIFilter class]) { // ok to do things with CIFilter

• You can test for the existence of a constant name, including the name of a C func-
tion, by taking the name’s address and testing against zero. For example:

if (&UIApplicationWillEnterForegroundNotification) {
 // OK to refer to UIApplicationWillEnterForegroundNotification

Many calls that load resources by name from your app’s bundle will automatically select
an alternative resource whose name (before the extension) ends with ~iphone or
~ipad as appropriate to the device type, thus relieving your code from using condition-
als. For example, UIImage’s imageNamed: method, if you specify the image name as
@"linen.png", will load an image called linen~ipad.png if it finds one and if we’re run-
ning on an iPad. (We’ll see in Chapter 15 that the same sort of naming convention will
help you automatically load a double-resolution image on a device with a double-res-
olution screen.)

172 | Chapter 9: Life Cycle of a Project

Localization
A device can be set by the user to prefer a certain language as its primary language. You
might like the text in your app’s interface to respond to this situation by appearing in
that language. This is achieved by localizing the app for that language.

Localization works through localization folders in your project and in the built app
bundle. Every resource in one of these localization folders has a counterpart in the other
localization folders. Then, when your app goes to load such a resource, it automatically
loads the one appropriate to the user’s preferred language. For example, if there’s a
copy of ViewController.nib in the English localization folder and a copy of View-
Controller.nib in the French localization folder, the latter will be loaded as the app
launches on a device on which French is the preferred language. So the two copies of
ViewController.nib should be identical except that all the text the user will see in the
interface should be in French in the French version.

This approach solves the problem for resources that are physically loaded, such as nib
files and images and sound files, but it doesn’t deal with strings generated from within
your code, such as the text of an alert message. Surely you don’t want your code to
consist of a bunch of massive if clauses every time there’s text to display. The problem
is solved through the use of a strings file. A strings file is a specially formatted text file
whose file extension is .strings; by default the name of the file is Localizable.strings (that
is, this file will be sought by default, if no filename is specified), but you can use another
name if you like. As with other localized resources, the strings file exists in multiple
copies, one for each language. The strings file consists of key–value pairs; the keys are
the same in all copies, but the values differ, depending on the target language. So instead
of entering a string directly in your code, you tell your code to fetch the correct value
from the appropriate strings file, based on the key:

NSString* myAlertText = NSLocalizedString(@"alertTextKey", nil);

Another specially named .strings file, InfoPlist.strings, stores localized versions of
Info.plist key values. So, for example, the value of the CFBundleDisplayName key, as set
in your project’s Info.plist file, appears under your app’s icon on the user’s device
(Chapter 6); to change this name depending on the user’s primary language setting,
you’d include appropriate key–value pairs in InfoPlist.strings files.

Localization explains the en.lproj folder seen in the Finder in our Empty Window
project folder (Figure 6-8). That’s an English localization folder; its contents, View-
Controller.xib and InfoPlist.strings, are localized for English. In Xcode, however, noth-
ing seems to indicate this; you wouldn’t know, from looking at the Project navigator,
that there’s anything special about these two files. That’s because there’s only one
localization. As soon as a file has more than one localization, it’s shown in the Project
navigator as a kind of folder, inverted from how it’s shown in the Finder: the file name
contains hierarchically the names of the localizations (Figure 9-1). This makes it easy
to find and edit the correct copy of the file.

Localization | 173

To get started with localization in your project, select in the Project navigator a file that
you want to localize and examine it in the Localization section of the File inspector
(Command-Option-1). It is obvious how to add and remove localization languages
here.

For full discussion, see Apple’s Internationalization Programming Topics.

Editing Your Code
Many aspects of Xcode’s editing environment can be modified to suit your tastes. Your
first step should be to pick a font face and size you like in the Fonts & Colors preference
pane. Nothing is so important as being able to read and write code comfortably! I like
a largish size (14 or even 16) and a pleasant monospaced font such as Monaco, Menlo,
or Consolas (or the freeware Inconsolata).

Xcode has some formatting, autotyping, and text selection features adapted for
Objective-C. Exactly how these behave depends upon your settings in the Editing and
Indentation tabs of Xcode’s Text Editing preference pane. I’m not going to describe
these settings in detail, but I urge you to take advantage of them. Under Editing, I like
to check just about everything, including Line Numbers; visible line numbers are useful
when debugging. Under Indentation, I like to have just about everything checked too;
I find the way Xcode lays out Objective-C code to be excellent with these settings. A
sound approach might be to check everything initially and then, when you’ve some
experience editing with Xcode, switch off features you don’t prefer.

If you like Xcode’s smart syntax-aware indenting, but you find that once in a while a
line of code isn’t indenting itself correctly, try choosing Editor → Structure → Re-indent
(Control-I), which autoindents the current line. (Autoindent problems can also be
caused by incorrect syntax earlier in the file, so hunt for that too.)

Under Editing, notice “Balance brackets in Objective-C method calls.” If this option is
checked, then when you type a closing square bracket after some text, Xcode intelli-
gently inserts the opening square bracket before the text. I like this feature, as it allows
me to type nested square brackets without planning ahead. For example, I type this:

UIAlertView* av = [UIAlertView alloc

I now type the right square bracket twice. The first right square bracket closes the open
left square bracket (which highlights to indicate this). The second right square bracket
also inserts a space before itself, plus the missing left square bracket:

Figure 9-1. How a localized strings file is represented in Xcode

174 | Chapter 9: Life Cycle of a Project

UIAlertView* av = [[UIAlertView alloc]]
// insertion point is here: ^

The insertion point is positioned before the second right square bracket, ready for me
to type init.

Autocompletion
As you write code, you’ll take advantage of Xcode’s autocompletion feature. Objective-
C is a verbose language, and whatever reduces your time and effort typing will be a
relief. However, I personally do not check “Suggest completions while typing” under
Editing; instead, I check “Escape key shows code completions”, and when I want au-
tocompletion to happen, I ask for it manually, by pressing Esc.

For example, suppose my code is as displayed in the previous example, with the inser-
tion point before the second right square bracket. I now type init and then press Esc,
and a little menu pops up, listing the four init methods appropriate to a UIAlertView
(Figure 9-2). You can navigate this menu, dismiss it, or accept the selection, using only
the keyboard. So I would navigate to initWithTitle:... and press Return to accept the
selected choice.

Alternatively, I might press Control-Period instead of Esc. Pressing Control-Period re-
peatedly cycles through the alternatives. Again, press Return to accept the selected
choice.

The template for the correct method call is now entered in my code (I’ve broken it
manually into multiple lines to show it here):

[[UIAlertView alloc] initWithTitle:<#(NSString *)#>
 message:<#(NSString *)#>
 delegate:<#(id)#>
 cancelButtonTitle:<#(NSString *)#>
 otherButtonTitles:<#(NSString *), ...#>, nil]

The expressions in <#...#> are placeholders, showing the type of each parameter; you
can select the next placeholder with Tab (if the insertion point precedes a placeholder)
or by choosing Navigate → Jump to Next Placeholder (Control-Slash). Thus I can select
a placeholder and type in its place the actual value I wish to pass, select the next place-
holder and type its value, and so forth.

Figure 9-2. The autocompletion menu

Editing Your Code | 175

Placeholders are delimited by <#...#> behind the scenes, but they ap-
pear as “text tokens” to prevent them from being edited accidentally.
To convert a placeholder to a normal string without the delimiters, select
it and press Return, or double-click it.

Autocompletion also works for method declarations. You don’t have to know or enter
a method’s return type beforehand. Just type the initial - or + (to indicate an instance
method or a class method) followed by the first few letters of the method’s name. For
example, in my app delegate I might type:

- appli

If I then press Esc, I see a list of methods such as application:didChangeStatusBar-
Frame:; these are methods that might be sent to my app delegate (by virtue of its being
the app delegate, as discussed in Chapter 11). When I choose one, the declaration is
filled in for me, including the return type and the parameter names:

- (void)application:(UIApplication *)application
 didChangeStatusBarFrame:(CGRect)oldStatusBarFrame

At this point I’m ready to type the left curly brace, followed by a Return character; this
causes the matching right curly brace to appear, with the insertion point positioned
between them, ready for me to start typing the body of this method.

Snippets
Code autocompletion is supplemented by code snippets, which are bits of text with an
abbreviation. Code snippets are kept in the Code Snippet library (Control-Option-
Command-2), but you can use code snippets without showing the library. You type
the abbreviation and the snippet’s name is included among the possible completions.
For example, to enter an if block, I would type if and press Esc, to get autocompletion,
and select “If Statement”. When I press Return, the if block appears in my code, and
the condition area (between the parentheses) and statements area (between the curly
braces) are placeholders.

To learn a snippet’s abbreviation, you must open its editing window (select the snippet
in the Code Snippet library and press Spacebar) and click Edit. You can add your own
snippets, which will be categorized as User snippets; the easiest way is to drag text into
the Code Snippet library. Edit to suit your taste, providing a name, a description, and
an abbreviation; use the <#...#> construct to form any desired placeholders.

If learning a snippet’s abbreviation is too much trouble, simply drag it from the Code
Snippet library into your text.

176 | Chapter 9: Life Cycle of a Project

Live Syntax Checking and Fix-it
Xcode 4 can perform live syntax checking as you type. This feature can save you from
mistakes; in addition, the extremely cool “Fix-it” feature can actually make and imple-
ment positive suggestions on how to avert a problem.

For instance, in Figure 9-3 I’ve accidentally omitted the @ before an Objective-C
NSString literal, and the compiler is warning (because what I’ve typed is a C string
literal, a very different thing). By clicking on the warning symbol in the gutter, I’ve
summoned a little dialog that not only describes the mistake but tells me how to fix it.
Not only that: it has tentatively inserted the missing @ into my code. (Note that @ is a
faded gray color. It’s not part of what I typed; Xcode has added it.) Not only that: if I
press Return, or double-click the “Fix-it” button in the dialog, Xcode really inserts the
missing @ into my code — and the warning vanishes, because the problem is solved. If
I’m confident that Xcode will do the right thing, I can choose Editor → Fix All in Scope
(Control-Option-Command-F), and Xcode will implement all nearby Fix-it sugges-
tions without my even having to show the dialog.

Live syntax checking can be toggled on or off using the Enable Live Issues In Editors
checkbox in the General preference pane. Personally, I keep it turned off, as I find it
intrusive. My code is almost never valid while I’m typing, because the terms and paren-
theses are always half-finished; that’s what it means to be typing. For example, merely
typing a left parenthesis will instantly cause the syntax checker to complain of a parse
error (until I type the corresponding right parenthesis).

The good news is that, starting in Xcode 4.2, turning off live syntax checking doesn’t
eliminate Fix-it. Even if live syntax checking is turned off, when I compile the code
shown in Figure 9-3, I am still shown the same warning and I can still click on the
warning symbol in the gutter to get the same Fix-it suggestion dialog, and I can still
accept its suggestion by pressing Return, by double-clicking, or by choosing Fix All in
Scope.

Navigating Your Code
Developing an Xcode project involves editing code in many files at once. Xcode provides
numerous ways to navigate your code. Many of these have been mentioned in previous
chapters.

Figure 9-3. A warning with a Fix-it suggestion

Navigating Your Code | 177

The Project navigator
If you know something about the name of a file, you can find it quickly in the
Project navigator (Command-1) by typing into the search field in the filter bar at
the bottom of the navigator (Edit → Filter → Filter in Navigator, Command-Option-
J). For example, type xib to see just your nib files. Moreover, after using the filter
bar, you can press Tab and then the Up or Down arrow key to navigate the Project
navigator. Thus you can reach the desired file with the keyboard alone.

The Symbol navigator
If you highlight the first two icons (the first two are dark, the third is light), the
Symbol navigator lists your project’s classes and their methods, making navigation
to a desired method easy. As with the Project navigator, the filter bar can quickly
get you where you want to go. For example, to see the applicationDidBecome-
Active: method, type active in the search field.

The jump bar
Every path component of the jump bar is a menu:

The bottom level
At the bottom level (farthest right) in the jump bar is a list of your file’s method
and function declarations and definitions, in the order in which they appear
(hold Command while choosing the menu to see them in alphabetical order);
choose one to navigate to it.

You can add section titles to this bottom-level menu using the #pragma mark
directive. To see an example, make a project based on the Single View Appli-
cation template; you’ll find this code in ViewController.m:

#pragma mark - View lifecycle

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.
}

The result is that the “viewDidLoad” item in the bottom-level menu falls
within a “View lifecycle” section. To make a section divider line in the menu,
type a #pragma mark directive whose value is a hyphen; in this example, both
a hyphen (to make a section divider line) and a title (to make a bold section
title) are used. Similarly, comments outside of any method and starting with
TODO:, ???:, or !!!: will appear in the bottom-level menu.

Higher levels
Higher-level path components are hierarchical menus; thus you can use any
of them to work your way down the file hierarchy.

178 | Chapter 9: Life Cycle of a Project

History
Each editor pane remembers the names of files you’ve edited in it. The Back
and Forward triangles are both buttons and pop-up menus (or choose Navigate
→ Go Back and Navigate → Go Forward, Control-Command-Left and Control-
Command-Right).

Related items
The leftmost button in the jump bar summons a hierarchical menu of files
related to the current file, such as counterparts, superclasses, and included
files.

The Assistant pane
The Assistant allows you to be in two places at once. Hold Option while navigating
to open something in an Assistant pane instead of the primary editor pane.

The first path component in an Assistant pane’s jump bar sets its automatic rela-
tionship to the main pane (tracking). If that relationship involves multiple files,
triangle buttons appear at the right end of the jump bar, letting you navigate be-
tween them; or choose from the second path component’s pop-up menu (Con-
trol-5). For example, show AppDelegate.m in the main pane and switch the assis-
tant pane’s related items pop-up menu to Includes; the triangle buttons at the right
end of the jump bar then navigate between different files #imported by App-
Delegate.m.

You can also be in two places at once by opening a tab or a separate window.

Jump to definition
Navigate → Jump to Definition (Control-Command-J) lets you jump to the defi-
nition or implementation of the symbol already selected in your code.

Open quickly
File → Open Quickly (Shift-Command-O) searches in a dialog for a symbol in your
code and the Cocoa headers. You can type the symbol in the search field, or, if a
symbol is selected when you summon the dialog, it will be entered in the search
field for you (and you can then navigate the dialog entirely with the keyboard).

Breakpoints
The Breakpoint navigator lists all breakpoints in your code. Xcode 4 lacks code
bookmarks, but you can misuse a disabled breakpoint as a bookmark.

Finding
Finding is a form of navigation. Xcode has both a global find (Edit → Find → Find
in Workspace, Shift-Command-F, which is the same as using the Search navigator)
and an editor-level find (Edit → Find → Find, Command-F); don’t confuse them.

Find options are all-important. Both sorts of find have options that you can sum-
mon by clicking the magnifying glass. The global find options (Figure 6-3) allow
you to specify the scope of a search (which files will be searched) in sophisticated
ways: choose Custom in the “Find in” pop-up menu to create a scope. The global

Navigating Your Code | 179

find search bar also pops down a menu automatically as you type, letting you switch
among the most important options. You can also find using regular expressions.
There’s a lot of power lurking here.

To replace text, click on the word Find next to the search bar to summon the pop-
up menu, and choose Replace. (It may be necessary to perform a global find first,
before a global replace on the same search term will work.) You can replace all
occurrences, or select particular find results in the Search navigator and replace
only those (click Replace instead of Replace All). Even better, click Preview; it
summons a dialog that shows you the effect of each possible replacement, and lets
you check or uncheck particular replacements in advance of performing the re-
placement.

A sophisticated form of editor-level find is Editor → Edit All In Scope, which finds
simultaneously all occurrences of the currently selected term (usually a variable
name) within the current set of curly braces; you can use this to change a variable’s
name throughout its scope, or just to survey how the name is used. To change a
symbol’s name throughout your code, use Xcode’s Refactoring feature (see “Mak-
ing Global Changes to Your Code” in the Xcode 4 User Guide).

Debugging
Debugging is the art of figuring out what’s wrong with the behavior of your app as it
runs. I divide this art into two main techniques: caveman debugging and pausing your
running app.

Caveman Debugging
Caveman debugging consists of altering your code, usually temporarily, typically by
adding code to dump informative messages into the console.

To see the console as a full window, open a second project window or
tab, show the Debug pane (View → Show Debug Area), and slide the
top of the Debug pane all the way up to cover the editor. Eliminate the
Navigator and Organizer panes, and the variables list. Now this window
or tab contains nothing but the console. Switch to this window or tab
when you want to read the console, but don’t run or stop while viewing
it, as doing so may cause the Debug pane to close or change size.

The standard command for sending a message to the console is NSLog. It’s a C function,
and it takes an NSString which operates as a format string, followed by the format
arguments.

A format string is a string (here, an NSString) containing symbols called format speci-
fiers, for which values (the format arguments) will be substituted at runtime. All format

180 | Chapter 9: Life Cycle of a Project

specifiers begin with a percent sign (%), so the only way to enter a literal percent sign
in a format string is as a double percent sign (%%). The character(s) following the percent
sign specify the type of value that will be supplied at runtime. The most common format
specifiers are %@ (an object reference), %i (an integer), %f (a float), and %p (a pointer,
usually an object reference, shown as the address in memory pointed to, useful for
making certain that two references refer to the same instance). For example:

NSLog(@"the window: %@", self.window);

In that example, self.window is the first (and only) format argument, so its value will
be substituted for the first (and only) format specifier, %@, when the format string is
printed in the console. Thus the console output looks something like this:

the window: <UIWindow: 0x6a08140; frame = (0 0; 320 480);
 layer = <UIWindowLayer: 0x6a08230>>

This nice display of information is due to UIWindow’s implementation of the
description method: an object’s description method is called when that object is used
with the %@ format specifier. For this reason, you will probably want to implement
description in your own classes, so that you can investigate an instance with a simple
NSLog call.

For the complete repertory of format specifiers available in a format string, read Apple’s
document String Format Specifiers. The format specifiers are largely based on those of
the C printf standard library function; see K&R B1.2, the sprintf man page, and the
IEEE printf specification linked from the documentation.

If an object reference has been set to nil, NSLog will report it as
(null). But if an object reference is uninitialized, an NSLog call referring
to it will probably fail silently, or even crash the debugger. This is very
frustrating; indeed, the fact that this object reference is uninitialized is
probably just what you were trying to debug. Fortunately, if you use
ARC (Chapter 12), an object reference is autoinitialized to nil if you
don’t initialize it explicitly.

The main ways to go wrong with NSLog (or any format string) are to supply a different
number of format arguments from the number of format specifiers in the string, or to
supply an argument value different from the type declared by the corresponding format
specifier. These mistakes can send your app off into the weeds, or at least give mis-
leading results. I often see beginners claim that logging shows a certain value to be
nonsense, when in fact it is their NSLog call that is nonsense; for example, a format
specifier was %i but the value of the corresponding argument was a float.

C structs are not objects, so to see a struct’s value with NSLog you must somehow
deconstruct or translate the struct. Common Cocoa structs usually supply convenience
functions for this purpose. For example:

NSLog(@"%@", NSStringFromCGRect(self.window.frame)); // {{0, 0}, {320, 480}}

Debugging | 181

Purists may scoff at caveman debugging, but I use it heavily: it’s easy, informative, and
lightweight. And sometimes it’s the only way. Unlike the debugger, NSLog works with
any build configuration (Debug or Release) and wherever your app runs (in the Simu-
lator or on a device). It works when pausing is impossible (because of threading issues,
for example). It even works on someone else’s device, such as a tester to whom you’ve
distributed your app. It’s a little tricky for a tester to get a look at the console so as to
be able to report back to you, but it can be done: the tester can connect the device to
a computer and view its log in Xcode’s Organizer window or with Apple’s iPhone
Configuration Utility; there’s also a free utility app called Console that displays the log
right on the device.

Remember to remove or comment out NSLog calls before shipping your app, as you
probably don’t want your finished app to dump lots of messages into the console. A
useful trick (shamelessly stolen from Jens Alfke) is to call MyLog instead of NSLog,
and define MyLog like this in your precompiled header (and when it’s time to stop
logging, change the 0 to 1):

#define MyLog if(0); else NSLog

A useful fact when logging is that the variable name _cmd holds the selector for the
current method. Thus a single form of statement can signal where you are:

NSLog(@"Logging %@ in %@", NSStringFromSelector(_cmd), self);

(Similarly, in a C function, NSLog(@"%s", __FUNCTION__) logs the name of the function.)

Another sort of call with which you can pepper your code is asserts. Asserts are con-
ditions that you claim (assert) are true at that moment — and you feel so strongly about
this that you want your app to crash if you’re wrong. Asserts are a very good way to
confirm that the situation matches your expectations, not just now as you write your
code, but in the future as the app develops.

The simplest form of assert is the C function (actually it’s a macro) assert, to which
you pass one argument, a condition — something that can be evaluated as false (0) or
true (some other value). If it’s false, your app will crash when this line is encountered,
along with a nice explanation in the log. For example, suppose we assert NO, which is
false and will certainly cause a crash. Then when this line is encountered we crash with
this log message:

Assertion failed: (NO),
function -[AppDelegate application:didFinishLaunchingWithOptions:],
file /Users/mattleopard/Desktop/testing/testing/AppDelegate.m, line 20.

That’s plenty for us to track down the assertion failure: we know the assertion condi-
tion, the method in which the assertion occurred, the file containing that method, and
the line number.

For higher-level asserts, look at NSAssert (used in Objective-C methods) and NSCAs-
sert (used in C functions); they allow you to form your own log message, to appear in

182 | Chapter 9: Life Cycle of a Project

the console in addition to the native assert logging, and the log message can be a format
string followed by values corresponding to the format specifiers, as with NSLog.

Some developers think that asserts should be allowed to remain in your code even when
your app is finished. By default, however, they are disabled in a Release build, thanks
to the Other C Flags build setting, which is set to -DNS_BLOCK_ASSERTIONS=1 in Apple’s
project templates; the effect of this setting is to #define the preprocessor macro
NS_BLOCK_ASSERTIONS, which in turn is the signal for asserts to be effectively neutered
at precompile time. To keep asserts working in a Release build, clear that value from
the Other C Flags build setting in your target.

The Xcode Debugger
When you’re building and running in Xcode, you can pause in the debugger and use
Xcode’s debugging facilities. There isn’t a strong difference between running and de-
bugging in Xcode 4; the main distinction is whether breakpoints are effective or ignored.
The effectiveness of breakpoints can be toggled at two levels:

Globally
Breakpoints as a whole are either active or inactive. If breakpoints are inactive, we
won’t pause at any breakpoints.

Individually
A given breakpoint is either enabled or disabled. Even if breakpoints are active, we
won’t pause at this one if it is disabled. Disabling a breakpoint allows you to leave
in place a breakpoint that you might need later without pausing at it every time it’s
encountered.

A breakpoint, then, is ignored if it is disabled or if breakpoints as a whole are inactive.

The important thing, if you want to use the debugger, is that the app should be built
with the Debug build configuration. The debugger is not very helpful against an app
built with the Release build configuration, not least because compiler optimizations
can destroy the correspondence between steps in the compiled code and lines in your
code. Trying to debug a Release build is a common beginner error (though it’s less likely
to occur accidentally in Xcode 4, in which by default a scheme’s Run action uses the
Debug build configuration).

To create a breakpoint (Figure 9-4), select in the editor the line where you want to
pause, and choose Product → Debug → Add Breakpoint at Current Line (Command-
Backslash). This keyboard shortcut toggles between adding and removing a breakpoint
for the current line. The breakpoint is symbolized by an arrow in the gutter. Alterna-
tively, a simple click in the gutter adds a breakpoint; to remove a breakpoint gesturally,
drag it out of the gutter.

To disable a breakpoint at the current line, click on the breakpoint in the gutter to
toggle its enabled status. Alternatively, Control-click on the breakpoint and choose

Debugging | 183

Disable Breakpoint in the contextual menu. A dark breakpoint is enabled; a light
breakpoint is disabled (Figure 9-5).

Once you have some breakpoints in your code, you’ll want to survey and manage them.
That’s what the Breakpoint navigator is for. Here you can navigate to a breakpoint,
enable or disable a breakpoint by clicking on its arrow in the navigator, and delete a
breakpoint.

You can also edit a breakpoint’s behavior. Control-click on the breakpoint, in the gutter
or in the Breakpoint navigator, and choose Edit Breakpoint. This is a very powerful
facility: you can have a breakpoint pause only under a certain condition or after it has
been encountered a certain number of times, and you can have a breakpoint perform
a certain action when it is encountered, such as logging or running a script.

A breakpoint can be configured to continue automatically after performing its action
when it is encountered. This can be an excellent alternative to caveman debugging:
Instead of inserting an NSLog call, which must be compiled into your code and later
removed when the app is released, you can set a breakpoint that logs and continues,
which operates only when you’re debugging.

In the Breakpoint navigator, you can create two kinds of breakpoint that you can’t
create in a code editor: exception breakpoints and symbolic breakpoints. Click the “+”
button at the bottom of the navigator and choose from its pop-up menu.

Exception breakpoint
An exception breakpoint causes your app to pause at the time an exception is
thrown or caught, without regard to whether the exception would crash your app
later. I recommend that you create an exception breakpoint to pause on all excep-
tions when they are thrown, because this gives the best view of the call stack and
variable values at the moment of the exception (rather than later when the crash
actually occurs); you can see where you are in your code, and you can examine
variable values, which may help you understand the cause of the problem. If you
do create such an exception breakpoint, I also suggest that you use the contextual

Figure 9-4. A breakpoint

Figure 9-5. A disabled breakpoint

184 | Chapter 9: Life Cycle of a Project

menu to say Move Breakpoint To → User, which makes this breakpoint permanent
and global to all your projects.

Symbolic breakpoint
A symbolic breakpoint causes your app to pause when a certain method is called,
regardless of what object called it or to what object the message is sent. The method
name is entered in a special way — the instance method or class method symbol
(- or +) followed by square brackets containing the class name and the method
name. For example, to learn where in my app the beginReceivingRemoteControl-
Events message was being sent to my shared application instance, I configured a
symbolic breakpoint like this:

-[UIApplication beginReceivingRemoteControlEvents]

To toggle the active status of breakpoints as a whole, click the Breakpoints button in
the project window toolbar, or choose Product → Debug → Activate/Deactivate Break-
points (Command-Y). The active status of breakpoints as a whole doesn’t affect the
enabled or disabled status of any breakpoints; if breakpoints are inactive, they are sim-
ply ignored en masse, and no pausing at breakpoints takes place. Breakpoint arrows
are blue if breakpoints are active, gray if they are inactive.

When the app runs with breakpoints active and an enabled breakpoint is encountered
(and assuming its conditions are met, and so on), the app pauses. In the active project
window, the editor shows the file containing the point of execution, which will usually
be the file containing the breakpoint. The point of execution is shown as a green arrow;
this is the line that is about to be executed (Figure 9-6). Depending on the settings for
“Run pauses” in the Behaviors preference pane, the Debug navigator and the Debug
pane will also appear.

Here are some things you might like to do while paused at a breakpoint:

See where you are
One common reason for setting a breakpoint is to make sure that the path of ex-
ecution is passing through a certain line. You can see where you are in any of your
methods by clicking on the method name in the call stack, shown in the Debug
navigator.

Methods listed in the call stack with a User icon, with the text in black, are yours;
click one to see where you are paused in that method. Other methods, with the
text in gray, are methods for which you have no source code, so there would be
little point clicking one unless you know something about assembly language. The

Figure 9-6. Paused at a breakpoint

Debugging | 185

slider at the bottom of the navigator hides chunks of the call chain, to save space,
starting with the methods for which you have no source.

You can also navigate the call stack using the jump bar at the top of the Debug pane.

Study variable values
This is a very common reason for pausing. In the Debug pane, variable values for
the current scope (corresponding to what’s selected in the call stack) are visible in
the variables list. You can see additional object features, such as collection ele-
ments, instance variables, and even some private information, by opening triangles.

Switch the pop-up menu above the variables list to Auto to see only those variables
that Xcode thinks will interest you (because their value has been recently changed,
for instance); if you’re after completeness, Local will probably be the best setting.
You can use the search field to filter variables by name or value.

In some cases, toggling Show Formatted Summmaries in the contextual menu can
give a faster or more reliable display of variables. Even with formatted summaries
turned off, you can send description to an object variable and view the output in
the console by selecting Print Description from the contextual menu.

Set a watchpoint (GDB only)
A watchpoint is like a breakpoint, but instead of depending on a certain line of
code it depends on a variable’s value: the debugger pauses whenever the variable’s
value changes. You can set a watchpoint only while paused in the debugger (and
I believe it will work only while running in the Simulator, not on a device). Control-
click on the variable in the variables list and choose Watch [Variable]. Watch-
points, once created, are listed and managed in the Breakpoint navigator.

Manage expressions
An expression is code to be added to the variables list and evaluated every time we
pause. Choose Add Expression from the contextual menu in the variables list.

Which Debugger?
Throughout the history of Xcode, the debugger tool has been GDB. Starting in Xcode
4.2, the debugger LLDB is available as an alternative (http://lldb.llvm.org); starting in
Xcode 4.3, LLDB is the default debugger for new projects. LLDB is said to be the way
of the future, and it has some powerful features, but it lacks watchpoints and there are
some wrinkles that still need ironing out. To switch debuggers, use the Scheme editor;
in the Info pane of the Run action, change the Debugger pop-up menu to GDB or
LLDB. In the discussion on these pages, I describe GDB, but on the whole LLDB should
behave similarly.

186 | Chapter 9: Life Cycle of a Project

http://lldb.llvm.org

Talk to the debugger
You can communicate verbally with the debugger in the console. Xcode’s debugger
is a front end to an underlying command-line debugger tool (GDB or LLDB). Thus,
by talking directly to that command-line tool you can do everything that you can
do through the Xcode debugger interface, and more. A common command is po
(for “print object”) followed by an object variable’s name or a method call that
returns an object; it calls the object’s description method, just like NSLog. (Talk-
ing to GDB on the command line is described in a document called Debugging with
GDB.)

Fiddle with breakpoints
You are free to create, destroy, enable and disable, and otherwise manage break-
points dynamically even though your app is running, which is useful because where
you’d like to pause next might depend on what you learn while you’re paused here.

Step or continue
To proceed with your app, you can either resume running (Product → Debug →
Continue) until the next breakpoint is encountered or take one step and pause
again. Also, if you hover the mouse over the gutter, a green Continue to Here button
appears; pressing this, or alternatively choosing Product → Debug → Continue to
Current Line (or Continue to Here in the contextual menu), effectively sets a
breakpoint at the chosen line, continues, and removes the breakpoint.

The stepping commands (under Product → Debug) are:

Step Over
Pause at the next line.

Step Into
Pause in your method that the current line calls, if there is one; otherwise,
pause at the next line.

Step Out
Pause when we return from the current method.

You can access these commands through convenient buttons at the top of the
Debug pane. Even if the Debug pane is collapsed, the part containing the buttons
appears while running.

You can also float the project window over everything else on your computer while
debugging by choosing Product → Debug Workflow → Xcode Always In Front;
after you then switch to the Simulator, you can interact with the Xcode window
without giving it focus. If you do want to give it focus, to type in a filter bar for
instance, click Focus in the toolbar. This mode of working could be useful while
you’re interacting with the Simulator, so as not to have to keep switching between
the Simulator and Xcode. To return the project window to its normal state, choose
Normal from the Debugging pop-up menu in the window toolbar (or click Stop in
the toolbar to kill the running app).

Debugging | 187

Step Over and Step Into have advanced forms where you hold Control
to step by machine-level instruction, and Control-Shift to step while
blocking all other threads.

Start over, or abort
To kill the running app, click Stop in the toolbar (Product → Stop, Command-
Period). To kill the running app and relaunch it without rebuilding it, Control-
click Run in the toolbar (Product → Perform Action → Run Without Building,
Control-Command-R). You can make changes to your code while the app is run-
ning or paused, but they are not magically communicated to the running app; you
must run in the normal way (which includes building) to see your changes in action.

Clicking the Home button in the Simulator or on the device does not
stop the running app in the multitasking world of iOS 4 and iOS 5.

Unit Testing
Another way of verifying the correctness of your code is through unit tests. A unit test
is basically a suite of methods that call methods of your app’s code and use asserts to
describe what should happen. Typically, unit tests are constructed so as to confirm not
only that the app behaves as expected under normal conditions, but also that incorrect
or extreme inputs are handled properly. There’s even a school of thought that suggests
you should write unit tests before writing the real code.

The easiest way to attach unit tests to your app is at the time you create the project: in
the second dialog, check Include Unit Tests. Xcode endows your project with a sec-
ondary target, which is a Unit Testing Bundle consisting of the test code and linked to
the SenTestingKit framework. The unit testing target has a dependency on the normal
target; thus, if you build the normal target, you build your app normally, but if you
build the unit testing target, you build your app along with the unit testing bundle.

To run unit tests against your app, you choose Product → Test. The project’s scheme
specifies that this means to build the unit testing target, and lists the test methods that
are to be run; to specify particular test methods, edit the scheme.

You can subsequently add another Unit Testing Bundle target to your project if you
like. When you do, an additional scheme is created. So, to run the tests in an added
unit testing target, you’d change the scheme selection in the Scheme pop-up menu to
specify that target, and choose Product → Test. However, adding such targets may
require further work on your part: you might have to set up the necessary target de-
pendency, edit the scheme, and adjust the target membership of your app’s class files.

188 | Chapter 9: Life Cycle of a Project

The details can be tricky: see Setting Up Application Unit Tests in Apple’s Xcode Unit
Testing Guide.

For more information about unit testing, see Apple’s Xcode Unit Testing Guide. The
appendix to that document lists the SenTestingKit assert functions (actually macros)
that you can use.

Static Analyzer
From time to time, you should use the static analyzer to look for possible sources of
error in your code; choose Product → Analyze (Shift-Command-B). This command
causes your code to be compiled, and the static analyzer studies it and reports its find-
ings in the Issue navigator and in your code.

The static analyzer is static (it’s analyzing your code, not debugging in real time), but
it is remarkably intelligent and may well alert you to potential problems that could
otherwise escape your notice. You might think that the compiler — including ARC, if
you’re using it — knows all there is to know about your code; and it is certainly true
that one of the main reasons for using the static analyzer, namely, to assist with manual
memory management of Objective-C instances, is essentially gone if you’re using ARC.
Still, the static analyzer actually studies the possible values and paths of execution in
your code, and can detect potential sources of trouble in your program’s logic that no
mere compiler would worry about. For example, in this code, the static analyzer knows
that i in the second line is uninitialized:

int i;
if (i) NSLog(@"here");

In this code, the static analyzer knows that the second line throws away the existing
value of i without that value ever having been read:

int i=0;
i=1;

Those are tiny problems, but they illustrate how, in a complex program, the static
analyzer is capable of noticing possible sources of trouble and bringing them to your
attention. For more about the static analyzer, see http://clang-analyzer.llvm.org.

Clean
From time to time, during repeated testing and debugging, and before making a dif-
ferent sort of build (switching from Debug to Release, or running on a device instead
of the Simulator), it is a good idea to clean your target. This means that existing builds
will be removed and caches will be cleared, so that all code will be considered to be in
need of compilation and the next build will build your app from scratch.

Clean | 189

http://clang-analyzer.llvm.org

The first build of your app after you clean will take longer than usual. But it’s worth it,
because cleaning removes the cruft, quite literally. For example, suppose you have been
including a certain resource in your app, and you decide it is no longer needed. You
can remove it from the Copy Bundle Resources build phase (or from your project as a
whole), but that doesn’t remove it from your built app. Only cleaning will do that,
because it removes the built app completely.

To clean, choose Product → Clean. For more complete cleaning, hold Option to get
Product → Clean Build Folder.

In addition, Xcode 4 stores builds and project indexes in ~/Library/Developer/Xcode/
DerivedData. From time to time, with Xcode not running, I like to move the contents
of that folder to the trash. This is effectively a massive and even more complete clean
of every project that you’ve opened recently. Alternatively, to trash the folder in
DerivedData for a single project from within Xcode, switch to the Projects tab of the
Organizer window (Window → Organizer), select the project at the left, and click the
Delete button next to the Derived Data listing at the top of the window. A project will
take longer to open for the first time afterward, because its index must be rebuilt, and
it will take longer to build, because its build information has been removed. But the
space savings on your hard disk can be significant, and forcing the index to rebuild
itself can actually ward off certain problems.

You should also from time to time remove all versions of your built app from the Sim-
ulator cache. Choose iOS Simulator → Reset Content and Settings. Alternatively, you
can clean the Simulator cache by hand. To do so, first quit the Simulator if it’s running.
Then find the cache in ~/Library/Application Support/iPhone Simulator, followed by the
system version of the SDK (for example, there might be a folder called 5.0); within this,
find the Applications folder, and move the contents of that folder to the trash. If there
are multiple system version folders here, you might want to jettison the contents of the
Applications folders of all of them.

Running in the Simulator
When you build and run with Simulator as the destination, you run in the iOS Simulator
application. The Simulator window represents a device. If your app runs on either
iPhone or iPad (natively or in the iPhone emulator), you can choose which device is
simulated as you choose your destination; similarly, if your app runs on multiple system
versions, you can choose the system version of the simulated device as you choose your
destination. (See Chapter 6 on destinations, and the first section of this chapter on
device architectures and the Deployment Target build setting.)

You can also switch device types by choosing Hardware → Device in the Simulator.
This quits your app running in the Simulator; you can relaunch it by building and
running in Xcode again, or by clicking your app’s icon in the Simulator’s springboard.
In the latter case there is no longer any connection to Xcode (you aren’t using the

190 | Chapter 9: Life Cycle of a Project

debugger, so you won’t stop at breakpoints, and log messages won’t be relayed to the
Xcode console); still, you might do this just to check quickly on how your app looks
or behaves on a different device.

The one key choice you can make using Hardware → Device in the Simulator that you
can’t make by choosing a destination in Xcode is between iPhone and iPhone (Retina).
The latter has a double-resolution screen, so it is displayed at double size, with each
pixel of the Retina display corresponding to a pixel of your computer’s monitor.
Changing this setting quits your app running in the Simulator, but your choice will
stick if you return to Xcode and build and run on iPhone again.

The iPad device can be displayed at half, three-quarter, or full size (choose from Win-
dow → Scale). This is a matter of display merely, comparable to zooming a window, so
your app running in the Simulator does not quit when you change this setting.

You can interact with the Simulator in some of the same basic ways as you would a
device. Using the mouse, you can click the Home button and tap on the device’s screen;
hold Option to make the mouse represent two fingers and Option-Shift to move those
fingers in parallel. Menu items let you perform hardware gestures such as rotating the
device, shaking it, and locking its screen; you can also test your app by simulating
certain rare events, such as a low-memory situation (and this is a useful thing to do
from time to time; I’ll talk more about it in Chapter 19).

New in Xcode 4.2 is the Debug menu in the Simulator. This is a valuable addition,
useful for detecting problems with animations and drawing. You can choose from this
menu while your app is running in the Simulator, without causing the app to quit.
Toggle Slow Animations is unique to the Simulator; it makes animations unfold in slow
motion so that you can see just what’s happening (animation is discussed in Chap-
ter 17). The other four menu items represent features that were previously available
only when running on a device using Instruments (mentioned later in this chapter),
under the Core Animation instrument; now they are rolled directly into the Simulator
as well.

I’ll return to the specifics of what these menu items do when discussing drawing
(Chapter 15) and layers (Chapter 16); but here’s an example you can try immediately.
Return to the Empty Window project developed in Chapter 7. In AppDelegate.m, we
are pulling a label out of a nib and putting it into our interface by setting its center, like
this:

[self.window.rootViewController.view addSubview: lab];
lab.center = CGPointMake(100,100);
lab.frame = CGRectIntegral(lab.frame);

If you comment out that last line, run the project in the Simulator with the device set
to iPhone — not iPhone (Retina) — and toggle on Debug → Color Misaligned Images,
you may see the label painted with a magenta overlay. That’s because, without the call
to CGRectIntegral, the label is misaligned; by default, the label is 21 points high, which
is an odd number, so setting its center to an integral point value has caused its vertical

Running in the Simulator | 191

position to be halfway between two integer pixel values on the device. The effect of this
misalignment is actually visible to the naked eye if you know what to look for: the text
looks fuzzy or bold. Using Debug → Color Misaligned Images alerts you to the issue;
calling CGRectIntegral fixes it.

Running on a Device
Sooner or later, you’re going to want to switch from running and testing and debugging
in the Simulator to running and testing and debugging on a real device. The Simulator
is nice, but it’s only a simulation; there are many differences between the Simulator
and a real device. The Simulator is really your computer, which is fast and has lots of
memory, so problems with memory management and speed won’t be exposed until
you run on a device. User interaction with the Simulator is limited to what can be done
with a mouse: you can click, you can drag, you can hold Option to simulate use of two
fingers, but more elaborate gestures can be performed only on an actual device. And
many iOS facilities, such as the accelerometer and access to the music library, are not
present on the Simulator at all, so that testing an app that uses them is possible only
on a device.

Don’t even think of developing an app without testing it on a device.
You have no idea how your app really looks and behaves until you run
it on a device. Submitting to the App Store an app that you have not run
on a device is asking for trouble.

Before you can run your app on a device, even just to test, you must join the iOS
Developer Program by paying the annual fee. (Yes, this is infuriating. Now get over it.)
Only in this way can you obtain and provide to Xcode the credentials for running on
a device. Once you have joined the iOS Developer Program, obtaining these credentials
involves use of the iOS Provisioning Portal, which is accessed online, through your web
browser (or, for certain actions, through Xcode itself).

To reach the iOS Provisioning Portal in your browser (once you’re an
iOS Developer Program member), go to http://developer.apple.com/dev
center/ios. Click Log In to log in, and then click iOS Provisioning Portal
at the upper right.

You will need to perform the following steps just once:

1. Join the iOS Developer Program (http://developer.apple.com/programs/ios). This
requires filling out a form and paying the annual fee. Unless you have multiple
developers, all of whom might need to build and run on their own devices, the
Individual program is sufficient. The Company program costs no more, but adds
the ability to privilege additional developers in various roles. (You do not need the

192 | Chapter 9: Life Cycle of a Project

http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios
http://developer.apple.com/programs/ios

Company program just in order to distribute your built app to other users for
testing.)

2. Obtain a development certificate that identifies and authorizes your computer. This
is the computer to which you’ll be attaching the device so you can run on it. Basi-
cally, this certificate matches the person who uses your computer to the person
interacting with the iOS Provisioning Portal. The certificate will be stored in your
computer’s keychain, where Xcode will be able to see it automatically.

The certificate depends upon a private–public key pair. The private key will live in your
keychain; the public key will be handed over to the iOS Provisioning Portal, to be built
into the certificate. The way you give the Portal your public key is through a request for
the certificate. So, you generate the private–public key pair; your keychain keeps the
private key; the public key goes into the certificate request; you submit the request,
containing the public key, to the Portal; and the Portal sends back the certificate, also
containing the public key, which also goes into your keychain, where it is matched with
the private key, thus ensuring that you are you.

Detailed instructions for generating the private–public key pair and the certificate re-
quest are available once you’ve joined the iOS Developer Program and have logged in
at Apple’s developer site. (The process is described at http://developer.apple.com/ios/
manage/certificates/team/howto.action. A video review of the steps involved is available
to anyone at http://developer.apple.com/ios/videos/popupcerts.action.) Basically, you
start up Keychain Access and choose Keychain Access → Certificate Assistant → Request
a Certificate from a Certificate Authority. Using your name and email address as iden-
tifiers, you generate and save to disk a 2048-bit RSA certificate request file. Your private
key is stored in your keychain then and there; the certificate request contains your
public key.

You then go to the iOS Provisioning Portal in your browser. At the Portal, upload the
certificate request file using the Development (not Distribution!) tab of the Certificates
section. You may have to approve your own request.

If this is your very, very first time obtaining any certificate from the
Portal, you will need another certificate: the WWDR Intermediate Cer-
tificate. This is the certificate that certifies that certificates issued by
WWDR (the Apple Worldwide Developer Relations Certification Au-
thority) are to be trusted. (You can’t make this stuff up.) You’ll see a
link for this intermediate certificate; click it to download the intermedi-
ate certificate. Double-click the intermediate certificate file; it is impor-
ted by your keychain. You can then throw the file away.

When the development certificate itself is ready, you download it and double-click it;
Keychain Access automatically imports the certificate and stores it in your keychain.
You do not need to keep the certificate request file or the development certificate file;
your keychain now contains all the needed credentials. If this has worked, you can see

Running on a Device | 193

http://developer.apple.com/ios/manage/certificates/team/howto.action
http://developer.apple.com/ios/manage/certificates/team/howto.action
http://developer.apple.com/ios/videos/popupcerts.action

the certificate in your keychain, read its details, and observe that it is valid and linked
to your private key (Figure 9-7). After you’ve done this once, your development certif-
icate is good for all your app development from now on. (However, your development
certificate expires when your year of iOS Developer Program membership expires; if
you renew your membership, you’ll have to revoke your current development certificate
at the Portal, delete it from your keychain, and repeat the process of obtaining a new
one.)

With your development certificate in place, you need to register a device for develop-
ment use, meaning that you’ll be able to build and run from Xcode onto that device
rather than the Simulator. This can be done entirely from within Xcode. Open the
Organizer window (Window → Organizer) and switch to the Devices tab. Select Pro-
visioning Profiles under Library at the left, and make sure Automatic Device Provi-
sioning is checked at the bottom of the window. Attach your device to the computer;
the device name appears at the left under Devices. Select it, and click Use For Devel-
opment. You’ll be asked for your Portal username and password. Xcode connects to
the Portal via the Internet and does two things:

• It registers your device at the Portal by its name and unique identifier number. You
could have done this yourself in your browser (at the Portal, under Devices), but
this way it is done for you.

• It creates and downloads from the Portal a universal development provisioning
profile (referred to as a Team Provisioning Profile) for development on this device.
This is something you can’t do at the Portal yourself. A development provisioning
profile created manually at the Portal applies to a single app; in the past, when the
Portal was the only way to obtain a development provisioning profile, you had to
generate a new development provisioning profile for each app you wanted to test
on a device, which was very inconvenient. But the development provisioning pro-

Figure 9-7. A valid development certificate, as shown in Keychain Access

194 | Chapter 9: Life Cycle of a Project

file generated by Xcode applies to all apps, now and in the future (until it expires,
at which time it can easily be regenerated). The universal development provisioning
profile appears in the Organizer, under Provisioning Profiles; you can identify it
because it is called iOS Team Provisioning Profile and has an app identifier con-
sisting of just a key and an asterisk, like this: B398E68A3D.*.

If your device is already registered at the Portal but Use For Development doesn’t appear
in Xcode and you’ve no team provisioning profile, go back to Provisioning Profiles
under Library and click Refresh at the bottom of the window. The team provisioning
profile will be regenerated.

If you develop an app that uses certain specialized features, such as push
notifications (Chapter 37) or in-app purchases, you must generate a
development provisioning profile the old way, manually at the Portal.
To do so, first enter your app by name and bundle id in the App IDs
section of the Portal. Now go to Provisioning and the Development sec-
tion and generate a new provisioning profile, specifying that app and
your device(s). You can then download the provisioning profile in the
Organizer window, under Provisioning Profiles, by clicking the Refresh
button.

You can install the provisioning profile onto your device manually in the Organizer
window by dragging its listing (under Provisioning Profiles) onto the device’s name
(under Devices). Alternatively, you can just start building and running on the device.
Start with a project window. With the device attached to the computer, pick the des-
tination in the Scheme pop-up menu corresponding to your device; then build and run.
If Xcode complains that your device doesn’t contain a copy of the provisioning profile,
and offers to install it for you, accept that offer.

The app is built, loaded onto your device, and runs. As long as you launch the app from
Xcode, everything is just as it was before: you can run, or you can debug, and the
running app is in communication with Xcode, so that you can stop at breakpoints, read
messages in the console, and so on. The outward difference is that to interact physically
with the app, you use the device, not the Simulator.

Starting in Xcode 4.2, an option in the General preference pane offers to Support Wire-
lessly Connected Devices. In theory this should allow Xcode to install and debug an
app on your device without that device being physically connected to your computer.
For this to work, the device must also be set up in iTunes for wireless syncing. The
indications are, however, that this feature is not yet ready for prime time (and you may
be reluctant to enable iTunes wireless syncing for some other reason), so I don’t rec-
ommend it.

Running on a Device | 195

Device Management
Your central location for management of identities (certificates), provisioning profiles,
and devices is the Devices tab of the Organizer window (Window → Organizer). Under
Library, select Developer Profile to see your identities and provisioning profiles. Select
Provisioning Profiles for another list of profiles, along with a button that lets you easily
renew an expired profile. Both these panes offer the ability to export and import iden-
tities and profiles, useful if you move development to a different machine.

When your device is attached to the computer, it is listed with a green dot under De-
vices. Click its name to access information on the device. You can see the device’s
unique identifier. You can see provisioning profiles that have been installed on the
device. You can view the device’s console log in real time, just as if you were running
the Console application to view your computer’s logs. You can see log reports for
crashes that took place on the device. And you can take screenshots that image your
device’s screen; you’ll need to do this for your app when you submit it to the App Store.
Crash reports and screenshots are also available under Library.

Version Control
Various systems of version control exist for taking periodic snapshots (technically called
commits) of your project. The value of such a system to you will depend on what system
you use and how you use it; for example, you might use version control because it lets
you store your commits in a repository offsite, so that your code isn’t lost in case of a
local computer glitch or some equivalent “hit by a bus” scenario, or because it allows
multiple developers to access the same code.

To me, personally, the chief value of version control is freedom from fear. Having ver-
sion control actually changes the way I program. A project is a complicated thing,
consisting of numerous files. Often, changes must be made in many files before a new
feature can be tested. Thus it is all too easy to start down some virtual road involving
creating or editing multiple files, only to find yourself at the end of a blind alley and
needing to retrace your steps. Version control means that I can easily retrace my steps;
I have but to say, in the language of some version control system I’ve been using, “Forget
everything I just did and return the whole project to where it was at such-and-such a
commit.” I rarely, if ever, in fact retrace my steps, but the knowledge that I could do so
gives me the courage to try some programming strategy whose outcome may not be
apparent until after many days of effort. Also, I can ask a version control system, “What
the heck are all the changes I’ve made since the last commit?” In short, without version
control I’d be lost, confused, hesitant, rooted to the spot, paralyzed with uncertainty;
with it, I forge boldly ahead and get things done. For this reason, my current personal
favorite version control system is git (http://git-scm.com), whose agile facilities for man-
aging branches give me tremendous license to experiment.

196 | Chapter 9: Life Cycle of a Project

http://git-scm.com

Xcode provides various version control facilities. Starting with Xcode 4, those facilities
concentrate on git and Subversion (http://subversion.apache.org). This doesn’t mean
you can’t use any other version control system with your projects! It means only that
you can’t use any other version control system in an integrated fashion from inside
Xcode. Personally, I don’t find that to be any kind of restriction. For years I’ve used
Subversion, and more recently git, on my Xcode projects from the command line in
Terminal, or using other third-party GUI front ends (such as svnX for Subversion, http:
//www.lachoseinteractive.net/en/products). I’m comfortable and nimble at the com-
mand line, and access to version control from within Xcode itself is not a priority for me.

At the same time, version control integration in Xcode 4 is greatly improved and far
more extensive than previously:

Automatic git repository creation
When you create a new project in Xcode 4, the Save dialog includes a checkbox
that offers to place a git repository into your project folder from the outset.

Automatic repository detection
When you open an existing project in Xcode 4, if that project is already managed
with Subversion or git, Xcode detects this and is ready instantly to display version
control information in its interface.

Version comparison
The Version editor (View → Version Editor → Show Version Editor, or click the
third button in the Editor segmented control in the project window toolbar) in-
cludes a view similar to that of the File Merge utility, graphically displaying the
differences between versions of a file. For example, in Figure 9-8, I can see that in
the more recent version of this file (on the left) I’ve changed self.window to
self.window.rootViewController.view. (This change was necessary for the second
edition of this book, because iOS 5 now complains if the window has no root view
controller.) The Version editor also includes various ways to survey and navigate
versions and commit logs. (For example, if I switch to Blame view I can see my
own commit message associated with the change I just mentioned: “Giving win-
dow a root view controller and putting subviews inside that, so that no views ever
go directly into the window any more even in simple examples.”)

Without minimizing these features, I don’t rely on them exclusively or even primarily
(although I certainly take advantage of them where convenient). I find version control

Figure 9-8. Version comparison

Version Control | 197

http://subversion.apache.org
http://www.lachoseinteractive.net/en/products
http://www.lachoseinteractive.net/en/products

management through the command line far easier and clearer for many purposes, and
Xcode doesn’t come close to the command line’s power, especially for managing
branches; and Xcode has nothing like the visual branch representation of git’s own
gitk tool. (In fact, as of this writing, Xcode’s git integration is fundamentally flawed:
if I create a new file in a git-controlled project, Xcode adds it to the staging area rather
than letting me compose the commit in my own way, so that I typically have to switch
to the command line and say git reset to undo Xcode’s action.)

Version control in general is a large and complicated topic. Use and configuration of
any version control system can be tricky and scary at first and always requires some
care. So I’m deliberately not going to say anything specific about it; I’m mentioning it
at all only because version control of some sort is in fact likely, sooner or later, to play
a role in the life cycle of your projects. When it does, you’ll want to read up on the use
of your chosen version control system, along with “Managing Versions of Your Project”
in the Xcode 4 User Guide. You’ll find Xcode 4’s integrated version control facilities in
three chief locations:

The File menu
The relevant menu items are all under File → Source Control.

The Version editor
Choose View → Version Editor → Show Version Editor, or click the third button in
the Editor segmented control in the project window toolbar.

The Organizer
The Repositories tab of the Organizer window lists known repositories and
branches for each project, along with their commit logs. Also, use the “+” button
at the bottom of the navigator to enter data about a remote repository, so that you
can obtain a copy of its contents.

Xcode also contains its own way of taking and storing a snapshot of your project as a
whole; this is done using File → Create Snapshot (and, according to your settings, some
mass operations such as find-and-replace or refactoring may offer to take a snapshot
first). Snapshots themselves are managed in the Projects tab of the Organizer window.
Although these snapshots are not to be treated as full-fledged version control, they are
in fact maintained as git repositories, and can certainly serve the purpose of giving
confidence in advance of performing some change that might subsequently engender
regret. You can manage snapshots in the Projects tab of the Organizer window; here
you export a snapshot, thus resurrecting an earlier state of your project folder.

Instruments
As your app approaches completion, you may wish to fine-tune it for memory usage,
speed, and other real-time behavior. Xcode provides a sophisticated and powerful util-
ity application, Instruments, that lets you collect profiling data on your app as it runs.

198 | Chapter 9: Life Cycle of a Project

The graphical display and detailed data provided by Instruments may give you the clues
you need to optimize your app.

You can use Instruments on the Simulator or the device. The device is where you’ll do
your ultimate testing, and certain instruments (such as Core Animation) are available
only for the device; on the other hand, certain other instruments (such as Zombies) are
available only in the Simulator.

To get started with Instruments, set the desired destination in the Scheme pop-up menu
in the project window toolbar, and choose Product → Profile. (For memory usage, your
destination can be the Simulator, but for most other forms of analysis, you’ll want to
run on a device.) Your app builds using the Profile action for your scheme; by default,
this uses the Release build configuration, which is probably what you want. Instru-
ments launches; if your scheme’s Instrument pop-up menu for the Profile action is set
to Ask on Launch, Instruments presents a dialog where you choose a trace template.
With Instruments running, you should interact with your app like a user; Instruments
will record its statistics. Once Instruments is running, it can be further customized to
profile the kind of data that particularly interests you, and you can save the structure
of the Instruments window as a custom template.

Use of Instruments is an advanced topic and beyond the scope of this book. Indeed,
an entire book could (and really should) be written about Instruments alone. For proper
information, you should read Apple’s documents, especially the Instruments User Ref-
erence and Instruments User Guide. Also, many WWDC 2010 and 2011 videos are
about Instruments; look for sessions with “Instruments” or “Performance” in their
names. Here, I’ll just demonstrate, without much explanation, the sort of thing In-
struments can do.

I’ll start by charting the memory usage of my TidBITS News app as it starts up and the
user proceeds to work with it. Memory is a scarce resource on a mobile device, so it’s
important to be certain that we’re not hogging too much of it. I’ll set the destination
to the Simulator and choose Product → Profile; Instruments launches, and I’ll choose
the Allocations trace template and click Profile. My app starts running in the Simulator,
and I work with it for a while and then pause Instruments, which meanwhile has charted
my memory usage (Figure 9-9). Examining the chart, I find there’s a spike early on, as
the app downloads and parses an RSS feed; but it’s only 3.32 MB at its maximum, and
the app settles down to use less than 3 MB pretty steadily thereafter. These are very
gentle memory usage figures, so I’m happy.

Another field of Instruments expertise is the ability to detect memory leaks. Memory
leaks, discussed further in Chapter 12, remain possible even under ARC. In this trivial
example, I have two classes, MyClass1 and MyClass2; MyClass1 has an ivar property
which is a MyClass2 instance, and MyClass2 has an ivar property which is a MyClass1
instance. The app runs this code:

Instruments | 199

MyClass1* m1 = [MyClass1 new];
MyClass2* m2 = [MyClass2 new];
m1.ivar = m2;
m2.ivar = m1;

There are steps I could have taken to prevent this from being a memory leak, as I’ll
explain in Chapter 12; but I haven’t taken those steps, so it is a memory leak. I’ll set
the destination to the Simulator and choose Product → Profile; Instruments launches,
and I’ll choose the Leaks trace template and click Profile. My app starts running in the
Simulator, and after about 10 seconds (the default interval at which Instruments runs
its leak analysis), a leak is detected. I’ll pause Instruments and, with some appropriate
button-pushing, am actually shown a diagram of the mistake that’s causing this leak
(Figure 9-10)!

In this final example, I’m concerned with whether I might be able to speed up the launch
time of my Albumen app. I’ll set the destination to a device, because that’s where speed
matters and needs to be measured, and choose Product → Profile; Instruments launches,
and I’ll choose the Time Profiler trace template and click Profile. I’ll watch the device

Figure 9-9. Instruments graphs memory usage over time

Figure 9-10. Instruments describes a leak

200 | Chapter 9: Life Cycle of a Project

until Albumen has brought up its initial interface; then I’ll pause Instruments. To get
a better look at the resulting graph of CPU activity over time, I’ll choose View → Increase
Deck Size (twice) and View → Snap Track to Fit.

The result is Figure 9-11, which is not of itself terribly helpful. However, it is evident
from the graph that CPU usage during the app launch process is divided into three
distinct phases. For reasons that I won’t explain here, I’ll focus on the third phase. I’ll
Option-drag in the graph to select the third phase, and alter some of the checkboxes
at the left of the window.

Now we’re getting somewhere (Figure 9-12). Of the time spent in calls within my code,
nearly half is spent my RootViewController class’s tableView:cellForRowAtIndex-
Path:. If I double-click that line in the table, I’m shown my own code, time-profiled
(Figure 9-13).

This is really useful information. For example, this line of code turns out to be relatively
expensive:

cell.textLabel.font = [UIFont fontWithName:@"Georgia-Bold" size:15.0];

Part of the expense is that that line is being called ten times (because this code runs
every time a table row is displayed, and there are initially ten rows visible in the table).
But that’s quite unnecessary, since this is a constant; it would be sufficient to make this
call once, earlier in the app’s lifetime, and store the result for subsequent use. A few

Figure 9-11. A time profile in Instruments

Instruments | 201

small changes of this sort can shave about 50% off the time spent in each call to table-
View:cellForRowAtIndexPath:.

It is a programming proverb that one should not optimize prematurely; equally, one
should not spend time optimizing when the resulting savings will make no perceptible
difference to the user. So I can’t say, without further measurement, analysis, and ex-
perimentation, whether these changes would matter, either during app launch or over
the lifetime of the app. But then, that’s exactly the value of Instruments: for guesswork
and impressions, it substitutes actual numbers and facts.

Distribution
By distribution is meant providing your app to others who are not developers on your
team. There are two kinds of distribution:

Figure 9-12. The time profile starts to make sense

Figure 9-13. My code, time-profiled

202 | Chapter 9: Life Cycle of a Project

Ad Hoc distribution
You are providing a copy of your app to a limited set of known users so that they
can try it on their devices and report bugs, make suggestions, and so forth.

App Store distribution
You are providing the app to the App Store so that anyone can download it (pos-
sibly for a fee) and run it.

The Portal imposes a registration limit of 100 devices per year per de-
veloper (not per app), which limits your number of Ad Hoc testers. Your
own devices used for development are counted against this limit.

In order to perform any kind of distribution, you will need a distribution certificate,
which is different from the development certificate discussed earlier in this chapter.
Like the development certificate, you need only one distribution certificate; it identifies
you as you. Obtaining a distribution certificate is exactly like obtaining a development
certificate, except that, at the iOS Provisioning Portal, under Certificates, you use the
Distribution tab instead of the Development tab. (And, like the development certificate,
it expires when your year of iOS Developer Program membership expires; if you renew,
you’ll have to revoke your distribution certificate at the Portal, delete it from your
keychain, and obtain a new distribution certificate.)

You will also need a distribution profile specifically for this app, which is different from
the development profile you obtained earlier. You can’t obtain a distribution profile
from within Xcode; you must get it at the Portal in your browser. You might need
two distribution profiles, because the profile for an Ad Hoc distribution is different
from the profile for an App Store distribution. Remember, you will need a separate set
of distribution profiles for each app you plan to distribute.

When you build for distribution, you’ll use the Product → Archive command. Indeed,
you can think of archive as meaning “build for distribution.” (Product → Archive isn’t
enabled unless your destination in the Scheme pop-up menu is a device.) However, you
have some preparation to do before you can archive in such a way as to make an app
you can actually distribute. If you look at the Archive action in your default scheme,
you’ll discover that it is set to use the Release distribution configuration. But if you
examine the Code Signing Identity build setting for your project, you’ll see that by
default it uses a development profile (most likely the team development profile). This
won’t do; when you intend to distribute a copy of your app, you want to use a distri-
bution profile. The solution is to create a Distribution build configuration; you can
then set the Archive action in your scheme to use the Distribution build configuration,
and set the Code Signing Identity build setting to use the distribution profile when the
Distribution build configuration is in force.

First, here are the steps for obtaining a distribution profile:

Distribution | 203

1. To obtain an Ad Hoc distribution profile, collect the unique identifiers of all the
devices where this build is to run, and add each of the device identifiers at the Portal
under Devices. (For an App Store profile, omit this step.)

2. In the Portal, in the Distribution (not Development!) tab of the Provisioning sec-
tion, ask for a New Profile. In the New Profile form, ask for an Ad Hoc profile or
an App Store profile, depending on which you’re after.

3. Describe the profile, giving it a name, and specifying your distribution certificate
and this app. For an Ad Hoc profile, also specify all the devices you want the app
to run on. Be careful about the profile’s name; I suggest that this name should
contain both the name of the app and the term “adhoc” or “appstore,” so that you
can identify it later easily from within Xcode.

4. Click Submit to generate the profile; you might then have to refresh the browser
window to see the Download button next to your new profile. Download the profile
and drag it onto Xcode’s icon in the Dock. You can now throw the profile away in
the Finder; Xcode has kept a copy (which should appear in the Organizer window).

A distribution profile expires together with your annual developer membership. If a
distribution profile expires and you want to create a new distribution build, you can
renew the profile by returning to the Distribution tab of the Provisioning section at the
Portal and clicking Modify for the expired profile. In the next screen, you might need
to make some change — any change — merely to bring the Submit button to life.
(Apple, Masters of Interface!) Then you can change it back and click Submit.

You can view distribution profiles in the Organizer, in the Devices tab, under Developer
Profile or Provisioning Profiles in the Library section.

Now here are the steps to create a separate build configuration for your project:

1. Edit the project. In the Info tab, click the Plus button below the list of configura-
tions, and duplicate the Release configuration. Name the new configuration Dis-
tribution.

2. Edit the project (still). In the Build Settings tab, locate the Code Signing Identity
entry. The Distribution build setting is now listed here. For the subentry Any iOS
Device, set the value of this to a distribution profile for this app. I believe it won’t
matter which distribution profile you choose; the important thing here is that
you’re specifying a profile that is tied to your distribution certificate. Choosing
iPhone Distribution under Automatic Profile Selector should suffice.

3. Edit the scheme, and switch to the Archive action. Change the build configuration
to Distribution, and click OK.

Ad Hoc Distribution
To create and distribute an Ad Hoc distribution build, first switch to the iOS Device
destination in the Scheme pop-up menu in the project window toolbar. Until you do

204 | Chapter 9: Life Cycle of a Project

this, the Product → Archive menu item will be disabled. You do not have to have a
device connected; you are not building to run on a particular device, but to save an
archive.

Apple’s docs say that an Ad Hoc distribution build should include an
icon that will appear in iTunes, but my experience is that this step is
optional. If you want to include this icon, it should be a PNG or JPEG
file, 512×512 pixels in size, and its name should be iTunesArtwork, with
no file extension. Make sure the icon is included in the build, being
present in the Copy Bundle Resources build phase.

Now choose Product → Archive. The build is created and copied into a date folder
within ~/Library/Developer/Xcode/Archives; it also appears in the Organizer window
in the Archives tab. Locate the archive in the Organizer window. You can add a com-
ment here; you can also change the archive’s name (this won’t affect the name of the
app).

If Xcode refuses to build because of a Code Sign error, it may help to
close the project window and delete this project’s entire build folder
from the DerivedData directory, as described earlier in this chapter.
When you reopen the project, after Xcode has finished reindexing it,
check the build settings for your Distribution configuration; it may help
to set once again the value of Any iOS Device under Code Signing Iden-
tity for the Distribution configuration. See also Apple’s tech note
TN2250, “Understanding and Resolving Code Signing Issues.”

Select the archive and press the Share button at the upper right of the window. A dialog
appears. Here, you are to specify a Contents type; choose iOS App Store Package (the
default). You must also choose an Identity; specify the identity associated with the Ad
Hoc distribution profile for this app. (This is the step in which it matters which of the
app’s distribution profiles you specify.) Click Next.

After a while, a Save dialog appears. Give the file a useful name (again, this won’t affect
the name of the app). Save the file to disk. It will have the suffix .ipa (“iPhone app”).

Locate in the Finder the file you just saved. Provide this file to your users with instruc-
tions. A user should copy the .ipa file to a safe location, such as the Desktop, and then
launch iTunes and drag the .ipa file from the Finder onto the iTunes icon in the Dock.
Then the user should connect the device to the computer, make certain the app is
present and checked in the list of apps for this device, and sync the device to cause the
app to be copied to it. (If this isn’t the first version of your app that you’ve distributed
to your ad hoc testers, the user might need to delete the current version from the device
beforehand; otherwise, the new version might not be copied to device when syncing.)

Ad Hoc Distribution | 205

If you listed your own device as one of the devices for which this Ad Hoc distribution
profile was to be enabled, you can obey these instructions yourself to make sure the Ad
Hoc distribution is working as expected. First, remove from your device any previous
copies of this app (such as development copies). Then copy the app onto your device
by syncing with iTunes as just described. The app should run on your device, and you
should see the Ad Hoc distribution profile on your device (in the Settings app, under
General → Profiles). Because you are not privileged over your other Ad Hoc testers,
what works for you should work for them.

Final App Preparations
As the day approaches when you’re thinking of submitting your app to the App Store,
don’t let the prospect of huge fame or big profits hasten you past the all-important final
stages of app preparation. Apple has a lot of requirements for your app, such as icons
and launch images, and failure to meet them can cause your app to be rejected. Take
your time. Make a checklist and go through it carefully. See the iOS Application Pro-
gramming Guide for full details.

Xcode 4 makes it easier than in the past for you to fulfill these requirements, by pro-
viding an interface for doing so. Edit the target, and switch to the Summary tab; there
are spaces where for an iPhone app you can drag-and-drop normal and double-reso-
lution icons, and normal and double-resolution launch images, and for an iPad app
you can drag-and-drop an iPad icon, along with portrait and landscape launch images.

At various stages, you can also obtain validation of your app to confirm that you haven’t
omitted certain requirements. For example, by default, a new project’s Release build
configuration has the Validate Build Product build setting set to Yes. Thus, when I do
a build of the Empty Window app we’ve developed in previous chapters, if that build
uses the Release build configuration (or the Distribution build configuration duplicated
from it), Xcode warns that the app has no icon. When you submit your app to the App
Store, it will be subjected to even more rigorous validation.

Icons in the App
An icon file must be a PNG file, without any alpha transparency, with an exact pixel
size. It should be a full square, without shading (the “shine” effect that you see in the
upper part of icons on your device); the rounding of the corners and shine will be added
for you. You can prevent the shine effect from being added to the icon for your App
Store build by defining and checking the “Icon already includes gloss and bevel effects”
(UIPrerenderedIcon) key in your Info.plist. Make sure that the icon is copied into the
built app by inclusion in the Copy Bundle Resources build phase. The required size is
as follows (note that information about icons for apps that are to run on systems
before iOS 3.2 is omitted):

• For an iPad app, the icon file should be 72×72 pixels in size.

206 | Chapter 9: Life Cycle of a Project

• For an iPhone app, there should be two primary app icons, one 57×57 pixels, the
other 114×114 pixels (for use on the double-resolution Retina display). A double-
resolution variant of an icon should have the same name as the single-resolution
variant, except for the addition of @2x to its name.

As I mentioned earlier, in Xcode 4 you can drag-and-drop the required icons into the
appropriate spaces in the Summary tab when you’re editing the target, and Xcode itself
will incorporate them into the project and the target and configure the Info.plist for
you. For example, if I drop a 57×57 PNG file called myDumbIcon.png onto the first
icon space, it is copied into the project and added to the target, and the first element
in the “Icon files” key in my Info.plist becomes myDumbIcon.png.

Alternatively, you can specify the icon file(s) manually using the Info.plist. In this case,
you will have to add the relevant key–value pairs manually. To do so, set the “Icon
files” key’s value (CFBundleIconFiles, and notice the plural!); this value is an array, so
you can list multiple icons.

You may also optionally include smaller versions of your icon to appear when the user
does a search on the device (and in the Settings app, if you include a settings bundle,
Chapter 36). The smaller icon sizes are 29×29 pixels (for an iPhone app, and for the
Settings bundle for an iPad app), 50×50 pixels (for an iPad app), and 58×58 pixels (for
an iPhone 4 app, on the double-resolution display). List the icons in the “Icon files” key.

The system determines which icon listed under the “Icon files” key to use under what
circumstances by examining their sizes. That’s one reason why the sizes must be exactly
correct.

For more information, see Apple’s tech note QA1686, “App Icons on iPad and iPhone,”
and the “App-Related Resources” chapter of the iOS App Programming Guide.

Other Icons
When you submit the app to the App Store, you will be asked to supply a 512×512
PNG, JPEG, or TIFF icon to be displayed at the App Store. Have this icon ready before
submission. Apple’s guidelines say that it should not merely be a scaled-up version of
your app’s icon, but it must not differ perceptibly from your app’s icon, either, or your
app will be rejected (I know this from experience).

The App Store icon does not need to be built into your app; indeed, it should not be,
as it will merely swell the built app’s size unnecessarily (remember that space is at a
premium on a device, and that your app must be downloaded from the App Store, so
users appreciate your keeping your app as small as possible). On the other hand, you
will probably want to keep it in your project (and in your project folder) so that you
can find and maintain it easily. So create it and import it into your project, but do not
add it to any target.

Final App Preparations | 207

If you created a 512×512 icon file for Ad Hoc distribution, you may wish to delete it
from the Copy Bundle Resources build phase now so that it doesn’t swell the final app’s
size unnecessarily.

Launch Images
There may be a delay between the moment when the user taps your app’s icon to launch
it and the moment when your app is up and running and displaying its initial win-
dow. To cover this delay and give the user the sense that something is happening, you
should provide a launch image to be displayed during that interval.

The launch image might be just a blank depiction of the main elements or regions of
the app’s interface, so that when the actual window appears, those elements or regions
will seem to be filled in. The best way to create such a launch image is to start with a
screenshot of your app’s actual initial interface. That way, all you have to do is blank
out the details. You don’t need to blank out the status bar area; it will be covered by
the real status bar. Taking screenshots is covered in the next section.

For an iPhone app, the launch image should be a PNG image, 320×480 pixels in size.
It should be named Default.png. Create the launch image, import it into the project,
and make sure it is built into the app, being present in the Copy Bundle Resources build
phase. For the double-resolution Retina display, provide a second version of the launch
image, 640×960 pixels, called Default@2x.png.

For an iPad app, you will probably provide at least two launch images. Here’s why. On
the iPhone, you get to dictate the orientation in which the app should launch (landscape
or portrait), so you can be certain that the default image matches this. But on the iPad,
you’re not supposed to do that; your app should be prepared to launch in whatever
orientation the device happens to be. Thus, you need a launch image for landscape
orientation and a launch image for portrait orientation. The landscape image should
be called Default-Landscape.png; it should be 1024×748 pixels in size. The portrait
image should be called Default-Portrait.png; it should be 768×1004 pixels in size. Ob-
serve that these sizes omit the status bar area, unlike the iPhone launch image.

You can use the orientation suffixes in the names of launch images on the iPhone as
well. To distinguish between a launch image to be used on the iPhone and a launch
image with the same orientation suffix to be used on the iPad, use additional suffixes
~ipad and ~iphone. Thus you can end up with file names like Default-Por-
trait@2x~iphone.png. To make things even more confusing, you can replace Default
with some other base name by creating the “Launch image” key in your Info.plist file
and setting its value appropriately.

As I mentioned earlier, in Xcode 4 you can drag-and-drop the required icons into the
appropriate spaces in the Summary tab when you’re editing the target. For example, if
I drop a 320×480 PNG file called myLaunchImage.png onto the first launch image space,

208 | Chapter 9: Life Cycle of a Project

it is copied into the project and added to the target, and the copy is renamed De-
fault.png.

For further details, see the “App-Related Resources” chapter of the iOS App Program-
ming Guide.

Screenshots
When you submit the app to the App Store, you will be asked for one or more screen-
shots of your app in action to be displayed at the App Store. You should take these
screenshots beforehand and be prepared to provide them during the app submission
process.

You can obtain screenshots either from the Simulator or from a device connected to
the computer. The Simulator is a particularly good approach when you need a double-
resolution launch image and you don’t have a double-resolution device.

Apple is now requiring high-resolution screenshots for iPhone apps, so
that they look good when viewed on a double-resolution device; ac-
ceptable sizes are 960×640 or 960×600 (full-screen), or else 640×960 or
640×920 (no status bar).

Run the app and get it into the desired state. Then:

Simulator
In the Simulator application, choose File → Save Screen Shot.

Device
In Xcode, in the Organizer window, locate your device under Devices and click
Screenshots. Click New Screenshot, at the lower right of the window.

To make screenshots available for upload, select each one in the left side of the window
and click Export to save it with a nice filename into the Finder. Apple asks that if the
status bar is visible in a screenshot, you remove it (I use the shareware Graphic-
Converter to do this easily and precisely). And you may need to rotate a screenshot to
get it into the correct orientation.

To make a screenshot listed in the Organizer window a launch image (see the previous
section), select it in the list and click Save as Launch Image. A dialog will ask you what
name to assign to it and what open project to add it to.

Property List Settings
A number of settings in Info.plist are crucial to the proper behavior of your app. You
should peruse Apple’s Information Property List Key Reference for full information.
Most of the required keys are created as part of the template, and are given reasonable

Final App Preparations | 209

default values, but you should check them anyway. In addition to those already men-
tioned in Chapter 6, the following are particularly worthy of attention:

Status bar style (UIStatusBarStyle)
On the iPhone and iPod touch, the look of the status bar. (On the iPad, the status
bar is always black opaque.) Your choices are “Gray style” (UIStatusBarStyle-
Default), “Opaque black style” (UIStatusBarStyleBlackOpaque), and “Transparent
black style” (UIStatusBarStyleBlackTranslucent). This setting will be used in con-
junction with your launch image, even before the app is actually running. If the
status bar is to be hidden initially, set “Status bar is initially hidden” (UIStatusBar-
Hidden) instead.

Supported interface orientations (UISupportedInterfaceOrientations)
The initial orientation(s) in which the app is permitted to launch (Chapter 19; the
app may support additional orientations later as it runs). In Xcode 4, you can
perform this setting graphically in the Summary tab when editing your target.

Required device capabilities (UIRequiredDeviceCapabilities)
You should set this key if the app requires capabilities that are not present on all
devices. Be sure to look over the list of possible values. Don’t use this key unless it
makes no sense for your app to run at all on a device lacking the specified capa-
bilities.

Note that the current project templates include armv7 in the list of required device
capabilities. This is a new restriction, and you might like to delete it:

• If you are interested in backwards compatibility, this restriction could prove
unnecessarily narrow, excluding many older devices.

• When I rewrote an existing app from scratch starting with a new Xcode 4.2
application template, my update wouldn’t validate at the App Store initially,
apparently because you aren’t permitted to change the list of required device
capabilities in an update to an existing app.

Property list settings can adopt different values depending on what device type you’re
running on. To specify that a property list setting applies only on a particular type of
device, you add to its key the suffix ~iphone, ~ipod, or ~ipad. This feature is typically
useful in a universal app, in which the distinction will be between iPhone and iPod, on
the one hand, and iPad on the other. The general setting is used unless there is an
applicable specific case, so in a universal app you might have one setting with no suffix
and a second setting with the ~ipad suffix. Thus, for example, you could have a different
set of supported initial interface orientations on the iPad by adding settings for “Sup-
ported interface orientations (iPad)” (UISupportedInterfaceOrientations~ipad).

You app also needs a version number. Edit the Target and click Summary at the top of
the page; enter a version string in the Version text field. Things are a little confusing
here because there is both a Version field and a Bundle field; the former corresponds
to “Bundle versions string, short” (CFBundleShortVersionString), while the latter cor-

210 | Chapter 9: Life Cycle of a Project

responds to “Bundle version” (CFBundleVersion). As far as I can determine, Apple will
pay attention to the former if it is set, and otherwise will fall back on the latter. In general
I play it safe and set both to the same value when submitting to the App Store. The
value needs to be a version string, such as “1.0”. This version number will appear at
the App Store, and you should increment it when you develop and submit an update
to an existing app. Failure to increment the version string when submitting an update
will cause the update to be rejected.

Submission to the App Store
When you’re satisfied that your app works well, and you’ve installed or collected all
the necessary resources, you’re ready to submit your app to the App Store for distri-
bution. The primary way to submit your app is through a website called iTunes Con-
nect. You can find a link to it on the iOS developer pages when you’ve logged in at
Apple’s site. You can go directly to http://itunesconnect.apple.com, but you’ll still need
to log in with your iOS Developer username and password.

The first thing you should do at iTunes Connect is download the iTunes Connect De-
veloper Guide. It’s a PDF that gives you a good idea what to expect when you submit
your app, as well as later when you return for financial and other reports, and when
you update your app.

You should also go to the Contracts section at iTunes Connect and complete submis-
sion of your contract if you haven’t already done so. You can’t offer any apps for sale
until you do, and even free apps require completion of a contractual form.

When you submit an app to iTunes Connect, you will have to supply a description of
fewer than 4,000 characters; Apple recommends fewer than 580 characters, and the
first paragraph is the most important, because this may be all that users see at first when
they visit the App Store. It must be pure text, without HTML and without character
styling.

You will also be asked for a list of keywords: a comma-separated list shorter than 100
characters. These keywords will be used, in addition to your app’s name, to help users
discover your app through the Search feature of the App Store.

iTunes Connect will also expect you to provide a website where users can find more
information about your app; it’s good to have that ready in advance.

Now build the app. The procedure is exactly as for an Ad Hoc build. Set the destination
to iOS Device in the Scheme pop-up menu in the project window toolbar, and choose
Product → Archive.

The archived build that appears in the Organizer window can be used to generate either
an Ad Hoc build or an App Store build. You can’t test an App Store build. So if you
want to test one last time, use this archived build to generate an Ad Hoc build and test
with that. When you generate the App Store build, you use the exact same binary, so

Submission to the App Store | 211

http://itunesconnect.apple.com

you are guaranteed that its behavior will be exactly the same as the build you tested.
(That is one of the purposes of archiving.)

Enter your app’s information at the iTunes Connect website. I’m not going to recite all
the steps you have to go through, as these are described thoroughly in the iTunes Con-
nect Developer Guide. But I’ll just mention a few possible pitfalls:

Your app’s name
This is the name that will appear at the App Store; it need not be identical to the
short name that will appear under the app’s icon on the device, dictated by the
Bundle Display Name setting in your Info.plist file. This name can be up to 255
characters long, though Apple recommends that you limit it to fewer than 70 and
ideally to fewer than 35 characters. You can get a rude shock when you submit
your app’s information to iTunes Connect and discover that the name you wanted
is already taken. There is no reliable way to learn this in advance, and such a dis-
covery can require a certain amount of scrambling on your part: you might have
to Build and Archive your app yet again with a new name and possibly other last-
minute changes.

Copyright
Do not include a copyright symbol in this string; it will be added for you at the
App Store.

SKU number
This is unimportant, so don’t get nervous about it. It’s just a unique identifier,
unique within the world of your own apps. It’s convenient if it has something to
do with your app’s name. It needn’t be a number; it can actually be any string.

Price
You don’t get to make up a price. You have to choose from a list of pricing “tiers.”

Availability Date
Apple suggests that you set the availability date to the date you submit the app;
that way, when it is approved, it will be available immediately.

When you’ve submitted the information for your app, you can do a final validation
check: return to the Organizer window, select the archived build, and click Validate.
(This feature has not worked well for me in the past, however.)

Finally, when you’re ready to upload the app for which you’ve already submitted the
information at iTunes Connect, and when the iTunes Connect status for your app is
“Waiting for Upload,” you can perform the upload using Xcode. Select the archived
build in the Organizer and click Submit, specifying the App Store distribution profile.

Alternatively, you can use Application Loader, an application located in /Developer/
Applications/Utilities/, to upload the app. (In Xcode 4.3 and later, Application Loader
is inside the Xcode bundle; launch it by choosing Xcode → Open Developer Tool →
Application Loader.) Application Loader first checks with iTunes Connect to see what

212 | Chapter 9: Life Cycle of a Project

apps are awaiting upload; pick the right one. In the Organizer, click Share and specify
the App Store distribution profile (if you’re asked to specify a distribution profile). The
result will be an .ipa file in the Finder; this is what you will hand to Application Loader.
Application Loader will perform many useful validation checks as it communicates
with iTunes Connect and uploads your app.

You will subsequently receive emails from Apple informing you of your app’s status as
it passes through various stages: “Waiting For Review,” “In Review,” and finally, if all
has gone well, “Ready For Sale” (even if it’s a free app). Your app will then appear at
the App Store.

Submission to the App Store | 213

PART III

Cocoa

When you program for iOS, you take advantage of a suite of frameworks provided by
Apple. These frameworks, taken together, constitute Cocoa; the brand of Cocoa that
provides the API for programming iOS is Cocoa Touch. Cocoa thus plays an important
and fundamental role in iOS programming; your code will ultimately be almost entirely
about communicating with Cocoa — interacting with the frameworks provided by
Apple, in order to make an app that does what you want it to do.

The Cocoa Touch frameworks are a huge boon to you, the programmer, because they
provide the underlying functionality that any iOS app needs to have. Your app can put
up a window, show the interface containing a button, respond to that button being
tapped by the user, and so forth, because Cocoa knows how to do those things. But
with the great advantages of working with a framework come great responsibilities.
You have to think the way the framework thinks, put your code where the framework
expects it, and fulfill many obligations imposed on you by the framework.

• Chapter 10 picks up where Chapter 5 left off, describing some Objective-C lin-
guistic features used by Cocoa, such as categories and protocols; it also surveys
some important fundamental classes.

• Chapter 11 describes Cocoa’s event-driven model, along with its major design
patterns. An event is a message sent by Cocoa to your code. Cocoa is event-based;
if Cocoa doesn’t send your code an event, your code doesn’t run. Getting your code
to run at the appropriate moment is all about knowing what events you can expect
Cocoa to send you and when.

• Chapter 12 describes your responsibilities for making your instances nicely en-
capsulated and good memory-management citizens in the world of Cocoa objects.

• Chapter 13 surveys some answers to the question of how your objects are going to
see and communicate with one another within the Cocoa-based world.

CHAPTER 10

Cocoa Classes

Using the Cocoa frameworks requires an understanding of how those frameworks or-
ganize their classes. Cocoa class organization depends upon certain Objective-C
language features that are introduced in this chapter. The chapter also surveys some
commonly used Cocoa utility classes, along with a discussion of the Cocoa root class.

Subclassing
Cocoa effectively hands you a large repertory of objects that already know how to
behave in certain desirable ways. A UIButton, for example, knows how to draw itself
and how to respond when the user taps it; a UITextField knows how to summon the
keyboard when the user taps in it, how to accept keyboard input, and how to respond
when the user finishes inputting text.

Often, the default behavior or appearance of an object supplied by Cocoa won’t be
quite what you’re after, and you’ll want to customize it. Cocoa classes are heavily en-
dowed with methods and properties for precisely this purpose, and these will be your
first resort. Always study the documentation for a Cocoa class to see whether instances
can already be made to do what you want. For example, the class documentation for
UILabel (Chapter 27) shows that you can set the font, size, color, line-breaking behav-
ior, and horizontal alignment of its text, among other things.

Nevertheless, sometimes setting properties and calling methods won’t suffice to cus-
tomize an instance the way you want to. In such cases, Cocoa may provide methods
that are called internally as an instance does its thing, and whose behavior you can
customize by subclassing and overriding. You don’t have the code to any of Cocoa’s
built-in classes, but you can still subclass them, creating a new class that acts just like
a built-in class except for the modifications you provide.

Oddly enough, however (and you might be particularly surprised by this if you’ve used
another object-oriented application framework), subclassing is probably one of the less
important ways in which your code will relate to Cocoa. Knowing or deciding when to

217

subclass can be somewhat tricky, but the general rule is that you probably shouldn’t
subclass unless you’re invited to.

A common case involves custom drawing into a UIView. You don’t actually draw
into a UIView; rather, when a UIView needs drawing, its drawRect: method is called so
that the view can draw itself. So the way to make a UIView that is drawn in some
completely custom manner is to subclass UIView and implement drawRect: in the sub-
class. As the documentation says, “Subclasses override this method if they actually draw
their views.” That’s a pretty strong hint that you need to subclass UIView in order to
do custom drawing into a UIView.

For example, suppose we want our window to contain a horizontal line. There is no
horizontal line interface widget, so we’ll just have to roll our own — a UIView that
draws itself as a horizontal line. Let’s try it. First we’ll code the class:

1. In our Empty Window example project, choose File → New → New File and specify
a Cocoa Touch Objective-C class, and in particular a subclass of UIView. Call it
MyHorizLine. Xcode creates MyHorizLine.m and MyHorizLine.h.

2. In MyHorizLine.m, replace the contents of the implementation section with this
(without further explanation; you’ll know all about this after you read Chapter 15):

- (id)initWithCoder:(NSCoder *)decoder {
 self = [super initWithCoder:decoder];
 if (self) {
 self.backgroundColor = [UIColor clearColor];
 }
 return self;
}

- (void)drawRect:(CGRect)rect {
 CGContextRef c = UIGraphicsGetCurrentContext();
 CGContextMoveToPoint(c, 0, 0);
 CGContextAddLineToPoint(c, self.bounds.size.width, 0);
 CGContextStrokePath(c);
}

3. Edit ViewController.xib. Find UIView in the Object library, and drag it into the
View object in the canvas. You may resize it to be less tall.

4. With the UIView that you just dragged into the canvas still selected, use the Identity
inspector to change its class to MyHorizLine.

Build and run the app in the Simulator. You’ll see a horizontal line corresponding to
the location of the top of the MyHorizLine instance in the window. Our view has drawn
itself as a horizontal line, because we subclassed it to do so.

In that example, we started with a bare UIView that had no drawing functionality of
its own. (That’s why there was no need to call super; the default implementation of
UIView’s drawRect: does nothing.) But you might also be able to subclass a built-in
UIView subclass to modify the way it already draws itself. Again using UILabel as an
example, the documentation shows that two methods are present for exactly this pur-

218 | Chapter 10: Cocoa Classes

pose. Both drawTextInRect: and textRectForBounds:limitedToNumberOfLines: explic-
itly tell us: “You should not call this method directly. This method should only be
overridden by subclasses.” The implication is that these are methods that will be called
for us, automatically, by Cocoa, as a label draws itself; thus, we can subclass UILabel
and implement them in our subclass to modify how a particular type of label draws
itself.

Here’s an example from one of my own apps, in which I subclass UILabel to make a
label that draws its own rectangular border and has its content inset somewhat from
that border, by overriding drawTextInRect:. As the documentation tells us: “In your
overridden method, you can configure the current [graphics] context further and then
invoke super to do the actual drawing [of the text].” Let’s try it:

1. In the Empty Window project, make a new class file, a UILabel subclass this time;
call it MyBoundedLabel.

2. In MyBoundedLabel.m, insert this code into the implementation section:

- (void)drawTextInRect:(CGRect)rect {
 CGContextRef context = UIGraphicsGetCurrentContext();
 CGContextStrokeRect(context, CGRectInset(self.bounds, 1.0, 1.0));
 [super drawTextInRect:CGRectInset(rect, 5.0, 5.0)];
}

3. In MyNib.xib, select the UILabel and change its class in the Identity inspector to
MyBoundedLabel.

Build and run the app, and you’ll see how the rectangle is drawn and the label’s text is
inset within it.

Similarly, in a table view (a UITableView) you might very well be able to avoid sub-
classing the table view cell (UITableViewCell), because it provides so many properties
through which you can customize its appearance. If you want text to appear in the cell
using a certain font, the built-in cell styles and the ability to access and modify the cell’s
labels might be quite sufficient. You can directly replace a cell’s background or put a
checkmark at the right end of the cell. All of that is simply a matter of setting the cell’s
built-in properties. But if you want a table view cell that doesn’t look or behave like
any of the built-in cell styles, then you’ll probably subclass UITableViewCell. (We’ll
go deeply into this in Chapter 21.)

You wouldn’t subclass UIApplication (the class of the singleton shared application
instance) just in order to respond when the application has finished launching, because
the delegate mechanism (Chapter 11) provides a way to do that (application:didFinish-
LaunchingWithOptions:). On the other hand, if you need to perform certain tricky cus-
tomizations of your app’s fundamental event messaging behavior, you might subclass
UIApplication in order to override sendEvent:. The documentation does tell you this,
and it also tells you, rightly, that needing to do this would be fairly rare (though I have
had occasion to do it).

Subclassing | 219

If you do subclass UIApplication, you’ll need to change the third argu-
ment in the call to UIApplicationMain in main.m from nil to the NSString
name of your subclass. Otherwise your UIApplication subclass won’t
be instantiated as the shared application instance.

Another class that’s commonly subclassed is UIViewController (Chapter 19). And any
class you write will naturally need to be a subclass of NSObject, if nothing else. You
definitely want your class to inherit all of NSObject’s yummy goodness, including
alloc and init, which make it possible to instantiate your class in the first place (“The
Secret Life of NSObject” on page 240).

Categories
A category is an Objective-C language feature that allows you to reach right into an
existing class and define additional methods. You can do this even if you don’t have
the code for the class, as with Cocoa’s classes. Your instance methods can refer to
self, and this will mean the instance to which the message was originally sent, as usual.
A category, unlike a subclass, cannot define additional instance variables; it can over-
ride methods, but you should probably not take advantage of this ability.

Defining a category is just like defining the class on which the category is being defined:
you need an interface section and an implementation section, and you’ll typically dis-
tribute them into the standard .h and .m class file pair. At the start of both the interface
section and the implementation section, where you give the class’s name, you add a
category name in parentheses. The .h file will probably need to import the header for
the original class (or the header of the framework that defines it), and the .m file will,
as usual, import the corresponding header file.

For example, in one of my apps I found myself performing a bunch of string transfor-
mations in order to derive the path to various resource files inside the app bundle based
on the resource’s name and purpose. I ended up with half a dozen utility methods.
Given that these methods all operated on an NSString, it was appropriate to implement
them as a category of NSString, thus allowing any NSString, anywhere in my code, to
respond to them.

The code was structured like this (I’ll show just one of the methods):

// [StringCategories.h]
#import <Foundation/Foundation.h>

@interface NSString (MyStringCategories)
- (NSString*) basePictureName;
@end

// [StringCategories.m]
#import "StringCategories.h"

220 | Chapter 10: Cocoa Classes

@implementation NSString (MyStringCategories)
- (NSString*) basePictureName {
 return [self stringByAppendingString:@"IO"];
}
@end

If we had written a utility method within some other class, we’d have to pass an
NSString to the method that operates on it (and if this were an instance method, we’d
need to go to the extra trouble of obtaining a reference to an instance of that class). A
category is neater and more compact. We’ve extended NSString itself to have base-
PictureName as an instance method, so we can send the basePictureName message di-
rectly to any NSString we want to transform:

NSString* aName = [someString basePictureName];

A category is particularly appropriate in the case of a class like NSString, because the
documentation warns us that subclassing NSString is a bad idea. That’s because
NSString is part of a complex of classes called a class cluster, which means that an
NSString object’s real class might actually be some other class. A category is a much
better way to modify a class within a class cluster than subclassing.

Keep in mind, too, that a method defined through a category can equally be a class
method. Thus you can inject utility methods into any appropriate class and call those
methods without the overhead of instantiating anything at all. Classes are globally
available, so your method becomes, in effect, a global method (see Chapter 13).

Splitting a Class
A category can be used to split a class over multiple .h/.m file pairs. If a class becomes
long and unwieldy, yet it clearly needs to be a single class, you can define the basic part
of it (including instance variables) in one file pair, and then add another file pair defining
a category on your own class to provide further methods.

Cocoa itself does this. A good example is NSString. NSString is defined as part of the
Foundation framework, and its basic methods are declared in NSString.h. Here we find
that NSString itself, with no category, has just two methods, length and characterAt-
Index:, because these are regarded as the minimum that a string needs to do in order
to be a string. Additional methods (those that create a string, deal with a string’s en-
coding, split a string, search in a string, and so on) are clumped into a category. A string
may serve as a file pathname, so we also find a category on NSString in NSPath-
Utilities.h, where methods are declared for splitting a pathname string into its constit-
uents and the like. Then, in NSURL.h, there’s another NSString category, declaring a
couple of methods for dealing with percent-escaping in a URL string. Finally, off in a
completely different framework (UIKit), UIStringDrawing.h adds yet another NSString
category, with methods for drawing a string in a graphics context.

This organization won’t matter to you as a programmer, because an NSString is an
NSString, no matter how it acquires its methods, but it can matter when you consult

Categories | 221

the documentation. The NSString methods declared in NSString.h, NSPathUtilities.h,
and NSURL.h are documented in the NSString class documentation page, but the
NSString methods declared in UIStringDrawing.h are not, presumably because they
originate in a different framework. Instead, they appear in a separate document,
NSString UIKit Additions Reference. As a result, the string drawing methods can be
difficult to discover, especially as the NSString class documentation doesn’t link to the
other document. I regard this as a major flaw in the structure of the Cocoa documen-
tation. A third-party utility such as AppKiDo can be helpful here.

Private Method Declarations
In Xcode 4.2 and earlier, a problem arises when you’d like to declare a method in such
a way that all other methods in the same class can see the declaration (and can thus
call the method) without putting that declaration in the class’s interface section where
any other class that imports the header file will also be able to see and call it. The solution
is to put an interface section for a category on your own class in the implementation
file, which no one imports (Example 10-1).

Example 10-1. Declaring a method privately

// [in MyClass.m]
#import "MyClass.h"

@interface MyClass (Tricky)
- (void) myMethod;
@end

@implementation MyClass
// all methods here can call myMethod
@end

This trick cannot completely prevent some other class from calling this class’s
myMethod — Objective-C is too dynamic for that — but at least a normal call to my-
Method from some other class will get its hand slapped by the compiler.

In Example 10-1, the compiler will not warn if the methods declared in the category
interface section (such as myMethod) are not defined in the implementation section. If
this worries you, there are two solutions. One is to provide a named category imple-
mentation section, corresponding to the named category interface section; if you fail
to implement the category-declared methods in this category implementation section,
the compiler will warn:

@implementation MyClass (Tricky)
// must implement myMethod here, or compiler will warn
@end

The other approach is just the opposite, namely to remove the category name altogether
from the category interface section; if you then fail to implement the category-declared
methods in the normal implementation section, the compiler will warn:

222 | Chapter 10: Cocoa Classes

@interface MyClass ()
- (void) myMethod;
@end

This nameless type of category, which exists only as an interface section (corresponding
to the normal implementation section), is called a class extension. This is the approach
that I prefer; in fact, use of a class extension to declare methods privately is such a
common and valuable thing to do that I routinely insert a class extension immediately
at the start of the code for any class that I create. In Xcode 4.3, there is no need to
declare private methods, as the LLVM 3.1 compiler doesn’t complain if you call an
undeclared method that’s defined later in the same file. Nevertheless, you still might
like to declare at least some methods in a class extension, because such declaration
constitutes a useful form of documentation.

(A class extension has another remarkable feature: you can declare instance variables
and properties in a class extension interface section, which you can’t do in a named
category. I’ll discuss a use of that feature in Chapter 12, when we talk about Objective-
C properties and the @synthesize directive.)

Protocols
Every reasonably sophisticated object-oriented language must face the fact that the
hierarchy of subclasses and superclasses is insufficient to express the desired relation-
ships between classes. For example, a Bee object and a Bird object might need to have
certain features in common by virtue of the fact that both a bee and a bird can fly. But
Bee might inherit from Insect, and not every insect can fly, so how can Bee acquire the
aspects of a Flier in a way that isn’t completely independent of how Bird acquires them?

Some object-oriented languages solve this problem through mixin classes. For example,
in Ruby you could define a Flier module, complete with method definitions, and in-
corporate it into both Bee and Bird. Objective-C uses a simpler, lighter-weight approach
— the protocol. Cocoa makes heavy use of protocols.

A protocol is just a named list of method declarations, with no implementation. A class
may formally declare that it conforms to (or adopts) a protocol; such conformance is
inherited by subclasses. This declaration satisfies the compiler when you try to send a
corresponding message. If a protocol declares an instance method myCoolMethod, and
if MyClass declares conformance to that protocol, then you can send the myCool-
Method message to a MyClass instance and the compiler won’t complain.

Actually implementing the methods declared in a protocol is up to the class that con-
forms to it. A protocol method may be required or optional. If a protocol method is
required, then if a class conforms to that protocol, the compiler will warn if that class
fails to implement that method. Implementing optional methods, on the other hand,
is optional. (Of course, that’s just the compiler’s point of view; at runtime, if a message

Protocols | 223

is sent to an object with no implementation for the corresponding method, a crash can
result.)

Here’s an example of how Cocoa uses a protocol. Some objects can be copied; some
can’t. This has nothing to do with an object’s class heritage. Yet we would like a uniform
method to which any object that can be copied will respond. So Cocoa defines a pro-
tocol named NSCopying, which declares just one method, copyWithZone: (required).
A class that explicitly conforms to NSCopying is promising that it implements copyWith-
Zone:.

Here’s how the NSCopying protocol is defined (in NSObject.h, where your code can
see it):

@protocol NSCopying
- (id)copyWithZone:(NSZone *)zone;
@end

That’s all there is to defining a protocol. The definition uses the @protocol compiler
directive; it states the name of the protocol; it consists entirely of method declarations;
and it is terminated by the @end compiler directive. A protocol definition will typically
appear in a header file, so that classes that need to know about it, in order to call its
methods, can import it. A @protocol section of a header file is not inside any other
section (such as an @interface section). Any optional methods must be preceded by
the @optional directive. A protocol definition may state that the protocol incorporates
other protocols; these constitute a comma-separated list in angle brackets after the
protocol’s name, like this example from Apple’s own code (UIAlertView.h):

@protocol UIAlertViewDelegate <NSObject>
@optional
// optional method declarations go here
@end

The NSCopying protocol definition in NSObject.h is just a definition; it is not a state-
ment that NSObject conforms to NSCopying. Indeed, NSObject does not conform to
NSCopying. To see this, try sending the copyWithZone: method to your own subclass
of NSObject:

MyClass* mc = [[MyClass alloc] init];
MyClass* mc2 = [mc copyWithZone: [mc zone]];

The compiler warns that a MyClass instance may not respond to copyWithZone:; under
ARC, this code won’t compile at all.

To conform formally to a protocol, a class’s @interface section appends the name of
the protocol, in angle brackets, after the name of the superclass (or, if this is a category
declaration, after the parentheses naming the category). This will necessitate importing
the header file that declares the protocol (or some header file that imports that header
file). To state that a class conforms to multiple protocols, put multiple protocol names
in the angle brackets, separated by comma.

224 | Chapter 10: Cocoa Classes

Let’s see what happens if you conform formally to the NSCopying protocol. Modify
the first line of the @interface section of your class as follows:

@interface MyClass : NSObject <NSCopying>

Now the compiler warns that MyClass fails to implement copyWithZone: and thus does
not fully implement the NSCopying protocol (because copyWithZone: is a required
method of the NSCopying protocol).

The name of a protocol may also be used when specifying an object type. Most often,
the object will be typed as an id, but with the accompanying proviso that it conforms
to a protocol, whose name appears in angle brackets.

To illustrate, let’s look at another typical example of how Cocoa uses protocols, namely
in connection with a table (UITableView). A UITableView has a dataSource property,
declared like this:

@property (nonatomic, assign) id<UITableViewDataSource> dataSource

This property represents an instance variable whose type is id <UITableViewData-
Source>. This means “I don’t care what class my data source belongs to, but whatever
it is, it should conform to the UITableViewDataSource protocol.” Such conformance
constitutes a promise that the data source will implement at least the required instance
methods tableView:numberOfRowsInSection: and tableView:cellForRowAtIndexPath:,
which the table view will call when it needs to know what data to display.

If you attempt to set a table view’s dataSource property to an object that does not
conform to UITableViewDataSource, you’ll get a warning from the compiler. So, for
example:

MyClass* mc = [[MyClass alloc] init];
UITableView* tv = [[UITableView alloc] init];
tv.dataSource = mc; // compiler warns

Under ARC, this warning is couched in rather confusing terms, along these lines:
“Passing ‘MyClass *const __strong’ to parameter of incompatible type ‘id<UITable-
ViewDataSource>’.”

To quiet the compiler, MyClass’s declaration should state that it conforms to UITable-
ViewDataSource. Now MyClass is an id <UITableViewDataSource>, and the third line
no longer generates a warning. Of course, you must also supply implementations of
tableView:numberOfRowsInSection: and tableView:cellForRowAtIndexPath: in My-
Class to avoid the other warning, namely that you’re not fully implementing a protocol
you’ve claimed to conform to.

A prevalent use of protocols in Cocoa is in connection with delegate objects. We’ll talk
in detail about delegates in Chapter 11, but you can readily see that many classes have
a delegate property and that the class of this property is often id <SomeProtocol>. For
example, in our Empty Window project, the AppDelegate class provided by the project
template is declared like this:

Protocols | 225

@interface AppDelegate : UIResponder <UIApplicationDelegate>

The reason is that AppDelegate’s purpose on earth is to serve as the shared application’s
delegate. The shared application object is a UIApplication, and a UIApplication’s
delegate property is typed as an id <UIApplicationDelegate>. So AppDelegate an-
nounces its role by explicitly conforming to UIApplicationDelegate.

As a programmer, Cocoa’s use of protocols will matter to you in two ways. First, when
an object value that you wish to supply is typed as id <SomeProtocol>, you will need to
make sure that that object’s class does indeed conform to SomeProtocol (and imple-
ments any methods required by that protocol).

Second, you must understand about protocols in order to use the documentation. A
protocol has its own documentation page. When the UIApplication class documenta-
tion tells you that a UIApplication’s delegate property is typed as an id <UIApplication-
Delegate>, it’s implicitly telling you that if you want to know what messages a UIAp-
plication’s delegate might receive, you need to look in the UIApplicationDelegate pro-
tocol documentation.

Similarly, when a class’s documentation mentions that the class conforms to a protocol,
don’t forget to examine that protocol’s documentation, because the latter might con-
tain important information about how the class behaves. To learn what messages can
be sent to an object, you need to look upward through the inheritance chain (the su-
perclass); you also need to look at any protocols that this object’s class conforms to.

Might you ever have cause to define a protocol yourself? Unless you’re writing a frame-
work, it probably wouldn’t be necessary; but protocols can make your code neater and
cleaner, because they effectively allow one class to declare a method that another class
is to implement, which is sometimes appropriate architecturally.

For example, in one of my apps I present a view where the user can move three sliders
to choose a color. Appropriately, its code is in a class called ColorPickerController.
When the user taps Done or Cancel, the view should be dismissed; but first, the code
that presented the view needs to hear about what color the user chose. So I need to
send a message from the ColorPickerController instance back to the instance that pre-
sented it. Here is the declaration for that message:

- (void) colorPicker:(ColorPickerController*)picker
 didSetColorNamed:(NSString*)theName
 toColor:(UIColor*)theColor;

The question is: where should this declaration go?

Now, it happens that in my app I know the class of the instance that will present the
ColorPickerController’s view: it is a SettingsController. So I could simply declare this
method in the interface section of SettingsController’s header file. But this feels wrong.
It should not be up to SettingsController to declare a method that it is implementing
only in deference to ColorPickerController. Moreover, if SettingsController declares
this message in its header file, ColorPickerController will have to import that header

226 | Chapter 10: Cocoa Classes

file in order to send the message; but this means that ColorPickerController now knows
all about SettingsController, whereas the only thing it needs to know about Settings-
Controller is that it implements this one method. Finally, it is merely a contingent fact
that the instance being sent this message is a SettingsController; it should be open to
any class to present and dismiss a ColorPickerController’s view, and thus to be eligible
to receive the colorPicker:didSetColor... message.

Therefore we want ColorPickerController itself to declare the method that it is going
to send, and we want it to send the message blindly to some receiver, without regard
to the class of that receiver. Thus there needs to be a linkage, as it were, between the
declaration of this method in ColorPickerController and the implementation of this
method in the receiver. That linkage is precisely what a protocol creates! The solution,
therefore, is for ColorPickerController to define a protocol in its header file, with this
method as part of that protocol, and for the class that presents a ColorPicker-
Controller’s view to conform to that protocol.

If you look at the project created by Xcode’s own Utility Application project template,
you will see that this is exactly the architecture it exemplifies. We start with a Main-
ViewController. It eventually creates a FlipsideViewController. When the Flipside-
ViewController is ready to go out of existence, it is going to want to send the flipside-
ViewControllerDidFinish: message back to whoever created it. So FlipsideView-
Controller defines a FlipsideViewControllerDelegate protocol requiring the flipside-
ViewControllerDidFinish: method, along with a delegate property typed as
id <FlipsideViewControllerDelegate>. When a MainViewController instance creates
a FlipsideViewController instance, it specifies that it itself, the MainViewController
instance, is the FlipsideViewController’s delegate; and it can do this, because Main-
ViewController does in fact adopt the FlipsideViewControllerDelegate protocol! Prob-
lem solved, mission accomplished.

Optional Methods
The careful reader may have noticed that earlier sections of this chapter have listed two
ways in which a method can be publicly declared without necessarily being imple-
mented, and without the compiler complaining if it isn’t:

• By defining a named category interface section with no corresponding named cat-
egory implementation section.

• By defining a protocol in which some methods are explicitly designated as optional.

The question thus arises: How, in practice, is such an optional method feasible? We
know that if a message is sent to an object and the object can’t handle that message,
an exception is raised (and your app will likely crash). But a method declaration is a
contract suggesting that the object can handle that message. If we subvert that contract

Optional Methods | 227

by declaring a method that might or might not be implemented, aren’t we inviting
crashes?

The answer is that Objective-C is not only dynamic but also introspective. You can ask
an object whether it can deal with a message without actually sending it that message.
This makes optional methods quite safe, provided you know that a method is optional.

The key method here is NSObject’s respondsToSelector:, which takes a selector pa-
rameter and returns a BOOL. With it, you can send a message to an object only if it
would be safe to do so:

MyClass* mc = [[MyClass alloc] init];
if ([mc respondsToSelector:@selector(woohoo)]) {
 [mc woohoo];
}

You wouldn’t want to do this before sending just any old message, because it isn’t
necessary except for optional methods, and it slows things down a little. But Cocoa
does in fact call respondsToSelector: on your objects as a matter of course. To see that
this is true, implement respondsToSelector: on AppDelegate in our Empty Window
project in such a way as to instrument it with logging:

- (BOOL) respondsToSelector: (SEL) sel {
 NSLog(@"%@", NSStringFromSelector(sel));
 return [super respondsToSelector:(sel)];
}

Here’s the output on my machine, as the Empty Window app launches:

application:handleOpenURL:
application:openURL:sourceApplication:annotation:
applicationDidReceiveMemoryWarning:
applicationWillTerminate:

Informal Protocols
You may occasionally see, online or in the documentation, a reference to an informal
protocol. An informal protocol isn’t really a protocol at all; it’s just a way of providing
the compiler with a method signature so that it will allow a message to be sent without
complaining. There are two complementary ways to implement an informal protocol.
One is to define a category on NSObject; this makes any object eligible to receive the
messages listed in the category. The other is to define a protocol without formally
conforming to it; instead, send any message listed in the protocol only to objects typed
as id, thus suppressing any possible objections from the compiler. These techniques
were widespread before protocols could declare methods as optional; now they are
largely unnecessary. (They are still used, but decreasingly so; in iOS 5 very few informal
protocols remain.) They are also mildly dangerous, because you might accidentally
define a method with the same name as an existing method but a different signature,
with unpredictable results.

228 | Chapter 10: Cocoa Classes

applicationSignificantTimeChange:
application:willChangeStatusBarOrientation:duration:
application:didChangeStatusBarOrientation:
application:willChangeStatusBarFrame:
application:didChangeStatusBarFrame:
application:deviceAccelerated:
application:deviceChangedOrientation:
applicationDidBecomeActive:
applicationWillResignActive:
applicationDidEnterBackground:
applicationWillEnterForeground:
applicationWillSuspend:
application:didResumeWithOptions:
application:didFinishLaunchingWithOptions:

That’s Cocoa, checking to see which of the optional UIApplicationDelegate protocol
methods (including a couple of undocumented methods) are actually implemented by
our AppDelegate instance — which, because it is the UIApplication object’s delegate
and formally conforms to the UIApplicationDelegate protocol, has explicitly agreed
that it might be willing to respond to any of those messages. The entire delegate pattern
(Chapter 11) depends upon this technique. Observe the policy followed here by Cocoa:
it checks all the optional protocol methods once, when it first meets the object in ques-
tion, and presumably stores the results; thus, the app is slowed a tiny bit by this one-
time initial bombardment of respondsToSelector: calls, but now Cocoa knows all the
answers and won’t have to perform any of these same checks on the same object later
on.

Some Foundation Classes
The Foundation classes of Cocoa provide basic data types and utilities that will form
the basis of much that you do in Cocoa. Obviously I can’t list all of them, let alone
describe them fully, but I can survey a few that I use frequently and that you’ll probably
want to look into before writing even the simplest Cocoa program. For more informa-
tion, start with Apple’s list of the Foundation classes in the Foundation Framework
Reference.

Useful Structs and Constants
NSRange is a struct of importance in dealing with some of the classes I’m about to
discuss. Its components are integers (NSUInteger), location and length. So a range
whose location is 1 starts at the second element of something (because element count-
ing is always zero-based), and if its length is 2 it designates this element and the next.
Cocoa also supplies various convenience methods for dealing with a range; you’ll use
NSMakeRange frequently. (Note that the name, NSMakeRange, is backward compared
to names like CGPointMake and CGRectMake.)

Some Foundation Classes | 229

NSNotFound is a constant integer indicating that some requested element was not
found. For example, if you ask for the index of a certain object in an NSArray and the
object isn’t present in the array, the result is NSNotFound. The result could not be 0
to indicate the absence of the object, because 0 would indicate the first element of the
array. Nor could it be nil, because nil is 0 (and in any case is not appropriate when an
integer is expected). The true numeric value of NSNotFound is of no concern to you;
always compare against NSNotFound itself, to learn whether a result is a meaningful
index.

If a search returns a range and the thing sought is not present, the location component
of the resulting NSRange will be NSNotFound.

NSString and Friends
NSString, which has already been used rather liberally in examples earlier in this book,
is the Cocoa object version of a string. You can create an NSString through a number
of class methods and initializers, or by using the NSString literal notation @"...", which
is really a compiler directive. Particularly important is stringWithFormat:, which lets
you convert numbers to strings and combine strings; see Chapter 9, where I discussed
format strings in connection with NSLog.

int x = 5;
NSString* s = @"widgets";
NSString* s2 = [NSString stringWithFormat:@"You have %i %@.", x, s];

NSString has a modern, Unicode-based idea of what a string can consist of. A string’s
“elements” are its characters, whose count is its length. These are not bytes, because
the numeric representation of a Unicode character could be multiple bytes, depending
on the encoding. Nor are they glyphs, because a composed character sequence that
prints as a single “letter” can consist of multiple characters. Thus the length of an
NSRange indicating a single “character” might be greater than 1.

An NSString can be searched using various rangeOf... methods, which return an
NSRange. In addition, NSScanner lets you walk through a string looking for pieces that
fit certain criteria; for example, with NSScanner (and NSCharacterSet) you can skip
past everything in a string that precedes a number and then extract the number. The
rangeOfString: family of search methods can specify an option NSRegularExpression-
Search, which lets you search using a regular expression; regular expressions are also
supported as a separate class, NSRegularExpression (which uses NSTextChecking-
Result to describe match results).

In this example from one of my apps, the user has tapped a button whose title is some-
thing like “5 by 4” or “4 by 3”. I want to know both numbers; one tells me how many
rows the layout is to have, the other how many columns. I use an NSScanner to locate
the two numbers:

230 | Chapter 10: Cocoa Classes

NSString* s = [as buttonTitleAtIndex:ix];
NSScanner* sc = [NSScanner scannerWithString:s];
int rows, cols;
[sc scanInt:&rows];
[sc scanUpToCharactersFromSet:[NSCharacterSet decimalDigitCharacterSet]
 intoString:nil];
[sc scanInt:&cols];

Here’s how I might do the same thing using a regular expression:

NSString* s = [as buttonTitleAtIndex:ix];
int rowcol[2]; int* prowcol = rowcol;
NSError* err = nil;
NSRegularExpression* r = [NSRegularExpression regularExpressionWithPattern:@"\\d"
 options:0
 error:&err];
// error-checking omitted
for (NSTextCheckingResult* match in [r matchesInString:s
 options:0
 range:NSMakeRange(0, [s length])])
 *prowcol++ = [[s substringWithRange: [match range]] intValue];

The syntax seems oddly tortured, though, because we must convert each match from
an NSTextCheckingResult to a range, then to a substring of our original string, and
finally to an integer.

More sophisticated automated textual analysis is supported by some additional classes,
such as NSDataDetector, an NSRegularExpression subclass that efficiently finds certain
types of string expression such as a URL or a phone number, and NSLinguisticTagger
(new in iOS 5), which actually attempts to analyze text into its grammatical parts of
speech.

An NSString object’s string is immutable. You can use a string to generate another
string in various ways, such as by appending another string or by extracting a substring,
but you can’t alter the string itself. For that, you need NSString’s subclass, NSMutable-
String.

An NSString carries no font and size information. In iOS programming, interface ob-
jects that display strings (such as UILabel) have a font property that is a UIFont, which
is used to determine the single font and size in which the string will display. String
drawing in a graphics context can be performed simply with methods provided through
the UIStringDrawing category on NSString (see the String UIKit Additions Reference).
Complex string layout in a graphics context, including use of styled text, requires Core
Text and is a separate topic (Chapter 23).

NSString has convenience utilities for working with a file path string, and is often used
in conjunction with NSURL, which is another Foundation class worth looking into.
NSString and some other classes discussed in this section provide methods for writing
out to a file’s contents or reading in a file’s contents; when they do, the file can be
specified either as an NSString file path or as an NSURL (Chapter 36).

Some Foundation Classes | 231

NSDate and Friends
An NSDate is a date and time, represented internally as a number of seconds (NSTime-
Interval) since some reference date. Calling [NSDate date] gives you a date object for
the current date and time; other date operations may involve NSDateComponents and
NSCalendar and can be a bit tricky because calendars are complicated (see the Date
and Time Programming Guide).

You will also likely be concerned with dates represented as strings. Creation and parsing
of date strings involves NSDateFormatter, which uses a format string similar to
NSString’s stringWithFormat. A complication is added by the fact that the exact string
representation of a date component or format can depend upon the user’s locale, con-
sisting of language, region format, and calendar settings. (Actually, locale considera-
tions can also play a role in NSString format strings.)

In this example from one of my apps, I prepare the content of a UILabel reporting the
date and time when our data was last updated. The app is not localized — the word
“at” appearing in the string is always going to be in English — so I want complete
control of the presentation of the date and time components as well. To get it, I have
to insist upon a particular locale:

NSDateFormatter *df = [[NSDateFormatter alloc] init];
if ([[NSLocale availableLocaleIdentifiers] indexOfObject:@"en_US"] != NSNotFound) {
 NSLocale* loc =
 [[NSLocale alloc] initWithLocaleIdentifier:@"en_US"];
 [df setLocale:loc]; // force English month name and time zone name if possible
}
[df setDateFormat:@"d MMMM yyyy 'at' h:mm a z"];
NSString* lastUpdated = [df stringFromDate: [NSDate date]];

Locales are an interesting and complicated topic; to learn more, consult in your browser
the documentation for ICU (International Components for Unicode), from which the
iOS support for creating and parsing date strings is derived. To study what locales exist,
use the locale explorer at http://demo.icu-project.org/icu-bin/locexp.

NSNumber
An NSNumber is an object that wraps a numeric value (including BOOL). Thus, you
can use it to store and pass a number where an object is expected. An NSNumber is
formed from an actual number with a method that specifies the numeric type; for ex-
ample, you can call numberWithInt: to form a number from an int:

[[NSUserDefaults standardUserDefaults] registerDefaults:
 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithInt: 4],
 @"cardMatrixRows",
 [NSNumber numberWithInt: 3],
 @"cardMatrixColumns",
 nil]];

232 | Chapter 10: Cocoa Classes

http://demo.icu-project.org/icu-bin/locexp

An NSNumber is not itself a number, so you can’t use it in calculations or where an
actual number is expected. Instead, you must extract the number from its NSNumber
wrapper using the inverse of the method that wrapped the number to begin with. So,
for example, if an NSNumber wraps an int, you can call intValue to extract the int:

NSUserDefaults* ud = [NSUserDefaults standardUserDefaults];
int therows = [[ud objectForKey:@"cardMatrixRows"] intValue];
int thecols = [[ud objectForKey:@"cardMatrixColumns"] intValue];

Actually, this is such a common transformation when communicating with NSUser-
Defaults that it provides convenience methods. So I could have written the same thing
this way:

NSUserDefaults* ud = [NSUserDefaults standardUserDefaults];
int therows = [ud integerForKey:@"cardMatrixRows"];
int thecols = [ud integerForKey:@"cardMatrixColumns"];

NSValue
NSValue is NSNumber’s superclass. Use it for wrapping nonnumeric C values such as
structs. Convenience methods provided through the NSValueUIGeometryExtensions
category on NSValue (see the NSValue UIKit Additions Reference) allow easy wrapping
and unwrapping of CGPoint, CGSize, CGRect, CGAffineTransform, UIEdgeInsets,
and UIOffset; additional categories allow easy wrapping and unwrapping of CATrans-
form3D, CMTime, CMTimeMapping, and CMTimeRange.

You are unlikely to need to store any other kind of C value in an NSValue, but you can
if you need to.

NSData
NSData is a general sequence of bytes. It is immutable; the mutable version is its sub-
class NSMutableData.

In practice, NSData tends to arise in two main ways:

• When downloading data from the Internet. For example, the NSURLConnection
class supplies whatever it retrieves from the Internet as NSData. Transforming it
from there into (let’s say) a string, specifying the correct encoding, would then be
up to you.

• When storing an object as a file or in user preferences. For example, you can’t store
a UIColor value directly into user preferences. So if the user has made a color choice
and you need to save it, you transform the UIColor into an NSData (using
NSKeyedArchiver) and save that:

Some Foundation Classes | 233

[[NSUserDefaults standardUserDefaults] registerDefaults:
 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSKeyedArchiver archivedDataWithRootObject:[UIColor blueColor]],
 @"myColor",
 nil]];

The use of NSKeyedArchiver, and its reversal with NSKeyedUnarchiver, is a separate
topic (Chapter 36).

Equality and Comparison
The foregoing types will quickly come to seem to you like basic data types, but of course
they are actually object types. Therefore you cannot compare them with the C operators
for testing equality as you would with actual numbers. That’s because, in the case of
object types, the C operators compare the pointers, not the object content of the in-
stances. For example:

NSString* s1 = [NSString stringWithFormat:@"%@, %@", @"Hello", @"world"];
NSString* s2 = [NSString stringWithFormat:@"%@, %@", @"Hello", @"world"];
if (s1 == s2) // false
 // ...

The two strings are equivalent (@"Hello, world") but are not the same object. (The
example is deliberately elaborate because Cocoa’s efficient management of string lit-
erals sees to it that two strings initialized directly as @"Hello, world" are the same object,
which wouldn’t illustrate the point I’m making.) It is up to individual classes to im-
plement a test for equality. The general test, isEqual:, is inherited from NSObject and
overridden, but some classes also define more specific and efficient tests. Thus, the
correct way to perform the above test is like this:

if ([s1 isEqualToString: s2])

Similarly, it is up to individual classes to supply ordered comparison methods. The
standard method is called compare:, and returns one of three constants: NSOrdered-
Ascending (the receiver is less than the parameter), NSOrderedSame (the receiver is
equal to the parameter), or NSOrderedDescending (the receiver is greater than the
parameter); for an example, see Example 3-2.

NSIndexSet
NSIndexSet expresses a collection of unique whole numbers; its purpose is to express
element numbers of an ordered collection, such as an NSArray. Thus, for instance, to
retrieve multiple objects simultaneously from an array, you specify the desired indexes
as an NSIndexSet. It is also used with other things that are array-like; for example, you
pass an NSIndexSet to a UITableView to indicate what sections to insert or delete.

To take a specific example, let’s say you want to speak of elements 1, 2, 3, 4, 8, 9, and
10 of an NSArray. NSIndexSet expresses this notion in some compact implementation
that can be readily queried. The actual implementation is opaque, but you can imagine

234 | Chapter 10: Cocoa Classes

that in this case the set might consist of two NSRange structs, {1,4} and {8,3}, and
NSIndexSet’s methods actually invite you to think of an NSIndexSet as composed of
ranges.

An NSIndexSet is immutable; its mutable subclass is NSMutableIndexSet. You can
form a simple NSIndexSet consisting of just one contiguous range directly, by passing
an NSRange to indexSetWithIndexesInRange:; but to form a more complex index set
you’ll need to use NSMutableIndexSet so that you can append additional ranges.

Walking through (enumerating) the index values specified by an NSIndexSet is easy
starting in iOS 4.0, which provides enumerateIndexesUsingBlock:, and iOS 5.0 adds
ways of enumerating ranges as well. (As of this writing, these are not documented on
the NSIndexRange class documentation page; but they do appear in the header. Look
for the three methods whose names begin with enumerateRanges....) But if your code
is to run on earlier systems, you can’t use blocks, and no enumerator is provided, so
you must resort to a rather clumsy construct (Example 10-2).

Example 10-2. Enumerating an NSIndexSet before iOS 4.0

NSIndexSet* ixen = //...;
NSUInteger ix = [ixen firstIndex];
do {
 // ... do something with ix ...
} while ((ix = [ixen indexGreaterThanIndex:ix]) != NSNotFound);

NSArray and NSMutableArray
An NSArray is an ordered collection of objects. Its length is its count, and a particular
object can be obtained by index number using objectAtIndex:. The index of the first
object is zero, so the index of the last object is count minus one. You can form an
NSArray in various ways, but typically you’ll start by supplying a list of the objects it
is to contain (see Chapter 3).

An NSArray is immutable. This doesn’t mean you can’t mutate any of the objects it
contains; it means that once the NSArray is formed you can’t remove an object from
it, insert an object into it, or replace an object at a given index. To do those things, you
can derive a new array consisting of the original array plus or minus some objects, or
use NSArray’s subclass, NSMutableArray.

You can walk through (enumerate) every object in an array with the for...in construct
described in Chapter 1. (You’ll get an exception if you try to mutate an array while
enumerating it.)

You can seek an object within an array with indexOfObject: or indexOfObjectIdentical-
To:; the former’s idea of equality is to call isEqual:, whereas the latter uses pointer
equality.

Those familiar with other languages may miss such utility array functions as map, which
builds a new array of the results of calling a method on each object in the array. (make-

Some Foundation Classes | 235

ObjectsPerformSelector: requires a selector that returns no value, and enumerate-
ObjectsUsingBlock: requires a block function that returns no value.) The usual work-
around is to make an empty mutable array and then enumerate the original array, calling
a method and appending each result to the mutable array (Example 10-3). It is also
sometimes possible to use key–value coding as a map substitute (see Chapter 12).

Example 10-3. Building an array by enumerating another array

NSMutableArray* marr = [NSMutableArray array];
for (id obj in myArray) {
 id result = [obj doSomething];
 [marr addObject: result];
}

You can filter an array to produce a new array consisting of just those objects meeting
a test that can be described as an NSPredicate:

NSArray* pep = [NSArray arrayWithObjects: @"Manny", @"Moe", @"Jack", nil];
NSPredicate* p = [NSPredicate predicateWithFormat:@"self BEGINSWITH[cd] 'm'"];
NSArray* ems = [pep filteredArrayUsingPredicate:p];

To search or filter an array on a more customized test, you can walk through the array
applying the test and adding those that meet it to an NSMutableArray (similar to
Example 10-3). And there are many methods that give you the ability to search or filter
an array using a block:

NSArray* pep = [NSArray arrayWithObjects: @"Manny", @"Moe", @"Jack", nil];
NSArray* ems =
 [pep objectsAtIndexes: [pep indexesOfObjectsPassingTest:
 ^BOOL(id obj, NSUInteger idx, BOOL *stop) {
 return ([(NSString*)obj rangeOfString:@"m"
 options:NSCaseInsensitiveSearch].location == 0);
 }]];

You can derive a sorted version of the array, supplying the sorting rules in various ways,
or if it’s a mutable array, you can sort it directly; see Example 3-1 and Example 3-2.

Forming a new array from some or all of the elements of an existing
array is not an expensive operation. The objects constituting the ele-
ments of the first array are not copied; the new array consists merely of
a new set of pointers to the already existing objects. The same is true for
the other collection types I’m about to discuss.

NSSet and Friends
An NSSet is an unordered collection of distinct objects. “Distinct” means that no two
objects in a set can return YES when they are compared using isEqual:. Learning
whether an object is present in a set is much more efficient than seeking it in an array,
and you can ask whether one set is a subset of, or intersects, another set. You can walk
through (enumerate) a set with the for...in construct, though the order is of course

236 | Chapter 10: Cocoa Classes

undefined. You can filter a set, as you can an array. Indeed, much of what you can do
with a set is parallel to what you can do with an array, except that of course you can’t
do anything with a set that involves the notion of ordering. And starting in iOS 5, that
restriction is lifted, through the introduction of a new class, NSOrderedSet.

An ordered set (NSOrderedSet) is very like an array, and the methods for working with
it are very similar to the methods for working with an array, except that an ordered
set’s elements must be distinct. Handing an array over to an ordered set uniques the
array, meaning that order is maintained but only the first occurrence of an equal object
is moved to the set. An ordered set provides many of the advantages of sets: for example,
as with an NSSet, learning whether an object is present in an ordered set is much more
efficient than for an array, and you can readily take the union, intersection, or difference
with another set. Since the distinctness restriction will often prove no restriction at all
(because the elements were going to be distinct anyway), it is likely that programmers
will want to get into the habit of using NSOrderedSet instead of NSArray wherever
possible.

An NSSet is immutable. You can derive one NSSet from another by adding or removing
elements, or you can use its subclass, NSMutableSet. Similarly, NSOrderedSet has its
mutable counterpart, NSMutableOrderedSet. There is no penalty for adding to, or
inserting into, a mutable set an object that the set already contains; nothing is added
(and so the distinctness rule is enforced), but there’s no error.

NSCountedSet, a subclass of NSMutableSet, is a mutable unordered collection of ob-
jects that are not necessarily distinct (this concept is usually referred to as a bag). It is
implemented as a set plus a count of how many times each element has been added.

NSDictionary and NSMutableDictionary
An NSDictionary is an unordered collection of key–value pairs. The key is usually an
NSString, though it doesn’t have to be. The value can be any object. An NSDictionary
is immutable; its mutable subclass is NSMutableDictionary.

The keys of a dictionary are distinct (using isEqual: for comparison). If you add a key–
value pair to an NSMutableDictionary, then if that key is not already present, the pair
is simply added, but if the key is already present, then the corresponding value is re-
placed.

The fundamental use of an NSDictionary is to request an entry’s value by key (using
objectForKey:); if no such key exists, the result is nil, so this is also the way to find out
whether a key is present. A dictionary is thus an easy, flexible data storage device, an
object-based analogue to a struct. Cocoa often uses a dictionary to provide you with
an extra packet of named values, as in the userInfo of an NSNotification, the options
parameter of application:didFinishLaunchingWithOptions:, and so on.

Data structures such as an array of dictionaries, a dictionary of dictionaries, and so
forth, are extremely common, and will often lie at the heart of an app’s functionality.

Some Foundation Classes | 237

Here’s an example from one of my own apps. The app bundle contains a text file laid
out like this:

chapterNumber [tab] pictureName [return]
chapterNumber [tab] pictureName [return]

As the app launches, I load this text file and parse it into a dictionary, each entry of
which has the following structure:

key: (chapterNumber, as an NSNumber)
value: [Mutable Array]
 (pictureName)
 (pictureName)
 ...

Thus, as we walk the text file, we end up with all pictures for a chapter collected under
the number of that chapter. This makes it easy for me later to present all the pictures
for a given chapter. For each line of the text file, if the dictionary entry for that chapter
number doesn’t exist, we create it, with an empty mutable array as its value. Whether
that dictionary entry existed or not, it does now, and its value is a mutable array, so we
append the picture name to that mutable array. Observe how this single typical example
(Example 10-4) brings together many of the Foundation classes discussed in this sec-
tion.

Example 10-4. Parsing a file with Foundation classes

NSString* f = [[NSBundle mainBundle] pathForResource:@"index" ofType:@"txt"];
NSError* err = nil;
NSString* s = [NSString stringWithContentsOfFile:f
 encoding:NSUTF8StringEncoding
 error:&err];
// error-checking omitted
NSMutableDictionary* d = [NSMutableDictionary dictionary];
for (NSString* line in [s componentsSeparatedByString:@"\n"]) {
 NSArray* items = [line componentsSeparatedByString:@"\t"];
 NSInteger chnum = [[items objectAtIndex: 0] integerValue];
 NSNumber* key = [NSNumber numberWithInteger:chnum];
 NSMutableArray* marr = [d objectForKey: key];
 if (!marr) { // no such key, create key–value pair
 marr = [NSMutableArray array];
 [d setObject: marr forKey: key];
 }
 // marr is now a mutable array, empty or otherwise
 NSString* picname = [items objectAtIndex: 1];
 [marr addObject: picname];
}

You can get from an NSDictionary a list of keys, a sorted list of keys, or a list of values.
You can walk through (enumerate) a dictionary by its keys with the for...in construct,
though the order is of course undefined. A dictionary also supplies an object-
Enumerator, which you can use with the for...in construct to walk through just the

238 | Chapter 10: Cocoa Classes

values. You can also walk through the key–value pairs together using a block, and you
can even filter an NSDictionary by some test against its values.

NSNull
NSNull does nothing but supply a pointer to a singleton object, [NSNull null]. Use
this singleton object to stand for nil in situations where an actual object is required and
nil is not permitted. For example, you can’t use nil as the value of an element of a
collection (such as NSArray, NSSet, or NSDictionary), so you’d use [NSNull null]
instead.

Despite what I said earlier about equality, you can test an object against
[NSNull null] using the C equality operator, because this is a singleton instance and
therefore pointer comparison works.

Immutable and Mutable
Beginners sometimes have difficulty with the Foundation’s immutable/mutable class
pairs, so here are some hints.

The documentation may not make it completely obvious that the mutable classes obey
and, if appropriate, override the methods of the immutable classes. Thus, for example,
[NSArray array] generates an immutable array, but [NSMutableArray array] generates
a mutable array. (You will look in vain for the expected [NSMutableArray mutable-
Array].) The same is true of all the initializers and convenience class methods for in-
stantiation: they may all have “array” in their name, but when sent to NSMutableArray,
they yield a mutable array.

That fact also answers the question of how to make an immutable array mutable, and
vice versa. If arrayWithArray:, sent to the NSArray class, yields a new immutable array
containing the same objects in the same order as the original array, then the same
method, arrayWithArray:, sent to the NSMutableArray class, yields a mutable array
containing the same objects in the same order as the original. Thus this single method
can transform an array between immutable and mutable in either direction. You can
also use copy (produces an immutable copy) and mutableCopy (produces a mutable
copy).

All of the above applies equally, of course, to the other immutable/mutable class pairs.
You will often want to work internally and temporarily with a mutable instance but
then store (and possibly vend, as an instance variable) an immutable instance, thus
protecting the value from being changed accidentally or behind your own back. What
matters is not a variable’s declared class but what class the instance really is (polymor-
phism; see Chapter 5), so it’s good that you can easily switch between an immutable
and a mutable version of the same data.

Some Foundation Classes | 239

To test whether an instance is mutable or immutable, do not ask for its class. These
immutable/mutable class pairs are all implemented as class clusters, which means that
Cocoa uses a secret class, different from the documented class you work with. This
secret class is subject to change without notice, because it’s none of your business and
you should never have looked at it in the first place. Thus, code of this form is subject
to breakage:

if ([NSStringFromClass([n class]) isEqualToString: @"NSCFArray"]) // wrong!

Instead, to learn whether an object is mutable, ask it whether it responds to a mutability
method:

if ([n respondsToSelector:@selector(addObject:)]) // right

Bear in mind also that just because a collection class is immutable doesn’t mean that
the objects it collects are immutable. They are still objects and do not lose any of their
normal behavior merely because they are pointed to by an immutable collection.

Property Lists
A property list is a string (XML) representation of data. The Foundation classes
NSString, NSData, NSArray, and NSDictionary are the only classes that can be con-
verted into a property list. Moreover, an NSArray or NSDictionary can be converted
into a property list only if the only classes it collects are these classes, along with NSDate
and NSNumber. (This is why, as mentioned earlier, you must convert a UIColor into
an NSData in order to store it in user defaults; the user defaults is a property list.)

The primary use of a property list is to store data as a file. NSArray and NSDictionary
provide convenience methods writeToFile:atomically: and writeToURL:atomically:
that generate property list files given a pathname or file URL, respectively; they also
provide inverse convenience methods that initialize an NSArray object or an NSDic-
tionary object based on the property list contents of a given file. For this very reason,
you are likely to start with one of these classes when you want to create a property list.
(NSString and NSData, with their methods writeToFile:... and writeToURL:..., just
write the data out as a file directly, not as a property list.)

When you initialize an NSArray or NSDictionary from a property list file in this way,
the objects in the collection are all immutable. If you want them to be mutable, or if
you want to convert an instance of one of the other property list classes to a property
list, you’ll use the NSPropertyListSerialization class (see the Property List Programming
Guide).

The Secret Life of NSObject
Because every class inherits from NSObject, it’s worth taking some time to investigate
and understand NSObject. NSObject is constructed in a rather elaborate way:

240 | Chapter 10: Cocoa Classes

• It defines some native class methods and instance methods having mostly to do
with the basics of instantiation and of method sending and resolution. (See the
NSObject Class Reference.)

• It adopts the NSObject protocol. This protocol declares instance methods having
mostly to do with memory management, the relationship between an instance and
its class, and introspection. Because all the NSObject protocol methods are re-
quired, the NSObject class implements them all. (See the NSObject Protocol Ref-
erence.) This architecture is what permits NSProxy to be a root class; it, too, adopts
the NSObject protocol.

• It implements convenience methods related to the NSCopying, NSMutable-
Copying, and NSCoding protocols, without formally adopting those protocols.
NSObject intentionally doesn’t adopt these protocols because this would cause all
other classes to adopt them, which would be wrong. But thanks to this architecture,
if a class does adopt one of these protocols, you can call the corresponding con-
venience method. For example, NSObject implements the copy instance method,
so you can call copy on any instance, but you’ll crash unless the instance’s class
adopts the NSCopying protocol and implements copyWithZone:.

• A large number of methods are injected into NSObject by more than two dozen
categories on NSObject, scattered among various header files. For example, awake-
FromNib (see Chapter 7) comes from the UINibLoadingAdditions category on
NSObject, declared in UINibLoading.h. And performSelector:withObject:after-
Delay:, discussed later in this chapter and used in several examples later in this
book, comes from the NSDelayedPerforming category on NSObject, declared in
NSRunLoop.h.

• A class object, as explained in Chapter 4, is an object. Therefore all classes, which
are objects of type Class, inherit from NSObject. Therefore, any method defined as
an instance method by NSObject can be called on a class object as a class method!
For example, respondsToSelector: is defined as an instance method by NSObject,
but it can (therefore) be treated also as a class method and sent to a class object.

The problem for the programmer is that Apple’s documentation is rather rigid about
classification. When you’re trying to work out what you can say to an object, you don’t
care where that object’s methods come from; you just care what you can say. But Apple
differentiates methods by where they come from. Even though NSObject is the root
class, the most important class, from which all other classes inherit, no single page of
the documentation provides a conspectus of all its methods. Instead, you have to look at
both the NSObject Class Reference and the NSObject Protocol Reference simultane-
ously, plus the pages documenting the NSCopying, NSMutableCopying, and NSCod-
ing protocols (in order to understand how they interact with methods defined by
NSObject), plus you have to supply mentally a class method version of every NSObject
instance method!

The Secret Life of NSObject | 241

Of the methods injected into NSObject by categories, many are delegate methods used
in restricted situations (so that these are really informal protocols), and do not need
centralized documentation; for example, animationDidStart: is documented under the
CAAnimation class, quite rightly, because you need to know about it only and exactly
when you’re working with CAAnimation. Others that are general in nature are docu-
mented on the NSObject class documentation page itself; for example, cancelPrevious-
PerformRequestsWithTarget: comes from a category declared in NSRunLoop.h, but it
is documented under NSObject, quite rightly, since this is a class method, and therefore
effectively a global method, that you might want to send at any time. However, every
object responds to awakeFromNib, and it’s likely to be crucial to every app you write; yet
you must learn about it outside of the NSObject documentation, sitting all by itself on
the NSObject UIKit Additions Reference, where you’re extremely unlikely to discover
it! The same goes, it might be argued, for all the key–value coding methods (Chap-
ter 12) and key–value observing methods (Chapter 13).

Once you’ve collected all the NSObject methods, you can see that they fall into a certain
natural classification, much as outlined in Apple’s documentation (see also “The Root
Class” in the “Cocoa Objects” section of the Cocoa Fundamentals Guide):

Creation, destruction, and memory management
Methods for creating an instance, such as alloc and copy, along with methods that
you might override in order to learn when something is happening in the lifetime
of an object, such as initialize (see Chapter 11) and dealloc (see Chapter 12),
plus methods that manage memory (see Chapter 12).

Class relationships
Methods for learning an object’s class and inheritance, such as class, superclass,
isKindOfClass:, and isMemberOfClass:.

To check the class of an instance (or class), use methods such as isKindOfClass:
and isMemberOfClass:. Direct comparison of two class objects, as in [some-
Object class] == [otherObject class], is rarely advisable, especially because a
Cocoa instance’s class might be a private, undocumented subclass of the class you
expect. I mentioned this already in connection with class clusters, and it can happen
in other cases.

Object introspection and comparison
Methods for asking what would happen if an object were sent a certain message,
such as respondsToSelector:; for representing an object as a string (description,
used in debugging; see Chapter 9); and for comparing objects (isEqual:).

Message response
Methods for meddling with what does happen when an object is sent a certain
message, such as doesNotRecognizeSelector:. If you’re curious, see the Objective-
C Runtime Programming Guide. An example appears in Chapter 25.

242 | Chapter 10: Cocoa Classes

Message sending
Methods for sending a message indirectly. For example, performSelector: takes a
selector as parameter, and sending it to an object tells that object to perform that
selector. This might seem identical to just sending that message to that object, but
what if you don’t know what message to send until runtime? Moreover, variants
on performSelector: allow you send a message on a specified thread, or send a
message after a certain amount of time has passed (performSelector:withObject:
afterDelay: and similar); this is called delayed performance.

Delayed performance is a valuable technique. You often need to let Cocoa finish
doing something, such as laying out interface, before proceeding to a further step;
delayed performance with a very short delay (even as short as zero seconds) is
enough to postpone a method call until after Cocoa has finished whatever it’s in
the middle of doing. Technically, it allows the current run loop to finish, complet-
ing and unwinding the entire current method call stack, before sending the speci-
fied selector. It can also be used for simple timing, such as when you want to do
something different depending whether the user taps twice in quick succession or
only once; basically, when the user first taps, you respond using delayed perfor-
mance, to give the user time to tap again if two taps are intended. Examples of both
uses appear in later chapters.

Another way to implement delayed performance is by calling the Grand
Central Dispatch function dispatch_after. It has the advantage that
what to do after the delay can be expressed as a block; for this reason,
I’ve become quite fond of it, and I’ll use it in several examples later in
this book. The syntax looks forbidding at first, but if you type
dispatch_after and ask for code completion, you get a nice bit of boil-
erplate code, all ready for you to enter the contents of the block. Be sure
to change the delay, as the default in the boilerplate — two seconds —
is unlikely to be what you want.

The Secret Life of NSObject | 243

CHAPTER 11

Cocoa Events

None of your code runs until Cocoa calls it. The art of Cocoa programming consists
largely of knowing when and why Cocoa will call your code. If you know this, you can
put your code in the correct place, with the correct method name, so that your code
runs at the correct moment, and your app behaves the way you intend.

In Chapter 7, for example, we wrote a method to be called when the user taps a certain
button in our interface, and we also arranged things so that that method would be called
when the user taps that button:

- (void) buttonPressed: (id) sender {
 // ... react to the button being pressed
}

This architecture typifies the underpinnings of a Cocoa program. Your code itself is
like a panel of buttons, waiting for Cocoa to press one. If something happens that Cocoa
feels your code needs to know about and respond to, it presses the right button — if
the right button is there. You organize your code with Cocoa’s behavior in mind. Cocoa
makes certain promises about how and when it will dispatch messages to your code.
These are Cocoa’s events. You know what these events are, and you arrange your code
to be ready when Cocoa delivers them.

Thus, to program for Cocoa, you must, in a sense, surrender control. Your code never
gets to run just whenever it feels like it. It can run only in response to some kind of
event. Something happens, such as the user making a gesture on the screen, or some
specific stage arriving in the lifetime of your app, and Cocoa dispatches an event to
your code — if your code is prepared to receive it. So you don’t write just any old code
you want to and put it in any old place. You use the framework, by letting the framework
use you. You submit to Cocoa’s rules and promises and expectations, so that your code
will be called at the right time and in the right way.

The specific events that you can receive are listed in the documentation. The overall
architecture of how and when events are dispatched and the ways in which your code
arranges to receive them is the subject of this chapter.

245

Reasons for Events
Broadly speaking, the reasons you might receive an event may be divided informally
into four categories. These categories are not official; I made them up. Often it isn’t
completely clear which of these categories an event fits into; an event may well appear
to fit two categories. But they are still generally useful for visualizing how and why
Cocoa interacts with your code:

User events
The user does something interactive, and an event is triggered directly. Obvious
examples are events that you get when the user taps or swipes the screen, or types
a key on the keyboard.

Lifetime events
These are events notifying you of the arrival of a stage in the life of the app, such
as the fact that the app is starting up or is about to go into the background, or of
a component of the app, such as the fact that a UIViewController’s view has just
loaded or is about to be removed from the screen.

Functional events
Cocoa is about to do something, and turns to you in case you want to supply
(additional) functionality. I would put into this category things like UIView’s draw-
Rect: (your chance to have a view draw itself) and UILabel’s drawTextInRect: (your
chance to modify the look of a label), with which we experimented in Chapter 10.

Query events
Cocoa turns to you to ask a question; its behavior will depend upon your answer.
For example, the way data appears in a table (a UITableView) is that whenever
Cocoa needs a cell for a row of the table, it turns to you and asks for the cell.

Subclassing
A built-in Cocoa class may define methods that Cocoa itself will call and that you are
invited (or required) to override in a subclass. Sometimes you know when the method
will be called; at other times you don’t know or care exactly when the method is called,
but you know that you must override it so that whenever it is called, your behavior,
and not (merely) the default behavior, will take place.

An example I gave in Chapter 10 was UIView’s drawRect:. The built-in UIView imple-
mentation does nothing, so overriding drawRect: in a subclass is your only chance to
dictate the full procedure by which a view draws itself. You don’t know exactly when
this method will be called, and you don’t care; when it is, you draw, and this guarantees
that the view will always appear the way you want it to. (You never call drawRect:
yourself; if some underlying condition has changed and you want the view to be re-
drawn, you call setNeedsDisplay and let Cocoa call drawRect: in response.)

246 | Chapter 11: Cocoa Events

In addition to UIView, particular built-in UIView subclasses may have methods you’ll
want to customize through subclassing. Typically this will be in order to change the
way the view is drawn. In Chapter 10 I gave an example involving UILabel and its draw-
TextInRect:. Another example is UISlider, which lets you customize the position and
size of the slider’s “thumb” by overriding thumbRectForBounds:trackRect:value:
(Chapter 25).

UIViewController (Chapter 19) is a good example of a class meant for subclassing. Of
the methods listed in the UIViewController class documentation, just about all are
methods you might have reason to override. If you create a UIViewController subclass
in Xcode, you’ll see that the template already includes about half a dozen methods for
you to uncomment and override if desired.

For example, you must override loadView if your UIViewController creates its view in
code, and you must create and assign it to this instance’s view property at this moment.
(I’d probably call that a functional event, because your code has a specific job to do,
namely, supply the view.) You may override viewDidLoad to perform additional initi-
alizations as your view is first loaded, whether it comes from a nib or you created it in
loadView. Methods like viewWillAppear: and viewDidDisappear: are called as your
UIViewController’s view takes over the screen or is replaced on the screen by some
other view; thus, viewWillAppear: is a moment to make sure that whatever happened
while your view was offscreen is reflected in how it looks as it comes back onscreen.
(Those are obviously lifetime events.)

A UIViewController method like shouldAutorotateToInterfaceOrientation: is what I
call a query event. It is passed an orientation parameter; your job is to return a BOOL
telling Cocoa whether your view can appear in that orientation. The default, if you
don’t implement it, is that your view can appear only in portrait orientation. If you
want this UIViewController’s view to appear in some other orientation, you’ll return
YES for that orientation. If you return YES for more than one orientation and the user
rotates the device, you might then receive messages like willRotateToInterface-
Orientation:duration: and willAnimateRotationToInterfaceOrientation:duration:,
where you can customize what happens to the view as the orientation changes.

When looking for events that you can receive through subclassing, be sure to look
upward though the inheritance hierarchy. For example, if you’re wondering how to be
notified when your custom UILabel subclass is embedded into another view, you won’t
find the answer in the UILabel class documentation; a UILabel receives the appropriate
event by virtue of being a UIView. In the UIView class documentation, you’ll learn that
you can override didMoveToSuperview to be informed when this happens.

Even further up the inheritance hierarchy, you’ll find things like NSObject’s
initialize class method. Every class that is actually sent a class method message (in-
cluding instantiation) is first sent the initialize message, once. Thus, initialize can
be overridden in order to run code extremely early in a class’s lifetime (before it even
has an instance). Your project’s application delegate class (such as AppDelegate in our

Subclassing | 247

Empty Window project) is instantiated very early in the app’s lifetime, so its
initialize can be a good place to perform very early app initializations, such as setting
default values for any user preferences. When implementing initialize, we must test,
as a matter of course, whether self really is the class in question (and this is one of the
few situations in which we will compare two classes directly against one another);
otherwise there is a chance that initialize will be called again (and our code will run
again) if a subclass of this class is used. Here’s an example from Apple’s own sample
code (the BubbleLevel example, in LevelAppDelegate.m):

+ (void)initialize {
 if ([self class] == [LevelAppDelegate class]) {
 // Register a default value for the instrument calibration.
 // This will be used if the user hasn't calibrated the instrument.
 NSNumber *defaultCalibrationOffset = [NSNumber numberWithFloat:0.0];
 NSDictionary *resourceDict =
 [NSDictionary dictionaryWithObject:defaultCalibrationOffset
 forKey:BubbleLevelCalibrationOffsetKey];
 [[NSUserDefaults standardUserDefaults] registerDefaults:resourceDict];
 }
}

Notifications
Cocoa provides your app with a single instance of NSNotificationCenter, informally
called the notification center. This instance is the basis of a mechanism for sending
messages called notifications. A notification includes an instance of NSNotification (a
notification object). The idea is that any object can be registered with the notification
center to receive certain notifications. Another object can hand the notification center
a notification object to send out (this is called posting the notification). The notification
center will then send that notification object, in a notification, to all objects that are
registered to receive it.

The notification mechanism is often described as a dispatching or broadcasting mech-
anism, and with good reason. It lets an object send a message without knowing or caring
what object or how many objects receive it. This relieves your app’s architecture from
the formal responsibility of somehow hooking up instances just so a message can pass
from one to the other. When objects are conceptually “distant” from one another,
notifications can be a fairly lightweight way of permitting one to message the other.

An NSNotification object has three pieces of information associated with it, which can
be retrieved by instance methods:

name

An NSString which specifies the notification’s meaning.

object

An instance associated with the notification; typically, the instance that posted it.

248 | Chapter 11: Cocoa Events

userInfo

Not every notification has a userInfo; it is an NSDictionary, and can contain ad-
ditional information associated with the notification. What information this
NSDictionary will contain, and under what keys, depends on the particular noti-
fication; you have to consult the documentation. For example, the documentation
tells us that UIApplication’s UIApplicationDidChangeStatusBarFrameNotification
includes a userInfo dictionary with a key UIApplicationStatusBarFrameUserInfo-
Key whose value is the status bar’s frame. When you post a notification yourself,
you can put anything you like into the userInfo for the notification’s recipient(s)
to retrieve.

Receiving a Built-In Notification
Cocoa itself posts notifications through the notification center, and your code can reg-
ister to receive them. You’ll find a separate Notifications section in the documentation
for a class that provides them.

To register for a notification, you have two choices. One is to use the addObserver:
selector:name:object: method, usually sent to the app’s default notification center,
[NSNotificationCenter defaultCenter]. The parameters are as follows:

addObserver:

The instance to which the notification is to be sent. This will typically be self; it
isn’t usual for one instance to register a different instance as the receiver of a no-
tification.

selector:

The message to be sent to the observer instance when the notification occurs. The
designated method should return void and should take one parameter, which will
be the NSNotification object (so the parameter should be typed as
NSNotification* or id). Don’t forget to implement this method! If the notification
center sends a notification by sending the message specified as the selector: here,
and there is no method implemented to receive this message, your app will crash.
Failing to specify the selector: accurately is a common beginner mistake.

name:

The NSString name of the notification you’d like to receive. If this parameter is nil,
you’re asking to receive all notifications sent by the object designated in the
object: parameter. A built-in Cocoa notification’s name is usually a constant. As
I explained in Chapter 1, this is helpful, because if you flub the name of a constant,
the compiler will complain, whereas if you enter the name of the notification di-
rectly as an NSString literal and you get it wrong, the compiler won’t complain but
you will mysteriously fail to get any notifications (because no notification has the
name you actually entered) — a very difficult sort of mistake to track down.

Notifications | 249

object:

The object of the notification you’re interested in, which will usually be the object
that posted it. If this is nil, you’re asking to receive all notifications with the name
designated in the name parameter. (If both the name: and object: parameters are
nil, you’re asking to receive all notifications!)

For example, in one of my apps I need to respond, by changing my interface, if the
device’s music player starts playing a different song. The API for the device’s built-in
music player belongs to the MPMusicPlayerController class; this class provides a no-
tification to tell me when the built-in music player changes its playing state, listed under
Notifications in the MPMusicPlayerController’s class documentation as MPMusicPlayer-
ControllerNowPlayingItemDidChangeNotification.

It turns out, looking at the documentation, that this notification won’t be posted at all
unless I call MPMusicPlayerController’s beginGeneratingPlaybackNotifications in-
stance method. This architecture is not uncommon; Cocoa saves itself some time and
effort by not sending out certain notifications unless they are switched on, as it were.
So my first job is to get an instance of MPMusicPlayerController and call this method:

MPMusicPlayerController* mp = [MPMusicPlayerController iPodMusicPlayer];
[mp beginGeneratingPlaybackNotifications];

Now I register myself to receive the desired playback notification:

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(nowPlayingItemChanged:)
 name:MPMusicPlayerControllerNowPlayingItemDidChangeNotification
 object:nil];

So now, whenever an MPMusicPlayerControllerNowPlayingItemDidChangeNotification
is posted, my nowPlayingItemChanged: method will be called:

- (void) nowPlayingItemChanged: (NSNotification*) n {
 MPMusicPlayerController* mp = [MPMusicPlayerController iPodMusicPlayer];
 self->nowPlayingItem = mp.nowPlayingItem;
 // ... and so on ...
}

The other way to register to receive a notification is by calling addObserverForName:
object:queue:usingBlock:. Its name: and object: parameters are just like those of add-
Observer:selector:name:object:, but it doesn’t specify an observer and it doesn’t spec-
ify a selector. Instead, you provide a block — the actual code to be executed when the
notification fires. There is no need to specify an observer, because of the nature of
blocks: self inside the block is the self who defined the block in the first place. (The
queue: argument will almost always be nil, so I’m not going to discuss it further. There
is no userInfo: parameter, because it isn’t needed: there can be no difficulty providing
the block’s code with whatever values it needs.)

This way of registering for a notification has some tremendous advantages. Look at all
the cautions I’m issuing in the preceding paragraphs when you’re working with add-
Observer:selector:name:object: — get the selector right, make sure you implement

250 | Chapter 11: Cocoa Events

the corresponding method. With a block, there is no selector and there is no separate
method; everything happens right there in the call to addObserverForName:object:
queue:usingBlock:, like this:

MPMusicPlayerController* mp = [MPMusicPlayerController iPodMusicPlayer];
[mp beginGeneratingPlaybackNotifications];
id ob = [[NSNotificationCenter defaultCenter]
 addObserverForName:MPMusicPlayerControllerNowPlayingItemDidChangeNotification
 object:nil queue:nil usingBlock:^(NSNotification *n) {
 self->nowPlayingItem = mp.nowPlayingItem;
 // ... and so on ...
 }
 }];

In addition to the convenience and reliability using a block as you register for a notifi-
cation, there is also the matter of maintaining and understanding your code. Heavy use
of addObserver:selector:name:object: means that your code ends up peppered with
methods that exist solely in order to be called by the notification center. But there is
nothing about these methods that tells you exactly why these methods are being called
— you will probably want to use explicit comments in order to remind yourself — and
the methods are separate from the registration call, all of which makes your code very
method-heavy and confusing. With a block, on the other hand, the whole purpose of
the registration is crystal-clear. You can read the preceding code almost as an English
sentence expressing it: “When the now-playing item changes, store it in my nowPlaying-
Item instance variable…”. And notice how, in the block, I don’t have to re-define mp as
I did in the separate method nowPlayingItemChanged:; it is still in scope from where it
was defined a couple of lines earlier. Blocks are so convenient!

Indeed, when I wrote the first edition of this book, iOS 4, which introduced blocks,
was relatively new, and I had code that still needed to run on earlier systems, where
blocks didn’t exist. So, at that time, I was using addObserver:selector:name:object:
exclusively. Now, however, I’ve given up all thought of backwards compatibility
stretching that far, and I use addObserverForName:object:queue:usingBlock: almost
exclusively. I can’t overstate how much clearer and more maintainable this change has
made my code.

Unregistering
It is up to you, for every object that you register as a recipient of notifications, to un-
register that object before it goes out of existence. If you fail to do this, and if the object
does go out of existence, and if a notification for which that object is registered is posted,
the notification center will attempt to send the appropriate message to that object,
which is now missing in action. The result will be a crash at best, and chaos at worst.

To unregister an object as a recipient of notifications, send the notification center the
removeObserver: message. (Alternatively, you can unregister an object for just a specific
set of notifications with removeObserver:name:object:.) The object passed as the

Notifications | 251

observer: argument is the object that is no longer to receive notifications. What object
that is depends on how you registered in the first place:

You called addObserver:...
You supplied an observer originally; that is the observer you must now unregister.

You called addObserverForName:...
The call returned an observer token object, which you captured as an id variable
(its real class and nature are no concern of yours); that is the observer you must
now unregister.

The trick is finding the right moment to do this. In most cases, the easiest solution is
the registered instance’s dealloc method, this being the last lifetime event an instance
is sent before it goes out of existence (Chapter 12). Some would say, indeed, that even
if you think there’s another, better place to unregister, you should still unregister in
dealloc as well, just to be on the safe side. (This use of dealloc is not affected by the
fact that you may be using ARC.)

Keep it simple, because complicated logic for registering and unregistering for notifi-
cations can be difficult to debug, especially as NSNotificationCenter provides no kind
of introspection: you cannot ask an NSNotificationCenter what objects are registered
with it as notification recipients. I once had a devil of a time understanding why one
of my instances was not receiving a notification for which it was registered. Caveman
debugging didn’t help. Eventually I realized that some code I’d forgotten about was
unregistering my instance.

If you’re calling addObserverForName:..., you’re going to end up receiving from the
notification center one or more observer tokens, which you need to preserve so that
you can unregister by handing them back to the notification center. If you’re going to
unregister everything at once, it is easiest to handle this situation with an instance
variable that is a mutable collection. So, for example, I might have an NSMutableSet
instance variable called observers. Early on, I initialize it to an empty set:

self->observers = [NSMutableSet set];

Each time I register for a notification using a block, I capture the result and add it to
the set:

id ob = [[NSNotificationCenter defaultCenter]
 addObserverForName:@"whatever" object:nil queue:nil
 usingBlock:^(NSNotification *note) {
 // ... whatever ...
}];
[self->observers addObject:ob];

Ultimately, I unregister by enumerating the set:

for (id ob in self->observers)
 [[NSNotificationCenter defaultCenter] removeObserver:ob];

252 | Chapter 11: Cocoa Events

This sounds tedious, and indeed it is a slight price that one must pay in order to take
advantage of blocks when using notifications. However, under ARC it’s much less
tedious than it used to be. I’ll return to this topic in Chapter 12.

I am skipping over some other aspects of notifications that you probably
won’t need to know about. Read Apple’s Notification Programming
Topics for Cocoa if you want the gory details.

NSTimer
A timer (NSTimer) is not, strictly speaking, a notification; but it behaves very simi-
larly. It is an object that gives off a signal (fires) after the lapse of a certain time interval.
The signal is a message to one of your instances. Thus you can arrange to be notified
when a certain time has elapsed. The timing is not perfectly accurate, but it’s pretty
good.

Timer management is not exactly tricky, but it is a little unusual. A timer that is actively
watching the clock is said to be scheduled. A timer may fire once, or it may be a repeat-
ing timer. To make a timer go out of existence, it must be invalidated. A timer that is
set to fire once is invalidated automatically after it fires; a repeating timer repeats until
you invalidate it (by sending it the invalidate message). An invalidated timer should
be regarded as off-limits: you cannot revive it or use it for anything further, and you
should probably not send any messages to it.

The straightforward way to create a timer is with the NSTimer class method scheduled-
TimerWithTimeInterval:target:selector:userInfo:repeats:. This creates the timer
and schedules it, so that it begins watching the clock immediately. The target and
selector determine what message will be sent to what object when the timer fires; the
method in question should take one parameter, which will be a reference to the timer.
The userInfo is just like the userInfo of a notification. (You can see why I categorize
timers as being similar to notifications.)

For example, one of my apps is a game with a score; I want to penalize the user, by
diminishing the score, for not making a move within ten seconds of the previous move.
So each time the user makes a move, I create a repeating timer whose time interval is
ten seconds (and I also invalidate any existing timer); in the method that the timer calls,
I diminish the score.

Delegation
Delegation is an object-oriented design pattern, a relationship between two objects, in
which the first object’s behavior is customized or assisted by the second. The second
object is the first object’s delegate. No subclassing is involved, and indeed the first object
is agnostic about the second object’s class.

Delegation | 253

As implemented by Cocoa, here’s how delegation works. A built-in Cocoa class has an
instance variable, usually called delegate (it will certainly have delegate in its name).
For some instance of that Cocoa class, you set the value of this instance variable to an
instance of one of your classes. At certain moments in its activity, the Cocoa class
promises to turn to its delegate for instructions by sending it a certain message: if the
Cocoa instance finds that its delegate is not nil, and that its delegate is prepared to
receive that message (see Chapter 10 on respondsToSelector:), the Cocoa instance
sends the message to the delegate.

In the old days, delegate methods were listed in the Cocoa class’s documentation, and
their method signatures were made known to the compiler through an informal pro-
tocol (a category on NSObject). Now, though, a class’s delegate methods are usually
listed in a genuine protocol with its own documentation. There are over 70 Cocoa
delegate protocols, showing how heavily Cocoa relies on delegation. Most delegate
methods are optional, but in a few cases you’ll discover some that are required.

To customize a Cocoa instance’s behavior through delegation, you start with one of
your classes, which, if necessary, declares conformance to the relevant delegate proto-
col. When the app runs, you set the Cocoa instance’s delegate ivar (or whatever its
name is) to an instance of your class. You might do this in code, usually through a
property; you might do it in a nib, by connecting an instance’s delegate outlet (or
whatever it’s called) to an appropriate instance that is to serve as delegate. Your delegate
class will probably do other things besides serving as this instance’s delegate. Indeed,
one of the nice things about delegation is that it leaves you free to slot delegate code
into your class architecture however you like. For example, if a view has a controller (a
UIViewController), it will often make sense for the controller to serve also as the view’s
delegate.

Here’s a simple example, involving UIAlertView. If a UIAlertView has no delegate, then
when its Cancel button is tapped, the alert view is dismissed. But if you want to do
something in response to the alert view being dismissed, you need to give it a delegate
so that you can receive an event telling you that the alert view was dismissed. It’s so
common to give a UIAlertView a delegate that its designated initializer allows you to
supply one; typically, the delegate will be the instance that summoned the alert view
in the first place. Moreover, an alert view with a delegate is so common that the delegate
is typed as a pure id, so you don’t even have to bother conforming formally to the
UIAlertViewDelegate protocol:

- (void) gameWon {
 UIAlertView* av =
 [[UIAlertView alloc] initWithTitle:@"Congratulations!"
 message:@"You won the game. Another game?"
 delegate:self
 cancelButtonTitle:@"No, thanks."
 otherButtonTitles:@"Sure!", nil];
 [av show];
}

254 | Chapter 11: Cocoa Events

- (void) alertView:(UIAlertView*) av didDismissWithButtonIndex: (NSInteger) ix {
 if (ix == 1) { // user said "Sure!"
 [self newGame];
 }
}

The delegation mechanism is the last piece of the puzzle needed to explain the built-in
bootstrapping procedure of a minimal app like our Empty Window project. Recall,
from Chapter 6, that the fourth argument to UIApplicationMain is the string name of
the class of the shared application instance’s delegate. So, having instantiated the class
of the shared application (usually UIApplication), UIApplicationMain instantiates the
class nominated in its fourth argument — in this case, AppDelegate; there is now,
therefore, before much of anything has happened, an AppDelegate instance. Moreover,
UIApplicationMain sets the shared application’s delegate property to this AppDelegate
instance. UIApplication’s delegate is typed as id <UIApplicationDelegate> — and, by
golly, AppDelegate is declared as conforming to the UIApplicationDelegate protocol.

This, as we saw in Chapter 10, causes the shared application instance to bombard this
AppDelegate instance with respondsToSelector: messages, to find out exactly which
UIApplicationDelegate methods AppDelegate actually implements. One such method
that it does implement is application:didFinishLaunchingWithOptions:. So the UIAp-
plication instance now actually sends application:didFinishLaunchingWithOptions: to
its delegate, the AppDelegate instance. That is why, in some earlier examples, we put
code into the implementation of that method; this is code that is guaranteed, thanks
to the UIApplication’s contract with its delegate, to run very early in the app’s lifetime.
We know the application:didFinishLaunchingWithOptions: message will be sent, we
know when it will be sent (early in our app’s lifetime), and we know to whom it will be
sent (the application’s delegate object); so we’ve put appropriate code there, waiting
to be called. Moreover, there is already boilerplate code in the project template’s im-
plementation of this method that does some very important things, such as making our
app’s window and showing it:

self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
[self.window makeKeyAndVisible];

The UIApplication delegate methods are also provided as notifica-
tions. This lets an instance other than the app delegate hear conveniently
about application lifetime events, by registering for them. A few other
classes provide duplicate events similarly; for example, UITableView’s
delegate method tableView:didSelectRowAtIndexPath: is matched by a
notification UITableViewSelectionDidChangeNotification.

By convention, many Cocoa delegate method names contain the modal verbs should,
will, or did. A will message is sent to the delegate just before something happens; a
did message is sent to the delegate just after something happens. A should method is
special: it returns a BOOL, and you are expected to respond with YES to permit some-

Delegation | 255

thing or NO to prevent it. The documentation tells you what the default response is;
you don’t have to implement a should method if the default is acceptable. In many
cases, a property will control the overall behavior; the delegate message lets you pick
and choose the behavior based on circumstances at runtime.

For example, by default the user can tap the status bar to make a scroll view scroll
quickly to the top. Even if the scroll view’s scrollsToTop property is YES, you can
prevent this behavior for a particular tap by returning NO from the delegate’s scroll-
ViewShouldScrollToTop:.

When you’re searching the documentation for how you can be notified of a certain
event, be sure to consult the corresponding delegate protocol, if there is one. (And don’t
forget to consult the class’s superclasses to see if one of them has a corresponding
delegate protocol.) You’d like to know when the user taps in a UITextField to start
editing it? You won’t find anything relevant in the UITextField class documentation;
what you’re after is textFieldDidBeginEditing: in the UITextFieldDelegate protocol.
You want to respond when the user rearranges items on your tab bar? Look in UITab-
BarControllerDelegate. You want to know how to make a UITextView zoomable
(through the user making a pinch gesture)? A UITextView is a UIScrollView; a scroll
view is not zoomable unless its delegate returns a view from viewForZoomingInScroll-
View:, documented under UIScrollViewDelegate.

You can implement the delegation pattern yourself if you like. I already mentioned, in
Chapter 10 in connection with protocols, how my ColorPickerController class’s header
file defines a ColorPickerDelegate protocol; to guarantee (and to assure the compiler)
that it will be able to send the ColorPickerDelegate method colorPicker:didSetColor-
Named:toColor: to the appropriate object, it defines a delegate property typed as an
id <ColorPickerDelegate> (I’ll explain the details of the property declaration in Chap-
ter 12):

@protocol ColorPickerDelegate
// color == nil on cancel
- (void) colorPicker:(ColorPickerController *)picker
 didSetColorNamed:(NSString *)theName
 toColor:(UIColor*)theColor;
@end

@interface ColorPickerController : UIViewController
@property (nonatomic, weak) id <ColorPickerDelegate> delegate;
@end

In the implementation for ColorPickerController, I send the protocol message to the
delegate, and all is well:

- (void) dismissColorPicker: (id) sender { // user has tapped our Done button
 [self.delegate colorPicker:self
 didSetColorNamed:self.colorName
 toColor:self.color];
}

256 | Chapter 11: Cocoa Events

The compiler is happy with that code, because this message is defined in a protocol
that the delegate adopts. I’m happy for the same reason; assuming the delegate isn’t
nil, it must adopt this protocol and respond to this message, and so the right things
will happen (and if the delegate is nil, there’s no harm done, because sending a message
to nil does nothing). And I don’t bother to check whether the delegate implements this
method, because I happen to know that it does — it’s a required method. (Compare
Xcode’s own Utility Application project template, which uses exactly the same archi-
tecture, couched in all but identical language.)

Data Sources
A data source is like a delegate, except that its methods supply the data for another
object to display. The only Cocoa classes with data sources are UITableView and
UIPickerView. A table view displays data in rows; a picker view displays selectable
choices using a rotating drum metaphor. In each case, the data source must formally
conform to a protocol with required methods (UITableViewDataSource and UIPicker-
ViewDataSource, respectively).

It comes as a surprise to some beginners that a data source is necessary at all. Why isn’t
a table’s data just part of the table? Or why isn’t there at least some fixed data structure
that contains the data? The reason is that such policies would violate generality. Use
of a data source separates the object that displays the data from the object that manages
the data, and leaves the latter free to store and obtain that data however it likes (see on
model–view–controller in Chapter 12). The only requirement is that the data source
must be able to supply information quickly, because it will be asked for it in real time
when the data needs displaying.

Another surprise is that the data source is different from the delegate. But this again is
only for generality; it’s an option, not a requirement. There is no reason why the data
source and the delegate should not be the same object, and most of the time they
probably will be.

In this simple example, we implement a UIPickerView that allows the user to select by
name a day of the week (the Gregorian week, using English day names). The first two
methods are UIPickerView data source methods; the third method is a UIPickerView
delegate method:

- (NSInteger) numberOfComponentsInPickerView: (UIPickerView*) pickerView {
 return 1;
}

- (NSInteger) pickerView: (UIPickerView*) pickerView
 numberOfRowsInComponent: (NSInteger) component {
 return 7;
}

- (NSString*) pickerView:(UIPickerView*)pickerView
 titleForRow:(NSInteger)row

Data Sources | 257

 forComponent:(NSInteger)component {
 NSArray* arr = [NSArray arrayWithObjects:
 @"Sunday",
 @"Monday",
 @"Tuesday",
 @"Wednesday",
 @"Thursday",
 @"Friday",
 @"Saturday",
 nil];
 return [arr objectAtIndex: row];
}

Actions
An action is a message emitted by an instance of a UIControl subclass (a control) re-
porting a significant user event taking place in that control. The UIControl subclasses
(Chapter 25) are all simple interface objects that the user can interact with directly, like
a button (UIButton), a switch (UISwitch), a segmented control (UISegmentedControl),
a slider (UISlider), or a text field (UITextField).

The significant user events (control events) are listed under UIControlEvents in the
Constants section of the UIControl class documentation:

• UIControlEventTouchDown

• UIControlEventTouchDownRepeat

• UIControlEventTouchDragInside

• UIControlEventTouchDragOutside

• UIControlEventTouchDragEnter

• UIControlEventTouchDragExit

• UIControlEventTouchUpInside

• UIControlEventTouchUpOutside

• UIControlEventTouchCancel

• UIControlEventValueChanged

• UIControlEventEditingDidBegin

• UIControlEventEditingChanged

• UIControlEventEditingDidEnd

• UIControlEventEditingDidEndOnExit

• UIControlEventAllTouchEvents

• UIControlEventAllEditingEvents

• UIControlEventAllEvents

258 | Chapter 11: Cocoa Events

The control events also have informal names that are visible in the Connections in-
spector when you’re editing a nib. I’ll mostly use the informal names in what follows.
Control events fall roughly into three groups: the user has touched the screen (Touch
Down, Touch Drag Inside, Touch Up Inside, etc.), edited text (Editing Did Begin,
Editing Changed, etc.), or changed the control’s value (Value Changed).

Apple’s documentation is rather coy about which controls normally emit actions for
which control events, so here’s a list obtained through experimentation. Keep in mind
that Apple’s silence on this matter may mean that the details are subject to change:

UIButton
All “Touch” events.

UIDatePicker
Value Changed.

UIPageControl
All “Touch” events, Value Changed.

UISegmentedControl
Value Changed.

UISlider
All “Touch” events, Value Changed.

UISwitch
All “Touch” events, Value Changed.

UIStepper
All “Touch” events, Value Changed.

UITextField
All “Touch” events except the “Up” events, and all “Editing” events. The text field
is either in touch mode or in edit mode; as it switches from the former to the latter
(and the keyboard appears, and Editing Did Begin is triggered), a Touch Cancel
event is triggered. If the user stops editing by tapping Return in the keyboard, Did
End on Exit is triggered along with Editing Did End.

The way you hear about a control event is through an action message. A control main-
tains an internal dispatch table: for each control event, there is some number of target–
action pairs, of which the action is a selector (the name of a method) and the target is
the object to which that message is to be sent. When a control event occurs, the control
consults its dispatch table, finds all the target–action pairs associated with that control
event, and sends each action message to the corresponding target. This architecture is
reminiscent of a notification (Figure 11-1).

Actions | 259

The action messaging mechanism is actually more complex than I’ve
stated. The UIControl does not really send the action message directly;
rather, it tells the shared application to send it. When a control wants
to send an action message reporting a control event, it calls its own send-
Action:to:forEvent: method. This in turn calls the shared application
instance’s sendAction:to:from:forEvent:, which actually sends the
specified action message to the specified target. In theory, you could call
or override either of these methods to customize this aspect of the mes-
sage-sending architecture, but it is extremely unlikely that you would
do so.

There are two ways to manipulate a control’s action dispatch table: you can configure
an action connection in a nib (as explained in Chapter 7), or you can use code. To use
code, you send the control the message addTarget:action:forControlEvents:, where

Figure 11-1. The target–action architecture

260 | Chapter 11: Cocoa Events

the target: is an object, the action: is a selector, and the controlEvents: are designated
by a bitmask (see Chapter 1 if you’ve forgotten how to construct a bitmask). Unlike a
notification center, a control has methods for introspecting the dispatch table. Recall
the example from Chapter 7 (where b is a reference to a UIButton):

[b addTarget:self action:@selector(buttonPressed:)
 forControlEvents:UIControlEventTouchUpInside];

After that, whenever the user taps in the button, our buttonPressed: method will be
called. It might, again as in Chapter 7, look like this:

- (void) buttonPressed: (id) sender {
 UIAlertView* av = [[UIAlertView alloc] initWithTitle:@"Howdy!"
 message:@"You tapped me."
 delegate:nil
 cancelButtonTitle:@"Cool"
 otherButtonTitles:nil];
 [av show];
}

The signature for the action selector can be in any of three forms. The fullest form takes
two parameters:

• The control, usually typed as id.

• The UIEvent that generated the control event.

Touch Inside and Touch Outside
There is no explicit “Touch Down Inside” event, because any sequence of “Touch”
events begins with “Touch Down,” which must be inside the control. (If it weren’t, this
sequence of touches would not “belong” to the control, and there would be no control
events at all.)

When the user taps within a control and starts dragging, the “Inside” events are trig-
gered even after the drag moves outside the control’s bounds. But after a certain distance
from the control is exceeded, an invisible boundary is crossed, Touch Drag Exit is
triggered, and now “Outside” events are reported until the drag crosses back within
the invisible boundary, at which point Touch Drag Enter is triggered and the “Inside”
events are reported again. In the case of a UIButton, the crossing of this invisible
boundary is exactly when the button automatically unhighlights (as the drag exits).
Thus, to catch a legitimate button press, you probably want to consider only Touch
Up Inside.

For other controls, there may be some slight complications. For example, a UISwitch
will unhighlight when a drag reaches a certain distance from it, but the touch is still
considered legitimate and can still change the UISwitch’s value; therefore, when the
user’s finger leaves the screen, the UISwitch reports a Touch Up Inside event, even
while reporting Touch Drag Outside events.

Actions | 261

A shorter form (the most commonly used form) omits the second parameter; a still
shorter form omits both parameters. If you’re perfectly certain what control is sending
you the message, and you don’t need a reference to it, you might not bother with either
of the action message’s parameters.

Mac OS X Programmer Alert

If you’re an experienced Mac OS X Cocoa developer, you’ll note that
there are some major differences between the Mac OS X implementation
of actions and the iOS implementation. In Mac OS X, a control has just
one action; in iOS, a control may respond to multiple control events. In
Mac OS X, an action has just one target; in iOS, a single event can trigger
multiple action messages to multiple targets. In Mac OS X, an action
message selector comes in just one form; in iOS, there are three possible
forms.

What is the UIEvent, and what is it for? Well, a touch event is generated whenever the
user does something with a finger (sets it down on the screen, moves it, raises it from
the screen). UIEvents are the lowest-level objects charged with communication of touch
events to your app. A UIEvent is basically a timestamp (a double) along with a collection
(NSSet) of touch events (UITouch). The action mechanism deliberately shields you
from the complexities of touch events, but by electing to receive the UIEvent, you can
still deal with those complexities if you want to. (See Chapter 18 for full details.)

In this example, I take advantage of the UIEvent’s timestamp to do one thing if the user
releases a UIButton after holding down a finger for a short time, but a different thing
if the user releases the UIButton after holding it down for a longer time. Assume that
the UIButton’s dispatch table is configured so that its Touch Down control event calls
my buttonDown:event: method, and its Touch Up Inside control event calls my button-
Up:event: method:

- (void) buttonDown: (id) sender event: (UIEvent*) e {
 self.downtime = [e timestamp]; // downtime is a property and ivar
}

- (void) buttonUp: (id) sender event: (UIEvent*) e {
 if ([e timestamp] - self.downtime < 0.3) {
 // respond to short tap
 } else {
 // respond to longer hold and release
 }
}

262 | Chapter 11: Cocoa Events

Curiously, none of the action selector parameters provide any way to
learn which control event triggered the current action selector call! Thus,
for example, to distinguish a Touch Up Inside control event from a
Touch Up Outside control event, their corresponding target–action
pairs must specify two different action handlers; if you dispatch them
to the same action handler, that handler cannot discover which control
event occurred.

The Responder Chain
A responder is an object that knows how to receive UIEvents directly (see the previous
section). It knows this because it is an instance of UIResponder or a UIResponder
subclass. If you examine the Cocoa class hierarchy, you’ll find that just about any class
that has anything to do with display on the screen is a responder. A UIView is a res-
ponder. A UIWindow is a responder. A UIViewController is a responder. Even a UIAp-
plication is a responder. And starting in iOS 5 and the Xcode 4.2 templates, the app
delegate is a responder.

If you look in the documentation for the UIResponder class, you’ll find that it imple-
ments four low-level methods for receiving touch-related UIEvents: touchesBegan:with-
Event:, touchesMoved:withEvent:, touchesEnded:withEvent: and touchesCancelled:
withEvent:. These are called to notify a responder of a touch event. No matter how
your code ultimately hears about a user-related touch event — indeed, even if your
code never hears about a touch event (because Cocoa reacted in some automatic way
to the touch, without your code’s intervention) — the touch was initially communi-
cated to a responder through one of these methods.

The mechanism for this communication starts by deciding which responder the user
touched. The UIView methods hitTest:withEvent: and pointInside:withEvent: are
called until the correct view (the hit-test view) is located. Then UIApplication’s send-
Event: method is called, which calls UIWindow’s sendEvent:, which calls the correct
method of the hit-test view (a responder). I’ll cover all this again in full detail in Chap-
ter 18.

The responders in your app participate in a responder chain, which essentially links
them up through the view hierarchy. A UIView can sit inside another UIView, its
superview, and so on until we reach the app’s UIWindow (a UIView that has no su-
perview). The responder chain, from bottom to top, looks like this:

1. The UIView that we start with (here, the hit-test view).

2. The UIViewController that controls that UIView, if there is one.

3. The UIView’s superview, and then its UIViewController if there is one. Repeat this
step, moving up the superview hierarchy one superview at a time, until we reach…

4. The UIWindow.

5. The UIApplication.

The Responder Chain | 263

6. The UIApplication’s delegate. (This is new in iOS 5, and is not well documented
as of this writing.)

Deferring Responsibility
The responder chain can be used to let a responder defer responsibility for handling a
touch event. If a responder receives a touch event and can’t handle it, the event can be
passed up the responder chain to look for a responder that can handle it. This can
happen in two main ways: (1) the responder doesn’t implement the relevant method;
(2) the responder implements the relevant method to call super.

For example, a plain vanilla UIView has no native implementation of the touch event
methods. Thus, by default, even if a UIView is the hit-test view, the touch event effec-
tively falls through the UIView and travels up the responder chain, looking for someone
to respond to it. If this UIView is an instance of your own subclass, you might imple-
ment the touch event methods in that subclass to catch touch events in the UIView
itself; but if the UIView is controlled by a UIViewController, you have already sub-
classed UIViewController, and that subclass is probably where the interface behavior
logic for this UIView is already situated, so you might well prefer to implement the
touch event methods there instead. You are thus taking advantage of the responder
chain to defer responsibility for handling touch events from the UIView to its UIView-
Controller, in a natural and completely automatic way.

Again, I’ll come back to this in Chapter 18; don’t worry about it for now. I’m actually
telling you about the responder chain chiefly in order to discuss nil-targeted actions,
which is the subject of the next section.

Nil-Targeted Actions
A nil-targeted action is a target–action pair in which the target is nil. There is no des-
ignated target object, so the following rule is used: starting with the hit-test view (the
view with which the user is interacting), Cocoa looks up the responder chain for an
object that can respond to the action message.

Suppose, for example, we have a UIButton inside a UIView. And suppose we run this
code early in the button’s lifetime, where b is the button:

[b addTarget:nil action:@selector(doButton:)
 forControlEvents:UIControlEventTouchUpInside];

That’s a nil-targeted action. So what happens when the user taps the button? First,
Cocoa looks in the UIButton itself to see whether it responds to doButton:. If not, then
it looks in the UIView that is its superview. And so on, up the responder chain. If a
responder is found that handles doButton:, the action message is sent to that object;
otherwise, the message goes unhandled.

264 | Chapter 11: Cocoa Events

Thus, suppose the UIView containing the UIButton is an instance of your own UIView
subclass. Let’s call it MyView. If MyView implements doButton:, then when the user
taps the button, it is MyView’s doButton: that will be called.

To create a nil-targeted action in a nib, you form a connection to the First Responder
proxy object (in the dock). This is what the First Responder proxy object is for! The
First Responder isn’t a real object with a known class, so before you can connect an
action to it, you have to define the action message within the First Responder proxy
object, like this:

1. Select the First Responder proxy in the nib, and switch to the Attributes inspector.

2. You’ll see a table (probably empty) of user-defined nil-targeted First Responder
actions. Click the Plus button and give the new action a signature; it must take a
single parameter (so that its name will end with a colon).

3. Now you can Control-drag from a control, such as a UIButton, to the First Res-
ponder proxy to specify a nil-targeted action with the signature you specified.

Application Lifetime Events
When you create an object, either obtaining an instance in code or instantiating it in a
nib, you’ll concern yourself with the events you can arrange to receive in connection
with that object. This book will do the same. We’ll talk about UIView events (including
touches) when we talk about views; we’ll talk about the many lifetime events connected
with UIViewController when we talk about view controllers; we’ll talk about UIText-
Field events when we talk about text, UIControl events when we talk about controls,
and so on. Indeed, it is not too much to say that the art of using Cocoa consists largely
of mastering a two-way street, knowing what you can do to some built-in type of object

The Term “First Responder”
Cocoa uses the term first responder in a confusing way. An arbitrary responder object
can be assigned formal first responder status (by sending it becomeFirstResponder, pro-
vided that this responder returns YES from canBecomeFirstResponder). But this does
not make the object first responder for purposes of handling nil-targeted actions! Co-
coa’s hunt for a responder that can handle a nil-targeted action still starts with the
control that the user is interacting with (the hit-test view) and goes up the responder
chain from there.

Typical legitimate uses of becomeFirstResponder are:

• To put a UITextField into editing mode, as if the user had tapped in it (Chapter 23).

• To specify the object that should initially be sent remote events (Chapter 27).

• To designate an object that is to present a menu (Chapter 39).

Application Lifetime Events | 265

(to configure it) and know what that object can do to you (what events you can receive
in connection with it, and how to arrange to receive them).

Your application as a whole, on the other hand, is something you never deliberately
create. It was created for you as the shared application object by UIApplicationMain
before any code of yours had a chance to run. So there won’t come any later point in
this book any better for discussion of the various events you can receive in connection
with your application’s lifetime than right now. As I’ve already mentioned, these events,
marking certain important stages in the overall lifetime of your application, can arrive
either as messages to the app delegate (if you implement the appropriate methods) or
as notifications to any object (if that object registers for those notifications).

What lifetime events you can receive depends on whether or not your app participates
in multitasking. In the old days, before iOS 4, there was no multitasking. If the user
pressed the Home button while running your app, your app was terminated. The next
time the user launched your app by tapping its icon in the springboard, your app
launched from scratch. Even under iOS 4 and later, your app can opt out of multitasking
and behave like a pre–iOS 4 app, if you set the “Application does not run in back-
ground” key (UIApplicationExitsOnSuspend) in your Info.plist. (For some apps, such as
certain games, this might be a reasonable thing to do.)

The suite of events received by a nonmultitasking app is pretty simple:

application:didFinishLaunchingWithOptions:

The app has started up. This, as we have already seen, is the earliest opportunity
for your code to configure the interface by creating and showing the app’s window,
and it’s fair to assume that every app you ever write will do exactly that. If you
don’t show your app’s interface, the user won’t see anything! (The exceptional
case, in iOS 5 and the Xcode 4.2 templates, is an app with a main storyboard; by
default, the storyboard creates and shows the window for you as it loads.) Of course
you can and will perform other early initializations here.

Alternatively, your app delegate can implement application:didFinish-

Launching: instead, but there are no advantages to doing so, and there are many
disadvantages — your app would miss out on the options dictionary, which can
contain useful information, as we’ll see later in the book.

applicationDidBecomeActive:

The app has started up; received after application:didFinishLaunchingWith-
Options:. Also received after the end of the situation that caused the app delegate
to receive applicationWillResignActive:.

applicationWillResignActive:

Something has blocked the app’s interface. The most common cause is that the
screen has been locked. An alert dialog from outside your app, or an incoming
phone call whose interface takes over the screen, could also cause this event. When
this situation ends, the app delegate will receive applicationDidBecomeActive:.

266 | Chapter 11: Cocoa Events

applicationWillTerminate:

The app is about to quit. This is your last signal to preserve state (typically, by
storing information with NSUserDefaults) and perform other final cleanup tasks.

In the multitasking environment of iOS 4 and later, however (unless you deliberately
opt out, as I’ve already mentioned), the Home button doesn’t terminate your app; it
backgrounds and suspends it. This means that your app is essentially freeze-dried in
the background; its process still exists, but it isn’t getting any events (though notifica-
tions can be stored by the system for later delivery if your app comes to the front once
again). You’ll probably never get applicationWillTerminate:, because when your app
is terminated by the system, it will already have been suspended.

Under highly specialized circumstances (discussed, for instance, in
Chapter 27 and Chapter 35), your app can be backgrounded without
being suspended. Nevertheless, throughout this section I’ll speak as if
backgrounding and suspension are one and the same.

Thus, you have to worry about what will happen when the app is suspended and when
it returns from being suspended (applicationDidEnterBackground: and application-
WillEnterForeground:, and their corresponding notifications), and the notion of the
application becoming inactive or active also takes on increased importance
(applicationWillResignActive: and applicationDidBecomeActive:, and their notifica-
tions). These notifications all take on a wide range of meaning — indeed, in my opinion,
the information your app is given is unfortunately too coarse-grained — so they are
best understood by examining some typical scenarios:

The app launches freshly
Your app delegate receives these messages (just as in the premultitasking world):

• application:didFinishLaunchingWithOptions:

• applicationDidBecomeActive:

The user clicks the Home button
If your app is frontmost, it is suspended, and your app delegate receives these
messages:

• applicationWillResignActive:

• applicationDidEnterBackground:

The user summons your suspended app to the front
Your app delegate receives these messages:

• applicationWillEnterForeground:

• applicationDidBecomeActive:

Application Lifetime Events | 267

The user double-clicks the Home button
The user can now work in the app switcher. If your app is frontmost, your app
delegate receives this message:

• applicationWillResignActive:

The user, in the app switcher, taps on your app’s window
Your app delegate receives this message:

• applicationDidBecomeActive:

The user, in the app switcher, chooses another app
If your app is frontmost, your app delegate receives this message:

• applicationDidEnterBackground:

A local notification alert (Chapter 26) from another app appears
If your app is frontmost, your app delegate receives this message:

• applicationWillResignActive:

From a local notification alert, the user launches the other app
Your app delegate receives these messages:

• applicationDidBecomeActive:

• applicationWillResignActive:

• applicationDidEnterBackground:

The screen is locked
If your app is frontmost, your app delegate receives these messages:

• applicationWillResignActive:

• applicationDidEnterBackground:

The screen is unlocked
If your app is frontmost, your app delegate receives these messages:

• applicationWillEnterForeground:

• applicationDidBecomeActive:

The behavior described in the two preceding paragraphs is new in iOS
5. In iOS 4, locking the screen did not suspend your app, and so locking
and unlocking the screen did not send your app applicationDidEnter-
Background: or applicationWillEnterForeground:.

The user holds the screen-lock button down
The device offers to shut itself down. If your app is frontmost, your app delegate
receives this message:

• applicationWillResignActive:

268 | Chapter 11: Cocoa Events

The user, as the device offers to shut itself down, cancels
If your app is frontmost, your app delegate receives this message:

• applicationDidBecomeActive:

The user, as the device offers to shut itself down, accepts
If your app is frontmost, your app delegate receives these messages:

• applicationDidEnterBackground:

• applicationWillTerminate: (probably the only way a normal app will receive
this message in a multitasking world)

Juggling these events and meeting your responsibilities under all circumstances can be
quite tricky. You have, as it were, a lot of bases to cover if you want to make certain
that your app is in a known state as it passes through each of its possible lifetime stages;
and, as I’ve already suggested, you aren’t really given enough information to cover them
coherently. To give an obvious example, applicationWillResignActive: could mean
that the user is summoning the app switcher, or that another application’s local noti-
fication alert has appeared in front of your app, or that the user is locking the screen,
or that the user has single-clicked the Home button to leave your app altogether. (It
might also mean that a phone call has arrived while your app was frontmost.) But you
can’t distinguish which of these things is happening.

Of all the tasks with which you’ll concern yourself over your app’s lifetime, probably
the most important is saving state. If the user has done or specified things that the app
needs to preserve, it must do so before it is terminated; since a multitasking app is
probably never going to be notified by applicationWillTerminate:, you’ll need to find
an appropriate earlier moment. Moreover, it is a mark of most good iOS apps that they
try to present themselves to the user on launch looking as they did when they were last
terminated. This is easy, of course, if the app wasn’t really terminated but only sus-
pended; the app comes back to life automatically in exactly the same state as when it
was suspended. But if the app is terminated while suspended, it will launch from scratch
the next time, and will have to use its own internal logic to determine that it was in a
particular state when it was suspended and to restore that state. An obvious example
is a board game, such as chess; if the user was in the middle of a game when the app
was terminated, the board should reappear on launch just as it was, with the same game
history and with the same player about to move. Clearly, at some moment, all the
information about what pieces are on the board and whose turn it is needs to be saved.
But what moment?

One obvious answer is: at every moment. In a game such as chess, there might be no
reason why the app shouldn’t save state after every move. And this is certainly part of
the iOS state-saving philosophy: always be saving state. But some state might be too
large or too convoluted to save repeatedly, or the app might not consist of discrete
simple states the way a board game does. So what’s the last best moment to save state?
Looking over the list of scenarios, you can see that applicationWillResignActive: is
the broadest signal that something might now happen such that your app will subse-

Application Lifetime Events | 269

quently be terminated without further notice; but it is also possible that your app will
next become active again. On the other hand, it is very unlikely that your app will be
terminated without your first receiving applicationDidEnterBackground:, and this
might well be the last event your app ever receives, so this is the default signal that you
should save state. (You are given a little time to do this before your app is actually
suspended; Chapter 38 discusses what to do if you think a little time might not enough.)

Your app stands a better chance of not being terminated while sus-
pended, the less memory resources it uses; you should therefore take
applicationDidEnterBackground: as a signal to release whatever large
memory resources you can. For example, you might write such resour-
ces out to disk, and recover them when your app receives application-
WillEnterForeground:. In addition, while running in the foreground,
your app will be sent the delegate message applicationDidReceiveMemory-
Warning: to inform you of a low memory situation. I’ll return to this
topic in Chapter 19.

Swamped by Events
In your mind, assemble everything I’ve said in this chapter about events, and you can
readily imagine that, as you develop your own iOS app, you’re likely to wind up with
classes consisting of numerous methods, the vast majority of which are entry points —
methods that you have placed there so that they can be called by Cocoa through events.
For example, suppose (as is extremely likely) that your iPhone app contains a screen
that effectively consists entirely of a table view. You’ll probably have a corresponding
UITableViewController subclass; UITableViewController is a built-in UIView-
Controller subclass, plus you’ll probably use this same class as the table view’s data
source and delegate. I’ll talk in detail about these matters in Chapter 19 and Chap-
ter 21, but for now, just believe me when I say that you’re extremely likely, in this single
class, to implement at a minimum such methods as these:

initWithCoder: or initWithNibName:bundle:
UIViewController lifetime method, where you perform custom instance initiali-
zations.

viewDidLoad:

UIViewController lifetime method, where you perform view-related initializations.

viewDidUnload:

UIViewController lifetime method, where you release any memory resources ac-
quired in viewDidLoad:.

viewWillAppear:

UIViewController lifetime method, where you set up states that need to apply only
while your view is onscreen. For example, if you’re going to register for a notifica-
tion or set up a timer, this is a likely place to do it.

270 | Chapter 11: Cocoa Events

viewDidDisappear:

UIViewController lifetime method, where you reverse what you did in viewWill-
Appear:. For example, this would be a likely place to unregister for a notification
or invalidate a repeating timer that you set up in viewWillAppear:.

shouldAutorotateToInterfaceOrientation:

UIViewController query method, where you specify what device orientations are
allowed for this view.

numberOfSectionsInTableView:

UITableView data source query method, where you specify the contents of the
table.

tableView:numberOfRowsInSection:

UITableView data source query method, where you specify the contents of the
table.

tableView:cellForRowAtIndexPath:

UITableView data source query method, where you specify the contents of the
table.

tableView:didSelectRowAtIndexPath:

UITableView delegate user action method, where you respond when the user taps
a row of the table.

dealloc

NSObject lifetime method, where you perform end-of-life cleanup; if, for example,
you registered for a notification or set up a timer in viewWillAppear:, you will
unregister for the notification and invalidate a repeating timer here, as a backstop
in case viewDidDisappear: isn’t called. (Also, if you’re not using ARC, you will have
memory management tasks to perform here.)

Suppose, further, that you did in fact use viewWillAppear: to register for a notification
and to set up a timer. Then that notification has a selector (unless you used a block),
and the timer has a selector; you must implement the methods described by those
selectors.

We already have, then, a dozen methods whose presence is effectively a matter of boil-
erplate. These are not your methods; you are never going to call them. They are Co-
coa’s methods, which you have placed here so that each can be called at the appropriate
moment in the life story of your app. The logic of a program laid out in this fashion is
by no means easy to understand! I’m not criticizing Cocoa here — indeed, it’s hard to
imagine how else an application framework could work — but, purely as an objective
matter of fact, the result is that a Cocoa program, even your own program, even while
you’re developing it, is hard to read, because it consists of numerous disconnected entry
points, each with its own meaning, each called at its own set moment which is not in
any way obvious from looking at the program. To understand what our hypothetical
class does, you have to know already such things as when viewWillAppear: is called and

Swamped by Events | 271

how it is typically used; otherwise, you don’t even know where to look to find the
program’s logic and behavior, let alone how to interpret what you see when you do
look there. And this difficulty is greatly compounded when you try to read someone
else’s code (this is one reason why, as I mentioned in Chapter 8, sample code is not all
that helpful to a beginner).

Looking at the code of an iOS program — even your own code — your eyes can easily
glaze over at the sight of all these methods called automatically by Cocoa under various
circumstances. To be sure, experience will teach you about such things as the overrid-
den UIViewController methods, which form a standard sequence of moments in the
lifetime of the view controller, and about the table view delegate and data source meth-
ods, which — although they are called at unpredictable moments — work together in
a reliable and fairly simple way to describe the table and govern its behavior. On the
other hand, no amount of experience will tell you that a certain method is called as a
button’s action or through a notification. Under these circumstances, comments really
help, and I strongly advise you, as you develop any iOS app, to comment every method,
quite heavily if need be, saying what that method does and under what circumstances
you expect it to be called — especially if it is an entry point, where it is Cocoa itself
that will do the calling.

In addition, since Cocoa is doing the calling and since you have no access to the Cocoa
source code, the actual moment when entry points are called can be unpredictable.
Your own code can trigger unintended events. The documentation might not make it
clear just when a notification will be sent. There could even be a bug in Cocoa such
that events are called in a way that seems to contradict the documentation. Therefore
I also recommend also that as you develop your app, you instrument your code heavily
with caveman debugging (NSLog; see Chapter 9). As you test your code, keep an eye
on the console output and check whether the messages make sense. You may be sur-
prised at what you discover.

For example, it has occasionally happened to me that Cocoa will mysteriously call an
event too often — and without logging, I would never have been aware of this fact. For
example, I mentioned earlier in this chapter an app of mine that registers for the MPMusic-
PlayerControllerNowPlayingItemDidChangeNotification, so that it can change its in-
terface in response when the device’s music player starts playing a different song. Un-
fortunately, it very often (though not always!) happens that this notification is delivered
twice in quick succession when there’s a transition from one song to another. I would
never have known this if I hadn’t been logging in my code triggered by the arrival of
this notification.

You may be wondering what I did when I discovered this issue. My first response was
to wonder whether this might be a bug in Cocoa; but I quickly realized that such worries
were counterproductive. The cause of the issue isn’t important, because there’s nothing
I can do about it; the framework is in charge, and the framework is opaque. All that
matters is how to guard against it. I then asked myself whether this issue was worth
guarding against. The notification’s registered selector was my method reloadData:. If

272 | Chapter 11: Cocoa Events

what I do in reloadData: isn’t expensive or sequential in nature, it might not matter if
I do it twice in quick succession. It turns out that what I do in reloadData: is expensive.
What, then, could I do to prevent my expensive code from running twice in quick
succession? Two possible approaches presented themselves:

• Rearchitect my code so that what I do in reloadData: is no longer expensive. Un-
fortunately, at the time, I couldn’t find a convenient way to do that; I would ef-
fectively have had to unwind the entire operation of this class and approach my
interface in a completely different way.

• Use delayed performance (see Chapter 10, on NSObject) in such a way that if
reloadData: is called twice within a sufficiently short span of time, the first call is
effectively thrown away. This is the solution to which I ultimately resorted:

- (void) reloadData: (NSNotification*) n {
 [UIApplication cancelPreviousPerformRequestsWithTarget:self
 selector:
 @selector(reallyReloadData)
 object:nil];
 [self performSelector:@selector(reallyReloadData)
 withObject:nil
 afterDelay:0.3];
}

- (void) reallyReloadData {
 // do expensive thing here
}

In addition, your own code can indirectly trigger events in an unexpected way. This
happened to me in developing a different app, where I suddenly found that in a
UIViewController subclass, viewDidLoad was being called twice as the app started up,
which should be impossible. Again, I wouldn’t even have noticed this mistake without
NSLog. Not only that, but — as I discovered after adding even more NSLog messages
— viewDidLoad was called while I was still in the middle of executing awakeFromNib,
which should really be impossible. The reason turned out to be that I was making the
mistake of mentioning my class’s view property during awakeFromNib; this actually
causes viewDidLoad to be called. The problem went away when I corrected my mistake.

There is, in sum, a certain indeterminacy and uncertainty in the nature of events. They
bombard your code; they control it. Their mutual relationship can be tricky, and in
most cases you shouldn’t rely on things happening in a definite order (although you
probably can if the documentation says so). Your posture will therefore be, to some
extent, one of uncertainty and defensiveness. You’re like a tennis student being pelted
by a ball-serving machine. Without comments, the tennis student doesn’t know where
the balls are coming from. Without logging, the tennis student is blindfolded.

Swamped by Events | 273

CHAPTER 12

Accessors and Memory Management

Even when you’ve understood how to slot in your code so as to get the messages that
you want from Cocoa (Chapter 11), your obligations to Cocoa and your interactions
with the framework are not over. You have additional responsibilities that emerge as
you write the code for any class that will be instantiated. There are guidelines for how
a well-behaved instance should be structured and how it should act — in fact, I seriously
thought of calling this chapter “The Well-Behaved Instance.” If you don’t follow those
guidelines, things can go wrong: outlets aren’t set, the wrong methods are called,
memory gets used up, your app crashes. This chapter is about those guidelines.

Accessors
An accessor is a method for getting or setting the value of an instance variable. An
accessor that gets the instance variable’s value is called a getter; an accessor that sets
the instance variable’s value is called a setter.

There are naming conventions for accessors, and you should obey them. The conven-
tions are simple:

• A setter’s name should start with set and be followed by a capitalized version of
the instance variable’s name. If the instance variable is named myVar, the setter
should be named setMyVar:. The setter should take one parameter: the new value
to be assigned to the instance variable.

• A getter should have the same name as the instance variable. If the instance variable
is named myVar, the getter should be named myVar. (This will not cause you or the
compiler any confusion, because variable names and method names are used in
completely different contexts.)

You can optionally start the getter’s name with get (e.g., getMyVar), though in fact
I never do this. If the instance variable’s value is a BOOL, you may optionally start
the getter’s name with is (for example, an ivar showing can have a getter is-
Showing), though in fact I never do this.

275

Accessors are important in part because instance variables are protected, whereas de-
clared methods are public; without accessor methods, a protected instance variable
can’t be accessed by any object whose class (or superclass) isn’t the one that declares
the instance variable. You might be tempted to conclude from this that you needn’t
bother making an accessor for an instance variable that isn’t intended for public access,
and to some extent this is a reasonable conclusion (especially if your app uses ARC).
But here are some counterarguments:

• Making accessors isn’t really all that much bother, especially because you usually
won’t have to write the code for an accessor; Objective-C can write the code for
you (more about that later in this chapter).

• If your app doesn’t use ARC, and if your instance variable is an object, there are
going to be memory management tasks to worry about every time you get and
(especially) set that value; the best way to ensure that you’re carrying out those
tasks reliably and consistently is to pass through an accessor.

• Even if your app does use ARC, there may be additional tasks that need to be
performed every time the instance variable’s value is touched; an accessor, acting
as a gateway to the instance variable, ensures that these tasks are performed con-
sistently.

• Cocoa often uses the string name of an instance variable to derive the name of the
accessor and call it if it exists. (This conversion is called key–value coding, and is
the subject of the next section.) Under these circumstances, there needs to be an
accessor so that Cocoa can find it.

Outlets, in particular, use key–value coding to match the name of an outlet (in the nib)
with the name of an instance variable (in your code). This means that your code should
have accessors and that their names should obey the conventions; otherwise, key–value
coding can’t find the accessors. Suppose you have a class with an instance variable
called myVar and you’ve drawn a myVar outlet from that class’s representative in the nib
to a Thing nib object. When the nib loads, the outlet name myVar is translated to the
method name setMyVar:, and your instance’s setMyVar: method, if it exists, is called
with the Thing instance as its parameter, thus setting the value of your instance variable
to the Thing (Figure 7-5). (I told you in Chapter 7 that there was more to the name-
matching mechanism than I was letting on!)

It is important, therefore, to use accessor naming conventions correctly and consis-
tently. By the same token, you should not use accessor names for methods that aren’t
accessors! For example, you probably would not want to have a method called setMy-
Var: if it is not the accessor for the myVar instance variable. If you did have such a method,
it would be called when the nib loads, the Thing instance would be passed to it, and
the Thing instance would not be assigned to the myVar instance variable! As a result,
references in your code to myVar would be references to nil.

This example is not at all far-fetched; I very often see beginners complain that they are
telling some part of their interface to do something and it isn’t doing it. This is frequently

276 | Chapter 12: Accessors and Memory Management

because they are accessing the object through an instance variable that is still nil, be-
cause it was never set properly through an outlet when the nib loaded, because they
misused the name of the setter for some other purpose. (Of course it could also be
because they forgot to draw the outlet in the nib in the first place.)

Although I keep saying that the names of the accessor methods use the
name of the instance variable, there is no law requiring that they use the
name of a real instance variable. Quite the contrary: you might delib-
erately have methods myVar and setMyVar: when in fact there is no my-
Var instance variable. Perhaps the accessors are masking the real name
of the instance variable, or perhaps there is no instance variable at all,
and these accessors are really doing something quite different behind
the scenes. That, indeed, is one of the main reasons for using accessors;
they effectively present a façade, as if there were a certain instance vari-
able, shielding the caller from any knowledge of the underlying details.

Key–Value Coding
The way Cocoa derives the name of an accessor from the name of an instance variable
is through a mechanism called key–value coding, or simply KVC. (See also Chapter 5,
where I introduced key–value coding.) A key is a string (an NSString) that names the
value to be accessed. The basis for key–value coding is the NSKeyValueCoding proto-
col, an informal protocol (it is actually a category) to which NSObject (and therefore
every object) conforms.

The fundamental key–value coding methods are valueForKey: and setValue:forKey:.
When one of these methods is called on an object, the object is introspected. In sim-
plified terms, first the appropriate accessor is sought; if it doesn’t exist, the instance
variable is accessed directly. So, for example, suppose the call is this:

[myObject setValue:@"Hello" forKey:@"greeting"];

First, a method setGreeting: is sought in myObject; if it exists, it is called, passing
@"Hello" as its argument. If that fails, but if myObject has an instance variable called
greeting, the value @"Hello" is assigned directly to myObject’s greeting ivar.

The key–value coding mechanism can bypass completely the privacy of
an instance variable! Cocoa knows that you might not want to allow
that, so a class method accessInstanceVariablesDirectly is supplied,
which you can override to return NO (the default is YES).

Both valueForKey: and setValue:forKey: require an object as the value. Your accessor’s
signature (or, if there is no accessor, the instance variable itself) might not use an object
as the value, so the key–value coding mechanism converts for you. Numeric types
(including BOOL) are expressed as an NSNumber; other types (such as CGRect and
CGPoint) are expressed as an NSValue.

Key–Value Coding | 277

A class is key–value coding compliant on a given key if it implements the
methods, or possesses the instance variable, required for access via that
key.

Another useful pair of methods is dictionaryWithValuesForKeys: and setValuesForKeys-
WithDictionary:, which allow you to get and set multiple key–value pairs by way of an
NSDictionary with a single command.

KVC is extremely dynamic. It allows you, in effect, to decide at runtime what instance
variable to access; you obtain the instance variable’s name as an NSString and pass that
to valueForKey: or setValue:forKey:. Thus, by using an NSString instead of an instance
variable or method name, you’re throwing away compile-time checking as to the mes-
sage you’re sending. Moreover, key–value coding is agnostic about the actual class of
the object you’re talking to; you can send valueForKey: to any object and successfully
get a result, provided the class of that object is key–value coding compliant for that
key, so you’re throwing away compile-time checking as to the object you’re sending
the message to. These are both strong advantages of key–value coding, and I often find
myself using it because of them.

Here’s an example of key–value coding used in my own code on my own object. In a
flashcard app, I have a class Term, representing a Latin term, that defines many instance
variables. If the user taps any of three text fields, I want the interface to change from
the term that’s currently showing to the next term whose value is different for that text
field. Thus this code is the same for all three text fields; the only difference is what
instance variable to consider as we hunt for the term to be displayed. By far the simplest
way to express this is through key–value coding (and, as I’ll point out later in this
chapter, by defining properties for these instance variables, I get key–value coding
compliance for free):

NSInteger tag = g.view.tag; // the tag tells us what text field was tapped
NSString* key = @"lesson";
switch (tag) {
 case 2: key = @"lessonSection"; break;
 case 3: key = @"lessonSectionPartFirstWord"; break;
}
// get current value for this instance variable
NSString* curValue = [[self currentCardController].term valueForKey: key];
// ... and so on

On the other hand, an attempt to access a nonexistent key through key–value coding
will result, by default, in a crash at runtime, with an error message of this form: “This
class is not key value coding-compliant for the key myKey.” The lack of quotation marks
around the word after “the key” has misled many a beginner, so remember: the last
word in that error message is the name of the key that gave Cocoa trouble. A common
way to encounter this error message is to change the name of an instance variable so
that the name of an outlet in a nib no longer matches it; at runtime, when the nib loads,
Cocoa will attempt to use key–value coding to set a value in your object based on the

278 | Chapter 12: Accessors and Memory Management

name of the outlet, will fail (because there is no longer an instance variable or accessor
by that name), and will generate this error.

A number of built-in Cocoa classes permit you to use key–value coding in a special
way. For example:

• If you send valueForKey: to an NSArray, it sends valueForKey: to each of its ele-
ments and returns a new array consisting of the results, an elegant shorthand (and
a kind of poor man’s map). NSSet behaves similarly.

• NSSortDescriptor sorts an NSArray by sending valueForKey: to each of its ele-
ments.

• NSDictionary implements valueForKey: as an alternative to objectForKey: (useful
particularly if you have an array of dictionaries); so does NSUserDefaults.

• CALayer (Chapter 16) and CAAnimation (Chapter 17) permit you to use key–value
coding to define and retrieve the values for arbitrary keys, as if they were a kind of
dictionary; this is useful for attaching identifying and configuration information to
one of these instances.

There is also something called a key path that allows you to chain keys in a single
expression. If an object is key–value coding compliant for a certain key, and if the value
of that key is itself an object that is key–value coding compliant for another key, you
can chain those keys by calling valueForKeyPath: and setValue:forKeyPath:. A key path
string looks like a succession of key names joined with a dot (.). For example, value-
ForKeyPath:@"key1.key2" effectively calls valueForKey: on the message receiver, with
@"key1" as the key, and then takes the object returned from that call and calls valueFor-
Key: on that object, with @"key2" as the key.

To illustrate this shorthand, imagine that our object myObject has an instance variable
theData which is an array of dictionaries such that each dictionary has a name key and
a description key. I’ll show you the actual value of theData as displayed by NSLog:

(
 {
 description = "The one with glasses.";
 name = Manny;
 },
 {
 description = "Looks a little like Governor Dewey.";
 name = Moe;
 },
 {
 description = "The one without a mustache.";
 name = Jack;
 }
)

Then [myObject valueForKeyPath: @"theData.name"] returns an array consisting of the
strings @"Manny", @"Moe", and @"Jack". If you don’t understand why, review what I said
a few paragraphs ago about how NSArray and NSDictionary implement valueForKey:.

Key–Value Coding | 279

Another feature of key–value coding is that it allows an object to implement a key as if
its value were an array (or a set), even if it isn’t. This is similar to what I said earlier
about how accessors function as a façade, putting an instance variable name in front
of hidden complexities. To illustrate, I’ll add these methods to the class of our object
myObject:

- (NSUInteger) countOfPepBoys {
 return [self.theData count];
}

- (id) objectInPepBoysAtIndex: (NSUInteger) ix {
 return [self.theData objectAtIndex: ix];
}

By implementing countOf... and objectIn...AtIndex:, I’m telling the key–value coding
system to act as if the given key (@"pepBoys" in this case) existed and were an array. An
attempt to fetch the value of the key @"pepBoys" by way of key–value coding will suc-
ceed, and will return an object that can be treated as an array, though in fact it is a
proxy object (an NSKeyValueArray). Thus we can now say [myObject valueFor-
Key: @"pepBoys"] to obtain this array proxy, and we can say [myObject valueForKey-
Path: @"pepBoys.name"] to get the same array of strings as before. This particular ex-
ample may seem a little silly because the underlying implementation is already an array
instance variable, but you can imagine an implementation whereby the result of object-
InPepBoysAtIndex: is obtained through some completely different sort of operation.

The proxy object returned through this sort of façade behaves like an NSArray, not like
an NSMutableArray. If you want the caller to be able to manipulate the proxy object
provided by a KVC façade as if it were a mutable array, you must implement two more
methods, and you must obtain a different proxy object by calling mutableArrayValue-
ForKey:. So, for example:

- (void) insertObject: (id) val inPepBoysAtIndex: (NSUInteger) ix {
 [self.theData insertObject:val atIndex:ix];
}

- (void) removeObjectFromPepBoysAtIndex: (NSUInteger) ix {
 [self.theData removeObjectAtIndex: ix];
}

Now you can call [myObject mutableArrayValueForKey: @"pepBoys"] to obtain some-
thing that acts like a mutable array. (The true usefulness of mutableArrayValueFor-
Key:, however, will be clearer when we talk about key–value observing, later on.)

A complication for the programmer is that none of these method names can be looked
up directly in the documentation, because they involve key names that are specific to
your object. You can’t find out from the documentation what removeObjectFromPepBoys-
AtIndex: is for; you have to know, in some other way, that it is part of the implemen-
tation of key–value coding compliance for a key @"pepBoys" that can be obtained as a
mutable array. Be sure to comment your code so that you’ll be able to understand it
later. Another complication, of course, is that getting a method name wrong can cause

280 | Chapter 12: Accessors and Memory Management

your object not to be key–value coding compliant. Figuring out why things aren’t
working as expected in a case like that can be tricky.

There is much more to key–value coding; see the Key-Value Coding Programming
Guide for full information.

Memory Management
It comes as a surprise to many beginning Cocoa coders that the programmer has an
important role to play in the explicit management of memory. What’s more, managing
memory incorrectly is probably the most frequent cause of crashes — or, inversely, of
memory leakage, whereby your app’s use of memory increases relentlessly until, in the
worst-case scenario, there’s no memory left.

Under iOS 5, if your app uses ARC, your explicit memory management responsibilities
can be greatly reduced, which is a tremendous relief, as you are far less likely to make
a mistake, and more of your time is liberated to concentrate on what your app actually
does instead of dealing with memory management concerns; but even with ARC it is
still possible to make a memory management mistake (I speak from personal experi-
ence), so you still need to understand Cocoa memory management, so that you know
what ARC is doing for you, and so that you know how to interface with ARC in situa-
tions where it needs your assistance. Do not, therefore, suppose that you don’t need to
read this section on the grounds that you’re going to be using ARC.

Principles of Cocoa Memory Management
The reason why memory must be managed at all is that object references are pointers.
As I explained in Chapter 1, the pointers themselves are simple C values (basically they
are just integers) and are managed automatically, whereas what an object pointer points
to is a hunk of memory that must explicitly be set aside when the object is brought into
existence and that must explicitly be freed up when the object goes out of existence.
We already know how the memory is set aside — that is what alloc does. But how is
this memory to be freed up, and when should it happen?

At the very least, an object should certainly go out of existence when no other objects
exist that have a pointer to it. An object without a pointer to it is useless; it is occupying
memory, but no other object has, or can ever get, a reference to it. This is a memory
leak. Many computer languages solve this problem through a policy called garbage
collection. Simply put, the language prevents memory leaks by periodically sweeping
through a central list of all objects and destroying those to which no pointer exists. But
affixing a form of garbage collection to Objective-C would be an inappropriately ex-
pensive strategy on an iOS device, where memory is strictly limited and the processor
is relatively slow (and may have only a single core). Thus, memory in iOS must be
managed more or less manually.

Memory Management | 281

But manual memory management is no piece of cake, because an object must go out
existence neither too late nor too soon. Suppose we endow the language with the ability
for one object to command that another object go out of existence now, this instant.
But multiple objects can have a pointer (a reference) to the very same object. If both
the object Manny and the object Moe have a pointer to the object Jack, and if Manny
tells Jack to go out of existence now, poor old Moe is left with a pointer to nothing (or
worse, to garbage). A pointer whose object has been destroyed behind the pointer’s
back is a dangling pointer. If Moe subsequently uses that dangling pointer to send a
message to the object that it thinks is there, the app will crash.

To prevent both dangling pointers and memory leakage, Objective-C and Cocoa im-
plement a policy of manual memory management based on a number, maintained by
every object, called its retain count. Other objects can increment or decrement an ob-
ject’s retain count. As long as an object’s retain count is positive, the object will persist.
No object has the direct power to tell another object to be destroyed; rather, as soon
as an object’s retain count is decremented to zero, it is destroyed automatically.

By this policy, every object that needs Jack to persist should increment Jack’s retain
count, and should decrement it once again when it no longer needs Jack to persist. As
long as all objects are well-behaved in accordance with this policy, the problem of
manual memory management is effectively solved:

• There cannot be any dangling pointers, because any object that has a pointer to
Jack has incremented Jack’s retain count, thus ensuring that Jack persists.

• There cannot be any memory leaks, because any object that no longer needs Jack
decrements Jack’s retain count, thus ensuring that eventually Jack will go out of
existence (when the retain count reaches zero, indicating that no object needs Jack
any longer).

Obviously, all of this depends upon all objects cooperating in obedience to this memory
management policy. Cocoa’s objects (objects that are instances of built-in Cocoa
classes) are well-behaved in this regard, but you must make sure your objects are well-
behaved. Before ARC, ensuring that your objects were well-behaved was entirely up to
you and your explicit code; under ARC, your objects will be well-behaved more or less
automatically, provided you understand how to cooperate with ARC’s automated be-
havior.

The Golden Rules of Memory Management
An object is well-behaved with respect to memory management as long as it adheres
to certain very simple rules in conformity with the basic concepts of memory manage-
ment outlined in the previous section.

Before I tell you the rules, it may help if I remind you (because this is confusing to
beginners) that a variable name, including an instance variable, is just a pointer. When

282 | Chapter 12: Accessors and Memory Management

you send a message to that pointer, you are really sending a message through that
pointer, to the object to which it points. The rules for memory management are rules
about objects, not names, references, or pointers. You cannot increment or decrement
the retain count of a pointer; there is no such thing. The memory occupied by the
pointer is managed automatically (and is tiny). Memory management is concerned with
the object to which the pointer points.

(That is why I’ve referred to my example objects by proper names — Manny, Moe, and
Jack — and not by variable names. The question of who has retained Jack has nothing
to do with the name by which any particular object refers to Jack.)

The two things are easily confused, especially because — as I’ve often pointed out in
earlier chapters — the variable name pointing to an object is so often treated as the
object that there is a tendency to think that it is the object, and to speak as if it were
the object. It’s clumsy, in fact, to distinguish the name from the object it points to. But

Debugging Memory Management Mistakes
Memory management mistakes are among the most common pitfalls for beginners and
even for experienced Cocoa programmers. Though far less likely to occur under ARC,
they still can occur under ARC, especially because a programmer using ARC is prone
to suppose (wrongly) that they can’t. What experience really teaches is to use every
tool at your disposal to ferret out possible mistakes. Here are some of those tools:

• The static analyzer (Product → Analyze) knows a lot about memory management
and can help call potential memory management mistakes to your attention.

• Instruments has excellent tools for noticing leaks and tracking memory manage-
ment of individual objects (Product → Profile).

• Good old caveman debugging (Chapter 9) can help confirm that your objects are
behaving as you want them to. I recently discovered that one of my apps had a
memory leak by implementing dealloc (the NSObject method that is called as an
object goes out of existence) with an NSLog call in one of its objects and finding
that dealloc was never being called, even when I thought it should be — the object
was leaking. Neither Instruments nor the static analyzer alerted me to the problem,
and this app was using ARC, so I had been assuming (wrongly) that no such prob-
lem could arise in the first place.

• Dangling pointers are particularly difficult to track down, but they can often be
located by “turning on zombies.” This is easy in Instruments with the Zombies
template, but unfortunately it doesn’t work on a device. For a device, edit the Run
action in your scheme, switch to the Diagnostics tab, and check Enable Zombie
Objects. The result is that no object ever goes out of existence; instead, it is replaced
by a “zombie” that will report to the console if a message is sent to it (“message
sent to deallocated instance”). Be sure to turn zombies back off when you’ve fin-
ished tracking down your dangling pointers.

Memory Management | 283

in discussing memory management, I’ll try to make that distinction, for clarity and
correctness, and to prevent confusion.

Here, then, are the golden rules of Cocoa memory management:

• To increment the retain count of any object, send it the retain message. This is
called retaining the object. The object is now guaranteed to persist at least until its
retain count is decremented once more. To make this a little more convenient, a
retain call returns as its value the retained object — that is, [myObject retain]
returns the object pointed to by myObject, but with its retain count incremented.

• When you (meaning a certain object) say alloc to a class, the resulting instance
comes into the world with its retain count already incremented. You do not need
to retain an object you’ve just instantiated by saying alloc (and you should not).
Similarly, when you say copy to an instance, the resulting new object (the copy)
comes into the world with its retain count already incremented. You do not need
to retain an object you’ve just instantiated by saying copy (and you should not).

• To decrement the retain count of any object, send it the release message. This is
called releasing the object. If you (meaning a certain object) obtained an object by
saying alloc or copy, or if you said retain to an object, you (meaning the same
object) must balance this eventually by saying release to that object, once. You
should assume that thereafter the object may no longer exist.

A general way of understanding the golden rules of Cocoa memory management is to
think in terms of ownership. If Manny has said alloc, retain, or copy with regard to
Jack, Manny has asserted ownership of Jack. More than one object can own Jack at
once, but each such object is responsible only for managing its own ownership of Jack
correctly. It is the responsibility of an owner of Jack eventually to release Jack, and a
nonowner of Jack must never release Jack. As long as all objects that ever take owner-
ship of Jack behave this way, Jack will not leak nor will any pointer to Jack be left
dangling.

Now, under ARC, as I shall explain presently in more detail, these rules remain exactly
the same, but they are obeyed for you in an automated fashion by the compiler. In an
ARC-based app, you never say retain or release — in fact, you’re not allowed to.
Instead, the compiler says retain or release for you, using exactly the principles you
would have had to use if you had said them (the golden rules of Cocoa memory man-
agement)! Since the compiler is smarter (or at least more ruthlessly tenacious) than you
are about this sort of nit-picky rule-based behavior, it won’t make any of the mistakes
you might have made due to carelessness or confusion.

The moment an object is released, there is a chance it will be destroyed. Before ARC,
this fact was a big worry for programmers. In a non-ARC program, you must take care
not to send any messages subsequently through any pointer to an object that has been
destroyed — including the pointer you just used to release the object. In effect, you’ve
just turned your own pointer into a possible dangling pointer! If there is any danger
that you might accidentally attempt to use this dangling pointer, a wise policy is to

284 | Chapter 12: Accessors and Memory Management

nilify the pointer — that is, to set the pointer itself to nil. A message to nil has no effect,
so if you do send a message through that pointer, it won’t do any good, but at least it
won’t do any harm (kind of like chicken soup).

In an ARC-based program, this policy, too, is strictly followed: ARC will nilify for you
any pointer to whose object it has just sent the last balancing release message (meaning
that the object might now have gone out of existence). Since, as I mentioned in Chap-
ter 3, ARC also sets an instance pointer to nil when you declare it (if you don’t initialize
it yourself, there and then, to point to an actual instance), there follows as the night
the day the following delightful corollary: under ARC, every instance pointer either
points to an actual instance or is nil. This fact alone should send you rushing to convert
all your existing non-ARC apps to ARC if you possibly can.

What ARC Is and What It Does
When you create a new Xcode project and choose an application template, a checkbox
in the second dialog lets you elect to Use Automatic Reference Counting. Automatic
Reference Counting is ARC. If this checkbox is checked, then (among other things):

• The LLVM compiler build setting Objective-C Automatic Reference Counting
(CLANG_ENABLE_OBJC_ARC) for your project is set to YES.

• Any retain or release statements that would have been present in the non-ARC
version of any of the project template’s .m files are stripped out.

• Any code that Xcode subsequently inserts automatically, such as a property gen-
erated by Control-dragging from a nib into code, will conform to ARC conventions.

It is also possible to convert an existing non-ARC project to ARC; choose Edit →

Refactor → Convert to Objective-C ARC for assistance with the necessary code changes.
(For full details, see the appropriate WWDC 2011 videos.)

ARC is actually a feature of LLVM 3.0 and later, and is one of the main
purposes for which the LLVM compiler was developed. For full tech-
nical information, see http://clang.llvm.org/docs/AutomaticReference
Counting.html. — You do not have to adopt ARC for an entire project;
if you have old non-ARC code, possibly written by someone else, you
may wish to incorporate that code into your ARC-based project without
substantially altering the non-ARC code. To do so, confine all non-ARC
code to its own files, and for each of those files, edit the target, switch
to the Build Phases tab, and in the Compile Sources section, double-
click the non-ARC file’s listing and type -fno-objc-arc in the box (to
enter it in the Compiler Flags column).

When you write code for an ARC-based project, as I’ve already mentioned, you never
say retain or release. When you compile an ARC-based project, the compiler will treat
any retain or release commands as an error, and will instead, behind the scenes, insert

Memory Management | 285

http://clang.llvm.org/docs/AutomaticReferenceCounting.html
http://clang.llvm.org/docs/AutomaticReferenceCounting.html

its own commands that effectively do the exact same work as retain and release com-
mands. Your code is thus manually memory-managed, in conformity with the princi-
ples and golden rules of manual memory management that I’ve already described, but
the author of the manual memory-management code is the compiler (and the memory-
management code itself is invisible, unless you feel like reading assembly language).

ARC does its work of inserting retain and release commands in two stages:

1. It behaves very, very conservatively; basically, if in doubt, it retains (and of course
later releases). In effect, ARC retains at every juncture that might have the slightest
implications for memory management: it retains when an object is received as an
argument, it retains when an object is assigned to a variable, and so forth. It may
even insert temporary variables to enable it to refer sufficiently early to an object
so that it can retain it. But of course it also releases to match. This means that at
the end of the first stage, memory management is technically correct; there may be
far more retains and releases on a single object than you would have put if you were
writing those commands yourself, but at least you can be confident that no pointer
will dangle and no object will leak.

2. It optimizes, removing as many retain and release pairs from each object as it
possibly can while still ensuring safety with regard to the program’s actual behav-
ior. This means that at the end of the second stage, memory management is still
technically correct, and it is also efficient.

So, for example, consider the following code:

- (void) myMethod {
 NSArray* myArray = [NSArray array];
 NSArray* myOtherArray = myArray;
}

Now, in actual fact, no additional memory management code is needed here (for rea-
sons that I’ll clarify in the next section). But in its first pass, we may imagine that ARC
will behave very, very conservatively: it will ensure that every variable is nil or points
to an object, and it will retain every value as it is assigned to a variable, at the same time
releasing the value previously pointed to by the variable being assigned to, on the as-
sumption that it previously retained that value when assigning it to that variable as well.
So we may imagine (though this is unlikely to be exactly correct) a scenario where ARC
compiles that code at first into the equivalent of Example 12-1.

Example 12-1. Imaginary scenario of ARC’s conservative memory management

- (void) myMethod {
 // create all new object pointers as nil
 NSArray* myArray = nil;
 // retain as you assign, release the previous value
 id temp1 = myArray;
 myArray = [NSArray array];
 [myArray retain];
 [temp1 release]; // (no effect, it's nil)

286 | Chapter 12: Accessors and Memory Management

 // create all new object pointers as nil
 NSArray* myOtherArray = nil;
 // retain as you assign, release the previous value
 id temp2 = myOtherArray;
 myOtherArray = myArray;
 [myOtherArray retain];
 [temp2 release]; // (no effect, it's nil)
 // method is ending, balance out retains on local variables
 [myArray release];
 myArray = nil;
 [myOtherArray release];
 myOtherArray = nil;
}

The ARC optimizer will then come along and reduce the amount of work being done
here. For example, it may observe that myArray and myOtherArray turn out to be pointers
to the same object, so it may therefore remove some of the intermediate retains and
releases. And it may observe that there’s no need to send release to nil. But retains and
releases are so efficient under ARC that it wouldn’t much matter if the optimizer didn’t
remove any of the intermediate retains and releases.

However, the keen-eyed reader may have noticed that there is more to the manual
memory management balancing act than matching retain and release: in particular,
I said earlier that alloc and copy yielded objects whose retain count had already been
incremented, so that they, too, must be balanced by release. In order to obey this part
of the golden rules of Cocoa memory management, ARC resorts to assumptions about
how methods are named. This means that you had better conform, in your code, to the
same assumptions about how methods are named, or you can accidentally cause ARC
to do the wrong things (although, as it turns out, there are ways out of this predicament
if you have a wrongly-named method whose name you absolutely can’t change).

In particular, when your code receives an object as the returned value of a method call,
ARC looks at the opening word (or words) of the camelCased method name. (The term
camelCased describes a compound word whose individual words are demarcated by
internal capitalization, like the words “camel” and “Cased” in the word “camelCased.”)
If the opening word of the name of that method is alloc, init, new, copy, or mutable-
Copy, ARC assumes that this object has an incremented retain count that will need to
be balanced with a corresponding release.

So, in the preceding example, if the array had been received from a call to
[NSArray new] instead of [NSArray array], ARC would know that an extra release will
eventually be needed, to balance the incremented retain count of the object returned
from a method whose name begins with new.

Your own responsibility in this regard, then, is not to name any of your methods inap-
propriately in such a way as to set off that sort of alarm bell in ARC’s head. The easiest
approach is not to start any of your own method names with alloc, init (unless you’re
writing an initializer, of course), new, copy, or mutableCopy. Doing so might not cause

Memory Management | 287

any damage, but it is better not to take the risk: obey the ARC naming conventions if
you possibly can.

In the first edition of this book, I included at this point a section rewriting
all earlier examples to show how they would look with memory properly
managed. In this edition there is no need, since I’m using ARC through-
out and memory management is therefore correct in all earlier examples.

How Cocoa Objects Manage Memory
Built-in Cocoa objects will take ownership of objects you hand them, by retaining them,
if it makes sense for them to do so. (Indeed, this is so generally true that if a Cocoa
object is not going to retain an object you hand it, there will be a note to that effect in
the documentation.) Thus, you don’t need to worry about managing memory for an
object if the only thing you’re going to do with it is hand it over to a Cocoa object.

A good example is an NSArray. Consider the following minimal example:

NSString* s = [[NSDate date] description];
NSArray* arr = [NSArray arrayWithObject: s];

When you hand the string to the array, the array retains the string. As long as the array
exists and the string is in the array, the string will exist. When the array goes out of
existence, it will also release the string; if no other object is retaining the string, the
string will then go out of existence in good order, without leaking, and all will be well.
All of this is right and proper; the array could hardly “contain” the string without taking
ownership of it.

An NSMutableArray works the same way, with additions. When you add an object to
an NSMutableArray, the array retains it. When you remove an object from an
NSMutableArray, the array releases it. Again, the array is always doing the right thing.

Thus you should stay out of, and not worry yourself about, memory management for
objects you don’t own; the right thing will happen all by itself. For instance, look back
at Example 10-4. Here it is again:

NSString* f = [[NSBundle mainBundle] pathForResource:@"index" ofType:@"txt"];
NSError* err = nil;
NSString* s = [NSString stringWithContentsOfFile:f
 encoding:NSUTF8StringEncoding
 error:&err];
// error-checking omitted
NSMutableDictionary* d = [NSMutableDictionary dictionary];
for (NSString* line in [s componentsSeparatedByString:@"\n"]) {
 NSArray* items = [line componentsSeparatedByString:@"\t"];
 NSInteger chnum = [[items objectAtIndex: 0] integerValue];
 NSNumber* key = [NSNumber numberWithInteger:chnum];
 NSMutableArray* marr = [d objectForKey: key];
 if (!marr) { // no such key, create key–value pair
 marr = [NSMutableArray array];

288 | Chapter 12: Accessors and Memory Management

 [d setObject: marr forKey: key];
 }
 // marr is now a mutable array, empty or otherwise
 NSString* picname = [items objectAtIndex: 1];
 [marr addObject: picname];
}

No explicit memory management is happening here, and no additional memory man-
agement needs to happen (even if you aren’t using ARC). We’re generating a lot of
objects, but never do we say alloc (or copy), so we have no ownership, and memory
management is therefore not our concern. Moreover, no bad thing is going to happen
between one line and the next while this code is running. The mutable dictionary d, for
example, generated by calling [NSMutableDictionary dictionary], is not going to van-
ish mysteriously before we can finish adding objects to it. (I’ll say a bit more, later in
this chapter, about why I’m so confident of this.)

On the other hand, it is possible (if you aren’t using ARC) to be tripped up by how
Cocoa objects manage memory. Consider the following:

NSString* s = [myMutableArray objectAtIndex: 0];
[myMutableArray removeObjectAtIndex: 0]; // Bad idea! (But just fine under ARC)

Here we remove a string from an array, keeping a reference to it ourselves as s. But, as
I just said, when you remove an object from an NSMutableArray, the array releases it.
So the commented line of code in the previous example involves an implicit release of
the string in question, and if this reduces the string’s retain count to zero, it will be
destroyed. In effect, we’ve just done the thing I warned you about earlier: we’ve turned
our own pointer s into a possible dangling pointer, and a crash may be in our future
when we try to use it as if it were a string.

The way to ensure against such possible destruction in non-ARC code is to retain the
object before doing anything that might destroy it (Example 12-2).

Example 12-2. How non-ARC code ensures a collection element’s persistence

NSString* s = [myMutableArray objectAtIndex: 0];
[s retain]; // this is non-ARC code
[myMutableArray removeObjectAtIndex: 0];

Of course, now you have made management of this object your business; you have
asserted ownership of it, and must make sure that this retain is eventually balanced by
a subsequent release, or the string object may leak.

However, the very same code works perfectly under ARC:

NSString* s = [myMutableArray objectAtIndex: 0];
[myMutableArray removeObjectAtIndex: 0]; // Just fine under ARC

The reason is that, as I mentioned earlier, ARC is insanely conservative at the outset.
Just as in Example 12-1, ARC retains on assignment, so we may imagine that ARC will
operate according to something like the imaginary scenario shown in Example 12-3.

Memory Management | 289

Example 12-3. Imaginary scenario of how ARC ensures a collection element’s persistence

NSString* s = nil;
// retain as you assign, release the previous value
id temp = s;
s = [myMutableArray objectAtIndex: 0];
[s retain];
[temp release]; // (no effect, it's nil)
// and now this move is safe
[myMutableArray removeObjectAtIndex: 0];
// ... and later ...
[s release];
s = nil;

This turns out to be exactly the right thing to do! When the call to removeObjectAt-
Index: comes along, the retain count of the object received from the array is still in-
cremented, exactly as in our non-ARC Example 12-2.

Autorelease
When you call a method and receive as a result what Chapter 5 calls a ready-made
instance, how does memory management work? Consider, for example, this code:

NSArray* myArray = [NSArray array];

According to the golden rules of memory management, the object now pointed to by
myArray doesn’t need memory management. You didn’t say alloc in order to get it, so
you haven’t claimed ownership of it and you don’t need to release it (and shouldn’t do
so). But how is this possible? How is the NSArray class able to vend an array that you
don’t have to release without also leaking that object?

If you don’t see why this is mysterious, pretend that you are NSArray. How would you
implement the array method so as to generate an array that the caller doesn’t have to
memory-manage? Don’t say that you’d just call some other NSArray method that vends
a ready-made instance; that merely pushes the same problem back one level. You are
NSArray. Sooner or later, you must somehow supply this magical instance. Ultimately
you will have to generate the instance from scratch, and then how will you manage its
memory? You can’t do it like this:

- (NSArray*) array {
 NSArray* arr = [[NSArray alloc] init];
 return arr; // hmmm, not so fast...
}

This, it appears, can’t work. On the one hand, we generated arr’s value by saying
alloc. This means we must release the object pointed to by arr. On the other hand,
when are we going to do this? If we do it just before returning arr, arr will be pointing
to garbage and we will be vending garbage. We cannot do it just after returning arr,
because our method exits when we say return. This is a puzzle. It is our job, if we are
to be a good Cocoa citizen and follow the golden rules of memory management, to

290 | Chapter 12: Accessors and Memory Management

decrement the retain count of this object. We need a way to vend this object without
decrementing its retain count now (so that it stays in existence long enough for the
caller to receive and work with it), yet ensure that we will decrement its retain count
(to balance our alloc call and fulfill our own management of this object’s memory).

The solution, which is explicit in pre-ARC code, is autorelease:

- (NSArray*) array {
 NSArray* arr = [[NSArray alloc] init];
 [arr autorelease];
 return arr;
}

Or, because autorelease returns self, we can condense that:

- (NSArray*) array {
 NSArray* arr = [[NSArray alloc] init];
 return [arr autorelease];
}

Here’s how autorelease works. Your code runs in the presence of something called an
autorelease pool. (If you look in main.m, you can actually see an autorelease pool being
created.) When you send autorelease to an object, that object is placed in the autore-
lease pool, and a number is incremented saying how many times this object has been
placed in this autorelease pool. From time to time, when nothing else is going on, the
autorelease pool is automatically drained. This means that the autorelease pool sends
release to each of its objects, the same number of times as that object was placed in
this autorelease pool, and empties itself of all objects. If that causes an object’s retain
count to be zero, fine; the object is destroyed in the usual way. So autorelease is just
like release — effectively, it is a form of release — but with a proviso, “later, not right
this second.”

You don’t need to know exactly when the current autorelease pool will be drained;
indeed, you can’t know (unless you force it, as we shall see). The important thing is
that in a case like our method array, there will be plenty of time for whoever called
array to retain the vended object if desired.

The vended object in a case like our method array is called an autoreleased object. The
object that is doing the vending has in fact completed its memory management of the
vended object. The vended object thus potentially has a zero retain count. But it doesn’t
have a zero retain count just yet. The vended object is not going to vanish right this
second, because your code is running and so the autorelease pool is not going to be
drained right this second. The recipient of such an object needs to bear in mind that
this object may be autoreleased. It won’t vanish while the code that called the method
that vended the object is running, but if the receiving object wants to be sure that the
vended object will persist later on, it should retain it.

This explains why there’s no explicit memory management in Example 10-4 (cited
earlier in this chapter): we don’t madly retain every object we obtain in that code, even
in non-ARC code, because those objects will all persist long enough for our code to

Memory Management | 291

finish. This fits with the golden rules of memory management. An object you receive
by means other than those listed among the golden rules as asserting ownership
(alloc or copy) isn’t under your ownership. The object will either be owned and retained
by some other persistent object, in which case it won’t vanish while the other object
persists, or it will be independent but autoreleased, in which case it will at least persist
while your code continues to run. If you want it to persist and you’re afraid it might
not, you should take ownership of it by retaining it.

Under ARC, as you might expect, all the right things happen of their own accord. You
don’t have to say autorelease, and indeed you cannot. Instead, ARC will say it for you.
And it says it in accordance with the method naming rule I described earlier. A method
called array, for example, does not start with a camelCase unit new, init, alloc, copy,
or mutableCopy. Therefore it must return an object whose memory management is bal-
anced, using autorelease for the last release. ARC will see to it that this is indeed the
case. On the other side of the ledger, the method that called array and received an array
in return must assume that this object is autoreleased and could go out of existence if
we don’t retain it. That’s exactly what ARC does assume.

Sometimes you may wish to drain the autorelease pool immediately. Consider the fol-
lowing:

for (NSString* aWord in myArray) {
 NSString* lowerAndShorter = [[aWord lowercaseString] substringFromIndex:1];
 [myMutableArray addObject: lowerAndShorter];
}

Every time through that loop, two objects are added to the autorelease pool: the low-
ercase version of the string we start with, and the shortened version of that. The first
object, the lowercase version of the string, is purely an intermediate object: as the current
iteration of the loop ends, no one except the autorelease pool has a pointer to it. If this
loop had very many repetitions, or if these intermediate objects were themselves very
large in size, this could add up to a lot of memory. These intermediate objects will all
be released when the autorelease pool drains, so they are not leaking; nevertheless, they
are accumulating in memory, and in certain cases there could be a danger that we will
run out of memory before the autorelease pool drains. The problem can be even more
acute than you know, because you might repeatedly call a built-in Cocoa method that
itself accumulates a lot of intermediate objects.

The solution is to intervene in the autorelease pool mechanism by supplying your own
autorelease pool. This works because the autorelease pool used to store an autoreleased
object is the most recently created pool. So you can just create an autorelease pool at
the top of the loop and drain it at the bottom of the loop, each time through the loop.
In iOS 5, the notation for doing this is to surround the code that is to run under its own
autorelease pool with the directive @autoreleasepool{}, like this:

292 | Chapter 12: Accessors and Memory Management

for (NSString* aWord in myArray) {
 @autoreleasepool {
 NSString* lowerAndShorter = [[aWord lowercaseString] substringFromIndex:1];
 [myMutableArray addObject: lowerAndShorter];
 }
}

(Prior to iOS 5, the notation was to instantiate an NSAutoreleasePool object at the top
of the loop and call release or drain on that object at the bottom of the loop. Under
ARC this notation is not available, and even in non-ARC code @autoreleasepool{} is
considered preferable; the truth is that an NSAutoreleasePool instance was never a real
instance, so the newer notation is more honest.)

Many classes provide the programmer with two equivalent ways to obtain an object:
either an autoreleased object or an object that you create yourself with alloc and some
form of init. So, for example, NSArray supplies both the class method arrayWith-
Objects: and the instance method initWithObjects:. Which should you use? Before
ARC, Apple has stated that they would prefer you to lean toward initWithObjects:. In
general, where you can generate an object with alloc and some form of init, they’d
like you to do so. That way, you are in charge of releasing the object. This policy
prevents your objects from hanging around in the autorelease pool and keeps your use
of memory as low as possible. Under ARC, I still tend to adhere to this policy from
force of habit, but in fact the ARC autorelease pool architecture is so efficient that the
old policy may no longer provide any advantage.

Memory Management of Instance Variables (Non-ARC)
Before ARC, the main place for the programmer to make a memory management mis-
take was with respect to instance variables. Memory management of temporary vari-
ables within a single method is pretty easy; you can see the whole method at once, so
now just follow the golden rules of memory management, balancing every retain,
alloc, or copy with a release (or, if you’re returning an object with an incremented
retain count, autorelease). But instance variables make things complicated, for many
reasons:

• Instance variables are persistent. Your own instance variables will persist when this
method is over and your code has stopped running and the autorelease pool has
been drained. So if you want an object value pointed to by an instance variable not
to vanish in a puff of smoke, you’d better retain it as you assign it to the instance
variable.

• Instance variables are managed from different places in your code. This means that
memory management can be spread out over several different methods, making it
difficult to get right and difficult to debug if you get it wrong. For example, if you
retained a value assigned to an instance variable, you’ll later need to release it in
order to conform to the golden rules of memory management — but in some other
method.

Memory Management | 293

• Instance variables might not belong to you. You will often assign to or get a value
from an instance variable belonging to another object. You are now sharing access
to a value with some other object. If that object were to go out of existence and
release its instance variables, and you have a pointer to the instance variable value
coming from that other object and you haven’t asserted your own ownership by
retaining that value, you can wind up with a dangling pointer.

To see what I mean, return once more to Example 10-4. As I have already explained,
there was no need to worry about memory management during this code, even without
ARC. We have a mutable dictionary d, which we acquired as a ready-made instance by
calling [NSMutableDictionary dictionary], and it isn’t going to vanish while we’re
working with it. Now, however, suppose that in the next line we propose to assign d to
an instance variable of ours:

self->theData = d; // in non-ARC code this would be a bad idea!

Before ARC, that code constituted a serious potential mistake. If our code now comes
to a stop, we’re left with a persistent pointer to an object over which we have never
asserted ownership; it might vanish, leaving us with a dangling pointer. The solution,
obviously, is to retain this object as we assign it to our instance variable. You could do
it like this:

[d retain];
self->theData = d;

Or you could do it like this:

self->theData = d;
[self->theData retain];

Or, because retain returns self, you could actually do it like this:

self->theData = [d retain];

(Make sure you understand why those are all equivalent. It’s because d and self->the-
Data are just names; they are pointers. What you’re retaining is the object pointed to.
How you refer to that object, under what name, is neither here nor there.)

So which should you use? Probably none of them. Consider what a lot of trouble it will
be if you ever want to assign a different value to self->theData. You’re going to have
to remember to release the object already pointed to (to balance the retain you’ve used
here), and you’re going to have to remember to retain the next value as well. It would
be much better to encapsulate memory management for this instance variable in an
accessor (a setter). That way, as long as you always pass through the accessor, memory
will be managed correctly. A standard template for such an accessor might look like
Example 12-4.

294 | Chapter 12: Accessors and Memory Management

Example 12-4. A simple retaining setter

- (void) setTheData: (NSMutableArray*) value {
 if (self->theData != value) {
 [self->theData release];
 self->theData = [value retain];
 }
}

In Example 12-4, we release the object currently pointed to by our instance variable
(and if that object is nil, no harm done) and retain the incoming value before assigning
it to our instance variable (and if that value is nil, no harm done either). The test for
whether the incoming value is the object already pointed to by our instance variable is
not just to save a step; it’s because if we were to release that object, it could vanish then
and there, turning not only self->theData but also value (which points to the same
thing) into a dangling pointer.

The setter accessor now manages memory correctly for us; provided we always use it
to set our instance variable, all will be well. This is one of the main reasons why accessors
are so important! So the assignment to the instance variable in our original code should
now look like this:

[self setTheData: d];

Observe that we can also use this setter subsequently to release the value of the instance
variable and nilify the instance variable itself, thus preventing a dangling pointer, all in
a single easy step:

[self setTheData: nil];

So there’s yet another benefit of using an accessor to manage memory.

Our memory management for this instance variable is still incomplete, however. We
(meaning the object whose instance variable this is) must also remember to release the
object pointed to by this instance variable at the last minute before we ourselves go out
of existence. Otherwise, if this instance variable points to a retained object, there will
be a memory leak. The “last minute” is typically dealloc, the NSObject method
(Chapter 10) that is called as an object goes out of existence.

In dealloc, there is no need to use accessors to refer to an instance variable, and in fact
it’s not a good idea to do so, because you never know what other side effects an accessor
might have. And (under non-ARC code) you must always call super last of all. So here’s
our implementation of this object’s dealloc:

- (void) dealloc {
 [self->theData release];
 [super dealloc];
}

That completes the memory management for one instance variable. In general, if you
are not using ARC, you will need to make sure that every object of yours has a

Memory Management | 295

dealloc that releases every instance variable whose value has been retained. This, ob-
viously, is one more very good opportunity for you to make a mistake.

Never, never call dealloc in your code, except to call super last of all in
your override of dealloc. Under ARC, you can’t call dealloc — yet an-
other example of how ARC saves you from yourself.

Just as it’s not a good idea to use your own accessors to refer to your own instance
variable in dealloc, so you should not use your own accessors to refer to your own
instance variables in an initializer (see Chapter 5). The reason is in part that the object
is not yet fully formed, and in part that an accessor can have other side effects. Instead,
you will set your instance variables directly, but you must also remember to manage
memory.

To illustrate, I’ll rewrite the example initializer from Chapter 5 (Example 5-3). This
time I’ll allow our object (a Dog) to be initialized with a name. The reason I didn’t
discuss this possibility in Chapter 5 is that a string is an object whose memory must be
managed! So, imagine now that we have an instance variable name whose value is an
NSString, and we want an initializer that allows the caller to pass in a value for this
instance variable. It might look like Example 12-5.

Example 12-5. A simple initializer that retains an ivar

- (id) initWithName: (NSString*) s {
 self = [super init];
 if (self) {
 self->name = [s retain];
 }
 return self;
}

Actually, it is more likely in the case of an NSString that you would copy it rather than
merely retain it. The reason is that NSString has a mutable subclass NSMutableString,
so some other object might call initWithName: and hand you a mutable string to which
it still holds a reference — and then mutate it, thus changing this Dog’s name behind
your back. So the initializer would look like Example 12-6.

Example 12-6. A simple initializer that copies an ivar

- (id) initWithName: (NSString*) s {
 self = [super init];
 if (self) {
 self->name = [s copy];
 }
 return self;
}

296 | Chapter 12: Accessors and Memory Management

In Example 12-6, we don’t bother to release the existing value of name; it is certainly
not pointing to any previous value (because there is no previous value), so there’s no
point.

Thus, memory management for an instance variable may take place in as many as three
places: the initializer, the setter, and dealloc. This is a common architecture. It is a lot
of work, and a common source of error, having to look in multiple places to check that
you are managing memory consistently and correctly, but that’s what you must do if
you aren’t using ARC (though, as I’ll point out later in this chapter, Objective-C has
the ability to write your accessors for you).

Earlier, I mentioned that KVC will set an instance variable directly if it
can’t find a setter corresponding to the key. When it does this, it retains
the incoming value. This fact is little-known and poorly documented —
and scary. The last thing you want, in non-ARC code, is implicit memory
management. This is one more reason to provide accessors. On the other
hand, if you’re using ARC, this is not such a worry, since ARC is already
providing implicit memory management.

Memory Management of Instance Variables (ARC)
If you’re using ARC, ARC will manage your instance variable memory for you; you
needn’t (and, by and large, you can’t) do it for yourself. By default, ARC will treat an
instance variable the same way it treats any variable: on assignment to that instance
variable, it creates a temporary variable, retains the assigned value in it, releases the
current value of the instance variable, and performs the assignment. Thus, you write
this code:

self->theData = d; // an NSMutableDictionary

ARC, in effect, in accordance with its rule that it retains on assignment and releases the
old value, substitutes something like this scenario:

// imaginary scenario: retain on assignment, release the previous value
id temp = self->theData;
self->theData = d;
[self->theData retain];
[temp release];

This is exactly the right thing to have happened; in fact, it will not have escaped your
attention that it is virtually the same code you would have written for a formal accessor
such as Example 12-4. So much for worrying about release and retain on assignment!
If you did want to write a setter, it might consist of no more than a direct assignment:

- (void) setTheData: (NSMutableArray*) value {
 self->theData = value;
}

Moreover, when your object goes out of existence, ARC releases its retained instance
variable values. So much for worrying about releasing in dealloc! You may still need,

Memory Management | 297

under ARC, to implement dealloc for other reasons — for example, it could still be
the right place to unregister for a notification (Chapter 11) — but you won’t call
release on any instance variables there, and you won’t call super. At the time
dealloc is called, your instance variables have not yet been released, so it’s fine to refer
to them in dealloc.

At this point you may be imagining that, under ARC, you might be able to live without
any accessors at all: instead, you can just assign directly to your instance variables and
all the right memory-management things will happen, so who needs a formal setter?
However, a formal accessor, as I’ll explain later, can do things above and beyond ARC’s
automated insertion of release-and-retain, such as copying instead of retaining, dealing
with multithreading, and adding your own custom behaviors. Also, obviously, acces-
sors can be made public and so available to other objects, whereas an instance variable
is not public. Nevertheless, it is certainly true that in my own code I’ve found myself
using more private instance variables and assigning to them directly, simply because
ARC makes it so easy (and memory-safe) to do so.

In the absence of a release call, which is forbidden under ARC, what
happens if you want to release an instance variable’s value manually?
The solution is simple: set the instance variable to nil. When you nilify
a variable, ARC releases its existing value for you by default.

You may be wondering about ARC’s implications for the way you’ll write an initializer
that involves setting object instance variable values, as in Example 12-5 and Exam-
ple 12-6. The code for these initializers will be just the same under ARC as under non-
ARC, except that you needn’t (and can’t) say retain. So Example 12-5 under ARC
would look like Example 12-7.

Example 12-7. A simple initializer that retains an ivar under ARC

- (id) initWithName: (NSString*) s {
 self = [super init];
 if (self) {
 self->name = s;
 }
 return self;
}

Example 12-6 under ARC will be unchanged, as shown in Example 12-8; you can still
say copy under ARC, and ARC understands how to manage the memory of an object
returned from a method whose camelCased name starts with (or simply is) copy.

298 | Chapter 12: Accessors and Memory Management

Example 12-8. A simple initializer that copies an ivar under ARC

- (id) initWithName: (NSString*) s {
 self = [super init];
 if (self) {
 self->name = [s copy];
 }
 return self;
}

Retain Cycles and Weak References
ARC’s behavior is automatic and mindless; it knows nothing of the logic of the rela-
tionships between objects in your app. Sometimes, you have to provide ARC with
further instructions to prevent it from doing something detrimental. Typically, this
detrimental thing will be the creation of a retain cycle.

A retain cycle is a situation in which object A and object B are each retaining one an-
other. This can arise quite innocently, because relationships in an object graph can run
both ways. For example, in a system of orders and items, an order needs to know what
its items are and an item might need to know what orders it is a part of, so you might
be tempted to let it be the case both that an order retains its items and that an item
retains its orders. That’s a retain cycle, with object A (an order) retaining object B (an
item) and vice versa. A moment’s thought will reveal that such a situation, if allowed
to persist, will result in a leak of both objects. Object B’s retain count can never dec-
rement to zero so long as object A continues to retain it, and object A’s retain count
can never decrement to zero so long as object B continues to retain it. If either object’s
retain count were to decrement to zero, ARC would then release all the objects pointed
to by its instance variables, and the other object’s retain count might thus decrement
to zero as well; both objects would go out of existence together. But this can never
happen; instead, both objects keep each other in existence forever.

In order to illustrate the problem simply, without yet getting into properties and their
memory management policies — I’ll talk about that later in this chapter — I’ll suppose
a rather unusual class MyClass with a public instance variable:

@interface MyClass : NSObject {
 @public
 id thing;
}

We now run this code:

MyClass* m1 = [MyClass new];
MyClass* m2 = [MyClass new];
m1->thing = m2;
m2->thing = m1;

In non-ARC code, where you are responsible for memory management, direct assign-
ment has no memory management implications, and this is not a retain cycle. But under
ARC, unless you take steps to the contrary, this will be a retain cycle; by default, m1 and

Memory Management | 299

m2 are now retaining one another, because by default, ARC retains on assignment. To
see this, implement dealloc with an NSLog message in MyClass; when the code runs,
dealloc is never called for either of our MyClass instances. They have leaked.

You can prevent an instance variable from retaining the object assigned to it by speci-
fying that the instance variable should be a weak reference. You can do this with the
__weak qualifier in the instance variable’s declaration:

@interface MyClass : NSObject {
 @public
 __weak id thing;
}

Now there is no retain cycle. In our particular example, since both m1 and m2 exist only
as automatic variables in the scope of the code that creates them, they will both go out
of existence instantly when that code comes to an end and ARC releases them both (to
balance the new calls that created them).

In ARC, a reference not explicitly declared weak is a strong reference.
Thus, a strong reference is one where ARC retains as it assigns. There
is in fact a __strong qualifier, but in practice you’ll never use it, as it is
the default. (There are also two additional qualifiers,
__unsafe_unretained and __autoreleasing, but they are rarely needed
and I don’t talk about them in this book.) Observe that although, by a
sort of trick, an ARC-based app can be made to work backwards-com-
patibly in iOS 4, ARC weak references cannot.

In real life, a weak reference is most likely to arise with regard to something like an
object and its delegate (Chapter 11). A delegate is an independent entity; there is usually
no reason why an object needs to claim ownership of its delegate. The object should
have no role in the persistence of its delegate; and it could even be that the delegate
might for some reason retain the object, causing a retain cycle. Therefore, most dele-
gates should be declared as weak references. For example, in an ARC project created
from Xcode’s Utility Application project template, you’ll find this line:

@property (weak, nonatomic) id <FlipsideViewControllerDelegate> delegate;

(The delegate may also be tagged as an IBOutlet, but you can ignore that.) The keyword
weak in the property declaration, as I’ll explain more fully later in this chapter, is equiv-
alent to declaring the delegate instance variable as __weak.

In non-ARC code, a reference can be prevented from causing a retain cycle merely by
not retaining when assigning to that reference; the reference isn’t memory-managed at
all. You will see this referred to as a weak reference; it is not, however, quite the same
thing as an ARC weak reference. A non-ARC weak reference risks turning into a dan-
gling pointer when the instance to which it points is released in such a way as to reduce
its retain count to zero and vanishes in a puff of smoke behind its back, as it were. This
means that it is possible for the reference to be non-nil and pointing to garbage, so that

300 | Chapter 12: Accessors and Memory Management

a message sent to it can have mysteriously disastrous consequences. Amazingly, how-
ever, this cannot happen with an ARC weak reference: the instance to which it points
can be released and have its retain count reach zero and vanish, but when it does, any
ARC weak reference that was pointing to it is set to nil! This amazing feat is accom-
plished by some behind-the-scenes bookkeeping: when an object is assigned to a weak
reference, ARC in effect notes this fact on a scratchpad list. When the object is released,
ARC consults the scratchpad list and discovers the existence of the weak reference to
it, and assigns nil to that weak reference. This is yet another reason for preferring to
use ARC wherever possible! ARC sometimes refers to non-ARC weak references, dis-
dainfully but accurately, as “unsafe.” (Non-ARC weak references are in fact the
__unsafe_unretained references I mentioned a moment ago.)

Most properties of built-in Cocoa classes that keep weak references are, however, non-
ARC weak references (because they are old and backwards-compatible, whereas ARC
is new). Such properties are declared using the keyword assign. For example,
UINavigationController’s delegate property is declared like this:

@property(nonatomic, assign) id<UINavigationControllerDelegate> delegate

This means that if you (some object) are assigned to a UINavigationController as its
delegate, and if you are about to go out of existence at a time when this UINavigation-
Controller still exists, you have a duty to set that UINavigationController’s delegate
property to nil; otherwise, it might try to send a message to its delegate at some future
time, when you no longer exist and its delegate property is a dangling pointer, and the
app will then crash — and, since this happens at some future time, figuring out the
cause of the crash can be quite difficult. (This is the sort of situation in which you might
need to turn on zombies in order to debug, as described earlier in this chapter.)

The same consideration applies to delegates in general, as well as to such non-retained
non-ARC weak references as data sources and action targets. Be sure to nilify any non-
ARC weak references belonging a persistent object if the object referred to is about to go
out of existence while the persistent object will continue to exist. The dealloc method is
the usual place for fulfilling such duties. The situation does not often arise — typically,
the thing whose delegate or data source or action target you are will go out of existence
before you do — but it can, and when it does, you can crash in a mysterious way later
on if you have failed to do your memory-management duty in this regard. I stress that
this is every bit as much an issue in an ARC project as in a non-ARC project.

This is also the reason why, when you go out of existence, you must unregister yourself
from the shared notification center if you are registered there to receive any notifications
(Chapter 11). If you registered using addObserver:selector:name:object:, you handed
the notification center a reference to yourself as the first argument; the notification
center’s reference to you is a weak reference, as well it might be, since the notification
center would have no business keeping you in existence, but this is a non-ARC weak
reference, and there is a danger that the notification center will try to send a notification
to whatever is referred to, which, if it isn’t you (because you no longer exist), will be

Memory Management | 301

garbage. By unregistering yourself, you remove the notification center’s reference to
you, so there’s no chance it will ever again try to send you a notification.

If you registered with the notification center using addObserverForName:object:queue:
usingBlock:, memory management can be a little tricky, under ARC in particular, for
two reasons:

• As long as you are registered with the notification center, the notification center
may be retaining you.

• The observer token returned from the call to addObserverForName:object:queue:
usingBlock: may also be retaining you.

The result can be a retain cycle. Here’s an example (this is all ARC code). We have a
class MyClass with an instance method start which causes the object to register itself
with the notification center for a fictitious notification:

- (void) start {
 // observer is an id instance variable
 self->observer = [[NSNotificationCenter defaultCenter]
 addObserverForName:@"heyho"
 object:nil queue:nil usingBlock:^(NSNotification *n) {
 NSLog(@"%@", self);
 }];
}

We create a MyClass instance, retain it, and tell it to start:

self->thing = [MyClass new];
[self->thing start];

At some later time, we release the MyClass instance by nilifying the instance variable
that retains it:

self->thing = nil;

The MyClass instance does not go out of existence, as we can confirm by implementing
dealloc with logging. Our dealloc is never called; we are leaking. This must be because
someone else is still retaining the MyClass instance. But who? Well, it could be the
notification center. The MyClass instance has behaved badly here by not unregistering
itself from the notification center. It is for this purpose that we stored the observer token
in our observer instance variable; we are failing to use it for the purpose for which we
stored it. Note, however, that it would be pointless to try to solve this problem by
unregistering in MyClass’s dealloc method, because we already know that MyClass’s
dealloc is never being called; that’s the very problem we’re trying to solve! When you
have a retain cycle, dealloc is too late to break the cycle; that’s what makes it a retain
cycle.

So let’s introduce a further MyClass method stop, which unregisters the MyClass in-
stance from the notification center:

302 | Chapter 12: Accessors and Memory Management

- (void) stop {
 [[NSNotificationCenter defaultCenter] removeObserver:self->observer];
}

We call that method before releasing the MyClass instance:

[self->thing stop];
self->thing = nil;

That should solve the problem, right? Wrong! The MyClass instance’s dealloc method
is still not being called; it is still leaking. The reason is that the MyClass instance is
retaining itself, by retaining the observer token. We must break this retain cycle.

The retain cycle can be broken by using any of three techniques, each of which could
be useful depending on the circumstances:

• Make the instance variable that holds the reference to the observer token a weak
reference:

@implementation MyClass {
 __weak id observer;
}

This is probably the simplest and best solution in this case. When the MyClass
instance unregisters itself from the notification center, the notification center re-
leases the observer token. The MyClass instance never retained the observer token,
because the instance variable is declared a weak reference. The observer token thus
goes out of existence, releasing the MyClass instance, which is now free to go out
of existence in good order. If the MyClass instance persists, its observer instance
variable is now nil, and not a dangling pointer, thanks to the magic of ARC weak
references.

• The observer instance variable retains the observer token, but when the MyClass
instance unregisters itself from the notification center, it also nilifies the observer
instance variable. This releases the observer instance variable and breaks the retain
cycle. One might say that whereas the previous solution automatically avoided the
retain cycle, this solution breaks the retain cycle manually. It has the disadvantage
that you must remember to do it, but sometimes manual memory management
makes things clearer:

- (void) stop {
 [[NSNotificationCenter defaultCenter] removeObserver:self->observer];
 self->observer = nil;
}

This solution is useful also when a class registers for multiple notifications and
must unregister for all of them at once. Instead of retaining individual observer
instance variables, we retain an NSMutableSet into which we place each
observer instance variable as it is received. When it’s time to unregister for all of
them, we cycle through the NSMutableSet. I demonstrated this approach in Chap-
ter 11; but that code will leak under ARC, because the NSMutableSet, which must

Memory Management | 303

be retained by the MyClass instance, itself retains its elements, each of which re-
tains the MyClass instance. Manually nilifying the reference to the mutable set
breaks the retain cycle.

• The observer instance variable retains the observer token, and we concentrate in-
stead on how the MyClass instance itself got retained. This happened because the
block refers to self. Normally there is no complication when a block refers to
self, but the NSNotificationCenter class documentation on addObserverForName:
object:queue:usingBlock: says: “The block is copied by the notification center and
(the copy) held until the observer registration is removed.” Under ARC, this should
cause memory management alarm bells to go off; a copied block retains self if
self is referred to, even indirectly (that is, even if what is referred to is an instance
variable). We can prevent this by making the block’s reference to self a weak
reference. This is done by a technique demonstrated in Apple’s WWDC 2011 vid-
eos, commonly called “the weak–strong dance” (Example 12-9).

Example 12-9. The weak–strong dance prevents a copied block from retaining self

- (void) start {
 __weak MyClass* wself = self;
 self->observer = [[NSNotificationCenter defaultCenter]
 addObserverForName:@"heyho"
 object:nil queue:nil usingBlock:^(NSNotification *n) {
 MyClass* sself = wself;
 if (sself) {
 NSLog(@"%@", sself);
 }
 }];
}

The weak–strong dance works like this:

We form a local weak reference to self, outside the block but where the block can
see it.

Inside the block, we form from that weak reference a normal reference.

We use that normal reference in place of any references to self inside the block.

This breaks the retain cycle and is safe. Observe that this technique is needed only in
cases where the block is copied; in the vast majority of situations in which you’ll use
blocks, there is no need for the weak–strong dance.

The weak–strong dance may seem elaborate, but it has one huge advantage: it is the
only one of the three proposed solutions that allows dealloc to be called before you
unregister the observer. Thus, it is the only solution that allows you to unregister the
observer in your dealloc implementation — and that’s important, because this is often
the very place where you want to unregister the observer.

304 | Chapter 12: Accessors and Memory Management

(In Chapter 38, I’ll give yet another solution to the problem of preventing a retain cycle
when calling addObserverForName:object:queue:usingBlock:, suitable when you want
to unregister the moment the notification arrives.)

In using addObserverForName:object:queue:usingBlock:, it was up to us to pay atten-
tion to the NSNotificationCenter class documentation and notice that this method
could have unusual memory management implications. In general, you must be on the
lookout for Cocoa objects with unusual memory management behavior. Such behavior
will usually be called out clearly in the documentation. For example, the UIWebView
documentation warns: “Before releasing an instance of UIWebView for which you have
set a delegate, you must first set its delegate property to nil.” And a CAAnimation object
retains its delegate; this is exceptional and can cause trouble if you’re not conscious of
it.

Another example is NSTimer (Chapter 10). The NSTimer class documentation says
that “run loops retain their timers”; it then says of scheduledTimerWithTimeInterval:
target:selector:userInfo:repeats: that “The target object is retained by the timer and
released when the timer is invalidated.” This means that as long as a repeating timer
has not been invalidated, the target is being retained by the run loop; the only way to
stop this is to send the invalidate message to the timer. (With a non-repeating timer,
the problem doesn’t arise, because the timer invalidates itself immediately after firing.)

When you called scheduledTimerWithTimeInterval:target:selector:userInfo:

repeats:, you probably supplied self as the target: argument. This means that you
(self) are being retained, and cannot go out of existence until you invalidate the timer.
You can’t do this in your dealloc implementation, because as long as the timer is re-
peating and has not been sent the invalidate message, dealloc won’t be called. You
therefore need to find another appropriate moment for sending invalidate to the timer.
In order to send invalidate to the timer later, you will have kept a reference to the timer
when you created it (by calling scheduledTimerWithTimeInterval:target:selector:
userInfo:repeats:); that reference is retained by default under ARC, but that should
not be a difficulty — this is not a retain cycle but a case of special memory management
(the timer doesn’t release the target until it is invalidated).

There are also situations where the documentation fails to warn of any special memory
management considerations, but ARC itself will warn of a possible retain cycle due to
the use of self in a block. Again, the weak–strong dance is likely to be your best defense.
(An example is the completion handler of UIPageViewController’s instance method
setViewControllers:direction:animated:completion:, where the compiler will warn,
“Capturing ‘self’ strongly in this block is likely to lead to a retain cycle.” Using the
weak–strong dance, you capture self weakly instead.)

Memory Management | 305

Nib Loading and Memory Management
On iOS, when a nib loads, the top-level nib objects that it instantiates are autoreleased.
So if someone doesn’t retain them, they’ll eventually vanish in a puff of smoke. There
are two primary strategies for preventing that from happening:

Outlet graph with retain
A memory management graph is formed: every top-level object is retained by an-
other top-level object (without retain cycles, of course), with the File’s Owner as
the start of the graph. So, the File’s Owner proxy has an outlet to a top-level object;
when the nib loads and the top-level object is assigned to the corresponding in-
stance variable of the actual nib owner instance (Chapter 7), it is retained. Under
ARC this would happen automatically by default, but the usual implementation,
under both ARC and non-ARC code, is for this instance variable to be backed by
a setter accessor method; key–value coding sees to it that this setter is called, and
the setter makes sure that the incoming value is retained as it is assigned to the
instance variable. Under ARC, mere assignment accomplishes this; under non-
ARC code, the incoming value is explicitly retained. Thus, when the nib loads, the
nib owner retains this top-level object (and must, of course, release it before it itself
goes out of existence). And so on, for every top-level object (Figure 12-1). This is
the strategy you’ll typically use when loading a nib. Fortunately, as I’ll explain later
in this chapter, Objective-C can write the accessor for you.

You can see this strategy being used, for example, in a project made from the Single
View Application template. The ViewController class is a UIViewController sub-
class; UIViewController has a view property which retains the value assigned to it.
Inside the nib, an outlet called view runs from the File’s Owner, which is a View-
Controller, to the top-level UIView (called View) in the nib. Thus this view is re-
tained when the nib loads and doesn’t vanish in a puff of smoke.

Mass retain
The call to loadNibNamed:owner:options: (Chapter 7) returns an NSArray of the
nib-instantiated objects; retain this NSArray. (This is the strategy used by
UIApplicationMain when it loads the app’s main nib, if there is one.)

Objects in the nib that are not top-level objects are already part of a memory manage-
ment object graph, so there’s no need for you to retain them directly. For example, if
you have a top-level UIView in the nib, and it contains a UIButton, the UIButton is the
UIView’s subview — and a view retains its subviews and takes ownership of them.
Thus, it is sufficient to manage the UIView’s memory and to let the UIView manage
the UIButton. If you have an outlet to this button, you typically don’t have to retain
the button, because it is retained by the UIView as long as the UIButton is inside it
(though you would want to retain the button in the rare case where you are planning
at some point in your code to remove the button from its superview while keeping it
on hand for later use).

306 | Chapter 12: Accessors and Memory Management

In ARC code, when you draw a connection in Xcode between a nib object and your
code and Xcode offers to create an instance variable or property declaration for you, it
also offers a pop-up menu allowing you to specify whether you want a strong (retaining)
or weak reference.

In non-ARC code, you should always use an accessor, even if the setter does nothing
but assign the nib object directly to the instance variable. The reason is that, as I warned
earlier in this chapter, if there is no accessor, key–value coding itself will assign the nib
object to the instance variable and will retain it. This implicit, behind-the-scenes mem-
ory management is the last thing you want when you’re managing memory manually,
as it can easily cause a leak. As I’ll show later in this chapter, it is easy to arrange for
Objective-C to write the accessor for you.

Mac OS X Programmer Alert

Memory management for nib-loaded instances is different on iOS than
on Mac OS X. On Mac OS X, nib-loaded instances are not autoreleased,
so they don’t have to be retained, and memory management is usually
automatic in any case because the file’s owner is usually an NSWindow-
Controller, which takes care of these things for you. On iOS, memory
management of top-level nib objects is up to you. On Mac OS X, an
outlet to a non-top-level object does not cause an extra retain if there is
no accessor for the corresponding ivar; on iOS, it does.

Memory Management of Global Variables
In C, and therefore in Objective-C, it is permitted to declare a variable outside of any
method. K&R (Chapter 1) calls this an external variable (see K&R 4.3); I call it a global
variable. It is common practice, though not strictly required, to qualify such a variable’s
declaration as static; such qualification is a technical matter of scope and has no effect
on the variable’s persistence or its global nature.

Figure 12-1. An outlet graph with retain

Memory Management | 307

In Objective-C code, a global variable is not uncommonly used as a lightweight alter-
native to an instance variable, especially when its value is constant. Also, in a class
method, there are no instance variables, but there can be global variables.

Before ARC, where an instance variable had to be backed by explicit memory man-
agement in any case, a global variable could be simpler; with ARC, on the other hand,
an instance variable is usually less trouble to manage than a global variable. The reason
is that under ARC, if a global variable is to point to an object, it must be memory-
managed manually. ARC will of course retain on assignment, but when your instance
is destroyed, ARC will not automatically release global variables as it will instance
variables. Therefore it is up to you, as your instance goes out of existence (probably in
dealloc), to nilify your global variables, thus releasing the objects to which they point.

On the other hand, a global variable does have one advantage an instance variable does
not: you can initialize it as you declare it:

static NSString* g_myString = @"my string";

Memory Management of Pointer-to-Void Context Info
A number of Cocoa methods take an optional parameter typed as void*, and often
called context:. You might think that void*, the universal pointer type, would be the
same as id, the universal object type, because a reference to an object is a pointer. But
an id is a universal object type; void* is just a C pointer. This means that Cocoa won’t
treat this value as an object. So the use of the void* type is a clue to you that Cocoa
won’t do any memory management on this value. Thus, making sure that it persists
long enough to be useful is up to you.

The big change wrought by ARC in this regard has to do, not with memory manage-
ment, but with “crossing the bridge” between an id and a void*. Before ARC, these two
types were treated as equivalent, in the sense that you could supply one where the other
was expected. But ARC is not so sanguine. ARC manages memory for objects only.
Thus, it manages memory for something typed as id, but not for something typed as
void*. Therefore, if you want to use an object where a void* is expected, or a void*
where an object is expected, you must reassure ARC that you know what you’re doing.

When an object comes into existence by instantiation under ARC, it is memory-man-
aged by ARC from birth to death, as it were. But when an object is cast to a void*, it
passes out of the realm of ARC memory management, and ARC will not let go without
more information, because it doesn’t understand what its memory management re-
sponsibilities should be at this moment. Similarly, when a non-object (a void*) is cast
to an object type, it passes ready-made into the realm of ARC memory management,
and ARC will not accept it without more information, again because it doesn’t under-
stand what its memory management responsibilities should be at this moment.

In general, when you supply an object as a context: argument, it will probably be easiest
if you keep a reference to that object and manage its memory through that reference.

308 | Chapter 12: Accessors and Memory Management

Therefore, as the context: argument passes out of ARC’s purview (and later passes
back in again), ARC has no memory management responsibilities: you just want ARC
to permit the cast. The way to indicate this is to cast the value explicitly, with a
__bridge qualifier.

As an example, I’ll use beginAnimations:context:. You call this on a UIView before
changing one or more of its property values, such as its size, position, or opacity, to
make those changes appear animated. Whatever you pass as the context: argument
comes back to you later in two delegate messages as the animation proceeds, indicating
that the animation is about to start and that the animation has ended; basically, the
context: is a kind of envelope in which information can be carried from stage to stage
during the animation, for any purpose you desire. The context: is a void*. So, ignoring
for a moment the question of memory management, you might say this:

NSDictionary* d = [NSDictionary dictionaryWithObject: @"object" forKey: @"key"];
[UIView beginAnimations:@"shrinkImage" context:d];

Before ARC, that code was legal. Under ARC, it isn’t; the compiler will stop you in
your tracks with this complaint: “Implicit conversion of an Objective-C pointer to
‘void *’ is disallowed with ARC.” The solution is to cast d explicitly along with a
__bridge qualifier, like this:

NSDictionary* d = [NSDictionary dictionaryWithObject: @"object" forKey: @"key"];
[UIView beginAnimations:@"shrinkImage" context:(__bridge void*)d];

In the same way, when the context comes back to you in a delegate message, you’ll cast
it back to a __bridge id so that ARC will accept it and you can continue treating it as
an object.

Now let’s talk about how to manage the context: argument’s memory (assuming all
the time, of course, that it is an object). Remember, Cocoa is not going to do any
memory management behind the scenes. So the context: argument must be retained
beforehand, or it will vanish in a puff of smoke and garbage will be supplied in its place
in the delegate message. And this retain must be balanced by a release at some time
after the delegate message is received, or the object will leak.

Clearly, then, you want to retain the context: argument as you hand it to begin-
Animations:context: and release it later, when you’re done with it. But when exactly
is “later,” and when are you actually “done with it?” A good answer would appear to
be, “When the animation is over,” which is when the animationDidStop:finished:
context: delegate message arrives. So you could release the context object when you
receive it in animationDidStop:finished:context:. But this solution is not very main-
tainable. You’re balancing memory-management calls in two very different places, so
you can’t easily keep an eye on them both. Moreover, there are two different possible
delegate messages. And, to top it all off, the intrusion of ARC’s automatic retain and
release behavior actually makes such a solution more difficult to implement; in effect,
you’re fighting the framework.

Memory Management | 309

A better approach is to make your context: argument persistent as an instance variable.
As I’ve already said, this is a lightweight approach under ARC, and we are now taking
advantage of ARC’s automatic retain and release behavior to manage its object’s mem-
ory correctly with no effort on our part. The object may thus persist even after it is no
longer needed, but it won’t actually leak. Here’s a complete example:

- (void) animate {
 // animcontext is an ivar typed as id
 // under ARC, this assignment retains the context and ensures that it persists
 animcontext = [NSDictionary dictionaryWithObject: @"object" forKey: @"key"];
 // prepare animation
 [UIView beginAnimations:@"shrinkImage" context:(__bridge void*)animcontext];
 [UIView setAnimationDelegate:self];
 [UIView setAnimationDidStopSelector:
 @selector(animationDidStop:finished:context:)];
 [imv setAlpha: 0];
 // request animation to start
 [UIView commitAnimations];
}

- (void) animationDidStop:(NSString*)anim
 finished:(NSNumber *)f context:(void *)c {
 NSDictionary* d = (__bridge id)c; // cast back to dictionary, use as desired
 // ...
}

Since animcontext is an instance variable, its memory is managed by ARC, and it will
be released when we ourselves go out of existence. The situation is only slightly more
complicated if you’ve more than one context object to manage simultaneously; for
example, you could store them all in an NSMutableSet instance variable.

Considerations of this sort do not apply to parameters that are typed as objects. For
instance, when you call postNotificationName:object:userInfo:, the userInfo is typed
as an NSDictionary and is retained for you (and released after the notification is posted);
its memory management behind the scenes is not your concern.

Memory Management of CFTypeRefs
A CFTypeRef (see Chapter 3) is a value obtained through a C function that is a pointer
to a struct; its type name will usually end in “Ref”. It is a kind of object, even though
it isn’t a full-fledged Cocoa Objective-C object, and it must be managed in much the
same way as a Cocoa object. ARC is irrelevant to this fact. ARC manages Objective-C
objects; it has no concern with CFTypeRefs. You must manage the memory of CFType-
Refs manually, even if you’re using ARC. Indeed, as I shall explain, the fact that you
are using ARC actually increases the degree of your memory management responsibil-
ity.

I will divide the discussion into two halves: memory management of CFTypeRefs on
their own, and what happens when you “cross the bridge” between a CFTypeRef and
a full-fledged Objective-C object type.

310 | Chapter 12: Accessors and Memory Management

Just as, in the Objective-C world of objects, certain method names (alloc, copy, and
retain) alert you to your memory management responsibilities, so too in the world of
CFTypeRefs. The golden rule here is that if you obtained such an object through a
function whose name contains the word Create or Copy, you are responsible for releasing
it. In the case of a Core Foundation object (its type name begins with CF), you’ll release
it with the CFRelease function; other object creation functions are paired with their own
object release functions.

An Objective-C object can be sent messages even if it is nil. But
CFRelease cannot take a NULL argument. Be sure that a CFTypeRef
variable is not NULL before releasing it.

The matter is not a complicated one; it’s much simpler than memory management of
Cocoa objects, and the documentation will usually give you a hint about your memory
management responsibilities. As an example, here (without further explanation) is
some actual code from one of my apps, strongly modeled on Apple’s own example
code, in which I set up a base pattern color space (for drawing with a pattern):

- (void) addPattern: (CGContextRef) context color: (CGColorRef) incolor {
 CGColorSpaceRef baseSpace = CGColorSpaceCreateDeviceRGB();
 CGColorSpaceRef patternSpace = CGColorSpaceCreatePattern(baseSpace);
 CGContextSetFillColorSpace(context, patternSpace);
 CGColorSpaceRelease(patternSpace);
 CGColorSpaceRelease(baseSpace);
 // ...
}

Never mind exactly what that code does; the important thing here is that the values for
baseSpace and patternSpace are a CFTypeRef (in particular, a CGColorSpaceRef) ob-
tained through functions with Create in their name, so after we’re done using them,
we release them with the corresponding release function (here, CGColorSpaceRelease).

Similarly, you can retain a Core Foundation object, if you are afraid that it might go
out of existence while you still need it, with the CFRetain function, and you are then,
once again, responsible for releasing it with the CFRelease function.

We now come to the business of “crossing the bridge.” As I explained in Chapter 3,
many Core Foundation object types are toll-free bridged with a corresponding Cocoa
object type. Now, from a theoretical point of view, memory management is memory
management: it makes no difference whether you use Core Foundation memory man-
agement or Cocoa memory management. Thus, if you obtain a CFStringRef through a
Create or Copy function and assign it to an NSString variable, sending release to it
through the NSString variable is just as good as calling CFRelease on it as a CFStringRef.
And before ARC, that was the end of the matter.

Under ARC, however, we face the same problem I described in the preceding section.
ARC manages memory for Objective-C objects; it knows nothing of CFTypeRefs.
Therefore, ARC is not going to let you hand an object into or out of its memory-man-

Memory Management | 311

agement purview without explicit information about how to manage its memory. This
means a little extra thought for you, but it’s a good thing, because it means you can tell
ARC to do automatically what you would have done manually.

For example, a moment ago I said that, before ARC, you might obtain a CFStringRef
through a Create or Copy function, cast it to an NSString, and later send release to it
through the NSString. Under ARC, you can’t say release, but you can arrange for ARC
to do exactly the same thing: as you “cross the bridge”, you pass the CFString through
the CFBridgingRelease function. The result is an id that can be assigned to an NSString
variable, and that ARC will release to balance out the incremented retain count gen-
erated by the original Create or Copy function.

You have three choices as you cross the toll-free bridge:

__bridge cast
As illustrated in the previous section, you cast explicitly to the across-the-bridge
type and qualify the cast with __bridge. This means that memory management
responsibilities are independent on either side of the bridge. You’re telling ARC
that you’re going to be performing complete and correct memory management on
the CFTypeRef side of the bridge.

CFBridgingRelease function
You’re crossing the bridge from the CFTypeRef side to the object side. You’re
telling ARC that memory management for this object is incomplete: it has a raised
retain count on the CFTypeRef side (probably because you generated it with a
Create or Copy function, or called CFRetain on it), and it will be up to ARC to
perform the corresponding release on the object side. (Alternatively, you can do a
__bridge_transfer cast.) Here’s an artificial but correct example:

CFArrayRef arr_ref = CFLocaleCopyISOCountryCodes(); // note "copy"
NSArray* arr = CFBridgingRelease(arr_ref); // memory management is now complete
// ARC will manage this array correctly from here on

CFBridgingRetain function
You’re crossing the bridge from the object side to the CFTypeRef side. You’re
telling ARC that it should leave memory management for this object incomplete:
you’re aware of the raised retain count on the object side, and you intend to call
CFRelease on it yourself on the CFTypeRef side. (Alternatively, you can do a
__bridge_retained cast.)

You may see __bridge_transfer and __bridge_retained in code written by other people,
but I strongly recommend that you stick to CFBridgingRelease and CFBridgingRetain
in your own code, as they are eminently clearer (and better named). Note that it is
perfectly possible to pass an object out of the object world with CFBridgingRetain and
back into it later with CFBridgingRelease.

312 | Chapter 12: Accessors and Memory Management

Properties
A property (see Chapter 5) is syntactic sugar for calling an accessor by using dot-nota-
tion. An object does not have a property unless its class (or that class’s superclass, of
course) declares it. For instance, in a earlier example we had an object with an
NSMutableArray instance variable and a setter, which we called like this:

[self setTheData: d];

If this object’s class code declares a property theData, we could instead say:

self.theData = d;

The effect would be exactly the same, because setting a property is just a shorthand for
calling the setter. Similarly, suppose we were to say this:

NSMutableArray* arr = self.theData;

That is exactly the same as calling the getter, [self theData].

Properties offer certain advantages that accessors, of themselves, do not:

• It is simpler to declare one property than to declare two accessor methods (a getter
and a setter).

• With a property declaration, you can ask Cocoa to construct the accessors for you,
automatically. Such an automatically constructed accessor is called a synthesized
accessor. Writing accessors is boring and error-prone; with a property, you write
two lines of code (the property declaration, and the request that Cocoa construct
its accessors) and that’s all: the accessors now exist, without you bothering to write
them. Moreover, your class is now key–value coding compliant for the accessor
name, with no effort on your part.

• With a property declaration, you don’t have to declare an instance variable; if you
don’t supply an explicit instance variable declaration, and if you ask for a synthe-
sized accessor, the instance variable will be synthesized automatically.

• A property declaration includes a statement of the setter’s memory management
policy. This statement has two purposes:

— It lets you, the programmer, know easily, just by glancing at a property dec-
laration, how the incoming value will be treated. You could find this out
otherwise only by looking at the setter’s code — which, if this is a built-in
Cocoa type, you cannot do (and even in the case of your own code, it’s a pain
having to locate and consult the setter directly).

— It tells the compiler what to do if you also ask for a synthesized setter (as well
as if you let the instance variable be synthesized as well). The synthesized setter
(and instance variable) will participate in managing memory for you, correctly,
according to the policy you state in the property declaration.

Properties | 313

The possible memory management policies correspond simply to what has already been
said in this chapter about the ARC reference types and how a setter might behave:

strong, retain
Under ARC, the instance variable will be a normal (strong) reference, so when ARC
assigns the incoming value to it, it will retain the incoming value and release the
existing value of the instance variable. Under non-ARC, the setter’s own explicit
code (or the code of the synthesized setter) will retain the incoming value and
release the existing value of the instance variable. The terms are pure synonyms of
one another and can be used in ARC or non-ARC code; retain is the term inherited,
as it were, from pre-ARC days.

copy

The same as strong or retain, except that the incoming value is copied (by sending
copy to it) and the copy, which has an increased retain count already, is assigned
to the instance variable. This is appropriate particularly when a nonmutable class
has a mutable subclass (such as NSString and NSMutableString, or NSArray and
NSMutableArray), to prevent the setter’s caller from passing in an object of the
mutable subclass; it is legal for the setter’s caller to do so, because (in accordance
with polymorphism, Chapter 5) where an instance of a class is expected, an in-
stance of its subclass can be passed, but the copy call creates an instance of the
nonmutable class (Chapter 10).

weak

Under ARC, the instance variable will be a weak reference. ARC will assign the
incoming value to it without retaining it. ARC will also magically nilify the instance
variable if the instance to which it points goes out of existence. This is useful, as
already explained earlier in this chapter, for breaking a potential retain cycle and
for declining to retain inappropriately, and to reduce overhead where it is known
that no memory management is needed, as with an interface object that is already
retained by its superview. The setter can be synthesized only under ARC; using
weak in non-ARC code is not strictly impossible but probably makes no sense.

assign (the default)
This policy is inherited from pre-ARC days; it is used in the same ways as weak.
The setter does not manage memory; the incoming value is assigned directly to the
instance variable. The instance variable, however, is not an ARC weak reference
and will not be nilified automatically if the instance to which it points goes out of
existence; it is a non-ARC weak reference (__unsafe_unretained) and can become
a dangling pointer.

As I’ve already said, a property’s declared memory management policy is an instruction
to the compiler if the setter is synthesized. If the setter is not synthesized, the declared
memory management policy is “purely conventional” (as the LLVM documentation
puts it), meaning that if you write your own setter, you’d better make that setter behave
the way you declared you would, but nothing is going to force you to do so.

314 | Chapter 12: Accessors and Memory Management

We come now to the formal syntax for declaring a property. A property is declared in
the same part of a class’s interface section where you would declare methods. Its syntax
schema is as follows:

@property (attribute, attribute, ...) type name;

Here’s a real example, for the NSMutableArray instance variable we were talking about
a moment ago:

@property (nonatomic, retain) NSMutableArray* theData;

The type and name will usually match the type and name of an instance variable, but
what you’re really indicating here are the name of the property (as used in dot-notation)
and therefore the names of the setter (here, setTheData:) and getter (here, theData), and
the type of value to be passed to the setter and obtained from the getter.

If this property will be represented by an outlet in a nib, you can say IBOutlet before
the type. This is a hint to Xcode and has no formal meaning.

The type doesn’t have to be an object type; it can be a simple type such as BOOL,
CGFloat, or CGSize. Of course in that case no memory management is performed (as
none is needed), and no memory management policy should be declared; but the ad-
vantages of using a property remain — the caller can use dot-notation, and the accessors
can be synthesized.

The possible attribute values are:

A memory management policy
I listed the names of these a few paragraphs ago. You will supply exactly one; under
ARC this will usually be strong. The default if you omit any memory management
policy is assign, but such omission is dangerous and you’ll get a warning from the
compiler. (Under ARC in Xcode 4.2, but not in Xcode 4.3, omitting the memory
management policy is illegal if you’re synthesizing the accessor.)

nonatomic

If omitted, the synthesized accessors will use locking to ensure correct operation
if your app is multithreaded. This will rarely be a concern, and locking slows down
the operation of the accessors, so you’ll probably specify nonatomic most of the
time. It’s a pity that nonatomic isn’t the default, but such is life.

readwrite or readonly
If omitted, the default is readwrite. If you say readonly, any attempt to use the
property as a setter will cause a compile error (a useful feature), and if the accessors
are to be synthesized, no setter is synthesized.

getter=gname, setter=sname:
By default, the property name is used to derive the names of the getter and setter
methods that will be called when the property is used. If the property is named my-
Prop, the default getter method name is myProp and the default setter name is set-
MyProp:. You can use either or both of these attributes to change that. If you say

Properties | 315

getter=getALife, you’re saying that the getter method corresponding to this prop-
erty is called getALife (and if the accessors are synthesized, the getter will be given
this name).

To request that the accessors be synthesized for you, use the @synthesize directive. It
appears anywhere inside the class’s implementation section, any number of times, and
takes a comma-separated list of property names. The behavior and names of the syn-
thesized accessors will accord with the property declaration attributes I’ve just talked
about. You can state that the synthesized accessors should access an instance variable
whose name differs from the property name by using the syntax propertyName=ivar-
Name in the property name list; otherwise, the instance variable will have the same name
as the property. If no such instance variable is declared, it will be synthesized as well.

A synthesized instance variable is strictly private, meaning that it is not
inherited by subclasses. This fact will rarely prove troublesome, but if
it does, simply declare the instance variable explicitly.

Thus, using our NSMutableArray instance variable theData as an example, the full code
would look like this:

// [In the header file]
@interface MyClass : NSObject
@property (nonatomic, retain) NSMutableArray* theData;
@end

// [In the implementation file]
@implementation MyClass {
 // instance variables go here, but no need to declare theData
}
@synthesize theData
// other code goes here
@end

In the Xcode 4.2 application templates, a synthesized setter commonly takes advantage
of the propertyName=ivarName syntax. For example, we find this at the top of the App-
Delegate class’s implementation section:

@synthesize window = _window;

The intention, apparently, is that we can refer in our code to the property explicitly as
self.window, but if we were accidentally to refer to the instance variable directly as
window, we’d get a compilation error, because there is no instance variable window (it’s
called _window). Thus the template adopts a policy designed both to prevent accidental
direct access to the instance variable without passing through the accessors and to
distinguish clearly in code which names are instance variables — they’re the ones start-
ing with an underscore. Moreover, this policy frees up the name window to be used as
a local variable in a method, without getting a warning from the compiler that we’re

316 | Chapter 12: Accessors and Memory Management

overshadowing the name of an instance variable. This can be a useful convention, and
I have found myself using it increasingly in my own code.

To make a property declaration private, when its accessors are to be synthesized, put it
in an anonymous category (a class extension), an interface section at the top of the
implementation file. In this way, this class can access the instance variable through its
accessors using dot-notation but other classes cannot (Example 12-10).

Example 12-10. A private property

// [In the implementation file]
@interface MyClass ()
@property (nonatomic, retain) NSMutableArray* theData; // private
@end

@implementation MyClass
@synthesize theData
// other code goes here
@end

Being able to declare private properties is so useful that I find myself almost routinely
adding a class extension to the top of any new class files, to make it easy to add private
properties later if I need to. Note that knowledge of private properties is not inherited
by subclasses; an elegant solution is to move the class extension interface section off
into an isolated .h file of its own and import that into the implementation files of both
the superclass and the subclass.

Another use of an anonymous category is to redeclare a property. For example, we
might want our property to be readonly as far as the rest of the world knows, but
readwrite for code within our class. To implement this, declare the property
readonly in the interface section in the header file, which the rest of the world sees, and
then redeclare it, not as readonly (in which case it will be readwrite by default), in the
anonymous category interface section in the implementation file, which only this class
sees. All other attributes must match between both declarations.

If you do not ask explicitly that a declared property’s accessors be synthesized, then
you must supply them explicitly or the compiler will complain. This is somewhat an-
noying; one wishes that synthesis of accessors were the default, to save a step when
writing and maintaining code. You can turn off this complaint by using @dynamic instead
of @synthesize, but this is a promise to generate the accessors in some other way, at
runtime, and is rarely used except in connection with Core Animation and Core Data.
(An example of @dynamic with Core Animation appears in Chapter 17.)

A useful trick is to take advantage of the @synthesize syntax propertyName=ivarName to
override the synthesized accessor without losing any of its functionality. What I mean
is this. Suppose you want the setter for myIvar to do more than just set myIvar. One
possibility is to write your own setter; however, a setter from scratch is tedious and
error-prone, whereas a synthesized setter does the job correctly and writing it is no
work at all. The solution is to declare a property myIvar along with a corresponding

Properties | 317

private property (Example 12-10) — let’s call it myIvarAlias — and synthesize the
private property myIvarAlias to access the myIvar instance variable. You must then write
the accessors for myIvar by hand, but all they need to do, at a minimum, is use the my-
IvarAlias properties to set and get the value of myIvar respectively. The key point is
that you can also do other stuff in those accessors (Example 12-11); whoever gets or
sets the property myIvar will be doing that other stuff.

Example 12-11. Overriding synthesized accessors

// [In the header file]

@interface MyClass : NSObject
@property (nonatomic, retain) NSNumber* myIvar;
@end

// [In the implementation file]

@interface MyClass ()
@property (nonatomic, retain) NSNumber* myIvarAlias;
@end

@implementation MyClass
@synthesize myIvarAlias=myIvar;

- (void) setMyIvar: (NSNumber*) num {
 // do other stuff here
 self.myIvarAlias = num;
}

- (NSNumber*) myIvar {
 // do other stuff here
 return self.myIvarAlias;
}
@end

A property declaration can also appear in a protocol or category declaration. This makes
sense because, with a property declaration, you’re really just declaring accessor meth-
ods, and these are places where method declarations can go.

In Xcode 4.2, when you create an outlet by dragging from a nib object
to code in such a way as to generate an instance variable declaration or
a property declaration, Xcode creates some extra code for you. For ex-
ample, when Xcode generates a property declaration in an interface
section, it also generates the @synthesize directive in the implementa-
tion section, and if (as is often the case) this code belongs to a UIView-
Controller, it will insert a viewDidUnload method that releases the nib
object (by nilifying the instance variable through the setter). This is cool,
but (1) it does make one wonder why Xcode can’t do this for any prop-
erty or instance variable you create, and (2) it can be annoying if you
change your mind later and have to backtrack to find and delete all that
generated code.

318 | Chapter 12: Accessors and Memory Management

CHAPTER 13

Data Communication

As soon as an app grows to more than a few objects, things can become confusing.
Beginners are sometimes puzzled about how to communicate data between one piece
of code (one object, really) and another. The problem is essentially one of architecture.
Constructing your code so that all the pieces fit together and key information can be
shared is something of an art. But it isn’t difficult. This chapter presents some general
considerations that may provide the needed clue.

Model–View–Controller
In Apple’s documentation and online, you will find references to the term model–view–
controller, or MVC. This refers to an architectural goal of maintaining a distinction
between three functional aspects of a program that displays information to the user
and permits the user to alter that information. The whole notion goes back to the days
of Smalltalk, and much has been written about it since then, but informally, here’s what
the terms mean:

Model
The data and its management (often referred to as the program’s “business logic,”
the hard-core stuff that the program is really all about).

View
What the user sees and interacts with.

Controller
The mediation between the model and the view.

Consider, for example, a game where the current score is displayed to the user:

• A UILabel that shows the user the current score for the game in progress is view;
it is effectively nothing but a pixel-maker, and its business is to know how to draw
itself. The knowledge of what it should draw — the score, and the fact that this
is a score — lies elsewhere. A rookie programmer might try to use the score dis-
played by the UILabel as the actual score: to increment the score, read the UILabel’s

319

string, turn that string into a number, increment the number, turn the number back
into a string, and present that string in place of the previous string. That is a gross
violation of the MVC philosophy. The view presented to the user should reflect the
score; it should not store the score.

• The score is data being maintained internally; it is model. It could be as simple as
an instance variable along with a public increment method or as complicated as a
Score object with a raft of methods. The score is numeric, whereas a UILabel dis-
plays a string; this alone is enough to show that the view and the model are naturally
different.

• Telling the score when to change, and seeing that this fact is reflected in the user
interface, is the work of the controller. This will be particularly clear if we imagine
that the model’s numeric score needs to be transformed in some way for presen-
tation to the user. For example, suppose the UILabel that presents the score reads:
“Your current score is 20”. The model is presumably storing and providing the
number 20, so what’s the source of the phrase “Your current score is…”? Whoever
is deciding that this phrase should precede the score in the presentation of the score
to the user, and is making it so, is a controller.

Even this simplistic example (Figure 13-1) illustrates very well the advantages of MVC.
By separating powers in this way, we allow the aspects of the program to evolve with
a great degree of independence. Do you want a different font and size in the presentation
of the score? Change the view; the model and controller need know nothing about it,
but will just go on working exactly as they did before. Do you want to change the phrase
that precedes the score? Change the controller; the model and view are unchanged.

Adherence to MVC is particularly appropriate in a Cocoa app, because Cocoa itself
adheres to it. The very names of Cocoa classes reveal the MVC philosophy that un-
derlies them. A UIView is a view. A UIViewController is a controller; its purpose is to
embody the logic that tells the view what to display. In Chapter 11 we saw that a

Figure 13-1. Model–view–controller

320 | Chapter 13: Data Communication

UIPickerView does not hold the data it displays; it gets that data from a data source.
So the UIPickerView is a view; the data source is model.

Apple’s documentation also points out this telling distinction: true model material and
true view material should be quite reusable, in the sense that they can be transferred
wholesale into some other app; controller material is generally not reusable, because it
is concerned with how this app mediates between the model and the view.

In one of my own apps, for example, we download an XML (RSS) news feed and present
the article titles to the user as a table. The storage and parsing of the XML are pure
model material, and are so reusable that I didn’t even write this part of the code (I used
some code called FeedParser, by Kevin Ballard). The table is a UITableView, which is
obviously reusable, seeing as I obtained it directly from Cocoa. But when the UITable-
View turns to me and asks what I’d like to display in this cell, and I turn to the XML
and ask for the title of the article corresponding to this row of the table, that’s controller
logic.

By keeping the MVC architectural philosophy in mind as you develop your app, you’ll
implicitly solve one data communication problem. The data will live in the model, the
view will be purely presentational in nature, and the communication between them
will be handled by your own deliberately written controller code. You’ll be communi-
cating between the view and the model because controller code is about communicating
between the view and model.

Instance Visibility
The problem of communication often comes down to one object being able to see
another: object Manny needs to be able to find object Jack repeatedly and reliably over
the long term so as to be able to send Jack messages. (This is the same problem I spoke
of in Chapter 2 as getting a reference to an object.)

An obvious solution is an instance variable of Manny whose value is Jack. This is ap-
propriate particularly when Manny and Jack share certain responsibilities or supple-
ment one another’s functionality, and when they will both persist, especially when they
will both persist together. A controller whose job is to configure and direct a certain
view will need to exist just as long as the view does; they go together. The application
object and its delegate, a table view and its data source, a UIViewController and its
UIView — these are cases where the former must have an instance variable pointing at
the latter.

With instance variables comes the question of memory management policy (Chap-
ter 12). Should Manny, which has an instance variable pointing to Jack, also retain
Jack? Basically, it depends on how closely allied the objects are. An object does not
typically retain its delegate or its data source; it can exist without a delegate or a data
source, and the delegate and data source have lives of their own — it is none of this
object’s business to say whether the delegate or data source should be allowed to go

Instance Visibility | 321

out of existence. This object is therefore always prepared for the possibility that its
delegate or data source may be nil. Similarly, an object that implements the target–
action pattern, such as a UIControl, does not retain its target. On the other hand, a
UIViewController is useless without a UIView to control; its very job is to be cotermi-
nous with its view, and to release its view when it itself goes out of existence. Similarly,
an object that owns a nib as the nib loads rules the lifetimes of that nib’s top-level
objects.

Even when two objects go together closely, it will not necessarily be the case that each
holds an instance variable pointing at the other. When each does point to the other,
you must of course be careful not to let each retain the other; that’s a retain cycle, and
will cause both objects to leak. But if one object is the constant instigator of commu-
nication between the two, it can simply pass along a reference to itself as a method
argument, if it thinks the second object might need this.

This behavior is conventional in a delegate message, for example. The parameter of the
delegate message textFieldShouldBeginEditing: is a reference to the UITextField that
sent the message. The same policy is followed by target–action messages in their fuller
forms; the first parameter is a reference to the sender. You can follow a similar policy.

Visibility by Instantiation
The real question is how one object is to be introduced to the other in the first place.
Much of the art of Cocoa programming (and of object-oriented programming generally)
lies in getting a reference to a desired object. Every case is different and must be solved
separately, but a major clue comes from the fact that every instance comes from some-
where. This means that some object commanded this instance to come into existence
in the first place. That object therefore has a reference to the instance at that moment.
That fact is always the starting point for establishment of future communication.

When Manny instantiates Jack, Manny has a reference to Jack, and can keep that ref-
erence if it will be needed later. Moreover, if Manny knows that Jack is going to need
a reference to itself (Manny) or to some piece of data, Manny can hand Jack that ref-
erence early in Jack’s lifetime. Indeed, you might write Jack with an initializer that will
take this reference as a parameter, so that Jack will possess it from the moment it comes
into existence. (Compare the approach taken, for example, by UIActionSheet and
UIAlertView, where the delegate is one of the initializer’s parameters, or by UIBar-
ButtonItem, where the target is one of the initializer’s parameters.)

This example, from one of my apps, is from a table view controller. The user has tapped
a row of the table. We create a secondary table view controller, a TrackViewController
instance, handing it the data it will need, and display the secondary table view. I de-
liberately devised TrackViewController to have a designated initializer initWithMedia-
ItemCollection: to make it virtually obligatory for a TrackViewController to have ac-
cess to the data it needs:

322 | Chapter 13: Data Communication

- (void)showItemsForRow: (NSIndexPath*) indexPath {
 // create subtable of tracks and go there
 TrackViewController *t =
 [[TrackViewController alloc] initWithMediaItemCollection:
 [self.albums objectAtIndex: [indexPath row]]];
 [self.navigationController pushViewController:t animated:YES];
}

The loading of a nib is also a case of visibility by instantiation. As I explained at length
in Chapter 7, you will want to prepare your nib objects, including some proxy object
such as the File’s Owner, with outlets corresponding to instance variables or accessors
in that object’s class; as the nib loads, the object pointed to by each outlet will be handed
to the corresponding instance variable as its value, or the setter as its argument, so that
each instance that will need a reference to an object instantiated from the nib will in
fact now have it and will be able to communicate as needed with the nib-instantiated
object (Figure 7-5).

But what if two objects are conceptually distant from each other? A common case in
point is when objects are going to be instantiated from different nibs. How can an
instance from one nib get a reference to an instance from another nib? True, you can’t
draw a connection between an object in nib A and an object in nib B. But someone
(Manny) is going to be the file’s owner when nib A loads, and someone (Jack) is going
to be the file’s owner when nib B loads. Those two file’s owners might be able to see
each other; if so, the problem is solved. Perhaps they are the same object. Perhaps
Manny instantiated Jack in the first place. Perhaps they are both instantiated by some
third object, which provides a communication path for them.

Visibility by Relationship
Objects may acquire the ability to see one another automatically by virtue of their
position in a containing structure. Before worrying about how to supply one object
with a reference to another, consider whether there may already be a chain of references
leading from one to another.

For example, a subview can see its superview, through its superview property. A su-
perview can see all its subviews, through its subviews property, and can pick out a
specific subview through that subview’s tag property, by calling viewWithTag:. A sub-
view in a window can see its window, through its window property. (There will be more
about all that in Chapter 14.) A responder (Chapter 11) can see the next responder in
the responder chain, through the nextResponder method — which also means, because
of the structure of the responder chain, that a UIView can see the UIViewController
that manages it.

Similarly, if a UIViewController is currently presenting a view through a second
UIViewController, the latter is the former’s presentedViewController, and the former
is the latter’s presentingViewController. If a UIViewController is contained by a
UINavigationController, the latter is its navigationController. A UINavigation-

Instance Visibility | 323

Controller’s visible view is controlled by its visibleViewController. And from any of
these, you can reach the view controller’s view through its view property, and so forth.

All of these relationships are public. So if you can get a reference to just one object
within any of these structures or a similar structure, you can effectively navigate the
whole structure through a chain of references and lay your hands on any other object
within the structure.

Global Visibility
Some objects are globally visible (that is, visible to all other objects). In general, these
are singletons vended by a class method. Some of these objects have properties pointing
to other objects, making those other objects likewise globally visible.

For example, any object can see the singleton UIApplication instance by calling
[UIApplication sharedApplication]. So any object can also see the app’s primary win-
dow, because that is its keyWindow property, and any object can see the app delegate,
because that is its delegate property. Thus, for example, in our Empty Window project,
every object can see the AppDelegate instance created as the app launches. This means
that any additional object can be made globally visible by designating a globally visible
object, such as the app delegate, to hold a reference to it.

Another globally visible object is the shared defaults object obtained by calling [NSUser-
Defaults standardUserDefaults]. This object is the gateway to storage and retrieval of
user defaults, which is similar to a dictionary (a collection of values named by keys).
The user defaults are automatically saved when your application quits and are auto-
matically available when your application is launched again later, so they are one of
the main ways in which your app maintains state between launches. But, being globally
visible, they are also a conduit for communicating values within your app.

For example, in one of my apps there’s a setting I call @"hazyStripy". This determines
whether a certain visible interface object is drawn with a hazy fill or a stripy fill. This
is a setting that the user can change, so there is a preferences interface allowing the user
to make this change. When the user displays this preferences interface, I examine the
@"hazyStripy" setting in the user defaults to configure the interface to reflect it; if the
user interacts with the preferences interface to change the @"hazyStripy" setting, I re-
spond by changing the actual @"hazyStripy" setting in the user defaults.

But the preferences interface is not the only object that uses the @"hazyStripy" setting
in the user defaults; the drawing code that actually draws the hazy-or-stripy-filled object
also uses it, so as to know which way to draw itself. Thus there is no need for the object
that draws the hazy-or-stripy-filled object and the object that manages the preferences
interface to be able to see one another! They can both see this common object, the
@"hazyStripy" user default (Figure 13-2). Indeed, it is not uncommon to “misuse” the
user defaults storage to hold information that is not used to maintain state between

324 | Chapter 13: Data Communication

runs of the app, but is placed there merely because this is a location globally visible to
all objects.

Notifications
Notifications (Chapter 11) can be a way to communicate between objects that are
conceptually distant from one another without bothering to provide any way for one
to see the other. Using a notification in this way may seem lazy, an evasion of your
responsibility to architect your objects sensibly. But sometimes one object doesn’t need
to know, and indeed shouldn’t know, what object it is sending a message to.

I’ll give a specific example. One of my apps consists of a bunch of flashcards. Only one
card is showing at any one time, but the cards are actually embedded in a scroll view,
so the user can move from one card to the next by swiping the screen. I’ve supplied
classes to manage this interface: each card is managed by a CardController, and the
scroll view as a whole is managed by a single ScrollViewController.

The flashcards all have the same layout: a foreign term, along with an English transla-
tion. To facilitate learning, the ScrollViewController displays a toolbar with a button
that the user can tap to toggle visibility of the English translation on all cards. Thus,
the user might hide the English translation and move from card to card, showing the
English translation only occasionally to discover a forgotten translation or to confirm
a remembered one.

What should happen, exactly, when the user taps the toolbar button to show or hide
the English translation? This seems a perfect use of a notification. I could cycle through

Figure 13-2. The global visibility of user defaults

Notifications | 325

all the existing CardController instances and tell each one to show or hide the English
translation label, but this seems bulky and error-prone. How much simpler to have
every CardController, as it comes into existence, register for the @"toggleEnglish" no-
tification. Now the ScrollViewController can post a single notification and all the
CardController instances will just hear about it, automatically.

This example also involves global storage in user defaults, discussed in the previous
section. Just before posting the notification, ScrollViewController stores the desired
state of the English translation’s visibility in a user preference. Thus, to know what to
do in response to the notification, each CardController just consults that preference
and obeys it (Figure 13-3). Alternatively, ScrollViewController could have called post-
NotificationName:object:userInfo: and put this information into the userInfo, but
there’s a reason why I didn’t do things that way: not every CardController that will
ever exist is in existence now. I want each new CardController that later comes into
existence to set the visibility of its English translation label correctly. To do so, it too
has but to consult the globally available stored user preference.

Figure 13-3. Posting a notification

326 | Chapter 13: Data Communication

Key–Value Observing
Key–value observing, or KVO, is a mechanism somewhat similar to the target–action
mechanism, except that it is not limited to controls. (The KVO mechanism is provided
through an informal protocol, NSKeyValueObserving, which is actually a set of cate-
gories on NSObject and other classes.) The similarity is that objects register with a
particular object to be notified when something happens. The “something” is that a
certain value in that object is changed.

Mac OS X Programmer Alert

Mac OS X bindings don’t exist on iOS, but you can sometimes use KVO
to achieve similar aims.

KVO can be broken down into three stages:

Registration
To hear about a change in a value belonging to object A, object B must be registered
with object A.

Change
The change takes place in the value belonging to object A, and it must take place
in a special way — a KVO compliant way.

Notification
Object B is automatically notified that the value in object A has changed and can
respond as desired.

Here’s a simple complete example — a rather silly example, but sufficient to demon-
strate the KVO mechanism in action. We have a class MyClass1; this will be the class
of object A. We also have a class MyClass2; this will be the class of object B. Finally,
we have code that creates a MyClass1 instance called objectA and a MyClass2 instance
called objectB; this code registers objectB to hear about changes in an instance variable
of objectA called value, and then changes value, and sure enough, objectB is automat-
ically notified of the change:

// [In MyClass1.h]

@interface MyClass1 : NSObject
@property (nonatomic, copy) NSString* value;
@end

// [In MyClass1.m]

@implementation MyClass1
@synthesize value;
@end

// [In MyClass2.m (in its implementation section)]

Key–Value Observing | 327

- (void) observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context {
 NSLog(@"I heard about the change!");
}

// [somewhere else entirely]

MyClass1* objectA = [[MyClass1 alloc] init];
MyClass2* objectB = [[MyClass2 alloc] init];
// register for KVO
[objectA addObserver:objectB forKeyPath:@"value" options:0 context:NULL];
// change the value in a KVO compliant way
objectA.value = @"Hello, world!";
// result: objectB's observeValueForKeyPath:... is called

We call addObserver:forKeyPath:options:context: to register objectB to hear about
changes in objectA’s value. We didn’t use the options: or context: parameters for
anything; I’ll talk about the options: parameter in a moment. (The context: pa-
rameter is for handing in a value to be provided as part of the notification.)

We change objectA’s value, and we do it in a KVO compliant way, namely, by pass-
ing through the setter (because setting a property is equivalent to passing through
the setter). This is another reason why, as I said in Chapter 12, accessors (and prop-
erties) are a good thing: they help you guarantee KVO compliance when changing
a value.

When we change objectA’s value, the third stage takes place automatically: a call is
made to objectB’s observeValueForKeyPath:.... We have implemented this method in
MyClass2 in order to receive the notification. In this simple example, we expect to
receive only one notification, so we just log to indicate that we did indeed receive it. In
real life, where a single object might be registered to receive more than one KVO noti-
fication, you’d use the incoming parameters to distinguish between different notifica-
tions and decide what to do.

At the very least, you’ll probably want to know, when observeValueForKeyPath:... is
called, what the new value is. We can find that out easily, because we are handed a
reference to the object that changed, along with the key path for the value within that
object. Thus we can use KVC to query the changed object in the most general way:

- (void) observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context {
 id newValue = [object valueForKeyPath:keyPath];
 NSLog(@"The key path %@ changed to %@", keyPath, newValue);
}

328 | Chapter 13: Data Communication

It is also possible to request that the new value be included as part of the notification.
This depends upon the options passed with the original registration. Here, we’ll request
that both the old and new values be included with the notification:

objectA.value = @"Hello";
[objectA addObserver:objectB forKeyPath:@"value"
 options: NSKeyValueObservingOptionNew | NSKeyValueObservingOptionOld
 context:NULL];
objectA.value = @"Goodbye"; // notification is triggered

When we receive the notification, we fetch the old and new values out of the change
dictionary:

- (void) observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context {
 id newValue = [change objectForKey: NSKeyValueChangeNewKey];
 id oldValue = [change objectForKey: NSKeyValueChangeOldKey];
 NSLog(@"The key path %@ changed from %@ to %@", keyPath, oldValue, newValue);
}

No memory management happens as part of the registration process, so it is incumbent
upon you to unregister object B before it is destroyed. Otherwise, object A may later
attempt to send a notification to a dangling pointer. This is done by sending object A
the removeObserver:forKeyPath: message; you must explicitly unregister the observer
for every key path for which it is registered (you can’t use nil as the second argument
to mean “all key paths”).

The runtime will send you a nice warning in the log if an object being
observed under KVO goes out of existence. But you get no warning if an
observer object goes out of existence. It is crucial that the observer
should be unregistered with the observed as the observer goes out of
existence, to prevent the observed from trying to send it any notifica-
tions later. In real life, where an object will typically register itself as an
observer, it will usually unregister itself in its dealloc implementation
(and this could be yet another reason to implement dealloc under ARC).

Beginners are often confused about how to use KVO to observe changes to a mutable
array, to be notified when an object is added to, removed from, or replaced within the
array. You can’t add an observer to an array itself; you have to observe through an
object that has a key path to the array (through accessors, for example). The simple-
minded solution is then to access the array using mutableArrayValueForKey:, which
provides an observable proxy object.

For example, recall how in Chapter 12 we posited an object with an instance variable
theData which is an array of dictionaries:

Key–Value Observing | 329

(
 {
 description = "The one with glasses.";
 name = Manny;
 },
 {
 description = "Looks a little like Governor Dewey.";
 name = Moe;
 },
 {
 description = "The one without a mustache.";
 name = Jack;
 }
)

Suppose this is an NSMutableArray. Then we can register with our object to observe
the key path @"theData":

[objectA addObserver:objectB forKeyPath:@"theData" options:0 context:NULL];

Now object B will be notified of changes to this mutable array, but only if those changes
are performed through the mutableArrayValueForKey: proxy object:

[[objectA mutableArrayValueForKeyPath:@"theData"] removeObjectAtIndex:0];
// notification is triggered

But it seems onerous to require clients to know that they must call mutableArrayValue-
ForKey:. The simple solution is for our object A itself to provide a getter that calls
mutableArrayValueForKey:. Here’s a possible implementation:

// [In MyClass1, in the header file]

@interface MyClass1 : NSObject
@property (nonatomic, strong, getter=theDataGetter) NSMutableArray* theData;
@end

// [In MyClass1, in the implementation section]

@synthesize theData;

- (NSMutableArray*) theDataGetter {
 return [self mutableArrayValueForKey:@"theData"];
}

The result is that, as far as any client knows, this object has a key @"theData" and a
property theData, and we can register to observe with the key and then access the
mutable array through the property:

[objectA addObserver:objectB forKeyPath:@"theData"
 options: NSKeyValueObservingOptionNew | NSKeyValueObservingOptionOld
 context:NULL];
[objectA.theData removeObjectAtIndex:0]; // notification is triggered

If you’re going to take this approach, you should really also implement (in MyClass1)
the four KVC compliance methods for a mutable array façade (see Chapter 12). Al-
though things will appear to work just fine without them, and although they appear

330 | Chapter 13: Data Communication

trivial (they are merely delegating to self->theData the equivalent calls), they will be
called by the vended proxy object, which increases its efficiency (and, some would
argue, its safety). Without these methods, the proxy object resorts to setting the in-
stance variable directly, replacing the entire mutable array, every time a client changes
the mutable array:

- (NSUInteger) countOfTheData {
 return [self->theData count];
}

- (id) objectInTheDataAtIndex: (NSUInteger) ix {
 return [self->theData objectAtIndex: ix];
}

- (void) insertObject: (id) val inTheDataAtIndex: (NSUInteger) ix {
 [self->theData insertObject:val atIndex:ix];
}

- (void) removeObjectFromTheDataAtIndex: (NSUInteger) ix {
 [self->theData removeObjectAtIndex: ix];
}

If what you want to observe are mutations within an individual element of an array,
things are more complicated. Suppose our array of dictionaries is an array of mutable
dictionaries. To observe changes to the value of the @"description" key of any dictio-
nary in the array, you’d need to register for that key with each dictionary in the array,
separately. You can do that efficiently with NSArray’s instance method addObserver:
toObjectsAtIndexes:forKeyPath:options:context:, but if the array itself is mutable
then you’re also going to have to register for that key with any new dictionaries that are
subsequently added to the array (and unregister when a dictionary is removed from the
array). This is doable but daunting, and I’m not going to go into the details here.

Key–value observing is a deep mechanism; consult Apple’s Key-Value Observing
Guide for full information. It does have some unfortunate shortcomings — for one
thing, it’s a pity that all notifications arrive by calling the same bottleneck method,
observeValueForKeyPath:... — but in general, KVO is useful for keeping values coor-
dinated in different objects.

The properties of Apple’s built-in classes are typically KVO compliant.
Indeed, so are many classes that don’t use properties per se; for example,
NSUserDefaults is KVO compliant. Unfortunately, Apple warns that
undocumented KVO compliance can’t necessarily be counted on.

Key–Value Observing | 331

PART IV

Views

This part of the book is about the things that appear in an app’s interface. All such
things are, ultimately, views. A view is a unit of your app that knows how to draw itself.
A view also knows how to sense that the user has touched it. Views are what your user
sees on the screen, and what your user interacts with by touching the screen. Thus,
views are the primary constituent of an app’s visible, touchable manifestation. They
are your app’s interface. So it’s going to be crucial to know how views work.

• Chapter 14 discusses views in their most general aspect — their hierarchy, position,
and visibility.

• Chapter 15 is about drawing. A view knows how to draw itself; this chapter ex-
plains how to tell a view what you want it to draw, from simply displaying an
already existing image to constructing a drawing line by line.

• Chapter 16 explains about layers. The drawing power of a view comes ultimately
from its layer. To put it another way, a layer is effectively the aspect of a view that
knows how to draw — with even more power.

• Chapter 17 tells about animation. A iOS app’s interface isn’t generally static; it’s
lively. Much of that liveliness comes from animation. iOS gives you great power
to animate your interface with remarkable ease; that power resides ultimately in
layers.

• Chapter 18 is about touches. A view knows how to draw itself; it also knows how
to sense that the user is touching it. This chapter explains the iOS view-based
mechanisms for sensing and responding to touches, with details on how touches
are routed to the appropriate view and how you can customize that routing.

CHAPTER 14

Views

A view (an object whose class is a subclass of UIView) knows how to draw itself into a
rectangular area of the interface. Your app has a visible interface thanks to views. Cre-
ating and configuring a view can be extremely simple: “Set it and forget it.” You’ve
already seen that you can drag an interface widget, such as a UIButton, into a view in
the nib; when the app runs, the button appears, and works properly. But you can also
manipulate views in powerful ways, in real time. Your code can do some or all of the
view’s drawing of itself; it can make the view appear and disappear, move, resize itself,
and display many other physical changes, possibly with animation.

A view is also a responder (UIView is a subclass of UIResponder). This means that a
view is subject to user interactions, such as taps and swipes. Thus, views are the basis
not only of the interface that the user sees, but also of the interface that the user touches.
Organizing your views so that the correct view reacts to a given touch allows you to
allocate your code neatly and efficiently.

The view hierarchy is the chief mode of view organization. A view can have subviews;
a subview has exactly one immediate superview. Thus there is a tree of views. This
hierarchy allows views to come and go together. If a view is removed from the interface,
its subviews are removed; if a view is hidden (made invisible), its subviews are hidden;
if a view is moved, its subviews move with it; and other changes in a view are likewise
shared with its subviews. The view hierarchy is also the basis of, though it is not iden-
tical to, the responder chain (Chapter 11).

A view may come from a nib, or you can create it in code. On balance, neither approach
is to be preferred over the other; it depends on your needs and inclinations and on the
overall architecture of your app.

The Window
The top of the view hierarchy is the app’s window. It is an instance of UIWindow (or
your own subclass thereof), which is a UIView subclass. Your app should have exactly
one main window. It occupies the entire screen and forms the background to, and the

335

ultimate superview of, all your other visible views. Other views are visible by virtue of
being subviews, at some depth, of your app’s window. (If your app can display views
on an external screen, you’ll create an additional UIWindow to contain those views;
but in this chapter I’ll behave as if there were just one screen, the device’s own screen,
and just one window.)

The project templates all generate your app’s window for you. The technique used by
the current project templates, in a nonstoryboard app, is to create the window in code,
in the app delegate’s application:didFinishLaunchingWithOptions:. The window must
persist for the lifetime of the app, so the app delegate has a window property that retains
it:

self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

The window’s designated initializer is initWithFrame:; I’ll explain in a moment what
“frame” and “bounds” are, but the effect is to make the window the same size as the
screen. In the template, the comment, “Override point for customization after appli-
cation launch,” comes after that line of code, because any code customizing what’s in
the window will need the window to exist first. The various templates adopt various
strategies for giving the window some content; this generally involves setting the win-
dow’s rootViewController to a UIViewController, whose view thus automatically be-
comes the window’s single primary subview. (I will refer to this as the window’s root
view.)

For example, in the Single View Application project template, which we used for our
earlier Empty Window example because it is the simplest complete template with a
nib, the ViewController class is instantiated; the resulting instance is set to the win-
dow’s rootViewController, and the UIView that serves as the value of the View-
Controller instance’s view property, which was set from the File’s Owner’s view outlet
in ViewController.xib, becomes the window’s single primary subview. (I’ll discuss this
mechanism in detail in Chapter 19.) Finally, the template code sends the window in-
stance the makeKeyAndVisible message in order to make your app’s interface appear.

On the other hand, if you choose the Storyboard option as you specify a template, the
app is given a main storyboard, pointed to by the Info.plist key “Main storyboard file
base name” (UIMainStoryboardFile). In that case, after UIApplicationMain instantiates
the app delegate class (Chapter 6), it asks the app delegate for the value of its window
property; if that value is nil, the window is created and assigned to the app delegate’s
window property. The storyboard’s initial view controller is then instantiated and as-
signed to the window’s rootViewController property, with the result that its view is
placed in the window as its root view. The window is then sent the makeKeyAnd-
Visible message. All of that is done behind the scenes by UIApplicationMain, with no
visible code whatever. That is why, in a storyboard template, the application:did-
FinishLaunchingWithOptions: implementation is empty.

It is improbable that you would want to subclass UIWindow and substitute an instance
of your subclass as the app’s main window, but you can certain do so. If the window

336 | Chapter 14: Views

is generated explicitly in code, you would obviously substitute the name of your win-
dow subclass as the class to be instantiated and assigned to the app delegate’s window
property in application:didFinishLaunchingWithOptions:, in the template code I
quoted a moment ago. If you’re using a main storyboard, however, application:did-
FinishLaunchingWithOptions: is too late; you’ll have to perform the substitution when
UIApplicationMain asks for the app delegate’s window property, by implementing the
app delegate’s window getter to create the window and set the window property exactly
once:

- (UIWindow*) window {
 UIWindow* w = self->_window;
 if (!w) {
 w = [[MyWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self->_window = w;
 }
 return w;
}

Once the app is up and running, the app delegate forever points to the window as the
value of its window property; so any code in the app delegate class can refer to the window
as self.window. Code elsewhere can get a reference to the app delegate, so it can also
get a reference to the app’s window:

UIWindow* theWindow = [[[UIApplication sharedApplication] delegate] window];

That code is unusual, though, and may require typecasting to quiet the compiler (be-
cause the class of the application’s delegate property is otherwise unknown). You’d be
more likely to use the application’s keyWindow property:

UIWindow* theWindow = [[UIApplication sharedApplication] keyWindow];

Perhaps the most typical way to get a reference to your app’s window would be through
a subview of the window, at any depth of the hierarchy. You are very likely to have a
reference to at least one such subview, and its window property points to the window
that contains it, which is the app’s window. You can also use a UIView’s window property
as a way of asking whether it is ultimately embedded in a window; if it isn’t, its
window property is nil. A UIView whose window property is nil cannot be visible to the
user.

Although your app will have exactly one primary window, it may generate other win-
dows of which you are not conscious. For example, if you put up an alert view (UIAlert-
View), it is displayed in a secondary window that lies on top of your app’s window; at
that moment, this secondary window is the application’s keyWindow. You would not be
conscious of this fact, however, unless you needed a reference to your app’s window
while an alert was showing, which is unlikely.

The window’s backgroundColor property, which it inherits from UIView, affects the
appearance of the app if the window is visible behind its subviews. However, you are
likely to give your window a primary subview that occupies the entire window and

The Window | 337

blocks it from sight; the window’s backgroundColor would then make no visible differ-
ence. The window would function solely as a container for the app’s visible views.

As you work your way through this and subsequent chapters, you may be tempted to
try out the example code, or code of your own, to experiment with views and how they
are drawn. In iOS 4 and before, it was legal to put a subview directly into the window,
so you could start with the Empty Application project template and, in application:
didFinishLaunchingWithOptions:, create the view and add it as a subview to the win-
dow:

self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
// Override point for customization after application launch.
UIView* v = [[UIView alloc] initWithFrame:CGRectMake(100,100,50,50)];
v.backgroundColor = [UIColor redColor]; // small red square
[self.window addSubview: v];
self.window.backgroundColor = [UIColor whiteColor];
[self.window makeKeyAndVisible];
return YES;

This still works, but in iOS 5, the runtime complains if the window does not have a
rootViewController. The minimal solution, permitting you to experiment with views
created in code in an app drawn from the Empty Application project template, but
without getting that warning from the runtime, is to instantiate a root view controller
in code, assign it to the rootViewController property, and draw your experimental view
into the root view controller’s view, like this:

self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
// Override point for customization after application launch.
self.window.rootViewController = [UIViewController new];
UIView* v = [[UIView alloc] initWithFrame:CGRectMake(100,100,50,50)];
v.backgroundColor = [UIColor redColor]; // small red square
[self.window.rootViewController.view addSubview: v];
self.window.backgroundColor = [UIColor whiteColor];
[self.window makeKeyAndVisible];
return YES;

The result looks exactly the same, but there is now an invisible (transparent) root view
occupying the entire window, and the small red square is actually a subview of that.

On the other hand, you might also want to experiment with views created in a nib. In
Xcode 4.2, unlike earlier versions of Xcode, the Empty Application project template
has no nib, so it will be simplest to start with the Single View Application project
template, as we did with our earlier Empty Window example. The view supplied in the
nib will become the window’s root view, and whatever you drag into it in the nib will
appear in the window when the app runs.

Subview and Superview
Once upon a time, and not so very long ago, a view owned precisely its rectangular
area. No part of any view that was not a subview of this view could appear inside it,

338 | Chapter 14: Views

because when this view redrew its rectangle, it would erase the overlapping portion of
the other view. No part of any subview of this view could appear outside it, because
the view took responsibility for its own rectangle and no more.

Those rules, however, were gradually relaxed, and starting in Mac OS X 10.5 Apple
introduced an entirely new architecture for view drawing that lifted those restrictions
completely. iOS view drawing is based on this revised architecture. So now some or all
of a subview can appear outside its superview, and a view can overlap another view
and can be drawn partially or totally in front of it without being its subview.

So, for example, Figure 14-1 shows three overlapping views. All three views have a
background color, so each is completely represented by a colored rectangle. You have
no way of knowing, from this visual representation, exactly how the views are related
within the view hierarchy. In actual fact, the view in the middle (horizontally) is a sibling
view of the view on the left (they are both direct subviews of the root view), and the
view on the right is a subview of the middle view.

When views are created in the nib, you can examine the view hierarchy in the expanded
dock to learn their actual relationship (Figure 14-2). When views are created in code,
you know their hierarchical relationship because you created that hierarchy. But the
visible interface doesn’t tell you, because view overlapping is so flexible.

Nevertheless, a view’s position in the view hierarchy does affect how it is drawn. Most
important, a view’s position in the view hierarchy dictates the order in which it is drawn.
Sibling subviews of the same superview have a layering order: one is “further back”

Figure 14-1. Overlapping views

Figure 14-2. A view hierarchy as displayed in the nib

Subview and Superview | 339

than the other. This will make no visible difference if there is no overlap, but the subview
that is “further back” is drawn first, so if there is overlap, it will appear to be behind its
sibling. Similarly, a superview is “further back” than its subviews; the superview is
drawn first, so it will appear to be behind its subviews.

You can see this illustrated in Figure 14-1. The view on the right is a subview of the
view in the middle and is drawn on top of it. The view on the left is a sibling of the view
in the middle, but it is a later sibling, so it is drawn on top of the view in the middle
and on top of the view on the right. The view on the left cannot appear behind the view
on the right but in front of the view in the middle, because those views are subview and
superview and are drawn together — both are drawn either before or after the view on
the left, depending on the “further back” ordering of the siblings.

This layering order can be governed in the nib by arranging the views in the expanded
dock. (If you click in the canvas, you may be able to use the menu items of the Editor
→ Arrange menu instead — Send to Front, Send to Back, Send Forward, Send Back-
ward.) In code, there are methods for arranging the sibling order of views, which we’ll
come to in a moment.

Here are some other effects of the view hierarchy:

• If a view is removed from or moved within its superview, its subviews go with it.

• If a view’s size is changed, its subviews can be resized automatically.

• A view’s degree of transparency is inherited by its subviews.

• A view can optionally limit the drawing of its subviews so that any parts of them
outside the view are not shown. This is called clipping and is set with the view’s
clipsToBounds property.

• A superview owns its subviews, in the memory-management sense, much as an
NSArray owns its elements; it retains them and is responsible for releasing a sub-
view when that subview ceases to be its subview (it is removed from the collection
of this view’s subviews) or when it itself goes out of existence.

A UIView has a superview property (a UIView) and a subviews property (an NSArray
of UIViews, in back-to-front order), allowing you to trace the view hierarchy in code.
There is also a method isDescendantOfView: letting you check whether one view is a
subview of another at any depth. If you need a reference to a particular view, you will
probably arrange this beforehand as an instance variable, perhaps through an outlet.
Alternatively, a view can have a numeric tag (its tag property), and can then be referred
to by sending any view higher up the view hierarchy the viewWithTag: message. Seeing
that all tags of interest are unique within their region of the hierarchy is up to you.

Manipulating the view hierarchy in code is easy. This is part of what gives iOS apps
their dynamic quality, and it compensates for the fact that there is basically just a single
window. It is perfectly reasonable for your code to rip an entire hierarchy of views out
of the superview and substitute another. Such behavior can be implemented elegantly
by using a UIViewController, a subject to which we’ll return later (Chapter 19). But

340 | Chapter 14: Views

you can do it directly, too. The method addSubview: makes one view a subview of
another; removeFromSuperview takes a subview out of its superview’s view hierarchy. In
both cases, if the superview is part of the visible interface, the subview will appear or
disappear; and of course this view may itself have subviews that accompany it. Just
remember that removing a subview from its superview releases it; if you intend to reuse
that subview later on, you will wish to retain it first. This is often taken care of through
a property with a retain policy.

Events inform a view of these dynamic changes. To respond to these events requires
subclassing. Then you’ll be able to override any of didAddSubview: and willRemove-
Subview:, didMoveToSuperview and willMoveToSuperview:, didMoveToWindow and will-
MoveToWindow:.

When addSubview: is called, the view is placed last among its superview’s subviews;
thus it is drawn last, meaning that it appears frontmost. A view’s subviews are indexed,
starting at 0, which is rearmost. There are additional methods for inserting a subview
at a given index (insertSubview:atIndex:), or below (behind) or above (in front of) a
specific view (insertSubview:belowSubview:, insertSubview:aboveSubview:); for swap-
ping two sibling views by index (exchangeSubviewAtIndex:withSubviewAtIndex:); and
for moving a subview all the way to the front or back among its siblings (bringSubview-
ToFront:, sendSubviewToBack:).

Oddly, there is no command for removing all of a view’s subviews at once. However,
a view’s subviews array is an immutable copy of the internal list of subviews, so it is
legal to cycle through it and remove each subview one at a time:

for (UIView* v in view.subviews)
 [v removeFromSuperview];

Frame
A view’s frame property, a CGRect, is the position of its rectangle within its superview,
in the superview’s coordinate system. By default, the superview’s coordinate system will
have the origin at its top left, with the x-coordinate growing positively rightward and
the y-coordinate growing positively downward.

Setting a view’s frame to a different CGRect value repositions the view, or resizes it, or
both. If the view is visible, this change will be visibly reflected in the interface. On the
other hand, you can also set a view’s frame when the view is not visible — for example,
when you create the view in code. In that case, the frame describes where the frame
will be positioned within its superview when it is given a superview. UIView’s desig-
nated initializer is initWithFrame:, and you’ll often assign a frame this way, especially
because the default frame might otherwise be {{0,0},{0,0}}, which is rarely what you
want.

Frame | 341

Forgetting to assign a view a frame when creating it in code, and then
wondering why it isn’t appearing when added to a superview, is a com-
mon beginner mistake. A view with a zero-size frame is effectively in-
visible. If a view has a standard size that you want it to adopt, especially
in relation to its contents (like a UIButton in relation to its title), an
alternative is to send it the sizeToFit message.

Knowing this, we can generate programmatically the interface displayed in Fig-
ure 14-1. This code might appear in the application:didFinishLaunchingWith-
Options: method of the app delegate in an Empty Application template-based app (as
I suggested earlier):

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(113, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectMake(41, 56, 132, 194)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
UIView* v3 = [[UIView alloc] initWithFrame:CGRectMake(43, 197, 160, 230)];
v3.backgroundColor = [UIColor colorWithRed:1 green:0 blue:0 alpha:1];
[self.window.rootViewController.view addSubview: v1];
[v1 addSubview: v2];
[self.window.rootViewController.view addSubview: v3];

In that code, we determined the layering order of v1 and v3 (the middle and left views,
which are sibling subviews of the window) by the order in which we inserted them into
the view hierarchy with addSubview:.

Part of the app’s window may be covered by the status bar, which is actually another
window, supplied by the system. This may affect where you want to draw in the win-
dow. A view centered within the window will be centered on the screen, but it may not
look centered because it isn’t centered in the visible part of the window exclusive of
the status bar. Similarly, material drawn in the window at the point {0,0} (in the win-
dow’s coordinates) may not be visible, because that point may be covered by the status
bar. You can determine the rectangle currently not covered by the status bar as follows:

CGRect f = [[UIScreen mainScreen] applicationFrame];

By default, the applicationFrame is the frame of the window’s root view, so a subview
of the root view with a frame origin of {0,0} is not covered by the status bar (because
the subview is positioned using the root view’s coordinates, not the window’s coordi-
nates).

Complications are introduced by the possibility of the user rotating the device. This
does not change anything about the window’s coordinate system, so the window’s
{0,0} point might be in any corner (from the user’s perspective). One of the main
benefits of covering the window with a root view managed by a UIViewController is
that the UIViewController deals with rotation. I’ll discuss that in Chapter 19; for now,
I’ll assume that the device is not rotated.

342 | Chapter 14: Views

Bounds and Center
Suppose we wish to give a view a subview inset by 10 pixels, as in Figure 14-3. The
utility function CGRectInset makes it easy to derive one rectangle as an inset from an-
other, but what rectangle should we use as a basis? Not the superview’s frame; the frame
represents a view’s position within its superview, and in that superview’s coordinates.
What we’re after is a CGRect describing our superview’s rectangle in its own coordi-
nates, because those are the coordinates in which the subview’s frame is to be expressed.
That CGRect is the view’s bounds property.

So, the code to generate Figure 14-3 looks like this:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(113, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectInset(v1.bounds, 10, 10)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
[self.window.rootViewController.view addSubview: v1];
[v1 addSubview: v2];

You’ll very often use a view’s bounds in this way. When you need coordinates for draw-
ing inside a view, whether drawing manually or placing a subview, you’ll often refer to
the view’s bounds.

The screen also has bounds, and functions in that sense as the window’s
superview, even though a UIScreen isn’t a view. Moreover, the window’s
frame is always set to the screen’s bounds (see the example earlier in
this chapter of creating a window in code). Thus, window coordinates
are screen coordinates. For example, when asking the screen for the
applicationFrame, the answer comes back in screen coordinates, which
are also window coordinates, and can thus be used for positioning
something within the window.

Figure 14-3. A subview inset from its superview

Bounds and Center | 343

Interesting things happen when you set a view’s bounds. If you change a view’s bounds
size, you change its frame. The change in the view’s frame takes place around its cen-
ter, which remains unchanged. So, for example:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(113, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectInset(v1.bounds, 10, 10)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
[self.window.rootViewController.view addSubview: v1];
[v1 addSubview: v2];
CGRect f = v2.bounds;
f.size.height += 20;
f.size.width += 20;
v2.bounds = f;

What appears is a single rectangle; the subview completely and exactly covers its su-
perview, its frame being the same as the superview’s bounds. The call to CGRectInset
started with the superview’s bounds and shaved 10 points off the left, right, top, and
bottom to set the subview’s frame (Figure 14-3). But then we added 20 points to the
subview’s bounds height and width, and thus added 20 points to the subview’s frame
height and width as well (Figure 14-4). The center didn’t move, so we effectively put
the 10 points back onto the left, right, top, and bottom of the subview’s frame.

When you create a UIView, its bounds coordinate system’s {0,0} point is at its top left.
If you change a view’s bounds origin, you move the origin of its internal coordinate
system. Because a subview is positioned in its superview with respect to its superview’s
coordinate system, a change in the bounds origin of the superview will change the
apparent position of a subview. To illustrate, we start with our subview inset evenly
within its superview, and then change the bounds origin of the superview:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(113, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectInset(v1.bounds, 10, 10)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
[self.window.rootViewController.view addSubview: v1];
[v1 addSubview: v2];

Figure 14-4. A subview exactly covering its superview

344 | Chapter 14: Views

CGRect f = v1.bounds;
f.origin.x += 10;
f.origin.y += 10;
v1.bounds = f;

Nothing happens to the superview’s size or position. But the subview has moved up
and to the left so that it is flush with its superview’s top-left corner (Figure 14-5). Ba-
sically, what we’ve done is to say to the superview, “Instead of calling the point at your
upper left {0,0}, call that point {10,10}.” Because the subview’s frame origin is itself at
{10,10}, the subview now touches the superview’s top-left corner. The effect of chang-
ing a view’s bounds origin may seem directionally backward — we increased the su-
perview’s origin in the positive direction, but the subview moved in the negative di-
rection — but think of it this way: a view’s bounds origin point coincides with its
frame’s top left.

We have seen that changing a view’s bounds size affects its frame size. The converse is
also true: changing a view’s frame size affects its bounds size. What is not affected by
changing a view’s bounds size is the view’s center. This property, like the frame prop-
erty, represents the view’s position within its superview, in the superview’s coordinates,
but it is the position of the bounds center, the point derived from the bounds like this:

CGPoint c = CGPointMake(CGRectGetMidX(theView.bounds),
 CGRectGetMidY(theView.bounds));

A view’s center is thus a single point establishing the positional relationship between
a view’s bounds and its superview’s bounds. Changing a view’s bounds does not change
its center (we already saw that when we increased a view’s bounds size, its frame ex-
panded around a stationary center); changing a view’s center does not change its
bounds.

Thus, a view’s bounds and center are orthogonal (independent), and describe (among
other things) both the view’s size and its position within its superview. The view’s frame
is therefore superfluous! In fact, the frame property is merely a convenient expression
of the center and bounds values. In most cases, this won’t matter to you; you’ll use the
frame property anyway. When you first create a view from scratch, the designated in-
itializer is initWithFrame:. You can change the frame, and the bounds size and center

Figure 14-5. The superview’s bounds origin has been shifted

Bounds and Center | 345

will change to match. You can change the bounds size or the center, and the frame will
change to match. Nevertheless, the proper and most reliable way to position and size
a view within its superview is to use its bounds and center, not its frame; there are some
situations in which the frame is meaningless (or will at least behave very oddly), but
the bounds and center will always work.

We have seen that every view has its own coordinate system, expressed by its bounds,
and that a view’s coordinate system has a clear relationship to its superview’s coordinate
system, expressed by its center. This is true of every view in a window, so it is possible
to convert between the coordinates of any two views in the same window. Convenience
methods are supplied to perform this conversion both for a CGPoint and for a CGRect:
convertPoint:fromView:, convertPoint:toView:, convertRect:fromView:, and convert-
Rect:toView:. If the second parameter is nil, it is taken to be the window.

For example, if v2 is a subview of v1, then to center v2 within v1 you could say:

v2.center = [v1 convertPoint:v1.center fromView:v1.superview];

When setting a view’s position by setting its center, if the height or width
of the view is not an even integer, the view can end up misaligned (on a
normal-resolution screen): its point values in one or both dimensions
are located between the screen pixels. This can cause the view to be
displayed incorrectly; for example, if the view contains text, the text
may be blurry. You can detect this situation in the Simulator by checking
Debug → Color Misaligned Images. A simple solution is to set the view’s
frame, after positioning it, to the CGRectIntegral of its frame.

Layout
We have seen that a subview moves when its superview’s bounds origin is changed.
But what happens to a subview when its superview’s bounds size is changed? (And
remember, this includes changing the superview’s frame size.)

Of its own accord, nothing happens. The subview’s bounds and center haven’t
changed, and the superview’s bounds origin hasn’t moved, so the subview stays in the
same position relative to the top left of its superview. In real life, however, that often
won’t be what you want. You’ll want subviews to be resized and repositioned when
their superview’s bounds size is changed. This is called layout.

The need for layout is obvious in a context such as Mac OS X, where the user can freely
resize a window, potentially disturbing your interface. For example, you’d want an OK
button near the lower-right corner to stay in the lower-right corner as the window
grows, while a text field at the top of the window should stay at the top of the window,
but perhaps should widen as the window widens.

There are no user-resizable windows on an iOS device, but still, a superview might be
resized dynamically. For example, you might respond to the user rotating the device
90 degrees by swapping the width and height values of a view; now its subviews should

346 | Chapter 14: Views

shift to compensate. Or you might want to provide a reusable complex view, such as
a table view cell containing several subviews, without knowing its precise final dimen-
sions in advance.

Layout is performed in two primary ways, which can be combined:

Automatic layout
Automatic resizing of subviews depends on the superview’s autoresizesSubviews
property. To turn off a view’s automatic resizing altogether, set this property to
NO. If it is YES, then a subview will respond automatically to its superview’s being
resized, in accordance with the rules prescribed by the subview’s autoresizing-
Mask property value.

Manual layout
The superview is sent the layoutSubviews message whenever it is resized; so, to lay
out subviews manually, provide your own subclass and override layoutSubviews.
If you’re going to use both approaches, automatic resizing is performed before
layoutSubviews is called.

You should never call layoutSubviews yourself. Instead, if you wish to trigger layout,
send setNeedsLayout to the view. This will cause the layout procedures to be followed
at the next appropriate moment. Alternatively, if you really need layout to occur right
this moment, send the view the layoutIfNeeded message; this may cause the layout of
the entire view tree, not only below but also above this view, and is probably not a very
common thing to do.

Automatic resizing is a matter of conceptually assigning a subview “springs and struts.”
A spring can stretch; a strut can’t. Springs and struts can be assigned internally or
externally. Thus you can specify (using internal springs and struts) whether and how
the view can be resized, and (using external springs and struts) whether and how the
view can be repositioned. For example:

• Imagine a subview that is centered in its superview and is to stay centered, but is
to resize itself as the superview is resized. It would have struts externally and springs
internally.

• Imagine a subview that is centered in its superview and is to stay centered, and is
not to resize itself as the superview is resized. It would have springs externally and
struts internally.

• Imagine an OK button that is to stay in the lower right of its superview. It would
have struts internally, struts externally to its right and bottom, and springs exter-
nally to its top and left.

• Imagine a text field that is to stay at the top of its superview. It is to widen as the
superview widens. It would have struts externally; internally it would have a ver-
tical strut and a horizontal spring.

Layout | 347

When editing a nib file, you can experiment with assigning a view springs and struts
in the Size inspector (Autosizing). A solid line externally represents a strut; a solid line
internally represents a spring. A helpful animation shows you the effect on your view’s
position as its superview is resized.

In code, a combination of springs and struts is set through a view’s autoresizingMask
property. It’s a bitmask, so you use logical-or to combine options (Chapter 1). The
options, with names that start with UIViewAutoresizingFlexible..., represent springs;
whatever isn’t specified is a strut. The default is UIViewAutoresizingNone, meaning all
struts.

To demonstrate autoresizing, I’ll start with a view and two subviews, one stretched
across the top, the other confined to the lower right (Figure 14-6):

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(100, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectMake(0, 0, 132, 10)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
UIView* v3 = [[UIView alloc] initWithFrame:CGRectMake(v1.bounds.size.width-20,
 v1.bounds.size.height-20,
 20, 20)];
v3.backgroundColor = [UIColor colorWithRed:1 green:0 blue:0 alpha:1];
[self.window.rootViewController.view addSubview: v1];
[v1 addSubview: v2];
[v1 addSubview: v3];

To that example, I’ll add code applying strings and struts to the two subviews to make
them behave like the text field and the OK button I was hypothesizing earlier:

v2.autoresizingMask = UIViewAutoresizingFlexibleWidth;
v3.autoresizingMask = UIViewAutoresizingFlexibleTopMargin |
 UIViewAutoresizingFlexibleLeftMargin;

Now I’ll resize the superview, thus bringing autoresizing into play; as you can see
(Figure 14-7), the subviews remain pinned in their correct relative positions:

CGRect f = v1.bounds;
f.size.width += 40;
f.size.height -= 50;
v1.bounds = f;

Figure 14-6. Before autoresizing

348 | Chapter 14: Views

Transform
A view’s transform property alters how the view is drawn — it may, for example, change
the view’s perceived size and orientation — without affecting its bounds and center. A
transformed view continues to behave correctly: a rotated button, for example, is still
a button, and can be tapped in its apparent location and orientation.

A transform value is a CGAffineTransform, which is a struct representing six of the
nine values of a 3×3 transformation matrix (the other three values are constants, so
there’s no point representing them in the struct). You may have forgotten your high-
school linear algebra, so you may not recall what a transformation matrix is. For the
details, which are quite simple really, see the “Transforms” chapter of Apple’s Quartz
2D Programming Guide, especially the section called “The Math Behind the Matrices.”
But you don’t really need to know those details, because convenience functions, whose
names start with CGAffineTransformMake..., are provided for creating three of the basic
types of transform: rotation, scaling, and translation (i.e., changing the view’s apparent
position). A fourth basic transform type, skewing or shearing, has no convenience
function.

By default, a view’s transformation matrix is CGAffineTransformIdentity, the identity
transform. It has no visible effect, so you’re unaware of it. Any transform that you do
apply takes place around the view’s center, which is held constant.

Here’s some code to illustrate use of a transform:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(113, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectInset(v1.bounds, 10, 10)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
[self.window.rootViewController.view addSubview: v1];
[v1 addSubview: v2];
v1.transform = CGAffineTransformMakeRotation(45 * M_PI/180.0);

The transform property of the view v1 is set to a rotation transform. The result (Fig-
ure 14-8) is that the view appears to be rocked 45 degrees clockwise. (I think in degrees,
but Core Graphics thinks in radians, so my code has to convert.) Observe that the view’s

Figure 14-7. After autoresizing

Transform | 349

center property is unaffected, so that the rotation seems to have occurred around the
view’s center. Moreover, the view’s bounds property is unaffected; the internal coordi-
nate system is unchanged, so the subview is drawn in the same place relative to its
superview. The view’s frame, however, is now useless, as no mere rectangle can describe
the region of the superview apparently occupied by the view, its actual value,
{{63.7416, 92.7416}, {230.517, 230.517}}, describes the minimal bounding rectangle
surrounding the view’s apparent position. The rule is that if a view’s transform is not
the identity transform, you should not set its frame; also, automatic resizing of a subview
requires that the superview’s transform be the identity transform.

Suppose, instead of CGAffineTransformMakeRotation, we call CGAffineTransformMake-
Scale, like this:

v1.transform = CGAffineTransformMakeScale(1.8, 1);

The bounds property of the view v1 is still unaffected, so the subview is still drawn in
the same place relative to its superview; this means that the two views seem to have
stretched horizontally together (Figure 14-9). No bounds or centers were harmed by
the application of this transform!

Figure 14-8. A rotation transform

Figure 14-9. A scale transform

350 | Chapter 14: Views

Transformation matrices can be chained. There are convenience functions for applying
one transform to another. Their names do not contain “Make.” These functions are
not commutative; that is, order matters. If you start with a transform that translates a
view to the right and then apply a rotation of 45 degrees, the rotated view appears to
the right of its original position; on the other hand, if you start with a transform that
rotates a view 45 degrees and then apply a translation to the right, the meaning of
“right” has changed, so the rotated view appears 45 degrees down from its original
position. To demonstrate the difference, I’ll start with a subview that exactly overlaps
its superview:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(20, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:v1.bounds];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
[self.window.rootViewController.view addSubview: v1];
[v1 addSubview: v2];

Then I’ll apply two successive transforms to the subview, leaving the superview to show
where the subview was originally. In this example, I translate and then rotate (Fig-
ure 14-10):

v2.transform = CGAffineTransformMakeTranslation(100, 0);
v2.transform = CGAffineTransformRotate(v2.transform, 45 * M_PI/180.0);

In this example, I rotate and then translate (Figure 14-11):

v2.transform = CGAffineTransformMakeRotation(45 * M_PI/180.0);
v2.transform = CGAffineTransformTranslate(v2.transform, 100, 0);

The function CGAffineTransformConcat concatenates two transform matrices using ma-
trix multiplication. Again, this operation is not commutative. The order is the oppo-
site of the order when using convenience functions for applying one transform to an-
other. For example, this gives the same result as Figure 14-11:

CGAffineTransform r = CGAffineTransformMakeRotation(45 * M_PI/180.0);
CGAffineTransform t = CGAffineTransformMakeTranslation(100, 0);
v2.transform = CGAffineTransformConcat(t,r); // not r,t

Figure 14-10. Translation, then rotation

Transform | 351

To remove a transform from a combination of transforms, apply its inverse. A conve-
nience function lets you obtain the inverse of a given affine transform. Again, order
matters. In this example, I rotate the subview and shift it to its “right,” and then remove
the rotation (Figure 14-12):

CGAffineTransform r = CGAffineTransformMakeRotation(45 * M_PI/180.0);
CGAffineTransform t = CGAffineTransformMakeTranslation(100, 0);
v2.transform = CGAffineTransformConcat(t,r);
v2.transform = CGAffineTransformConcat(CGAffineTransformInvert(r), v2.transform);

Finally, as there are no convenience methods for creating a skew (shear) transform, I’ll
illustrate by creating one manually, without further explanation (Figure 14-13):

v1.transform = CGAffineTransformMake(1, 0, -0.2, 1, 0, 0);

Figure 14-11. Rotation, then translation

Figure 14-12. Rotation, then translation, then inversion of the rotation

352 | Chapter 14: Views

Transforms are useful particularly as temporary visual indicators. For example, you
might call attention to a view by applying a transform that scales it up slightly, and then
applying the identity transform to restore it to its original size, and animating those
changes (Chapter 17).

Visibility and Opacity
A view can be made invisible by setting its hidden property to YES, and visible again by
setting it to NO. This takes it (and its subviews, of course) out of the visible interface
without the overhead of actually removing it from the view hierarchy. A hidden view
does not (normally) receive touch events, so to the user it really is as if the view weren’t
there. But it is there, so it can still participate in layout and can be manipulated in other
ways.

A view can be assigned a background color through its backgroundColor property, as
we’ve been doing in the examples so far in this chapter — indeed, having a background
color is the only thing that made our example views visible and distinguishable. A color
is a UIColor; this is not a difficult class to use, and I’m not going to go into details. A
view whose background color is nil (the default) has a transparent background. It is
perfectly reasonable for a view to have a transparent background and to do no addi-
tional drawing of its own, just so that it can act as a convenient superview to other
views, making them behave together.

A view can be made partially or completely transparent through its alpha property:
1.0 means opaque, 0.0 means transparent, and a value may be anywhere between them,
inclusive. This affects subviews, as I’ve already mentioned; if a superview has an alpha of
0.5, none of its subviews can have an apparent opacity of more than 0.5, because
whatever alpha value they have will be drawn relative to 0.5. (Just to make matters
more complicated, colors have an alpha value as well. So, for example, a view can have
an alpha of 1.0 but still have a transparent background because its backgroundColor has
an alpha less than 1.0.) A view that is completely transparent (or very close to it) is like

Figure 14-13. Skew (shear)

Visibility and Opacity | 353

a view whose hidden is YES: it is invisible, along with its subviews, and cannot (nor-
mally) be touched.

A view’s alpha property value affects the apparent transparency of its background color
and the apparent transparency of its contents separately. For example, if a view displays
an image and has a background color and its alpha is less than 1, the background color
will seep through the image (and whatever is behind the view will seep through both).

A view’s opaque property, on the other hand, is a horse of a different color; changing it
has no effect on the view’s appearance. Rather, this property is a hint to the drawing
system. If a view completely fills its bounds with ultimately opaque material and its
alpha is 1.0, so that the view has no effective transparency, then it can be drawn more
efficiently (with less drag on performance) if you inform the drawing system of this fact
by setting its opaque to YES. Otherwise, you should set its opaque to NO. The opaque
value is not changed for you when you set a view’s backgroundColor or alpha! Setting it
correctly is entirely up to you; the default, perhaps surprisingly, is YES.

354 | Chapter 14: Views

CHAPTER 15

Drawing

Many UIView subclasses, such as a UIButton or a UITextField, know how to draw
themselves; sooner or later, though, you’re going to want to do some drawing of your
own. A class like UIImageView will display a static image; you can generate that image
dynamically by drawing it in code. And a pure UIView does little or no drawing of its
own; you can draw its appearance.

Drawing is not difficult, but it is a very large topic. This chapter will make you com-
fortable with the basic principles, so that you can consult and understand Apple’s doc-
umentation when you need further details.

UIImage and UIImageView
The basic general UIKit image class is UIImage. UIImage can read a file from disk, so
if an image does not need to be created dynamically, but has already been created before
your app runs, then drawing may be as simple as providing an image file as a resource
in your app’s bundle. The system knows how to work with many standard image file
types, such as TIFF, JPEG, GIF, and PNG. You can also obtain image data in some
other way, such as by downloading it, and transform this into a UIImage. Conversely,
you can draw your own image for display in your interface or for saving to disk (image
file output is discussed in Chapter 36).

In the very simplest case, an image file in your app’s bundle can be obtained through
the UIImage class method imageNamed:. This method looks at the top level of your app’s
bundle for an image file with the supplied name, including the file extension, and reads
it as a UIImage instance. A nice thing about this approach is that memory management
is handled for you: the image data may be cached in memory, and if you ask for the
same image by calling imageNamed: again later, the cached data may be supplied im-
mediately. You can also read an image file from anywhere in your app’s bundle using
the class method imageWithContentsOfFile: or the instance method initWithContents-
OfFile:, both of which expect a pathname string; you can get a reference to your app’s

355

bundle with [NSBundle mainBundle], and NSBundle then provides instance methods
for getting the pathname of a file within the bundle, such as pathForResource:ofType:.

Many built-in Cocoa interface objects will accept a UIImage as part of how they draw
themselves; for example, a UIButton can display an image, and (starting in iOS 5) a
UINavigationBar or a UITabBar can have a background image. I’ll discuss those in
Chapter 25. But when you simply want an image to appear in your interface, you’ll
probably hand it to a UIImageView, which has the most knowledge and flexibility with
regard to displaying images and is intended for this purpose. If a UIImageView instance
begins life in a nib and is to display a UIImage from a file in your app’s bundle, you
won’t even need any code; the UIImageView can be set to that file directly in the nib.
(This mechanism works most easily if the file will be at the top level of the app’s bundle.)

A UIImageView can actually have two images, one assigned to its image property and
the other assigned to its highlightedImage property; the value of the UIImageView’s
highlighted property dictates which of the two is displayed. A UIImageView does not
automatically highlight itself, the way a button does, for example, merely because the
user taps it. However, there are certain situations where a UIImageView will respond
to the highlighting of its surroundings; for example, within a table view cell, a UIImage-
View will show its highlighted image when the cell is highlighted. You can, of course,
also use the notion of UIImageView highlighting yourself however you like.

When an image is obtained by name from the bundle, as with imageNamed: or the name
you enter in the nib for a UIImageView’s image, a file with the same name extended by
~ipad will automatically be used if the app is running on an iPad. You can use this in a
universal app to supply different images automatically depending on whether the app
runs on an iPhone or iPod touch, on the one hand, or on an iPad, on the other. This is
true not just for images but for any resource obtained by name from the bundle. See
Apple’s Resource Programming Guide.

Similarly, on a device with a double-resolution screen (such as the iPhone 4 with Retina
display), when an image is obtained by name from the bundle, a file with the same
name extended by @2x, if there is one, will be used automatically, with the resulting
UIImage marked as double-resolution by assigning it a scale property value of 2.0. In
this way, your app can contain both a single-resolution and a double-resolution version
of an image file; on the double-resolution display device, the double-resolution version
of the image is used, and is drawn at the same size as the single-resolution image. Thus,
on the double-resolution screen, your code continues to work without change, but your
images look sharper.

The documentation warns that if a UIImageView is to be assigned multiple images
(such as an image and a highlightedImage), they must have the same scale property
value. This is because the UIImageView gets its own internal scaling information from
an image’s scale at the time it is assigned to it; it does not change its internal scale merely
because you switch the value of its highlighted property.

356 | Chapter 15: Drawing

A UIImageView is a UIView, so it can have a background color in addition to its image,
it can have an alpha (transparency) value, and so forth. A UIImageView without a
background color is invisible except for its image, so the image simply appears in the
interface, without the user being aware that it resides in a rectangular host. An image
may have areas that are transparent, and a UIImageView will respect this; thus an image
of any shape can appear. A UIImageView without an image and without a background
color is invisible, so you could start with an empty UIImageView in the place where
you will later need an image and assign the image in code as needed. You can assign a
new image to substitute one image for another.

How a UIImageView draws its image depends upon the setting of its contentMode prop-
erty. (The contentMode property is inherited from UIView; I’ll discuss its more general
purpose later in this chapter.) For example, UIViewContentModeScaleToFill means the
image’s width and height are set to the width and height of the view, thus filling the
view completely even if this alters the image’s aspect ratio; UIViewContentModeCenter
means the image is drawn centered in the view without altering its size. The best way
to get a feel for the meanings of the various contentMode settings is to assign a UIImage-
View a small image in a nib and then, in the Attributes inspector, change the Mode
pop-up menu, and see where and how the image draws itself.

When creating a UIImageView in code, you can take advantage of a convenience ini-
tializer, initWithImage: (or initWithImage:highlightedImage:). The default content-
Mode is UIViewContentModeScaleToFill, but the image is not initially scaled; rather, the
view itself is sized to match to the image. You will still probably need to set the
UIImageView’s frame or center in order to place it correctly in its superview. In this
example, I’ll put a picture of the planet Mars in the center of the window (Figure 15-1):

UIImageView* iv =
 [[UIImageView alloc] initWithImage:[UIImage imageNamed:@"Mars.png"]];
[self.window.rootViewController.view addSubview: iv];
iv.center = self.window.center;

If we have a second image file called Mars@2x.png, it will be used on a double-reso-
lution device.

Starting in iOS 5, a UIImage can be transformed into a resizable image, by sending it
the resizableImageWithCapInsets: message. (The notion of a resizable image super-
sedes the notion of a stretchable image from previous system versions.) The cap-
Insets: argument is a UIEdgeInsets, a struct consisting of four floats representing inset

Figure 15-1. Mars appears in my interface

UIImage and UIImageView | 357

values starting at the top and moving counterclockwise — top, left, bottom, right. They
represent distances inwards from the edges of the image. In a context (such as a
UIImageView) larger than the image, a resizable image can behave in one of two ways:

• If the cap insets are all zero (UIEdgeInsetsZero), the image will be tiled (repeated).

• If the cap insets are nonzero, the cap inset regions (from the edges inwards) are
drawn normally, but the interior of the image is tiled to fill the resulting area.
Typically, you’ll use cap insets that leave a tiling area of just one or two pixels;
otherwise, you can get some very strange results.

First, I’ll illustrate tiling:

UIImage* mars = [UIImage imageNamed:@"Mars.png"];
UIImage* marsTiled = [mars resizableImageWithCapInsets:UIEdgeInsetsZero];
UIImageView* iv = [[UIImageView alloc] initWithFrame:
 CGRectMake(20,5,mars.size.width*2,mars.size.height*4)];
iv.image = marsTiled;
[self.window.rootViewController.view addSubview:iv];

The image view is eight times the size of the Mars image, and because we used a resizable
version of the Mars image, we see eight tiled copies of the Mars image (Figure 15-2).

Next, I’ll illustrate stretching. As I suggested earlier, I’ll make almost half the original
Mars image serve as a cap inset, leaving just a few pixels in the center to be repeated:

Figure 15-2. A tiled image of Mars

358 | Chapter 15: Drawing

UIImage* mars = [UIImage imageNamed:@"Mars.png"];
CGFloat capw = mars.size.width / 2.0 - 1;
CGFloat caph = mars.size.height / 2.0 - 1;
UIImage* marsTiled = [mars resizableImageWithCapInsets:
 UIEdgeInsetsMake(caph, capw, caph, capw)];
UIImageView* iv = [[UIImageView alloc] initWithFrame:
 CGRectMake(20,5,mars.size.width*2,mars.size.height*1.5)];
iv.image = marsTiled;
[self.window.rootViewController.view addSubview:iv];

The result is shown in Figure 15-3. The resulting lozenge may appear somewhat alien
at first, but if you look carefully you’ll see that its corners are the four quarters of the
original Mars image, with the remainder filled in by repeating the central pixels.

Both my examples of resizable images are deliberately rather weird, but resizable images
are extremely useful. If you start with an image that tiles nicely, such as a fabric texture,
you can easily fill a region (perhaps the entire background of your window) with that
texture. Similarly, an appropriately stretched image can serve as a button background
or a “frame” to set off an image or a region of your interface.

Graphics Contexts
UIImageView draws an image for you and takes care of all the details; in many cases,
it will be all you’ll need. Eventually, though, you may want to create some drawing
yourself, directly, in code. To do so, you will always need a graphics context.

A graphics context is basically a place you can draw. Conversely, you can’t draw in
code unless you’ve got a graphics context. There are several ways in which you might
obtain a graphics context; in this chapter I will concentrate on two, which have proven
in my experience to be far and away the most common:

You create an image context
The function UIGraphicsBeginImageContextWithOptions creates a graphics context
suitable for use as an image. You then draw into this context to generate the image.
When you’ve done that, you call UIGraphicsGetImageFromCurrentImageContext to
turn the context into a UIImage, and then UIGraphicsEndImageContext to dismiss

Figure 15-3. A stretched image of Mars

Graphics Contexts | 359

the context. Now you have a UIImage that you can display in your interface or
draw into some other graphics context or save as a file.

Cocoa hands you a graphics context
You subclass UIView and implement drawRect:. At the time your drawRect: im-
plementation is called, Cocoa has already created a graphics context and is asking
you to draw into it, right now; whatever you draw is what the UIView will display.
(A slight variant of this situation is that you subclass a CALayer and implement
drawInContext:, or make some object the delegate of a layer and implement draw-
Layer:inContext:; layers are discussed in Chapter 16.)

Moreover, at any given moment there either is or is not a current graphics context:

• UIGraphicsBeginImageContextWithOptions not only creates an image context, it also
makes that context the current graphics context.

• When drawRect is called, the UIView’s drawing context is already the current
graphics context.

• Callbacks with a context: argument have not made any context the current graph-
ics context; rather, that argument is a reference to a graphics context.

What beginners find most confusing about drawing is there are two separate sets of
tools with which you can draw, and they take different attitudes towards the context
in which they will draw:

UIKit
Various Objective-C classes know how to draw themselves; these include UIImage,
NSString (for drawing text), UIBezierPath (for drawing shapes), and UIColor.
Some of these classes provide convenience methods with limited abilities; others
are extremely powerful. In many cases, UIKit will be all you’ll need.

With UIKit, you can draw only into the current context. So if you’re in a UIGraphics-
BeginImageContextWithOptions or drawRect situation, you can use the UIKit con-
venience methods directly; there is a current context and it’s the one you want to
draw into. If you’ve been handed a context: argument, on the other hand, then if
you want to use the UIKit convenience methods, you’ll have to make that context
the current context; you do this by calling UIGraphicsPushContext (and be sure to
restore things with UIGraphicsPopContext later).

Core Graphics
This is the full drawing API. Core Graphics, often referred to as Quartz, or Quartz
2D, is the drawing system that underlies all iOS drawing — UIKit drawing is built
on top of it — so it is low-level and consists of C functions. There are a lot of them!
This chapter will familiarize you with the fundamentals; for complete information,
you’ll want to study Apple’s Quartz 2D Programming Guide.

With Core Graphics, you must specify a graphics context (a CGContextRef) to draw
into, explicitly, in every function call. If you’ve been handed a context: argument,

360 | Chapter 15: Drawing

then, hey presto, you have a graphics context, and it’s probably the graphics con-
text you want to draw into. But in a UIGraphicsBeginImageContextWithOptions or
drawRect situation, you have no reference to a context; to use Core Graphics, you
need to get such a reference. Since the context you want to draw into is the current
graphics context, you call UIGraphicsGetCurrentContext to get the needed refer-
ence.

So we have two sets of tools and three ways in which a context might be supplied; that
makes six ways of drawing, and in case you’re confused, I’ll now demonstrate all six
of them. Without worrying just yet about the actual drawing commands, focus your
attention on how the context is specified and on whether we’re using UIKit or Core
Graphics. First, I’ll draw a blue circle by implementing a UIView subclass’s draw-
Rect:, using UIKit to draw into the current context, which Cocoa has already prepared
for me:

- (void) drawRect: (CGRect) rect {
 UIBezierPath* p =
 [UIBezierPath bezierPathWithOvalInRect:CGRectMake(0,0,100,100)];
 [[UIColor blueColor] setFill];
 [p fill];
}

Now I’ll do the same thing with Core Graphics; this will require that I first get a refer-
ence to the current context:

- (void) drawRect: (CGRect) rect {
 CGContextRef con = UIGraphicsGetCurrentContext();
 CGContextAddEllipseInRect(con, CGRectMake(0,0,100,100));
 CGContextSetFillColorWithColor(con, [UIColor blueColor].CGColor);
 CGContextFillPath(con);
}

Next, I’ll implement a UIView subclass’s drawLayer:inContext:. In this case, we’re
handed a reference to a context, but it isn’t the current context. So I have to make it
the current context in order to use UIKit:

- (void)drawLayer:(CALayer*)lay inContext:(CGContextRef)con {
 UIGraphicsPushContext(con);
 UIBezierPath* p =
 [UIBezierPath bezierPathWithOvalInRect:CGRectMake(0,0,100,100)];
 [[UIColor blueColor] setFill];
 [p fill];
 UIGraphicsPopContext();
}

To use Core Graphics in drawLayer:inContext:, I simply keep referring to the context
I was handed:

- (void)drawLayer:(CALayer*)lay inContext:(CGContextRef)con {
 CGContextAddEllipseInRect(con, CGRectMake(0,0,100,100));
 CGContextSetFillColorWithColor(con, [UIColor blueColor].CGColor);
 CGContextFillPath(con);
}

Graphics Contexts | 361

Finally, for the sake of completeness, let’s make a UIImage of a blue circle. We can do
this at any time (we don’t need to wait for some particular method to be called) and in
any class (we don’t need to be in a UIView subclass). First, I’ll use UIKit:

UIGraphicsBeginImageContextWithOptions(CGSizeMake(100,100), NO, 0);
UIBezierPath* p = [UIBezierPath bezierPathWithOvalInRect:CGRectMake(0,0,100,100)];
[[UIColor blueColor] setFill];
[p fill];
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
// im is the blue circle image, do something with it here ...

Here’s the same thing using Core Graphics:

UIGraphicsBeginImageContextWithOptions(CGSizeMake(100,100), NO, 0);
CGContextRef con = UIGraphicsGetCurrentContext();
CGContextAddEllipseInRect(con, CGRectMake(0,0,100,100));
CGContextSetFillColorWithColor(con, [UIColor blueColor].CGColor);
CGContextFillPath(con);
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
// im is the blue circle image, do something with it here ...

You may be wondering about the arguments to UIGraphicsBeginImageContextWith-
Options. The first argument is obviously the size of the image to be created. The second
argument declares whether the image should be opaque; if I had passed YES instead of
NO here, my image would have a black background, which I don’t want. The third
argument specifies the image scale, corresponding to the UIImage scale property I
discussed earlier; by passing 0, I’m telling the system to set the scale for me in accord-
ance with the main screen resolution, so my image will look good on both single-res-
olution and double-resolution devices.

You don’t have to use UIKit or Core Graphics exclusively; on the contrary, you can
intermingle UIKit calls and Core Graphics calls to operate on the same graphics context.
They simply have two different ways of talking about the same graphics context.

In the past, there was a caveat that accessing the current context in draw-
Rect was not thread-safe, so there were certain situations where use of
UIKit (and UIGraphicsGetCurrentContext) was forbidden; however, Ap-
ple’s Technical Q&A QA1637, which originally issued this caveat, now
says: “Beginning with iOS 4.0, drawing to a graphics context in UIKit
is thread-safe. This includes accessing and manipulating the current
graphics stack, drawing images and strings, and usage of color and font
objects from secondary threads.” This edition of the book doesn’t con-
cern itself with backwards compatibility beyond iOS 4.0, so I’ll blithely
assume that UIKit and Core Graphics are equally available.

362 | Chapter 15: Drawing

UIImage Drawing
A UIImage provides methods for drawing itself into the current context. We now know
how to obtain an image context and make it the current context, so we can experiment
with these methods. Here, I’ll make a UIImage consisting of two pictures of Mars side
by side:

UIImage* mars = [UIImage imageNamed:@"Mars.png"];
CGSize sz = [mars size];
UIGraphicsBeginImageContextWithOptions(CGSizeMake(sz.width*2, sz.height), NO, 0);
[mars drawAtPoint:CGPointMake(0,0)];
[mars drawAtPoint:CGPointMake(sz.width,0)];
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

If I now hand this image im over to a visible UIImageView, the image appears onscreen
(Figure 15-4). I could do this, for example, by creating the UIImageView in code, as
before:

UIImageView* iv = [[UIImageView alloc] initWithImage:im];
[self.window.rootViewController.view addSubview: iv];
iv.center = self.window.center;

Additional UIImage methods let you scale an image into a desired rectangle as you
draw, and specify the compositing (blend) mode whereby the image should combine
with whatever is already present. To illustrate, I’ll create an image showing Mars cen-
tered in another image of Mars that’s twice as large, using the Multiply blend mode
(Figure 15-5):

UIImage* mars = [UIImage imageNamed:@"Mars.png"];
CGSize sz = [mars size];
UIGraphicsBeginImageContextWithOptions(CGSizeMake(sz.width*2, sz.height*2), NO, 0);
[mars drawInRect:CGRectMake(0,0,sz.width*2,sz.height*2)];
[mars drawInRect:CGRectMake(sz.width/2.0, sz.height/2.0, sz.width, sz.height)
 blendMode:kCGBlendModeMultiply alpha:1.0];
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

There is no UIImage drawing method for specifying the source rectangle — that is, for
specifying that you want to extract a smaller region of the original image. You can work
around this by specifying a smaller graphics context and positioning the image drawing
so that the desired region falls into it. For example, to obtain an image of the right half

Figure 15-4. Two images of Mars combined side by side

UIImage Drawing | 363

of Mars, you’d make a graphics context half the width of the mars image, and then draw
mars shifted left, so that only its right half intersects the graphics context. There is no
harm in doing this, and it’s a perfectly standard device; the left half of mars simply isn’t
drawn (Figure 15-6):

UIImage* mars = [UIImage imageNamed:@"Mars.png"];
CGSize sz = [mars size];
UIGraphicsBeginImageContextWithOptions(CGSizeMake(sz.width/2.0, sz.height), NO, 0);
[mars drawAtPoint:CGPointMake(-sz.width/2.0, 0)];
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

CGImage Drawing
The Core Graphics version of UIImage is CGImage (actually a CGImageRef). They are
easily converted to one another: a UIImage has a CGImage property that accesses its
Quartz image data, and you can make a UIImage from a CGImage using imageWith-
CGImage: or initWithCGImage:.

A CGImage lets you create a new image directly from a rectangular region of the original
image. (It also lets you apply an image mask, which you can’t do with UIImage.) I’ll
demonstrate by splitting the image of Mars in half and drawing the two halves sepa-

Figure 15-5. Two images of Mars in different sizes, composited

Figure 15-6. Half the original image of Mars

364 | Chapter 15: Drawing

rately (Figure 15-7). Observe that we are now operating in the CFTypeRef world and
must take care to manage memory manually; ARC won’t help us here (Chapter 12):

UIImage* mars = [UIImage imageNamed:@"Mars.png"];
// extract each half as a CGImage
CGSize sz = [mars size];
CGImageRef marsLeft = CGImageCreateWithImageInRect([mars CGImage],
 CGRectMake(0,0,sz.width/2.0,sz.height));
CGImageRef marsRight = CGImageCreateWithImageInRect([mars CGImage],
 CGRectMake(sz.width/2.0,0,sz.width/2.0,sz.height));
// draw each CGImage into an image context
UIGraphicsBeginImageContextWithOptions(CGSizeMake(sz.width*1.5, sz.height), NO, 0);
CGContextRef con = UIGraphicsGetCurrentContext();
CGContextDrawImage(con, CGRectMake(0,0,sz.width/2.0,sz.height), marsLeft);
CGContextDrawImage(con, CGRectMake(sz.width,0,sz.width/2.0,sz.height), marsRight);
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
CGImageRelease(marsLeft); CGImageRelease(marsRight);

But there’s a problem with that example: the drawing is upside-down! It isn’t rotated;
it’s mirrored top to bottom, or, to use the technical term, flipped. This phenomenon
can arise when you create a CGImage and then draw it with CGContextDrawImage and
is due to a mismatch in the native coordinate systems of the source and target contexts.

There are various ways of compensating for this mismatch between the coordinate
systems. One is to draw the CGImage into an intermediate UIImage and extract an-
other CGImage from that. Example 15-1 presents a utility function for doing this.

Example 15-1. Utility for flipping an image drawing

CGImageRef flip (CGImageRef im) {
 CGSize sz = CGSizeMake(CGImageGetWidth(im), CGImageGetHeight(im));
 UIGraphicsBeginImageContextWithOptions(sz, NO, 0);
 CGContextDrawImage(UIGraphicsGetCurrentContext(),
 CGRectMake(0, 0, sz.width, sz.height), im);
 CGImageRef result = [UIGraphicsGetImageFromCurrentImageContext() CGImage];
 UIGraphicsEndImageContext();
 return result;
}

Armed with the utility function from Example 15-1, we can now draw the halves of
Mars the right way up in the previous example:

Figure 15-7. Image of Mars split in half

CGImage Drawing | 365

CGContextDrawImage(con, CGRectMake(0,0,sz.width/2.0,sz.height),
 flip(marsLeft));
CGContextDrawImage(con, CGRectMake(sz.width,0,sz.width/2.0,sz.height),
 flip(marsRight));

However, we’ve still got a problem: on a double-resolution device, if there is a high-
resolution (@2x) version of our image file, the drawing comes out all wrong. The reason
is that we are loading our original Mars image using imageNamed:, which automatically
substitutes the high-resolution version of the image on the high-resolution device. The
UIImage compensates for the doubled size of the image by setting its own scale prop-
erty to match. But a CGImage doesn’t have a scale property, and knows nothing of the
fact that the image dimensions are doubled!

When you call a UIImage’s CGImage method, therefore, you can’t assume that the re-
sulting CGImage is the same size as the original UIImage; a UIImage’s size property is
the same for a single-resolution image and its double-resolution counterpart, because
the scale tells it how to compensate, but the CGImage of a double-resolution UIImage
is twice as large in both dimensions as the CGImage of the corresponding single-reso-
lution image.

So, in extracting a desired piece of the CGImage, we must either multiply all appropriate
values by the scale or express ourselves in terms of the CGImage’s dimensions. In this
case, as we are extracting the left and right halves of the image, the latter is obviously
the simpler course. So here’s a version of our original code that draws correctly on either
a single-resolution or a double-resolution device, and compensates for flipping:

UIImage* mars = [UIImage imageNamed:@"Mars.png"];
CGSize sz = [mars size];
// Derive CGImage and use its dimensions to extract its halves
CGImageRef marsCG = [mars CGImage];
CGSize szCG = CGSizeMake(CGImageGetWidth(marsCG), CGImageGetHeight(marsCG));
CGImageRef marsLeft = CGImageCreateWithImageInRect(marsCG,
 CGRectMake(0,0,szCG.width/2.0,szCG.height));
CGImageRef marsRight = CGImageCreateWithImageInRect(marsCG,
 CGRectMake(szCG.width/2.0,0,szCG.width/2.0,szCG.height));
UIGraphicsBeginImageContextWithOptions(CGSizeMake(sz.width*1.5, sz.height), NO, 0);
// The rest is as before, calling flip() to compensate for flipping
CGContextRef con = UIGraphicsGetCurrentContext();
CGContextDrawImage(con, CGRectMake(0,0,sz.width/2.0,sz.height),
 flip(marsLeft));
CGContextDrawImage(con, CGRectMake(sz.width,0,sz.width/2.0,sz.height),
 flip(marsRight));
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
CGImageRelease(marsLeft); CGImageRelease(marsRight);

If this is starting to look rather clumsy and involved, don’t worry; I have up my sleeve
another flipping solution that simplifies things considerably. Instead of calling our
flip utility, you can wrap your CGImage in a UIImage before drawing. This has two
big advantages:

• The UIImage compensates for flipping automatically as it draws.

366 | Chapter 15: Drawing

• The UIImage can be formed in such a way as to compensate for scale: call image-
WithCGImage:scale:orientation: as you form the UIImage from the CGImage.

So here’s a self-contained approach that deals with both flipping and scale:

UIImage* mars = [UIImage imageNamed:@"Mars.png"];
CGSize sz = [mars size];
// Derive CGImage and use its dimensions to extract its halves
CGImageRef marsCG = [mars CGImage];
CGSize szCG = CGSizeMake(CGImageGetWidth(marsCG), CGImageGetHeight(marsCG));
CGImageRef marsLeft = CGImageCreateWithImageInRect(marsCG,
 CGRectMake(0,0,szCG.width/2.0,szCG.height));
CGImageRef marsRight = CGImageCreateWithImageInRect(marsCG,
 CGRectMake(szCG.width/2.0,0,szCG.width/2.0,szCG.height));
UIGraphicsBeginImageContextWithOptions(CGSizeMake(sz.width*1.5, sz.height), NO, 0);
[[UIImage imageWithCGImage:marsLeft
 scale:[mars scale]
 orientation:UIImageOrientationUp]
 drawAtPoint:CGPointMake(0,0)];
[[UIImage imageWithCGImage:marsRight
 scale:[mars scale]
 orientation:UIImageOrientationUp]
 drawAtPoint:CGPointMake(sz.width,0)];
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
CGImageRelease(marsLeft); CGImageRelease(marsRight);

Yet another solution to flipping is to apply a transform to the graphics context before
drawing the CGImage, effectively flipping the context’s internal coordinate system.
This is elegant, but can be confusing if there are other transforms in play. I’ll talk more
about graphics context transforms later in this chapter.

CIFilter and CIImage
CIFilter and CIImage are new in iOS 5, though they have been present in Mac OS X
for many years. The “CI” stands for Core Image, a technology for transforming images
through mathematical filters. But don’t start imagining blurry buttons or an iPad ver-

Why Flipping Happens
The ultimate source of accidental flipping is that Core Graphics comes from the Mac
OS X world, where the coordinate system’s origin is located by default at the bottom
left and the positive y-direction is upward, whereas on iOS the origin is located by
default at the top left and the positive y-direction is downward. In most drawing sit-
uations, no problem arises, because the coordinate system of the graphics context is
adjusted to compensate. Thus, the default coordinate system for drawing in a Core
Graphics context on iOS has the origin at the top left, just as you expect. But creating
and drawing a CGImage exposes the issue.

CIFilter and CIImage | 367

sion of Photoshop; iOS devices are not powerful enough for Apple to have provided
any mathematically intensive filters. To use Core Image, you’ll have to link your target
to CoreImage.framework.

A filter is a CIFilter. The available filters fall naturally into several categories:

Patterns and gradients
These filters create CIImages that can then be combined with other CIImages, such
as a single color, a checkerboard, stripes, or a gradient.

Compositing
These filters combine one image with another, using compositing blend modes
familiar from image processing programs such as Photoshop.

Color
These filters adjust or otherwise modify the colors of an image. Thus you can alter
an image’s saturation, hue, brightness, contrast, gamma and white point, exposure,
shadows and highlights, and so on.

Geometric
These filters perform basic geometric transformations on an image, such as scaling,
rotation, and cropping.

Use of a CIFilter is quite simple; it basically works as if a filter were a kind of dictionary
consisting of keys and values. You create the filter by supplying the string name of a
filter; to learn what these names are, consult Apple’s Core Image Filter Reference, or
call the CIFilter class method filterNamesInCategories: with a nil argument. Each filter
has a small number of keys and values that determine its behavior; for each key that
you’re interested in, you supply a key–value pair, either by calling setValue:forKey: or
by supplying all the keys and values as you specify the filter name. In supplying values,
a number will be an NSNumber, generated with numberWithFloat:, and there are a few
supporting classes such as CIVector (like CGPoint and CGRect combined) and CI-
Color, whose use is easy to grasp.

These keys include any image or images on which the filter is to operate; such an image
must be a CIImage. You can obtain a CIImage from a CGImage with initWith-
CGImage:; we already know how to obtain a CGImage from a UIImage. You can also
obtain a CGImage as the output of a filter; thus filters can be chained together.

The interesting thing is that as you build a chain of filters, nothing actually happens.
The only calculation-intensive move comes at the very end, when you produce the result
of the entire chain as a CGImage. You do this by creating a CIContext (by calling
contextWithOptions:) and calling createCGImage:fromRect:. The only mildly tricky
thing here is that a CIImage doesn’t have a frame or bounds; it has an extent. You will
often use this as the second argument to createCGImage:fromRect:. The final output
CGImage is ready for any purpose, such as for display in your app, for transformation
into a UIImage, or for use in further drawing.

368 | Chapter 15: Drawing

To illustrate, I’ll start with an ordinary photo of myself (it’s true I’m wearing a motor-
cycle helmet, but it’s still ordinary) and black out everything except my head by com-
positing a circular white-to-black gradient onto it using Darken blend mode:

UIImage* moi = [UIImage imageNamed:@"moi.jpg"];
CIImage* moi2 = [[CIImage alloc] initWithCGImage:moi.CGImage];

CIFilter* grad = [CIFilter filterWithName:@"CIRadialGradient"];
CIVector* center = [CIVector vectorWithX:moi.size.width/2.0 Y:moi.size.height/2.0];
[grad setValue:center forKey:@"inputCenter"];
CIFilter* dark = [CIFilter filterWithName:@"CIDarkenBlendMode"
 keysAndValues:
 @"inputImage", grad.outputImage,
 @"inputBackgroundImage", moi2,
 nil];

CIContext* con = [CIContext contextWithOptions:nil];
CGImageRef moi3 = [con createCGImage:dark.outputImage
 fromRect:moi2.extent];
UIImage* moi4 = [UIImage imageWithCGImage:moi3
 scale:moi.scale
 orientation:moi.imageOrientation];
CGImageRelease(moi3);

The UIImage moi4 can now be displayed in our app’s interface (Figure 15-8).

The example may not seem overly compelling, since everything I’ve just done (except,
perhaps, Core Image’s use of the device’s GPU) can effectively be done using Core
Graphics alone; Core Graphics can make a circular gradient and can composite images
using blend modes. However, Core Image is much simpler, especially when you want
to reuse a chain of filters on multiple input images, and its color tweaking features are
beyond anything Core Graphics supplies.

It is also possible to draw a filter’s output directly into an OpenGL context, but OpenGL
is outside the scope of this book. Core Image can also perform automatic face detection
in an image.

Figure 15-8. A photo of me, filtered

CIFilter and CIImage | 369

Drawing a UIView
The most flexible way to draw a UIView is to draw it yourself. As I’ve already said, you
don’t actually draw a UIView; you subclass UIView and endow the subclass with the
ability to draw itself. When a UIView needs drawing, its drawRect: method is called.
Overriding that method is your chance to draw. At the time that drawRect: is called,
the current graphics context has already been set to the view’s own graphics context.
You can use Core Graphics functions or UIKit convenience methods to draw into that
context. Thus, everything I did earlier generating a UIImage and displaying it somehow
in the interface could have been done instead by putting into my interface a UIView
subclass that knows how to display itself as desired.

You should never call drawRect: yourself! If a view needs updating and
you want its drawRect: called, send the view the setNeedsDisplay mes-
sage. This will cause drawRect: to be called at the next proper moment.
Also, don’t override drawRect: unless you are assured that this is legal.
For example, it is not legal to override drawRect: in a subclass of
UIImageView; you cannot combine your drawing with that of the
UIImageView.

So, for example, let’s say we have a UIView subclass called MyView. How this class
gets instantiated, and how the instance gets into our view hierarchy, isn’t important.
One possibility would be to drag a UIView into a view in the nib and set its class to
MyView in the identity inspector. Another would be to create the MyView instance
and put it into the interface in code:

MyView* mv = [[MyView alloc] initWithFrame:
 CGRectMake(0, 0, self.window.bounds.size.width - 50, 150)];
mv.center = self.window.center;
mv.opaque = NO;
[self.window.rootViewController.view addSubview: mv];

Let’s suppose that MyView’s job is to draw the two halves of Mars, one at each end of
the view. We can readily adapt the earlier example of doing this. There is no need for
an image context; we just draw directly into the current context, which is the view’s
own graphics context:

- (void)drawRect:(CGRect)rect {
 CGRect b = self.bounds;
 UIImage* mars = [UIImage imageNamed:@"Mars.png"];
 CGSize sz = [mars size];
 CGImageRef marsCG = [mars CGImage];
 CGSize szCG = CGSizeMake(CGImageGetWidth(marsCG), CGImageGetHeight(marsCG));
 CGImageRef marsLeft = CGImageCreateWithImageInRect(marsCG,
 CGRectMake(0,0,szCG.width/2.0,szCG.height));
 CGImageRef marsRight = CGImageCreateWithImageInRect(marsCG,
 CGRectMake(szCG.width/2.0,0,szCG.width/2.0,szCG.height));
 [[UIImage imageWithCGImage:marsLeft
 scale:[mars scale]

370 | Chapter 15: Drawing

 orientation:UIImageOrientationUp]
 drawAtPoint:CGPointMake(0,0)];
 [[UIImage imageWithCGImage:marsRight
 scale:[mars scale]
 orientation:UIImageOrientationUp]
 drawAtPoint:CGPointMake(b.size.width-sz.width/2.0,0)];
 CGImageRelease(marsLeft); CGImageRelease(marsRight);
}

There is no need to call super, because the superclass here is UIView, whose draw-
Rect: does nothing.

The need to draw in real time, on demand, surprises some beginners, who worry that
drawing may be a time-consuming operation. Where drawing is extensive and can be
compartmentalized into sections, you may be able to gain some efficiency by paying
attention to the rect parameter passed into drawRect:. It designates the region of the
view’s bounds that needs refreshing. The system knows this either because this is the
area that has just been exposed by the removal of some covering view or because you
called setNeedsDisplayInRect:, specifying it. Thus, you could call setNeedsDisplayIn-
Rect: to tell your drawRect: to redraw a subregion of the view; the rest of the view will
be left alone.

In general, however, you should not optimize prematurely. The code for a drawing
operation may appear verbose and yet be extremely fast. Moreover, the iOS drawing
system is efficient; it doesn’t call drawRect: unless it has to (or is told to, through a call
to setNeedsDisplay), and once a view has drawn itself, the result is cached so that the
cached drawing can be reused instead of repeating the drawing operation from scratch.
(Apple refers to this cached drawing as the view’s bitmap backing store.) You can readily
satisfy yourself of this fact with some caveman debugging, logging in your drawRect:
implementation; you may be amazed to discover that your code is called only once in
the entire lifetime of the app! In fact, moving code to drawRect: is a common way to
increase efficiency. This is because it is more efficient for the drawing engine to render
directly onto the screen than for it to render offscreen and then copy those pixels onto
the screen.

You may have noticed, oh keen-eyed reader, that when I created the MyView instance
in code I set its opaque property to NO. Without this, the view would have been drawn
with a black background. Of course, if a view fills its rectangle with opaque drawing
or has an opaque background color, you can leave opaque set to YES and gain some
drawing efficiency (see Chapter 14).

Obtaining a transparent UIView background is a source of considerable confusion
among beginners. The black background arises when two things are true:

• The view’s backgroundColor is nil.

• The view’s opaque is YES.

Unfortunately, when creating a UIView in code, both those things are true by default!
So if you don’t want the black background, you must do something about one or the

Drawing a UIView | 371

other of them (or both). For example, I could have eliminated the black background
by setting the view’s backgroundColor to [UIColor clearColor]. But then I should still
set its opaque to NO, because the view isn’t opaque, and it’s up to me to tell the drawing
system this.

With a UIView created in the nib, on the other hand, the black background problem
doesn’t arise. This is because such a UIView’s backgroundColor is not nil. The nib assigns
it some actual background color, even if that color is [UIColor clearColor].

Graphics Context Settings
When you draw in a graphics context, the drawing obeys the context’s current settings.
Thus, the procedure is always to configure the context’s settings first, and then draw.
For example, to draw a red line followed by a blue line, you would first set the context’s
line color to red, and then draw the first line; then you’d set the context’s line color to
blue, and then draw the second line. To the eye, it appears that the redness and blueness
are properties of the individual lines, but in fact, at the time you draw each line, line
color is a feature of the entire graphics context. This is true regardless of whether you
use UIKit methods or Core Graphics functions.

A graphics context thus has, at every moment, a state, which is the sum total of all its
settings; the way a piece of drawing looks is the result of what the graphics context’s
state was at the moment that piece of drawing was performed. To help you manipulate
entire states, the graphics context provides a stack for holding states. Every time you
call CGContextSaveGState, the context pushes the entire current state onto the stack;
every time you call CGContextRestoreGState, the context retrieves the state from the top
of the stack (the state that was most recently pushed) and sets itself to that state.

Thus, a common pattern is: call CGContextSaveGState; manipulate the context’s set-
tings, thus changing its state; draw; call CGContextRestoreGState to restore the state and
the settings to what they were before you manipulated them. You do not have to do
this before every manipulation of a context’s settings, however, because settings don’t
necessarily conflict with one another or with past settings. You can set the context’s
line color to red and then later to blue without any difficulty. But in certain situations
you do want your manipulation of settings to be undoable, and I’ll point out several
such situations later in this chapter.

Many of the settings that constitute a graphics context’s state, and that determine the
behavior and appearance of drawing performed at that moment, are similar to those of
any drawing application. Here are some of them, along with some of the commands
that determine them; I provide Core Graphics functions here, but keep in mind that
UIKit commands are actually calling these same functions and manipulating the con-
text’s state in the same ways:

Line thickness and dash style
CGContextSetLineWidth, CGContextSetLineDash

372 | Chapter 15: Drawing

Line end-cap style and join style
CGContextSetLineCap, CGContextSetLineJoin, CGContextSetMiterLimit

Line color or pattern
CGContextSetRGBStrokeColor, CGContextSetGrayStrokeColor, CGContextSetStroke-
ColorWithColor, CGContextSetStrokePattern

Fill color or pattern
CGContextSetRGBFillColor, CGContextSetGrayFillColor, CGContextSetFillColor-
WithColor, CGContextSetFillPattern

Shadow
CGContextSetShadow, CGContextSetShadowWithColor

Blend mode
CGContextSetBlendMode (this determines how drawing that you do now will be
composited with drawing already present)

Overall transparency
CGContextSetAlpha (individual colors also have an alpha component)

Text features
CGContextSelectFont, CGContextSetFont, CGContextSetFontSize, CGContextSetText-
DrawingMode, CGContextSetCharacterSpacing

Whether anti-aliasing and font smoothing are in effect
CGContextSetShouldAntialias, CGContextSetShouldSmoothFonts

Additional settings include:

Clipping area
Drawing outside the clipping area is not physically drawn.

Transform (or “CTM,” for “current transform matrix”)
Changes how points that you specify in subsequent drawing commands are map-
ped onto the physical space of the canvas.

Many (but not all) of these settings will be illustrated by examples later in this chapter.

Paths and Drawing
By issuing a series of instructions for moving an imaginary pen, you trace out a path.
Such a path does not constitute drawing! First you provide a path; then you draw.
Drawing can mean stroking the path or filling the path, or both. Again, this should be
a familiar notion from certain drawing applications.

A path is constructed by tracing it out from point to point. Think of the drawing system
as holding a pen. Then you must first tell that pen where to position itself, setting the
current point; after that, you issue a series of commands telling it how to trace out each

Paths and Drawing | 373

subsequent piece of the path. Each additional piece of the path starts at the current
point; its end becomes the new current point.

Here are some path-drawing commands you’re likely to give:

Position the current point
CGContextMoveToPoint

Trace a line
CGContextAddLineToPoint, CGContextAddLines

Trace a rectangle
CGContextAddRect, CGContextAddRects

Trace an ellipse or circle
CGContextAddEllipseInRect

Trace an arc
CGContextAddArcToPoint, CGContextAddArc

Trace a Bezier curve with one or two control points
CGContextAddQuadCurveToPoint, CGContextAddCurveToPoint

Close the current path
CGContextClosePath. This appends a line from the last point of the path to the first
point. There’s no need to do this if you’re about to fill the path, since it’s done for
you.

Stroke or fill the current path
CGContextStrokePath, CGContextFillPath, CGContextEOFillPath, CGContextDraw-
Path. Stroking or filling the current path clears the path. Use CGContextDrawPath if
you want both to fill and to stroke the path in a single command, because if you
merely stroke it first with CGContextStrokePath, the path is cleared and you can no
longer fill it.

There are also a lot of convenience functions that create a path and stroke or fill it
all in a single move: CGContextStrokeLineSegments, CGContextStrokeRect, CGContext-
StrokeRectWithWidth, CGContextFillRect, CGContextFillRects, CGContextStroke-
EllipseInRect, CGContextFillEllipseInRect.

A path can be compound, meaning that it consists of multiple independent pieces. For
example, a single path might consist of two separate closed shapes: a rectangle and a
circle. When you call CGContextMoveToPoint in the middle of constructing a path (that
is, after tracing out a path and without clearing it by filling, stroking, or calling CGContext-
BeginPath), you pick up the imaginary pen and move it to a new location without tracing
a segment, thus preparing to start an independent piece of the same path. If you’re
worried, as you begin to trace out a path, that there might be an existing path and that
your new path might be seen as a compound part of that that existing path, you can
call CGContextBeginPath to specify that this is a different path; many of Apple’s examples
do this, but in practice I usually do not find it necessary.

374 | Chapter 15: Drawing

There is also a function for erasing an area: CGContextClearRect. This erases all existing
drawing in a rectangle; combined with clipping, though, it can erase an area of any
shape. The result can “punch a hole” through all existing drawing.

The behavior of CGContextClearRect depends on whether the context is transparent or
opaque. This is particularly obvious and intuitive when drawing into an image context.
If the image context is transparent — the second argument to UIGraphicsBeginImage-
ContextWithOptions is NO — CGContextClearRect erases to transparent; otherwise it
erases to black.

When drawing directly into a view (as with drawRect: or drawLayer:inContext:), if the
view’s background color is nil or a color with even a tiny bit of transparency, the result
of CGContextClearRect will appear to be transparent, punching a hole right through the
view including its background color; if the background color is completely opaque, the
result of CGContextClearRect will be black. This is because the view’s background color
determines whether the view’s graphics context is transparent or opaque; thus, this is
essentially the same behavior that I described in the preceding paragraph.

Figure 15-9 illustrates; the blue square on the left has been partly cut away to black,
while the blue square on the right has been partly cut away to transparency. Yet these
are instances of the same UIView subclass, drawn with exactly the same code! The
difference between the views is that the backgroundColor of the first view is set in the
nib to solid red with an alpha of 1, while the backgroundColor of the second view is set
in the nib to solid red with an alpha of 0.99. This difference is utterly imperceptible to
the eye (not to mention that the red color never appears, as it is covered with a blue
fill), but it completely changes the effect of CGContextClearRect. The UIView subclass’s
drawRect: looks like this:

CGContextRef con = UIGraphicsGetCurrentContext();
CGContextSetFillColorWithColor(con, [UIColor blueColor].CGColor);
CGContextFillRect(con, rect);
CGContextClearRect(con, CGRectMake(0,0,30,30));

To illustrate the typical use of path-drawing commands, I’ll generate the up-pointing
arrow shown in Figure 15-10. This might not be the best way to create the arrow, and
I’m deliberately avoiding use of the convenience functions, but it’s clear and shows a
nice basic variety of typical commands:

Figure 15-9. The very strange behavior of CGContextClearRect

Paths and Drawing | 375

// obtain the current graphics context
CGContextRef con = UIGraphicsGetCurrentContext();

// draw a black (by default) vertical line, the shaft of the arrow
CGContextMoveToPoint(con, 100, 100);
CGContextAddLineToPoint(con, 100, 19);
CGContextSetLineWidth(con, 20);
CGContextStrokePath(con);

// draw a red triangle, the point of the arrow
CGContextSetFillColorWithColor(con, [[UIColor redColor] CGColor]);
CGContextMoveToPoint(con, 80, 25);
CGContextAddLineToPoint(con, 100, 0);
CGContextAddLineToPoint(con, 120, 25);
CGContextFillPath(con);

// snip a triangle out of the shaft by drawing in Clear blend mode
CGContextMoveToPoint(con, 90, 101);
CGContextAddLineToPoint(con, 100, 90);
CGContextAddLineToPoint(con, 110, 101);
CGContextSetBlendMode(con, kCGBlendModeClear);
CGContextFillPath(con);

Properly speaking, we should probably surround our drawing code with calls to
CGContextSaveGState and CGContextRestoreGState, just in case. It probably wouldn’t
make any difference in this particular example, as the context does not persist between
calls to drawRect:, but it can’t hurt.

If a path needs to be reused or shared, you can encapsulate it as a CGPath, which is
actually a CGPathRef. You can either create a new CGMutablePathRef and construct
the path using various CGPath functions that parallel the graphics path-construction
functions, or you can copy the graphics context’s current path using CGContextCopy-
Path. There are also a number of CGPath functions for creating a path based on simple
geometry (CGPathCreateWithRect, CGPathCreateWithEllipseInRect) or based on an ex-
isting path (CGPathCreateCopyByStrokingPath, CGPathCreateCopyByDashingPath, CGPath-
CreateCopyByTransformingPath).

A UIKit class, UIBezierPath, wraps CGPath. It provides methods for drawing certain
path shapes, as well as for stroking, filling, and for accessing certain settings of the
current graphics context state. Similarly, UIColor provides methods for setting the

Figure 15-10. A simple path drawing

376 | Chapter 15: Drawing

current graphics context’s stroke and fill colors. Thus we could rewrite our arrow-
drawing routine like this:

UIBezierPath* p = [UIBezierPath bezierPath];
[p moveToPoint:CGPointMake(100,100)];
[p addLineToPoint:CGPointMake(100, 19)];
[p setLineWidth:20];
[p stroke];

[[UIColor redColor] set];
[p removeAllPoints];
[p moveToPoint:CGPointMake(80,25)];
[p addLineToPoint:CGPointMake(100, 0)];
[p addLineToPoint:CGPointMake(120, 25)];
[p fill];

[p removeAllPoints];
[p moveToPoint:CGPointMake(90,101)];
[p addLineToPoint:CGPointMake(100, 90)];
[p addLineToPoint:CGPointMake(110, 101)];
[p fillWithBlendMode:kCGBlendModeClear alpha:1.0];

There’s no savings of code in this particular case, but UIBezierPath still might be useful
if you need object features, and it does offer one convenience method, bezierPathWith-
RoundedRect:cornerRadius:, that is particularly attractive; drawing a rectangle with
rounded corners using only Core Graphics functions is rather tedious.

Clipping
Another use of a path is to mask out areas, protecting them from future drawing. This
is called clipping. By default, a graphics context’s clipping region is the entire graphics
context: you can draw anywhere within the context.

The clipping area is a feature of the context as a whole, and any new clipping area is
applied by intersecting it with the existing clipping area; so if you apply your own
clipping region, the way to remove it from the graphics context later is to plan ahead
and wrap things with calls to CGContextSaveGState and CGContextRestoreGState.

To illustrate, I’ll rewrite the code that generated our original arrow (Figure 15-10) to
use clipping instead of a blend mode to “punch out” the triangular notch in the tail of
the arrow. This is a little tricky, because what we want to clip to is not the region inside
the triangle but the region outside it. To express this, we’ll use a compound path con-
sisting of more than one closed area — the triangle, and the drawing area as a whole
(which we can obtain with CGContextGetClipBoundingBox).

Both when filling a compound path and when using it to express a clipping region, the
system follows one of two rules:

Clipping | 377

Winding rule
The fill or clipping area is denoted by an alternation in the direction (clockwise or
counterclockwise) of the path demarcating each region.

Even-odd rule (EO)
The fill or clipping area is denoted by a simple count of the paths demarcating each
region.

Our situation is extremely simple, so it’s easier to use the even-odd rule. So we set up
the clipping area using CGContextEOClip and then draw the arrow:

// obtain the current graphics context
CGContextRef con = UIGraphicsGetCurrentContext();

// punch triangular hole in context clipping region
CGContextMoveToPoint(con, 90, 100);
CGContextAddLineToPoint(con, 100, 90);
CGContextAddLineToPoint(con, 110, 100);
CGContextClosePath(con);
CGContextAddRect(con, CGContextGetClipBoundingBox(con));
CGContextEOClip(con);

// draw the vertical line
CGContextMoveToPoint(con, 100, 100);
CGContextAddLineToPoint(con, 100, 19);
CGContextSetLineWidth(con, 20);
CGContextStrokePath(con);

// draw the red triangle, the point of the arrow
CGContextSetFillColorWithColor(con, [[UIColor redColor] CGColor]);
CGContextMoveToPoint(con, 80, 25);
CGContextAddLineToPoint(con, 100, 0);
CGContextAddLineToPoint(con, 120, 25);
CGContextFillPath(con);

Gradients
Gradients can range from the simple to the complex. A simple gradient (which is all I’ll
describe here) is determined by a color at one endpoint along with a color at the other

How Big Is My Context?
At first blush, it appears that there’s no way to learn a graphics context’s size. Typically,
this doesn’t matter, because either you created the graphics context or it’s the graphics
context of some object whose size you know, such as a UIView. But in fact, because
the default clipping region of a graphics context is the entire context, you can use
CGContextGetClipBoundingBox to learn the context’s “bounds” (before changing the
clipping region, of course).

378 | Chapter 15: Drawing

endpoint, plus (optionally) colors at intermediate points; the gradient is then painted
either linearly between two points in the context or radially between two circles in the
context.

You can’t use a gradient as a path’s fill color, but you can restrict a gradient to a path’s
shape by clipping, which amounts to the same thing.

To illustrate, I’ll redraw our arrow, using a linear gradient as the “shaft” of the arrow
(Figure 15-11):

// obtain the current graphics context
CGContextRef con = UIGraphicsGetCurrentContext();
CGContextSaveGState(con);

// punch triangular hole in context clipping region
CGContextMoveToPoint(con, 90, 100);
CGContextAddLineToPoint(con, 100, 90);
CGContextAddLineToPoint(con, 110, 100);
CGContextClosePath(con);
CGContextAddRect(con, CGContextGetClipBoundingBox(con));
CGContextEOClip(con);

// draw the vertical line, add its shape to the clipping region
CGContextMoveToPoint(con, 100, 100);
CGContextAddLineToPoint(con, 100, 19);
CGContextSetLineWidth(con, 20);
CGContextReplacePathWithStrokedPath(con);
CGContextClip(con);

// draw the gradient
CGFloat locs[3] = { 0.0, 0.5, 1.0 };
CGFloat colors[12] = {
 0.3,0.3,0.3,0.8, // starting color, transparent gray
 0.0,0.0,0.0,1.0, // intermediate color, black
 0.3,0.3,0.3,0.8 // ending color, transparent gray
};
CGColorSpaceRef sp = CGColorSpaceCreateDeviceGray();
CGGradientRef grad = CGGradientCreateWithColorComponents (sp, colors, locs, 3);
CGContextDrawLinearGradient (con, grad, CGPointMake(89,0), CGPointMake(111,0), 0);
CGColorSpaceRelease(sp);
CGGradientRelease(grad);

CGContextRestoreGState(con); // done clipping

// draw the red triangle, the point of the arrow
CGContextSetFillColorWithColor(con, [[UIColor redColor] CGColor]);
CGContextMoveToPoint(con, 80, 25);
CGContextAddLineToPoint(con, 100, 0);
CGContextAddLineToPoint(con, 120, 25);
CGContextFillPath(con);

The call to CGContextReplacePathWithStrokedPath pretends to stroke the current path,
using the current line width and other line-related context state settings, but then cre-

Gradients | 379

ates a new path representing the outside of that stroked path. Thus, instead of a thick
line we have a rectangular region that we can use as the clip region.

We then create the gradient and paint it. The procedure is verbose but simple; every-
thing is boilerplate. We describe the gradient as a set of locations on the continuum
between one endpoint (0.0) and the other endpoint (1.0), along with the colors corre-
sponding to each location; in this case, I want the gradient to be lighter at the edges
and darker in the middle, so I use three locations, with the dark one at 0.5. We must
also supply a color space in order to create the gradient. Finally, we create the gradient,
paint it into place, and release the color space and the gradient.

Colors and Patterns
A color is a CGColor (actually a CGColorRef). CGColor is not difficult to work with,
and is bridged to UIColor through UIColor’s colorWithCGColor: and CGColor methods.

A pattern, on the other hand, is a CGPattern (actually a CGPatternRef). You can create
a pattern and stroke or fill with it. The process is rather elaborate. As an extremely
simple example, I’ll replace the red triangular arrowhead with a red-and-blue striped
triangle (Figure 15-12). To do so, remove this line:

CGContextSetFillColorWithColor(con, [[UIColor redColor] CGColor]);

In its place, put the following:

CGColorSpaceRef sp2 = CGColorSpaceCreatePattern(NULL);
CGContextSetFillColorSpace (con, sp2);
CGColorSpaceRelease (sp2);
CGPatternCallbacks callback = {
 0, &drawStripes, NULL
};

Figure 15-11. Drawing with a gradient

Figure 15-12. A patterned fill

380 | Chapter 15: Drawing

CGAffineTransform tr = CGAffineTransformIdentity;
CGPatternRef patt = CGPatternCreate(NULL,
 CGRectMake(0,0,4,4),
 tr,
 4, 4,
 kCGPatternTilingConstantSpacingMinimalDistortion,
 true,
 &callback);
CGFloat alph = 1.0;
CGContextSetFillPattern(con, patt, &alph);
CGPatternRelease(patt);

That code is verbose, but it is almost entirely boilerplate. To understand it, it almost
helps to read it backward. What we’re leading up to is the call to CGContextSetFill-
Pattern; instead of setting a fill color, we’re setting a fill pattern, to be used the next
time we fill a path (in this case, the triangular arrowhead). The third parameter to
CGContextSetFillPattern is a pointer to a CGFloat, so we have to set up the CGFloat
itself beforehand. The second parameter to CGContextSetFillPattern is a CGPattern-
Ref, so we have to create that CGPatternRef beforehand (and release it afterward).

So now let’s talk about the call to CGPatternCreate. A pattern is a drawing in a rectan-
gular “cell”; we have to state both the size of the cell (the second argument) and the
spacing between origin points of cells (the fourth and fifth arguments). In this case, the
cell is 4×4, and every cell exactly touches its neighbors both horizontally and vertically.
We have to supply a transform to be applied to the cell (the third argument); in this
case, we’re not doing anything with this transform, so we supply the identity transform.
We supply a tiling rule (the sixth argument). We have to state whether this is a color
pattern or a stencil pattern; it’s a color pattern, so the seventh argument is true. And
we have to supply a pointer to a callback function that actually draws the pattern into
its cell (the eighth argument).

Except that that’s not what we have to supply as the eighth argument. To make matters
more complicated, what we actually have to supply here is a pointer to a CGPattern-
Callbacks struct. This struct consists of the number 0 and pointers to two functions,
one called to draw the pattern into its cell, the other called when the pattern is released.
We’re not specifying the second function, however; it is for memory management, and
we don’t need it in this simple example.

We have almost worked our way backward to the start of the code. It turns out that
before you can call CGContextSetFillPattern with a colored pattern, you have to set the
context’s fill color space to a pattern color space. If you neglect to do this, you’ll get an
error when you call CGContextSetFillPattern. So we create the color space, set it as the
context’s fill color space, and release it.

But we are still not finished, because I haven’t shown you the function that actually
draws the pattern cell! This is the function whose address is taken as &drawStripes in
our code. Here it is:

Colors and Patterns | 381

void drawStripes (void *info, CGContextRef con) {
 // assume 4 x 4 cell
 CGContextSetFillColorWithColor(con, [[UIColor redColor] CGColor]);
 CGContextFillRect(con, CGRectMake(0,0,4,4));
 CGContextSetFillColorWithColor(con, [[UIColor blueColor] CGColor]);
 CGContextFillRect(con, CGRectMake(0,0,4,2));
}

As you can see, the actual pattern-drawing code is very simple. The only tricky issue is
that the call to CGPatternCreate must be in agreement with the pattern-drawing func-
tion as to the size of a cell, or the pattern won’t come out the way you expect. We know
in this case that the cell is 4×4. So we fill it with red, and then fill its lower half with
blue. When these cells are tiled touching each other horizontally and vertically, we get
the stripes that you see in Figure 15-12.

Note, finally, that the code as presented has left the graphics context in an undesirable
state, with its fill color space set to a pattern color space. This would cause trouble if
we were later to try to set the fill color to a normal color. The solution, as usual, is to
wrap the code in calls to CGContextSaveGState and CGContextRestoreGState.

You may have observed in Figure 15-12 that the stripes do not fit neatly inside the
triangle of the arrow-head: the bottommost stripe is something like half a blue stripe.
This is because a pattern is positioned not with respect to the shape you are filling (or
stroking), but with respect to the graphics context as a whole. We could shift the pattern
position by calling CGContextSetPatternPhase before drawing.

Graphics Context Transforms
Just as a UIView can have a transform, so can a graphics context. However, applying
a transform to a graphics context has no effect on the drawing that’s already in it; it
affects only the drawing that takes place after it is applied, altering the way the coor-
dinates you provide are mapped onto the graphics context’s area. A graphics context’s
transform is called its CTM, for “current transformation matrix.”

It is quite usual to take full advantage of a graphics context’s CTM to save yourself
from performing even simple calculations. You can multiply the current transform by
any CGAffineTransform using CGContextConcatCTM; there are also convenience func-
tions for applying a translate, scale, or rotate transform to the current transform.

The base transform for a graphics context is already set for you when you obtain the
context; this is how the system is able to map context drawing coordinates onto screen
coordinates. Whatever transforms you apply are applied to the current transform, so
the base transform remains in effect and drawing continues to work. You can return to
the base transform after applying your own transforms by wrapping your code in calls
to CGContextSaveGState and CGContextRestoreGState.

For example, we have hitherto been drawing our upward-pointing arrow with code
that knows how to place that arrow at only one location: the top left of its rectangle is

382 | Chapter 15: Drawing

hard-coded at {80,0}. This is silly. It makes the code hard to understand, as well as
inflexible and difficult to reuse. Surely the sensible thing would be to draw the arrow
at {0,0}, by subtracting 80 from all the x-values in our existing code. Now it is easy to
draw the arrow at any position, simply by applying a translation transform beforehand,
mapping {0,0} to the desired top-left corner of the arrow. So, to draw it at {80,0}, we
would say:

CGContextTranslateCTM(con, 80, 0);
// now draw the arrow at (0,0)

A rotate transform is particularly useful, allowing you to draw in a rotated orientation
without any nasty trigonometry. However, it’s a bit tricky because the point around
which the rotation takes place is the origin. This is rarely what you want, so you have
apply a translate transform first, to map the origin to the point around which you really
want to rotate. But then, after rotating, in order to figure out where to draw you will
probably have to reverse your translate transform.

To illustrate, here’s code to draw our arrow repeatedly at several angles, pivoting
around the end of its tail (Figure 15-13). First, we’ll encapsulate the drawing of the
arrow as a UIImage. Then we simply draw that UIImage repeatedly:

UIGraphicsBeginImageContextWithOptions(CGSizeMake(40,100), NO, 0.0);
CGContextRef con = UIGraphicsGetCurrentContext();

// draw the arrow into the image context
// draw it at (0,0)! adjust all x-values by subtracting 80
// ... actual code omitted ...

UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

con = UIGraphicsGetCurrentContext();

[im drawAtPoint:CGPointMake(0,0)];
for (int i=0; i<3; i++) {
 CGContextTranslateCTM(con, 20, 100);
 CGContextRotateCTM(con, 30 * M_PI/180.0);
 CGContextTranslateCTM(con, -20, -100);
 [im drawAtPoint:CGPointMake(0,0)];
}

Figure 15-13. Drawing rotated with a CTM

Graphics Context Transforms | 383

A transform is also one more solution for the “flip” problem we encountered earlier
with CGContextDrawImage. Instead of reversing the drawing, we can reverse the context
into which we draw it. Essentially, we apply a “flip” transform to the context’s coor-
dinate system. You move the context’s top downward, and then reverse the direction
of the y-coordinate by applying a scale transform whose y-multiplier is -1:

CGContextTranslateCTM(con, 0, theHeight);
CGContextScaleCTM(con, 1.0, -1.0);

How far down you move the context’s top depends on how you intend to draw the
image. So, for example, we could draw the two halves of Mars (from the example earlier
in this chapter) without flipping, like this:

CGContextTranslateCTM(con, 0, sz.height); // sz is [mars size]
CGContextScaleCTM(con, 1.0, -1.0);
CGContextDrawImage(con,
 CGRectMake(0,0,sz.width/2.0,sz.height),
 marsLeft);
CGContextDrawImage(con,
 CGRectMake(b.size.width-sz.width/2.0, 0, sz.width/2.0, sz.height),
 marsRight);

Shadows
To add a shadow to a drawing, give the context a shadow value before drawing. The
shadow position is expressed as a CGSize, where the positive direction for both values
indicates down and to the right. The blur value is an open-ended positive number;
Apple doesn’t explain how the scale works, but experimentation shows that 12 is nice
and blurry, 99 is so blurry as to be shapeless, and higher values become problematic.

Figure 15-14 shows the result of the same code that generated Figure 15-13, except that
before we start drawing the arrow repeatedly, we give the context a shadow:

con = UIGraphicsGetCurrentContext();
CGContextSetShadow(con, CGSizeMake(7, 7), 12);
[im drawAtPoint:CGPointMake(0,0)]; // ... and so on

However, there’s a subtle cosmetic problem with this approach. It may not be evident
from Figure 15-14, but we are adding a shadow each time we draw. Thus the arrows
are able to cast shadows on one another. What we want, however, is for all the arrows

Figure 15-14. Drawing with a shadow

384 | Chapter 15: Drawing

to cast a single shadow collectively. The way to achieve this is with a transparency
layer; this is basically a subcontext that accumulates all drawing and then adds the
shadow. Our code for drawing the shadowed arrows would thus look like this:

CGContextSetShadow(con, CGSizeMake(7, 7), 12);
CGContextBeginTransparencyLayer(con, NULL);
[im drawAtPoint:CGPointMake(0,0)];
for (int i=0; i<3; i++) {
 CGContextTranslateCTM(con, 20, 100);
 CGContextRotateCTM(con, 30 * M_PI/180.0);
 CGContextTranslateCTM(con, -20, -100);
 [im drawAtPoint:CGPointMake(0,0)];
}
CGContextEndTransparencyLayer(con);

Points and Pixels
A point is a dimensionless location described by an x-coordinate and a y-coordinate.
When you draw in a graphics context, you specify the points at which to draw, and
this works regardless of the device’s resolution, because Core Graphics maps your
drawing nicely onto the physical output (using the base CTM, along with any anti-
aliasing and smoothing). Therefore, throughout this chapter I’ve concerned myself with
graphics context points, disregarding their relationship to screen pixels.

However, pixels do exist. A pixel is a physical, integral, dimensioned unit of display in
the real world. Whole-numbered points effectively lie between pixels, and this can
matter if you’re fussy, especially on a single-resolution device. For example, if a vertical
path with whole-number coordinates is stroked with a line width of 1, half the line falls
on each side of the path, and the drawn line on the screen of a single-resolution device
will seem to be 2 pixels wide (because the device can’t illuminate half a pixel).

You will sometimes encounter advice suggesting that if this effect is objectionable, you
should try shifting the line’s position by 0.5, to center it in its pixels. This advice may
appear to work, but it makes some simple-minded assumptions. A more sophisticated
approach is to obtain the UIView’s contentScaleFactor property. This value will be
either 1.0 or 2.0, so you can divide by it to convert from pixels to points. Consider also
that the most accurate way to draw a vertical or horizontal line is not to stroke a path
but to fill a rectangle. So this UIView subclass code will draw a perfect 1-pixel-wide
vertical line on any device:

CGContextFillRect(con, CGRectMake(100,0,1.0/self.contentScaleFactor,100));

Content Mode
A view that draws something within itself, as opposed to merely having a background
color and subviews (as in the previous chapter), has content. This means that its content-
Mode property becomes important whenever the view is resized. As I mentioned earlier,

Content Mode | 385

the drawing system will avoid asking a view to redraw itself from scratch if possible;
instead, it will use the cached result of the previous drawing operation (the bitmap
backing store). So, if the view is resized, the system may simply stretch or shrink or
reposition the cached drawing, if your contentMode setting instructs it to do so.

It’s a little tricky to illustrate this point, because I have to arrange for the view to be
resized without also causing it to be redrawn (that is, without triggering a call to draw-
Rect:). Here’s how I’ll do that. As the app starts up, I’ll create the MyView instance in
code and put it in the window, much as before. Then I’ll use delayed performance to
resize the MyView instance after the window has shown and the interface has been
initially displayed:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.window.rootViewController = [UIViewController new];

 MyView* mv =
 [[MyView alloc] initWithFrame:
 CGRectMake(0, 0, self.window.bounds.size.width - 50, 150)];
 mv.center = self.window.center;
 [self.window.rootViewController.view addSubview: mv];
 mv.opaque = NO;
 mv.tag = 111; // so I can get a reference to this view later

 [self performSelector:@selector(resize:) withObject:nil afterDelay:0.1];

 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

- (void) resize: (id) dummy {
 UIView* mv = [self.window viewWithTag:111];
 CGRect f = mv.bounds;
 f.size.height *= 2;
 mv.bounds = f;
}

We double the height of the view without causing drawRect: to be called. The result is
that the view’s drawing appears at double its correct height. For example, if our view’s
drawRect: code is the same as the code that generated Figure 15-11, we get Figure 15-15.

This, however, is almost certainly not what we want. Sooner or later drawRect: will be
called, and the drawing will be refreshed in accordance with our code. Our code doesn’t
say to draw the arrow at a height that is relative to the height of the view’s bounds; it
draws the arrow at a fixed height. Thus, not only has the arrow stretched, but at some
future time, it will snap back to its original size.

The moral is that our view’s contentMode property needs to be in agreement with how
the view draws itself. For example, our drawRect: code dictates the size and position of

386 | Chapter 15: Drawing

the arrow relative to the view’s bounds origin, its top left. So we could set its content-
Mode to UIViewContentModeTopLeft. Alternatively, and more likely, we could set it to
UIViewContentModeRedraw; this will cause automatic scaling and repositioning of the
cached content to be turned off, and instead the view’s setNeedsDisplay method will
be called, ultimately triggering drawRect: to redraw the content.

On the other hand, if a view might be resized only momentarily — say, as part of an
animation — then stretching behavior might be exactly what you want. Suppose we’re
going to animate the view by making it get a little larger for a moment and then returning
it to its original size, perhaps as a way of attracting the user’s attention. Then presum-
ably we do want the view’s content to stretch and shrink as the view stretches and
shrinks; that’s the whole point of the animation. This is precisely what the default
contentMode value, UIViewContentModeScaleToFill, does for us. And remember, it does
it efficiently; what’s being stretched and shrunk is just a cached image of our view’s
content.

Figure 15-15. Automatic stretching of content

Content Mode | 387

CHAPTER 16

Layers

The tale told in Chapter 14 and Chapter 15 of how a UIView works and how it draws
itself is only half the story. A UIView has a partner called its layer, a CALayer. A UIView
does not actually draw itself onto the screen; it draws itself into its layer, and it is the
layer that appears on the screen. As I’ve already mentioned, a view is not redrawn
frequently; instead, its drawing is cached, and the cached version of the drawing (the
bitmap backing store) is used where possible. The cached version is, in fact, the layer.
What I spoke of in Chapter 15 as the view’s graphics context is actually the layer’s
graphics context.

This might seem like a mere implementation detail, but layers are important and in-
teresting. To understand layers is to understand views more deeply; layers extend the
power of views. In particular:

Layers have properties that affect drawing.
Layers have drawing-related properties beyond those of a UIView. Because a layer
is the recipient and presenter of a view’s drawing, you can modify how a view is
drawn on the screen by accessing the layer’s properties. In other words, by reaching
down to the level of its layer, you can make a view do things you can’t do through
UIView methods alone.

Layers can be combined within a single view.
A UIView’s partner layer can contain additional layers. Since the purpose of layers
is to draw, portraying visible material on the screen, this allows a UIView’s drawing
to be composited of multiple distinct pieces. This can make drawing easier, with
the constituents of a drawing being treated as objects.

Layers are the basis of animation.
Animation allows you to add clarity, emphasis, and just plain coolness to your
interface. Layers are made to be animated (the “CA” in “CALayer” stands for “Core
Animation”). Animation is the subject of Chapter 17; understanding layers is a
prerequisite for reading that chapter.

389

For example, suppose we want to add a compass indicator to our app’s interface.
Figure 16-1 portrays a simple version of such a compass. It takes advantage of the arrow
that we figured out how to draw in Chapter 15; the arrow is drawn into a layer of its
own. The other parts of the compass are layers too: the circle is a layer, and each of the
cardinal point letters is a layer. The drawing is thus easy to composite in code (and later
in this chapter, that’s exactly what we’ll do); even more intriguing, the pieces can be
repositioned and animated separately, so it’s easy to rotate the arrow without moving
the circle (and in Chapter 17, that’s exactly what we’ll do).

The documentation discusses layers chiefly in connection with animation (in particular,
in the Core Animation Programming Guide). This categorization gives the impression
that layers are of interest only if you intend to animate. That’s misleading. Layers are
the basis of animation, but they are also the basis of view drawing, and are useful and
important even if you don’t use them for animation.

CALayer is not part of UIKit. It’s part of the Quartz Core framework, which is not
linked by default into the project template. If your app contains code that refers to
CALayer or related classes, you must link your target to QuartzCore.framework, and
you must import <QuartzCore/QuartzCore.h> into any file containing such code.

View and Layer
A UIView instance has an accompanying CALayer instance, accessible as the view’s
layer property. This layer has a special status: it is partnered with this view to embody
all of the view’s drawing. The layer has no corresponding view property, but the view
is the layer’s delegate. The documentation sometimes speaks of this layer as the view’s
“underlying layer.”

By default, when a UIView is instantiated, its layer is an instance of CALayer. But if
you subclass UIView and you want your subclass’s underlying layer to be an instance
of a CALayer subclass (built-in or your own), implement the UIView subclass’s layer-
Class class method.

Figure 16-1. A compass, composed of layers

390 | Chapter 16: Layers

That, for example, is how the compass in Figure 16-1 is created. We have a UIView
subclass, CompassView, and a CALayer subclass, CompassLayer. CompassView con-
tains these lines:

+ (Class) layerClass {
 return [CompassLayer class];
}

Thus, when CompassView is instantiated, its underlying layer is a CompassLayer. In
this example, there is no drawing in CompassView; its job is to give CompassLayer a
place in the visible interface, because a layer cannot appear without a view.

Because every view has an underlying layer, there is a tight integration between the two.
The layer is on the screen and portrays all the view’s drawing; if the view draws, it does
so by contributing to the layer’s drawing. The view is the layer’s delegate. And the
view’s properties are often merely a convenience for accessing the layer’s properties.
For example, when you set the view’s backgroundColor, you are really setting the layer’s
backgroundColor, and if you set the layer’s backgroundColor directly, the view’s
backgroundColor is set to match. Similarly, the view’s frame is really the layer’s frame
and vice versa.

A CALayer’s delegate property is settable, but you must never set the
delegate property of a UIView’s underlying layer. To do so would be to
break the integration between them, thereby causing drawing to stop
working correctly. A UIView must be the delegate of its underlying layer;
moreover, it must not be the delegate of any other layer. Don’t do any-
thing to mess this up.

The view draws into its layer, and the layer caches that drawing; the layer can then be
manipulated, changing the view’s appearance, without necessarily asking the view to
redraw itself. This is a source of great efficiency in the drawing system. It also explains
such phenomena as the content stretching that we encountered in the last section of
Chapter 15: when the view’s bounds size changes, the drawing system, by default,
simply stretches or repositions the cached layer image, until such time as the view is
told to generate a new drawing of itself (drawRect:) to replace the layer’s content.

Mac OS X Programmer Alert

On Mac OS X, NSView existed long before CALayer was introduced,
so today a view might have no layer, or, if it does have a layer, it might
relate to it in various ways. You may be accustomed to terms like layer-
backed view or layer-hosting view. On iOS, layers were incorporated
from the outset: every UIView has an underlying layer and relates to it
in the same way.

View and Layer | 391

Layers and Sublayers
A layer can have sublayers, and a layer has at most one superlayer. Thus there is a tree
of layers. This is similar and parallel to the tree of views (Chapter 14). In fact, so tight
is the integration between a view and its underlying layer that these hierarchies are
effectively the same hierarchy. Given a view and its underlying layer, that layer’s su-
perlayer is the view’s superview’s underlying layer, and that layer has as sublayers all
the underlying layers of all the view’s subviews. Indeed, because the layers are how the
views actually get drawn, one might say that the view hierarchy really is a layer hierarchy
(Figure 16-2).

At the same time, the layer hierarchy can go beyond the view hierarchy. A view has
exactly one underlying layer, but a layer can have sublayers that are not the underlying
layers of any view. So the hierarchy of layers that underlie views exactly matches the
hierarchy of views (Figure 16-2), but the total layer tree may be a superset of that hi-
erarchy. In Figure 16-3, we see the same view-and-layer hierarchy as in Figure 16-2, but
two of the layers have additional sublayers that are theirs alone (that is, sublayers that
are not any view’s underlying layers).

From a visual standpoint, there may be nothing to distinguish a hierarchy of views from
a hierarchy of layers. For example, in Chapter 14 we drew three overlapping rectangles
using a hierarchy of views (Figure 14-1). This code gives exactly the same visible display
by manipulating layers:

UIView* v = self.window.rootViewController.view;
CALayer* lay1 = [[CALayer alloc] init];
lay1.frame = CGRectMake(113, 111, 132, 194);
lay1.backgroundColor = [[UIColor colorWithRed:1 green:.4 blue:1 alpha:1] CGColor];
[v.layer addSublayer:lay1];
CALayer* lay2 = [[CALayer alloc] init];
lay2.backgroundColor = [[UIColor colorWithRed:.5 green:1 blue:0 alpha:1] CGColor];
lay2.frame = CGRectMake(41, 56, 132, 194);
[lay1 addSublayer:lay2];

Figure 16-2. A hierarchy of views and the hierarchy of layers underlying it

392 | Chapter 16: Layers

CALayer* lay3 = [[CALayer alloc] init];
lay3.backgroundColor = [[UIColor colorWithRed:1 green:0 blue:0 alpha:1] CGColor];
lay3.frame = CGRectMake(43, 197, 160, 230);
[v.layer addSublayer:lay3];

There are, indeed, situations in which it is not clear whether a piece of interface should
be constructed as a view hierarchy or a layer hierarchy. Several of my apps have an
interface that is a rectangular grid of objects of the same type; in some cases, I implement
these as layers, in some cases I implement them as views, and sometimes it isn’t clear
to me that my choice is much more than arbitrary. A layer on its own is more lightweight
than a view; on the other hand, a view is a UIResponder, so it can respond to touches,
and layers lack automatic layout (as implemented through a UIView’s autoresizing-
Mask).

Manipulating the Layer Hierarchy
Layers come with a full set of methods for reading and manipulating the layer hierarchy,
parallel to the methods for reading and manipulating the view hierarchy. A layer has a
superlayer property and a sublayers property; there are methods addSublayer:, insert-
Sublayer:atIndex:, insertSublayer:below:, insertSublayer:above:, replaceSublayer:
with:, and removeFromSuperlayer.

Unlike a view’s subviews property, a layer’s sublayers property is writable; thus, you
can give a layer multiple sublayers in a single move, by assigning to its sublayers prop-
erty. To remove all of a layer’s sublayers, set its sublayers property to nil.

Although a layer’s sublayers have an order, reflected in the sublayers order and regu-
lated with the methods I’ve just mentioned, this is not necessarily the same as their
back-to-front drawing order. By default, it is, but a layer also has a zPosition property,
a CGFloat, and this also determines drawing order. The rule is that all sublayers with
the same zPosition are drawn in the order they are listed among their sublayers siblings,

Figure 16-3. Layers that have sublayers of their own

Layers and Sublayers | 393

but lower zPosition siblings are drawn before higher zPosition siblings. (The default
zPosition is 0.)

Sometimes, the zPosition property is a more convenient way of dictating drawing order
than sibling order is. For example, if layers represent playing cards laid out in a solitaire
game, it will likely be a lot easier and more flexible to determine how the cards overlap
by setting their zPosition than by rearranging their sibling order.

Methods are also provided for converting between the coordinate systems of layers
within the same layer hierarchy: convertPoint:fromLayer:, convertPoint:toLayer:,
convertRect:fromLayer:, and convertRect:toLayer:.

Positioning a Sublayer
Layer coordinate systems and positioning are similar to those of views. A layer’s own
internal coordinate system is expressed by its bounds, just like a view; its size is its
bounds size, and its bounds origin is the internal coordinate at its top left.

However, a sublayer’s position within its superlayer is not described by its center, like
a view; a layer does not have a center. Instead, a sublayer’s position within its superlayer
is defined by a combination of two properties, its position and its anchorPoint. Think
of the sublayer as pinned to its superlayer; then you have to say both where the pin
passes through the sublayer and where it passes through the superlayer. (I didn’t make
up that analogy, but it’s pretty apt.)

position

A point expressed in the superlayer’s coordinate system.

anchorPoint

Where the position point is with respect to the layer’s own bounds. It is a pair of
floating-point numbers (a CGPoint) describing a fraction (or multiple) of the layer’s
own bounds width and bounds height. Thus, for example, {0,0} is the layer’s top
left, and {1,1} is its bottom right.

If the anchorPoint is {0.5,0.5} (the default), the position property works like a view’s
center property. A view’s center is thus a special case of a layer’s position. This is quite
typical of the relationship between view properties and layer properties; the view prop-
erties are often a simpler, more convenient, and less powerful version of the layer prop-
erties.

A layer’s position and anchorPoint are orthogonal (independent); changing one does
not change the other. Therefore, changing either of them without changing the other
changes where the layer is drawn within its superlayer.

For example, in Figure 16-1, the most important point in the circle is its center; all the
other objects need to be positioned with respect to it. Therefore they all have the same
position: the center of the circle. But they differ in their anchorPoint. For example, the
arrow’s anchorPoint is {0.5,0.8}, the middle of the shaft, near the end. On the other

394 | Chapter 16: Layers

hand, the anchorPoint of a cardinal point letter is more like {0.5,3.8}, well outside the
letter’s bounds, so as to place the letter near the edge of the circle.

A layer’s frame is a purely derived property. When you get the frame, it is calculated
from the bounds size along with the position and anchorPoint. When you set the
frame, you set the bounds size and position. In general, you should regard the frame as
a convenient façade and no more. Nevertheless, it is convenient! For example, to po-
sition a sublayer so that it exactly overlaps its superlayer, you can just set the sublayer’s
frame to the superlayer’s bounds.

A layer created in code (as opposed to a view’s underlying layer) has a
frame and bounds of {{0,0},{0,0}} and will not be visible on the screen
even when you add it to a superlayer that is on the screen. Be sure to
give your layer a nonzero width and height if you want to be able to see
it.

CAScrollLayer
If you’re going to be moving a layer’s bounds origin as a way of repositioning its sub-
layers en masse, you might like to make the layer a CAScrollLayer, a CALayer subclass
that provides convenience methods for this sort of thing. (Despite the name, a CAScroll-
Layer provides no scrolling interface; the user can’t scroll it by dragging, for example.)
By default, a CAScrollLayer’s masksToBounds property is YES; thus, the CAScrollLayer
acts like a window through which you see can only what is within its bounds. (You can
set its masksToBounds to NO, but this would be an odd thing to do, as it somewhat
defeats the purpose.)

To move the CAScrollLayer’s bounds, you can talk either to it or to a sublayer (at any
depth):

Talking to the CAScrollLayer

scrollToPoint:

Changes the CAScrollLayer’s bounds origin to that point.

scrollToRect:

Changes the CAScrollLayer’s bounds origin minimally so that the given por-
tion of the bounds rect is visible.

Talking to a sublayer

scrollPoint:

Changes the CAScrollLayer’s bounds origin so that the given point of the sub-
layer is at the top left of the CAScrollLayer.

scrollRectToVisible:

Changes the CAScrollLayer’s bounds origin so that the given rect of the sub-
layer’s bounds is within the CAScrollLayer’s bounds area. You can also ask the

Layers and Sublayers | 395

sublayer for its visibleRect, the part of this sublayer now within the CAScroll-
Layer’s bounds.

Layout of Sublayers
The only option for layout of sublayers on iOS is manual layout. When a layer needs
layout, either because its bounds have changed or because you called setNeedsLayout,
you can respond in either of two ways:

• The layer’s layoutSublayers method is called; to respond, override layout-
Sublayers in your CALayer subclass.

• Alternatively, implement layoutSublayersOfLayer: in the layer’s delegate. (Re-
member, if the layer is a view’s underlying layer, the view is its delegate.)

To do effective manual layout of sublayers, you’ll probably need a way to identify or
refer to the sublayers. There is no layer equivalent of viewWithTag:, so such identifica-
tion and reference is entirely up to you. Key–value coding can be helpful here; layers
implement key–value coding in a special way, discussed at the end of this chapter.

Mac OS X Programmer Alert

On Mac OS X, layers have extensive layout support, including both
“springs and struts” (constraints) and custom layout managers. But iOS
lacks all of this.

Drawing in a Layer
There are various ways to make a layer display something (apart from having a part-
nered view draw into it, as discussed in Chapter 15).

The simplest way to make something appear in a layer is through its contents prop-
erty. This is parallel to the image in a UIImageView (Chapter 15). It is expected to be a
CGImageRef (or nil, signifying no image). A CGImageRef is not an object type, but the
contents property is typed as an id; in order to quiet the compiler, you’ll have to typecast
your CGImageRef to an id as you assign it, like this:

layer.contents = (id)[im CGImage];

You may be wondering why, under ARC, we don’t also have to “cross the bridge” from
the CFTypeRef world of a CGImageRef to the object world of an id by supplying a
__bridge cast, as discussed in Chapter 12. It’s because the CGImage method is a Cocoa
method and supplies ARC with the memory management information it needs. Coming
back the other way, though, we would need an explicit __bridge cast:

CGImageRef imref = (__bridge CGImageRef)layer.contents;

396 | Chapter 16: Layers

Setting a layer’s contents to a UIImage, rather than a CGImage, will fail
silently — the image doesn’t appear, but there is no error either. This is
absolutely maddening, and I wish I had a nickel for every time I’ve done
it and then wasted hours figuring out why my layer isn’t appearing.

There are also four methods that can be implemented to provide or draw a layer’s
content on demand, similar to a UIView’s drawRect:. A layer is very conservative about
calling these methods (and you must not call any of them directly). When a layer
does call these methods, I will say that the layer redisplays itself. Here is how a layer can
be caused to redisplay itself:

• If the layer’s needsDisplayOnBoundsChange property is NO (the default), then the
only way to cause the layer to redisplay itself is by calling setNeedsDisplay (or set-
NeedsDisplayInRect:). Even this might not cause these methods to be called right
away; if that’s crucial, then you will also call displayIfNeeded.

• If the layer’s needsDisplayOnBoundsChange property is YES, then the layer will also
redisplay itself when the layer’s bounds change (rather like a UIView’s UIView-
ContentModeRedraw).

Here are the four methods that can be called when a layer redisplays itself; pick one to
implement (don’t try to combine them, you’ll just confuse things):

display in a subclass
Your CALayer subclass can override display. There’s no graphics context at this
point, so display is pretty much limited to setting the contents image.

displayLayer: in the delegate
You can set the CALayer’s delegate property and implement displayLayer: in the
delegate. As with display, there’s no graphics context, so you’ll just be setting the
contents image.

drawInContext: in a subclass
Your CALayer subclass can override drawInContext:. The parameter is a graphics
context into which you can draw directly; it is not automatically made the current
context.

drawLayer:inContext: in the delegate
You can set the CALayer’s delegate property and implement drawLayer:in-
Context:. The second parameter is a graphics context into which you can draw
directly; it is not automatically made the current context.

Remember, you must not set the delegate property of a view’s underlying layer! The
view is its delegate and must remain its delegate. This restriction is not as onerous as
it seems; there’s generally an easy architectural way to draw into a layer by way of some
other delegate if that’s what you want to do.

For example, in one of my apps there’s an overlay view, sitting on top of everything
else on the screen; the user is unaware of this, because the view is transparent and

Drawing in a Layer | 397

usually does no drawing, and the view ignores touches, which fall through to the visible
views, as if the overlay were not there at all. But every once in a while I want the overlay
view to display something (this is its purpose). I don’t want the overhead of making an
image, and my app has a main controller, which already knows what needs drawing,
so I want to draw using this controller as a layer delegate. But it can’t be the delegate of
the overlay view’s underlying layer, so I give that layer a sublayer and make my main
controller that sublayer’s delegate. Thus we have a view and its underlying layer that
do nothing, except to serve as a host for this sublayer (Figure 16-4) — and there’s
nothing wrong with that.

Assigning a layer a contents image and drawing directly into the layer are, in effect,
mutually exclusive. So:

• If a layer’s contents is assigned an image, this image is shown immediately and
replaces whatever drawing may have been displayed in the layer.

• If a layer redisplays itself and drawInContext: or drawLayer:inContext: draws into
the layer, the drawing replaces whatever image may have been displayed in the
layer.

• If a layer redisplays itself and none of the display methods provides content (per-
haps because you didn’t override any of them), the layer will be empty of content.

Three layer properties strongly affect what the layer displays, in ways that can be baf-
fling to beginners: its backgroundColor property, its opaque property, and its opacity
property. Here’s what you need to know:

• Think of the backgroundColor as separate from the layer’s own drawing, and as
painted behind the layer’s own drawing. It is equivalent to a view’s background-
Color (and if this layer is a view’s underlying layer, it is the view’s background-
Color). Changing the backgroundColor takes effect immediately.

• The opaque property determines whether the layer’s graphics context is opaque. An
opaque graphics context is black; you can draw on top of that blackness, but the
blackness is still there. A non-opaque graphics context is clear; where no drawing

Figure 16-4. A view and a layer delegate that draws into it

398 | Chapter 16: Layers

is, it is completely transparent. Changing the opaque property has no effect until
the layer redisplays itself.

If a layer is a view’s underlying layer, then setting the view’s backgroundColor to an
opaque color (alpha component of 1) sets the layer’s opaque, though not the view’s
opaque, to YES. I regard this as extremely weird. (It is the reason behind the strange
behavior of CGContextClearRect described in Chapter 15.)

• The opacity property affects the overall apparent transparency of the layer. It is
equivalent to a view’s alpha (and if this layer is a view’s underlying layer, it is the
view’s alpha). It affects the apparent transparency of the layer’s sublayers as well.
It affects the apparent transparency of the background color and the apparent
transparency of the layer’s content separately (just as with a view’s alpha). Chang-
ing the opacity property takes effect immediately.

When drawing directly into a layer, the behavior of GCContextClearRect differs from
what was described in Chapter 15: instead of punching a hole through the background
color, it effectively paints with the layer’s background color. (This can have curious
side effects.)

Content Resizing and Positioning
Once a layer has content, regardless of whether this content came from an image (set-
ting the contents property) or from direct drawing into its context (drawInContext:,
drawLayer:inContext:), various properties dictate how the content should be drawn in
relation to the layer’s bounds. It is as if the cached content is itself treated as an image,
which can then be resized, repositioned, cropped, and so on. These properties are:

contentsGravity

This property, a string, is parallel to a UIView’s contentMode property, and describes
how the content should be positioned or stretched in relation to the bounds. For

Automatically Redisplaying a View’s Underlying Layer
A layer is not told automatically to redisplay itself (unless its bounds are resized when
needsDisplayOnBoundsChange is YES), but a view is. For example, a view is told to redraw
itself when it first appears; basically, it is sent setNeedsDisplay, much as if you had sent
it explicitly. When a view is sent setNeedsDisplay, the view’s underlying layer is also
sent setNeedsDisplay — unless the view has no drawRect: implementation (because in
that case, it is assumed that the view never needs redrawing). So, if you’re drawing a
view entirely by drawing its underlying layer directly, and if you want the underlying
layer to be redisplayed automatically when the view is told to redraw itself, you should
implement drawRect:, even if it does nothing. (This technique has no effect on sublayers
of the underlying layer.)

Drawing in a Layer | 399

example, kCAGravityCenter means the content is centered in the bounds without
resizing; kCAGravityResize (the default) means the content is sized to fit the bounds,
even if this means distorting its aspect; and so forth.

For historical reasons, the terms “bottom” and “top” in the names of
the contentsGravity settings have the opposite of their expected mean-
ings.

contentsRect

A CGRect expressing the proportion of the content that is to be displayed. The
default is {{0,0},{1,1}}, meaning the entire content is displayed. The specified
part of the content is sized and positioned in relation to the bounds in accordance
with the contentsGravity. Thus, for example, you can scale up part of the content
to fill the bounds, or slide part of a larger image into view without redrawing or
changing the contents image.

You can also use the contentsRect to scale down the content, by specifying a larger
contentsRect such as {{-.5, -.5}, {1.5, 1.5}}; but any content pixels that touch
the edge of the contentsRect will then be extended outwards to the edge of the
layer (to prevent this, make sure that the outermost pixels of the content are all
empty).

contentsCenter

A CGRect expressing the central region of nine rectangular regions of the contents-
Rect that are variously allowed to stretch if the contentsGravity calls for stretching.
The central region (the actual value of the contentsCenter) stretches in both di-
rections. Of the other eight regions (inferred from the value you provide), the four
corner regions don’t stretch, and the four side regions stretch in one direction.
(UIView has a somewhat similar property, contentStretch, which I didn’t discuss.)

If you’re drawing directly into the layer’s graphics context (e.g., with drawLayer:in-
Context:), and the contentsRect is the entire content, then if the layer redisplays itself,
the contentsGravity won’t matter, because the graphics context fills the layer. But if
the layer’s bounds are resized when needsDisplayOnBoundsChange is NO, then its cached
content from the last time you drew are treated as an image. By a judicious combination
of settings, you can attain some fairly sophisticated automatic behavior, with no need
to redraw the content yourself. For example, Figure 16-5 shows the result of the fol-
lowing settings:

arrow.needsDisplayOnBoundsChange = NO;
arrow.contentsCenter = CGRectMake(0.0, 0.4, 1.0, 0.6);
arrow.contentsGravity = kCAGravityResizeAspect;
arrow.bounds = CGRectInset(arrow.bounds, -20, -20);

Because needsDisplayOnBoundsChange is NO, the content is not redisplayed when the
arrow’s bounds are increased; instead, the cached content is used. The contents-

400 | Chapter 16: Layers

Gravity setting tells us to resize proportionally; therefore, the arrow is both longer and
wider than in Figure 16-1, but not in such a way as to distort its proportions. However,
notice that although the triangular arrowhead is wider, it is not longer; the increase in
length is due entirely to the stretching of the shaft. That’s because the contentsCenter
region is restricted to the shaft of the arrow.

If the content is larger than the bounds of the layer (which can easily happen if you’re
assigning a contents image), and if the contentsGravity and contentsRect do not resize
the content to fit the bounds, then by default the content will be drawn larger than the
layer; the layer does not automatically clip its content to its bounds (just as it does not
automatically clip its sublayers to its bounds). To get such clipping, for both content
and sublayers, set the layer’s masksToBounds property to YES.

The value of a layer’s bounds origin does not affect where its content is
drawn. It affects only where its sublayers are drawn.

Layers that Draw Themselves
A few built-in CALayer subclasses provide some basic but extremely helpful
self-drawing ability:

CATextLayer
A CATextLayer has a string property, which can be an NSString or NSAttributed-
String, along with other text formatting properties; it draws its string. The default
text color, the foregroundColor property, is white, which is unlikely to be what you
want. The text is different from the contents and is mutually exclusive with it:
either the contents image or the text will be drawn, but not both, so in general you
should not give a CATextLayer any contents image. In Figure 16-1, the cardinal
point letters are CATextLayer instances.

Figure 16-5. One way of resizing the compass arrow

Drawing in a Layer | 401

The fact that a CATextLayer’s string can be an NSAttributedString gives it a power
that UILabel lacks, namely, to display text in multiple font, sizes, and styles. For
example, using a CATextLayer, you could underline one word of the text; you can’t
do that with a UILabel. An example appears in Chapter 23.

CAShapeLayer
A CAShapeLayer has a path property, which is a CGPath. It fills or strokes this
path, or both, depending on its fillColor and strokeColor values, and displays the
result; the default is a fillColor of black and no strokeColor. A CAShapeLayer
may also have contents; the shape is displayed on top of the contents image, but
there is no property permitting you to specify a compositing mode. In Fig-
ure 16-1, the background circle is a CAShapeLayer instance, stroked with gray and
filled with a lighter, slightly transparent gray.

CAGradientLayer
A CAGradientLayer covers its background with a simple linear gradient; thus, it’s
an easy way to composite a gradient into your interface (and if you need something
more elaborate you can always draw with Core Graphics instead). The gradient is
defined much as in the Core Graphics gradient example in Chapter 15, an array of
locations and an array of corresponding colors (except that these are NSArrays, of
course, not C arrays), along with a start and end point. To clip the gradient, you
can add a mask to the CAGradientLayer (masks are discussed later in this chapter).
A CAGradientLayer’s contents are not displayed.

The colors array requires CGColors, not UIColors. But CGColorRef is not an
object type, whereas NSArray expects objects, so to quiet the compiler you’ll prob-
ably need to typecast at least the first item of the array (to id).

Figure 16-6 shows our compass drawn with an extra CAGradientLayer behind it.

Figure 16-6. A gradient drawn behind the compass

402 | Chapter 16: Layers

Transforms
The way a layer is drawn on the screen can be modified though a transform. This is not
surprising, because a view can have a transform (see Chapter 14), and a view is drawn
on the screen by its layer. As with the bounds and other properties, a view and its
underlying layer are tightly linked; when you change the transform of one, you are
changing the transform of the other. But, as so often happens, the layer’s transform is
more powerful than the view’s transform. Thus, you can use the transform of the un-
derlying layer to accomplish things with a view that you can’t accomplish with the
view’s transform alone.

In the simplest cases, when a transform is two-dimensional, you can use the setAffine-
Transform: and affineTransform methods. The value is a CGAffineTransform, familiar
from Chapter 14 and Chapter 15. The transform is applied around the anchorPoint.
Thus, the anchorPoint has a second purpose that I didn’t tell you about when discussing
it earlier.

You now know everything you need to know in order to understand the code that
generated Figure 16-6, so here is that code. Notice how the four cardinal point letters
are drawn by a CATextLayer and placed using a transform. They are drawn at the same
coordinates, but they have different rotation transforms. Moreover, even though the
CATextLayers are small (just 40 by 30) and appear near the perimeter of the circle, they
are anchored, and so their rotation is centered, at the center of the circle. In this code,
self is the CompassLayer; it does no drawing of its own, but merely assembles and
configures its sublayers. To generate the arrow, we make ourselves the arrow layer’s
delegate and call setNeedsDisplay; this causes drawLayer:inContext: to be called in
CompassLayer (that code is just the same code we developed for drawing the arrow
into a context in Chapter 15, and is not repeated here):

// the gradient
CAGradientLayer* g = [[CAGradientLayer alloc] init];
g.frame = self.bounds;
g.colors = [NSArray arrayWithObjects:
 (id)[[UIColor blackColor] CGColor],
 [[UIColor redColor] CGColor],
 nil];
g.locations = [NSArray arrayWithObjects:
 [NSNumber numberWithFloat: 0.0],
 [NSNumber numberWithFloat: 1.0],
 nil];
[self addSublayer:g];

// the circle
CAShapeLayer* circle = [[CAShapeLayer alloc] init];
circle.lineWidth = 2.0;
circle.fillColor =
[[UIColor colorWithRed:0.9 green:0.95 blue:0.93 alpha:0.9] CGColor];
circle.strokeColor = [[UIColor grayColor] CGColor];
CGMutablePathRef p = CGPathCreateMutable();
CGPathAddEllipseInRect(p, NULL, CGRectInset(self.bounds, 3, 3));

Transforms | 403

circle.path = p;
[self addSublayer:circle];
circle.bounds = self.bounds;
circle.position = CGPointMake(CGRectGetMidX(self.bounds),
 CGRectGetMidY(self.bounds));

// the four cardinal points
NSArray* pts = [NSArray arrayWithObjects: @"N", @"E", @"S", @"W", nil];
for (int i = 0; i < 4; i++) {
 CATextLayer* t = [[CATextLayer alloc] init];
 t.string = [pts objectAtIndex: i];
 t.bounds = CGRectMake(0,0,40,30);
 t.position = CGPointMake(CGRectGetMidX(circle.bounds),
 CGRectGetMidY(circle.bounds));
 CGFloat vert = (CGRectGetMidY(circle.bounds) - 5) / CGRectGetHeight(t.bounds);
 t.anchorPoint = CGPointMake(0.5, vert);
 t.alignmentMode = kCAAlignmentCenter;
 t.foregroundColor = [[UIColor blackColor] CGColor];
 [t setAffineTransform:CGAffineTransformMakeRotation(i*M_PI/2.0)];
 [circle addSublayer:t];
}

// the arrow
CALayer* arrow = [[CALayer alloc] init];
arrow.bounds = CGRectMake(0, 0, 40, 100);
arrow.position = CGPointMake(CGRectGetMidX(self.bounds),
 CGRectGetMidY(self.bounds));
arrow.anchorPoint = CGPointMake(0.5, 0.8);
arrow.delegate = self;
[arrow setAffineTransform:CGAffineTransformMakeRotation(M_PI/5.0)];
[self addSublayer:arrow];
[arrow setNeedsDisplay];

A full-fledged layer transform, the value of the transform property, takes place in three-
dimensional space; its description includes a z-axis, perpendicular to both the x-axis
and y-axis. (By default, the positive z-axis points out of the screen, toward the viewer’s
face.) Layers do not magically give you realistic three-dimensional rendering — for that
you would use OpenGL, which is beyond the scope of this discussion. Layers are two-
dimensional objects, and they are designed for speed and simplicity. Nevertheless, they
do operate in three dimensions, quite sufficiently to give a cartoonish but effective sense
of reality, especially when performing an animation. We’ve all seen the screen image
flip like turning over a piece of paper to reveal what’s on the back; that’s a rotation in
three dimensions.

A three-dimensional transform takes place around a three-dimensional extension of
the anchorPoint, whose z-component is supplied by the anchorPointZ property. Thus,
in the reduced default case where anchorPointZ is 0, the anchorPoint is sufficient, as
we’ve already seen in using CGAffineTransform.

The transform itself is described mathematically by a struct called a CATransform3D.
The Core Animation Function Reference lists the functions for working with these
transforms. They are a lot like the CGAffineTransform functions, except they’ve got a

404 | Chapter 16: Layers

third dimension. For example, here’s the declaration of the function for making a 2D
scale transform:

CGAffineTransform CGAffineTransformMakeScale (
 CGFloat sx,
 CGFloat sy
);

And here’s the declaration of the function for making a 3D scale transform:

CATransform3D CATransform3DMakeScale (
 CGFloat sx,
 CGFloat sy,
 CGFloat sz
);

The rotation 3D transform is a little more complicated. In addition to the angle, you
also have to supply three coordinates describing the vector around which the rotation
takes place. Perhaps you’ve forgotten from your high-school math what a vector is, or
perhaps trying to visualize three dimensions boggles your mind, so think of it this way.

Pretend for purposes of discussion that the anchor point is the origin, {0,0,0}. Now
imagine an arrow emanating from the anchor point; its other end, the pointy end, is
described by the three coordinates you provide. Now imagine a plane that intersects
the anchor point, perpendicular to the arrow. That is the plane in which the rotation
will take place; a positive angle is a clockwise rotation, as seen from the side of the plane
with the arrow (Figure 16-7). In effect, the three points you supply describe, relative to
the anchor point, where your eye would have to be to see this rotation as an old-fash-
ioned two-dimensional rotation.

The three values you give specify a direction, not a point. Thus it makes no difference
on what scale you give them: {1,1,1} means the same thing as {10,10,10}. If the three
values are {0,0,1}, with all other things being equal, the case is collapsed to a simple
CGAffineTransform, because the rotational plane is the screen. On the other hand, if
the three values are {0,0,-1}, it’s a backward CGAffineTransform, so that a positive
angle looks counterclockwise (because we are looking at the “back side” of the rota-
tional plane).

A layer can itself be rotated in such a way that its “back” is showing. For example, the
following rotation flips a layer around its y-axis:

someLayer.transform = CATransform3DMakeRotation(M_PI, 0, 1, 0);

By default, the layer is considered double-sided, so when it is flipped to show its “back,”
what’s drawn is an appropriately reversed version of the content of the layer (along
with its sublayers, which by default are still drawn in front of the layer, but reversed
and positioned in accordance with the layer’s transformed coordinate system). But if
the layer’s doubleSided property is NO, then when it is flipped to show its “back,” the
layer disappears (along with its sublayers); its “back” is transparent and empty.

Transforms | 405

Depth
There are two ways to place layers at different nominal depths with respect to their
siblings. One is through the z-component of their position, which is the zPosition
property. Thus the zPosition, too, has a second purpose that I didn’t tell you about
earlier. The other is to apply a transform that translates the layer’s position in the z-
direction. These two values (the z-component of a layer’s position and the z-component
of its translation transform) are related; in some sense, the zPosition is a shorthand for
a translation transform in the z-direction. (If you provide both a zPosition and a z-
direction translation, you can rapidly confuse yourself.)

In the real world, changing an object’s zPosition would make it appear larger or smaller,
as it is positioned closer or further away; but this, by default, is not the case in the world
of layer drawing. There is no attempt to portray perspective; the layer planes are drawn
at their actual size and flattened onto one another, with no illusion of distance. (This
is called orthographic projection, and is the way blueprints are often drawn to display
an object from one side.)

However, there’s a widely used trick for introducing a quality of perspective into the
way layers are drawn: make them sublayers of a layer whose sublayerTransform prop-
erty maps all points onto a “distant” plane. (This is probably just about the only thing
the sublayerTransform property is ever used for.) Combined with orthographic projec-
tion, the effect is to apply one-point perspective to the drawing, so that things do get
perceptibly smaller in the negative z-direction.

For example, let’s try applying a sort of “page-turn” rotation to our compass: we’ll
anchor it at its right side and then rotate it around the y-axis. For purposes of the
example, the sublayer we’re actually rotating is accessed through a property, rotation-
Layer:

Figure 16-7. An anchor point plus a vector defines a rotation plane

406 | Chapter 16: Layers

self->rotationLayer.anchorPoint = CGPointMake(1,0.5);
self->rotationLayer.position =
 CGPointMake(CGRectGetMaxX(self.bounds), CGRectGetMidY(self.bounds));
self->rotationLayer.transform = CATransform3DMakeRotation(M_PI/4.0, 0, 1, 0);

The results are disappointing (Figure 16-8); the compass looks more squashed than
rotated. Now, however, we’ll also apply the distance-mapping transform. The super-
layer here is self:

CATransform3D transform = CATransform3DIdentity;
transform.m34 = -1.0/1000.0;
self.sublayerTransform = transform;

The results (shown in Figure 16-9) are better, and you can experiment with values to
replace 1000.0; for example, 500.0 gives an even more exaggerated effect. Also, the z-
Position of the rotationLayer will now affect how large it is.

Another way to draw layers with depth is to use CATransformLayer. This CALayer
subclass doesn’t do any drawing of its own; it is intended solely as a host for other

Figure 16-8. A disappointing page-turn rotation

Figure 16-9. A dramatic page-turn rotation

Transforms | 407

layers. It has the remarkable feature that you can apply a transform to it and it will
maintain the depth relationships among its own sublayers. For example:

// lay1 is a layer, f is a CGRect
CALayer* lay2 = [CALayer layer];
lay2.frame = f;
lay2.backgroundColor = [UIColor blueColor].CGColor;
[lay1 addSublayer:lay2];
CALayer* lay3 = [CALayer layer];
lay3.frame = CGRectOffset(f, 20, 30);
lay3.backgroundColor = [UIColor greenColor].CGColor;
lay3.zPosition = 10;
[lay1 addSublayer:lay3];
lay1.transform = CATransform3DMakeRotation(M_PI, 0, 1, 0);

In that code, the superlayer lay1 is flipped like a page being turned by setting its
transform. Normally, as I mentioned earlier, the sublayer drawing order doesn’t
change; the green layer is drawn in front of the blue layer, even after the transform is
applied. But if lay1 is a CATransformLayer, the green layer is drawn behind the blue
layer after the transform; they are both sublayers of lay1, so their depth relationship is
maintained.

Figure 16-10 shows our page-turn rotation yet again, still with the sublayerTransform
applied to self, but this time the only sublayer of self is a CATransformLayer. The
CATransformLayer, to which the page-turn transform is applied, holds the gradient
layer, the circle layer, and the arrow layer. Those three layers are at different depths
(using different zPosition settings), and you can see that the circle layer floats in front
of the gradient layer. (This is clear from its apparent offset, but I wish you could see
this page-turn as an animation, which makes the circle jump right out from the gradient
as the rotation proceeds.) I’ve also tried to emphasize the arrow’s separation from the
circle by adding a shadow.

Figure 16-10. Page-turn rotation applied to a CATransformLayer

408 | Chapter 16: Layers

Even more remarkable, note the little white peg sticking through the arrow and running
into the circle. It is a CAShapeLayer, rotated to be perpendicular to the CATransform-
Layer. Normally, it runs straight out of the circle toward the viewer, so it is seen end-
on, and because a layer has no thickness, it is invisible. But as the CATransformLayer
pivots forward in our page-turn rotation, the peg maintains its orientation relative to
the circle, and comes into view.

There is, I think, a slight additional gain in realism if the same sublayerTransform is
applied also to the CATransformLayer, but I have not done so here.

Shadows, Borders, and More
A CALayer has many additional properties that affect details of how it is drawn. Once
again, all of these drawing details can, of course, be applied equally to a UIView;
changing these properties of the UIView’s underlying layer changes how the view is
drawn. Thus, these are effectively view features as well.

A CALayer can have a shadow, defined by its shadowColor, shadowOpacity, shadow-
Radius, and shadowOffset properties. To make the layer draw a shadow, set the shadow-
Opacity to a nonzero value. The shadow is normally based on the shape of the layer’s
nontransparent region, but deriving this shape can be calculation-intensive (so much
so that in early versions of iOS, layer shadows weren’t implemented). You can vastly
improve performance by defining the shape yourself and assigning this shape as a
CGPath to the shadowPath property.

A CALayer can have a border (borderWidth, borderColor); the borderWidth is drawn
inward from the bounds, potentially covering some of the content unless you com-
pensate.

A CALayer can be bounded by a rounded rectangle, by giving it a cornerRadius greater
than zero. If the layer has a border, the border has rounded corners too. If the layer has
a backgroundColor, that background is clipped to the shape of the rounded rectangle.
If the layer’s masksToBounds is YES, the layer’s content and its sublayers are clipped by
the rounded corners.

Like a UIView, a CALayer has a hidden property that can be set to take it and its sub-
layers out of the visible interface without actually removing it from its superlayer.

A CALayer can have a mask. This is itself a layer, whose content must be provided
somehow. The transparency of the mask’s content in a particular spot becomes (all
other things being equal) the transparency of the layer at that spot. For example, Fig-
ure 16-11 shows our arrow layer, with the gray circle layer behind it, and a mask applied
to the arrow layer. The mask is silly, but it illustrates very well how masks work: it’s
an ellipse, with an opaque fill and a thick, semitransparent stroke. Here’s the code that
generates and applies the mask:

Shadows, Borders, and More | 409

CAShapeLayer* mask = [[CAShapeLayer alloc] init];
mask.frame = arrow.bounds;
CGMutablePathRef p2 = CGPathCreateMutable();
CGPathAddEllipseInRect(p2, NULL, CGRectInset(mask.bounds, 10, 10));
mask.strokeColor = [[UIColor colorWithWhite:0.0 alpha:0.5] CGColor];
mask.lineWidth = 20;
mask.path = p2;
arrow.mask = mask;
CGPathRelease(p2);

To position the mask, pretend it’s a sublayer. The hues in the mask’s colors are irrel-
evant; only transparency matters.

Using a mask, we can do manually and in a more general way what the cornerRadius
and masksToBounds properties do, clipping all our content drawing and our sublayers
(and, if this layer is a view’s underlying layer, the view’s subviews) to a desired path.
Here’s a utility method that generates a CALayer suitable for use as a rounded rectangle
mask:

- (CALayer*) maskOfSize:(CGSize)sz roundingCorners:(CGFloat)rad {
 CGRect r = (CGRect){CGPointZero, sz};
 UIGraphicsBeginImageContextWithOptions(r.size, NO, 0);
 CGContextRef con = UIGraphicsGetCurrentContext();
 CGContextSetFillColorWithColor(con,[UIColor colorWithWhite:0 alpha:0].CGColor);
 CGContextFillRect(con, r);
 CGContextSetFillColorWithColor(con,[UIColor colorWithWhite:0 alpha:1].CGColor);
 UIBezierPath* p = [UIBezierPath bezierPathWithRoundedRect:r cornerRadius:rad];
 [p fill];
 UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 CALayer* mask = [CALayer layer];
 mask.frame = r;
 mask.contents = (id)im.CGImage;
 return mask;
}

By now, you’re probably envisioning all sorts of compositing fun, with layers masking
sublayers and laid semitransparently over other layers. There’s nothing wrong with
that, but when an iOS device is asked to animate the movement of its drawing from
place to place, the animation may stutter because the device lacks the necessary com-
puting power to composite repeatedly and rapidly. This sort of issue is likely to emerge
particularly when your code performs an animation (Chapter 17) or when the user is
able to animate drawing through touch, as when scrolling a table view (Chapter 21).
You may be able to detect these problems by eye, and you can quantify them on a device

Figure 16-11. A layer with a mask

410 | Chapter 16: Layers

by using the Core Animation template in Instruments, which shows the frame rate
achieved during animation. Also, both the Core Animation template and the Simula-
tor’s Debug menu let you summon colored overlays that provide clues as to possible
sources of inefficient drawing which can lead to such problems.

In general, opaque drawing is most efficient. If a layer will always be shown over a
background consisting of a single color, you can give the layer its own background of
that same color; when additional layer content is supplied, the visual effect will be the
same as if that additional layer content were composited over a transparent back-
ground. For example, instead of an image masked to a rounded rectangle (with a layer’s
cornerRadius or mask property), you could use Core Graphics to clip the drawing of
that image into the graphics context of a layer whose background color is the same as
that of the destination in front of which the drawing will be shown. Here’s an example
from a view’s drawRect: in one of my own apps:

// clip to rounded rect
CGRect r = CGRectInset(rect, 1, 1);
[[UIBezierPath bezierPathWithRoundedRect:r cornerRadius:6] addClip];
// draw image
UIImage* im = [UIImage imageNamed: @"linen.jpg"];
// simulate UIViewContentModeScaleAspectFill
// make widths the same, image height will be too tall
CGFloat scale = im.size.width/rect.size.width;
CGFloat y = (im.size.height/scale - rect.size.height) / 2.0;
CGRect r2 = CGRectMake(0,-y,im.size.width/scale, im.size.height/scale);
r2 = CGRectIntegral(r2); // looks a whole lot better if we do this
[im drawInRect:r2];

Another way to gain some efficiency is by “freezing” the entirety of the layer’s drawing
as a bitmap. In effect, you’re drawing everything in the layer to a secondary cache and
using the cache to draw to the screen. To do this, set the layer’s shouldRasterize to YES
and its rasterizationScale to some sensible value (probably [UIScreen main-

Screen].scale). You can always turn rasterization off again by setting should-
Rasterize to NO, so it’s easy to rasterize just before some massive or sluggish rear-
rangement of the screen and then unrasterize afterward. (In addition, you can get some
cool “out of focus” effects by setting the rasterizationScale to around 0.3.)

Layers and Key–Value Coding
All of a layer’s properties are accessible through key–value coding by way of keys with
the same name as the property. Thus, to apply a mask to a layer, instead of saying this:

layer.mask = mask;

we could have said:

[layer setValue: mask forKey: @"mask"];

In addition, CATransform3D and CGAffineTransform values can be expressed
through key–value coding and key paths. For example, instead of writing this earlier:

Layers and Key–Value Coding | 411

self->rotationLayer.transform = CATransform3DMakeRotation(M_PI/4.0, 0, 1, 0);

we could have written this:

[self->rotationLayer setValue:[NSNumber numberWithFloat:M_PI/4.0]
 forKeyPath:@"transform.rotation.y"];

This notation is possible because CATransform3D is key–value coding compliant for
a repertoire of keys and key paths. These are not properties, however; a CATrans-
form3D doesn’t have a rotation property. It doesn’t have any properties, because it
isn’t even an object. You cannot say:

self->rotationLayer.transform.rotation.y = //... No, sorry

The transform key paths you’ll use most often are rotation.x, rotation.y, rotation.z,
rotation (same as rotation.z), scale.x, scale.y, scale.z, translation.x,
translation.y, translation.z, and translation (two-dimensional, a CGSize).

The Quartz Core framework also injects KVC compliance into CGPoint, CGSize, and
CGRect, allowing you to use keys and key paths matching their struct component
names. For a complete list of KVC compliant classes related to CALayer, along with
the keys and key paths they implement, plus rules for how to wrap nonobject values
as objects, see “Core Animation Extensions to Key-Value Coding” in the Core Anima-
tion Programming Guide.

Moreover, you can treat a CALayer as a kind of NSDictionary, and get and set the value
for any key. This is tremendously useful, because it means you can attach arbitrary
information to an individual layer instance and retrieve it later. For example, earlier I
mentioned that to apply manual layout to a layer’s sublayers, you will need a way of
identifying those sublayers. This feature could provide a way of doing that. For exam-
ple:

[myLayer1 setValue:@"Manny" forKey:@"name"];
[myLayer2 setValue:@"Moe" forKey:@"name"];

A layer doesn’t have a name property; the @"name" key is something I’m attaching to
these layers arbitrarily. Now I can identify these layers later by getting the value of their
respective @"name" keys.

Also, CALayer has a defaultValueForKey: class method; to implement it, you’ll need
to subclass and override. In the case of keys whose value you want to provide a default
for, return that value; otherwise, return the value that comes from calling super. Thus,
even if a value for a particular key has never been explicitly provided, it can have a non-
nil value.

The truth is that this feature, though delightful (and I often wish that all classes behaved
like this), is not put there for your convenience and enjoyment. It’s there to serve as the
basis for animation, which is the subject of the next chapter.

412 | Chapter 16: Layers

CHAPTER 17

Animation

Animation is the visible change of an attribute over time. The changing attribute might
be positional, but not necessarily. For example, a view’s background color might
change from red to green, not instantly, but perceptibly fading from one to the other.
Or a view’s opacity might change from opaque to transparent, not instantly, but per-
ceptibly fading away.

Without help, most of us would find animation beyond our reach. There are just too
many complications — complications of calculation, of timing, of screen refresh, of
threading, and many more. Fortunately, help is provided. You don’t perform an ani-
mation yourself; you describe it, you order it, and it is performed for you. You get
animation on demand.

Asking for an animation can be as simple as setting a property value; under some cir-
cumstances, a single line of code will result in animation:

myLayer.backgroundColor = [[UIColor redColor] CGColor]; // animate change to red

And this is no coincidence. Apple wants to facilitate your use of animation. Animation
is crucial to the character of the iOS interface. It isn’t just cool and fun; it clarifies that
something is changing or responding. For example, one of my first apps was based on
a Mac OS X game in which the user clicks cards to select them. In the Mac OS X version,
a card was highlighted to show it was selected, and the computer would beep to indicate
a click on an ineligible card. On iOS, these indications were insufficient: the highlight-
ing felt weak, and you can’t use a sound warning in an environment where the user
might have the volume turned off or be listening to music. So in the iOS version, ani-
mation is the indicator for card selection (a selected card waggles eagerly) and for tap-
ping on an ineligible card (the whole interface shudders, as if to shrug off the tap).

Recall from Chapter 16 that CALayer requires the Quartz Core framework; so do the
other “CA” (Core Animation) classes discussed here, such as CAAnimation. You’ll link
your target to QuartzCore.framework and import <QuartzCore/QuartzCore.h>.

413

As you experiment with animation code, bear in mind that the Simula-
tor’s Debug → Toggle Slow Animations menu item helps you inspect
animations by making them run more slowly.

Drawing, Animation, and Threading
When you change a visible view property, even without animation, that change does
not visibly take place there and then. Rather, the system records that this is a change
you would like to make, and marks the view as needing to be redrawn. You can change
many visible view properties, but these changes are all just accumulated for later. Later,
when all your code has run to completion and the system has, as it were, a free moment,
then it redraws all views that need redrawing, applying their new visible property fea-
tures. I call this the redraw moment. (The documentation calls it “when the [current]
thread’s run-loop next iterates.”)

You can see that this is true simply by changing some visible aspect of a view and
changing it back again, in the same code: on the screen, nothing happens. For example,
suppose a view’s background color is green. Suppose your code changes it to red, and
then later changes it back to green:

// view starts out green
view.backgroundColor = [UIColor redColor];
// ... time-consuming code goes here ...
view.backgroundColor = [UIColor greenColor];
// code ends, redraw moment arrives

The system accumulates all the desired changes until the redraw moment happens, and
the redraw moment doesn’t happen until after your code has finished, so when the
redraw moment does happen, the last accumulated change in the view’s color is to
green — which is its color already. Thus, no matter how much time-consuming code
lies between the change from green to red and the change from red to green, the user
won’t see any color change at all.

(That’s why you don’t order a view to be redrawn; rather, you tell it that it needs re-
drawing — setNeedsDisplay — at the next redraw moment. It’s also why I used delayed
performance in the contentMode example in Chapter 15: by calling performSelector:
withObject:afterDelay:, I give the redraw moment a chance to happen, thus giving the
view some content, before resizing the view. This use of delayed performance to let a
redraw moment happen is quite common, though later in this chapter I’ll suggest an-
other way of accomplishing the same goal.)

Similarly, when you ask for an animation to be performed, the animation doesn’t start
happening on the screen until the next redraw moment. (You can force an animation
to be performed immediately, but this is unusual.)

While the animation lasts, it is effectively in charge of the screen. Imagine that the
animation is a kind of movie, a cartoon, interposed between the user and the “real”

414 | Chapter 17: Animation

screen. When the animation is finished, this movie is removed, revealing the state of
the “real” screen behind it. The user is unaware of this, because (if you’ve done things
correctly) at the time that it starts, the movie’s first frame looks just like the state of the
“real” screen at that moment, and at the time that it ends, the movie’s last frame looks
just like the state of the “real” screen at that moment.

So, when you reposition a view from position 1 to position 2 with animation, you can
envision a typical sequence of events like this:

1. The view is set to position 2, but there has been no redraw moment, so it is still
portrayed at position 1.

2. The rest of your code runs to completion.

3. The redraw moment arrives. If there were no animation, the view would now be
portrayed at position 2. But there is an animation, and it (the “animation movie”)
starts with the view portrayed at position 1, so that is still what the user sees.

4. The animation proceeds, portraying the view at intermediate positions between
position 1 and position 2. The documentation describes the animation as now in-
flight.

5. The animation ends, portraying the view ending up at position 2.

6. The “animation movie” is removed, revealing the view indeed at position 2.

Animation takes place on an independent thread. Multithreading is generally rather
tricky and complicated, but the system makes it easy in this case. Nevertheless, you
can’t completely ignore the threaded nature of animation. Awareness of threading is-
sues, and having a mental picture of how animation is performed, will help you to ask
yourself the right questions and thus to avoid confusion and surprises. For example:

1. The time when an animation starts is somewhat indefinite (because you don’t know
exactly when the next redraw moment will be). The time when an animation ends is
also somewhat indefinite (because the animation happens on another thread, so your
code cannot just wait for it to end). So what if your code needs to do something in
response to an animation beginning or ending?

An animation can have a delegate; there is a delegate message that is sent when an
animation starts, and another when it ends. Thus, you can arrange to receive an
event at these crucial moments. On iOS 4 and later, you can also supply a block
to be run after an animation ends.

2. Since animation happens on its own thread, something might cause code of yours to
start running while an animation is still in-flight. What happens if your code now
changes a property that is currently being animated? What happens if your code asks
for another animation?

If you change a property while it is being animated, it won’t tie the system in knots,
but the end result may look odd, if the value you set differs from the final value in
the animation. If a property is being animated from value 1 to value 2 and mean-

Drawing, Animation, and Threading | 415

while you set it to value 3, then the property may appear very suddenly to take on
value 3 (because, in effect, the animation movie is removed, and its final frame
shown doesn’t agree with the state of things revealed behind it). If that isn’t what
you intend, don’t do that; on the other hand, this can be a useful feature, as it
provides a coherent way of effectively canceling an in-flight animation.

If you ask for an animation when an animation is already scheduled for the next
redraw moment or already in-flight, there might be no problem; both animations
can take place simultaneously. But that’s impossible if both animations attempt to
animate the same property. In that case, the first animation may be forced to end
instantly; that is, the change it represents ceases to be animated and is portrayed
as happening suddenly instead. This is typically not what’s intended. But there are
many alternative approaches. If you want to chain animations, you can wait until
one animation ends (using the delegate message to learn when that is) before or-
dering the next one. Or you can create a single animation combining multiple
changes; these changes needn’t start at the same moment or be the same length.
And a simple call (such as setAnimationBeginsFromCurrentState:) will “blend” the
second animation with the first.

3. While an animation is in-flight, if your code is not running, the interface is responsive
to the user. What happens if the user tries to tap a view whose position is currently
being animated?

The problem is a very real one: the view might not really be where it appears to be
on the screen, so the user might try to tap it and miss, or might tap elsewhere and
accidentally tap it, because where the user tapped is where the view really is. The
usual way of coping is to turn off responsiveness in your app’s interface. (I’ll talk
more in Chapter 18 about how to let the user tap a view while it’s in animated
motion.)

To prevent the interface as a whole from responding while an animation is in-flight,
you can call the UIApplication instance method beginIgnoringInteractionEvents
when the animation starts and call endIgnoringInteractionEvents when the ani-
mation is over (possibly using the delegate messages to learn when those things
happen). If that’s too broad, you can block responsiveness to touches at the level
of individual views; for example, you can turn off a view’s userInteraction-
Enabled until the animation is over. But all of this is up to you; the system has,
generally speaking, no policy of automatically disabling touch responsiveness. (But
there’s one exception: if you use block-based view animation, the system does turn
off user interaction for an animated view, while it is being animated, by default.)

4. In a multitasking world, the user can suspend my app without quitting it. What hap-
pens if an animation is in-flight at that moment?

If your app is suspended (Chapter 11) during animation, the animation is removed.
This simply means that the “animation movie” is cancelled. Any animation,
whether in-flight or scheduled, is simply a slowed-down visualization of a property

416 | Chapter 17: Animation

change; that property is still changed, and indeed was probably changed before the
animation even started. If your app is resumed, therefore, no animations will be
running, and properties that were changed remain changed, and are shown as
changed.

UIImageView and UIImage Animation
UIImageView provides a form of animation that is so simple and crude as to be scarcely
deserving of the name. Nevertheless, sometimes this form of animation is all you need
— a trivial solution to what might otherwise be a tricky problem. Supply the UIImage-
View with an array of UIImages, as the value of its animationImages or highlighted-
AnimationImages property; this causes the image or highlightedImage to be hidden. This
array represents the “frames” of a simple cartoon; when you send the startAnimating
message, the images are displayed in turn, at a frame rate determined by the animation-
Duration property, repeating as many times as specified by the animationRepeatCount
property (the default is 0, meaning to repeat forever, or until the stopAnimating message
is received).

For example, suppose we want an image of Mars to appear out of nowhere and flash
three times on the screen. This might seem to require some sort of NSTimer-based
solution (see Chapter 11), but it’s far simpler to use an animating UIImageView:

UIImage* mars = [UIImage imageNamed: @"mars.png"];
UIGraphicsBeginImageContextWithOptions(mars.size, NO, 0);
UIImage* empty = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
NSArray* arr = [NSArray arrayWithObjects: mars, empty, mars, empty, mars, nil];
UIImageView* iv = [[UIImageView alloc] initWithFrame:CGRectMake(56, 63, 208, 208)];
[self.window.rootViewController.view addSubview: iv];

Presentation Layer
There isn’t really an “animation movie” in front of the screen — though the effect is
much the same. In reality, it is not a layer that draws itself on the screen; it’s a derived
layer called the presentation layer. Thus, when you animate the change of a view’s
position or a layer’s position from position 1 to position 2, its nominal position changes
immediately; meanwhile, the presentation layer’s position remains unchanged until the
redraw moment, and then changes over time, and because that’s what’s actually drawn
on the screen, that’s what the user sees.

A layer’s presentation layer can be accessed through its presentationLayer property
(and the layer itself is the presentation layer’s modelLayer). It is typed as an id, so in
order to work with it as a layer, you will probably want to typecast it to a CALayer*.
Accessing the presentationLayer is not a common thing to do, but it might come in
handy if your code needs to learn the current state of an in-flight animation.

UIImageView and UIImage Animation | 417

iv.animationImages = arr;
iv.animationDuration = 2;
iv.animationRepeatCount = 1;
[iv startAnimating];

You can combine UIImageView animation with other kinds of animation. For example,
you could flash the image of Mars while at the same time sliding the UIImageView
rightward, using view animation as described in the next section.

In addition, starting in iOS 5, UIImage itself supplies a simple form of animation parallel
to what UIImageView provides. An image can itself be an animated image. Just as with
UIImageView, this really means that you’ve multiple images that form a sequence serv-
ing as the “frames” of a simple cartoon. You can designate an image as an animated
image with one of two UIImage class methods:

animatedImageWithImages:duration:

As with UIImageView’s animationImages, you supply an array of UIImages. You
also supply the duration for the whole animation.

animatedImageNamed:duration:

You supply the name of a single image file at the top level of your app bundle, as
with imageNamed: — except that you omit the file extension, and the system does
not look for an image file by this name. Instead, it appends @"0" to the name you
supply (and then, I presume, several different possible file extensions) and looks
for that image file, and makes it the first image in the animation sequence. Then it
appends @"1" to the name you supply and looks for that image file. And so on, until
it fails to find any more image files with any of these constructed names, up through
@"1024". It is fine if image files for some constructed names don’t exist; for example,
animatedImageNamed:@"moi" works even if the only “moi” image files are
moi101.png and moi293.png.

A third method, animatedResizableImageNamed:capInsets:duration: combines an
animated image with a resizable image (Chapter 15).

You do not tell an animated image to start animating, nor are you able to tell it how
long you want the animation to repeat. Rather, an animated image is always animat-
ing, so long as it appears in your interface; to control the animation, add the image to
your interface or remove it from the interface, possibly exchanging it for a similar image
that isn’t animated. Moreover, an animated image can appear in the interface anywhere
a UIImage can appear as a property of some interface object. So, it can appear in a
UIImageView, but it can also appear as the background of a UIButton or a
UINavigationBar, and so forth.

In this example, I construct a sequence of red circles of different sizes, in code, and
build an animated image which I then display in a UIButton to the left of its title:

NSMutableArray* arr = [NSMutableArray array];
float w = 18;
for (int i = 0; i < 6; i++) {
 UIGraphicsBeginImageContextWithOptions(CGSizeMake(w,w), NO, 0);

418 | Chapter 17: Animation

 CGContextRef con = UIGraphicsGetCurrentContext();
 CGContextSetFillColorWithColor(con, [UIColor redColor].CGColor);
 CGContextAddEllipseInRect(con, CGRectMake(0+i,0+i,w-i*2,w-i*2));
 CGContextFillPath(con);
 UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 [arr addObject:im];
}
UIImage* im = [UIImage animatedImageWithImages:arr duration:0.5];
UIButton* b = [UIButton buttonWithType:UIButtonTypeRoundedRect];
[b setTitle:@"Howdy" forState:UIControlStateNormal];
[b setImage:im forState:UIControlStateNormal];
b.center = CGPointMake(100,100);
[b sizeToFit];
[self.window.rootViewController.view addSubview:b];

But please, use your mighty powers for good, not evil. Remember the early days of web
browsers, when people discovered that HTML could flash text and overused this abil-
ity, to horrible effect? I do not want to see any apps that overuse animated images like
that!

View Animation
Animation is ultimately layer animation. However, for a limited range of attributes,
you can animate a UIView directly: these are its alpha, backgroundColor, bounds, center,
frame, and transform. You can also animate a UIView’s change of contents. Despite the
brevity of the list, UIView animation is an excellent way to become acquainted with
animation and to experiment with the various parameters you can use to determine
how an animation behaves; in many cases it will prove quite sufficient.

There are actually two ways to ask for UIView animation: the old way using animation
blocks (before iOS 4.0, and still available), and the new way using Objective-C blocks
(Chapter 3). I’ll describe the old way first; the documentation describes this approach
as “discouraged,” but it is not officially deprecated and it does still work, and it may
offer some advantages over the newer block-based animation.

Animation Blocks
To animate a change to an animatable UIView property the old way, wrap the change
in calls to the UIView class methods beginAnimations:context: and commit-

Animations. The region between these calls is referred to as an animation block, even
though it is not a block in the syntactical Objective-C sense.

So, animating a change to a view’s background color could be as simple as this:

[UIView beginAnimations:nil context:NULL];
v.backgroundColor = [UIColor yellowColor];
[UIView commitAnimations];

View Animation | 419

Any animatable change made within an animation block will be animated, so we can
animate a change both to the view’s color and its position simultaneously:

[UIView beginAnimations:nil context:NULL];
v.backgroundColor = [UIColor yellowColor];
CGPoint p = v.center;
p.y -= 100;
v.center = p;
[UIView commitAnimations];

We can also animate changes to multiple views. For example, suppose we want to make
one view dissolve into another. We start with the second view present in the view
hierarchy, but with an alpha of 0, so that it is invisible. Then we animate the change of
the first view’s alpha to 0 and the second view’s alpha to 1, simultaneously. This might
be a way, for example, to make the text of a label or the title of a button appear to
dissolve while changing.

The two parameters to beginAnimations:context: are an NSString and a pointer-to-
void that are completely up to you; the idea is that an animation can have a delegate
(so that you can be notified when the animation starts and ends), and you can supply
values here that will be passed along in the delegate messages, helping you identify the
animation and so forth.

Modifying an Animation Block
An animation has various characteristics that you can modify, and an animation block
provides a way to make such modifications: within the animation block, you call a
UIView class method whose name begins with setAnimation....

Some of the setAnimation... method calls are oddly picky as to whether
they precede or follow the actual property value changes within the ani-
mation block. If a call seems to be having no effect, try moving it to the
beginning or end of the animation block. I find that in general these calls
work best if they precede the value changes.

Animation blocks can be nested. The result is a single animation, whose description is
not complete until the outermost animation block is terminated with commit-
Animations. Therefore, by using setAnimation... method calls in the different nested
animation blocks, you can give the parts of the animation different characteristics.
Within each animation block, the animation for any property changes will have the
default characteristics unless you change them.

Nested animation blocks are different from successive top-level anima-
tion blocks; successive top-level animation blocks are different anima-
tions, which, as I mentioned earlier, can have undesirable effects, pos-
sibly causing the earlier animation to be cancelled abruptly.

420 | Chapter 17: Animation

Here are the setAnimation... UIView class methods:

setAnimationDuration:

Sets the “speed” of the animation, by dictating (in seconds) how long it takes to
run from start to finish. Obviously, if two views are told to move different distances
in the same time, the one that must move further must move faster.

setAnimationRepeatAutoreverses:

If YES, the animation will run from start to finish (in the given duration time), and
will then run from finish to start (also in the given duration time).

setAnimationRepeatCount:

Sets how many times the animation should be repeated. Unless the animation also
autoreverses, the animation will “jump” from its end to its start to begin the next
repetition. The value is a float, so it is possible to end the repetition at some mid-
point of the animation.

setAnimationCurve:

Describes how the animation changes speed during its course. Your options are:

• UIViewAnimationCurveEaseInOut (the default)

• UIViewAnimationCurveEaseIn

• UIViewAnimationCurveEaseOut

• UIViewAnimationCurveLinear

The term “ease” means that there is a gradual acceleration or deceleration between
the animation’s central speed and the zero speed at its start or end.

setAnimationStartDate:, setAnimationDelay:
These are both ways of postponing the start of the animation; in my experience,
the former is and always has been broken, so you should use setAnimationDelay:
exclusively.

setAnimationDelegate:

Arranges for your code to be notified as the animation starts or ends; the methods
to be called on the delegate are specified as follows:

setAnimationWillStartSelector:

The "start" method must take two parameters; these are the values passed into
beginAnimations:context:, namely an identifying NSString and a pointer-to-
void. This method is not called unless something within the animation block
triggers an actual animation.

setAnimationDidStopSelector:

The "stop" method must take three parameters: the second parameter is a
BOOL wrapped as an NSNumber, indicating whether the animation comple-
ted successfully, and the other two are like the “start” method parameters.
This method is called, with the second parameter representing YES, even if
nothing within the animation block triggers any animations.

View Animation | 421

setAnimationsEnabled:

Call this with a NO argument to perform subsequent animatable property changes
within the animation block without making them part of the animation.

setAnimationBeginsFromCurrentState:

If YES, and if this animation animates a property already being animated by an
animation that is previously ordered or in-flight, then instead of canceling the pre-
vious animation (completing the requested change instantly), this animation will
use the presentation layer to decide where to start, and will “blend” its animation
with the previous animation if possible.

If an animation autoreverses, and if, when the animation ends, the view’s actual prop-
erty is still at the finish value, the view will appear to “jump” from start to finish as the
“animation movie” is removed. So, for example, suppose we want a view to animate
its position to the right and then back to its original position. This code causes the view
to animate right, animate left, and then (unfortunately) jump right:

[UIView beginAnimations:nil context:NULL];
[UIView setAnimationRepeatAutoreverses:YES];
CGPoint p = v.center;
p.x += 100;
v.center = p;
[UIView commitAnimations];

How can we prevent this? We want the view to stay at the start value after the animation
reverses and ends. If we try to eliminate the jump at the end by setting the view’s position
back to its starting point after the animation block, there is no animation at all (because
when the redraw moment arrives, there is no property change):

[UIView beginAnimations:nil context:NULL];
[UIView setAnimationRepeatAutoreverses:YES];
CGPoint p = v.center;
p.x += 100;
v.center = p;
[UIView commitAnimations];
p = v.center;
p.x -= 100;
v.center = p;

The coherent solution is to use the “stop” delegate method to set the view’s position
back to its starting point when the animation ends:

[UIView beginAnimations:nil context:NULL];
[UIView setAnimationRepeatAutoreverses:YES];
[UIView setAnimationDelegate:self];
[UIView setAnimationDidStopSelector:@selector(stopped:fin:context:)];
CGPoint p = v.center;
p.x += 100;
v.center = p;
[UIView commitAnimations];
// ...
- (void) stopped:(NSString *)anim fin:(NSNumber*)fin context:(void *)context {

422 | Chapter 17: Animation

 CGPoint p = v.center;
 p.x -= 100;
 v.center = p;
}

In that example, we happened to know how the animation had changed the view’s
position, so we could hard-code the instructions for reversing the change. To be more
general, we could take advantage of our ability to pass information into the animation
block and retrieve this same information in the delegate method. Or, we could store
the view’s original position in its layer (recall that a CALayer is a dictionary-like con-
tainer):

[UIView beginAnimations:nil context:NULL];
[UIView setAnimationRepeatAutoreverses:YES];
[UIView setAnimationDelegate:self];
[UIView setAnimationDidStopSelector:@selector(stopped:fin:context:)];
CGPoint p = v.center;
[v.layer setValue:[NSValue valueWithCGPoint:p] forKey:@"origCenter"];
p.x += 100;
v.center = p;
[UIView commitAnimations];
// ...
- (void) stopped:(NSString *)anim fin:(NSNumber*)fin context:(void *)context {
 v.center = [[v.layer valueForKey:@"origCenter"] CGPointValue];
}

To illustrate setAnimationBeginsFromCurrentState:, consider the following:

[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:1];
CGPoint p = v.center;
p.x += 100;
v.center = p;
[UIView commitAnimations];

[UIView beginAnimations:nil context:NULL];
// uncomment the next line to fix the problem
//[UIView setAnimationBeginsFromCurrentState:YES];
[UIView setAnimationDuration:1];
CGPoint p2 = v.center;
p2.x = 0;
v.center = p2;
[UIView commitAnimations];

The result is that the view jumps 100 points rightward, and then animates leftward.
That’s because the second animation caused the first animation to be thrown away;
the move 100 points rightward was performed instantly, instead of being animated.
But if we uncomment the call to setAnimationBeginsFromCurrentState:, the result is
that the view animates leftward from its current position, with no jump.

Even more interesting is what happens when we change x to y in the second animation.
If we uncomment the call to setAnimationBeginsFromCurrentState:, both the
x-component and the y-component of the view’s position are animated together, as if
we had ordered one animation instead of two.

View Animation | 423

Transition Animations
A transition is a sort of animated redrawing of a view. The usual reason for a transition
animation is that you are making some change in the view’s appearance, and you want
to emphasize this by animating the view. To order a transition animation using an
animation block, call setAnimationTransition:forView:cache:.

• The first parameter describes how the animation should behave; your choices are:

— UIViewAnimationTransitionFlipFromLeft

— UIViewAnimationTransitionFlipFromRight

— UIViewAnimationTransitionCurlUp

— UIViewAnimationTransitionCurlDown

• The second parameter is the view.

• The third parameter is whether to cache the view’s contents right now, effectively
taking a “snapshot” of those contents at the moment and as they will be after the
contents change, and using these snapshots throughout the transition. The alter-
native is to redraw the contents repeatedly throughout the transition. You’ll want
to say YES wherever possible.

Here’s a simple example that flips a UIImageView while changing its image. The result
is that the UIImageView appears to flip over, like a piece of paper being rotated to show
its reverse side — a piece of paper with Mars on its front and Saturn on its back:

[UIView beginAnimations:nil context:NULL];
[UIView setAnimationTransition:UIViewAnimationTransitionFlipFromLeft
 forView:iv cache:YES];
// iv is a UIImageView whose image is Mars.png
iv.image = [UIImage imageNamed:@"Saturn.gif"];
[UIView commitAnimations];

The example is a little misleading, because the change in the image does not necessarily
have to be inside the animation block. The animation described by setAnimation-
Transition:... will be performed in any case. The change of image will be performed
in any case as well. They will both happen at the redraw moment, so they are performed
together. Thus, we could have written the same example this way:

iv.image = [UIImage imageNamed:@"Saturn.gif"];
[UIView beginAnimations:nil context:NULL];
[UIView setAnimationTransition:UIViewAnimationTransitionFlipFromLeft
 forView:iv cache:YES];
[UIView commitAnimations];

Nevertheless, it is customary to order the changes in the view from inside the animation
block, and I’ll continue to do so in subsequent examples.

You can do the same sort of thing with any built-in view subclass. Here’s a button that
seems to be labeled “Start” on one side and “Stop” on the other:

424 | Chapter 17: Animation

[UIView beginAnimations:nil context:NULL];
// "b" is a UIButton; "stopped" is presumably a BOOL variable or ivar
[UIView setAnimationTransition:UIViewAnimationTransitionFlipFromLeft
 forView:b cache:YES];
[b setTitle:(stopped ? @"Start" : @"Stop") forState:UIControlStateNormal];
[UIView commitAnimations];

To do the same thing with a custom UIView subclass that knows how to draw itself in
its drawRect:, call setNeedsDisplay to cause a redraw. For example, imagine a UIView
subclass with a reverse BOOL property, which draws an ellipse if reverse is YES and
a square if reverse is NO. Then we can animate the square flipping over and becoming
an ellipse (or vice versa):

v.reverse = !v.reverse;
[UIView beginAnimations:nil context:NULL];
[UIView setAnimationTransition:UIViewAnimationTransitionFlipFromLeft
 forView:v cache:YES];
[v setNeedsDisplay];
[UIView commitAnimations];

Of course you can also animate a view while doing such things to it as removing or
adding a subview.

Block-Based View Animation
A UIView can also be animated using a syntax involving Objective-C blocks. This is
intended to replace the old animation block syntax I’ve just been describing. In the new
syntax:

• The behavior to be animated is a block.

• The code to be run when the animation ends is also a block. Thus, there is no need
for the two-part structure involving an animation block and a separate delegate
method.

• Options describing the animation are part of the original animation method call,
not separate calls as with an animation block.

• Transition animations have more options than with animation blocks.

• User touch interactions with an animated view are disabled, by default. This is not
the case with an animation block (or with layer-based animation, described later
in this chapter). The option UIViewAnimationOptionAllowUserInteraction permits
user touch interaction with the animated view.

Under iOS 4, the rule was more comprehensive: all user touch interac-
tions were disabled during a block-based view animation, unless you
used UIViewAnimationOptionAllowUserInteraction. This is a major dif-
ference in behavior between iOS 4 and iOS 5.

View Animation | 425

The basis of the new syntax is the UIView class method animateWithDuration:delay:
options:animations:completion:. There are also two reduced calls, the first letting you
omit the delay and options parameters and the second letting you also omit the
completion parameter. The parameters of the full form are:

duration

The duration of the animation.

delay

The delay before the animation starts. The default, in the reduced forms, is no
delay.

options

A bitmask stating additional options. The default, in the reduced forms, is UIView-
AnimationOptionCurveEaseInOut (which is also the default animation curve for ani-
mation blocks). For an ordinary animation (not a transition), the chief options are:

Animation curve
Your choices are:

• UIViewAnimationOptionCurveEaseInOut

• UIViewAnimationOptionCurveEaseIn

• UIViewAnimationOptionCurveEaseOut

• UIViewAnimationOptionCurveLinear

Repetition and autoreverse
Your options are:

• UIViewAnimationOptionRepeat

• UIViewAnimationOptionAutoreverse

There is no way to specify a certain number of repetitions; you either repeat
forever or not at all. This feels like an oversight (a serious oversight); I’ll suggest
a workaround in a moment. The documentation’s claim that you can autore-
verse only if you also repeat is incorrect.

animations

The block containing view property changes to be animated.

completion

The block to run when the animation ends. It takes one BOOL parameter indicat-
ing whether the animation ran to completion. (There is no way to specify a noti-
fication when the animation starts, but this should not be needed, as the animation
code is itself a block.) It’s fine for this block to order a further animation. The block
is called, with a parameter indicating YES, even if nothing in the animations block
triggers any animations.

Here’s an example, recasting an earlier example to use Objective-C blocks instead of
animation blocks. We move a view rightward and reverse it back into place. With

426 | Chapter 17: Animation

animation blocks, we used a delegate so that we could set the view back to its original
position, and we stored that position in the layer so as to be able to retrieve it in the
delegate method. With blocks, however, the original position can live in a variable that
remains in scope, so things are much simpler (to increase readability, I’ve expressed
the blocks and the options as named variables):

CGPoint p = v.center;
CGPoint pOrig = p;
p.x += 100;
void (^anim) (void) = ^{
 v.center = p;
};
void (^after) (BOOL) = ^(BOOL f) {
 v.center = pOrig;
};
NSUInteger opts = UIViewAnimationOptionAutoreverse;
[UIView animateWithDuration:1 delay:0 options:opts
 animations:anim completion:after];

Working around the inability to specify a finite number of repetitions is not easy. Here’s
one approach using recursion:

- (void) animate: (int) count {
 CGPoint p = v.center;
 CGPoint pOrig = p;
 p.x += 100;
 void (^anim) (void) = ^{
 v.center = p;
 };
 void (^after) (BOOL) = ^(BOOL f) {
 v.center = pOrig;
 if (count)
 [self animate: count-1];
 };
 NSUInteger opts = UIViewAnimationOptionAutoreverse;
 [UIView animateWithDuration:1 delay:0 options:opts
 animations:anim completion:after];
}

If we call the animate method with an argument of 2, our animation takes place three
times and stops. There is always a danger, with recursion, of filling up the stack and
running out of memory, but I think we’re safe if we start with a small count value.

In addition to the options I’ve already listed, there are some options saying what should
happen if an animation is already ordered or in-flight.

UIViewAnimationOptionBeginFromCurrentState

Similar to setAnimationBeginsFromCurrentState:.

UIViewAnimationOptionOverrideInheritedDuration

Prevents inheriting duration from an already ordered or in-flight animation (the
default is to inherit it).

View Animation | 427

UIViewAnimationOptionOverrideInheritedCurve

Prevents inheriting the animation curve from an already ordered or in-flight ani-
mation (the default is to inherit it).

A widely used technique for canceling a repeating animation is to start another anima-
tion of the same property of the same view. (Reread the first section of this chapter if
you don’t understand why that would work.) This example builds on our previous
examples; we have an autoreversing animation of our view’s center that repeats, nom-
inally infinitely. To stop it, we animate the same center property of the same view back
to its original position. This is a great opportunity to use UIViewAnimationOptionBegin-
FromCurrentState; without it, the animation ends abruptly. Two different methods
need access to the view’s original center, so I’ve put it in a static global:

static CGPoint pOrig;

- (void) animate {
 CGPoint p = v.center;
 pOrig = p;
 p.x += 100;
 void (^anim) (void) = ^{
 v.center = p;
 };
 void (^after) (BOOL) = ^(BOOL f) {
 v.center = pOrig;
 };
 NSUInteger opts = UIViewAnimationOptionAutoreverse |
 UIViewAnimationOptionRepeat;
 [UIView animateWithDuration:1 delay:0 options:opts
 animations:anim completion:after];
}

- (void) cancelAnimation {
 void (^anim) (void) = ^{
 v.center = pOrig;
 };
 NSUInteger opts = UIViewAnimationOptionBeginFromCurrentState;
 [UIView animateWithDuration:0.2 delay:0 options:opts
 animations:anim completion:nil];
}

There is also a layout option, UIViewAnimationOptionLayoutSubviews. This is useful if
the view that you are about to animate does its layout manually through an override of
layoutSubviews (Chapter 14). In that case, if you supply this option, layoutSubviews is
called while we are still within the animation block; the changes ordered by your layout-
Subviews implementation will thus be part of the animation. If you don’t supply this
option, the changes ordered by your layoutSubviews implementation will appear as a
sudden jump as the animation begins.

Transitions are ordered using one of two methods. The one that’s parallel to set-
AnimationTransition..., described earlier in connection with animation blocks, is
transitionWithView:duration:options:animations:completion:. The transition ani-

428 | Chapter 17: Animation

mation types are expressed as part of the options bitmask; the last three are new in iOS
5, and have no parallel in the older animation block syntax:

• UIViewAnimationOptionTransitionFlipFromLeft

• UIViewAnimationOptionTransitionFlipFromRight

• UIViewAnimationOptionTransitionCurlUp

• UIViewAnimationOptionTransitionCurlDown

• UIViewAnimationOptionTransitionCrossDissolve

• UIViewAnimationOptionTransitionFlipFromBottom

• UIViewAnimationOptionTransitionFlipFromTop

Here’s a recasting, using transitionWithView..., of the earlier example where we flip
a rectangle into an ellipse by means of a custom UIView subclass whose drawRect:
behavior depends on its reverse property:

v.reverse = !v.reverse;
void (^anim) (void) = ^{
 [v setNeedsDisplay];
};
NSUInteger opts = UIViewAnimationOptionTransitionFlipFromLeft;
[UIView transitionWithView:v duration:1 options:opts
 animations:anim completion:nil];

During a transition, by default, a snapshot of the view’s final appearance is used; this
is parallel to what happens when you supply YES as the cache: argument to set-
AnimationTransition:forView:cache:. If that isn’t what you want, use UIViewAnimation-
OptionAllowAnimatedContent in the options bitmask. For example, suppose v is the view
to be animated using a transition, and v2 is a subview of v that currently occupies part
of its width. In this block, to be used as the animation during the transition, we increase
the width of v2 to occupy the entire width of v:

void (^anim) (void) = ^{
 CGRect f = v2.frame;
 f.size.width = v.frame.size.width;
 f.origin.x = 0;
 v2.frame = f;
};

Without UIViewAnimationOptionAllowAnimatedContent, that change in the frame of v2
takes place in a jump after the transition is over. With UIViewAnimationOptionAllow-
AnimatedContent, it is seen to happen smoothly as part of the transition animation.

The second transition method is transitionFromView:toView:duration:options:

completion:. It names two views; the first is replaced by the second, while their super-
view undergoes the transition animation. This has no parallel in the older animation
block syntax. There are actually two possible configurations, depending on the options
you provide:

View Animation | 429

Remove one subview, add the other
If UIViewAnimationOptionShowHideTransitionViews is not one of the options, then
the second subview is not in the view hierarchy when we start; the first subview is
removed from its superview and the second subview is added to that same super-
view.

Hide one subview, show the other
If UIViewAnimationOptionShowHideTransitionViews is one of the options, then both
subviews are in the view hierarchy when we start; the hidden of the first is NO, the
hidden of the second is YES, and these values are reversed.

So, for example, this code causes the superview of v1 to rotate like a piece of paper
being turned over, while at the same v1 is removed from it and v2 is added to it:

NSUInteger opts = UIViewAnimationOptionTransitionFlipFromLeft;
[UIView transitionFromView:v1 toView:v2 duration:1 options:opts completion:nil];

It’s up to you to make sure beforehand that v2 has the desired position, so that it will
appear in the right place in its superview.

Implicit Layer Animation
If a layer is not a view’s underlying layer, animating it can be as simple as setting a
property. A change in what the documentation calls an animatable property is auto-
matically interpreted as a request to animate that change. In other words, animation
of layer property changes is the default! Multiple property changes are considered part
of the same animation. This mechanism is called implicit animation.

You cannot use implicit animation on the underlying layer of a UIView.
You can animate a UIView’s underlying layer directly, but you must use
explicit layer animation (discussed later in this chapter).

For example, in Chapter 16 we constructed a compass out of layers. The compass itself
is a CompassView that does no drawing of its own; its underlying layer is a Compass-
Layer that also does no drawing, serving only as a superlayer for the layers that con-
stitute the drawing. None of the layers that constitute the actual drawing is the under-
lying layer of a view, so a property change to any of them is animated automatically.

So, presume that we have a reference to the arrow layer, a property arrow of the
CompassLayer, and also a reference to the CompassView, a property compass of the
app delegate, which is self. If we rotate the arrow by changing its transform property,
that rotation is animated:

CompassLayer* c = (CompassLayer*)self.compass.layer;
// the next line is an implicit animation
c.arrow.transform = CATransform3DRotate(c.arrow.transform, M_PI/4.0, 0, 0, 1);

430 | Chapter 17: Animation

CALayer properties listed in the documentation as animatable in this way are anchor-
Point and anchorPointZ, backgroundColor, borderColor, borderWidth, bounds, contents,
contentsCenter, contentsRect, cornerRadius, doubleSided, hidden, masksToBounds,
opacity, position and zPosition, rasterizationScale and shouldRasterize, shadow-
Color, shadowOffset, shadowOpacity, shadowRadius, and sublayerTransform and
transform. In addition, a CAShapeLayer’s path, fillColor, strokeColor, lineWidth, line-
DashPhase, and miterLimit are animatable; so are a CATextLayer’s fontSize and
foregroundColor. (See Chapter 16 for discussion of what all those properties do.)

Basically, a property is animatable because there’s some sensible way to interpolate the
intermediate values between one value and another. The nature of the animation at-
tached to each property is therefore just what you would intuitively expect. When you
change a layer’s hidden property, it fades out of view (or into view). When you change
a layer’s contents, the old contents are dissolved into the new contents. And so forth.

Observe that I didn’t say frame was an animatable property. That’s be-
cause it isn’t an animatable property! A CALayer’s frame is a purely
derived value. To animate the changing of a layer’s frame, you’ll change
other properties such as its bounds and position. Trying to animate a
layer’s frame is a common beginner error.

Animation Transactions
Implicit animation operates with respect to a transaction (a CATransaction), which
groups animation requests into a single animation. Every animation request takes place
in the context of a transaction. You can make this explicit by wrapping your animation
requests in calls to the CATransaction class methods begin and commit; the result is a
transaction block. But additionally there is already an implicit transaction surrounding
all your code, and you can operate on this implicit transaction without any begin and
commit.

To modify the characteristics of an implicit animation, you modify its transaction.
Typically, you’ll use these CATransaction class methods:

setAnimationDuration:

The duration of the animation.

setAnimationTimingFunction:

A CAMediaTimingFunction; timing functions are discussed in the next section.

setCompletionBlock:

A block to be called when the animation ends. The block takes no parameters. The
block is called even if no animation is triggered during this transaction.

By nesting transaction blocks, you can apply different animation characteristics to dif-
ferent elements of an animation. But you can also use transaction commands outside
of any transaction block to modify the implicit transaction.

Implicit Layer Animation | 431

So, in our previous example, we could slow down the animation of the arrow like this:

CompassLayer* c = (CompassLayer*)self.compass.layer;
[CATransaction setAnimationDuration:0.8];
c.arrow.transform = CATransform3DRotate(c.arrow.transform, M_PI/4.0, 0, 0, 1);

Another useful feature of animation transactions is to turn implicit animation off. It’s
important to be able to do this, because implicit animation is the default, and can be
unwanted (and a performance drag). To do so, call the CATransaction class method
setDisableActions: with argument YES. There are other ways to turn off implicit ani-
mation (discussed later in this chapter), but this is the simplest.

Observe that, since setCompletionBlock: is called even if there is no animation, it con-
stitutes a way of saying what to do after the next redraw moment. Previously (Chap-
ter 15) I did that using delayed performance:

[self performSelector:@selector(resize:) withObject:nil afterDelay:0.1];

A completion block on the implicit transaction might be a better way:

[CATransaction setCompletionBlock:^{[self resize:nil];}];

CATransaction implements KVC to allow you set and retrieve a value for an arbitrary
key, similar to CALayer. An example appears later in this chapter.

An explicit transaction block that orders an animation to a layer, if the
block is not preceded by any other changes to the layer, can cause ani-
mation to begin immediately when the CATransaction class method
commit is called, without waiting for the redraw moment, while your
code continues running. In my experience, this can cause confusion (for
example, animation delegate messages cannot arrive, and the presenta-
tion layer can’t be queried properly) and should be avoided.

Media Timing Functions
The CATransaction class method setAnimationTimingFunction: takes as its parameter
a media timing function (CAMediaTimingFunction). This class is the general expres-
sion of the animation curves we have already met (ease-in-out, ease-in, ease-out, and
linear); in fact, you are most likely to use it with those very same predefined curves, by
calling the CAMediaTimingFunction class method functionWithName: with one of these
parameters:

• kCAMediaTimingFunctionLinear

• kCAMediaTimingFunctionEaseIn

• kCAMediaTimingFunctionEaseOut

• kCAMediaTimingFunctionEaseInEaseOut

• kCAMediaTimingFunctionDefault

432 | Chapter 17: Animation

In reality, a media timing function is a Bézier curve defined by two points. The curve
graphs the fraction of the animation’s time that has elapsed (the x-axis) against the
fraction of the animation’s change that has occurred (the y-axis); its endpoints are
therefore at {0,0} and {1,1}, because at the beginning of the animation there has been
no elapsed time and no change, and at the end of the animation all the time has elapsed
and all the change has occurred.

The curve’s defining points are its endpoints, and each endpoint needs only one Bézier
control point to define the tangent to the curve. And because the curve’s endpoints are
known, defining the two control points is sufficient to describe the entire curve. And
because a point is a pair of floating point values, a media timing function can be ex-
pressed as four floating-point values. That is, in fact, how it is expressed.

So, for example, the ease-in-out timing function is expressed as the four values 0.42,
0.0, 0.58, 1.0. That defines a Bézier curve with one endpoint at {0,0}, whose control
point is {0.42,0}, and the other endpoint at {1,1}, whose control point is {0.58,1}
(Figure 17-1).

If you want to define your own media timing function, you can supply the coordinates
of the two control points by calling functionWithControlPoints:::: or initWithControl-
Points::::; this is one of those rare cases, mentioned in Chapter 3, where the param-
eters of an Objective-C method have no name. (It helps to design the curve in a standard
drawing program first so that you can visualize how the placement of the control points
shapes the curve.) For example, here’s a media timing function that starts out quite
slowly and then whips quickly into place after about two-thirds of the time has elapsed.
I call this the “clunk” timing function, and it looks great with the compass arrow:

CAMediaTimingFunction* clunk =
 [CAMediaTimingFunction functionWithControlPoints:.9 :.1 :.7 :.9];
[CATransaction setAnimationTimingFunction: clunk];
c.arrow.transform = CATransform3DRotate(c.arrow.transform, M_PI/4.0, 0, 0, 1);

Figure 17-1. An ease-in-out Bézier curve

Implicit Layer Animation | 433

Core Animation
Core Animation is the fundamental underlying iOS animation technology. View ani-
mation and implicit layer animation are merely convenient façades for Core Animation.
Core Animation is explicit layer animation, and revolves primarily around the CAAni-
mation class and its subclasses, which allow you to create far more elaborate specifi-
cations of an animation than anything we’ve encountered so far.

You may never program at the level of Core Animation, but you should read this section
anyway, if only to learn how animation really works and to get a sense of the mighty
powers you would acquire if you did elect to use Core Animation directly. In particular,
Core Animation:

• Works even on a view’s underlying layer. Thus, Core Animation is the only way to
apply full-on layer property animation to a view.

• Provides fine control over the intermediate values and timing of an animation.

• Allows animations to be grouped into complex combinations.

• Adds transition animation effects that aren’t available otherwise, such as new con-
tent “pushing” the previous content out of a layer.

CABasicAnimation and Its Inheritance
The simplest way to animate a property with Core Animation is with a CABasic-
Animation object. CABasicAnimation derives much of its power through its inheri-
tance, so I’m going to describe that inheritance as well as CABasicAnimation itself. You
will readily see that all the property animation features we have met so far are embodied
in a CABasicAnimation instance.

CAAnimation
CAAnimation is an abstract class, meaning that you’ll only ever use a subclass of
it. Some of CAAnimation’s powers come from its implementation of the CAMedia-
Timing protocol.

animation

A class method, a convenient way of creating an animation object.

delegate

The delegate messages are animationDidStart: and animationDidStop:

finished:, which should sound familiar from the analogous UIView animation
delegate messages. A CAAnimation instance retains its delegate; this is very
unusual behavior and can cause trouble if you’re not conscious of it (I’m
speaking from experience).

Alternatively, don’t set a delegate; use the CATransaction class method set-
CompletionBlock: instead, to run code after the animation ends. Besides avoid-
ing the delegate retention problem, the code structure may be clearer.

434 | Chapter 17: Animation

duration, timingFunction
The length of the animation, and its timing function (a CAMediaTiming-
Function). A duration of 0 (the default) means .25 seconds unless overridden
by the transaction.

autoreverses, repeatCount, repeatDuration, cumulative
The first two are familiar from UIView animation. The repeatDuration prop-
erty is a different way to govern repetition, specifying how long the repetition
should continue rather than how many repetitions should occur; don’t specify
both a repeatCount and a repeatDuration. If cumulative is YES, a repeating
animation starts each repetition where the previous repetition ended (rather
than jumping back to the start value).

beginTime

The delay before the animation starts. To delay an animation with respect to
now, call CACurrentMediaTime and add the desired delay in seconds. The delay
does not eat into the animation’s duration.

timeOffset

A shift in the animation’s overall timing; looked at another way, specifies the
starting frame of the “animation movie,” which is treated as a loop. For ex-
ample, an animation with a duration of 8 and a time offset of 4 plays its second
half followed by its first half.

CAAnimation, along with all its subclasses, implements KVC to allow you set and
retrieve a value for an arbitrary key, similar to CALayer (Chapter 16) and CATran-
saction.

CAPropertyAnimation
CAPropertyAnimation is a subclass of CAAnimation. It too is abstract, and adds
the following:

keyPath

The all-important string specifying the CALayer key that is to be animated.
Recall from Chapter 16 that CALayer properties are accessible through KVC
keys; now we are using those keys! A CAPropertyAnimation convenience class
method animationWithKeyPath: creates the instance and assigns it a keyPath.

additive

If YES, the values supplied by the animation are added to the current presen-
tation layer value.

valueFunction

Converts a simple scalar value that you supply into a transform.

There is no animatable CALayer key called @"frame" (because frame is
not an animatable property).

Core Animation | 435

CABasicAnimation
CABasicAnimation is a subclass (not abstract!) of CAPropertyAnimation. It adds
the following:

fromValue, toValue
The starting and ending values for the animation. These values must be objects,
so numbers and structs will have to be wrapped accordingly, using NSNumber
and NSValue. If neither fromValue nor toValue is provided, the former and
current values of the property are used. If just one of fromValue or toValue is
provided, the other uses the current value of the property.

byValue

Expresses one of the endpoint values as a difference from the other rather than
in absolute terms. So you would supply a byValue instead of a fromValue or
instead of a toValue, and the actual fromValue or toValue would be calculated
for you by subtraction or addition with respect to the other value. If you supply
only a byValue, the fromValue is the property’s current value.

Using a CABasicAnimation
Having constructed and configured a CABasicAnimation, the way you order it to be
performed is to add it to a layer. This is done with the CALayer instance method add-
Animation:forKey:. (I’ll discuss the purpose of the forKey: parameter later; it’s fine to
ignore it and use nil, as I do in the examples that follow.)

However, there’s a slight twist. A CAAnimation is merely an animation; all it does is
describe the hoops that the presentation layer is to jump through, the “animation
movie” that is to be presented. It has no effect on the layer itself. Thus, if you naively
create a CABasicAnimation and add it to a layer with addAnimation:forKey:, the ani-
mation happens and then the “animation movie” is whipped away to reveal the layer
sitting there in exactly the same state as before. It is up to you to change the layer to
match what the animation will ultimately portray.

This requirement may seem odd, but keep in mind that we are now in a much more
fundamental, flexible world than the automatic, convenient worlds of view animation
and implicit layer animation. Using explicit animation is more work, but you get more
power. The converse, as we shall see, is that you don’t have to change the layer if it
doesn’t change as a result of the animation.

To assure good results, we’ll start by taking a plodding, formulaic approach to the use
of CABasicAnimation, like this:

1. Capture the start and end values for the layer property you’re going to change,
because you’re likely to need these values in what follows.

2. Change the layer property to its end value, first calling setDisableActions: to pre-
vent implicit animation.

436 | Chapter 17: Animation

3. Construct the explicit animation, using the start and end values you captured ear-
lier, and with its keyPath corresponding to the layer property you just changed.

4. Add the explicit animation to the layer.

Here’s how you’d use this approach to animate our compass arrow rotation:

CompassLayer* c = (CompassLayer*)self.compass.layer;
// capture the start and end values
CATransform3D startValue = c.arrow.transform;
CATransform3D endValue = CATransform3DRotate(startValue, M_PI/4.0, 0, 0, 1);
// change the layer, without implicit animation
[CATransaction setDisableActions:YES];
c.arrow.transform = endValue;
// construct the explicit animation
CABasicAnimation* anim = [CABasicAnimation animationWithKeyPath:@"transform"];
anim.duration = 0.8;
CAMediaTimingFunction* clunk =
 [CAMediaTimingFunction functionWithControlPoints:.9 :.1 :.7 :.9];
anim.timingFunction = clunk;
anim.fromValue = [NSValue valueWithCATransform3D:startValue];
anim.toValue = [NSValue valueWithCATransform3D:endValue];
// ask for the explicit animation
[c.arrow addAnimation:anim forKey:nil];

Once you know the full form, you will find that in many cases it can be condensed. For
example, when fromValue and toValue are not set, the former and current values of the
property are used automatically. (This magic is possible because the presentation layer
still has the former value of the property, while the layer itself has the new value.) Thus,
in this case there was no need to set them, and so there was no need to capture the start
and end values beforehand either. Here’s the condensed version:

CompassLayer* c = (CompassLayer*)self.compass.layer;
[CATransaction setDisableActions:YES];
c.arrow.transform = CATransform3DRotate(c.arrow.transform, M_PI/4.0, 0, 0, 1);
CABasicAnimation* anim = [CABasicAnimation animationWithKeyPath:@"transform"];
anim.duration = 0.8;
CAMediaTimingFunction* clunk =
 [CAMediaTimingFunction functionWithControlPoints:.9 :.1 :.7 :.9];
anim.timingFunction = clunk;
[c.arrow addAnimation:anim forKey:nil];

As I mentioned earlier, you will omit changing the layer if it doesn’t change as a result
of the animation. For example, let’s make the compass arrow appear to vibrate rapidly,
without ultimately changing its current orientation. To do this, we’ll waggle it back
and forth, using a repeated animation, between slightly clockwise from its current po-
sition and slightly counterclockwise from its current position. The “animation movie”
neither starts nor stops at the current position of the arrow, but for this animation it
doesn’t matter, because it all happens so quickly as to appear perfectly natural:

CompassLayer* c = (CompassLayer*)self.compass.layer;
// capture the start and end values
CATransform3D nowValue = c.arrow.transform;
CATransform3D startValue = CATransform3DRotate(nowValue, M_PI/40.0, 0, 0, 1);

Core Animation | 437

CATransform3D endValue = CATransform3DRotate(nowValue, -M_PI/40.0, 0, 0, 1);
// construct the explicit animation
CABasicAnimation* anim = [CABasicAnimation animationWithKeyPath:@"transform"];
anim.duration = 0.05;
anim.timingFunction =
 [CAMediaTimingFunction functionWithName:kCAMediaTimingFunctionLinear];
anim.repeatCount = 3;
anim.autoreverses = YES;
anim.fromValue = [NSValue valueWithCATransform3D:startValue];
anim.toValue = [NSValue valueWithCATransform3D:endValue];
// ask for the explicit animation
[c.arrow addAnimation:anim forKey:nil];

That code, too, can be shortened considerably from its full form. We can eliminate the
need to calculate the new rotation values based on the arrow’s current transform by
setting our animation’s additive property to YES; this means that the animation’s
property values are added to the existing property value for us, so that they are relative,
not absolute. For a transform, “added” means “matrix-multiplied,” so we can describe
the waggle without any dependence on the arrow’s current rotation. Moreover, because
our rotation is so simple (around a cardinal axis), we can take advantage of CAProperty-
Animation’s valueFunction; the animation’s property values can then be simple scalars
(in this case, angles), because the valueFunction tells the animation to interpret these
as rotations around the z-axis:

CompassLayer* c = (CompassLayer*)self.compass.layer;
CABasicAnimation* anim = [CABasicAnimation animationWithKeyPath:@"transform"];
anim.duration = 0.05;
anim.timingFunction =
 [CAMediaTimingFunction functionWithName:kCAMediaTimingFunctionLinear];
anim.repeatCount = 3;
anim.autoreverses = YES;
anim.additive = YES;
anim.valueFunction = [CAValueFunction functionWithName:kCAValueFunctionRotateZ];
anim.fromValue = [NSNumber numberWithFloat:M_PI/40];
anim.toValue = [NSNumber numberWithFloat:-M_PI/40];
[c.arrow addAnimation:anim forKey:nil];

Instead of using a valueFunction, we could have achieved the same effect
by setting the animation’s key path to @"transform.rotation.z". How-
ever, Apple advises against this, as it can result in mathematical trouble
when there is more than one rotation.

Remember that there is no @"frame" key. To animate a layer’s frame, if both its
position and bounds are to change, you must animate both. Recall this earlier example,
using block-based animation (where v is v2’s superview):

void (^anim) (void) = ^{
 CGRect f = v2.frame;
 f.size.width = v.frame.size.width;
 f.origin.x = 0;
 v2.frame = f;
};

438 | Chapter 17: Animation

Here’s how to do that with Core Animation:

CABasicAnimation* anim1 = [CABasicAnimation animationWithKeyPath:@"bounds"];
CGRect f = v2.layer.bounds;
f.size.width = v.layer.bounds.size.width;
v2.layer.bounds = f;
[v2.layer addAnimation: anim1 forKey: nil];
CABasicAnimation* anim2 = [CABasicAnimation animationWithKeyPath:@"position"];
CGPoint p = v2.layer.position;
p.x = CGRectGetMidX(v.layer.bounds);
v2.layer.position = p;
[v2.layer addAnimation:anim2 forKey: nil];

Keyframe Animation
Keyframe animation (CAKeyframeAnimation) is an alternative to basic animation
(CABasicAnimation); they are both subclasses of CAPropertyAnimation and they are
used in identical ways. The difference is that a keyframe animation, in addition to
specifying a starting and ending value, also specifies multiple values through which the
animation should pass on the way, the stages (frames) of the animation. This can be as
simple as setting the animation’s values property (an NSArray).

Here’s a more sophisticated version of our animation for waggling the compass arrow:
the animation includes both the start and end states, and the degree of waggle gets
progressively smaller:

CompassLayer* c = (CompassLayer*)self.compass.layer;
NSMutableArray* values = [NSMutableArray array];
[values addObject: [NSNumber numberWithFloat:0]];
int direction = 1;
for (int i = 20; i < 60; i += 5, direction *= -1) { // reverse direction each time
 [values addObject: [NSNumber numberWithFloat: direction*M_PI/(float)i]];
}
[values addObject: [NSNumber numberWithFloat:0]];
CAKeyframeAnimation* anim = [CAKeyframeAnimation animationWithKeyPath:@"transform"];
anim.values = values;
anim.additive = YES;
anim.valueFunction = [CAValueFunction functionWithName: kCAValueFunctionRotateZ];
[c.arrow addAnimation:anim forKey:nil];

Here are some CAKeyframeAnimation properties:

values

The array of values the animation is to adopt, including the starting and ending
value.

timingFunctions

An array of timing functions, one for each stage of the animation (so that this array
will be one element shorter than the values array).

Core Animation | 439

keyTimes

An array of times to accompany the array of values, defining when each value
should be reached. The times start at 0 and are expressed as increasing fractions of
1, ending at 1.

calculationMode

Describes how the values are treated to create all the values through which the
animation must pass.

• The default is kCAAnimationLinear, a simple straight-line interpolation from
value to value.

• kCAAnimationCubic constructs a single smooth curve passing through all the
values (and additional advanced properties, tensionValues, continuity-
Values, and biasValues, allow you to refine the curve).

• kCAAnimationPaced and kCAAnimationCubicPaced means the timing functions
and key times are ignored, and the velocity is made constant through the whole
animation.

• kCAAnimationDiscrete means no interpolation: we jump directly to each value
at the corresponding key time.

path

When you’re animating a property whose values are pairs of floats (CGPoints), this
is an alternative way of describing the values; instead of a values array, which must
be interpolated to arrive at the intermediate values along the way, you supply the
entire interpolation as a single CGPathRef. The points used to draw the path are
the keyframe values, so you can still apply timing functions and key times. If you’re
animating a position, the rotationMode property lets you ask the animated object
to rotate so as to remain perpendicular to the path.

Making a Property Animatable
So far, we’ve been animating built-in animatable properties. If you define your own
property on a CALayer subclass, you can make that property animatable through a
CAPropertyAnimation (a CABasicAnimation or a CAKeyframeAnimation). You do this
by declaring the property @dynamic (so that Core Animation can create its accessors)
and returning YES from the class method needsDisplayForKey:, where the key is the
string name of the property.

For example, here we’ll start writing the code for a layer class MyLayer with an ani-
matable thickness property:

// [in MyLayer.h]
@interface MyLayer : CALayer
@property (nonatomic) CGFloat thickness;
@end

// [in MyLayer.m]

440 | Chapter 17: Animation

@implementation MyLayer
@dynamic thickness;

+ (BOOL) needsDisplayForKey:(NSString *)key {
 if ([key isEqualToString: @"thickness"])
 return YES;
 return [super needsDisplayForKey:key];
}

@end

Returning YES from needsDisplayForKey: causes this layer to be redisplayed repeatedly
as the thickness property changes. So if we want to see the animation, this layer also
needs to draw itself in some way that depends on the thickness property. Here, I’ll
implement the layer’s drawInContext: to make thickness the thickness of the black
border around a red rectangle:

- (void) drawInContext:(CGContextRef)con {
 CGRect r = CGRectInset(self.bounds, 20, 20);
 CGContextSetFillColorWithColor(con, [UIColor redColor].CGColor);
 CGContextFillRect(con, r);
 CGContextSetLineWidth(con, self.thickness);
 CGContextStrokeRect(con, r);
}

Now we can animate the rectangle’s thickness using explicit animation (lay points to
a MyLayer instance):

CABasicAnimation* ba = [CABasicAnimation animationWithKeyPath:@"thickness"];
ba.toValue = [NSNumber numberWithFloat: 10.0];
ba.autoreverses = YES;
[lay addAnimation:ba forKey:nil];

At every step of the animation, drawInContext: is called, and because the thickness
value differs at each step, it is animated.

Grouped Animations
A grouped animation (CAAnimationGroup) combines multiple animations into one,
by means of its animations property (an NSArray of animations). By delaying and timing
the various component animations, complex effects can be achieved.

A CAAnimationGroup is itself an animation; it is a CAAnimation subclass, so it has a
duration and other animation features. Think of the CAAnimationGroup as the parent
and its animations as its children. Then the children inherit default values from their
parent. Thus, for example, if you don’t set a child’s duration explicitly, it will inherit
the parent’s duration. Also, make sure the parent’s duration is sufficient to include all
parts of the child animations that you want displayed.

For example, we can form a sequence where the compass arrow rotates and then wag-
gles. Very little change is required. We express the first animation in its full form, with
explicit fromValue and toValue. We postpone the second animation using its begin-

Core Animation | 441

Time property; notice that we express this in relative terms, as a number of seconds into
the parent’s duration, not with respect to CACurrentMediaTime. Finally, we set the overall
parent duration to the sum of the child durations, so that it can embrace both of them:

CompassLayer* c = (CompassLayer*)self.compass.layer;
// capture current value, set final value
CGFloat rot = M_PI/4.0;
[CATransaction setDisableActions:YES];
CGFloat current = [[c.arrow valueForKeyPath:@"transform.rotation.z"] floatValue];
[c.arrow setValue: [NSNumber numberWithFloat: current + rot]
 forKeyPath:@"transform.rotation.z"];

// first animation (rotate and clunk)
CABasicAnimation* anim1 = [CABasicAnimation animationWithKeyPath:@"transform"];
anim1.duration = 0.8;
CAMediaTimingFunction* clunk =
 [CAMediaTimingFunction functionWithControlPoints:.9 :.1 :.7 :.9];
anim1.timingFunction = clunk;
anim1.fromValue = [NSNumber numberWithFloat: current];
anim1.toValue = [NSNumber numberWithFloat: current + rot];
anim1.valueFunction = [CAValueFunction functionWithName:kCAValueFunctionRotateZ];

// second animation (waggle)
NSMutableArray* values = [NSMutableArray array];
[values addObject: [NSNumber numberWithFloat:0]];
int direction = 1;
for (int i = 20; i < 60; i += 5, direction *= -1) { // reverse direction each time
 [values addObject: [NSNumber numberWithFloat: direction*M_PI/(float)i]];
}
[values addObject: [NSNumber numberWithFloat:0]];
CAKeyframeAnimation* anim2 =
 [CAKeyframeAnimation animationWithKeyPath:@"transform"];
anim2.values = values;
anim2.duration = 0.25;
anim2.beginTime = anim1.duration;
anim2.additive = YES;
anim2.valueFunction = [CAValueFunction functionWithName:kCAValueFunctionRotateZ];

// group
CAAnimationGroup* group = [CAAnimationGroup animation];
group.animations = [NSArray arrayWithObjects: anim1, anim2, nil];
group.duration = anim1.duration + anim2.duration;
[c.arrow addAnimation:group forKey:nil];

In that example, I grouped two animations that animated the same property sequen-
tially. Now let’s go to the other extreme and group some animations that animate
different properties simultaneously. I have a small view (about 56×38), located near the
top-right corner of the screen, whose layer contents are a picture of a sailboat facing to
the left. I’ll “sail” the boat in a curving path, both down the screen and left and right
across the screen, like an extended letter “S” (Figure 17-2). Each time the boat comes
to a vertex of the curve, changing direction across the screen, I’ll turn the boat picture
so that it faces the way it’s about to move. At the same time, I’ll constantly rock the
boat, so that it always appears to be pitching a little on the waves.

442 | Chapter 17: Animation

Here’s the first animation, the movement of the boat along its curving path. It illustrates
the use of a CAKeyframeAnimation with a CGPath; the calculationMode of
kCAAnimationPaced ensures an even speed over the whole path. We don’t set an explicit
duration because we want to adopt the duration of the group:

CGFloat h = 200;
CGFloat v = 75;
CGMutablePathRef path = CGPathCreateMutable();
int leftright = 1;
CGPoint next = self.view.layer.position;
CGPoint pos;
CGPathMoveToPoint(path, NULL, next.x, next.y);
for (int i = 0; i < 4; i++) {
 pos = next;
 leftright *= -1;
 next = CGPointMake(pos.x+h*leftright, pos.y+v);
 CGPathAddCurveToPoint(path, NULL, pos.x, pos.y+30, next.x, next.y-30,
 next.x, next.y);
}
CAKeyframeAnimation* anim1 = [CAKeyframeAnimation animationWithKeyPath:@"position"];
anim1.path = path;
anim1.calculationMode = kCAAnimationPaced;

Here’s the second animation, the reversal of the direction the boat is facing. This is
simply a rotation around the y-axis. We make no attempt at visually animating this
reversal, so we set the calculationMode to kCAAnimationDiscrete (the boat image rever-
sal is a sudden change). There is one fewer value than the number of points in our first
animation’s path, and the first animation has an even speed, so the reversals take place
at each curve apex with no further effort on our part. (If the pacing were more com-
plicated, we could give both the first and the second animation identical keyTimes ar-
rays, to coordinate them.) Once again, we don’t set an explicit duration:

Figure 17-2. A boat and the course she’ll sail

Core Animation | 443

NSArray* revs = [NSArray arrayWithObjects:
 [NSNumber numberWithFloat:0],
 [NSNumber numberWithFloat:M_PI],
 [NSNumber numberWithFloat:0],
 [NSNumber numberWithFloat:M_PI],
 nil];
CAKeyframeAnimation* anim2 =
 [CAKeyframeAnimation animationWithKeyPath:@"transform"];
anim2.values = revs;
anim2.valueFunction = [CAValueFunction functionWithName:kCAValueFunctionRotateY];
anim2.calculationMode = kCAAnimationDiscrete;

Here’s the third animation, the rocking of the boat. It has a short duration, and repeats
indefinitely (by giving its repeatCount an immense value):

NSArray* pitches = [NSArray arrayWithObjects:
 [NSNumber numberWithFloat:0],
 [NSNumber numberWithFloat:M_PI/60.0],
 [NSNumber numberWithFloat:0],
 [NSNumber numberWithFloat:-M_PI/60.0],
 [NSNumber numberWithFloat:0],
 nil];
CAKeyframeAnimation* anim3 =
 [CAKeyframeAnimation animationWithKeyPath:@"transform"];
anim3.values = pitches;
anim3.repeatCount = HUGE_VALF;
anim3.duration = 0.5;
anim3.additive = YES;
anim3.valueFunction = [CAValueFunction functionWithName:kCAValueFunctionRotateZ];

Finally, we combine the three animations, assigning the group an explicit duration that
will be adopted by the first two animations. As we hand the animation over to the layer
displaying the boat, we also change the layer’s position to match the final position from
the first animation, so that the boat won’t jump back to its original position afterward:

CAAnimationGroup* group = [CAAnimationGroup animation];
group.animations = [NSArray arrayWithObjects: anim1, anim2, anim3, nil];
group.duration = 8;
[view.layer addAnimation:group forKey:nil];
[CATransaction setDisableActions:YES];
view.layer.position = next;

Here are some further CAAnimation properties (from the CAMediaTiming protocol)
that come into play especially when animations are grouped:

speed

The ratio between a child’s timescale and the parent’s timescale. For example, if a
parent and child have the same duration, but the child’s speed is 1.5, its animation
runs one-and-a-half times as fast as the parent.

fillMode

Suppose the child animation begins after the parent animation, or ends before the
parent animation, or both. What should happen to the appearance of the property

444 | Chapter 17: Animation

being animated, outside the child animation’s boundaries? The answer depends
on the child’s fillMode:

• kCAFillModeRemoved means the child animation is removed, revealing the layer
property at its actual current value whenever the child is not running.

• kCAFillModeForwards means the final presentation layer value of the child ani-
mation remains afterward.

• kCAFillModeBackwards means the initial presentation layer value of the child
animation appears right from the start.

• kCAFillModeBoth combines the previous two.

CALayer adopts the CAMediaTiming protocol, in the sense that a layer
can have a speed. This will affect any animation attached to it. A
CALayer with a speed of 2 will play a 10-second animation in 5 seconds.

Transitions
A layer transition is an animation involving two “copies” of a single layer, in which the
second “copy” appears to replace the first. It is described by an instance of CATransition
(a CAAnimation subclass), which has these chief properties describing the animation:

type

Your choices are:

• kCATransitionFade

• kCATransitionMoveIn

• kCATransitionPush

• kCATransitionReveal

subtype

If the type is not kCATransitionFade, your choices are:

• kCATransitionFromRight

• kCATransitionFromLeft

• kCATransitionFromTop

• kCATransitionFromBottom

For historical reasons, the terms “bottom” and “top” in the names of
the subtype settings have the opposite of their expected meanings.

Core Animation | 445

To understand the nature of a transition animation, the best approach is to try one,
without doing anything else. For example:

CATransition* t = [CATransition animation];
t.type = kCATransitionPush;
t.subtype = kCATransitionFromBottom;
[layer addAnimation: t forKey: nil];

It will help if the layer’s frame is visible (give it a borderWidth, perhaps). What you’ll
see, then, is that the entire layer exits moving down from its original place, and another
“copy” of the same layer enters moving down from above. In Figure 17-3, the green
layer (the wider rectangle) is the superlayer of the red layer (the narrower rectangle,
which appears twice). The red layer is normally centered in the green layer, but I’ve
managed to freeze the red layer in the middle of a transition.

You can use a layer’s superlayer to help restrict the visible part of the layer’s transition.
If the superlayer’s masksToBounds is NO, the user can see the entire transition; its move-
ments will have the whole screen as their visible boundaries. But if the superlayer’s
masksToBounds is YES, then the visible part of the transition movement is restricted to
the superlayer’s bounds: it’s as if you’re seeing the movements through a window that
is the superlayer. In Figure 17-3, for example, if the green layer’s masksToBounds were
YES, we wouldn’t see any of the part of the transition animation outside its boundaries.
A common device is to have the layer that is to be transitioned live inside a superlayer
that is exactly the same size and whose masksToBounds is YES. This confines the visible
transition to the bounds of the layer itself.

Our example appears silly, because there was no motivation for this animation; the two
“copies” of the layer are identical. A typical motivation would be that you’re changing
the contents of a layer and you want to dramatize this. Here, we change the example
so that an image of Saturn replaces an image of Mars by pushing it away from above
(Figure 17-4). We get a slide effect, as if one layer were being replaced by another; but
in fact there is just one layer that holds first one picture, then the other:

Figure 17-3. A push transition

446 | Chapter 17: Animation

CATransition* t = [CATransition animation];
t.type = kCATransitionPush;
t.subtype = kCATransitionFromBottom;
[CATransaction setDisableActions:YES];
layer.contents = (id)[[UIImage imageNamed: @"Saturn.gif"] CGImage];
[layer addAnimation: t forKey: nil];

A transition on a superlayer can happen simultaneously with animation of a sublayer.
The animation will be seen to occur on the second “copy” of the layer as it moves into
position. This is analogous to what we achieved earlier with the UIViewAnimationOption-
AllowAnimatedContent option using block-based view animation.

The Animations List
The method that asks for an explicit animation to happen is CALayer’s addAnimation:
forKey:. To understand how this method actually works (and what the “key” is), you
need to know about a layer’s animations list.

An animation is an object (a CAAnimation) that modifies how a layer is drawn. It does
this merely by being attached to the layer; the layer’s drawing mechanism does the rest.
A layer maintains a list of animations that are currently in force. To add an animation
to this list, you call addAnimation:forKey:. When the time comes to draw itself, the layer
looks through its animations list and draws itself in accordance with any animations it
finds there. (The list of things the layer must do in order to draw itself is sometimes
referred to by the documentation as the render tree.)

The animations list is maintained in a curious way. The list is not exactly a dictionary,
but it behaves somewhat like a dictionary. An animation has a key — the forKey:
parameter in addAnimation:forKey:. If an animation with a certain key is added to the
list, and an animation with that key is already in the list, the one that is already in the
list is removed. Thus a rule is maintained that only one animation with a given key can
be in the list at a time (the exclusivity rule). This explains why sometimes ordering an
animation can cancel an animation already ordered or in-flight: the two animations
had the same key, so the first one was removed. It is also possible to add an animation
with no key (the key is nil); it is then not subject to the exclusivity rule (that is, there

Figure 17-4. Another push transition

Core Animation | 447

can be more than one animation in the list with no key). The order in which animations
were added to the list is the order in which they are applied.

The forKey: parameter in addAnimation:forKey: is thus not a property name. It could
be a property name, but it can be any arbitrary value. Its purpose is to enforce the
exclusivity rule. It does not have any meaning with regard to what property a
CAPropertyAnimation animates; that is the job of the animation’s keyPath. (Apple’s
use of the term “key” in addAnimation:forKey: is thus unfortunate and misleading; I
wish they had named this method addAnimation:withIdentifier: or something like
that.)

Actually, there is a relationship between the “key” in addAnimation:for-
Key: and a CAPropertyAnimation’s keyPath — if a CAProperty-
Animation’s keyPath is nil at the time that it is added to a layer with add-
Animation:forKey:, that keyPath is set to the forKey: value. Thus, you
can misuse the forKey: parameter in addAnimation:forKey: as a way of
specifying what keyPath an animation animates. (This fact is not docu-
mented, so far as I know, but it’s easily verified experimentally, and it
should remain reliably true, as implicit animation crucially depends on
it.) I have seen many prominent but misleading examples that use this
technique, apparently in the mistaken belief that the “key” in add-
Animation:forKey: is the way you are supposed to specify what property
to animate. This is wrong. Set the CAPropertyAnimation’s keyPath ex-
plicitly (as do all my examples); that’s what it’s for.

You can use the exclusivity rule to your own advantage, to keep your code from stepping
on its own feet. Some code of yours might add an animation to the list using a certain
key; then later, some other code might come along and correct this, removing that
animation and replacing it with another. By using the same key, the second code is
easily able to override the first: “You may have been given some other animation with
this key, but throw it away; play this one instead.”

In some cases, the key you supply is ignored and a different key is substituted. In par-
ticular, the key with which a CATransition is added to the list is always
kCATransition (which happens to be @"transition"); thus there can be only one tran-
sition animation in the list.

You can’t access the entire animations list directly. You can access the key names of
the animations in the list, with animationKeys; and you can obtain or remove an ani-
mation with a certain key, with animationForKey: and removeAnimationForKey:; but
animations with a nil key are inaccessible. You can, however, remove all animations,
including animations with a nil key, using removeAllAnimations. In the multitasking
world, when the app is suspended (Chapter 11), removeAllAnimations is called on all
layers for you.

448 | Chapter 17: Animation

If an animation is in-flight when you remove it from the animations list manually, by
calling removeAllAnimations or removeAnimationForKey:, it will stop; however, that
doesn’t happen until the next redraw moment. You might be able to work around this,
if you need an animation to be removed immediately, by wrapping the remove... call
in a transaction block.

You can think of an animation in a layer’s animations list as being the “animation
movie” I spoke of at the start of this chapter. As long as an animation is in the list, the
movie is present, either waiting to be played or actually playing. An animation that has
finished playing is, in general, pointless; the animation should now be removed from
the list. Therefore, an animation has a removedOnCompletion property, which defaults
to YES: when the “movie” is over, the animation removes itself from the list.

You can, if desired, set removedOnCompletion to NO. However, even the presence in the
list of an animation that has already played might make no difference to the layer’s
appearance, because an animation’s fillMode is kCAFillModeRemoved, which removes
the animation from the layer’s drawing when the movie is over. Thus, it can usually do
no harm to leave an animation in the list after it has played, but it’s not a great idea
either, because this is just one more thing for the drawing system to worry about.
Typically, you’ll leave removedOnCompletion set at YES.

You may encounter examples that set removedOnCompletion to NO and
set the animation’s fillMode to kCAFillModeForwards or kCAFillMode-
Both, as a way of causing the layer to keep the appearance of the last
frame of the “animation movie” even after the animation is over, and
preventing a property from apparently jumping back to its initial value
when the animation ends. This is wrong. The correct approach, as I have
explained, is to change the property value to match the final frame of
the animation. The chief use of kCAFillModeForwards is in connection
with grouped animations, as explained earlier.

Actions
For the sake of completeness, I will now explain how implicit animation works — that
is, how implicit animation is turned into explicit animation behind the scenes. The
basis of implicit animation is the action mechanism.

What an Action Is
An action is an object that adopts the CAAction protocol. This means simply that it
implements runActionForKey:object:arguments:.

The action object could do anything in response to this message. The notion of an action
is completely general. However, in real life, the only class that adopts the CAAction

Actions | 449

protocol is CAAnimation. So, an animation is a special case of an action, but in fact it
is also the only case of an action.

What an animation does when it receives runActionForKey:object:arguments: is to as-
sume that the second parameter, the object:, is a layer, and to add itself to that layer’s
animations list. Thus, for an animation, receiving the runActionForKey:object:
arguments: message is like being told: “Play yourself!”

You would never send runActionForKey:object:arguments: to an animation directly.
Rather, this message is sent to an animation for you, as the basis of implicit animation.

The Action Search
When you set a property of a layer and trigger an implicit animation, you are actually
triggering the action search. This basically means that the layer searches for an action
object to which it can send the runActionForKey:object:arguments: message; because
that action object will be an animation, and because it will respond to this message by
adding itself to the layer’s animations list, this is the same as saying that the layer
searches for an animation to play itself with respect to the layer. The procedure by
which the layer searches for this animation is quite elaborate.

The search for an action object begins because you do something that causes the layer
to be sent the actionForKey: message. Let us presume that what you do is to change
the value of an animatable property. (Other things can cause the actionForKey: message
to be sent, as I’ll show later.) The action mechanism then treats the name of the property
as a key, and the layer receives actionForKey: with that key — and the action search
begins.

At each stage of the action search, the following rules are obeyed regarding what is
returned from that stage of the search:

An action object
If an action object (an animation) is produced, that is the end of the search. The
action mechanism sends that animation the runActionForKey:object:arguments:
message; the animation responds by adding itself to the layer’s animations list.

[NSNull null]

If [NSNull null] is produced, that is the end of the search. There will be no implicit
animation; [NSNull null] means, “Do nothing and stop searching.”

nil
If nil is produced, the search continues to the next stage.

The action search proceeds by stages, as follows:

1. The layer might terminate the search before it even starts. For example, the layer
will do this if it is the underlying layer of a view, or if a property is set to the same

450 | Chapter 17: Animation

value it already has. In such a case, there should be no implicit animation, so the
whole mechanism is nipped in the bud.

2. If the layer has a delegate that implements actionForLayer:forKey:, that message
is sent to the delegate, with this layer as the layer and the property name as the key.
If an animation or [NSNull null] is returned, the search ends.

3. The layer has a property called actions, which is a dictionary. If there is an entry
in this dictionary with the given key, that value is used, and the search ends.

4. The layer has a property called style, which is a dictionary. If there is an entry in
this dictionary with the key actions, it is assumed to be a dictionary; if this
actions dictionary has an entry with the given key, that value is used, and the search
ends. Otherwise, if there is an entry in the style dictionary called style, the same
search is performed within it, and so on recursively until either an actions entry
with the given key is found (the search ends) or there are no more style entries
(the search continues).

(If the style dictionary sounds profoundly weird, that’s because it is profoundly
weird. It is actually a special case of a larger, separate mechanism, which is also
profoundly weird, having to do not with actions, but with a CALayer’s implemen-
tation of KVC. When you call valueForKey: on a layer, if the key is undefined by
the layer itself, the style dictionary is consulted. I have never written or seen code
that uses this mechanism for anything, and I’ll say no more about it.)

5. The layer’s class is sent defaultActionForKey:, with the property name as the key.
If an animation or [NSNull null] is returned, the search ends.

6. If the search reaches this last stage, a default animation is supplied, as appropriate.
For a property animation, this is a plain vanilla CABasicAnimation.

Both the delegate’s actionForLayer:forKey: and the subclass’s defaultActionForKey:
are declared as returning an id<CAAction>. To return [NSNull null], therefore, you’ll
need to typecast it to id<CAAction> to quiet the compiler; you’re lying (NSNull does
not adopt the CAAction protocol), but it doesn’t matter.

Hooking Into the Action Search
You can affect the action search at various stages to modify what happens when the
search is triggered. For example, you could cause some stage of the search to produce
an animation; that animation will then be used. Assuming that the search is triggered
by setting an animatable layer property, you would then be affecting how implicit ani-
mation behaves.

You will probably want your animation to be fairly minimal. You may have no way of
knowing the former and current values of the property that is being changed, so it would
then be pointless (and very strange) to set a CABasicAnimation’s fromValue or to-
Value. Moreover, although animation properties that you don’t set can be set through
CATransaction, in the usual manner for implicit property animation, animation prop-

Actions | 451

erties that you do set can not be overridden through CATransaction. For example, if
you set the duration of the animation that you produce at some stage of the action
search, a call to CATransaction’s setAnimationDuration: cannot change it.

Let’s say we want a certain layer’s duration for an implicit position animation to be 5
seconds. We can achieve this with a minimally configured animation, like this:

CABasicAnimation* ba = [CABasicAnimation animation];
ba.duration = 5;

The idea now is to situate this animation, ba, where it will be produced by the action
search when implicit animation is triggered on the position property of our layer. We
could, for instance, put it into the layer’s actions dictionary:

layer.actions = [NSDictionary dictionaryWithObject: ba forKey: @"position"];

The result is that when we set that layer’s position, if an implicit animation results, its
duration is 5 seconds, even if we try to change it through CATransaction:

[CATransaction setAnimationDuration:1];
layer.position = CGPointMake(100,200); // animation takes 5 seconds

Let’s use that example to tease apart how the action mechanism makes implicit ani-
mation work:

1. You set the value of the layer’s position property.

2. If your setting does not represent a change in the position value, or if this layer is
a view’s underlying layer, that’s the end of the story; there is no implicit property
animation.

3. Otherwise, the action search begins. There is no delegate in this case, so the search
proceeds to the next stage, the actions dictionary.

4. There is an entry under the key @"position" in the actions dictionary (because we
put it there), and it is an animation. That animation is the action, and that is the
end of the search.

5. The animation is sent runActionForKey:object:arguments:.

6. The animation responds by calling [object addAnimation:self forKey:

@"position"]. The animation’s keyPath was nil, so this call also sets the keyPath to
the same key! Thus, there is now an animation in the layer’s animations list that
animates its position, because its keyPath is @"position". Moreover, we didn’t set
the fromValue or toValue, so the property’s previous and new values are used. The
animation therefore shows the layer moving from its current position to {100,200}.

Using the layer’s actions dictionary to set default animations is a somewhat inflexible
way to hook into the action search, however. It’s a good way to disable implicit ani-
mation for specific properties; just set the value for that key to [NSNull null]. But it
has the disadvantage in general that you must write your animation beforehand.

By contrast, if you set the layer’s delegate to a instance that responds to actionForLayer:
forKey:, your code runs at the time the animation is needed, and you have access to

452 | Chapter 17: Animation

the layer that is to be animated. So you can create the animation on the fly, possibly
modifying it in response to current circumstances.

Recall also that CATransaction implements KVC to allow you to set and retrieve the
value of arbitrary keys. We can take advantage of this fact to pass an additional message
from the code that sets the property value, and triggers the action search, to the code
that supplies the action. This works because they both take place within the same
transaction.

In this example, we use the layer delegate to change the default position animation so
that instead of being a straight line, the path has a slight waggle. To do this, the delegate
constructs a keyframe animation. The animation depends on the old position value
and the new position value; the delegate can get the former direct from the layer, but
the latter must be handed to the delegate somehow. Here, a CATransaction key
@"newP" is used to communicate this information. When we set the layer’s position,
we put its future value where the delegate can retrieve it, like this:

CGPoint newP = CGPointMake(200,300);
[CATransaction setValue: [NSValue valueWithCGPoint: newP] forKey: @"newP"];
layer.position = newP; // the delegate will waggle the layer into place

The delegate is called by the action search and constructs the animation:

- (id < CAAction >)actionForLayer:(CALayer *)layer forKey:(NSString *)key {
 if ([key isEqualToString: @"position"]) {
 CGPoint oldP = layer.position;
 CGPoint newP = [[CATransaction valueForKey: @"newP"] CGPointValue];
 CGFloat d = sqrt(pow(oldP.x - newP.x, 2) + pow(oldP.y - newP.y, 2));
 CGFloat r = d/3.0;
 CGFloat theta = atan2(newP.y - oldP.y, newP.x - oldP.x);
 CGFloat wag = 10*M_PI/180.0;
 CGPoint p1 = CGPointMake(oldP.x + r*cos(theta+wag),
 oldP.y + r*sin(theta+wag));
 CGPoint p2 = CGPointMake(oldP.x + r*2*cos(theta-wag),
 oldP.y + r*2*sin(theta-wag));
 CAKeyframeAnimation* anim = [CAKeyframeAnimation animation];
 anim.values = [NSArray arrayWithObjects:
 [NSValue valueWithCGPoint:oldP],
 [NSValue valueWithCGPoint:p1],
 [NSValue valueWithCGPoint:p2],
 [NSValue valueWithCGPoint:newP],
 nil];
 anim.calculationMode = kCAAnimationCubic;
 return anim;
 }
 return nil;
}

Finally, for the sake of completeness, I’ll demonstrate overriding defaultActionFor-
Key:. This code would go into a CALayer subclass where setting its contents is to trigger
a push transition from the left:

Actions | 453

+ (id < CAAction >)defaultActionForKey:(NSString *)aKey {
 if ([aKey isEqualToString:@"contents"]) {
 CATransition* tr = [CATransition animation];
 tr.type = kCATransitionPush;
 tr.subtype = kCATransitionFromLeft;
 return tr;
 }
 return [super defaultActionForKey: aKey];
}

Nonproperty Actions
Changing a property is not the only way to trigger a search for an action; an action
search is also triggered when a layer is added to a superlayer (key kCAOnOrderIn) and
when a layer’s sublayers are changed by adding or removing a sublayer (key
@"sublayers"). We can watch for these keys in the delegate and return an animation.

These triggers and their keys are incorrectly described in Apple’s doc-
umentation, and there are additional triggers and keys that are not men-
tioned there.

In this example, we use our layer’s delegate so that when our layer is added to a su-
perlayer, it will “pop” into view. We implement this by fading the layer quickly in from
an opacity of 0 and at the same time scaling the layer’s transform to make it momentarily
appear a little larger:

- (id < CAAction >)actionForLayer:(CALayer *)lay forKey:(NSString *)key {
 if ([key isEqualToString:kCAOnOrderIn]) {
 CABasicAnimation* anim1 =
 [CABasicAnimation animationWithKeyPath:@"opacity"];
 anim1.fromValue = [NSNumber numberWithFloat: 0.0];
 anim1.toValue = [NSNumber numberWithFloat: lay.opacity];
 CABasicAnimation* anim2 =
 [CABasicAnimation animationWithKeyPath:@"transform"];
 anim2.toValue = [NSValue valueWithCATransform3D:
 CATransform3DScale(lay.transform, 1.1, 1.1, 1.0)];
 anim2.autoreverses = YES;
 anim2.duration = 0.1;
 CAAnimationGroup* group = [CAAnimationGroup animation];
 group.animations = [NSArray arrayWithObjects: anim1, anim2, nil];
 group.duration = 0.2;
 return group;
 }
}

The documentation says that when a layer is removed from a superlayer, an action is
sought under the key kCAOnOrderOut. This is true but useless, because by the time the
action is sought, the layer has already been removed from the superlayer, so returning
an animation has no visible effect. Similarly, an animation returned as an action when
a layer’s hidden is set to YES is never played. Apple has admitted that this is a bug. A

454 | Chapter 17: Animation

possible workaround is to trigger the animation via the opacity property, perhaps in
conjunction with a CATransaction key, and remove the layer afterward:

[CATransaction setCompletionBlock: ^{
 [layer removeFromSuperlayer];
}];
[CATransaction setValue:@"" forKey:@"byebye"];
layer.opacity = 0;

Now actionForLayer:forKey: can test for the incoming key @"opacity" and the CA-
Transaction key @"byebye", and return the animation appropriate to removal from the
superlayer. Here’s a possible implementation:

if ([key isEqualToString:@"opacity"]) {
 if ([CATransaction valueForKey:@"byebye"]) {
 CABasicAnimation* anim1 =
 [CABasicAnimation animationWithKeyPath:@"opacity"];
 anim1.fromValue = [NSNumber numberWithFloat: layer.opacity];
 anim1.toValue = [NSNumber numberWithFloat: 0.0];
 CABasicAnimation* anim2 =
 [CABasicAnimation animationWithKeyPath:@"transform"];
 anim2.toValue = [NSValue valueWithCATransform3D:
 CATransform3DScale(layer.transform, 0.1, 0.1, 1.0)];
 CAAnimationGroup* group = [CAAnimationGroup animation];
 group.animations = [NSArray arrayWithObjects: anim1, anim2, nil];
 group.duration = 0.2;
 return group;
 }
}

Emitter Layers
Emitter layers (CAEmitterLayer) are new to iOS 5; they’ve been around on the desktop
since Mac OS X 10.6. To some extent, they are on a par with animated images: once
you’ve set up an emitter layer, it just sits there animating all by itself. The nature of this
animation is rather narrow: an emitter layer emits particles, which are CAEmitterCell
instances. However, by clever setting of the properties of an emitter layer and its emitter
cells, you can achieve some astonishing effects. Moreover, the animation is itself ani-
matable using Core Animation.

It is easiest to understand emitter layers and emitter cells if you start with some stupid
settings to achieve a boring effect. Let’s start with the emitter cells. Here are some useful
basic properties of a CAEmitterCell:

contents, contentsRect
These are modeled after the eponymous CALayer properties, although CAEmitter-
Layer is not a CALayer subclass; so, respectively, an image (a CGImageRef) and a
CGRect defining a region of that image. They define the image that a cell will
portray.

Emitter Layers | 455

birthrate, lifetime
How many cells per second should be emitted, and how many seconds each cell
should live before vanishing, respectively.

velocity

The speed at which a cell moves. The meaning of the actual value isn’t documented;
perhaps it’s points per second.

emissionLatitude, emissionLongitude
The angle at which the cell is emitted from the emitter, as a variation from the
perpendicular. Longitude is an angle within the plane; latitude is an angle out of
the plane.

So, here’s code to create a very elementary emitter cell:

UIGraphicsBeginImageContextWithOptions(CGSizeMake(10,10), NO, 0);
CGContextRef con = UIGraphicsGetCurrentContext();
CGContextAddEllipseInRect(con, CGRectMake(0,0,10,10));
CGContextSetFillColorWithColor(con, [UIColor blackColor].CGColor);
CGContextFillPath(con);
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

CAEmitterCell* cell = [CAEmitterCell emitterCell];
emit.emitterCells = [NSArray arrayWithObject:cell];
cell.birthRate = 5;
cell.lifetime = 1;
cell.velocity = 100;
cell.contents = (id)im.CGImage;

The result is that little black circles should be emitted slowly and steadily, five per
second, each one vanishing in five seconds. Now we need an emitter layer from which
these circles are to be emitted. Here are some basic CAEmitterLayer properties (beyond
those it inherits from CALayer); these define an imaginary object, an emitter, that will
be producing the emitter cells:

emitterPosition

The point at which the emitter should located, in superlayer coordinates. You can
optionally add a third dimension to this point, emitterZPosition.

emitterSize

The size of the emitter.

emitterShape

The shape of the emitter. The dimensions of the shape depend on the emitter’s
size; the cuboid shape depends also on a third size dimension, emitterDepth. Your
choices are:

• kCAEmitterLayerPoint

• kCAEmitterLayerLine

• kCAEmitterLayerRectangle

456 | Chapter 17: Animation

• kCAEmitterLayerCuboid

• kCAEmitterLayerCircle

• kCAEmitterLayerSphere

emitterMode

The region of the shape from which cells should be emitted. Your choices are:

• kCAEmitterLayerPoints

• kCAEmitterLayerOutline

• kCAEmitterLayerSurface

• kCAEmitterLayerVolume

Let’s start with the simplest possible case, a single point emitter:

CAEmitterLayer* emit = [[CAEmitterLayer alloc] init];
emit.emitterPosition = CGPointMake(30,100);
emit.emitterShape = kCAEmitterLayerPoint;
emit.emitterMode = kCAEmitterLayerPoints;

We tell the emitter what types of cell to emit by assigning to its emitterCells property
(an array of CAEmitterCell). We have only one type of cell. We then add the emitter
to our interface, and presto, it starts emitting:

emit.emitterCells = [NSArray arrayWithObject:cell];
[self.window.rootViewController.view.layer addSublayer:emit];

The result is a constant stream of black circles emitted from the point {30,100}, each
circle marching steadily to the right and vanishing after one second (Figure 17-5).

Now that we’ve succeeded in creating a boring emitter layer, we can start to vary some
parameters. The emissionRange defines a cone in which cells will be emitted; if we
increase the birthRate and widen the emissionRange, we get something that looks like
a stream coming from a water hose:

cell.birthRate = 100;
cell.lifetime = 1;
cell.velocity = 100;
cell.emissionRange = M_PI/10;

As the cell moves, it can be made to accelerate (or decelerate) in each dimension, using
its xAcceleration, yAcceleration, and zAcceleration properties. Here, we turn the
stream into a falling cascade, like a waterfall coming from the left:

Figure 17-5. A really boring emitter layer

Emitter Layers | 457

cell.birthRate = 100;
cell.lifetime = 1.5;
cell.velocity = 100;
cell.emissionRange = M_PI/10;
cell.xAcceleration = -40;
cell.yAcceleration = 200;

All aspects of cell behavior can be made to vary, using the following CAEmitterCell
properties:

lifetimeRange, velocityRange
How much the lifetime and velocity values are allowed to vary randomly for dif-
ferent cells.

scale
scaleRange, scaleSpeed

The scale alters the size of the cell; the range and speed determine how far and how
rapidly this size alteration is allowed to change over the lifetime of each cell.

color
redRange, greenRange, blueRange, alphaRange
redSpeed, greenSpeed, blueSpeed, alphaSpeed

The color is painted in accordance with the opacity of the cell’s contents image; it
combines with the image’s color, so if we want the color stated here to appear in
full purity, our contents image should use only white. The range and speed deter-
mine how far and how rapidly each color component is to change.

spin, spinRange
The spin is a rotational speed (in radians per second); its range determines how far
this speed is allowed to change over the lifetime of each cell.

Here we apply some variation so that the circles behave a little more independently of
one another. Some live longer than others, some come out of the emitter faster than
others. And they all start out a shade of blue, but change to a shade of green about half-
way through the stream (Figure 17-6):

cell.birthRate = 100;
cell.lifetime = 1.5;
cell.lifetimeRange = .4;
cell.velocity = 100;
cell.velocityRange = 20;
cell.emissionRange = M_PI/5;
cell.scale = 1;
cell.scaleRange = .2;
cell.scaleSpeed = .2;
cell.xAcceleration = -40;
cell.yAcceleration = 200;
cell.color = [UIColor blueColor].CGColor;
cell.greenRange = .5;
cell.greenSpeed = .75;

458 | Chapter 17: Animation

But wait, there’s more! Once the emitter layer is in place and animating, you can change
its parameters and the parameters of its emitter cells. To do so, use KVC on the emitter
layer. You can access the emitter cells through the emitter layer’s @"emitterCells" key
path; to specify a cell type, use its name property (which you’ll have to have assigned
earlier) as the next piece of the key path. For example, suppose we’ve set cell.name to
@"circle"; now we’ll change the cell’s greenSpeed so that each cell changes from blue
to green much earlier in its lifetime:

[emit setValue:[NSNumber numberWithFloat:3]
 forKeyPath:@"emitterCells.circle.greenSpeed"];

But wait, there’s still more: such changes can themselves be animated! Here, we’ll attach
to the emitter layer a repeating animation that causes our cell’s greenSpeed to move
back and forth between two values. The result is that the stream is sometimes mostly
blue and sometimes mostly green:

CABasicAnimation* ba =
 [CABasicAnimation animationWithKeyPath:@"emitterCells.circle.greenSpeed"];
ba.fromValue = [NSNumber numberWithFloat:-1];
ba.toValue = [NSNumber numberWithFloat:3];
ba.duration = 4;
ba.autoreverses = YES;
ba.repeatCount = HUGE_VALF;
[emit addAnimation:ba forKey:nil];

But wait, there’s still still more! A CAEmitterCell can itself function as an emitter —
that is, it can have cells of its own. Both CAEmitterLayer and CAEmitterCell conform
to the CAMediaTiming protocol, and their beginTime and duration properties can be
used to govern their times of operation, much as in a grouped animation. For example,

Figure 17-6. An emitter layer that makes a sort of waterfall

Emitter Layers | 459

this code causes our existing waterfall to spray tiny droplets in the region of the “nozzle”
(the emitter):

CAEmitterCell* cell2 = [CAEmitterCell emitterCell];
cell.emitterCells = [NSArray arrayWithObject: cell2];
cell2.contents = (id)im.CGImage;
cell2.emissionRange = M_PI;
cell2.birthRate = 200;
cell2.lifetime = 0.4;
cell2.velocity = 200;
cell2.scale = 0.2;
cell2.beginTime = .04;
cell2.duration = .2;

But if we change the beginTime to be larger (hence later), the tiny droplets happen near
the bottom of the cascade. We must also increase the duration, or stop setting it alto-
gether, since if the duration is less than the beginTime, no emission takes place at all
(Figure 17-7):

cell2.beginTime = .7;
cell2.duration = .8;

Of course we can also completely change the picture by changing the behavior of the
emitter itself. This change turns the emitter into a line, so that our cascade becomes
broader:

emit.emitterPosition = CGPointMake(100,25);
emit.emitterSize = CGSizeMake(100,100);
emit.emitterShape = kCAEmitterLayerLine;
emit.emitterMode = kCAEmitterLayerOutline;
cell.emissionLongitude = 3*M_PI/4;

Figure 17-7. The waterfall makes a kind of splash

460 | Chapter 17: Animation

There remains more to know about emitter layers and emitter cells, but at this point
you know enough to understand Apple’s sample code examples, one portraying fire
and smoke, and the other simulating fireworks, and you can explore further on your
own.

Emitter Layers | 461

CHAPTER 18

Touches

[Winifred the Woebegone illustrates hit-testing:] Hey
nonny nonny, is it you? — Hey nonny nonny nonny no!

— Hey nonny nonny, is it you? — Hey nonny nonny
nonny no!

—Marshall Barer, Once Upon a Mattress

A touch is an instance of the user putting a finger on the screen. The system and the
hardware, working together, know when a finger contacts the screen and where it is.
(Fingers are fat, but the system and the hardware cleverly reduce the finger’s location
to a single appropriate point.)

A UIView, by virtue of being a UIResponder, is the visible locus of touches. There are
other UIResponder subclasses, but none of them is visible on the screen. What the user
sees are views; what the user is touching are views. (The user may also see layers, but
a layer is not a UIResponder and is not involved with touches. I’ll talk later about how
to make it seem as if the user can touch a layer.)

It would make sense, therefore, if every touch were reported directly to the view in
which it occurred. However, what the system “sees” is not particular views but an app
as a whole. So a touch is represented as an object (a UITouch instance) which is bundled
up in an envelope (a UIEvent) which the system delivers to your app. It is then up to
your app to deliver the envelope to an appropriate UIView. In the vast majority of cases,
this will happen automatically the way you expect, and you will respond to a touch by
way of the view in which the touch occurred.

In fact, usually you won’t concern yourself with UIEvents and UITouches at all. Most
built-in interface views deal with these low-level touch reports themselves, and notify
your code at a higher level. When a UIButton emits an action message to report a control
event such as Touch Up Inside (Chapter 11), it has already performed a reduction of a
complex sequence of touches (“the user put a finger down inside me and then, possibly
with some dragging hither and yon, raised it when it was still reasonably close to me”).
A UITextField reports touches on the keyboard as changes in its own text. A UITable-

463

View reports that the user selected a cell. A UIScrollView, when dragged, reports that
it scrolled; when pinched outward, it reports that it zoomed. Some interface views
respond to touches internally without reporting to your code at all; for example, a
UIWebView, when dragged, just scrolls.

Nevertheless, it is useful to know how to respond to touches directly, so that you can
implement your own touchable views, and so that you understand what Cocoa’s built-
in views are actually doing. This chapter discusses touch detection and response by
views (and other UIResponders) at their lowest level, along with a slightly higher-level
mechanism, gesture recognizers, that categorizes touches into gesture types for you;
then it deconstructs the touch-delivery architecture by which touches are reported to
your views in the first place.

Touch Events and Views
Imagine a screen that the user is not touching at all: the screen is “finger-free.” Now
the user touches the screen with one or more fingers. From that moment to the time
the screen is once again finger-free, all touches and finger movements together consti-
tute what Apple calls a single multitouch sequence.

The system reports to your app, during a given multitouch sequence, every change in
finger configuration, so that your app can figure out what the user is doing. Every such
report is a UIEvent. In fact, every report having to do with the same multitouch se-
quence is the same UIEvent instance, arriving repeatedly, each time there’s a change in
finger configuration.

Every UIEvent reporting a change in the user’s finger configuration contains one or
more UITouch objects. Each UITouch object corresponds to a single finger; conversely,
every finger touching the screen is represented in the UIEvent by a UITouch object.
Once a certain UITouch instance has been created to represent a finger that has touched
the screen, the same UITouch instance is used to represent that finger throughout this
multitouch sequence until the finger leaves the screen.

Now, it might sound as if the system has to bombard the app with huge numbers of
reports constantly during a multitouch sequence. But that’s not really true. The system
needs to report only changes in the finger configuration. For a given UITouch object
(representing, remember, a specific finger), only four things can happen. These are
called touch phases, and are described by a UITouch instance’s phase property:

UITouchPhaseBegan

The finger touched the screen for the first time; this UITouch instance has just been
created. This is always the first phase, and arrives only once.

UITouchPhaseMoved

The finger moved upon the screen.

464 | Chapter 18: Touches

UITouchPhaseStationary

The finger remained on the screen without moving. Why is it necessary to report
this? Well, remember, once a UITouch instance has been created, it must be present
every time the UIEvent arrives. So if the UIEvent arrives because something else
happened (e.g., a new finger touched the screen), we must report what this finger
has been doing, even if it has been doing nothing.

UITouchPhaseEnded

The finger left the screen. Like UITouchPhaseBegan, this phase arrives only once.
The UITouch instance will now be destroyed and will no longer appear in UIEvents
for this multitouch sequence.

Those four phases are sufficient to describe everything that a finger can do. Actually,
there is one more possible phase:

UITouchPhaseCancelled

The system has aborted this multitouch sequence because something interrupted
it.

What might interrupt a multitouch sequence? There are many possibilities. Perhaps
the user clicked the Home button or the screen lock button in the middle of the se-
quence. A local notification alert may have appeared (Chapter 26); on an actual iPhone,
a call might have come in. (As we shall see, a gesture recognizer recognizing its gesture
may also trigger touch cancellation.) The point is, if you’re dealing with touches your-
self, you cannot afford to ignore touch cancellation; they are your opportunity to get
things into a coherent state when the sequence is interrupted.

When a UITouch first appears (UITouchPhaseBegan), your app works out which UIView
it is associated with. (I’ll give full details, later in this chapter, as to how it does that.)
This view is then set as the touch’s view property; from then on, this UITouch is
always associated with this view. In other words, a touch’s view is that touch’s view
forever (until that finger leaves the screen).

The same UIEvent containing the same UITouches can be sent to multiple views; after
all, these are programmatic objects, not real-world envelopes containing actual fingers.
Accordingly, a UIEvent is distributed to all the views of all the UITouches it contains.
Conversely, if a view is sent a UIEvent, it’s because that UIEvent contains at least one
UITouch whose view is this view.

If every UITouch in a UIEvent associated with a certain UIView has the phase UITouch-
PhaseStationary, that UIEvent is not sent to that UIView. There’s no point, because as
far as that view is concerned, nothing happened.

Touch Events and Views | 465

Receiving Touches
A UIResponder, and therefore a UIView, has four methods corresponding to the four
UITouch phases that require UIEvent delivery. A UIEvent is delivered to a view by
calling one or more of these four methods (the touches... methods):

touchesBegan:withEvent:

A finger touched the screen, creating a UITouch.

touchesMoved:withEvent:

A finger previously reported to this view with touchesBegan:withEvent: has moved.

touchesEnded:withEvent:

A finger previously reported to this view with touchesBegan:withEvent: has left the
screen.

touchesCancelled:withEvent:

We are bailing out on a finger previously reported to this view with touchesBegan:
withEvent:.

The parameters of these methods are:

The relevant touches
These are the event’s touches whose phase corresponds to the name of the method
and (normally) whose view is this view. They arrive as an NSSet (Chapter 10). If
you know for a fact that there is only one touch in the set, or that any touch in the
set will do, you can retrieve it with anyObject (an NSSet doesn’t implement last-
Object because a set is unordered).

The event
This is the UIEvent instance. It contains its touches as an NSSet, which you can
retrieve with the allTouches message. This means all the event’s touches, including
but not necessarily limited to those in the first parameter; there might be touches
in a different phase or intended for some other view. You can call touchesFor-
View: or touchesForWindow: to ask for the set of touches associated with a particular
view or window.

A UITouch has some useful methods and properties:

locationInView:, previousLocationInView:
The current and previous location of this touch with respect to the coordinate
system of a given view. The view you’ll be interested in will often be self or
self.superview; supply nil to get the location with respect to the window. The
previous location will be of interest only if the phase is UITouchPhaseMoved.

timestamp

When the touch last changed. A touch is timestamped when it is created (UITouch-
PhaseBegan) and each time it moves (UITouchPhaseMoved).

466 | Chapter 18: Touches

tapCount

If two touches are in roughly the same place in quick succession, and the first one
is brief, the second one may be characterized as a repeat of the first. They are
different touch objects, but the second will be assigned a tapCount one larger than
the previous one. The default is 1, so if (for example) a touch’s tapCount is 3, then
this is the third tap in quick succession in roughly the same spot.

view

The view with which this touch is associated.

Here are some additional UIEvent properties:

type

This will be UIEventTypeTouches. There are other event types, but you’re not going
to receive any of them this way.

timestamp

When the event occurred.

So, when we say that a certain view is receiving a touch, that is a shorthand expression
meaning that it is being sent a UIEvent containing this UITouch, over and over, by
calling one of its touches... methods, corresponding to the phase this touch is in, from
the time the touch is created until the time it is destroyed.

Restricting Touches
Touch events can be turned off entirely at the application level with UIApplication’s
beginIgnoringInteractionEvents. It is quite common to do this during animations and
other lengthy operations during which responding to a touch could cause undesirable
results. This call should be balanced by endIgnoringInteractionEvents. Pairs can be
nested, in which case interactivity won’t be restored until the outermost endIgnoring-
InteractionEvents has been reached.

A number of high-level UIView properties also restrict the delivery of touches to par-
ticular views:

userInteractionEnabled

If set to NO, this view (along with its subviews) is excluded from receiving touches.
Touches on this view or one of its subviews “fall through” to a view behind it.

opacity

If set to 0.0 (or extremely close to it), this view (along with its subviews) is excluded
from receiving touches. Touches on this view or one of its subviews “fall through”
to a view behind it.

Restricting Touches | 467

hidden

If set to YES, this view (along with its subviews) is excluded from receiving touches.
This makes sense, since from the user’s standpoint, the view and its subviews are
not even present.

multipleTouchEnabled

If set to NO, this view never receives more than one touch simultaneously; once it
receives a touch, it doesn’t receive any other touches until that first touch has
ended.

exclusiveTouch

This is the only one of these properties that can’t be set in the nib. An exclusive-
Touch view receives a touch only if no other views in the same window have touches
associated with them; once an exclusiveTouch view has received a touch, then while
that touch exists no other view in the same window receives any touches.

A UIWindow ignores multipleTouchEnabled; it always receives multiple
touches. Moreover, a UIWindow’s behavior with respect to exclusive-
Touch is unreliable, presumably because it is not itself a view in the win-
dow. In general this should not be an issue, since you’ll always have a
root view covering the window anyway.

Interpreting Touches
Thanks to the existence of gesture recognizers (discussed later in this chapter), in most
cases you won’t have to interpret touches at all; you’ll let a gesture recognizer do most
of that work. Even so, it is beneficial to be conversant with the nature of touch inter-
pretation; this will help you interact with a gesture recognizer, write your own gesture
recognizer, or subclass an existing one. Furthermore, not every touch sequence can be
codified through a gesture recognizer; sometimes, directly interpreting touches is the
best approach.

To figure out what’s going on as touches are received by a view, your code must es-
sentially function as a kind of state machine. You’ll receive various touches... method
calls, and your response will partly depend upon what happened previously, so you’ll
have to record somehow, such as in instance variables, the information that you’ll need
in order to decide what to do when the next touches... method is called. Such an
architecture can make writing and maintaining touch-analysis code quite tricky. More-
over, although you can distinguish a particular UITouch or UIEvent object over time
by keeping a reference to it, you mustn’t retain that reference; it doesn’t belong to you.

To illustrate the business of interpreting touches, we’ll start with a view that can be
dragged with the user’s finger. For simplicity, I’ll assume that this view receives only a
single touch at a time. (This assumption is easy to enforce by setting the view’s multiple-
TouchEnabled to NO, which is the default.)

468 | Chapter 18: Touches

The trick to making a view follow the user’s finger is to realize that a view is positioned
by its center, which is in superview coordinates, but the user’s finger might not be at
the center of the view. So at every stage of the drag we must change the view’s center
by the change in the user’s finger position in superview coordinates:

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 CGPoint loc = [[touches anyObject] locationInView: self.superview];
 CGPoint oldP = [[touches anyObject] previousLocationInView: self.superview];
 CGFloat deltaX = loc.x - oldP.x;
 CGFloat deltaY = loc.y - oldP.y;
 CGPoint c = self.center;
 c.x += deltaX;
 c.y += deltaY;
 self.center = c;
}

Next, let’s add a restriction that the view can be dragged only vertically or horizontally.
All we have to do is hold one coordinate steady; but which coordinate? Everything
seems to depend on what the user does initially. So we’ll do a one-time test the first
time we receive touchesMoved:withEvent:. Now we’re maintaining two state variables,
decided and horiz:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->decided = NO;
}

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 if (!self->decided) {
 self->decided = YES;
 CGPoint then = [[touches anyObject] previousLocationInView: self];
 CGPoint now = [[touches anyObject] locationInView: self];
 CGFloat deltaX = fabs(then.x - now.x);
 CGFloat deltaY = fabs(then.y - now.y);
 self->horiz = (deltaX >= deltaY);
 }
 CGPoint loc = [[touches anyObject] locationInView: self.superview];
 CGPoint oldP = [[touches anyObject] previousLocationInView: self.superview];
 CGFloat deltaX = loc.x - oldP.x;
 CGFloat deltaY = loc.y - oldP.y;
 CGPoint c = self.center;
 if (self->horiz)
 c.x += deltaX;
 else
 c.y += deltaY;
 self.center = c;
}

Look at how things are trending. We are maintaining state variables, which we are
managing across multiple methods, and we are subdividing a touches... method im-
plementation into tests depending on the state of our state machine. Our state machine
is very simple, involving just two state variables, but already our code is becoming
difficult to read and to maintain. Things only become more messy as we try to make
our view’s behavior more sophisticated.

Interpreting Touches | 469

Another area in which manual touch handling can rapidly prove overwhelming is when
it comes to distinguishing between different gestures that the user is to be permitted to
perform on a view. Imagine, for example, a view that distinguishes between a finger
tapping briefly and a finger remaining down for a longer time. We can’t know how long
a tap is until it’s over, so one approach might be to wait until then before deciding:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->time = [[touches anyObject] timestamp];
}

- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 NSTimeInterval diff = event.timestamp - self->time;
 if (diff < 0.4)
 NSLog(@"short");
 else
 NSLog(@"long");
}

On the other hand, one might argue that if a tap hasn’t ended after some set time (here,
0.4 seconds), we know that it is long, and so we could begin responding to it without
waiting for it to end. The problem is that we don’t automatically get an event after 0.4
seconds. So we’ll create one, using delayed performance:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->time = [[touches anyObject] timestamp];
 [self performSelector:@selector(touchWasLong) withObject:nil afterDelay:0.4];
}

- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 NSTimeInterval diff = event.timestamp - self->time;
 if (diff < 0.4)
 NSLog(@"short");
}

- (void) touchWasLong {
 NSLog(@"long");
}

But there’s a bug. If the tap is short, we report that it was short, but we also report that
it was long. That’s because the delayed call to touchWasLong arrives anyway. We could
use some sort of boolean flag to tell us when to ignore that call, but there’s a better
way: NSObject has a class method that lets us cancel any pending delayed performance
calls. So:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->time = [[touches anyObject] timestamp];
 [self performSelector:@selector(touchWasLong) withObject:nil afterDelay:0.4];
}

- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 NSTimeInterval diff = event.timestamp - self->time;
 if (diff < 0.4) {
 NSLog(@"short");
 [NSObject cancelPreviousPerformRequestsWithTarget:self

470 | Chapter 18: Touches

 selector:@selector(touchWasLong)
 object:nil];
 }
}

- (void) touchWasLong {
 NSLog(@"long");
}

Here’s another use of the same technique. We’ll distinguish between a single tap and
a double tap. The UITouch tapCount property already makes this distinction, but that,
by itself, is not enough to help us react differently to the two. What we must do, having
received a tap whose tapCount is 1, is to delay responding to it long enough to give a
second tap a chance to arrive. This is unfortunate, because it means that if the user
intends a single tap, some time will elapse before anything happens in response to it;
however, there’s nothing we can easily do about that.

Distributing our various tasks correctly is a bit tricky. We know when we have a double
tap as early as touchesBegan:withEvent:, so that’s when we cancel our delayed response
to a single tap, but we respond to the double tap in touchesEnded:withEvent:. We don’t
start our delayed response to a single tap until touchesEnded:withEvent:, because what
matters is the time between the taps as a whole, not between the starts of the taps. This
code is adapted from Apple’s own example:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 int ct = [[touches anyObject] tapCount];
 if (ct == 2) {
 [NSObject cancelPreviousPerformRequestsWithTarget:self
 selector:@selector(singleTap)
 object:nil];
 }
}

- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 int ct = [[touches anyObject] tapCount];
 if (ct == 1)
 [self performSelector:@selector(singleTap) withObject:nil afterDelay:0.3];
 if (ct == 2)
 NSLog(@"double tap");
}

- (void) singleTap {
 NSLog(@"single tap");
}

Now let’s consider combining our detection for a single or double tap with our earlier
code for dragging a view horizontally or vertically. This is to be a view that can detect
four kinds of gesture: a single tap, a double tap, a horizontal drag, and a vertical drag.
We must include the code for all possibilities and make sure they don’t interfere with
each other. The result is rather horrifying, a forced join between two already compli-
cated sets of code, along with an additional pair of state variables to track the decision
between the tap gestures on the one hand and the drag gestures on the other:

Interpreting Touches | 471

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 // be undecided
 self->decidedTapOrDrag = NO;
 // prepare for a tap
 int ct = [[touches anyObject] tapCount];
 if (ct == 2) {
 [NSObject cancelPreviousPerformRequestsWithTarget:self
 selector:@selector(singleTap)
 object:nil];
 self->decidedTapOrDrag = YES;
 self->drag = NO;
 return;
 }
 // prepare for a drag
 self->decidedDirection = NO;
}

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 if (self->decidedTapOrDrag && !self->drag)
 return;
 self->decidedTapOrDrag = YES;
 self->drag = YES;
 if (!self->decidedDirection) {
 self->decidedDirection = YES;
 CGPoint then = [[touches anyObject] previousLocationInView: self];
 CGPoint now = [[touches anyObject] locationInView: self];
 CGFloat deltaX = fabs(then.x - now.x);
 CGFloat deltaY = fabs(then.y - now.y);
 self->horiz = (deltaX >= deltaY);
 }
 CGPoint loc = [[touches anyObject] locationInView: self.superview];
 CGPoint oldP = [[touches anyObject] previousLocationInView: self.superview];
 CGFloat deltaX = loc.x - oldP.x;
 CGFloat deltaY = loc.y - oldP.y;
 CGPoint c = self.center;
 if (self->horiz)
 c.x += deltaX;
 else
 c.y += deltaY;
 self.center = c;
}

- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 if (!self->decidedTapOrDrag || !self->drag) {
 // end for a tap
 int ct = [[touches anyObject] tapCount];
 if (ct == 1)
 [self performSelector:@selector(singleTap) withObject:nil
 afterDelay:0.3];
 if (ct == 2)
 NSLog(@"double tap");
 return;
 }
}

472 | Chapter 18: Touches

- (void) singleTap {
 NSLog(@"single tap");
}

That code seems to work, but it’s hard to say whether it covers all possibilities coher-
ently; it’s barely legible and the logic borders on the mysterious. This is the kind of
situation for which gesture recognizers were devised.

Gesture Recognizers
Writing and maintaining a state machine that interprets touches across a combination
of three or four touches... methods is hard enough when a view confines itself to
expecting only one kind of gesture, such as dragging. It becomes even more involved
when a view wants to accept and respond differently to different kinds of gesture.
Furthermore, many types of gesture are conventional and standard; it seems insane to
require developers to implement independently the elements that constitute what is,
in effect, a universal vocabulary.

The solution is gesture recognizers, which standardize common gestures and allow the
code for different gestures to be separated and encapsulated into different objects.

Gesture Recognizer Classes
A gesture recognizer (a subclass of UIGestureRecognizer) is an object attached to a
UIView, which has for this purpose methods addGestureRecognizer: and removeGesture-
Recognizer:, and a gestureRecognizers property. A UIGestureRecognizer implements
the four touches... handlers, but it is not a responder (a UIResponder), so it does not
participate in the responder chain.

If a new touch is going to be delivered to a view, it is also associated with and delivered
to that view’s gesture recognizers if it has any, and to that view’s superview’s gesture
recognizers if it has any, and so on up the view hierarchy. Thus, the place of a gesture
recognizer in the view hierarchy matters, even though it isn’t part of the responder
chain.

UITouch and UIEvent provide complementary ways of learning how touches and ges-
ture recognizers are associated. UITouch’s gestureRecognizers lists the gesture recog-
nizers that are currently handling this touch. UIEvent’s touchesForGesture-

Recognizer: lists the touches that are currently being handled by a particular gesture
recognizer.

Each gesture recognizer maintains its own state as touch events arrive, building up
evidence as to what kind of gesture this is. When one of them decides that it has rec-
ognized its own type of gesture, it emits either a single message (to indicate, for example,
that the user tapped this view) or a series of messages (to indicate, for example, that
the user is dragging this view); the distinction here is between a discrete and a contin-

Gesture Recognizers | 473

uous gesture. What message a gesture recognizer emits, and to what object it sends it,
is set through a target–action dispatch table attached to the gesture recognizer; a gesture
recognizer is rather like a UIControl (Chapter 11) in this regard. Indeed, one might say
that a gesture recognizer simplifies the touch handling of any view to be like that of a
control. The difference is that one control may report several different control events,
whereas each gesture recognizer reports only one gesture type, with different gestures
being reported by different gesture recognizers. This architecture implies that it is un-
necessary to subclass UIView merely in order to implement touch analysis.

UIGestureRecognizer itself is abstract, providing methods and properties to its sub-
classes. Among these are:

initWithTarget:action:

The designated initializer. Each message emitted by a UIGestureRecognizer is sim-
ply a matter of sending the action message to the target. Further target–action pairs
may be added with addTarget:action:, and removed with removeTarget:action:.

Two forms of selector are possible: either there is no parameter, or there is a single
parameter which will be the gesture recognizer. Most commonly, you’ll use the
second form, so that the target can identify and query the gesture recognizer;
moreover, using the second form also gives the target a reference to the view, be-
cause the gesture recognizer provides a reference to its view as the view property.

locationOfTouch:inView:

The touch is specified by an index number. The numberOfTouches property provides
a count of current touches; the touches themselves are inaccessible from outside
the gesture recognizer.

enabled

A convenient way to turn a gesture recognizer off without having to remove it from
its view.

state, view
I’ll discuss state later on. The view is the view to which this gesture recognizer is
attached.

Built-in UIGestureRecognizer subclasses are provided for six common gesture types:
tap, pinch, pan (drag), swipe, rotate, and long press. These embody properties and
methods likely to be needed for each type of gesture, either in order to configure the
gesture recognizer beforehand or in order to query it as to the state of an ongoing
gesture:

UITapGestureRecognizer (discrete)
Configuration: numberOfTapsRequired, numberOfTouchesRequired (“touches” means
simultaneous fingers).

UIPinchGestureRecognizer (continuous)
State: scale, velocity.

474 | Chapter 18: Touches

UIRotationGestureRecognizer (continuous)
State: rotation, velocity.

UISwipeGestureRecognizer (discrete)
Configuration: direction (meaning permitted directions, a bitmask), numberOf-
TouchesRequired.

UIPanGestureRecognizer (continuous)
Configuration: minimumNumberOfTouches, maximumNumberOfTouches.

State: translationInView:, setTranslation:inView:, and velocityInView:; the co-
ordinate system of the specified view is used, so to follow a finger you’ll use the
superview of the view being dragged, just as we did in the examples earlier.

UILongPressGestureRecognizer (continuous)
Configuration: numberOfTapsRequired, numberOfTouchesRequired, minimumPress-
Duration, allowableMovement. The numberOfTapsRequired is the count of taps be-
fore the tap that stays down; so it can be 0 (the default). The allowableMovement
setting lets you compensate for the fact that the user’s finger is unlikely to remain
steady during an extended press; thus we need to provide some limit before de-
ciding that this gesture is, say, a drag, and not a long press after all. On the other
hand, once the long press is recognized, the finger is permitted to drag.

UIGestureRecognizer also provides a locationInView: method. This is a single point,
even if there are multiple touches. The subclasses implement this variously. For exam-
ple, for UIPanGestureRecognizer, the location is where the touch is if there’s a single
touch, but it’s a sort of midpoint (“centroid”) if there are multiple touches.

We already know enough to implement, using a gesture recognizer, a view that re-
sponds to a single tap, or a view that responds to a double tap. We don’t yet know quite
enough to implement a view that lets itself be dragged around, or a view that can
respond to more than one gesture; we’ll come to that. Meanwhile, here’s code that
implements a view that responds to a single tap:

UITapGestureRecognizer* t = [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(singleTap)];
[v addGestureRecognizer:t];
// ...
- (void) singleTap {
 NSLog(@"single");
}

And here’s code that implements a view that responds to a double tap:

UITapGestureRecognizer* t = [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(doubleTap)];
t.numberOfTapsRequired = 2;
[v addGestureRecognizer:t];

Gesture Recognizers | 475

// ...
- (void) doubleTap {
 NSLog(@"double");
}

For a continuous gesture like dragging, we need to know both when the gesture is in
progress and when the gesture ends. This brings us to the subject of a gesture recog-
nizer’s state.

A gesture recognizer implements a notion of states (the state property); it passes
through these states in a definite progression. The gesture recognizer remains in the
Possible state until it can make a decision one way or the other as to whether this is in
fact the correct gesture. The documentation neatly lays out the possible progressions:

Wrong gesture
Possible → Failed. No action message is sent.

Discrete gesture (like a tap), recognized
Possible → Ended. One action message is sent, when the state changes to Ended.

Continuous gesture (like a drag), recognized
Possible → Began → Changed (repeatedly) → Ended. Action messages are sent once
for Began, as many times as necessary for Changed, and once for Ended.

Continuous gesture, recognized but later cancelled
Possible → Began → Changed (repeatedly) → Cancelled. Action messages are sent
once for Began, as many times as necessary for Changed, and once for Cancelled.

The actual state names are UIGestureRecognizerStatePossible and so forth. The name
UIGestureRecognizerStateRecognized is actually a synonym for the Ended state; I find
this unnecessary and confusing and I’ll ignore it in my discussion.

We now know enough to implement, using a gesture recognizer, a view that lets itself
be dragged around in any direction by a single finger. Our maintenance of state is greatly
simplified, because a UIPanGestureRecognizer maintains a delta (translation) for us.
This delta, available using translationInView:, is reckoned from the touch’s initial
position. So we need to store our center only once:

UIPanGestureRecognizer* p = [[UIPanGestureRecognizer alloc] initWithTarget:self
 action:@selector(dragging:)];
[v addGestureRecognizer:p];
// ...
- (void) dragging: (UIPanGestureRecognizer*) p {
 UIView* vv = p.view;
 if (p.state == UIGestureRecognizerStateBegan)
 self->origC = vv.center;
 CGPoint delta = [p translationInView: vv.superview];
 CGPoint c = self->origC;
 c.x += delta.x; c.y += delta.y;
 vv.center = c;
}

476 | Chapter 18: Touches

Actually, it’s possible to write that code without maintaining any state at all, because
we are allowed to reset the UIPanGestureRecognizer’s delta, using setTranslation:in-
View:. So:

- (void) dragging: (UIPanGestureRecognizer*) p {
 UIView* vv = p.view;
 if (p.state == UIGestureRecognizerStateBegan ||
 p.state == UIGestureRecognizerStateChanged) {
 CGPoint delta = [p translationInView: vv.superview];
 CGPoint c = vv.center;
 c.x += delta.x; c.y += delta.y;
 vv.center = c;
 [p setTranslation: CGPointZero inView: vv.superview];
 }
}

A gesture recognizer also works, as I’ve already mentioned, if it is attached to the su-
perview (or further up the hierarchy) of the view in which the user gestures. For ex-
ample, if a tap gesture recognizer is attached to the window, the user can tap on any
view within that window, and the tap will be recognized; the view’s presence does not
“block” the window from recognizing the gesture, even if it is a UIControl that responds
autonomously to touches.

This behavior comes as a surprise to beginners, but it makes sense, because if it were
not the case, certain gestures would be impossible. Imagine, for example, a pair of views
on each of which the user can tap individually, but which the user can also touch
simultaneously (one finger on each view) and rotate together around their mutual
centroid. Neither view can detect the rotation qua rotation, because neither view re-
ceives both touches; only the superview can detect it, so the fact that the views them-
selves respond to touches must not prevent the superview’s gesture recognizer from
operating.

Suppose, then, that your window’s root view has a UITapGestureRecognizer attached
to it (perhaps because you want to be able to recognize taps on the background), but
there is also a UIButton within it. How is the root view to ignore a tap on the button?
The best way, I think, is through the gesture recognizer’s delegate, which can tell the
gesture recognizer to ignore touches intended for another view. (I’ll talk about gesture
recognizer delegates later in this chapter.) And if the gesture recognizer attached to the
root view is for some gesture other than a tap, then the problem never arises, because
a tap on the button won’t trigger the gesture recognizer’s action handler in the first
place. Nevertheless, the view hierarchy does complicate the use of gesture recognizers;
fortunately, as I shall explain, gesture recognizers usually take care of these complica-
tions themselves, and when they don’t, they provide ways for you to resolve them.

Multiple Gesture Recognizers
The question naturally arises of what happens when multiple gesture recognizers are
in play. This isn’t a matter merely of multiple recognizers attached to a single view,

Gesture Recognizers | 477

because, as I have just said, if a view is touched, not only its own gesture recognizers
but any gesture recognizers attached to views further up the view hierarchy are also in
play, simultaneously. I like to think of a view as surrounded by a swarm of gesture
recognizers — its own and those of its superview (and so on). In reality, it is a touch
that has a swarm of gesture recognizers; that’s why a UITouch has a gesture-
Recognizers property, in the plural.

In general, once a gesture recognizer succeeds in recognizing its gesture, any other ges-
ture recognizers associated with its touches are forced into the Failed state, and whatever
touches were associated with those gesture recognizers are no longer sent to them; in
effect, the first gesture recognizer in a swarm that recognizes its gesture owns the ges-
ture, and those touches, from then on.

In many cases, this behavior alone will correctly eliminate conflicts. For example, we
can add both our UITapGestureRecognizer for a single tap and our UIPanGesture-
Recognizer to a view and everything will just work.

What happens if we also add the UITapGestureRecognizer for a double tap? Dragging
works, and single tap works; double tap works too, but without preventing the single
tap from working. So, on a double tap, both the single tap action handler and the double
tap action handler are called.

If that isn’t what we want, we don’t have to use delayed performance, as we did earlier.
Instead, we can create a dependency between one gesture recognizer and another, telling
the first to suspend judgement until the second has decided whether this is its ges-
ture, by sending the first the requireGestureRecognizerToFail: message. This message
doesn’t mean “force this recognizer to fail”; it means, “you can’t succeed until this
recognizer fails.”

So our view is now configured as follows:

UITapGestureRecognizer* t2 = [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(doubleTap)];
t2.numberOfTapsRequired = 2;
[v addGestureRecognizer:t2];

UITapGestureRecognizer* t1 = [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(singleTap)];
[t1 requireGestureRecognizerToFail:t2];
[v addGestureRecognizer:t1];

UIPanGestureRecognizer* p = [[UIPanGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(dragging:)];
[v addGestureRecognizer:p];

478 | Chapter 18: Touches

Apple would prefer, if you’re going to have a view respond both to single
tap and double tap, that you not make the former wait upon the latter
(because this delays your response after the single tap). Rather, they
would like you to arrange things so that it doesn’t matter that you re-
spond to a single tap that is the first tap of a double tap. This isn’t always
feasible, of course; Apple’s own Mobile Safari is a clear counterexample.

Subclassing Gesture Recognizers
To subclass a built-in gesture recognizer subclass, you must do the following things:

• At the start of the implementation file, import <UIKit/UIGestureRecognizer-
Subclass.h>. This file contains a category on UIGestureRecognizer that allows you
to set the gesture recognizer’s state (which is otherwise read-only), along with dec-
larations for the methods you may need to override.

• Override any touches... methods you need to (as if the gesture recognizer were a
UIResponder); you will almost certainly call super so as to take advantage of the
built-in behavior. In overriding a touches... method, you need to think like a ges-
ture recognizer. As these methods are called, a gesture recognizer is setting its state;
you must interact with that process.

To illustrate, we will subclass UIPanGestureRecognizer so as to implement a view that
can be moved only horizontally or vertically. Our strategy will be to make two UIPan-
GestureRecognizer subclasses — one that allows only horizontal movement, and an-
other that allows only vertical movement. They will make their recognition decisions
in a mutually exclusive manner, so we can attach an instance of each to our view. This
separates the decision-making logic in a gorgeously encapsulated object-oriented man-
ner — a far cry from the spaghetti code we wrote earlier to do this same task.

I will show only the code for the horizontal drag gesture recognizer, because the vertical
recognizer is symmetrically identical. We maintain just one instance variable, orig-
Loc, which we will use once to determine whether the user’s initial movement is hori-
zontal. We override touchesBegan:withEvent: to set our instance variable with the first
touch’s location:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->origLoc = [[touches anyObject] locationInView:self.view.superview];
 [super touchesBegan: touches withEvent: event];
}

We then override touchesMoved:withEvent:; all the recognition logic is here. This
method will be called for the first time with the state still at Possible. At that moment,
we look to see if the user’s movement is more horizontal than vertical. If it isn’t, we set
the state to Failed. But if it is, we just step back and let the superclass do its thing:

Gesture Recognizers | 479

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 if (self.state == UIGestureRecognizerStatePossible) {
 CGPoint loc = [[touches anyObject] locationInView:self.view.superview];
 CGFloat deltaX = fabs(loc.x - origLoc.x);
 CGFloat deltaY = fabs(loc.y - origLoc.y);
 if (deltaY >= deltaX)
 self.state = UIGestureRecognizerStateFailed;
 }
 [super touchesMoved: touches withEvent:event];
}

We now have a view that moves only if the user’s initial gesture is horizontal. But that
isn’t the entirety of what we want; we want a view that, itself, moves horizontally only.
To implement this, we’ll simply lie to our client about where the user’s finger is, by
overriding translationInView::

- (CGPoint)translationInView:(UIView *)v {
 CGPoint proposedTranslation = [super translationInView:v];
 proposedTranslation.y = 0;
 return proposedTranslation;
}

That example was simple, because we subclassed a fully functional built-in UIGesture-
Recognizer subclass. If you were to write your own UIGestureRecognizer subclass en-
tirely from scratch, there would be more work to do:

• You should definitely implement all four touches... handlers. Their job, at a min-
imum, is to advance the gesture recognizer through the canonical progression of
its states. When the first touch arrives at a gesture recognizer, its state will be
Possible; you never explicitly set the recognizer’s state to Possible yourself. As soon
as you know this can’t be our gesture, you set the state to Failed (Apple says that
a gesture recognizer should “fail early, fail often”). If the gesture gets past all the
failure tests, you set the state instead either to Ended (for a discrete gesture) or to
Began (for a continuous gesture); if Began, then you might set it to Changed, and
ultimately you must set it to Ended. Action messages will be sent automatically at
the appropriate moments.

• You should probably implement reset. This is called after you reach the end of the
progression of states to notify you that the gesture recognizer’s state is about to be
set back to Possible; it is your chance to return your state machine to its starting
configuration (resetting instance variables, for example).

Keep in mind that your gesture recognizer might stop receiving touches without notice.
Just because it gets a touchesBegan:withEvent: call for a particular touch doesn’t mean
it will ever get touchesEnded:withEvent: for that touch. If your gesture recognizer fails
to recognize its gesture, either because it declares failure or because it is still in the
Possible state when another gesture recognizer recognizes, it won’t get any more
touches... calls for any of the touches that were being sent to it. This is why reset is
so important; it’s the one reliable signal that it’s time to clean up and get ready to receive
the beginning of another possible gesture.

480 | Chapter 18: Touches

Gesture Recognizer Delegate
A gesture recognizer can have a delegate, which can perform two types of task:

Block a gesture recognizer’s operation
gestureRecognizerShouldBegin: is sent to the delegate before the gesture recognizer
passes out of the Possible state; return NO to force the gesture recognizer to pro-
ceed to the Failed state.

gestureRecognizer:shouldReceiveTouch: is sent to the delegate before a touch is
sent to the gesture recognizer’s touchesBegan:... method; return NO to prevent
that touch from ever being sent to the gesture recognizer.

Mediate simultaneous gesture recognition
When a gesture recognizer is about to declare that it recognizes its gesture, gesture-
Recognizer:shouldRecognizeSimultaneouslyWithGestureRecognizer: is sent to the
delegate of that gesture recognizer, if this declaration would force the failure of
another gesture recognizer, and to the delegate of a gesture recognizer whose failure
would be forced. Return YES to prevent that failure, thus allowing both gesture
recognizers to operate simultaneously. For example, a view could respond to both
a two-fingered pinch and a two-fingered pan, the one applying a scale transform,
the other changing the view’s center.

As an artificial example, we will use delegate messages to combine a UILongPress-
GestureRecognizer and a UIPanGestureRecognizer, as follows: the user must perform
a tap-and-a-half (tap and hold) to “get the view’s attention,” which we will indicate by
a pulsing animation on the view; then (and only then) the user can drag the view. The
example is artificial because a long press gesture recognizer can do all the work itself:
its Changed state indicates a drag. However, the example illustrates the principle of
using a gesture recognizer delegate.

As we create our gesture recognizers, we’ll keep a reference to the UILongPressGesture-
Recognizer, and we’ll make ourself the UIPanGestureRecognizer’s delegate:

UIPanGestureRecognizer* p = [[UIPanGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(panning:)];
UILongPressGestureRecognizer* lp = [[UILongPressGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(longPress:)];
lp.numberOfTapsRequired = 1;
[view addGestureRecognizer:p];
[view addGestureRecognizer:lp];
self.longPresser = lp;
p.delegate = self;

In keeping with encapsulation, the UILongPressGestureRecognizer’s handler will take
care of starting and stopping the animation, and the UIPanGestureRecognizer’s handler
will take care of the drag in the familiar manner:

Gesture Recognizers | 481

- (void) longPress: (UILongPressGestureRecognizer*) lp {
 if (lp.state == UIGestureRecognizerStateBegan) {
 CABasicAnimation* anim =
 [CABasicAnimation animationWithKeyPath: @"transform"];
 anim.toValue =
 [NSValue valueWithCATransform3D:CATransform3DMakeScale(1.1, 1.1, 1)];
 anim.fromValue =
 [NSValue valueWithCATransform3D:CATransform3DIdentity];
 anim.repeatCount = HUGE_VALF;
 anim.autoreverses = YES;
 [lp.view.layer addAnimation:anim forKey:nil];
 }
 if (lp.state == UIGestureRecognizerStateEnded ||
 lp.state == UIGestureRecognizerStateCancelled) {
 [lp.view.layer removeAllAnimations];
 }
}

- (void) panning: (UIPanGestureRecognizer*) p {
 UIView* vv = p.view;
 if (p.state == UIGestureRecognizerStateBegan)
 self->origC = vv.center;
 CGPoint delta = [p translationInView: v.superview];
 CGPoint c = self->origC;
 c.x += delta.x; c.y += delta.y;
 vv.center = c;
}

Now for the delegate methods. We are the UIPanGestureRecognizer’s delegate. If the
UIPanGestureRecognizer tries to declare success while the UILongPressGesture-
Recognizer’s state is Failed or still at Possible, we prevent it. If the UILongPress-
GestureRecognizer succeeds, we permit the UIPanGestureRecognizer to operate as
well:

- (BOOL) gestureRecognizerShouldBegin: (UIGestureRecognizer*) g {
 if (self.longPresser.state == UIGestureRecognizerStatePossible ||
 self.longPresser.state == UIGestureRecognizerStateFailed)
 return NO;
 return YES;
}

- (BOOL)gestureRecognizer: (UIGestureRecognizer*) g1
 shouldRecognizeSimultaneouslyWithGestureRecognizer: (UIGestureRecognizer*) g2 {
 return YES;
}

The result is that the view can be dragged only if it is pulsing; in effect, what we’ve done
is to compensate, using delegate methods, for the fact that UIGestureRecognizer has
no requireGestureRecognizerToSucceed: method.

As I said earlier, the example is a bit artificial, because a UILongPressGestureRecognizer
can implement draggability all on its own. It lacks the convenient translationIn-
View: method, but we know how to work around that. So here, for completeness, is
the same behavior implemented using a single gesture recognizer and a single handler:

482 | Chapter 18: Touches

- (void) longPress: (UILongPressGestureRecognizer*) lp {
 UIView* vv = lp.view;
 if (lp.state == UIGestureRecognizerStateBegan) {
 CABasicAnimation* anim =
 [CABasicAnimation animationWithKeyPath: @"transform"];
 anim.toValue =
 [NSValue valueWithCATransform3D:CATransform3DMakeScale(1.1, 1.1, 1)];
 anim.fromValue =
 [NSValue valueWithCATransform3D:CATransform3DIdentity];
 anim.repeatCount = HUGE_VALF;
 anim.autoreverses = YES;
 [vv.layer addAnimation:anim forKey:nil];
 self->origOffset =
 CGPointMake(CGRectGetMidX(vv.bounds) - [lp locationInView:vv].x,
 CGRectGetMidY(vv.bounds) - [lp locationInView:vv].y);
 }
 if (lp.state == UIGestureRecognizerStateChanged) {
 CGPoint c = [lp locationInView: vv.superview];
 c.x += self->origOffset.x;
 c.y += self->origOffset.y;
 vv.center = c;
 }
 if (lp.state == UIGestureRecognizerStateEnded ||
 lp.state == UIGestureRecognizerStateCancelled) {
 [vv.layer removeAllAnimations];
 }
}

If you are subclassing a gesture recognizer class, you can incorporate delegate-like be-
havior into the subclass. By overriding canPreventGestureRecognizer: and canBe-
PreventedByGestureRecognizer:, you can mediate simultaneous gesture recognition at
the class level. The built-in gesture recognizer subclasses already do this; that is why,
for example, a UITapGestureRecognizer whose numberOfTapsRequired is 1 does not, by
recognizing its gesture, cause the failure of a UITapGestureRecognizer whose numberOf-
TapsRequired is 2.

You can also, in a gesture recognizer subclass, send ignoreTouch:forEvent: directly to
a gesture recognizer (typically, to self). This has the same effect as the delegate method
gestureRecognizer:shouldReceiveTouch: returning NO, blocking delivery of that touch
to the gesture recognizer for as long as it exists. For example, if you’re in the middle of
an already recognized gesture and a new touch arrives, you might well elect to ignore it.

Touch Delivery
Let’s now return to the very beginning of the touch reporting process, when the system
sends the app a UIEvent containing touches, and tease apart in full detail the entire
procedure by which a touch is delivered to views and gesture recognizers:

1. Whenever a new touch appears, the application calls the UIView instance method
hitTest:withEvent: on the window, which returns the view (called, appropriately,

Touch Delivery | 483

the hit-test view) that will be permanently associated with this touch. This method
uses the UIView instance method pointInside:withEvent: along with hitTest:with-
Event: recursively down the view hierarchy to find the frontmost view containing
the touch’s location and capable of receiving a touch. The logic of how a view’s
userInteractionEnabled, hidden, and opacity affect its touchability is implemented
at this stage.

2. Each time the touch situation changes, the application calls its own sendEvent:,
which in turn calls the window’s sendEvent:. The window delivers each of an
event’s touches by calling the appropriate touches... method(s), as follows:

a. As a touch first appears, it is initially delivered to the hit-test view’s swarm of
gesture recognizers. It is then also delivered to that view. The logic of with-
holding touches in obedience to multipleTouchEnabled and exclusiveTouch is
also implemented at this stage. For example, additional touches won’t be de-
livered to a view if that view currently has a touch and has multipleTouch-
Enabled set to NO.

b. If a gesture is recognized by a gesture recognizer, then for any touch associated
with this gesture recognizer:

i. touchesCancelled:forEvent: is sent to the touch’s view, and the touch is
no longer delivered to its view.

ii. If that touch was associated with any other gesture recognizer, that gesture
recognizer is forced to fail.

c. If a gesture recognizer fails, either because it declares failure or because it is
forced to fail, its touches are no longer delivered to it, but (except as already
specified) they continue to be delivered to their view.

d. If a touch would be delivered to a view, but that view does not respond to the
appropriate touches... method, a responder further up the responder chain
(Chapter 11) is sought that does respond to it, and the touch is delivered there.

The rest of this chapter elaborates on each stage of this standard procedure, nearly every
bit of which can be customized to some extent.

Hit-Testing
Hit-testing is the determination of what view the user touched. View hit-testing uses
the UIView instance method hitTest:withEvent:, which returns either a view (the hit-
test view) or nil. The idea is to find the frontmost view containing the touch point. This
method uses an elegant recursive algorithm, as follows:

1. A view’s hitTest:withEvent: first calls the same method on its own subviews, if it
has any, because a subview is considered to be in front of its superview. The sub-
views are queried in reverse order, because that’s front-to-back order (Chap-
ter 14): thus, if two sibling views overlap, the one in front reports the hit first.

484 | Chapter 18: Touches

2. If, as a view hit-tests its subviews, any of those subviews responds by returning a
view, it stops querying its subviews and immediately returns the view that was
returned to it. Thus, the very first view to declare itself the hit-test view immediately
percolates all the way to the top of call chain and is the hit-test view.

3. If, on the other hand, a view has no subviews, or if all of its subviews return nil
(indicating that neither they nor their subviews was hit), then the view calls point-
Inside:withEvent: on itself. If this call reveals that the touch was inside this view,
the view returns itself, declaring itself the hit-test view; otherwise it returns nil.

No problem arises if a view has a transform, because pointInside:withEvent: takes
the transform into account. That’s why a rotated button continues to work cor-
rectly.

It is also up to hitTest:withEvent: to implement the logic of touch restrictions exclusive
to a view. If a view’s userInteractionEnabled is NO, or its hidden is YES, or its
opacity is close to 0.0, it returns nil without hit-testing any of its subviews and without
calling pointInside:withEvent:. Thus these restrictions do not, of themselves, exclude
a view from being hit-tested; on the contrary, they operate precisely by modifying a
view’s hit-test result.

However, hit-testing knows nothing about multipleTouchEnabled (because its behavior
involves multiple touches) or exclusiveTouch (because its behavior involves multiple
views). The logic of obedience to these properties is implemented at a later stage of the
story.

You can use hit-testing yourself at any moment where it might prove useful. In calling
hitTest:withEvent:, supply a point in the coordinates of the view to which the message
is sent. The second parameter can be nil if you have no event.

For example, suppose we have a UIView with two UIImageView subviews. We want
to detect a tap in either UIImageView, but we want to handle this at the level of the
UIView. We can attach a UITapGestureRecognizer to the UIView, but how will we
know which subview, if any, the tap was in?

Our first step must be to set userInteractionEnabled to YES for both UIImageViews.
(This step is crucial; UIImageView is one of the few built-in view classes where this is
NO by default, and a view whose userInteractionEnabled is NO won’t normally be
the result of a call to hitTest:withEvent:.) Now, when our gesture recognizer’s action
handler is called, the view can use hit-testing to determine where the tap was:

CGPoint p = [g locationOfTouch:0 inView:self]; // g is the gesture recognizer
UIView* v = [self hitTest:p withEvent:nil];

You can also override hitTest:withEvent: in a view subclass, to alter its results during
touch delivery, thus customizing the touch delivery mechanism. I call this hit-test
munging. Hit-test munging can be used selectively as a way of turning user interaction
on or off in an area of the interface. In this way, some unusual effects can be produced.

Touch Delivery | 485

For example, an important use of hit-test munging is to permit the touching of parts
of subviews outside the bounds of their superview. If a view’s clipsToBounds is NO, a
paradox arises: the user can see the regions of its subviews that are outside its bounds,
but the user can’t touch them. This can be confusing and seems wrong. The solution
is for the view to override hitTest:withEvent: as follows:

-(UIView *)hitTest:(CGPoint)point withEvent:(UIEvent *)event {
 UIView* result = [super hitTest:point withEvent:event];
 if (result)
 return result;
 for (UIView* sub in [self.subviews reverseObjectEnumerator]) {
 CGPoint pt = [self convertPoint:point toView:sub];
 result = [sub hitTest:pt withEvent:event];
 if (result)
 return result;
 }
 return nil;
}

Here are some further possible uses of hit-test munging, just to stimulate your imagi-
nation:

• If a superview contains a UIButton but doesn’t return that UIButton from hitTest:
withEvent:, that button can’t be tapped.

• You might override hitTest:withEvent: to return the result from super most of the
time, but to return self under certain conditions, effectively making all subviews
untouchable without making the superview itself untouchable (as setting its user-
InteractionEnabled to NO would do).

• A view whose userInteractionEnabled is NO can break the normal rules and return
itself from hit-testing and can thus end up as the hit-test view.

Hit-testing for layers

There is also hit-testing for layers. It doesn’t happen automatically, as part of send-
Event: or anything else; it’s up to you. It’s just a convenient way of finding out which
layer would receive a touch at a point, if layers received touches. To hit-test layers, call
hitTest: on a layer, with a point in superlayer coordinates.

Keep in mind, though, that layers do not receive touches. A touch is reported to a view,
not a layer. A layer, except insofar as it is a view’s underlying layer and gets touch
reporting because of its view, is completely untouchable; from the point of view of
touches and touch reporting, it’s as if the layer weren’t on the screen at all. No matter
where a layer may appear to be, a touch falls right through the layer to whatever view
is behind it.

In the case of the layer that is a view’s underlying layer, you don’t need hit-testing. It
is the view’s drawing; where it appears is where the view is. So a touch in that layer is
equivalent to a touch in its view. Indeed, one might say that this is what views are
actually for: to provide layers with touchability.

486 | Chapter 18: Touches

The only layers on which you’d need special hit-testing, then, would presumably be
layers that are not themselves any view’s underlying layer, because those are the only
ones you don’t find out about by normal view hit-testing. However, all layers, including
a layer that is its view’s underlying layer, are part of the layer hierarchy, and can par-
ticipate in layer hit-testing. So the most comprehensive way to hit-test layers is to start
with the topmost layer, the window’s layer. In this example, we subclass UIWindow
and override its hitTest:withEvent: so as to get layer hit-testing every time there is view
hit-testing:

- (UIView*) hitTest:(CGPoint)point withEvent:(UIEvent *)event {
 CALayer* lay = [self.layer hitTest:point];
 // ... possibly do something with that information ...
 return [super hitTest:point withEvent:event];
}

Because this is the window, the view hit-test point works as the layer hit-test point;
window bounds are screen bounds. But usually you’ll have to convert to superlayer
coordinates. In this example, we return to the CompassView developed in Chap-
ter 16, in which all the parts of the compass are layers; we want to know whether the
user tapped on the arrow layer. For simplicity, we’ve given the CompassView a UITap-
GestureRecognizer, and this is its action handler, in the CompassView itself. We con-
vert to our superview’s coordinates, because these are also our layer’s superlayer co-
ordinates:

// self is the CompassView
CGPoint p = [t locationOfTouch: 0 inView: self.superview];
CALayer* hit = [self.layer hitTest:p];
if (hit == ((CompassLayer*)self.layer).arrow) // ...

Layer hit-testing works by calling containsPoint:. However, containsPoint: takes a
point in the layer’s coordinates, so to hand it a point that arrives through hitTest: you
must first convert from superlayer coordinates:

BOOL hit = [lay containsPoint: [lay convertPoint:point fromLayer:lay.superlayer]];

Layer hit-testing knows nothing of the restrictions on touch delivery; it just reports on
every sublayer, even those whose view has userInteractionEnabled set to NO.

The documentation warns that hitTest: must not be called on a
CATransformLayer.

Hit-testing for drawings

The preceding example (letting the user tap on the compass arrow) worked, but we
might complain that it is reporting a hit on the arrow even if the hit misses the draw-
ing of the arrow. That’s true for view hit-testing as well. A hit is reported if we are within
the view or layer as a whole; hit-testing knows nothing of drawing, transparent areas,
and so forth.

Touch Delivery | 487

If you know how the region is drawn and can reproduce the edge of that drawing as a
CGPath, you can test whether a point is inside it with CGPathContainsPoint. So, for a
layer, you could override hitTest along these lines:

- (CALayer*) hitTest:(CGPoint)p {
 CGPoint pt = [self convertPoint:p fromLayer:self.superlayer];
 CGMutablePathRef path = CGPathCreateMutable();
 // ... draw path here ...
 CALayer* result = CGPathContainsPoint(path, NULL, pt, true) ? self : nil;
 CGPathRelease(path);
 return result;
}

Alternatively, it might be the case that if a pixel of the drawing is transparent, it’s outside
the drawn region. Unfortunately, there’s no way to ask a drawing (or a view, or a layer)
for the color of a pixel; you have to make a bitmap and copy the drawing into it, and
then ask the bitmap for the color of a pixel. If you can reproduce the content as an
image, and all you care about is transparency, you can make a one-pixel alpha-only
bitmap, draw the image in such a way that the pixel you want to test is the pixel drawn
into the bitmap, and examine the transparency of the resulting pixel:

// assume im is a UIImage, point is the CGPoint to test
unsigned char pixel[1] = {0};
CGContextRef context = CGBitmapContextCreate(pixel,
 1, 1, 8, 1, NULL,
 kCGImageAlphaOnly);
UIGraphicsPushContext(context);
[im drawAtPoint:CGPointMake(-point.x, -point.y)];
UIGraphicsPopContext();
CGContextRelease(context);
CGFloat alpha = pixel[0]/255.0;
BOOL transparent = alpha < 0.01;

However, there can be complications; for example, there may not be a one-to-one
relationship between the pixels of the underlying drawing and the points of the drawing
as portrayed on the screen (because the drawing is stretched, for example). It’s a tricky
problem, but in many cases, the CALayer method renderInContext: can be helpful here.
This method allows you to copy a layer’s actual drawing into a context of your choice.
If that context is, say, an image context created with UIGraphicsBeginImageContextWith-
Options, you can now use the resulting image as im in the code above.

Hit-testing during animation

If user interaction is allowed during an animation that moves a view from one place to
another, then if the user taps on the animated view, the tap might mysteriously fail
because the view in the model layer is elsewhere; conversely, the user might accidentally
tap where the view actually is in the model layer, and the tap will hit the animated view
even though it appears to be elsewhere. If the position of a view or layer is being ani-
mated and you want the user to be able to tap on it, therefore, you’ll need to hit-test
the presentation layer (see Chapter 17).

488 | Chapter 18: Touches

In this simple example, we have a superview containing a subview. To allow the user
to tap on the subview even when it is being animated, we implement hit-test munging
in the superview:

- (UIView*) hitTest:(CGPoint)point withEvent:(UIEvent *)event {
 // v is the animated subview
 CALayer* lay = [v.layer presentationLayer];
 CALayer* hitLayer = [lay hitTest: point];
 if (hitLayer == lay)
 return v;
 UIView* hitView = [super hitTest:point withEvent:event];
 if (hitView == v)
 return self;
 return hitView;
}

If the user taps outside the presentation layer, we cannot simply call super, because the
user might tap at the spot to which the subview has in reality already moved (behind
the “animation movie”), in which case super will report that it hit the subview. So if
super does report this, we return self (assuming that we are what’s behind the animated
subview at its new location).

However, as Apple puts it in the WWDC 2011 videos, the animated view “swallows
the touch.” For example, suppose the view in motion is a button. Although our hit-test
munging makes it possible for the user to tap the button as it is being animated, and
although the user sees the button highlight in response, the button’s action message is
not sent in response to this highlighting until the animation is over (or nearly over).
This behavior seems unfortunate, but it’s generally possible to work around it (for
instance, with a gesture recognizer).

Initial Touch Event Delivery
When the touch situation changes, an event containing all touches is handed to the
UIApplication instance by calling its sendEvent:, and the UIApplication in turn hands
it to the relevant UIWindow by calling its sendEvent:. The UIWindow then performs
the complicated logic of examining, for every touch, the hit-test view and its superviews
and their gesture recognizers and deciding which of them should be sent a
touches... message, and does so.

These are delicate and crucial maneuvers, and you wouldn’t want to lame your appli-
cation by interfering with them. Nevertheless, you can override sendEvent: in a sub-
class, and there are situations where you might wish to do so. This is just about the
only case in which you might subclass UIApplication; if you do, remember to change
the third argument in the call to UIApplicationMain in your main.m file to the string
name of your UIApplication subclass so that your subclass is used to generate the app’s
singleton UIApplication instance. If you subclass UIWindow, remember to change the
window’s class in the app delegate code that instantiates the window.

Touch Delivery | 489

Now that gesture recognizers exist, it is unlikely that you will need to resort to such
measures. A typical case, in the past, was that you needed to detect touches directed
to an object of some built-in interface class in a way that subclassing it wouldn’t permit.
For example, you want to know when the user swipes a UIWebView; you’re not allowed
to subclass UIWebView, and in any case it eats the touch. The solution used to be to
subclass UIWindow and override sendEvent:; you would then work out whether this
was a swipe on the UIWebView and respond accordingly, or else call super. Now,
however, you can attach a UISwipeGestureRecognizer to the UIWebView.

Gesture Recognizer and View
When a touch first appears and is delivered to a gesture recognizer, it is also delivered
to its hit-test view, the same touches... method being called on both. This comes as a
surprise to beginners, but it is the most reasonable approach, as it means that touch
interpretation by a view isn’t jettisoned just because gesture recognizers are in the pic-
ture. Later on in the multitouch sequence, if all the gesture recognizers in a view’s swarm
declare failure to recognize their gesture, that view’s internal touch interpretation just
proceeds as if gesture recognizers had never been invented.

However, if a gesture recognizer in a view’s swarm recognizes its gesture, that view is
sent touchesCancelled:withEvent: for any touches that went to that gesture recognizer
and were hit-tested to that view, and subsequently the view no longer receives those
touches.

This behavior can be changed by setting a gesture recognizer’s cancelsTouchesInView
property to NO. If this is the case for every gesture recognizer in a view’s swarm, the
view will receive touch events more or less as if no gesture recognizers were in the
picture. Making this change, however, alters delivery logic rather drastically; it seems
unlikely that you’d want to do that.

If a gesture recognizer happens to be ignoring a touch (because it was told to do so by
ignoreTouch:forEvent:), then touchesCancelled:withEvent: won’t be sent to the view
for that touch when the gesture recognizer recognizes its gesture. Thus, a gesture rec-
ognizer’s ignoring a touch is the same as simply letting it fall through to the view, as if
the gesture recognizer weren’t there.

Gesture recognizers can also delay the delivery of touches to a view, and by default they
do. The UIGestureRecognizer property delaysTouchesEnded is YES by default, meaning
that when a touch reaches UITouchPhaseEnded and the gesture recognizer’s touches-
Ended:withEvent: is called, if the gesture recognizer is still allowing touches to be de-
livered to the view because its state is still Possible, it doesn’t deliver this touch until it
has resolved the gesture. When it does, either it will recognize the gesture, in which
case the view will have touchesCancelled:withEvent: called instead (as already ex-
plained), or it will declare failure and now the view will have touchesEnded:with-
Event: called.

490 | Chapter 18: Touches

The reason for this behavior is most obvious with a gesture where multiple taps are
required. The first tap ends, but this is insufficient for the gesture recognizer to declare
success or failure, so it withholds that touch from the view. In this way, the gesture
recognizer gets the proper priority. In particular, if there is a second tap, the gesture
recognizer should succeed and send touchesCancelled:withEvent: to the view — but
it can’t do that if the view has already been sent touchesEnded:withEvent:.

It is also possible to delay the entire suite of touches... methods from being called on
a view, by setting a gesture recognizer’s delaysTouchesBegan property to YES. Again,
this delay would be until the gesture recognizer can resolve the gesture: either it will
recognize it, in which case the view will have touchesCancelled:withEvent: called, or
it will declare failure, in which case the view will receive touchesBegan:withEvent: plus
any further touches... calls that were withheld — except that it will receive at most
one touchesMoved:withEvent: call, the last one, because if a lot of these were withheld,
to queue them all up and send them all at once now would be simply insane.

It is unlikely that you’ll change a gesture recognizer’s delaysTouchesBegan property to
YES, however. You might do so, for example, if you have an elaborate touch analysis
within a view that simply cannot operate simultaneously with a gesture recognizer, but
this is improbable, and the latency involved may look strange to your user.

When touches are delayed and then delivered, what’s delivered is the original touch
with the original event, which still have their original timestamps. Because of the delay,
these timestamps may differ significantly from now. For this reason (and many others),
Apple warns that touch analysis that is concerned with timing should always look at
the timestamp, not the clock.

Touch Exclusion Logic
It is up to the UIWindow’s sendEvent: to implement the logic of multipleTouch-
Enabled and exclusiveTouch.

If a new touch is hit-tested to a view whose multipleTouchEnabled is NO and which
already has an existing touch hit-tested to it, then sendEvent: never delivers the new
touch to that view. However, that touch is delivered to the view’s swarm of gesture
recognizers.

Similarly, if there’s an exclusiveTouch view in the window, then sendEvent: must decide
whether a particular touch should be delivered, as already described. If a touch is not
delivered to a view because of exclusiveTouch restrictions, it is not delivered to its
swarm of gesture recognizers either. (This behavior with regard to gesture recognizers
has changed in a confusing and possibly buggy way from system to system, but I believe
I’m describing it correctly for iOS 5. The statement in Apple’s SimpleGesture-
Recognizers sample code that “Recognizers ignore the exclusive touch setting for views”
now appears to be false.)

Touch Delivery | 491

Recognition
When a gesture recognizer recognizes its gesture, everything changes. As we’ve already
seen, the touches for this gesture recognizer are sent to their hit-test views as a touches-
Cancelled:forEvent: message, and then no longer arrive at those views (unless the
gesture recognizer’s cancelsTouchesInView is NO). Moreover, all other gesture recog-
nizers pending with regard to these touches are made to fail, and then are no longer
sent the touches they were receiving either.

If the very same event would cause more than one gesture recognizer to recognize,
there’s an algorithm for picking the one that will succeed and make the others fail: a
gesture recognizer lower down the view hierarchy (closer to the hit-test view) prevails
over one higher up the hierarchy, and a gesture recognizer more recently added to its
view prevails over one less recently added.

There are various means for modifying this “first past the post, winner takes all” be-
havior. One is by telling a gesture recognizer, in effect, that being first isn’t good enough:

• requireGestureRecognizerToFail: institutes a dependency order, possibly causing
the gesture recognizer to which it is sent to be put on hold when it tries to transition
from the Possible state to the Began (continuous) or Ended (discrete) state; only if
a certain other gesture recognizer fails is this one permitted to perform that tran-
sition. (So, “require to fail” means “you cannot succeed without this other’s fail-
ure.”)

Apple says that in a dependency like this, the gesture recognizer that fails first is
not sent reset (and won’t receive any touches) until the second finishes its state
sequence and is sent reset, so that they resume recognizing together.

• The delegate method gestureRecognizerShouldBegin:, by returning NO, turns suc-
cess into failure; at the moment when the gesture recognizer is about to declare
that it recognizes its gesture, the delegate is telling it to fail instead.

Another approach is to permit simultaneous recognition; a gesture recognizer succeeds,
but some other gesture recognizer is not forced to fail. There are two ways to achieve
this:

• A subclass can implement canPreventGestureRecognizer: or canBePreventedBy-
GestureRecognizer: (or both). Here, “prevent” means “by succeeding, you force
failure upon this other,” and “be prevented” means “by succeeding, this other
forces failure upon you.”

These two methods work together as follows. canPreventGestureRecognizer: is
called first; if it returns NO, that’s the end of the story for that gesture recognizer,
and canPreventGestureRecognizer: is called on the other gesture recognizer. But if
canPreventGestureRecognizer: returns YES when it is first called, the other gesture
recognizer is sent canBePreventedByGestureRecognizer:. If it returns YES, that’s the
end of the story; if it returns NO, the process starts over the other way around,

492 | Chapter 18: Touches

sending canPreventGestureRecognizer: to the second gesture recognizer, and so
forth. In this way, conflicting answers are resolved without the device exploding:
prevention is regarded as exceptional (even though it is in fact the norm) and will
happen only if it is acquiesced to by everyone involved.

• The delegate method gestureRecognizer:shouldRecognizeSimultaneouslyWith-

GestureRecognizer: can return YES to permit one gesture recognizer to succeed
without forcing the other to fail.

Touches and the Responder Chain
A UIView is a responder, and participates in the responder chain (Chapter 11). In
particular, if a touch is to be delivered to a UIView (because, for example, it’s the hit-
test view) and that view doesn’t implement the relevant touches... method, a walk up
the responder chain is performed, looking for a responder that does implement it; if
such a responder is found, the touch is delivered to that responder. Moreover, the
default implementation of the touches... methods — the behavior that you get if you
call super — is to perform the same walk up the responder chain, starting with the next
responder in the chain.

The relationship between touch delivery and the responder chain can be useful, but
you must be careful not to allow it to develop into an incoherency. For example, if
touchesBegan:withEvent: is implemented in a superview but not in a subview, then a
touch to the subview will result in the superview’s touchesBegan:withEvent: being
called, with the first parameter (the touches) containing a touch whose view is the
subview. But most UIView implementations of the touches... methods rely upon the
assumption that the first parameter consists of all and only touches whose view is
self; built-in UIView subclasses certainly assume this.

Again, if touchesBegan:withEvent: is implemented in both a superview and a subview,
and you call super in the subview’s implementation, passing along the same arguments
that came in, then the same touch delivered to the subview will trigger both the sub-
view’s touchesBegan:withEvent: and the superview’s touchesBegan:withEvent: (and
once again the first parameter to the superview’s touchesBegan:withEvent: will contain
a touch whose view is the subview).

The solution is to behave rationally, as follows:

• If all the responders in the affected part of the responder chain are instances of your
own subclass of UIView itself or of your own subclass of UIViewController, you
will generally want to follow the simplest possible rule: implement all the
touches... events together in one class, so that touches arrive at an instance either
because it was the hit-test view or because it is up the responder chain from the
hit-test view, and do not call super in any of them. In this way, “the buck stops
here” — the touch handling for this object or for objects below it in the responder
chain is bottlenecked into one well-defined place.

Touch Delivery | 493

• If you subclass a built-in UIView subclass and you override its touch handling, you
don’t have to override every single touches... event, but you do need to call
super so that the built-in touch handling can occur.

• Don’t allow touches to arrive from lower down the responder chain at an instance
of a built-in UIView subclass that implements built-in touch handling, because
such a class is completely unprepared for the first parameter of a touches...
method containing a touch not intended for itself. Judicious use of userInteraction-
Enabled or hit-test munging can be a big help here.

I’m not saying, however, that you have to block all touches from percolating up
the responder chain; it’s normal for unhandled touches to arrive at the UIWindow
or UIApplication, for example, because these classes do not (by default) do any
touch handling — so those touches will remain unhandled and will percolate right
off the end of the responder chain, which is perfectly fine.

• Never call a touches... method directly (except to call super).

Apple’s documentation has some discussion of a technique called event
forwarding where you do call touches... methods directly. But you are
far less likely to need this now that gesture recognizers exist, and it can
be extremely tricky and even downright dangerous to implement, so I
won’t give an example here, and I suggest that you not use it.

494 | Chapter 18: Touches

PART V

Interface

The previous part of the book introduced views. This part of the book is about the
particular kinds of view provided by the Cocoa framework — the built-in “widgets”
with which you’ll construct an app’s interface. These are surprising few, but impres-
sively powerful.

• Chapter 19 is about view controllers. View controllers are a brilliant mechanism
for allowing an entire interface to be replaced by another; this ability is especially
crucial on the iPhone’s small screen. They are also the basis of an app’s ability to
compensate when the user rotates the device. In real life, every app you write will
probably have its interface managed by view controllers.

• Chapter 20 is about scroll views, the iOS mechanism for letting the user scroll and
zoom the interface.

• Chapter 21 explains table views, an extremely important and powerful type of
scroll view that lets the user navigate through any amount of data.

• Chapter 22 is about two forms of interface unique to, and characteristic of, the
iPad — popovers and split views.

• Chapter 23 describes several ways of presenting text in an app’s interface — labels,
text fields, text views, and text drawn manually with Core Text.

• Chapter 24 discusses web views. A web view is a easy-to-use interface widget
backed by the power of a full-fledged web browser. It can also be used to present
a PDF and various other forms of data.

• Chapter 25 describes all the remaining built-in iOS (UIKit) interface widgets.

• Chapter 26 is about the forms of modal dialog that can appear in front of an app’s
interface.

CHAPTER 19

View Controllers

An iOS app’s interface is dynamic, and with good reason. On the desktop, an applica-
tion’s windows can be big, and there can be more than one of them, so there’s room
for lots of interface. With iOS, everything needs to fit on a single display consisting of
a single window, which in the case of the iPhone is almost forbiddingly tiny. The iOS
solution to this is to swap out interface and replace it with other interface, as needed.
Thus, entire regions of interface material — often the entire contents of the screen —
must come and go in an agile fashion that is understandable to the user. Animation is
often used to emphasize and clarify the replacement of one view by another.

Management of this task resides in a view controller, an instance of UIViewController.
Actually, a view controller is most likely to be an instance of a UIViewController sub-
class. The UIViewController class is designed to be subclassed. You are very unlikely
to use a plain vanilla UIViewController object. You might write your own UIView-
Controller subclass, or you might use a built-in UIViewController subclass such as
UINavigationController or UITabBarController. On the other hand, you will generally
not subclass a built-in UIViewController subclass such as UINavigationController or
UITabBarController, unless specifically instructed by the documentation to do so.
You’ll either use a built-in UIViewController subclass as is, or you’ll subclass UIView-
Controller yourself. (The major exception is UITableViewController, a UIView-
Controller subclass that you’ll probably always subclass, as I’ll explain in Chapter 21.)

A view controller manages a single view (which can, of course, have subviews); its
view property points to the view it manages. The view has no explicit pointer to the
view controller that manages it, but a view controller is a UIResponder and is in the
responder chain just above its view (Chapter 11), so it is the view’s nextResponder.

The chief concepts involved in the use of view controllers are as follows:

Rotation
The user can rotate the device, and you might like the interface to rotate in re-
sponse, to compensate. A window is effectively pinned to the physical display
(window bounds are screen bounds and do not change), but a view can be given a

497

transform so that its top moves to the current top of the display. A UIView-
Controller responds to device rotation by applying this transform.

Root view controller
Every real-life iOS app should have a single view controller that acts as the root
view controller for the whole app. Its job is to supply the view that covers the entire
window and acts as the superview for all other interface (Chapter 7, Chapter 14).
The user may never see or be conscious of the root view, as it may be completely
covered by its subviews, but it still has an important function with regard to rota-
tion of the device: it allows the entire interface to rotate in response to device
rotation. If the user does see the root view, it is the highest view of the hierarchy
that the user will ever see; there is nothing behind it except the window, and the
user won’t see the window (except, perhaps, in a glimpse as view controllers are
swapped along with animation of their views).

Prior to iOS 5 it was theoretically possible for an iOS app to lack a root view con-
troller. In iOS 5, it’s still theoretically possible, but it’s strongly discouraged (the
runtime issues a warning if the app launches without a root view controller: “Ap-
plications are expected to have a root view controller at the end of application
launch”). That is why our Empty Window project (Chapter 6 and following) was
based on the Single View Application project template: this is the minimal current
template that supplies a root view controller along with a nib containing its view.
All code in this edition of the book that creates and displays interface assumes there
is a root view controller, and puts that interface into the root view controller’s view.

Parentage
A view controller can contain another view controller. The containing view con-
troller is the parent of the contained view controller; the contained view controller
is a child of the containing view controller. Replacement of one view with another
often involves a parent view controller managing its children. For example, Fig-
ure 19-1 shows the TidBITS News app displaying a conventional and typical iPhone
interface, consisting of a list of story headlines and blurbs; if the user taps an entry
in the list, the whole list will slide away to the left and the text of the actual story
will slide in from the right. This is done by a parent view controller (a UINavigation-
Controller) adding a new child view controller.

In iOS 4 and before, only built-in view controllers such as UITabBarController,
UINavigationController, and UISplitViewController could act as parent view con-
trollers. In iOS 5, you are free to write your own view controller subclasses that act
as parent view controllers.

Presentation
In iOS 4 and before, there was a notion of a modal view controller, whose view
effectively replaced the entire interface by appearing on top of it. In iOS 5 this has
evolved into a notion of a presented view controller. One view controller presents
another view controller; this means that the first view controller, the presenting

498 | Chapter 19: View Controllers

view controller, remains in place, but the presented view controller’s view has re-
placed or covered the presenting view controller’s view.

This relationship between view controllers is different from the parent–child rela-
tionship. In iOS 4 and before, a modal view controller was treated as a child of the
presenting view controller, but in iOS 5 it is not. A presenting view controller is
not the parent view controller of the view controller it presents — it is its presenting
view controller.

Animation
The act of swapping views by manipulating child view controllers or presenting a
view controller is very frequently accompanied by animation. Certain animation
types are built-in and conventional. For example, as I mentioned a moment ago,
in Figure 19-1, tapping a story listing will cause the list to slide out to the left while
the new view slides in from the right; this is the default behavior of a UINavigation-
Controller when it adds a new view controller and makes its view appear. Similarly,
as a view controller is presented, the new view can slide in from below, flip into
place like a piece of paper being flipped over, and so forth.

Customization
A view controller has properties and methods that are used to customize the in-
terface and its behavior when its view is showing. For example, when a
UINavigationController substitutes another view controller’s view into its inter-

Figure 19-1. The TidBITS News app

View Controllers | 499

face (by adding the view controller as a child), it obtains the view pointed to by
that view controller’s navigationItem.titleView property, and puts it into the nav-
igation bar at the top of the interface. That is how the TidBITS logo in Fig-
ure 19-1 appears in the navigation bar — it’s because it is a view controller’s
navigationItem.titleView. Similarly, if a view controller is to be presented, it has
properties that allow it to dictate the style of animation that should take place as
its view appears.

The View Controller Hierarchy
Because of containment and presentation, there is a hierarchy of view controllers. In a
properly constructed iOS app, there should be exactly one root view controller, and it
is the only view controller that has neither a parent view controller nor a presenting
view controller. Any other view controller, if its view is to appear in the interface, must
be a child view controller (of some parent view controller) or a presented view controller
(of some presenting view controller).

At the same time, at any given moment, the actual views of the interface form a hierarchy
dictated by and parallel to some portion of the view controller hierarchy. Every view
visible in the interface owes its presence either to the fact that it is a view controller’s
view or to the fact that it is, at some depth, a subview of a view controller’s view.
Moreover, a child view controller’s view is, at some depth, its parent view controller’s
view’s subview.

Most important, the place of a view controller’s view in the view hierarchy will usually
be automatic, by virtue of the view controller’s place in the view controller hierarchy.
You will almost never need to put a UIViewController’s view into the view hierarchy
manually (although there is a clear-cut type of exception to that rule, which I’ll talk
about in a moment).

For example, in Figure 19-1, we see three interface elements (from top to bottom):

• The navigation bar, containing the TidBITS logo.

• Some text, which is actually a UILabel, stating when the list of stories was last
updated.

• The list of stories, which is actually a UITableView.

I will describe how all of this comes to appear on the screen through the view controller
hierarchy and the view hierarchy (Figure 19-2). The app’s root view controller is a
UINavigationController; the UINavigationController’s view, which is never seen in
isolation, is the window’s sole immediate subview (the root view), and the navigation
bar is a subview of that view. The UINavigationController contains a second UIView-
Controller — a parent–child relationship. The child is a custom UIViewController
subclass; its view is what occupies the rest of the window, as another subview of the
UINavigationController’s view. That view contains the UILabel and the UITableView

500 | Chapter 19: View Controllers

as subviews. This architecture means that when the user taps a story listing in the
UITableView, the whole label-and-table complex will slide out, to be replaced by the
view of a different UIViewController, while the navigation bar stays.

In Figure 19-2, notice the word “automatic” in the two large right-pointing arrows
associating a view controller with its view. This is intended to tell you how the view
controller’s view became part of the view hierarchy. The UINavigationController’s view
became the window’s subview automatically, by virtue of the UINavigationController
being the window’s rootViewController. The UIViewController’s view became the
UINavigationController’s view’s second subview automatically, by virtue of the
UIViewController being the UINavigationController’s child.

Now, as I said a moment ago, there is an exception to this rule about views taking their
place in the view hierarchy automatically — namely, when you write your own parent
view controller class. In that case, you will need to put a child view controller’s view
into the interface manually, as a subview (at some level) of the parent view controller’s
view, if you want it to appear in the interface. (Conversely, you should not put a view
controller’s view into the interface manually under any other circumstances.)

Figure 19-2. The TidBITS News app’s initial view controller and view hierarchy

The View Controller Hierarchy | 501

I’ll illustrate with another app of mine (Figure 19-3). The interface displays a flashcard
containing information about a Latin word, along with a toolbar (the black area at the
bottom) where the user can tap an icon to choose additional functionality.

Again, I will describe how the interface shown in Figure 19-3 comes to appear on the
screen through the view controller hierarchy and the view hierarchy (Figure 19-4). The
app actually contains over a thousand of these Latin words, and I want the user to be
able to navigate between flashcards to view the next or previous word; iOS 5 provides
an excellent view controller for this purpose, the UIPageViewController. However,
that’s just for the card; the toolbar at the bottom stays there, so it can’t be inside the
UIPageViewController’s view. Therefore the app’s root view controller is my own
UIViewController subclass, RootViewController; its view contains the toolbar and the
UIPageViewController’s view.

In Figure 19-4, my RootViewController’s view becomes the window’s subview (the
root view) automatically, by virtue of the RootViewController’s being the window’s
rootViewController. But then, because I want to put a UIPageViewController’s view
into my RootViewController’s view, it is up to me to make RootViewController func-
tion as a parent view controller; I must make the UIPageViewController the Root-
ViewController’s child, and I must put the UIPageViewController’s view manually into
my RootViewController’s view. Finally, the way UIPageViewController works as it
replaces one interface by another is by swapping out a child view controller; so I hand
the UIPageViewController an instance of my CardController class (another UIView-
Controller subclass) as its child, and the UIPageViewController displays the Card-
Controller’s view automatically.

Finally, here’s an example of a presented view controller. My Latin flashcard app has
a second mode, where the user is drilled on a subset of the cards in random order; the

Figure 19-3. A Latin flashcard app

502 | Chapter 19: View Controllers

interface looks very much like the first mode’s interface (Figure 19-5), but it behaves
completely differently.

To implement this, I have another UIViewController subclass, DrillViewController; it
is structured very much like RootViewController. When the user is in drill mode, a
DrillViewController is being presented by the RootViewController, meaning that the
DrillViewController’s interface takes over the screen automatically: the DrillView-
Controller’s view, and its whole subview hierarchy, replaces the RootViewController’s
view and its whole subview hierarchy. The RootViewController and its hierarchy of
child view controllers remains in place, but the corresponding view hierarchy is not in
the interface; it will be returned to the interface automatically when we leave drill mode
(because the presented DrillViewController is dismissed), and the situation will look
like Figure 19-4 once again.

For any app that you write, you should be able to construct a diagram similar to
Figure 19-2 and the others, showing the hierarchy of view controllers and charting how
each view controller’s view fits into the view hierarchy; and each view controller’s view
should fit into the hierarchy as shown in the diagrams, namely, in parallel with the view
controller hierarchy. If view controller B is view controller A’s child, then view con-
troller B’s view should be view controller A’s view’s subview (at some level); there
should be no crossed wires or orphan views.

Figure 19-4. The Latin flashcard app’s initial view controller and view hierarchy

The View Controller Hierarchy | 503

View Controller and View Creation
On the whole, a view controller is created exactly like any other object. An view con-
troller instance comes into existence because you instantiate a view controller class,
either in code or by loading a nib (Chapter 5). But the instantiation of a view controller
introduces some additional considerations:

• How will the view controller persist?

• How will the view controller’s view get into the interface?

• Where will the view controller’s view come from?

We begin with the issue of persistence. Even if you’re using ARC, memory must be
managed somehow (Chapter 12). A view controller instance, once brought into exis-
tence, can eventually go right back out of existence if it is not retained; indeed, under
ARC this danger is greater, because ARC won’t permit an object to leak accidentally.
The distinction between a view controller and its view can add to the confusion. It is
possible, if things are mismanaged, for a view controller’s view to get into the interface
while the view controller itself is allowed to go out of existence. This must not be per-
mitted. If it does, at the very least the view will apparently misbehave, failing to perform
its intended functionality, because that functionality is embodied by the view control-
ler, which no longer exists. (I’ve made this mistake, so I speak from experience here.)

Fortunately, Cocoa follows a simple rule: if you hand a view controller to some other
object whose job is to use that view controller somehow, the other object retains the
view controller. For example, assigning a view controller to a window’s rootView-
Controller property retains it. Making a view controller another view controller’s child,
or presenting a view controller from another view controller, retains it. Passing a view
controller as the argument to UIPopoverController’s initWithContentView-

Figure 19-5. The Latin flashcard app, in drill mode

504 | Chapter 19: View Controllers

Controller: retains it. (There is then the problem of who will retain the UIPopover-
Controller; this will cause much gnashing of teeth in Chapter 22.) And so on.

This means that if you construct the view controller hierarchy correctly, the persistence
problem will be largely solved. It also means that this little dance in the Single View
Application template’s app delegate code is unnecessary:

self.viewController =
 [[ViewController alloc] initWithNibName:@"ViewController" bundle:nil];
self.window.rootViewController = self.viewController;

Figure 19-6. The Latin flashcard app’s drill mode view controller and view hierarchy

View Controller and View Creation | 505

That code instantiates the ViewController class. It first assigns the instance to a view-
Controller property with a strong retain policy; it then assigns the same instance to
the window’s rootViewController property. The first of those steps is pointless: the
viewController property is performing no useful function, as it is not needed in order
to retain the view controller, and is never referred to again. This code would have done
exactly the same thing:

self.window.rootViewController =
 [[ViewController alloc] initWithNibName:@"ViewController" bundle:nil];

If the same code or any other code ever does need to refer to this view controller again,
it can get a reference to it through the window’s rootViewController property:

UIViewController* rvc =
 [[[UIApplication sharedApplication] keyWindow] rootViewController];

Now let’s talk about how the view controller’s view will get into the interface. As I’ve
already said in the preceding section, and emphasized in the diagrams there, this will
nearly always happen automatically. Before iOS 4, which introduced the rootView-
Controller property of the UIWindow class, the root view often had to be placed into
the window manually, and the first edition of this book spilled a goodly measure of ink
discussing how to do it properly; this edition, however, assumes that the rootView-
Controller property exists and that you’ll use it. When a view controller is assigned to
the window’s rootViewController property, the view controller’s view is made the win-
dow’s subview (the root view), with a correct frame, automatically.

Similarly, built-in view controllers are responsible for displaying the views of their child
view controllers in their own views, as in Figure 19-2 where the UINavigationController
puts its child view controller’s view into its own view, thus displaying that view’s sub-
views (the label and the table view). And a presented view controller’s view automati-
cally replaces in the interface the view of the presenting view controller, as in Fig-
ure 19-6.

The exceptional case, as I’ve already mentioned, is when your custom UIView-
Controller subclass is acting as a parent view controller. In that case, the custom
UIViewController subclass will need to contain some code that puts a child view con-
troller’s view into its own view, as appropriate. I’ll return to this issue and demonstrate
with actual code later in this chapter.

Finally, we have the issue of where a view controller’s view comes from. For a built-in
view controller class that you don’t subclass, this is not a problem; in fact, you may not
even be particularly conscious of the view controller’s view. In Figure 19-1 and Fig-
ure 19-2, the UINavigationController’s view is barely a player. Even though it is in fact
the app’s root view, it is never seen in the interface as a distinct entity, and there is never
any need to speak of it in code. You assign the UINavigationController to the window’s
rootViewController property, and you assign a child view controller to the
UINavigationController, and the child view controller’s view appears in the interface
— and that’s the end of that. The UINavigationController created its own view auto-

506 | Chapter 19: View Controllers

matically and put both the navigation bar and its child’s view into it automatically, and
the window put the UINavigationController’s view into the interface automatically;
the UINavigationController’s view functions as a kind of intermediary that you aren’t
concerned with, containing the interface that you are concerned with.

When you write a UIViewController subclass, however, the question of where its view
is to come from is an extremely important question. It is crucial that you understand
the answer to this question, which quite possibly causes more confusion to beginners
than any other matter connected with iOS programming. The answer is rather involved,
though, because there are several different options. The rest of this section treats those
options one by one. To anticipate, the alternatives are as follows:

• The view may be created in code, manually.

• The view may be created as an empty generic view, automatically.

• The view may be created in its own separate nib.

• The view may be created in a nib, which is the same nib from which the view
controller itself is instantiated.

Before we proceed, here’s a caveat: distinguish between creating a view and populat-
ing that view. With a view controller, these are very clearly two different operations.
Once the view controller has its view, your UIViewController subclass code will get
plenty of further opportunities to customize what’s in that view. I’ll talk about that, of
course, but keep in mind that the primary question with which we’re concerned just
now is how the UIViewController instance obtains its actual view in the first place, the
view that can be accessed as its view property.

Manual View
To provide a UIViewController with a view manually, implement its loadView
method. Your job here is to obtain an instance of UIView (or a subclass of UIView) and
assign it to self.view. You must not call super (for reasons that I’ll make clear later on).

Let’s try it. Start with a project made from the Empty Application project template:

1. We need a UIViewController subclass, so choose File → New → New File; specify
an iOS Cocoa Touch UIViewController subclass. Click Next.

2. Name the file RootViewController. Make sure this is a UIViewController subclass.
Uncheck both checkboxes. Click Next.

3. Save into the appropriate folder and group, as part of the target.

We now have a RootViewController class, and we proceed to edit its code. In Root-
ViewController.m, the UIViewController subclass template has already provided a load-
View method, commented out. So uncomment it and let’s implement it. To convince
ourselves that the example is working correctly, we’ll give the view an identifiable color,
and we’ll put some interface inside that view, in this case a “Hello, World” label:

View Controller and View Creation | 507

- (void) loadView {
 UIView* v = [[UIView alloc] init];
 v.backgroundColor = [UIColor greenColor];
 self.view = v;
 UILabel* label = [[UILabel alloc] init];
 [v addSubview:label];
 label.text = @"Hello, World!";
 label.autoresizingMask = (
 UIViewAutoresizingFlexibleTopMargin |
 UIViewAutoresizingFlexibleLeftMargin |
 UIViewAutoresizingFlexibleBottomMargin |
 UIViewAutoresizingFlexibleRightMargin
);
 [label sizeToFit];
 label.center = CGPointMake(CGRectGetMidX(v.bounds), CGRectGetMidY(v.bounds));
 label.frame = CGRectIntegral(label.frame); // prevent fuzzies
}

We have not yet given any RootViewController instance a place in our view controller
hierarchy — in fact, we have no view controller hierarchy. Let’s make one. To do so,
we turn to AppDelegate.m. (It’s a little frustrating having to set things up in two different
places before our labors can bear any visible fruit, but such is life.)

In AppDelegate.m, add the line #import "RootViewController.h" at the start, so that
our code can speak of the RootViewController class. Then modify the start of the im-
plementation of application:didFinishLaunchingWithOptions: to create a RootView-
Controller instance and make it the window’s rootViewController. Observe that we
must do this after our window property actually has a UIWindow as its value! That is
why the template’s comment, “Override point for customization after application
launch,” comes after the line that creates the UIWindow:

self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
// Override point for customization after application launch.
RootViewController* theRVC = [[RootViewController alloc] init];
self.window.rootViewController = theRVC;
// ... and the rest is as in the template

Build and run the app. Sure enough, there’s our green background and our “Hello,
world” label!

We have proved that we can create a view controller and get its view into the interface.
But perhaps you’re not persuaded that the view controller is managing that view in an
interesting way. To prove this, let’s make it possible to rotate our interface. Return to
RootViewController.m and modify the template’s implementation of shouldAutorotate-
ToInterfaceOrientation: to look like this:

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)io
{
 return YES;
}

Build and run the app, and rotate the device; in the simulator, you can do this by
choosing Hardware → Rotate Left or Hardware → Rotate Right. Observe that the view,

508 | Chapter 19: View Controllers

as indicated by the orientation of the “Hello, World” label, automatically rotates to
compensate; that’s the work of the view controller. Observe also that we were careful
to give the label an appropriate autoresizingMask, such as to keep it centered in the
view even when the view’s bounds are changed to fit the rotated window. (I’ll talk more
about rotation later in this chapter.)

We have not bothered to give our view a reasonable frame. This is because we are relying
on someone else to frame the view appropriately. In this case, the “someone else” is
the window, which responds to having its rootViewController property set to a view
controller by framing the view controller’s view appropriately as the root view before
putting it into the window as a subview. To be precise, the root view’s frame as it goes
into the window in an iPhone app is {{0, 20}, {320, 460}} — that is, the root view
fills the part of the window not covered by the status bar. This magic is easily accom-
plished by setting the view’s frame to [[UIScreen mainScreen] applicationFrame],
which is exactly what the window does to the view controller’s view. (If you’re con-
cerned about your view having a reasonable frame in the later part of your loadView
code, you can certainly set its frame to [[UIScreen mainScreen] applicationFrame]
yourself in the earlier part of your loadView code.)

If there is no status bar — for example, if “Status bar is initially hidden” is YES in our
Info.plist, a possibility that I mentioned in Chapter 9 — the call to [[UIScreen main-
Screen] applicationFrame] will return the entire bounds of the window, and our view
will fill the screen, which is still a correct result.

On the other hand, if the status bar is present but its status bar style is set to “Trans-
parent black style,” then our root view’s frame fills the part of the window not covered
by the status bar once again. This may or may not be what you want. If it is, fine. But
if you want the root view to underlap the transparent status bar, you’ll need to set the
view controller’s wantsFullScreenLayout to YES. You could do that in the app delegate:

RootViewController* theRVC = [[RootViewController alloc] init];
theRVC.wantsFullScreenLayout = YES;
self.window.rootViewController = theRVC;

Alternatively, you might feel that it is the view controller’s job to know that its view
should underlap the status bar, in which case you could do it at some early point in the
life of the view controller, such as loadView:

- (void) loadView {
 self.wantsFullScreenLayout = YES;
 // ... and so on ...

Generic Automatic View
Earlier, I said that we must draw a distinction between creating a view and populating
it. It could be argued that the example in the preceding section fails to draw this dis-
tinction. The lines that create our RootViewController’s view are these:

View Controller and View Creation | 509

UIView* v = [[UIView alloc] init];
self.view = v;

Everything else merely configures and populates the view, turning it green and putting
a label in it. A more appropriate place to populate a view controller’s view is in its view-
DidLoad implementation, which is called after the view exists (so that it can be referred
to as self.view). We could therefore rewrite the preceding example like this:

- (void) loadView {
 UIView* v = [[UIView alloc] init];
 self.view = v;
}

- (void)viewDidLoad
{
 [super viewDidLoad];
 UIView* v = self.view;
 v.backgroundColor = [UIColor greenColor];
 UILabel* label = [[UILabel alloc] init];
 [v addSubview:label];
 label.text = @"Hello, World!";
 label.autoresizingMask = (
 UIViewAutoresizingFlexibleTopMargin |
 UIViewAutoresizingFlexibleLeftMargin |
 UIViewAutoresizingFlexibleBottomMargin |
 UIViewAutoresizingFlexibleRightMargin
);
 [label sizeToFit];
 label.center = CGPointMake(CGRectGetMidX(v.bounds), CGRectGetMidY(v.bounds));
 label.frame = CGRectIntegral(label.frame); // prevent fuzzies
}

But if we’re going to do that, we can go even further and remove our implementation
of loadView altogether. If you don’t implement loadView, and if no view is supplied in
any other way, then UIViewController’s implementation of loadView will do exactly
what we are already doing in code: it creates a generic UIView object and assigns it to
self.view. If we needed our view controller’s view to be a particular UIView subclass,
that wouldn’t be acceptable; but in this case, our view controller’s view is a generic
UIView object, so it is acceptable. Comment out or delete the loadView implementation,
and build and run the app; our example still works:

/*
- (void) loadView {
 UIView* v = [[UIView alloc] init];
 self.view = v;
}
*/

- (void)viewDidLoad
{
 [super viewDidLoad];
 UIView* v = self.view;
 v.backgroundColor = [UIColor greenColor];
 UILabel* label = [[UILabel alloc] init];

510 | Chapter 19: View Controllers

 [v addSubview:label];
 label.text = @"Hello, World!";
 label.autoresizingMask = (
 UIViewAutoresizingFlexibleTopMargin |
 UIViewAutoresizingFlexibleLeftMargin |
 UIViewAutoresizingFlexibleBottomMargin |
 UIViewAutoresizingFlexibleRightMargin
);
 [label sizeToFit];
 label.center = CGPointMake(CGRectGetMidX(v.bounds), CGRectGetMidY(v.bounds));
 label.frame = CGRectIntegral(label.frame); // prevent fuzzies
}

View in a Separate Nib
A view controller’s view can be provided from a nib file. This approach gives you the
convenience of configuring and populating the view using the nib editor interface
(Chapter 7).

(Since a nib-based approach is possible, you might wonder whether anyone in his right
mind would ever use the techniques demonstrated in the preceding examples; why
would someone create and populate a view in code when it is possible to do it in the
nib? Actually, I’m quite fond of the code-based approach. It’s verbose, to be sure, but
it is clear and straightforward and gives me complete control, whereas loading a view
from a nib always leaves me scratching my head a bit, wondering whether I checked
all the right checkboxes and whether they will do the right thing.)

Our next technique for providing a view controller with a view, then, will be to make
that view an object in a nib file. For this to work, it is necessary to prepare the nib file,
as follows:

1. The File’s Owner class must be set to the appropriate view controller class.

2. Performing the preceding step causes the File’s Owner proxy in the nib to have a
view outlet, corresponding to a UIViewController’s view property. This outlet must
be connected to the view.

Do you see where this is heading? We will then load the nib file with the view controller
instance as its owner. The view controller’s class matches the File’s Owner class, the
view controller’s view property is set via the view outlet in the nib to the view object,
and presto, our view controller has a view. If you don’t understand what I just said,
reread Chapter 7. It is crucial that you comprehend how this technique works.

Now let’s try it. We can start with the example we’ve already developed, with our
RootViewController class. However, for now we must delete the implementation of
loadView and viewDidLoad from RootViewController.m, because we want the view to
come from a nib and we’re going to populate it in the nib. Then:

1. Choose File → New → New File and specify an iOS User Interface View nib file.
Click Next.

View Controller and View Creation | 511

2. In the Device Family pop-up menu, choose iPhone. Click Next.

3. Name the file MyNib, and specify the appropriate folder and group, and make it
part of the target. Click Create.

4. Edit MyNib.xib in the way I described a moment ago: set the File’s Owner class to
RootViewController (in the Identity inspector), and connect the File’s Owner
view outlet to the View object.

5. Design the view. To make it clear that this is not the same view we were creating
previously, perhaps you should give the view a red background color (in the At-
tributes inspector). Drag a UILabel into the middle of the view and give it some
text, such as “Hello, World!”

Back in AppDelegate.m, where we create our RootViewController instance, we must
load MyNib.xib with the RootViewController instance as its owner. It is, in fact, pos-
sible to do this using the technique described back in Chapter 7, though one shouldn’t:

// shouldn't do this!
RootViewController* theRVC = [[RootViewController alloc] init];
[[NSBundle mainBundle] loadNibNamed:@"MyNib" owner:theRVC options:nil];
self.window.rootViewController = theRVC;

The correct approach is to instantiate the view controller and tell it what nib it is to
load as owner, but let it load the nib when it needs to. The view controller then manages
the loading of the nib and all the associated housekeeping correctly. This technique
involves initializing the view controller using initWithNibName:bundle: (which is ac-
tually UIViewController’s designated initializer), like this:

RootViewController* theRVC =
 [[RootViewController alloc] initWithNibName:@"MyNib" bundle:nil];
self.window.rootViewController = theRVC;

That works (and you can run the project to prove it).

Now I’m going to show you a shortcut. It turns out that if the nib file has the same
name as the view controller’s class, we can pass nil as the nib name. This means, in
effect, that we can return to using init to initialize the view controller; the designated
initializer is initWithNibName:bundle:, so UIViewController’s init actually calls init-
WithNibName:bundle:, passing nil for both arguments. The rule is, then, that if the nib
name passed to initWithNibName:bundle: is nil, a nib will be sought with the same name
as the view controller’s class.

Let’s try it. Rename MyNib.xib to RootViewController.xib, and change the code that
instantiates and initializes our RootViewController like this:

RootViewController* theRVC = [[RootViewController alloc] init];
self.window.rootViewController = theRVC;

The project still works!

512 | Chapter 19: View Controllers

Recall from Chapter 9 that when an image file is sought by name in the
app’s bundle, naming conventions allow different files to be loaded un-
der different runtime conditions. The same is true for nib files. A nib file
named RootViewController~ipad.xib will be loaded on an iPad when the
name @"RootViewController" is specified, regardless of whether it is
specified explicitly (as the first argument to initWithNibName:bundle:)
or implicitly (because the view controller class is RootViewController).
This principle will greatly simplify your life when you’re writing a uni-
versal app.

But wait, there’s more! It seems ridiculous that we should end up with a nib that has
“Controller” in its name merely because our view controller, as is so often the case, has
“Controller” in its name. A nib, after all, is not a controller. Well, there’s an additional
aspect to the shortcut: the runtime, in looking for a view controller’s corresponding
nib, will in fact try stripping “Controller” off the end of the view controller class’s name.
(This feature is undocumented, but it works reliably and I can’t believe it would ever
be retracted.) Thus, we can name our nib file RootView.xib instead of RootView-
Controller.xib, and it will still be properly associated with our RootViewController
instance when we initialize that instance using init.

When you create the files for a UIViewController subclass, the Xcode dialog has a
checkbox (which we unchecked earlier) offering to create an eponymous .xib file at the
same time (“With XIB for user interface”). If you accept that option, the nib is created
with the File’s Owner’s class already set to the view controller’s class and with its
view outlet already hooked up to the view. This automatically created .xib file does
not have “Controller” stripped off the end of its name; you can rename it manually later
(I generally do) if the default name bothers you.

Not every built-in subclass of UIViewController obeys the convention
that a nil nib name means a nib with the same name as the view con-
troller’s class. In particular, UITableViewController does not. I regard
this as a bug; in any case, it has caught me by surprise several times (and
can be difficult to track down, when the table view mysteriously fails to
appear in the interface). The takeaway message is that when creating a
UITableViewController whose view comes from a nib, you must specify
the nib name explicitly or you’ll get a different view (a generic table
view).

Earlier, I suggested deleting viewDidLoad from RootViewController’s code. This was
mostly so that we couldn’t confuse ourselves; I wanted you to see clearly that the view
was being created and configured in the nib. In real life, however, it is perfectly ac-
ceptable to load a view controller’s view from a nib file and proceed to further config-
urations and initializations in viewDidLoad. This is a common thing to do; it has the
advantage that by the time viewDidLoad is called, we are guaranteed that the view has
been loaded from the nib and that we can access it via self.view.

View Controller and View Creation | 513

On the other hand, if a view controller’s view is to come from a nib, you should not
implement loadView. You’ll just confuse yourself if you do. The truth is that loadView
is always called when the view controller first decides that it needs its view. If we over-
ride loadView, we supply and set the view in code. If we don’t override loadView, the
default implementation is to load the view controller’s nib and set the view through an
outlet. (That is why, if we do override loadView, we must not call super — that would
cause us to get both behaviors.) If we don’t override loadView and there is no associated
nib (because the nib name was nil in initWithNibName:bundle: and there is no nib whose
name matches the name of the view controller class, in the way that I described a
moment ago), the default implementation of loadView creates a generic UIView as dis-
cussed in the previous section.

It will not have escaped your attention that the architecture I’ve just been describing is
the architecture used by most of the current project templates. Take, for example, the
Single View Application template. You already know that, using this template, you can
design the initial interface in a nib file and have it appear in the running app. You are
now in a position to understand precisely why. In addition to the AppDelegate class,
there’s a ViewController class along with a nib file called ViewController.xib. The app
delegate’s application:didFinishLaunchingWithOptions: instantiates ViewController,
associating it with its nib, and makes that instance the window’s rootViewController:

self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
// Override point for customization after application launch.
self.viewController =
 [[ViewController alloc] initWithNibName:@"ViewController" bundle:nil];
self.window.rootViewController = self.viewController;

That code, however, can be considerably abbreviated, as you now know. There is no
need to assign the view controller instance to a property, as it will be retained and
available through the window’s rootViewController property. And there is no need to
specify the nibName: argument, because the nib file has the same name as the view
controller. So we could have said this:

self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
// Override point for customization after application launch.
self.window.rootViewController = [[ViewController alloc] init];

Moreover, that code works even if we change the name of the nib file to View.xib.

Nib-Instantiated View Controller
Like any other object, a view controller can be represented by a nib object and be
instantiated through the loading of the nib. In the nib editor, the Object library contains
entries for View Controller (UIViewController) as well as for several built-in UIView-
Controller subclasses. Any of these can be dragged into the nib (though not, of course,
into a view, since they are not view objects). To retrieve a reference to a view controller

514 | Chapter 19: View Controllers

instantiated through the loading of a nib, you’d obviously need an outlet from a proxy
object, probably the File’s Owner.

To illustrate will require a certain temporary suspension of disbelief, as you’ve no im-
mediate need to instantiate a view controller from a nib. Nevertheless, the ability to do
so will prove its worth as soon as you have to do with multiple related view controllers,
such as a UINavigationController and its initial child view controller, a UITabBar-
Controller and its multiple child view controllers, or a storyboard. So let’s modify our
existing example so as to instantiate RootViewController from a nib, and you’ll just
have to trust me that this could be a useful thing to do, rather than (as it will first seem)
an unnecessary complication.

Our first step will be to create an extra nib for no other purpose than to instantiate
RootViewController:

1. Choose File → New → New File and specify an iOS User Interface Empty nib file.
Click Next.

2. In the Device Family pop-up menu, specify iPhone.

3. Name the nib file RVC and create it in the appropriate fashion.

4. Edit the newly created RVC.xib. Drag a View Controller into the canvas. In the
Attributes inspector, specify that this is a RootViewController instance.

5. We’ll need an appropriate File’s Owner object with an outlet pointing to our Root-
ViewController instance. At the earliest stage of our application’s launch process,
there’s really only one candidate — the app delegate. So select the File’s Owner
proxy and specify in the Attributes inspector that this is an AppDelegate.

6. We still need that outlet, and we can’t make it without a corresponding property
in AppDelegate. Option-click AppDelegate.h in the Project navigator so that
RVC.xib is being edited in the main pane of the editor and AppDelegate.h is being
edited in the assistant pane. Control-drag from the Root View Controller object in
the nib into the @interface section in AppDelegate.h. You’re offered the chance to
create an outlet; call it rvc. You’ll also need to type this line of code before the start

When Is the View Loaded?
A UIViewController’s view property is set “lazily”: rather than setting it when the
UIViewController itself is instantiated, the view property isn’t set until it’s needed —
namely, when you or Cocoa tries to fetch its value for the first time. At that moment,
loadView is called. This architecture has several advantages, but it can also trap you: I
already mentioned (in Chapter 11) how I made the mistake of mentioning a UIView-
Controller’s view in its awakeFromNib and caused the view to be loaded twice. So don’t
mention a view controller’s view until it’s time to load it! The isViewLoaded method
reports whether the view has in fact been loaded, without mentioning it in a way that
will also cause it to be loaded accidentally.

View Controller and View Creation | 515

of the interface section, to satisfy the compiler that RootViewController is a class
name:

@class RootViewController;

Now we’re ready to tell AppDelegate to load RVC.xib with itself as owner and extract
the RootViewController instance and use it as the window’s rootViewController. Re-
turn to AppDelegate.m, where you’ll find that Xcode has already synthesized rvc for
us. Change the start of application:didFinishLaunchingWithOptions: to look like this:

self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
// Override point for customization after application launch.
[[NSBundle mainBundle] loadNibNamed:@"RVC" owner:self options:nil];
self.window.rootViewController = self.rvc;

Build and run the app. It works, and the interface from RootViewController.xib appears
(or from RootView.xib if you renamed it)! This makes perfect sense, since nothing has
changed from our examples in the previous section except the way we instantiated
RootViewController. It comes into existence from the loading of the nib RVC.xib, but
the runtime then performs the very same search as before for a nib with the same name
as the view controller class — and finds it.

But what if the nib had a different name? Edit RVC.xib, select the Root View Controller,
and study its Attributes inspector. You’ll find there’s a NIB Name field. At the moment
it’s empty, signifying the equivalent of a nil nibName: argument in the initializer. But
you could type (or use the combo box to choose) the name of a different nib file to
associate that nib with this view controller as the view controller is instantiated by the
loading of this nib. Thus, everything that was possible in the previous sections, where
we instantiated the view controller in code, remains possible now that we’re instanti-
ating it from a nib file.

Indeed, it remains possible to supply the view controller’s view in any of the other ways
discussed earlier in this section. The mere fact that this view controller is instantiated
from a nib rather than using code changes nothing. The view controller’s view can be
supplied in all the same ways as before; and no matter where the view comes from, you
can configure it further or do any other initial tasks in viewDidLoad.

There is also, however, a completely new alternative: we can supply the view and design
the interface right here in the same nib file as the view controller (that is, in RVC.xib).
In fact, we can design the interface in the view controller itself. You’ll notice that the
canvas representation of the view controller is the size of an iPhone screen, even though
a view controller is not a view object. There’s a reason for that: it’s so that the view
controller can accommodate a screen-sized view object, to serve as its view.

To see this, drag a generic View object from the Object library right into the Root View
Controller object in the nib editor canvas. This will be the view controller’s view, and
you can now proceed to design the interface within this view. For example, you can
make its background color yellow (to distinguish it from all the other interfaces we’ve

516 | Chapter 19: View Controllers

been designing) and drag a different label into it (perhaps you could make it say
“Howdy, Universe” for a change).

Build and run the project. The yellow background and the “Howdy, Universe” label
appear! This is because the presence of a view inside the view controller in the nib is
taken as the equivalent of loadView in code: this view is instantiated and assigned to
the view controller as its view property.

Take some time to look a little further at a view controller’s Attributes inspector; it
provides ways to set some options that would otherwise be set in code. For example,
the Wants Full Screen checkbox is our friend the wantsFullScreenLayout property. The
meanings of the other options will become evident as this chapter proceeds.

Like any other nib object, when a view controller is instantiated from a
nib or storyboard, its designated initializer (initWithNibName:bundle:)
is not called. If your UIViewController subclass needs very early access
in code to the view controller instance, it can override initWithCoder:
or awakeFromNib (Chapter 7, Chapter 11).

Storyboard-Instantiated View Controller
iOS 5 introduces storyboards. A storyboard is, in effect, a single file representing a
collection of nib files similar to RVC.xib in the previous section — that is, nib files
containing view controller nib objects. A storyboard basically consists of multiple view
controller nib objects arranged in a chain similar to the chains of child and presented
view controllers diagrammed in figures earlier in this chapter. The value of a storyboard
emerges not in its saving you from writing code (in my experience, use of a storyboard
often entails writing more code than otherwise) but in its graphic expression of the view
controller hierarchy. In a world where the possible states of your app’s overall interface
can be best understood through a diagram of view controllers and the instructions for
when and how to transition from one to the next, a storyboard can conveniently en-
capsulate these key aspects of your app’s operation, helping you as a developer create
and maintain your app.

A storyboard, like a nib, is an actual file in your project (a .storyboard file); it is compiled
into your app’s bundle, and can be referenced by calling the UIStoryboard class method
storyboardWithName:bundle:. A view controller object in a storyboard must still corre-
spond to an actual view controller class in your project, either inherited from Cocoa or
a UIViewController subclass of your own, just as with a nib. And editing a view con-
troller in a storyboard is almost identical to editing a view controller in a nib.

However, because a storyboard can effectively combine what would have been separate
nib files, the mechanism for how a view controller is instantiated from a storyboard is
a little different from how it is instantiated from a nib. A storyboard has no owner, the
way a nib file does, and so it contains no File’s Owner proxy. A view controller is
instantiated from a storyboard in one of three ways:

View Controller and View Creation | 517

• At most one view controller in the storyboard is designated the storyboard’s initial
view controller. Typically, this will be the view controller to be used as the app’s
root view controller at launch. The storyboard is sent instantiateInitialView-
Controller, and returns an instance of the initial view controller’s class, configured
in accordance with your edits in the storyboard.

• When the moment comes for one view controller’s view to transition to another
view controller’s view, the second view controller is instantiated automatically (and
configured in accordance with your edits in the storyboard) and made an appro-
priate child or presented view controller of the first. Such a transition is called a
segue. (Storyboard-related terminology, including the word “storyboard,” is drawn
from the world of movie-making. View controllers themselves, together with their
views, are referred to as “scenes.”)

• A view controller in a storyboard can be assigned an arbitrary string identifier using
the storyboard editor. It is then possible to instantiate that view controller by
sending instantiateViewControllerWithIdentifier: to the storyboard; an instance
of the view controller’s class is returned, configured in accordance with your edits
in the storyboard.

So far in this section of the chapter, we’ve been concerned with generating our app’s
root view controller and its view. Let’s continue by seeing how to do that with a story-
board. Start all over again with a new project based on the Single View application
template, but this time make sure that Use Storyboard is checked. The resulting project
consists of an AppDelegate class and a ViewController class, and a storyboard (called
MainStoryboard.storyboard) instead of a nib.

Look in AppDelegate.m and you’ll discover that application:didFinishLaunchingWith-
Options: contains no code at all — not to load the storyboard file, nor even to generate
the window and display it. That’s because UIApplicationMain does all the work behind
the scenes. As I explained in Chapter 6, MainStoryboard.storyboard is designated the
main storyboard file in our Info.plist, using the key “Main storyboard file base name”
(UIMainStoryboardFile). The result, as I explained in Chapter 14, is that after
UIApplicationMain instantiates the app delegate class, it asks the app delegate for the
value of its window property and then takes the resulting window instance (or, if the
window property was nil, an instance of UIWindow that it creates and assigns to the
window property), loads the main storyboard, sends it instantiateInitialView-
Controller to get a root view controller instance, assigns that instance to the window’s
rootViewController property, and calls makeKeyAndVisible on the window.

Now edit MainStoryboard.storyboard. It contains a single view controller object, with
its class already specified as ViewController, already designated as the storyboard’s
initial view controller, and already containing a view that will function as its view —
exactly like the view controller in RVC.xib at the end of the preceding section.

So now you can give this view a background color, put a label into it, and build and
run the project — and your view appears. Be sure you understand why. Storyboards are

518 | Chapter 19: View Controllers

not magic, any more than nibs. A view controller in a storyboard is a view controller
like any other. It is perfectly possible to get the view for a view controller instantiated
from a storyboard in any of the other ways discussed earlier in this section. You could
delete the View contained by the view controller in the storyboard. You could then
provide the view by configuring a nib file with the same name as the view controller
class. (However, there is no way to specify a different nib file name for this view con-
troller in the storyboard editor; this feels like an oversight.) Alternatively, you could
provide the view in the view controller class’s loadView, or by having no loadView and
letting a default UIView be provided. No matter where the view comes from, you can
configure it further or do any other initial tasks in viewDidLoad.

Take a moment to study the storyboard editing interface a little. Below the view con-
troller in the canvas is a black bar containing two icons. The first is the First Responder
proxy object, which is also present in a nib file (Chapter 11). The second is the view
controller itself: this is merely a convenient way to select the view controller (because
otherwise you’d typically be working with its contained view); you could do the same
thing using the view controller’s listing in the dock. The dock itself is divided into
scenes; at the moment there’s just one scene. The black bar is effectively a collection
of the very same top-level objects shown for this scene in the dock.

Rotation
A major part of a view controller’s job is to know how to rotate the view. The user will
experience this as rotation of the app itself: the top of the app shifts so that it is oriented
against a different side of the device’s display. There are two complementary uses for
rotation:

Compensatory rotation
The app rotates to compensate for the orientation of the device, so that the app
appears right way up with respect to how the user is holding the device. The chal-
lenge of compensatory rotation stems, quite simply, from the fact that the screen
is not square. This means that if the app rotates 90 degrees, the interface no longer
fits the screen, and must be changed to compensate.

Forced rotation
The app rotates when a particular view appears in the interface, or when the app
launches, to indicate that the user needs to rotate the device in order to view the
app the right way up. This is typically because the interface has been specifically
designed, in the face of the fact that the screen is not square, to appear in one
particular mode (portrait or landscape).

In the case of the iPhone, no law says that your app has to perform compensatory
rotation. Most of my iPhone apps do not do so; indeed, I have no compunction about
doing just the opposite, forcing the user to rotate the device differently depending on
what view is being displayed. The iPhone is small and easily reoriented with a twist of

Rotation | 519

the user’s wrist, and it has a natural right way up, especially because it’s a phone. (The
iPod touch isn’t a phone, but the same argument works by analogy.) On the other hand,
Apple would prefer iPad apps to rotate to at least two opposed orientations (such as
landscape with the button on the right and landscape with the button on the left), and
preferably to all four possible orientations, so that the user isn’t restricted in how the
device is held and positioned.

It’s fairly trivial to let your app rotate to two opposed orientations, because once the
app is set up to work in one of them, it can work with no change in the other. But
allowing an app to rotate between two orientations that are 90 degrees apart is trickier,
because its dimensions must change — its height and width are swapped — and this
may require a change of layout and might even call for more substantial alterations to
the interface, such as removal or addition of part of the interface. A good example is
the behavior of Apple’s Mail app on the iPad: in landscape mode, the master pane and
the detail pane appear side by side, but in portrait mode, the detail pane is removed
and must be summoned using a button or by swiping, at which point the user can work
only in the detail pane until the detail pane is dismissed.

The main thing your view controller must do in order to support rotation is to override
shouldAutorotateToInterfaceOrientation:. The incoming parameter is the proposed
orientation, and will be one of the following:

• UIInterfaceOrientationPortrait, with the home button at the bottom.

• UIInterfaceOrientationPortraitUpsideDown, with the home button at the top.

• UIInterfaceOrientationLandscapeLeft, with the home button at the left.

• UIInterfaceOrientationLandscapeRight, with the home button at the right.

You return YES for all permitted orientations and NO otherwise. The default, if you
don’t override this method, is to return YES for UIInterfaceOrientationPortrait and
NO otherwise; you must return YES for some orientation. (There is no UIView-
Controller property that can be set to specify what orientations a view controller can
adopt; overriding this method is the only way.)

The four interface orientations are matched by four device orientations with similar
names (UIDeviceOrientationPortrait and so on), except that the two landscape orien-
tations are reversed: UIInterfaceOrientationLandscapeLeft is the same as UIDevice-
OrientationLandscapeRight, because if the user rotates the device 90 degrees left from
an original portrait orientation, the interface must rotate 90 degrees right to compen-
sate. The device actually has several more possible orientations, such as UIDevice-
OrientationFaceUp (the device is lying on its back), but these will not, of themselves,
trigger interface rotation.

In case your implementation of shouldAutorotateToInterfaceOrientation: wants to
return YES to both of two opposed orientations, a pair of macros are provided:
UIInterfaceOrientationIsLandscape(io) returns YES if io is either of the two landscape

520 | Chapter 19: View Controllers

orientations, and UIInterfaceOrientationIsPortrait(io) returns YES if io is either of
the two portrait orientations.

A new iOS 5 feature is the UIViewController class method attemptRotationToDevice-
Orientation. The idea is that instead of implementing shouldAutorotateToInterface-
Orientation: so that it always returns the same thing, you might implement it in some
dynamic way, such that at some moment in your app it starts returning YES or NO for
different orientations than previously. At such a moment, you need a way to prod the
runtime to call shouldAutorotateToInterfaceOrientation: again, right now, for all ex-
isting view controllers; this class method is how you do that.

Rotation Events
You can learn the current interface orientation through a view controller’s interface-
Orientation property. Your UIViewController subclass can override any of the follow-
ing methods (which are called in the order shown) to be alerted in connection with
rotation:

willRotateToInterfaceOrientation:duration:

The first parameter is the new orientation; self.interfaceOrientation is the old
orientation, and the view’s bounds are the old bounds.

willAnimateRotationToInterfaceOrientation:duration:

The first parameter is the new orientation; self.interfaceOrientation is the new
orientation, and the view’s bounds are the new bounds. The call is wrapped by an
animation block, so changes to animatable view properties are animated.

What Rotates?
We say that your app rotates, and you’ll think of it as rotating, but what really rotates
is the status bar’s position. When the device rotates, a UIDeviceOrientationDidChange-
Notification is emitted by the UIDevice, and your app’s root view controller is con-
sulted with shouldAutorotateToInterfaceOrientation:; if the view controller returns
YES for the proposed orientation, the UIApplication instance is sent the setStatusBar-
Orientation:animated: message. In a 90-degree rotation, the window’s root view then
has its width and height dimensions swapped, and a transform is applied so that it
appears “right way up.” Moreover, this is all accompanied by animation, so it really
looks to the user as if the app is rotating. But the window itself doesn’t budge; it remains
“pinned” to the screen (window bounds are screen bounds), it is taller than it is wide,
and its top is at the top of the device (away from the home button). As for the view, its
bounds are wider than tall in a landscape orientation, but its frame remains taller than
wide (though you really shouldn’t be referring to the view’s frame in this situation,
because it has a transform applied; see Chapter 14).

Rotation | 521

didRotateFromInterfaceOrientation:

The parameter is the old orientation; self.interfaceOrientation is the new ori-
entation, and the view’s bounds are the new bounds.

By judicious use of these rotation events, you can achieve some useful effects. For ex-
ample, you might want your app’s interface to look different in landscape mode from
how it looks in portrait mode. In simple cases, the autoresizing settings of your view’s
subviews may suffice; but for more elaborate adjustments, you can perform layout in
your implementation of these methods.

In this simple example, our app displays a black rectangle at the left side of the screen
if the device is in landscape orientation, but not if the device is in portrait orientation.
The example is marked by its defensive posture, quite typical of an event-driven archi-
tecture (Chapter 11) under which it is best to make as few assumptions as possible
about what will really happen; and it is careful to work in concert with the rotation
animation:

@synthesize blackRect = _blackRect;

- (UIView*) blackRect {
 if (!self->_blackRect) {
 if (UIInterfaceOrientationIsPortrait(self.interfaceOrientation))
 return nil;
 CGRect f = self.view.bounds;
 f.size.width /= 3.0;
 f.origin.x = -f.size.width;
 UIView* br = [[UIView alloc] initWithFrame:f];
 br.backgroundColor = [UIColor blackColor];
 self.blackRect = br;
 }
 return self->_blackRect;
}

-(void)willAnimateRotationToInterfaceOrientation:(UIInterfaceOrientation)io
 duration:(NSTimeInterval)duration {
 UIView* v = self.blackRect;
 if (UIInterfaceOrientationIsLandscape(io)) {
 if (!v.superview) {
 [self.view addSubview:v];
 CGRect f = v.frame;
 f.origin.x = 0;
 v.frame = f;
 }
 } else {
 if (v.superview) {
 CGRect f = v.frame;
 f.origin.x -= f.size.width;
 v.frame = f;
 }
 }
}

522 | Chapter 19: View Controllers

- (void) didRotateFromInterfaceOrientation:(UIInterfaceOrientation)io {
 if (UIInterfaceOrientationIsPortrait(self.interfaceOrientation))
 [self.blackRect removeFromSuperview];
}

We have a UIView property, blackRect, to retain the black rectangle; we implement its
getter to create the black rectangle if it hasn’t been created already, but only if we are
in landscape orientation, since otherwise we cannot set the rectangle’s dimensions
properly. The implementation of willAnimateRotationToInterfaceOrientation:

duration: slides the black rectangle in from the left as part of the rotation animation if
we have ended up in a landscape orientation, but only if it isn’t in the interface already;
after all, the user might rotate the device 180 degrees, from one landscape orientation
to the other. Similarly, it slides the black rectangle out to the left if we have ended up
in a portrait orientation, but only if it is in the interface already. Finally, didRotateFrom-
InterfaceOrientation:, called after the rotation animation is over, makes sure the rec-
tangle is removed from its superview if we have ended up in a portrait orientation.

Initial Orientation
Your app’s initial orientation, as the user will see it when launching, is determined by
the “Supported interface orientations” setting (UISupportedInterfaceOrientations) in
the app’s Info.plist. If there is only one orientation listed here, the user will see the app
in that orientation initially. If there is more than one orientation listed, you are giving
the system the option to rotate the app into whichever of the supported orientations is
closest to the way the device is positioned at the time. In Xcode 4, you can specify this
setting graphically by editing the target (in the Summary tab).

The orientation(s) specified by the “Supported interface orientations”
setting must also be among the orientations to which the root view con-
troller’s shouldAutorotateToInterfaceOrientation: will return YES!

As I’ve already mentioned, on the iPhone, it is common for an app to launch into just
one orientation, as it is no trouble for the user to twist the device to view the app
correctly; but on the iPad, Apple would like you to list at least two opposed orientations
(both portrait orientations or both landscape orientations), and preferably all four.

An app whose initial orientation is portrait mode with the button at the bottom has
effectively no work to do, because this is the default orientation. An app with no
“Supported interface orientations” setting adopts “Portrait (bottom home button)” by
default (UIInterfaceOrientationPortrait), and the default shouldAutorotateTo-

InterfaceOrientation: behavior is to return YES to UIInterfaceOrientationPortrait
and NO to anything else. Supporting “Portrait (top home button)” (UIInterface-
OrientationPortraitUpsideDown) in addition is also very little work, because the inter-
face that worked for “Portrait (bottom home button)” will work here as well. (You

Rotation | 523

would never write an app that can launch into portrait-upside-down orientation
without also being able to launch into normal portrait mode.)

Now let’s talk about an app whose initial orientation is landscape mode. The cold, hard
truth that you must understand is that in fact all apps launch into portrait mode ini-
tially. This is because the window goes only one way, with its top at the top of the
device (away from the home button) — window bounds are screen bounds (see “What
Rotates?” on page 521). No matter what you specify in the Info.plist “Supported inter-
face orientations” setting, the app will launch into portrait orientation first, and will
then rotate into your specified orientation. The user won’t necessarily see this initial
rotation; it may have happened by the time the user sees the app’s actual interface. But
it will happen.

Thus, an app whose initial orientation is landscape mode must be configured to rotate
from portrait to landscape even if it doesn’t support rotation after that. The initial setup
of such an app’s interface can be surprisingly tricky, because the interface takes on
portrait dimensions before it takes on landscape dimensions; questions of the form
“I’m having trouble getting my app to launch into landscape mode” are among the
most frequently asked iOS questions on the Internet.

Let’s take the case of an iPhone app whose initial orientation is landscape, with the
button on the right. Here’s what you’d need to do:

1. In Info.plist, set the “Supported interface orientations” to “Landscape (right home
button).”

2. In the root view controller’s code, override shouldAutorotateToInterface-

Orientation: along these lines:

- (BOOL) shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)io {
 return (io == UIInterfaceOrientationLandscapeRight);
}

3. If the root view interface requires further configuration in code, give the interface
a chance to establish itself and to rotate into position before doing that configura-
tion.

It is the neglect of that third step that causes beginners the most trouble (especially
because the documentation doesn’t tell you about it). The problem is that when the
root view is initially put into the window, its bounds are portrait orientation bounds;
only later, at the redraw moment (Chapter 14), does the view resize appropriately to
the initial orientation you’ve requested. Thus, if you try to configure the interface too
early (say, in the root view controller’s viewDidLoad), the width and height values of the
view’s bounds will be reversed.

For example, let’s say that we’ve taken the first two steps but we’ve neglected the third,
and that our root view controller’s viewDidLoad code looks like this:

524 | Chapter 19: View Controllers

- (void)viewDidLoad {
 [super viewDidLoad];
 UIView* square = [[UIView alloc] initWithFrame:CGRectMake(0,0,10,10)];
 square.backgroundColor = [UIColor blackColor];
 square.center = CGPointMake(CGRectGetMidX(self.view.bounds),5); // top center?
 [self.view addSubview:square];
}

The app apparently launches into a rotated landscape orientation; the user must hold
the device with the home button at the right to see it correctly. That’s good. But where’s
the little black square? Not at the top center of the screen! The square appears at the
top of the screen, but only about a third of the way across. The trouble is that in order
to calculate the x-coordinate of the square’s center we examined the view’s bounds too
soon, at a time when the view’s x-dimension (its width dimension) was still its shorter
dimension.

A solution is to override one of the rotation events discussed in the previous section
and complete the configuration of your view there. For example, we could override did-
RotateFromInterfaceOrientation:. This method is called for the first time at launch
after the initial rotation has been performed, so the dimensions of the root view are
correct. There’s always a chance that didRotateFromInterfaceOrientation: will be
called again later in the app’s lifetime, but we only want to perform our initial view
configuration once, so we need to take precautions against accidentally configuring the
interface again; this is a good use of a static variable:

- (void) finishInitializingView {
 // static BOOL flag
 static BOOL done = NO;
 if (done)
 return;
 done = YES;
 // the static BOOL flag makes sure the following is performed exactly once
 UIView* square = [[UIView alloc] initWithFrame:CGRectMake(0,0,10,10)];
 square.backgroundColor = [UIColor blackColor];
 square.center = CGPointMake(CGRectGetMidX(self.view.bounds),5);
 [self.view addSubview:square];
}

- (void)didRotateFromInterfaceOrientation:
 (UIInterfaceOrientation)fromInterfaceOrientation {
 [self finishInitializingView];
}

When designing in the nib, if the interface is to appear in landscape mode, you can
design in landscape mode; select your view and choose Landscape in the Orientation
pop-up menu in the Simulated Metrics section of the Attributes inspector. However,
this does not really rotate anything; you’re merely swapping the view’s height and width
values, for convenience while editing the nib. The nib knows nothing of orientations,
and the view, if it is placed into the window automatically as the app launches, will still
have a narrower x-dimension initially. In practice this should cause no difficulty; if the

Rotation | 525

results at runtime are not what you expect, it may help to use autoresizing settings so
that the bits of your interface settle into the correct position and dimensions.

Presented View Controller
Aside from responding to device rotation, the chief purpose of view controllers is to
make views come and go coherently in the interface. By now, you’re probably eager to
make some views come and go. The rock-bottom simplest way of making views come
and go is through a presented view controller.

In iOS 4 and before, the view provided by a presented view controller was called a
modal view. To make a modal view appear, you’d send a view controller whose view
occupies the interface the presentModalViewController:animated: message, handing it
a second view controller. This second view controller was the modal view controller,
and its view would now appear as a modal view. The second view controller became
the first view controller’s modalViewController; the first view controller was the second
view controller’s parentViewController. This state of affairs persisted until dismiss-
ModalViewControllerAnimated: was called.

In iOS 5, although presentModalViewController:animated: and dismissModalView-
ControllerAnimated: are not officially deprecated, they are considered outmoded and
are slated for official deprecation in the future. In this edition of the book, I won’t use
them, nor will I refer to modal view controllers. The term “modal” still plays a role
because of legacy terminology, but, as much as possible, I will keep to the new termi-
nology, which speaks of a presenting view controller and a presented view controller.

In iOS 5, then, to make a view controller present another view controller, you send the
first view controller presentViewController:animated:completion:, handing it the sec-
ond view controller, which you will probably instantiate for this very purpose. The first
view controller is now the second view controller’s presentingViewController; the sec-
ond view controller is the first view controller’s presentedViewController, and the first
view controller is retaining the second view controller. This state of affairs persists until
the first view controller is sent dismissViewControllerAnimated:completion:; after-
wards, the first view controller releases the second view controller, which will typically
go out of existence together with its view, its child view controllers and their views, and
so on.

The fact that in iOS 5 a presenting view controller is not the parentView-
Controller of the presented (modal) view controller is a major change
and may break your existing code from iOS 4 or before when you com-
pile it with iOS 5 as the Base SDK.

When one view controller presents another, the view of the presenting view controller
is automatically replaced in the interface with the view of the presented view controller,
optionally with animation as the transition takes place (Figure 19-6). (On the iPad, the

526 | Chapter 19: View Controllers

view of the presented view controller can instead optionally cover partially the view of
the presenting view controller; I’ll talk about that in a moment.) When the presented
view controller is dismissed, the view of the presented view controller is automatically
replaced in the interface with the view of the presenting view controller, optionally with
animation. The completion: parameter in presentViewController:animated:

completion: and dismissViewControllerAnimated:completion: lets you supply a block
of code to be run after the view replacement has occurred.

View controller presentation and dismissal is therefore a way of swapping out interface
completely. More often than not, this will be the entire interface; on the iPhone, it will
always be the entire interface (in effect, the root view controller is always the presenting
view controller on the iPhone).

Because one view controller actively presents and the other is passively presented, there
is a temptation to think of the presented view controller as secondary or temporary.
This is often true, but such a conception misses the full power of a presented view
controller, which is that it completely changes what the user sees. A presented view
controller might never be dismissed; its view’s interface might be complex; it might
itself have child view controllers (Figure 19-6); it might itself present yet another view
controller. You, the programmer, may be conscious that the presented view controller’s
view is in some sense a cover for the presenting view controller’s view; but the user
might not experience the interface that way. Perhaps it is better to think of view con-
troller presentation as a simple, straightforward way of transitioning from one view
(what a storyboard would call one scene) to another.

For example, in Apple’s own Music app, the two alternating views that appear when
you view the currently playing song are more like equal partners (Figure 19-7); there’s
no sense that one is secondary to the other. Yet it’s likely that these are the views of a
presenting view controller and a presented view controller.

Let’s make one view controller present another. We already have an example project,
from earlier in this chapter, containing an AppDelegate class and a RootViewController
class. Let’s modify it to add a second view controller class, and make RootView-
Controller present it (don’t use the project containing a storyboard; I’ll talk about
storyboards and presented view controllers later):

1. Choose File → New → New File and make a new Cocoa Touch UIViewController
subclass. Click Next.

2. Name the class SecondViewController, make sure it is a subclass of UIView-
Controller, and check the checkbox “With XIB for user interface” so that we can
design this view controller’s view quickly and easily in a nib. Click Next.

3. Create the files.

4. Do something in SecondViewController.xib to make the view distinctive, so that
you’ll know it when it appears.

Presented View Controller | 527

5. We need a way to trigger the presenting of SecondViewController. Back in Root-
ViewController’s view’s interface, add a button. Connect that button to an action
method in RootViewController.m; let’s call it doPresent:.

Now we’ll write the code for doPresent:. First, import "SecondViewController.h" at the
top of RootViewController.m, so that we can speak of SecondViewController. Here’s
the code:

- (IBAction)doPresent:(id)sender {
 [self presentViewController:[[SecondViewController alloc] init]
 animated:YES completion:nil];
}

Run the project. In RootViewController’s view, tap the button. SecondView-
Controller’s view slides into place over RootViewController’s view.

In our lust for instant gratification, we have neglected to provide a way to dismiss the
presented view controller. If you’d like to do that, put a button into SecondView-
Controller’s view and connect it to an action method in SecondViewController.m:

- (IBAction)doDismiss:(id)sender {
 [self.presentingViewController dismissViewControllerAnimated:YES
 completion:nil];
}

Figure 19-7. Two views that are equal partners

528 | Chapter 19: View Controllers

Run the project. You can now alternate between RootViewController’s view and
SecondViewController’s view.

Instead of sending dismissViewControllerAnimated:completion: to the
presenting view controller, our presented view controller could have
sent it to self. The call is then automatically forwarded to the presenting
view controller. However, this fact is not officially documented, so I’m
not sure whether it’s safe to rely on it in future.

In real life, it is quite probable that both presentation and dismissal will be a little more
involved than in that simple example. The presenting view controller will very likely
have additional information to impart to the presented view controller. Here’s a typical
example from one of my apps (this is in fact the transition that engenders Figure 19-6):

DrillViewController* dvc = [[DrillViewController alloc] initWithData:drillTerms];
[self presentViewController:dvc animated:YES completion:nil];

As you can see, I’ve constructed DrillViewController to have a designated initializer
initWithData: for this very purpose, so that the presenting view controller can pass it
the data it will need to do its job while it exists.

The presented view controller, too, will very likely have additional information to pass
back to the presenting view controller. The user is interacting with the presented view
controller’s view, so (as in our example above) it is the presented view controller that
knows when it should be dismissed. It also knows what happened while it was in ex-
istence. So the presented view controller may need a way to turn to the presenting view
controller and hand back some data as it tells the presenting view controller to dismiss
it — and this might even involve calling some method in the presenting view controller.
Moreover, identifying the presenting view controller from within the presented view
controller might not be a simple task. What if there’s a chain of presented view con-
trollers?

The presented view controller may thus need a reference to the presenting view con-
troller and a knowledge of at least some methods implemented by the presenting view
controller’s class. A standard architecture that solves this problem is for the presented
view controller to define a protocol to which the presenting view controller conforms.
The presenting view controller then hands the presented view controller a (weak!) ref-
erence to itself as it creates the presented view controller. In this way the presented view
controller is the one that specifies what the communication callbacks will be, and it
remains agnostic about the actual class of the presenting view controller. This is the
architecture, exemplified by the Utility Application project template, that I discussed
in Chapter 10.

To implement this architecture in our existing example with RootViewController and
SecondViewController, you’d modify SecondViewController to look like this:

Presented View Controller | 529

// [in SecondViewController.h]
@protocol SecondViewControllerDelegate
- (void) dismissSecondViewControllerWithData: (id) data;
@end
@interface SecondViewController : UIViewController
@property (nonatomic, weak) id<SecondViewControllerDelegate> delegate;
@end

// [in SecondViewController.m]
@synthesize delegate;
- (IBAction)doDismiss:(id)sender {
 [self.delegate dismissSecondViewControllerWithData:nil];
}

RootViewController would then declare itself in RootViewController.h as adopting
SecondViewControllerDelegate; observe that in order to do this, RootView-
Controller.h must import "SecondViewController.h" (because that’s where the protocol
is defined). RootViewController’s code would then present and dismiss SecondView-
Controller like this:

- (IBAction)doPresent:(id)sender {
 SecondViewController* svc = [[SecondViewController alloc] init];
 svc.delegate = self;
 [self presentViewController:svc animated:YES completion:nil];
}
- (void)dismissSecondViewControllerWithData:(id)data {
 // ... do something with the data here ...
 [self dismissViewControllerAnimated:YES completion:nil];
}

To be sure, configuring this architecture involves considerable work, and I know from
experience that there is a strong temptation to be lazy and avoid it. It may indeed be
possible to get by with a simplified solution. For example, SecondViewController might
know that it will be presented only by a RootViewController, and can thus import
"RootViewController.h", cast its presentingViewController to a RootViewController,
and call any RootViewController method. Or SecondViewController could post a no-
tification for which RootViewController has registered. Nevertheless, a protocol is the
fullest and most correct architecture for a presented view controller to communicate
back to its presenter.

I am not saying that a simpler solution would never be possible or that it would never
right. One can imagine situations where a notification would arguably be a better sol-
ution. Perhaps there is a deep chain of presented views, and perhaps different user
actions should cause dismissal at different levels up the chain; thus, the deepest view
could not have a single delegate. Perhaps there is no point at which the presenter who
must perform the dismissal is ever in direct contact with the view controller that handles
the user action; in the previous example, they were in contact because the one created
the other, but that might not be the case. Then, I think, a notification is perfectly rea-
sonable. This all part of the larger topic of getting a reference, discussed in Chap-
ter 13. No one size fits all.

530 | Chapter 19: View Controllers

Presented View Animation
When a view is presented and later when it is dismissed, an animation can be per-
formed, according to whether the animated: parameter of the corresponding method
is YES. The possible animation styles (whose names preserve the legacy “modal” des-
ignation) are:

UIModalTransitionStyleCoverVertical (the default)
The presented view slides up from the bottom to cover the presenting view on
presentation and down to reveal the presenting view on dismissal. (“Bottom” is
defined differently depending on the orientation of the device and the orientations
the view controllers support.)

UIModalTransitionStyleFlipHorizontal

The view flips on the vertical axis as if the two views were the front and back of a
piece of paper. (The “vertical axis” is the device’s long axis, regardless of the app’s
orientation.)

UIModalTransitionStyleCrossDissolve

The views remain stationary, and one fades into the other.

UIModalTransitionStylePartialCurl

The first view curls up like a page in a notepad to expose most of the second view,
but remains covering the top-left region of the second view. Thus there must not
be any important interface in that region, as the user will not be able to see or touch
it. This option seems more appropriate on the larger iPad screen, though it is legal
on the iPhone.

You do not pass the animation style as a parameter when presenting or dismissing a
view controller; rather, it is attached beforehand to a view controller as its modal-
TransitionStyle property. (It is legal, but not common, for the modalTransitionStyle
value to differ at the time of dismissal from its value at the time of presentation; reversing
on dismissal the same animation style that was used on presentation is a subtle cue to
the user that we’re returning to a previous state.) The view controller that should have
this modalTransitionStyle property set will generally be the presented view controller
(I’ll talk about the exception to this rule in a moment).

Under this architecture, if the presenting view controller wants to dictate the transition
style, it should set the presented view controller’s modalTransitionStyle property right
after it instantiates the presented view controller. Otherwise, if the presented view
controller wants to dictate its own transition style, it should set its own modalTransition-
Style property early in its lifetime; for example, it might override initWithNibName:
bundle:. If the presented view controller is instantiated in a nib, there’s a Transition
Style pop-up menu in the nib editor.

Presented View Controller | 531

Presentation Styles
On the iPhone, the presented view controller’s view always replaces the presenting view
controller’s view. On the iPad, there are additional options, in accordance with the
iPad’s larger screen, the existence of popovers, and the extended ability to do things
with custom parent controllers. These options are expressed through UIView-
Controller’s modalPresentationStyle property.

The modalPresentationStyle property must be set on the presented view controller. As
with modalTransitionStyle (discussed in the previous section), the presented view con-
troller will want to set this value early in its lifetime if it isn’t being set by the presenting
view controller.

Your choices (which display more legacy “modal” names) are:

UIModalPresentationFullScreen

The default. This is the only mode in which UIModalTransitionStylePartialCurl
is legal. On the iPhone, although it is not illegal to set the modalPresentation-
Style to another value, a presented view will always behave as if it were UIModal-
PresentationFullScreen; this amounts to another way of saying that on the iPhone
the root view controller is always the presenting view controller.

UIModalPresentationPageSheet

In a portrait orientation, basically indistinguishable from fullscreen mode. But in
a landscape orientation, the presented view has the width of the portrait-oriented
screen, so the presenting view controller’s view remains partially visible behind the
presented view, but dimmed so that the user can’t interact with it. Thus this mode
is very like a modal dialog on Mac OS X.

UIModalPresentationFormSheet

Similar to UIModalPresentationPageSheet, but the presented view is smaller. As the
name implies, this intended to allow the user to fill out a form (Apple describes
this as “gathering structured information from the user”).

UIModalPresentationCurrentContext

The presented view replaces the view of the presenting view controller. This is
useful with popovers, for instance (see Chapter 22), and with parent controllers
where a child view controller occupies only a portion of the screen — in which
case, the presented view can replace just that portion of the screen.

On the iPad, when the presented view controller’s modalPresentationStyle is UIModal-
PresentationCurrentContext, a decision has to be made as to what view controller’s
view should be replaced by the presented view controller’s view. In iOS 5, the way this
decision is made involves another UIViewController property, definesPresentation-
Context (a BOOL). Here’s what happens: starting with the view controller to which
presentViewController:animated:completion: was sent, we walk up the chain of parent
view controllers, looking for one whose definesPresentationContext property is YES.
If we find one, that is the one whose view will be replaced by the presented view con-

532 | Chapter 19: View Controllers

troller’s view. If we don’t find one, the root view controller’s view is replaced, just as if
the presented view controller’s modalPresentationStyle had been UIModalPresentation-
FullScreen.

Moreover, if, during the search just described, we do find a view controller whose
definesPresentationContext property is YES, we look to see if that view controller’s
providesPresentationContextTransitionStyle property is also YES. If so, that view
controller’s modalTransitionStyle (defining the style of the transition animation when
one view replaces the other, as discussed in the previous section) is used for this tran-
sition animation, instead of using the presented view controller’s modalTransition-
Style.

To illustrate, I need a parent–child view controller pair to work with. This chapter
hasn’t yet discussed any parent view controllers in detail, but the simplest is UITab-
BarController, which I discuss in the next section, and it’s easy to create a working app
with a UITabBarController-based interface, so that’s the example I’ll use.

Start with a Universal version of the Tabbed Application project template. Make a new
view controller class and an accompanying nib file to use as a presented view controller.
Put a button in the first view controller’s view and connect it to an action method in
the first view controller that summons the new view controller as a presented view
controller. For example, if the new view controller’s class is ExtraViewController, you’d
say this:

- (IBAction)doPresent:(id)sender {
 UIViewController* vc = [ExtraViewController new];
 [self presentViewController:vc animated:YES completion:nil];
}

Run the project. You’ll find that the presented view controller occupies the entire in-
terface, covering even the tab bar. The presented view replaces the root view.

Now change the code to look like this:

- (IBAction)doPresent:(id)sender {
 UIViewController* vc = [ExtraViewController new];
 self.definesPresentationContext = YES;
 vc.modalPresentationStyle = UIModalPresentationCurrentContext;
 [self presentViewController:vc animated:YES completion:nil];
}

Run the project. This time, the presented view controller replaces only the first view
controller’s view; the tab bar remains. That’s because the presented view controller’s
modalPresentationStyle is UIModalPresentationCurrentContext, and when presentView-
Controller:animated:completion: is sent to self, the definesPresentationContext
property of self is YES. The search for a context stops, and the presented view replaces
the first view controller’s view instead of the root view.

The difference is even more dramatic if we change the transition animation. Instead of
changing the modalTransitionStyle of the presented view controller, vc, we can do this

Presented View Controller | 533

by changing the modalTransitionStyle of the presenting view controller, self. Add two
more lines, like this:

- (IBAction)doPresent:(id)sender {
 UIViewController* vc = [ExtraViewController new];
 self.definesPresentationContext = YES;
 self.providesPresentationContextTransitionStyle = YES;
 self.modalTransitionStyle = UIModalTransitionStyleFlipHorizontal;
 vc.modalPresentationStyle = UIModalPresentationCurrentContext;
 [self presentViewController:vc animated:YES completion:nil];
}

Now the transition animation uses the flip horizontal animation; the presenting view
controller is able to override the transition animation of the presented view controller.
It can do this only because all three conditions are met: the presented view controller’s
modalPresentationStyle is UIModalPresentationCurrentContext, the defines-

PresentationContext property of self is YES, and the providesPresentationContext-
TransitionStyle property of self is YES as well. The flip horizontal animation shows
clearly what part of the interface is being replaced by the presented view.

Observe also that you can still switch between the first and second tabbed views, even
while the presented view is occupying the place of the first tabbed view. Clearly, very
powerful and interesting interfaces can be constructed using this technique.

It’s helpful to experiment with the above code, commenting out individual lines to see
what effect they have on the overall result. Also, run the code on the iPhone simulator
and observe that none of this works; the UIModalPresentationCurrentContext presen-
tation style, on which this entire behavior depends, is an iPad-only feature.

Presented Views and Rotation
No law requires that every “scene” of your interface should appear in the same rotation.
On the iPhone especially, where the user can easily rotate the device while working
with an app, it is reasonable and common for one scene to appear in portrait orientation
and another to appear in landscape orientation.

One easy way to achieve this is to implement shouldAutorotateToInterface-

Orientation: differently for a presented view controller. When a view controller is pre-
sented, its shouldAutorotateToInterfaceOrientation: is consulted and used. If the de-
vice is not in an orientation that the presented view controller approves of, the app will
rotate and the user will have to rotate the device to see it correctly.

For example, in my flashcard app pictured in Figure 19-3, the flashcards are viewed
only in landscape orientation. But there is also an option to display a list (a UITable-
View) of all flashcards. This list is far better viewed in portrait orientation, so as to
accommodate the greatest possible number of items on the screen at once; therefore,
it is permitted to assume portrait orientation only. The user must rotate the device with
the hand holding the iPhone, but this is not objectionable; in fact, it quickly becomes
automatic and subconscious.

534 | Chapter 19: View Controllers

This is achieved by implementing shouldAutorotateToInterfaceOrientation: this way
in one view controller:

// [view controller A]
- (BOOL) shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)io {
 return (io == UIInterfaceOrientationLandscapeRight);
}

Meanwhile, it is implemented this way in another view controller:

// [view controller B]
- (BOOL) shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)io {
 return (io == UIInterfaceOrientationPortrait);
}

Then when view controller A’s view appears, it will appear in landscape orientation.
View controller A, on demand, presents view controller B; when view controller B’s
view appears, it will appear in portrait orientation.

On an iPad, if the presented view controller’s presentation style is
UIModalPresentationPageSheet or UIModalPresentationFormSheet, and if
its shouldAutorotateToInterfaceOrientation: forces the user to rotate
the device, the presenting view controller does not get any rotation
events. This can result in a weird interface, so don’t do that. The pre-
sented view controller’s acceptable orientations should match those of
the presenting view controller.

A presented view controller with a different preferred orientation can also be used as a
way of rotating the interface in response to rotation of the device. Instead of performing
complex layout on rotation, as in “Rotation Events” on page 521, we forbid the rotation
of our view (in shouldAutorotateToInterfaceOrientation:), detect the rotation of the
device instead, and replace our view with a presented view suited to the new orientation.

In this example, I assume that the root view controller (where this code is) has its should-
AutorotateToInterfaceOrientation: set to return YES for portrait orientation, while
the alternate LandscapeViewController is set to return YES for landscape orientation:

- (void)viewDidLoad {
 [super viewDidLoad];
 [[UIDevice currentDevice] beginGeneratingDeviceOrientationNotifications];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(screenRotated:)
 name:UIDeviceOrientationDidChangeNotification
 object:nil];
}

- (void) screenRotated: (id) notif {
 NSUInteger rot = [[UIDevice currentDevice] orientation];
 if (UIDeviceOrientationIsLandscape(rot) && !self.presentedViewController) {
 [[UIApplication sharedApplication]
 setStatusBarOrientation:rot animated:YES];
 LandscapeViewController *c = [[LandscapeViewController alloc] init];

Presented View Controller | 535

 c.modalTransitionStyle = UIModalTransitionStyleCrossDissolve;
 [self presentViewController:c animated:YES completion:nil];
 } else if (rot==UIDeviceOrientationPortrait && self.presentedViewController) {
 [[UIApplication sharedApplication]
 setStatusBarOrientation:rot animated:YES];
 [self dismissViewControllerAnimated:YES completion:nil];
 }
}

The judicious use of setStatusBarOrientation:animated: nets us the nice status bar
animation exactly on those occasions when the system does not hand it to us, so that
we get it no matter how the user rotates the device. The result is basically indistin-
guishable from “normal” interface rotation.

Tab Bar Controllers
A tab bar (UITabBar, see also Chapter 25) is a horizontal bar containing items. Each
item (a UITabBarItem) displays, by default, an image and a title. At all times, exactly
one of these items is selected (highlighted); when the user taps an item, it becomes the
selected item.

If there are too many items to fit on a tab bar, the excess items are automatically sub-
sumed into a final More item. When the user taps the More item, a list of the excess
items appears, and the user can select one; the user can also be permitted to edit the
tab bar, determining which items appear in the tab bar itself and which ones spill over
into the More list.

A tab bar is an independent interface object, but it is most commonly used in conjunc-
tion with a tab bar controller (UITabBarController, a subclass of UIViewController) to
form a tab bar interface. The tab bar controller displays the tab bar at the bottom of its
own view. From the user’s point of view, the tab bar items correspond to views; when
the user selects a tab bar item, the corresponding view appears. These views are
“scenes”; the user is employing the tab bar to choose an entire area of your app’s func-
tionality. In reality, the UITabBarController is a parent view controller; you give it child
view controllers, which the tab bar controller then contains, and the scenes are the
views of those child view controllers.

A UITabBarController thus puts an organizational front end on the range interface that
your app offers:

The tab bar is informative
The tab bar, possibly including the More item, tells the user what scenes are avail-
able, and the highlighting shows which scene is currently displayed.

The tab bar is navigational
The user chooses an item from the tab bar to change scenes.

536 | Chapter 19: View Controllers

Familiar examples of a tab bar interface on the iPhone are Apple’s Clock app, which
has four tab bar items, and Apple’s Music app, which has four tab bar items plus a
More item that reveals a list of six more.

On the small iPhone screen, you may feel that using a tab bar interface involves a certain
degree of sacrifice. Some screen real estate is occupied by the tab bar, reducing the
amount of space available for the views that it summons by about 50 pixels at the
bottom, and the tab bar itself cannot readily be hidden. Don’t forget, however, about
presented view controllers! A tab bar controller can present a view controller whose
view occupies the whole screen, replacing the tab bar interface with a completely dif-
ferent interface. And a tab bar controller can itself be a presented view controller. Thus,
there is no requirement that your app’s whole interface should be a tab bar interface.

When using a tab bar interface by way of a UITabBarController, you do not interact
(as a programmer) with the tab bar itself; you don’t create it or set its delegate. You
provide the UITabBarController with children, and it does the rest; when the UITab-
BarController’s view is displayed, there’s the tab bar along with the view of the selected
item. Starting in iOS 5, however, you can customize the look of a tab bar (see Chap-
ter 25 for details); you’re no longer confined to the black gradient that characterized a
tab bar in the past. You can get a reference to the tab bar controller’s tab bar through
its tabBar property.

As mentioned earlier in this chapter, you should not subclass UITabBarController (nor
should you need to).

Since you don’t subclass UITabBarController, you can’t override its shouldAutorotate-
ToInterfaceOrientation:. Instead, a tab bar interface’s orientation is determined by the
orientations of its child view controllers. If the device is rotated to a certain orientation,
and if all the child view controllers permit rotation to that orientation, the tab bar
interface itself will rotate; similarly, if all the child view controllers agree in permitting
rotation to a certain orientation, they can force the tab bar interface to assume that
orientation.

Tab Bar Items
For each view controller you assign as a tab bar controller’s child, you’re going to need
a tab bar item, which will appear in the tab bar. This tab bar item will be your child
view controller’s tabBarItem. A tab bar item is a UITabBarItem; this is a subclass of
UIBarItem, an abstract class that provides some of its most important properties, such
as title, image, and enabled.

There are two ways to make a tab bar item:

By borrowing it from the system
Instantiate UITabBarItem using initWithTabBarSystemItem:tag:, and assign the
instance to your child view controller’s tabBarItem. Consult the documentation for
the list of available system items. Unfortunately you can’t customize a system tab

Tab Bar Controllers | 537

bar item’s title; you must accept the title the system hands you. (You can’t work
around this annoying restriction by somehow copying a system tab bar item’s im-
age.)

By making your own
Instantiate UITabBarItem using initWithTitle:image:tag:. Alternatively, use the
view controller’s existing tabBarItem and set its image and title. Instead of setting
the title of the tabBarItem, you can set the title property of the view controller
itself; setting a view controller’s title automatically sets the title of its current
tabBarItem (unless the tab bar item is a system tab bar item), but the converse is
not true.

The image for a tab bar item should be a 30×30 PNG (if it is larger, it will be scaled
down as needed). It should be a transparency mask; that is, it should consist of trans-
parent pixels and opaque pixels (possibly including semiopaque pixels). Color is of no
consequence and will be ignored; all that matters is the degree of transparency of each
pixel. The runtime itself will tint the image, adding a shine effect.

Starting in iOS 5, you can instead provide a normal image by calling setFinished-
SelectedImage:withFinishedUnselectedImage:; the runtime will not modify this image
in any way, and getting the size right is up to you. The selected and unselected image
can be the same, but the runtime will not tint the selected image (as it does for an
image), so you’ll probably want two different images, to differentiate the two states.
(See Chapter 15 on how to use Core Image to tint or desaturate an image.)

You can also give a tab bar item a badge (see the documentation on the badgeValue
property). Other ways in which you can customize the look of a tab bar item are dis-
cussed in Chapter 25. For example, you can control the font and style of the title, or
you can give it an empty title and offset the image.

Configuring a Tab Bar Controller
As I’ve already said, you configure a tab bar controller by handing it the view controllers
that will be its children. To do so, collect those view controllers into an array and set
the UITabBarController’s viewControllers property to that array. The view controllers
in the array are now the tab bar controller’s child view controllers; the tab bar controller
is the parentViewController of the view controllers in the array. The tab bar controller
is also the tabBarController of the view controllers in the array and of all their children;
thus a child view controller at any depth can learn that it is contained by a tab bar
controller and can get a reference to that tab bar controller. The tab bar controller
retains the array, and the array retains the child view controllers.

The tab bar controller’s tab bar will automatically display the tabBarItem of each child
view controller. The order of the tab bar items is the order of the view controllers in
the tab bar controller’s viewControllers array. Thus, the child view controllers will
probably want to configure their tabBarItem property very early in their lifetime, so that

538 | Chapter 19: View Controllers

the tabBarItem is ready by the time the view controller is handed as a child to the tab
bar controller. It is common to override initWithNibName:bundle: for this purpose.

Here’s a simple example excerpted from the app delegate’s application:didFinish-
LaunchingWithOptions: of one of my apps, in which I construct a tab bar interface and
display it:

UITabBarController* tbc = [[UITabBarController alloc] init];
// create tabs
UIViewController* b = [[[GameBoardController alloc] init];
// some code omitted here... never mind what "s" is in the next line
UINavigationController* n =
 [[[UINavigationController alloc] initWithRootViewController:s];
// load up with tab views
tbc.viewControllers = [NSArray arrayWithObjects: b, n, nil];
// configure window
self.window.rootViewController = tbc;

You’ll notice that I don’t configure the contained view controllers’ tab bar items. That’s
because those view controllers configure themselves early in their lifetimes. For exam-
ple:

// [GameBoardController.m]

- (id) initWithNibName:(NSString *)nibName bundle:(NSBundle *)nibBundle {
 self = [super initWithNibName:nibName bundle:nibBundle];
 if (self) {
 // we will be embedded in a tab bar interface, configure
 self.tabBarItem.image = [UIImage imageNamed:@"game.png"];
 self.title = @"Game";
 }
 return self;
}

If you change the tab bar controller’s view controllers array later in its lifetime and you
want the corresponding change in the tab bar items to be animated, call setView-
Controllers:animated:.

When a child view controller’s view is displayed, it is resized to fit the region of the tab
bar controller’s view above the tab bar. Keep that fact in mind when designing your
view. Autoresizing settings can help here, if you don’t want an interface item near the
bottom of your view to be left behind and disappear from the interface when the view
is resized. Also, when editing your view in the nib editor, you can shrink the view to
the size at which it will be displayed in the tab bar interface, thus helping you judiciously
situate your interface items; to do so, choose Tab Bar in the Bottom Bar pop-up menu
of the Simulated Metrics section of the Attributes inspector.

Initially, by default, the first child view controller’s tab bar item is selected and its view
is displayed. To tell the tab bar controller which tab bar item should be selected, you
can couch your choice in terms of the contained view controller, by setting the selected-
ViewController property, or by index number in the array, by setting the selected-

Tab Bar Controllers | 539

Index property. The same properties also tell you what view controller’s view the user
has displayed by tapping in the tab bar.

You can also set the UITabBarController’s delegate; the delegate should adopt the
UITabBarControllerDelegate protocol. The delegate gets messages allowing it to pre-
vent a given tab bar item from being selected, and notifying it when a tab bar item is
selected and when the user is customizing the tab bar from the More item.

If the tab bar contains few enough items that it doesn’t need a More item, there won’t
be one and the tab bar won’t be user-customizable. If there is a More item, you can
exclude some tab bar items from being customizable by setting the customizableView-
Controllers property to an array that lacks them; setting this property to nil means that
the user can see the More list but can’t rearrange the items. Setting the view-
Controllers property sets the customizableViewControllers property to the same value,
so if you’re going to set the customizableViewControllers property, do it after setting
the viewControllers property. (If you do allow the user to rearrange items, you would
presumably want to respond in the delegate to this rearrangement by saving the new
arrangement in the NSUserDefaults and using it the next time the app runs.) The more-
NavigationController property can be compared with the selectedViewController
property to learn whether the user is currently viewing the More list; apart from this,
the More interface is mostly out of your control, but I’ll discuss some sneaky ways of
customizing it in Chapter 25.

You can also configure a UITabBarController in a nib or storyboard. The nib editor
interface is quite clever about this. The UITabBarController’s contained view control-
lers can be set directly in the nib. Moreover, each contained view controller contains a
Tab Bar Item; you can select this and set its title and image directly in the nib. (If a view
controller in a nib doesn’t have a Tab Bar Item and you want to configure this view
controller for use in a tab bar interface, drag a Tab Bar Item from the Object library
onto the view controller.) The UITabBarController itself has a delegate outlet. Thus,
it is possible to create a fully configured tab bar interface with essentially no code at all.

Navigation Controllers
A navigation bar (UINavigationBar, see also Chapter 25) is a horizontal bar displaying,
at its simplest, a center title and a right button. When the user taps the right button,
the navigation bar animates, sliding its interface out to the left and replacing it with a
new interface that enters from the right, displaying a back button at the left side, and
a new center title — and possibly a new right button. Thus the user can now either go
further forward (to the right), tapping the right button to proceed to yet another center
title, or else go back (to the left), tapping the back button to return to the first interface,
with the first center title and the first right button.

There’s a computer science name for the architecture I’m describing — a stack. Con-
ceptually, a navigation bar represents a stack. Under the hood, a navigation bar really

540 | Chapter 19: View Controllers

is a stack. A navigation bar holds an internal stack of navigation items (UINavigation-
Item). It starts out with one navigation item (the root or bottom item); you can then
push another navigation item onto the stack, and from there you can either pop that
navigation item to remove it from the stack or push yet another navigation item onto
the stack.

At any moment, therefore, some navigation item is the top item on the stack, the most
recently pushed item still present on the stack (the topItem). Furthermore, unless the
top item is also the root item (because it is the only item in the stack), some navigation
item is the back item (the backItem), the item that would be top item if we were now to
pop the top item.

The state of the stack is reflected in the navigation bar’s interface. The navigation bar’s
center title comes automatically from the top item, and its back button comes from the
back item. (See Chapter 25 for a complete description.) Thus, typically, the center
shows the user what item is current, and the left side is a button telling the user what
item we would return to if the user were to tap that button. The animations reinforce
this notion of directionality, giving the user a sense of position within a chain of items.
When a navigation item is pushed onto the stack, the new interface slides in from the
right; when an item is popped from the stack, the new interface slides in from the left.

A navigation bar is an independent interface object, but it is most commonly used in
conjunction with a navigation controller (UINavigationController, a subclass of
UIViewController) to form a navigation interface. To each navigation item in the nav-
igation bar corresponds a “scene” — a view controller and its view. Just as there is a
stack of navigation items in the navigation bar, there is a stack of view controllers in
the navigation controller. These view controllers are the navigation controller’s chil-
dren, and the navigation items each belong a view controller; each navigation item is,
in fact, a view controller’s navigationItem. Whatever view controller is at the top of the
navigation controller’s stack, that is the view controller whose navigationItem is dis-
played in the navigation bar, and whose view is displayed in the interface as a whole.
The animation in the navigation bar is matched by an animation of the interface as a
whole: a view controller’s view slides into the main interface from the left or right just
as its navigation item slides into the navigation bar from the left or right.

If a tab bar interface is like offering the user a choice from a hand of cards, a navigation
interface is like dealing one card at a time off the top of the deck. The user starts by
looking at a single card, face up. When the user navigates to the right, this is like asking
for another card, which now lies face up on top of the first card. At this point the user
can perhaps ask for yet another card. When the user navigates to the left, this is like
taking the topmost face-up card and returning it to the dealer; the user can repeat this
until only the original card is left.

In real life, a navigation interface is far more flexible than what I have so far described.
The user can indeed sometimes navigate to the right by tapping the right button in the
navigation bar, but far more often the user will navigate to the right by tapping some-

Navigation Controllers | 541

thing inside the main interface, such as a listing in a table view. (Figure 19-1 is a navi-
gation interface that works this way.) It is also possible to allow the user to navigate
back to the left by tapping something inside the main interface, though this is much
rarer; the convention of going back by tapping whatever is leftmost in the navigation
bar is ingrained in users. It is even possible for a navigation interface to hide the navi-
gation bar, letting the user navigate to the right and later back to the left solely by means
of interface objects within the main interface. (Conversely, it is not uncommon, espe-
cially on the iPhone, to put a view controller inside a navigation controller just to get
the convenience of the navigation bar, with its title and buttons, even when no actual
push-and-pop navigation is going to take place.)

When using a navigation interface by way of a UINavigationController, you do not
interact (as a programmer) with the navigation bar itself; you don’t create it or set its
delegate. You provide the UINavigationController with children, and it does the rest,
handing each child view controller’s navigationItem to the navigation bar for display
and showing the child view controller’s view each time navigation occurs. In iOS 5,
however, you can customize the look of a navigation bar far more than in the past (see
Chapter 25 for details). You can get a reference to the navigation controller’s navigation
bar through its navigationBar property.

Prior to iOS 5, the features of a navigation item, and hence the possible
contents of a navigation bar, were rather limited. You could have a back
button or a left button, a center title or view, and a right button, and
that was pretty much all. In iOS 5, however, there can be multiple left
buttons and multiple right buttons.

A navigation interface may also optionally display a toolbar at the bottom. A toolbar
(UIToolbar) is a horizontal view displaying a row of items, any of which the user can
tap. The tapped item may highlight momentarily but is not selected; it represents the
initiation of an action, not a state or a mode, and should be thought of as (and may in
fact look like) a button. In iOS 5, the look of the toolbar can be greatly customized
(Chapter 25).

(A UIToolbar can be used independently, and often is. It then typically appears at the
bottom on an iPhone — Figure 19-3 has a toolbar at the bottom — but often appears
at the top on an iPad, where it plays something of the role that the menu bar plays on
the desktop. When a toolbar is displayed by a navigation controller, though, it always
appears at the bottom.)

In a navigation interface, the contents of the toolbar are linked to the view controller
that is currently the top item in the stack: they are its toolbarItems. The toolbar can
also readily be hidden or shown as a certain view controller becomes the top item. Thus,
the toolbar appears to the user to be associated with a particular view, not with the
navigation interface as a whole.

542 | Chapter 19: View Controllers

A navigation controller is thus tremendously flexible:

• A view controller is not pushed onto the stack until it is needed for display. Thus,
you get to decide in real time what the next view should be; typically, you won’t
even create the next view controller until the user asks to navigate to the right. This
makes a navigation controller perfect for a master–detail interface, in which the
user sees a list of possibilities and taps one to navigate to the detailed view of that
thing (Figure 19-1).

• Both the navigation bar and the toolbar are optional, in the sense that they can be
hidden. Moreover, the look of both the navigation bar and the toolbar can be
customized (and in iOS 5, they can really be customized). Thus, not all navigation
interfaces look the same.

• The toolbar’s contents and the navigation bar’s contents respond automatically to
the advent of a different view controller, and can also be changed in code.

• A navigation interface can readily be used in many ways: as the root view of your
app, as a presented view, or as a view contained by a tab bar controller.

A familiar example of a navigation interface is Apple’s Mail app (Figure 19-8), a master–
detail interface with the navigation bar at the top and the toolbar displaying additional
options and information at the bottom.

Figure 19-8. A familiar navigation interface

Navigation Controllers | 543

As mentioned earlier in this chapter, you should not subclass UINavigationController
(nor should you need to).

Since you don’t subclass UINavigationController, you can’t override its should-
AutorotateToInterfaceOrientation:. Instead, a navigation interface’s orientation is de-
termined as follows:

• Initially, the navigation interface adopts the orientation rule of its root view con-
troller.

• When a view controller is pushed onto the stack, the navigation interface does not
rotate, even if the new view controller does not permit the current orientation.
However, if the device is later rotated to an orientation that the new view controller
permits, the navigation interface will rotate to it.

• When a view controller is popped from the stack, if the view controller that’s now
at the top of the stack permits the current orientation, the navigation interface stays
in that orientation. Otherwise, the navigation interface rotates to a permitted ori-
entation.

Bar Button Items
The buttons in a UIToolbar or a UINavigationBar are bar button items (UIBarButton-
Item, a subclass of UIBarItem). A bar button item can come in either of two broadly
different flavors:

Basic bar button item
The bar button item looks and behaves like a simple button. A bar button item is
not, however, the same as a UIButton; it has some button-like qualities, but it does
not inherit from UIButton, from UIControl, or even from UIView. (It doesn’t even
have a frame.)

Custom view
The bar button item is assigned, and appears as, a customView. The customView is a
UIView — any kind of UIView. Thus, a bar button item can put any sort of view
into a toolbar or navigation bar, including a real UIButton or anything else (and
implementing any button behavior would then be the responsibility of that view).

Let’s start with the basic bar button item (no custom view). A bar button item, like a
tab bar item, inherits from UIBarItem the title, image, and enabled properties. A basic
bar button item can have a title or an image, but generally not both; assigning an image
removes the title if the bar button item is used in a navigation bar, but in a toolbar the
title appears below the image. The image should usually be quite small (20×20 pixels
is a good size).

A bar button item also has target and action properties. These give it its button-like
behavior: tapping a bar button item can trigger an action method elsewhere (Chap-
ter 11).

544 | Chapter 19: View Controllers

The overall look of a basic bar button item is determined by its style property; the
choices are:

UIBarButtonItemStyleBordered

Looks like a button, with a round rectangular border around the image or title.

UIBarButtonItemStylePlain

In a toolbar, the bare title or image (or both) is displayed; if just a title, the text size
is much larger by default than with a UIBarButtonItemStyleBordered button, but
in iOS 5 you can change that. Like a tab bar item’s image, a bar button item’s
image must be a transparency mask when used with UIBarButtonItemStylePlain in
a toolbar. In a navigation bar, UIBarButtonItemStylePlain is portrayed as if it were
UIBarButtonItemStyleBordered.

UIBarButtonItemStyleDone

Bordered, and with a blue fill. As the name implies, this is suitable for a Done
button in a temporary view.

Starting in iOS 5, the look of a basic bar button item can be given a great deal of
additional customization. It can have a tint color or a background image, and, as with
a tab bar item, you can control the font and style of the title. Full details appear in
Chapter 25.

There are three ways to make a bar button item:

By borrowing it from the system
Instantiate UIBarButtonItem using initWithBarButtonSystemItem:target:

action:. Consult the documentation for the list of available system items; they are
not the same as for a tab bar item. You can’t assign a title or change the image. (But
you can change the tint color or assign a background image.)

By making your own basic bar button item
Instantiate UIBarButtonItem using initWithTitle:style:target:action: or init-
WithImage:style:target:action:.

In iOS 5, an additional method, initWithImage:landscapeImagePhone:style:
target:action:, lets you supply two images, one for portrait orientation, the other
for landscape orientation; this is because by default the bar’s height might change
when the interface is rotated.

By making a custom view bar button item
Instantiate UIBarButtonItem using initWithCustomView:. The tab bar item has no
action and target; the UIView itself must somehow implement button behavior if
that’s what you want. For example, the customView might be a UISegmentedButton,
but then it is the UISegmentedButton’s target and action that give it button be-
havior.

Bar button items in a toolbar are positioned automatically by the system. You can
provide hints to help with this positioning. If you know that you’ll be changing an

Navigation Controllers | 545

item’s title dynamically, you’ll probably want its width to accommodate the longest
possible title right from the start; to arrange that, set the possibleTitles property to an
NSSet of strings that includes the longest title. Alternatively, you can supply an absolute
width. Also, you can incorporate spacer system items into the toolbar; these have no
visible appearance, and cannot be tapped, but serve to help distribute the other items.
The UIBarButtonSystemItemFlexibleSpace is the one most frequently used; place these
between the visible items to distribute the visible items equally across the width of the
toolbar. There is also a UIBarButtonSystemItemFixedSpace whose width lets you insert
a space of defined size.

Navigation Items
What appears in a navigation bar (UINavigationBar) depends upon the navigation
items (UINavigationItem) in its stack. In a navigation interface, the navigation con-
troller will manage the navigation bar’s stack for you, but you must still configure each
navigation item, which you do by setting properties of the navigationItem of each child
view controller. The properties are as follows (see also Chapter 25):

title or titleView
Determines what is to appear in the center of the navigation bar when this navi-
gation item is at the top of the stack. The title is a string. Instead of setting
navigationItem.title, however, you will usually set the view controller’s title
property instead; setting this property sets the title of the navigationItem auto-
matically. The titleView can be any kind of UIView; if set, it will be displayed
instead of the title. The titleView can implement further UIView functionality;
for example, it can be tappable. Even if you are using a titleView, you should still
give your view controller a title, as it will be needed for the back button when a
view controller is pushed onto the stack on top of this one.

Figure 19-1 shows the TidBITS News master view, with the navigation bar dis-
playing a titleView which is a (tappable) image view; the master view’s title is
therefore not displayed. In the TidBITS News detail view controller, the title-
View is a segmented control providing a Previous and Next button, and the back
button displays the master view controller’s title (Figure 19-9).

prompt

An optional string to appear centered above everything else in the navigation bar.
The navigation bar’s height will be increased to accommodate it.

Figure 19-9. A segmented control in the center of a navigation bar

546 | Chapter 19: View Controllers

rightBarButtonItem or rightBarButtonItems
A bar button item or, respectively, an array of bar button items to appear at the
right side of the navigation bar. The option to provide multiple right bar button
items (rightBarButtonItems) is new in iOS 5. In Figure 19-1, the refresh button is
a right bar button item; it has nothing to do with navigation, but is placed here
merely because space is at a premium on the small iPhone screen. Similarly, in
Figure 19-9, the text size button is a right bar button item, placed here for the same
reason.

backBarButtonItem

When a view controller is pushed on top of this view controller, the navigation bar
will display at its left a button pointing to the left, whose title is this view controller’s
title. That button is this view controller’s back button item. That’s right: the back
button displayed in the navigation bar belongs, not to the top item (the navigation-
Item of the current view controller), but to the back item (the navigationItem of
the view controller that is one level down in the stack). In Figure 19-9, the back
button in the detail view is the default back button, displaying the title of the
master view.

The vast majority of the time, the default behavior is the behavior you’ll want, and
you’ll leave the back button alone. If you wish, though, you can customize the back
button by setting the navigationItem.backBarButtonItem of this view controller
(the view controller that will provide the back item, not the one that will provide
the top item), so that it contains an image, or a title differing from this view con-
troller’s title. The best technique is to provide a new UIBarButtonItem whose
target and action are nil (its style doesn’t matter); the runtime will provide a correct
target and action, so as to create a working back button:

UIBarButtonItem* b = [[UIBarButtonItem alloc] initWithTitle:@"Go Back"
 style:UIBarButtonItemStylePlain target:nil action:nil];
self.navigationItem.backBarButtonItem = b;

A BOOL property, hidesBackButton, allows the top navigation item to suppress
display of the back item’s back bar button item. Obviously, if you set this to YES,
you’ll need to consider providing some other means of letting the user navigate
back.

leftBarButtonItem or leftBarButtonItems
A bar button item or, respectively, an array of bar button items to appear at the
left side of the navigation bar. The option to provide multiple left bar button items
(leftBarButtonItems) is new in iOS 5.

Prior to iOS 5, the presence of a left bar button item would cause the back button
item not to appear; since this disabled the normal means of going back, use of a
left bar button item was typically confined to the root view, where no back button
is displayed anyway. In iOS 5, a new property, leftItemsSupplementBackButton, if

Navigation Controllers | 547

set to YES, allows both the back button and one or more left bar button items to
appear.

Here’s the view controller code that configures its navigation item to generate the nav-
igation bar shown in Figure 19-1:

// title for back button in detail view
self.title = @"TidBITS";
// image to display in navigation bar
UIImageView* imv = [[UIImageView alloc] initWithImage:
 [UIImage imageNamed:@"tb_iphone_banner.png"]];
self.navigationItem.titleView = imv;
// reload button for navigation bar
UIBarButtonItem* b = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemRefresh
 target:self action:@selector(doRefresh:)];
self.navigationItem.rightBarButtonItem = b;

A view controller’s navigation item can have its properties set at any time while being
displayed in the navigation bar. This (and not direct manipulation of the navigation
bar) is the way to change the navigation bar’s contents dynamically. For example, in
one of my apps, the visible right bar button should be either the system Play button,
the system Pause button, or nothing, depending on whether music from the library is
playing, paused, or stopped (Figure 19-10). So I have a timer that periodically checks
the state of the music player:

int whichButton = -1;
if ([self->mp playbackState] == MPMusicPlaybackStatePlaying)
 whichButton = UIBarButtonSystemItemPause;
else if ([self->mp playbackState] == MPMusicPlaybackStatePaused)
 whichButton = UIBarButtonSystemItemPlay;
if (whichButton == -1)
 self.navigationItem.rightBarButtonItem = nil;
else {
 UIBarButtonItem* bb =
 [[UIBarButtonItem alloc] initWithBarButtonSystemItem:whichButton
 target:self action:@selector(doPlayPause:)];
 self.navigationItem.rightBarButtonItem = bb;
}

In that same app, and in the same navigation item, the titleView is a progress view
(UIProgressView, Chapter 25). I treat this like any other progress view, constantly up-
dating it (setting its progress value) and even making it visible or invisible (setting its
hidden value) without regard for the fact that it’s being displayed in a navigation bar
(Figure 19-10).

Figure 19-10. A highly dynamic navigation bar

548 | Chapter 19: View Controllers

Toolbar Items
Each view controller to be pushed onto the navigation controller’s stack is responsible
for supplying the items to appear in the navigation interface’s toolbar, if there is one.
This is done by setting the view controller’s toolbarItems property to an array of
UIBarButtonItem instances. You can change the toolbar items even while the view
controller’s view and current toolbarItems are showing, optionally with animation, by
sending setToolbarItems:animated: to the view controller.

A view controller has the power to specify that the navigation interface’s toolbar should
be hidden whenever it (the view controller) is on the stack. To do so, set the view
controller’s hidesBottomBarWhenPushed property to YES. The trick is that you must do
this early enough, namely before the view loads. (The view controller’s viewDidLoad is
too late; its designated initializer is a good place.) The toolbar remains hidden from the
time this view controller is pushed to the time it is popped, even if other view controllers
are pushed and popped on top of it in the meantime. For more flexibility, you can call
the UINavigationController’s setToolbarHidden:animated: at any time.

Configuring a Navigation Controller
You configure a navigation controller by manipulating its stack of view controllers. If
a view controller is in the stack, it is a child view controller of the navigation controller;
the navigation controller is its parentViewController, and it is also the navigation-
Controller of this view controller and its child view controllers at any depth. Thus a
child view controller at any depth can learn that it is contained by a navigation controller
and can get a reference to that navigation controller. The navigation controller retains
the view controller as long as the view controller is on its stack; when the view controller
is removed from the stack, the navigation releases the view controller, which is usually
permitted to go out of existence at that point.

The normal way to manipulate a navigation controller’s stack is one view controller at
a time. When the navigation controller is instantiated, it is assigned a single root view
controller, the view controller that goes at the bottom of the stack, whose view the
navigation controller will initially display, by initializing it with initWithRootView-
Controller::

FirstViewController* fvc = [[FirstViewController alloc] init];
UINavigationController* nav =
 [[UINavigationController alloc] initWithRootViewController:fvc];
self.window.rootViewController = nav;

Later, when the user asks to navigate to the right, you obtain the next view controller
(typically by creating it) and push it onto the stack by calling pushViewController:
animated: on the navigation controller, and the navigation controller displays its view:

// [in FirstViewController:]
SecondViewController* svc = [[SecondViewController alloc] init];
[self.navigationController pushViewController:svc animated:YES];

Navigation Controllers | 549

Typically, that’s all there is to it! When the user taps the back button to navigate back
to the left, the runtime will call popViewControllerAnimated: for you.

You can also set the UINavigationController’s delegate; the delegate should adopt the
UINavigationControllerDelegate protocol. The delegate receives an event before and
after the navigation controller changes what view controller’s view is displayed.

You can manipulate the stack more directly if you wish. You can call popViewController-
Animated: yourself; to pop multiple items so as to leave a particular view controller at
the top of the stack, call popToViewController:animated:, or to pop all the items down
to the root view controller, call popToRootViewControllerAnimated:. All of these meth-
ods return the popped view controller (or view controllers, as an array), in case you
want to do something with them.

To set the entire stack at once, call setViewControllers:animated:. You can access the
stack through the viewControllers property. Manipulating the stack directly is the only
way, for instance, to delete or insert a view controller in the middle of the stack.

The view controller at the top of the stack is the topViewController; the view controller
whose view is displayed is the visibleViewController. Those will normally be the same
view controller, but they needn’t be, as the top view controller might be presenting a
view controller. Other view controllers can be accessed through the viewControllers
array by index number. The root item is the array’s objectAtIndex:0; if the array’s
count is c, the back item is the array’s objectAtIndex:c-2.

You’ll notice that in the preceding code examples I didn’t configure a view controller’s
navigationItem as I pushed it onto the stack. Sometimes, the code that creates a view
controller may configure that view controller’s navigationItem, but it is most common
for a view controller to configure its own navigationItem. A view controller will be
concerned to do this sufficiently early in its own lifetime. The earliest such point is an
override of the designated initializer. Other possibilities are:

The view controller’s awakeFromNib
Obviously, this choice is possible only in cases where the view controller instance
comes from a nib.

The view controller’s viewDidLoad (or loadView)
This seems an obvious choice, but Apple warns (in the UIViewController class
reference, under navigationItem) that configuring a view controller’s navigation
item in conjunction with the creation of its view is not a good idea, because the
circumstances under which the view is needed are not identical to the circumstan-
ces under which the navigation item is needed. However, Apple’s own examples
appear to violate this warning; they often do configure a view controller’s naviga-
tion item in its viewDidLoad implementation.

When a child view controller’s view is displayed, it is resized to fit the display area. The
size of this area will depend on whether the navigation controller is showing a naviga-
tion bar or a toolbar or both (or neither). You should design your view in such a way

550 | Chapter 19: View Controllers

as to be prepared for such resizing. Autoresizing settings can help here. Also, when
editing your view in the nib editor, you can shrink the view to the size at which it will
be displayed in the navigation interface, thus helping you judiciously situate your in-
terface items; to do so, choose appropriately from the Top Bar and Bottom Bar pop-up
menus of the Simulated Metrics section of the Attributes inspector.

A navigation controller’s navigation bar can be hidden and shown with setNavigation-
BarHidden:animated:, and the toolbar can be hidden and shown with setToolbar-
Hidden:animated:. The current view controller’s view will be resized then and there; be
sure to design your view to accommodate such dynamic resizing, if needed.

You can also configure a UINavigationController or any view controller that is to serve
in a navigation interface in a nib or storyboard. In a nib, a navigation view controller
has a top bar and a bottom bar (in the Attributes inspector), and you can configure
how they look and whether they are initially visible. The root view controller can be
specified. Moreover, the root view controller has a Navigation Item where you can
specify its title, its prompt, and the text of its back button. (If a view controller in a nib
doesn’t have a Navigation Item and you want to configure this view controller for use
in a navigation interface, drag a Navigation Item from the Object library onto the view
controller.) You can drag Bar Button Items into the navigation bar to set the left button
and right button of a view controller’s Navigation Item. Moreover, the Navigation Item
has outlets, one of which permits you to set its titleView. Plus, you can give a view
controller Bar Button Items that will appear in the toolbar. Thus the configuration of
a navigation view controller, its root view controller, and any other view controllers
that will be pushed onto its stack can be performed to a certain degree in a nib.

Page View Controller
A page view controller (UIPageViewController), new in iOS 5, has one or two child
view controllers whose view(s) it displays within its own view. The user, by default,
can then tap or swipe to navigate, revealing the view of a different view controller or
pair of view controllers, analogously to the pages of a book. To reinforce the book
metaphor, there’s a page curl animation, similar to the animation in Apple’s iBooks.

Page view controllers are a great addition to the repertoire of built-in view controllers.
Before iOS 5, I was accomplishing the same thing in my flashcard apps (without the
page curl animation) by means of a scroll view (Chapter 20); the code was complex
and tricky. With a page view controller, I was able to make my app’s code far simpler,
plus I get the page curl animation for free.

To create a UIPageViewController, initialize it with initWithTransitionStyle:

navigationOrientation:options:. Here’s what the parameters mean:

• The only legal transition style at present is UIPageViewControllerTransitionStyle-
PageCurl.

Page View Controller | 551

• The possible navigation orientations are UIPageViewControllerNavigation-

OrientationHorizontal and UIPageViewControllerNavigationOrientation-

Vertical.

• The options are a dictionary for which, at present, only one key is possible, UIPage-
ViewControllerOptionSpineLocationKey, specifying the position of the spine (the
pivot line around which page transitions rotate). The legal possible values at
present are:

— UIPageViewControllerSpineLocationMin (left or top)

— UIPageViewControllerSpineLocationMid (middle; two pages are shown at once)

— UIPageViewControllerSpineLocationMax (right or bottom)

You then assign the page view controller a dataSource, which should conform to the
UIPageViewControllerDataSource protocol, and assign the page view controller its in-
itial content by handing it its initial child view controller(s). You do that by calling set-
ViewControllers:direction:animated:completion:. Here are the parameters:

• The view controllers are an array of one or two view controllers — one if the spine
is min or max, two if the spine is mid.

• The direction can be UIPageViewControllerNavigationDirectionForward or UIPage-
ViewControllerNavigationDirectionBackward; which you specify probably won’t
matter when you’re assigning the page view controller its initial content.

• When you’re assigning the page view controller its initial content, you probably
won’t want any animation.

Here’s a minimal example, from the app delegate’s application:didFinishLaunching-
WithOptions::

// make a page view controller
UIPageViewController* pvc =
 [[UIPageViewController alloc]
 initWithTransitionStyle:UIPageViewControllerTransitionStylePageCurl
 navigationOrientation:UIPageViewControllerNavigationOrientationHorizontal
 options:nil];
// give it an initial page
Pep* page = [[Pep alloc] initWithPepBoy:[self.pep objectAtIndex:0]
 nib: nil bundle: nil];
[pvc setViewControllers:[NSArray arrayWithObject:page]
 direction:UIPageViewControllerNavigationDirectionForward
 animated:NO completion:NULL];
// give it a data source
pvc.dataSource = self;
// stick it in the window, retain the page view controller
self.window.rootViewController = pvc;

From then on, when the user tries to navigate, the data source’s pageViewController:
viewControllerAfterViewController: or pageViewController:viewControllerBefore-
ViewController: will be called; its job is to return the requested view controller. You’ll

552 | Chapter 19: View Controllers

need a strategy for doing that; the strategy you devise will depend on your model, that
is, on how you’re maintaining your data.

To illustrate, continuing from the preceding example, I’ve got a UIViewController
subclass called Pep and an array (self.pep) of the names of the Pep Boys. After I initialize
a Pep object by calling initWithPepBoy:nib:bundle:, Pep’s viewDidLoad fetches a cor-
responding image from the app bundle and assigns it as the image to a UIImageView
within its own view. Thus, a page in the page view controller contains an image of a
Pep Boy. So here’s one of my data source methods:

-(UIViewController *)pageViewController:(UIPageViewController *)pageViewController
 viewControllerAfterViewController:(UIViewController *)viewController {
 NSString* boy = [(Pep*)viewController boy]; // string name of this Pep Boy
 NSUInteger ix = [self.pep indexOfObject:boy]; // find it in the data model
 ix++;
 if (ix >= [self.pep count])
 return nil; // there is no next page
 return [[Pep alloc] initWithPepBoy:[self.pep objectAtIndex:ix]
 nib: nil bundle: nil];
} // and "before" is similar

You can also call setViewControllers:direction:animated:completion: to change pro-
grammatically what page is being displayed, possibly with animation. I do so in my
Latin flashcard app during drill mode (Figure 19-5), to advance to the next term in the
current drill:

[self.terms shuffle];
Term* whichTerm = [self.terms objectAtIndex: 0];
CardController* cdc = [[CardController alloc] initWithTerm:whichTerm];
[self.pvc setViewControllers:[NSArray arrayWithObject:cdc]
 direction:UIPageViewControllerNavigationDirectionForward
 animated:YES completion:nil];

If you refer to self in the completion block of setViewControllers:direction:animated:
completion:, ARC will warn of a possible retain cycle. I don’t know why there would
be a retain cycle, but I take no chances: I do the weak–strong dance described in
Chapter 13.

It is also possible to assign a page view controller a delegate, which adopts the UIPage-
ViewControllerDelegate protocol. You get an event when the user finishes turning the
page, and you get a chance to change the spine location dynamically in response to a
change in device orientation.

A page view controller has a gestureRecognizers property that returns an array con-
taining the gesture recognizers it uses to recognize a tap or swipe. You can do useful
customizations with these gesture recognizers, such as attaching them to another view,
or implementing their delegate. I do that in my Latin flashcard app in order to prevent
the user’s tap or swipe from working unless it is outside a text field. First, I make myself
delegate of all the gesture recognizers:

for (UIGestureRecognizer* g in pvc.gestureRecognizers)
 g.delegate = self; // give me a chance to veto navigation

Page View Controller | 553

When my delegate method is called, I disallow all touches whose view isn’t the image
view that comprises the background of the card. I’ve assigned that image view its own
UIImageView subclass for purposes of identification:

- (BOOL)gestureRecognizer:(UIGestureRecognizer *)gestureRecognizer
 shouldReceiveTouch:(UITouch *)touch {
 if (![touch.view isKindOfClass:[BackgroundImageView class]])
 return NO;
 return YES;
}

One further bit of configuration is performed through the doubleSided property. If it is
YES, the next page occupies the back of the previous page. The default is NO, unless
the spine is in the middle, in which case it’s YES and can’t be changed. Your only option
here, therefore, is to set it to YES when the spine isn’t in the middle, and in that case
the back of each page would be a sort of throwaway page, glimpsed by the user during
the page curl animation. For example, you might make every other page a solid white
view.

A UIPageViewController’s policy on rotation is like a UINavigationController’s pol-
icy. Initially, the page view controller wants the interface to rotate to an orientation
allowed by the initial page; later on, if a new page’s view controller doesn’t permit the
current device orientation, there is no rotation, but if the device is then rotated to a
permitted orientation, the interface rotates to match. It is probably best to use view
controllers whose answers to shouldAutorotateToInterfaceOrientation: are the same.

Container View Controllers
Starting in iOS 5, the ability of built-in view controller subclasses such as UITabBar-
Controller, UINavigationController, and UIPageViewController to function as parents
for other view controllers and put the views of those view controllers into their own
view is generalized and extended to UIViewController as a whole. The consequence is
that you are allowed to write your own parent view controllers, which Apple calls
container view controllers. This should allow for some powerful and original new in-
terfaces.

A UIViewController has a childViewControllers array. This array will be maintained
for you. To act as a parent view controller, your UIViewController subclass must fulfill
certain responsibilities.

When a view controller is to become your parent view controller’s child:

• You call addChildViewController: on your parent view controller. The child is au-
tomatically added to the parent’s childViewControllers array, which retains it.

• You get the child view controller’s view into your interface, if that’s what adding
a child view controller means.

554 | Chapter 19: View Controllers

• You send didMoveToParentViewController: to the child with the parent view con-
troller as its argument.

When a view controller is to cease being your parent view controller’s child:

• You send willMoveToParentViewController: to the child with a nil argument.

• You remove the child view controller’s view from your interface, if that’s what
removing a child view controller means.

• You send removeFromParentViewController to the child. The child is automatically
removed from the parent’s childViewControllers array, which releases it.

This is a clumsy and rather poorly designed dance. The underlying reason for it is that
a child view controller must always receive willMoveToParentViewController: followed
by didMoveToParentViewController: (and your own child view controllers can take ad-
vantage of these events however you like). Well, it turns out that addChildView-
Controller: sends willMoveToParentViewController: for you, and that removeFrom-
ParentViewController sends didMoveToParentViewController: for you; so in each case
you must send the other message, the one that adding or removing a child view con-
troller doesn’t send for you — and of course you must send it so that everything happens
in the correct order, as dictated by rules I just listed.

When you initialize your interface, with no replacement of one view by another, you’ll
simply set up the frame of the view of some child view controller and place it into your
view. In this example, I do that in my parent view controller’s viewDidLoad:

- (void)viewDidLoad {
 [super viewDidLoad];
 UIViewController* vc = // whatever; this the initial child view controller
 [self addChildViewController:vc]; // "will" is called for us
 vc.view.frame = // whatever
 [self.view addSubview: vc.view];
 // when we call "add", we must call "did" afterwards
 [vc didMoveToParentViewController:self];
}

Now comes the really interesting part. The purpose of view controllers, as you know,
is to manage the replacement of one view with another in the interface. Thus, no matter
what your parent view controller’s particular functionality is, it will eventually want to
replace the view of one child view controller with the view of another child view con-
troller in the interface. To do so, it will send itself transitionFromViewController:to-
ViewController:duration:options:animations:completion:. The options: argument is
a bitmask comprising the same possible options (whose names start with UIView-
AnimationOption...) that apply to any block-based view transition (see “Block-Based
View Animation” on page 425). The animations: block is for additional view anima-
tions, as with any transition.

The completion: block will be important if this transition is part of removing or adding
a child view controller. At the time transitionFromViewController:... is called, both
view controllers involved must be children of the parent view controller; so if you’re

Container View Controllers | 555

going to remove one of the view controllers as a child, you’ll do it in the completion:
block. Similarly, if you owe a new child view controller a didMoveToParentView-
Controller: call, you’ll use the completion: block to fulfill that debt.

In this simple example, our parent view controller has one child view controller at a
time. It displays the view of that child view controller within its own view. When our
parent view controller is handed a new child view controller, it substitutes that new
child view controller for the old child view controller and replaces the old child view
controller’s view with the new child view controller’s view. The two view controllers
are called fromvc and tovc:

// set up the new view controller's view's frame
tovc.view.frame = // ... whatever
// must have both as children before we can transition between them
[self addChildViewController:tovc]; // "will" is called for us
// when we call "remove", we must call "will" (with nil) beforehand
[fromvc willMoveToParentViewController:nil];
[self transitionFromViewController:fromvc
 toViewController:tovc
 duration:0.4
 options:UIViewAnimationOptionTransitionFlipFromLeft
 animations:nil
 completion:^(BOOL done){
 // we called "add"; we must call "did" afterwards
 [tovc didMoveToParentViewController:self];
 [fromvc removeFromParentViewController];
 // "did" is called for us
 }];

Thus it is possible, using a custom parent view controller, to manage the regions of
your app’s interface just as a tab bar interface or a navigation interface does. This works
even on an iPhone, because view transitions work on an iPhone and because subviews
are just subviews. So, for example, in my Latin flashcard app (Figure 19-3), the interface
comprises a UIPageViewController’s view and a toolbar (UIToolbar). Thus, I want to
take charge of the frame of the UIPageViewController’s view and put it into a region
of the interface myself.

Prior to iOS 5, that would have been illegal: there was (and actually still is, though it
is presumably now outmoded) a warning in Apple’s documentation, in the “View
Controller Basics” chapter of the View Controller Programming Guide for iOS, saying
not to do exactly what I want to do here:

If you want to divide a view hierarchy into multiple subareas and manage each one sep-
arately, use generic controller objects (custom objects descending from NSObject) in-
stead of view controller objects to manage each subarea. Then use a single view controller
object to manage the generic controller objects.

In iOS 5, though, I can write a parent view controller object that does divide my view
hierarchy into multiple subareas, managing each subarea through its own child view
controller (Figure 19-4). Another result of this generalized architecture is that if you
don’t like the way a built-in UIViewController subclass does its job, you can write your

556 | Chapter 19: View Controllers

own replacement. For example, a UITabBarController really does nothing you couldn’t
now do yourself using a custom parent view controller.

Storyboards
The idea of a storyboard (“Storyboard-Instantiated View Controller” on page 517), new
in iOS 5, is to express compactly and diagrammatically the “story” of how the interface
will change. I imagine that the idea of storyboards took root in the complaints and
expectations of programmers, especially beginners. When I first started programming
iOS, I had great difficulty in understanding view controllers and in arriving at the ex-
planation of them that I’ve presented in this chapter. When I discovered that view
controllers could be in a nib file, and that in some cases (such as a navigation controller
and its root view controller) multiple view controllers could be in a nib, I was disap-
pointed to find that, to continue this way of obtaining view controllers, I’d need further
nibs, one for each additional view controller. My feeling was: “If I’m going to be re-
quired to use view controllers, why can’t they all be in one nib?” Storyboards seem to
be a response to that sort of feeling.

A storyboard collects, in a single file, multiple view controllers — both parent and
children, both presenter and presented. Each view controller is part of a scene, which
is essentially an encapsulation of a nib containing that view controller and its view.
Connections are drawn between view controllers. If view controller A has view con-
troller B as its child from the outset (as with a navigation controller and its root view
controller, or a tab bar controller and its child view controllers), the connection is a
relationship and emanates from view controller A. If view controller A’s view is to be
replaced later by view controller B’s view, the connection is a segue and typically em-
anates from some interface item in view controller A’s view that the user can tap to
trigger the replacement. A segue is directional; it has a source view controller and a
destination view controller. A segue can also be assigned a string identifier (in its At-
tributes inspector); you will just about always want to do this. A segue is a nib object,
like any other; it is an instance of UIStoryboardSegue (or your custom subclass thereof).

Recall from “Storyboard-Instantiated View Controller” on page 517 that a storyboard
is referenced in code by calling storyboardWithName:bundle:, and that a particular view
controller can be instantiated from a storyboard by calling instantiateInitialView-
Controller or instantiateViewControllerWithIdentifier:. Recall also from Chap-
ter 6 and Chapter 14 that your app’s main storyboard, if there is one, is automatically
used to instantiate its initial view controller, which is made the window’s root view
controller.

Subsequent view controllers in a nib are usually instantiated automatically as they are
needed. View controllers bound together by a relationship are instantiated together,
just as they would be if they were together in a nib. But a view controller that is the
destination view controller of a segue is instantiated when the segue is triggered, and its
memory management is then handed over to its parent or presenting view controller,

Storyboards | 557

just as you would do in code; thus, for example, if a view controller is a presented view
controller, it is instantiated automatically each time it is presented, and the instance
goes out of existence each time it is dismissed.

A view controller instantiated from a storyboard has a non-nil storyboard property
pointing to the storyboard that it comes from; this provides another way of getting a
reference to a storyboard.

Here are the primary concerns in using and configuring a storyboard:

How to trigger a segue
Usually, you’ll draw the segue as a connection from the interface object that is to
trigger it. For example, when a button is to trigger the segue, you draw the con-
nection from the button to the destination view controller; the runtime assumes
that you want the segue to be triggered in response to the button’s Touch Up Inside
event. When a table view cell is to trigger the segue, you draw the connection from
the cell to the destination view controller; the runtime assumes that you want the
segue to be triggered in response to the user selecting the cell. If the default behavior
doesn’t cover your needs, you can trigger the segue yourself, in code, by calling
performSegueWithIdentifier:sender: on the source view controller.

How to customize the transition performed by a segue
A segue’s Attributes inspector contains pop-up menus that let you specify the segue
as a presenting (“Modal”) segue or a navigation controller (“Push”) segue. (It’s odd
that the storyboard editor perpetuates the term “Modal” just when the rest of Co-
coa is preparing to deprecate it.) If these actions don’t cover your needs, you can
make a custom UIStoryboardSegue subclass and implement its perform method;
in your implementation, you’ll need to call the appropriate transition method, just
as you would have done if you weren’t using a storyboard. For example, for a
custom transition when presenting a view controller, you’d implement perform to
call presentViewController:animated:completion:. Your code can work out what
segue is being triggered by examining the segue’s identifier, sourceView-
Controller, and destinationViewController properties. In the storyboard editor,
you must set the segue’s Style pop-up menu to Custom and type the name of your
UIStoryboardSegue subclass in the Segue Class field. (You do not specify the class
in the Identity inspector, and you do not get a pop-down menu or automatic name
completion; this feels like a mistake in the design of the storyboard editor.)

How to configure a view controller before a segue to it
Before a segue is performed, the source view controller is sent prepareForSegue:
sender:. The view controller can work out what segue is being triggered by exam-
ining the segue’s identifier and destinationViewController properties, and the
sender is the interface object that was tapped to trigger to the segue (or, if perform-
SegueWithIdentifier:sender: was called in code, whatever object was supplied as
the sender: argument). This is the moment when the source view controller and

558 | Chapter 19: View Controllers

the destination view controller meet; the source view controller can thus perform
configurations on the destination view controller, hand it data, and so forth.

How to reverse the transition performed by a segue
This is easy, because the involvement of the storyboard makes no difference what-
ever. To pop a pushed view controller in a navigation interface, or to dismiss a
presented view controller, you do in code whatever you would have done without
the storyboard.

That’s all there is to using a storyboard. You should experiment with the storyboard
versions of the various project templates, to see how they are constructed; you can then
readily adapt them to your particular situation.

As an example, let’s start with the storyboard version of the Utility Application tem-
plate, which shows how a presenting–presented view controller segue is implemented
in a storyboard. Both the presenting view controller (MainViewController) and the
presented view controller (FlipsideViewController) are together in one storyboard file.
The segue from the former to the latter emanates from a button in MainView-
Controller’s view; its Attributes inspector specifies that its identifier is @"show-
Alternate", and that it is a “Modal” segue (meaning we’re to present a view) with a
“Flip Horizontal” transition. This means that when the user taps the button, present-
ViewController:animated:completion: is called for us; the button needn’t be connected
to an action handler in our own code.

Suppose now that we want to trigger the segue ourselves, in code. In that case, we delete
the existing segue from the storyboard, and draw a new connection from the source
view controller to the destination view controller, specifying that this is a “Modal”
segue. We are now back to implementing some sort of action handler, just as we would
have done if there were no storyboard; but instead of instantiating the destination view
controller and presenting it, this action handler triggers the segue. It might look like this:

- (IBAction)doButton:(id)sender {
 [self performSegueWithIdentifier:@"showAlternate" sender:self];
}

Suppose next that we don’t want any animation; the pop-up menus in the segue’s
Attributes inspector don’t provide that option. Or suppose we have a completion: block
we want performed. We’ll need to subclass UIStoryboardSegue and override its
perform method; this will be called instead of calling presentViewController:animated:
completion:, and it is up to us to call presentViewController:animated:completion:
ourselves, just as if we weren’t using a storyboard.

So, we add a new UIStoryboardSegue subclass to our project; call it MySegue. Re-
member to specify in the storyboard that this segue is a MySegue (change the Style pop-
up menu to Custom and type MySegue in the Segue Class field)! Then, in MySegue.m,
implement perform:

Storyboards | 559

-(void) perform {
 [self.sourceViewController
 presentViewController:self.destinationViewController
 animated:NO completion:nil];
}

If we needed to add a completion: block, we could do so.

Now let’s suppose we need to configure the FlipsideViewController instance. For ex-
ample, if we were instantiating FlipsideViewController in code, we might initialize that
instance then and there with a custom designated initializer such as initWithData:,
handing it the data that it needs, as I demonstrated in an example from my own code
earlier in this chapter when discussing presented view controllers:

DrillViewController* dvc = [[DrillViewController alloc] initWithData:drillTerms];
[self presentViewController:dvc animated:YES completion:nil];

But there’s no way to tell the storyboard to call initWithData:. Instead, we must let the
storyboard instantiate and initialize FlipsideViewController; the runtime then turns to
MainViewController and calls prepareForSegue:sender:. MainViewController can
identify the segue using its identifier property, and can get a reference to the Flipside-
ViewController instance as the segue’s destinationViewController property. So now it
can configure the FlipsideViewController:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {
 if ([[segue identifier] isEqualToString:@"showAlternate"]) {
 FlipsideViewController* fvc =
 (FlipsideViewController*)segue.destinationViewController;
 fvc.theData = theData;
 }
}

Finally, what happens when we want to return from the FlipsideViewController’s view
to the MainViewController’s view? Absolutely nothing! The storyboard gives us no
assistance with this side of the equation. We might have a button in FlipsideView-
Controller’s view with an action handler in FlipsideViewController, which calls (or
causes to be called) dismissViewControllerAnimated: — just as if there were no story-
board at all.

I can’t resist giving my opinion on storyboards in general, which is that they are prob-
ably well calculated to get beginners up and running, but that their architectural orga-
nization is likely to be advantageous only in the simplest situations. No accommodation
is made for unknown parent–child relationships, so an app with a custom parent view
controller can’t define that parent view controller’s relationships in a storyboard. A
storyboard containing many scenes can quickly become unwieldy. The storyboard ed-
itor is poorly designed; in particular, a segue’s identifier is crucial, and yet it must be
typed by hand in multiple places (an invitation to error) and is not displayed in the
editor’s canvas (you have to select the segue and examine its Attributes inspector).

Moreover, although storyboards assemble multiple view controllers and their views in
a single editor, they don’t make it any easier to get a reference from one view controller’s

560 | Chapter 19: View Controllers

world to another: you’re not allowed to draw a connection from an object within one
“scene” to an object within another “scene”. You can’t draw a connection between one
nib and another, as that would make no sense: it wouldn’t be clear what instances
you’re trying to connect, or even whether those instances will exist simultaneously at
runtime (see Chapter 7 and Chapter 13). But a storyboard seems to promise that in-
stances will come into being in a controlled and predictable manner, and in a known
relationship to one another; so why can’t this restriction be lifted? The outcome is that
it often takes considerably more work, involving more fragile code, to establish the
desired connections in your prepareForSegue:sender: implementation, than it would
have been to create, configure and present the destination view controller in code in
the first place.

From an OOP perspective, everything connected with a storyboard happens in the
wrong place. Consider the case of a completion: block in a custom UIStoryboardSegue’s
perform implementation. If this code were in the source view controller, as it normally
would be, we could access any variables in scope; but this code is not in the source view
controller. Thus, the block is in the wrong place, sundered from its proper context.
Also, the segue transition and its reversal are called in different places, which feels
wrong. Thus, in our example above, presentViewController:animated:completion: is
called in one place (either automatically or in a custom UIStoryboardSegue class), while
the corresponding dismissViewControllerAnimated: is called somewhere else entirely
(one of the two view controllers).

Similarly, prepareForSegue:sender: is an ugly bottleneck. If our source view controller
is the source of several segues, its prepareForSegue:sender: becomes in effect a giant
switch statement, doing different things depending on the identifier of the incoming
segue; nothing could be more brittle, error-prone, and unmaintainable. Moreover, this
way of having the source view controller and the destination view controller meet puts
the wrong view controller in the driver’s seat. If the destination view controller has a
designated initializer, that initializer dictates to whoever instantiates it what the view
controller wants (“I cannot come into existence without this data: argument”), and
the view controller can then do what it likes with the data it is handed. By contrast, in
prepareForSegue:sender:, the source view controller is responsible for knowing what
data the destination view controller needs, and has to access its properties or call sup-
plementary methods in order to provide that data.

This is not to say, however, that the notion of storyboards is fundamentally flawed, or
that storyboards are completely unusable. As I said earlier, for simple apps that meet
the basic expectations of the storyboard architecture, a storyboard could be a fine way
to get yourself up and running quickly. And the encapsulation of what happens in
connection with the transition from one view controller’s view to another’s as an object
(a UIStoryboardSegue) is an intriguing insight, one that could ultimately lead to bet-
ter code organization when and if storyboards ultimately mature. Plus, in Chapter 21
it will turn out that the storyboard editor implements a couple of very useful features
that you can’t obtain any other way.

Storyboards | 561

Personally, I avoid storyboards except in the simplest situations. Outside of such sit-
uations, storyboards don’t reduce my code — they scatter that code into inappropriate
places — and the storyboard editor itself is more a hassle than a convenience. I spend
more time satisfying the storyboard architecture’s expectations than getting on with
the real business of the app. You might justify reliance on storyboards as a crutch if you
are a beginner and don’t understand view controllers; but you’ve read this chapter and
you do understand view controllers!

View Controller Lifetime Events
As views come and go, driven by view controllers and the actions of the user, events
arrive that give your view controller the opportunity to respond to the various stages
of its existence. By overriding these methods, your UIViewController subclass can per-
form appropriate tasks. Most commonly, you’ll override viewWillAppear:, viewDid-
Appear:, viewWillDisappear:, or viewDidDisappear:. Note that you must call super in
your override of any of these four methods.

Let’s take the case of a UIViewController pushed onto the stack of a navigation con-
troller. It receives, in this order, the following messages:

• willMoveToParentViewController:

• viewWillAppear:

• viewWillLayoutSubviews

• viewDidLayoutSubviews

• viewDidAppear:

• didMoveToParentViewController:

When this same UIViewController is popped off the stack of the navigation controller,
it receives, in this order, the following messages:

• willMoveToParentViewController: (with argument nil)

• viewWillDisappear:

• viewDidDisappear:

• didMoveToParentViewController: (with argument nil)

In these names, the notions “appear” and “disappear” reflect the view’s insertion into
and removal from the interface. Disappearance can happen because the UIView-
Controller itself is taken out of commission, but it can also happen because another
UIViewController supersedes it. For example, let’s take the case of the UIView-
Controller functioning as the root view controller of a navigation controller. When
another view controller is pushed on top of it, the root view controller gets these mes-
sages:

• viewWillDisappear:

562 | Chapter 19: View Controllers

• viewDidDisappear:

By the same token, appearance can happen because this UIViewController has been
brought into play, but it can also happen because some other UIViewController is no
longer superseding it. For example, when a view controller is popped from a navigation
controller, the view controller that was below it in the stack receives these events:

• viewWillAppear:

• viewWillLayoutSubviews

• viewDidLayoutSubviews

• viewDidAppear:

Prior to iOS 5, it was rather difficult to distinguish these cases — that is, to find out
precisely why your view was appearing or disappearing. In iOS 5, you can find out,
from within the four “appear”/“disappear” methods, more about why they are being
called, by calling these methods on self:

• isBeingPresented

• isBeingDismissed

• isMovingToParentViewController

• isMovingFromParentViewController

Here are some examples of how these events are used in my own apps:

• A certain view in a navigation controller needs the toolbar, whereas other views do
not. In its viewDidAppear: and viewWillDisappear:, the view controller calls the
navigation controller to show and hide the toolbar.

• In a master–detail interface, the root view in a navigation interface displays a table.
The data displayed by the root view’s table might change while the user is working
in a detail view, so I reload the root view table’s data in the view controller’s view-
WillAppear:.

• A view that can be pushed onto a navigation controller’s stack contains a progress
view that is periodically updated through a timer. This timer needs to be in exis-
tence and running only when this view is in the interface. So I create the timer in
the view controller’s viewWillAppear: and destroy it in viewDidDisappear:. Simi-
larly, I commonly register for notifications in viewWillAppear: and unregister in
viewDidDisappear:. In both cases, this architecture allows me to avoid the retain
cycle that would result if I waited for a dealloc that might never come (Chapter 12).

• A certain view that can be shown by switching tab views must reflect the current
state of certain user defaults. I refresh the view’s interface in its viewWillAppear:,
so that whenever it does appear, it is current.

• In a master–detail interface, the detail is a long scrollable text. Whenever the user
returns to a previously read detail view, I want to scroll it to wherever it was pre-

View Controller Lifetime Events | 563

viously scrolled to. So I save the scroll position for this detail view into the user
defaults in its viewWillDisappear:.

In the multitasking world, viewWillDisappear: and viewDidDisappear: are not called
when the app is suspended into the background. Moreover, once suspended, your app
might never return to life; it could be terminated in the background. Some of your
functionality performed in viewWillDisappear: and viewDidDisappear: may have to be
duplicated in response to an application lifetime event (Chapter 11), such as
applicationDidEnterBackground:, if you are to cover every case.

A custom parent view controller, as I explained earlier, must effectively pass willMove-
ToParentViewController: and didMoveToParentViewController: to its children man-
ually. But other lifetime events, such as the appear events and rotation events, are nor-
mally passed along automatically. If you wish to take charge of passing any of these
events to your view controller’s children, you must take charge of them all:

• viewWillAppear:

• viewDidAppear:

• viewWillDisappear:

• viewDidDisappear:

• willRotateToInterfaceOrientation:duration:

• willAnimateRotationToInterfaceOrientation:duration:

• didRotateFromInterfaceOrientation:

To do so, override automaticallyForwardAppearanceAndRotationMethodsToChildView-
Controllers in the parent view controller to return NO.

View Controller Memory Management
Memory is at a premium on a mobile device. Thus you want to minimize your use of
memory — especially when the memory-hogging objects you’re retaining are not
needed at this moment. Because a view controller is the basis of so much of your ap-
plication’s architecture, it is likely to be the main place where you’ll concern yourself
with releasing unneeded memory.

The object of releasing memory, in the multitasking world, is partly altruistic and partly
selfish. You want to keep your memory usage as low as possible so that other apps can
be launched and so that the user can switch between numerous backgrounded apps,
bringing each one to the front and finding it in the state in which it was suspended.
You also want to prevent your app from being terminated. If your app is backgrounded
and is considered a memory hog, it may be terminated when memory runs short; hence
you want to reduce your memory usage at the time the app goes into the background.
If your app is warned that memory is running short and it doesn’t take appropriate

564 | Chapter 19: View Controllers

action to reduce its memory usage, your app may be killed even while running in the
foreground!

The runtime helps you keep your view controller’s memory usage as low as possible
by managing its memory for you in a special way. A view controller itself is usually
lightweight, but a view is memory-intensive. A view controller can persist without its
view being visible to the user — for example, because a presented view has replaced its
view, or because it is in a tab interface but is not currently selected, or because it is in
a navigation interface but is not at the top of the stack. In such a situation, if memory
is getting short, then even though the view controller itself persists, the runtime may
nilify its view, thus releasing the view and its subviews. The view is effectively unloaded.

If a view controller’s view is unloaded, then the next time that view is needed for display
or mentioned in code, we’ll go through the whole rigmarole of loading the view
again — creating it in code if loadView is overridden, or loading the associated nib, and
passing once again through viewDidLoad. In fact, that’s the whole point of the way a
view controller’s view is loaded lazily in the first place. Memory may become tight, but
a view controller’s view needn’t occupy memory unless it is actually needed, to appear
in the interface.

(That is why it’s generally better not to have the view controller and its view in the same
nib file. In such a case, the view can’t be unloaded, because there would be no way to
load it again. So such a view can’t participate in this aspect of iOS app memory man-
agement. On the other hand, a view controller containing a view in a storyboard file
does participate in this aspect of iOS app memory management, presumably because
of the dynamic way in which things are loaded from a storyboard by the runtime; unlike
a nib, a view controller loaded from a storyboard keeps a reference to that storyboard,
and can return to the well to collect its view repeatedly. This could be a reason for using
a storyboard.)

It comes as a surprise to beginners (and not-so-beginners) that the runtime can come
along behind their backs and nilify an existing view; this seems to introduce a nasty
element of indeterminacy into the app’s behavior. However, look closely at your load-
View and viewDidLoad overrides. If you’ve written them sensibly, doing within them
only what needs to be done in connection with the view loading, there shouldn’t be
any problem if these methods are called multiple times. For example, if viewDidLoad
sets a certain property, using appropriate memory management, what does it matter if
it is called again later and sets the very same property to the very same value?

Moreover, view unloading shouldn’t present any issues if you are obeying the dictates
of model–view–controller (Chapter 13). The view controller is controller (hence the
name). The view, on the other hand, should be just view; its temporary loss, and sub-
sequent restoration, should not pose any special challenges to your code, because you
aren’t storing anything persistent in the view. The view must be configured, perhaps
based on the model, when it comes into existence; as long as the view controller does
this, the view should look and behave correctly no matter when and how often it may

View Controller Memory Management | 565

come into existence. Just don’t write your code in such a way that you are counting on
the view to come into existence just once or at a specific moment.

In addition to unloading your view, the runtime may invite you to release, yourself, any
other memory-hogging data that you don’t need right now. When memory runs short,
your view controller may receive this sequence of events:

didReceiveMemoryWarning

You are invited to release any data that you can do without. Do not release data
that you can’t readily and quickly recreate! Do not release the view, but do call
super, which may or may not proceed to release the view. (This call will have been
preceded by a call to the app delegate’s applicationDidReceiveMemoryWarning:, to-
gether with a UIApplicationDidReceiveMemoryWarningNotification posted to any
registered objects.)

viewWillUnload

The view has not yet been unloaded, but it is about to be; self.view is still mean-
ingful. You are invited to perform any cleanup related to the view and its subviews,
while you still have a reference to it. This event is new in iOS 5.

viewDidUnload

The view has been unloaded; self.view is nil, and you must not speak of it in code,
or you’ll accidentally cause it to be loaded again, thus defeating the whole purpose
of this exercise. You are invited to release any other interface objects that are as-
sociated with this view, that you are retaining, and that will be restored when the
view loads again; typically, these will be objects assigned to an instance variable,
possibly through an outlet, and under ARC you will set the instance variable (or
its property) to nil.

The documentation on viewDidUnload does not say you have to call
super. Some of Apple’s examples do call super, but this is probably a
(harmless) mistake.

If you’re going to release data in didReceiveMemoryWarning, you must concern yourself
with how you’re going to get it back. You can’t rely on viewDidLoad for this, because
the data might be released without unloading the view, in which case viewDidLoad won’t
be called. The surest approach is to implement a getter that reconstructs or fetches the
data if it is nil.

In this example, in didReceiveMemoryWarning we write myBigData out as a file to disk
(Chapter 36) and release it from memory. At the same time, we override the synthesized
accessors for myBigData (using the technique shown in Example 12-11) so that if we
subsequently try to get myBigData and it’s nil, we then try to fetch it from disk and, if
we succeed, we delete it from disk (to prevent stale data) and set myBigData before
returning it. The result is that myBigData is released when there’s low memory, reducing

566 | Chapter 19: View Controllers

our memory overhead until we actually need myBigData, at which time asking for its
value (through the getter or property) restores it:

@synthesize myBigDataAlias=myBigData;

- (void) setMyBigData: (NSData*) data {
 self.myBigDataAlias = data;
}

- (NSData*) myBigData {
 NSFileManager* fm = [[NSFileManager alloc] init];
 NSString* f =
 [NSTemporaryDirectory() stringByAppendingPathComponent:@"myBigData"];
 BOOL fExists = [fm fileExistsAtPath:f];
 if (!self.myBigDataAlias) {
 if (fExists) {
 NSData* data = [NSData dataWithContentsOfFile:f];
 self.myBigDataAlias = data;
 NSError* err = nil;
 BOOL ok = [fm removeItemAtPath:f error:&err];
 NSAssert(ok, @"Couldn't remove temp file");
 }
 }
 return self.myBigDataAlias;
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 if (self->myBigData) {
 NSString* f =
 [NSTemporaryDirectory() stringByAppendingPathComponent:@"myBigData"];
 [myBigData writeToFile:f atomically:NO];
 self.myBigData = nil;
 }
}

Xcode gives you a way to test low-memory circumstances artificially. Run your app in
the Simulator; in the Simulator, choose Hardware → Simulate Memory Warning. I don’t
believe this has any actual effect on memory, but a memory warning of sufficient se-
verity is sent to your app, so you can see the results of triggering your low-memory
response code, including the app delegate’s applicationDidReceiveMemoryWarning: and
your view controller’s didReceiveMemoryWarning and (if the view isn’t showing) viewDid-
Unload.

On the device, the equivalent is to call an undocumented method:

[[UIApplication sharedApplication]
 performSelector:@selector(_performMemoryWarning)];

That’s helpful if your app won’t run on the Simulator (because it uses device-only
features), and you can use it in the Simulator as well; basically it’s the code equivalent
of Hardware → Simulate Memory Warning. (And remember to remove this code when

View Controller Memory Management | 567

it is no longer needed, as the App Store won’t accept an app that calls an undocumented
method.)

You might also wish to concern yourself with releasing memory when your app is about
to be suspended. To do so, you’ll probably want your view controller to be registered
with the shared application to receive UIApplicationDidEnterBackgroundNotification.
When this notification arrives, you might like to release any easily restored memory-
hogging objects, so that your app won’t be terminated in the background if memory
runs tight. For example, this would be another opportunity for me to write out myBig-
Data to disk and nilify it, just as in the previous example.

When your app is being backgrounded, you needn’t concern yourself with views in
general, because the runtime will silently delete the bitmap backing store of any views
it needs to, even while your app is suspended, and they will easily be reconstructed
automatically when your app resumes through drawRect: calls. Similarly, any images
in your interface that were loaded with imageNamed: can be silently unloaded, and will
be reloaded later automatically. But Apple advises, in a WWDC 2011 video, that if
your interface contains any UIImageViews whose images are large, you should consider
removing them from your interface as your app goes into the background, because their
image memory cannot be released automatically in the background. You will then, of
course, have to restore those UIImageViews when your app is foregrounded again;
you’ll probably have registered for UIApplicationWillEnterForegroundNotification so
you can do that.

Testing how your app’s memory behaves in the background isn’t easy. In that WWDC
2011 video, an interesting technique is demonstrated. The app is run under Instruments
on the device, using the virtual memory instrument, and is then backgrounded by
pressing the Home button, thus revealing how much memory it voluntarily relinquishes
at that time. Then a special memory-hogging app is launched on the device: its interface
loads and displays a very large image in a UIImageView. Even though your app is
backgrounded and suspended, the virtual memory instrument continues to track its
memory usage, and you can see whether further memory is reclaimed under pressure
from the demands of the memory-hogging app in the foreground.

568 | Chapter 19: View Controllers

CHAPTER 20

Scroll Views

A scroll view (UIScrollView) is a view whose content is larger than its bounds. To reveal
a desired area, the user can scroll the content by dragging or flicking, or you can repo-
sition the content in code.

Think of the scroll view as consisting of two things:

The scroll view itself
The scroll view itself acts like a window (a window in a house, not a UIWindow).
The scroll view’s bounds size is the size of that window.

The content
The content is the scene viewed through the window (the scroll view). The content
is presumably larger than the scroll view, because otherwise there would be nothing
to scroll. By sliding the content, a desired portion of it can be positioned within
the scroll view and thus made visible.

Although it is useful to think of the scroll view in this way, the truth is far simpler. The
scroll view isn’t really specially window-like; it’s just a view (whose clipsToBounds is
usually YES). And the content isn’t really a separate thing; it’s just a set of parameters
for positioning the scroll view’s subviews. When the scroll view scrolls, what’s really
changing is the scroll view’s own bounds origin; the subviews are positioned with re-
spect to the bounds origin, so they move with it. (See Chapter 14.)

However, a scroll view does bring to the table some nontrivial additional abilities:

• It knows how to shift its bounds origin in response to the user’s gestures.

• It provides scroll indicators whose size and position give the user a clue as to the
content’s size and position.

• It can optionally enforce paging, whereby the user can view only integral portions
of the content.

• It can support zooming, so that the user can resize the apparent content by pinch-
ing.

569

Creating a Scroll View
To provide a scroll view with scrollable content, you tell the scroll view how large the
content is, by setting its contentSize, and you populate the scroll view with subviews
whose visibility will be managed as if they were sitting in a view the size of the content-
Size. It may help to think of the content as a rectangle whose dimensions are given by
contentSize and whose top-left corner is {0,0}. When you populate the scroll view,
you’re effectively placing its subviews into that rectangle. Evidently, you have two
choices about how to provide these subviews: you can supply them directly in code, or
you can design the scroll view in a nib.

Here’s an example of the first approach. Let’s start with the Single View Application
template so that we have a root view controller. In the view controller’s loadView I’ll
create the root view in code (ignoring the view controller nib supplied by the template);
I’ll create the scroll view and make it the root view, and populate it with 30 UILabels
whose text contains a sequential number so that we can see where we are when we
scroll:

- (void) loadView {
 UIScrollView* sv = [[UIScrollView alloc] initWithFrame:
 [[UIScreen mainScreen] applicationFrame]];
 sv.backgroundColor = [UIColor whiteColor];
 self.view = sv;
 CGFloat y = 10;
 for (int i=0; i<30; i++) {
 UILabel* lab = [[UILabel alloc] init];
 lab.text = [NSString stringWithFormat:@"This is label %i", i+1];
 [lab sizeToFit];
 CGRect f = lab.frame;
 f.origin = CGPointMake(10,y);
 lab.frame = f;
 [sv addSubview:lab];
 y += lab.bounds.size.height + 10;
 }
 CGSize sz = sv.bounds.size;
 sz.height = y;
 sv.contentSize = sz; // This is the crucial line
}

The crucial move, as the comment notes, is that we tell the scroll view how large its
content is to be. If we omit this step, the scroll view won’t be scrollable; the window
will appear to consist of a static column of labels.

There is no rule about the order in which you perform the two operations of setting
the contentSize and populating the scroll view with subviews. In this example, we set
the contentSize afterward because it is more convenient to track the heights of the
subviews as we add them than to calculate their total height in advance. Similarly, you
can alter a scroll view’s content (subviews) and contentSize dynamically as the app
runs.

570 | Chapter 20: Scroll Views

Any direct subviews of the scroll view may need to have their autoresizing set appro-
priately in case the scroll view is resized, as would happen, for instance, if our root view
controller allowed autorotation. To see this, add these lines inside the for loop:

lab.backgroundColor = [UIColor redColor]; // make label bounds visible
lab.autoresizingMask = UIViewAutoresizingFlexibleWidth;

Now implement shouldAutorotateToInterfaceOrientation: to return YES for all ori-
entations, run the app, and rotate the device (or the Simulator). The labels are wider
in portrait orientation because the scroll view itself is wider. Note that this has nothing
to do with the contentSize! Resizing the contentSize has no effect on the size or position
of the scroll view’s subviews.

Populating a scroll view in code is a very common approach, especially because the
content of the scroll view is often not known until runtime. However, sometimes a
scroll view is just a way of presenting a fixed view that’s larger than the available space;
in that case, it is simpler to design the whole scroll view in the nib. The nib editor makes
this easy to do.

For example, in my Zotz! app, the user specifies preference settings in a navigation
interface inside a tab bar interface, and there isn’t enough vertical space for the various
interface objects (Figure 20-1). The obvious solution is that the view shown in this
navigation interface should be a scroll view. To lay out this scroll view’s subviews in
code would be painful and unmaintainable; a nib-based solution is better.

Figure 20-1. The Zotz! settings view

Creating a Scroll View | 571

A view in a nib can be a UIScrollView, and this can be any size; its subviews will be the
scroll view’s subviews when the app runs, which means, as we’ve already seen, that
they will constitute the scroll view’s scrollable content. So you design the scroll view’s
content in the nib exactly as you’d design the content of any view (Figure 20-2). In this
case, the scroll view itself is a view controller’s view and will automatically be resized
appropriately when it is placed into the interface.

Unfortunately, the nib editor provides no way to set the scroll view’s contentSize. Thus
it is up to your code to set an appropriate contentSize, large enough to embrace all the
scroll view’s subviews. But how will your code know what size that is? In the Zotz! app,
where the scroll view’s content needs to scroll vertically, I solve this problem by means
of an outlet to the bottommost subview in the nib. When the view loads, I use the view
controller’s viewDidLoad to learn the y-position of this subview; I allow some additional
space at the bottom and set the content size:

UIScrollView* sc = (UIScrollView*)self.view;
float width = sc.bounds.width;
// use lowest subview, "layout", as reference for content height
float height = self.layout.frame.origin.y + self.layout.frame.size.height + 20.0;
sc.contentSize = CGSizeMake(width, height);

A more elegant approach, perhaps, would have been to put all those views into a single
container view that is itself inside the scroll view. The purpose of the container view is
to show the scroll view what its contentSize should be. We no longer need an outlet
because we know that the container view is the scroll view’s first subview:

Figure 20-2. The Zotz! settings view, designed in the nib

572 | Chapter 20: Scroll Views

UIScrollView* sc = (UIScrollView*)self.view;
sc.contentSize = ((UIView*)[sc.subviews objectAtIndex:0]).bounds.size;

Do not assume that the subviews you add to a UIScrollView are its only
subviews! The scroll indicators managed by the scroll view, discussed
in the next section, are also subviews (they are actually UIImageViews).

Scrolling
For the most part, the purpose of a scroll view will be to let the user scroll. A number
of properties affect the user experience with regard to scrolling:

scrollEnabled

If NO, the user can’t scroll, but you can still scroll in code (as explained later in
this section). You could put a UIScrollView to various creative purposes other than
letting the user scroll; for example, scrolling in code to a different region of the
content might be a way of replacing one piece of interface by another, possibly with
animation.

scrollsToTop

If YES (the default), and assuming scrolling is enabled, the user can tap on the
status bar as a way of making the scroll view scroll its content to the top. You can
also override this setting dynamically through the scroll view’s delegate (discussed
later in this chapter).

bounces

If YES (the default), then when the user scrolls to a limit of the content, it is possible
to scroll somewhat further (possibly revealing the scroll view’s backgroundColor
behind the content, if a subview was covering it); the content then snaps back into
place when the user releases it. Otherwise, the user experiences the limit as a sud-
den inability to scroll further in that direction.

alwaysBounceVertical, alwaysBounceHorizontal
If YES, and assuming that bounces is YES, then even if the contentSize in the given
dimension isn’t larger than the scroll view (so that no scrolling is actually possible
in that dimension), the user can nevertheless scroll somewhat and the content then
snaps back into place when the user releases it; otherwise, the user experiences a
simple inability to scroll in that dimension.

directionalLockEnabled

If YES, and if scrolling is possible in both dimensions (even if only because the
appropriate alwaysBounce... is YES), then the user, having begun to scroll in one
dimension, can’t scroll in the other dimension without ending the gesture and
starting over. In other words, the user is constrained to scroll vertically or hori-
zontally but not both at once.

Scrolling | 573

decelerationRate

The rate at which scrolling is damped out, and the content comes to a stop, after
a flick gesture. As convenient examples, standard constants UIScrollView-
DecelerationRateNormal (0.998) and UIScrollViewDecelerationRateFast (0.99) are
provided. Lower values mean faster damping; experimentation suggests that values
lower than 0.5 are viable but barely distinguishable from one another. You can also
effectively override this value dynamically through the scroll view’s delegate (dis-
cussed later in this chapter).

showsHorizontalScrollIndicator, showsVerticalScrollIndicator
The scroll indicators are bars that appear only while the user is scrolling in a scrol-
lable dimension (where the content is larger than the scroll view), and serve to
indicate both the size of the content in that dimension relative to the scroll view
and where the user is within it. The default is YES for both.

Because the user cannot see the scroll indicators except when actively scrolling,
there is normally no indication that the view is scrollable. I regard this as somewhat
unfortunate, because it makes the possibility of scrolling less discoverable; I’d pre-
fer an option to make the scroll indicators constantly visible. Apple suggests that
you call flashScrollIndicators when the scroll view appears, to make the scroll
indicators visible momentarily.

indicatorStyle

The way the scroll indicators are drawn. Your choices are:

• UIScrollViewIndicatorStyleDefault (black with a white border)

• UIScrollViewIndicatorStyleBlack (black)

• UIScrollViewIndicatorStyleWhite (white)

contentInset

A UIEdgeInsets struct (four CGFloats in the order top, left, bottom, right) speci-
fying margins around the content. A typical use for this would be that your scroll
view underlaps an interface element, such as a translucent status bar, navigation
bar, or toolbar, and you want your content to be visible even when scrolled to its
limit.

For example, suppose that our app with the 30 labels has its Info.plist configured
with the “Status bar style” key set to “Transparent black style,” and that our scroll
view’s view controller sets its wantsFullScreenLayout to YES. The scroll view now
underlaps the status bar. This looks cool while scrolling, but at launch time, and
if scrolled all the way to the top, the first label is partly covered by the status bar.
We can fix this by supplying a contentInset whose top matches the height of the
status bar. We may also have to scroll the content into position at launch time in
code so that it looks right:

CGFloat top = [[UIApplication sharedApplication] statusBarFrame].size.height;
sv.contentInset = UIEdgeInsetsMake(top,0,0,0);
[sv scrollRectToVisible:CGRectMake(0,0,1,1) animated:NO];

574 | Chapter 20: Scroll Views

scrollIndicatorInsets

A UIEdgeInsets struct specifying a shift in the position of the scroll indicators. A
typical use is to compensate for the contentInset. For example, returning to our
scroll view that underlaps the translucent status bar, the content is no longer hidden
under the status bar when scrolled to the top, but the top of the vertical scroll
indicator is. We can fix this by setting the scrollIndicatorInsets to the same value
as the contentInset.

Here’s a trick I’ve sometimes used: by setting a scrollIndicatorInsets
component to a negative number and setting the scroll view’s clipsTo-
Bounds to NO, you can make the scroll indicators appear outside the
scroll view. But because you’ve turned off clipsToBounds, you might
have to impose some opaque views on top of the interface to mask off
the edges of the scroll view, so that its content isn’t visible outside its
bounds.

You can scroll in code even if the user can’t scroll. The content simply moves to the
position you specify, with no bouncing and no exposure of the scroll indicators. You
can specify the new position in two ways:

contentOffset

The point (CGPoint) of the content that is located at the scroll view’s top left. The
numbers will work correctly if, as I suggested earlier, you pretend that the content
is a big rectangle whose own top left is its {0,0} point. You can get this property
to learn the current scroll position, and set it to change the current scroll position.
There is an obvious implication here that you could equally scroll by changing the
scroll view’s bounds origin; you are unlikely to do that, but the truth is that the
bounds origin and the contentOffset are effectively the same thing.

To set the contentOffset with animation, call setContentOffset:animated:. The
animation does not cause the scroll indicators to appear; it just slides the content
to the desired position.

scrollRectToVisible:animated:

Adjusts the content so that the specified CGRect of the view is within the scroll
view’s bounds. This is less precise than setting the contentOffset, because you’re
not saying exactly what the resulting scroll position will be, but sometimes guar-
anteeing the visibility of a certain portion of the content is exactly what you’re after.

If you call a method to scroll with animation and you need to know when the animation
ends, implement scrollViewDidEndScrollingAnimation: in the scroll view’s delegate.

Scrolling | 575

Paging
If its pagingEnabled property is YES, the scroll view doesn’t let the user scroll freely;
instead, the content is considered to consist of sections the size of the scroll view’s
bounds, and the user can scroll only in such a way as to move to an adjacent section.

For instance, one of Apple’s examples consists of a scroll view containing image views.
Each image view is the size of the scroll view. This is an appropriate use of paging-
Enabled: the user can scroll to see the entire next image or the entire previous image.

The scroll indicator, if it appears, gives the user a sense of how many “pages” constitute
the view. Alternatively, you could use delegate messages to coordinate with a UIPage-
Control (Chapter 25). Figure 20-3 shows my modification of Apple’s Scrolling example,
where I’ve added a UIPageControl below the paging scroll view. Here’s the code that
updates the page control (pager) when the user scrolls:

- (void)scrollViewDidEndDecelerating:(UIScrollView *)scrollView {
 CGFloat x = scrollView.contentOffset.x;
 CGFloat w = scrollView.bounds.size.width;
 self.pager.currentPage = x/w;
}

And here’s the code that scrolls the scroll view (sv) when the user taps the page control:

- (void) userDidPage: (id) sender {
 NSInteger p = self.pager.currentPage;
 CGFloat w = self.sv.bounds.size.width;
 [self.sv setContentOffset:CGPointMake(p*w,0) animated:YES];
}

A useful trick is to have no scroll indicator and no page control, so that the user has
no indication of how many “pages” there are, and then to supply pages dynamically as
the user scrolls. The result is that the user gets a paging environment that just keeps
going and going. In this way, you can display a huge number of pages without having
to put them all into the scroll view at once. That, in fact, is how my flashcards apps
worked in iOS 3 and iOS 4 (when iOS 5 came along, I replaced that implementation
with a UIPageViewController, Chapter 19); if you’re curious about the technique I was

Figure 20-3. A scroll view coordinated with a page control

576 | Chapter 20: Scroll Views

using, watch the Advanced Scroll View Techniques video from WWDC 2011, which
describes something very similar (calling it “infinite scrolling”).

Tiling
Suppose we have some finite but really big content that we want to display in a scroll
view, such as a very large image that the user can inspect, piecemeal, by scrolling. To
hold the entire image in memory may be onerous or impossible.

Tiling is one solution to this kind of problem. It takes advantage of the insight that
there’s really no need to hold the entire image in memory; all we need at any given
moment is the part of the image the user is looking at right now. Mentally, divide the
content rectangle into a matrix of rectangles; these rectangles are the tiles. In reality,
divide the huge image into corresponding rectangles. Then whenever the user scrolls,
we look to see whether part of any empty tile has become visible, and if so, we supply
its content. At the same time, we can release the content of all tiles that are completely
offscreen. Thus, at any given moment, only the tiles that are showing have content.
There is some latency associated with this approach (the user scrolls, then any empty
newly visible tiles are filled in), but we will have to live with that.

There is actually a built-in CALayer subclass for helping us implement tiling —
CATiledLayer. Its tileSize property sets the dimensions of a tile. Its drawLayer:in-
Context: is called when content for an empty tile is needed; calling CGContextGetClip-
BoundingBox on the context reveals the location of desired tile, and now we can supply
that tile’s content.

To illustrate, we’ll use some tiles already created for us as part of Apple’s own Photo-
Scroller example. In particular, I’ll use the “Shed_1000” images. These all have names
of the form Shed_1000_x_y.png, where x and y are integers corresponding to the pic-
ture’s position within the matrix. The images are 256×256 pixels (except for the ones
on the extreme right and bottom edges of the matrix, which are shorter in one dimen-
sion).

Once again I’ll start with the the Single View Application template, adding to it a
TiledView class (a UIView subclass) and ignoring the nib file. And once again I’ll im-
plement loadView to make the root view controller’s view a UIScrollView; our scroll
view’s sole subview will be a TiledView, which exists purely to give our CATiledLayer
a place to live. We have just one set of tile images and we want these to appear the same
size regardless of the display resolution, so we’ll set the CATiledLayer’s tile size with
respect to its native scale:

-(void)loadView {
 UIScrollView* sv = [[UIScrollView alloc] initWithFrame:
 [[UIScreen mainScreen] applicationFrame]];
 sv.backgroundColor = [UIColor whiteColor];
 self.view = sv;
 CGRect f = CGRectMake(0,0,9*256,13*256);
 TiledView* content = [[TiledView alloc] initWithFrame:f];

Scrolling | 577

 float tsz = 256 * content.layer.contentsScale;
 [(CATiledLayer*)content.layer setTileSize: CGSizeMake(tsz, tsz)];
 [self.view addSubview:content];
 [sv setContentSize: f.size];
}

Here’s the code for TiledView. The CATiledLayer is our underlying layer; therefore we
are its delegate. This means that when drawLayer:inContext: is called, drawRect: is
called, and the argument to drawRect: is the same as the result of calling CGContextGet-
ClipBoundingBox, namely, it’s the rect of the tile we are to draw. As Apple’s code points
out, we must fetch images with imageWithContentsOfFile: so as to avoid the automatic
caching behavior of imageNamed:, because we’re doing all this exactly to prevent using
more memory than we have to:

+ (Class) layerClass {
 return [CATiledLayer class];
}

-(void)drawRect:(CGRect)r {
 CGRect tile = r;
 int x = tile.origin.x/256;
 int y = tile.origin.y/256;
 NSString *tileName = [NSString stringWithFormat:@"Shed_1000_%i_%i", x, y];
 NSString *path =
 [[NSBundle mainBundle] pathForResource:tileName ofType:@"png"];
 UIImage *image = [UIImage imageWithContentsOfFile:path];
 [image drawAtPoint:tile.origin];
 // uncomment the following to see the tile boundaries
 /*
 UIBezierPath* bp = [UIBezierPath bezierPathWithRect: r];
 [[UIColor whiteColor] setStroke];
 [bp stroke];
 */
}

This code can be dangerous on a system earlier than iOS 4. As explained
in Apple’s tech note QA1637, “CATiledLayer and UIKit graphics,” a
CATiledLayer draws itself on a background thread. Starting in iOS 4,
accessing the current context and drawing to it with UIKit is safe in a
background thread; before that, it wasn’t.

There is no special call for invalidating an offscreen tile. You can call setNeeds-
Display or setNeedsDisplayInRect: on the TiledView, but this doesn’t erase offscreen
tiles. You’re just supposed to trust that the CATiledLayer will eventually clear offscreen
tiles if needed to conserve memory.

CATiledLayer has a class method fadeDuration that dictates the duration of the ani-
mation that fades a new tile into view. You can create a CATiledLayer subclass and
override this method to return a value different from the default (0.25), but in general
this is probably not worth doing, as the default value is a good one. Returning a smaller

578 | Chapter 20: Scroll Views

value won’t make tiles appear faster; it just replaces the nice fade-in with an annoying
flash.

Zooming
To implement zooming of a scroll view’s content, you set the scroll view’s minimumZoom-
Scale and maximumZoomScale so that at least one of them isn’t 1 (the default). You also
implement viewForZoomingInScrollView: in the scroll view’s delegate to tell the scroll
view which of its subviews is to be the scalable view. The scroll view then zooms by
applying a scaling transform (Chapter 14) to this subview. Typically, you’ll want the
scroll view’s entire content to be scalable, so you’ll have one direct subview of the scroll
view that acts as the scalable view, and anything else inside the scroll view will be a
subview of the scalable view, so as to be scaled together with it.

To illustrate, let’s return to the first example in this chapter, where we created a scroll
view containing 30 labels. To make this scroll view zoomable, we’ll need to modify the
way we create it. As it stands, the scroll view’s subviews are just the 30 labels; there is
no single view that we would scale in order to scale all the labels together. This time,
as we create the scroll view in our root view controller’s loadView implementation,
instead of making the 30 labels subviews of the scroll view, we’ll make them subviews
of a single scalable view and make the scalable view the subview of the scroll view:

UIScrollView* sv = [[UIScrollView alloc] initWithFrame:
 [[UIScreen mainScreen] applicationFrame]];
self.view = sv;
UIView* v = [[UIView alloc] init];
CGFloat y = 10;
for (int i=0; i<30; i++) {
 UILabel* lab = [[UILabel alloc] init];
 lab.text = [NSString stringWithFormat:@"This is label %i", i+1];
 [lab sizeToFit];
 CGRect f = lab.frame;
 f.origin = CGPointMake(10,y);
 lab.frame = f;
 [v addSubview:lab];
 y += lab.bounds.size.height + 10;
}
CGSize sz = sv.bounds.size;
sz.height = y;
sv.contentSize = sz;
v.frame = CGRectMake(0,0,sz.width,sz.height);
[sv addSubview:v];

So far, nothing has changed; the scroll view works just as before, but it isn’t zoomable.
To make it zoomable, we add these lines:

v.tag = 999;
sv.minimumZoomScale = 1.0;
sv.maximumZoomScale = 2.0;
sv.delegate = self;

Zooming | 579

We have assigned a tag to the view that is to be scaled, so we can find it later. We have
set the scale limits for the scroll view. And we have made ourselves the scroll view’s
delegate. Now all we have to do is implement viewForZoomingInScrollView: and return
the scalable view:

- (UIView *)viewForZoomingInScrollView:(UIScrollView *)scrollView {
 return [scrollView viewWithTag:999];
}

The scroll view now responds to pinch gestures by scaling appropriately! The user can
actually scale considerably beyond the limits we set in both directions; when the gesture
ends, the scale returns to the limit value. If we wish to confine scaling strictly to our
defined limits, we can set the scroll view’s bouncesZoom to NO; when the user reaches
a limit, scaling will simply stop.

The scroll view zooms by applying a scaling transform to the scalable
view; therefore the frame of the scalable view is scaled as well. Moreover,
the scroll view is concerned to make scrolling continue to work cor-
rectly: the limits as the user scrolls should continue to match the limits
of the content, and commands like scrollRectToVisible:animated:
should continue to work the same way for the same values. Therefore,
the scroll view automatically scales its own contentSize to match the
current zoom scale. (You can actually detect this happening by over-
riding setContentSize in a UIScrollView subclass: you can see the scroll
view adjusting its own content size as you zoom.)

If the minimumZoomScale is less than 1, then when the scalable view becomes smaller
than the scroll view, it is pinned to the scroll view’s top left. If you don’t like this, you
can change it by subclassing UIScrollView and overriding layoutSubviews, or by im-
plementing the scroll view delegate method scrollViewDidZoom:. Here’s a simple ex-
ample (drawn from a WWDC 2010 video) demonstrating an override of layout-
Subviews that keeps the scalable view centered when it becomes smaller than the scroll
view:

-(void)layoutSubviews {
 [super layoutSubviews];
 UIView* v = [self.delegate viewForZoomingInScrollView:self];
 CGFloat svw = self.bounds.size.width;
 CGFloat svh = self.bounds.size.height;
 CGFloat vw = v.frame.size.width;
 CGFloat vh = v.frame.size.height;
 CGRect f = v.frame;
 if (vw < svw)
 f.origin.x = (svw - vw) / 2.0;
 else
 f.origin.x = 0;
 if (vh < svh)
 f.origin.y = (svh - vh) / 2.0;

580 | Chapter 20: Scroll Views

 else
 f.origin.y = 0;
 v.frame = f;
}

Zooming Programmatically
To zoom programmatically, you have two choices:

setZoomScale:animated:

Zooms in terms of scale value. The contentOffset is automatically adjusted to keep
the current center centered and the content occupying the entire scroll view.

zoomToRect:animated:

Zooms so that the given rectangle of the content occupies as much as possible of
the scroll view’s bounds. The contentOffset is automatically adjusted to keep the
content occupying the entire scroll view.

In this example, I implement double-tapping as a zoom gesture. Detecting the double-
tap is easy thanks to a gesture recognizer attached to the scalable view (Chapter 18).
In this implementation of the action handler for the double-tap UITapGesture-
Recognizer, a double-tap means to zoom to maximum scale, minimum scale, or actual
size, depending on the current scale value:

- (void) tapped: (UIGestureRecognizer*) tap {
 UIView* v = tap.view;
 UIScrollView* sv = (UIScrollView*)v.superview;
 if (sv.zoomScale < 1) {
 [sv setZoomScale:1 animated:YES];
 CGPoint pt =
 CGPointMake((v.bounds.size.width - sv.bounds.size.width)/2.0,0);
 [sv setContentOffset:pt animated:NO];
 }
 else if (sv.zoomScale < sv.maximumZoomScale)
 [sv setZoomScale:sv.maximumZoomScale animated:YES];
 else
 [sv setZoomScale:sv.minimumZoomScale animated:YES];
}

Zooming with Detail
By default, when a scroll view zooms, it merely applies a scale transform to the scaled
view. The scaled view’s drawing is cached beforehand into its layer, and the bits of the
resulting bitmap are drawn larger. This means that a zoomed-in scroll view’s content
may be fuzzy (pixellated). In some cases this might be acceptable, but in others you
might like the content to be redrawn more sharply at its new size.

(On a double-resolution device, this might not be such an issue. For example, if the
user is allowed to scroll only up to double scale, you can draw at double scale right

Zooming | 581

from the start; the results will look good at single scale, because the screen has double
resolution, as well as at double scale, because that’s the scale you drew at.)

One solution is to take advantage of a CATiledLayer feature that I didn’t mention
earlier. It turns out that CATiledLayer is aware not only of scrolling but also of scaling:
you can configure it to ask for tiles to be drawn when the layer is scaled to a new order
of magnitude. This approach is extremely easy: your drawing routine is called and you
simply draw, the graphics context itself having already been scaled appropriately. In
fact, your drawing doesn’t even have to involve multiple tiles! Of course it can involve
tiles; for a large tiled image, you would be forearmed with multiple versions of the image
broken into an identical quantity of tiles, each set having double the tile size of the
previous set (as in Apple’s PhotoScroller example). But you can also just draw directly.

This technique is also demonstrated in the “Basic Zooming Using the
Pinch Gestures” chapter of Apple’s Scroll View Programming Guide for
iOS. That chapter ends with a warning that “the UIKit drawing methods
are not thread-safe,” but you can ignore that warning if you’re targeting
iOS 4 and iOS 5, as it’s no longer true. As throughout this book, the
code in this chapter makes no attempt to be compatible with iOS 3.

Besides its tileSize, you’ll need to set two additional CATiledLayer properties:

levelsOfDetail

The number of different resolutions at which you want to redraw, where each level
has twice the resolution of the previous level. So, for example, with two levels of
detail we can ask to redraw when zooming to double size (2x) and when zooming
back to single size (1x).

levelsOfDetailBias

The number of levels of detail that are larger than single size (1x). For example, if
levelsOfDetail is 2, then if we want to redraw when zooming to 2x and when
zooming back to 1x, the levelsOfDetailBias is 1, because one of those levels is
larger than 1x; if we were to leave levelsOfDetailBias at 0 (the default), we would
be saying we want to redraw when zooming to 0.5x and back to 1x — we have two
levels of detail but neither is larger than 1x, so one must be smaller than 1x.

So, just to hammer home the point, let’s say we want to redraw at .5x, 1x, 2x, and
4x. That’s four levels of detail, so levelsOfDetail is 4; and two of them are larger
than 1x, so levelsOfDetailBias is 2.

The CATiledLayer will ask for a redraw at a higher resolution as soon as the view’s size
becomes larger than the previous resolution. In other words, if there are two levels of
detail with a bias of 1, the layer will be redrawn at 2x as soon as it is zoomed even a
little bit larger than 1x. This is an excellent approach, because although a level of detail
would look blurry if scaled up, it looks pretty good scaled down. There’s just one catch:

582 | Chapter 20: Scroll Views

your settings will need to depend on the screen resolution if you want them to work
the same way on both single- and double-resolution devices.

To illustrate, I’ll reuse our previous example, where the root view controller’s view is
a scroll view whose subview is a TiledView that hosts a CATiledLayer; but this time
I’ll draw our 30 labels into the CATiledLayer. The tiles are of no interest during scrolling
— we’re not to going run low on memory drawing a few labels — so we may as well
set the tile size to the bounds size:

- (void)loadView {
 UIScrollView* sv = [[UIScrollView alloc] initWithFrame:
 [[UIScreen mainScreen] applicationFrame]];
 self.view = sv;
 CGRect f = CGRectMake(0,0,self.view.bounds.size.width,940);
 TiledView* content = [[TiledView alloc] initWithFrame:f];
 content.tag = 999;
 CATiledLayer* lay = (CATiledLayer*)content.layer;
 lay.tileSize = f.size;
 lay.levelsOfDetail = 2;
 lay.levelsOfDetailBias = 1;
 [self.view addSubview:content];
 [sv setContentSize: f.size];
 sv.minimumZoomScale = 1.0;
 sv.maximumZoomScale = 2.0;
 sv.delegate = self;
 // deal with double-resolution screen
 if ([[UIScreen mainScreen] scale] > 1.0) {
 f.size.width *= 4;
 f.size.height *= 4;
 lay.tileSize = f.size;
 lay.levelsOfDetailBias = 2;
 }
}

- (UIView *)viewForZoomingInScrollView:(UIScrollView *)scrollView {
 return [scrollView viewWithTag:999];
}

Note the compensation for the double-resolution screen. On a double-resolution de-
vice, the CATiledLayer starts life at the 2x level of detail, so instead of asking to be
redrawn at 1x and 2x, we ask to be redrawn at 2x and 4x. Moreover, because we are
at double resolution at the 2x level of detail, we must make our tiles four times bigger
if a single tile is to be the size of the view initially.

Here’s the code for TiledView. Its drawRect: essentially does the work of putting the
labels into place that we were previously doing in loadView, except that now there are
no labels: we’re in drawRect: so we draw the text directly. The important thing to notice
is that we do nothing whatever about zooming and scaling! The incoming drawRect:
argument is the bounds of our view, and we just draw into it:

Zooming | 583

+ (Class) layerClass {
 return [CATiledLayer class];
}

-(void)drawRect:(CGRect)r {
 [[UIColor whiteColor] set];
 UIRectFill(self.bounds);
 [[UIColor blackColor] set];
 UIFont* f = [UIFont fontWithName:@"Helvetica" size:18];
 // height consists of 31 spacers with 30 texts between them
 CGFloat viewh = self.bounds.size.height;
 CGFloat spacerh = 10;
 CGFloat texth = (viewh - (31*spacerh))/30.0;
 CGFloat y = spacerh;
 for (int i = 0; i < 30; i++) {
 NSString* s = [NSString stringWithFormat:@"This is label %i", i];
 [s drawAtPoint:CGPointMake(10,y) withFont:f];
 y += texth + spacerh;
 }
 // uncomment the following to see the tiling
 /*
 UIBezierPath* bp = [UIBezierPath bezierPathWithRect:r];
 [[UIColor redColor] setStroke];
 [bp stroke];
 */
}

An alternative and much simpler approach (which I didn’t know about when I wrote
the first edition of this book — I got it from a WWDC 2011 video) is to make yourself
the scroll view’s delegate so that you get an event when the zoom ends, and then change
the scalable view’s contentScaleFactor to match the current zoom scale, compensating
for the double-resolution screen at the same time:

- (void)scrollViewDidEndZooming:(UIScrollView *)scrollView
 withView:(UIView *)view
 atScale:(float)scale {
 view.contentScaleFactor = scale * [UIScreen mainScreen].scale;
}

That approach comes with a caveat, however: you mustn’t overdo it. If the zoom scale,
screen resolution, and scalable view size are high, you will be asking for a very large
graphics context to be maintained in memory, which could cause your app to run low
on memory or even to be abruptly terminated by the system.

Scroll View Delegate
The scroll view’s delegate (adopting the UIScrollViewDelegate protocol) receives lots
of messages that can help you track what the scroll view is up to:

scrollViewDidScroll:

If you scroll in code without animation, you will receive this message once. If the
user drags or flicks, or uses the scroll-to-top feature, or if you scroll in code with

584 | Chapter 20: Scroll Views

animation, you will receive this message repeatedly throughout the scroll, including
during the time the scroll view is decelerating after the user’s finger has lifted; there
are other delegate messages that tell you, in those cases, when the scroll has really
ended.

scrollViewDidEndScrollingAnimation:

If you scroll in code with animation, you will receive this message when the ani-
mation ends.

scrollViewWillBeginDragging:
scrollViewWillEndDragging:withVelocity:targetContentOffset:
scrollViewDidEndDragging:willDecelerate:

If the user scrolls by dragging or flicking, you will receive these messages at the
start and end of the user’s finger movement. If the user brings the scroll view to a
stop before lifting the finger, willDecelerate is NO and the scroll is over. If the user
lets go of the scroll view while the finger is moving, or if paging is turned on and
the user has not paged perfectly already, willDecelerate is YES and we proceed to
the delegate messages reporting deceleration.

The purpose of scrollViewWillEndDragging:..., new in iOS 5, is to let you cus-
tomize the outcome of the content’s deceleration. The third argument is a pointer
to a CGPoint; thus you can use it to set a different CGPoint, specifying the content-
Offset value the content should have when the deceleration is over.

scrollViewWillBeginDecelerating:
scrollViewDidEndDecelerating:

Sent once each after scrollViewDidEndDragging:willDecelerate: arrives with a
value of YES. When scrollViewDidEndDecelerating: arrives, the scroll is over.

scrollViewShouldScrollToTop:
scrollViewDidScrollToTop:

These have to do with the feature where the user can tap the status bar to scroll
the scroll view’s content to its top. You won’t get either of them if scrollsToTop is
NO, because the scroll-to-top feature is turned off in that case. The first lets you
prevent the user from scrolling to the top on this occasion even if scrollsToTop is
YES. The second tells you that the user has employed this feature and the scroll is
over.

In addition, the scroll view has read-only properties reporting its state:

tracking

The user has touched the scroll view, but the scroll view hasn’t decided whether
this is a scroll or some kind of tap.

dragging

The user is dragging to scroll.

Scroll View Delegate | 585

decelerating

The user has scrolled and has lifted the finger, and the scroll is continuing.

So, if you wanted to do something after a scroll ends completely regardless of how the
scroll was performed, you’d need to implement many delegate methods:

• scrollViewDidEndDragging:willDecelerate: in case the user drags and stops (will-
Decelerate is NO).

• scrollViewDidEndDecelerating: in case the user drags and the scroll continues af-
terward.

• scrollViewDidScrollToTop: in case the user uses the scroll-to-top feature.

• scrollViewDidEndScrollingAnimation: in case you scroll in code with animation.

You don’t need a delegate method to tell you when the scroll is over after you scroll in
code without animation: it’s over immediately, so if you have work to do after the scroll
ends, you can do it in the next line of code.

There are also three delegate messages that report zooming:

scrollViewWillBeginZooming:withView:

If the user zooms or you zoom in code, you will receive this message as the zoom
begins.

scrollViewDidZoom:

If you zoom in code, even with animation, you will receive this message once. If
the user zooms, you will receive this message repeatedly as the zoom proceeds.
(You will probably also receive scrollViewDidScroll:, possibly many times, as the
zoom proceeds.)

scrollViewDidEndZooming:withView:atScale:

If the user zooms or you zoom in code, you will receive this message after the last
scrollViewDidZoom:.

In addition, the scroll view has read-only properties reporting its state during a zoom:

zooming

The scroll view is zooming. It is possible for dragging to be true at the same time.

zoomBouncing

The scroll view is returning automatically from having been zoomed outside its
minimum or maximum limit. As far as I can tell, you’ll get only one scrollViewDid-
Zoom: while the scroll view is in this state.

Scroll View Touches
Improvements in the scroll view implementation have eliminated most of the worry
once associated with scroll view touches. A scroll view will interpret a drag or a pinch

586 | Chapter 20: Scroll Views

as a command to scroll or zoom, and any other gesture will fall through to the subviews;
thus buttons and similar interface objects inside a scroll view work just fine.

You can even put a scroll view inside a scroll view, and this can be quite a useful thing
to do, in contexts where you might not think of it at first. A WWDC 2010 presentation
uses as an example Apple’s Photos app, where a single photo fills the screen: you can
page-scroll from one photo to the next, and you can zoom the current photo with a
pinch-out gesture. This, the presentation demonstrates, can be implemented with a
scroll view inside a scroll view: the outer scroll view is for paging between images, and
the inner scroll view contains the current image and is for zooming.

Gesture recognizers (Chapter 18) have also greatly simplified the task of adding custom
gestures to a scroll view. For instance, some older code in Apple’s documentation,
showing how to implement a double-tap to zoom in and a two-finger tap to zoom out,
uses old-fashioned touch handling, but this is no longer necessary. Simply attach to
your scroll view’s scalable subview any gesture recognizers for these sorts of gesture,
and they will mediate automatically among the possibilities.

In the past, making something inside a scroll view draggable required setting the scroll
view’s canCancelContentTouches property to NO. (The reason for the name is that the
scroll view, when it realizes that a gesture is a drag or pinch gesture, normally sends
touchesCancelled:forEvent: to a subview tracking touches, so that the scroll view and
not the subview will be affected.) However, unless you’re implementing old-fashioned
direct touch handling, you probably won’t have to concern yourself with this. Regard-
less of how canCancelContentTouches is set, a draggable control, such as a UISlider,
remains draggable inside a scroll view.

On the other hand, something like a UISlider might prove more quickly responsive if
you set the scroll view’s delaysContentTouches to NO. Without this, the user may have
to hold a finger on the slider briefly before it becomes draggable. But even this will be
a concern only if the scroll view is scrollable in the same dimension as the slider is
oriented; a horizontal slider in a scroll view that can be scrolled only vertically is in-
stantly draggable.

Here’s an example of a draggable object inside a scroll view implemented through a
gesture recognizer. Suppose we have an image of a map, larger than the screen, and we
want the user to be able to scroll it in the normal way to see any part of the map, but
we also want the user to be able to drag a flag into a new location on the map. I’ll arrange
this as I configure the scroll view in loadView, by attaching to the flag a UIPanGesture-
Recognizer with the same dragging: action handler developed in Chapter 18:

-(void) loadView {
 UIScrollView* sv = [[UIScrollView alloc]
 initWithFrame:[[UIScreen mainScreen] applicationFrame]];
 self.view = sv;
 UIImageView* imv =
 [[UIImageView alloc] initWithImage: [UIImage imageNamed:@"map.jpg"]];
 [sv addSubview:imv];
 sv.contentSize = imv.bounds.size;

Scroll View Touches | 587

 UIImageView* flag = [[UIImageView alloc] initWithImage:
 [UIImage imageNamed:@"redflag.png"]];
 [sv addSubview: flag];
 UIPanGestureRecognizer* pan = [[UIPanGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(dragging:)];
 [flag addGestureRecognizer:pan];
 flag.userInteractionEnabled = YES;
}

- (void) dragging: (UIPanGestureRecognizer*) p {
 UIView* v = p.view;
 if (p.state == UIGestureRecognizerStateBegan ||
 p.state == UIGestureRecognizerStateChanged) {
 CGPoint delta = [p translationInView: v.superview];
 CGPoint c = v.center;
 c.x += delta.x; c.y += delta.y;
 v.center = c;
 [p setTranslation: CGPointZero inView: v.superview];
 }
}

The user can now drag the map or the flag (Figure 20-4). The state of the scroll view’s
canCancelContentTouches is irrelevant, because the flag view isn’t tracking the touches
manually.

An interesting addition to that example would be to implement autoscrolling, meaning
that the scroll view scrolls itself when the user drags the flag close to its edge. This, too,

Figure 20-4. A scrollable map with a draggable flag

588 | Chapter 20: Scroll Views

is greatly simplified by gesture recognizers; in fact, we can add autoscrolling code di-
rectly to the dragging: action handler:

- (void) dragging: (UIPanGestureRecognizer*) p {
 UIView* v = p.view;
 if (p.state == UIGestureRecognizerStateBegan ||
 p.state == UIGestureRecognizerStateChanged) {
 CGPoint delta = [p translationInView: v.superview];
 CGPoint c = v.center;
 c.x += delta.x; c.y += delta.y;
 v.center = c;
 [p setTranslation: CGPointZero inView: v.superview];
 }
 // autoscroll
 if (p.state == UIGestureRecognizerStateChanged) {
 CGPoint loc = [p locationInView:self.view.superview];
 CGRect f = self.view.frame;
 UIScrollView* sv = (UIScrollView*)self.view;
 CGPoint off = sv.contentOffset;
 CGSize sz = sv.contentSize;
 CGPoint c = v.center;
 // to the right
 if (loc.x > CGRectGetMaxX(f) - 30) {
 CGFloat margin = sz.width - CGRectGetMaxX(sv.bounds);
 if (margin > 6) {
 off.x += 5;
 sv.contentOffset = off;
 c.x += 5;
 v.center = c;
 [self performSelector:@selector(dragging:)
 withObject:p afterDelay:0.2];
 }
 }
 // to the left
 if (loc.x < f.origin.x + 30) {
 CGFloat margin = off.x;
 if (margin > 6) {
 // ... omitted ...
 }
 }
 // to the bottom
 if (loc.y > CGRectGetMaxY(f) - 30) {
 CGFloat margin = sz.height - CGRectGetMaxY(sv.bounds);
 if (margin > 6) {
 // ... omitted ...
 }
 }
 // to the top
 if (loc.y < f.origin.y + 30) {
 CGFloat margin = off.y;
 if (margin > 6) {
 // ... omitted ...

Scroll View Touches | 589

 }
 }
 }
}

The material marked as omitted in the second, third, and fourth cases is obviously
parallel to the first case, and is left as an exercise for the reader.

Starting in iOS 5, a scroll view’s touch handling is itself based on gesture recognizers
attached to the scroll view — and these are available to your code through the scroll
view’s panGestureRecognizer and pinchGestureRecognizer properties. This means that
if you want to customize a scroll view’s touch handling, it’s easy to add more gesture
recognizers and have them interact with those already attached to the scroll view.

To illustrate, I’ll build on the previous example. Suppose we want the flag to start out
offscreen, and we’d like the user to be able to summon it with a rightward swipe. We
can attach a UISwipeGestureRecognizer to our scroll view, but it will never recognize
its gesture because the scroll view’s own pan gesture recognizer will recognize first. But
we have access to the scroll view’s panning gesture recognizer, so we can compel it to
yield to our swipe gesture recognizer by sending it requireGestureRecognizerToFail::

-(void) loadView {
 UIScrollView* sv = [[UIScrollView alloc] initWithFrame:
 [[UIScreen mainScreen] applicationFrame]];
 self.view = sv;
 UIImageView* imv = [[UIImageView alloc] initWithImage:
 [UIImage imageNamed:@"map.jpg"]];
 [sv addSubview:imv];
 sv.contentSize = imv.bounds.size;
 UISwipeGestureRecognizer* swipe =
 [[UISwipeGestureRecognizer alloc] initWithTarget:self
 action:@selector(swiped:)];
 [sv addGestureRecognizer:swipe];
 [sv.panGestureRecognizer requireGestureRecognizerToFail:swipe];
 // no flag; user must summon it with a swipe
}

Here’s my implementation of swiped::

- (void) swiped: (UISwipeGestureRecognizer*) g {
 if (g.state == UIGestureRecognizerStateEnded ||
 g.state == UIGestureRecognizerStateCancelled) {
 UIImageView* flag = [[UIImageView alloc]
 initWithImage: [UIImage imageNamed:@"redflag.png"]];
 UIPanGestureRecognizer* pan = [[UIPanGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(dragging:)];
 [flag addGestureRecognizer:pan];
 flag.userInteractionEnabled = YES;
 // put the flag offscreen and animate it onto the screen
 UIScrollView* sv = (UIScrollView*)self.view;
 CGPoint p = sv.contentOffset;
 CGRect f = flag.frame;
 f.origin = p;

590 | Chapter 20: Scroll Views

 f.origin.x -= flag.bounds.size.width;
 flag.frame = f;
 [sv addSubview: flag];
 [UIView beginAnimations:nil context:NULL];
 f.origin.x = p.x;
 flag.frame = f;
 [UIView commitAnimations];
 // thanks for the flag, now stop operating altogether
 g.enabled = NO;
 }
}

Scroll View Performance
At several points in earlier chapters I’ve mentioned performance problems and ways to
increase drawing efficiency. Nowhere are you so likely to need these as in connection
with a scroll view. As a scroll view scrolls, views must be drawn very rapidly as they
appear on the screen. If the view-drawing system can’t keep up with the speed of the
scroll, the scrolling will visibly stutter.

Performance testing and optimization is a big subject, so I can’t tell you exactly what
to do if you encounter stuttering while scrolling. But certain general suggestions (mostly
extracted from a really great presentation at the 2010 WWDC) should come in handy:

• Everything that can be opaque should be opaque: don’t force the drawing system
to composite transparency, and remember to tell it that an opaque view or layer
is opaque by setting its opaque property to YES. If you really must composite trans-
parency, keep the size of the nonopaque regions to a minimum; for example, if a
large layer is transparent at its edges, break it into five layers — the large central
layer, which is opaque, and the four edges, which are not.

• If you’re drawing shadows, don’t make the drawing system calculate the shadow
shape for a layer: supply a shadowPath, or use Core Graphics to create the shadow
with a drawing. Similarly, avoid making the drawing system composite the shadow
as a transparency against another layer; for example, if the background layer is
white, your opaque drawing can itself include a shadow already drawn on a white
background.

• Don’t make the drawing system scale images for you; supply the images at the
target size for the correct resolution.

• In a pinch, you can just eliminate massive swatches of the rendering operation by
setting a layer’s shouldRasterize to YES. You could, for example, do this when
scrolling starts and then set it back to NO when scrolling ends.

Apple’s documentation also says that setting a view’s clearsContextBeforeDrawing to
NO may make a difference. I can’t confirm or deny this; it may be true, but I haven’t
encountered a case that positively proves it.

Scroll View Performance | 591

As I’ve already mentioned, Xcode provides tools that will help you detect inefficiencies
in the drawing system. In the Simulator, the Debug menu shows you blended layers
(where transparency is being composited) and images that are being copied, misaligned,
or rendered offscreen (rendering directly to the screen is always more efficient). On the
device, the Core Animation module of Instruments provides the same functionality,
plus it tracks the frame rate for you, allowing you to scroll and measure performance
objectively.

592 | Chapter 20: Scroll Views

CHAPTER 21

Table Views

I’m gonna ask you the three big questions. — Go ahead.
— Who made you? — You did. — Who owns the biggest

piece of you? — You do. — What would happen if I
dropped you? — I’d go right down the drain.

—Dialogue by Garson Kanin and Ruth Gordon,
Pat and Mike

A table view (UITableView) is a scrolling interface (a vertically scrolling UIScrollView,
Chapter 20) for presenting a single column of rectangular cells (UITableViewCell, a
UIView subclass). It is a keystone of Apple’s strategy for making the small iPhone screen
useful and powerful, and has three main purposes:

Presentation of information
The cells typically contain text, which the user can read. The cells are usually quite
small, in order to maximize the number of them that appear on the screen at once,
so this text is often condensed, truncated, or otherwise simplified.

Selection
A cell can be selected by tapping. A table view can thus be used to provide the user
with a column of choices. The user chooses by tapping a cell, and the app responds
appropriately to that choice.

Navigation
The appropriate response to the user’s choosing a cell is often navigation to another
interface. This might be done, for example, through a presented view controller or
a navigation interface (Chapter 19). An extremely common configuration is a mas-
ter–detail interface, in which the master view is (or contains) a table view, often at
the root of a navigation interface; the user taps a listing in the table to navigate to
the details for that choice. This is one reason why truncation of text in a table view
is acceptable: the detail view contains the full information.

In addition to its column of cells, a table view can be extended by a number of other
features that make it even more useful and flexible:

593

• A table can start with a header view (at the top) and end with a footer view (at the
bottom).

• The cells can be clumped into sections. Each section can have a header and footer,
and these remain visible as long as the section itself occupies the screen, giving the
user a clue as to where we are within the table. Moreover, a section index can be
provided, in the form of an overlay column of abbreviated section titles, which the
user can tap to jump to the start of a section (thus making a long table tractable).

• A table can have a “grouped” format. This is often used for presenting small num-
bers of related cells.

• Tables can be editable: the user can be permitted to insert, delete, and reorder cells.

Figure 21-1 illustrates four variations of the table view:

1. Apple’s Music app lists song titles and artists for a given album in truncated form
in a table view within a navigation interface which is itself within a tab bar interface;
tapping an album in a table of album titles summons the list of songs within that
album, and tapping a song in that list plays it.

2. An app of mine lists Latin words and their definitions in alphabetical order, divided
into sections by first letter, with section headers and a section index.

3. Apple’s Mail app lists inboxes and accounts in a grouped format, clumped into
sections with headers.

4. Apple’s Music app allows a custom playlist to be edited, with interface for deleting
and rearranging cells.

Table cells, too, can be extremely flexible. Some basic table cell formats are provided,
such as a text label along with a small image view, but you are free to design your own
table cell as you would any other view. There are also some standard interface items
that are commonly used in a table cell, such as a checkmark to indicate selection or a
right-pointing chevron to indicate that tapping the cell navigates to a detail view.

It would be difficult to overestimate the importance of table views. An iOS app without
a table view somewhere in its interface would be a rare thing, especially on the small

Figure 21-1. Four table view variations

594 | Chapter 21: Table Views

iPhone screen. I’ve written apps consisting almost entirely of table views. Indeed, it is
not uncommon to use a table view even in situations where there is nothing particularly
table-like about that situation, simply because it is so convenient. For example, in one
of my apps I want the user to be able to choose between three levels of difficulty. In a
desktop application I’d probably use radio buttons; but there are no radio buttons
among the standard iOS interface objects. Instead, I use a grouped table so small that
it doesn’t even scroll. This gives me a section header, three tappable cells, and a check-
mark indicating the current choice (Figure 21-2).

There is a UIViewController subclass, UITableViewController, dedicated to the pre-
sentation of a table view. It is important to stress, however, that you never really need
to use a UITableViewController — it’s just a convenience, and doesn’t do anything
that you couldn’t do yourself by other means — and that if your table view does not
constitute the entire view to be handled by a UIViewController, you can’t use a
UITableViewController.

Here’s some of what using a UITableViewController gives you:

• UITableViewController’s initWithStyle: creates the table view with a plain or
grouped format.

• The view controller is automatically made the table view’s delegate and data
source, unless you specify otherwise.

• The table view is made the view controller’s tableView. It is also, of course, the
view controller’s view, but the tableView property is typed as a UITableView, so
you can send table view messages to it without typecasting.

Figure 21-2. A grouped table view as an interface for choosing options

Table Views | 595

A UITableViewController does not obey the UIViewController rule
about what happens if it is sent initWithNibName:bundle: with a nil nib
name. A UITableViewController will not find its nib automatically by
comparison with its own class name (Chapter 19); instead, a nil nib
name will cause the view controller to generate its table view from
scratch. I regard this as a bug. If it’s not a bug, it’s certainly annoying
— more than annoying, it feels like a trap lying in wait for the unsus-
pecting programmer. I wish I had a nickel for every time I’ve fallen into
it. If I’m loading a UITableViewController’s table from a nib, I like to
give the table view in the nib an unusual background color during de-
velopment, just to prove to myself that the table I’m seeing when the
app runs really was loaded from the nib; I suggest you do the same!

Table View Cells
Beginners may be surprised to learn that a table view’s structure and contents are not
configured in advance. Rather, you supply the table view with a data source and a
delegate (which will often be the same object; see Chapter 11), and the table view turns
to these in real time, as the app runs, whenever it needs a piece of information about
its structure and contents.

This architecture is actually part of a brilliant strategy to conserve resources. Imagine
a long table consisting of thousands of rows. It must appear, therefore, to consist of
thousands of cells as the user scrolls. But a cell is a UIView and is memory-intensive;
to maintain thousands of cells internally would put a terrible strain on memory. There-
fore, the table typically maintains only as many cells as are showing simultaneously at
any one moment (about ten, let’s say). As the user scrolls, the table grabs a cell that is
no longer showing on the screen and is therefore no longer needed, and hands it back
to you and asks you to configure it as the cell that is about to be scrolled into view.
Cells are thus reused to minimize the number of actual cells in existence at any one
moment.

Therefore your code must be prepared, on demand, to supply the table with pieces of
requested data. Of these, the most important is the table cell to be slotted into a given
position. A position in the table is specified by means of an index path (NSIndexPath),
a class used here to combine a section number with a row number, and is often referred
to simply as a row of the table. Your data source object may at any moment be sent the
message tableView:cellForRowAtIndexPath:, and must respond by returning the
UITableViewCell to be displayed at that row of the table. And you must return it fast:
the user is scrolling now, so the table needs the next cell now.

In this section, then, I’ll discuss what you’re going to be supplying — the table view
cell. In the next section, I’ll talk about how you supply it.

596 | Chapter 21: Table Views

In iOS 5, a table view whose cell contents are known beforehand, such
as the one shown in Figure 21-2, can in fact be configured in advance,
by designing the table’s view controller in a storyboard. I’ll discuss how
to do that later in this chapter.

Built-In Cell Styles
To create a cell using one of the built-in cell styles, call initWithStyle:reuse-
Identifier:. The reuseIdentifier is what allows cells previously assigned to rows that
are now longer showing to be reused for cells that are; it will usually be the same for
all cells in a table. Your choices of cell style are:

UITableViewCellStyleDefault

The cell has a UILabel (its textLabel), with an optional UIImageView (its image-
View) at the left. If there is no image, the label occupies the entire width of the cell.

UITableViewCellStyleValue1

The cell has two UILabels (its textLabel and its detailTextLabel), side by side,
with an optional UIImageView (its imageView) at the left. The first label is left-
aligned; the second label is right-aligned. If the first label’s text is too long, the
second label won’t appear.

UITableViewCellStyleValue2

The cell has two UILabels (its textLabel and its detailTextLabel), side by side; the
first label is small. No UIImageView will appear. The label sizes are fixed, and the
text of either will be truncated if it’s too long.

UITableViewCellStyleSubtitle

The cell has two UILabels (its textLabel and its detailTextLabel), one above the
other, with an optional UIImageView (its imageView) at the left.

To experiment with the built-in cell styles, do this.

1. Make a new iPhone project from the Empty Application project template.

2. Choose File → New → New File and ask for a Cocoa Touch UIViewController
subclass.

3. Call the subclass RootViewController and use the combo box to specify that it is
to be a UITableViewController subclass. “With XIB for user interface” should be
checked, so that Xcode will hook up the table view in the nib correctly.

4. Click Next and create the files.

To get our table view into the interface, import "RootViewController.h" into App-
Delegate.m, and add this line to AppDelegate’s application:didFinishLaunchingWith-
Options: (recall that we must specify the nib name explicitly):

self.window.rootViewController =
 [[RootViewController alloc] initWithNibName:@"RootViewController" bundle:nil];

Table View Cells | 597

Now modify the RootViewController class (which comes with a lot of templated code),
as in Example 21-1.

Example 21-1. The world’s simplest table

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return 20;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];

 }
 cell.textLabel.text = @"Howdy there";
 return cell;
}

The idea is to start by generating a single cell in a built-in cell style and then to examine
and experiment with its appearance by tweaking the code and running the app. The
key parts of the code are:

This code is unchanged from the template; our table will have one section.

Our table will consist of 20 rows. We’re going to make our cell without regard to
what row it is slotted into; so all 20 rows will be identical. But having multiple rows
will give us a sense of how our cell looks when placed next to other cells.

This is where you specify the built-in table cell style you want to experiment with.
Change UITableViewCellStyleDefault to a different style as desired.

At this point in the code you can modify characteristics of the cell (cell) that are to
be the same for every cell of the table. I’ll give an example later.

We now have the cell to be used for this row of the table, so at this point in the code
you can modify characteristics of the cell (cell) that are unique to this row. Of
course, that isn’t what I’ve done in the example code; as I just said, all the cells will
be identical for now. But that’s just because we’re only beginners. In real life they’d
obviously be likely to have different text, so this is where we put the code that sets
the text.

Build and run the app. Behold your table.

598 | Chapter 21: Table Views

Now you can start experimenting, by changing the code at the point where we’re now
setting cell.textLabel.text, and by trying different cell styles other than UITableView-
CellStyleDefault.

The flexibility of the built-in styles is based mostly on the flexibility of UILabels (see
also Chapter 23). Not everything can be customized, because after you return the cell
some further configuration takes place, which may override your settings. For example,
the size and position of the cell’s subviews are not up to you. (I’ll explain how to get
around that in the next section.) But you get a remarkable degree of freedom. Here are
some of the UILabel properties you can try changing:

text

The string shown in the label.

textColor, highlightedTextColor
The color of the text. The highlightedTextColor applies when the cell is selected
(tap on a cell to select it); if you don’t set it, the label may choose its own variant
of the textColor when the cell is highlighted.

textAlignment

How the text is aligned; your choices are UITextAlignmentLeft, UITextAlignment-
Center, and UITextAlignmentRight.

numberOfLines

The maximum number of lines of text to appear in the label. Text that is long but
permitted to wrap, or that contains explicit linefeed characters, can appear com-
pletely in the label if the label is tall enough and the number of permitted lines is
sufficient. 0 means there’s no maximum.

lineBreakMode

The wrapping rule for text that is too long for the label’s width. The default is
UILineBreakModeTailTruncation, which means that text wraps at word ends and
then, if the last permitted line is still too long for the label, an ellipsis mark follows
its last visible character.

font

The label’s font. You could reduce the font size as a way of fitting more text into
the label. A font name includes its style. For example:

cell.textLabel.font = [UIFont fontWithName:@"Helvetica-Bold" size:12.0];

minimumFontSize, adjustsFontSizeToFitWidth
If the numberOfLines is 1, setting these will allow the font size to shrink automati-
cally in an attempt to fit the entire text into the label’s width.

shadowColor, shadowOffset
The text shadow. Adding a little shadow can increase clarity and emphasis for large
text.

Table View Cells | 599

The image view’s frame can’t be changed, but you can inset its apparent size by sup-
plying a smaller image and setting the image view’s contentMode to UIViewContentMode-
Center. It’s probably a good idea in any case, for performance reasons, to supply images
at their drawn size and resolution rather than making the drawing system scale them
for you (see the last section of Chapter 20). For example:

UIImage* im = [UIImage imageNamed:@"pic.png"];
UIGraphicsBeginImageContextWithOptions(CGSizeMake(36,36), YES, 0);
[im drawInRect:CGRectMake(0,0,36,36)];
UIImage* im2 = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
cell.imageView.image = im2;
cell.imageView.contentMode = UIViewContentModeCenter;

The cell itself also has some properties you can play with:

accessoryType

A built-in type of accessory view, which appears at the cell’s right end. For example:

cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;

accessoryView

Your own UIView, which appears at the cell’s right end (overriding the accessory-
Type). For example:

UIButton* b = [UIButton buttonWithType:UIButtonTypeRoundedRect];
[b setTitle:@"Tap Me" forState:UIControlStateNormal];
[b sizeToFit];
// ... also assign button a target and action ...
cell.accessoryView = b;

indentationLevel, indentationWidth
These properties give the cell a left margin, useful for suggesting a hierarchy among
cells. You can also set a cell’s indentation level in real time, with respect to the table
row into which it is slotted, by implementing the delegate’s tableView:indentation-
LevelForRowAtIndexPath: method.

selectionStyle

How the background looks when the cell is selected. The default is a blue gradient
(UITableViewCellSelectionStyleBlue), or you can choose UITableViewCell-

SelectionStyleGray (gray gradient) or UITableViewCellSelectionStyleNone.

backgroundColor
backgroundView
selectedBackgroundView

What’s behind everything else drawn in the cell. The selectedBackgroundView is
drawn in front of the backgroundView (if any) when the cell is selected, and will
appear instead of whatever the selectionStyle dictates. The backgroundColor is
behind the backgroundView. (Thus, if both the selectedBackgroundView and the
backgroundView have some transparency, both of them and the backgroundColor
can appear composited together when the cell is selected.)

600 | Chapter 21: Table Views

multipleSelectionBackgroundView

If defined (not nil), and if the table’s allowsMultipleSelection (or, if editing, allows-
MultipleSelectionDuringEditing) is YES, used instead of the selectedBackground-
View when the cell is selected.

Applying a backgroundView or a backgroundColor can be tricky, because:

• The cell’s default interface elements, such as the textLabel, automatically adopt
the cell’s background color as their own background color when the cell is not
selected. Thus, they will appear to “punch a hole” through the backgroundView,
revealing the background color behind it. (This problem doesn’t arise for a selected
cell, because when the cell is selected the cell’s interface elements automatically
switch to a transparent background, allowing the selectionStyle or selected-
BackgroundView to show through.) The solution, if you want the backgroundView to
appear behind the interface elements, is to set the backgroundColor of the interface
elements to a color with some transparency, possibly [UIColor clearColor].

• The cells automatically take on the same backgroundColor as the table, and getting
them to stop doing this is not easy. The problem is that tableView:cellForRowAt-
IndexPath: is too soon; when you set the backgroundColor here, your command is
obeyed, but then the background color reverts to the table’s background color as
the cell’s own setSelected:animated: is called automatically and the cell does var-
ious things to its own appearance. One solution is to implement a delegate method,
tableView:willDisplayCell:forRowAtIndexPath:, and set the backgroundColor

there. Alternatively, don’t even try to give a cell a backgroundColor; instead, give it
a colored backgroundView.

In this example, we set the backgroundView to display an image with some transparency
at the outside edges, so that the backgroundColor shows behind it. We set the selected-
BackgroundView to an almost transparent dark rectangle, to darken that image when the
cell is selected. And we give the textLabel a clear background color so that the rest of
our work shows through:

UIImageView* v = [[UIImageView alloc] initWithFrame:cell.bounds];
v.contentMode = UIViewContentModeScaleToFill;
v.image = [UIImage imageNamed:@"linen.png"];
cell.backgroundView = v;
UIView* v2 = [[UIView alloc] initWithFrame:cell.bounds];
v2.backgroundColor = [UIColor colorWithWhite:0.2 alpha:0.1];
cell.selectedBackgroundView = v2;
cell.textLabel.backgroundColor = [UIColor clearColor];

I’d put that code in the spot numbered 4 in Example 21-1. These features are to be true
of every cell ever displayed in the table, and they need to be configured just once for
every cell as it first comes into existence. There’s no need to waste time doing the same
thing all over again when an existing cell is reused.

Finally, there are a few properties of the table view itself worth playing with:

Table View Cells | 601

rowHeight

The height of a cell. This is another way to deal with text that is too long; besides
decreasing the font size, you can increase the cell size. You can also change this
value in the nib file; the table view’s row height appears in the Size inspector. The
cell’s subviews have their autoresizing set so as to compensate correctly. You can
also set a cell’s height in real time by implementing the delegate’s tableView:height-
ForRowAtIndexPath: method; thus a table’s cells may differ from one another in
height (more about that later in this chapter).

separatorColor, separatorStyle
These can also be set in the nib. The choices of separator style are:

• UITableViewCellSeparatorStyleNone (plain style table only)

• UITableViewCellSeparatorStyleSingleLine

• UITableViewCellSeparatorStyleSingleLineEtched (grouped style table only)
Oddly, the separator style names are associated with UITableViewCell even though
the separator style itself is a UITableView property.

backgroundColor, backgroundView
What’s behind all the cells of the table; this may be seen if the cells have transpar-
ency, or if the user bounces the cells beyond their limit. I’ve already mentioned
that cells will, by default, take on the backgroundColor of their table. The background-
View is drawn on top of the backgroundColor.

tableHeaderView, tableFooterView
Views to be shown before the first row and after the last row, respectively. Their
background color is, by default, the background color of the table, but you can
change that. The user can, if you like, interact with the views (and their subviews).
You can keep a reference to these views and alter them dynamically during the
lifetime of the app. If you change the height of one of these views dynamically, you
must set the corresponding table view property afresh so that the table view learns
what has happened.

A UITableViewCell is a UIView and has a CALayer, of course, so you can use all the
view and layer properties to customize it still further. Here’s an example, showing heavy
customization of a table view cell’s shape and background. It’s a UITableViewCellStyle-
Default cell. I have already shrunk the image and centered it in the image view, using
the code shown earlier, and I have set textLabel.text; here, I supply a gray gradient as
the cell’s background, and put a round-rect border around the cell (Figure 21-3). Again,
I’d put this code in the spot numbered 4 in Example 21-1:

UIView* v = [[UIView alloc] initWithFrame:cell.frame];
v.backgroundColor = [UIColor blackColor];
CAGradientLayer* lay = [CAGradientLayer layer];
lay.colors = [NSArray arrayWithObjects:
 (id)[UIColor colorWithWhite:0.6 alpha:1].CGColor,
 [UIColor colorWithWhite:0.4 alpha:1].CGColor, nil];
lay.frame = v.layer.bounds;

602 | Chapter 21: Table Views

[v.layer addSublayer:lay];
lay.borderWidth = 1;
lay.borderColor = [UIColor blackColor].CGColor;
lay.cornerRadius = 5;
cell.backgroundView = v;
cell.textLabel.font = [UIFont fontWithName:@"Helvetica-Bold" size:16];
cell.textLabel.lineBreakMode = UILineBreakModeWordWrap;
cell.textLabel.numberOfLines = 2;
cell.textLabel.textColor = [UIColor whiteColor];
cell.textLabel.backgroundColor = [UIColor clearColor];

Custom Cells
The built-in cell styles give the beginner a leg up in getting started with table views, but
there is nothing sacred about them, and sooner or later you’ll probably want to go
beyond them and put yourself in charge of how a table’s cells look and what subviews
they contain. There are four possible approaches:

• Supply a UITableViewCell subclass and override layoutSubviews to alter the frames
of the built-in subviews.

• In tableView:cellForRowAtIndexPath:, add subviews to each cell’s contentView as
the cell is created. The contentView is the superview for the cell’s subviews, exclu-
sive of things like the accessoryView; so by confining yourself to the contentView,
you allow the cell to continue working correctly. This approach can be combined
with the previous one, or you can ignore the built-in subviews and use your own
exclusively. As long as the built-in subviews for a particular built-in cell style are
not referenced, they are never created or inserted into the cell.

• Design the cell in a nib, and load that nib in tableView:cellForRowAtIndexPath:
each time a cell needs to be created.

• Design the cell in a storyboard.

I’ll illustrate each approach.

Overriding a cell’s subview layout

You can’t directly change the frame of a built-in cell style subview in tableView:cell-
ForRowAtIndexPath: or tableView:willDisplayCell:forRowAtIndexPath:, because after
your changes, the cell’s layoutSubviews comes along and overrides them. The work-
around is to override the cell’s layoutSubviews! This is a straightforward solution if your
main objection to a built-in style is the frame of a subview.

Figure 21-3. A cell with a custom gradient background

Table View Cells | 603

To illustrate, let’s modify a UITableViewCellStyleDefault cell so that the image is at the
right end instead of the left end. We’ll make a UITableViewCell subclass, MyCell;
Xcode makes this easy by supplying UITableViewCell as one of the default classes in
the “Subclass of” pop-up menu when you make a new Cocoa Touch Objective-C Class
file. Here is MyCell’s layoutSubviews:

- (void) layoutSubviews {
 [super layoutSubviews];
 CGRect cvb = self.contentView.bounds;
 CGRect imf = self.imageView.frame;
 imf.origin.x = cvb.size.width - imf.size.width;
 self.imageView.frame = imf;
 CGRect tf = self.textLabel.frame;
 tf.origin.x = 5;
 self.textLabel.frame = tf;
}

Now, in our table view’s data source, we change the line where new cells are created,
so as to generate an instance of MyCell rather than UITableViewCell (you’ll need to
import "MyCell.h" so as to be able to speak of MyCell):

cell = [[MyCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];

Adding subviews in code

Let’s rewrite the previous example so that we don’t need our own UITableViewCell
subclass. Instead of modifying the existing imageView and textLabel, we’ll add to each
UITableViewCell’s content view a completely new UIImageView and UILabel, each of
which can be assigned a frame that won’t be changed by the runtime. Here are some
things to keep in mind:

• The new views must be added when we instantiate a new cell, but not when we
reuse a cell (because a reused cell already has them).

• We must never send addSubview: to the cell itself — only to its contentView (or
some subview thereof).

• We should assign the new views an appropriate autoresizingMask, because the
cell’s content view might be resized.

• Each new view should be assigned a tag so that it can be referred to elsewhere.

Our implementation of tableView:cellForRowAtIndexPath: might look like this:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];
 CGFloat side = cell.contentView.bounds.size.height;

604 | Chapter 21: Table Views

 UIImageView* iv = [[UIImageView alloc] init];
 iv.frame =
 CGRectMake(cell.contentView.bounds.size.width - side, 0, side, side);
 iv.tag = 1;
 iv.autoresizingMask = (UIViewAutoresizingFlexibleHeight |
 UIViewAutoresizingFlexibleLeftMargin);
 [cell.contentView addSubview:iv];

 UILabel* lab = [[UILabel alloc] init];
 lab.frame =
 CGRectMake(5, 0, cell.contentView.bounds.size.width - side - 10, side);
 lab.tag = 2;
 lab.autoresizingMask = (UIViewAutoresizingFlexibleHeight |
 UIViewAutoresizingFlexibleRightMargin);
 [cell.contentView addSubview:lab];
 }
 UILabel* lab = (UILabel*)[cell viewWithTag: 2];
 // ... set up lab here ...
 UIImageView* iv = (UIImageView*)[cell viewWithTag: 1];
 // ... set up iv here ...
 return cell;
}

Note how we can refer to the label and the image view, even when we’re handed an
existing cell for reuse, because we had the foresight to give them tags.

Using our own cell subviews instead of the built-in cell style subviews has some clear
advantages; we no longer have to perform an elaborate dance to escape from the re-
strictions imposed by the runtime. Still, the verbosity of this code is somewhat over-
whelming. We can avoid this by designing the cell in a nib.

Designing a cell in a nib

In designing a cell in a nib, we start by creating a nib file that will consist, in effect,
solely of this one cell. In Xcode, we create a new iOS User Interface View nib file. Let’s
call it MyCell.xib. In the nib editor, delete the existing View and replace it with a Table
View Cell from the Object library.

The cell’s design window shows a standard-sized cell; you can resize it as desired, but
bear in mind that the final size of the cell in the interface will be dictated by the table
view’s rowHeight. The cell’s style can be specified in the Style pop-up menu of the
Attributes inspector, and this gives you the default subviews, locked in their standard
positions; for example, if you choose Basic, the textLabel appears, and if you specify
an image in the Image combo box, the imageView appears.

The Style pop-up menu is new in iOS 4.2, and using it in the nib editor
may cause the compiler to complain. The solution is to switch, in the
nib editor, to the File inspector and change the Development pop-up
menu (under Interface Builder Document) to “Xcode 4.2.” The fact that
this is necessary feels like a bug.

Table View Cells | 605

For purposes of the example, however, set the Style pop-up menu to Custom and let’s
start with a blank slate. We’ll implement, from scratch, the same subviews we’ve al-
ready implemented in the preceding two examples: a UILabel on the left side of the
cell, and a UIImageView on the right side. Just as when we add subviews in code, we
should set each subview’s autoresizing behavior and give each subview a tag. The dif-
ference is that we now do both those tasks in the nib, not in code. (If you’re following
along hands-on, go ahead and do that now.)

Now comes the most important step. Our goal is to load this nib and grab the cell. To
do so, we need an existing instance to function as the File’s Owner for this nib, and its
class must have an outlet pointing to the cell (Chapter 7). I’ll assume that we’ve still
got a UITableViewController subclass called RootViewController:

1. Give RootViewController a UITableViewCell property outlet (and don’t forget to
@synthesize this property):

@property (nonatomic, strong) IBOutlet UITableViewCell* tvc;

2. In the nib, set the File’s Owner class to RootViewController, and hook its tvc outlet
to the cell. (Don’t use its view outlet by mistake! We don’t want to accidentally
repoint this view controller’s view to the cell.)

3. Assign to the cell in the nib, in the Attributes inspector, the same string Identifier
that is used as a cell identifier in our code. We have not altered the template, so
that value is Cell, in accordance with this line of code:

static NSString* CellIdentifier = @"Cell";

It is unbelievably important to get that last step right. If the cell’s Iden-
tifier in the nib doesn’t match the identifier string in code, you might
not get an error, but cells will not be reused properly in the construction
of the table. Omitting this step or performing it incorrectly is a common
beginner mistake.

We are now ready to modify our implementation of tableView:cellForRowAtIndex-
Path:. Each time a new cell is needed, at the spot where we previously instantiated a
cell in code, we instead load the nib with ourself as owner. To do this, you should use
the UINib method instantiateWithOwner:options:, as this will provide some extra
speed and efficiency (possibly by caching the nib behind the scenes). Each time the nib
loads, a new instance of the cell is assigned to the tvc instance variable (Chapter 7).
We assign that to cell, which (under ARC) retains it; we then nilify the instance vari-
able, to release it:

UINib* theCellNib = [UINib nibWithNibName:@"MyCell" bundle:nil];
[theCellNib instantiateWithOwner:self options:nil];
cell = self.tvc;
self.tvc = nil;

This gives us all the advantages of customized cell contents without any verbosity; the
cell is created in two easy lines of code, and we proceed to configure it. Moreover, our

606 | Chapter 21: Table Views

configuration code (“set up lab here”) can perhaps be greatly reduced, because this
subview can be configured in the nib. For example, as I was evolving this example from
earlier examples, I had this configuration code:

lab.numberOfLines = 2;
lab.textAlignment = UITextAlignmentLeft;
lab.adjustsFontSizeToFitWidth = YES;
lab.lineBreakMode = UILineBreakModeClip;
lab.minimumFontSize = 0.1;
lab.textColor = [UIColor whiteColor];
lab.highlightedTextColor = [UIColor blackColor];
lab.font = [UIFont fontWithName:@"Helvetica-Bold" size:12.0];
lab.text = @"This is a test";

But all of that code can now be deleted! Those are all aspects of the UILabel that can
be configured in the nib instead. Moreover, a table view cell in a nib has outlets for its
accessoryView (and editingAccessoryView) and its backgroundView and selected-
BackgroundView (but not, oddly, its multipleSelectionBackgroundView; one really does
wonder whether the various departments at Apple ever talk to one another). Thus we
can set all of these features directly in the nib. For example, to set the background view
to the custom gradient we developed earlier, I’d create a UIImageView subclass that
draws the gradient and makes the result its own image, put an instance of this UIImage-
View subclass into the cell’s nib, and hook the cell’s backgroundView outlet to that
UIImageView instance. For these and similar reasons, I am very much partial to the
nib-loading approach to cell instantiation.

Moreover, starting in iOS 5, there’s yet another reason to instantiate your cell’s from a
nib — a new way of loading the cells, as needed, automatically, so that you don’t need
an outlet to the cell. Up to now, each time after the call to dequeueReusableCellWith-
Identifier:, we have been checking to see whether the result is nil, and instantiating
a cell manually if so:

UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {
 // ... instantiate a cell, in code or by loading a nib

In iOS 5, if we’ve got a cell in a nib, we can eliminate that code. Here’s how: before the
table view needs any cells, call its method registerNib:forCellReuseIdentifier:. This
effectively pairs the reuse identifier string with a nib name. From then on, when you
call dequeueReusableCellWithIdentifier:, a cell is always returned. If there’s a reusable
cell available, it is returned as before; if there’s no reusable cell available, the nib cor-
responding to the given identifier is loaded and the cell is returned.

The advantages of this approach are:

• We no longer have to specify the reuse identifier in the nib, because we’ve per-
formed the pairing in code. (In fact, it is best to leave the Identifier in the nib blank;
a wrong Identifier value will break things, but a blank Identifier won’t.)

Table View Cells | 607

• There is no need to specify a File’s Owner class in the nib (in fact, it should be left
at NSObject), and there is no outlet pointing from the File’s Owner to the cell; the
runtime simply looks for a single top-level nib object. Similarly, there is no need
for the class running all this code to have a property corresponding to the outlet;
there is no outlet.

• There is no need for the test (if cell == nil); there will always be a cell. The entire
section of the cell-retrieving code marked as step 4 in Example 21-1 is eliminated.
If you have configurations to perform on each cell just once, when the cell is freshly
instantiated, make a new test examining something about its state that differenti-
ates a freshly instantiated, unconfigured cell from a configured one.

Here’s how our implementation of tableView:cellForRowAtIndexPath: is structured
under this new regime:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 [self.tableView registerNib:
 [UINib nibWithNibName:@"MyCell" bundle:nil]
 forCellReuseIdentifier:CellIdentifier];
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 // that's it! we've got a cell
 UILabel* lab = (UILabel*)[cell viewWithTag: 2];
 // ... set up lab here ...
 UIImageView* iv = (UIImageView*)[cell viewWithTag: 1];
 // ... set up iv here ...
 return cell;
}

In reality we only need to call registerNib:forCellReuseIdentifier: once. There’s no
harm in calling it repeatedly, however; all we’re doing is pairing two string names, the
nib and the identifier, which takes no time at all. If the repeated call offends you, pro-
mote the CellIdentifier to an external global variable, so that code throughout this
class can see it, and make the call once, earlier in the table view’s lifetime (such as the
view controller’s viewDidLoad).

In a nib to be loaded automatically after calling registerNib:forCell-
ReuseIdentifier:, there must be just one top-level nib object, the
UITableViewCell. This seems an unnecessary restriction; why can’t the
nib-loader examine the top-level objects and discover the one that’s a
UITableViewCell? The unfortunate result is that, say, an object to be
pointed to by the cell’s backgroundView outlet can’t be included in the
nib as another top-level nib object. The workaround is to make such an
object a subview of the cell; you might need to use the Size inspector to
move the object out of the cell’s bounds so that you can continue work-
ing in the cell (and the cell will have to use the Custom style, as you can’t
add any subviews to a built-in cell style in a nib).

608 | Chapter 21: Table Views

We are still referring to the cell’s subviews in code by way of viewWithTag:. If you would
prefer to use names, simply provide a UITableViewCell subclass with outlet properties,
and configure the nib file accordingly:

1. Create the files for a UITableViewCell subclass; let’s call it MyCell. (If you still have
the MyCell files from the earlier example, you can use them, but delete the layout-
Subviews override.) Give the class two outlet properties (and remember to
@synthesize them):

@property (nonatomic, strong) IBOutlet UILabel* theLabel;
@property (nonatomic, strong) IBOutlet UIImageView* theImageView;

2. In the table view cell nib, change the class of the cell to MyCell, and link up the
outlets from the cell to the respective subviews.

In our implementation of tableView:cellForRowAtIndexPath:, once we’ve typed the cell
as a MyCell (and imported "MyCell.h"), the compiler will let us use the property names
to access the subviews:

MyCell* theCell = (MyCell*)cell;
UILabel* lab = theCell.theLabel;
// ... set up lab here ...
UIImageView* iv = theCell.theImageView;
// ... set up iv here ...

Designing a cell in a storyboard

In iOS 5, if we’re using a UITableViewController subclass, its table view’s cells can be
designed in a storyboard. In the storyboard editor, the UITableViewController comes
with a table view. In the Attributes inspector, you set the table view’s Content pop-up
menu to Dynamic Prototypes, and use the Prototype Cells field to say how many dif-
ferent cell types there are to be — that is, how many different cell identifiers your table
view controller’s code will be using. In our case (and in most cases) this is 1. The table
view in the storyboard editor is shown with as many table view cells as the Prototype
Cells field dictates. Again, in our case that means there’s one table view cell. This ef-
fectively corresponds to the table view cell in the nib file from which we were previously
instantiating it.

Now you can design the table view cell graphically; for example, once again we could
have a label on the left and an image view on the right (Figure 21-4). If you want to add
views to be the target of any of the cell’s outlets (such as its backgroundView), you must
make them subviews of the cell, as I described a moment ago.

I’ve already discussed (Chapter 19) the ways in which a view controller might be in-
stantiated from a storyboard. This storyboard might be your app’s main storyboard,
and the table view controller might be instantiated automatically. On the other hand,
you might take advantage of a storyboard solely in order to use this feature (the ability
to design a cell in a storyboard), even if your app has no main storyboard, in which

Table View Cells | 609

case you would explicitly instantiate the table view controller from the storyboard in
code.

The reason why you might use a storyboard just to design a table view cell is that this
approach requires even less code than what we’ve been doing so far. In tableView:cell-
ForRowAtIndexPath:, we still need to call dequeueReusableCellWithIdentifier:, but
that’s all we need to do. If there is no reusable cell, there is no need for us to instantiate
a cell in code, and there is no need to load a nib; the cell will be instantiated from the
storyboard, which will be found automatically because the view controller keeps a
pointer to it. There is no need to call registerNib:forCellReuseIdentifier:, because
the runtime knows where to find the cell prototype — in the storyboard. The only thing
you have to do is give the cell the correct Identifier value in its Attributes inspector in
the storyboard; the rest happens automatically:

UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

If a new cell is needed, the runtime looks in the storyboard to find the cell prototype
for this table view whose Identifier value matches CellIdentifier. It instantiates that
cell and returns it. End of story!

As in the previous example, the cell in the storyboard can be an instance of a subclass
of UITableViewCell. If our subclass and the outlets in the storyboard are set up as
before, we can refer to the cell’s custom subviews through property names. Here is the
entire code used to generate Figure 21-5 (everything else is configured in the story-
board):

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 MyCell *cell =
 (MyCell*)[tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 cell.theLabel.text =

Figure 21-4. A table view with a cell prototype in a storyboard

610 | Chapter 21: Table Views

 @"The author of this book, who would rather be out dirt biking";
 UIImage* im = [UIImage imageNamed:@"moi.png"];
 UIGraphicsBeginImageContextWithOptions(CGSizeMake(36,36), YES, 0.0);
 [im drawInRect:CGRectMake(0,0,36,36)];
 UIImage* im2 = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 cell.theImageView.image = im2;
 return cell;
}

Table View Data
The structure and content of the actual data portrayed in a table view comes from the
data source, an object pointed to by the table view’s dataSource property and adopting
the UITableViewDataSource protocol. The data source is thus the heart and soul of the
table. What surprises beginners is that the data source operates not by setting the table
view’s structure and content, but by responding on demand. The data source, qua data
source, consists of a set of methods that the table view will call when it needs infor-
mation. This architecture has important consequences for how you write your code,
which can be summarized by these simple guidelines:

Be ready
Your data source cannot know when or how often any of these methods will be
called, so it must be prepared to answer any question at any time.

Be fast
The table view is asking for data in real time; the user is probably scrolling through
the table right now. So you mustn’t gum up the works; you must be ready to supply
responses just as fast as you possibly can. (If you can’t supply a piece of data fast
enough, you may have to skip it, supply a placeholder, and insert the data into the
table later. This, however, may involve you in threading issues that I don’t want
to get into here. I’ll give an example in Chapter 37.)

Be consistent
There are multiple data source methods, and you cannot know which one will be
called at a given moment. So you must make sure your responses are mutually
consistent at any moment. For example, a common beginner error is forgetting to
take into account, in your data source methods, the possibility that the data might
not be ready yet.

Figure 21-5. A table view cell instantiated from a storyboard

Table View Data | 611

This may sound daunting, but you’ll be fine as long as you maintain an unswerving
adherence to the principles of model–view–controller (Chapter 13). How and when
you accumulate the actual data, and how that data is structured, is a model concern.
Acting as a data source is a controller concern. So you can acquire and arrange your
data whenever and however you like, just so long as when the table view actually turns
to you and asks what to do, you can lay your hands on the relevant data rapidly and
consistently. You’ll want to design the model in such a way that the controller can
access any desired piece of data more or less instantly.

Another source of confusion for beginners is that methods are rather oddly distributed
between the data source and the delegate, an object pointed to by the table view’s
delegate property and adopting the UITableViewDelegate protocol; in some cases, one
may seem to be doing the job of the other. This is not usually a cause of any real
difficulty, because the object serving as data source will probably also be the object
serving as delegate. Nevertheless, it is rather inconvenient when you’re consulting the
documentation; you’ll probably want to keep the data source and delegate documen-
tation pages open simultaneously as you work.

In iOS 5, if a table view’s contents are known beforehand, you can design
the entire table, including the contents of individual cells, in a storyboard.
This could be a reason for using a storyboard, even if your app has no
main storyboard. I’ll give an example later in this chapter.

The Three Big Questions
Like Katherine Hepburn in Pat and Mike, the basis of your success as a data source is
your ability, at any time, to answer the Three Big Questions. The questions the table
view will ask you are a little different from the questions Mike asks Pat, but the principle
is the same: know the answers, and be able to recite them at any moment. Here they are:

How many sections does this table have?
The table will call numberOfSectionsInTableView:; respond with an integer. In
theory you can omit this method, as the default response is 1, which is often correct.
However, I never omit it; for one thing, returning 0 is a good way to say that the
table has no data, and will prevent the table view from asking any other questions.

How many rows does this section have?
The table will call tableView:numberOfRowsInSection:. The table supplies a section
number — the first section is numbered 0 — and you respond with an integer. In
a table with only one section, of course, there is probably no need to examine the
incoming section number.

What cell goes in this row of this section?
The table will call tableView:cellForRowAtIndexPath:. The index path is expressed
as an NSIndexPath; this is a sophisticated and powerful class, but you don’t ac-

612 | Chapter 21: Table Views

tually have to know anything about it, because UITableView provides a category
on it that adds two read-only properties — section and row. Using these, you ex-
tract the requested section number and row number, and return a UITableView-
Cell. The first row of a section is numbered 0.

The strategy for implementing tableView:cellForRowAtIndexPath: is a little compli-
cated, because you will probably want to keep memory usage at a minimum by reusing
cells. The idea, as I’ve already mentioned, is that once a cell is no longer visible on the
screen, it can be slotted into a row that is visible — with its portrayed data appropriately
modified, of course! — so that no more than the number of simultaneously visible cells
need to exist at any given moment. Luckily, a table view is ready to implement this
strategy for you, and the template shows you how to write tableView:cellForRowAt-
IndexPath: accordingly. Let’s examine the template code more closely (Example 21-2).

Example 21-2. The template code for the third big question

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];

 }

 return cell;
}

The table view is ready to maintain a cache of reusable cells. In fact, it can maintain
more than one such cache; this could be useful if your table view contains more than
one type of cell (where the meaning of the concept “type of cell” is pretty much up
to you). Therefore you must name each cache, by attaching a cell identifier string to
any cell that can be reused. In most cases, there will be just one cache and therefore
just one cell identifier string, and you will want every cell to be reusable, so you will
attach that identifier string to every cell. In the template code, this string is main-
tained as a static NSString literal, ensuring that the memory for it will be set aside
only once and maintained between calls to this method.

To generate the cell being requested by the method call, you start by sending the
table view dequeueReusableCellWithIdentifier:. This asks the table view to pull out
of the named cache a currently unused cell, if there is one. There are two possibilities:
either the table view will return a cell, in which case that’s the cell you’re going to
be returning (with its portrayed data appropriately modified, of course!), or the table
view will return nil (because there isn’t an unused cell already in the cache), in which
case a new cell will need to be instantiated.

Table View Data | 613

If dequeueReusableCellWithIdentifier: returned nil, one of several things must hap-
pen, as I explained in great detail in the preceding section of this chapter. I’ll sum-
marize again what they are:

• If you’re instantiating new cells in code, you’ll do so, initializing the cell with
initWithStyle:reuseIdentifier:. The style is one of the built-in styles; we have
already seen what this implies, and how you can configure a cell yourself re-
gardless of its style. The reuse identifier is the cell identifier that makes this cell
reusable. If you were to supply nil here, the cell would not be reusable.

• If you’re instantiating new cells by loading a nib file, you might now load the
nib file with yourself as owner, accessing the cell by means of an outlet.

• Alternatively, if you’ve previously called registerNib:forCellReuse-

Identifier:, or if this is a UITableViewController instantiated from a story-
board, the runtime will automatically load the nib or storyboard file, instantiate
the cell, and return the new instance as the result of dequeueReusableCellWith-
Identifier:. In that case, this part of the code won’t exist; dequeueReusableCell-
WithIdentifier will never return nil.

If dequeueReusableCellWithIdentifier: returned nil, you have just instantiated a
new cell; you may now want to perform any other tasks appropriate to the initial
configuration of a new cell. For example, earlier we saw that you can add subviews
to the cell’s content view; you would want to do this only when the cell is first created,
so this is the place for it. If you’re generating new cells by the third method I just
listed, this part of the code won’t exist; cell will never be nil. Instead, you’ll devise
some other condition to differentiate newly instantiated unconfigured cells from
reused cells that you’ve already configured.

You now have a cell (here, called cell), from whatever source derived. No matter
whether you just created it or you are reusing a previously used cell, you now con-
figure the cell appropriately to the section and row into which this cell is now to be
slotted. This is the thing we did not do in any of our earlier examples; we were
concentrating on cell configuration itself, so we configured the cell the same way
regardless of its row. But in real life, this is the most important step: this is the step
that differentiates one cell from another, reflecting the model data into the view.

You do not know or care, when configuring the cell at the final stage, whether the cell
is new or reused. Therefore, you should always configure everything about the cell that
might need configuring. If you fail to do this, and if the cell is reused, you might be
surprised when some aspect of the cell is left over from its previous use; on the other
hand, if you fail to do this, and if the cell is new, you might be surprised when some
aspect of the cell isn’t configured at all.

For example, in one of my apps that lists article titles in a table, there is a little loud-
speaker icon that should appear in the cell only if there is a recording associated with
this article. So I initially wrote this code:

614 | Chapter 21: Table Views

if (item.enclosures && [item.enclosures count])
 [cell viewWithTag: 5].hidden = NO;

This turned out to be a mistake, because when a cell was reused, it had a visible loud-
speaker icon if, in a previous incarnation, it had ever had a visible loudspeaker icon.
The solution was to rewrite the logic to express all possibilities, like this:

[cell viewWithTag: 5].hidden = !(item.enclosures && [item.enclosures count]);

To illustrate the efficiency of the cell-caching architecture, I’ll use the nib-instantiated
cell left over from our earlier examples (so that it will be possible to differentiate be-
tween cases when a cell is instantiated and cases when a cell is reused). Presume that
we have a table of one section and some large number of rows - let’s say there are 100
of them:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 [[NSBundle mainBundle] loadNibNamed:@"MyCell" owner:self options:nil];
 cell = self.tvc;
 NSLog(@"creating a new cell");
 }
 MyCell* theCell = (MyCell*)cell;
 UILabel* lab = theCell.theLabel;
 lab.text = [NSString stringWithFormat: @"This is row %i of section %i",
 indexPath.row, indexPath.section];
 return cell;
}

When we run this code and scroll through the table, every cell is numbered correctly,
so there appear to be 100 cells. But the log messages show us that only 11 cells are
actually created.

In real life, of course, you’d probably be setting lab.text by consulting a data store (the
model) for the value appropriate to this row (or, if there is more than one section, this
row of this section). A line from a typical real-life implementation of tableView:cell-
ForRowAtIndexPath: consults an array (titles):

cell.textLabel.text = [titles objectAtIndex: [indexPath row]];

It may surprise you that that’s all I have to say about how to get the data from your
model. But it is! The fact is that I can have no earthly idea what your app does, what
its data is about, or what your table is trying to portray. The important thing is to
remember that you’re going to be receiving an NSIndexPath specifying a section and a
row, and you need to be lay your hands on the data corresponding to that slot now and
configure the cell accordingly now. So construct your model, and your algorithm for
consulting it in this last part of the Third Big Question, accordingly.

You do get a sort of second bite of the cherry: there’s a delegate method, tableView:
willDisplayCell:forRowAtIndexPath:, that is called for every cell just before it appears

Table View Data | 615

in the table. This is absolutely the last minute to configure a cell. But don’t misuse this
method. You’re functioning as the delegate here, not the data source; you may set the
final details of the cell’s appearance — as I discussed earlier, this is a good place to set
a cell’s background color if you don’t want it to come from the table’s background
color — but you shouldn’t be consulting the data model at this point.

Table View Sections
Your table data can be expressed as divided into sections. You might clump your data
into sections for various reasons (and doubtless there are other reasons beyond these):

• You want to supply section headers (or footers, or both). This can clarify the pre-
sentation of your data by dividing the rows into groups. Also, a section header or
footer can be a custom UIView, so it’s a place where you might put additional
information or functional interface (such as a button the user can tap).

• You want to make navigation of the table easier by supplying an index down the
right side. You can’t have an index without sections.

• You want to facilitate programmatic rearrangement of the table. For example, it’s
very easy to hide or move an entire section at once, possibly with animation.

Don’t confuse the section headers and footers with the header and footer
of the table as a whole. The latter are view properties of the table view
itself and are set through its properties tableHeaderView and tableFooter-
View, discussed earlier in this chapter.

The number of sections is determined by your reply to numberOfSectionsInTable-
View:. For each section, the table view will consult your data source and delegate to
learn whether this section has a header or a footer, or both, or neither (the default).
You can supply headers and footers in two ways:

Header or footer string
You implement the data source method tableView:titleForHeaderInSection: or
tableView:titleForFooterInSection: (or both). Return nil to indicate that the
given section has no header (or footer). Return a string to use it as the section’s
header (or footer). You cannot change the style of the label or of the header or
footer as a whole.

Header or footer view
You implement the delegate method tableView:viewForHeaderInSection: or table-
View:viewForFooterInSection: (or both). The corresponding titleFor... data
source method, if implemented, is ignored. The view you supply is used as the
entire header or footer and is automatically resized to the table’s width and the
section header or footer height. If the view you supply has subviews, be sure to set

616 | Chapter 21: Table Views

proper autoresizing behavior so that they’ll be positioned and sized appropriately
when the view itself is resized.

Supplying a header or a footer as a string is simpler, but supplying it as a view is vastly
more powerful, because not only can you style a label, but you can also employ other
kinds of interface, possibly interactive (such as a button). Moreover, a view can be
customized in any of the ways that views can be customized: for example, you can set
the transparency of a header (so that rows are visible as they scroll behind it), or give
it a shadow (so that it casts its shadow on the row adjacent to it). Plus, you can keep a
reference to a header or footer view and change that view’s content later, dynamically,
in code, possibly with animation, in the course of the app’s lifetime — without reload-
ing the table’s data. In other words, once you’ve handed the table a section header or
footer view, the table leaves it alone; it knows all it needs to know, and the view is yours
to command.

What the table doesn’t know, and what you can’t change arbitrarily during the lifetime
of the app, is a header or footer view’s height; you can change the height, but you must
do it in a controlled manner that the table knows about. Obviously, the table needs to
know the height of every header or footer so that it can slot it in among the rows
correctly; if you want to change a header or footer’s height, you must ask the table to
reload its data (discussed in the next section) so that can lay out its content afresh.

No matter which way you supply the header or footer, its height is determined as
follows. The default height comes from the table itself, which has a sectionHeader-
Height property and a sectionFooterHeight property. But you can override this to sup-
ply header and footer heights on an individual basis by implementing the delegate
method tableView:heightForHeaderInSection: or tableView:heightForFooterIn-

Section:; if you implement one of these methods, it must always return an actual value,
even if the header or footer is a nil view (that requirement is new in iOS 5). As a con-
venience, if the header or footer is just a title (that is, you implemented titleFor...
and not viewFor...), you can have the table supply the height automatically, just as it
would if you hadn’t implemented the heightFor... method in the first place, by re-
turning UITableViewAutomaticDimension (new in iOS 5).

If the table view has the plain style, you can add an index down the right side of the
table, which the user can tap to jump to the start of a section. This is very helpful for
navigating long tables. To generate the index, implement the data source method
sectionIndexTitlesForTableView:, returning an NSArray of string titles to appear as
entries in the index. This works even if there are no section headers. The index will
appear only if the number of rows exceeds the table view’s sectionIndexMinimumDisplay-
RowCount property value; the default is 0 (not NSIntegerMax as claimed by the docu-
mentation), so the index is always displayed by default. You will want the index entries
to be short — preferably just one character — because they will be partially obscuring
the right edge of the table; plus, each cell’s content view will shrink to compensate, so
you’re sacrificing some cell real estate. Unfortunately, there is no official way to modify
the index’s appearance (such as the color of its entries).

Table View Data | 617

Normally, there will be a one-to-one correspondence between the index entries and the
sections; when the user taps an index entry, the table jumps to the start of the corre-
sponding section. However, under certain circumstances you may want to customize
this correspondence. For example, suppose there are 40 sections, but there isn’t room
to display 40 index entries comfortably on the iPhone. The index will automatically
curtail itself, omitting some index entries and inserting bullets to suggest this, but you
might prefer to take charge of the situation by supplying a shorter index. In such a case,
implement the data source method tableView:sectionForSectionIndexTitle:at-

Index:, returning the index of the section to jump to for this section index. Both the
section index title and its index are passed in, so you can use whichever is convenient.

Apple’s documentation elaborates heavily on the details of implementing the model
behind a table with an index and suggests that you rely on a class called UILocalized-
IndexedCollation. This class is effectively a way of generating an ordered list of letters
of the alphabet, with methods for helping to sort an array of strings and separate it into
sections. This might be useful if you need your app to be localized, because the notion
of the alphabet and its order changes automatically depending on the user’s preferred
language. But this notion is also fixed; you can’t readily use a UILocalizedIndex-
Collation to implement your own sort order. For example, UILocalizedIndexCollation
was of no use to me in writing my Greek and Latin vocabulary apps, in which the Greek
words must be sorted, sectioned, and indexed according to the Greek alphabet, and
the Latin words use a reduced version of the English alphabet (no initial J, K, or V
through Z).

I’ll demonstrate a technique for implementing a sectioned indexed table by describing
the approach I take in my Latin vocabulary app (this is the second app in Fig-
ure 21-1). Everything depends on preparing the data in advance, storing it in appro-
priate structures. The data, consisting of Latin words and their English definitions, start
out in an array (data) of Term objects; in particular, each Latin word is stored in its
Term under the latin property, which is key–value coding compliant (Chapter 12). So
we begin by sorting the array on that key’s value:

NSArray* terms =
 [data sortedArrayUsingDescriptors:
 [NSArray arrayWithObject:
 [NSSortDescriptor sortDescriptorWithKey:@"latin" ascending:YES]]];

We proceed now to make two arrays:

1. A list of section names (sectionNames), consisting of the unique capitalized first
letters of the Latin words. The trick here is the word “unique”; as we cycle through
the sorted Latin words, we add a letter to this list only if it isn’t the same as the last
letter we added.

2. An array of arrays (sectionData) of all words starting with each letter.

618 | Chapter 21: Table Views

self.sectionNames = [NSMutableArray array];
self.sectionData = [NSMutableArray array];
NSString* previousSection = @"";
for (Term* term in terms) {
 NSString* currentSection = [[term.latin substringToIndex:1] uppercaseString];
 if (![currentSection isEqualToString: previousSection]) {
 previousSection = currentSection;
 [sectionNames addObject: currentSection];
 [sectionData addObject: [NSMutableArray array]];
 }
 // in every case, add this term to the last section array
 [[sectionData lastObject] addObject: term];
}

Now that we have our two arrays, the business of actually describing the table view’s
structure based on them is trivial; the methods are all one-liners, demonstrating that
design and preparation of the data model is everything:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return [sectionNames count];
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [[sectionData objectAtIndex: section] count];
}

- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section {
 return [sectionNames objectAtIndex: section];
}

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView {
 return sectionNames;
}

The implementation of tableView:cellForRowAtIndexPath: requires consideration of
both the section and the row of the incoming indexPath, but here too we can lay our
hands on the correct Term for this table row instantly:

Term* term = [[sectionData objectAtIndex: [indexPath section]]
 objectAtIndex: [indexPath row]];

Refreshing Table View Data
The table view (view) has no direct connection to the underlying data (model). If you
want the table view display to change because the underlying data have changed, you
have to cause the table view to refresh itself; basically, you’re requesting that the Three
Big Questions be asked all over again (controller). At first blush, this seems inefficient
(“regenerate all the data??”); but it isn’t. Remember, in a table that caches reusable
cells, there are no cells of interest other than those actually showing in the table at this
moment. Thus, having worked out the layout of the table through the section header

Table View Data | 619

and footer heights and row heights, the table has to regenerate only those cells that are
actually visible.

You can cause the table data to be refreshed using any of several methods:

reloadData

The table view will ask the Three Big Questions all over again, including section
headers and footers, and index entries.

reloadRowsAtIndexPaths:withRowAnimation:

The table view will ask the Three Big Questions all over again, including section
headers and footers, but not index entries. The first parameter is an array of index
paths; to form an index path, use the NSIndexPath class method indexPathForRow:
inSection:.

reloadSections:withRowAnimation:

The table view will ask the Three Big Questions all over again, including section
headers and footers, but not index entries. The first parameter is an NSIndexSet
(see Chapter 10).

The second two methods can perform animations that cue the user as to what’s chang-
ing. The withRowAnimation: parameter is one of the following:

UITableViewRowAnimationFade

The old fades into the new.

UITableViewRowAnimationRight
UITableViewRowAnimationLeft
UITableViewRowAnimationTop
UITableViewRowAnimationBottom

The old slides out in the stated direction, and is replaced from the opposite direc-
tion.

UITableViewRowAnimationNone

No animation.

UITableViewRowAnimationMiddle

Hard to describe; it’s a sort of venetian blind effect on each cell individually.

UITableViewRowAnimationAutomatic

The table view just “does the right thing” (new in iOS 5). This is especially useful
for grouped style tables, because if you pick the wrong animation, the display can
look very funny as it proceeds.

If all you need to do is to refresh the index, call reloadSectionIndexTitles; this calls
the data source’s sectionIndexTitlesForTableView:. (This is new in iOS 5; the method
itself isn’t new, but prior to iOS 5, calling it had no effect.)

It is also possible to access and alter a table’s individual cells directly. This can be a far
more lightweight approach to refreshing the table, plus you can supply your own ani-

620 | Chapter 21: Table Views

mation within the cell as it alters its appearance. To do this, you need direct access to
the cell you want to change. You’ll probably want to make sure the cell is visible within
the table view’s bounds; if you’re taking proper advantage of the table’s reusable cell
caching mechanism, nonvisible cells don’t really exist (except as potential cells waiting
in the reuse cache), and there’s no point changing them, as they’ll be changed when
they are scrolled into view, through the usual call to tableView:cellForRowAtIndex-
Path:. Here are some UITableView methods that mediate between cells, rows, and
visibility:

visibleCells

An array of the cells actually showing within the table’s bounds.

indexPathsForVisibleRows

An array of the rows actually showing within the table’s bounds.

cellForRowAtIndexPath:

Returns a UITableViewCell if the table is maintaining a cell for the given row (typ-
ically because this is a visible row); otherwise, returns nil.

indexPathForCell:

Given a cell obtained from the table view, returns the row into which it is slotted.

It is important to bear in mind that the cells are not the data (view is not model). If you
change the content of a cell manually, make sure that you have also changed the model
corresponding to it, so that the row will appear correctly if its data is reloaded later.

Variable Row Heights
Most tables have rows that are all the same height, as set by the table view’s row-
Height. However, the delegate’s tableView:heightForRowAtIndexPath: can be used to
make different rows different heights. You can see this in the TidBITS News app; look
at Figure 19-1, where the first cell is shorter than the second cell (because the headline
is one line instead of two).

Here are some things to remember when implementing a table whose rows can have
different heights:

Avoid performance limits
Variable row heights work best if the table is short and simple (not too many rows).
The table view must effectively lay out the entire table in order to load the data and
in order at any moment to know the size and offset of the scrolling content. With
a table consisting of a large number of rows, this can become too much information
for the table to manipulate fast enough as the user scrolls, and the whole mecha-
nism will break down.

Lay out subviews correctly
As a cell is reused, its height may be changed, because the new row into which it
is to be slotted is a different height from the old row. Similarly, if the cell comes

Table View Data | 621

from a nib, its height in the table view may be changed from its height in the nib.
This will expose any weaknesses in your practice for laying out subviews. For ex-
ample, a mistake in the autoresizingMask value of subviews can result in display
errors that would not have been exposed if all the rows were the same height. You
may have to resort to manual layout (implementing layoutSubviews in a UITable-
ViewCell subclass).

Plan ahead
You (the delegate) are going to be asked for all the heights of all the rows well before
you (the data source) are called upon to provide the data for any individual rows.
You will want to provide this information quickly and accurately. So you will have
to plan how the data will appear in every row before actually causing the data to
appear in any row.

For example, here’s how I implement the variable-height rows in my Albumen app, in
a table where each cell displays a song’s title (in a label) and the song’s artist (in another
label). In order to determine the height of a cell, I need to know how much vertical
space each of its labels should occupy. So I supply a utility method, labelHeightsFor-
Row:, that calls NSString’s sizeWithFont:constrainedToSize:lineBreakMode: to calcu-
late the heights of both labels given their text and font. Note that this utility method
must be able to consult the data model in order to learn what the text will be for each
label:

- (NSArray*) labelHeightsForRow: (NSInteger) row {
 NSString* title = [self->titles objectAtIndex: row];
 NSString* artist = [self->artists objectAtIndex: row];
 // values used in next two lines have been precached as ivars at load time
 CGSize tsz =
 [title sizeWithFont:self->titleFont
 constrainedToSize:CGSizeMake(tw, 4000)];
 CGSize asz =
 [artist sizeWithFont:self->artistFont
 constrainedToSize:CGSizeMake(aw, 4000)];
 NSArray* result = [NSArray arrayWithObjects:
 [NSNumber numberWithFloat: tsz.height],
 [NSNumber numberWithFloat: asz.height],
 nil];
 return result;
}

My tableView:heightForRowAtIndexPath: implementation can then call labelHeights-
ForRow: and use those heights, along with some #defined spacer values, to work out
the total height of the cell, while restricting it to the maximum height I’m willing to
allow:

622 | Chapter 21: Table Views

- (CGFloat)tableView:(UITableView *)tableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath {
 NSArray* arr = [self labelHeightsForRow: indexPath.row];
 return ([[arr objectAtIndex:0] floatValue] +
 [[arr objectAtIndex:1] floatValue] +
 _topspace + _midspace + _thirdrow + _midspace + _bottomspace);
}

My tableView:willDisplayCell:forRowAtIndexPath: implementation calls label-

HeightsForRow: again, using that same information and the same #defined spacer values
again, this time laying out all the subviews of the content view:

- (void)tableView:(UITableView *)tableView willDisplayCell:(UITableViewCell *)cell
 forRowAtIndexPath:(NSIndexPath *)indexPath {
 CGRect f = cell.frame;
 f.size.height = [self tableView: tableView heightForRowAtIndexPath: indexPath];
 cell.frame = f;
 NSArray* arr = [self labelHeightsForRow: indexPath.row];

 CGRect f1 = [cell viewWithTag: 1].frame;
 f1.size.height = [[arr objectAtIndex: 0] floatValue];
 f1.origin.y = _topspace;
 [cell viewWithTag: 1].frame = f1;

 CGRect f2 = [cell viewWithTag: 2].frame;
 f2.size.height = [[arr objectAtIndex: 1] floatValue];
 f2.origin.y = f1.origin.y + f1.size.height + _midspace;
 [cell viewWithTag: 2].frame = f2;
 // ... and so on ...
}

Table View Selection
A table view cell has a normal (deselected) state and a selected state, according to its
selected property. It is possible to change a cell’s selected property directly (possibly
with animation, using setSelected:animated:), but you are more likely to manage se-
lection through the table view, letting the table view deal with the selected property
of its cells.

One of the chief purposes of your table view is likely to be to let the user select a cell.
This will be possible, provided you have not set the value of the table view’s allows-
Selection property to NO. The user taps a normal cell, and the cell switches to its
selected state. As we’ve already seen, this will usually mean that the cell is redrawn with
a blue (or gray) background view, but you can change this. If the user taps an already
selected cell, by default it stays selected.

Starting in iOS 5, table views can permit the user to select multiple cells simultaneously.
(This was possible previously by deliberately misusing some delegate methods, but the
multiple selection was effectively happening behind the table view’s back, which had
some unfortunate side effects.) Set the table view’s allowsMultipleSelection property
to YES. If the user taps an already selected cell, by default it is deselected.

Table View Selection | 623

Your code can also learn and manage the selection through these UITableView instance
methods:

indexPathForSelectedRow
indexPathsForSelectedRows

These methods report the currently selected row(s), or nil if there is no selection.
Don’t accidentally call the wrong one. For example, calling indexPathForSelected-
Row when the table view allows multiple selection gives a result that will have you
scratching your head in confusion. (As usual, I speak from experience.)

selectRowAtIndexPath:animated:scrollPosition:

The animation involves fading in the selection, but the user may not see this unless
the selected row is already visible. The last parameter dictates whether and how
the table view should scroll to reveal the newly selected row:

• UITableViewScrollPositionTop

• UITableViewScrollPositionMiddle

• UITableViewScrollPositionBottom

• UITableViewScrollPositionNone

For the first three options, the table view scrolls (with animation, if the second
parameter is YES) so that the selected row is at the specified position among the
visible cells. For UITableViewScrollPositionNone, the table view does not scroll; if
the selected row is not already visible, it does not become visible. You can make it
visible by calling scrollToRowAtIndexPath:atScrollPosition: (discussed later in
this chapter).

deselectRowAtIndexPath:animated:

Deselects the given row (if it is selected); the optional animation involves fading
out the selection. No automatic scrolling takes place. To deselect all currently se-
lected rows, call selectRowAtIndexPath:animated:scrollPosition: with a nil index
path.

When a table view changes a cell’s selected state, it also changes its highlighted state.
This causes the cell to propagate the highlighted state down through its subviews by
setting each subview’s highlighted property if it has one. That is why a UILabel’s
highlightedTextColor applies when the cell is selected. Similarly, a UIImageView (such
as the cell’s imageView) can have a highlightedImage that is shown when the cell is
selected, and a UIControl (such as a UIButton) takes on its highlighted state when the
cell is selected. You can set a cell’s highlighted state directly, with the highlighted
property or setHighlighted:animated:; but you are unlikely to do so, instead leaving
the table view to manage selection and highlighting together.

624 | Chapter 21: Table Views

If you set a cell’s selected or highlighted property directly, you are
effectively acting behind the table view’s back; it has no knowledge of
what you’re doing, so it won’t track selection properly. This is another
reason why it’s better to let the user tap to select, or call the table view
selection methods.

Response to user selection is through the table view’s delegate. Despite their names,
the “will” methods are actually “should” methods: return nil to prevent the selection
(or deselection) from taking place; return the index path handed in as argument to
permit the selection (or deselection), or a different index path to cause a different cell
to be selected (or deselected):

• tableView:willSelectRowAtIndexPath:

• tableView:didSelectRowAtIndexPath:

• tableView:willDeselectRowAtIndexPath:

• tableView:didDeselectRowAtIndexPath:

When tableView:willSelectRowAtIndexPath: is called because the user taps a cell, and
if this table view permits only single cell selection, tableView:willDeselectRowAtIndex-
Path: will be called subsequently for any previously selected cells.

Here’s an example of implementing tableView:willSelectRowAtIndexPath:. The de-
fault behavior for allowsSelection (not multiple selection) is that the user can select by
tapping; if the user taps a selected row, the selection does not change. We can alter this
so that tapping a selected row deselects it:

- (NSIndexPath*) tableView:(UITableView*)tv
 willSelectRowAtIndexPath:(NSIndexPath*)ip {
 if ([tv cellForRowAtIndexPath:ip].selected) {
 [tv deselectRowAtIndexPath:ip animated:NO];
 return nil;
 }
 return ip;
}

An extremely common response to user selection is navigation. A master–detail archi-
tecture is typical: the table view lists things the user can see in more detail, and a tap
replaces the table view with the detailed view of the selected thing. Very often the table
view will be in a navigation interface, and you will respond to user selection by creating
the detail view and pushing it onto the navigation controller’s stack. This interface is
so common that Xcode’s Master–Detail Application project template implements it for
you.

For example, here’s the code from my TidBITS News app that navigates from the list
of articles to the actual article on which the user has tapped:

Table View Selection | 625

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 id item = [self.parsedData.items objectAtIndex: [indexPath row]];
 UIViewController* svc = [[StoryViewController alloc] initWithItem: item];
 [self.navigationController pushViewController:svc animated:YES];
}

If you’re using a UITableViewController, then by default, whenever the table view
appears, the selection is cleared automatically in viewWillAppear: (unless you disable
this by setting the table view controller’s clearsSelectionOnViewWillAppear to NO),
and the scroll indicators are flashed in viewDidAppear:. I sometimes prefer to set clears-
SelectionOnViewWillAppear to NO and implement deselection in viewDidAppear:; the
effect is that when the user returns to the table, the row is still momentarily selected
before it deselects itself:

- (void) viewDidAppear:(BOOL)animated {
 // deselect selected row
 [tableView selectRowAtIndexPath:nil animated:NO
 scrollPosition:UITableViewScrollPositionNone];
 [super viewDidAppear:animated];
}

By convention, if selecting a table view cell causes navigation, the cell should be given
an accessoryType of UITableViewCellAccessoryDisclosureIndicator. This is a plain gray
right-pointing chevron at the right end of the cell. The chevron doesn’t of itself respond
to user interaction; it’s just a visual cue that we’ll “move to the right” if the user taps
the cell.

Recall from Chapter 19 that in a storyboard, if a segue emanates from
a UITableViewCell, the storyboard assumes that you want the segue to
be triggered when the user taps a cell.

An alternative accessoryType is UITableViewCellAccessoryDetailDisclosureButton. It
is a button and does respond to user interaction, through your implementation of the
table view delegate’s tableView:accessoryButtonTappedForRowWithIndexPath:. The
button has a right-pointing chevron, so once again you’d be likely to respond by nav-
igating; in this case, however, you would probably use the button instead of selection
as a way of letting the user navigate. A common convention is that selecting the cell as
a whole does one thing and tapping the disclosure button does something else (involv-
ing navigation to the right). For example, in Apple’s Phone app, tapping a contact’s
listing in the Recents table places a call to that contact, but tapping the disclosure button
switches to that contact’s detail view.

Another use of cell selection is to implement a choice among cells, where a section of
a table effectively functions as an iOS alternative to Mac OS X radio buttons. The table
view usually has the grouped format. An accessoryType of UITableViewCellAccessory-

626 | Chapter 21: Table Views

Checkmark is typically used to indicate the current choice. Implementing radio-button
behavior is up to you.

For example, here’s how Figure 21-2 is implemented. The table view is created in the
grouped style, in code, as part of the view controller’s loadView implementation:

UITableView* tv = [[UITableView alloc] initWithFrame:CGRectMake(0,0,320,310)
 style:UITableViewStyleGrouped];
[v addSubview:tv];
tv.dataSource = self;
tv.delegate = self;
tv.scrollEnabled = NO;
self.tableView = tv;

As data source, we supply the structure and content of the table. The user defaults are
storing the current choice in each of the two categories, so we use them to decide where
the checkmarks go:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 2;
}

- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section {
 if (section == 0)
 return @"Size";
 return @"Style";
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 if (section == 0)
 return 3;
 return 2;
}

- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tv dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];
 }
 NSUInteger section = [indexPath section];
 NSUInteger row = [indexPath row];
 NSUserDefaults* ud = [NSUserDefaults standardUserDefaults];
 if (section == 0) {
 if (row == 0) {
 cell.textLabel.text = @"Easy";
 } else if (row == 1) {
 cell.textLabel.text = @"Normal";
 } else if (row == 2) {
 cell.textLabel.text = @"Hard";

Table View Selection | 627

 }
 } else if (section == 1) {
 if (row == 0) {
 cell.textLabel.text = @"Animals";
 } else if (row == 1) {
 cell.textLabel.text = @"Snacks";
 }
 }
 cell.accessoryType = UITableViewCellAccessoryNone;
 if ([[ud valueForKey:@"Style"] isEqualToString:cell.textLabel.text] ||
 [[ud valueForKey:@"Size"] isEqualToString:cell.textLabel.text])
 cell.accessoryType = UITableViewCellAccessoryCheckmark;
 return cell;
}

As delegate, we are called when the user taps a cell. We store the user’s selection into
the user defaults; then we reload the table data, which deselects the current selection
and reassigns the checkmark:

- (void)tableView:(UITableView *)tv
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSUserDefaults* ud = [NSUserDefaults standardUserDefaults];
 NSString* setting = [tv cellForRowAtIndexPath:indexPath].textLabel.text;
 [ud setValue:setting forKey:
 [self tableView:tv titleForHeaderInSection:indexPath.section]];
 [self.tableView reloadData];
}

In iOS 5, I could rewrite that table view to be a static table. This is a new feature in iOS
5, and is available only through the storyboard editor, so I’d need a UITableView-
Controller subclass instantiated from a storyboard. In the storyboard editor, you select
the table and set its Content pop-up menu in the Attributes inspector to Static Cells.
Then you can design the entire table, including section header and footer text, and the
content of each cell (Figure 21-6).

In our code, we can then eliminate our implementations of numberOfSectionsInTable-
View:, tableView:titleForHeaderInSection:, and tableView:numberOfRowsInSection:;
all of that information comes from the table designed in the storyboard. We still need
to deal somehow with the display of the checkmarks. I can think of two possibilities
(and there may be others):

• We can still implement tableView:cellForRowAtIndexPath:. We start by calling
super to obtain the cell, completely configured according to the storyboard; we can
then add or remove the checkmark:

// we can still modify the cell as long as we fetch it from super
UITableViewCell* cell = [super tableView:tv cellForRowAtIndexPath:indexPath];
NSUserDefaults* ud = [NSUserDefaults standardUserDefaults];
cell.accessoryType = UITableViewCellAccessoryNone;
if ([[ud valueForKey:@"Style"] isEqualToString:cell.textLabel.text] ||
 [[ud valueForKey:@"Size"] isEqualToString:cell.textLabel.text])
 cell.accessoryType = UITableViewCellAccessoryCheckmark;
return cell;

628 | Chapter 21: Table Views

• We can omit tableView:cellForRowAtIndexPath: and implement tableView:will-
DisplayCell:forRowAtIndexPath: instead:

NSUserDefaults* ud = [NSUserDefaults standardUserDefaults];
cell.accessoryType = UITableViewCellAccessoryNone;
if ([[ud valueForKey:@"Style"] isEqualToString:cell.textLabel.text] ||
 [[ud valueForKey:@"Size"] isEqualToString:cell.textLabel.text])
 cell.accessoryType = UITableViewCellAccessoryCheckmark;

Table View Scrolling and Layout
A UITableView is a UIScrollView, so everything you already know about scroll views
is applicable (Chapter 20). In addition, a table view supplies two convenience scrolling
methods:

• scrollToRowAtIndexPath:atScrollPosition:animated:

• scrollToNearestSelectedRowAtScrollPosition:animated:

The scrollPosition parameter is as for selectRowAtIndexPath:..., discussed earlier in
this chapter.

The following UITableView methods mediate between the table’s bounds coordinates
on the one hand and table structure on the other:

• indexPathForRowAtPoint:

• indexPathsForRowsInRect:

• rectForSection:

• rectForRowAtIndexPath:

Figure 21-6. Designing a static table in the storyboard editor

Table View Scrolling and Layout | 629

• rectForFooterInSection:

• rectForHeaderInSection:

The table’s header and footer are views, so their coordinates are given by their frames.

Table View Searching
A table view is a common way to present the results of a search performed through a
search field (a UISearchBar; see Chapter 25). This is such a standard interface, in fact,
that a class is provided, UISearchDisplayController, to mediate between the search field
where the user enters a search term and the table view listing the results of the search.
The UISearchDisplayController needs the following things:

A search bar
A UISearchBar in the interface. This will be the UISearchDisplayController’s
searchBar.

A view controller
The view controller managing the view in the interface over which the search results
are to appear. This will be the UISearchDisplayController’s searchContents-
Controller.

A results table view
The table view in which the search results will be presented. This will be the
UISearchDisplayController’s searchResultsTableView. It can already exist, or the
UISearchDisplayController will create it.

A data source and delegate for the results table view
The UISearchDisplayController’s searchResultsDataSource and searchResults-
Delegate. They will control the data and structure of the search results table. They
are commonly the same object, as for any table view; moreover, they are commonly
the view controller.

A delegate
An optional object adopting the UISearchDisplayDelegate protocol. It will be no-
tified of events relating to the display of results. It, too, is commonly the view
controller.

Moreover, the UISearchBar itself can also have a delegate, and this, too, is commonly
the view controller.

A UISearchDisplayController’s searchContentsController needn’t be a UITableView-
Controller, and the data that the user is searching needn’t be the content of an existing
table view. But they frequently are! That’s because the mental connection between a
table and a search is a natural one; when the search results are presented as a table view,
the user feels that the search field is effectively filtering the contents of the original table
view. A single object may thus be playing all of the following roles:

630 | Chapter 21: Table Views

• The searchable table view’s view controller

• The searchable table view’s data source

• The searchable table view’s delegate

• The view controller for the view over which the search results will appear

• The search results table view’s data source

• The search results table view’s delegate

• The UISearchDisplayController’s delegate

• The UISearchBar’s delegate

To illustrate, we will implement a table view that is searchable through a UISearchBar
and that displays the results of that search in a second table view managed by a
UISearchDisplayController.

The first question is how to make the search field appear along with the table view.
Apple’s own apps, such as the Contacts app, have popularized an interface in which
the search field is the table view’s header view. Indeed, this is such a common arrange-
ment that the nib editor’s Object library contains an object called Search Bar and Search
Display Controller; if you drag this onto a UITableView in the nib editor, the search
field becomes the table’s header view and a UISearchDisplayController is created for
you automatically, with all properties hooked up appropriately through outlets, much
as I just described. In our example, however, we’ll create the UISearchDisplay-
Controller and the UISearchBar in code.

Another feature of Apple’s standard interface is that the search field isn’t initially
showing. To implement this, we’ll scroll to the first actual row of data when the table
view appears.

We’re going to start with a table managed by a UITableViewController. In this view
controller’s viewDidLoad, we create the search bar and slot it in as the table’s header
view; we then load the data and scroll the header view out of sight. We also create the
UISearchDisplayController and tie it to the search bar — and to ourselves (the UITable-
ViewController) as the UISearchDisplayController’s controller, delegate, search table
data source, and search table delegate, as well as making ourselves the UISearchBar
delegate. We also retain the UISearchDisplayController by assigning it to a property,
so that it doesn’t vanish in a puff of smoke before we can use it:

UISearchBar* b = [[UISearchBar alloc] init];
[b sizeToFit];
b.delegate = self;
[self.tableView setTableHeaderView:b];
[self.tableView reloadData];
[self.tableView
 scrollToRowAtIndexPath:[NSIndexPath indexPathForRow:0 inSection:0]
 atScrollPosition:UITableViewScrollPositionTop animated:NO];
UISearchDisplayController* c =
 [[UISearchDisplayController alloc] initWithSearchBar:b
 contentsController:self];

Table View Searching | 631

self.sbc = c; // retain the UISearchDisplayController
c.delegate = self;
c.searchResultsDataSource = self;
c.searchResultsDelegate = self;

When the user initially taps in the search field, the UISearchDisplayController auto-
matically constructs a new interface along with a nice animation. This indicates to the
user that the search field is ready to receive input; when the user proceeds to enter
characters into the search field, the UISearchDisplayController is ready to display its
own search results table view in this interface. The UISearchBar has a Cancel button
that the user can tap to dismiss the interface created by the UISearchDisplayController.

Populating the search results table in response to what the user does in the UISearchBar
is up to us. The UITableViewController is both data source and delegate for the original
table view, as well as data source and delegate for the search results table. This means
that our search is already almost working, because the search results table will auto-
matically have the same data and structure as the original table! Our only additional
task, beyond what our code already does, is to check whether the table view that’s
talking to us is the search results table view (this will be the UISearchDisplay-
Controller’s searchResultsTableView) and, if it is, to limit our returned data with respect
to the search bar’s text. The strategy for doing this should be fairly obvious if we are
maintaining our source data in a sensible model.

Let’s say, for the sake of simplicity, that our original table is displaying the names of
the 50 United States, which it is getting from an array of strings called states:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 NSArray* model = self.states;
 return [model count];
}

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];
 }
 NSArray* model = self.states;
 cell.textLabel.text = [model objectAtIndex: indexPath.row];
 return cell;
}

632 | Chapter 21: Table Views

To make this work with a UISearchDisplayController, the only needed change is this:
Each time we speak of the NSArray called model, we must decide whether it should be
self.states, as now, or whether it should be a different array that is filtered with respect
to the current search — let’s call it self.filteredStates. There are two occurrences of
this line:

NSArray* model = self.states;

They are now to be replaced by this:

NSArray* model =
 (tableView == sbc.searchResultsTableView) ? self.filteredStates : self.states;

The only remaining question is when and how this filteredStates array should be
calculated. One approach is to ignore the user typing into the search field and calculate
the filtered array only when the user taps the Search button in the keyboard. We are
the UISearchBar delegate, so we can hear about the user tapping the Search button by
implementing searchBarSearchButtonClicked:. We create the filtered array and reload
the UISearchDisplayController’s search results table view:

- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar {
 NSPredicate* p = [NSPredicate predicateWithBlock:
 ^BOOL(id obj, NSDictionary *d) {
 NSString* s = obj;
 return ([s rangeOfString:searchBar.text
 options:NSCaseInsensitiveSearch].location != NSNotFound);
 }];
 self.filteredStates = [states filteredArrayUsingPredicate:p];
 [self.sbc.searchResultsTableView reloadData];
}

This works fine. However, as soon as the user starts typing into the search field, the
results table becomes empty, and sits there empty as the user types. This is because the
results table reloads whenever the user changes the contents of the search field and is
finding that it has no data (because filteredStates is nil).

One solution is to set the filteredStates array to the states array before the search
begins. We can know when this will be through a UISearchDisplayController delegate
method:

- (void)searchDisplayControllerWillBeginSearch:(UISearchDisplayController *)c {
 self.filteredStates = self.states;
}

Alternatively, we can generate a new set of search results every time the user types in
the search field, effectively implementing a “live” search (Figure 21-7). This is perfectly
reasonable for our extremely small data set of 50 states, though of course it mightn’t
work well if the data set were very large, or if there were for some other reason a delay
in filtering it. To implement live search, we turn our implementation of searchBarSearch-
ButtonClicked: into an implementation of a different UISearchBar delegate method,
searchBar:textDidChange:. Everything else stays the same, except that now there is no

Table View Searching | 633

need to reload the search results table’s data, as by default the UISearchDisplay-
Controller will do that automatically:

- (void)searchBar:(UISearchBar *)searchBar textDidChange:(NSString *)searchText {
 NSPredicate* p = [NSPredicate predicateWithBlock:
 ^BOOL(id obj, NSDictionary *d) {
 NSString* s = obj;
 return ([s rangeOfString:searchText
 options:NSCaseInsensitiveSearch].location != NSNotFound);
 }];
 self.filteredStates = [states filteredArrayUsingPredicate:p];
}

A UISearchBar can also display scope buttons, letting the user alter the meaning of the
search. If you add these, then of course you must take them into account when filtering
the model data. For example, let’s have two scope buttons, “Starts With” and “Con-
tains”:

UISearchBar* b = [[UISearchBar alloc] init];
[b sizeToFit];
b.scopeButtonTitles = [NSArray arrayWithObjects: @"Starts With", @"Contains", nil];
// ...

Our filtering routine must now take the state of the scope buttons into account. More-
over, the search results table view will reload when the user changes the scope (which
we can detect in another UISearchBar delegate method, searchBar:selectedScope-
ButtonIndexDidChange:), so if we’re doing a live search, we must respond by filtering
the data then as well. To prevent repetition, we’ll abstract the filtering routine into a
method of its own:

- (void) filterData {
 NSPredicate* p = [NSPredicate predicateWithBlock:
 ^BOOL(id obj, NSDictionary *d) {
 NSString* s = obj;
 NSStringCompareOptions options = NSCaseInsensitiveSearch;
 if (sbc.searchBar.selectedScopeButtonIndex == 0)
 options |= NSAnchoredSearch;
 return ([s rangeOfString:sbc.searchBar.text

Figure 21-7. Filtering a table with a search bar

634 | Chapter 21: Table Views

 options:options].location != NSNotFound);
 }];
 self.filteredStates = [states filteredArrayUsingPredicate:p];
}

- (void)searchBar:(UISearchBar *)searchBar textDidChange:(NSString *)searchText {
 [self filterData];
}

- (void)searchBar:(UISearchBar *)searchBar
 selectedScopeButtonIndexDidChange:(NSInteger)selectedScope {
 [self filterData];
}

In an indexed list — one with sections and an index running down the right side — a
“magnifying glass” search symbol can be made to appear in the index by including
UITableViewIndexSearch (usually as the first item) in the string array returned from
sectionIndexTitlesForTableView:. For example, suppose that as in our earlier example,
the section names are to be used as index entries and are in an array called sectionNames:

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView {
 return [[NSArray arrayWithObject: UITableViewIndexSearch]
 arrayByAddingObjectsFromArray:sectionNames];
}

You’ll also need to implement tableView:sectionForSectionIndexTitle:atIndex:, be-
cause now the correspondence between index entries and sections is off by one. If the
user taps the magnifying glass in the index, you scroll to reveal the search field (and
you’ll also have to return a bogus section number, but there is no penalty for that):

- (NSInteger)tableView:(UITableView *)tableView
 sectionForSectionIndexTitle:(NSString *)title
 atIndex:(NSInteger)index {
 if (index == 0)
 [tableView scrollRectToVisible:tableView.tableHeaderView.frame
 animated:NO];
 return index-1;
}

Whenever the search results table becomes empty (because the search bar is nonempty
and filteredStates is nil), the words “No Results” appear superimposed on it. I find
this incredibly obnoxious, and I can’t believe that after all these years Apple still hasn’t
granted programmers an official way to remove or customize it. Here’s an unofficial
way:

-(BOOL)searchDisplayController:(UISearchDisplayController *)controller
 shouldReloadTableForSearchString:(NSString *)searchString {
 dispatch_time_t popTime = dispatch_time(DISPATCH_TIME_NOW, 1);
 dispatch_after(popTime, dispatch_get_main_queue(), ^(void){
 for (UIView* v in self.sbc.searchResultsTableView.subviews) {
 if ([v isKindOfClass: [UILabel class]] &&
 [[(UILabel*)v text] isEqualToString:@"No Results"]) {
 [(UILabel*)v setText: @""];
 break;

Table View Searching | 635

 }
 }
 });
 return YES;
}

A UISearchBar has many properties through which its appearance can
be configured; I’ll discuss them in Chapter 25. Both the UISearchBar
and UISearchDisplayController send their delegate numerous messages
that you can take advantage of to customize behavior; consult the doc-
umentation. A UISearchBar in a UIToolbar on the iPad can display its
results in a popover; I’ll talk about that in Chapter 22.

Table View Editing
A table view cell has a normal state and an editing state, according to its editing prop-
erty. The editing state is typically indicated visually by one or more of the following:

Editing controls
At least one editing control will usually appear, such as a minus button (for dele-
tion) at the left side.

Shrinkage
The content of the cell will usually shrink to allow room for an editing control. You
can prevent a cell in a grouped-style table from shifting its left end rightward in
editing mode by setting its shouldIndentWhileEditing to NO, or with the table
delegate’s tableView:shouldIndentWhileEditingRowAtIndexPath:.

Changing accessory view
The cell’s accessory view will change automatically in accordance with its editing-
AccessoryType or editingAccessoryView. If you assign neither, so that they are nil,
the cell’s accessory view will vanish when in editing mode.

As with selection, you can set a cell’s editing property directly (or use setEditing:
animated: to get animation), but you are more likely to let the table view manage ed-
itability. Table view editability is controlled through the table view’s editing property,
usually by sending the table the setEditing:animated: message. The table is then re-
sponsible for putting its cells into edit mode.

A cell in edit mode can also be selected by the user if the table view’s
allowsSelectionDuringEditing (or, in iOS 5, allowsMultipleSelection-
DuringEditing is YES). But this would be unusual.

636 | Chapter 21: Table Views

Putting the table into edit mode is usually left up to the user. A typical interface would
be an Edit button that the user can tap. In a navigation interface, we might have our
view controller supply the button as the navigation item’s right button:

UIBarButtonItem* bbi =
 [[UIBarButtonItem alloc] initWithBarButtonSystemItem:UIBarButtonSystemItemEdit
 target:self action:@selector(doEdit:)];
self.navigationItem.rightBarButtonItem = bbi;

Our action handler will be responsible for putting the table into edit mode, so in its
simplest form it might look like this:

- (void) doEdit: (id) sender {
 [self.tableView setEditing:YES animated:YES];
}

But that does not solve the problem of getting out of editing mode. The standard sol-
ution is to have the Edit button replace itself by a Done button:

- (void) doEdit: (id) sender {
 int which;
 if (![self.tableView isEditing]) {
 [self.tableView setEditing:YES animated:YES];
 which = UIBarButtonSystemItemDone;
 } else {
 [self.tableView setEditing:NO animated:YES];
 which = UIBarButtonSystemItemEdit;
 }
 UIBarButtonItem* bbi = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:which target:self action:@selector(doEdit:)];
 self.navigationItem.rightBarButtonItem = bbi;
}

However, it turns out that all of this is completely unnecessary if we want standard
behavior, as it is already implemented for us! A UIViewController supplies an edit-
ButtonItem that calls the UIViewController’s setEditing:animated: when tapped,
tracks whether we’re in edit mode with the UIViewController’s editing property, and
changes its own title accordingly. Moreover, a UITableViewController’s implementa-
tion of setEditing:animated: is to call setEditing:animated: on its table view. Thus, if
we’re using a UITableViewController, we get all of that behavior for free just by in-
serting the editButtonItem into our interface:

self.navigationItem.rightBarButtonItem = self.editButtonItem;

When the table view enters edit mode, it consults its data source and delegate about
the editability of individual rows:

tableView:canEditRowAtIndexPath: to the data source
The default is YES. The data source can return NO to prevent the given row from
entering edit mode.

Table View Editing | 637

tableView:editingStyleForRowAtIndexPath: to the delegate
Each standard editing style corresponds to a control that will appear in the cell.
The choices are:

UITableViewCellEditingStyleDelete

The cell shows a minus button at its left end. The user can tap this to summon
a Delete button, which the user can then tap to confirm the deletion. This is
the default.

UITableViewCellEditingStyleInsert

The cell shows a plus button at its left end; this is usually taken to be an insert
button.

UITableViewCellEditingStyleNone

No editing control appears.

If the user taps an insert button (the plus button) or a delete button (the Delete button
that appears after the user taps the minus button), the data source is sent the table-
View:commitEditingStyle:forRowAtIndexPath: message and is responsible for obeying
it. In your response, you will probably want to alter the structure of the table, and
UITableView methods for doing this are provided:

• insertRowsAtIndexPaths:withRowAnimation:

• deleteRowsAtIndexPaths:withRowAnimation:

• insertSections:withRowAnimation:

• deleteSections:withRowAnimation:

The row animations here are effectively the same ones discussed earlier in connection
with refreshing table data; “left” for an insertion means to slide in from the left, and
for a deletion it means to slide out to the left, and so on.

New in iOS 5 are two more methods for rearranging the structure of the table; there is
animation, but there’s no provision for customizing it:

• moveSection:toSection:

• moveRowAtIndexPath:toIndexPath:

If you’re issuing more than one of these commands, you can combine them by sur-
rounding them with beginUpdates and endUpdates, forming an updates block. An up-
dates block combines not just the animations but the requested changes themselves.
This relieves you from having to worry about how a command is affected by earlier
commands in the same updates block; indeed, order of commands within an updates
block doesn’t really matter.

For example, if you delete row 1 of a certain section and then (in a separate command)
delete row 2 of the same section, you delete two successive rows, just as you would
expect; the notion “2” does not change its meaning because you deleted an earlier row
first, because you didn’t delete an earlier row first — the updates block combines the

638 | Chapter 21: Table Views

commands for you, interpreting both index paths with respect to the state of the table
before any changes are made. If you perform insertions and deletions together in one
animation, the deletions are performed first, regardless of the order of your commands,
and the insertion row and section numbers refer to the state of the table after the de-
letions.

An updates block can also include reloadRows... and reloadSections... commands
(but not reloadData).

I need hardly emphasize once again (but I will anyway) that view is not model. It is one
thing to rearrange the appearance of the table, another to alter the underlying data. It
is up to you to make certain you do both together. Do not, even for a moment, permit
the data and the view to get out of synch with each other. If you delete a row, remove
from the model the datum that it represents. The runtime will try to help you with error
messages if you forget to do this, but in the end the responsibility is yours. I’ll give
examples as we proceed.

Here’s an interesting trick: an empty updates block lays out the table
view, fetching the section header and footer titles or views, their heights,
and the row heights, without reloading any cells. Apple takes advantage
of this in the Table View Animations and Gestures example, in which a
pinch gesture is used to change a table’s row height in real time.

Deleting Table Items
Deletion of table items is the default, so there’s not much for us to do in order to
implement it. If our view controller is a UITableViewController and we’ve displayed
the Edit button as its navigation item’s right button, everything happens automatically:
the user taps the Edit button, the view controller’s setEditing:animated: is called, the
table view’s setEditing:animated: is called, and the cells all show the minus button at
the left end. The user can then tap a minus button; a Delete button appears at the cell’s
right end. You can customize the Delete button’s title with the table delegate method
tableView:titleForDeleteConfirmationButtonForRowAtIndexPath:.

What is not automatic is the actual response to the Delete button. For that, we need to
implement tableView:commitEditingStyle:forRowAtIndexPath:. Typically, you’ll re-
move the corresponding entry from the underlying model data, and you’ll call delete-
RowsAtIndexPaths:withRowAnimation: or deleteSections:withRowAnimation: to update
the appearance of the table. As I said a moment ago, you must delete the row or section
in such a way as to keep the table display coordinated with the model’s structure.
Otherwise, the app may crash (but with an extremely helpful error message).

To illustrate, let’s suppose that the underlying model is an array of arrays, maintained
as sectionNames and sectionData, as in our earlier example. These arrays must now be
mutable. Our approach will be in two stages:

Table View Editing | 639

1. Deal with the model data. We’ll delete the requested row; if this empties the section
array, we’ll also delete that section array and the corresponding section name.

2. Deal with the table’s appearance. If we deleted the section array, we’ll call delete-
Sections:withRowAnimation:; otherwise, we’ll call deleteRowsAtIndexPaths:with-
RowAnimation:. In the former case, if a section index appears in the table, we will
also reload the section index:

- (void)tableView:(UITableView *)tableView
 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
 forRowAtIndexPath:(NSIndexPath *)indexPath {
 [[self.sectionData objectAtIndex: indexPath.section]
 removeObjectAtIndex:indexPath.row];
 if ([[self.sectionData objectAtIndex: indexPath.section] count] == 0) {
 [self.sectionData removeObjectAtIndex: indexPath.section];
 [self.sectionNames removeObjectAtIndex: indexPath.section];
 [tableView deleteSections:[NSIndexSet indexSetWithIndex: indexPath.section]
 withRowAnimation:UITableViewRowAnimationLeft];
 [tableView reloadSectionIndexTitles];
 } else {
 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationLeft];
 }
}

The user can also delete a row by swiping it to summon its Delete button without having
explicitly entered edit mode; no other row is editable, and no other editing controls are
shown. This feature is implemented “for free” by virtue of our having supplied an
implementation of tableView:commitEditingStyle:forRowAtIndexPath:. If you’re like
me, your first response will be: “Thanks for the free functionality, Apple, and now how
do I turn this off?” Because the Edit button is already using the UIViewController’s
editing property to track edit mode, we can take advantage of this and refuse to let any
cells be edited unless the view controller is in edit mode:

- (UITableViewCellEditingStyle)tableView:(UITableView *)aTableView
 editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath {
 return self.editing ?
 UITableViewCellEditingStyleDelete : UITableViewCellEditingStyleNone;
}

Editable Content in Table Items
A table item might have content that the user can edit directly, such as a UITextField
(Chapter 23). Because the user is working in the view, you need a way to reflect the
user’s changes into the model. This will probably involve putting yourself in contact
with the interface objects where the user does the editing.

To illustrate, I’ll implement a table view cell with a text field that is editable when the
cell is in editing mode. Imagine an app that maintains a list of names and phone num-
bers. A name and phone number are displayed as a grouped-style table, and they be-
come editable when the user taps the Edit button (Figure 21-8).

640 | Chapter 21: Table Views

A UITextField is editable if its enabled is YES. To tie this to the cell’s editing state, it
is probably simplest to implement a custom UITableViewCell class. I’ll call it MyCell,
and I’ll design it in the nib, giving it a single UITextField that’s pointed to through a
property called textField. In the code for MyCell, we override didTransitionTo-
State:, as follows:

- (void) didTransitionToState:(UITableViewCellStateMask)state {
 [super didTransitionToState:state];
 if (state == UITableViewCellStateEditingMask) {
 self.textField.enabled = YES;
 }
 if (state == UITableViewCellStateDefaultMask) {
 self.textField.enabled = NO;
 }
}

In the table’s data source, we make ourselves the text field’s delegate when we create
and configure the cell (the nib is previously registered with registerNib:forCellReuse-
Identifier:, and CellIdentifier is an external global, as I suggested earlier):

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 MyCell* cell =
 (MyCell*)[tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (indexPath.section == 0)
 cell.textField.text = self.name;
 if (indexPath.section == 1) {
 cell.textField.text = [self.numbers objectAtIndex: indexPath.row];
 cell.textField.keyboardType = UIKeyboardTypeNumbersAndPunctuation;
 }
 cell.textField.delegate = self;
 return cell;
}

Figure 21-8. A simple phone directory app

Table View Editing | 641

We are the UITextField’s delegate, so we are responsible for implementing the Return
button in the keyboard to dismiss the keyboard:

- (BOOL)textFieldShouldReturn:(UITextField *)tf {
 [tf endEditing:YES];
 return NO;
}

Now comes the interesting part. When a text field stops editing, we are its delegate, so
we can hear about it in textFieldDidEndEditing:. We work out which cell it belongs
to, and update the model accordingly:

- (void)textFieldDidEndEditing:(UITextField *)tf {
 // some cell's text field has finished editing; which cell?
 UIView* v = tf;
 do {
 v = v.superview;
 } while (![v isKindOfClass: [UITableViewCell class]]);
 MyCell* cell = (MyCell*)v;
 // update data model to match
 NSIndexPath* ip = [self.tableView indexPathForCell:cell];
 if (ip.section == 1)
 [self.numbers replaceObjectAtIndex:ip.row withObject:cell.textField.text];
 else if (ip.section == 0)
 self.name = cell.textField.text;
}

Inserting Table Items
You are unlikely to attach a plus (insert) button to every row. A more likely interface
is that when a table is edited, every row has a minus button except the last row, which
has a plus button; this shows the user that a new row can be inserted at the end of the
table.

Let’s implement this for phone numbers in our name-and-phone-number app, allowing
the user to give a person any quantity of phone numbers (Figure 21-9):

- (UITableViewCellEditingStyle)tableView:(UITableView *)tableView
 editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath {
 if (indexPath.section == 1) {
 NSInteger ct =
 [self tableView:tableView numberOfRowsInSection:indexPath.section];
 if (ct-1 == indexPath.row)
 return UITableViewCellEditingStyleInsert;
 return UITableViewCellEditingStyleDelete;
 }
 return UITableViewCellEditingStyleNone;
}

The person’s name has no editing control (a person must have exactly one name), so
we prevent it from indenting in edit mode:

642 | Chapter 21: Table Views

- (BOOL)tableView:(UITableView *)tableView
 shouldIndentWhileEditingRowAtIndexPath:(NSIndexPath *)indexPath {
 if (indexPath.section == 1)
 return YES;
 return NO;
}

When the user taps an editing control, we must respond. We immediately force our
text fields to cease editing: the user have may tapped the editing control while editing,
and we want our model to contain the very latest changes, so this is effectively a way
of causing our textFieldDidEndEditing: to be called. The model for our phone numbers
is a mutable array of strings, numbers. We already know what to do when the tapped
control is a delete button; things are similar when it’s an insert button, but we’ve a little
more work to do. The new row will be empty, and it will be at the end of the table; so
we append an empty string to the numbers model array, and then we insert a corre-
sponding row at the end of the view. But now two successive rows have a plus button;
the way to fix that is to reload the first of those rows. Finally, we also show the keyboard
for the new, empty phone number, so that the user can start editing it immediately; we
do that outside the update block:

- (void) tableView:(UITableView *)tableView
commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
 forRowAtIndexPath:(NSIndexPath *)indexPath {
 [tableView endEditing:YES];
 if (editingStyle == UITableViewCellEditingStyleInsert) {
 [self.numbers addObject: @""];

Figure 21-9. Phone directory app in editing mode

Table View Editing | 643

 NSInteger ct = [self.numbers count];
 [tableView beginUpdates];
 [tableView insertRowsAtIndexPaths:
 [NSArray arrayWithObject: [NSIndexPath indexPathForRow: ct-1 inSection:1]]
 withRowAnimation:UITableViewRowAnimationAutomatic];
 [self.tableView reloadRowsAtIndexPaths:
 [NSArray arrayWithObject:[NSIndexPath indexPathForRow:ct-2 inSection:1]]
 withRowAnimation:UITableViewRowAnimationAutomatic];
 [tableView endUpdates];
 // crucial that this next bit be *outside* the update block
 UITableViewCell* cell = [self.tableView cellForRowAtIndexPath:
 [NSIndexPath indexPathForRow:ct-1 inSection:1]];
 [((MyCell*)cell).textField becomeFirstResponder];
 }
 if (editingStyle == UITableViewCellEditingStyleDelete) {
 [self.numbers removeObjectAtIndex:indexPath.row];
 [tableView beginUpdates];
 // update block makes animations work together
 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject: indexPath]
 withRowAnimation:UITableViewRowAnimationAutomatic];
 [tableView reloadSections:[NSIndexSet indexSetWithIndex:1]
 withRowAnimation:UITableViewRowAnimationAutomatic];
 [tableView endUpdates];
 }
}

Rearranging Table Items
If the data source implements tableView:moveRowAtIndexPath:toIndexPath:, the table
displays a reordering control at the right end of each row in editing mode, and the user
can drag it to rearrange table items. The reordering control can be prevented for indi-
vidual table items by implementing tableView:canMoveRowAtIndexPath:. The user is free
to move rows that display a reordering control, but the delegate can limit where a row
can be moved to by implementing tableView:targetIndexPathForMoveFromRowAtIndex-
Path:toProposedIndexPath:.

To illustrate, we’ll add to our name-and-phone-number app the ability to rearrange
phone numbers. There must be multiple phone numbers to rearrange:

- (BOOL)tableView:(UITableView *)tableView
 canMoveRowAtIndexPath:(NSIndexPath *)indexPath {
 if (indexPath.section == 1 && [self.numbers count] > 1)
 return YES;
 return NO;
}

In our example, a phone number must not be moved out of its section, so we implement
the delegate method to prevent this. We also take this opportunity to dismiss the key-
board if it is showing.

644 | Chapter 21: Table Views

- (NSIndexPath *)tableView:(UITableView *)tableView
 targetIndexPathForMoveFromRowAtIndexPath:(NSIndexPath *)sourceIndexPath
 toProposedIndexPath:(NSIndexPath *)proposedDestinationIndexPath {
 [tableView endEditing:YES];
 if (proposedDestinationIndexPath.section == 0)
 return [NSIndexPath indexPathForRow:0 inSection:1];
 return proposedDestinationIndexPath;
}

After the user moves an item, tableView:moveRowAtIndexPath:toIndexPath: is called,
and we trivially update the model to match. We also reload the table, to fix the editing
controls:

- (void)tableView:(UITableView *)tableView
 moveRowAtIndexPath:(NSIndexPath *)fromIndexPath
 toIndexPath:(NSIndexPath *)toIndexPath {
 NSString* s = [self.numbers objectAtIndex: fromIndexPath.row];
 [self.numbers removeObjectAtIndex: fromIndexPath.row];
 [self.numbers insertObject:s atIndex: toIndexPath.row];
 [tableView reloadData];
}

Dynamic Table Content
We can rearrange a table not just in response to the user working in edit mode, but for
some other reason entirely. In this way, many interesting and original interfaces are
possible. In this example (the idea for which is shamelessly stolen from a WWDC 2010
video), we permit the user to double-tap on a section header as a way of collapsing or
expanding the section — that is, we’ll suppress or permit the display of the rows of the
section, with a nice animation as the change takes place.

Presume that our data model once again consists of the two arrays, sectionNames and
sectionData. I’ve also got an NSMutableSet, hiddenSections, in which I’ll list the sec-
tions that aren’t showing their rows. That list is all I’ll need, since either a section is
showing all its rows or it’s showing none of them:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 if ([self.hiddenSections containsObject:
 [NSNumber numberWithUnsignedInteger:section]])
 return 0;
 return [[sectionData objectAtIndex: section] count];
}

The section headers are a custom UILabel to which a UITapGestureRecognizer is at-
tached, so we can detect a double-tap. Here’s how we respond to a double-tap. We
examine the tapped label to learn what section this is, and find out how many rows it
has, as we’ll need to know that later whether we’re about to show or hide rows. Then
we look for the section number in our hiddenSections set. If it’s there, we’re about to
display the rows, so we remove that number from hiddenSections; now we work out
the index paths of the rows we’re about to insert, and we insert them. If it’s not there,

Table View Editing | 645

we’re about to hide the rows, so we insert that number into hiddenSections; again, we
work out the index paths of the rows we’re about to delete, and we delete them:

- (void) tap: (UIGestureRecognizer*) g {
 UILabel* lab = (UILabel*)g.view;
 NSString* s = lab.text;
 NSUInteger sec = [self.sectionNames indexOfObject:s];
 NSUInteger ct = [(NSArray*)[self.sectionData objectAtIndex:sec] count];
 NSNumber* secnum = [NSNumber numberWithUnsignedInteger:sec];

 if ([self.hiddenSections containsObject:secnum]) {
 [self.hiddenSections removeObject:secnum];
 [self.tableView beginUpdates];
 NSMutableArray* arr = [NSMutableArray array];
 for (int ix = 0; ix < ct; ix ++) {
 NSIndexPath* ip = [NSIndexPath indexPathForRow:ix inSection:sec];
 [arr addObject: ip];
 }
 [self.tableView insertRowsAtIndexPaths:arr
 withRowAnimation:UITableViewRowAnimationAutomatic];
 [self.tableView endUpdates];
 // if necessary, scroll to make insertion visible
 [self.tableView scrollToRowAtIndexPath:[arr lastObject]
 atScrollPosition:UITableViewScrollPositionNone animated:YES];
 } else {
 [self.hiddenSections addObject:secnum];
 [self.tableView beginUpdates];
 NSMutableArray* arr = [NSMutableArray array];
 for (int ix = 0; ix < ct; ix ++) {
 NSIndexPath* ip = [NSIndexPath indexPathForRow:ix inSection:sec];
 [arr addObject: ip];
 }
 [self.tableView deleteRowsAtIndexPaths:arr
 withRowAnimation:UITableViewRowAnimationAutomatic];
 [self.tableView endUpdates];
 }
}

Table View Menus
Starting in iOS 5, it is possible to display a menu from a table view cell by performing
a long press on the cell. A menu, in iOS, is a sort of balloon containing tappable words
such as Copy, Cut, and Paste. And as far as I can tell, those are the only words you’ll
be including in a table view cell’s menu; I tried to customize the menu to include other
terms, but I failed.

To allow the user to display a menu from a table view’s cells, you implement three
delegate methods:

tableView:shouldShowMenuForRowAtIndexPath:

Return YES if the user is to be permitted to summon a menu by performing a long
press on this cell.

646 | Chapter 21: Table Views

tableView:canPerformAction:forRowAtIndexPath:withSender:

You’ll be called repeatedly with a bunch of selectors for various actions that the
system knows about, but as far as I can tell, the only ones worth responding YES
to are cut:, copy:, and paste:. Whichever ones you respond YES to will appear in
the menu; returning YES, regardless, causes all three menu items to appear in the
menu. The menu will now appear unless you return NO to all three actions. The
sender is the shared UIMenuController, which I’ll discuss more in Chapter 23 and
Chapter 39.

tableView:performAction:forRowAtIndexPath:withSender:

The user has tapped one of the menu items; your job is to respond to it somehow.

Here’s an example where the user can summon a Copy menu from any cell (Fig-
ure 21-10):

- (BOOL)tableView:(UITableView *)tableView
 shouldShowMenuForRowAtIndexPath:(NSIndexPath *)indexPath {
 return YES;
}

- (BOOL)tableView:(UITableView *)tableView canPerformAction:(SEL)action
 forRowAtIndexPath:(NSIndexPath *)indexPath withSender:(id)sender {
 return (action == @selector(copy:));
}

- (void)tableView:(UITableView *)tableView performAction:(SEL)action
 forRowAtIndexPath:(NSIndexPath *)indexPath withSender:(id)sender {
 NSString* s = [[self.sectionData objectAtIndex: indexPath.section]
 objectAtIndex: indexPath.row];
 if (action == @selector(copy:)) {
 // ... do whatever copying consists of ...
 }
}

As Figure 21-10 shows, the long press gesture used to summon a menu also causes the
pressed cell to assume its selected state — and hence its selected appearance. Moreover,
tapping a menu item to choose it deselects the cell, even if it was previously selected;

Figure 21-10. A table view cell with a menu

Table View Menus | 647

and tapping elsewhere, to dismiss the menu without choosing any menu item, may
then select the cell under that tap.

This interweaving of the ability to summon a menu with the cell selection mechanism
is most unfortunate, especially since Apple has not also provided new properties for
detecting that menu display is occurring or for customizing what happens when it is.
You cannot prevent the long-pressed cell from being selected by any of the normal
means — for example, by returning nil from tableView:willSelectRowAtIndexPath: or
by setting the table view’s allowsSelection to NO.

If cell selection is not permitted in general, and if you want to prevent the cell that is
showing a menu to appear selected, you can use properties like a label’s highlighted-
TextColor and a cell’s selectedBackgroundView (or an implementation of setSelected:
animated: in a custom UITableViewCell subclass) to suppress the selected appearance.
But if cell selection is permitted in general, making a cell that’s displaying a menu look
different from a normally selected cell, or preventing the cell’s deselection after menu
display if the cell was previously selected, is extremely difficult, because your code can’t
readily obtain enough state information to interpret what’s happening. I have experi-
mented with workarounds, but the results are not sufficiently convincing to be worth
printing here. Until there’s an iOS update that attends to these issues, your use of table
cell menu display will probably be fairly limited.

648 | Chapter 21: Table Views

CHAPTER 22

Popovers and Split Views

Popovers and split views are forms of interface that exist only on the iPad.

A popover (managed by a UIPopoverController) is a sort of secondary window or dialog:
it displays a view layered on top of the main interface. It is associated, through a sort
of arrow, with a view in the main interface, such as the button the user tapped to
summon the popover. It does not dim out the rest of the screen, like a presented view
whose presentation mode is UIModalPresentationPageSheet or UIModalPresentation-
FormSheet (see Chapter 19). It can be effectively modal, preventing the user from work-
ing in the rest of the interface; or it can vanish if the user taps outside it; or you can
allow the user to tap some or all of the interface outside it without dismissing the
popover.

A popover, in effect, superimposes a roughly iPhone-sized screen on top of the iPad
screen, and is useful in part precisely because it brings to the larger iPad the smaller,
more lightweight flavor of the iPhone. For example, in my LinkSame app, both the
settings view (where the user configures and begins a new game) and the help view
(which describes how to play the game) are popovers (Figure 22-1). On the iPhone,
both these views would occupy the entire screen; for each, we’d need a way to navigate
to it, and then to return to the main interface when the user is finished with it — both
would probably involve presented view controllers. But with the larger iPad screen,
that would make no sense; neither view is large enough, or important enough, to occupy
the entire screen exclusively. As popovers, these views are shown as what they are:
smaller, secondary views which the user summons temporarily and then dismisses.

A split view (managed by a UISplitViewController) is a combination of two views, the
first having the width of an iPhone screen in portrait orientation. When the iPad is in
landscape orientation, the two views appear side by side. When the iPad is in portrait
orientation, there are two possibilities:

• Only the second view appears, with an option to summon the first view as a po-
pover by tapping a UIBarButtonItem.

649

• Both views continue to appear side by side; the second view is narrower, because
the screen is narrower. (This option is new in iOS 5.)

Like popovers, a split view may be regarded as an evolutionary link between the smaller
iPhone interface and the larger iPad interface. On the iPhone, you might have a master–
detail architecture in a navigation interface, where the master view is a table view
(Chapter 21). On the iPad, the large screen can accommodate the master view and the
detail view simultaneously; the split view is a built-in way to do that (and it is no coin-
cidence that its first view is sized to hold the master table that occupied the entire screen
on the iPhone).

Split views were important before iOS 5, because UISplitViewController was the only
legal way in which a single view controller could display the views of two child view
controllers side by side. In iOS 5, however, where you are free to design your own
custom parent view controllers, UISplitViewController will probably diminish in value.
Apple’s Mail app on the iPad used a UISplitViewController in iOS 3.2 and iOS 4, but
in iOS 5, it uses a different interface (which I’ll try to reverse-engineer later in this
chapter).

Figure 22-1. Two popovers

650 | Chapter 22: Popovers and Split Views

Configuring and Displaying a Popover
To display a popover, you’ll need a UIPopoverController, along with a view controller
(UIViewController) whose view the popover will contain. UIPopoverController is not
itself a UIViewController subclass. The view controller is the UIPopoverController’s
contentViewController. You’ll set this property initially through UIPopover-
Controller’s designated initializer, initWithContentViewController:. Later, you can
swap out a popover controller’s view controller (and hence its contained view) by call-
ing setContentViewController:animated:.)

Here’s how the UIPopoverController for the first popover in Figure 22-1 is initialized.
I have a UIViewController subclass, NewGameController. NewGameController’s view
contains a table (Figure 21-2) and a UIPickerView (Chapter 11), and is itself the data
source and delegate for both. I instantiate NewGameController and use this instance
as the root view controller of a UINavigationController, giving its navigationItem a
leftBarButtonItem (Done) and a rightBarButtonItem (Cancel). I don’t really intend to
do any navigation; I just want the two buttons, and this is an easy way of getting them
into the interface. That UINavigationController then becomes a UIPopoverController’s
view controller:

NewGameController* dlg = [[NewGameController alloc] init];
UIBarButtonItem* b = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem: UIBarButtonSystemItemCancel
 target: self
 action: @selector(cancelNewGame:)];
dlg.navigationItem.rightBarButtonItem = b;
b = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem: UIBarButtonSystemItemDone
 target: self
 action: @selector(saveNewGame:)];
dlg.navigationItem.leftBarButtonItem = b;
UINavigationController* nav =
 [[UINavigationController alloc] initWithRootViewController:dlg];
UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:nav];

Note that that code doesn’t cause the popover to appear on the screen! I’ll come to that
in a moment.

The popover controller should also be told the size of the view it is to display, which
will be the size of the popover. The default popover size is {320,1100}; Apple would
like you to stick to the default width of 320 (the width of an iPhone screen), but a
maximum width of 600 is permitted, and the second popover in Figure 22-1 uses it.
The popover’s height might be shorter than requested if there isn’t enough vertical
space, so the view to be displayed needs to be prepared for the possibility that it might
be resized.

You can provide the popover size in one of two ways:

Configuring and Displaying a Popover | 651

UIPopoverController’s popoverContentSize property
This property can be set before the popover appears; it can also be changed while
the popover is showing, with setPopoverContentSize:animated:.

UIViewController’s contentSizeForViewInPopover property
The UIViewController is the UIPopoverController’s contentViewController (or is
contained by that view controller, as in a tab bar interface or navigation interface).
This approach often makes more sense, because a UIViewController will generally
know its own view’s ideal size. If a view controller is instantiated in a nib or story-
board, this value can be set in the nib or storyboard.

In the case of the first popover in Figure 22-1, the NewGameController sets its own
contentSizeForViewInPopover in viewDidLoad; its popover size is simply the size of its
view:

self.contentSizeForViewInPopover = self.view.bounds.size;

The popover itself, however, will need to be somewhat taller, because the NewGame-
Controller is embedded in a UINavigationController, whose navigation bar occupies
additional vertical space. Delightfully, the UINavigationController takes care of that
automatically; its own contentSizeForViewInPopover adds the necessary height to that
of its root view controller.

In case of a conflict, the rule seems to be that if the UIPopoverController and the
UIViewController have different settings for their respective content size properties at
the time the popover is initially displayed, the UIPopoverController’s setting wins. But
once the popover is visible, if either property is changed, the change is obeyed; specif-
ically, my experiments suggest that if the UIViewController’s contentSizeForViewIn-
Popover is changed (not merely set to the value it already has), the UIPopoverController
adopts that value as its popoverContentSize and the popover’s size is adjusted accord-
ingly.

If a popover’s contentViewController is a UINavigationController, and a view control-
ler is pushed onto or popped off of its stack, then if the current view controller’s content-
SizeForViewInPopover differs from that of the previously displayed view controller, my
experiments suggest that the popover’s width will change to match the new width, but
the popover’s height will change only if the new height is taller. This feels like a bug. A
workaround is to implement the UINavigationController’s delegate method
navigationController:didShowViewController:animated:, so as to set the navigation
controller’s contentSizeForViewInPopover explicitly:

- (void)navigationController:(UINavigationController *)navigationController
 didShowViewController:(UIViewController *)viewController
 animated:(BOOL)animated {
 navigationController.contentSizeForViewInPopover =
 viewController.contentSizeForViewInPopover;
}

652 | Chapter 22: Popovers and Split Views

(That workaround is not entirely satisfactory from a visual standpoint, as two anima-
tions succeed one another, but I tried implementing willShowViewController... instead
and liked the results even less.)

The popover is made to appear on screen by sending the UIPopoverController one of
the following messages (and the UIPopoverController’s popoverVisible property then
becomes YES):

• presentPopoverFromRect:inView:permittedArrowDirections:animated:

• presentPopoverFromBarButtonItem:permittedArrowDirections:animated:

The popover has a sort of triangular bulge (called its arrow) on one edge, pointing to
some region of the existing interface, from which the popover thus appears to emanate
and to which it seems to be related. The difference between the two methods lies only
in how this region is specified. With the first method, you can provide any CGRect
with respect to any visible UIView’s coordinate system; for example, to make the po-
pover emanate from a UIButton, you could provide the UIButton’s frame with respect
to its superview, or (better) the UIButton’s bounds with respect to itself. But you can’t
do that with a UIBarButtonItem, because a UIBarButtonItem isn’t a UIView and doesn’t
have a frame or bounds; hence the second method is provided.

The permitted arrow directions restrict which sides of the popover the arrow can appear
on. It’s a bitmask, and your choices are:

• UIPopoverArrowDirectionUp

• UIPopoverArrowDirectionDown

• UIPopoverArrowDirectionLeft

• UIPopoverArrowDirectionRight

• UIPopoverArrowDirectionAny

Usually, you’d specify UIPopoverArrowDirectionAny, allowing the runtime to put the
arrow on whatever side it feels is appropriate.

Even if you specify a particular arrow direction, you still have no precise control over
a popover’s location. Starting in iOS 5, however, you do get some veto power: set the
UIPopoverController’s popoverLayoutMargins to a UIEdgeInsets stating the margins,
with respect to the root view bounds, within which the popover must appear. If an inset
that you give is so large that the arrow can no longer touch the presenting rect, it may
be ignored, or the arrow may become disconnected from its presenting rect; you prob-
ably should try not to do that.

Starting in iOS 5, you can customize much of a popover’s appearance. For example,
the first popover in Figure 22-1 has a dark navigation bar even though no such thing
was requested when the UINavigationController was created. This is because a popover
whose content view controller is a navigation controller likes to take control of its
navigation bar’s barStyle and set it to a special undocumented style, evidently to make

Configuring and Displaying a Popover | 653

it harmonize with the popover’s border. There isn’t much you can do about this: setting
the navigation bar’s tintColor has no effect, and setting its backgroundColor is effective
but ugly. But in iOS 5, you can take charge of a UINavigationBar’s background image
and you can customize the position and appearance of its bar button items (Chap-
ter 25), so you can achieve some pleasing results.

Moreover, in iOS 5 you can customize the outside of the popover — that is, the “frame”
and the arrow. To do so, you set the UIPopoverController’s popoverBackgroundView-
Class to your subclass of UIPopoverBackgroundView (a UIView subclass) — at which
point you can achieve just about anything you want, including the very silly popover
shown in Figure 22-2. You get to dictate (by implementing contentViewInset) the
thickness of all four sides of the “frame”.

In my experiments, I found it necessary to import <UIKit/UIPopover-
BackgroundView.h> into the header file of my UIPopoverBackground-
View subclass. This feels like a bug; to subclass a class that is part of
UIKit, importing UIKit should be sufficient.

Configuring your UIPopoverBackgroundView subclass is a bit tricky, because this sin-
gle view is responsible for drawing both the arrow and the “frame”. Thus, in a complete
and correct implementation, you’ll have to draw differently depending on the arrow
direction, which you can learn from the UIPopoverBackgroundView’s arrow-

Direction property. I’ll give a simplified example in which I assume that the arrow
direction will be UIPopoverArrowDirectionUp. Then drawing the “frame” is easy: here,

Figure 22-2. A very silly popover

654 | Chapter 22: Popovers and Split Views

I divide the view’s overall rect into two areas, the arrow area on top (its height is a
#defined constant, ARHEIGHT) and the “frame” area on the bottom, and draw the “frame”
into the bottom area as a resizable image (Chapter 15):

UIImage* linOrig = [UIImage imageNamed: @"linen.png"];
CGFloat capw = linOrig.size.width / 2.0 - 1;
CGFloat caph = linOrig.size.height / 2.0 - 1;
UIImage* lin = [linOrig resizableImageWithCapInsets:
 UIEdgeInsetsMake(caph, capw, caph, capw)];
CGRect arrow;
CGRect body;
CGRectDivide(rect, &arrow, &body, ARHEIGHT, CGRectMinYEdge);
[lin drawInRect:body];

The documentation claims that the popover will be awarded a shadow automatically,
but in my tests this was not the case. So I also apply my own shadow around the “frame”
shape:

self.layer.shadowPath = CGPathCreateWithRect(body, NULL);
self.layer.shadowColor = [UIColor grayColor].CGColor;
self.layer.shadowRadius = 20;
self.layer.shadowOpacity = 0.4;

Now for the arrow. The UIPopoverBackgroundView has an arrowHeight property and
an arrowBase property that you’ve set to describe the arrow dimensions to the runtime.
(In my code, their values are provided by two #defined constants, ARHEIGHT and
ARBASE.) My arrow will consist simply of a texture-filled isosceles triangle, with an excess
base consisting of a rectangle to make sure it’s attached to the “frame”. (In my real code
I draw the arrow first, so that its excess is behind the “frame”.) The UIPopover-
BackgroundView also has an arrowOffset property that the runtime has set to tell you
where to draw the arrow: this offset measures the positive distance between the center
of the view’s edge and the center of the arrow. However, the runtime will have no
hesitation in setting the arrowOffset all the way at the edge of view, or even beyond its
bounds (in which case it won’t be drawn); to prevent this, I provide a maximum offset
limit:

CGContextRef con = UIGraphicsGetCurrentContext();
CGContextSaveGState(con);
CGFloat proposedX = self.arrowOffset;
CGFloat limit = 22.0;
CGFloat maxX = rect.size.width/2.0 - limit;
if (proposedX > maxX)
 proposedX = maxX;
if (proposedX < limit)
 proposedX = limit;
CGContextTranslateCTM(con, rect.size.width/2.0 + proposedX - ARBASE/2.0, 0);
CGContextMoveToPoint(con, 0, ARHEIGHT);
CGContextAddLineToPoint(con, ARBASE / 2.0, 0);
CGContextAddLineToPoint(con, ARBASE, ARHEIGHT);
CGContextClosePath(con);

Configuring and Displaying a Popover | 655

CGContextAddRect(con, CGRectMake(0,ARHEIGHT,ARBASE,15));
CGContextClip(con);
[lin drawAtPoint:CGPointMake(-40,-40)];
CGContextRestoreGState(con);

Managing a Popover
Unlike a presented view controller or a child view controller, a UIPopoverController
instance is not automatically retained for you by some presenting view controller or
parent view controller; you must retain it yourself. If you fail to do this, then if the
UIPopoverController goes out of existence while its popover is on the screen, your app
will crash (with a helpful message: “-[UIPopoverController dealloc] reached while po-
pover is still visible”). Also, you might need the retained reference to the UIPopover-
Controller later, when the time comes to dismiss the popover.

There are actually two ways in which a popover can be dismissed: the user can tap
outside the popover, or you can explicitly dismiss the popover (as I do with the first
popover in Figure 22-1 when the user taps the Done button or the Cancel button). In
order to dismiss the popover explicitly, you send its UIPopoverController the dismiss-
PopoverAnimated: message. Obviously, then, you need a reference to the UIPopover-
Controller.

Even if a popover is normally dismissed automatically by the user tapping outside it,
you still might want to dismiss it explicitly on certain occasions — so you still might
need a reference to the popover controller. For example, in keeping with the transient
nature of popovers, I like to dismiss the current popover programmatically when the
application undergoes certain strong transitions, such as going into the background or
being rotated. (See also Apple’s technical note on what to do when the interface rotates
while a popover is showing, QA1694, “Handling Popover Controllers During Orien-
tation Changes.”) You can listen for the former by registering for UIApplicationDid-
EnterBackgroundNotification, and for the latter by implementing willRotateTo-
InterfaceOrientation:duration:. This policy is not merely aesthetic; some view con-
trollers, especially certain built-in specialized view controllers, recover badly from such
transitions when displayed in a popover.

The obvious solution is an instance variable or property with a strong (retain) policy.
The question then is how many such instance variables to use if the app is going to be
displaying more than one popover. We could have one instance variable for each po-
pover controller. On the other hand, a well-behaved app, in accordance with Apple’s
interface guidelines, is probably never going to display more than one popover simul-
taneously; so a single UIPopoverController instance variable (we might call it current-
Pop) should suffice. This one instance variable could be handed a reference to the cur-
rent popover controller each time we present a popover; using that reference, we would
be able later to dismiss the current popover and release its controller.

656 | Chapter 22: Popovers and Split Views

Dismissing a Popover
An important feature of a popover’s configuration is whether and to what extent the
user can operate outside it without automatically dismissing it. There are two aspects
to this configuration:

UIViewController’s modalInPopover property
If this is YES for the popover controller’s view controller (or for its current child
view controller, as in a tab bar interface or navigation interface), the popover is
absolutely modal; any tap outside it will be ignored and won’t have any effect at
all, not even to dismiss the popover. The default is NO.

UIPopoverController’s passthroughViews property
This matters only if modalInPopover is NO. It is an array of views in the interface
behind the popover; the user can interact with these views, but a tap anywhere else
outside the popover will dismiss it (with no effect on the thing tapped). If
passthroughViews is nil, a tap anywhere outside the popover will dismiss it.

Setting a UIPopoverController’s passthroughViews might not have any
effect unless the popover is already showing (the UIPopoverController
has been sent presentPopover...).

A popover can present a view controller internally; you’ll specify a modalPresentation-
Style of UIModalPresentationCurrentContext, because otherwise the presented view
will be fullscreen by default. You’ll also specify a transition style of UIModalTransition-
StyleCoverVertical — with any other transition style, your app will crash with this
message: “Application tried to present inside popover with transition style other than
UIModalTransitionStyleCoverVertical.” The presented view controller’s modalIn-
Popover is automatically set to YES: that is, while the presented view controller is being
presented within the popover, the user can’t make anything happen by tapping outside
the popover, not even to dismiss the popover. (You can subvert this by setting the
presented view controller’s modalInPopover to NO after it is presented, but you probably
shouldn’t.)

If modalInPopover is NO, you should pay attention to the passthroughViews, as the de-
fault behavior may be undesirable. For example, if a popover is summoned by the user
tapping a UIBarButton item in a toolbar using presentPopoverFromBarButtonItem:...,
the entire toolbar is a passthrough view; this means that the user can tap any button in
the toolbar, including the button that summoned the popover. The user can thus by
default summon the popover again while it is still showing, which is certainly not what
you want. I like to set the passthroughViews to nil; at the very least, while the popover
is showing, you should probably disable the UIBarButtonItem that summoned the po-
pover.

Dismissing a Popover | 657

We are now ready for a rigorous specification of the two ways in which a popover can
be dismissed:

• The popover controller’s view controller’s modalInPopover is NO, and the user taps
outside the popover on a view not listed in the popover controller’s passthrough-
Views. The UIPopoverController’s delegate (adopting the UIPopoverController-
Delegate protocol) is sent popoverControllerShouldDismissPopover:; if it doesn’t
return NO (which might be because it doesn’t implement this method), the po-
pover is dismissed, and the delegate is sent popoverControllerDidDismissPopover:.

• The UIPopoverController is sent dismissPopoverAnimated: by your code; the del-
egate methods are not sent in that case. Typically this would be because you’ve
included some interface item inside the popover that the user can tap to dismiss
the popover (like the Done and Cancel buttons in the first popover in Figure 22-1).

Because a popover can be dismissed in two different ways, if you have a cleanup task
to perform as the popover vanishes, you may have to see to it that this task is performed
under two different circumstances. That can get tricky.

To illustrate, I’ll describe what happens when the first popover in Figure 22-1 is dis-
missed. Within this popover, the user is interacting with several settings in the user
defaults. But if the user cancels, or if the user taps outside the popover (which I take to
be equivalent to canceling), I want to revert those defaults to the way they were before
the popover was summoned. So, as I initially present the popover, I preserve the relevant
current user defaults as an ivar:

// save defaults so we can restore them later if user cancels
self.oldDefs = [[NSUserDefaults standardUserDefaults] dictionaryWithValuesForKeys:
 [NSArray arrayWithObjects:@"Style", @"Size", @"Stages", nil]];

Now, if the user taps Save, the user’s settings within the popover have already been
saved (in the user defaults), so I explicitly dismiss the popover and proceed to initiate
the new game that the user has asked for. On the other hand, if the user taps Cancel, I
must revert the user defaults as I dismiss the popover:

- (void) cancelNewGame: (id) sender { // cancel button in New Game popover
 [self.currentPop dismissPopoverAnimated:YES];
 self.currentPop = nil;
 [[NSUserDefaults standardUserDefaults]
 setValuesForKeysWithDictionary:self.oldDefs];
}

But I must also do the same thing if the user taps outside the popover. Therefore I
implement the delegate method and revert the user defaults there as well:

- (void)popoverControllerDidDismissPopover:(UIPopoverController *)pc {
 [[NSUserDefaults standardUserDefaults]
 setValuesForKeysWithDictionary:self.oldDefs];
 self.currentPop = nil;
}

658 | Chapter 22: Popovers and Split Views

There is a problem with the foregoing implementation, however. My app, you may
remember, has another popover (the second popover in Figure 22-1). This popover,
too, can be dismissed by the user tapping outside it; in fact, that’s the only way the user
can dismiss it. This means that popoverControllerDidDismissPopover: will be called.
But now we don’t want to call setValuesForKeysWithDictionary:; it’s the wrong popo-
ver, and we have no preserved defaults to revert. This means that I must somehow test
for which popover controller is being passed in as the parameter to popoverController-
DidDismissPopover:. But how can I distinguish one popover controller from another?
Luckily, my popover controllers have different types of view controller:

- (void)popoverControllerDidDismissPopover:(UIPopoverController *)pc {
 if ([pc.contentViewController isKindOfClass: [UINavigationController class]])
 [[NSUserDefaults standardUserDefaults]
 setValuesForKeysWithDictionary:self.oldDefs];
 self.currentPop = nil;
}

If this were not the case — for example, if I had two different popovers each of which
had a UINavigationController as its view controller — I’d need some other way of
distinguishing them. This is rather a knotty problem, and in the past I’ve resorted to
various desperate measures to resolve it, such as subclassing UIPopoverController.

Earlier, I mentioned that I also want to dismiss any currently displayed popover if the
interface rotates, or if the app goes into the background. That means that I must perform
these same tests again in response to the appropriate notifications:

-(void)willRotateToInterfaceOrientation:(UIInterfaceOrientation)io
 duration:(NSTimeInterval)duration {
 UIPopoverController* pc = self.currentPop;
 if (pc) {
 if ([pc.contentViewController isKindOfClass:[UINavigationController class]])
 [[NSUserDefaults standardUserDefaults]
 setValuesForKeysWithDictionary:self.oldDefs];
 [pc dismissPopoverAnimated:NO];
 self.currentPop = nil; // wrong in previous version
 }
}

-(void)backgrounding:(id)dummy {
 UIPopoverController* pc = self.currentPop;
 if (pc) {
 if ([pc.contentViewController isKindOfClass:[UINavigationController class]])
 [[NSUserDefaults standardUserDefaults]
 setValuesForKeysWithDictionary:self.oldDefs];
 [pc dismissPopoverAnimated:NO];
 self.currentPop = nil; // wrong in previous version
 }
}

In my view, the need for all this work, all this testing and caution and duplication of
functionality, just to display a couple of popovers, demonstrates that the framework’s
implementation of popover controllers is deeply flawed. You don’t get sufficient help

Dismissing a Popover | 659

with getting a reference to a UIPopoverController from a view currently being displayed
within it, with managing a popover controller’s memory, or with distinguishing one
popover controller from another. I’ve shown how you can work around these short-
comings, but in a better world such workarounds wouldn’t be necessary. (For example,
because only one popover is supposed to be showing at a time, the framework could
just maintain a reference to its controller for you.) Popovers were invented for iOS 3.2;
frankly, I’m astonished that we’ve reached iOS 5.0 with no improvement in this area
of the API.

Popover Segues
In an iPad storyboard, a segue can be designated a popover segue, by choosing Popover
from the Style pop-up menu in the Attributes inspector. The consequences of doing so
are:

• When the segue is triggered, a popover is displayed. The runtime constructs a
UIPopoverController and makes the segue’s destination view controller the
UIPopoverController’s view controller. The popover’s “anchor” (the view or bar
button item to which its arrow points) is the source object from which you control-
drag to form the segue, or it can be set in the Attributes inspector.

• The segue is a UIStoryboardPopoverSegue, a UIStoryboardSegue subclass that
adds a single read-only property, popoverController. You can use this, for instance
in prepareForSegue:sender:, to customize the popover controller.

The UIPopoverController created by the triggering of a popover segue is retained be-
hind the scenes; the app does not crash if you fail to retain it explicitly yourself. (I don’t
know what object is retaining it, but I think it’s the storyboard.) Nevertheless, you will
still probably want to retain your own reference to the popover controller, because
you’re still likely to need that reference for the reasons discussed in the preceding sec-
tion. You’ll probably obtain that reference in your prepareForSegue:sender: imple-
mentation.

Popover segues sound tempting, but they do not appreciably reduce the amount of
code required to configure and manage a popover. On the contrary, in my experience
they tend to increase it. Consider, for example, the code I cited earlier for creating a
popover controller whose view controller is a navigation view controller:

NewGameController* dlg = [[NewGameController alloc] init];
UIBarButtonItem* b = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem: UIBarButtonSystemItemCancel
 target: self
 action: @selector(cancelNewGame:)];
dlg.navigationItem.rightBarButtonItem = b;
b = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem: UIBarButtonSystemItemDone
 target: self
 action: @selector(saveNewGame:)];

660 | Chapter 22: Popovers and Split Views

dlg.navigationItem.leftBarButtonItem = b;
UINavigationController* nav =
 [[UINavigationController alloc] initWithRootViewController:dlg];
UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:nav];

In a storyboard, you could create a popover segue to a navigation controller whose root
view is a NewGameController. But now how would you hook up the NewGame-
Controller’s bar button items to make their actions call the correct methods in self?
In prepareForSegue:sender:, you’d have to work your way down from the navigation
controller to the NewGameController; then you’d need either to create the bar button
items in code, exactly as before, or to hook up their target and action if they were
instantiated from the storyboard:

UINavigationController* nav = segue.destinationViewController;
UIViewController* vc = [nav.childViewControllers objectAtIndex:0];
vc.navigationItem.leftBarButtonItem.target = self;
vc.navigationItem.leftBarButtonItem.action = @selector(savePop1:);
vc.navigationItem.rightBarButtonItem.target = self;
vc.navigationItem.rightBarButtonItem.action = @selector(cancelPop1:);

Similarly, how would you set a popover controller’s passthroughViews to nil when the
popover controller is generated by a popover segue? You can’t do that in the storyboard,
so you’d have to do it in prepareForSegue:sender:. But, as I’ve already said, prepareFor-
Segue:sender: is too soon; you need to do it after the popover has been displayed. So
you’d have to use delayed performance:

UIStoryboardPopoverSegue* seg = (id)segue;
UIPopoverController* pop = seg.popoverController;
dispatch_time_t popTime = dispatch_time(DISPATCH_TIME_NOW, 1);
dispatch_after(popTime, dispatch_get_main_queue(), ^(void){
 pop.passthroughViews = nil;
});

Finally, as I mentioned earlier, you’d still need to maintain a reference to the UIPopover-
Controller (pop in the above code), set yourself as its delegate, and configure any other
features of the popover controller such as its popoverLayoutMargins and popover-
BackgroundViewClass, just as you would have done if there were no storyboard at all. I
find the code needed to deal with a UIStoryboardPopoverSegue’s popover controller
confusing and fragile; I’d rather create the popover controller in code to begin with.

Automatic Popovers
In a few situations, the framework will automatically create and display a popover for
you. I am not personally fond of this behavior; the advantages of the automatic behavior
(such as the fact that you do not have to provide code to create the popover) are coun-
terbalanced, in my view, by the disadvantages — in particular, you can’t get access to
the UIPopoverController, so the behavior and appearance of the popover is completely
out of your hands.

Automatic Popovers | 661

One such situation is what happens when a search bar (a UISearchBar) tied to a search
display controller (UISearchDisplayController) appears in a toolbar (UIToolbar) on the
iPad. Recall the example of search display controller code from Chapter 21, where we
search a list of the 50 United States; I’ll modify that example to demonstrate. In the nib
editor, start with a toolbar at the top of the root view, and drag into it the combined
Search Bar and Search Display Controller object from the Object library. As before,
this simple move causes a whole bunch of outlets to be configured automatically. In
particular:

• The search bar’s delegate is the File’s Owner.

• The File’s Owner’s searchDisplayController is the search display controller. This
is a UIViewController property that I didn’t mention in Chapter 21, because its
worth is not clear when a UISearchDisplayController is created and configured in
code. When a UISearchDisplayController is instantiated from a nib, however, this
property is an outlet that retains the search display controller, as well as providing
access to it in code.

• The search display controller’s search bar is the search bar.

• The search display controller’s delegate, searchContentsController, searchResults-
DataSource, and searchResultsDelegate is the File’s Owner. Of these, only the latter
two appear to be of importance in this example.

Now for the code. When our view controller loads its view, we also load the model (the
list of states) into an NSArray property called states. We also have an NSArray property
called filteredStates. Here is the code for dealing with the search bar and the search
display controller’s results table:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [self.filteredStates count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil)
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];
 cell.textLabel.text = [self.filteredStates objectAtIndex: indexPath.row];
 return cell;
}

- (void) filterData {
 NSString* target = self.searchDisplayController.searchBar.text;

662 | Chapter 22: Popovers and Split Views

 NSPredicate* p = [NSPredicate predicateWithBlock:
 ^(id obj, NSDictionary *d) {
 NSString* s = obj;
 NSStringCompareOptions options = NSCaseInsensitiveSearch;
 BOOL b = [s rangeOfString:target options:options].location != NSNotFound;
 return b;
 }];
 self.filteredStates = [states filteredArrayUsingPredicate:p];
}

- (void)searchBar:(UISearchBar *)searchBar textDidChange:(NSString *)searchText {
 [self filterData];
}

That’s all. There is no creation of a UITableView and no mention anywhere of a
UIPopoverController. Nevertheless, when the user enters text in the search bar, a po-
pover appears, containing a table of search results (Figure 22-3). Note the “Results”
title at the top of the popover; starting in iOS 5, you can customize that title by setting
the UISearchDisplayController’s searchResultsTitle property (you can also do this in
the nib editor). However, as I mentioned before, you get no official access to the
UIPopoverController, so you can’t set its passthrough views and so on.

Another example of an automatic popover on the iPad is the alert sheet, discussed in
Chapter 26.

Split Views
A split view is implemented through a UISplitViewController (a UIViewController
subclass) whose children are the two UIViewControllers whose views are to be dis-

Figure 22-3. An automatically created search results popover

Split Views | 663

played in the two regions of the split view. You provide the children through the
UISplitViewController’s viewControllers property (an NSArray); it can be configured
in code or in a nib. A UIViewController that is a child, at any depth, of a UISplitView-
Controller has a reference to the UISplitViewController through its splitView-
Controller property.

There is very little work for you to do with regard to a split view. A split view controller
has no further properties or methods beyond those inherited from UIViewController.
You can hear about what the split view is doing through its delegate (adopting the
UISplitViewControllerDelegate protocol), which receives these messages:

splitViewController:willHideViewController:withBarButtonItem:forPopover-

Controller:

The split view is rotating to portrait orientation, so it’s hiding the first view. The
split view creates a UIBarButtonItem and hands it to you as the third parameter.
Your mission, should you decide to accept it, is to put that bar button item into
the interface, typically in a toolbar at the top of the root view. You are free to
configure the bar button item’s title and image as well.

What you do with the other parameters is up to you, but none of them are needed;
the split view has already set things up so that if you do put this bar button item
into the interface, then if the user taps it, a popover will be presented through the
popover controller (fourth parameter) displaying the view of the view controller
(second parameter). It’s common practice to keep a reference to the popover con-
troller, in case you need it in order to dismiss the popover later (but don’t set its
delegate).

splitViewController:popoverController:willPresentViewController:

The user has tapped the bar button item you were handed in the first delegate
method, and the popover is about to appear. You probably won’t need to imple-
ment this method.

splitViewController:willShowViewController:invalidatingBarButtonItem:

This is the opposite of the first delegate method: the split view is rotating to land-
scape orientation, so it’s going to break the connection between the bar button
item and the popover controller and is going to put the first view back into the
interface. You should remove the bar button item from the interface (the split view
will not do that for you).

As an app with a split view interface launches, the willHide delegate method is called;
if the device is being held in landscape orientation at launch time, and if the split view
is free to rotate, it then immediately rotates to landscape orientation and the will-
Show delegate method is called.

The only even slightly tricky part of all this lies hidden in the words “put that UIBar-
ButtonItem into the interface” and “remove the UIBarButtonItem from the interface.”
How you do this depends on your interface. Let’s take the case of a toolbar. UIToolbar

664 | Chapter 22: Popovers and Split Views

has no method for inserting or removing a single bar button item; you have to set its
entire array of items at once. So, for example, to put a UIBarButtonItem at the left end
of a toolbar, you’ll set the toolbar’s items array to an array composed of the UIBar-
ButtonItem and the items from the existing items array. You will probably set the tool-
bar’s items array by calling setItems:animated: in order to get the animation. Removing
a UIBarButtonItem from a toolbar is similar. So:

NSArray* arr = [[NSArray arrayWithObject: barButtonItem]
 arrayByAddingObjectsFromArray:self.toolbar.items];
[self.toolbar setItems:arr animated:YES];

On the other hand, the current version of the iPad Master–Detail Application project
template, which demonstrates a split view interface, uses a navigation bar instead of a
toolbar:

DetailViewController *detailViewController =
 [[DetailViewController alloc] initWithNibName:@"DetailViewController" bundle:nil];
UINavigationController *detailNavigationController =
 [[UINavigationController alloc] initWithRootViewController:detailViewController];

As a result, the DetailViewController instance, functioning as the UISplitView-
Controller’s delegate, has an easy time getting the bar button item into and out of the
interface: it sets its own navigationItem’s leftBarButtonItem.

If you ask for a main storyboard as you generate your iPad project from the Master–
Detail Application project template, you can see how little code is required to imple-
ment a working split view. The split view controller is hooked to its child view con-
trollers by relationships in the storyboard; those child view controllers are both navi-
gation controllers (mostly in order to get the navigation bar), and they are hooked to
their root view controllers by relationships in the storyboard as well. Thus, all five view
controllers are instantiated together, automatically, as the app launches.

The only thing that can’t be set in the storyboard is the delegate relationship between
the UISplitViewController and the DetailViewController (they are both in the story-
board together, but they’re in difference scenes, so no outlet can be drawn between
them; see my rant on this topic in Chapter 19). To solve this, the template includes the
following code in the app delegate’s application:didFinishLaunchingWithOptions::

UISplitViewController *splitViewController =
 (UISplitViewController *)self.window.rootViewController;
UINavigationController *navigationController =
 [splitViewController.viewControllers lastObject];
splitViewController.delegate = (id)navigationController.topViewController;

By the time that code runs, the window’s rootViewController has been set and all the
view controllers are in place, in their various parent–child relationships; the code is
thus able to work its way through the parent–child hierarchy (Chapter 13) to get ref-
erences to the two desired view controllers and can make the one the delegate of the
other.

The only other code of interest is as follows:

Split Views | 665

• Both the master view controller and the detail view controller permit rotation,
returning YES from shouldAutorotateToInterfaceOrientation:. Otherwise, the
split view itself won’t permit rotation.

• The DetailViewController implements the two UISplitViewControllerDelegate
methods to add and remove the UIBarButtonItem in the toolbar. It also retains a
reference to the popover when it’s showing:

- (void)splitViewController:(UISplitViewController *)splitController
 willHideViewController:(UIViewController *)viewController
 withBarButtonItem:(UIBarButtonItem *)barButtonItem
 forPopoverController:(UIPopoverController *)popoverController {
 [self.navigationItem setLeftBarButtonItem:barButtonItem animated:YES];
 self.masterPopoverController = popoverController;
}

- (void)splitViewController:(UISplitViewController *)splitController
 willShowViewController:(UIViewController *)viewController
 invalidatingBarButtonItem:(UIBarButtonItem *)barButtonItem {
 [self.navigationItem setLeftBarButtonItem:nil animated:YES];
 self.masterPopoverController = nil;
}

The split view interface is now working. In landscape orientation, the master view (a
table view) appears on the left, with its navigation bar at the top, and the detail view
appears on the right, with its navigation bar at the top. In portrait orientation, the
master view vanishes; the detail view, with its navigation bar, occupies the entire screen.
A UIBarButtonItem appears at the navigation bar’s left end; tapping it summons the
master view in a popover.

Starting in iOS 5, it is also possible for a split view interface not to hide the left view in
portrait orientation. Instead, the left and right view both appear in both orientations;
the left view’s width is unchanged, while the right view is resized appropriately. (Com-
pare Apple’s Settings app on the iPad.) To get that behavior, implement this delegate
method:

splitViewController:shouldHideViewController:inOrientation:

Allows the left view controller to be hidden (return YES) or not (return NO) as the
interface rotates to the given orientation. If you return NO, the other delegate
methods won’t be called in this orientation; there will be no bar button item and
no popover.

Alternatively, seeing that iOS 5 permits it, you might dispense with UISplitView-
Controller altogether and write your own parent view controller class. It isn’t difficult
to write a class that does what UISplitViewController does, and it isn’t difficult to write
a class that does something similar but preferable.

For example, consider Apple’s Mail app in iOS 5. It’s a split view interface, in the sense
that there’s a narrow master view and a wider detail view that occupy the screen to-
gether in landscape orientation. But in portrait orientation, there’s no popover. Instead,

666 | Chapter 22: Popovers and Split Views

the user taps a bar button item or swipes the detail view, and the master view slides in
from the left, sitting on top of the detail view, and behaves modally — that is, the user
can work only in the master view until either it is explicitly dismissed by tapping else-
where or the device is rotated to landscape orientation so that the master view resumes
its place beside the detail view. Let’s consider how we might implement such an inter-
face.

The discussion that follows was written when the most recent version
of the system was 5.0. It’s my impression that UISplitViewController
itself may adopt the Mail app behavior starting in iOS 5.1. That might
render my discussion moot, but I’m leaving it in place because it’s such
a good example of what can be accomplished with a custom parent view
controller. I believe Apple will make it possible to turn off the swipe
gesture as a means of summoning the left view in portrait orientation
by means of the presentsWithGesture property.

In the parent view controller, we have references to the two child view controllers as
vc1 and vc2. Our loadView implementation is called in portrait orientation (Chap-
ter 19), so we position vc1’s view offscreen and make vc2’s view occupy the entire
interface:

UIView* v =
 [[UIView alloc] initWithFrame: [[UIScreen mainScreen] applicationFrame]];
self.view = v;
v.backgroundColor = [UIColor blackColor];
UIView* v1 = self.vc1.view;
UIView* v2 = self.vc2.view;
CGRect frame1 = CGRectMake(-320, 0, 320, self.view.bounds.size.height);
CGRect frame2 = self.view.bounds;
// ... some code omitted ...
[v addSubview: leftView];
[v addSubview: rightView];

In the omitted code, I embed v1 in leftView and v2 in rightView (which are instances
of my own UIView subclasses) so as to get the rounded corners and shadow-casting
behavior of the Mail app; I also tag leftView and rightView with values 1 and 2 so that
I can find them in the interface later. When the user rotates the device, I respond by
rearranging the interface as necessary, with animation:

-(void)willAnimateRotationToInterfaceOrientation:(UIInterfaceOrientation)io
 duration:(NSTimeInterval)d
{
 [UIView animateWithDuration:d animations:^{
 if (UIInterfaceOrientationIsPortrait(io)) {
 [self.view viewWithTag: 1].frame =
 CGRectMake(-320,0,320,self.view.bounds.size.height);
 [self.view viewWithTag: 2].frame = self.view.bounds;
 } else {
 CGRect frame1;
 CGRect frame2;

Split Views | 667

 CGRectDivide(self.view.bounds, &frame1, &frame2, 320, CGRectMinXEdge);
 [self.view viewWithTag: 1].frame = frame1;
 [self.view viewWithTag: 2].frame = frame2;
 }
 } completion:^(BOOL b) {
 ((ShadowView*)[self.view viewWithTag: 1]).showsShadow = NO;
 }];
}

The detail view controller, which sits inside a navigation controller in order to get the
navigation bar, responds to rotation by showing or hiding a bar button item whose
action method calls the split view controller’s showView1 method:

- (void)viewDidLoad {
 [super viewDidLoad];
 UIBarButtonItem* b = [[UIBarButtonItem alloc] initWithTitle:@"Master"
 style:UIBarButtonItemStyleBordered
 target:self
 action:@selector(doMasterButton:)];
 self.btn = b;
 [self.navigationItem setLeftBarButtonItem:self.btn animated:NO];
}

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)io {
 // Return YES for supported orientations
 return YES;
}

- (void)willAnimateRotationToInterfaceOrientation:(UIInterfaceOrientation)io
 duration:(NSTimeInterval)duration {
 if (UIInterfaceOrientationIsPortrait(io))
 [self.navigationItem setLeftBarButtonItem:self.btn animated:NO];
 else
 [self.navigationItem setLeftBarButtonItem:nil animated:NO];
}

- (void) doMasterButton: (id) sender {
 UIViewController* vc = self.parentViewController;
 while (![vc isKindOfClass: [MySplitViewController class]])
 vc = vc.parentViewController;
 [(MySplitViewController*)vc showView1];
}

Now we come to the really interesting part. When the user taps the bar button item
configured by the detail view controller, the split view controller animates the move-
ment of the master view onto the screen, and puts a screen-sized invisible view with a
tap gesture recognizer right behind it, to enforce the modal behavior of the master view:

- (void) showView1 {
 UIView* v = [self.view viewWithTag:1];
 [self.view bringSubviewToFront:v];
 // insert modal-enforcing tap-detecting invisible view
 UIView* v2 = [[UIView alloc] initWithFrame:self.view.bounds];
 v2.tag = 3;
 UITapGestureRecognizer* t = [[UITapGestureRecognizer alloc]

668 | Chapter 22: Popovers and Split Views

 initWithTarget:self action:@selector(hideView1:)];
 [v2 addGestureRecognizer:t];
 [self.view insertSubview:v2 belowSubview:v];
 [UIView animateWithDuration:.2 animations:^{
 v.frame = CGRectMake(0,0,320,self.view.bounds.size.height);
 }];
}

If, while the master view is showing, the user taps anywhere outside the master view,
the tap gesture recognizer detects the tap. In response, we remove the invisible view
and animate the master view back off the screen:

- (void) hideView1: (UIGestureRecognizer*) g {
 [g.view removeFromSuperview]; // thank you very much
 UIView* v = [self.view viewWithTag:1];
 [UIView animateWithDuration:.2 animations:^{
 v.frame = CGRectMake(-320,0,320,self.view.bounds.size.height);
 } completion:^(BOOL finished) {
 }];
}

There’s a little more to my code, to imitate the shadow-casting behavior of the master
view in the Mail app, but including it here would have cluttered the discussion.

Split Views | 669

CHAPTER 23

Text

Text can be displayed in various ways:

UILabel
Displays text, possibly consisting of multiple lines, in a single font and size, with
color (and highlighted color), alignment, and wrapping and truncation. Discussed
in this chapter.

UITextField
Displays a single line of editable text, in a single font and size, with color and
alignment; may have a border, may have a background image, and overlay views
may appear at its right and left end. Discussed in this chapter; a UITextField is a
UIControl subclass, so see also Chapter 25.

UITextView
Displays scrollable text, possibly editable, in a single font and size, with color and
alignment; can use data detectors to display tappable links. Discussed in this chap-
ter.

UIWebView
A scrollable view displaying rendered HTML. Because HTML can express text
attribute spans, this is a good way to show text in multiple fonts, sizes, colors,
alignments, and so on, and to include images and tappable links. Can also display
various additional document types, such as PDF, RTF, and .doc. Discussed in the
next chapter.

Drawing
There are three main ways to draw strings directly:

Core Graphics
Low-level methods for drawing text (not NSStrings). For drawing in general,
see Chapter 15.

671

NSString
At a high level, the UIStringDrawing category on NSString endows strings with
the ability to draw themselves, along with metrics methods (the sizeWith-
Font... methods) for learning the dimensions at which a given string will be
drawn. Examples appeared in Chapter 12 and Chapter 20.

Core Text
The only way in iOS to draw strings with multiple fonts and styles. Core Text
also provides access to advanced font typographical features. Discussed in this
chapter.

An app can include fonts within its bundle; these will be loaded at launch time if the
app lists them in its Info.plist under the “Fonts provided by application” key (UIApp-
Fonts). In this way, your app can use fonts not present by default on the device.

UILabel
UILabel was introduced in Chapter 7; its main properties are discussed in “Built-In Cell
Styles” on page 597. A label’s most important feature, its text, is its text property; you
are likely also to set its font, textColor, and textAlignment properties, and possibly its
shadowColor and shadowOffset properties. The label’s text can have an alternate
highlightedTextColor, to be used when its highlighted property is YES (as happens,
for example, when the label is in a selected cell of a table view).

If a UILabel consists of only one line of text (numberOfLines is 1, the default), then you
can set adjustsFontSizeToFitWidth to YES and provide a minimumFontSize if you want
the label to shrink the font size smaller than its font setting in an attempt to display as
much of the text as possible. How the text is repositioned when this happens is deter-
mined by the label’s baselineAdjustment property.

A UILabel may alternatively consist of multiple lines of text (numberOfLines is greater
than 1), but in that case adjustsFontSizeToFitWidth is ignored; the font size set in
font is used even if not all of the text will fit.

If numberOfLines is 1, any line breaks in the text are treated as spaces. Further line
breaking (wrapping) and truncation behavior, which applies to both single-line and
multiline labels, is determined by its lineBreakMode. You can get a feel for this behavior
by experimenting in the nib. Your options are:

UILineBreakModeWordWrap

Lines break at word-end. This is the default.

UILineBreakModeClip

Lines break at word-end, but the last line can break in the middle of a word.

UILineBreakModeCharacterWrap

All lines can break in the middle of a word.

672 | Chapter 23: Text

UILineBreakModeHeadTruncation
UILineBreakModeMiddleTruncation
UILineBreakModeTailTruncation

Lines break at word-end. But now suppose the text is too long for the label. (This
might be because a single-line label isn’t wide enough, or because the numberOf-
Lines is insufficient given the label’s width, or because the label isn’t tall enough
to display the numberOfLines.) Then the last line displays an ellipsis at the start,
middle, or end respectively, and text is omitted at the point of the ellipsis. Thus,
if the lineBreakMode is UILineBreakModeHeadTruncation, the last line is always dis-
played, and if the lineBreakMode is UILineBreakModeMiddleTruncation, the last
words are displayed at the end of the last line — preceded, in both cases, by ev-
erything that will fit from the start of the text to the ellipsis.

If numberOfLines is larger than the number of lines actually needed, the text is vertically
centered in the label. This may be undesirable; you might prefer to shrink (or grow)
the label to fit its text (and then perhaps to reposition the label). On the face of it, you
can’t use sizeToFit to do this, because the default UILabel implementation of sizeTo-
Fit is to make the label the right width to contain all its text on a single line. However,
you can modify that response by overriding UILabel’s textRectForBounds:limitedTo-
NumberOfLines: in a subclass. Here, we create a UILabel subclass such that the label
responds to sizeToFit by making itself the right height to contain all of its text on
multiple lines, without changing its width:

- (CGRect)textRectForBounds:(CGRect)bounds
 limitedToNumberOfLines:(NSInteger)numberOfLines {
 CGSize sz = [self.text sizeWithFont:self.font
 constrainedToSize:CGSizeMake(self.bounds.size.width, 10000)
 lineBreakMode:self.lineBreakMode];
 return (CGRect){bounds.origin, CGSizeMake(self.bounds.size.width, sz.height)};
}

We use NSString’s sizeWithFont:constrainedToSize:lineBreakMode: to work out the
actual height needed for a given text. 10000 is just an arbitrarily big value, which we
assume the label’s real height would never reach. Of course, the lines of the label won’t
all be displayed unless its numberOfLines is also sufficiently large.

The other UILabel method that you can override in a subclass is drawTextInRect:. This
is the equivalent of drawRect: — that is, it’s your chance to modify the overall drawing
of the label. An example appears in Chapter 10.

UITextField
A text field has many of the same properties as a label, without the ability to contain
multiple lines. So it has a text, font, textColor, and textAlignment. It also has adjusts-
FontSizeToFitWidth and minimumFontSize properties, although these don’t work exactly
like a label; a text field won’t allow its font size to shrink automatically as small as a
label will. If the user enters text that is too long for the width of the field, the text shifts

UITextField | 673

horizontally to show the insertion point, but when the field is no longer being edited,
text that is too long is displayed with an ellipsis at the end.

A text field also has a placeholder property, which is the text that appears faded within
the text field when it has no text; the idea is that you can use this to suggest to the user
what the text field is for. If its clearsOnBeginEditing property is YES, the text field
automatically deletes its existing text when the user begins editing within it.

A text field’s border drawing is determined by its borderStyle property. Your options
are:

UITextBorderStyleNone

No border.

UITextBorderStyleLine

A plain rectangle.

UITextBorderStyleBezel

A slightly bezeled rectangle: the top and left sides have a very slight, thin shadow.

UITextBorderStyleRoundedRect

A rounded rectangle; the top and left sides have a stronger shadow, so that the text
appears markedly recessed behind the border.

A text field can have a background color (because it is a UIView) or a background image
(background), possibly along with a second image (disabledBackground) to be displayed
when the text field’s enabled property (inherited from UIControl) is NO. The user can’t
interact with a disabled text field, but without a disabledBackground image, the user
may lack any visual clue to this fact.

The text background of a UITextBorderStyleRoundedRect text field is always white; its
background image is ignored. But its background color is visible at its corners, outside
the rounded border, and therefore, to look good, the background color should match
what’s behind the text field or should be clearColor.

A text field may contain up to two ancillary overlay views (such as a magnifying glass
icon to suggest that the field initiates a search), its leftView and rightView, and a Clear
button (a gray circle with a white “x”). The automatic visibility of each of these is
determined by the leftViewMode, rightViewMode, and clearViewMode, respectively. The
view mode values are:

UITextFieldViewModeNever

The view never appears.

UITextFieldViewModeWhileEditing

A Clear button appears if there is text in the field and the user is editing. A left or
right view appears if there is no text in the field and the user is editing.

674 | Chapter 23: Text

UITextFieldViewModeUnlessEditing

A Clear button appears if there is text in the field and the user is not editing. A left
or right view appears if the user is not editing, or if the user is editing but there is
no text in the field.

UITextFieldViewModeAlways

A left or right view always appears; a Clear button appears if there is text in the field.

Depending on what sort of view you use, your leftView and rightView may have to be
sized manually so as not to overwhelm the text view contents. A right view and a Clear
button can conflict, trying to appear at the same time (for example, if they both have
UITextFieldViewModeAlways and there is text in the field); in this case, the right view
may cover the Clear button unless you reposition it. The positions and sizes of any of
the components of the text field can be set in relation to the text field’s bounds by
overriding the appropriate method in a subclass:

• clearButtonRectForBounds:

• leftViewRectForBounds:

• rightViewRectForBounds:

• borderRectForBounds:

• textRectForBounds:

• placeholderRectForBounds:

• editingRectForBounds:

You should make no assumptions about how often or how frequently
these methods will be called; the same method might be called several
times in quick succession. Also, these methods should all be called with
a parameter that is the bounds of the text field, but some are called with
a 100×100 bounds; this feels like a bug.

You can also override the following:

drawTextInRect:

Called when the text has changed and the user is not editing or ends editing. You
should either draw the text or call super to draw it; if you do neither, the text will
become blank. Observe that you get no method to customize the drawing of the
text while it is being edited.

drawPlaceholderInRect:

Called when the placeholder text is about to appear. You should either draw the
placeholder text or call super to draw it; if you do neither, the placeholder will
become blank.

UITextField | 675

Both these methods are called with a parameter whose size is the dimensions of the text
field’s text area, but whose origin is {0,0}. In effect what you’ve got is a graphics context
for just the text area; any drawing you do outside the given rectangle will be clipped.

Editing and the Keyboard
A text field’s editing status, as well as the presence or absence of the onscreen simulated
keyboard, is intimately tied to its status as the first responder (Chapter 11):

• When a text field is first responder, it is being edited and the keyboard is present.

• When a text field is no longer first responder, it is no longer being edited, and if
no other text field (or text view) becomes first responder, the keyboard is not
present. If the keyboard is present because one text field is first responder, and
another text field becomes first responder (for example, because the user taps in
it), the keyboard is not dismissed and brought back; it just remains onscreen.

You can programmatically control a text field’s editing status, as well as the presence
or absence of the keyboard, by way of the text field’s first responder status. To make
the insertion point appear within a text field and to cause the keyboard to appear, you
send becomeFirstResponder to that text field; to make a text field stop being edited and
to cause the keyboard to disappear, you send resignFirstResponder to that text field.
Actually, resignFirstResponder returns a BOOL, because a responder might return NO
to indicate that for some reason it refuses to obey this command. Note also the UIView
endEditing: method, which can be sent to the first responder or any superview (in-
cluding the window) to ask or compel the first responder to resign first responder status.

In a view presented in the UIModalPresentationFormSheet style on the iPad (Chap-
ter 19), the keyboard, by default, does not disappear when a text field resigns first
responder status. This is apparently because a form sheet is intended primarily for text
input, so the keyboard is felt as accompanying the form as a whole, not individual text
fields. Starting in iOS 4.3, you can prevent this exceptional behavior: in your UIView-
Controller subclass, override disablesAutomaticKeyboardDismissal to return NO.

There is no simple way to learn what view is first responder! This is very
odd, because a window surely knows what its first responder is — but
it won’t tell you. There’s a method isFirstResponder, but you’d have to
send it to every view in a window until you find the first responder. One
workaround is to store a reference to the first responder yourself, typi-
cally in your implementation of the text field delegate’s textFieldDid-
BeginEditing:. Do not name this reference firstResponder! This name
is apparently already in use by Cocoa, and a name collision can cause
your app to misbehave. (Can you guess how I know that?)

676 | Chapter 23: Text

Dismissing the keyboard

Once the user has tapped in a text field and the keyboard has automatically appeared,
how is the user supposed to get rid of it? This is unlikely to be a problem on the iPad,
where the keyboard typically contains a special button that dismisses the keyboard.
But on the iPhone, it’s an oddly tricky issue. You would think that the “return” button
in the keyboard would dismiss the keyboard; but, of itself, it doesn’t.

One solution is to be the text field’s delegate and to implement a text field delegate
method, textFieldShouldReturn:. When the user taps the Return key in the keyboard,
we hear about it through this method, and we tell the text field to resign its first res-
ponder status, which dismisses the keyboard:

- (BOOL)textFieldShouldReturn: (UITextField*) tf {
 [tf resignFirstResponder];
 return YES;
}

I’ll provide a more self-contained, automatic solution later in this chapter.

Keyboard covers text field

The keyboard has a position “docked” at the bottom of the screen. This may cover the
text field in which the user wants to type, even if it is first responder. On the iPad with
iOS 5, this may not be an issue, because the user can “undock” the keyboard (possibly
also splitting and shrinking it) and slide it up and down the screen freely. And some
scrolling views, such as a table view, may help out by scrolling automatically. Other-
wise, you’ll probably want to do something to reveal the text field.

To help with this, you can register for any of four keyboard-related notifications:

• UIKeyboardWillShowNotification

• UIKeyboardDidShowNotification

• UIKeyboardWillHideNotification

• UIKeyboardDidHideNotification

Those notifications all have to do with the docked position of the keyboard. On the
iPhone, keyboard docking and keyboard visibility are equivalent: the keyboard is visible
if and only if it is docked. On the iPad under iOS 5, the keyboard is said to “show” if
it is being docked, whether that’s because it is appearing from offscreen or because the
user is docking it; and it is said to “hide” if it is undocked, whether that’s because it is
moving offscreen or because the user is undocking it.

In iOS 5 you can register for two more notifications, which are sent both when the
keyboard enters and leaves the screen and (on the iPad) when the user drags it, splits
or unsplits it, and docks or undocks it:

• UIKeyboardWillChangeFrameNotification

• UIKeyboardDidChangeFrameNotification

UITextField | 677

The notification’s userInfo dictionary contains information about the keyboard de-
scribing what it will do or has done, under these keys:

• UIKeyboardFrameBeginUserInfoKey

• UIKeyboardFrameEndUserInfoKey

• UIKeyboardAnimationDurationUserInfoKey

• UIKeyboardAnimationCurveUserInfoKey

Thus, to a large extent, you can coordinate your actions with those of the keyboard. In
particular, by looking at the UIKeyboardFrameEndUserInfoKey, you know what position
the keyboard is moving to; if necessary, you can compare this with the screen bounds
to learn whether the keyboard will now be on or off the screen.

(In the case of UIKeyboardWillChangeFrameNotification, however, there won’t be any
UIKeyboardFrameEndUserInfoKey when the user starts dragging the keyboard on the
iPad, because the runtime doesn’t know where the user will drag the keyboard to. The
frame value for the split keyboard on the iPad is the size of the entire keyboard, as if it
weren’t split; but its height is shorter than the height of the normal keyboard, so you
may be able to deduce that it is split, if you really need to know that.)

Finding a strategy for dealing with the keyboard’s presence depends on the needs of
your particular app. It may well be that even on the iPad you can ignore UIKeyboardDid-
ChangeFrameNotification and concern yourself only with the docked position of the
keyboard, because, as I mentioned a moment ago, if the keyboard isn’t docked, the
user is free to move and split it. To illustrate, therefore, I’ll concentrate on the most
universal case, where the keyboard moves into and out of docked position and we detect
this with UIKeyboardWillShowNotification and UIKeyboardWillHideNotification.
What should we do if, when the keyboard appears, it covers the text field being edited?

One simple approach is to start with your interface embedded in a scroll view. The user
need not be aware of the scroll view, and the scroll view need not be scrollable by the
user; its purpose is then merely so that you can scroll the interface. (You might object
that in that case the scroll view is unnecessary, because we can effectively scroll the
interface by setting our containing view’s bounds origin. This is true, but using a scroll
view provides more flexibility, and in any case I’ll need the scroll view as I develop the
example.)

Let’s assume, then, that the whole interface is in a scroll view. As our view controller’s
view loads (viewDidLoad), we configure the scroll view’s content size, and register for
two of the keyboard notifications:

[super viewDidLoad];
CGSize sz = self.scrollView.bounds.size;
sz.height *= 2;
self.scrollView.contentSize = sz;
self.scrollView.scrollEnabled = NO;
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardShow:)

678 | Chapter 23: Text

 name:UIKeyboardWillShowNotification
 object:nil];
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardHide:)
 name:UIKeyboardWillHideNotification
 object:nil];

As the keyboard appears, we store the old content offset in an instance variable and
scroll to keep the text field visible. (Observe that the keyboard’s frame comes to us in
window/screen coordinates, so it is necessary to convert it to our scroll view’s coordi-
nates in order to make sense of it.) When the keyboard is dismissed, we scroll back to
our previous position:

- (void) keyboardShow: (NSNotification*) n {
 self->oldOffset = self.scrollView.contentOffset;
 NSDictionary* d = [n userInfo];
 CGRect r = [[d objectForKey:UIKeyboardFrameEndUserInfoKey] CGRectValue];
 r = [self.scrollView convertRect:r fromView:nil];
 CGRect f = self.fr.frame;
 CGFloat y =
 CGRectGetMaxY(f) + r.size.height - self.scrollView.bounds.size.height + 5;
 if (r.origin.y < CGRectGetMaxY(f))
 [self.scrollView setContentOffset:CGPointMake(0, y) animated:YES];
}

- (void) keyboardHide: (NSNotification*) n {
 [self.scrollView setContentOffset:self->oldOffset animated:YES];
}

The heart of that code is, of course, the determination of the value y, the vertical value
to which we’re going to scroll the scroll view. I’ve elected to scroll just enough to keep
the entire text field above the keyboard, with a space of five pixels between them. The
decision involves both aesthetics and functionality; a completely different decision
could be equally valid. For example, if my interface contains exactly three text fields,
it might make sense to scroll in such a way as to make them all visible, so that the user
can work in any of them without dismissing the keyboard.

Let’s now extend the example to cover the situation where the interface is a scroll view
that the user can normally scroll. In that case, we shouldn’t change the scroll view’s
content size. Instead, we should change the behavior of the scroll view so that it operates
coherently within the reduced space left by the keyboard. This is a job for content-
Inset, whose purpose, you will recall (Chapter 20), is precisely to make it possible for
the user to view all of the scroll view’s content even though part of the scroll view is
being covered by something.

So, in viewDidLoad, we still register for keyboard notifications, but we won’t touch the
scroll view. When the keyboard appears, we store not only the current content offset
but the current content inset and scroll indicator inset as well; then we alter them:

UITextField | 679

- (void) keyboardShow: (NSNotification*) n {
 self->oldContentInset = self.scrollView.contentInset;
 self->oldIndicatorInset = self.scrollView.scrollIndicatorInsets;
 self->oldOffset = self.scrollView.contentOffset;
 NSDictionary* d = [n userInfo];
 CGRect r = [[d objectForKey:UIKeyboardFrameEndUserInfoKey] CGRectValue];
 r = [self.scrollView convertRect:r fromView:nil];
 CGRect f = self.fr.frame;
 CGFloat y =
 CGRectGetMaxY(f) + r.size.height - self.scrollView.bounds.size.height + 5;
 if (r.origin.y < CGRectGetMaxY(f))
 [self.scrollView setContentOffset:CGPointMake(0, y) animated:YES];
 UIEdgeInsets insets;
 insets = self.scrollView.contentInset;
 insets.bottom = r.size.height;
 self.scrollView.contentInset = insets;
 insets = self.scrollView.scrollIndicatorInsets;
 insets.bottom = r.size.height;
 self.scrollView.scrollIndicatorInsets = insets;
}

When the keyboard disappears, we restore not only the content offset but the insets as
well; this works best if the insets are restored using delayed performance:

- (void) keyboardHide: (NSNotification*) n {
 [self.scrollView setContentOffset:self->oldOffset animated:YES];
 dispatch_time_t popTime = dispatch_time(DISPATCH_TIME_NOW, 0.5 * NSEC_PER_SEC);
 dispatch_after(popTime, dispatch_get_main_queue(), ^(void){
 self.scrollView.scrollIndicatorInsets = self->oldIndicatorInset;
 self.scrollView.contentInset = self->oldContentInset;
 });
}

This second approach works equally well even if the scroll view was not originally user-
scrollable (because its content size is the same as its bounds size); the interface becomes
user-scrollable only when the keyboard is present, allowing the user to see any part of
it. A nice byproduct is that when the keyboard is present, the scroll view scrolls auto-
matically if the user enters characters into a text field that has been scrolled out of sight
or taps in a text field that’s partially hidden.

Configuring the Keyboard
A UITextField implements the UITextInputTraits protocol, which defines properties
on the UITextField that you can set to determine how the keyboard will look and how
typing in the text field will behave. (These properties can also be set in the nib.) For
example, you can set the keyboardType to UIKeyboardTypePhonePad to make the keyboard
for this text field consist of digits only. You can set the returnKeyType to determine the
text of the Return key (if the keyboard is of a type that has one). You can even supply
your own keyboard by setting the text field’s inputView. You can turn off autocapital-
ization (autocapitalizationType) or autocorrection (autocorrectionType), make the

680 | Chapter 23: Text

Return key disable itself if the text field has no content (enablesReturnKey-
Automatically), and make the text field a password field (secureTextEntry).

The user’s choices in the Settings app with regard to certain text input
features, such as autocapitalization or autocorrection, take priority over
your configuration of these same features for a particular text field.

You can attach an accessory view to the top of the keyboard by setting the text field’s
inputAccessoryView. In this example, the accessory view is a UIButton configured in
the nib and accessed through an outlet property, buttonView. When editing starts, the
text field delegate’s textFieldDidBeginEditing: arrives before the UIKeyboardWillShow-
Notification, so we can use it to configure the keyboard before it appears. We also
store a reference to the text field so that we know the first responder later:

- (void)textFieldDidBeginEditing:(UITextField *)tf {
 self.fr = tf; // keep track of first responder
 tf.inputAccessoryView = self.buttonView;
}

The button is a Next button. When the user taps it, we use it to move editing to the
next text field:

- (IBAction)doNextField:(id)sender {
 UITextField* nextField = // ... figure it out, based on self.fr
 [nextField becomeFirstResponder];
}

The user can control the localization of the keyboard character set in the Settings app,
either through a choice of the system’s base language or by enabling additional “inter-
national keyboards.” In the latter case, the user can switch among keyboard character
sets while the keyboard is showing. But, as far as I can tell, your code can’t make this
choice, so you can’t, for example, have a Russian-teaching app in which a certain text
field automatically shows the Cyrillic keyboard. You can ask the user to switch key-
boards manually, but if you really want a particular keyboard to appear regardless of
the user’s settings and behavior, you’ll have to create it yourself and provide it as the
inputView.

Text Field Delegate and Control Event Messages
As editing begins and proceeds in a text field, a sequence of messages is sent to the text
field’s delegate (some of which are also available to other objects as notifications). Using
these, you can customize the text field’s behavior during editing:

textFieldShouldBeginEditing:

Return NO to prevent the text field from becoming first responder.

UITextField | 681

textFieldDidBeginEditing: (and UITextFieldTextDidBeginEditingNotification)
The text field has become first responder.

textFieldShouldClear:

Return NO to prevent the operation of the Clear button or of automatic clearing
on entry (clearsOnBeginEditing).

textFieldShouldReturn:

The user has tapped the Return button in the keyboard. We have already seen that
this can be used as signal to dismiss the keyboard.

textField:shouldChangeCharactersInRange:replacementString:

Sent when the user changes the text in the field by typing or pasting, or by back-
spacing or cutting (in which case the replacement string will have zero length).
Return NO to prevent the proposed change; you can substitute text by changing
the text field’s text directly (there is no circularity, as this delegate method is not
called when you do that). In this example, the user can enter only lowercase char-
acters:

-(BOOL)textField:(UITextField *)textField
 shouldChangeCharactersInRange:(NSRange)range
 replacementString:(NSString *)string {
 NSString* lc = [string lowercaseString];
 if ([string isEqualToString:lc])
 return YES;
 textField.text = [textField.text stringByReplacingCharactersInRange:range
 withString:lc];
 return NO;
}

It is common practice to implement this delegate method as a way of learning that
the text has been changed, even if you then always return YES. The UITextField-
TextDidChangeNotification corresponds loosely.

textFieldShouldEndEditing:

Return NO to prevent the text field from resigning first responder (even if you just
sent resignFirstResponder to it). You might do this, for example, because the text
is invalid or unacceptable in some way. The user will not know why the text field
is refusing to end editing, so the usual thing is to put up an alert (Chapter 26)
explaining the problem.

textFieldDidEndEditing: (and UITextFieldTextDidEndEditingNotification)
The text field has resigned first responder. See Chapter 21 for an example of using
textFieldDidEndEditing: to fetch the text field’s current text and store it in the
model.

A text field is also a control. This means you can attach a target–action pair to any of
the events that it reports in order to receive a message when that event occurs (see
Chapter 11):

682 | Chapter 23: Text

• The user can touch and drag, triggering Touch Down and the various Touch Drag
events.

• If the user touches in such a way that the text field enters editing mode, Editing
Did Begin and Touch Cancel are triggered; if the user causes the text field to enter
editing mode in some other way (such as by tabbing into it), Editing Did Begin is
triggered without any Touch events.

• As the user edits, Editing Changed is triggered. If the user taps while in editing
mode, Touch Down (and possibly Touch Down Repeat) and Touch Cancel are
triggered.

• Finally, when editing ends, Editing Did End is triggered; if the user stops editing
by tapping Return in the keyboard, Did End on Exit is triggered first.

In general, you’re more likely to treat a text field as a text field (through its delegate
messages) than as a control (through its control events). However, the Did End on Exit
event message has an interesting property: it provides an alternative way to dismiss the
keyboard when the user taps a text field keyboard’s Return button. If there is a Did
End on Exit target–action pair for this text field, then if the text field’s delegate does
not return NO from textFieldShouldReturn:, the keyboard will be dismissed automat-
ically when the user taps the Return key. (The action handler for Did End on Exit
doesn’t actually have to do anything.)

This suggests the following trick for getting automatic keyboard dismissal with no code
at all. In the nib, edit the First Responder proxy object in the Attributes inspector,
adding a new First Responder Action; let’s call it dummy:. Now hook the Did End on
Exit event of the text field to the dummy: action of the First Responder proxy object.
That’s it! Because the text field’s Did End on Exit event now has a target–action pair,
the text field automatically dismisses its keyboard when the user taps Return; because
there is no penalty for not finding a handler for a message sent up the responder chain,
the app doesn’t crash even though there is no implementation of dummy: anywhere.

Of course, you can implement that trick in code instead:

[textField addTarget:nil action:@selector(dummy:)
 forControlEvents:UIControlEventEditingDidEndOnExit];

A disabled text field emits no delegate messages or control events.

The Text Field Menu
When the user double-taps or long-presses in a text field, the menu appears. It contains
menu items such as Select, Select All, Paste, Copy, Cut, and Replace; which menu items
appear depends on the circumstances.

The menu can be customized, but you are unlikely to do this with respect to a text field,
because you don’t get any access to information about the text field’s selection, making
it difficult to decide intelligently what menu items should appear or what they should

UITextField | 683

do when chosen. Thus, for the most part, it is best not to alter a text field’s menu or to
interfere with its behavior.

If you do want to alter the menu, the key facts you need to know are these:

• You can add menu items to the menu through the singleton global shared UIMenu-
Controller object. Its menuItems property is an array of custom menu items — that
is, menu items that may appear in addition to those that the system puts there. A
menu item is a UIMenuItem, which is simply a title (which appears in the menu)
plus an action selector. The action will be called, nil-targeted, thus sending it up
the responder chain, when the user taps the menu item (and, by default, the menu
will be dismissed).

• The actions for the standard menu items are nil-targeted, so they percolate up the
responder chain, and you can interfere with their behavior by implementing their
actions. Their selectors are listed in the UIResponderStandardEditActions informal
protocol (except for Replace, which is implemented through an undocumented
selector promptForReplace:).

• You govern the presence or absence of any menu item by implementing the UIR-
esponder method canPerformAction:withSender: in the responder chain.

As an example, we’ll devise a text field in which the standard menu is completely re-
placed by our own menu, which contains a single menu item, Expand. I’m imagining
here, for instance, a text field where the user can type a U.S. state two-letter abbreviation
(such as “CA”) and can then summon the menu and tap Expand to get the state’s full
name (such as “California”). We’ll implement this by means of a UITextField subclass.

At some point before the user can tap in an instance of our UITextField subclass, we
modify the global menu; we could do this in the app delegate as the app starts up, for
example:

UIMenuItem *mi = [[UIMenuItem alloc] initWithTitle:@"Expand"
 action:@selector(expand:)];
UIMenuController *mc = [UIMenuController sharedMenuController];
mc.menuItems = [NSArray arrayWithObject:mi];

In our UITextField subclass, we implement canPerformAction:withSender: to govern
the contents of the menu. The placement of this implementation is crucial. By putting
it here, we guarantee that this implementation will be called when an instance of this
subclass is first responder, but at no other time. Therefore, every other text field (or
any other object that displays a menu) will behave normally, displaying Cut or Select
All or whatever’s appropriate; only an instance of our subclass will have the special
menu, displaying only Expand:

- (BOOL) canPerformAction:(SEL)action withSender: (id) sender {
 if (action == @selector(expand:))
 return ([self.text length] == 2); // could be more intelligent here
 return NO;
}

684 | Chapter 23: Text

When the user chooses the Expand menu item, the expand: message is sent up the
responder chain. We catch it in our UITextField subclass and obey it. Proceeding to
match abbreviations with state names is left as an exercise for the reader:

- (void) expand: (id) sender {
 NSString* s = self.text;
 // ... alter s here ...
 self.text = s;
}

By setting the text property at the end of the expand: method, we cause the selection
handles to vanish if there are any.

To demonstrate interference with the standard menu items, we’ll modify the example
to allow the Copy menu item to appear if it wants to:

- (BOOL) canPerformAction:(SEL)action withSender:(id)sender {
 if (action == @selector(expand:))
 return ([self.text length] == 2);
 if (action == @selector(copy:))
 return [super canPerformAction:action withSender:sender];
 return NO;
}

Now we’ll implement copy: and modify its behavior. First we call super to get standard
copying behavior; then we modify what’s now on the pasteboard:

- (void) copy: (id) sender {
 [super copy: sender];
 UIPasteboard* pb = [UIPasteboard generalPasteboard];
 NSString* s = pb.string;
 // ... alter s here
 pb.string = s;
}

UITextView
A text view (UITextView) is sort of a scrollable, multiline version of a text field (UIText-
Field, with which it should not be confused). It is a scroll view subclass (UIScrollView,
Chapter 20), and thus has (by default) no border; it is not a control. Nevertheless, it
has many close similarities to a text field. It has text, font, textColor, and text-
Alignment properties; it can be editable or not, according to its editable property. (You
might use a scrollable noneditable text view instead of a UILabel, so as not to be limited
to a fixed number of lines of text.) An editable text view governs its keyboard just as a
text field does: when it is first responder, it is being edited and shows the keyboard,
and it implements the UITextInput protocol and has inputView and inputAccessory-
View properties. Its menu works the same way as a text field’s as well.

One big difference, from the programmer’s point of view, between a text view and a
text field is that a text view gives you information about, and control of, its selection:
it has a selectedRange property which you can get and set, and it adds a scrollRangeTo-

UITextView | 685

Visible: method so that you can scroll in terms of a range of its text. The selected-
Range is useful especially if the text view is first responder, because the selection is then
meaningful and visible, but it does work (invisibly) even if the text view is not first
responder.

A text view also has a dataDetectorTypes property that, if the text view is not editable,
allows text of certain types (presumably located using NSDataDetector, see Chap-
ter 10) to be rendered as tappable links.

A text view’s delegate messages (UITextViewDelegate protocol) and notifications are
quite parallel to those of a text field. The big differences are:

• There’s a textViewDidChange: delegate message (and an accompanying UITextView-
TextDidChangeNotification), whereas a text field has its Editing Changed control
event (and notification).

• There’s a textViewDidChangeSelection: delegate message, whereas a text field is
uninformative about the selection.

A text view’s contentSize is maintained for you, automatically, as the text changes. You
can track changes to the content size (in textViewDidChange:, for example), but you
probably shouldn’t try to change it. A common use of content size tracking is to im-
plement a self-sizing text view, that is, a text view that adjusts its size automatically to
embrace the amount of text it contains:

- (void) adjust {
 CGSize sz = self->tv.contentSize;
 CGRect f = self->tv.frame;
 f.size = sz;
 self->tv.frame = f;
}

- (void)textViewDidChange:(UITextView *)textView {
 [self adjust];
}

A self-sizing text view works best if the text view is not user-scrollable (scrollEnabled
is NO). If it is user-scrollable, it might scroll itself as the user enters text, and you might
then have to struggle to prevent it from doing so:

- (void)scrollViewDidScroll:(UIScrollView *)scrollView {
 scrollView.contentOffset = CGPointZero;
}

Dismissing the keyboard for a text view works differently than for a text field. Because
a text view is multiline, the Return key is meaningful for character entry; you aren’t
likely to want to misuse it as a way of dismissing the keyboard, and you don’t get a
special delegate message for it. On the iPad, the virtual keyboard may contain a button
that dismisses the keyboard. On the iPhone, the interface might well consist of a text
view and the keyboard, so that instead of dismissing the keyboard, the user dismisses
the entire interface. For example, in the Mail app on the iPhone, when the user is

686 | Chapter 23: Text

composing a message, the keyboard is present the whole time. On the other hand, in
the Notes app, a note alternates between being read fullscreen and being edited with
the keyboard present; in the latter case, a Done button is provided to dismiss the key-
board. If there’s no good place to put a Done button in the interface, you could attach
an accessory view to the keyboard itself.

The problem of having part of a text view be covered by the virtual keyboard can’t be
solved by meddling with its contentInset, because for some undocumented reason a
text view doesn’t accept changes to the bottom of its contentInset — the value is always
reset to 32. The solution is therefore to shrink the text view itself.

In this example, we imagine a simple interface containing a single text view (tv) and
no text fields; thus, if the keyboard shows, it must be because our text view is being
edited. As our view controller loads its view, we register for keyboard notifications
UIKeyboardWillShowNotification and UIKeyboardWillHideNotification as we did in our
text field example. When the keyboard appears, we store the text view’s frame and
shrink the text view; when the keyboard hides, we restore the text view’s frame:

- (void) keyboardShow: (NSNotification*) n {
 NSDictionary* d = [n userInfo];
 CGRect r = [[d objectForKey:UIKeyboardFrameEndUserInfoKey] CGRectValue];
 r = [self.view convertRect:r fromView:nil];
 CGRect f = self.tv.frame;
 self->oldFrame = f;
 f.size.height = self.view.frame.size.height - f.origin.y - r.size.height;
 self.tv.frame = f;
}

- (void) keyboardHide: (NSNotification*) n {
 self.tv.frame = self->oldFrame;
}

This approach works, but the scroll view’s change of frame lacks animation to match
that of the keyboard. We can easily fix that, because the notification’s userInfo dic-
tionary describes that animation in detail:

- (void) keyboardShow: (NSNotification*) n {
 NSDictionary* d = [n userInfo];
 CGRect r = [[d objectForKey:UIKeyboardFrameEndUserInfoKey] CGRectValue];
 NSNumber* curve = [d objectForKey:UIKeyboardAnimationCurveUserInfoKey];
 NSNumber* duration = [d objectForKey:UIKeyboardAnimationDurationUserInfoKey];
 r = [self.view convertRect:r fromView:nil];
 CGRect f = self.tv.frame;
 self->oldFrame = f;
 f.size.height = self.view.frame.size.height - f.origin.y - r.size.height;
 [UIView beginAnimations:nil context:NULL];
 [UIView setAnimationDuration:[duration floatValue]];
 [UIView setAnimationCurve:[curve intValue]];
 self.tv.frame = f;
 [UIView commitAnimations];
}

- (void) keyboardHide: (NSNotification*) n {

UITextView | 687

 NSDictionary* d = [n userInfo];
 NSNumber* curve = [d objectForKey:UIKeyboardAnimationCurveUserInfoKey];
 NSNumber* duration = [d objectForKey:UIKeyboardAnimationDurationUserInfoKey];
 [UIView beginAnimations:nil context:NULL];
 [UIView setAnimationDuration:[duration floatValue]];
 [UIView setAnimationCurve:[curve intValue]];
 self.tv.frame = self->oldFrame;
 [UIView commitAnimations];
}

Apple’s own apps display some interesting uses of text views. How, for instance, is the
iPhone Notes app interface for reading and editing a note actually achieved? Its key
features are that the text appears to be on lined paper; the first line of the text has some
space above it, where the date appears; and the text has a wide left margin.

The text is presumably a text view; it must have a background color of clearColor to
allow the paper to show through. My guess is that the space at the start of the text is
achieved with the text view’s contentInset, whose top value, at least, is obeyed; the
wide left margin, on the other hand, suggests that the left edge of the text view is inset
from the left edge of the “paper.” The paper itself might be an image view; by tracking
the text view’s contentSize (in textViewDidChange:, for example), the app can make
sure that the paper image is always sufficiently tall, and by tracking the scroll position
(in scrollViewDidScroll), the image view’s transform can be adjusted to keep the lines
of text coordinated with the lines of the paper:

- (void)scrollViewDidScroll:(UIScrollView *)scrollView {
 CGFloat yoff = scrollView.contentOffset.y + scrollView.contentInset.top;
 paperMiddle.transform = CGAffineTransformMakeTranslation(0,-yoff);
}

Another interesting interface is the Mail app’s screen for composing a message. At the
top are fields for addresses and subject; then comes the body of the message, which
gets longer as the user types into it. The message body is evidently a text view, but it
lacks scroll indicators and cannot itself be scrolled; what scrolls is the interface as a
whole. So this must be a self-sizing text view; presumably the text view’s contentSize
is tracked, and both the text view’s size and the enclosing scroll view are adjusted
accordingly. (But the Mail app’s screen for replying to a message uses styled text, so it
is presumably drawn with Core Text, discussed in the next section.)

Core Text
Core Text allows strings to be drawn with multiple fonts and styles. It is implemented
by the Core Text framework; to utilize it, your app must link to CoreText.framework,
and your code must import <CoreText/CoreText.h>. It uses C, not Objective-C, and it’s
rather verbose, but getting started with it is not difficult.

A typical simple Core Text drawing operation begins with an attributed string. This is
an NSAttributedString (or CFAttributedString; they are toll-free bridged), which is a
string accompanied by attributes (such as font, size, and style) applied over ranges.

688 | Chapter 23: Text

Each attribute is described as a name–value pair. The names of the attributes are listed
in Apple’s Core Text String Attributes Reference, along with their value types. The most
commonly used attribute is probably kCTFontAttributeName, which determines the font
and size of a stretch of text; its value is a CTFontRef, a Core Text type which is not
bridged to UIFont. You’ll typically supply attributes as a dictionary of name–value
pairs.

For example, imagine that we have a UIView subclass called StyledText, which has a
public text property that is an attributed string. Its job will be to draw that attributed
string into itself:

@interface StyledText : UIView
@property (nonatomic, copy) NSAttributedString* text;
@end

Imagine further that an instance of StyledText appears in the interface and that we have
a reference to it as an instance variable called styler. How, then, might we create an
NSAttributedString and assign it to styler.text? Let’s start with a mutable attributed
string:

NSString* s = @"Yo ho ho and a bottle of rum!";
NSMutableAttributedString* mas =
 [[NSMutableAttributedString alloc] initWithString:s];

Now I’ll apply some attributes. I’ll cycle through the words of the string; to each word
I’ll apply a slightly larger size of the same font. My base font will be Baskerville 18. Note
that the name supplied when creating a CTFont must be a PostScript name; a free app,
Typefaces, is helpful for learning all the fonts on a device along with their PostScript
names:

__block CGFloat f = 18.0;
CTFontRef basefont = CTFontCreateWithName((CFStringRef)@"Baskerville", f, NULL);
[s enumerateSubstringsInRange:NSMakeRange(0, [s length])
 options:NSStringEnumerationByWords
 usingBlock:
 ^(NSString *substring, NSRange substringRange, NSRange encRange, BOOL *stop) {
 f += 3.5;
 CTFontRef font2 = CTFontCreateCopyWithAttributes(basefont, f, NULL, NULL);
 NSDictionary* d2 = [[NSDictionary alloc] initWithObjectsAndKeys:
 CFBridgingRelease(font2),
 (NSString*)kCTFontAttributeName, nil];
 [mas addAttributes:d2 range:encRange];
 }];

Finally, I’ll make the last word bold. The easiest way to obtain the range of the last
word is to cycle through the words backward and stop after the first one (by setting the
incoming BOOL, stop, by indirection). Boldness is a font trait; we must obtain a bold
variant of the original font. The font we started with, Baskerville, has such a variant,
so this will work:

Core Text | 689

[s enumerateSubstringsInRange:NSMakeRange(0, [s length])
 options: (NSStringEnumerationByWords |
 NSStringEnumerationReverse)
 usingBlock:
 ^(NSString *substring, NSRange substringRange, NSRange encRange, BOOL *stop) {
 CTFontRef font2 =
 CTFontCreateCopyWithSymbolicTraits (
 basefont, f, NULL, kCTFontBoldTrait, kCTFontBoldTrait);
 NSDictionary* d2 = [[NSDictionary alloc] initWithObjectsAndKeys:
 CFBridgingRelease(font2),
 (NSString*)kCTFontAttributeName, nil];
 [mas addAttributes:d2 range:encRange];
 *stop = YES; // do just once, last word
 }];

You’re probably wondering why I seem to ask for the bold variant (kCTFontBoldTrait)
twice. The first time (the fourth argument in the call to CTFontCreateCopyWithSymbolic-
Traits) I’m providing a bitmask. The second time (the fifth argument) I’m providing a
second bitmask that says which bits of the first bitmask are meaningful. For example,
suppose I’m starting with a font that might or might not be italic, and I want to obtain
its bold variant — meaning that if it is italic, I want a bold italic font. It isn’t enough to
supply a bitmask whose value is kCTFontBoldTrait, because this appears to switch
boldness on and everything else off. Thus, the second bitmask says, “Only this one bit
is important; leave all other attributes alone.” By the same token, to get a nonbold
variant of a font that might be bold, you’d supply 0 as the fourth argument and kCTFont-
BoldTrait as the fifth argument.

Finally, I’ll hand the attributed string over to our self-drawing interface object and
complete our memory management:

self.styler.text = mas;
[self.styler setNeedsDisplay];
CFRelease(basefont);

(And did you notice the cool use of ARC’s CFBridgingRelease earlier? Recall from
Chapter 12 that this is a way of crossing the bridge from a CFTypeRef to an Objective-
C object and, at the same time, giving ARC responsibility for completing the memory
management that we started by calling a Create function.)

We have now generated an NSAttributedString and handed it over to our StyledText
object. How will the StyledText object draw itself? There are two main ways: a CAText-
Layer and direct drawing with Core Text itself.

Let’s start by using a CATextLayer (Chapter 16). Because this UIView subclass will be
instantiated from a nib, I’ll give it a CATextLayer in awakeFromNib, retaining a reference
to it as an instance variable, textLayer. I’ll also implement layoutSublayersOfLayer: so
that the CATextLayer always has the bounds of the view as a whole:

- (void) awakeFromNib {
 CATextLayer* lay = [[CATextLayer alloc] init];
 lay.frame = self.layer.bounds;
 [self.layer addSublayer:lay];

690 | Chapter 23: Text

 self.textLayer = lay;
}

- (void) layoutSublayersOfLayer:(CALayer *)layer {
 [[layer.sublayers objectAtIndex:0] setFrame:layer.bounds];
}

Our drawRect: implementation is now trivial; we simply set the CATextLayer’s
string property to our attributed string:

- (void)drawRect:(CGRect)rect {
 if (!self.text)
 return;
 self.textLayer.string = self.text;
}

Sure enough, our attributed string is drawn (Figure 23-1)!

CATextLayer has some additional useful properties. If the width of the layer is insuf-
ficient to display the entire string, we can get truncation behavior with the truncation-
Mode property. If the wrapped property is set to YES, the string will wrap. We can also
set the alignment with the alignmentMode property. Here, I’ll wrap and center the text,
and I’ll narrow the view so that the results are evident (Figure 23-2):

lay.wrapped = YES;
lay.alignmentMode = kCAAlignmentCenter;
self.autoresizingMask = UIViewAutoresizingFlexibleHeight;
CGRect f = self.frame;
f.size.width = 130;
self.frame = f;

Figure 23-1. Text whose size increases word by word

Figure 23-2. The same text wrapped and centered

Core Text | 691

The second way to display an attributed string is to draw it directly into a graphics
context with Core Text. The text will be drawn upside-down unless we flip the graphics
context’s coordinate system. If the string is a single line we can draw it directly into a
graphics context with a CTLineRef. Positioning the drawing is up to us.

The following code results in a drawing that looks like Figure 23-1:

- (void)drawRect:(CGRect)rect {
 if (!self.text)
 return;
 CGContextRef ctx = UIGraphicsGetCurrentContext();
 // flip context
 CGContextSaveGState(ctx);
 CGContextTranslateCTM(ctx, 0, self.bounds.size.height);
 CGContextScaleCTM(ctx, 1.0, -1.0);
 CTLineRef line =
 CTLineCreateWithAttributedString(
 (__bridge CFAttributedStringRef)self.text);
 CGContextSetTextPosition(ctx, 1, 3);
 CTLineDraw(line, ctx);
 CFRelease(line);
 CGContextRestoreGState(ctx);
}

If we want our string to be drawn wrapped, we must use a CTFramesetter. The frame-
setter requires a frame into which to draw; this is expressed as a CGPath, but don’t get
all excited about the possibility of drawing wrapped into some interesting shape, such
as an ellipse, because on iOS the path must describe a rectangle:

- (void)drawRect:(CGRect)rect {
 if (!self.text)
 return;
 CGContextRef ctx = UIGraphicsGetCurrentContext();
 // flip context
 CGContextSaveGState(ctx);
 CGContextTranslateCTM(ctx, 0, self.bounds.size.height);
 CGContextScaleCTM(ctx, 1.0, -1.0);
 CTFramesetterRef fs =
 CTFramesetterCreateWithAttributedString(
 (__bridge CFAttributedStringRef)self.text);
 CGMutablePathRef path = CGPathCreateMutable();
 CGPathAddRect(path, NULL, rect);
 // range (0,0) means "the whole string"
 CTFrameRef f = CTFramesetterCreateFrame(fs, CFRangeMake(0, 0), path, NULL);
 CTFrameDraw(f, ctx);
 CGPathRelease(path);
 CFRelease(f);
 CFRelease(fs);
 CGContextRestoreGState(ctx);
}

That code wraps, but the text is left-aligned. With a CTFramesetter, drawing behaviors
such as alignment and truncation can be expressed as part of the attributed string itself
by applying a CTParagraphStyle. Paragraph styles can also include first-line indent, tab

692 | Chapter 23: Text

stops, line height, spacing, and more. To center our text (which results in a drawing
that looks like Figure 23-2), we apply a centered style to our text before drawing it:

NSMutableAttributedString* mas = [self.text mutableCopy];
NSString* s = [mas string];
CTTextAlignment centerValue = kCTCenterTextAlignment;
CTParagraphStyleSetting center =
 {kCTParagraphStyleSpecifierAlignment, sizeof(centerValue), ¢erValue};
CTParagraphStyleSetting pss[1] = {center};
CTParagraphStyleRef ps = CTParagraphStyleCreate(pss, 1);
[mas addAttribute:(NSString*)kCTParagraphStyleAttributeName
 value:CFBridgingRelease(ps)
 range:NSMakeRange(0, [s length])];
self.text = mas;

Core Text can also access font typographical features that can’t be accessed in any other
way, such as the built-in ability of Didot and Hoefler Text to render themselves in small
caps. As an example, we’ll draw the names of the 50 U.S. states in small caps, centered,
in two columns on an iPad (Figure 23-3).

As we create the NSAttributedString, we use a convenience function, CTFontDescriptor-
CreateCopyWithFeature, to access Didot’s small caps variant. I had to log the result of
CTFontCopyFeatures to learn the “magic numbers” for this variant of this font (there is
also old documentation of font features at http://developer.apple.com/fonts/registry).
We apply a centered style, just as before, and set our styler object’s text:

Figure 23-3. Two-column text in small caps

Core Text | 693

http://developer.apple.com/fonts/registry

NSString* path = [[NSBundle mainBundle] pathForResource:@"states" ofType:@"txt"];
NSString* s = [NSString stringWithContentsOfFile:path
 encoding:NSUTF8StringEncoding error:nil];
CTFontRef font = CTFontCreateWithName((CFStringRef)@"Didot", 18, NULL);
CTFontDescriptorRef fontdesc1 = CTFontCopyFontDescriptor(font);
CTFontDescriptorRef fontdesc2 =
CTFontDescriptorCreateCopyWithFeature(fontdesc1,
 (__bridge CFNumberRef)[NSNumber numberWithInt:3],
 (__bridge CFNumberRef)[NSNumber numberWithInt:3]);
CTFontRef basefont = CTFontCreateWithFontDescriptor(fontdesc2, 0, NULL);
NSDictionary* d = [[NSDictionary alloc] initWithObjectsAndKeys:
 CFBridgingRelease(basefont),
 (NSString*)kCTFontAttributeName, nil];
NSMutableAttributedString* mas =
 [[NSMutableAttributedString alloc] initWithString:s attributes:d];
CTTextAlignment centerValue = kCTCenterTextAlignment;
CTParagraphStyleSetting center =
 {kCTParagraphStyleSpecifierAlignment, sizeof(centerValue), ¢erValue};
CTParagraphStyleSetting pss[1] = {center};
CTParagraphStyleRef ps = CTParagraphStyleCreate(pss, 1);
[mas addAttribute:(NSString*)kCTParagraphStyleAttributeName
 value:CFBridgingRelease(ps)
 range:NSMakeRange(0, [s length])];
self.styler.text = mas;
CFRelease(fontdesc2); CFRelease(fontdesc1); CFRelease(font);

The two-column arrangement is achieved by drawing into two frames. In our draw-
Rect code, after flipping the context as before (not shown), we draw the entire text into
the first frame and then use CTFrameGetVisibleStringRange to learn how much of the
text actually fits into it; this tells us where in the attributed string to start drawing into
the second frame:

CGRect r1 = rect;
r1.size.width /= 2.0; // column 1
CGRect r2 = r1;
r2.origin.x += r2.size.width; // column 2
CTFramesetterRef fs =
 CTFramesetterCreateWithAttributedString(
 (__bridge CFAttributedStringRef)self.text);
// draw column 1
CGMutablePathRef path = CGPathCreateMutable();
CGPathAddRect(path, NULL, r1);
CTFrameRef f = CTFramesetterCreateFrame(fs, CFRangeMake(0, 0), path, NULL);
CTFrameDraw(f, ctx);
CGPathRelease(path);
CFRange drawnRange = CTFrameGetVisibleStringRange(f);
CFRelease(f);
// draw column 2
path = CGPathCreateMutable();
CGPathAddRect(path, NULL, r2);
f = CTFramesetterCreateFrame(fs,
 CFRangeMake(drawnRange.location + drawnRange.length, 0), path, NULL);

694 | Chapter 23: Text

CTFrameDraw(f, ctx);
CGPathRelease(path);
CFRelease(f);
CFRelease(fs);

The result is Figure 23-3. But now let’s go further. A frame is itself composed of CTLines
describing how each line of text was laid out. To demonstrate, let’s turn our two-
column list of states into an interactive interface: when the user taps the name of a state,
we’ll fetch that name, and we’ll briefly draw a rectangle around the name to provide
feedback (Figure 23-4).

We have two NSMutableArray properties, theLines and theBounds. We initialize them
to empty arrays at the start of our drawRect:, and each time we call CTFrameDraw we also
call a utility method:

[self appendLinesAndBoundsOfFrame:f context:ctx];

In appendLinesAndBoundsOfFrame:context: we save the CTLines of the frame into the-
Lines; we also calculate the drawn bounds of each line and save it into theBounds:

- (void) appendLinesAndBoundsOfFrame:(CTFrameRef)f context:(CGContextRef)ctx{
 CGAffineTransform t1 =
 CGAffineTransformMakeTranslation(0, self.bounds.size.height);
 CGAffineTransform t2 = CGAffineTransformMakeScale(1, -1);
 CGAffineTransform t = CGAffineTransformConcat(t2, t1);
 CGPathRef p = CTFrameGetPath(f);
 CGRect r = CGPathGetBoundingBox(p); // this is the frame bounds
 NSArray* lines = (__bridge NSArray*)CTFrameGetLines(f);
 [self.theLines addObjectsFromArray:lines];
 CGPoint origins[[lines count]];
 CTFrameGetLineOrigins(f, CFRangeMake(0,0), origins);
 for (int i = 0; i < [lines count]; i++) {
 CTLineRef aLine = (__bridge CTLineRef)[lines objectAtIndex:i];
 CGRect b = CTLineGetImageBounds((CTLineRef)aLine, ctx);
 // the line origin plus the image bounds size is the bounds we want
 CGRect b2 = { origins[i], b.size };
 // but it is expressed in terms of the frame, so we must compensate
 b2.origin.x += r.origin.x;
 b2.origin.y += r.origin.y;
 // we must also compensate for the flippedness of the graphics context
 b2 = CGRectApplyAffineTransform(b2, t);
 [self.theBounds addObject: [NSValue valueWithCGRect:b2]];
 }
}

Figure 23-4. The user has tapped on California

Core Text | 695

We have attached a UITapGestureRecognizer to our view; when the user taps, we cycle
through the saved bounds to see if any of them contains the tap point. If it does, we
fetch the name of the state, and we draw a rectangle around it:

- (void) tapped: (UITapGestureRecognizer*) tap {
 CGPoint loc = [tap locationInView:self];
 for (int i = 0; i < [self.theBounds count]; i++) {
 CGRect rect = [[self.theBounds objectAtIndex: i] CGRectValue];
 if (CGRectContainsPoint(rect, loc)) {
 // draw rectangle for feedback
 CALayer* lay = [CALayer layer];
 lay.frame = CGRectInset(rect, -5, -5);
 lay.borderWidth = 2;
 [self.layer addSublayer: lay];
 [lay performSelector:@selector(removeFromSuperlayer)
 withObject:nil afterDelay:0.3];
 // fetch the drawn string tapped on
 CTLineRef theLine =
 (__bridge CTLineRef)[self.theLines objectAtIndex:i];
 CFRange range = CTLineGetStringRange(theLine);
 CFStringRef s = CFStringCreateWithSubstring(
 NULL, (__bridge CFStringRef)[self.text string], range);
 // ... could do something useful with string here ...
 NSLog(@"tapped %@", s);
 CFRelease(s);
 break;
 }
 }
}

If we needed to, we could even learn what character the user tapped by going down to
the level of glyph runs (CTRun) and glyphs (CTGlyph). We have barely scratched the
surface of what Core Text can do. Read Apple’s Core Text Programming Guide for
further information.

UITextInput
The UITextInput protocol, along with related protocols, allows you to design your own
interface object that interacts with the text input system to receive keypresses from the
keyboard and draw the corresponding text (with Core Text); see the chapter “Drawing
and Managing Text” in Apple’s Text, Web, and Editing Programming Guide for iOS, as
well as Apple’s SimpleTextInput example code. This is an involved subject and beyond
the scope of this book, not least because I’ve no experience with it.

696 | Chapter 23: Text

CHAPTER 24

Web Views

A web view (UIWebView) is a UIView subclass that acts as a versatile renderer of text
in various formats, including:

• HTML

• PDF

• RTF, including .rtfd (which must be supplied in a zipped format, .rtfd.zip)

• Microsoft Word (.doc), Excel (.xls), and PowerPoint (.ppt)

• Pages, Numbers, and Keynote; before iWork 2009, these must be zipped
(e.g., .key.zip), but starting with iWork 2009 they must not be zipped.

In addition to displaying rendered text, a web view is a web browser. This means that
if you ask a web view to display HTML that makes reference to an object available on
disk or over the Internet, such as an image to be shown as the source of an img tag, the
web view by default will attempt to fetch it and display it. Similarly, if the user taps,
within the web view, on a link that leads to content on disk or over the Internet that
the web view can render, the web view by default will attempt to fetch that content and
display it. Indeed, a web view is, in effect, a front end for WebKit, the same rendering
engine used by Mobile Safari (and, for that matter, by Safari on Mac OS X). A web view
can display non-HTML file formats such as PDF, RTF, and so on, precisely because
WebKit can display them.

As the user taps links and displays web pages, the web view keeps back-and-forward
lists, just like a web browser. Two properties, canGoBack and canGoForward, and two
methods, goBack and goForward, let you interact with this list. Your interface could thus
contain Back and Forward buttons, like a miniature web browser.

A web view is scrollable, but UIWebView is not a UIScrollView subclass; it has a scroll
view, rather than being a scroll view. Starting in iOS 5, however, you can access a web
view’s scroll view as its scrollView property.

A web view is zoomable if its scalesToFit property is YES; in that case, it initially scales
its content to fit, and the user can zoom the content (this includes use of the gesture,

697

familiar from Mobile Safari, whereby double-tapping part of a web page zooms to that
region of the page). Like a text view, its dataDetectorTypes property lets you set certain
types of data to be automatically converted to clickable links. An obvious difference
from a text view is that the target of a web page link may be displayed right there in the
web view, rather than switching to Mobile Safari.

UIWebView is not intended for subclassing.

It is possible to design an entire app that is effectively nothing but a UIWebView —
especially if you have control of the server with which the user is interacting. Indeed,
before the advent of iOS, an iPhone app was a web application. There are still iPhone
apps that work this way, but such an approach to app design is outside the scope of
this book. (See Apple’s Mobile Safari Web Application Tutorial if you’re curious.)

A web view’s most important task is to render HTML content; like any browser, a web
view understands HTML, CSS, and JavaScript. In order to construct content for a web
view, you must know HTML, CSS, and JavaScript. Discussion of those languages is
beyond the scope of this book; each would require a book (at least) of its own.

Loading Content
To load a web view with content initially, you’re going to need one of three things:

An NSURLRequest
Construct an NSURLRequest and call loadRequest:. An NSURLRequest might
involve a file URL referring to a file on disk (within your app’s bundle, for instance);
the web view will deduce the file’s type from its extension. But it might also involve
the URL of a resource to be fetched across the Internet, in which case you can
configure various additional aspects of the request (for example, you can form a
POST request). This is the only form of loading that works with goBack (because
in the other two forms, there is no URL to go back to).

An HTML string
Construct an NSString consisting of valid HTML and call loadHTMLString:base-
URL:. The baseURL: will be used to fetch any resources referred to by a partial (rel-
ative) URL in the string. For example, you could cause partial URLs to refer to
resources inside your app’s bundle.

Data and a MIME type
Obtain an NSData object and call loadData:MIMEType:textEncodingName:base-
URL:. Obviously, this requires that you know the appropriate MIME type, and that
you obtain the content as NSData (or convert it to NSData). Typically, this will be
because the content was itself obtained by fetching it from the Internet (more about
that in Chapter 37).

698 | Chapter 24: Web Views

There is often more than one way to load a given piece of content. For instance, one of
Apple’s own examples suggests that you display a PDF file in your app’s bundle by
loading it as data, along these lines:

NSString *thePath = [[NSBundle mainBundle] pathForResource:@"MyPDF" ofType:@"pdf"];
NSData *pdfData = [NSData dataWithContentsOfFile:thePath];
[self.wv loadData:pdfData MIMEType:@"application/pdf"
 textEncodingName:@"utf-8" baseURL:nil];

But the same thing can be done with a file URL and loadRequest:, like this:

NSURL* url = [[NSBundle mainBundle] URLForResource:@"MyPDF" withExtension:@"pdf"];
NSURLRequest* req = [[NSURLRequest alloc] initWithURL:url];
[self.wv loadRequest:req];
[req release];

Similarly, in one of my apps, where the Help screen is a web view (Figure 24-1), the
content is an HTML file along with some referenced image files, and I load it like this:

NSString* path = [[NSBundle mainBundle] pathForResource:@"help" ofType:@"html"];
NSURL* url = [NSURL fileURLWithPath:path];
NSError* err = nil;
NSString* s = [NSString stringWithContentsOfURL:url
 encoding:NSUTF8StringEncoding error:&err];
// error-checking omitted
[view loadHTMLString:s baseURL:url];

Observe that I supply both the string contents of the HTML file and the URL reference
to the same file, the latter to act as a base URL so that the relative references to the
images will work properly. (At the time I wrote that code, the NSBundle method URLFor-
Resource:withExtension: didn’t yet exist, so I had to form a pathname reference to the

Figure 24-1. A Help screen that’s a web view

Loading Content | 699

file and convert it to a URL.) In this instance, I could have used loadRequest: and the
file URL:

NSString* path = [[NSBundle mainBundle] pathForResource:@"help" ofType:@"html"];
NSURL* url = [NSURL fileURLWithPath:path];
NSURLRequest* req = [[NSURLRequest alloc] initWithURL:url];
[view loadRequest: req];
[req release];

You can use loadHTMLString:baseURL: to form your own web view content dynamically.
For example, in the TidBITS News app, the content of an article is displayed in a web
view that is loaded using loadHTMLString:baseURL:. The body of the article comes from
an RSS feed, but it is wrapped in programmatically supplied material. Thus, in Fig-
ure 24-2, the title of the article and the fact that it is a link, the right-aligned author
byline and publication date, and the Listen button, along with the overall formatting
of the text (including the font size), are imposed as the web view appears.

There are many possible strategies for doing this. In the case of the TidBITS News app,
I start with a template loaded from disk:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<!-- this is an NSString format, so percent-escapes are used -->
<html>
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <meta name="viewport" content="initial-scale=1.0" />
 <!-- scale images down to fit -->
 <style type="text/css">

Figure 24-2. A web view with dynamically formed content

700 | Chapter 24: Web Views

 p.inflow_image {
 text-align:center;
 }
 img {
 width:100%%;
 max-width:%ipx;
 height:auto
 }
 </style>
 <!-- preload alt image -->
 <script type="text/javascript" language="javascript">
 (new Image()).src='tb_iphone_listen_pressed_02.png';
 </script>
 <title>no title</title>
</head>
<body style="font-size:%ipx; font-family:Georgia; margin:1px %ipx">
 <!-- title, which is a link to original article at our site -->
 <div style="margin-top: 0px; margin-bottom: 15px">
 <h3>%@</h3>
 </div>
 <!-- playbutton or nothing; author and date -->
 <div style="width:100%%">
 %@
 <span style="float:right; margin-bottom: 15px; display:block;
 text-align:right; font-size:80%%;">
 By %@
%@

 </div>
 <!-- body, from feed -->
 <div style="clear:both; margin:30px 0px;">
 %@
 </div>
</body>
</html>

As you can see, the template defines the structure of a valid HTML document — the
opening and closing tags, the head area (including some CSS styling and a little Java-
Script), and a body consisting of divs laying out the parts of the page. The template is
designed to be used as the format string in a stringWithFormat: method call; hence the
various format specifiers scattered throughout it (and literal percent signs are escaped
by doubling them). When the web view is to be loaded, the template is read from disk
and handed over to stringWithFormat:, with every format specifier matched by an ar-
gument:

NSError* err = nil;
NSString* template =
 [NSString stringWithContentsOfFile:
 [[NSBundle mainBundle] pathForResource:@"htmltemplate" ofType:@"txt"]
 encoding: NSUTF8StringEncoding error:&err];
// error-checking omitted
NSString* s = [NSString stringWithFormat: template,
 maxImageWidth,
 [fontsize intValue],
 margin,

Loading Content | 701

 anitem.guid,
 anitem.title,
 (canPlay ? playbutton : @""),
 [anitem authorOfItem],
 date,
 anitem.content
];

Some of these arguments (such as anitem.title, date, anitem.content) slot values more
or less directly from the app’s model into the web view. Others are derived from the
current circumstances. For example, maxImageWidth and margin have been set depend-
ing on whether the app is running on the iPhone or on the iPad; fontsize comes from
the user defaults, because the user is allowed to determine how large the text should
be. The result is an HTML string ready for loadHTMLString:baseURL:.

Web view content is loaded asynchronously (gradually, in a thread of its own), and it
might not be loaded at all (because the user might not be connected to the Internet, the
server might not respond properly, and so on). If you’re loading a resource directly
from disk, loading is quick and nothing is going to go wrong; even then, though, ren-
dering the content can take time, and even a resource loaded from disk, or content
formed directly as an HTML string, might itself refer to material out on the Internet
that takes time to fetch.

Your app’s interface is not blocked or frozen while the content is loading. On the con-
trary, it remains accessible and operative; that’s what “asynchronous” means. The web
view, in fetching a web page and its linked components, is doing something quite com-
plex, involving both threading and network interaction, but it shields you from this
complexity. Your own interaction with the web view stays on the main thread and is
straightforward. You ask the web view to load some content, and then you just sit back
and let it worry about the details.

Indeed, there’s very little you can do once you’ve asked a web view to load content.
Your main concerns will probably be to know when loading really starts, when it has
finished, and whether it succeeded. To help you with this, a UIWebView’s delegate
(adopting the UIWebViewDelegate protocol) gets three messages:

• webViewDidStartLoad:

• webViewDidFinishLoad:

• webView:didFailLoadWithError:

In this example from the TidBITS News app, I mask the delay while the content loads
by displaying an activity indicator (a UIActivityIndicatorView, referred to by a property,
activity) at the center of the web view:

- (void)webViewDidStartLoad:(UIWebView *)wv {
 self.activity.center =
 CGPointMake(CGRectGetMidX(wv.bounds), CGRectGetMidY(wv.bounds));
 [self.activity startAnimating];
}

702 | Chapter 24: Web Views

- (void)webViewDidFinishLoad:(UIWebView *)wv {
 [self.activity stopAnimating];
}

- (void)webView:(UIWebView *)wv didFailLoadWithError:(NSError *)error {
 [self.activity stopAnimating];
}

Before designing the HTML to be displayed in a web view, you might want to read up
on the brand of HTML native to the mobile WebKit engine. Of course a web view
can display any valid HTML you throw at it, but the mobile WebKit has certain limi-
tations. For example, mobile WebKit notoriously doesn’t use plug-ins, such as Flash;
it doesn’t implement scrollable frames within framesets; and it imposes limits on the
size of resources (such as images) that it can display. On the plus side, it has many
special abilities and specifications that you’ll want to take advantage of; for example,
WebKit is in the forefront of the march towards HTML 5.

A good place to start is Apple’s Safari Web Content Guide (http://developer.apple.com/
library/safari/documentation/AppleApplications/Reference/SafariWebContent). It con-
tains links to all the other relevant documentation, such as the Safari CSS Visual Effects
Guide (http://developer.apple.com/library/safari/documentation/InternetWeb/Concep
tual/SafariVisualEffectsProgGuide), which describes some things you can do with Web-
Kit’s implementation of CSS3 (like animations), and the Safari HTML5 Audio and Video
Guide (http://developer.apple.com/library/safari/documentation/AudioVideo/Concep
tual/Using_HTML5_Audio_Video), which describes WebKit’s audio and video player
support.

If nothing else, you’ll definitely want to be aware of one important aspect of web page
content — the viewport. You’ll notice that the TidBITS News HTML template I showed
a moment ago contains this line within its <head> area:

<meta name="viewport" content="initial-scale=1.0" />

Without that line, the HTML string is laid out incorrectly when it is rendered. This is
noticeable especially with the iPad version of TidBITS News, where the web view can
be rotated when the device is rotated, causing its width to change: in one orientation
or the other, the text will be too wide for the web view, and the user has to scroll
horizontally in order to read it all. The Safari Web Content Guide explains why: if no
viewport is specified, the viewport can change when the app rotates. Setting the
initial-scale causes the viewport size to adopt correct values in both orientations.

Another important section of the Safari Web Content Guide describes how you can use
a media attribute in the <link> tag that loads your CSS to load different CSS depending
on what kind of device your app is running on. For example, you might have one CSS
file that lays out your web view’s content on an iPhone, and another that lays it out on
an iPad.

A web view’s loading property tells you whether it is in the process of loading a request.
If, at the time a web view is to be destroyed, its loading is YES, it is up to you to cancel

Loading Content | 703

http://developer.apple.com/library/safari/documentation/AppleApplications/Reference/SafariWebContent
http://developer.apple.com/library/safari/documentation/AppleApplications/Reference/SafariWebContent
http://developer.apple.com/library/safari/documentation/InternetWeb/Conceptual/SafariVisualEffectsProgGuide
http://developer.apple.com/library/safari/documentation/InternetWeb/Conceptual/SafariVisualEffectsProgGuide
http://developer.apple.com/library/safari/documentation/AudioVideo/Conceptual/Using_HTML5_Audio_Video
http://developer.apple.com/library/safari/documentation/AudioVideo/Conceptual/Using_HTML5_Audio_Video

the request by sending it the stopLoading message first; actually, it does no harm to
send the web view stopLoading in any case. In addition, UIWebView is one of those
weird classes I warned you about (Chapter 12) whose memory management behavior
is odd: Apple’s documentation warns that if you assign a UIWebView a delegate, you
must nilify its delegate property before releasing the web view. Thus, in a controller
class that retains a web view, I do an extra little dance in dealloc:

- (void) dealloc {
 [wv stopLoading];
 wv.delegate = nil;
}

Communicating with a Web View
Having loaded a web view with content, you don’t so much configure or command the
web view as communicate with it. There are two modes of communication with a web
view and its content:

Load requests
When a web view is asked to load content, possibly because the user has tapped a
link within it, its delegate is sent the message webView:shouldStartLoadWith-
Request:navigationType:. This is your opportunity to interfere with the web view’s
loading behavior; if you return NO, the content won’t load.

The second argument is an NSURLRequest, whose URL property you can analyze
(very easily, because it’s an NSURL). The third argument is a constant describing
the type of navigation involved, whose value will be one of the following:

• UIWebViewNavigationTypeLinkClicked

• UIWebViewNavigationTypeFormSubmitted

• UIWebViewNavigationTypeBackForward

• UIWebViewNavigationTypeReload

• UIWebViewNavigationTypeFormResubmitted

• UIWebViewNavigationTypeOther (includes loading the web view with content
initially)

JavaScript execution
You can speak JavaScript to a web view’s content by sending it the stringBy-
EvaluatingJavaScriptFromString: message. Thus you can enquire as to the nature
and details of that content, and you can alter the content dynamically.

The TidBITS News app uses webView:shouldStartLoadWithRequest:navigationType: to
distinguish between the user tapping an ordinary link and tapping the Listen button
(shown in Figure 24-2). The onclick script for the <a> tag surrounding the Listen button
image executes this JavaScript code:

document.location='play:me'

704 | Chapter 24: Web Views

This causes the web view to attempt to load an NSURLRequest whose URL is play:me,
which is totally bogus; it’s merely an internal signal to ourselves. In the web view’s
delegate, we intercept the attempt to load this request, examine the NSURLRequest,
observe that its URL has a scheme called @"play", and prevent the loading from taking
place; instead, we head back to the Internet to start playing the online podcast recording
associated with this article. Any other load request caused by tapping a link is also
prevented and redirected instead to Mobile Safari, because we don’t want our web view
used as an all-purpose browser. But we do let our web view load a request in the general
case, because otherwise it wouldn’t even respond to our attempt to load it with HTML
content in the first place:

- (BOOL)webView:(UIWebView *)webView shouldStartLoadWithRequest:(NSURLRequest *)r
 navigationType:(UIWebViewNavigationType)nt {
 if ([r.URL.scheme isEqualToString: @"play"]) {
 [self doPlay:nil];
 return NO;
 }
 if (nt == UIWebViewNavigationTypeLinkClicked) {
 [[UIApplication sharedApplication] openURL:r.URL];
 return NO;
 }
 return YES;
}

The TidBITS News app uses JavaScript in several ways: I’ll describe one. If the user
reads an article, then leaves that screen to examine the list of articles (or terminates the
app), but then returns to the same article, we’d like to display the article vertically
scrolled to the same position where it was before. A web view is not a UIScrollView,
and prior to iOS 5 there was no access to its scroll view, so there was no way to learn
or control its scroll position. However, a web view is a browser, so we can learn the
scroll position of its content using JavaScript (wv here is the web view):

NSString* scrolly = [wv stringByEvaluatingJavaScriptFromString: @"scrollY"];

Later, we can restore the scroll position by using the converse:

[wv stringByEvaluatingJavaScriptFromString:
 [NSString stringWithFormat: @"window.scrollTo(0, %@);", scrolly]];

In iOS 5, however, I would probably accomplish that by referring to the content-
Offset of the web view’s scrollView.

JavaScript and the document object model (DOM) are quite powerful. Event listeners
even allow JavaScript code to respond directly to touch and gesture events, so that the
user can interact with elements of a web page much as if they were touchable views; it
can also take advantage of Core Location facilities to respond to where the user is on
earth and how the device is positioned (Chapter 35). Here’s some additional docu-
mentation you may find helpful:

Communicating with a Web View | 705

• WebKit DOM Programming Topics (http://developer.apple.com/library/safari/
#documentation/AppleApplications/Conceptual/SafariJSProgTopics/WebKitJava
Script.html)

• WebKit DOM Reference (http://developer.apple.com/library/safari/#documenta
tion/AppleApplications/Reference/WebKitDOMRef)

• Safari DOM Additions Reference (http://developer.apple.com/library/safari/#docu
mentation/AppleApplications/Reference/SafariJSRef).

706 | Chapter 24: Web Views

http://developer.apple.com/library/safari/#documentation/AppleApplications/Conceptual/SafariJSProgTopics/WebKitJavaScript.html
http://developer.apple.com/library/safari/#documentation/AppleApplications/Conceptual/SafariJSProgTopics/WebKitJavaScript.html
http://developer.apple.com/library/safari/#documentation/AppleApplications/Conceptual/SafariJSProgTopics/WebKitJavaScript.html
http://developer.apple.com/library/safari/#documentation/AppleApplications/Reference/WebKitDOMRef
http://developer.apple.com/library/safari/#documentation/AppleApplications/Reference/WebKitDOMRef
http://developer.apple.com/library/safari/#documentation/AppleApplications/Reference/SafariJSRef
http://developer.apple.com/library/safari/#documentation/AppleApplications/Reference/SafariJSRef

CHAPTER 25

Controls and Other Views

This chapter discusses all UIView subclasses provided by UIKit that haven’t been dis-
cussed already (except for the two modal dialog classes, which are described in the next
chapter). It’s remarkable how few of them there are; UIKit exhibits a noteworthy econ-
omy of means in this regard.

Additional UIView subclasses are provided by other frameworks. For example, the Map
Kit framework provides the MKMapView (Chapter 34). Also, additional UIView-
Controller subclasses are provided by other frameworks as a way of creating interface.
For example, the MessageUI framework provides MFMailComposeViewController,
which supplies your app with interface for letting the user compose and send a mail
message (Chapter 33). There will be lots of examples in Part VI.

UIActivityIndicatorView
An activity indicator (UIActivityIndicatorView) appears as the spokes of a small
wheel. You set the spokes spinning with startAnimating, giving the user a sense that
some time-consuming process is taking place. You stop the spinning with stop-
Animating. If the activity indicator’s hidesWhenStopped is YES (the default), it is visible
only while spinning.

An activity indicator comes in a style, its activityIndicatorViewStyle; if it is created in
code, you’ll set its style with initWithActivityIndicatorStyle:. Your choices are:

• UIActivityIndicatorViewStyleWhiteLarge

• UIActivityIndicatorViewStyleWhite

• UIActivityIndicatorViewStyleGray

In iOS 5 you can also assign an activity indicator a color; this overrides the color as-
signed through the style. An activity indicator is a UIView, so you can set its background-
Color; a nice effect is to give an activity indicator a contrasting translucent background
color and round the corners of that background by accessing its layer (Figure 25-1):

707

v.color = [UIColor yellowColor];
v.backgroundColor = [UIColor colorWithWhite:0.2 alpha:0.4];

An activity indicator has a standard size, which depends on its style. Changing its size
in code changes the size of the region painted by its backgroundColor, but not the size
of the spinning spokes.

Here’s some code from a UITableViewCell subclass in one of my apps. In this app, it
takes some time, after the user taps a cell to select it, for me to construct the next view
and navigate to it, so to cover the delay, I show a spinning activity indicator in the center
of a cell while it’s selected:

- (void)setSelected:(BOOL)selected animated:(BOOL)animated {
 if (selected) {
 UIActivityIndicatorView* v =
 [[UIActivityIndicatorView alloc]
 initWithActivityIndicatorStyle:UIActivityIndicatorViewStyleWhiteLarge];
 v.center =
 CGPointMake(self.bounds.size.width/2.0, self.bounds.size.height/2.0);
 v.frame = CGRectIntegral(v.frame);
 v.tag = 1001;
 [self.contentView addSubview:v];
 [v startAnimating];
 } else {
 [[self.contentView viewWithTag:1001] removeFromSuperview];
 // no harm if nonexistent
 }
 [super setSelected:selected animated:animated];
}

If activity involves the network, you might want to set UIApplication’s networkActivity-
IndicatorVisible to YES. This displays a small spinning activity indicator in the status
bar. The indicator is not reflecting actual network activity; if it’s visible, it’s spinning.
Be sure to set it back to NO when the activity is over.

An activity indicator is simple and standard, but you can’t change the way it’s drawn.
If you want your own custom activity indicator, though, it’s easy to make one. One
obvious way is to use a UIImageView with a sequence of custom images forming an
animation (animationImages), as described in Chapter 17.

UIProgressView
A progress view (UIProgressView) is a “thermometer,” graphically displaying a per-
centage. It is often used to represent a time-consuming process whose percentage of
completion is known (if the percentage of completion is unknown, you’re more likely

Figure 25-1. A large activity indicator

708 | Chapter 25: Controls and Other Views

to use an activity indicator), but it might also be used to represent a fairly static per-
centage. For example, in one of my apps, I use a progress view to show the current
position within the song being played by the built-in music player; in another app,
which is a card game, I use a progress view to show how many cards are left in the deck.

A progress view comes in a style, its progressViewStyle; if the progress view is created
in code, you’ll set its style with initWithProgressViewStyle:. Your choices are:

• UIProgressViewStyleDefault

• UIProgressViewStyleBar

The latter is intended for use in a UIBarButtonItem, as the title view of a navigation
item, and so on.

The height (the narrow dimension) of a progress view is generally not up to you; it’s
determined by the progress view’s style. Changing a progress view’s height has no
visible effect on how the thermometer is drawn and is not a good idea.

The fullness of the thermometer is the progress view’s progress property. This is a value
between 0 and 1, inclusive; obviously, you’ll need to do some elementary arithmetic in
order to convert from the actual value you’re reflecting to a value within that range.
For example, to reflect the number of cards remaining in a deck of 52 cards:

prog.progress = [[deck cards] count] / 52.0;

Starting in iOS 5, you can animate the change from one progress value to another by
calling setProgress:animated:.

Also new in iOS 5, you can customize the colors or images of the parts of the progress
view. To customize the colors, set the progress view’s progressTintColor and trackTint-
Color (the track is the unfilled part of the progress view). To customize the images, set
the progress view’s progressImage and trackImage; these, if set, override the tint colors.
The images will be squashed and stretched to fill the bounds of the track and the pro-
gress “thermometer,” so in all probability you’ll use a resizable image whose height is
the progress view’s standard height (9 points). The “thermometer” image is not clipped
to the track image, so seeing that it fits inside is up to you. In this simple example, the
track image and progress image are squares rotated 45 degress, so that they both have
pointed ends:

UIGraphicsBeginImageContextWithOptions(CGSizeMake(9,9), NO, 0);
CGContextRef con = UIGraphicsGetCurrentContext();
CGContextSetFillColorWithColor(con, [UIColor blackColor].CGColor);
CGContextMoveToPoint(con, 0, 4.5);
CGContextAddLineToPoint(con, 4.5, 9);
CGContextAddLineToPoint(con, 9, 4.5);
CGContextAddLineToPoint(con, 4.5, 0);

Figure 25-2. A progress view

UIProgressView | 709

CGContextClosePath(con);
CGPathRef p = CGContextCopyPath(con);
CGContextFillPath(con);
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
CGContextSetFillColorWithColor(con, [UIColor whiteColor].CGColor);
CGContextAddPath(con, p);
CGContextFillPath(con);
UIImage* im2 = UIGraphicsGetImageFromCurrentImageContext();
CGPathRelease(p);
UIGraphicsEndImageContext();
im = [im resizableImageWithCapInsets:UIEdgeInsetsMake(4, 4, 4, 4)];
im2 = [im2 resizableImageWithCapInsets:UIEdgeInsetsMake(4, 4, 4, 4)];
prog.trackImage = im;
prog.progressImage = im2;

Despite its new customizability, you can’t really change the way a progress view is
drawn; for example, you can’t make it taller. If you want your own custom progress
view, it’s easy to make one; all you need is a custom UIView subclass that draws some-
thing similar to a thermometer. Figure 25-3 shows a simple custom thermometer view;
it has a value property, and you set this to something between 0 and 1 and then call
setNeedsDisplay to get the view to redraw itself. Here’s its drawRect: code:

- (void)drawRect:(CGRect)rect {
 CGContextRef c = UIGraphicsGetCurrentContext();
 [[UIColor whiteColor] set];
 CGFloat ins = 2.0;
 CGRect r = CGRectInset(self.bounds, ins, ins);
 CGFloat radius = r.size.height / 2.0;
 CGMutablePathRef path = CGPathCreateMutable();
 CGPathMoveToPoint(path, NULL, CGRectGetMaxX(r) - radius, ins);
 CGPathAddArc(path, NULL,
 radius+ins, radius+ins, radius, -M_PI/2.0, M_PI/2.0, true);
 CGPathAddArc(path, NULL,
 CGRectGetMaxX(r) - radius, radius+ins, radius, M_PI/2.0, -M_PI/2.0, true);
 CGPathCloseSubpath(path);
 CGContextAddPath(c, path);
 CGContextSetLineWidth(c, 2);
 CGContextStrokePath(c);
 CGContextAddPath(c, path);
 CGContextClip(c);
 CGContextFillRect(c, CGRectMake(
 r.origin.x, r.origin.y, r.size.width * self.value, r.size.height));
}

Figure 25-3. A custom progress view

710 | Chapter 25: Controls and Other Views

UIPickerView
A UIPickerView displays selectable choices using a rotating drum metaphor. It has a
standard legal range of possible heights, which is undocumented and must be discov-
ered by trial and error (attempting to set the height outside this range will fail with a
warning in the console); its width is largely up to you. Each drum, or column, is called
a component.

Your code configures the UIPickerView’s content through its data source (UIPicker-
ViewDataSource) and delegate (UIPickerViewDelegate), which are usually the same
object (see also Chapter 11). Your data source and delegate must answer questions
similar to those posed by a UITableView (Chapter 21):

numberOfComponentsInPickerView: (data source)
How many components (drums) does this picker view have?

pickerView:numberOfRowsInComponent: (data source)
How many rows does this component have? The first component is numbered 0.

pickerView:titleForRow:forComponent:
pickerView:viewForRow:forComponent:reusingView: (delegate)

What should this row of this component display? The first row is numbered 0. You
can supply either a simple title string or an entire view such as a UILabel, giving
you more control over formatting, but you must supply every row of every com-
ponent the same way, because if viewForRow is implemented, titleForRow isn’t
called. The reusingView parameter, if not nil, is a view that you supplied for a row
now no longer visible, giving you a chance to reuse it, much as cells are reused in
a table view.

Here’s the code for a UIPickerView (Figure 25-4) that displays the names of the 50 U.S.
states, obtained from a text file. We implement pickerView:viewForRow:forComponent:
reusingView: just because it’s the more interesting case; as our views, we supply UILabel
instances. The state names, drawn from an NSArray property states, are drawn cen-
tered because the labels are themselves centered within the picker view:

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView {
 return 1;
}

- (NSInteger)pickerView:(UIPickerView *)pickerView
 numberOfRowsInComponent:(NSInteger)component {
 return 50;
}

- (UIView *)pickerView:(UIPickerView *)pickerView viewForRow:(NSInteger)row
 forComponent:(NSInteger)component reusingView:(UIView *)view {
 UILabel* lab;
 if (view)
 lab = (UILabel*)view; // reuse it
 else

UIPickerView | 711

 lab = [[UILabel alloc] init];
 lab.text = [self.states objectAtIndex:row];
 lab.backgroundColor = [UIColor clearColor];
 [lab sizeToFit];
 return lab;
}

The delegate may further configure the UIPickerView’s physical appearance by means
of these methods:

• pickerView:rowHeightForComponent:

• pickerView:widthForComponent:

The delegate may implement pickerView:didSelectRow:inComponent: to be notified
each time the user spins a drum to a new position. You can also query the picker view
directly by sending it selectedRowInComponent:.

You can set the value to which any drum is turned using selectRow:inComponent:
animated:. Other handy picker view methods allow you to request that the data be
reloaded, and there are properties and methods to query the picker view’s contents
(though of course they do not relieve you of responsibility for knowing the data model
from which the picker view’s contents are supplied):

• reloadComponent:

• reloadAllComponents

• numberOfComponents

• numberOfRowsInComponent:

• viewForRow:forComponent:

By implementing pickerView:didSelectRow:inComponent: and using reloadComponent:
you can make a picker view where the values displayed by one drum depend dynami-
cally on what is selected in another. For example, one can imagine expanding our U.S.
states example to include a second drum listing major cities in each state; when the
user switches to a different state in the first drum, a different set of major cities appears
in the second drum.

Figure 25-4. A picker view

712 | Chapter 25: Controls and Other Views

UISearchBar
A search bar (UISearchBar) is essentially a variety of text field, though it is not in fact
a UITextField subclass. It is displayed by default as a rounded rectangle containing a
magnifying glass icon, where the user can enter text (Figure 25-5). It does not, of itself,
do any searching or display the results of a search; a common interface involves dis-
playing the results of a search as a table, and the UISearchDisplayController class makes
this easy to do (see Chapter 21).

A search bar’s current text is its text property. It can have a placeholder, which appears
when there is no text. A prompt can be displayed above the search bar to explain its
purpose. Delegate methods (UISearchBarDelegate) notify you of editing events; for
their use, compare the text field and text view delegate methods discussed in Chap-
ter 23:

• searchBarShouldBeginEditing:

• searchBarTextDidBeginEditing:

• searchBar:textDidChange:

• searchBar:shouldChangeTextInRange:replacementText:

• searchBarShouldEndEditing:

• searchBarTextDidEndEditing:

A search bar has a barStyle, for which your choices are UIBarStyleDefault or UIBar-
StyleBlack, and either translucent or not. Alternatively, the search bar may have a
tintColor. The bar style and tint color are the same as for a navigation bar or toolbar,
and are drawn the same way a navigation bar or toolbar would draw them (see later in
this chapter); because of this, a search bar looks good at the top of the screen, where a
navigation bar or toolbar might go — in effect, it is drawn as if it were a navigation bar
or toolbar.

Starting in iOS 5, a search bar can have a custom backgroundImage; this will be treated
as a resizable image (that is, it will be either stretched or tiled; see Chapter 15), and
overrides the bar style or tint color.

The search field area where the user enters text can be offset with respect to its back-
ground with the searchFieldBackgroundPositionAdjustment property; you might use
this, for example, if you had enlarged the search bar’s height and wanted to position
the field area within that height. The text can be offset within the field area with the
searchTextPositionAdjustment property.

Figure 25-5. A search bar with a search results button

UISearchBar | 713

You can also replace the image of the search field itself; this is the image that is normally
a rounded rectangle. The image you supply will be drawn in front of the background
and behind the contents of the search field (such as the text); its width will be adjusted
for you, but its height will not be — instead, the image is placed vertically centered
where the search field needs to go, and choosing an appropriate height, as well as
ensuring a light-colored area in the middle so the user can read the text, is up to you.

A search bar displays an internal cancel button automatically (normally an “x” in a
circle) if there is text in the search field. Internally, at its right end, a search bar may
display a search results button (showsSearchResultsButton), which may be selected or
not (searchResultsButtonSelected), or a bookmark button (showsBookmarkButton); if
you ask to display both, you’ll get the search results button. These buttons vanish if
text is entered in the search bar so that the cancel button can be displayed. There is
also an option to display a Cancel button externally (showsCancelButton, or call set-
ShowsCancelButton:animated:). The internal cancel button works automatically to re-
move whatever text is in the field; the other buttons do nothing, but delegate methods
notify you when they are tapped:

• searchBarResultsListButtonClicked:

• searchBarBookmarkButtonClicked:

• searchBarCancelButtonClicked:

Starting in iOS 5, you can customize the images used for the internal left icon (the
magnifying glass, by default) and any of the internal right icons (the cancel button, the
search results button, and the bookmark button) with setImage:forSearchBarIcon:
state:. The image you supply may be sized down as required, but sometimes it isn’t,
so perhaps it is best to size the image first; about 20×20 seems to be a good size. The
state: value can be UIControlStateNormal or UIControlStateDisabled; if you don’t
supply an image for a state, the default image for that state is used. The icons are
specified with constants:

• UISearchBarIconSearch

• UISearchBarIconClear

• UISearchBarIconBookmark

• UISearchBarIconResultsList

The position of an icon can be adjusted with setPositionAdjustment:forSearchBar-
Icon:.

A search bar may also display scope buttons (see the example in Chapter 21). These
are intended to let the user alter the meaning of the search; precisely how you use them
is up to you. To make the scope buttons appear, use the showsScopeBar property; the
button titles are the scopeButtonTitles property, and the currently selected scope but-
ton is the selectedScopeButtonIndex property. The delegate is notified when the user
taps a different scope button:

714 | Chapter 25: Controls and Other Views

• searchBar:selectedScopeButtonIndexDidChange:

Starting in iOS 5, the look of the scope bar can be heavily customized. Its background
is the scopeBarBackgroundImage, which will be stretched or tiled as needed. To set the
background of the smaller area constituting the actual buttons, call setScopeBarButton-
BackgroundImage:forState:; the states are UIControlStateNormal and UIControlState-
Selected. If you don’t supply a separate selected image, a darkened version of the nor-
mal image is used. If you don’t supply a resizable image, the image will be made resizable
for you; the runtime decides what region of the image will be stretched behind each
button.

The dividers between the buttons are normally vertical lines, but you can customize
them as well: call setScopeBarButtonDividerImage:forLeftSegmentState:rightSegment-
State:. A full complement of dividers consists of three images, one when the buttons
on both sides of the divider are normal (unselected) and one each when a button on
one side or the other is selected; if you supply an image for just one state combination,
it is used for the other two state combinations. The height of the divider image is ad-
justed for you, but the width is not; you’ll normally use an image just a few pixels wide.

The font attributes of the titles of the scope buttons can customized with respect to
their font, color, shadow color, and shadow offset; this is done by calling setScopeBar-
ButtonTitleTextAttributes:forState:. The attributes: argument is a dictionary
whose possible keys will be used for several interface objects in this chapter, so I’ll call
it a text attributes dictionary:

• UITextAttributeFont, a UIFont; a zero size means “the default size”

• UITextAttributeTextColor, a UIColor

• UITextAttributeTextShadowColor, a UIColor

• UITextAttributeTextShadowOffset, a UIOffset wrapped up as an NSValue

(All the customizing set... methods I’ve mentioned have a corresponding getter,
whose name is the same without the “set” prefix.)

It may appear that there is no way to customize the external Cancel button, but in fact,
although you’ve no direct access to it through the search bar, the Cancel button is a
UIBarButtonItem and you can customize it using the UIBarButtonItem appearance
proxy, discussed later in this chapter.

By combining the various customization possibilities, a completely unrecognizable
search bar of inconceivable ugliness can easily be achieved (Figure 25-6). Let’s be careful
out there.

The problem of allowing the keyboard to appear without hiding the search bar is exactly
as for a text field (Chapter 23). Text input properties of the search bar configure its
keyboard and typing behavior like a text field as well: keyboardType, autocapitalization-
Type, and autocorrectionType (and, new in iOS, its spellCheckingType, which lets you
turn spell checking on and off). When the user taps the Search key in the keyboard, the

UISearchBar | 715

delegate is notified, and it is then up to you to dismiss the keyboard (resignFirst-
Responder) and perform the search:

• searchBarSearchButtonClicked:

A common interface on the iPad is to embed a search bar as a bar button item’s view
in a toolbar at the top of the screen. This approach has its pitfalls; for example, there
is no room for a prompt, and scope buttons or an external Cancel button may not
appear either. One rather slimy workaround is to layer the search bar over the toolbar
rather than having it genuinely live in the toolbar. Another is to have the search bar
itself occupy the position of the toolbar at the top of the screen. On the other hand, a
search bar in a toolbar that is managed by a UISearchDisplayController will automat-
ically display search results in a popover, which can be a considerable savings of time
and effort (though the popover controller is unfortunately out of your hands); see
Chapter 22 for an example. An interesting thing about that example, which I didn’t
mention before, is that the search bar contains a results list button that summons the
popover when tapped, and in that case the popover’s top bar contains a Clear button
that empties the search bar and dismisses the popover; that behavior is apparently
entirely automatic and due to the search display controller.

UIControl
UIControl is a subclass of UIView whose chief purpose is to be the superclass of several
further built-in classes and to endow them with common behavior. These are classes
representing views with which the user can interact (controls).

The most important thing that controls have in common is that they automatically
track and analyze touch events (Chapter 18) and report them to your code as significant
control events by way of action messages. Each control implements some subset of the
possible control events; see Chapter 11 for a list of which control events are imple-
mented by which controls. For each control event that you want to hear about auto-
matically, you attach to the control one or more target–action pairs. You can do this
in the nib (Chapter 7) or in code (Chapter 11).

For any given control, each control event and its target–action pairs form a dispatch
table. The following methods permit you to manipulate and query the dispatch table:

• addTarget:action:forControlEvents:

Figure 25-6. A horrible search bar

716 | Chapter 25: Controls and Other Views

• removeTarget:action:forControlEvents:

• actionsForTarget:forControlEvent:

• allTargets

• allControlEvents (a bitmask of control events to which a target–action pair is at-
tached)

An action selector may adopt any of three signatures, whose parameters are (see Chap-
ter 11):

• The control and the UIEvent

• The control only

• No parameters

To make a control emit its action message to a particular control event right now, in
code, call its sendActionsForControlEvents: method (which is never called automati-
cally by the framework). For example, suppose you tell a UISwitch programmatically
to change its setting from Off to On. This doesn’t cause the switch to report a control
event, as it would if the user had slid the switch from off to on; if you wanted it to do
so, you could use sendActionsForControlEvents:, like this:

[switch setOn: YES animated: YES];
[switch sendActionsForControlEvents:UIControlEventValueChanged];

You might also use sendActionsForControlEvents: in a subclass to customize the cir-
cumstances under which a control reports control events.

A control has enabled, selected, and highlighted properties; any of these can be YES
or NO independently of the others. These correspond to its state, which is reported
as a bitmask of three possible values:

• UIControlStateHighlighted

• UIControlStateDisabled

• UIControlStateSelected

A fourth state, UIControlStateNormal, corresponding to a zero state bitmask, means
that enabled, selected, and highlighted are all NO.

A control that is not enabled does not respond to user interaction; whether the control
also portrays itself differently, to cue the user to this fact, depends upon the control.
For example, a disabled UISwitch is faded. But a round rect text field, unless you ex-
plicitly configure it to display a different background image when disabled (Chap-
ter 23), gives the user no cue that it is disabled. The visual nature of control selection
and highlighting, too, depends on the control. Neither highlighting nor selection make
any difference to the appearance of a UISwitch, but a highlighted UIButton usually
looks quite different from a nonhighlighted UIButton.

UIControl | 717

A control has contentHorizontalAlignment and contentVerticalAlignment properties.
Again, these matter only if the control has content that can be aligned. You are most
likely to use these properties in connection with a UIButton to position its title and
internal image.

A text field (UITextField) is a control; see Chapter 23. The remaining controls are
covered here, and then I’ll give a simple example of writing your own custom control.

UISwitch
A UISwitch portrays a BOOL value: it looks like a sliding switch whose positions are
labeled ON and OFF, and its on property is either YES or NO. The user can slide or
tap to toggle the switch’s position. When the user changes the switch’s position, the
switch reports a Value Changed control event. To change the on property’s value with
accompanying animation, call setOn:animated:.

A switch has only one size (apparently 79×27); any attempt to set its size will be ignored.
The default size is not as wide as it was in earlier system versions, and the way the
switch is drawn has changed; in iOS 5 it appears as in Figure 25-7, but previously it
appeared as in Figure 25-8. In iOS 5 you can set a switch’s onTintColor, but that’s the
only customization you can perform. You can’t customize the ON and OFF labels; the
only solution is to roll your own switch-like interface widget (several third-party im-
plementations are available).

Don’t name a UISwitch instance variable or property switch, as this is
a reserved word in C.

UIStepper
A UIStepper (new in iOS 5, Figure 25-9) lets the user increase or decrease a numeric
value: it looks like two buttons side by side, one labeled with a minus sign, the other
with a plus sign. The user can slide a finger from one button to the other as part of the
same interaction with the stepper. It has only one size (apparently 94×27). It maintains
a numeric value, which is its value. Each time the user increments or decrements the

Figure 25-7. A switch in iOS 5

Figure 25-8. A switch in iOS 4

718 | Chapter 25: Controls and Other Views

value, it changes by the stepper’s stepValue. If the minimumValue or maximumValue is
reached, the user can go no further in that direction, and to show this, the corresponding
button is disabled — unless the stepper’s wraps property is YES, in which case the value
goes beyond the maximum by starting again at the minimum, and vice versa.

As the user changes the stepper’s value, a Value Changed control event is reported.
Portraying the numeric value itself is up to you; you might, for example, use a label or
(as in this example) a progress view:

- (IBAction)doStep:(UIStepper*)step {
 self->prog.progress = step.value / (step.maximumValue - step.minimumValue);
}

If a stepper’s continuous is YES (the default), a long touch on one of the buttons will
update the value repeatedly; the updates start slowly and get faster. If the stepper’s
autorepeat is NO, the updated value is not reported as a Value Changed control event
until the entire interaction with the stepper ends; the default is YES.

UIPageControl
A UIPageControl is a row of dots; each dot is called a page, because it is intended to be
used in conjunction with some other interface that portrays something analogous to
pages, such as a UIScrollView with its pagingEnabled set to YES. Coordinating the page
control with this other interface is up to you. (See Chapter 20 for an example and
Figure 20-3 for an illustration.)

The number of dots is the page control’s numberOfPages; this should be small, as the
dots need to fit within the page control’s bounds. The current page, its currentPage, is
portrayed as a solid dot; the others are slightly transparent. The user can tap to one
side or the other of the current page’s dot to increment or decrement the current page;
the page control then reports a Value Changed control event.

You can make the page control wider than the dots to increase the target region on
which the user can tap. You can make the page control taller as well, but only the
horizontal component of a tap is taken into account, so this would probably be pointless
as well as confusing to the user. To learn the minimum size required for a given number
of pages, call sizeForNumberOfPages:.

If a page control’s hidesForSinglePage is YES, the page control becomes invisible when
its numberOfPages changes to 1.

If a page control’s defersCurrentPageDisplay is YES, then when the user taps to incre-
ment or decrement the page control’s value, the display of the current page is not

Figure 25-9. A stepper

UIControl | 719

changed. A Value Changed control event is reported, but it is up to your code to handle
this action and call updateCurrentPageDisplay. A case in point might be if the user’s
changing the current page starts an animation, but you don’t want the current page dot
to change until the animation ends.

UIDatePicker
A UIDatePicker looks like a UIPickerView (discussed earlier in this chapter), but it is
not a UIPickerView subclass (it uses a UIPickerView to draw itself, but it provides no
official access to that picker view). Its purpose is to express the notion of a date and
time, taking care of the calendrical and numerical complexities so that you don’t have
to. When the user changes its setting, the date picker reports a Value Changed control
event.

A UIDatePicker has one of four modes (datePickerMode), determining how it is drawn:

UIDatePickerModeTime

The date picker displays a time; for example, it has an hour component and a
minutes component.

UIDatePickerModeDate

The date picker displays a date; for example, it has a month component, a day
component, and a year component.

UIDatePickerModeDateAndTime

The date picker displays a date and time; for example, it has a component showing
day of the week, month, and day, plus an hour component and a minutes compo-
nent.

UIDatePickerModeCountDownTimer

The date picker displays a number of hours and minutes; for example, it has an
hours component and a minutes component.

Exactly what components a date picker displays, and what values they contain, depends
by default upon system settings. For example, a U.S. time displays an hour (numbered
1 through 12), minutes, and AM or PM, but a British time displays an hour (numbered
1 through 24) and minutes. If your app contains a date picker displaying a time, and
the user changes the system region format on the device from United States to United
Kingdom, the date picker’s display will change immediately, eliminating the AM/PM
component and changing the hour numbers to run from 1 to 24.

A date picker has calendar and timeZone properties, respectively an NSCalendar and
an NSTimeZone; these are nil by default, meaning that the date picker responds to the
user’s system-level settings. You can also change these values manually; for example,
if you live in California and you set a date picker’s timeZone to GMT, the displayed time
is shifted forward by 8 hours, so that 11 AM is displayed as 7 PM (if it is winter).

720 | Chapter 25: Controls and Other Views

Don’t change the timeZone of a UIDatePickerModeCountDownTimer date
picker, or the displayed value will be shifted and you will confuse the
heck out of yourself and your users.

The minutes component, if there is one, defaults to showing every minute, but you can
change this with the minuteInterval property. The maximum value is 30, in which case
the minutes component values are 0 and 30.

The maximum and minimum values enabled in the date picker are determined by its
maximumDate and minimumDate properties. Values outside this range may appear disabled.
There isn’t really any practical limit on the range that a date picker can display, because
the “drums” representing its components are not physical, and values are added dy-
namically as the user spins them. In this example, we set the initial minimum and
maximum dates of a date picker (dp) to the beginning and end of 1954. We also set the
actual date, because otherwise the date picker will appear initially set to now, which
will be disabled because it isn’t within the minimum–maximum range:

NSDateComponents* dc = [[NSDateComponents alloc] init];
[dc setYear:1954];
[dc setMonth:1];
[dc setDay:1];
NSCalendar* c = [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar];
NSDate* d = [c dateFromComponents:dc];
dp.minimumDate = d;
dp.date = d;
[dc setYear:1955];
d = [c dateFromComponents:dc];
dp.maximumDate = d;

Don’t set the maximumDate and minimumDate properties values for a UIDate-
PickerModeCountDownTimer date picker, or you might cause a crash with
an out-of-range exception.

The date represented by a date picker (unless its mode is UIDatePickerModeCountDown-
Timer) is its date property, an NSDate. The default date is now, at the time the date
picker is instantiated. For a UIDatePickerModeDate date picker, the time by default is 12
AM (midnight), local time; for a UIDatePickerModeTime date picker, the date by default
is today. The internal value is reckoned in the local time zone, so it may be different
from the displayed value, if you have changed the date picker’s timeZone.

The value represented by a UIDatePickerModeCountDownTimer date picker is its countDown-
Duration. The date picker does not actually do any counting down; changing its count-
DownDuration at appropriate intervals, if desired, is up to you, though you are more
likely to use some other interface to display the countdown, especially because the date
picker doesn’t display seconds. The Timer tab of Apple’s Clock app shows a typical
interface; the user configures the date picker to set the countDownDuration initially, but
once the counting starts, the date picker is hidden and a label displays the remaining

UIControl | 721

time. The countDownDuration is an NSTimeInterval, which is a double representing a
number of seconds; dividing by 60 to convert to minutes, and again to convert to hours,
is up to you — or you could use the built-in calendrical classes:

NSTimeInterval t = [datePicker countDownDuration];
NSDate* d = [NSDate dateWithTimeIntervalSinceReferenceDate:t];
NSCalendar* c = [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar];
[c setTimeZone: [NSTimeZone timeZoneForSecondsFromGMT:0]]; // normalize
NSUInteger units = NSHourCalendarUnit | NSMinuteCalendarUnit;
NSDateComponents* dc = [c components:units fromDate:d];
NSLog(@"%i hr, %i min", [dc hour], [dc minute]);

Similarly, to convert between an NSDate and a string, you’ll need an NSDateFormatter
(see Chapter 10, and Apple’s Date and Time Programming Guide):

NSDate* d = [datePicker date];
NSDateFormatter* df = [[NSDateFormatter alloc] init];
[df setTimeStyle:kCFDateFormatterFullStyle];
[df setDateStyle:kCFDateFormatterFullStyle];
NSLog(@"%@", [df stringFromDate:d]);
// "Wednesday, August 10, 2011 3:16:25 AM Pacific Daylight Time"

UISlider
A slider (UISlider) is an expression of a continuously settable value (its value) between
some minimum and maximum (its minimumValue and maximumValue; they are 0 and 1 by
default). It is portrayed as an object, the thumb, positioned along a track. As the user
changes the thumb’s position, the slider reports a Value Changed control event; it may
do this continuously as the user presses and drags the thumb (if the slider’s
continuous is YES, the default) or only when the user releases the thumb (if its
continuous is NO). While the user is pressing on the thumb, the slider is in the
highlighted state. To change the slider’s value with animation, call setValue:animated:.

A commonly expressed desire is to modify a slider’s behavior so that if the user taps on
its track, the slider moves to the spot where the user tapped. Unfortunately, a slider
does not, of itself, respond to taps on its track; such a tap doesn’t even cause it to report
a Touch Up Inside. However, with a gesture recognizer, most things are possible; here’s
the action handler for a UITapGestureRecognizer attached to a UISlider:

- (void) tapped: (UITapGestureRecognizer*) g {
 UISlider* s = (UISlider*)g.view;
 if (s.highlighted)
 return; // tap on thumb, let slider deal with it
 CGPoint pt = [g locationInView: s];
 CGFloat percentage = pt.x / s.bounds.size.width;
 CGFloat delta = percentage * (s.maximumValue - s.minimumValue);
 CGFloat value = s.minimumValue + delta;
 [s setValue:value animated:YES];
}

A slider’s appearance is extremely customizable. You can change the color of the thumb
and the track on either side of it (thumbTintColor, minimumTrackTintColor, and maximum-

722 | Chapter 25: Controls and Other Views

TintColor, all new in iOS 5), or you can go even further and provide your own thumb
image and your own track image, along with images to appear at each end of the track,
and you can override in a subclass the methods that position these.

The images at the ends of the track are the slider’s minimumValueImage and maximumValue-
Image, and they are nil by default. If you set them to actual images (which can also be
done in the nib), the slider will attempt to position them within its own bounds,
shrinking the drawing of the track to compensate. The slider does not clip its subviews
by default, so the images can extend outside the slider’s bounds.

For example, suppose the slider’s dimensions are 250×23 (the standard height), and
suppose the images are 30×30. Then the minimum image is drawn with its origin at
{0,-4} — its left edge matches the slider’s left edge, and its top is raised so that the
center of its height matches the center of the slider’s height — and the maximum image
is drawn with its origin at {220, -4}. But the track is drawn with a width of only 164
pixels, instead of the normal 246; that is, instead of being nearly the full width of the
slider, the track is contracted to allow room for the images. (This, by the way, wrecks
the behavior of the tapped: handler in the previous example, which relies on the actual
bounds of the slider, not the apparent width and position of the track. Fixing the ex-
ample is left as an exercise for the reader.)

You can change these dimensions by overriding minimumValueImageRectForBounds:,
maximumValueImageRectForBounds:, and trackRectForBounds: in a subclass. The bounds
passed in are the slider’s bounds. In this example, we expand the track width to the
full width of the slider, and draw the images outside the slider’s bounds (Fig-
ure 25-10; I’ve given the slider a gray background color so you can see how the track
and images are related to its bounds):

- (CGRect)maximumValueImageRectForBounds:(CGRect)bounds {
 CGRect result = [super maximumValueImageRectForBounds:bounds];
 result = CGRectOffset(result, 31, 0);
 return result;
}

- (CGRect)minimumValueImageRectForBounds:(CGRect)bounds {
 CGRect result = [super minimumValueImageRectForBounds:bounds];
 result = CGRectOffset(result, -31, 0);
 return result;
}

- (CGRect)trackRectForBounds:(CGRect)bounds {
 CGRect result = [super trackRectForBounds:bounds];
 result.origin.x = 0;
 result.size.width = bounds.size.width;
 return result;
}

The thumb is also an image, and you set it with setThumbImage:forState:. There are
two chiefly relevant states, UIControlStateNormal (not highlighted) and UIControlState-
Highlighted, so if you supply images for both, the thumb will change automatically

UIControl | 723

while the user is dragging it. If you supply just an image for the normal state, the thumb
image won’t change while the user is dragging it. By default, the image will be centered
in the track at the point represented by the slider’s current value; you can shift this
position by overriding thumbRectForBounds:trackRect:value: in a subclass. In this ex-
ample, the image is repositioned upward slightly (Figure 25-11):

- (CGRect)thumbRectForBounds:(CGRect)bounds
 trackRect:(CGRect)rect value:(float)value {
 CGRect result = [super thumbRectForBounds:bounds trackRect:rect value:value];
 result = CGRectOffset(result, 0, -7);
 return result;
}

Enlarging a slider’s thumb can mislead the user as to the area on which it can be tapped
to drag it. The slider, not the thumb, is the touchable UIControl; so if the slider’s height
is 23 pixels, only the part of the thumb that intersects that 23-pixel height will be
draggable. The user may try to drag the part of the thumb that is drawn outside the
slider’s bounds, and will fail (and be confused). A solution is to increase the slider’s
height; you can’t do this in the nib editor, but you can do it in code.

The track is two images, one appearing to the left of the thumb, the other to its right.
They are set with setMinimumTrackImage:forState: and setMaximumTrackImage:for-
State:. If you supply images both for normal state and for highlighted state, the images
will change while the user is dragging the thumb.

The images should be resizable (Chapter 15), because that’s how the slider performs
the clever illusion of making it look like the user is dragging the thumb along a single
static track. In reality, there are two images; as the user drags the thumb, one image
grows horizontally and the other shrinks horizontally. For the left track image, the right
end cap inset will be partially or entirely hidden under the thumb; for the right track
image, the left end cap inset will be partially or entirely hidden under the thumb.
Figure 25-12 shows a track derived from a single 15×15 image of a circular object (a
coin):

UIImage* coin = [UIImage imageNamed: @"coin.png"];
UIImage* coinEnd = [coin resizableImageWithCapInsets:UIEdgeInsetsMake(0,7,0,7)];
[slider setMinimumTrackImage:coinEnd forState:UIControlStateNormal];
[slider setMaximumTrackImage:coinEnd forState:UIControlStateNormal];

Figure 25-10. Repositioning a slider’s images and track

Figure 25-11. Replacing a slider’s thumb

724 | Chapter 25: Controls and Other Views

UISegmentedControl
A segmented control (UISegmentedControl) is a row of tappable segments; a segment
is rather like a button. This provides a way for the user to choose among several related
options. By default (momentary is NO), the most recently tapped segment remains se-
lected; alternatively (momentary is YES), the tapped segment is shown as selected mo-
mentarily, but then no segment selection is displayed, though internally the tapped
segment remains the selected segment. The selected segment can be retrieved with the
selectedSegmentIndex property; it can also be set with the selectedSegmentIndex prop-
erty, and remains visibly selected (even for a momentary segmented control). A selected-
SegmentIndex value of UISegmentedControlNoSegment means no segment is selected.
When the user taps a segment that is not already visibly selected, the segmented control
reports a Value Changed event.

A segment can be separately enabled or disabled with setEnabled:forSegmentAt-
Index:, and its enabled state can be retrieved with isEnabledForSegmentAtIndex:. A
disabled segment is drawn faded, and the user can’t tap it, but it can still be selected in
code.

A segment has either a title or an image; when one is set, the other becomes nil. The
methods for setting and fetching the title and image for existing segments are:

• setTitle:forSegmentAtIndex:

• setImage:forSegmentAtIndex:

• titleForSegmentAtIndex:

• imageForSegmentAtIndex:

You will also want to set the title or image when creating the segment. You can do this
in code if you’re creating the segmented control from scratch, with initWithItems:,
which takes an array each item of which is either a string or an image.

Methods for managing segments dynamically are:

• insertSegmentWithTitle:atIndex:animated:

Figure 25-12. Replacing a slider’s track

Figure 25-13. A segmented control

UIControl | 725

• insertSegmentWithImage:atIndex:animated:

• removeSegmentAtIndex:animated:

• removeAllSegments

The number of segments can be retrieved with the read-only numberOfSegments prop-
erty.

A segment’s width is adjusted automatically when you create it or call sizeToFit, or
you can set it manually with setWidth:forSegmentAtIndex: (and retrieve it with width-
ForSegmentAtIndex:). Alternatively, if you set a segment’s width to 0, the system will
adjust the width for you if the segmented control’s apportionsSegmentWidthsBy-
Content property is YES (new in iOS 5).

You can also change the position of the content (title or image) within a segment. To
set this position in code, call setContentOffset:forSegmentAtIndex: (and retrieve it with
contentOffsetForSegmentAtIndex:), where the offset is expressed as a CGSize describ-
ing how much to move the content from its default centered position.

A segmented control’s height is standard in accordance with its style. You can change
a segmented control’s height in code, but if you later call sizeToFit, it will resume its
standard height.

A segmented control comes in a choice of styles (its segmentedControlStyle):

UISegmentedControlStylePlain

Large default height (44 pixels) and large titles. Deselected segments are gray; the
selected segment is blue and has a depressed look.

UISegmentedControlStyleBordered

Just like UISegmentedControlStylePlain, but a dark border emphasizes the seg-
mented control’s outline.

UISegmentedControlStyleBar

Small default height (30 pixels) and small titles. All segments are blue, but you can
change this by setting the tintColor; the selected segment is slightly darker.

UISegmentedControlStyleBezeled

Large default height (44 pixels) and small titles. Similar to UISegmentedControlStyle-
Bar. All segments are blue, but you can change this by setting the tintColor; the
selected segment is brighter.

Starting in iOS 5, you can further customize a segmented control’s appearance. The
methods involved here are parallel to those for setting the look of the scope bar portion
of a search bar, described earlier in this chapter. You can set the overall background,
the divider image, the text attributes for the segment titles, and the position of segment
contents:

• setBackgroundImage:forState:barMetrics:

• setDividerImage:forLeftSegmentState:rightSegmentState:barMetrics:

726 | Chapter 25: Controls and Other Views

• setTitleTextAttributes:forState:

• setContentPositionAdjustment:forSegmentType:barMetrics:

The segmentType: parameter in setContentPositionAdjustment:forSegmentType:bar-
Metrics: is needed because the segments at the two extremes have rounded ends (and,
if a segment is the lone segment, both its ends are rounded). The argument allows you
distinguish between the various possibilities:

• UISegmentedControlSegmentAny

• UISegmentedControlSegmentLeft

• UISegmentedControlSegmentCenter

• UISegmentedControlSegmentRight

• UISegmentedControlSegmentAlone

The barMetrics: parameter will recur later in this chapter, in the discussion of naviga-
tion bars, toolbars, and bar button items; for a segmented control, its value matters
only if the segmented control has UISegmentedControlStyleBar and only if it is being
used inside a navigation bar or toolbar. Otherwise, use UIBarMetricsDefault. See
“Landscape iPhone Bar Metrics” on page 736 for more information.

UIButton
A button (UIButton) is a fundamental tappable control; its appearance is extremely
flexible. It is endowed at creation with a type. The code creation method is a class
method, buttonWithType:. The types are:

UIButtonTypeCustom

Could be completely invisible, if the backgroundColor is clearColor and there’s no
title or other content. If a backgroundColor is supplied, a thin, subtle rectangular
border is also present; you can add more of a border by modifying the button’s
layer. Alternatively, you can provide a background image, thus making the button
appear to be any shape you like (though this does not automatically affect its tap-
pable region).

UIButtonTypeDetailDisclosure
UIButtonTypeContactAdd
UIButtonTypeInfoLight
UIButtonTypeInfoDark

Basically, these are all UIButtonTypeCustom buttons whose image is set automati-
cally to standard button images: a right-pointing chevron, a plus sign, a light letter
“i,” and a dark letter “i,” respectively.

UIButtonTypeRoundedRect

A rounded rectangle with a white background and an antialiased gray border.
However, supplying a rectangular opaque background image results in a rectangle

UIControl | 727

similar to a UIButtonTypeCustom button. (A rounded rect button is actually an in-
stance of a UIButton subclass, UIRoundedRectButton, but you’re probably not
supposed to know that.)

New in iOS 5, a rounded rect button can have a tintColor which fills the button
only while the button is highlighted.

A button has a title, a title color, a title shadow color, an image, and a background
image. The background image, if any, is stretched to fit the button’s bounds. The image,
on the other hand, if smaller than the button, is not resized, and is thus shown internally
within the button. The button can have both a title and an image, if the image is small
enough; in that case, the image is shown to the left of the title by default.

These five features (title, title color, title shadow color, image, and background image)
can all be made to vary depending on the button’s current state: UIControlState-
Highlighted, UIControlStateSelected, UIControlStateDisabled, and UIControlState-
Normal. The button can be in more than one state at once, except for UIControlState-
Normal which effectively means “none of the other states”. A state change, whether
automatic (the button is highlighted while the user is tapping it) or programmatically
imposed, will thus in and of itself alter a button’s appearance. To make this possible,
the methods for setting these button features all involve specifying a corresponding
state — or multiple states, using a bitmask:

• setTitle:forState:

• setTitleColor:forState: (by default, the title color is white when the button is
highlighted)

• setTitleShadowColor:forState:

• setImage:forState:

• setBackgroundImage:forState:

Similarly, when getting these button features, you must either use a method to specify
a single state you’re interested in or use a property to ask about the feature as currently
displayed:

• titleForState:

• titleColorForState:

• titleShadowColorForState:

• imageForState:

• backgroundImageForState:

• currentTitle

• currentTitleColor

• currentTitleShadowColor

• currentImage

728 | Chapter 25: Controls and Other Views

• currentBackgroundImage

If you don’t specify a feature for a particular state, or if the button adopts more than
one state at once, an internal heuristic is used to determine what to display. I can’t
describe all possible combinations, but here are some general observations:

• If you specify a feature for a particular state (highlighted, selected, or disabled),
and the button is in only that state, that feature will be used.

• If you don’t specify a feature for a particular state (highlighted, selected, or dis-
abled), and the button is in only that state, the normal version of that feature will
be used as fallback. (That’s why many examples earlier in this book have assigned
a title for UIControlStateNormal only; this is sufficient to give the button a title in
every state.)

• Combinations of states often cause the button to fall back on the feature for normal
state. For example, if a button is both highlighted and selected, the button will
display its normal title, even if it has a highlighted title, a selected title, or both.

In addition, a UIButton has some properties determining how it draws itself in various
states, which can save you the trouble of specifying different images for different states:

showsTouchWhenHighlighted

If YES, then the button projects a circular white glow when highlighted. If the
button has an internal image, the glow is centered behind it (Figure 25-14); thus,
this feature is suitable particularly if the button image is small and circular; for
example, it’s the default behavior for a UIButtonTypeInfoLight or UIButtonTypeInfo-
Dark button. (If the button has no internal image, the glow is centered at the but-
ton’s center.) The glow is drawn on top of the background image or color, if any.

adjustsImageWhenHighlighted

If YES (the default), then if there is no separate highlighted image (and if shows-
TouchWhenHighlighted is NO), the normal image is darkened when the button is
highlighted. This applies equally to the internal image and the background image.

adjustsImageWhenDisabled

If YES (the default), then if there is no separate disabled image, the normal image
is lightened (faded) when the button is disabled. This applies equally to the internal
image and the background image.

The title is a UILabel (Chapter 23), and the label features of the title can be accessed
through the button’s titleLabel. Thus, for example, you can set the title’s font, line-
BreakMode, and shadowOffset. If the shadowOffset is not {0,0}, then the title has a

Figure 25-14. A button with highlighted glow

UIControl | 729

shadow, and the title shadow color feature comes into play; the button’s reversesTitle-
ShadowWhenHighlighted property also applies: if YES, the shadowOffset values are re-
placed with their additive inverses when the button is highlighted.

An easy way to make a button’s title consist of multiple lines is to set the button’s title-
Label.lineBreakMode to UILineBreakModeWordWrap and put manual line breaks into the
button’s title: @"This is a line\nand this is a line". (To insert a line break in the
nib editor, type Option-Return.)

The internal image is drawn by a UIImageView (Chapter 15) whose features can be
accessed through the button’s imageView. Thus, for example, you can change the in-
ternal image view’s alpha to make the image more transparent.

The internal position of the image and title as a whole are governed by the button’s
contentVerticalAlignment and contentHorizontalAlignment (recall that these proper-
ties are inherited from UIControl). You can also tweak the position of the image and
title, together or separately, by setting the button’s contentEdgeInsets, titleEdge-
Insets, or imageEdgeInsets. Increasing an inset component increases that margin; thus,
for example, a positive top component makes the distance between that object and the
top of the button larger than normal (where “normal” is where the object would be
according to the alignment settings). The titleEdgeInsets or imageEdgeInsets values
are added to the overall contentEdgeInsets values. So, for example, if you really wanted
to, you could make the internal image appear to the right of the title by decreasing the
left titleEdgeInsets and increasing the left imageEdgeInsets.

Four methods also provide access to the button’s positioning of its elements:

• titleRectForContentRect:

• imageRectForContentRect:

• contentRectForBounds:

• backgroundRectForBounds:

These methods are called whenever the button is redrawn, including every time it
changes state. The content rect is the area in which the title and image are placed. By
default, contentRectForBounds: and backgroundRectForBounds: yield the same result.

You can override these methods in a subclass to change the way the button’s elements
are positioned. In this example, we shrink the button slightly when highlighted as a
way of providing feedback:

- (CGRect)backgroundRectForBounds:(CGRect)bounds {
 CGRect result = [super backgroundRectForBounds:bounds];
 if (self.highlighted)
 result = CGRectInset(result, 3, 3);
 return result;
}

A button’s background image is stretched if the image is smaller, in both dimensions,
than the button’s backgroundRectForBounds:. You can take advantage of this stretching,

730 | Chapter 25: Controls and Other Views

for example, to construct a rounded rectangle background for the button by supplying
a resizable image. In this example (Figure 25-15), both the internal image and the
background image are generated from the same image (which is in fact the same image
used to generate the track in Figure 25-12):

UIImage* im = [UIImage imageNamed: @"coin.png"];
CGSize sz = [im size];
UIImage* im2 = [im resizableImageWithCapInsets:UIEdgeInsetsMake(
 sz.height/2.0, sz.width/2.0, sz.height/2.0, sz.width/2.0)];
[button setBackgroundImage: im2 forState: UIControlStateNormal];
button.backgroundColor = [UIColor clearColor];

Custom Controls
The UIControl class implements several touch-tracking methods that you might over-
ride in order to customize a built-in UIControl type or to create your own UIControl
subclass, along with properties that tell you whether touch tracking is going on:

• beginTrackingWithTouch:withEvent:

• continueTrackingWithTouch:withEvent:

• endTrackingWithTouch:withEvent:

• cancelTrackingWithEvent:

• tracking (property)

• touchInside (property)

With the advent of gesture recognizers (Chapter 18), such direct involvement with
touch tracking is probably less needed than it used to be, especially if your purpose is
to modify the behavior of a built-in UIControl subclass. So, to illustrate their use, I’ll
give a simple example of creating a custom control. The main reason for doing this
(rather than using, say, a UIView and gesture recognizers) would probably be to obtain
the convenience of control events. Also, the touch-tracking methods, though of course
nowhere near as high-level as gesture recognizers, are at least a level up from the UIR-
esponder methods touchesBegan:withEvent: and so forth (Chapter 18): they track a
single touch, and both beginTracking... and continueTracking... return a BOOL,
giving you a chance to stop tracking the current touch.

We’ll build a simplified knob control (Figure 25-16). The control starts life at its min-
imum position, with an internal angle value of 0; it can be rotated clockwise with a
single finger as far as its maximum position, with an internal angle value of 5 (radians).
To keep things simple, the words “Min” and “Max” appearing in the interface are

Figure 25-15. A button with a stretched background image

UIControl | 731

actually labels; the control just draws the knob, and to rotate it we’ll simply apply a
rotation transform.

Our control is a UIControl subclass, MyKnob. It has a CGFloat angle property, and a
CGFloat instance variable initialAngle that we’ll use internally during rotation. Be-
cause a UIControl is a UIView, it can draw itself, which it does with a UIImage included
in our app bundle:

- (void) drawRect:(CGRect)rect {
 UIImage* knob = [UIImage imageNamed:@"knob.png"];
 [knob drawInRect:rect];
}

We’ll need a utility function for transforming a touch’s Cartesian coordinates into polar
coordinates, giving us the angle to be applied as a rotation to the view:

static CGFloat pToA (UITouch* touch, UIView* self) {
 CGPoint loc = [touch locationInView: self];
 CGPoint c = CGPointMake(CGRectGetMidX(self.bounds),
 CGRectGetMidY(self.bounds));
 return atan2(loc.y - c.y, loc.x - c.x);
}

Now we’re ready to override the tracking methods. beginTrackingWithTouch:with-
Event: simply notes down the angle of the initial touch location. continueTrackingWith-
Touch:withEvent: uses the difference between the current touch location’s angle and
the initial touch location’s angle to apply a transform to the view, and updates the
angle property. endTrackingWithTouch:withEvent: triggers the Value Changed control
event. So our first draft looks like this:

- (BOOL) beginTrackingWithTouch:(UITouch *)touch withEvent:(UIEvent *)event {
 self->initialAngle = pToA(touch, self);
 return YES;
}

- (BOOL) continueTrackingWithTouch:(UITouch *)touch withEvent:(UIEvent *)event {
 CGFloat ang = pToA(touch, self);
 ang -= self->initialAngle;
 CGFloat absoluteAngle = self->angle + ang;
 self.transform = CGAffineTransformRotate(self.transform, ang);
 self->angle = absoluteAngle;
 return YES;

Figure 25-16. A custom control

732 | Chapter 25: Controls and Other Views

}

- (void) endTrackingWithTouch:(UITouch *)touch withEvent:(UIEvent *)event {
 [self sendActionsForControlEvents:UIControlEventValueChanged];
}

This works: we can put a MyKnob into the interface and hook up its Value Changed
control event (this can be done in the nib editor), and sure enough, when we run the
app, we can rotate the knob and, when our finger lifts from the knob, the Value Changed
action handler is called. However, continueTrackingWithTouch:withEvent: needs mod-
ification.

First, we need to peg the minimum and maximum rotation at 0 and 5, respectively. For
simplicity, we’ll just stop tracking, by returning NO, if the rotation goes below 0 or
above 5, fixing the angle at the exceeded limit. However, because we’re no longer
tracking, endTracking... will never be called, so we also need to trigger the Value
Changed control event. (Doubtless you can come up with a more sophisticated way of
pegging the knob at its minimum and maximum, but remember, this is only a simple
example.) Second, it might be nice to give the programmer the option to have the Value
Changed control event reported continuously as continueTracking... is called repeat-
edly. So we’ll add a continuous BOOL property and obey it.

Here, then, is our revised continueTracking... implementation:

- (BOOL) continueTrackingWithTouch:(UITouch *)touch withEvent:(UIEvent *)event {
 CGFloat ang = pToA(touch, self);
 ang -= self->initialAngle;
 CGFloat absoluteAngle = self->angle + ang;
 if (absoluteAngle < 0) {
 self.transform = CGAffineTransformIdentity;
 self->angle = 0;
 [self sendActionsForControlEvents:UIControlEventValueChanged];
 return NO;
 }
 if (absoluteAngle > 5) {
 self.transform = CGAffineTransformMakeRotation(5);
 self->angle = 5;
 [self sendActionsForControlEvents:UIControlEventValueChanged];
 return NO;
 }
 self.transform = CGAffineTransformRotate(self.transform, ang);
 self->angle = absoluteAngle;
 if (self->continuous)
 [self sendActionsForControlEvents:UIControlEventValueChanged];
 return YES;
}

Finally, we’ll probably want to be able to set the angle programmatically as a way of
rotating the knob:

UIControl | 733

- (void) setAngle: (CGFloat) ang {
 if (ang < 0)
 ang = 0;
 if (ang > 5)
 ang = 5;
 self.transform = CGAffineTransformMakeRotation(ang);
 self->angle = ang;
}

This is more work than using a gesture recognizer (which is left as an exercise for the
reader), but not much, and it gives a sense of what’s involved in creating a custom
control.

Bars
As you saw in Chapter 19, the three bar types — UINavigationBar, UIToolbar, and
UITabBar — are often used in conjunction with a built-in view controller:

• A UINavigationController has a UINavigationBar, which it can display at the top
of its view.

• A UINavigationController has a UIToolbar, which it can display at the bottom of
its view.

• A UITabBarController has a UITabBar, which it displays at the bottom of its view.

You can also use these bar types independently, though you’re not very likely to do
that — except with a UIToolbar, which is often used on the iPad as a top bar, adopting
a role analogous to a menu bar on the desktop. That’s such a common interface, in
fact, that certain special automatic behaviors are associated with it; for example, a
UISearchBar in a UIToolbar and managed by a UISearchDisplayController will auto-
matically display its search results table in a popover (Chapter 22), which is different
from what happens if the UISearchBar is not in a UIToolbar.

This section summarizes the facts about the three bar types and the items that populate
them.

UINavigationBar
A UINavigationBar is populated by UINavigationItems. The UINavigationBar main-
tains a stack; UINavigationItems are pushed onto and popped off of this stack. What-
ever UINavigationItem is currently topmost in the stack (the UINavigationBar’s top-
Item), in combination with the UINavigationItem just beneath it in the stack (the
UINavigationBar’s backItem), determines what appears in the navigation bar:

• The title (string) or titleView (UIView) of the topItem appears in the center of
the navigation bar.

• The prompt (string) of the topItem appears at the top of the navigation bar.

734 | Chapter 25: Controls and Other Views

• The rightBarButtonItem and leftBarButtonItem appear at the right and left ends
of the navigation bar. These are UIBarButtonItems. A UIBarButtonItem can be a
system button, a titled button, an image button, or a container for a UIView. A
UIBarButtonItem is not itself a UIView, however. I’ll discuss bar button items fur-
ther in a moment (and refer also to the discussion in Chapter 19).

In iOS 5, a UINavigationItem can have multiple right bar button items and multiple
left bar button items; its rightBarButtonItems and leftBarButtonItems properties
are arrays (of UIBarButtonItems). The bar button items are displayed from the
outside in: that is, the first item in the leftBarButtonItems is leftmost, while the
first item in the rightBarButtonItems is rightmost. Even if there are multiple buttons
on a side, you can still speak of that button in the singular: the rightBarButton-
Item is the first item of the rightBarButtonItems array, and the leftBarButtonItem
is the first item of the leftBarButtonItems array.

• The backBarButtonItem of the backItem appears at the left end of the navigation bar.
It typically points to the left, and is automatically configured so that, when tapped,
the topItem is popped off the stack. If the backItem has no backBarButtonItem, then
there is still a back button at the left end of the navigation bar, taking its title from
the title of the backItem. However, if the topItem has its hidesBackButton set to
YES, the back button is suppressed. Also, unless the topItem has its leftItems-
SupplementBackButton set to YES (new in iOS 5), the back button is suppressed if
the topItem has a leftBarButtonItem.

Changes to the navigation bar’s buttons can be animated by sending its topItem any of
these messages:

• setRightBarButtonItem:animated:

• setLeftBarButtonItem:animated:

• setRightBarButtonItems:animated:

• setLeftBarButtonItems:animated:

• setHidesBackButton:animated:

UINavigationItems are pushed and popped with pushNavigationItem:animated: and
popNavigationItemAnimated:, or you can set all items on the stack at once with set-
Items:animated: or by directly setting the items.

A UINavigationBar can be styled using its barStyle, translucent, and tintColor prop-
erties. Possible barStyle values are UIBarStyleDefault and UIBarStyleBlack; setting a
tintColor overrides the barStyle. In iOS 5 you can go further, providing a background
image (setBackgroundImage:forBarMetrics:) and setting the title’s text attributes dic-
tionary (titleTextAttributes). You can also shift the title’s vertical position by calling
setTitleVerticalPositionAdjustment:forBarMetrics:.

Recall from Chapter 19 that a bar button item may be instantiated with any of five
methods:

Bars | 735

• initWithBarButtonSystemItem:target:action:

• initWithTitle:style:target:action:

• initWithImage:style:target:action:

• initWithImage:landscapeImagePhone:style:target:action:

• initWithCustomView:

The styles are:

• UIBarButtonItemStyleBordered

• UIBarButtonItemStylePlain (portrayed like UIBarButtonItemStyleBordered in a
navigation bar)

• UIBarButtonItemStyleDone (only in a navigation bar)

In addition to its title and image (and, on iOS 5, its landscapeImagePhone), a bar button
item inherits from UIBarItem the ability to adjust the image position with image-
Insets (and landscapeImagePhoneInsets), plus the enabled and tag properties. Recall
from Chapter 19 that you can also set a bar button item’s possibleTitles and width
properties.

You can also customize the look of a bar button item in iOS 5. It has a tintColor
property, or you can give it a background image; and you can apply a text attributes
dictionary to its title. These are the customization methods:

• setTitleTextAttributes:forState: (inherited from UIBarItem)

• setTitlePositionAdjustment:forBarMetrics:

• setBackgroundImage:forState:barMetrics:

• setBackgroundVerticalPositionAdjustment:forBarMetrics:

Landscape iPhone Bar Metrics
Several methods that customize the look of a navigation bar, a toolbar, a bar button
item, or a segmented control depend upon its bar metrics (barMetrics:), which can be
UIBarMetricsDefault or UIBarMetricsLandscapePhone. This is intended to cover the case
of a navigation bar or toolbar belonging to a UINavigationController. On the iPhone
(not on the iPad), the UINavigationController changes the height of the bar when its
interface rotates; the standard heights are 44 (portrait) and 32 (landscape). The idea is
that you might like the look of whatever you’re customizing to change as well. The
same distinction is drawn by a bar button item’s landscapeImagePhone... properties.

Under the hood, the navigation bar or toolbar is simply responding to the change in its
height, no matter how that change is caused; thus you could in fact trigger the same
response in an independent bar (not belonging to a navigation controller). My experi-
ments suggest that a height of 32 or less is considered UIBarMetricsLandscapePhone,
while a height of 34 or more is considered UIBarMetricsDefault.

736 | Chapter 25: Controls and Other Views

In addition, these methods apply only if the bar button item is being used as a back
button item:

• setBackButtonTitlePositionAdjustment:forBarMetrics:

• setBackButtonBackgroundImage:forState:barMetrics:

• setBackButtonBackgroundVerticalPositionAdjustment:forBarMetrics:

Figure 19-10 shows how the navigation bar of my Albumen app used to look. When
iOS 5 came along, I jazzed it up a little with some custom colors (Figure 25-17).

When you use a UINavigationBar implicitly as part of a UINavigationController in-
terface, the controller is the navigation bar’s delegate. If you were to use a UINavigation-
Bar on its own, you might want to supply your own delegate. The delegate methods are:

• navigationBar:shouldPushItem:

• navigationBar:didPushItem:

• navigationBar:shouldPopItem:

• navigationBar:didPopItem:

This simple (and silly) example of a stand-alone UINavigationBar (Figure 25-18) im-
plements the legendary baseball combination trio of Tinker to Evers to Chance (see the
relevant Wikipedia article if you don’t know about them):

- (void)viewDidLoad {
 [super viewDidLoad];
 UINavigationItem* ni = [[UINavigationItem alloc] initWithTitle:@"Tinker"];
 UIBarButtonItem* b = [[UIBarButtonItem alloc] initWithTitle:@"Evers"
 style:UIBarButtonItemStyleBordered
 target:self action:@selector(pushNext:)];
 ni.rightBarButtonItem = b;
 nav.items = [NSArray arrayWithObject: ni]; // nav is the UINavigationBar
}

- (void) pushNext: (id) sender {
 UIBarButtonItem* oldb = sender;
 NSString* s = oldb.title;
 UINavigationItem* ni = [[UINavigationItem alloc] initWithTitle:s];
 if ([s isEqualToString: @"Evers"]) {
 UIBarButtonItem* b = [[UIBarButtonItem alloc] initWithTitle:@"Chance"
 style:UIBarButtonItemStyleBordered
 target:self action:@selector(pushNext:)];
 ni.rightBarButtonItem = b;
 }
 [nav pushNavigationItem:ni animated:YES];
}

Figure 25-17. A colorful navigation bar

Bars | 737

UIToolbar
A UIToolbar displays a row of UIBarButtonItems, which are its items. The items are
displayed from left to right in the order in which they appear in the items array. You
can set the items with animation by calling setItems:animated:. You can use the system
bar button items UIBarButtonSystemItemFlexibleSpace and UIBarButtonSystemItem-
FixedSpace, along with the UIBarButtonItem width property, to position the items
within the toolbar.

See the previous section and Chapter 19 for more about creation and customization of
UIBarButtonItems. A bar button item’s image, to be used with UIBarButtonItemStyle-
Plain in a toolbar, must be a transparency mask; colors will be ignored — all that
matters is the transparency of the various parts of the image. The color for the image
will be supplied by default, or you can customize it with the bar button item’s tint-
Color. For UIBarButtonItemStyleBordered, on the other hand, the image color does
matter, and it is the background of the button that will be colored by the tintColor.

A toolbar can be styled using its barStyle, translucent, and tintColor properties. Pos-
sible barStyle values are UIBarStyleDefault and UIBarStyleBlack; setting a tintColor
overrides the barStyle. In iOS 5 you can go further, providing a background image with
setBackgroundImage:forToolbarPosition:barMetrics:; the toolbar positions are:

• UIToolbarPositionAny

• UIToolbarPositionBottom

• UIToolbarPositionTop

In Figure 19-5, the toolbar has a UIBarStyleBlack style, its height is taller than normal
to accommodate larger bar button items, and it is populated with three tinted bar
button items — a UIBarButtonSystemItemCancel bar button item (the tint color tints the
button background) and two UIBarButtonItemStylePlain bar button items with trans-
parency mask images (the tint color tints the images).

UITabBar
A UITabBar displays UITabBarItems (its items), each consisting of an image and a
name, and maintains a current selection among those items (its selectedItem, which is
a UITabBarItem, not an index number). To hear about a change of selection, implement
tabBar:didSelectItem: in the delegate (UITabBarDelegate). To change the items in an
animated fashion, call setItems:animated:.

Figure 25-18. A navigation bar

738 | Chapter 25: Controls and Other Views

In iOS 5, the look of a tab bar can be customized. You can set its tintColor and
backgroundImage. The tintColor is used to color a tab bar item’s image when it is not
selected (even if you also set the backgroundImage). The tint color used to color a tab
bar item when it is selected is the tab bar’s selectedImageTintColor. You can also set
the image drawn behind the selected tab bar item to indicate that it’s selected, the
selectionIndicatorImage.

A UITabBarItem is created with one of these two methods:

• initWithTabBarSystemItem:tag:

• initWithTitle:image:tag:

UITabBarItem is a subclass of UIBarItem, so in addition to its title and image it inherits
the ability to adjust the image position with imageInsets, plus the enabled and tag
properties.

A tab bar item’s image must be a transparency mask; its colors are ignored — only the
transparency matters, with tinting applied to the nontransparent areas of the image
(the tab bar’s tintColor and selectedImageTintColor). In iOS 5, however, you can in-
stead call setFinishedSelectedImage:withFinishedUnselectedImage: to supply normal
images to be shown when the tab bar item is selected and unselected respectively.

You can also customize the look of a tab bar item’s title in iOS 5. Call setTitleText-
Attributes:forState: to apply a text attributes dictionary; and you can adjust the title’s
position with the titlePositionAdjustment property.

The user can be permitted to alter the contents of the tab bar, setting its tab bar items
from among a larger repertory of tab bar items. To summon the interface that lets the
user do this, call beginCustomizingItems:, passing an array of UITabBarItems that may
or may not appear in the tab bar. (To prevent the user from removing an item from the
tab bar, include it in the tab bar’s items and don’t include it in the argument passed to
beginCustomizingItems:.) A presented view with a Done button appears, behind the
tab bar but in front of everything else, displaying the customizable items. The user can
then drag an item into the tab bar, replacing an item that’s already there. To hear about
the customizing view appearing and disappearing, implement delegate methods:

• tabBar:willBeginCustomizingItems:

• tabBar:didBeginCustomizingItems:

• tabBar:willEndCustomizingItems:changed:

• tabBar:didEndCustomizingItems:changed:

A UITabBar on its own (outside a UITabBarController) does not provide any automatic
access to the user customization interface; it’s up to you. In this (silly) example, we
populate a UITabBar with four system tab bar items and a More item; we also populate
an instance variable array with those same four system tab bar items, plus four more.
When the user taps the More item, we show the user customization interface with all
eight tab bar items:

Bars | 739

- (void)viewDidLoad {
 [super viewDidLoad];
 NSMutableArray* arr = [NSMutableArray array];
 for (int ix = 1; ix < 8; ix++) {
 UITabBarItem* tbi =
 [[UITabBarItem alloc] initWithTabBarSystemItem:ix tag:ix];
 [arr addObject: tbi];
 }
 self.items = arr; // copy policy
 [arr removeAllObjects];
 [arr addObjectsFromArray: [self.items subarrayWithRange:NSMakeRange(0,4)]];
 UITabBarItem* tbi = [[UITabBarItem alloc] initWithTabBarSystemItem:0 tag:0];
 [arr addObject: tbi]; // More button
 tb.items = arr; // tb is the UITabBar
}

- (void)tabBar:(UITabBar *)tabBar didSelectItem:(UITabBarItem *)item {
 NSLog(@"did select item with tag %i", item.tag);
 if (item.tag == 0) {
 // More button
 tabBar.selectedItem = nil;
 [tabBar beginCustomizingItems:self.items];
 }
}

When used in conjunction with a UITabBarController, the customization interface is
provided automatically, in an elaborate way. If there are a lot of items, a More item is
automatically present, and can be used to access the remaining items in a table view.
Here, the user can select any of the excess items, navigating to the corresponding view.
Or, the user can switch to the customization interface by tapping the Edit button. (See
the iPhone Music app for a familiar example.) Figure 25-19 shows how a More list looks
by default.

The way this works is that the automatically provided More item corresponds to a
UINavigationController with a root view controller (UIViewController) whose view is
a UITableView. Thus, a navigation interface containing this UITableView appears as
a tab view when the user taps the More button. When the user selects an item in the
table, the corresponding UIViewController is pushed onto the UINavigation-
Controller’s stack.

You can access this UINavigationController: it is the UITabBarController’s more-
NavigationController. Through it, you can access the root view controller: it is the first
item in the UINavigationController’s viewControllers array. And through that, you
can access the table view: it is the root view controller’s view. This means you can
customize what appears when the user taps the More button! For example, let’s make
the navigation bar black, and let’s remove the word More from its title:

740 | Chapter 25: Controls and Other Views

UINavigationController* more = self.tabBarController.moreNavigationController;
UIViewController* list = [more.viewControllers objectAtIndex:0];
list.title = @"";
UIBarButtonItem* b = [[UIBarButtonItem alloc] init];
b.title = @"Back";
list.navigationItem.backBarButtonItem = b; // so user can navigate back
more.navigationBar.barStyle = UIBarStyleBlack;

We can go even further by supplementing the table view’s data source with a data source
of our own, thus proceeding to customize the table itself. This is tricky because we have
no internal access to the actual data source, and we mustn’t accidentally disable it from
populating the table. Still, it can be done. I’ll start by replacing the table view’s data
source with an instance of my own MyDataSource, storing a reference to the original
data source object in an instance variable of MyDataSource:

UITableView* tv = (UITableView*)list.view;
MyDataSource* mds = [[MyDataSource alloc] init];
self.myDataSource = mds; // retain policy
self.myDataSource.originalDataSource = tv.dataSource;
tv.dataSource = self.myDataSource;

Next, I’ll use Objective-C’s automatic message forwarding mechanism (see the Objec-
tive-C Runtime Programming Guide) so that MyDataSource acts as a front end for
originalDataSource. MyDataSource will magically appear to respond to any message
that originalDataSource responds to, and any message that arrives that MyDataSource
can’t handle will be magically forwarded to originalDataSource. This way, the insertion

Figure 25-19. Automatically generated More list

Bars | 741

of the MyDataSource instance as data source doesn’t break whatever the original data
source does:

- (id)forwardingTargetForSelector:(SEL)aSelector {
 if ([self.originalDataSource respondsToSelector: aSelector])
 return self.originalDataSource;
 return [super forwardingTargetForSelector:aSelector];
}

Finally, we’ll implement the two Big Questions required by the UITableViewData-
Source protocol, to quiet the compiler. In both cases, we first pass the message along
to originalDataSource (somewhat analogous to calling super); then we add our own
customizations as desired. Here, I’ll remove each cell’s disclosure indicator and change
its text font. The outcome is shown in Figure 25-20:

- (NSInteger)tableView:(UITableView *)tv numberOfRowsInSection:(NSInteger)sec {
 // this is just to quiet the compiler
 return [self.originalDataSource tableView:tv numberOfRowsInSection:sec];
}

- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)ip {
 UITableViewCell* cell =
 [self.originalDataSource tableView:tv cellForRowAtIndexPath:ip];

Figure 25-20. Customized More list

742 | Chapter 25: Controls and Other Views

 cell.accessoryType = UITableViewCellAccessoryNone;
 cell.textLabel.font = [UIFont systemFontOfSize:14];
 return cell;
}

Appearance Proxy
In iOS 5, instead of sending messages that customize the look of an interface object to
the object itself, you can send them instead to an appearance proxy for that object’s
class. The appearance proxy then passes that same message along to the actual instances
of that class — even those that don’t yet exist.

Thus, for example, instead of sending setTitleTextAttributes:forState: to a partic-
ular UIBarButtonItem, you could instead send it to a UIBarButtonItem appearance
proxy. Any actual UIBarButtonItems from then on would have the text attributes you
specified.

This architecture has two chief uses:

• It simplifies the task of giving your app a consistent overall appearance. Suppose
you want all UIBarButtonItems to have a certain title font. Instead of having to
remember to send setTitleTextAttributes:forState: to every UIBarButtonItem
your app ever instantiates, you send it once to the appearance proxy and it is sent
to those UIBarButtonItems for you.

• It provides access to interface objects that might otherwise be difficult to refer to.
For example, you don’t get direct access to a search bar’s external Cancel button,
but it is a UIBarButtonItem and you can customize it through the UIBarButtonItem
appearance proxy.

There are two class methods for obtaining an appearance proxy:

appearance

Returns a general appearance proxy for that class.

appearanceWhenContainedIn:

The argument is a nil-terminated list (not an array) of classes, arranged in order of
containment from inner to outer. The method you send to the appearance proxy
returned from this call will be passed on only to instances of the target class that
are actually contained in the way you describe. The notion of what “contained”
means is deliberately left vague; basically, it works the way you intuitively expect
it to work.

When configuring appearance proxy objects, specificity trumps generality. Thus, you
could call appearance to say what should happen for most instances of some class, and
call appearanceWhenContainedIn: to say what should happen instead for certain instan-
ces of that class. Similarly, longer appearanceWhenContainedIn: chains are more specific
than shorter ones.

Appearance Proxy | 743

For example, here’s some code from my Latin flashcard app (myGolden and myPaler are
methods defined by a category on UIColor):

[[UIBarButtonItem appearance]
 setTintColor: [UIColor myGolden]];
[[UIBarButtonItem appearanceWhenContainedIn:
 [UIToolbar class], nil]
 setTintColor: [UIColor myPaler]];
[[UIBarButtonItem appearanceWhenContainedIn:
 [UIToolbar class], [DrillViewController class], nil]
 setTintColor: [UIColor myGolden]];

That means:

In general, bar button items should be tinted golden.

But bar button items in a toolbar are an exception: they should be paler.

But bar button items in a toolbar in DrillViewController’s view are an exception to
that: they should be golden.

(If you’re looking at this book’s figures in color, you can see this difference made man-
ifest in Figure 19-3 and Figure 19-5.)

Sometimes, in order to express sufficient specificity, I find myself defining subclasses
for no other purpose than to refer to them when obtaining an appearance proxy. For
example, here’s some more code from my Latin flashcard app:

[[UINavigationBar appearance] setBackgroundImage:marble2
 forBarMetrics:UIBarMetricsDefault];
// counteract the above for the black navigation bar
[[BlackNavigationBar appearance] setBackgroundImage:nil
 forBarMetrics:UIBarMetricsDefault];

In that code, BlackNavigationBar is a UINavigationBar subclass that does nothing
whatever. Its sole purpose is to tag one navigation bar in my interface so that I can refer
it in that code! Thus, I’m able to say, in effect, “All navigation bars in this app should
have marble2 as their background image, unless they are instances of BlackNavigation-
Bar.”

The ultimate in specificity is, of course, to customize the look of an instance directly.
Thus, for example, if you set one particular UIBarButtonItem’s tintColor property,
then setTintColor: sent to a UIBarButtonItem appearance proxy will have no effect on
that particular bar button item.

You’ll want to know which messages can be sent to the appearance proxies for which
classes. The best way to find out is to look in the header for that class (or a superclass);
any appropriate property or method will be tagged UI_APPEARANCE_SELECTOR. For ex-
ample, here’s how the tintColor property is declared in UIBarButtonItem.h:

@property(nonatomic,retain) UIColor *tintColor
 __OSX_AVAILABLE_STARTING(__MAC_NA,__IPHONE_5_0)
 UI_APPEARANCE_SELECTOR;

744 | Chapter 25: Controls and Other Views

You may also be able to deduce this information from the classification of properties
and methods in the documentation, but I find the header to be far more reliable and
explicit.

The appearance proxy is an id. Therefore, it can be sent any message for which a method
signature can be found; if you send it a message that isn’t tagged
UI_APPEARANCE_SELECTOR for the class that the proxy represents, the compiler can’t stop
you, but you’ll crash at runtime when the message is actually sent. An id has no prop-
erties; that’s why we must call setTintColor: in order to set the UIBarButtonItem’s
tintColor property.

I’ve been deliberately vague as to when instances are affected by the appearance proxy.
The rule seems to be that sending a message to an appearance proxy will affect future
instances of that class, but it won’t spontaneously alter the look of an object that is
currently visible in the interface. The look of an existing object will be changed, how-
ever, if that object is refreshed somehow.

For example, in a tab bar interface where the tab bar is visible, this code has no imme-
diate effect:

[[UITabBarItem appearance] setTitleTextAttributes:
 [NSDictionary dictionaryWithObjectsAndKeys:
 [UIFont fontWithName:@"Baskerville" size:18],
 UITextAttributeFont,
 nil]
 forState:UIControlStateNormal];

But if a presented view controller’s view then covers the whole interface, and is later
dismissed, the tab bar items will have adopted their new text attributes. Or, if this code
is in a child view controller of the UITabBarController, changing the value of self.tab-
BarItem.title will cause the text attributes for this tab bar item to be refreshed.

In general, though, such trickery is probably not appropriate. You’ll usually configure
your appearance proxies very early in the lifetime of the app, and never again. The app
delegate’s application:didFinishLaunchingWithOptions:, before the app’s window has
been displayed, is the most obvious and common location.

Appearance Proxy | 745

CHAPTER 26

Modal Dialogs

A modal dialog demands attention; while it is present, the user can do nothing other
than work within it or dismiss it. You might need to put up a simple modal dialog in
order to give the user some information or to ask the user how to proceed. Two UIView
subclasses construct and present rudimentary modal dialogs:

UIAlertView
A UIAlertView pops up unexpectedly with an elaborate animation and may be
thought of as an attention-getting interruption. An alert is displayed in the center
of the screen; it contains a title, a message, and some number of buttons, one of
which may be the cancel button, meaning that it does nothing but dismiss the alert.
Often there is only a cancel button, the primary purpose of the alert being to show
the user the message (“You won the game”); the additional buttons may be used
to give the user a choice of how to proceed (“You won the game; would you like
to play another?” “Yes,” “No,” “Replay”).

Starting in iOS 5, an alert view may contain a text field, a password field, or both.

UIActionSheet
A UIActionSheet may be considered the iOS equivalent of a menu. An action sheet
is displayed arising from the interface: on the iPhone, it slides up from the bottom
of the screen; on the iPad, it is typically shown in a popover. It consists of some
number of buttons (there can be a title, optionally, but there usually isn’t); one
may be the cancel button, which appears last (though on the iPad, for a popover,
this may not be needed), and one may be a “destructive” button, which appears
first in red, emphasizing the severity of that option.

Where a UIAlertView is an interruption, a UIActionSheet is a logical branching of
what the user is already doing: it typically divides a single piece of interface into
multiple possible courses of action. For example, in Mobile Safari a single “More”
button summons an action sheet that lets the user add the current page as a book-
mark, add it to the home screen, mail a link to it, or print it (or cancel and do
nothing).

747

One occasionally sees a misuse of the built-in dialogs to include addi-
tional interface. For example, a UIActionSheet is a UIView, so in theory
you can add a subview to it. I cannot recommend such behavior; it
clearly isn’t intended, and there’s no need for it. If what you want isn’t
what a built-in dialog normally does, don’t use a built-in dialog.

Alert View
The basic method for constructing an alert view (UIAlertView) is initWithTitle:
message:delegate:cancelButtonTitle:otherButtonTitles:. The method for making a
constructed alert view appear onscreen is show. The alert is automatically dismissed as
soon as the user taps any button. Here’s an example (Figure 26-1):

UIAlertView* alert = [[UIAlertView alloc] initWithTitle:@"Not So Fast!"
 message:@"Do you really want to do this tremendously destructive thing?"
 delegate:self cancelButtonTitle:@"Yes" otherButtonTitles:@"No", @"Maybe", nil];
[alert show];

The otherButtonTitles parameter is of indefinite length, so it must be either nil or a
nil-terminated list (not an array) of strings. The cancel button needn’t involve canceling
anything; it is drawn darker than the other buttons and comes last in a column of
buttons, as you can see from Figure 26-1, but if there were three otherButtonTitles and
a nil cancelButtonTitle, the alert dialog would look exactly the same.

Starting in iOS 5, before calling show you can modify the alert view’s alertViewStyle to
add text fields. Your choices are:

• UIAlertViewStyleDefault, the default (no text fields)

• UIAlertViewStylePlainTextInput, one normal text field

• UIAlertViewStyleSecureTextInput, one secureTextEntry text field

• UIAlertViewStyleLoginAndPasswordInput, one normal text field and one secureText-
Entry text field

Figure 26-1. An alert view (UIAlertView)

748 | Chapter 26: Modal Dialogs

If an alert view is to contain a text field, it probably should have at most one or two
buttons, with short titles such as “OK” and “Cancel”. Otherwise, there might not be
room on the screen for the alert view and the keyboard. You can retrieve the text fields
with textFieldAtIndex:; possible arguments are 0 and 1 (where 1 is the password field
when the style is UIAlertViewStyleLoginAndPasswordInput). You can treat the text fields
as you would any text field; for example, you can set the text field’s delegate, arrange
to receive control events from the text field, determine the text field’s keyboard type,
and so on:

UIAlertView* alert = [[UIAlertView alloc] initWithTitle:@"Enter a number:"
 message:nil delegate:self cancelButtonTitle:@"Cancel"
 otherButtonTitles:@"OK", nil];
alert.alertViewStyle = UIAlertViewStylePlainTextInput;
UITextField* tf = [alert textFieldAtIndex:0];
tf.keyboardType = UIKeyboardTypeNumberPad;
[tf addTarget:self action:@selector(textChanged:)
 forControlEvents:UIControlEventEditingChanged];
[alert show];

The alert dialog is modal, but the code that presents it is not: after the alert is shown,
your code continues to run. If an alert consists of a single button (the cancel button),
you might show it and forget about it, secure in the knowledge that the user must
dismiss it sooner or later and that nothing can happen until then. But if you want to
respond at the time the user dismisses the alert, or if there are several buttons and you
want to know which one the user tapped to dismiss the alert, you’ll need to implement
at least one of these delegate methods (UIAlertViewDelegate):

• alertView:clickedButtonAtIndex:

• alertView:willDismissWithButtonIndex:

• alertView:didDismissWithButtonIndex:

The cancel button index is usually 0, with the remaining button indexes increasing in
the order in which they were defined. If you’re in any doubt, or if you need the button
title for any other reason, you can call buttonTitleAtIndex:. Properties allow you to
work out the correspondence between indexes and buttons without making any as-
sumptions:

• cancelButtonIndex (-1 if none)

• firstOtherButtonIndex (-1 if none)

• numberOfButtons (including the cancel button)

You can also dismiss an alert view programmatically, with dismissWithClickedButton-
Index:animated:. When an alert view is dismissed programmatically, the delegate
method alertView:clickedButtonAtIndex: is not called, because no button was actually
clicked by the user. But the button index you specify is still passed along to the two
dismiss delegate methods. The button index you specify needn’t correspond to any

Alert View | 749

existing button; thus, you could use it as a way of telling your delegate method that
your code, and not the user, dismissed the alert.

Two additional delegate methods notify you when the alert is initially shown:

• willPresentAlertView:

• didPresentAlertView:

In iOS 5, a new delegate method asks whether the first “other button” should be en-
abled:

• alertViewShouldEnableFirstOtherButton:

The delegate receives that message each time the state of things changes in the alert —
in particular, when the alert appears and when the text in a text field changes. In this
example, there’s a text field, my cancel button says “Cancel”, and my other button says
“OK”; I enable the OK button only if there is text in the text field:

- (BOOL)alertViewShouldEnableFirstOtherButton:(UIAlertView *)alertView {
 UITextField* tf = [alertView textFieldAtIndex:0];
 return [tf.text length] > 0;
}

One further delegate method notifies you if the alert is dismissed by the system:

• alertViewCancel:

Before iOS 4.0, this could happen because the user quit the app with the alert showing;
the system dismissed the alert, and your code had a chance to respond before actually
terminating. But iOS 4.0 introduced multitasking; if the user clicks the Home button,
your app is backgrounded without the system dismissing the alert, and alertView-
Cancel: may be a dead letter. It would thus be up to your code, as the app is back-
grounded, whether to leave the alert there or to dismiss the alert and perhaps take some
default action.

Action Sheet
The basic method for constructing an action sheet (UIActionSheet) is initWithTitle:
delegate:cancelButtonTitle:destructiveButtonTitle:otherButtonTitles:. There are
various methods for summoning the actual sheet, depending on what part of the in-
terface you want the sheet to arise from. The following are appropriate on the iPhone,
where the sheet typically rises from the bottom of the screen:

showInView:

On the iPhone, far and away the most commonly used method. You will usually
specify the root view controller’s view. Don’t specify a view whose view controller
is contained by a view controller that hides the bottom of the interface, such as a
tab bar controller or a navigation controller with a toolbar; if you do, some of the
buttons may not function (and you get a helpful warning in the console: “Present-

750 | Chapter 26: Modal Dialogs

ing action sheet clipped by its superview”). Instead, specify the tab bar controller’s
view itself, or the navigation controller’s view itself, or use one of the other meth-
ods. For example, in my Zotz! app, which has a tab bar interface, the settings view
controller summons an action sheet like this (Figure 26-2):

[sheet showInView: self.tabBarController.view];

showFromTabBar:, showFromToolbar:
On the iPhone, these cause the sheet to rise from the bottom of the screen, just like
showInView:, because the tab bar or toolbar is at the bottom of the screen; however,
they avoid the clipping problem with showInView: described earlier.

On the iPad, you are more likely to use one of the following methods, which resemble
the methods for presenting a popover (Chapter 22); they do in fact present the action
sheet as a popover, with its arrow pointing to the specified part of the interface (Fig-
ure 26-3):

• showFromRect:inView:animated:

• showFromBarButtonItem:animated:

(On the iPhone, those methods should be avoided; they don’t cause an error, and they
do work — the sheet still ends up at the bottom at the screen — but they can do messy
things to the interface.)

Figure 26-2. An action sheet on the iPhone

Action Sheet | 751

On the iPad, there is usually no point including a cancel button title: if the alert sheet
is shown as a popover, no cancel button will appear. This is because the popover is
configured to be dismissed when the user taps outside it, which is the same as canceling
it.

However, it is also possible on the iPad to show an alert sheet inside an existing popo-
ver. In this scenario, we are already presenting the popover, and then we summon an
action sheet within the popover’s view. In that case, the action sheet behaves as if the
popover were an iPhone: you summon it with showInView:, it slides up from the bottom
of the popover, and the cancel button appears (Figure 26-4). Moreover, the action sheet
is then modal: the user can’t dismiss the popover, or do anything else, without dis-
missing the action sheet first.

Figure 26-3. An action sheet presented as a popover

Figure 26-4. An action sheet presented inside a popover

752 | Chapter 26: Modal Dialogs

An action sheet also has a style, its actionSheetStyle:

• UIActionSheetStyleAutomatic

• UIActionSheetStyleDefault

• UIActionSheetStyleBlackTranslucent

• UIActionSheetStyleBlackOpaque

These values are closely related to the possible styles (barStyle) of a UIToolbar (Chap-
ter 25). However, an action sheet’s style depends also on the mode of presentation;
experimentation suggests, for example, that setting the actionSheetStyle of an action
sheet that appears as a popover may make no perceptible difference, and that an action
sheet that is shown from a tab bar will always be black opaque.

In other respects an action sheet is managed in a manner completely parallel to an alert
view. When one of its buttons is tapped, the sheet is dismissed automatically, but you’ll
probably want to implement a delegate method (UIActionSheetDelegate) in order to
learn which button it was:

• actionSheet:clickedButtonAtIndex:

• actionSheet:willDismissWithButtonIndex:

• actionSheet:didDismissWithButtonIndex:

If the action sheet is shown as a popover on the iPad, and if the popover is dismissed
by the user tapping outside it, the button index is -1.

To respond appropriately to the delegate methods without making assumptions about
how the indexes correspond to the buttons, you can use the buttonTitleAtIndex:
method, and these properties:

• cancelButtonIndex

• destructiveButtonIndex

• firstOtherButtonIndex

• numberOfButtons

You can dismiss an action sheet programmatically with dismissWithClickedButton-
Index:animated:, in which case actionSheet:clickedButtonAtIndex: is not called, but
the two dismiss delegate methods are. Two additional delegate methods notify you
when the sheet is initially shown:

• willPresentActionSheet:

• didPresentActionSheet:

A further delegate method, actionSheetCancel:, notifies you if the sheet is dismissed
by the system, though in iOS 4.0 or later this is unlikely to happen; if your app is
backgrounded with an action sheet showing, it’s up to you to decide how to proceed.

Action Sheet | 753

Here’s the code that presents the action sheet shown in Figure 26-2, along with the
code that responds to its dismissal:

- (void) chooseLayout: (id) sender {
 UIActionSheet* sheet =
 [[UIActionSheet alloc] initWithTitle:@"Choose New Layout" delegate:self
 cancelButtonTitle:(NSString *)@"Cancel" destructiveButtonTitle:nil
 otherButtonTitles:@"3 by 3", @"4 by 3", @"4 by 4", @"5 by 4", @"5 by 5",
 nil];
 [sheet showInView: self.tabBarController.view];
}

- (void)actionSheet:(UIActionSheet *)as clickedButtonAtIndex:(NSInteger)ix {
 if (ix == as.cancelButtonIndex)
 return;
 NSString* s = [as buttonTitleAtIndex:ix];
 // ...
}

On the iPad, if an action sheet is shown as a popover from a bar button item in a toolbar,
the toolbar becomes a passthrough view for the popover. This behavior is troublesome,
for the same reasons I gave in Chapter 22: the user can now tap another bar button
item without causing the action sheet’s popover to be dismissed (and possibly even
summoning another popover — perhaps even another instance of the same action sheet
— simultaneously). Preventing this sort of conflict is entirely up to your code. You can’t
solve the problem by adjusting the popover controller’s passthroughViews, because you
can’t get access to the popover controller! This situation seems like a massive bug. The
best solution seems to be to implement the delegate methods to toggle user interaction
in the toolbar:

- (IBAction)doButton:(id)sender {
 UIActionSheet* act = [[UIActionSheet alloc]
 initWithTitle:nil delegate:self cancelButtonTitle:nil
 destructiveButtonTitle:nil otherButtonTitles:@"Hey", @"Ho", nil];
 [act showFromBarButtonItem:sender animated:YES];
}

- (void)didPresentActionSheet:(UIActionSheet *)actionSheet {
 [self.toolbar setUserInteractionEnabled:NO];
}

- (void)actionSheet:(UIActionSheet *)actionSheet
 didDismissWithButtonIndex:(NSInteger)buttonIndex {
 [self.toolbar setUserInteractionEnabled:YES];
}

Dialog Alternatives
Alert views and actions sheets are limited, inflexible, and inappropriate to any but the
simplest cases. In more complex situations, it really isn’t that much work to implement
an alternative.

754 | Chapter 26: Modal Dialogs

On the iPhone, the main alternative is to navigate to a new screenful of interface. This
might be by way of a navigation interface, or using a presented view. For example, in
the Zotz! app, in the Settings view, when the user taps a color, I summon a presented
view, using a UIViewController subclass of my own, ColorPickerController (Fig-
ure 26-5).

On the desktop, the color picker in Figure 26-5 might be presented as a secondary
window acting as a dialog. On the small iPhone screen, where there are no secondary
windows, the presented view is the equivalent of a dialog. Indeed, one might argue that
the action sheet shown in Figure 26-2 is not a very appropriate use of an action sheet,
that it’s too intrusive and has too many buttons. It might have been better if I’d designed
my own presented view; I probably picked an action sheet because it required just a
few lines of code — basically, I was being lazy.

On the iPad, a popover is virtually a secondary window, and can be truly modal. An
action sheet is usually presented as a popover, but it’s limited, and you don’t get access
to the popover controller; in many cases, you’ll probably be better off designing your
own view to be presented in a popover. The popovers in Figure 22-1, for example, are
effectively modal dialogs. A popover can internally display a secondary presented view
or even an action sheet, as we’ve already seen. Also on the iPad, a presented view can
use the UIModalPresentationFormSheet presentation style, which is effectively a dialog
window smaller than the screen.

Local Notifications
A local notification is an alert to the user that can appear even if your app is not running.
In one of its manifestations, it appears as a dialog on top of whatever the user is doing
at that moment, which is why it is treated in this chapter. (If a local notification from
some other app were to appear as a dialog while your app is frontmost, your app would

Figure 26-5. A presented view functioning as a modal dialog

Local Notifications | 755

become inactive; see Chapter 11 and the applicationWillResignActive: app delegate
message.) Local notifications were introduced in iOS 4.

This use of the term notification has nothing to do with NSNotification
(Chapter 11). The ambiguity is unfortunate.

Your app does not present a local notification alert: indeed, your app can’t present a
local notification alert, because if your app’s local notification alert appears, your app
ex hypothesi isn’t frontmost. Rather, your app hands a local notification to the system
along with instructions about when the local notification should fire. When the speci-
fied time arrives, if your app isn’t frontmost, the system presents the notification on
your behalf.

In iOS 5, the user has several choices as to how a notification from your app should be
presented — probably because users complained that the old way was too intrusive.
These choices appear in the Settings app, under Notifications. iOS 5 introduces the
Notification Center, which appears when the user swipes downward from the very top
of the screen, and the user can enable or disable your app’s notifications appearing
there. A notification from your app can also appear as an alert (the old style from iOS
4), as a temporary banner at the top of the screen, or not at all. The user can also prohibit
your app’s alerts from appearing in the lock screen. It is thus perfectly possible for the
user to suppress your app’s alerts altogether!

No matter the interface whereby a notification presents itself, it generally provides some
way for the user to summon your app in response. If the user does so, your app will be
brought to the front, launching it if it isn’t already suspended in the background. Your
app may need to be concerned with detecting that it has been brought to the front under
these special circumstances, and I’ll talk in a moment about how it can do that.

To create a local notification, you configure a UILocalNotification object and hand it
to the system with UIApplication’s scheduleLocalNotification:. The UILocal-
Notification object has properties as follows:

alertBody

The message displayed in the notification.

alertAction

This matters only if your notification is displayed as an alert; in that case, this is
the text of the action button. If you don’t set alertAction, the text of the action
button will be “Launch.”

According to the documentation, you should be able to set hasAction
to NO to suppress the action button altogether, but in my testing, doing
so had no effect.

756 | Chapter 26: Modal Dialogs

soundName

The name of a sound file at the top level of your app bundle, to be played when
the alert appears. This should be an uncompressed sound (AIFF or WAV). Alter-
natively, you can specify the default sound, UILocalNotificationDefaultSound-
Name. If you don’t set this property, there won’t be a sound. Regardless of the value
you supply here, the user can prevent your app’s notifications from emitting a
sound.

userInfo

An optional NSDictionary whose contents are up to you. Your app can retrieve
this dictionary later on, if it receives the notification after the notification fires
(more about that in a moment).

fireDate, timeZone
When you want the local notification to fire. The fireDate is an NSDate (see
Chapter 10 and Chapter 25 for examples of date manipulation). If you don’t in-
clude a timeZone, the date is measured against universal time; if you do include a
timeZone, the date is measured against the user’s local time zone, even if that time
zone changes (because the user travels, for instance).

repeatInterval, repeatCalendar
If set, the local notification will recur.

As I’ve already mentioned, you hand a configured local notification to the system with
UIApplication’s scheduleLocalNotification:. Additional UIApplication methods let
you manipulate the list of local notifications you’ve already scheduled. You can cancel
one or all scheduled local notifications (cancelLocalNotification:, cancelAllLocal-
Notifications:); starting in iOS 4.2, you can also manipulate the list directly by setting
UIApplication’s scheduledLocalNotifications, an NSArray property (previously, this
property was read-only).

Figure 26-6 shows an alert generated by the firing of a local notification. Here’s a simple
example of creating and scheduling the local notification that resulted in that alert:

UILocalNotification* ln = [[UILocalNotification alloc] init];
ln.alertBody = @"Time for another cup of coffee!";
ln.fireDate = [NSDate dateWithTimeIntervalSinceNow:15];
ln.soundName = UILocalNotificationDefaultSoundName;
[[UIApplication sharedApplication] scheduleLocalNotification:ln];

Figure 26-6. An alert posted by the system when a local notification fires

Local Notifications | 757

Now let’s talk about what happens when one of your scheduled local notifications fires.
There are three possibilities, depending on the state of your app at that moment:

Your app is suspended in the background
If the user summons your app from a notification, your app is brought to the front;
your app delegate will then receive application:didReceiveLocalNotification:,
where the second parameter is the UILocalNotification, and your application’s
applicationState will be UIApplicationStateInactive.

Your app is frontmost
The user won’t be informed by the system that the notification has fired (though
the notification may be stored in the Notification Center). Your app delegate will
receive application:didReceiveLocalNotification:, where the second parameter
is the UILocalNotification, and your application’s applicationState will be
UIApplicationStateActive. The idea is that if your app wants to let the user know
that something special is happening, that’s your app’s business and it can do it in
its own way.

Your app isn’t running
If the user summons your app from a notification, your app is launched; your app
delegate will then receive, not application:didReceiveLocalNotification:, but
rather application:didFinishLaunchingWithOptions: with an NSDictionary pa-
rameter that includes the UIApplicationLaunchOptionsLocalNotificationKey,
whose value is the UILocalNotification.

Thus, you should implement application:didReceiveLocalNotification: to check the
UIApplication’s applicationState, and you should implement application:didFinish-
LaunchingWithOptions: to check its second parameter to see whether we are launching
in response to a local notification. In this way, you will be able to distinguish the three
different possibilities, and you can respond appropriately.

In the first and third cases (your app is suspended in the background, or your app isn’t
running), you may want to show the user some interface appropriate to the local no-
tification’s situation. For example, you might want to push a particular view controller
onto your navigation interface or present a particular view controller’s view. However,
when your app is launched from scratch, the first thing the user sees is its launch image
(Chapter 9); and when your app is activated from a suspended state, the first thing the
user sees is a screenshot image of your app, taken by the system when your app was
suspended. Thus, there may be a mismatch between these images and the interface that
you’re about to show the user in this special situation. The user will thus see an odd
flash as the image is removed to reveal your app’s actual interface. To prevent this flash,
you can include in the original UILocalNotification an alertLaunchImage to be presen-
ted instead of these images. The idea is that this alertLaunchImage should be a better
match for the interface the user will actually see.

There is actually a fourth possibility for what happens when a local notification fires.
Under some special circumstances (addressed, for example, in Chapter 27 and Chap-

758 | Chapter 26: Modal Dialogs

ter 35), your app might be running, not suspended, in the background. In this case, the
situation is similar to what happens when your app is suspended: the user may be
notified, and can summon your app to the front. Your running-in-the-background app
can even schedule a notification to fire immediately with the convenience method
presentLocalNotificationNow:.

Local Notifications | 759

PART VI

Some Frameworks

In addition to the basic UIKit and Foundation frameworks, which supply the funda-
mental interface and utility classes for all apps, Cocoa supplies numerous optional
frameworks that you can use if your app has special needs. This part of the book in-
troduces some of these frameworks and their related topics. At the same time, it nec-
essarily exercises some restraint. To explore all of the additional iOS frameworks in
full depth would more than double the size of this book! So this part of the book fully
explains the basics, but then stops and leaves you to go further on your own if you need
to; it teaches you what you need to know to get started, and it trains you to understand
and explore these and related frameworks independently if your app requires a further
level of depth and detail.

• Chapter 27 introduces the various iOS means for playing sound files, including
audio sessions and playing sounds in the background.

• Chapter 28 describes some basic ways of playing video (movies), along with an
introduction to the powerful AV Foundation framework.

• Chapter 29 is about how an app can access the user’s music library.

• Chapter 30 is about how an app can access the user’s photo library, along with the
ability to take photos and capture movies.

• Chapter 31 discusses how an app can access the user’s address book.

• Chapter 32 talks about how an app can access the user’s calendar data.

• Chapter 33 describes how an app can allow the user to compose and send email
and SMS messages.

• Chapter 34 explains how an app can display a Google map, along with custom
annotations and overlays.

• Chapter 35 is about how an app can learn where the device is located, how it is
moving, and how it is oriented.

CHAPTER 27

Audio

iOS provides various means and technologies for allowing your app to produce sound
(and even to input it). The topic is a large one, so this chapter can only introduce it.
You’ll want to read Apple’s Multimedia Programming Guide and Core Audio Overview.

None of the classes discussed in this chapter provide any user interface within your
application for allowing the user to stop and start playback of sound. You can create
your own such interface, and I’ll discuss how you can associate the “remote control”
buttons with your application. Also, a web view (Chapter 24) supports the HTML 5
<audio> tag; this can be a simple, lightweight way to play audio and to allow the user
to control playback. (By default, a web view in iOS 5 even allows use of AirPlay.) Al-
ternatively, you could treat the sound as a movie and use the MPMoviePlayerController
class discussed in Chapter 28; this can also be a good way to play a sound file located
remotely over the Internet.

System Sounds
The simplest form of sound is system sound, which is the iOS equivalent of the basic
computer “beep.” This is implemented through System Sound Services; you’ll need to
import <AudioToolbox/AudioToolbox.h> and link to AudioToolbox.framework. You’ll be
calling one of two C functions, which behave very similarly to one another:

AudioServicesPlayAlertSound

Plays a sound and, on an iPhone, may also vibrate the device, depending on the
user’s settings. On the original iPod touch, plays only a built-in alert sound.

AudioServicesPlaySystemSound

Plays a short sound of your choice. On an iPhone, there won’t be an accompanying
vibration, but you can specifically elect to have this “sound” be a device vibration.

The sound needs to be an uncompressed AIFF or WAV file (or an Apple CAF file
wrapping one of these). To hand the sound to these functions, you’ll need a System-

763

SoundID, which you obtain by calling AudioServicesCreateSystemSoundID with a
CFURLRef (or NSURL) that points to a sound file. In this example, the sound file is in
our app bundle:

NSURL* sndurl = [[NSBundle mainBundle] URLForResource:@"test" withExtension:@"aif"];
SystemSoundID snd;
AudioServicesCreateSystemSoundID ((__bridge CFURLRef)sndurl, &snd);
AudioServicesPlaySystemSound(snd);

However, there’s a problem with that code: we have failed to exercise proper memory
management. We need to call AudioServicesDisposeSystemSoundID to release our
SystemSoundID. But when shall we do this? AudioServicesPlaySystemSound executes
asynchronously. So the solution can’t be to call AudioServicesDisposeSystemSoundID in
the next line of the same snippet, because this would release our sound just as it is about
to start playing, resulting in silence. A solution that works is to implement a sound
completion handler, a function that is called when the sound has finished playing. So,
our sound-playing snippet now looks like this:

NSURL* sndurl = [[NSBundle mainBundle] URLForResource:@"test" withExtension:@"aif"];
SystemSoundID snd;
AudioServicesCreateSystemSoundID((__bridge CFURLRef)sndurl, &snd);
AudioServicesAddSystemSoundCompletion(snd, NULL, NULL, &SoundFinished, NULL);
AudioServicesPlaySystemSound(snd);

And here is our sound completion handler, the SoundFinished function referred to in
the previous snippet:

void SoundFinished (SystemSoundID snd, void* context) {
 AudioServicesRemoveSystemSoundCompletion(snd);
 AudioServicesDisposeSystemSoundID(snd);
}

Note that because we are about to release the sound, we first release the sound com-
pletion handler information applied to it. The last argument passed to AudioServices-
AddSystemSoundCompletion is a pointer-to-void that comes back as the second parameter
of our sound completion handler function; you can use this parameter in any way you
like, such as to help identify the sound.

A different way of producing a system sound, introduced in iOS 4.2, is
to call the UIDevice instance method playInputClick. This works only
in an input view or keyboard accessory view (Chapter 23).

Audio Session
If your app is going to use a more sophisticated way of producing sound, such as an
audio player (discussed in the next section), it must specify a policy regarding that
sound. This policy will answer such questions as: should sound stop when the screen

764 | Chapter 27: Audio

is locked? Should sound interrupt existing sound (being played, for example, by the
Music app) or should it be layered on top of it?

Your policy is declared in an audio session, which is a singleton AVAudioSession in-
stance created automatically as your app launches. You can configure this AVAudio-
Session instance once at launch time (or, at any rate, before producing any sound), or
you can change its configuration dynamically while your app runs. You can talk to the
AVAudioSession instance in Objective-C (see the AVAudioSession class reference) or
in C (see the Audio Session Services reference), or both. (Read Apple’s Audio Session
Programming Guide for a full overview of how you can use your app’s audio session.)

To use the Objective-C API, you’ll need to link to AVFoundation.framework and import
<AVFoundation/AVFoundation.h>. You’ll refer to your app’s AVAudioSession by way of
the class method sharedInstance.

To use the C API, you’ll need to link to AudioToolbox.framework and import <Audio-
Toolbox/AudioToolbox.h>. The AudioSession... functions don’t require a reference to
an audio session. You must explicitly initialize your audio session with AudioSession-
Initialize before talking to it with the C API, unless you have already talked to it with
the Objective-C API.

The basic policies for audio playback are:

Ambient
Your app’s audio plays even while Music app music or other background audio is
playing, and is silenced by the phone’s Silent switch and screen locking.

Solo Ambient (the default)
Your app stops Music app music or other background audio from playing, and is
silenced by the phone’s Silent switch and screen locking.

Playback
Your app stops Music app music or other background audio from playing, and is
not silenced by the Silent switch.

In iOS 4, a Playback policy also means that your app is not silenced by
screen locking. However, in iOS 5, an app with a Playback policy is
silenced by screen locking, unless it is also configured to play in the
background (as explained later in this chapter). That’s because, in iOS
5, your app is sent into the background if it was frontmost when the
screen was locked; this is a major change in how the multitasking ar-
chitecture behaves.

The C API allows you to do a number of things you can’t do with the Objective-C API.
One is that you can ask whether audio is already playing in some other app, such as
the Music app:

Audio Session | 765

UInt32 oth;
UInt32 sz_oth = sizeof(oth);
AudioSessionGetProperty(kAudioSessionProperty_OtherAudioIsPlaying, &sz_oth, &oth);

Apple suggests that you might want your choice of audio session policy, and perhaps
what kinds of sound your app plays, to take into account the answer to that question.

You can also use the C API to modify the playback policies to some extent, by calling
the AudioSessionSetProperty function. For example:

• You can override the Playback policy so as to allow Music app music or other
background audio to play (kAudioSessionProperty_OverrideCategoryMixWith-
Others). Your sound is then said to be mixable. If you don’t make your sound
mixable, then mixable background audio will still be able to play, but non-mixable
background audio won’t be able to play.

• You can override a policy that allows Music app music or other background audio
to play, so as to duck (diminish the volume of) that background audio (kAudio-
SessionProperty_OtherMixableAudioShouldDuck). Ducking does not depend auto-
matically on whether your app is actively producing any sound; rather, it starts as
soon as you turn this override on and remains in place until your audio session is
deactivated.

Your audio session policy is not in effect unless your audio session is also active. By
default, it isn’t. Thus, asserting your audio session policy is done by a combination of
configuring the audio session and activating the audio session. This is a little tricky
because of multitasking. Your audio session can be deactivated automatically if your
app is no longer active. So if you want your policy to be obeyed under all circumstances,
you must explicitly activate your audio session each time your app becomes active. (See
Chapter 11 for how an app resigns and resumes active status.)

For example, an audio session configured with a Playback policy that is activated as
the app launches, in the app delegate’s application:didFinishLaunchingWithOptions:,
will silence background audio at launch time, but if the user then switches away to the
Music app and starts playing some music, and then switches back to your app, the
Music app music won’t be silenced, even though it is now in the background, because
your audio session has been deactivated. You might try to work around this by acti-
vating your audio session in the app delegate’s applicationWillEnterForeground: as
well. But then the user might double-click the Home button while your app is front-
most, and use the app switcher playback controls (Figure 27-1) to start playing Music
app music; when the user leaves the app switcher interface, that Music app music
continues to play, even though it is now in the background. To prevent that, you must
activate your audio session in the app delegate’s applicationDidBecomeActive:. It turns
out that only applicationDidBecomeActive: is called in all three situations, so that is the
place to activate your audio session so as to keep it active in a multitasking world.

Here are the main AVAudioSession methods you’ll need:

766 | Chapter 27: Audio

setCategory:error:

How you configure your audio session policy. You can do the same thing with the
C API and AudioSessionSetProperty.

setActive:withFlags:error:

How you bring your audio session policy into force (first argument YES) or deac-
tivate it (first argument NO). You can do the same thing with the C API and Audio-
SessionSetActiveWithFlags.

If you deactivate your audio session using setActive:withFlags:error:, passing a
flag of AVAudioSessionSetActiveFlags_NotifyOthersOnDeactivation, you tell the
system to allow any audio suspended by the activation of your audio session to
resume. After all, enforcing a Playback audio session policy that silences the Music
app in the background is not very nice if your app isn’t actively producing any
sound at the moment; better to activate your Playback audio session only when
your app is actively producing sound, and deactivate it when your sound finishes.
When you do that along with this flag, the effect is one of pausing background
audio, playing your audio, and then resuming background audio (if the app pro-
viding the background audio responds correctly to this flag). I’ll give an example
later in this chapter.

Here’s an example from an app where we want background sound such as Music app
songs to continue playing while our app runs. We configure our audio session to use
the Ambient policy in application:didFinishLaunchingWithOptions:, as follows:

[[AVAudioSession sharedInstance] setCategory:
 AVAudioSessionCategoryAmbient error: NULL];

Or, using the C API:

AudioSessionInitialize (NULL, NULL, NULL, NULL);
UInt32 ambi = kAudioSessionCategory_AmbientSound;
AudioSessionSetProperty(kAudioSessionProperty_AudioCategory, sizeof(ambi), &ambi);

We aren’t interrupting any other audio with our Ambient policy, so it does no harm to
activate our audio session every time our app becomes active, no matter how, in
applicationDidBecomeActive:, like this:

[[AVAudioSession sharedInstance] setActive: YES error: NULL];

Or, using the C API:

AudioSessionSetActive(true);

That’s all it takes to set and enforce your app’s overall audio session policy. Now let’s
make the example more interesting by introducing ducking. Just before we’re about to
play a sound, we duck any external sound:

UInt32 duck = 1;
AudioSessionSetProperty(kAudioSessionProperty_OtherMixableAudioShouldDuck,
 sizeof(duck), &duck);

Audio Session | 767

When we finish playing a sound, we turn off ducking. This is the tricky part. Not only
must we remove the ducking property from our audio session policy, but we must also
deactivate our audio session to make the change take effect immediately and bring the
external sound back to its original level; there is then no harm in reactivating our audio
session:

UInt32 duck = 0;
AudioSessionSetProperty(kAudioSessionProperty_OtherMixableAudioShouldDuck,
 sizeof(duck), &duck);
AudioSessionSetActive(false);
AudioSessionSetActive(true);

Interruptions
Your audio session can be interrupted. This could mean that some other app deactivates
it: for example, on an iPhone a phone call can arrive or an alarm can go off. In the
multitasking world, it could mean that another app asserts its audio session over yours.
You can handle interruptions in the AVAudioSession’s delegate, which will be sent
beginInterruption and endInterruptionWithFlags:; typically, in application:did-
FinishLaunchingWithOptions:, when we set our audio session’s category, we would also
set ourselves as its delegate. If you use the C API and AudioSessionInitialize, you can
set up an interruption handler there (for example code, see the “Audio Session Cook-
book” section of Apple’s Audio Session Programming Guide).

When your audio session is interrupted (and you receive beginInterruption if you’ve
implemented it), your audio has already stopped and your audio session has been de-
activated. You might respond by altering something about your app’s user interface to
reflect the fact that your audio isn’t playing, but apart from this there’s no particular
work for you to do. When the interruption ends, activating your audio session and
possibly resuming playback of your audio is up to you; if your user interface doesn’t
need to change in response, your implementation of endInterruptionWithFlags: might
be as simple as this:

- (void)endInterruptionWithFlags:(NSUInteger)flags {
 AudioSessionSetActive(true);
}

Even this may not be necessary; if you use an audio player (AVAudioPlayer, discussed
in the next section), it provides its own delegate methods for notifying you of inter-
ruptions, and when an interruption ends, it activates your audio session for you.

The purpose of the flags: parameter in endInterruptionWithFlags: is to allow you to
check its value against AVAudioSessionInterruptionFlags_ShouldResume. This has to do
with the interruption policy used by whatever it was that interrupted your app’s audio;
if it called setActive:withFlags:error:, passing a flag of AVAudioSessionSetActive-
Flags_NotifyOthersOnDeactivation, as I mentioned earlier, you’ll learn that here. How-
ever, it is unclear to me what this information is supposed to do for you: surely you

768 | Chapter 27: Audio

always want to resume your audio when the interruption ends, regardless of the state
of this flag. In any case, I’ll give an example later in this chapter.

In the multitasking world, when your app switches to the background, your audio is
paused (unless your app plays audio in the background, as discussed later in this chap-
ter). Various things can happen when your app comes back to the front. If you were
playing audio with an AVAudioPlayer (discussed in the next section), it’s possible that
the AVAudioPlayer will handle the entire situation: it will automatically reactivate your
audio session and resume playing, and you won’t get any interruption delegate mes-
sages. Another possibility, though, is that being moved into the background will count
as an interruption of your audio session, and you’ll discover this when your app comes
back to the front, when you’ll receive beginInterruption, endInterruptionWithFlags:,
and applicationDidBecomeActive: in quick succession (and in that order). This is a
situation to be wary of; make sure that your implementations of these events, arriving
in a sudden cluster, don’t step on each other’s toes somehow.

When the user double-taps the Home button to get the application switcher and uses
the Play button to resume the current Music app song, you get a beginInterruption
message; if the user then double-taps the Home button again to return from the appli-
cation switcher to your app, you get applicationDidBecomeActive: but not end-
Interruption. This seems incoherent, and shows that you really do need to worry about
both applicationDidBecomeActive: and endInterruption if you want to catch all cases.

Routing Changes
Your audio is routed through a particular output (and input). The user can make
changes in this routing — for example, by plugging headphones into the device, which
causes sound to stop coming out of the speaker and to come out of the headphones
instead. By default, your audio continues uninterrupted if any is playing, but your code
might like to be notified when routing is changed.

To receive such a notification, you use the C API to add a “listener” to the audio session.
This is a pointer to a C function that will be called when a specified property of the
audio session changes; in this case, the property is kAudioSessionProperty_AudioRoute-
Change:

AudioSessionAddPropertyListener(kAudioSessionProperty_AudioRouteChange,
 &routeChangeCallback, NULL);

The callback function (here called routeChangeCallback) is called when the hardware
situation changes, regardless of whether any audio is actually playing. It looks like this:

void routeChangeCallback(void* userData, AudioSessionPropertyID id,
 UInt32 sz, const void* val) {
 CFDictionaryRef d = val;
 // ... do something with this dictionary ...
}

Audio Session | 769

In iOS 5, the dictionary is more informative than previously. You’re given a description
of the new route and possibly the old route, along with a summation of what changed
and why. Here’s NSLog’s display of the dictionary that results when I detach head-
phones from the device:

 "ActiveAudioRouteDidChange_NewDetailedRoute" = {
 "RouteDetailedDescription_Inputs" = (
);
 "RouteDetailedDescription_Outputs" = (
 {
 "RouteDetailedDescription_PortType" = Speaker;
 }
);
 };
 "ActiveAudioRouteDidChange_OldDetailedRoute" = {
 "RouteDetailedDescription_Inputs" = (
);
 "RouteDetailedDescription_Outputs" = (
 {
 "RouteDetailedDescription_PortType" = Headphones;
 }
);
 };
 "OutputDeviceDidChange_NewRoute" = Speaker;
 "OutputDeviceDidChange_OldRoute" = Headphone;
 "OutputDeviceDidChange_Reason" = 2;

For the meaning of the “reason” value, see “Audio Route Change Reasons” in the Audio
Session Services Reference. The value here, 2, is kAudioSessionRouteChangeReason_Old-
DeviceUnavailable — we stopped using the headphones because there are no head-
phones any longer. A routing change may not of itself interrupt your sound, but Apple
suggests that in this situation you might like to respond by stopping your audio delib-
erately, possibly giving the user the option of resuming it, because otherwise sound
may now suddenly be coming out of the speaker in a public place.

Audio Player
An audio player is an instance of the AVAudioPlayer class. This is the easiest way to
play sounds with any degree of sophistication. A wide range of sound types is accept-
able, including MP3, AAC, and ALAC, as well as AIFF and WAV. You can set a sound’s
volume and stereo pan features, loop a sound, synchronize the playing of multiple
sounds simultaneously, and set playback to begin somewhere in the middle of a sound.

To use an audio player, you’ll need to link to AVFoundation.framework and import
<AVFoundation/AVFoundation.h>. An audio player should always be used in conjunction
with an audio session; see the previous section.

770 | Chapter 27: Audio

Not every device type can play a compressed sound format in every
degree of compression, and the limits can be difficult or impossible to
learn except by experimentation. I encountered this issue when an app
of mine worked correctly on an iPod touch 32GB but failed to play its
sounds on an iPod touch 8GB (even though the latter was newer). Even
more frustrating, the files played just fine in the Music app on both
devices. The problem appears to be that the compression bit rate of my
sound files was too low for AVAudioPlayer on the 8GB device, but not
on the 32GB device. But there is no documentation of any such limit.

An audio player can possess and play only one sound, but it can play that sound re-
peatedly, and you can have multiple audio players, possibly playing simultaneously.
Devising a strategy for instantiating, retaining, and releasing your audio players is up
to you. An audio player is initialized with its sound, using a local file URL or NSData.
To play the sound, first tell the audio player to prepareToPlay, causing it to load buffers
and initialize hardware; then tell it to play. The audio player’s delegate is notified when
the sound finishes playing (audioPlayerDidFinishPlaying:successfully:); do not re-
peatedly check the audio player’s playing property to learn its state. Other useful
methods include pause and stop; the chief difference between them is that pause doesn’t
release the buffers and hardware set up by prepareToPlay, but stop does (so you’d want
to call prepareToPlay again before resuming play). Neither pause nor stop changes the
playhead position (the point in the sound where playback will start if play is sent again);
for that, use the currentTime property.

In a WWDC 2011 video, Apple points out that simultaneously playing
multiple sounds that have different sample rates is computationally ex-
pensive, and suggests that you prepare your sounds beforehand by con-
verting them to a single sample rate. Also, decoding AAC is faster and
less expensive than decoding MP3.

For example, one of my apps uses a class called Player, which implements a play:
method expecting a string path to a sound file in the app bundle. This method creates
a new audio player, stores it as an instance variable, and tells it to play the sound file;
it also sets itself up as that audio player’s delegate, and emits a notification when the
sound finishes playing. In this way, by maintaining a single Player instance, I can play
different sounds in succession:

- (void) play: (NSString*) path {
 NSURL *fileURL = [[NSURL alloc] initFileURLWithPath: path];
 NSError* err = nil;
 AVAudioPlayer *newPlayer =
 [[AVAudioPlayer alloc] initWithContentsOfURL: fileURL error: &err];
 // error-checking omitted
 self.player = newPlayer; // retain policy
 [self.player prepareToPlay];
 [self.player setDelegate: self];

Audio Player | 771

 [self.player play];
}

- (void)audioPlayerDidFinishPlaying:(AVAudioPlayer *)player // delegate method
 successfully:(BOOL)flag {
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"soundFinished" object:nil];
}

Here are some useful audio player properties:

pan, volume
Stereo positioning and loudness, respectively.

numberOfLoops

How many times the sound should repeat after it finishes playing; thus, 0 (the
default) means it doesn’t repeat. A negative value causes the sound to repeat in-
definitely (until told to stop).

duration

The length of the sound (read-only).

currentTime

The playhead position within the sound. If the sound is paused or stopped, play
will start at the currentTime. You can set this in order to “seek” to a playback
position within the sound.

enableRate, rate
These properties, new in iOS 5, allow the sound to be played at anywhere from
half speed (0.5) to double speed (2.0). Set enableRate to YES before calling prepare-
ToPlay; you are then free to set the rate.

meteringEnabled

If YES (the default is NO), you can call updateMeters followed by averagePowerFor-
Channel: and/or peakPowerForChannel:, periodically, to track how loud the sound
is. Presumably this would be so you could provide some sort of graphical repre-
sentation of this value in your interface.

settings

A read-only dictionary describing features of the sound, such as its bit rate
(AVEncoderBitRateKey), its sample rate (AVSampleRateKey), and its data format
(AVFormatIDKey).

The playAtTime: method allows playing to be scheduled to start at a certain time. The
time should be described in terms of the audio player’s deviceCurrentTime property.

As I mentioned in the previous section, an audio player resumes playing when your
app comes to the front if it was playing and was forced to stop playing when your app
was moved to the background. It also helps you with sound interruptions; in particular,
your audio session is reactivated for you when the interruption ends. You can imple-
ment the delegate methods audioPlayerBeginInterruption: and audioPlayerEnd-

772 | Chapter 27: Audio

Interruption:withFlags: to add functionality; for example, you might respond by up-
dating your interface, or you might want to resume play when the interruption ends
(by calling play).

Remote Control of Your Sound
Various sorts of signal constitute remote control. There is hardware remote control; the
user might be using earbuds with buttons, for example. There is also software remote
control; for example, the playback controls that you see when you double-click the
Home button to view the fast app switcher and then swipe to the right (Figure 27-1)
are a form of software remote control. Similarly, the buttons that appear if you double-
click the Home button when the screen is locked and sound is playing are a form of
software remote control (Figure 27-2).

Your app can arrange to be targeted by remote control events reporting that the user
has tapped a remote control. This is particularly appropriate in an app that plays sound.
Your sound-playing app can respond to the remote play/pause button, for example, by
playing or pausing its sound.

Remote control events are a form of UIEvent, and they are sent initially to the first
responder. (See Chapter 11 and Chapter 18 on UIResponders and the responder chain.)
To arrange to be a recipient of remote control events:

Figure 27-1. The software remote controls in the app switcher

Figure 27-2. The software remote controls on the locked screen

Remote Control of Your Sound | 773

• Your app must contain a UIResponder in its responder chain that returns YES from
canBecomeFirstResponder, and that responder must actually be first responder.

• Some UIResponder in the responder chain, at or above the first responder, must
implement remoteControlReceivedWithEvent:.

• Your app must call the UIApplication instance method beginReceivingRemote-
ControlEvents.

• Your app’s audio session’s policy must be Playback.

• Your app must emit some sound. The rule is that whatever running app capable
of receiving remote control events last produced sound is the target of remote
events. The user can tell what app this is because the icon at the right of Fig-
ure 27-1 is the icon of that app. The remote control event target defaults to the
Music app if no other app takes precedence by this rule.

A typical place to put all of this is in your view controller, which is, after all, a UIRes-
ponder:

- (BOOL)canBecomeFirstResponder {
 return YES;
}

- (void) viewDidAppear:(BOOL)animated {
 [super viewDidAppear: animated];
 [self becomeFirstResponder];
 [[UIApplication sharedApplication] beginReceivingRemoteControlEvents];
}

- (void)remoteControlReceivedWithEvent:(UIEvent *)event {
 // ...
}

That’s just a sketch, but it does work: when this app is running, the user can employ
remote controls, such as the buttons in Figure 27-1 or a physical button on earbuds,
to cause remoteControlReceivedWithEvent: to be called.

The question then is how to implement remoteControlReceivedWithEvent:. Your im-
plementation will examine the subtype of the incoming UIEvent in order to decide what
to do. There are many possible subtype values, listed under UIEventSubtype in the
UIEvent class documentation; they have names like UIEventSubtypeRemoteControl-
Play. A minimal implementation will respond to UIEventSubtypeRemoteControlToggle-
PlayPause. Here’s an example in an app where sound is produced by an AVAudioPlayer:

- (void)remoteControlReceivedWithEvent:(UIEvent *)event {
 UIEventSubtype rc = event.subtype;
 if (rc == UIEventSubtypeRemoteControlTogglePlayPause) {
 if ([player isPlaying])
 [player pause];
 else
 [player play];
 }
}

774 | Chapter 27: Audio

Starting in iOS 5, you can also get some control over the information that user will see
in the interface, in places like those shown in Figure 27-1 and Figure 27-2, about what’s
being played. For that, you’ll use MPNowPlayingInfoCenter; you’ll need to link to
MediaPlayer.framework and import <MediaPlayer/MediaPlayer.h>. Call the class
method defaultCenter and set the resulting instance’s nowPlayingInfo property to a
dictionary, like this:

MPNowPlayingInfoCenter* mpic = [MPNowPlayingInfoCenter defaultCenter];
mpic.nowPlayingInfo = [NSDictionary dictionaryWithObjectsAndKeys:
 @"Matt Neuburg", MPMediaItemPropertyArtist,
 @"About Tiagol", MPMediaItemPropertyTitle, nil];

The result, as it appears in one context, is shown in Figure 27-3. The available keys are
listed in the class documentation; they will make more sense after you’ve read Chap-
ter 29, which discusses the Media Player framework.

Playing Sound in the Background
In the multitasking world, when the user switches away from your app to another app,
by default, your app is suspended and stops producing sound. But if the business of
your app is to play sound, you might like your app to continue playing sound in the
background. In earlier sections of this chapter, I’ve spoken about how your app, in the
foreground, relates its sound production to background sound such as the Music app.
Now we’re talking about how your app can be that background sound, possibly playing
sound while some other app is in the foreground.

To play sound in the background, your app must do two things:

• In your Info.plist, you must include the “Required background modes” key
(UIBackgroundModes) with a value that includes “App plays audio” (audio).

• Your audio session’s policy must be Playback (and must be active, of course).

That’s actually all it takes! If those two things are true, then if your app is producing
sound, that sound will go right on playing when the user clicks the Home button and
dismisses your application or switches to another app.

An extremely cool feature of playing sound in the background is that remote control
events continue to work. Even if your app was not actively playing at the time it was
put into the background, if it is the remote control target, then if the user causes a
remote control event to be sent, your app will be woken up in the background in order

Figure 27-3. A custom title under the remote controls

Playing Sound in the Background | 775

to receive it and can begin playing sound. However, the rules for interruptions still
apply; another app can interrupt your app’s audio session while your app is in the
background, and if that app receives remote control events, then your app is no longer
the remote control target.

In iOS 5, when the screen is locked, your app is sent into the back-
ground. Thus, to play from behind the locked screen, your app needs
to be able to play in the background. In that case, your app can certainly
continue to play when the screen is locked, if it was already playing. In
some cases, it might also be able to start playing after the screen is
locked, even if it was not playing previously — namely, if it is mixable,
or if it is capable of being the remote control target.

If your app is the remote control target in the background, then another app can in-
terrupt your app’s audio, play some audio of its own, and then deactivate its own audio
session with the flag telling your app to resume playing. I’ll give a minimal example of
how this works with an AVAudioPlayer.

Let’s call the two apps BackgroundPlayer and Interrupter. Suppose Interrupter has an
audio session policy of Ambient. This means that when it comes to the front, back-
ground audio doesn’t stop. But now Interrupter wants to play a sound of its own,
temporarily stopping background audio. To pause the background audio, it sets its
own audio session to Playback:

[[AVAudioSession sharedInstance]
 setCategory:AVAudioSessionCategoryPlayback error:NULL];
[[AVAudioSession sharedInstance] setActive:YES error:NULL];
[player setDelegate: self];
[player prepareToPlay];
[player play];

When Interrupter’s sound finishes playing, the AVAudioPlayer’s delegate is notified.
In response, Interrupter deactivates its audio session with the flag; then it’s fine for it
to switch its audio session policy back to Ambient and activate it once again:

[[AVAudioSession sharedInstance] setActive:NO
 withFlags:AVAudioSessionSetActiveFlags_NotifyOthersOnDeactivation error:NULL];
[[AVAudioSession sharedInstance]
 setCategory:AVAudioSessionCategoryAmbient error:NULL];
[[AVAudioSession sharedInstance] setActive:YES error:NULL];

So much for Interrupter. Now let’s turn to BackgroundPlayer, which was playing in the
background when Interrupter came along and changed its own policy to Playback.
When Interrupter changes its own policy to Playback, BackgroundPlayer is interrupted.
When Interrupter deactivates its audio session, BackgroundPlayer’s AVAudioPlayer
delegate is notified that the interruption has ended. It tests for the resume flag and, if
it is set, starts playing again:

776 | Chapter 27: Audio

- (void)audioPlayerEndInterruption:(AVAudioPlayer *)p withFlags:(NSUInteger)flags {
 if (flags & AVAudioSessionInterruptionFlags_ShouldResume) {
 [p prepareToPlay];
 [p play];
 }
}

In Chapter 11, I said that your app delegate will probably never receive
the applicationWillTerminate: message, because by the time the app
terminates, it will already have been suspended and incapable of re-
ceiving any events. However, an app that is playing sound in the back-
ground is not suspended, even though it is in the background. If it is
terminated while playing sound in the background, it will receive
applicationDidEnterBackground:, even though it has already received
this previously when it was moved into the background, and then it
will receive applicationWillTerminate:.

Further Topics in Sound
iOS is a powerful milieu for production and processing of sound; its sound-related
technologies are extensive. This is a big topic, and an entire book could be written about
it (in fact, such books do exist). I’ll talk in Chapter 29 about accessing sound files in
the user’s music library. But here are some further topics that there is no room to discuss
here:

Other audio session policies
If your app accepts sound input or does audio processing, you’ll want to look into
additional audio session policies I didn’t talk about earlier — Record, Play and
Record, and Audio Processing. In addition, if you’re using Record or Play and
Record, iOS 5 introduces three advanced modes: voice chat, video recording, and
measurement (of the sound being input); these optimize how sound is routed (for
example, what microphone is used) and how it is modified.

Recording sound
To record sound simply, use AVAudioRecorder. Your audio session policy will
need to adopt a Record policy before recording begins.

Audio queues
Audio queues implement sound playing and recording through a C API with more
granularity than the Objective-C AVAudioPlayer and AVAudioRecorder (though
it is still regarded as a high-level API), giving you access to the buffers used to move
chunks of sound data between a storage format (a sound file) and sound hardware.

Extended Audio File Services
A C API for reading and writing sound files in chunks. It is useful in connection
with technologies such as audio queues.

Further Topics in Sound | 777

Audio Converter Services
A C API for converting sound files between formats.

Streaming audio
Audio streamed in real time over the network, such as an Internet radio station,
can be played with Audio File Stream Services, in connection with audio queues.

OpenAL
An advanced technology for playing sound with fine control over its stereo stage
and directionality, to which iOS 5 brings even further sophistication.

Audio units
Plug-ins that filter and modify the nature and quality of a sound as it passes through
them. See the Audio Unit Hosting Guide for iOS.

CoreMIDI
The CoreMIDI framework was introduced into iOS in version 4.2. It allows inter-
action with MIDI devices.

I was excited to learn that, starting in iOS 5, it is also possible to play a MIDI file; my
experiments show that, if the file is short and simple, the code could be as basic as this:

MusicPlayer p;
MusicSequence s;

NewMusicPlayer(&p);
NSURL* url = [[NSBundle mainBundle] URLForResource:@"presto" withExtension:@"mid"];

NewMusicSequence(&s);
MusicSequenceFileLoad(s, (__bridge CFURLRef)url, 0,0);

MusicTrack t;
MusicTimeStamp len;
UInt32 sz = sizeof(MusicTimeStamp);
MusicSequenceGetIndTrack(s, 0, &t);
MusicTrackGetProperty(t, kSequenceTrackProperty_TrackLength, &len, &sz);

MusicPlayerSetSequence(p, s);
MusicPlayerPreroll(p);
MusicPlayerStart(p);
while (1) { // kill time until the music is over
 usleep (3 * 1000 * 1000);
 MusicTimeStamp now = 0;
 MusicPlayerGetTime (p, &now);
 if (now >= len)
 break;
}
MusicPlayerStop(p);
DisposeMusicSequence(s);
DisposeMusicPlayer(p);

That code does work, but the sound is just a series of unpleasant beeps. However, it is
also now possible to feed the MIDI output into an AUGraph that uses the new AU-

778 | Chapter 27: Audio

Sampler audio unit to produce nicer synthesized sound. I’ll illustrate, just because it’s
so cool when it works, but bear in mind that Core Audio is really not within the scope
of this book, and that in any case the following code is essentially copied from Apple’s
own LoadPresetDemo example (so basically I’m merely telling you what they told me).
I warn you that for the sake of simplicity I have stripped out all the error-checking from
Apple’s code; in real life, you’d need to check for errors after just about every line.

Apple’s code starts by forming the AUGraph. This is a collection of nodes (AUNode)
where the output of one node can be chained into the input of another. Here, we need
just two nodes, an output node that will feed the sound out through the speaker, and
the AUSampler node that will produce the sound:

AUGraph graph;
NewAUGraph(&graph);
AudioComponentDescription cd = {0};

// output device (speakers)
cd.componentType = kAudioUnitType_Output;
cd.componentSubType = kAudioUnitSubType_RemoteIO;
cd.componentManufacturer = kAudioUnitManufacturer_Apple;
AUNode ioNode;
AUGraphAddNode(graph, &cd, &ioNode);

// AUSampler
cd.componentType = kAudioUnitType_MusicDevice ;
cd.componentSubType = kAudioUnitSubType_Sampler;
cd.componentManufacturer = kAudioUnitManufacturer_Apple;
AUNode samplerNode;
AUGraphAddNode(graph, &cd, &samplerNode);

Now we connect the output from the AUSampler node to the input of the output node.
Thus, the sound from the AUSampler will be directed out the speakers. We also extract
AudioUnit objects from the nodes; we might need these later to set properties and
parameters of these nodes:

AUGraphOpen(graph);
AUGraphConnectNodeInput(graph, samplerNode, 0, ioNode, 0);

AudioUnit samplerUnit;
AudioUnit ioUnit;
AUGraphNodeInfo(graph, samplerNode, 0, &samplerUnit);
AUGraphNodeInfo(graph, ioNode, 0, &ioUnit);

Then we initialize and “start” the AUGraph; the AUGraph is now actively rendering
and is ready to receive input:

AUGraphInitialize (graph);
AUGraphStart (graph);

Apple includes in the LoadPresetDemo example a trombone sound resource, consisting
of an .aupreset file and some associated trombone sound recordings. The .aupreset file
is essentially in property list format. So we load it as data, convert it to a property list,

Further Topics in Sound | 779

and use the property list to set the Class Info property of the AUSampler audio unit.
Thus, when the AUSampler plays, it will play with a trombone sound:

NSURL *presetURL = [[NSURL alloc] initFileURLWithPath:[[NSBundle mainBundle]
 pathForResource:@"Trombone" ofType:@"aupreset"]];
CFDataRef propertyResourceData = 0;
CFURLCreateDataAndPropertiesFromResource (
 kCFAllocatorDefault,
 (__bridge CFURLRef) presetURL,
 &propertyResourceData,
 NULL,
 NULL,
 NULL
);
CFPropertyListRef presetPropertyList = 0;
CFPropertyListFormat dataFormat = 0;
presetPropertyList = CFPropertyListCreateWithData (
 kCFAllocatorDefault,
 propertyResourceData,
 kCFPropertyListImmutable,
 &dataFormat,
 NULL
);
AudioUnitSetProperty(
 samplerUnit,
 kAudioUnitProperty_ClassInfo,
 kAudioUnitScope_Global,
 0,
 &presetPropertyList,
 sizeof(CFPropertyListRef)
);
CFRelease(presetPropertyList);
CFRelease (propertyResourceData);

All that remains is to play the midi file. We do this exactly as before, but this time, just
before we start playing, we feed the sequence’s output into the AUGraph:

// ...as before...
MusicSequenceSetAUGraph(s, graph);
MusicPlayerSetSequence(p, s);
MusicPlayerPreroll(p);
MusicPlayerStart(p);
// ...as before...

After playing the file, don’t forget to shut everything down in good order:

AUGraphStop(graph);
MusicPlayerStop(p);
DisposeAUGraph(graph);
DisposeMusicSequence(s);
DisposeMusicPlayer(p);

Core Audio is extremely verbose and isn’t easy to work with, but the thrill of success-
fully hearing your MIDI file being played with synthesized sound in real time from
inside an iPhone is an unforgettable experience.

780 | Chapter 27: Audio

CHAPTER 28

Video

Basic video playback is performed in a view owned by an MPMoviePlayerController.
You’ll need to link to MediaPlayer.framework and import <MediaPlayer/Media-
Player.h>. There are two relevant classes supplied by the Media Player framework:

MPMoviePlayerController
Vends and controls a view that plays a movie.

The behavior of this class has changed very greatly from one system version to the
next. It is difficult to use it compatibly with multiple system versions. In this chap-
ter, I describe only its current behavior, with no attempt to discuss earlier differ-
ences or to advise you on backward compatibility.

MPMoviePlayerViewController
Owns an MPMoviePlayerController, and presents its view as a fullscreen view.

A simple interface for trimming video (UIVideoEditorController) is also supplied.

Sophisticated video playing and editing can be performed through AV Foundation. I
won’t go deeply into AV Foundation in this book, but I’ll introduce it at the end of this
chapter: I’ll talk a little about AVPlayer, an alternative class for playing a movie or a
sound, and I’ll provide some code that demonstrates AV Foundation’s video- and au-
dio-editing capabilities.

A mobile device does not have unlimited power for decoding and presenting video in
real time. A video that plays on your computer might not play at all on an iOS device.
See the “Media Layer” chapter of Apple’s iOS Technology Overview for a list of speci-
fications and limits within which video is eligible for playing.

A web view (Chapter 24) supports the HTML 5 <video> tag. This can be a simple
lightweight way to present video and to allow the user to control playback. Starting in
iOS 4.3, both web view video and MPMoviePlayerController support AirPlay.

781

If an MPMoviePlayerViewController or an AVPlayer produces sound,
you may need to concern yourself with your application’s audio session;
see Chapter 27. However, both MPMoviePlayerViewController and
AVPlayer deal gracefully with the app being sent into the background,
and will pause when your app is backgrounded and resume when your
app comes back to the foreground.

MPMoviePlayerController
An MPMoviePlayerController vends and controls a view, its view property; you assign
it a movie described by a URL, its contentURL, which it will present in that view. Typ-
ically, you’ll provide the contentURL in the initializer, initWithContentURL:. You are
responsible for instantiating and retaining the MPMoviePlayerController, and for plac-
ing its view into your interface. No law says you have to put the MPMoviePlayer-
Controller’s view into your interface, but if you don’t, the user won’t be able to see the
movie or the controls that accompany it by default. The view is a real view; you can set
its frame, its autoresizingMask, and so forth, and you can give it subviews. An MPMovie-
PlayerController also has a backgroundView which automatically appears behind its
view; you can give the backgroundView subviews as well.

Before you can display a movie in your interface with an MPMoviePlayerController,
you must call prepareToPlay, which is supplied through the MPMediaPlayer protocol
(adopted by MPMoviePlayerController). This requirement is new in iOS 5, and is a
major difference from previous versions of the system; your old code can break if it didn’t
make this call.

The movie URL can be a local file URL, so that the player can show, for example, a
movie stored as a file in the app’s bundle, or obtained from the Camera Roll / Saved
Photos group in the user’s photo library (see Chapter 30); or it can be a resource (pos-
sibly streamed) to be fetched over the Internet, in which case the MPMoviePlayer-
Controller initiates the download as soon as the MPMoviePlayerController has the
contentURL.

Things happen slowly with a movie. Even when a movie is a local file, a certain amount
of it has to load before the MPMoviePlayerController actually knows enough about the
movie and the movie’s specifications to begin playing it. In the case of a remote resource,
this loading process will take even longer. If shouldAutoplay is YES, play will begin as
soon as it is possible.

782 | Chapter 28: Video

By default, an MPMoviePlayerController’s shouldAutoplay is YES. This
means that the movie will start loading and playing as soon as possible
after the MPMoviePlayerController has a contentURL and you call
prepareToPlay. The movie will play even if you don’t put the MPMovie-
PlayerController’s view into your interface. If the movie has sound, the
user will then hear it without being able to see it, which could be con-
fusing. To prevent this, put the view into your interface, or set should-
Autoplay to NO (or both).

A movie file can be in a standard movie format, such as .mov or .mp4, but it can also
be a sound file. An MPMoviePlayerController is thus an easy way to play a sound file,
including a sound file obtained in real time over the Internet, along with standard
controls for pausing the sound and moving the playhead.

In this example, we create an MPMoviePlayerController, give it a reference to a movie
from our app bundle, retain it through a property, and put its view into our interface:

NSURL* m = [[NSBundle mainBundle] URLForResource:@"Movie" withExtension:@"m4v"];
MPMoviePlayerController* mp = [[MPMoviePlayerController alloc] initWithContentURL:m];
self.mpc = mp; // retain policy
self.mpc.shouldAutoplay = NO;
[self.mpc prepareToPlay]; // new requirement in iOS 5
self.mpc.view.frame = CGRectMake(10, 10, 300, 250);
[self.view addSubview:self.mpc.view];

The controls (controlStyle is MPMovieControlStyleEmbedded) include a play/pause but-
ton, a slider for changing the current frame of the movie (which may be omitted if the
runtime feels the view isn’t wide enough to display it), and a fullscreen button; there
may also be an AirPlay route button, if an appropriate device is found on the network
(Figure 28-1).

The user can tap the view to show or hide the controls at the bottom; the controls may
also disappear automatically after play begins (Figure 28-2).

The controls, when controlStyle is MPMovieControlStyleEmbedded, appear at the bot-
tom of the view. The movie itself is centered and scaled to fill the size of the view in

Figure 28-1. A movie player with controls

MPMoviePlayerController | 783

accordance with the MPMoviePlayerController’s scalingMode; the default is MPMovie-
ScalingModeAspectFit, which scales to fit, keeping the correct aspect ratio, and fills the
unfilled dimension with the color of the MPMoviePlayerController’s backgroundView.

This means that the previous example might display a movie that doesn’t look good.
That code is not very sophisticated about the size of the movie — it just told the movie’s
view to adopt a certain size, in which the movie itself will be centered. But although
the movie will be centered in the view, the controls will appear at the bottom of the
view. So, depending on the height of the movie, the controls, when visible, might par-
tially overlap the movie, or might appear well below the movie. It’s better to set the size
of the view in relation to the size of the movie. You can learn the actual size and aspect
ratio of the movie, perhaps so as to eliminate the excess unfilled dimension. To do this,
you get the MPMoviePlayerController’s naturalSize, but, as I mentioned earlier, it
takes time, after the content URL is set and you call prepareToPlay, before this value
can be determined. I’ll show an example in a moment.

If the movie is actually a sound file, the controls are drawn differently: there is a start/
pause button, a slider, and possibly an AirPlay route button, and that’s all (Figure 28-3).

If the user taps the fullscreen button (or pinches outwards) to enter fullscreen mode,
the controls (controlStyle is MPMovieControlStyleFullscreen) at the top include a Done
button, a slider, and an increased fullscreen button, and a second set of controls appears
at the bottom with a play/pause button and rewind and fast-forward buttons, plus
possibly a volume slider and an AirPlay route button. The user can tap to dismiss or

Figure 28-2. A movie player without controls

Figure 28-3. A movie player when the movie is a sound file

784 | Chapter 28: Video

summon the controls, double-tap to toggle increased fullscreen mode, and tap Done
to stop play and leave fullscreen mode (Figure 28-4).

You can also set the style of the controls (controlStyle) manually, though this would
be an odd thing to do, because each style of control goes with a display mode (fullscreen
or otherwise); you are most likely to use this feature to make it impossible for the user
to summon the controls at all (MPMovieControlStyleNone).

The fullscreen rendering can be rotated if the view in which the MPMoviePlayer-
Controller’s view is embedded can be rotated (because it is, or is in, a view controlled
by a view controller that permits this). You can programmatically toggle between full-
screen and not, with setFullscreen:animated:. You can set an MPMoviePlayer-
Controller to fullscreen programmatically even if the movie is just a sound, whose
controller lacks a fullscreen button (Figure 28-5).

Figure 28-4. A movie player in fullscreen mode, with controls

Figure 28-5. A fullscreen movie player when the movie is a sound file

MPMoviePlayerController | 785

The movie can be made to repeat automatically (repeatMode) when it reaches its end.
You can get the movie’s duration. You can change its initialPlaybackTime and end-
PlaybackTime (effectively trimming the start and end off the movie). Further program-
matic control over the actual playing of the movie is obtained through the MPMedia-
Playback protocol, which (as I mentioned a moment ago) MPMoviePlayerController
adopts. This gives you the expected play, pause, and stop methods, as well as com-
mands for seeking quickly forward and backward, and you can get and set the current-
PlaybackTime to position the playhead. You can also set the currentPlaybackRate, mak-
ing the movie play slower or faster than normal, and even backward (though in my
experience backward play doesn’t always work very well; it skips backward, playing
little forward excerpts, rather than running backward as one might have hoped).

An MPMoviePlayerController doesn’t have a delegate. Instead, to learn of events as
they happen, you must register for notifications. These notifications are how you know
when, after assigning a content URL and calling prepareToPlay, it is safe for you to
query properties of the movie such its naturalSize and duration. In this example, I’ll
use a notification to embed the movie view into the interface, at the correct aspect ratio,
as soon as the naturalSize is known:

- (void) setUpMPC {
 NSURL* m = [[NSBundle mainBundle] URLForResource:@"Movie" withExtension:@"m4v"];
 // ... the rest as before; do NOT add to view yet
 // [self.view addSubview:self.mpc.view];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(finishSetup:)
 name:MPMovieNaturalSizeAvailableNotification
 object:self.mpc];
}

- (void) finishSetup: (id) n {
 [[NSNotificationCenter defaultCenter] removeObserver:self
 name:MPMovieNaturalSizeAvailableNotification object:self.mpc];
 CGRect f = self.mpc.view.bounds;
 f.size = self.mpc.naturalSize;
 // make width 300, keep ratio
 CGFloat ratio = 300.0/f.size.width;
 f.size.width *= ratio;
 f.size.height *= ratio;
 self.mpc.view.bounds = f;
 [self.view addSubview:self.mpc.view];
}

Additional notifications tell such things as when fullscreen mode is entered and exited,
and when the movie finishes playing. One of the most important notifications is MPMovie-
PlayerPlaybackStateDidChangeNotification; to learn the actual playback state, query
the MPMoviePlayerController’s playbackState, which will be one of these:

• MPMoviePlaybackStateStopped

• MPMoviePlaybackStatePlaying

• MPMoviePlaybackStatePaused

786 | Chapter 28: Video

• MPMoviePlaybackStateInterrupted

• MPMoviePlaybackStateSeekingForward

• MPMoviePlaybackStateSeekingBackward

If the content comes from the Internet, there is of course many a slip possible. Things
take time; the Internet might slow down, or go away completely; the resource to be
fetched might not exist. You’ll want to register for notifications that tell you when things
happen, and especially when things go wrong.

In this example, we’ve registered for the MPMoviePlayerPlaybackDidFinish-

Notification. There are two ways to detect an error by looking in the notification’s
userInfo dictionary: we can examine its key called MPMoviePlayerPlaybackDidFinish-
ReasonUserInfoKey, which will be MPMovieFinishReasonPlaybackError; or, we can look
to see if it has a key called @"error", which will be an NSError:

- (void) didFinish: (NSNotification*) n {
 // first way
 NSNumber* num =
 [[n userInfo] objectForKey:MPMoviePlayerPlaybackDidFinishReasonUserInfoKey];
 int reason = [num intValue];
 if (reason == MPMovieFinishReasonPlaybackError)
 NSLog(@"there was an error of some sort!");
 // second way
 NSError* err = [[n userInfo] objectForKey: @"error"];
 if (err)
 NSLog(@"%@", [err localizedDescription]);
}

However, the MPMoviePlayerPlaybackDidFinishNotification will not be sent if the
movie starts downloading and playing, but the download is then cut off. To detect this,
we register for MPMoviePlayerLoadStateDidChangeNotification and check for whether
the MPMoviePlayerController’s loadState (a bitmask) has the MPMovieLoadState-
Stalled bit set. If so, we’re in trouble, but play will not automatically stop; the
MPMoviePlayerController will keep trying to obtain data. If we want to prevent that,
we have to stop it manually:

- (void) loadStateChanged: (id) n {
 int ls = self.mpc.loadState;
 if (ls & MPMovieLoadStateStalled) {
 [self.mpc stop];
 NSLog(@"The download seems to have stalled out.");
 }
}

For extended information about the playback of a movie streamed across the Internet,
look into MPMoviePlayerController’s accessLog and errorLog properties (added in iOS
4.3).

MPMoviePlayerController | 787

Only one MPMoviePlayerController can display a movie in your inter-
face (naturally, I call this rule “There Can Be Only One”). Judicious use
of prepareToPlay can make any MPMoviePlayerController’s view “the
One,” but if your interface displays the views of any other MPMovie-
PlayerControllers, those views may become empty, which doesn’t look
good and may puzzle the user. To avoid confusion about why one of
your MPMoviePlayerControllers is not playing its movie successfully,
the simplest solution is to restrict your interface so that it contains only
one MPMoviePlayerController.

MPMoviePlayerViewController
An MPMoviePlayerViewController is, as its name implies, a view controller (a UIView-
Controller subclass). It manages an MPMoviePlayerController (its moviePlayer) and
automatically provides a fullscreen presentation of the MPMoviePlayerController’s
view. Thus, an MPMoviePlayerViewController has some strong advantages of sim-
plicity. You don’t have to put the MPMoviePlayerController’s view into your interface,
and you don’t have to worry about whether the user has toggled into fullscreen mode.

The documentation says that you can use an MPMoviePlayerViewController wherever
you would use a UIViewController, such as a child view controller in a tab bar interface
or navigation interface, but it seems to me that the MPMoviePlayerViewController’s
own interface makes the most sense when it is a presented view controller. Here’s a
simple example:

NSURL* m = [[NSBundle mainBundle] URLForResource:@"Movie" withExtension:@"m4v"];
MPMoviePlayerViewController* mpvc =
 [[MPMoviePlayerViewController alloc] initWithContentURL: m];
[self presentViewController:mpvc animated:YES completion:nil];

An alternative method for presenting the view is presentMoviePlayerViewController-
Animated:. It uses a style of animation otherwise unavailable, in which the current view
slides out to reveal the movie view. To remove the view in code, you could then call
dismissMoviePlayerViewControllerAnimated.

You can detect the user pressing the Done button by registering for the MPMoviePlayer-
PlaybackDidFinishNotification. If you needed to distinguish actual finishing (the
movie played to its end) from the user pressing the Done button, you would need to
examine the movie player’s properties; usually, though, you’ll be happy to have the
same thing happen in both cases. If the MPMoviePlayerViewController is a presented
view controller, it is dismissed automatically when the user taps the Done button or
when the movie plays to its end; thus there is no need to register for this notification,
though you might do so in order to do something in addition when the view controller
is dismissed. (If you use the MPMoviePlayerViewController in some other way, the
Done button stops play but that’s all, and dealing with the interface is up to you.)

MPMoviePlayerViewController overrides shouldAutorotateToInterfaceOrientation:
to return YES for all orientations. This means the view is rotatable without your having

788 | Chapter 28: Video

to subclass MPMoviePlayerViewController and override shouldAutorotateToInterface-
Orientation: yourself. If this rotation behavior isn’t what you want, then do subclass
MPMoviePlayerViewController and override shouldAutorotateToInterface-

Orientation: yourself.

When an MPMoviePlayerViewController’s view is showing, it becomes
a recipient of remote control events (see Chapter 27). This feature is
convenient, but if it’s not what you want, it is not easily overcome; there
is no property for turning it off. The best way to avoid it is to use an
MPMoviePlayerController instead.

That’s all there is to an MPMoviePlayerViewController; the rest of your interaction
with it is through its MPMoviePlayerController (moviePlayer), including the latter’s
notifications.

After an MPMoviePlayerViewController’s view is dismissed, if your app’s revealed in-
terface contains an MPMoviePlayerController’s view, that view will be unable to play
its movie, because of the rule I stated a moment ago: There Can Be Only One. The
MPMoviePlayerViewController’s view was the One, so now the MPMoviePlayer-
Controller’s view is broken. To fix it, send prepareToPlay to the MPMoviePlayer-
Controller.

UIVideoEditorController
UIVideoEditorController is a view controller that presents an interface for trimming
video. Its view and internal behavior are outside your control, and you’re not supposed
to subclass it. You are expected to show the view controller’s view as a presented view
on the iPhone or in a popover on the iPad, and respond by way of its delegate.

In actual fact I have never been able to get a UIVideoEditorController
to work properly on the iPad. I can summon the interface in a popover,
but it is not the correct video editing interface and it cannot be used to
trim the movie. This is a very long-standing bug, and I am astounded
that Apple has done nothing about it. [Late-breaking news: this bug
might be fixed, at long last, in iOS 5.1.]

Before summoning a UIVideoEditorController, be sure to call its class method canEdit-
VideoAtPath:. Not every video format is editable, and not every device supports video
editing. If this call returns NO, don’t instantiate UIVideoEditorController to edit the
given file. (This call can take some noticeable time to return.) You must also set the
UIVideoEditorController instance’s delegate and videoPath before presenting it:

UIVideoEditorController | 789

NSString* path = [[NSBundle mainBundle] pathForResource:@"movie" ofType:@"mov"];
BOOL can = [UIVideoEditorController canEditVideoAtPath:path];
if (!can) {
 NSLog(@"can't edit this video");
 return;
}
UIVideoEditorController* vc = [[UIVideoEditorController alloc] init];
vc.delegate = self;
vc.videoPath = path;
[self presentViewController:vc animated:YES completion:nil];

The view’s interface contains Cancel and Save buttons, a trimming box displaying
thumbnails from the movie, a Play/Pause button, and the movie itself. The user slides
the ends of the trimming box to set the beginning and end of the saved movie. The
Cancel and Save buttons do not dismiss the presented view; you must do that in your
implementation of the delegate methods. There are three of them, and you should
implement all three and dismiss the presented view in all of them:

• videoEditorController:didSaveEditedVideoToPath:

• videoEditorControllerDidCancel:

• videoEditorController:didFailWithError:

It’s important to implement the didFail... method, because things can go wrong even
at this stage.

Saving the trimmed video takes time. When videoEditorController:didSaveEdited-
VideoToPath: is called, the trimmed video has already been saved to a file in your app’s
temporary directory (the same directory returned from a call to NSTemporary-
Directory). Doing something useful with the saved file is up to you; if you merely leave
it in the temporary directory, you can’t rely on it to persist. In this example, I copy the
edited movie into the user’s Camera Roll photo album (called Saved Photos if the device
has no camera). That takes time too, so when I call UISaveVideoAtPathToSavedPhotos-
Album, I use the second and third arguments to call a method that dismisses the editor
after the saving is over:

- (void) videoEditorController: (UIVideoEditorController*) editor
 didSaveEditedVideoToPath: (NSString*) editedVideoPath {
 if (UIVideoAtPathIsCompatibleWithSavedPhotosAlbum(editedVideoPath))
 UISaveVideoAtPathToSavedPhotosAlbum(editedVideoPath, self,
 @selector(video:savedWithError:ci:),
 NULL);
 else
 NSLog(@"need to think of something else to do with it");
 [self dismissViewControllerAnimated:YES completion:nil];
}

Dismissal of a UIVideoEditorController’s view, when it is a presented view controller,
illustrates the use of the completion: block in the dismissViewControllerAnimated:
completion: call. If your app’s revealed interface contains an MPMoviePlayer-
Controller’s view, that view will be broken (unable to show its movie) by the UIVideo-

790 | Chapter 28: Video

EditorController’s view, because, as I’ve already explained, There Can Be Only One.
The solution, once again, is to call prepareToPlay, but this call won’t succeed until the
dismissal animation is over and the video editor’s movie view has been released. For
example:

-(void)video:(NSString*)path savedWithError:(NSError*)err ci:(void*)ci {
 // error-checking omitted
 [self dismissViewControllerAnimated:YES completion:^{
 [self.mpc prepareToPlay];
 }];
}

An Introduction to AV Foundation Video
A large suite of AV Foundation classes provides detailed access to media components,
analogous to QuickTime on Mac OS X. (In fact, starting in Mac OS X 10.7 “Lion,” AV
Foundation is trying to become the new QuickTime.) To access AV Foundation, you’ll
need to link to AVFoundation.framework (and probably CoreMedia.framework as well),
and import <AVFoundation/AVFoundation.h>. For a list of classes, see the AV Foundation
Framework Reference. AV Foundation is a huge topic, so there isn’t space here to do
more than introduce the concepts involved.

The AV Foundation class that performs actual playing of media is AVPlayer. An AV-
Player has an AVPlayerItem; this is its media. An AVPlayerItem comprises tracks
(AVPlayerItemTrack), which can be individually enabled or disabled. It gets these from
its underlying AVAsset; this is the basic media unit, as it were, providing you with access
to actual tracks (AVAssetTrack) and metadata. As with an MPMoviePlayerController,
you might use an AVPlayer to play a pure sound rather than a full-fledged movie. Start-
ing in iOS 5, an AVPlayer can use AirPlay.

An AVPlayer can be an AVQueuePlayer, a subclass that allows multiple AVPlayerItems
to be loaded up and then played in sequence; I’ll give an example in Chapter 29 of using
an AVQueuePlayer to play a series of songs. AVQueuePlayer also has an advanceToNext-
Item method, and its list of items can be changed dynamically, so you could use it to
give the user access to a set of “chapters.”

To display an AVPlayer’s movie, you need an AVPlayerLayer (a CALayer subclass).
You are unlikely to take this approach unless you need the extended powers of AV
Foundation or the sequential playing power of AVQueuePlayer or the flexibility of
working directly with a layer and Core Animation. The AVPlayerLayer doesn’t even
come with controls for playing a movie and visualizing its progress; you have to create
these yourself. Nevertheless, simply displaying a movie in this way is quite easy:

An Introduction to AV Foundation Video | 791

NSURL* m = [[NSBundle mainBundle] URLForResource:@"movie" withExtension:@"mov"];
AVPlayer* p = [AVPlayer playerWithURL:m];
self.player = p; // might need a reference later
AVPlayerLayer* lay = [AVPlayerLayer playerLayerWithPlayer:p];
lay.frame = CGRectMake(10,10,300,200);
[self.view.layer addSublayer:lay];

To let the user start playing the movie, we might provide a Play button. In this example,
the button toggles the playing status of the movie by changing its rate:

- (IBAction) doButton: (id) sender {
 CGFloat rate = self.player.rate;
 if (rate < 0.01)
 self.player.rate = 1;
 else
 self.player.rate = 0;
}

Another intriguing feature of an AVPlayer is that you can coordinate animation in your
interface (Chapter 17) with the playing of the movie. You attach an animation to a layer
in more or less the usual way, but the animation takes place in movie playback time: if
the movie is stopped, the animation is stopped, and if the movie is run at double rate,
the animation runs at double rate. This is done by embedding the layer to be animated
in an AVSynchronizedLayer, which is coupled with an AVPlayerItem.

To demonstrate, I’ll extend the previous example; after we insert our AVPlayerLayer
into the interface, we also create and insert an AVSynchronizedLayer:

// create synch layer, put it in the interface
AVPlayerItem* item = p.currentItem;
AVSynchronizedLayer* syncLayer =
 [AVSynchronizedLayer synchronizedLayerWithPlayerItem:item];
syncLayer.frame = CGRectMake(10,220,300,10);
syncLayer.backgroundColor = [[UIColor whiteColor] CGColor];
[self.view.layer addSublayer:syncLayer];
// give synch layer a sublayer
CALayer* subLayer = [CALayer layer];
subLayer.backgroundColor = [[UIColor blackColor] CGColor];
subLayer.frame = CGRectMake(0,0,10,10);
[syncLayer addSublayer:subLayer];
// animate the sublayer
CABasicAnimation* anim = [CABasicAnimation animationWithKeyPath:@"position"];
anim.fromValue = [NSValue valueWithCGPoint: subLayer.position];
anim.toValue = [NSValue valueWithCGPoint: CGPointMake(295,5)];
anim.removedOnCompletion = NO;
anim.beginTime = AVCoreAnimationBeginTimeAtZero; // important trick
anim.duration = CMTimeGetSeconds(item.asset.duration);
[subLayer addAnimation:anim forKey:nil];

The result is shown in Figure 28-6. The white rectangle is the AVSynchronizedLayer,
tied to our movie. The little black square inside it is its sublayer; when we animate the
black square, that animation will be synchronized to the movie, changing its position
from the left end of the white rectangle to the right end, starting at the beginning of the
movie and with the same duration as the movie. Thus, although we attach this anima-

792 | Chapter 28: Video

tion to the black square layer in the usual way, the black square doesn’t move until we
tap the button to call doButton: and start the movie playing. Moreover, if we tap the
button again to pause the movie, the black square stops. The black square is thus
automatically representing the current play position within the movie!

For the sake of simplicity, I built the structure in that example from the top down: I
started with the AVPlayer and the URL of the media, and extracted the AVPlayerItem
and the corresponding AVAsset only when I needed them. That, however, is not typical.
In the more general case, you would likely build the structure from the bottom up,
starting from the AVAsset, which you can obtain from the URL of the media through
a subclass, AVURLAsset. This, then, amounts to the very same thing in bottom-up
order:

AVURLAsset* asset = [AVURLAsset URLAssetWithURL:m options:nil];
AVPlayerItem* item = [AVPlayerItem playerItemWithAsset:asset];
AVPlayer* p = [AVPlayer playerWithPlayerItem:item];
self.player = p;
AVPlayerLayer* lay = [AVPlayerLayer playerLayerWithPlayer:p];
lay.frame = CGRectMake(10,10,300,200);
[self.view.layer addSublayer:lay];

We are now ready to create the synchronized layer. But the synchronization will initially
be incorrect unless the AVPlayerLayer is itself ready to display the movie. At that mo-
ment, the AVPlayerLayer’s readyForDisplay property will be YES. To wait for that mo-
ment, we use key–value observing (Chapter 13); AV Foundation doesn’t generally use
notifications, as you’re expected to use key–value observing instead:

[lay addObserver:self forKeyPath:@"readyForDisplay" options:0 context:NULL];

When the AVPlayerLayer is ready for display, we complete the interface by creating the
synchronized layer:

- (void) observeValueForKeyPath:(NSString *)keyPath ofObject:(id)object
 change:(NSDictionary *)change context:(void *)context {
 if ([keyPath isEqualToString:@"readyForDisplay"]) {
 [lay removeObserver:self forKeyPath:@"readyForDisplay"];
 AVPlayerLayer* lay = (AVPlayerLayer*) object;
 if (lay.readyForDisplay) {

Figure 28-6. The black square’s position is synchronized to the movie

An Introduction to AV Foundation Video | 793

 AVPlayerItem* item = self.player.currentItem;
 AVSynchronizedLayer* syncLayer =
 [AVSynchronizedLayer synchronizedLayerWithPlayerItem:item];
 // ... and the rest is as before ...
 }
 }
}

To discuss the full extent of the mighty powers with which AV Foundation endows
you would be, as I’ve said, beyond the scope of this book. Here’s a quick survey to whet
your appetite. With AV Foundation, in addition to the ability to incorporate Core
Animation running on the movie’s time by way of AVSynchronizedLayer, you can:

Waiting For the Tracks
In iOS 4, there was a rule that you should not convert an AVAsset to an AVPlayerItem
without waiting for its tracks to load and prepare themselves. To do this, we use a block,
calling loadValuesAsynchronouslyForKeys:completionHandler: The code effectively
skips over the block and continues on, preventing our interface from freezing up while
a lengthy process takes place; the track information is gathered on a background thread.
Our code then resumes in the block when the tracks are ready; we must move back
onto the main thread (I’ll explain all about this in Chapter 38) to continue configuring
the interface:

AVURLAsset* asset = [AVURLAsset URLAssetWithURL:m options:nil];
[asset loadValuesAsynchronouslyForKeys:[NSArray arrayWithObject:@"tracks"]
 completionHandler:^(void)
 {
 AVPlayerItem* item = [AVPlayerItem playerItemWithAsset:asset];
 AVPlayer* p = [AVPlayer playerWithPlayerItem:item];
 self.player = p;
 AVPlayerLayer* lay = [AVPlayerLayer playerLayerWithPlayer:p];
 dispatch_async(dispatch_get_main_queue(), ^{
 lay.frame = CGRectMake(10,10,300,200);
 [self.view.layer addSublayer:lay];
 [lay addObserver:self forKeyPath:@"readyForDisplay"
 options:0 context:NULL];
 });
 }];

That sort of thing is no longer necessary in iOS 5 merely to call playerItemWith-
Asset:; see Apple’s AV Foundation Release Notes for iOS 5. Nevertheless, it takes time
for media values to become available. Even with MPMoviePlayerController, we
couldn’t fetch a movie’s naturalSize immediately; we had to wait for an MPMovieNatural-
SizeAvailableNotification. This is just as true of AVAsset. Therefore, in order to pre-
vent your code from stopping and your interface from freezing, you will use loadValues-
AsynchronouslyForKeys... when examining an AVAsset or AVAssetTrack property, if
this property’s value has not yet been loaded; see the AVAsynchronousKeyValue-
Loading protocol documentation.

794 | Chapter 28: Video

• Construct your own media asset (AVComposition, an AVAsset subclass, along
with its subclass, AVMutableComposition). For example, you might combine part
of the sound from one asset and part of the video from another into a single movie.
In this (oversimplified) example, I extract two five-second snippets from a video
file and put them together with a ten-second snippet from an audio file:

NSString* type = AVMediaTypeVideo;
NSArray* arr = [someVideoAsset tracksWithMediaType:type];
AVAssetTrack* track = [arr lastObject];

AVMutableComposition* comp = [AVMutableComposition composition];
AVMutableCompositionTrack* comptrack =
 [comp addMutableTrackWithMediaType:type
 preferredTrackID:kCMPersistentTrackID_Invalid];
[comptrack insertTimeRange:CMTimeRangeMake(CMTimeMakeWithSeconds(0,1),
 CMTimeMakeWithSeconds(5,1))
 ofTrack:track atTime:CMTimeMakeWithSeconds(0,1) error:nil];
[comptrack insertTimeRange:CMTimeRangeMake(CMTimeMakeWithSeconds(30,1),
 CMTimeMakeWithSeconds(5,1))
 ofTrack:track atTime:CMTimeMakeWithSeconds(5,1) error:nil];

type = AVMediaTypeAudio;
NSURL* s = [[NSBundle mainBundle] URLForResource:@"snd" withExtension:@"m4a"];
AVAsset* asset = [AVURLAsset URLAssetWithURL:s options:nil];
arr = [asset tracksWithMediaType:type];
track = [arr lastObject];

comptrack = [comp addMutableTrackWithMediaType:type
 preferredTrackID:kCMPersistentTrackID_Invalid];
[comptrack insertTimeRange:CMTimeRangeMake(CMTimeMakeWithSeconds(0,1),
 CMTimeMakeWithSeconds(10,1))
 ofTrack:track atTime:CMTimeMakeWithSeconds(0,1) error:nil];

AVPlayerItem* item = [AVPlayerItem playerItemWithAsset:[comp copy]];

• Apply audio volume changes (AVAudioMix, AVMutableAudioMix, AVMutable-
AudioMixInputParameters), and video opacity and transform changes
(AVMutableVideoComposition, AVMutableVideoCompositionInstructions,
AVMutableVideoCompositionLayerInstruction), to the playback of individual
tracks. In this example, continuing on from the previous example, we apply a fa-
deout to the last three seconds of the existing audio:

AVMutableAudioMixInputParameters* params =
 [AVMutableAudioMixInputParameters
 audioMixInputParametersWithTrack:comptrack];
[params setVolume:1 atTime:CMTimeMakeWithSeconds(0,1)];
[params setVolumeRampFromStartVolume:1 toEndVolume:0
 timeRange:CMTimeRangeMake(CMTimeMakeWithSeconds(6,1),
 CMTimeMakeWithSeconds(2,1))];
AVMutableAudioMix* mix = [AVMutableAudioMix audioMix];
mix.inputParameters = [NSArray arrayWithObject: params];

item.audioMix = mix; // item is our existing AVPlayerItem

An Introduction to AV Foundation Video | 795

• Extract single images (“thumbnails”) from a movie (AVAssetImageGenerator).

• Export a movie in a different format (AVAssetExportSession), or read/write raw
uncompressed data through a buffer to or from a track (AVAssetReader, AVAsset-
ReaderOutput, AVAssetWriter, AVAssetWriterInput, and so on).

• Capture audio, video, and stills, on a device that supports it (such as an iPhone, or
another device connected to external hardware), including capturing video frames
as still images (see Technical Q&A QA1702). I’ll say more about this in Chapter 30.

It should be evident from even so brief a summary that you could use AV Foundation
to write a movie editor or a sound mixer. To learn more, you’ll want to read the AV
Foundation Programming Guide.

796 | Chapter 28: Video

CHAPTER 29

Music Library

An iOS device, in addition to running apps, can also be used for the same purpose as
the original iPod — to hold and play music and podcasts. These items constitute the
device’s music library; the user can play them with the Music app (formerly called the
iPod app on some devices). iOS has provided the programmer with various forms of
access to the device’s music library; you can:

• Explore the music library

• Play an item from the music library

• Learn and control what the Music app’s music player is doing

• Present a standard interface for allowing the user to select a music library item

These abilities are provided by the Media Player framework. You’ll need to link to
MediaPlayer.framework and import <MediaPlayer/MediaPlayer.h>.

Exploring the Music Library
Everything in the music library, as seen by your code, is an MPMediaEntity. This is an
abstract class that endows its subclasses with the ability to describe themselves through
key–value pairs called properties. (This use of the word “properties” has nothing to do
with the Objective-C properties discussed in Chapter 12; these properties are more like
entries in an NSDictionary.) The repertoire of properties depends on the sort of entity
you’re looking at; many of them will be intuitively familiar from your use of iTunes.
For example, a media item has a title, an album title, a track number, an artist, a com-
poser, and so on; a playlist has a title, a flag indicating whether it is a “smart” playlist,
and so on. The property keys have names like MPMediaItemPropertyTitle.

To fetch a property’s value, call valueForProperty: with its key. You can fetch multiple
properties with enumerateValuesForProperties:usingBlock:.

An individual item in the music library is an MPMediaItem, an MPMediaEntity sub-
class. It has a type, according to the value of its MPMediaItemPropertyMediaType property:

797

it might be music, a podcast, or an audiobook, and starting in iOS 5 an MPMediaItem
can also be a video. Different types of item have slightly different properties; for ex-
ample, a podcast has a podcast title (in addition to its normal title). An item’s artwork
image is an instance of the MPMediaItemArtwork class, from which you can get the
image itself scaled to a specified size by calling imageWithSize: (but my experience is
that in reality you’ll receive an image of any old size the system cares to give you, so
you may have to scale it further yourself).

A playlist is an MPMediaPlaylist. As you would expect, it has items and a count of those
items. It inherits those properties from its superclass, MPMediaItemCollection, which
is the other MPMediaEntity subclass. I’ll talk more about MPMediaItemCollection in
a moment.

Obtaining actual information from the music library requires a query, an MPMedia-
Query. First, you form the query. There are two main ways to do this:

With a convenience constructor
MPMediaQuery provides several class methods that form a query ready to ask the
music library for all of its songs, or all of its podcasts, and so on. Here’s the complete
list:

• songsQuery

• podcastsQuery

• audiobooksQuery

• playlistsQuery

• albumsQuery

• artistsQuery

• composersQuery

• genresQuery

• compilationsQuery

With filter predicates
You can attach to the query one or more MPMediaPropertyPredicate instances,
forming a set (NSSet) of predicates. These predicates filter the music library ac-
cording to criteria you specify; to be included in the result, a media item must
successfully pass through all the filters (in other words, the predicates are combined
using logical-and). A predicate is a simple comparison. It has two, or possibly three,
aspects:

A property
The key to the property you want to compare against. Not every property can
be used in a filter predicate; the documentation makes the distinction clear
(and starting in iOS 4.2, you get additional help from an MPMediaEntity class
method, canFilterByProperty:).

798 | Chapter 29: Music Library

A value
The value that the specified property must have in order to pass through the
filter.

A comparison type (optional)
In order to pass through the filter, a media item’s property value can either
match the value you provide (MPMediaPredicateComparisonEqualTo, the default)
or contain the value you provide (MPMediaPredicateComparisonContains).

These two ways of forming a query are actually the same; a convenience constructor is
just a quick way of obtaining a query already endowed with a filter predicate.

A query also groups its results, according to its groupingType. Your choices are:

• MPMediaGroupingTitle

• MPMediaGroupingAlbum

• MPMediaGroupingArtist

• MPMediaGroupingAlbumArtist

• MPMediaGroupingComposer

• MPMediaGroupingGenre

• MPMediaGroupingPlaylist

• MPMediaGroupingPodcastTitle

The query convenience constructors all supply a groupingType in addition to a filter
predicate. Indeed, the grouping is often the salient aspect of the query. For example,
an albumsQuery is in fact merely a songsQuery with the added feature that its results are
grouped by album.

The groups resulting from a query are collections; that is, each is an MPMediaItem-
Collection. This class, you will recall, is the superclass of MPMediaPlaylist, and is an
MPMediaEntity subclass. So, a collection has properties; it also has items and a count.
It also has a representativeItem property, which gives you just one item from the col-
lection. The reason you need this is that properties of a collection are often embodied
in its items rather than in the collection itself. For example, an album has no title; rather,
its items have album titles that are all the same. So to learn the title of an album, you
ask for the album title of a representative item.

After you form the query, you perform the query. You do this simply by asking for the
query’s results. You can ask either for its collections (if you care about the groups
returned from the query) or for its items. Here, I’ll discover the titles of all the albums:

MPMediaQuery* query = [MPMediaQuery albumsQuery];
NSArray* result = [query collections];
// prove we've performed the query, by logging the album titles
for (MPMediaItemCollection* album in result)
 NSLog(@"%@", [[album representativeItem]
 valueForProperty:MPMediaItemPropertyAlbumTitle]);

Exploring the Music Library | 799

/*
Output starts like this on my device:
Beethoven Concertos
Beethoven Overtures Etc
Beethoven Piano Duet
Beethoven Piano Other
Beethoven Piano Sonatas
...
*/

Now let’s make our query more elaborate; we’ll get the titles of all the albums whose
name contains “Sonata”. Observe that what we really do is to ask for all songs whose
album title contains “Sonata”, grouped by album:

MPMediaQuery* query = [MPMediaQuery albumsQuery];
MPMediaPropertyPredicate* hasSonata =
[MPMediaPropertyPredicate predicateWithValue:@"Sonata"
 forProperty:MPMediaItemPropertyAlbumTitle
 comparisonType:MPMediaPredicateComparisonContains];
[query addFilterPredicate:hasSonata];
NSArray* result = [query collections];
for (MPMediaItemCollection* album in result)
 NSLog(@"%@", [[album representativeItem]
 valueForProperty:MPMediaItemPropertyAlbumTitle]);
/*
Complete output on my device:
Beethoven Piano Sonatas
Beethoven Violin Sonatas
Schubert Piano Sonatas
*/

Because the results of that query are actually songs (MPMediaItems), we can immedi-
ately access any song in any of those albums. Let’s modify our output from the previous
query to print the titles of all the songs in the first album returned, which happens to
be the Beethoven Piano Sonatas album. We don’t have to change our query, so I’ll start
at the point where we perform it:

// ... same as before ...
NSArray* result = [query collections];
MPMediaItemCollection* album = [result objectAtIndex: 0];
for (MPMediaItem* song in album.items)
 NSLog(@"%@", [song valueForProperty:MPMediaItemPropertyTitle]);
/*
Output starts like this:
Piano Sonata Nº 1 in F minor, Op. 2 Nº 1 - I. Allegro
Piano Sonata Nº 1 in F minor, Op. 2 Nº 1 - II. Adagio
Piano Sonata Nº 1 in F minor, Op. 2 Nº 1 - III. Menuetto. Allegretto
Piano Sonata Nº 1 in F minor, Op. 2 Nº 1 - IV. Prestissimo
Piano Sonata Nº 2 in A, Op. 2 Nº 2 - I. Allegro vivace
...
*/

One of the properties of an MPMediaEntity is its persistent ID. This is important, as it
uniquely identifies this song (MPMediaItemPropertyPersistentID) or playlist (MPMedia-

800 | Chapter 29: Music Library

PlaylistPropertyPersistentID). No other means of identification is guaranteed
unique; two songs or two playlists can have the same title, for example. Using the
persistent ID, you can retrieve again at a later time the same song or playlist you re-
trieved earlier, even across launches of your app. Starting in iOS 4.2, the repertoire of
available persistent IDs is extended to entities in general (MPMediaEntityProperty-
PersistentID), album, artist, composer, and more.

While you are maintaining the results of a search, the contents of the music library may
themselves change. For example, the user might connect the device to a computer and
add or delete music with iTunes. This can put your results out of date. For this reason,
the library’s own modified state is available through the MPMediaLibrary class. Call
the class method defaultMediaLibrary to get the actual library instance; now you can
ask it for its lastModifiedDate. You can also register to receive a notification, MPMedia-
LibraryDidChangeNotification, when the music library is modified; this notification is
not emitted unless you first send the library beginGeneratingLibraryChange-

Notifications. You should eventually balance this with endGeneratingLibraryChange-
Notifications.

The Music Player
The Media Player framework class for playing an MPMediaItem is MPMusicPlayer-
Controller. It comes in two flavors, depending on which class method you use to get
an instance:

What About iTunes Match?
Now that iTunes Match has come into the world, it is possible that songs in the music
library are not physically present in the library, but rather are references to material
held in the cloud. This does not directly affect the operation of an MPMediaQuery: the
query still works, transparently, just as if the songs were actually present on the device.

There is one issue, however. When the user plays a song held in the cloud, it is down-
loaded to the device. My experience is that if the user is currently playing a song that
wasn’t present on the device, so that that song is “in transit,” that song will not be found
as a result of an MPMediaQuery — and neither will the next song, presumably because
two songs are always downloaded so that when the first finishes playing, the segue to
the next will be seamless. Moreover, playing and therefore downloading a song triggers
an MPMediaLibraryDidChangeNotification even though the “table of contents” of the
library has not in fact changed.

I have not found a workaround for this issue, and Apple has not revised the documen-
tation or the API to take account of iTunes Match (in fact, as of this writing, the doc-
umentation doesn’t even admit that iTunes Match exists).

The Music Player | 801

applicationMusicPlayer

Plays an MPMediaItem from the music library within your application. The song
being played by the applicationMusicPlayer can be different from the Music app’s
current song. This player stops when your app is not in the foreground.

iPodMusicPlayer

The global music player — the very same player used by the Music app. This might
already be playing an item, or might be paused with a current item, at any time
while your app runs; you can learn what item this is, and play music with this
player. It continues playing independently of the state of your app. The user can
at any time completely change what this player is doing.

An applicationMusicPlayer is not really inside your app. It is actually
the global music player behaving differently. It has its own audio ses-
sion. You cannot play its audio when your app is in the background.
You cannot make it the target of remote control events. If these limita-
tions prove troublesome, use the iPodMusicPlayer (or AVPlayer, as dis-
cussed later in this chapter).

A music player doesn’t merely play an item; it plays from a queue of items. This behavior
is familiar from iTunes and the Music app. For example, in iTunes, when you switch
to a playlist and double-click the first song to start playing, when iTunes comes to the
end of that song, it proceeds to the next song in the playlist. So at that moment, the
totality of songs in the playlist is its queue. The music player behaves the same way;
when it reaches the end of a song, it proceeds to the next song in its queue.

Your methods for controlling playback also reflect this queue-based orientation. In
addition to the expected play, pause, and stop commands, there’s a skipToNextItem and
skipToPreviousItem command. Anyone who has ever used iTunes or the Music app
(or, for that matter, an old-fashioned iPod) will have an intuitive grasp of this and
everything else a music player does. For example, you can also set a music player’s
repeatMode and shuffleMode, just as in iTunes and so forth.

You provide a music player with its queue in one of two ways:

With a query
You hand the music player an MPMediaQuery. The query’s items are the items of
the queue.

With a collection
You hand the music player an MPMediaItemCollection. This might be obtained
from a query you performed, but you can also assemble your own collection of
MPMediaItems in any way you like, putting them into an array and calling
collectionWithItems: or initWithItems:.

In this example, we collect all songs in the library shorter than 30 seconds into a queue
and set the queue playing in random order using the application-internal music player:

802 | Chapter 29: Music Library

MPMediaQuery* query = [MPMediaQuery songsQuery];
NSMutableArray* marr = [NSMutableArray array];
MPMediaItemCollection* queue = nil;
for (MPMediaItem* song in query.items) {
 CGFloat dur =
 [[song valueForProperty:MPMediaItemPropertyPlaybackDuration] floatValue];
 if (dur < 30)
 [marr addObject: song];
}
if ([marr count] == 0)
 NSLog(@"No songs that short!");
else
 queue = [MPMediaItemCollection collectionWithItems:marr];
if (queue) {
 MPMusicPlayerController* player =
 [MPMusicPlayerController applicationMusicPlayer];
 [player setQueueWithItemCollection:queue];
 player.shuffleMode = MPMusicShuffleModeSongs;
 [player play];
}

If a music player is currently playing, setting its queue will stop it; restarting play ap-
propriately is up to your code, if desired. Unfortunately, you can’t query a music player
as to its queue, but you can keep your own pointer to the MPMediaItemCollection
constituting the queue when you hand it to the music player, and starting in iOS 5 you
can ask the music player for which song within the queue is currently playing (indexOf-
NowPlayingItem). The user can completely change the queue of an iPodMusicPlayer, so
if control over the queue is important to you, you’ll have to use the applicationMusic-
Player.

A music player has a playbackState that you can query to learn what it’s doing (whether
it is playing, paused, stopped, or seeking). It also emits notifications so you can hear
about changes in its state:

• MPMusicPlayerControllerPlaybackStateDidChangeNotification

• MPMusicPlayerControllerNowPlayingItemDidChangeNotification

• MPMusicPlayerControllerVolumeDidChangeNotification

These notifications are not emitted, however, until you tell the music player to begin-
GeneratingPlaybackNotifications. This is an instance method, so you can arrange to
receive notifications from just one particular music player if you like. If you do receive
notifications from both, you can distinguish them by examining the NSNotification’s
object and comparing it to each player. You should eventually balance this call with
endGeneratingPlaybackNotifications.

To illustrate, I’ll extend the previous example to set a UILabel in our interface every
time a different song starts playing. Before we set the player playing, we insert these
lines to generate the notifications:

The Music Player | 803

[player beginGeneratingPlaybackNotifications];
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(changed:)
 name:MPMusicPlayerControllerNowPlayingItemDidChangeNotification
 object:nil];
self.q = queue; // retain a pointer to the queue

And here’s how we respond to those notifications:

- (void) changed: (NSNotification*) n {
 MPMusicPlayerController* player =
 [MPMusicPlayerController applicationMusicPlayer];
 if ([n object] == player) { // just playing safe
 NSString* title =
 [player.nowPlayingItem valueForProperty:MPMediaItemPropertyTitle];
 NSUInteger ix = player.indexOfNowPlayingItem;
 [self->label setText: [NSString stringWithFormat:@"%i of %i: %@",
 ix+1, [self.q count], title]];
 }
}

There’s no periodic notification as a song plays and the current playhead position ad-
vances. To get this information, you’ll have to resort to polling. This is not objectionable
as long as your polling interval is reasonably sparse; your display may occasionally fall
a little behind reality, but this won’t usually matter. For example, in one of my apps I
use a UIProgressView (p) to show the current percentage of the current song played by
the global player. There’s no notification, so I use an NSTimer and poll the state of the
player every 2 seconds. (I described this architecture in Chapter 11, and showed some
of the code triggered by the firing of this timer in Chapter 19; Figure 19-10 is a screen-
shot containing this UIProgressView.) If we are playing or paused in a song, I show the
proportion played; otherwise, I hide the UIProgressView entirely:

MPMusicPlayerController* mp = [MPMusicPlayerController iPodMusicPlayer];
if ([mp playbackState] == MPMusicPlaybackStatePlaying ||
 [mp playbackState] == MPMusicPlaybackStatePaused) {
 p.hidden = NO;
 MPMediaItem* item = mp.nowPlayingItem;
 NSTimeInterval current = mp.currentPlaybackTime;
 NSTimeInterval total =
 [[item valueForProperty:MPMediaItemPropertyPlaybackDuration] doubleValue];
 p.progress = current / total;
} else {
 p.hidden = YES;
}

An MPMusicPlayerController has no user interface, unless you count the remote play-
back controls (Figure 27-1); if you want your app to provide the user with internal
controls for playing and stopping a song, you’ll have to create them yourself. The iPod-
MusicPlayer has its own natural interface already, of course — namely, the Music app.
The Media Player framework does offer a slider for setting the system output volume,
along with an AirPlay route button if appropriate; this is an MPVolumeView.

804 | Chapter 29: Music Library

MPMusicPlayerController is convenient and simple, but it’s also simple-minded. As
we’ve seen, its audio session isn’t your audio session; the music player doesn’t really
belong to you. An MPMediaItem has an MPMediaItemPropertyAssetURL key, whose value
is a URL suitable for forming an AVAsset. Thus, another way to play an MPMediaItem
is through AV Foundation (Chapter 28). This approach gives you independence from
the Music player; it puts playback of the song into your app’s audio session and allows
you to control it in response to remote control events and to play it while your app is
in the background. (Of course, you can do a lot more with AV Foundation than merely
to play a song from the music library. For example, you could incorporate a song, or
part of a song, as the sound track to a movie.)

In this simple example, we start with an array of MPMediaItems and initiate play of
those items in an AVQueuePlayer:

NSArray* arr = // array of MPMediaItem;
NSMutableArray* assets = [NSMutableArray array];
for (MPMediaItem* item in arr) {
 AVPlayerItem* pi = [[AVPlayerItem alloc] initWithURL:
 [item valueForProperty:MPMediaItemPropertyAssetURL]];
 [assets addObject:pi];
}
self.qp = [AVQueuePlayer queuePlayerWithItems:assets];
[self.qp play];

That’s easy enough, but I have the impression, based on something said in one of the
WWDC 2011 videos, that it’s not what you’re supposed to do. Instead of adding a
whole batch of AVPlayerItems to an AVQueuePlayer all at once, you should add just
a few AVPlayerItems to start with and then add each additional AVPlayerItem when
an item finishes playing. So I’ll start out by adding just three AVPlayerItems, and use
KVO to observe the AVQueuePlayer’s @"currentItem" key:

NSArray* arr = // array of MPMediaItem;
self.assets = [NSMutableArray array];
for (MPMediaItem* item in arr) {
 AVPlayerItem* pi = [[AVPlayerItem alloc] initWithURL:
 [item valueForProperty:MPMediaItemPropertyAssetURL]];
 [self.assets addObject:pi];
}
self->curnum = 0; // we'll need this later
self->total = [self.assets count]; // ditto
self.qp = [AVQueuePlayer queuePlayerWithItems:
 [self.assets objectsAtIndexes:
 [NSIndexSet indexSetWithIndexesInRange:NSMakeRange(0,3)]]];
[self.assets removeObjectsAtIndexes:
 [NSIndexSet indexSetWithIndexesInRange:NSMakeRange(0,3)]];
[self.qp addObserver:self forKeyPath:@"currentItem" options:0 context:NULL];
[self.qp play];

The implementation of observeValueForKeyPath:... looks like this:

The Music Player | 805

AVPlayerItem* item = self.qp.currentItem;
NSArray* arr = item.asset.commonMetadata;
arr = [AVMetadataItem metadataItemsFromArray:arr
 withKey:AVMetadataCommonKeyTitle
 keySpace:AVMetadataKeySpaceCommon];
AVMetadataItem* met = [arr objectAtIndex:0];
[met loadValuesAsynchronouslyForKeys:[NSArray arrayWithObject:@"value"]
 completionHandler:^{
 dispatch_async(dispatch_get_main_queue(), ^{
 self->label.text = [NSString stringWithFormat:@"%i of %i: %@",
 ++self->curnum, self->total,
 [met valueForKey:@"value"]];
 });
}];
if (![self.assets count])
 return;
AVPlayerItem* newItem = [self.assets objectAtIndex:0];
[self.qp insertItem:newItem afterItem:[self.qp.items lastObject]];
[self.assets removeObjectAtIndex:0];

In the last three lines, we pull an AVPlayerItem off the front of our assets mutable array
and add it to the end of the AVQueuePlayer’s queue. The AVQueuePlayer itself deletes
an item from the start of its queue after playing it, so this way the queue never exceeds
three items in length. The code also illustrates how to extract metadata from an AVAsset
by way of an AVMetadataItem; in this case, we fetch the AVMetadataCommonKeyTitle
and get its value, as the equivalent of fetching an MPMediaItem’s MPMediaItem-
PropertyTitle property in our earlier code.

Here’s the AVPlayerItem analogue to our earlier querying of an MPMusicPlayer-
Controller’s current time and duration, so that we can update our UIProgressView
when our timer fires:

if (self.qp.rate < 0.01)
 p.hidden = YES;
else {
 p.hidden = NO;
 AVPlayerItem* item = self.qp.currentItem;
 CMTime cur = self.qp.currentTime;
 CMTime dur = item.duration;
 p.progress = CMTimeGetSeconds(cur)/CMTimeGetSeconds(dur);
}

The Music Picker
The music picker (MPMediaPickerController) is a view controller (UIViewController)
whose view is a self-contained navigation interface in which the user can select a media
item. This interface looks very much like the Music app. You have no access to the
actual view; you are expected to present the view controller (or, on the iPad, to use a
popover).

806 | Chapter 29: Music Library

You can limit the type of media items displayed by creating the controller using init-
WithMediaTypes:. You can make a prompt appear at the top of the navigation bar
(prompt). And you can govern whether the user can choose multiple media items or just
one, with the allowsPickingMultipleItems property. That’s all there is to it.

While the view is showing, you learn what the user is doing through two delegate
methods (MPMediaPickerControllerDelegate):

• mediaPicker:didPickMediaItems:

• mediaPickerDidCancel:

How you use these depends on the value of the controller’s allowsPickingMultiple-
Items:

The controller’s allowsPickingMultipleItems is NO (the default)
Every time the user taps a media item, your mediaPicker:didPickMediaItems: is
called, handing you an MPMediaItemCollection consisting of all items the user has
tapped so far (including the same item multiple times if the user taps the same item
more than once). When the user taps Cancel, your mediaPickerDidCancel: is called.

The controller’s allowsPickingMultipleItems is YES
The interface has Plus buttons at the right end of every media item, similar to the
Music app interface for creating a playlist. When the user taps Done, mediaPicker:
didPickMediaItems: is called, handing you an MPMediaItemCollection consisting
of all items for which the user has tapped the Plus button (including the same item
multiple times if the user taps the same item’s Plus button more than once). Your
mediaPickerDidCancel: is never called.

The view is not automatically dismissed; it is up to you to dismiss the presented view
controller. The standard behavior, in order to manage the interface sensibly, would be
for you to dismiss the presented view controller as soon as you get either delegate
message.

In this example, we put up the music picker, allowing the user to choose one media
item; we then play that media item with the application’s music player:

- (void) presentPicker {
 MPMediaPickerController* picker = [[MPMediaPickerController alloc] init];
 picker.delegate = self;
 [self presentViewController:picker animated:YES completion:nil];
}

- (void) mediaPicker: (MPMediaPickerController*) mediaPicker
 didPickMediaItems: (MPMediaItemCollection*) mediaItemCollection {
 MPMusicPlayerController* player =
 [MPMusicPlayerController applicationMusicPlayer];
 [player setQueueWithItemCollection:mediaItemCollection];
 [player play];
 [self dismissViewControllerAnimated:YES completion:nil];
}

The Music Picker | 807

- (void) mediaPickerDidCancel: (MPMediaPickerController*) mediaPicker {
 [self dismissViewControllerAnimated:YES completion:nil];
}

On the iPad, the music picker can be displayed in a popover or as a presented view. In
either form, I have the impression that it works better on the iPad in iOS 5 than in
previous versions of the system. The previous code works equally well on the iPhone
or the iPad, but for the sake of variety and interest, Example 29-1 rewrites it so that on
the iPhone it shows the picker as a presented view but on the iPad it shows the picker
in a popover. The presentPicker method is now a button’s control event action, so that
we can point the popover’s arrow to the button. How we summon the picker depends
on the device (we use UI_USER_INTERFACE_IDIOM to distinguish the two cases); if it’s an
iPad, we create a popover and set an instance variable to retain it (as discussed in
Chapter 22). How we dismiss the picker depends on how it is being presented.

Example 29-1. A presented view on the iPhone, a popover on the iPad

- (void) presentPicker: (id) sender {
 MPMediaPickerController* picker =
 [[MPMediaPickerController alloc] init];
 picker.delegate = self;
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPhone)
 [self presentViewController:picker animated:YES completion:nil];
 else {
 UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:picker];
 self.currentPop = pop;
 [pop presentPopoverFromRect:[sender bounds] inView:sender
 permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
 pop.passthroughViews = nil;
 }
}

- (void) dismissPicker: (MPMediaPickerController*) mediaPicker {
 if (self.currentPop && self.currentPop.popoverVisible) {
 [self.currentPop dismissPopoverAnimated:YES];
 } else {
 [self dismissViewControllerAnimated:YES completion:nil];
 }
}

- (void)mediaPicker: (MPMediaPickerController *)mediaPicker
 didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection {
 MPMusicPlayerController* player = [MPMusicPlayerController applicationMusicPlayer];
 [player setQueueWithItemCollection:mediaItemCollection];
 [player play];
 [self dismissPicker: mediaPicker];
}

- (void)mediaPickerDidCancel:(MPMediaPickerController *)mediaPicker {
 [self dismissPicker: mediaPicker];
}

808 | Chapter 29: Music Library

CHAPTER 30

Photo Library and Image Capture

The still photos and movies accessed by the user through the Photos app constitute the
photo library. Your app can provide an interface for exploring this library, similar to
the Photos app, through the UIImagePickerController class. In addition, the Assets
Library framework lets you access the photo library and its contents programmatically.
The UIImagePickerController class can also be used to provide an interface similar to
the Camera app, letting the user take photos and videos on devices with the necessary
hardware; and, at a deeper level, AV Foundation provides direct control over the camera
hardware.

To use constants such as kUTTypeImage, referred to in this chapter, your app must link
to MobileCoreServices.framework and import <MobileCoreServices/MobileCore-

Services.h>.

UIImagePickerController
UIImagePickerController is a view controller (UINavigationController) whose view
provides a navigation interface, similar to the Photos app, in which the user can choose
an item from the photo library. Alternatively, it can provide an interface, similar to the
Camera app, for taking a video or still photo if the necessary hardware is present. On
the iPhone, you will typically display the view controller’s view as a presented view
controller. On the iPad, you’ll show it in a popover; attempting to display it as a pre-
sented view controller causes a runtime exception. (To see how to structure your uni-
versal app code, look at Example 29-1).

Choosing from the Photo Library
To let the user choose an item from the photo library, instantiate UIImagePicker-
Controller and assign its sourceType one of these values:

• UIImagePickerControllerSourceTypeSavedPhotosAlbum

• UIImagePickerControllerSourceTypePhotoLibrary

809

You should call the class method isSourceTypeAvailable: beforehand; if it doesn’t re-
turn YES, don’t present the controller with that source type.

You’ll probably want to specify an array of mediaTypes you’re interested in. This array
will usually contain kUTTypeImage, kUTTypeMovie, or both; or you can specify all available
types by calling the class method availableMediaTypesForSourceType:.

After doing all of that, and having supplied a delegate, present the view controller:

UIImagePickerControllerSourceType type =
 UIImagePickerControllerSourceTypePhotoLibrary;
BOOL ok = [UIImagePickerController isSourceTypeAvailable:type];
if (!ok) {
 NSLog(@"alas");
 return;
}
UIImagePickerController* picker = [[UIImagePickerController alloc] init];
picker.sourceType = type;
picker.mediaTypes =
 [UIImagePickerController availableMediaTypesForSourceType:type];
picker.delegate = self;
[self presentViewController:picker animated:YES completion:nil]; // iPhone

On the iPhone, the delegate (UIImagePickerControllerDelegate) will receive one of
these messages:

• imagePickerController:didFinishPickingMediaWithInfo:

• imagePickerControllerDidCancel:

On the iPad, there’s no Cancel button, so there’s no imagePickerControllerDid-
Cancel:; you can detect the dismissal of the popover through the popover delegate. On
the iPhone, if a UIImagePickerControllerDelegate method is not implemented, the view
controller is dismissed automatically; but rather than relying on this, you should im-
plement both delegate methods and dismiss the view controller yourself in both.

The didFinish... method is handed a dictionary of information about the chosen item.
The keys in this dictionary depend on the media type.

An image
The keys are:

UIImagePickerControllerMediaType

A UTI; probably @"public.image", which is the same as kUTTypeImage.

UIImagePickerControllerOriginalImage

A UIImage.

UIImagePickerControllerReferenceURL

An ALAsset URL (discussed later in this chapter).

A movie
The keys are:

810 | Chapter 30: Photo Library and Image Capture

UIImagePickerControllerMediaType

A UTI; probably @"public.movie", which is the same as kUTTypeMovie.

UIImagePickerControllerMediaURL

A file URL to a copy of the movie saved into a temporary directory. This would
be suitable, for example, to display the movie with an MPMoviePlayer-
Controller (Chapter 28).

UIImagePickerControllerReferenceURL

An ALAsset URL (discussed later in this chapter).

Optionally, you can set the view controller’s allowsEditing to YES. In the case of an
image, the interface then allows the user to scale the image up and to move it so as to
be cropped by a preset rectangle; the dictionary will include two additional keys:

UIImagePickerControllerCropRect

An NSValue wrapping a CGRect.

UIImagePickerControllerEditedImage

A UIImage.

In the case of a movie, if the view controller’s allowsEditing is YES, the user can trim
the movie just as with a UIVideoEditorController (Chapter 28). The dictionary keys
are the same as before, but the file URL points to the trimmed copy in the temporary
directory.

Because of restrictions on how many movies can play at once (“There
Can Be Only One,” see Chapter 28), if you use a UIImagePicker-
Controller to let the user choose a movie and you then want to play that
movie in an MPMoviePlayerController, you must destroy the UIImage-
PickerController first. How you do this depends on how you displayed
the UIImagePickerController. If you’re using a presented view control-
ler on the iPhone, you can use the completion handler to ensure that the
MPMoviePlayerController isn’t configured until after the animation
dismissing the presented view. If you’re using a popover on the iPad,
you can release the UIPopoverController (probably by nilifying the in-
stance variable that’s retaining it) after dismissing the popover without
animation.

Using the Camera
To prompt the user to take a photo or video in an interface similar to the Camera app,
instantiate UIImagePickerController and set its source type to UIImagePicker-

ControllerSourceTypeCamera. Be sure to check isSourceTypeAvailable: beforehand; it
will be NO if the user’s device has no camera or the camera is unavailable. If it is YES,
call availableMediaTypesForSourceType: to learn whether the user can take a still photo
(kUTTypeImage), a video (kUTTypeMovie), or both. The result will guide your media-

UIImagePickerController | 811

Types setting. Set a delegate, and present the view controller. In this situation, it is legal
(and preferable) to use a presented view controller even on the iPad.

For video, you can also specify the videoQuality and videoMaximumDuration. Moreover,
these additional properties and class methods allow you to discover the camera capa-
bilities:

isCameraDeviceAvailable:

Checks to see whether the front or rear camera is available, using one of these
parameters:

• UIImagePickerControllerCameraDeviceFront

• UIImagePickerControllerCameraDeviceRear

cameraDevice

Lets you learn and set which camera is being used.

availableCaptureModesForCameraDevice:

Checks whether the given camera can capture still images, video, or both. You
specify the front or rear camera; returns an NSArray of NSNumbers, from which
you can extract the integer value. Possible modes are:

• UIImagePickerControllerCameraCaptureModePhoto

• UIImagePickerControllerCameraCaptureModeVideo

cameraCaptureMode

Lets you learn and set the capture mode (still or video).

isFlashAvailableForCameraDevice:

Checks whether flash is available.

cameraFlashMode

Lets you learn and set the flash mode (or, for a movie, toggles the LED “torch”).
Your choices are:

• UIImagePickerControllerCameraFlashModeOff

• UIImagePickerControllerCameraFlashModeAuto

• UIImagePickerControllerCameraFlashModeOn

Setting camera-related properties such as cameraDevice when there is no
camera or when the UIImagePickerController is not set to camera mode
can crash your app.

When the view controller appears, the user will see the interface for taking a picture,
familiar from the Camera app, possibly including flash button, camera selection button,
and digital zoom (if the hardware supports these), still/video switch (if your media-
Types setting allows both), and Cancel and Shutter buttons. If the user takes a picture,
the presented view offers an opportunity to use the picture or to retake it.

812 | Chapter 30: Photo Library and Image Capture

Allowing the user to edit the captured image or movie, and handling the outcome with
the delegate messages, is the same as I described in the previous section. There won’t
be any UIImagePickerControllerReferenceURL key in the dictionary delivered to the
delegate because the image isn’t in the photo library. A still image might report a UIImage-
PickerControllerMediaMetadata key containing the metadata for the photo.

Here’s a very simple example in which we offer the user a chance to take a still image;
if the user does so, we insert the image into our interface in a UIImageView (iv):

- (IBAction)doTake:(id)sender {
 BOOL ok = [UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeCamera];
 if (!ok) {
 NSLog(@"no camera");
 return;
 }
 NSArray* arr = [UIImagePickerController availableMediaTypesForSourceType:
 UIImagePickerControllerSourceTypeCamera];
 if ([arr indexOfObject:(NSString*)kUTTypeImage] == NSNotFound) {
 NSLog(@"no stills");
 return;
 }
 UIImagePickerController* pick = [UIImagePickerController new];
 pick.sourceType = UIImagePickerControllerSourceTypeCamera;
 pick.mediaTypes = [NSArray arrayWithObject:(NSString*)kUTTypeImage];
 pick.delegate = self;
 [self presentViewController:pick animated:YES completion:nil];
}

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker {
 [self dismissViewControllerAnimated:YES completion:nil];
}

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info {
 UIImage* im = [info objectForKey:UIImagePickerControllerOriginalImage];
 if (im)
 self->iv.image = im;
 [self dismissViewControllerAnimated:YES completion:nil];
}

In the image capture interface, you can hide the standard controls by setting shows-
CameraControls to NO, replacing them with your own overlay view, which you supply
as the value of the cameraOverlayView. In this case, you’re probably going to want some
means in your overlay view to allow the user to take a picture! You can do that through
these methods:

• takePicture

• startVideoCapture

• stopVideoCapture

UIImagePickerController | 813

You can supply a cameraOverlayView even if you don’t set showsCameraControls to NO;
but in that case you’ll need to negotiate the position of your added controls if you don’t
want them to cover the existing controls.

The key to customizing the look and behavior of the image capture interface is that a
UIImagePickerController is a UINavigationController; the controls shown at the bot-
tom of the default interface are the navigation controller’s toolbar. In this example, I’ll
remove all the default controls and allow the user to double-tap the image in order to
take a picture:

// ... starts out as before ...
picker.delegate = self;
picker.showsCameraControls = NO;
CGRect f = self.view.window.bounds;
UIView* v = [[UIView alloc] initWithFrame:f];
UITapGestureRecognizer* t =
 [[UITapGestureRecognizer alloc] initWithTarget:self action:@selector(tap:)];
t.numberOfTapsRequired = 2;
[v addGestureRecognizer:t];
picker.cameraOverlayView = v;
[self presentViewController:picker animated:YES completion:nil];
self->p = picker;

// ...
- (void) tap: (id) g {
 [self->p takePicture];
}

The interface is marred by a blank area the size of the toolbar at the bottom of the
screen, below the preview image. What are we to do about this? You can zoom or
otherwise transform the preview image by setting the cameraViewTransform property.
But this can be tricky, because different versions of iOS apply your transform differ-
ently; in iOS 4 and later, it is applied from the center, but before that it is applied from
the top. In this situation it is even more tricky, because we don’t know what values to
use; it’s hard to achieve a transform such that the way the image is framed in full-screen
is the same as how the final image is framed. A better solution might be simply to show
the toolbar and cover the blank area; in that case, the framing of the image as displayed
will match the framing of the image as captured.

Since we are the UIImagePickerController’s delegate, we are not only its UIImage-
PickerControllerDelegate but also its UINavigationControllerDelegate. We can there-
fore get some control over the navigation controller’s interface, and populate its root
view controller’s toolbar — but only if we wait until the root view controller’s view
actually appears. Here, I’ll increase the height of the toolbar to ensure that it covers the
blank area, and put a Cancel button into it:

- (void)navigationController:(UINavigationController *)nc
 didShowViewController:(UIViewController *)vc
 animated:(BOOL)animated {
 [nc setToolbarHidden:NO];
 CGRect f = nc.toolbar.frame;

814 | Chapter 30: Photo Library and Image Capture

 CGFloat h = 56; // determined experimentally
 CGFloat diff = h - f.size.height;
 f.size.height = h;
 f.origin.y -= diff;
 nc.toolbar.frame = f;
 UIBarButtonItem* b =
 [[UIBarButtonItem alloc] initWithTitle:@"Cancel"
 style:UIBarButtonItemStyleBordered
 target:self
 action:@selector(doCancel:)];
 [nc.topViewController setToolbarItems:[NSArray arrayWithObject:b]];
}

When the user double-taps to take a picture, our didFinishPickingMediaWithInfo del-
egate method is called, just as before. We don’t automatically get the secondary inter-
face where the user is shown the resulting image and offered an opportunity to use it
or retake the image. But we can provide such an interface ourselves by pushing another
view controller onto the navigation controller:

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info {
 UIImage* im = [info objectForKey:UIImagePickerControllerOriginalImage];
 if (!im)
 return;
 SecondViewController* svc =
 [[SecondViewController alloc] initWithNibName:nil bundle:nil image:im];
 [picker pushViewController:svc animated:YES];
}

(Designing the SecondViewController class is left as an exercise for the reader.)

Image Capture With AV Foundation
Instead of using UIImagePickerController, you can control the camera and capture
images using the AV Foundation framework (Chapter 28). You get no help with inter-
face (except for displaying in your interface what the camera “sees”), but you get far
more detailed control than UIImagePickerController can give you; for example, for
stills, you can control focus and exposure directly and independently, and for video,
you can determine the quality, size, and framerate of the resulting movie. You can also
capture audio, of course.

The heart of all AV Foundation capture operations is an AVCaptureSession object. You
configure this and provide it as desired with inputs (such as a camera) and outputs
(such as a file); then you call startRunning to begin the actual capture. You can recon-
figure an AVCaptureSession, possibly adding or removing an input or output, while it
is running — indeed, doing so is far more efficient than stopping the session and starting
it again — but you should wrap your configuration changes in beginConfiguration and
commitConfiguration.

Image Capture With AV Foundation | 815

As a rock-bottom example, let’s start by displaying in our interface, in real time, what
the camera sees. This requires an AVCaptureVideoPreviewLayer, a CALayer subclass.
This layer is not an AVCaptureSession output; rather, the layer receives its imagery by
owning the AVCaptureSession:

self.sess = [AVCaptureSession new];
AVCaptureDevice* cam =
 [AVCaptureDevice defaultDeviceWithMediaType:AVMediaTypeVideo];
AVCaptureDeviceInput* input =
 [AVCaptureDeviceInput deviceInputWithDevice:cam error:nil];
// error-checking omitted
[self.sess addInput:input];

AVCaptureVideoPreviewLayer* lay =
 [[AVCaptureVideoPreviewLayer alloc] initWithSession:self.sess];
lay.frame = CGRectMake(10,30,300,300);
[self.view.layer addSublayer:lay];

[self.sess startRunning];

Presto! Our interface now contains a window on the world, so to speak. Next, let’s
permit the user to snap a still photo, which our interface will display instead of the real-
time view of what the camera sees. As a first step, we’ll need to revise what happens as
we create our AVCaptureSession in the previous code. Since this image is to go directly
into our interface, we won’t need the full eight megapixel size of which the iPhone 4
camera is capable, so we’ll configure our AVCaptureSession’s sessionPreset to ask for
a much smaller image. We’ll also provide an output for our AVCaptureSession, an
AVCaptureStillImageOutput:

self.sess = [AVCaptureSession new];
self.sess.sessionPreset = AVCaptureSessionPreset640x480;
self.snapper = [AVCaptureStillImageOutput new];
self.snapper.outputSettings =
 [NSDictionary dictionaryWithObject:AVVideoCodecJPEG forKey:AVVideoCodecKey];
[self.sess addOutput:self.snapper];
// ... and the rest is as before ...

When the user asks to snap a picture, we send captureStillImageAsynchronouslyFrom-
Connection:completionHandler: to our AVCaptureStillImageOutput object. This call
requires some preparation. The first argument is an AVCaptureConnection; to find it,
we ask the output for its connection that is currently inputting video. The second ar-
gument is the block that will be called, possibly on a background thread, when the
image data is ready. We capture the data into a UIImage and, moving onto the main
thread (Chapter 38), we construct in the interface a UIImageView containing that im-
age, in place of the AVCaptureVideoPreviewLayer we were displaying previously:

AVCaptureConnection *vc = [self.snapper connectionWithMediaType:AVMediaTypeVideo];
typedef void(^MyBufBlock)(CMSampleBufferRef, NSError*);
MyBufBlock h = ^(CMSampleBufferRef buf, NSError *err) {
 NSData* data =
 [AVCaptureStillImageOutput jpegStillImageNSDataRepresentation:buf];
 UIImage* im = [UIImage imageWithData:data];

816 | Chapter 30: Photo Library and Image Capture

 dispatch_async(dispatch_get_main_queue(), ^{
 UIImageView* iv =
 [[UIImageView alloc] initWithFrame:CGRectMake(10,30,300,300)];
 iv.contentMode = UIViewContentModeScaleAspectFit;
 iv.image = im;
 [self.sess stopRunning];
 [[self.view.layer.sublayers lastObject] removeFromSuperlayer];
 [self.view addSubview: iv];
 });
};
[self.snapper captureStillImageAsynchronouslyFromConnection:vc
 completionHandler:h];

Our code has not illustrated setting the focus, changing the flash settings, and so forth;
doing so is not difficult (see the class documentation on AVCaptureDevice), but note
that you should wrap such changes in calls to lockForConfiguration: and unlockFor-
Configuration. You can turn on the LED “torch” by setting the back camera’s torch-
Mode to AVCaptureTorchModeOn, even if no AVCaptureSession is running (new in iOS 5).

AV Foundation’s control over the camera, and its ability to process incoming data —
especially video data — goes far deeper than there is room to discuss here, so consult
the documentation; in particular, see the “Media Capture” chapter of the AV Founda-
tion Programming Guide, plus the AV Foundation Release Notes for iOS 5. There are
also excellent WWDC videos on AV Foundation, and some fine sample code; in par-
ticular, I found Apple’s AVCam example very helpful while preparing this discussion.

The Assets Library Framework
The Assets Library framework does for the photo library roughly what the Media Player
framework does for the music library (Chapter 29), letting your code explore the li-
brary’s contents. You’ll need to link to AssetsLibrary.framework and import <Assets-
Library/AssetsLibrary.h>. One obvious use of the Assets Library framework might be
to implement your own interface for letting the user choose an image in a way that
transcends the limitations of UIImagePickerController.

A photo or video in the photo library is an ALAsset. Like a media entity (Chapter 29),
an ALAsset can describe itself through key–value pairs called properties. (This use of
the word “properties” has nothing to do with the Objective-C properties discussed in
Chapter 12.) For example, it can report its type (photo or video), its creation date, its
orientation if it is a photo whose metadata contains this information, and its duration
if it is a video. You fetch a property value with valueForProperty:. The properties have
names like ALAssetPropertyType.

A photo can provide multiple representations (roughly, image file formats). A given
photo ALAsset lists these representations as one of its properties, ALAssetProperty-
Representations, an array of strings giving the UTIs identifying the file formats; a typical
UTI might be @"public.jpeg" (kUTTypeJPEG, if you’ve linked to MobileCore-
Services.framework). A representation is an ALAssetRepresentation. You can get a

The Assets Library Framework | 817

photo’s defaultRepresentation, or ask for a particular representation by submitting a
file format’s UTI to representationForUTI:.

Once you have an ALAssetRepresentation, you can interrogate it to get the actual im-
age, either as raw data or as a CGImage (see Chapter 15). The simplest way is to ask
for its fullResolutionImage or its fullScreenImage (the latter is more suitable for display
in your interface, and is identical in iOS 5 to what the Photos app displays); you may
then want to derive a UIImage from this using imageWithCGImage:scale:orientation:.
The original scale and orientation of the image are available as the ALAsset-
Representation’s scale and orientation. (In iOS 5, if all you need is a small version of
the image to display in your interface, you can ask the ALAsset itself for its aspectRatio-
Thumbnail.) An ALAssetRepresentation also has a url, which is the unique identifier for
the ALAsset.

The photo library itself is an ALAssetsLibrary instance. It is divided into groups
(ALAssetsGroup), which have types. For example, the user might have multiple al-
bums; each of these is a group of type ALAssetsGroupAlbum. (In iOS 5, you also have
access to the new PhotoStream album.) An ALAssetsGroup also has properties, such
as a name, which you can fetch with valueForProperty:; new in iOS 5, a group has a
URL, which is its unique identifier. To fetch assets from the library, you either fetch
one specific asset by providing its URL, or you can start with a group, in which case
you can then enumerate the group’s assets. To obtain a group, you can enumerate the
library’s groups of a certain type, in which case you are handed each group as an
ALAssetsGroup, or (new in iOS 5) you can provide a particular group’s URL. Before
enumerating a group’s assets, you may optionally filter the group using a simple
ALAssetsFilter; this limits any subsequent enumeration to photos only, videos only, or
both.

The Assets Library framework uses Objective-C blocks for fetching and enumerating
assets and groups. These blocks behave rather oddly: at the end of the enumeration,
they are called one extra time with a nil first parameter. Thus, you must code your block
defensively to avoid treating the first parameter as real on that final call.

We now know enough for an example! I’ll fetch the first photo from the album named
“mattBestVertical” in my photo library and stick it into a UIImageView in the interface.
For readability, I’ve set up the blocks in my code separately as variables before they are
used, so it will help to read backward: we enumerate (at the end of the code) using the
getGroups block (previously defined), which itself enumerates using the getPix block
(defined before that). We must also be prepared with a block that handles the possibility
of an error. Here we go:

// what I'll do with the assets from the group
ALAssetsGroupEnumerationResultsBlock getPix =
 ^ (ALAsset *result, NSUInteger index, BOOL *stop) {
 if (!result)
 return;
 ALAssetRepresentation* rep = [result defaultRepresentation];
 CGImageRef im = [rep fullScreenImage];

818 | Chapter 30: Photo Library and Image Capture

 UIImage* im2 = [UIImage imageWithCGImage:im scale:0
 orientation:(UIImageOrientation)rep.orientation];
 [self->iv setImage:im2]; // put image into our UIImageView
 *stop = YES; // got first image, all done
 };
// what I'll do with the groups from the library
ALAssetsLibraryGroupsEnumerationResultsBlock getGroups =
 ^ (ALAssetsGroup *group, BOOL *stop) {
 if (!group)
 return;
 NSString* title = [group valueForProperty: ALAssetsGroupPropertyName];
 if ([title isEqualToString: @"mattBestVertical"]) {
 [group enumerateAssetsUsingBlock:getPix];
 *stop = YES; // got target group, all done
 }
 };
// might not be able to access library at all
ALAssetsLibraryAccessFailureBlock oops = ^ (NSError *error) {
 NSLog(@"oops! %@", [error localizedDescription]);
 // e.g., "Global denied access"
};
// and here we go with the actual enumeration!
ALAssetsLibrary* library = [[ALAssetsLibrary alloc] init];
[library enumerateGroupsWithTypes: ALAssetsGroupAlbum
 usingBlock: getGroups
 failureBlock: oops];
[library release];

You can write files into the Camera Roll / Saved Photos album. The basic function for
writing an image file to this location is UIImageWriteToSavedPhotosAlbum. Some kinds
of video file can also be saved here; in an example in Chapter 28, I checked whether
this was true of a certain video file by calling UIVideoAtPathIsCompatibleWithSaved-
PhotosAlbum, and I saved the file by calling UISaveVideoAtPathToSavedPhotosAlbum.

The ALAssetsLibrary class extends these abilities by providing five additional methods:

writeImageToSavedPhotosAlbum:orientation:completionBlock:

Takes a CGImageRef and orientation.

writeImageToSavedPhotosAlbum:metadata:completionBlock:

Takes a CGImageRef and optional metadata dictionary (such as might arrive
through the UIImagePickerControllerMediaMetadata key when the user takes a pic-
ture using UIImagePickerController).

writeImageDataToSavedPhotosAlbum:metadata:completionBlock:

Takes raw image data (NSData) and optional metadata.

videoAtPathIsCompatibleWithSavedPhotosAlbum:

Takes a file path string. Returns a boolean.

writeVideoAtPathToSavedPhotosAlbum:completionBlock:

Takes a file path string.

The Assets Library Framework | 819

Saving takes time, so a completion block allows you to be notified when it’s over. The
completion block supplies two parameters: an NSURL and an NSError. If the first
parameter is not nil, the write succeeded, and this is the URL of the resulting ALAsset.
If the first parameter is nil, the write failed, and the second parameter describes the
error.

Starting in iOS 5, you can create in the Camera Roll / Saved Photos album an image or
video that is considered to be a modified version of an existing image or video, by calling
an instance method on the original asset:

• writeModifiedImageDataToSavedPhotosAlbum:metadata:completionBlock:

• writeModifiedVideoAtPathToSavedPhotosAlbum:completionBlock:

Afterwards, you can get from the modified asset to the original asset through the for-
mer’s originalAsset property.

New in iOS 5, you are allowed to “edit” an asset — that is, you can replace an image
or video in the library with a different image or video — but only if your application
created the asset. Check the asset’s editable property; if it is YES, you can call either
of these methods:

• setImageData:metadata:completionBlock:

• setVideoAtPath:completionBlock:

Also new in iOS 5, you are allowed to create an album. If an album is editable, which
would be because you created it, you can add an existing asset to it by calling add-
Asset:. (This is not the same as saving a new asset to an album other than the Camera
Roll / Saved Photos album; you can’t do that, but once an asset exists, it can belong to
more than one album.)

820 | Chapter 30: Photo Library and Image Capture

Access Denied
The photo library has special access rules. You might not be able to explore the photo
library using the Assets Library framework at all; that’s because the user must explicitly
grant your app permission to access the photo library — otherwise, you’ll be blocked.
This is ostensibly because there might be location information in your photos, so the
user must allow your app to pass through the Core Location “wall” in order to reach
the photo library (see Chapter 35 for more about Core Location). There are two broad
possibilities for how you can be blocked:

• The user has turned off location services altogether (in the Settings app). In that
case, you’ll get a “Global denied access” error. The user is not automatically told
there’s a problem; if you like, you can put up an alert asking the user to turn on
location services, but that’s all you can do. The user must go to the Settings app
to turn on location services; otherwise, you’ll remain blocked.

• The user has turned on location services, but has never given your app explicit
permission. The very first time you try to access the photo library, the user might
see a system dialog (Figure 30-1) offering a chance to grant your app permission.
If the user refuses, you’ll get a “User denied access” error, and from then on, the
user will never see that dialog again (unless the user deletes and reinstalls your
app). If you like, you can put up an alert asking the user to grant permission. The
user must go to the Settings app to grant permission for your app; otherwise, you’ll
remain blocked.

Figure 30-1. The user might see this

The Assets Library Framework | 821

CHAPTER 31

Address Book

The user’s address book, which the user sees through the Contacts app, is effectively
a database that can be accessed directly through a C API provided by the Address Book
framework. You’ll link to AddressBook.framework and import <AddressBook/Address-
Book.h>.

A user interface for interacting with the address book is also provided, through Ob-
jective-C classes, by the Address Book UI framework. You’ll link to
AddressBookUI.framework and import <AddressBookUI/AddressBookUI.h>.

Address Book Database
The address book is an ABAddressBookRef obtained by calling ABAddressBookCreate.
This method’s name contains “Create,” so you must CFRelease the ABAddressBookRef
when you’re finished with it, as discussed in Chapter 12. (But don’t release it until you
are finished with it!) The address book’s data starts out exactly the same as the user’s
Contacts data. If you make any changes to the data, they are not written through to the
user’s real address book until you call ABAddressBookSave.

The primary constituent record of the address book database is the ABPerson. You’ll
typically extract persons from the address book by using these functions:

• ABAddressBookGetPersonCount

• ABAddressBookGetPersonWithRecordID

• ABAddressBookCopyPeopleWithName

• ABAddressBookCopyArrayOfAllPeople

The result of the latter two is a CFArrayRef. Their names contain “Copy,” so you must
CFRelease the array when you’re finished with it. (I’m going to stop reminding you
about memory management from here on.)

An ABPerson doesn’t formally exist as a type; it is actually an ABRecord (ABRecordRef),
and by virtue of this has an ID, a type, and properties with values. To fetch the value

823

of a property, you’ll call ABRecordCopyValue, supplying a property identifier to specify
the property that interests you. ABPerson properties, as you might expect, include
things like first name, last name, and email.

Working with a property value is a little tricky because the way you treat it depends on
what type of value it is. (You can find this out dynamically by calling ABPersonGetType-
OfProperty, but usually you’ll know in advance.) Some values are simple, but some are
not. For example, a last name is a string, which is straightforward. But a person can
have more than one email, so an email value is a “multistring.” To work with it, you’ll
treat it as an ABMultiValue (ABMultiValueRef). This is like an array of values where
each value also has a label and an identifier. The label categorizes (for example, a Home
email as opposed to a Work email) but is not a unique specifier (because a person might
have, say, two or more Work emails); the identifier is the unique specifier.

A person’s address is even more involved because not only is it an ABMultiValue (a
person can have more than one address), but also a particular address is itself a dictio-
nary (a CFDictionary). Each dictionary may have a key for street, city, state, country,
and so on.

There is a lot more to parsing address book information, but that’s enough to get you
started. We are now ready to illustrate by an example. I’ll fetch my own record out of
the address book database on my device and detect that I’ve got two email addresses:

ABAddressBookRef adbk = ABAddressBookCreate();
ABRecordRef moi = NULL;
CFArrayRef matts = ABAddressBookCopyPeopleWithName(adbk, @"Matt");
// might be multiple Matts, but let's find the one with last name Neuburg
for (CFIndex ix = 0; ix < CFArrayGetCount(matts); ix++) {
 ABRecordRef matt = CFArrayGetValueAtIndex(matts, ix);
 CFStringRef last = ABRecordCopyValue(matt, kABPersonLastNameProperty);
 if (last && CFStringCompare(last, (CFStringRef)@"Neuburg", 0) == 0)
 moi = matt;
 if (last)
 CFRelease(last);
}
if (NULL == moi) {
 NSLog(@"Couldn't find myself");
 CFRelease(matts);
 CFRelease(adbk);
 return;
}
// parse my emails
ABMultiValueRef emails = ABRecordCopyValue(moi, kABPersonEmailProperty);
for (CFIndex ix = 0; ix < ABMultiValueGetCount(emails); ix++) {
 CFStringRef label = ABMultiValueCopyLabelAtIndex(emails, ix);
 CFStringRef value = ABMultiValueCopyValueAtIndex(emails, ix);
 NSLog(@"I have a %@ address: %@", label, value);
 CFRelease(label);
 CFRelease(value);
}
CFRelease(emails);
CFRelease(matts);

824 | Chapter 31: Address Book

CFRelease(adbk);
/*
output:
I have a _$!<Home>!$_ address: matt@tidbits.com
I have a _$!<Work>!$_ address: mattworking@tidbits.com
*/

You can also modify an existing record, add a new record (ABAddressBookAddRecord),
and delete a record (ABAddressBookRemoveRecord). In this example, I’ll create a person,
add him to the database, and save the database:

ABAddressBookRef adbk = ABAddressBookCreate();
ABRecordRef snidely = ABPersonCreate();
ABRecordSetValue(snidely, kABPersonFirstNameProperty, @"Snidely", NULL);
ABRecordSetValue(snidely, kABPersonLastNameProperty, @"Whiplash", NULL);
ABMutableMultiValueRef addr = ABMultiValueCreateMutable(kABStringPropertyType);
ABMultiValueAddValueAndLabel(addr, @"snidely@villains.com", kABHomeLabel, NULL);
ABRecordSetValue(snidely, kABPersonEmailProperty, addr, NULL);
ABAddressBookAddRecord(adbk, snidely, NULL);
ABAddressBookSave(adbk, NULL);
CFRelease(addr);
CFRelease(snidely);
CFRelease(adbk);

Sure enough, if we then check the state of the database through the Contacts app, the
new person exists (Figure 31-1).

There are also groups (ABGroup); a group, like a person, is a record (ABRecord), so
you can add a new group, delete an existing group, add a person to a group, and remove
a person from a group. A group doesn’t own a person, nor a person a group; they are
independent, and a person can be associated with multiple groups just as a group is
associated with multiple persons. At an even higher level, there are sources (yet another
kind of ABRecord): a person or group might be on the device, but it might instead come
from an Exchange server or a CardDAV server. In this case the source really does, in a
sense, own the group or person; a person can’t belong to two sources. A complicating
factor, however, is that the same real person might appear in two different sources as
two different ABPersons; to deal with this, it is possible for multiple persons to be
linked, indicating that they are the same person. For a practical introduction to groups
and sources, see Apple’s ABUIGroups example code.

Figure 31-1. A contact created programmatically

Address Book Database | 825

Address Book Interface
The Address Book UI framework puts a user interface in front of common tasks in-
volving the address book database and its manipulation by means of the functions and
data types discussed in the preceding section. This is a great help, because designing
your own interface to do the same thing would be tedious and involved. The framework
provides four UIViewController subclasses:

ABPeoplePickerNavigationController

Presents a navigation interface, effectively the same as the Contacts app but without
an Edit button: it lists the people in the database and allows the user to pick one
and view the details.

ABPersonViewController

Presents an interface showing the properties of a specific person, possibly editable.

ABNewPersonViewController

Presents an interface showing the editable properties of a new person.

ABUnknownPersonViewController

Presents an interface showing a proposed person with a partial set of noneditable
properties.

ABPeoplePickerNavigationController
An ABPeoplePickerNavigationController is a UINavigationController. With it, the user
can survey groups, along with the names of all persons in each group. Presenting it can
be as simple as instantiating it, assigning it a delegate, and showing it as a presented
view controller. On the iPad, you’ll probably use a popover; presenting the view con-
troller does work, but a popover looks better. (For the structure of a universal app, see
Example 29-1.) Here’s the code for an iPhone:

Library Access Inconsistencies
You need special permission even to look in the photo library with the Assets Library
framework (Chapter 30), and you can’t modify the music library (Chapter 29), but you
can freely read the user’s address book, altering a person’s details, adding new people,
and even possibly deleting every record in the database, without the user’s knowledge
or permission. Don’t ask me to justify that inconsistency; it makes no sense to me.
Indeed, as Apple’s documentation points out, your code has more power over the ad-
dress book database than the user does, because you can manipulate groups of persons
(ABGroup), but the user can’t; the user acquires groups only by syncing with a Mac
with groups in its Address Book.

826 | Chapter 31: Address Book

ABPeoplePickerNavigationController* picker =
 [[ABPeoplePickerNavigationController alloc] init];
picker.peoplePickerDelegate = self; // note: not merely "delegate"
[self presentViewController:picker animated:YES completion:nil];

You should certainly provide a delegate, because without it the presented view will
never be dismissed. This delegate is not the controller’s delegate property! It is the
controller’s peoplePickerDelegate property. You should implement all three delegate
methods:

peoplePickerNavigationController:shouldContinueAfterSelectingPerson:

The user has tapped a person in the contacts list, provided to you as an ABRecord-
Ref. You have two options:

• Return NO. The user has chosen a person and that’s all you wanted done. The
selected person remains selected unless the user chooses another person. You
are likely to dismiss the picker at this point.

• Return YES (and don’t dismiss the picker). The view will navigate to a view of
the person’s properties. You can limit the set of properties the user will see at
this point by setting the ABPeoplePickerNavigationController’s displayed-
Items. This is an array of NSNumbers wrapping the property identifiers such
as kABPersonEmailProperty.

peoplePickerNavigationController:shouldContinueAfterSelectingPerson:property:

identifier:

The user is viewing a person’s properties and has tapped a property. Note that you
are not handed the value of this property! You can fetch that yourself if desired,
because you have the person and the property; plus, if the property has multiple
values, you are handed an identifier so you can pick the correct one out of the array
of values by calling ABMultiValueGetIndexForIdentifier and fetching the value at
that index. You have two options:

• Return NO. The view is now still sitting there, displaying the person’s prop-
erties. You are likely to dismiss the picker at this point.

• Return YES. This means that if the property is one that can be displayed in
some other app, we will switch to that app. For example, if the user taps an
address, it will be displayed in the Maps app; if the user taps an email, we will
switch to the Mail app and compose a message addressed to that email.

peoplePickerNavigationControllerDidCancel:

The user has cancelled; you should dismiss the picker.

In this example, we want the user to pick an email. We have limited the display of
properties to emails only:

picker.displayedProperties =
 [NSArray arrayWithObject: [NSNumber numberWithInt: kABPersonEmailProperty]];

Address Book Interface | 827

We return YES from the first delegate method. The second delegate method fetches the
value of the tapped email and dismisses the picker:

- (BOOL)peoplePickerNavigationController:
 (ABPeoplePickerNavigationController *)peoplePicker
 shouldContinueAfterSelectingPerson:(ABRecordRef)person
 property:(ABPropertyID)property
 identifier:(ABMultiValueIdentifier)identifier {
 ABMultiValueRef emails = ABRecordCopyValue(person, property);
 CFIndex ix = ABMultiValueGetIndexForIdentifier(emails, identifier);
 CFStringRef email = ABMultiValueCopyValueAtIndex(emails, ix);
 NSLog(@"%@", email); // do something with the email here
 CFRelease(email);
 CFRelease(emails);
 [self dismissViewControllerAnimated:YES completion:nil];
 return NO;
}

ABPersonViewController
An ABPersonViewController is a UIViewController. To use it, instantiate it, set its
displayedPerson and personViewDelegate (not delegate), and push it onto an existing
navigation controller’s stack. The user’s only way out of the resulting interface will be
through the Back button.

On the iPad, the same interface works, or alternatively you can use a popover. In the
latter case you’ll probably make the ABPersonViewController the root view of a
UINavigationController created on the fly, especially if you intend to set allows-
Editing to YES, since without the navigation interface the Edit button won’t appear.
No Back button is present or needed, because the user can dismiss the popover by
tapping outside it.

You can limit the properties to be displayed, as with ABPeoplePickerNavigation-
Controller, by setting the displayedProperties. You can highlight a property with set-
HighlightedItemForProperty:withIdentifier:.

The delegate is notified when the user taps a property, similar to ABPeoplePicker-
NavigationController’s second delegate method illustrated in the code just above. Re-
turn YES to allow some other app, such as Maps or Mail, to open the tapped value;
return NO to prevent this.

If ABPersonViewController’s allowsActions is YES, then buttons such as Send Message
and Share Contact appear in the interface. (Exactly what buttons appear depends on
what categories of information are displayed.)

If ABPersonViewController’s allowsEditing is YES, the right bar button is an Edit but-
ton. If the user taps this, the interface is transformed into the same sort of editing
interface as ABNewPersonViewController. The user can tap Done or Cancel; if Done, the
edits are automatically saved into the database. Either way, the user returns to the
original display of the person’s properties.

828 | Chapter 31: Address Book

ABNewPersonViewController
An ABNewPersonController is a UIViewController. To use it, instantiate it, set its new-
PersonViewDelegate (not delegate), instantiate a UINavigationController with the
ABNewPersonController as its root view, and present the navigation controller:

ABNewPersonViewController* npvc = [[ABNewPersonViewController alloc] init];
npvc.newPersonViewDelegate = self;
UINavigationController* nc =
 [[UINavigationController alloc] initWithRootViewController:npvc];
[self presentViewController:nc animated:YES completion:nil];

The presented view controller works on the iPad as well. Alternatively, you can display
the UINavigationController in a popover; the resulting popover is effectively modal.

The interface allows the user to fill in all properties of a new contact. You cannot limit
the properties displayed. You can provide properties with default values by creating a
fresh ABRecordRef representing an ABPerson with ABPersonCreate, giving it any prop-
erty values you like, and assigning it to the displayedPerson property.

The delegate has one method, newPersonViewController:didCompleteWithNewPerson:,
which is responsible for dismissing the presented view or popover. If the new person
is NULL, the user tapped Cancel. Otherwise, the user tapped Done; the new person is
an ABRecordRef and has already been saved into the database.

But what if you don’t want the new person saved into the database? What if you were
presenting this interface merely because it’s such a convenient way of letting the user
fill in the property values of an ABPerson? Then simply remove the newly created person
from the database, like this:

- (void)newPersonViewController:(ABNewPersonViewController*)newPersonViewController
 didCompleteWithNewPerson:(ABRecordRef)person {
 if (NULL != person) {
 ABAddressBookRef adbk = ABAddressBookCreate();
 ABAddressBookRemoveRecord(adbk, person, NULL);
 ABAddressBookSave(adbk, NULL);
 CFStringRef name = ABRecordCopyCompositeName(person);
 NSLog(@"I have a person named %@", name); // do something with new person
 CFRelease(name);
 CFRelease(adbk);
 }
 [self dismissViewControllerAnimated:YES completion:nil];
}

ABUnknownPersonViewController
An ABUnknownPersonViewController is a UIViewController. It presents, as it were,
a proposed partial person. You can set the first and last name displayed as the control-
ler’s alternateName property, and the text below this as the controller’s message prop-
erty. You’ll add other property values just as for an ABNewPersonViewController,

Address Book Interface | 829

namely, by creating a fresh ABRecordRef representing an ABPerson with ABPerson-
Create, giving it some property values, and assigning it to the displayedPerson property.

To use ABUnknownPersonViewController, instantiate it, set the properties listed in
the foregoing paragraph, set its unknownPersonViewDelegate (not delegate), and push it
onto the stack of an existing navigation controller. The user’s only way out of the
resulting interface will be through the Back button.

On the iPad, make the ABUnknownPersonViewController the root view of a
UINavigationController and present the navigation controller as a popover. No Back
button is present or needed, because the user can dismiss the popover by tapping out-
side it.

What the user can do here depends on two other properties:

allowsAddingToAddressBook

If YES, a Create New Contact button and an Add to Existing Contact button ap-
pear:

• If the user taps Create New Contact, the editing interface appears (as in
ABNewPersonViewController and an editable ABPersonViewController). It is
filled in with the property values of the displayedPerson. If the user taps Done,
the person is saved into the database.

• If the user taps Add to Existing Contact, a list of all contacts appears (as in the
first screen of ABPersonViewController). The user can Cancel or tap a person.
If the user taps a person, the properties from the displayedPerson are merged
into that person’s record.

allowsActions

If YES, buttons such as Send Message and Share Contact appear. (Exactly what
buttons appear depends on what categories of information are displayed.)

The delegate has two methods, the first of which is required:

unknownPersonViewController:didResolveToPerson:

Called if allowsAddingToAddressBook is YES and the user finishes working in a pre-
sented editing view. The editing view has already been dismissed and the user has
either cancelled (the second parameter is NULL) or has tapped Done (the second
parameter is the ABPerson already saved into the database).

unknownPersonViewController:shouldPerformDefaultActionForPerson:property:

identifier:

Return NO, as with ABPeoplePickerNavigationController, to prevent a tap on a
property value from navigating to another app.

830 | Chapter 31: Address Book

CHAPTER 32

Calendar

The user’s calendar information, which the user sees through the Calendar app, is
effectively a database. This database can be accessed directly through the Event Kit
framework. You’ll link to EventKit.framework and import <EventKit/EventKit.h>.

A user interface for interacting with the calendar is also provided, through the Event
Kit UI framework. This interface basically replicates part of the Calendar app. You’ll
link to EventKitUI.framework and import <EventKitUI/EventKitUI.h>.

When you use Event Kit, you’re messing with the user’s calendars. You
can very easily, accidentally or on purpose, delete all the user’s calen-
dars, and with them, their events (see “Library Access Inconsisten-
cies” on page 826). The consequences can be very dire, and they are
even worse if those calendars are shared in some way. For example, if
the user synchronizes calendar data through iCloud, those deletions can
instantly propagate through the cloud to the user’s other devices and
computers. And there’s no Undo. Be careful out there. Even if you’re
just experimenting on your own device, keep good backups. (As usual,
I speak from experience.)

Calendar Database
The calendar database is accessed as an instance of the EKEventStore class. This in-
stance is expensive to obtain but lightweight to maintain, so your usual strategy, in an
app where you’ll be working with the user’s calendar database, will be to instantiate
EKEventStore (by calling [EkEventStore new]) early in the life of the app or of some
other appropriate object, such as a view controller, and to maintain that instance in an
instance variable until you no longer need it. That’s the strategy adopted by the exam-
ples in this chapter; my EKEventStore instance is called self.database throughout.

Starting with this instance, you can obtain two kinds of object:

831

A calendar
A calendar is a collection of events, usually categorized for some purpose, such as
Work or Home. It is an instance of EKCalendar. You can fetch all calendars with
the calendars property, or the default calendar with the defaultCalendarForNew-
Events property; in iOS 5, a calendar also has a calendarIdentifier, and you can
fetch a calendar by its identifier with calendarWithIdentifier:.

Calendars have various types (type), reflecting the nature of their origin: a calendar
can be created and maintained by the user locally (EKCalendarTypeLocal), but it
might also live remotely on the network (EKCalendarTypeCalDAV, EKCalendarType-
Exchange), possibly being updated by subscription (EKCalendarTypeSubscription);
the Birthday calendar (EKCalendarTypeBirthday) is generated automatically from
information in the address book. In iOS 5, the type is supplemented and embraced
by the calendar’s source, an EKSource whose sourceType can be EKSourceType-
Local, EKSourceTypeExchange, and so forth; a source can also have a title, and it has
a unique identifier. You can get an array of all sources known to the database, or
specify a source by its identifier. If you’re targeting iOS 5 or later, you’ll probably
use the source exclusively and ignore the calendar’s type property.

Depending on the source, a calendar will be modifiable in various ways. The cal-
endar might be subscribed. If the calendar is immutable, you can’t delete the cal-
endar or change its attributes; but its allowsContentModifications might still be
YES, in which case you add, remove, and alter its events. You can update your copy
of the calendar from any remote sources by calling refreshSourcesIfNecessary.

Starting in iOS 5, you can create a calendar, by calling calendarWithEventStore:.
At that point, you can specify the source to which the calendar belongs.

An event
An event is a memorandum describing when something happens. It is an instance
of EKEvent. An event is associated with a calendar, its calendar, and you must
specify a calendar when creating an event. You can’t ask for a calendar’s events;
rather, you fetch an event from the database as a whole. You do this either by
unique identifier (eventIdentifier) or by a date range — and when you specify a
date range you can also specify a calendar or calendars.

A new feature in the iOS 5 version of Event Kit is that changes to the database can be
atomic. There are two prongs to the implementation of this feature:

• The iOS 5 methods for saving and removing events and calendars have a commit:
parameter. If you pass NO as the argument, the changes that you’re ordering are
batched; later, you can call commit: (or reset if you change your mind). If you pass
NO and forget to call commit:, your changes will never happen.

• An new abstract class, EKObject, functions as the superclass for all the other per-
sistent object types, such as EKCalendar, EKEvent, EKSource, and so on. It endows

832 | Chapter 32: Calendar

those classes with methods isNew and hasChanges, along with refresh, rollback,
and reset.

Since the ability to create a calendar is new in iOS 5, let’s start by creating one. We need
to assign a source; we’ll choose EKSourceTypeLocal, meaning that the calendar will be
created on the device itself. We can’t ask the database for the local source directly, so
we have to cycle through all sources looking for it. When we find it, we make a new
calendar called “CoolCal”:

EKSource* src;
for (src in self.database.sources)
 if (src.sourceType == EKSourceTypeLocal)
 break;
EKCalendar* cal = [EKCalendar calendarWithEventStore:self.database];
cal.source = src;
cal.title = @"CoolCal";
// ready to save the new calendar into the database
NSError* err;
BOOL ok;
ok = [self.database saveCalendar:cal commit:YES error:&err];
if (!ok) {
 NSLog(@"save calendar %@", err.localizedDescription);
 return;
}

After running the preceding code, the user is unable to delete the re-
sulting CoolCal calendar (in the Calendar app) — though, as we’ll see
later, our code can delete it. I don’t know whether that’s a bug or not.

Now let’s create an event and add it to our new calendar. Before we can do that, we
need to know more about events.

An event is an instance of EKEvent, and is where all the real action is. You can fetch
events out of the calendar database; you can modify an existing event, or make a new
one; you can save an event into the calendar database or delete an event from the
database.

Starting in iOS 5, EKEvent is a subclass of EKCalendarItem. At the moment, it is in fact
the only subclass of EKCalendarItem; presumably the intent of this architecture is to
allow for future additional subclasses. A number of methods and properties have been
moved up from EKEvent (iOS 4) to EKCalendarItem (iOS 5), but from your code’s
point of view this will obviously make no difference; the chief importance to you of this
change is that you’ll have to look in the EKCalendarItem class documentation to learn
about some of EKEvent’s methods and properties. New properties include creation-
Date, timeZone, URL, and UUID. (The UUID is not the same as the eventIdentifier, and I
have not figured out what, if anything, it is good for.)

If you’ve ever used the Calendar app, or iCal on the Mac, you have a sense for how an
EKEvent can be configured. It has a title and optional notes. It is associated with a

Calendar Database | 833

calendar, as I’ve already said. Most important, it has a startDate and an endDate; these
are NSDates and involve both date and time. If the event’s allDay property is YES, the
time aspect of its dates is ignored; the event is associated with a day or a stretch of days
as a whole. If the event’s allDay property is NO, the time aspect of its dates matters; a
typical event will then usually be bounded by two times on the same day.

Making a simple event is simple, if tedious. You must provide a startDate and an end-
Date. The simplest way to construct dates is with NSDateComponents:

EKCalendar* cal;
for (cal in self.database.calendars) // (should be using identifier)
 if ([cal.title isEqualToString: @"CoolCal"])
 break;
if (!cal)
 return; // failed to find our calendar

NSCalendar* greg =
 [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar];
NSDateComponents* comp = [[NSDateComponents alloc] init];
comp.year = 2012;
comp.month = 8;
comp.day = 10;
comp.hour = 15;
NSDate* d1 = [greg dateFromComponents:comp];
comp.hour = comp.hour + 1;
NSDate* d2 = [greg dateFromComponents:comp];

EKEvent* ev = [EKEvent eventWithEventStore:self.database];
ev.title = @"Take a nap";
ev.notes = @"You deserve it!";
ev.calendar = cal;
ev.startDate = d1;
ev.endDate = d2;
NSError* err;
BOOL ok = [self.database saveEvent:ev span:EKSpanThisEvent commit:YES error:&err];
if (!ok) {
 NSLog(@"save event %@", err.localizedDescription);
 return;
}

(We really should be using the calendarIdentifier to obtain our calendar; the title isn’t
reliable, since the user might change it, and since multiple calendars can have the same
title. However, it’s only an example.)

An event can be a recurring event, repeating at intervals according to some rule. This
is where creating events starts to become fun! In iOS 4, that rule was the event’s
recurrenceRule; in iOS 5, the singular recurrenceRule is deprecated and is replaced by
the recurrenceRules array, along with methods addRecurrenceRule and remove-
RecurrenceRule. Each recurrence rule is an EKRecurrenceRule; a simple EKRecurrence-
Rule is described by three properties:

Frequency
By day, by week, by month, or by year.

834 | Chapter 32: Calendar

Interval
Fine-tunes the notion “by” in the frequency. A value of 1 means “every.” A value
of 2 means “every other.” And so on.

End
Optional, because the event might recur forever. It is an EKRecurrenceEnd in-
stance, describing the limit of the event’s recurrence either as an end date or as a
maximum number of occurrences.

The options for describing a more complex EKRecurrenceRule are best summarized
by its initializer:

- (id)initRecurrenceWithFrequency:(EKRecurrenceFrequency)type
 interval:(NSInteger)interval
 daysOfTheWeek:(NSArray *)days
 daysOfTheMonth:(NSArray *)monthDays
 monthsOfTheYear:(NSArray *)months
 weeksOfTheYear:(NSArray *)weeksOfTheYear
 daysOfTheYear:(NSArray *)daysOfTheYear
 setPositions:(NSArray *)setPositions
 end:(EKRecurrenceEnd *)end

The meanings of all these parameters are mostly obvious from their names. The arrays
are mostly of NSNumber, except for daysOfTheWeek, which is an array of EKRecurrence-
DayOfWeek, a class that allows specification of a week number as well as a day number
so that you can say things like “the fourth Thursday of the month.” Many of these
values can be negative to indicate counting backwards from the last one. Numbers are
all 1-based, not 0-based. The setPositions parameter is an array of numbers filtering
the occurrences defined by the rest of the specification against the interval; for example,
if daysOfTheWeek is Sunday, -1 means the last Sunday. You can use any valid combina-
tion of parameters; the penalty for an invalid combination is a return value of nil.

An EKRecurrenceRule is intended to embody the RRULE event component in the iCa-
lendar standard specification (originally published as RFC 2445 and recently super-
seded by RFC 5545, http://datatracker.ietf.org/doc/rfc5545); in fact, the documentation
tells you how each EKRecurrenceRule property corresponds to an RRULE attribute, and
if you log an EKRecurrenceRule with NSLog, what you’re shown is the underlying
RRULE.

In the first edition of this book, I complained that an EKRecurrenceRule couldn’t be
constructed to embody a particular example in the RFC, according to which you should
be allowed to specify both month and day in a yearly recurring event, like this:

RRULE:FREQ=YEARLY;INTERVAL=2;BYMONTH=1;BYDAY=SU

That means “every Sunday in January, every other year.” But when I tried to form an
EKRecurrenceRule like that, I ended up with nil, presumably in accordance with the
documentation for EKRecurrenceRule, which says that daysOfTheMonth is valid only if
the frequency is EKRecurrenceFrequencyMonthly. Now, however, I find that in iOS 5 it’s
possible to form this rule! So, let’s form it. Observe that we should attach it to an event

Calendar Database | 835

http://datatracker.ietf.org/doc/rfc5545

whose startDate and endDate make sense as an example of the rule — that is, on a
Sunday in January. Fortunately, NSDateComponents makes that easy:

// ... obtain cal as before ...
EKRecurrenceDayOfWeek* everySunday = [EKRecurrenceDayOfWeek dayOfWeek:1];
NSNumber* january = [NSNumber numberWithInt: 1];
EKRecurrenceRule* recur =
 [[EKRecurrenceRule alloc]
 initRecurrenceWithFrequency:EKRecurrenceFrequencyYearly // every year?
 interval:2 // no, every *two* years!
 daysOfTheWeek:[NSArray arrayWithObject: everySunday]
 daysOfTheMonth:nil
 monthsOfTheYear:[NSArray arrayWithObject: january]
 weeksOfTheYear:nil
 daysOfTheYear:nil
 setPositions: nil
 end:nil];

EKEvent* ev = [EKEvent eventWithEventStore:self.database];
ev.title = @"Mysterious Sunday-in-January ritual";
[ev addRecurrenceRule: recur];
ev.calendar = cal;
// need a start date and end date
NSCalendar* greg =
 [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar];
NSDateComponents* comp = [[NSDateComponents alloc] init];
comp.year = 2013;
comp.month = 1;
comp.weekday = 1; // Sunday
comp.weekdayOrdinal = 1; // *first* Sunday
comp.hour = 10;
ev.startDate = [greg dateFromComponents:comp];
comp.hour = 11;
ev.endDate = [greg dateFromComponents:comp];

NSError* err;
BOOL ok =
 [self.database saveEvent:ev span:EKSpanFutureEvents commit:YES error:&err];
if (!ok) {
 NSLog(@"save event %@", err.localizedDescription);
 return;
}

In that code, the event we save into the database is a recurring event. When we save or
delete a recurring event, we must specify its span. This is either EKSpanThisEvent or
EKSpanFutureEvents, and corresponds exactly to the two buttons the user sees in the
Calendar interface when saving or deleting a recurring event (Figure 32-1, and there is
a similar choice on the Mac in iCal). The buttons and the span types reflect their mean-
ing exactly: the change affects either this event alone, or this event plus all future (not
past) recurrences. This choice determines not only how this and future recurrences of
the event are affected now, but also how they relate to one another from now on.

836 | Chapter 32: Calendar

An EKEvent can have alarms. An alarm is an EKAlarm and can be set to fire either at
an absolute date or at a relative offset from the event time. On an iOS device, an alarm
fires through a local notification (Chapter 26).

An EKEvent can also be used to embody a meeting, with attendees (EKParticipant) and
an organizer, but that is not a feature of an event that you can set.

Now let’s talk about how to extract an event from the database. One way, as I men-
tioned earlier, is by its unique identifier (eventIdentifier). Not only is this identifier a
fast and unique way to obtain an event, but also it’s just a string, which means that it
persists even if the EKEventStore subsequently goes out of existence. Remember to
obtain it, though, while the EKEventStore is still in existence; an EKEvent drawn from
the database loses its meaning and its usability if the EKEventStore instance is de-
stroyed. (Even this unique identifier might not survive changes in a calendar between
launches of your app, though.)

You can also extract events from the database by matching a predicate (NSPredicate).
To form this predicate, you specify a start and end date and an array of calendars, and
call the EKEventStore method predicateForEventsWithStartDate:endDate:

calendars:. That’s the only kind of predicate you can use, so any further filtering of
events is then up to you. In this example, I’ll gather all events from our “CoolCal”
calendar; because I have to specify a date range, I ask for events occurring over the next
year. Because enumerateEventsMatchingPredicate: can be time-consuming, it’s best to
run it on a background thread (Chapter 38):

EKCalendar* cal;
for (cal in self.database.calendars) // (should be using identifier)
 if ([cal.title isEqualToString: @"CoolCal"])
 break;
if (!cal)
 return; // failed to find our calendar

NSDate* d1 = [NSDate date];
// how to do calendrical arithmetic: I got this wrong in the 1st edn.
NSCalendar* greg =
 [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar];

Figure 32-1. The user specifies a span

Calendar Database | 837

NSDateComponents* comp = [[NSDateComponents alloc] init];
comp.year = 1; // we're going to add 2 to the year
NSDate* d2 = [greg dateByAddingComponents:comp toDate:d1 options:0];
NSPredicate* pred =
 [self.database predicateForEventsWithStartDate:d1 endDate:d2
 calendars:[NSArray arrayWithObject:cal]];
NSMutableArray* marr = [NSMutableArray array];
dispatch_async(dispatch_get_global_queue(0, 0), ^{
 [self.database enumerateEventsMatchingPredicate:pred usingBlock:
 ^(EKEvent *event, BOOL *stop) {
 [marr addObject: event];
 if ([event.title rangeOfString:@"nap"].location != NSNotFound)
 self.napid = event.eventIdentifier; // we'll need this later
 }];
 [marr sortUsingSelector:@selector(compareStartDateWithEvent:)];
 NSLog(@"%@", marr);
});

That example shows you what I mean about further filtering of events. I obtain the
“nap” event and the “mysterious Sunday-in-January ritual” events, but the “nap” event
is the one I really want, so I filter further to find it in the block. In real life, if I weren’t
also testing this call by collecting all returned events into an array, I would then set
*stop to YES to end the enumeration. The events are enumerated in no particular order;
note the use of the convenience method compareStartDateWithEvent: as a sort selector
to put them in order by start date.

When you extract events from the database, event recurrences are treated as separate
events (as happened in the preceding example). Recurrences of the same event will have
different start and end dates but the same eventIdentifier. When you fetch an event
by calling eventWithIdentifier: you get the earliest event with that identifier. This
makes sense, because if you’re going to make a change affecting this and future recur-
rences of the event, you need the option to start with the earliest possible recurrence
(so that “future” means “all”).

The calendar database is an odd sort of database, because calendars can be maintained
in so many ways and places. A calendar can change while your app is running (the user
might sync, or the user might edit with the Calendar app), which can put your infor-
mation out of date. You can register for a single EKEventStore notification, EKEvent-
StoreChangedNotification; if you receive it, you should assume that any calendar-re-
lated instances you’re holding are invalid. This situation is made relatively painless,
though, by the iOS 5 architecture, where every calendar-related instance can be re-
freshed with refresh. Keep in mind that refresh returns a Boolean; if it returns NO,
this object is really invalid and you should stop working with it entirely (it may have
been deleted from the database).

Calendar Interface
The graphical interface consists of three views for letting the user work with an event:

838 | Chapter 32: Calendar

EKEventViewController
Shows the description of a single event, possibly editable.

EKEventEditViewController
Allows the user to create or edit an event.

EKCalendarChooser
Allows the user to pick a calendar (new in iOS 5).

EKEventViewController simply shows the little rounded rectangle containing the
event’s title, date, and time, familiar from the Calendar app, possibly with additional
rounded rectangles describing alarms, notes, and so forth. The user can’t tap these to
do anything (except that a URL, if the event has one, is a tappable hyperlink). To use
EKEventViewController, instantiate it, give it an event in the database, and push it onto
the stack of an existing UINavigationController. The user’s only way out will be the
Back button.

Do not use EKEventViewController for an event that isn’t in the data-
base, or at a time when the database isn’t open! It won’t function cor-
rectly if you do.

So, for example:

EKEventViewController* evc = [[EKEventViewController alloc] init];
evc.event = ev; // must be an event in the database...
// ...and the database must be open (like our retained self.database)
evc.delegate = self;
evc.allowsEditing = YES;
[self.navigationController pushViewController:evc animated:YES];

The documentation says that allowsEditing is NO by default, but in my testing the
default was YES; perhaps you’d best play safe and set it regardless. If it is YES, an Edit
button appears in the navigation bar, and by tapping this, the user can edit the various
aspects of an event in the same interface that should be familiar from the Calendar app,
including the large red Delete button at the bottom. If the user ultimately deletes the
event, or edits it and taps Done, the change is saved into the database.

Starting in iOS 4.2, you can assign the EKEventViewController a delegate in order to
hear about what the user did. However, the delegate method, eventViewController:
didCompleteWithAction:, is called only if the user deletes an event or accepts an invita-
tion.

There is no EKEventViewController delegate method informing you that the user has
left the interface! If you want to know when the user taps the Back button to leave the
interface, that’s a matter between you and the UINavigationController onto which you
pushed the EKEventViewController in the first place. And by the time you are notified
of this, the EKEventViewController itself is gone; if you want to know, for example,
what editing the user may have performed on your event, you’ll have to examine the
event in the database.

Calendar Interface | 839

On the iPad, you use the EKEventViewController as the root view of a navigation con-
troller created on the fly and set the navigation controller as a popover’s view controller.
A Done button appears as the right bar button; the delegate method eventView-
Controller:didCompleteWithAction: is called if the user taps the Done button, and
you’ll need to dismiss the popover there. If allowsEditing is YES, the left bar button is
the Edit button. Here’s a complete example that works both on the iPhone and on the
iPad:

- (IBAction) showEventUI:(id)sender {
 EKEvent* ev = [self.database eventWithIdentifier:self.napid];
 if (!ev) {
 NSLog(@"failed to retrieve event");
 return;
 }
 EKEventViewController* evc = [[EKEventViewController alloc] init];
 evc.event = ev;
 evc.delegate = self;
 evc.allowsEditing = YES;

 // on iPhone, push onto existing navigation interface
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPhone)
 [self.navigationController pushViewController:evc animated:YES];
 // on iPad, create navigation interface in popover
 else {
 UINavigationController* nc =
 [[UINavigationController alloc] initWithRootViewController:evc];
 UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:nc];
 self.currentPop = pop;
 [pop presentPopoverFromRect:[sender bounds] inView:sender
 permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
 }
}

-(void)eventViewController:(EKEventViewController *)controller
 didCompleteWithAction:(EKEventViewAction)action {
 if (self.currentPop && self.currentPop.popoverVisible) {
 [self.currentPop dismissPopoverAnimated:YES];
 self.currentPop = nil;
 }
}

EKEventEditViewController (a UINavigationController) presents the interface for ed-
iting an event. It’s extremely simple. To use it, set its eventStore and editView-
Delegate (not delegate), and optionally its event, and present it as a presented view
controller (or, on the iPad, in a popover). The event can be nil for a completely empty
new event; it can be an event you’ve just created (and possibly partially configured)
and not stored in the database, or it can be an existing event from the database.

The delegate method eventEditViewControllerDefaultCalendarForNewEvents: may be
implemented to specify what calendar a completely new event should be assigned to.

840 | Chapter 32: Calendar

If you’re partially constructing a new event, you can assign it a calendar then, and of
course an event from the database already has a calendar.

You must implement the delegate method eventEditViewController:didCompleteWith-
Action: so that you can dismiss the presented view. Possible actions are that the user
cancelled, saved the edited event into the database, or deleted an already existing event
from the database. You can get a reference to the edited event as the EKEventEdit-
ViewController’s event.

On the iPad, the presented view works, or you can present the EKEventEditView-
Controller as a popover. You’ll use eventEditViewController:didCompleteWith-

Action: to dismiss the popover; the user can also dismiss it by tapping outside it (in
which case the user’s changes are not saved to the database). Here’s a complete example
that works on both platforms to let the user create an event from scratch:

- (IBAction)editEvent:(id)sender {
 EKEventEditViewController* evc = [EKEventEditViewController new];
 evc.eventStore = self.database;
 evc.editViewDelegate = self;
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPhone)
 [self presentViewController:evc animated:YES completion:nil];
 else {
 UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:evc];
 self.currentPop = pop;
 [pop presentPopoverFromRect:[sender bounds] inView:sender
 permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
 }
}

-(void)eventEditViewController:(EKEventEditViewController *)controller
 didCompleteWithAction:(EKEventEditViewAction)action {
 NSLog(@"%@", controller.event); // could do something with event here
 if (self.currentPop && self.currentPop.popoverVisible) {
 [self.currentPop dismissPopoverAnimated:YES];
 self.currentPop = nil;
 } else if (self.presentedViewController)
 [self dismissViewControllerAnimated:YES completion:nil];
}

New in iOS 5, EKCalendarChooser displays a list of calendars. To use it, call initWith-
SelectionStyle:displayStyle:eventStore:, set a delegate (EKCalendarChooser-
Delegate), create a UINavigationController with the EKCalendarChooser as its root
view controller, and show the navigation controller as a presented view controller
(iPhone) or a popover (iPad). The selectionStyle dictates whether the user can pick
one or multiple calendars; the displayStyle states whether all calendars or only writable
calendars will be displayed.

Two properties, showsCancelButton and showsDoneButton, determine whether these
buttons will appear in the navigation bar. In a presented view controller, you’ll certainly
show at least one and probably both, because otherwise the user has no way to dismiss

Calendar Interface | 841

the presented view. In a popover, though, the user can dismiss the popover by tapping
elsewhere, and your delegate will hear about what the user does in the view, so de-
pending on the circumstances you might not need either button; for example, if your
purpose is to let the user change what calendar an existing event belongs to, this might
be considered a reversible, nondestructive action, so it wouldn’t need the overhead of
Cancel and Done buttons.

There are three delegate methods, all of them required:

• calendarChooserSelectionDidChange:

• calendarChooserDidFinish:

• calendarChooserDidCancel:

(“Finish” means the user tapped the Done button.) If you implement the Finish and
Cancel methods, you’ll certainly dismiss the presented view controller or popover.
What else you do will depend on the circumstances.

In this example, we implement a potentially destructive action: we offer to delete the
selected calendar. Because this is potentially destructive, we pass through a UIAction-
Sheet. There is no way to pass context information into a UIActionSheet, so we store
the chosen calendar’s identifier in an instance variable:

- (IBAction)deleteCalendar:(id)sender {
 EKCalendarChooser* choo = [[EKCalendarChooser alloc]
 initWithSelectionStyle:EKCalendarChooserSelectionStyleSingle
 displayStyle:EKCalendarChooserDisplayAllCalendars
 eventStore:self.database];
 choo.showsDoneButton = YES;
 choo.showsCancelButton = YES;
 choo.delegate = self;
 UINavigationController* nav =
 [[UINavigationController alloc] initWithRootViewController:choo];
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPhone)
 [self presentViewController:nav animated:YES completion:nil];
 else {
 UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:nav];
 self.currentPop = pop;
 [pop presentPopoverFromRect:[sender bounds] inView:sender
 permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
 }
}

-(void)calendarChooserDidCancel:(EKCalendarChooser *)calendarChooser {
 // ... dismiss presented view controller or popover ...
}

-(void)calendarChooserDidFinish:(EKCalendarChooser *)calendarChooser {
 NSSet* cals = calendarChooser.selectedCalendars;
 if (cals && cals.count) {
 self.calsToDelete = [cals valueForKey:@"calendarIdentifier"];
 UIActionSheet* act =

842 | Chapter 32: Calendar

 [[UIActionSheet alloc] initWithTitle:@"Delete selected calendar?"
 delegate:self cancelButtonTitle:@"Cancel"
 destructiveButtonTitle:@"Delete" otherButtonTitles: nil];
 [act showInView:calendarChooser.view];
 return;
 }
 // ... dismiss presented view controller or popover ...
}

-(void)calendarChooserSelectionDidChange:(EKCalendarChooser *)calendarChooser {
 ; // no action, but this is a required method
}

-(void)actionSheet:(UIActionSheet *)actionSheet
 didDismissWithButtonIndex:(NSInteger)buttonIndex {
 NSString* title = [actionSheet buttonTitleAtIndex:buttonIndex];
 if ([title isEqualToString:@"Delete"]) {
 for (id ident in self.calsToDelete) {
 EKCalendar* cal = [self.database calendarWithIdentifier:ident];
 if (cal)
 [self.database removeCalendar:cal commit:YES error:nil];
 }
 self.calsToDelete = nil;
 }
 // ... dismiss presented view controller or popover ...
}

These view controllers automatically listen for changes in the database and, if needed,
will automatically call refresh on the information being edited, updating their display
to match. If a view controller is displaying an event in the database and the database is
deleted while the user is viewing it, the delegate will get the same notification as if the
user had deleted it.

Calendar Interface | 843

CHAPTER 33

Mail

Your app can present an interface allowing the user to edit and send a mail message or
an SMS message. Two view controller classes are provided by the Message UI frame-
work; your app will link to MessageUI.framework and import <MessageUI/Message-
UI.h>. The classes are:

MFMailComposeViewController
Allows composition and sending of a mail message.

MFMessageComposeViewController
Allows composition and sending of an SMS message.

Mail Message
The MFMailComposeViewController class, a UINavigationController, allows the user
to edit a mail message. The user can attempt to send the message there and then, or
can cancel but save a draft, or can cancel completely. Before using this class to present
a view, call canSendMail; if the result is NO, go no further, as a negative result means
that the device is not configured for sending mail. A positive result does not mean that
the device is connected to the network and can send mail right now, only that sending
mail is generally possible with this device; actually sending the mail (or storing it as a
draft) will be up to the device’s internal processes.

To use MFMailComposeViewController, instantiate it, provide a mailCompose-

Delegate (not delegate), and configure the message to any desired extent. The user can
later alter your preset configurations, at which time the message details will be out of
your hands. Configuration methods are:

• setSubject:

• setToRecipients:

• setCcRecipients:

• setBccRecipients:

845

• setMessageBody:isHTML:

• addAttachmentData:mimeType:fileName:

Typically, you’ll show the MFMailComposeViewController as a presented view con-
troller. This approach works equally well on the iPad (use UIModalPresentationForm-
Sheet if a full-screen presentation feels too overwhelming).

The delegate (MFMailComposeViewControllerDelegate) will receive the message mail-
ComposeController:didFinishWithResult:error: describing the user’s final action,
which might be any of these:

• MFMailComposeResultCancelled

• MFMailComposeResultSaved

• MFMailComposeResultSent

• MFMailComposeResultFailed

Dismissing the presented view is up to you, in the delegate method.

SMS Message
The MFMessageComposeViewController class is a UINavigationController subclass.
Before using this class to present a view, call canSendText; if the result is NO, go no
further. The user has no option to save an SMS message as a draft, so even if this device
sometimes can send text, there’s no point proceeding if the device can’t send text
now. However, you can register for the MFMessageComposeViewControllerTextMessage-
AvailabilityDidChangeNotification in the hope that the device might later be able to
send text; if the notification arrives, check its MFMessageComposeViewControllerText-
MessageAvailabilityKey.

To use MFMessageComposeViewController, instantiate the class, give it a message-
ComposeDelegate, configure it as desired through the recipients (phone number strings)
and body properties, and show it as a presented view controller. The user can later alter
your preset configurations, at which time the message details will be out of your hands.

The delegate (MFMessageComposeViewControllerDelegate) will receive the message
messageComposeViewController:didFinishWithResult: with a description of the user’s
final action, which might be any of these:

• MessageComposeResultCancelled

• MessageComposeResultSent

• MessageComposeResultFailed

Dismissing the presented view is up to you, in the delegate method.

846 | Chapter 33: Mail

CHAPTER 34

Maps

Your app can imitate the Maps app, communicating with Google Maps to display a
map interface and placing annotations and overlays on the map. UIView subclasses for
displaying the map, along with the programming API, are provided by the Map Kit
framework. You’ll link to MapKit.framework and import <MapKit/MapKit.h>. You
might also need the Core Location framework to express locations by latitude and
longitude; you’ll link to CoreLocation.framework and import <CoreLocation/Core-
Location.h>.

Displaying a Map
A map is displayed through a UIView subclass, an MKMapView. The map is potentially
a map of the entire world; the map view is usually configured to display a particular
area. An MKMapView instance can be created in code or through the nib editor. A map
has a type, which is one of the following:

• MKMapTypeStandard

• MKMapTypeSatellite

• MKMapTypeHybrid

The area displayed on the map is its region, an MKCoordinateRegion. This is a struct
comprising a location (a CLLocationCoordinate2D), describing the latitude and lon-
gitude of the point at the center of the region (the map’s centerCoordinate), along with
a span (an MKCoordinateSpan), describing the quantity of latitude and longitude em-
braced by the region and hence the scale of the map. Convenience functions help you
construct an MKCoordinateRegion.

In this example, I’ll initialize the display of an MKMapView to show a place where I
like to go dirt biking. The MKMapView is placed into the interface through the nib
editor and is initially hidden so that the user doesn’t see the default map of the world.
I provide the region by setting the map view’s region property, and show the view
(Figure 34-1):

847

CLLocationCoordinate2D loc = CLLocationCoordinate2DMake(34.923964,-120.219558);
MKCoordinateRegion reg = MKCoordinateRegionMakeWithDistance(loc, 1000, 1000);
self.map.region = reg;
self.map.hidden = NO;

In that code, I started with a known position expressed as latitude and longitude, but
I set the map’s scale (the region’s span) by calling MKCoordinateRegionMakeWith-
Distance, because what I knew about the scale was the approximate dimensions in
meters of the area I wanted to show. The ability to perform this conversion is important,
because an MKMapView shows the world through a Mercator projection, where lon-
gitude lines are parallel and equidistant, and scale increases at higher latitudes. This
means, for example, that trying to display an MKCoordinateSpan with a fixed quantity
of latitude will require the map to zoom out further at higher latitudes.

A different way of describing a map region, MKMapRect (a struct built up from
MKMapPoint and MKMapSize), can simplify calculations by performing this projec-
tion for you beforehand. The exact relationship between an MKMapPoint and the cor-
responding latitude/longitude coordinates is arbitrary and of no interest; what matters
is that you can ask for the conversion (MKMapPointForCoordinate, MKCoordinateForMap-
Point), along with the ratio of points to meters (which will vary with latitude: MKMeters-
PerMapPointAtLatitude, MKMapPointsPerMeterAtLatitude, MKMetersBetweenMapPoints).
To determine what the map view is showing in MKMapRect terms, use its visibleMap-
Rect. Thus I could equally have written the preceding example to show approximately
the same area like this:

CLLocationCoordinate2D loc = CLLocationCoordinate2DMake(34.923964,-120.219558);
MKMapPoint pt = MKMapPointForCoordinate(loc);
double w = MKMapPointsPerMeterAtLatitude(34.923964) * 1000;
self.map.visibleMapRect = MKMapRectMake(pt.x - w/2.0, pt.y - w/2.0, w, w);
self.map.hidden = NO;

Figure 34-1. A map view showing a happy place

848 | Chapter 34: Maps

You’ll notice that in neither of the preceding examples did I bother with the question
of the relative width and height of the map view itself; I simply threw some numbers
at the map view, and it decided how to portray the corresponding area. Values you
assign to the map’s region and visibleMapRect are unlikely to be the exact values the
map adopts in any case; that’s because the map view will optimize for display without
distorting the map’s scale. You can perform this same optimization in code by calling
these methods:

• regionThatFits:

• mapRectThatFits:

• mapRectThatFits:edgePadding:

By default, the user can zoom and scroll the map with the usual gestures; you can turn
this off by setting the map view’s zoomEnabled and scrollEnabled to NO. Usually you
will set them both to YES or both to NO. For example, if your aim is to prevent the
user from changing the center coordinate, setting scrollEnabled to NO is insufficient,
because the user can still zoom, and zooming includes double-tapping, which can
change the center coordinate. For further customization of an MKMapView’s response
to touches, use UIGestureRecognizers (Chapter 18).

You can change programmatically the region displayed, optionally with animation, by
calling these methods:

• setRegion:animated:

• setCenterCoordinate:animated:

• setVisibleMapRect:animated:

• setVisibleMapRect:edgePadding:animated:

The map view’s delegate (MKMapViewDelegate) is notified as the map loads and as
the region changes (including changes triggered programmatically):

• mapViewWillStartLoadingMap:

• mapViewDidFinishLoadingMap:

• mapViewDidFailLoadingMap:withError:

• mapView:regionWillChangeAnimated:

• mapView:regionDidChangeAnimated:

Annotations
An annotation is a marker associated with a location on a map. To make an annotation
appear on a map, two objects are needed:

Annotations | 849

The object attached to the MKMapView
The annotation itself is attached to the MKMapView. It consists of any instance
whose class adopts the MKAnnotation protocol, which specifies a coordinate, a
title, and a subtitle for the annotation. You might have reason to define your own
class to handle this task, or you can use the simple built-in MKPointAnnotation
class. The annotation’s coordinate is its most important property; this says where
on earth the annotation should be drawn. The title and subtitle are optional, to be
displayed in a callout.

The object that draws the annotation
An annotation is drawn by an MKAnnotationView, a UIView subclass. This can
be extremely simple. In fact, even a nil MKAnnotationView might be perfectly
satisfactory: it draws a red pin. If red is not your favorite color, a built-in
MKAnnotationView subclass, MKPinAnnotationView, displays a pin in red, green,
or purple; by convention you are supposed to use these colors for different purposes
(destination points, starting points, and user-specified points, respectively). For
more flexibility, you can provide your own UIImage as the MKAnnotationView’s
image property. And for even more flexibility, you can take over the drawing of an
MKAnnotationView by overriding drawRect: in a subclass.

Not only does an annotation require two separate objects, but in fact those objects do
not initially exist together. An annotation object has no pointer to the annotation view
object that will draw it. Rather, it is up to you to supply the annotation view object in
real time, on demand, in the MKMapView’s delegate. This architecture may sound
confusing, but in fact it’s a very clever way of reducing the amount of resources needed
at any given moment. Think of it this way: an annotation itself is merely a lightweight
object that a map can always possess; the corresponding annotation view is a heavy-
weight object that is needed only so long as that annotation’s coordinates are within
the visible portion of the map.

To illustrate the simplest possible case, let’s return to the code where we initially con-
figured our map. Here’s the same code again, but this time I’ll add an annotation:

CLLocationCoordinate2D loc = CLLocationCoordinate2DMake(34.923964,-120.219558);
MKCoordinateRegion reg = MKCoordinateRegionMakeWithDistance(loc, 1000, 1000);
self.map.region = reg;
MKPointAnnotation* ann = [[MKPointAnnotation alloc] init];
ann.coordinate = loc;
ann.title = @"Park here";
ann.subtitle = @"Fun awaits down the road!";
[self.map addAnnotation:ann];
self.map.hidden = NO;

That code is sufficient to produce Figure 34-2. I didn’t implement any MKMapView
delegate methods, so the MKAnnotationView is nil. But a nil MKAnnotationView, as
I’ve already said, produces a red pin. I’ve also tapped the annotation, to display its
callout, containing the annotation’s title and subtitle.

850 | Chapter 34: Maps

This location is a starting point, so by convention the pin should be green. We can
easily create a green pin using MKPinAnnotationView, which has a pinColor property.
We supply the annotation view in the map view’s delegate (MKMapViewDelegate), by
implementing mapView:viewForAnnotation:.

The structure of mapView:viewForAnnotation: is rather similar to the structure of table-
View:cellForRowAtIndexPath: (Chapter 21), which is not surprising, considering that
they both do the same sort of thing. Recall that the goal of tableView:cellForRowAt-
IndexPath: is to allow the table view to reuse cells, so that at any given moment only
as many cells are needed as are visible in the table view, regardless of how many rows
the table as a whole may consist of. The same thing holds for a map and its annotation
views. The map may have a huge number of annotations, but it needs to display an-
notation views for only those annotations that are within its current region. Any extra
annotation views that have been scrolled out of view can thus be reused and are held
for us by the map view in a cache for exactly this purpose.

So, in mapView:viewForAnnotation:, we start by calling dequeueReusableAnnotationView-
WithIdentifier: to see whether there’s an already existing annotation view that’s not
currently being displayed and that we might be able to reuse. If there isn’t, we create
one, attaching to it an appropriate reuse identifier.

Here’s our implementation of mapView:viewForAnnotation:. We examine the incoming
annotation to see whether the annotation view that draws it might be of a type sus-
ceptible to reuse. How we categorize views for reuse is up to us. In this case, let’s say
that one category is our stock of green pins. We look to see whether this annotation is
one that takes a green pin; in this case, I use the annotation’s title to determine this
(and later in the chapter I’ll suggest a better technique). If so, we either create a green
pin or reuse one from the map view’s cache. Observe that in creating our green pin, we
explicitly set its canShowCallout to YES, as this is not the default:

Figure 34-2. A simple annotation

Annotations | 851

- (MKAnnotationView *)mapView:(MKMapView *)mapView
 viewForAnnotation:(id <MKAnnotation>)annotation {
 MKAnnotationView* v = nil;
 if ([annotation.title isEqualToString:@"Park here"]) {
 static NSString* ident = @"greenPin";
 v = [mapView dequeueReusableAnnotationViewWithIdentifier:ident];
 if (v == nil) {
 v = [[MKPinAnnotationView alloc] initWithAnnotation:annotation
 reuseIdentifier:ident];
 ((MKPinAnnotationView*)v).pinColor = MKPinAnnotationColorGreen;
 v.canShowCallout = YES;
 }
 v.annotation = annotation;
 }
 return v;
}

The structure of this implementation of mapView:viewForAnnotation: is typical (even
though much of it seems pointlessly elaborate when we have only one annotation in
our map):

We might have more than one reusable type of annotation view. (A view can perhaps
be reconfigured and thus reused, but cannot be magically converted into a view of
a different type.) Here, some of our annotations might be marked with green pins,
and other annotations might be marked by a different sort of annotation view alto-
gether. So we must first somehow distinguish these cases, based on something about
the incoming annotation.

After that, for each reusable type, we proceed much as with table view cells. We
have an identifier that categorizes this sort of reusable view. We try to dequeue an
unused annotation view of the appropriate type, and if we can’t, we create one and
configure it.

Even if we can dequeue an unused annotation view, and even if we have no other
configuration to perform, we must associate the annotation view with the incoming
annotation by assigning the annotation to this annotation view’s annotation prop-
erty.

MKAnnotationView has one more option of which we might avail ourselves: when it
draws the annotation view (the pin), it can animate it into place, dropping it in the
manner familiar from the Maps app. All we have to do is add one line of code:

((MKPinAnnotationView*)v).animatesDrop = YES;

Now let’s go further. Instead of a green pin, let’s substitute our own artwork. I’ll revise
the code at the heart of my mapView:viewForAnnotation: implementation, such that
instead of creating an MKPinAnnotationView, I create an instance of its superclass,
MKAnnotationView, and give it a custom image showing a dirt bike. The image is too
large, so I shrink the view’s bounds before returning it; I also move the view up a bit,
so that the bottom of the image is at the coordinates on the map (Figure 34-3):

852 | Chapter 34: Maps

v = [[MKAnnotationView alloc] initWithAnnotation:annotation reuseIdentifier:ident];
v.image = [UIImage imageNamed:@"clipartdirtbike.gif"];
CGRect f = v.bounds;
f.size.height /= 3.0;
f.size.width /= 3.0;
v.bounds = f;
v.centerOffset = CGPointMake(0,-20);
v.canShowCallout = YES;

For more flexibility, we can create our own MKAnnotationView subclass and endow
it with the ability to draw itself. At a minimum, such a subclass should override the
initializer and assign itself a frame, and should implement drawRect:. Here’s the im-
plementation for a class MyAnnotationView that draws a dirt bike:

- (id)initWithAnnotation:(id <MKAnnotation>)annotation
 reuseIdentifier:(NSString *)reuseIdentifier {
 self = [super initWithAnnotation:annotation reuseIdentifier:reuseIdentifier];
 if (self) {
 UIImage* im = [UIImage imageNamed:@"clipartdirtbike.gif"];
 self.frame =
 CGRectMake(0, 0, im.size.width / 3.0 + 5, im.size.height / 3.0 + 5);
 self.centerOffset = CGPointMake(0,-20);
 self.opaque = NO;
 }
 return self;
}

- (void) drawRect: (CGRect) rect {
 UIImage* im = [UIImage imageNamed:@"clipartdirtbike.gif"];
 [im drawInRect:CGRectInset(self.bounds, 5, 5)];
}

The corresponding implementation of mapView:viewForAnnotation: now has much less
work to do:

Figure 34-3. A custom annotation image

Annotations | 853

MKAnnotationView* v = nil;
if ([annotation.title isEqualToString:@"Park here"]) {
 static NSString* ident = @"bike";
 v = [mapView dequeueReusableAnnotationViewWithIdentifier:ident];
 if (v == nil) {
 v = [[MyAnnotationView alloc] initWithAnnotation:annotation
 reuseIdentifier:ident];
 v.canShowCallout = YES;
 }
 v.annotation = annotation;
}
return v;

For ultimate flexibility, we should provide our own annotation class as well. A minimal
annotation class will look like this:

@interface MyAnnotation : NSObject <MKAnnotation>
@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;
@property (nonatomic, copy) NSString *title, *subtitle;
- (id)initWithLocation:(CLLocationCoordinate2D)coord;
@end

@implementation MyAnnotation
@synthesize coordinate, title, subtitle;
- (id)initWithLocation: (CLLocationCoordinate2D) coord {
 self = [super init];
 if (self) {
 self->coordinate = coord;
 }
 return self;
}
@end

Now when we create our annotation and add it to our map, our code looks like this:

MyAnnotation* ann = [[MyAnnotation alloc] initWithLocation:loc];
ann.title = @"Park here";
ann.subtitle = @"Fun awaits down the road!";
[self.map addAnnotation:ann];

A major advantage of this change appears in our implementation of mapView:viewFor-
Annotation:, where we test for the annotation type. Formerly, it wasn’t easy to distin-
guish those annotations that needed to be drawn as a dirt bike; we were rather artificially
examining the title:

if ([annotation.title isEqualToString:@"Park here"]) {

Now, however, we can just look at the class:

if ([annotation isKindOfClass:[MyAnnotation class]]) {

A further advantage of supplying our own annotation class is that this approach gives
our implementation room to grow. For example, at the moment, every MyAnnotation
is drawn as a bike, but we could now add another property to MyAnnotation that tells
us what drawing to use. We could also give MyAnnotation further properties saying
such things as which way the bike should face, what angle it should be drawn at, and

854 | Chapter 34: Maps

so on. Our implementation of mapView:viewForAnnotation:, you’ll recall, assigns the
annotation to the annotation view’s annotation property; thus, MyAnnotationView
would be able to read those MyAnnotation properties and draw itself appropriately.

To add our own animation to an annotation view as it appears on the map, analogous
to the built-in MKPinAnnotationView pin-drop animation, we have only to implement
the map view delegate method mapView:didAddAnnotationViews:. The key fact here is
that at the moment this method is called, the annotation view has been added but the
redraw moment has not yet arrived (Chapter 17). So if we animate the view, that ani-
mation will be performed just as the view appears onscreen. Here, I’ll animate the
opacity of the view so that it fades in; the only even mildly tricky bit is identifying the
view:

- (void)mapView:(MKMapView *)mapView didAddAnnotationViews:(NSArray *)views {
 for (MKAnnotationView* aView in views) {
 if ([aView.reuseIdentifier isEqualToString:@"bike"]) {
 aView.alpha = 0;
 [UIView beginAnimations:nil context:NULL];
 [UIView setAnimationDuration:0.8];
 aView.alpha = 1;
 [UIView commitAnimations];
 }
 }
}

The callout is visible in Figure 34-2 and Figure 34-3 because before taking the screen-
shot, I tapped on the annotation, thus selecting it. MKMapView has methods allowing
annotations to be selected or deselected programmatically, thus (by default) causing
their callouts to appear or disappear. The delegate has methods notifying you when the
user selects or deselects an annotation, and you are free to override your custom
MKAnnotationView’s setSelected:animated: if you want to change what happens
when the user taps an annotation.

A callout can contain left and right accessory views; these are the MKAnnotationView’s
leftCalloutAccessoryView and rightCalloutAccessoryView. These are UIViews, and
should be small (less than 32 pixels in height). You can respond to taps on these views
as you would any view or control; as a convenience, a delegate method mapView:
annotationView:calloutAccessoryControlTapped: is called when the user taps an ac-
cessory view, provided it is a UIControl.

An MKAnnotationView can optionally be draggable by the user; set its draggable prop-
erty to YES. If this is your custom annotation class, you’ll need to implement its set-
Coordinate: method; in our custom annotation class, it would be sufficient to remove
the readonly restriction on its property declaration so that this property is settable. You
can also customize changes to the appearance of the view as it is dragged, by imple-
menting your annotation view class’s setDragState:animated: method, as explained in
the documentation.

Annotations | 855

Certain annotation properties and annotation view properties are automatically ani-
mated for you when you change them in an animation block, provided you’ve imple-
mented them in a KVO compliant way (Chapter 13). For example, in MyAnnotation,
the coordinate property is synthesized, so it is KVO compliant; if we remove the
readonly restriction on its property declaration so that this property is settable, then
we get animation if we set it like this:

CLLocationCoordinate2D loc = ann.coordinate;
loc.latitude = loc.latitude + 0.0005;
loc.longitude = loc.longitude + 0.001;
[UIView beginAnimations:nil context:NULL];
ann.coordinate = loc; // KVO compliant
[UIView commitAnimations];

MKMapView has extensive support for adding and removing annotations.

Annotation views don’t change size as the map is zoomed in and out,
so if there are several annotations and they are brought close together
by the user zooming out, the display can become crowded. Moreover,
if too many annotations are being drawn simultaneously in a map view,
scroll and zoom performance can degrade. The only way to prevent this
is to respond to changes in the map’s visible region (for example, by
implementing the delegate method mapView:regionDidChange-

Animated:) by removing and adding annotations dynamically. This is a
tricky problem, and it’s surprising that the API doesn’t give you any
assistance with it.

Overlays
An overlay differs from an annotation in being drawn entirely with respect to points
on the surface of the earth. Thus, whereas an annotation’s size is always the same, an
overlay’s size is tied to the zoom of the map view.

Overlays are implemented much like annotations. You provide an object that adopts
the MKOverlay protocol (which itself conforms to the MKAnnotation protocol) and
add it to the map view. When the map view delegate method mapView:viewFor-
Overlay: is called, you provide an MKOverlayView and hand it the overlay object; the
overlay view then draws the overlay on demand. As with annotations, this architecture
means that the overlay itself is a lightweight object, and the overlay view is needed only
if the part of the earth that the overlay covers is actually being displayed in the map
view. An MKOverlayView has no reuse identifier, presumably because few of them are
likely to be needed.

Some built-in MKShape subclasses adopt the MKOverlay protocol: MKCircle, MKPo-
lygon, and MKPolyline. In parallel to those, MKOverlayView has built-in subclasses
MKCircleView, MKPolygonView, and MKPolylineView, ready to draw the corre-
sponding shapes. Thus, as with annotations, you can base your overlay entirely on the
power of existing classes.

856 | Chapter 34: Maps

In this example, I’ll use MKPolygonView to draw an overlay triangle pointing up the
road from the parking place annotated in our earlier examples (Figure 34-4). We add
the MKPolygon as an overlay to our map view, and derive the MKPolygonView from
it in our implementation of mapView:viewForOverlay:. First, the MKPolygon overlay:

CLLocationCoordinate2D loc = self.map.region.center;
CGFloat lat = loc.latitude;
CLLocationDistance metersPerPoint = MKMetersPerMapPointAtLatitude(lat);
MKMapPoint c = MKMapPointForCoordinate(loc);
c.x += 150/metersPerPoint;
c.y -= 50/metersPerPoint;
MKMapPoint p1 = MKMapPointMake(c.x, c.y);
p1.y -= 100/metersPerPoint;
MKMapPoint p2 = MKMapPointMake(c.x, c.y);
p2.x += 100/metersPerPoint;
MKMapPoint p3 = MKMapPointMake(c.x, c.y);
p3.x += 300/metersPerPoint;
p3.y -= 400/metersPerPoint;
MKMapPoint pts[3] = {
 p1, p2, p3
};
MKPolygon* tri = [MKPolygon polygonWithPoints:pts count:3];
[self.map addOverlay:tri];

Second, the delegate method, where we provide the MKPolygonView:

- (MKOverlayView *)mapView:(MKMapView *)mapView
 viewForOverlay:(id <MKOverlay>)overlay {
 MKPolygonView* v = nil;
 if ([overlay isKindOfClass:[MKPolygon class]]) {
 v = [[MKPolygonView alloc] initWithPolygon:(MKPolygon*)overlay];
 v.fillColor = [[UIColor redColor] colorWithAlphaComponent:0.1];
 v.strokeColor = [[UIColor redColor] colorWithAlphaComponent:0.8];
 v.lineWidth = 2;
 }
 return v;
}

Now let’s go further. The triangle in Figure 34-4 is rather crude; I could draw a better
arrow shape using a CGPath (Chapter 15). The built-in MKOverlayView subclass that
lets me do that is MKOverlayPathView. To structure my use of MKOverlayView sim-
ilarly to the preceding example, I’ll supply the CGPath when I add the overlay instance
to the map view. No built-in class lets me do that, so I’ll use a custom class, MyOverlay,
that implements the MKOverlay protocol.

A minimal overlay class looks like this:

@interface MyOverlay : NSObject <MKOverlay>
@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;
@property (nonatomic, readonly) MKMapRect boundingMapRect;
- (id) initWithRect: (MKMapRect) rect;
@end

@implementation MyOverlay
@synthesize boundingMapRect, coordinate;

Overlays | 857

- (id) initWithRect: (MKMapRect) rect {
 self = [super init];
 if (self) {
 self->boundingMapRect = rect;
 }
 return self;
}
- (CLLocationCoordinate2D) coordinate {
 MKMapPoint pt = MKMapPointMake(
 MKMapRectGetMidX(self->boundingMapRect),
 MKMapRectGetMidY(self->boundingMapRect));
 return MKCoordinateForMapPoint(pt);
}
@end

Our actual MyOverlay class will also have a path property with synthesized accessors;
this will be a UIBezierPath that holds our CGPath and supplies it to the MKOverlay-
View.

Just as the coordinate property of an annotation tells the map view where on earth the
annotation is to be drawn, the boundingMapRect property of an overlay tells the map
view where on earth the overlay is to be drawn. Whenever any part of the boundingMap-
Rect is displayed within the map view’s bounds, the map view will have to concern
itself with drawing the overlay. With MKPolygon, we supplied the points of the polygon
in earth coordinates and the boundingMapRect was calculated for us. With our custom
overlay class, we must supply or calculate it ourselves.

At first it may appear that there is a typological impedance mismatch: the boundingMap-
Rect is an MKMapRect, whereas a CGPath is defined by CGPoints. However, it turns
out that these units are interchangeable: the CGPoints of our CGPath will be translated
for us directly into MKMapPoints on the same scale — that is, the distance between
any two CGPoints will be the distance between the two corresponding MKMapPoints.

Figure 34-4. An overlay view

858 | Chapter 34: Maps

However, the origins are different: the CGPath must be described relative to the top-
left corner of the boundingMapRect — that is, the boundingMapRect is described in earth
coordinates, but the top-left corner of the boundingMapRect is {0,0} as far as the CGPath
is concerned. (You might think of this difference as analogous to the difference between
a UIView’s frame and its bounds.)

To make life simple, I’ll think in meters; actually, I’ll think in chunks of 75 meters,
because this turned out to be a good unit for positioning and laying out the arrow. In
other words, a line one unit long would in fact be 75 meters long if I were to arrive at
this actual spot on the earth and discover the overlay literally drawn on the ground.
Having derived this chunk (unit), I use it to lay out the boundingMapRect, four units on
a side and positioned slightly east and north of the annotation point (because that’s
where the road is). Then I simply construct the arrow shape within the 4×4-unit square,
rotating it so that it points in roughly the same direction as the road:

// start with our position and derive a nice unit for drawing
CLLocationCoordinate2D loc = self.map.region.center;
CGFloat lat = loc.latitude;
CLLocationDistance metersPerPoint = MKMetersPerMapPointAtLatitude(lat);
MKMapPoint c = MKMapPointForCoordinate(loc);
CGFloat unit = 75.0/metersPerPoint;
// size and position the overlay bounds on the earth
CGSize sz = CGSizeMake(4*unit, 4*unit);
MKMapRect mr = MKMapRectMake(c.x + 2*unit, c.y - 4.5*unit, sz.width, sz.height);
// describe the arrow as a CGPath
CGMutablePathRef p = CGPathCreateMutable();
CGPoint start = CGPointMake(0, unit*1.5);
CGPoint p1 = CGPointMake(start.x+2*unit, start.y);
CGPoint p2 = CGPointMake(p1.x, p1.y-unit);
CGPoint p3 = CGPointMake(p2.x+unit*2, p2.y+unit*1.5);
CGPoint p4 = CGPointMake(p2.x, p2.y+unit*3);
CGPoint p5 = CGPointMake(p4.x, p4.y-unit);
CGPoint p6 = CGPointMake(p5.x-2*unit, p5.y);
CGPoint points[] = {
 start, p1, p2, p3, p4, p5, p6
};
// rotate the arrow around its center
CGAffineTransform t1 = CGAffineTransformMakeTranslation(unit*2, unit*2);
CGAffineTransform t2 = CGAffineTransformRotate(t1, -M_PI/3.5);
CGAffineTransform t3 = CGAffineTransformTranslate(t2, -unit*2, -unit*2);
CGPathAddLines(p, &t3, points, 7);
CGPathCloseSubpath(p);
// create the overlay and give it the path
MyOverlay* over = [[MyOverlay alloc] initWithRect:mr];
over.path = [UIBezierPath bezierPathWithCGPath:p];
CGPathRelease(p);
// add the overlay to the map
[self.map addOverlay:over];

The delegate method, where we provide the MKOverlayPathView, is simple. We pull
the CGPath out of the MyOverlay instance and hand it to the MKOverlayPathView,
also telling the MKOverlayPathView how to stroke and fill that path:

Overlays | 859

- (MKOverlayView*)mapView:(MKMapView*)mapView
 viewForOverlay:(id <MKOverlay>)overlay {
 MKOverlayView* v = nil;
 if ([overlay isKindOfClass: [MyOverlay class]]) {
 v = [[MKOverlayPathView alloc] initWithOverlay:overlay];
 MKOverlayPathView* vv = (MKOverlayPathView*)v; // typecast for simplicity
 vv.path = ((MyOverlay*)overlay).path.CGPath;
 vv.strokeColor = [UIColor blackColor];
 vv.fillColor = [[UIColor redColor] colorWithAlphaComponent:0.2];
 vv.lineWidth = 2;
 }
 return v;
}

The result is a much nicer arrow (Figure 34-5), and of course this technique can be
generalized to draw an overlay from any CGPath we like.

For full generality, you could define your own MKOverlayView subclass; your subclass
must override and implement drawMapRect:zoomScale:inContext:. Note that the in-
coming mapRect: parameter describes the visible map, not the size and position of the
overlay! The overlay itself is available through the inherited overlay property, and con-
version methods such as rectForMapRect: are provided for converting between the
map’s mapRect: coordinates and the overlay view’s graphics context coordinates. In our
example, we could move the entire functionality for drawing the arrow into our
MKOverlayView subclass, which I’ll call MyOverlayView. Once nice benefit of this
architectural change is that we can use the zoomScale: parameter to determine the stroke
width:

- (id) initWithOverlay:(id <MKOverlay>)overlay angle: (CGFloat) ang {
 self = [super initWithOverlay:overlay];
 if (self) {
 self->angle = ang;

Figure 34-5. A nicer overlay view

860 | Chapter 34: Maps

 }
 return self;
}

- (void)drawMapRect:(MKMapRect)mapRect zoomScale:(MKZoomScale)zoomScale
 inContext:(CGContextRef)context
{
 CGContextSetStrokeColorWithColor(context, [UIColor blackColor].CGColor);
 CGContextSetFillColorWithColor(context,
 [[UIColor redColor] colorWithAlphaComponent:0.2].CGColor);
 CGContextSetLineWidth(context, 1.2/zoomScale); // nice
 CGFloat unit = MKMapRectGetWidth([self.overlay boundingMapRect])/4.0;
 CGMutablePathRef p = CGPathCreateMutable();
 CGPoint start = CGPointMake(0, unit*1.5);
 CGPoint p1 = CGPointMake(start.x+2*unit, start.y);
 CGPoint p2 = CGPointMake(p1.x, p1.y-unit);
 CGPoint p3 = CGPointMake(p2.x+unit*2, p2.y+unit*1.5);
 CGPoint p4 = CGPointMake(p2.x, p2.y+unit*3);
 CGPoint p5 = CGPointMake(p4.x, p4.y-unit);
 CGPoint p6 = CGPointMake(p5.x-2*unit, p5.y);
 CGPoint points[] = {
 start, p1, p2, p3, p4, p5, p6
 };
 CGAffineTransform t1 = CGAffineTransformMakeTranslation(unit*2, unit*2);
 CGAffineTransform t2 = CGAffineTransformRotate(t1, angle);
 CGAffineTransform t3 = CGAffineTransformTranslate(t2, -unit*2, -unit*2);
 CGPathAddLines(p, &t3, points, 7);
 CGPathCloseSubpath(p);
 CGContextAddPath(context, p);
 CGContextDrawPath(context, kCGPathFillStroke);
 CGPathRelease(p);
}

To add the overlay to our map, we still must determine its MKMapRect:

loc = self.map.region.center;
CGFloat lat = loc.latitude;
CLLocationDistance metersPerPoint = MKMetersPerMapPointAtLatitude(lat);
MKMapPoint c = MKMapPointForCoordinate(loc);
CGFloat unit = 75.0/metersPerPoint;
// size and position the overlay bounds on the earth
CGSize sz = CGSizeMake(4*unit, 4*unit);
MKMapRect mr = MKMapRectMake(c.x + 2*unit, c.y - 4.5*unit, sz.width, sz.height);
MyOverlay* over = [[MyOverlay alloc] initWithRect:mr];
[self.map addOverlay: over];

The delegate, providing the overlay view, now has very little work to do; in our imple-
mentation, it must supply an angle for the arrow:

- (MKOverlayView *)mapView:(MKMapView *)mapView
 viewForOverlay:(id <MKOverlay>)overlay {
 MKOverlayView* v = nil;
 if ([overlay isKindOfClass: [MyOverlay class]]) {

Overlays | 861

 v = [[MyOverlayView alloc] initWithOverlay: overlay angle: -M_PI/3.5];
 }
 return v;
}

That’s not an ideal architecture; the angle really should belong to the overlay and be
passed along with it to the overlay view. But our code does draw the arrow and it does
illustrate the basic use of a MKOverlayView subclass.

Our MyOverlay class, adopting the MKOverlay protocol, also implements the
coordinate getter method to return the center of the boundingMapRect. This is crude,
but it’s a good minimal implementation. The purpose of the MKOverlay coordinate
property is to specify the position where you would add an annotation describing the
overlay. For example:

// ... create overlay and assign it a path as before ...
[self.map addOverlay:over];
MKPointAnnotation* annot = [[MKPointAnnotation alloc] init];
annot.coordinate = over.coordinate;
annot.title = @"This way!";
[self.map addAnnotation:annot];

The MKOverlay protocol also lets you provide an implementation of intersectsMap-
Rect: to refine your overlay’s definition of what constitutes an intersection with itself;
the default is to use the boundingMapRect, but if your overlay is drawn in some nonrec-
tangular shape, you might want to use its actual shape as the basis for determining
intersection.

Overlays are maintained by the map view as an array and are drawn from back to front
starting at the beginning of the array. MKMapView has extensive support for adding
and removing overlays, and for managing their layering order.

862 | Chapter 34: Maps

CHAPTER 35

Sensors

A device may contain hardware for sensing the world around itself — where it is located,
how it is oriented, how it is moving.

Information about the device’s current location and how that location is changing over
time, using its Wi-Fi, cellular networking, and GPS capabilities, along with information
about the device’s orientation relative to north, using its magnetometer, is provided
through the Core Location framework. You’ll link to CoreLocation.framework and im-
port <CoreLocation/CoreLocation.h>.

Information about the device’s change in speed and attitude using its accelerometer is
provided through the UIEvent and UIAccelerometer classes. Starting iOS 4, this infor-
mation is supplemented by the device’s gyroscope, if it has one, and is accessed through
the Core Motion framework; you’ll link to CoreMotion.framework and import <Core-
Motion/CoreMotion.h>. In iOS 5, UIAccelerometer, while not formally deprecated, is
slated for deprecation; Apple would like you to use Core Motion exclusively if possible.

One of the major challenges associated with writing code that takes advantage of the
sensors is that not all devices have all of this hardware: as of this writing, only an iPad
2, an iPhone 4, or a fourth-generation iPod touch has a gyroscope; an iPod touch has
no magnetometer; a device with only Wi-Fi (no cellular networking) cannot detect cell
towers and also lacks a built-in GPS; and so forth. If you don’t want to impose stringent
restrictions on what devices your app will run on in the first place (UIRequiredDevice-
Capabilities in Info.plist), your code must be prepared to fail gracefully and possibly
provide a subset of its full capabilities when it discovers that the current device lacks
certain features. Moreover, certain sensors may experience momentary inadequacy; for
example, Core Location might not be able to get a fix on the device’s position because
it can’t see cell towers, GPS satellites, or both. Also, some sensors take time to “warm
up,” so that the values you’ll get from them initially will be invalid. You’ll want to
respond to such changes in the external circumstances, in order to give the user a decent
experience of your application regardless.

863

Location
Core Location provides facilities for the device to determine and report its location
(location services). It takes advantage of three sensors:

Wi-Fi
The device (if Wi-Fi is turned on) may scan for nearby Wi-Fi devices and compare
these against an online database.

Cell towers
The device (if it has 3G capabilities) may compare “visible” telephone cell towers
against an online database.

GPS
The device’s GPS (if it has one) may be able to “see” GPS satellites and obtain a
position fix from them.

Core Location will automatically use whatever facilities the device does have; all you
have to do is ask for the device’s location. Core Location allows you to specify how
accurate a position fix you want; bear in mind that more accurate fixes may require
more time. Depending on your requirements, a pretty good guess as to the device’s
location might be good enough.

The notion of a location is encapsulated by the CLLocation class and its properties,
which include:

coordinate

A CLLocationCoordinate2D; see Chapter 34.

altitude

A CLLocationDistance, which is a double representing a number of meters.

speed

A CLLocationSpeed, which is a double representing meters per second.

heading

A CLLocationDirection, which is a double representing degrees (not radians!)
clockwise from north.

horizontalAccuracy

A CLLocationAccuracy, which is a double representing meters.

In addition to the considerations I mentioned a moment ago, use of Core Location
poses the following challenges:

• Accuracy of a reported location may vary depending on a number of factors. The
GPS is the most accurate location sensor, but it takes the longest to get a fix.

• Battery usage due to running the sensors is a serious concern. The GPS in particular
is probably the most battery-intensive of all the onboard sensors.

864 | Chapter 35: Sensors

• The user can deny your app (or the device as a whole) use of Core Location, as
discussed in Chapter 30. You need to be prepared for this possibility, so that you
can fail gracefully and provide the user with helpful information as to why it might
be good to switch to Settings and authorize your app. Note that, starting in Xcode
4.2, the Simulator’s version of the Settings app lets you test your app against Core
Location user settings.

• Behavior of your app may depend on the device’s physical location. Xcode 4.2 and
later allows you to pretend that the device is at a particular location on earth. The
Simulator’s Debug → Location menu lets you enter a location; the Scheme editor
lets you set a default location (under Options); and the Debug pane lets you switch
among locations (using the Location pop-up menu in the bar at the top). You can
set a built-in location or supply a standard GPX file containing a waypoint. You
can also set the location to None; it’s important to test for what happens when no
location information is available.

Map Kit and Core Location
If all you want to do is display the user’s location on a map, you may be able to take
advantage of Map Kit’s automatic Core Location integration. You won’t have to talk
to Core Location directly, or link to CoreLocation.framework. Asking a map view
(MKMapView, Chapter 34) to display the device’s location can be as simple as setting
its showsUserLocation property to YES. The map automatically puts an annotation at
that location.

The userLocation property of the map view is an MKUserLocationAnnotation instance,
an MKAnnotation subclass with location (a CLLocation), title, and subtitle prop-
erties, plus you can check whether it is currently updating. You are free to supply your
own annotation view to be displayed for this annotation, just as for any annotation.

Displaying the appropriate region of the map — that is, actually showing the part of
the world where the user is located — has in the past been entirely up to you. The usual
approach is to use the map delegate’s mapView:didUpdateUserLocation: to detect when
it’s time to shift the map region:

- (void)mapView:(MKMapView *)mapView
 didUpdateUserLocation:(MKUserLocation *)userLocation {
 CLLocationCoordinate2D coordinate = userLocation.location.coordinate;
 MKCoordinateRegion reg =
 MKCoordinateRegionMakeWithDistance(coordinate, 600, 600);
 mapView.region = reg;
}

You can also ask the map view whether the user’s location, if known, is in the visible
region of the map (isUserLocationVisible).

Location | 865

Starting in iOS 5, MKMapView has a userTrackingMode that you can set to determine
how the user’s real-world location should be tracked automatically by the map display;
your options are:

MKUserTrackingModeNone

The old behavior: if showsUserLocation is YES, the map gets an annotation at the
user’s location, but that’s all.

MKUserTrackingModeFollow

The map automatically centers the user’s location and scales appropriately.

MKUserTrackingModeFollowWithHeading

Like MKUserTrackingModeFollow, but the map is also rotated so that the direction
the user is facing is up. In this case, the userLocation annotation also has a
heading property, a CLHeading; I’ll talk more about headings later in this chapter.

When the userTrackingMode is one of the follow modes, if the user is left free to zoom
and scroll the map, and if the user scrolls in such a way that the user location annotation
is no longer visible, the userTrackingMode may be automatically changed back to MKUser-
TrackingModeNone (and the user location annotation may be removed). You’ll probably
want to provide a way to let the user turn tracking back on again, or to toggle among
the three tracking modes.

One way to do that is with an MKUserTrackingBarButtonItem, a UIBarButtonItem
subclass. You initialize MKUserTrackingBarButtonItem with a map view, and its be-
havior is automatic from then on: when the user taps it, it sets the map’s showsUser-
Location to YES and switches the map view to the next tracking mode, and its icon
reflects the current tracking mode. (The behavior of MKUserTrackingBarButtonItem
is a bit too automatic for my taste, however.)

Geocoding
The term geocoding refers to the translation of an address to a coordinate and vice
versa. Starting in iOS 5, geocoding functionality is encapsulated in the CLGeocoder
class; to use it, you’ll need to link to CoreLocation.framework. Geocoding takes time
and might not succeed at all, as it depends upon network and server availability; more-
over, results may be more or less uncertain. Therefore, all geocoding methods take a
completion handler which will eventually be called with two arguments:

NSArray* placemark

An NSArray of CLPlacemark objects. If things went really well, the array will con-
tain exactly one CLPlacemark; if there are multiple placemark objects, the first one
is the best guess. If nil, something went wrong.

NSError* error

If the placemark array was nil, this argument reports the reason things went wrong.

866 | Chapter 35: Sensors

A CLPlacemark can be used to initialize an MKPlacemark, a CLPlacemark subclass that
adopts the MKAnnotation protocol, and is therefore suitable to be handed directly over
to an MKMapView for display. Here is an (unbelievably simple-minded) example that
allows the user to enter an address in a UISearchBar (Chapter 25) to be displayed in an
MKMapView:

-(void)searchBarSearchButtonClicked:(UISearchBar *)searchBar {
 NSString* s = searchBar.text;
 [searchBar resignFirstResponder];
 CLGeocoder* geo = [CLGeocoder new];
 [geo geocodeAddressString:s
 completionHandler:^(NSArray *placemarks, NSError *error) {
 if (nil == placemarks) {
 NSLog(@"%@", error.localizedDescription);
 return;
 }
 CLPlacemark* p = [placemarks objectAtIndex:0];
 MKPlacemark* mp = [[MKPlacemark alloc] initWithPlacemark:p];
 [self->map removeAnnotations:self->map.annotations];
 [self->map addAnnotation:mp];
 [self->map setRegion: MKCoordinateRegionMakeWithDistance
 (mp.coordinate, 1000, 1000)
 animated: YES];
 }];
}

By default, the resulting annotation’s callout title contains a nicely formatted string
describing the address.

That example illustrates forward geocoding, the conversion of an address to a coordi-
nate. Instead of a string, you can provide a dictionary. Not surprisingly, the keys of this
dictionary are exactly the keys you would get by extracting an address from the user’s
address book (Chapter 31); thus, you can go quite directly from an address book con-
tact to a coordinate.

The converse operation is reverse geocoding: you start with a coordinate (actually a
CLLocation) and call reverseGeocodeLocation:completionHandler: in order to obtain
an address. The address is expressed through the CLPlacemark addressDictionary
property, which is an address in address book format; you can translate it to a string
with ABCreateStringWithAddressDictionary. Alternatively, you can consult directly
various CLPlacemark properties, such as subthoroughfare (such as a house number),
thoroughfare (a street name), locality (a town), and administrativeArea (a state).
These properties are present in a placemark resulting from forward geocoding as well;
thus, one nice byproduct of forward geocoding is that it can format and complete an
address, including adding a zip code (postalCode) to the address.

In this example of reverse geocoding, we have an MKMapView that is already tracking
the user, and we ask for the address of the user’s current location:

Location | 867

if (self->map.showsUserLocation && self->map.userLocation) {
 CLGeocoder* geo = [CLGeocoder new];
 CLLocation* loc = self->map.userLocation.location;
 [geo reverseGeocodeLocation:loc
 completionHandler:^(NSArray *placemarks, NSError *error) {
 if (placemarks) {
 CLPlacemark* p = [placemarks objectAtIndex:0];
 NSLog(@"%@", p.addressDictionary); // do something with address
 }
 }];
}

Location Manager
To use Core Location and location services directly, you need a location manager — a
CLLocationManager instance. Use of a location manager typically operates along the
following lines:

1. You’ll confirm that the desired services are available. Several CLLocationManager
class methods let you find out whether the user has switched on the device’s loca-
tion services as a whole (locationServicesEnabled), whether the user has author-
ized this app to use location services (authorizedStatus), and whether a particular
service is available.

If location services are switched off, you can start using a location manager anyway,
as a way of getting the runtime to present the dialog asking the user to switch them
on. Be prepared, though, for the possibility that the user won’t do so. Set the lo-
cation manager’s purpose property to configure the information the user will be
shown in the system authorization dialog about why your app wants to use location
services.

2. You’ll instantiate CLLocationManager and retain the instance somewhere, usually
an instance variable.

3. You’ll set yourself as the location manager’s delegate (CLLocationManager-
Delegate).

4. You’ll configure the location manager. For example, set its desiredAccuracy if you
don’t need best possible accuracy; it might be sufficient for your purposes to know
very quickly but very roughly the device’s location (and recall that highest accuracy
may also cause the highest battery drain). The accuracy setting is not a filter: the
location manager will still send you whatever location information it has, and
checking a location’s horizontalAccuracy is then up to you.

The location manager’s distanceFilter lets you specify that you don’t need a lo-
cation report unless the device has moved a certain distance since the previous
report. This can help keep you from being bombarded with events you don’t need.
Other configuration settings depend on the particular service you’re asking for, as
I’ll explain later.

868 | Chapter 35: Sensors

5. You’ll tell the location manager to begin generating information; for example,
you’ll call startUpdatingLocation. The location manager, in turn, will begin calling
the appropriate delegate method repeatedly; in the case of startUpdating-
Location, it’s locationManager:didUpdateToLocation:fromLocation:. Your delegate
will also always implement locationManager:didFailWithError:, to receive error
messages. You’ll deal with each delegate method call in turn. Remember to call the
corresponding stop... method when you no longer need delegate method calls.

As a simple example, let’s do for ourselves the sort of thing MKMapView was doing
earlier: we’ll turn on location services manually, just long enough to see if we can de-
termine our position. If we can, we’ll turn location services back off, and display the
location in our map with an annotation manually.

We begin by ascertaining that location services are in fact available, and that the user
is not operating under parental restrictions that would prevent us from ever being au-
thorized. If all is well, we instantiate CLLocationManager, set ourselves as the delegate,
configure the location manager, set some instance variables so we can track what’s
happening, and call startUpdatingLocation to turn on location services:

BOOL ok = [CLLocationManager locationServicesEnabled];
if (!ok) {
 NSLog(@"oh well");
 return;
}
CLAuthorizationStatus auth = [CLLocationManager authorizationStatus];
if (auth == kCLAuthorizationStatusRestricted) {
 NSLog(@"sigh"); // user will never be able to authorize us
 return;
}
CLLocationManager* lm = [[CLLocationManager alloc] init];
self.locman = lm;
self.locman.delegate = self;
self.locman.desiredAccuracy = kCLLocationAccuracyBest;
self.locman.purpose = @"This app would like to tell you where you are.";
self.startTime = [NSDate date]; // now
self.gotloc = NO;
[self.locman startUpdatingLocation];

If something goes wrong, such as the user refusing to authorize this app, we’ll just turn
location services back off:

- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error {
 NSLog(@"error: %@", [error localizedDescription]);
 // e.g., if user refuses to authorize...
 // ..."The operation couldn't be completed."
 [manager stopUpdatingLocation];
}

If things don’t go wrong, we’ll be handed our location as soon as it is determined. In
this case, I’ve decided to demand accuracy better than 70 meters. If I don’t get it, I wait
for the next location, but I also compare each location’s timestamp to the timestamp I

Location | 869

created at the outset, so that I won’t wait forever for an accuracy that might never arrive.
If I get the desired accuracy within the desired time, I turn off location services and
display the location on the map, along with a simple annotation:

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation {
 if (!self.gotloc &&
 ([newLocation.timestamp timeIntervalSinceDate:self.startTime] > 20)) {
 NSLog(@"this is just taking too long");
 [self.locman stopUpdatingLocation];
 return;
 }
 CLLocationAccuracy acc = newLocation.horizontalAccuracy;
 NSLog(@"%f", acc);
 if (acc > 70)
 return; // wait for better accuracy
 // if we get here, we have an accurate location
 [manager stopUpdatingLocation];
 self.gotloc = YES;
 CLLocationCoordinate2D coordinate = newLocation.coordinate;
 MKCoordinateRegion reg =
 MKCoordinateRegionMakeWithDistance(coordinate, 600, 600);
 self->map.region = reg;
 MKPointAnnotation* ann = [[MKPointAnnotation alloc] init];
 ann.coordinate = coordinate;
 ann.title = @"You are here";
 [self->map addAnnotation:ann];
}

The first time that app runs, the log messages chart the increasing accuracy of the
location reports. You can see that it was worth waiting a few seconds to get better
accuracy:

2012-02-09 09:02:29.569 p718p736location[407:707] 45383.659065
2012-02-09 09:02:31.358 p718p736location[407:707] 1413.314191
2012-02-09 09:02:32.154 p718p736location[407:707] 163.886905
2012-02-09 09:02:36.137 p718p736location[407:707] 10.000000

Core Location will also use the GPS to determine which way and how quickly the device
is moving. This information, if available, is returned automatically as part of a CLLo-
cation object in locationManager:didUpdateToLocation:fromLocation:, through its
speed and course properties. For information about the device’s heading (which way
is north), see the next section.

The only other important thing to know about Core Location is how you can use it
when your app is not in the foreground. There are actually two quite different categories
of nonforeground usage. The first is that your app can run in the background. Use of
Core Location in the background is similar to production and recording of sound in
the background (Chapter 27): you set the UIBackgroundModes key of your app’s
Info.plist, giving it a value of location. This tells the system that if you have turned on
location services and the user clicks the Home button, your app should not be sus-

870 | Chapter 35: Sensors

pended, the use of location services should still continue, and your delegate should
continue receiving Core Location events. Background use of location services can cause
a power drain, but if you want your app to function as a positional data logger, for
instance, it may be the only way; you can also help conserve power by making judicious
choices, such as setting a coarse distanceFilter value and not requiring high accuracy.

The second nonforeground use of Core Location doesn’t even require your app to be
running. You do not have to set the UIBackgroundModes of your Info.plist. You register
with the system to receive a certain kind of notification, and when such a notification
arrives, your app will be launched if it isn’t running. There are two notifications of this
kind:

Significant location monitoring
If significantLocationChangeMonitoringAvailable is YES, you can call start-
MonitoringSignificantLocationChanges. The delegate’s locationManager:did-

UpdateToLocation:fromLocation: will be called when the device’s location has
changed significantly.

Region monitoring
If regionMonitoringAvailable and regionMonitoringEnabled are YES, you can call
startMonitoringForRegion: or startMonitoringForRegion:desiredAccuracy: for
each region in which you are interested. Regions are collected as an NSSet, which
is the location manager’s monitoredRegions. A region is a CLRegion, initialized with
initCircularRegionWithCenter:radius:identifier:; the identifier serves as a
unique key, so that if you start monitoring for a region whose identifier matches
that of a region already in the monitoredRegions set, the latter will be ejected from
the set. The following delegate methods may be called:

• locationManager:didEnterRegion:

• locationManager:didExitRegion:

• locationManager:monitoringDidFailForRegion:withError:

For example, the Reminders app uses region monitoring to notify the user of a
reminder linked to specific place, when the user approaches that place.

Both significant location monitoring and region monitoring use cell tower position to
estimate the device’s location. Since the cell is probably working anyway — for exam-
ple, the device is a phone, so the cell is always on and is always concerned with what
cell towers are available — little or no additional power is required. Apple says that in
iOS 5, the system will also take advantage of other clues (requiring no extra battery
drain) to decide that there may have been a change in location: for example, the device’s
Wi-Fi connection may have changed from one network to another, strongly suggesting
that the device has moved.

As I’ve already mentioned, notifications for location monitoring and region monitoring
can arrive even if your app isn’t in the foreground. There are two possible nonfore-
ground states in which your app might find itself when an event arrives:

Location | 871

Your app is suspended in the background
Your app is woken up long enough to receive the normal delegate event and do
something with it.

Your app is not running at all
Your app is relaunched (remaining in the background), and your app delegate will
be sent application:didFinishLaunchingWithOptions: with an NSDictionary con-
taining UIApplicationLaunchOptionsLocationKey, thus allowing it to discern the
special nature of the situation. At this point you probably have no location manager
— your app has just launched from scratch. So you should get yourself a location
manager and start up location services for long enough to receive the normal del-
egate event.

Heading
For appropriately equipped devices, Core Location also supports use of the magneto-
meter to determine which way the device is facing (its heading). Although this infor-
mation is accessed through a location manager, you do not need location services to be
turned on, nor your app to be authorized, merely to use the magnetometer to report
the device’s orientation with respect to magnetic north; but you do need those things
in order to report true north, as this depends on the device’s location.

As with location, you’ll first check that the desired feature is available (heading-
Available); then you’ll instantiate and configure the location manager, and call start-
UpdatingHeading. The delegate will be sent locationManager:didUpdateHeading:. Head-
ing values are reported as a CLHeading; recall that this involves degrees (not radians)
clockwise from the reference direction.

In this example, I’ll take advantage of the magnetometer and use the device as a com-
pass. The headingFilter setting is to prevent us from being bombarded constantly with
readings. For best results, the device should probably be held level (like a tabletop, or
a compass); the reported heading will be the direction in which the top of the device
(the end away from the Home button) is pointing:

BOOL ok = [CLLocationManager headingAvailable];
if (!ok) {
 NSLog(@"drat");
 return;
}
CLLocationManager* lm = [[CLLocationManager alloc] init];
self.locman = lm;
self.locman.delegate = self;
self.locman.headingFilter = 3;
self.locman.headingOrientation = CLDeviceOrientationPortrait;
[self.locman startUpdatingHeading];

In the delegate, I’ll display our magnetic heading as a rough cardinal direction in a label
in the interface (lab):

872 | Chapter 35: Sensors

- (void) locationManager:(CLLocationManager *)manager
 didUpdateHeading:(CLHeading *)newHeading {
 CGFloat h = newHeading.magneticHeading;
 __block NSString* dir = @"N";
 NSArray* cards = [NSArray arrayWithObjects:
 @"N", @"NE", @"E", @"SE",
 @"S", @"SW", @"W", @"NW",
 nil];
 [cards enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 if (h < 45.0/2.0 + 45*idx) {
 dir = obj;
 *stop = YES;
 }
 }];
 if (self.lab.hidden)
 self.lab.hidden = NO;
 if (![self.lab.text isEqualToString:dir])
 self.lab.text = dir;
 NSLog(@"%f %@", h, dir);
}

In that code, I asked only for the heading’s magneticHeading. I can freely ask for its true-
Heading, but the resulting value will be invalid (a negative number) unless we are also
receiving location updates.

(Combining the magnetometer with the compass interface we developed in Chap-
ter 16 and Chapter 17, so as to simulate a physical compass, is left as an exercise for
the reader.)

Acceleration and Attitude
Acceleration results from the application of a force to the device, and is detected
through the device’s accelerometer, supplemented by the gyroscope if it has one. Grav-
ity is a force, so the accelerometer always has something to measure, even if the user
isn’t consciously applying a force to the device; thus the device can report its attitude
relative to the vertical.

Acceleration information can arrive in three ways:

As a prepackaged UIEvent
You can receive a UIEvent notifying you of a predefined gesture performed by
accelerating the device. At present, the only such gesture is the user shaking the
device.

From the shared UIAccelerometer
You can set yourself as the shared UIAccelerometer’s delegate to receive accelera-
tion notifications in accelerometer:didAccelerate:. UIAccelerometer is slated for
deprecation.

Acceleration and Attitude | 873

With the Core Motion framework
You instantiate CMMotionManager and then obtain information of a desired type.
You can ask for accelerometer information, gyroscope information, or device mo-
tion information (and in iOS 5 you can also use Core Motion to get magnetometer
information); device motion combines the gyroscope data with data from the other
sensors to give you the best possible description of the device’s attitude in space.

Shake Events
A shake event is a UIEvent (Chapter 18). Receiving shake events is rather like receiving
remote events (Chapter 27), involving the notion of the first responder. To receive shake
events, your app must contain a UIResponder which:

• Returns YES from canBecomeFirstResponder

• Is in fact first responder

This responder, or a UIResponder further up the responder chain, should implement
some or all of these methods:

motionBegan:withEvent:

Something has started to happen that might or might not turn out to be a shake.

motionEnded:withEvent:

The motion reported in motionBegan:withEvent: is over and has turned out to be
a shake.

motionCancelled:withEvent:

The motion reported in motionBegan:withEvent: wasn’t a shake after all.

Thus, it might be sufficient to implement motionEnded:withEvent:, because this arrives
if and only if the user performs a shake gesture. The first parameter will be the event
subtype, but at present this is guaranteed to be UIEventSubtypeMotionShake, so testing
it is pointless.

The view controller in charge of the current view is a good candidate to receive shake
events. Thus, a minimal implementation might look like this:

- (BOOL) canBecomeFirstResponder {
 return YES;
}

- (void) viewDidAppear: (BOOL) animated {
 [super viewDidAppear: animated];
 [self becomeFirstResponder];
}

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event {
 NSLog(@"hey, you shook me!");
}

874 | Chapter 35: Sensors

By default, if the first responder is of a type that supports undo (such as an NSText-
Field), and if motionBegan:withEvent: is sent up the responder chain, and if you have
not set the shared UIApplication’s applicationSupportsShakeToEdit property to NO, a
shake will be handled through an Undo or Redo alert. Your view controller might not
want to rob any responders in its view of this capability. A simple way to prevent this
is to test whether the view controller is itself the first responder; if it isn’t, we call
super to pass the event on up the responder chain:

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event {
 if ([self isFirstResponder])
 NSLog(@"hey, you shook me!");
 else
 [super motionEnded:motion withEvent:event];
}

Raw Acceleration
If the device has an accelerometer but no gyroscope, you can learn about the forces
being applied to it, but some compromises will be necessary. The chief problem is that,
even if the device is completely motionless, its acceleration values will constitute a
normalized vector pointing toward the center of the earth, popularly known as grav-
ity. The accelerometer is thus constantly reporting a combination of gravity and user-
induced acceleration. This is good and bad. It’s good because it means that, with certain
restrictions, you can use the accelerometer to detect the device’s attitude in space. It’s
bad because gravity values and user-induced acceleration values are mixed together.
Fortunately, there are ways to separate these values mathematically:

With a low-pass filter
A low-pass filter will damp out user acceleration so as to report gravity only.

With a high-pass filter
A high-pass filter will damp out the effect of gravity so as to detect user acceleration
only, reporting a motionless device as having zero acceleration.

In some situations, it is desirable to apply both a low-pass filter and a high-pass filter,
so as to learn both the gravity values and the user acceleration values. A common ad-
ditional technique is to run the output of the high-pass filter itself through a low-pass
filter to reduce noise and small twitches. Apple provides some nice sample code for
implementing a low-pass or a high-pass filter; see especially the AccelerometerGraph
example, which is also very helpful for exploring how the accelerometer behaves.

The technique of applying filters to the accelerometer output has some serious down-
sides, which are inevitable in a device that lacks a gyroscope:

• It’s up to you to apply the filters; you have to implement boilerplate code and hope
that you don’t make a mistake.

• Filters mean latency. Your response to the accelerometer values will lag behind
what the device is actually doing; this lag may be noticeable.

Acceleration and Attitude | 875

There are actually two ways to read the raw accelerometer values: UIAccelerometer
and Core Motion. UIAccelerometer is slated for deprecation, and you won’t need it
unless your code must run under a system preceding iOS 4. Still, the Accelerometer-
Graph example that I just mentioned uses it, so before proceeding to Core Motion I’ll
quickly sketch how to use UIAccelerometer. You start by calling the class method
sharedAccelerometer to get the global shared accelerometer instance. You then set this
instance’s updateInterval to prevent yourself from being swamped by notifications,
and set its delegate. The delegate will immediately start receiving accelerometer:did-
Accelerate: calls; to turn these off, you set the shared accelerometer’s delegate to nil.

The second parameter of accelerometer:didAccelerate: is a UIAcceleration, a simple
class — nothing more than a struct, really — consisting of a timestamp and three
acceleration values (UIAccelerationValue, equivalent to a double), one for each axis of
the device, measured in Gs. These values are only approximate — in fact, they are noisy
and possibly quantized — so you have to allow room for this.

Now I’ll describe how to read the raw accelerometer values with Core Motion. The
technique is really a subset of how you read any values with Core Motion; in some ways
it is similar to how you use Core Location:

1. You start by instantiating CMMotionManager; retain the instance somewhere,
typically as an instance variable.

2. Confirm, using instance properties, that the desired hardware is available.

3. Set the interval at which you wish the motion manager to update itself with new
sensor readings.

4. Call the appropriate start method.

5. Poll the motion manager whenever you want data, asking for the appropriate
data property. This step is surprising; you probably expected that the motion
manager would call into a delegate, but in fact a motion manager has no delegate.
The polling interval doesn’t have to be the same as the motion manager’s update
interval; when you poll, you’ll obtain the motion manager’s current data — that
is, the data generated by its most recent update, whenever that was.

If your app’s purpose is to collect all the data, then instead of calling a start
method, you can call a start...UpdatesToQueue:withHandler: method and receive
callbacks in a block, possibly on a background thread, managed by an
NSOperationQueue (Chapter 38); but this is an advanced technique and you aren’t
likely to need it, so I’m not going to talk about it.

6. Don’t forget to call the corresponding stop method when you no longer need data.

In this example, I will simply report whether the device is lying flat on its back. I start
by creating and configuring my motion manager, and I launch a repeating timer to
trigger polling:

876 | Chapter 35: Sensors

self.motman = [CMMotionManager new];
if (!motman.accelerometerAvailable) {
 NSLog(@"oh well");
 return;
}
self.motman.accelerometerUpdateInterval = 1.0 / 30.0;
[self.motman startAccelerometerUpdates];
self.timer =
 [NSTimer scheduledTimerWithTimeInterval:self.motman.accelerometerUpdateInterval
 target:self selector:@selector(pollAccel:) userInfo:nil repeats:YES];

My pollAccel: method is now being called repeatedly. In pollAccel:, I ask the motion
manager for its accelerometer data. This arrives as a CMAccelerometerData, which is
a timestamp plus a CMAcceleration; a CMAcceleration is simply a struct of three val-
ues, one for each axis of the device, measured in Gs (exactly as for a UIAcceleration).
The positive x-axis points to the right of the device. The positive y-axis points toward
the top of the device, away from the Home button. The positive z-axis points out of
the screen toward the user.

The two axes orthogonal to gravity, which are the x and y axes when the device is lying
more or less on its back, are much more accurate and sensitive to small variation than
the axis pointing toward or away from gravity. So our approach is to ask first whether
the x and y values are close to zero; only then do we use the z value to learn whether
the device is on its back or on its face. To keep from updating our interface constantly,
we implement a crude state machine; the state (an instance variable) starts out at -1,
and then switches between 0 (device on its back) and 1 (device not on its back), and
we update the interface only when there is a state change:

CMAccelerometerData* dat = motman.accelerometerData;
CMAcceleration acc = dat.acceleration;
CGFloat x = acc.x;
CGFloat y = acc.y;
CGFloat z = acc.z;
CGFloat accu = 0.08; // feel free to experiment with this value
if (fabs(x) < accu && fabs(y) < accu && z < -0.5) {
 if (state == -1 || state == 1) {
 state = 0;
 self.label.text = @"I'm lying on my back... ahhh...";
 }
} else {
 if (state == -1 || state == 0) {
 state = 1;
 self.label.text = @"Hey, put me back down on the table!";
 }
}

This works, but it’s sensitive to small motions of the device on the table. To damp this
sensitivity, we can run our input through a low-pass filter. The low-pass filter code
comes straight from Apple’s own examples, and involves maintaining the previously
filtered reading as a set of instance variables:

Acceleration and Attitude | 877

-(void)addAcceleration:(CMAcceleration)accel {
 double alpha = 0.1;
 self->oldX = accel.x * alpha + self->oldX * (1.0 - alpha);
 self->oldY = accel.y * alpha + self->oldY * (1.0 - alpha);
 self->oldZ = accel.z * alpha + self->oldZ * (1.0 - alpha);
}

Our polling code now starts out by passing the data through the filter:

CMAccelerometerData* dat = motman.accelerometerData;
CMAcceleration acc = dat.acceleration;
[self addAcceleration: acc];
CGFloat x = self->oldX;
CGFloat y = self->oldY;
CGFloat z = self->oldZ;
// ... and the rest is as before ...

In this next example, the user is allowed to slap the side of the device against an open
hand — perhaps as a way of telling it to go the next or previous image or whatever it
is we’re displaying. We pass the acceleration input through a high-pass filter to elimi-
nate gravity (again, the filter code comes straight from Apple’s examples):

-(void)addAcceleration:(CMAcceleration)accel {
 double alpha = 0.1;
 self->oldX = accel.x - ((accel.x * alpha) + (self->oldX * (1.0 - alpha)));
 self->oldY = accel.y - ((accel.y * alpha) + (self->oldY * (1.0 - alpha)));
 self->oldZ = accel.z - ((accel.z * alpha) + (self->oldZ * (1.0 - alpha)));
}

What we’re looking for, in our polling routine, is a high positive or negative x value. A
single slap is likely to consist of several consecutive readings above our threshold, but
we want to report each slap only once, sο we take advantage of the timestamp attached
to a CMAccelerometerData, maintaining the timestamp of our previous high reading
as an instance variable and ignoring readings that are too close to one another in time.
Another problem is that a sudden jerk involves both an acceleration (as the user starts
the device moving) and a deceleration (as the device stops moving); thus a left slap
might be preceded by a high value in the opposite direction, which we might interpret
wrongly as a right slap. We can compensate crudely, at the expense of some latency,
with delayed performance (the report: method simply logs to the console):

CMAccelerometerData* dat = motman.accelerometerData;
CMAcceleration acc = dat.acceleration;
[self addAcceleration: acc];
CGFloat x = self->oldX;
CGFloat thresh = 1.0;
if ((x < -thresh) || (x > thresh))
 NSLog(@"%f", x);
if (x < -thresh) {
 if (dat.timestamp - self->oldTime > 0.5 || self->lastSlap == 1) {
 self->oldTime = dat.timestamp;
 self->lastSlap = -1;
 [NSObject cancelPreviousPerformRequestsWithTarget:self];
 [self performSelector:@selector(report:) withObject:@"left" afterDelay:0.5];
 }

878 | Chapter 35: Sensors

}
if (x > thresh) {
 if (dat.timestamp - self->oldTime > 0.5 || self->lastSlap == -1) {
 self->oldTime = dat.timestamp;
 self->lastSlap = 1;
 [NSObject cancelPreviousPerformRequestsWithTarget:self];
 [self performSelector:@selector(report:) withObject:@"right" afterDelay:0.5];
 }
}

The gesture we’re detecting is a little tricky to make: the user must slap the device into
an open hand and hold it there; if the device jumps out of the open hand, that movement
may be detected as the last in the series, resulting in the wrong report (left instead of
right, or vice versa). And the latency of our gesture detection is very high; here’s a typical
successful detection of a leftward slap:

2012-02-10 12:03:18.673 p724p742smackMe[4024:707] -1.204655
2012-02-10 12:03:18.743 p724p742smackMe[4024:707] -1.153451
2012-02-10 12:03:18.775 p724p742smackMe[4024:707] 1.168514
2012-02-10 12:03:18.809 p724p742smackMe[4024:707] -1.426584
2012-02-10 12:03:18.875 p724p742smackMe[4024:707] -1.297352
2012-02-10 12:03:18.942 p724p742smackMe[4024:707] -1.072046
2012-02-10 12:03:19.316 p724p742smackMe[4024:707] left

The gesture started with an involuntary shake; then the rapid acceleration to the left
was detected as a positive value; finally, the rapid deceleration was detected as a neg-
ative value, and it took several tenths of a second for our delayed performance to decide
that this was the end of the gesture and report a leftward slap. Of course we might try
tweaking some of the magic numbers in this code to improve accuracy and perfor-
mance, but a more sophisticated analysis would probably involve storing a stream of
all the most recent CMAccelerometerData objects and studying the entire stream to
work out the overall trend.

Gyroscope
The inclusion of an electronic gyroscope in the panoply of onboard hardware in some
devices has made a huge difference in the accuracy and speed of gravity and attitude
reporting. A gyroscope has the property that its attitude in space remains constant; thus
it can detect any change in the attitude of the containing device. This has two important
consequences for accelerometer measurements:

• The accelerometer can be supplemented by the gyroscope to detect quickly the
difference between gravity and user-induced acceleration.

• The gyroscope can observe pure rotation, where little or no acceleration is involved
and so the accelerometer would not have been helpful. The extreme case is constant
attitudinal rotation around the gravity axis, which the accelerometer alone would
be completely unable to detect (because there is no user-induced force, and gravity
remains constant).

Acceleration and Attitude | 879

It is possible to track the raw gyroscope data: make sure the device has a gyroscope,
and then call startGyroUpdates. What we get from the motion manager is a CMGyro-
Data object, which combines a timestamp with a CMRotationRate that reports the rate
of rotation around each axis, measured in radians per second, where a positive value is
counterclockwise as seen by someone whose eye is pointed to by the positive axis. (This
is the opposite of the direction graphed in Figure 16-7.) The problem, however, is that
the gyroscope values are scaled and biased. This means that the values are based on an
arbitrary scale and are increasing (or decreasing) at a roughly constant rate. Thus there
is very little merit in the exercise of dealing with the raw gyroscope data.

What you are likely to be interested in is a combination of at least the gyroscope and
the accelerometer. The mathematics required to combine the data from these sensors
can be daunting. Fortunately, there’s no need to know anything about that. Core Mo-
tion will happily package up the calculated combination of data as a CMDeviceMotion
instance, with the effects of the sensors’ internal bias and scaling already factored out.
CMDeviceMotion consists of the following properties, all of which provide a triple of
values corresponding to the device’s natural 3D frame (x increasing to the right, y
increasing to the top, z increasing out the front):

gravity

A CMAcceleration expressing a vector with value 1 pointing to the center of the
earth, measured in Gs.

userAcceleration

A CMAcceleration describing user-induced acceleration, with no gravity compo-
nent, measured in Gs.

rotationRate

A CMRotationRate describing how the device is rotating around its own center.
This is essentially the CMGyroData rotationRate with scale and bias accounted
for.

magneticField (new in iOS 5)
A CMCalibratedMagneticField describing (in its field) the magnetic forces acting
on the device, measured in microteslas. The sensor’s internal bias has already been
factored out. The CMMagneticField’s accuracy is one of the following:

• CMMagneticFieldCalibrationAccuracyUncalibrated

• CMMagneticFieldCalibrationAccuracyLow

• CMMagneticFieldCalibrationAccuracyMedium

• CMMagneticFieldCalibrationAccuracyHigh

attitude

A CMAttitude, descriptive of the device’s instantaneous attitude in space. Before
iOS 5, this value was described with respect to an initial frame of reference in which
the negative z-axis points at the center of the earth, but the x-axis and y-axis, though
orthogonal to the other axes, could be pointing anywhere. Starting in iOS 5, how-

880 | Chapter 35: Sensors

ever, when you ask the motion manager to start generating updates, you can ask
for any of four reference systems for the attitude (having first called the class
method availableAttitudeReferenceFrames to ascertain that the desired reference
frame is available on this device):

CMAttitudeReferenceFrameXArbitraryZVertical

The same as in iOS 4.

CMAttitudeReferenceFrameXArbitraryCorrectedZVertical

The same as in iOS 4, but the magnetometer is used to improve accuracy.

CMAttitudeReferenceFrameXMagneticNorthZVertical

The x-axis points toward magnetic north.

CMAttitudeReferenceFrameXTrueNorthZVertical

The x-axis points toward true north. This value will be inaccurate unless you
are also using Core Location to obtain the device’s location.

The attitude value’s numbers can be accessed through various CMAttitude prop-
erties corresponding to three different systems, each being convenient for a differ-
ent purpose:

pitch, roll, and yaw
The device’s angle of offset from the reference frame, in radians, around the
device’s natural x, y, and z-axis respectively.

rotationMatrix

A CMRotationMatrix struct embodying a 3×3 matrix expressing a rotation in
the reference frame.

quaternion

A CMQuaternion describing an attitude. (Quaternions are commonly used in
OpenGL.)

In this example, we turn the device into a simple compass/clinometer, merely by asking
for its attitude with reference to magnetic north and taking its pitch, roll, and yaw.
We begin by making the usual preparations; notice the use of the showsDeviceMovement-
Display property, which will allow the runtime to prompt the user to move the device
in a figure-of-eight if the magnetometer needs calibration:

self.motman = [CMMotionManager new];
if (!motman.deviceMotionAvailable) {
 NSLog(@"oh well");
 return;
}
CMAttitudeReferenceFrame f = CMAttitudeReferenceFrameXMagneticNorthZVertical;
if (([CMMotionManager availableAttitudeReferenceFrames] & f) == 0) {
 NSLog(@"darn");
 return;
}
self.motman.showsDeviceMovementDisplay = YES;
self.motman.deviceMotionUpdateInterval = 1.0 / 30.0;

Acceleration and Attitude | 881

[self.motman startDeviceMotionUpdatesUsingReferenceFrame:f];
NSTimeInterval t = self.motman.deviceMotionUpdateInterval * 10;
self.timer =
 [NSTimer scheduledTimerWithTimeInterval:t target:self
 selector:@selector(pollAttitude:) userInfo:nil repeats:YES];

In pollAttitude:, we wait until the magnetometer is ready, and then we start taking
attitude readings (converted to degrees):

CMDeviceMotion* mot = self.motman.deviceMotion;
if (mot.magneticField.accuracy <= CMMagneticFieldCalibrationAccuracyLow)
 return; // not ready yet
CMAttitude* att = mot.attitude;
CGFloat to_deg = 180.0 / M_PI; // I like degrees
NSLog(@"%f %f %f", att.pitch * to_deg, att.roll * to_deg, att.yaw * to_deg);

The values are all close to zero when the device is level with its top pointing to magnetic
north, and each value increases as the device is rotated counterclockwise with respect
to an eye that has the corresponding positive axis pointing at it. So, for example, a
device held upright (top pointing at the sky) has a pitch approaching 90; a device lying
on its right edge has a roll approaching 90; and a device lying on its back with its top
pointing west has a yaw approaching 90.

There are some quirks to be aware of in the way that Euler angles operate mathemat-
ically:

• roll and yaw increase with counterclockwise rotation from 0 to π (180 degrees)
and then jump to -π (-180 degrees) and continue to increase to 0 as the rotation
completes a circle; but pitch increases to π/2 (90 degrees) and then decreases to 0,
then decreases to -π/2 (-90 degrees) and increases to 0. This means that attitude
alone, if we are exploring it through pitch, roll, and yaw, is insufficient to describe
the device’s attitude, since a pitch value of, say, π/4 (45 degrees) could mean two
different things. To distinguish those two things, we can supplement attitude with
the z-component of gravity:

NSLog(@"%f %f %f", att.pitch * to_deg, att.roll * to_deg, att.yaw * to_deg);
CMAcceleration g = mot.gravity;
NSLog(@"pitch is tilted %@", g.z > 0 ? @"forward" : @"back");

• Values become inaccurate in certain orientations. In particular, when pitch is ±90
degrees (the device is upright or inverted), roll and yaw become erratic. (You may
see this effect referred to as the “singularity” or as “gimbal lock.”) I believe that,
depending on what you are trying to accomplish, you can solve this by using a
different expression of the attitude, such as the rotationMatrix, which does not
suffer from this limitation.

This next (simple and very silly) example illustrates a use of CMAttitude’s rotation-
Matrix property. Our goal is to make a CALayer rotate in response to the current atti-
tude of the device. We start as before, except that our reference frame is CMAttitude-
ReferenceFrameXArbitraryZVertical; we are interested in how the device moves from
its initial attitude, without reference to any particular fixed external direction such as

882 | Chapter 35: Sensors

magnetic north. In pollAttitude, our first step is to store the device’s current attitude
in a CMAttitude instance variable, ref:

CMDeviceMotion* mot = self.motman.deviceMotion;
CMAttitude* att = mot.attitude;
if (!self->ref) {
 self->ref = att;
 return;
}

That code works correctly because on the first few polls, as the attitude-detection
hardware warms up, att is nil, so we don’t get past the return call until we have a valid
initial attitude. Our next step is highly characteristic of how CMAttitude is used: we
call the CMAttitude method multiplyByInverseOfAttitude:, which transforms our at-
titude so that it is relative to the stored initial attitude:

[att multiplyByInverseOfAttitude:self->ref];

Finally, we apply the attitude’s rotation matrix directly to a layer in our interface as a
transform. Well, not quite directly: a rotation matrix is a 3×3 matrix, whereas a CA-
Transform3D, which is what we need in order to set a layer’s transform, is a 4×4 matrix.
However, it happens that the top left nine entries in a CATransform3D’s 4×4 matrix
constitute its rotation component, so we start with an identity matrix and set those
entries directly:

CMRotationMatrix r = att.rotationMatrix;
CATransform3D t = CATransform3DIdentity;
t.m11 = r.m11;
t.m12 = r.m12;
t.m13 = r.m13;
t.m21 = r.m21;
t.m22 = r.m22;
t.m23 = r.m23;
t.m31 = r.m31;
t.m32 = r.m32;
t.m33 = r.m33;
CALayer* lay = // whatever;
[CATransaction setDisableActions:YES];
lay.transform = t;

The result is that the layer apparently tries to hold itself still as the device rotates. The
example is rather crude because we aren’t using OpenGL to draw a three-dimensional
object, but it illustrates the principle well enough.

There is a quirk to be aware of in this case as well: over time, the transform has a
tendency to drift. Thus, even if we leave the device stationary, the layer will gradually
rotate. That is the sort of effect that CMAttitudeReferenceFrameXArbitraryCorrected-
ZVertical is designed to help mitigate, by bringing the magnetometer into play.

Acceleration and Attitude | 883

Further Core Motion Considerations
Extensive detail about Core Motion is beyond the scope of this book; but here are some
additional considerations to be aware of:

• The documentation warns that your app should create only one CMMotion-
Manager instance. This is not a terribly onerous restriction, but it’s rather odd that,
if this is important, the API doesn’t provide a shared singleton instance accessed
through a class method.

• In iOS 5, use of Core Motion is legal while your app is running the background.
To take advantage of this, your app would need to be running in the background
for some other reason; there is no Core Motion UIBackgroundModes setting in an
Info.plist. For example, you might run in the background because you’re using
Core Location, and take advantage of this to employ Core Motion as well.

• Core Motion requires that various sensors be turned on, such as the magnetometer
and the gyroscope. This can result in some increased battery drain, so try not to
use any sensors you don’t have to, and remember to stop generating updates as
soon as you no longer need them.

884 | Chapter 35: Sensors

PART VII

Final Topics

This part of the book is a miscellany of topics that didn’t fit easily into any of the
preceding chapters.

• Chapter 36 is about files. It explains how your app can store data on disk to be
retrieved the next time the app runs (including both standalone files and user de-
faults). It also discusses sharing files with the user through iTunes and with other
apps, plus the document architecture and iCloud, and concludes with a survey of
how iOS can work with some common file formats (XML, SQLite, and image files).

• Chapter 37 introduces networking, with an emphasis on HTTP downloading of
data, and giving a nod to other aspects of networks (such as Bonjour and push
notifications) that you can explore independently if your app requires them.

• Chapter 38 is about threads. Making your app multithreaded (beyond the auto-
matic threading support provided by the built-in interface widgets and their sup-
porting frameworks) can introduce great complexity and is not a beginner topic,
but you still might need to understand the basic concepts of multithreading, either
in order to prevent a lengthy task from blocking user interaction with your app, or
because some framework explicitly relies on it. Special attention is paid to the
advantages of NSOperation and (especially) Grand Central Dispatch.

• Chapter 39 describes how iOS supports Undo in your app.

• Chapter 40 lists additional frameworks and facilities that were found to be beyond
the scope of this book. You are now a proud graduate of this book’s school of iOS
programming fundamentals. You are fully prepared to proceed independently.
Your mission, should you decide to accept it, is to explore further if and when you
need to. iOS is huge; you’ll never stop learning and experimenting. Good hunting!

CHAPTER 36

Persistent Storage

The device on which your app runs contains flash memory that functions as the equiv-
alent of a hard disk, holding files that survive the device’s being powered down (per-
sistent storage). Apps can store files to, and retrieve them from, this virtual hard disk.
Apps can also define document types in which they specialize and can hand such docu-
ments to one another; new in iOS 5, apps can also share documents into the cloud
(iCloud), so that multiple copies of the same app can retrieve them on different devices.
Finally, this chapter concludes with some examples of how to manipulate some im-
portant file formats.

The Sandbox
The hard disk as a whole is not open to your app’s view. A limited portion of the hard
disk is dedicated to your app alone: this is your app’s sandbox. The idea is that every
app, seeing only its own sandbox, is hindered from spying or impinging on the files
belonging to other apps. Your app can also see some higher-level directories owned by
the system as a whole, but cannot write to them.

The sandbox contains some standard directories. For example, suppose you want a
reference to the Documents directory. Here’s one way to access it:

NSString* docs = [NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES) lastObject];

That code returns a path string for the Documents directory. The preferred way to refer
to a file or directory, however, is with a URL. You can obtain this from an NSFile-
Manager instance:

NSFileManager* fm = [[NSFileManager alloc] init];
NSError* err = nil;
NSURL* docsurl = [fm URLForDirectory:NSDocumentDirectory
 inDomain:NSUserDomainMask appropriateForURL:nil create:YES error:&err];
// error-checking omitted

887

A question that will immediately occur to you is: where should I put secondary files
and folders that I want to save now and read later? Once upon a time, the Documents
directory would have been a good place. But if your app supports file sharing (discussed
later in this chapter), the user can see and modify your app’s Documents directory
through iTunes. So you might not want to put things there that the user isn’t supposed
to see and change.

Settling upon an alternative location for your app’s files is up to you. Personally, I favor
the Application Support directory for most purposes. On a Mac, this directory is shared
by multiple applications, each of which must confine itself to an individual subfolder,
but on iOS each app has its own private Application Support directory in its own sand-
box, so you can safely put files anywhere within it. This directory may not exist initially,
so you can obtain it and create it at the same time:

NSURL* suppurl = [fm URLForDirectory:NSApplicationSupportDirectory
 inDomain:NSUserDomainMask appropriateForURL:nil create:YES error:&err];

Although URLs are the favored way of referring to files and folders, they are a more
recent innovation than path strings, and there are some operations that still require a
string. To derive a path string from an NSURL, send it the path message.

Basic File Operations
Let’s say we intend to create folder MyFolder inside the Documents directory. Starting
with the URL docsurl pointing at the Documents directory (as obtained in the previous
section), we can generate a reference to MyFolder; we can then ask our NSFileManager

Visually Inspecting the Sandbox
The Simulator’s sandbox is a folder on your Mac that you can inspect visually. Recall
from Chapter 9 that applications appearing in the Simulator are actually located in a
directory inside ~/Library/Application Support/iPhone Simulator, followed by the sys-
tem version of the SDK (for example, there might be a folder called 5.0). Inside this
folder you’ll find an Applications folder; inside that are the sandbox folders for the apps
you’ve run from Xcode on the Simulator. These sandbox folders have mysterious names
like 09007C84-6CD7-4F30-A2E2-F8EE1068CD59, but you can identify a folder by
opening it and examining the name of the app.

Starting in Xcode 4.2, you can also view the file structure of the sandbox on the device.
When the device is connected, look in the Applications section of the Organizer win-
dow. Choose your app; you’ll see the entire hierarchy of its sandbox contents displayed
at the bottom of the window. If you click Download, the whole sandbox is copied and
arrives on your computer as an .xcappdata package; you can open it in the Finder with
Show Package Contents.

888 | Chapter 36: Persistent Storage

instance to create the folder if it doesn’t exist already (the ability to create a folder from
an NSURL is new in iOS 5):

NSFileManager* fm = [[NSFileManager alloc] init];
NSURL* docsurl = [fm URLForDirectory:NSDocumentDirectory
 inDomain:NSUserDomainMask appropriateForURL:nil create:YES error:nil];
NSURL* myfolder = [docsurl URLByAppendingPathComponent:@"MyFolder"];
NSError* err = nil;
BOOL ok = [fm createDirectoryAtURL:myfolder
 withIntermediateDirectories:YES attributes:nil error:nil];
// ... error-checking omitted

To learn what files and folders exist within a directory, you can ask for an array of the
directory’s contents:

NSFileManager* fm = [[NSFileManager alloc] init];
NSURL* docsurl = [fm URLForDirectory:NSDocumentDirectory
 inDomain:NSUserDomainMask appropriateForURL:nil create:YES error:nil];
NSError* err = nil;
NSArray* arr = [fm contentsOfDirectoryAtURL:docsurl
 includingPropertiesForKeys:nil options:0 error:&err];
// ... error-checking omitted
NSLog(@"%@", [arr valueForKey:@"lastPathComponent"]);
/*
MyFolder
*/

The array resulting from contentsOfDirectoryAtURL:... lists full URLs of the directory’s
immediate contents; it is shallow. For a deep array, which might be very big, you should
enumerate the directory, so that you are handed only one file reference at a time:

NSFileManager* fm = [[NSFileManager alloc] init];
NSURL* docsurl = [fm URLForDirectory:NSDocumentDirectory
 inDomain:NSUserDomainMask appropriateForURL:nil create:NO error:nil];
NSDirectoryEnumerator* dir = [fm enumeratorAtURL:docsurl
 includingPropertiesForKeys:nil options:0 errorHandler:nil];
for (NSURL* f in dir)
 if ([[f pathExtension] isEqualToString: @"txt"])
 NSLog(@"%@", [f lastPathComponent]);
/*
file1.txt
file2.txt
*/

A directory enumerator also permits you to decline to dive into a particular subdirectory
(skipDescendants), so you can make your traversal even more efficient; I’ll give an ex-
ample later in this chapter.

Consult the NSFileManager class documentation for more about what you can do with
files, and see also Apple’s Low-Level File Management Programming Topics.

Basic File Operations | 889

Saving and Reading Files
To save or read a simple file, you are likely to use one of the convenience methods for
the class appropriate to the file’s contents. NSString, NSData, NSArray, and NSDic-
tionary provide writeToURL... and initWithContentsOfURL... methods. An NSString
or NSData object will write itself out such that its contents become the contents of the
file; recall, however, that NSArray and NSDictionary files are actually property lists
(Chapter 10) and will work only if all the contents of the array or dictionary are property
list types (NSString, NSData, NSDate, NSNumber, NSArray, and NSDictionary).

So, for instance, here’s how I generated the files file1.txt and file2.txt mentioned in the
results of the preceding example:

NSError* err = nil;
BOOL ok = [@"howdy" writeToURL:[myfolder URLByAppendingPathComponent:@"file1.txt"]
 atomically:YES encoding:NSUTF8StringEncoding error:&err];
// error-checking omitted
err = nil;
ok = [@"greetings" writeToURL:[myfolder URLByAppendingPathComponent:@"file2.txt"]
 atomically:YES encoding:NSUTF8StringEncoding error:&err];
// error-checking omitted

So how do you save to a file an object of some other class? Well, if an object’s class
adopts the NSCoding protocol, you can convert it to an NSData and back again using
NSKeyedArchiver and NSKeyedUnarchiver; an NSData can then be saved as a file or
in a property list. An example of doing this with a UIColor object appears in Chapter 10.

You can make your own class adopt the NSCoding protocol. This can become some-
what complicated because an object can refer (through an instance variable) to another
object, which may also adopt the NSCoding protocol, and thus you can end up saving
an entire graph of interconnected objects if you wish. However, I’ll confine myself to
illustrating a simple case (and you can read the Archives and Serializations Programming
Guide for more information).

Let’s say, then, that we have a simple Person class with a firstName property and a last-
Name property. We’ll declare that it adopts the NSCoding protocol:

@interface Person : NSObject <NSCoding>

To make this class actually conform to NSCoding, we must implement encodeWith-
Coder: (to archive the object) and initWithCoder: (to unarchive the object). In encode-
WithCoder:, we must first call super if the superclass adopts NSCoding, and then call
the appropriate encode... method for each instance variable we want preserved:

- (void)encodeWithCoder:(NSCoder *)encoder {
 //[super encodeWithCoder: encoder]; // not in this case
 [encoder encodeObject:self->lastName forKey:@"last"];
 [encoder encodeObject:self->firstName forKey:@"first"];
}

890 | Chapter 36: Persistent Storage

In initWithCoder, we must call super, using either initWithCoder: if the superclass
adopts the NSCoding protocol or the designated initializer if not, and then call the
appropriate decode... method for each instance variable stored earlier, finally returning
self; memory management is up to us (but under ARC there will probably be no need
to think about that):

- (id) initWithCoder:(NSCoder *)decoder {
 //self = [super initWithCoder: decoder]; // not in this case
 self = [super init];
 self->lastName = [decoder decodeObjectForKey:@"last"];
 self->firstName = [decoder decodeObjectForKey:@"first"];
 return self;
}

We can test our code by creating, configuring, and saving a Person instance as a file:

Person* moi = [[Person alloc] init];
moi.firstName = @"Matt";
moi.lastName = @"Neuburg";
NSData* moidata = [NSKeyedArchiver archivedDataWithRootObject:moi];
NSURL* moifile = [docsurl URLByAppendingPathComponent:@"moi.txt"];
[moidata writeToURL:moifile atomically:NO];

We can retrieve the saved Person at a later time:

NSData* persondata = [[NSData alloc] initWithContentsOfURL:moifile];
Person* person = [NSKeyedUnarchiver unarchiveObjectWithData:persondata];
NSLog(@"%@ %@", person.firstName, person.lastName); // Matt Neuburg

If the NSData object is itself the entire content of the file, as here, then instead of using
archivedDataWithRootObject: and unarchiveObjectWithData:, you can skip the inter-
mediate NSData object altogether and use archiveRootObject:toFile: and unarchive-
ObjectWithFile:.

Saving a single Person as an archive may seem like overkill; why didn’t we just make a
text file consisting of the first and last names? But imagine that a Person has a lot more
properties, or that we have an array of hundreds of Persons, or an array of hundreds of
dictionaries where one value in each dictionary is a Person; now all of a sudden the
power of an archivable Person becomes clear. Even though Person now adopts the
NSCoding protocol, an NSArray containing a Person object still cannot be written to
disk using NSArray’s writeToFile... or writeToURL..., because Person is still not a
property list type. But the array can be archived and written to disk with NSKeyed-
Archiver.

User Defaults
User defaults, which have often been referred to earlier in this book (see especially
Chapter 10 and Chapter 13), are intended as the persistent storage of the user’s pref-
erences, as well as for maintaining state when your app quits so that you can restore
the situation the next time the app launches. They are little more, really, than a special

User Defaults | 891

case of an NSDictionary property list file. You talk to the NSUserDefaults standardUser-
Defaults object much as if it were a dictionary; it has keys and values. And the only
legal values are property list values (see the preceding section); thus, for example, to
store a Person in user defaults, you’d have to archive it first to an NSData object. Unlike
NSDictionary, NSUserDefaults provides convenience methods for converting between
a simple data type such as a float or a BOOL and the object that is stored in the defaults
(setFloat:forKey:, floatForKey:, and so forth). But the defaults themselves are still a
dictionary.

Meanwhile, somewhere on disk, this dictionary is being saved for you automatically as
a property list file — though you don’t concern yourself with that. You simply set or
retrieve values from the dictionary by way of their keys, secure in the knowledge that
the file is being read into memory or written to disk as needed. Your chief concern is
to make sure that you’ve written everything needful into user defaults before your app
terminates; as we saw in Chapter 11, in a multitasking world this will usually mean
when the app delegate receives applicationDidEnterBackground: at the latest. If you’re
worried that your app might crash, you can tell the standardUserDefaults object to
synchronize as a way of forcing it to save right now, but this is rarely necessary.

To provide the value for a key before the user has had a chance to do so — the default
default, as it were — use registerDefaults:. What you’re supplying here is a dictionary
whose key–value pairs will each be written into the defaults, but only if there is no such
key already. Recall this example from Chapter 10:

[[NSUserDefaults standardUserDefaults] registerDefaults:
 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithInt: 4],
 @"cardMatrixRows",
 [NSNumber numberWithInt: 3],
 @"cardMatrixColumns",
 nil]];

The idea is that we call registerDefaults: extremely early as the app launches. Either
the app has run at some time previously and the user has set these preferences, in which
case this call has no effect and does no harm, or not, in which case we now have initial
values for these preferences with which to get started. So, in the game app from which
that code comes, we start out with a 4×3 game layout, but the user can change this at
any time.

This leaves only the question of how the user is to interact with the defaults. One way
is that your app provides some kind of interface. For example, the game app from which
the previous code comes has a tab bar interface; the second tab is where the user sets
preferences (Figure 20-1). In the TidBITS News app, there’s a single button for setting
the size of text, and that’s the only preference with which the user ever interacts directly.

Both apps also store state information in the user defaults, but without the user’s
knowledge or direct participation, and not with keys that the user has any way of ac-
cessing. For example, the game app records the state of the game board and the card

892 | Chapter 36: Persistent Storage

deck into user defaults every time these change, so that if the app is terminated and
then launched again later, we can restore the game as it was when the user left off. (See
also Chapter 13 on user defaults as a locus of global values.)

Alternatively, you can provide a settings bundle, consisting mostly of one or more prop-
erty list files describing an interface and the corresponding user default keys and their
initial values; the Settings app is then responsible for translating your instructions into
an actual interface, and for presenting it to the user.

Using a settings bundle has some obvious disadvantages: the user may not think to
look in the Settings app; the user has to leave your app to access preferences; and you
don’t get the kind of control over the interface that you have within your own app.
Also, in a multitasking world, this means that the user can set preferences while your
app is backgrounded; you’ll need to register for NSUserDefaultsDidChange-

Notification in order to hear about this.

In some situations, though, a settings bundle has some clear advantages. Keeping the
preferences interface out of your app can make your app’s own interface cleaner and
simpler. You don’t have to write any of the “glue” code that coordinates the preferences
interface with the user default values. And it can be nice for the user to be able to set
preferences for your app even when your app isn’t running.

Writing a settings bundle is described in the “Implementing Application Preferences”
chapter of Apple’s iOS Application Programming Guide, along with the Settings Appli-
cation Schema Reference.

File Sharing
If your app supports file sharing, its Documents directory becomes available to the user
through iTunes (Figure 36-1). The user can add files to your app’s Documents directory,
and can save files and folders from your app’s Documents directory to the computer,
as well as renaming and deleting files and folders. This could be appropriate, for ex-
ample, if the purpose of your app is to display some common file type that the user
might obtain elsewhere, such as PDFs or JPEGs.

To support file sharing, set the Info.plist key “Application supports iTunes file sharing”
(UIFileSharingEnabled).

Once your entire Documents directory is exposed to the user this way, you are suddenly
not so likely to use the Documents directory to store private files. As I mentioned earlier,
I like to use the Application Support directory instead.

Your app doesn’t get any notification when the user has altered the contents of the
Documents directory. Noticing that the situation has changed and responding appro-
priately is entirely up to you.

File Sharing | 893

Document Types
Your app can declare itself willing to open documents of a certain type. In this way, if
another app obtains a document of this type, it can propose to hand the document off
to your app. For example, the user might download the document with Mobile Safari,
or receive it in a mail message with the Mail app; now we need a way to get it from
Safari or Mail to you.

To let the system know that your app is a candidate for opening a certain kind of
document, you will configure the CFBundleDocumentTypes key in your Info.plist. This is
an array, where each entry will be a dictionary specifying a document type by using
keys such as LSItemContentTypes, CFBundleTypeName, CFBundleTypeIconFiles, and
LSHandlerRank. Far and away the simplest method for configuring the Info.plist is
through the interface available in the Info tab when you edit the target.

For example, suppose I want to declare that my app opens PDFs. My Info.plist could
contain this simple entry (as seen in the standard editor):

Document types (1 item)
 Item 0 (1 item)
 Document Type Name PDF
 Document Content Type UTIs (1 item)
 Item 0 com.adobe.pdf

Now suppose the user receives a PDF in an email message. The Mail app can display
this PDF, but the user can also tap the Action button to bring up an action sheet con-
taining two Open In buttons. The first button might actually specify my app as the
default, but even if it doesn’t, tapping the second button will bring up a second action
sheet where my app appears as a button. (The interface will look like Figure 36-2, except
that my app will be listed as one of the buttons.)

But now suppose the user actually taps the button that hands the PDF off to my app.
For this to work, my app delegate must implement application:handleOpenURL:. When

Figure 36-1. The iTunes file sharing interface

894 | Chapter 36: Persistent Storage

that method is called, my app has been brought to the front, either by launching it from
scratch or by reviving it from background suspension; its job is now to handle the
opening of the document whose URL has arrived as the second parameter. To prevent
me from peeking into another app’s sandbox, the system has already copied the docu-
ment into my sandbox, into the Inbox directory, which is created for exactly this pur-
pose.

Unfortunately, the Inbox directory is currently created in your Docu-
ments folder. Thus, if your app implements file sharing, the user can see
the Inbox folder; you may wish to delete the Inbox folder, therefore, as
soon as you’re done retrieving files from it.

In this simple example, my app has just one view controller, which has an outlet to a
UIWebView where we will display any PDFs that arrive in this fashion. So my app
delegate contains this code:

- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {
 [viewController displayPDF:url];
 return YES;
}

And my view controller contains this code:

- (void) displayPDF: (NSURL*) url {
 NSURLRequest* req = [NSURLRequest requestWithURL:url];
 [self.wv loadRequest:req];
}

In real life, things might be more complicated. Our implementation of application:
handleOpenURL: might check to see whether this really is a PDF, and return NO if it
isn’t. Also, our app might be in the middle of something else, possibly displaying a
completely different view controller’s view; because application:handleOpenURL: can
arrive at any time, we may have to be prepared to drop whatever we were doing and
showing previously and display the incoming document instead.

If our app is launched from scratch by the arrival of this URL, application:didFinish-
LaunchingWithOptions: will be sent to our app delegate as usual. The options dictionary
(the second parameter) will contain the UIApplicationLaunchOptionsURLKey, and we can
take into account, if we like, the fact that we are being launched specifically to open a
document. The usual thing, however, is to ignore this key and launch in the normal
way; application:handleOpenURL: will then arrive in good order after our interface has
been set up, and we can handle it just as we would if we had already been running.

Starting in iOS 4.2, your app delegate can implement application:openURL:source-
Application:annotation: in order to receive more information about the incoming
URL. If implemented, this will be called in preference to application:handleOpen-
URL:, and it won’t be called at all on a device running an earlier system, so there is no
penalty for implementing both methods.

Document Types | 895

The example I’ve been discussing assumes that the UTI for the document type is stan-
dard and well-known. It is also possible that your app will operate on a new document
type, that is, a type of document that the app itself defines. In that case, you’ll also want
to add this UTI to your app’s list of Exported UTIs in the Info.plist. I’ll give an example
later in this chapter.

Handing Off a Document
The converse of the situation discussed in the previous section is this: your app has
somehow acquired a document and wants to let the user hand off a copy of it to what-
ever app can deal with it. This is done through the UIDocumentInteractionController
class. This class operates asynchronously, so retaining an instance of it is up to you;
typically, you’ll store it in an instance variable with a retain setter policy.

For example, let’s say our app has a PDF sitting in its Documents directory. Assuming
we have an NSURL pointing to this document, presenting the interface for handing the
document off to some other application (Figure 36-2) could be as simple as this
(sender is a button that the user has just tapped):

self.dic = [UIDocumentInteractionController interactionControllerWithURL:url];
BOOL y =
 [dic presentOptionsMenuFromRect:[sender bounds] inView:sender animated:YES];

There are actually two action sheets available. The first action sheet in Figure 36-2, the
Options action sheet, is summoned by presentOptionsMenu...; the second action sheet
in Figure 36-2, the Open In action sheet, is summoned by presentOpenInMenu..., but
it can also be summoned by one of the buttons in the first action sheet. These methods
are cleverly designed to work on both iPhone and iPad interfaces; on the iPad, the
buttons appear in a popover.

Figure 36-2. The document Options action sheet and Open In action sheet

896 | Chapter 36: Persistent Storage

Your app can’t learn which other applications are capable of accepting the document!
Indeed, it can’t even learn in advance whether any other applications are capable of
accepting the document; your only clue is that the returned BOOL value afterward will
be NO if UIDocumentInteractionController couldn’t present the interface you reques-
ted.

UIDocumentInteractionController can, however, be interrogated for some information
about the document type. In this example, we place a button into our interface whose
image is the icon of the document type (the idea, perhaps, is that the user would then
tap this button to do something with the document):

self.dic = [UIDocumentInteractionController interactionControllerWithURL:url];
UIImage* icon = [[self.dic icons] objectAtIndex:0];
UIButton* b = [UIButton buttonWithType:UIButtonTypeRoundedRect];
[b setImage:icon forState:UIControlStateNormal];
[b sizeToFit]; // ... and probably also set frame origin here ...
[self.view addSubview: b];

A UIDocumentInteractionController can also present a preview of the document, if the
document is of a type for which preview is enabled. You must give the UIDocument-
InteractionController a delegate (UIDocumentInteractionControllerDelegate), and the
delegate must implement documentInteractionControllerViewControllerForPreview:,
returning an existing view controller that will contain the preview’s view controller. So,
here we ask for the preview:

self.dic = [UIDocumentInteractionController interactionControllerWithURL:url];
self.dic.delegate = self;
[self.dic presentPreviewAnimated:YES];

In the delegate, we supply the view controller; it happens that this delegate is a view
controller — in fact, it’s the very view controller that is presenting the UIDocument-
InteractionController — so it simply returns self:

- (UIViewController *) documentInteractionControllerViewControllerForPreview:
 (UIDocumentInteractionController *) controller {
 return self;
}

If the view controller returned were a UINavigationController, the preview’s view con-
troller would be pushed onto it. In this case it isn’t, so the preview’s view controller is
a presented view controller. The preview interface also contains an Action button that
lets the user summon the Options action sheet. In fact, this preview interface is exactly
the same interface already familiar from the Mail app.

Delegate methods allow you to track what’s happening in the interface presented by
the UIDocumentInteractionController. Probably the most important of these are the
ones that inform you that key stages of the interaction are ending:

• documentInteractionControllerDidDismissOptionsMenu:

• documentInteractionControllerDidDismissOpenInMenu:

• documentInteractionControllerDidEndPreview:

Handing Off a Document | 897

• documentInteractionController:didEndSendingToApplication:

Previews are actually provided through the Quick Look framework, and you can skip
the UIDocumentInteractionController altogether and present the preview yourself
through a QLPreviewController (link to QuickLook.framework and import <Quick-
Look/QuickLook.h>). It’s a view controller, so to display the preview you show it as a
presented view controller or push it onto a navigation controller’s stack (just as
UIDocumentInteractionController would have done). A nice feature of QLPreview-
Controller is that you can give it more than one document to preview; the user can
move between these, within the preview, using arrow buttons that appear at the bottom
of the interface. Plus, if a document can be opened in another app, the interface includes
the action button that summons UIDocumentInteractionController’s Options or Open
In action sheet.

In this example, I have in my Documents directory several PDF documents. I acquire
a list of their URLs and present a preview for them:

// obtain URLs of PDFs as an array
NSFileManager* fm = [[NSFileManager alloc] init];
NSURL* docsurl = [fm URLForDirectory:NSDocumentDirectory
 inDomain:NSUserDomainMask appropriateForURL:nil create:NO error:nil];
NSDirectoryEnumerator* dir =
 [fm enumeratorAtURL:[docsurl URLByAppendingPathComponent:@"Inbox"]
 includingPropertiesForKeys:nil options:0 errorHandler:nil];
if (!dir)
 return; // proper error-checking omitted
NSMutableArray* marr = [NSMutableArray array];
for (NSURL* f in dir) {
 [dir skipDescendants];
 if ([[f pathExtension] isEqualToString: @"pdf"])
 [marr addObject: f];
}
self.pdfs = marr; // retain policy
if (![self.pdfs count])
 return;
// show preview interface
QLPreviewController* preview = [[QLPreviewController alloc] init];
preview.dataSource = self;
[self presentViewController:preview animated:YES completion:nil];

You’ll notice that I haven’t told the QLPreviewController what documents to preview.
That is the job of QLPreviewController’s data source. This very same view controller
is also the data source! In its role as data source, it simply fetches the requested infor-
mation from the list of URLs:

- (NSInteger) numberOfPreviewItemsInPreviewController:
 (QLPreviewController *) controller {
 return [self.pdfs count];
}

898 | Chapter 36: Persistent Storage

- (id <QLPreviewItem>) previewController: (QLPreviewController *) controller
 previewItemAtIndex: (NSInteger) index {
 return [self.pdfs objectAtIndex:index];
}

The second data source method requires us to return an object that adopts the
QLPreviewItem protocol. By a wildly improbable coincidence, NSURL does adopt this
protocol, so the example works.

The Document Architecture
If your app opens and saves documents of a particular type, you may want to take
advantage of the document architecture. New in iOS 5, this architecture revolves around
a new class, UIDocument, that takes care of a number of pesky issues, such as the fact
that loading or writing your data might take some time. Plus, UIDocument provides
autosaving behavior, so that your data is written out automatically whenever it changes.
Moreover, UIDocument is your gateway to allowing your documents to participate in
iCloud, so your app’s documents on one of the user’s devices will automatically be
matched on another of the user’s devices.

Getting started with UIDocument is not difficult. You’ll start with a UIDocument sub-
class, and you’ll override two methods:

loadFromContents:ofType:error:

Called when it’s time to open a document from disk. You are expected to convert
the contents value into a model object that your app can use, store that model
object, and return YES. (If there was a problem, you’ll set the error: by indirection
and return NO.)

contentsForType:error:

Called when it’s time to save a document to disk. You are expected to convert the
app’s model object into an NSData instance (or, if your document is a package, an
NSFileWrapper) and return it. (If there was a problem, you’ll set the error: by
indirection and return nil.)

Your UIDocument subclass, then, in addition to its implementation of those two meth-
ods, will need a place to store and retrieve the data model object. Obviously, this might
be an instance variable. However, your UIDocument instance will probably be part-
nered in some way with a view controller instance, and that view controller will need
access to the data, so a more sophisticated solution might be to set up a delegate rela-
tionship between the view controller and the UIDocument and allow the UIDocument
to call methods that set and retrieve a property of the view controller.

To instantiate a UIDocument, call its designated initializer, initWithFileURL:. This sets
the UIDocument’s fileURL property, and associates the UIDocument with this file on
disk, typically for the remainder of its lifetime.

The Document Architecture | 899

In my description of the two key UIDocument methods that your subclass will override,
I used the phrase, “when it’s time” (to open or save the document). This raises the
question of how your UIDocument instance will know when to open and save a docu-
ment. There are three circumstances to distinguish:

Make a new document
The fileURL: points to a nonexistent file. Immediately after instantiating the UI-
Document, you send it saveToURL:forSaveOperation:completionHandler:, where
the second argument is UIDocumentSaveForCreating. (The first argument will be the
UIDocument’s own fileURL.) This in turn causes contentsForType:error: to be
called, and the contents of an empty document are saved out to disk. This implies
that your UIDocument subclass should know of some default value that represents
the model data when there is no data.

Open an existing document
Send the UIDocument instance openWithCompletionHandler:. This in turn causes
loadFromContents:ofType:error: to be called.

Save an existing document
There are two approaches to saving an existing document:

Autosave
Usually, you’ll mark the document as “dirty” by calling updateChangeCount:.
From time to time, the UIDocument will notice this situation and will save the
document to disk, calling contentsForType:error: in the process.

Manual save
On certain rare occasions, waiting for autosave won’t be appropriate. We’ve
already seen an example of such an occasion — when the file itself needs to
be created on the spot. Another is when the app is going into the background;
we will want to preserve state there and then, on the offchance that we will
never again be foregrounded. You’ll call saveToURL:forSaveOperation:

completionHandler:; if the file is not being created for the first time, the second
argument will be UIDocumentSaveForOverwriting. Alternatively, if you know
you’re finished with the document (perhaps the interface displaying the docu-
ment is about to be torn down) you can call closeWithCompletionHandler:.

The open..., close..., and saveTo... methods have a completionHandler: argument.
This is UIDocument’s solution to the fact that reading and saving may take time. The
file operations themselves take place on a background thread; the completion-
Handler: block is then called on the main thread.

We now know enough for an example! I’ll reuse my Person class from earlier in this
chapter. Imagine a document effectively consisting of multiple Person instances; I’ll
call it each document a people group. Our app will list all people groups in the user’s
Documents folder; it will also open any people group from disk and display its contents,
allowing the user to edit any Person’s firstName or lastName (Figure 36-3).

900 | Chapter 36: Persistent Storage

My first step is to define a custom UTI in my app’s Info.plist, associating a file type
(com.neuburg.pplgrp) with a file extension (@"pplgrp"), as shown in Figure 36-4. I then
also define a document type that uses this UTI, as shown earlier in this chapter.

A document consists of multiple Persons, so a natural model implementation is an
NSArray of Persons. Moreover, as I mentioned earlier, since Person implements
NSCoding, an NSArray of Persons can be archived directly into an NSData. Thus,
assuming that our UIDocument subclass (which I’ll call PeopleDocument) has a
people property, it can be implemented like this:

-(id)initWithFileURL:(NSURL *)url {
 self = [super initWithFileURL:url];
 if (self) {
 self->people = [NSMutableArray array];
 }
 return self;

Figure 36-3. The People Groups interface

Figure 36-4. Defining a custom UTI

The Document Architecture | 901

}

- (BOOL)loadFromContents:(id)contents ofType:(NSString *)typeName
 error:(NSError **)outError {
 NSArray* arr = [NSKeyedUnarchiver unarchiveObjectWithData:contents];
 self.people = [NSMutableArray arrayWithArray:arr];
 return YES;
}

- (id)contentsForType:(NSString *)typeName error:(NSError **)outError {
 NSData* data = [NSKeyedArchiver archivedDataWithRootObject:self.people];
 return data;
}

We override initWithFileURL: just to give ourselves something to save if we are called
upon to save a new empty document; we then use NSKeyedUnarchiver and NSKeyed-
Archiver exactly as in our earlier examples.

The remaining questions are architectural: when should a PeopleDocument be initial-
ized, where should it be stored, and what should be the nature of communications with
it? For simplicity, I’ll leave all of that to the second view controller, the one that displays
the first and last names of the people in the group. I’ll call this view controller People-
Lister. PeopleLister’s designated initializer requires that it be given a fileURL: argu-
ment, with which it sets its own fileURL property. In its viewDidLoad implementation,
PeopleLister instantiates a PeopleDocument with that same fileURL, and retains it
through a property (doc). If the URL points to a nonexistent file, PeopleLister requests
that it be created by calling saveToURL:forSaveOperation:completionHandler:; other-
wise, it requests that the document be read, by calling openWithCompletionHandler:.
Either way, the completion handler points PeopleLister’s own people property at the
PeopleDocument’s people property (so that they share the same data model object) and
refreshes the interface:

NSFileManager* fm = [[NSFileManager alloc] init];
self.doc = [[PeopleDocument alloc] initWithFileURL:self.fileURL];
void (^listPeople) (BOOL) = ^(BOOL success) {
 if (success) {
 self.people = self.doc.people;
 [self.tableView reloadData];
 }
};
if (![fm fileExistsAtPath:[self.fileURL path]])
 [self.doc saveToURL:doc.fileURL
 forSaveOperation:UIDocumentSaveForCreating
 completionHandler:listPeople];
else
 [self.doc openWithCompletionHandler:listPeople];

When the user performs a significant editing maneuver, such as creating or deleting a
person or editing a person’s first or last name, PeopleLister tells its PeopleDocument
that the document is dirty, and allows autosaving to take it from there:

[self.doc updateChangeCount:UIDocumentChangeDone];

902 | Chapter 36: Persistent Storage

When the app is about to go into the background, or when PeopleLister’s own view is
disappearing, it forces PeopleDocument to save immediately:

- (void) forceSave: (id) n {
 [self.tableView endEditing:YES];
 [self.doc saveToURL:doc.fileURL forSaveOperation:UIDocumentSaveForOverwriting
 completionHandler:nil];
}

UIDocument presents itself in the documentation as a large and complex class, but
that’s chiefly because it is so heavily customizable both at high and low levels; for the
most part, you won’t need any of that heavy customization, and use of UIDocument
really will be as simple as what I’ve shown here. An example of where you might want
to go further is that you can give your UIDocument a more sophisticated understanding
of what constitutes a significant change in your data by working with its undo manager;
I’ll talk about undo managers in Chapter 39. For further details, see Apple’s Document-
based App Programming Guide for iOS.

Once your app is operating through UIDocument, iCloud compatibility falls right into
your lap. You have just two steps to perform:

Register for iCloud entitlements
In the Portal, register your app and configure it to be enabled for iCloud (a simple
checkbox); then create a provisioning profile for the app (obviously, while devel-
oping, this would be a Development profile), download it, and hand it over to
Xcode. Back in your project, edit the target; under Summary, check Enable Enti-
tlements in the Entitlements section.

Register a directory as iCloud-compatible
Early in your app’s lifetime, call NSFileManager’s URLForUbiquityContainer-
Identifier: (typically passing nil as the argument) to obtain the URL of a cloud-
shared directory. It will probably be an app-specific directory inside file://localhost/
private/var/mobile/Library/Mobile%20Documents/; you are given sandbox access
to this directory even though strictly speaking it isn’t inside your sandbox area.
Any documents your app puts here by way of a UIDocument subclass will be au-
tomatically shared into the cloud.

Thus, for example, having registered for iCloud entitlements, I was able to make my
app iCloud-compatible by making just two code changes. In the app delegate, as my
app launches, I obtain the cloud-shared directory and retain it through a property:

NSFileManager* fm = [NSFileManager new];
NSURL* ubiq = [fm URLForUbiquityContainerIdentifier:nil];
self.ubiq = ubiq;

Then, anywhere in my code that I was specifying the URL for the user’s Documents
folder as the place to seek and save people groups, I now specify ubiq:

NSURL* docsurl = [(AppDelegate*)[[UIApplication sharedApplication] delegate] ubiq];

The Document Architecture | 903

I then ran the app on one device and created a people group with some people in it. I
switched to a different device and ran the app there; presto, there was the same docu-
ment with the same name containing the same people. It was quite thrilling.

There are a few further refinements that my app really needs in order to be a good
iCloud citizen. For example, my app is not automatically aware that a new document
has appeared in the cloud. To be notified of that, I’d want to run an NSMetadataQuery.
The usual strategy is: instantiate NSMetadataQuery, configure the search, register for
notifications such as NSMetadataQueryDidFinishGatheringNotification and NSMetadata-
QueryDidUpdateNotification, start the search, and retain the NSMetadataQuery in-
stance with the search continuing to run for the entire lifetime of the app.

Another concern is that my app should be notified when the currently open document
changes on disk because a new version of it was downloaded from the cloud (that is,
someone edited the document while I had it open). For that, register for UIDocument-
StateChangedNotification. To learn the document’s state, consult its documentState
property. A big issue is likely to be what should happen if the document state is
UIDocumentStateInConflict. You’ll want to resolve the conflict in coordination with the
NSFileVersion class; for details and example code, see the “Resolving Document Ver-
sion Conflicts” chapter of Apple’s Document-based App Programming Guide for iOS.

Further iCloud details are outside the scope of this discussion; what I’ve said is enough
to get you started, and to demonstrate how simple it can be to take advantage of iCloud.
For further details, see the “iCloud Storage” chapter of Apple’s iOS App Programming
Guide.

Instead of, or in addition to, storing full-fledged documents in the cloud,
your app might like to store some key–value pairs, similar to a sort of
online NSUserDefaults. To do this, use the NSUbiquitousKeyValue-
Store class; get the defaultStore shared object and talk to it much as
you would talk to NSUserDefaults. The NSUbiquitousKeyValueStoreDid-
ChangeExternallyNotification tells you when data is changed in the
cloud. Material that you store in the cloud through NSUbiquitousKey-
ValueStore does not count against the user’s iCloud storage limit, but it
needs to be kept short and simple.

XML
XML is a highly flexible and widely used general-purpose text file format for storage
and retrieval of structured data. You might use it yourself to store data that you’ll need
to retrieve later, or you could encounter it when obtaining information from elsewhere,
such as the Internet.

Mac OS X Cocoa provides a set of classes (NSXMLDocument and so forth) for reading,
parsing, maintaining, searching, and modifying XML data in a completely general way,
but iOS does not include these. I think the reason must be that their tree-based approach

904 | Chapter 36: Persistent Storage

is too memory-intensive. Instead, iOS provides NSXMLParser, a much simpler class
that walks through an XML document, sending delegate messages as it encounters
elements. With this, you can parse an XML document once, but what you do with the
pieces as they arrive is up to you. The general assumption here is that you know in
advance the structure of the particular XML data you intend to read and that you have
provided classes for storage of the same data in object form and for transforming the
XML pieces into that storage.

To illustrate, let’s return once more to our Person class with a firstName and a last-
Name property. Imagine that as our app starts up, we would like to populate it with
Person objects, and that we’ve stored the data describing these objects as an XML file
in our app bundle, like this:

<?xml version="1.0" encoding="utf-8"?>
<people>
 <person>
 <firstName>Matt</firstName>
 <lastName>Neuburg</lastName>
 </person>
 <person>
 <firstName>Snidely</firstName>
 <lastName>Whiplash</lastName>
 </person>
 <person>
 <firstName>Dudley</firstName>
 <lastName>Doright</lastName>
 </person>
</people>

This data could be mapped to an array of Person objects, each with its firstName and
lastName properties appropriately set. (This is a deliberately easy example, of course;
not all XML is so easily or obviously expressed as objects.) Let’s consider how we might
do that.

Using NSXMLParser is not difficult in theory. You create the NSXMLParser, handing
it the URL of a local XML file (or an NSData, perhaps downloaded from the Internet),
set its delegate, and tell it to parse. The delegate starts receiving delegate messages. For
simple XML like ours, there are only three delegate messages of interest:

parser:didStartElement:namespaceURI:qualifiedName:attributes:

The parser has encountered an opening element tag. In our document, this would
be <people>, <person>, <firstName>, or <lastName>.

parser:didEndElement:namespaceURI:qualifiedName:

The parser has encountered the corresponding closing element tag. In our docu-
ment this would be </people>, </person>, </firstName>, or </lastName>.

parser:foundCharacters:

The parser has encountered some text between the starting and closing tags for the
current element. In our document this would be, for example, Matt or Neuburg and
so on.

XML | 905

In practice, responding to these delegate messages poses challenges of maintaining
state. If there is just one delegate, it will have to bear in mind at every moment what
element it is currently encountering; this could make for a lot of instance variables and
a lot of if-statements in the implementation of the delegate methods. To aggravate the
issue, parser:foundCharacters: can arrive multiple times for a single stretch of text;
that is, the text may arrive in pieces, so we have to accumulate it into an instance
variable, which is yet another case of maintaining state.

An elegant way to meet these challenges is by resetting the NSXMLParser’s delegate to
different objects at different stages of the parsing process. We make each delegate re-
sponsible for parsing one element; when a child of that element is encountered, we
make a new object and make it the delegate. The child element delegate is then re-
sponsible for making us, the parent, the delegate once again when it finishes parsing
its own element. This is slightly counterintuitive because it means parser:didStart-
Element... and parser:didEndElement... for the same element are arriving at two dif-
ferent objects. Imagine, for example, what the job of our <people> parser will be:

• When parser:didStartElement... arrives, the <people> parser looks to see if this
is a <person>. If so, it creates an object that knows how to deal with a <person>,
handing that object a reference to itself (the <people> parser), and makes it the
delegate.

• Delegate messages now arrive at this newly created <person> parser. If any text is
encountered, parser:foundCharacters: will be called, and the text must be accu-
mulated into an instance variable.

• Eventually, parser:didEndElement... arrives. The <person> parser now uses its ref-
erence to make the <people> parser the delegate once again. Thus, the <people>
parser is in charge once again, ready if another <person> element is encountered
(and the old <person> parser might now go quietly out of existence).

With this in mind, we can design a simple all-purpose base class for parsing an element
(simple especially because we are taking no account of namespaces, attributes, and
other complications):

@interface MyXMLParserDelegate : NSObject <NSXMLParserDelegate>

@property (nonatomic, copy) NSString* name;
@property (nonatomic, strong) NSMutableString* text;
@property (nonatomic, weak) MyXMLParserDelegate* parent;
@property (nonatomic, strong) MyXMLParserDelegate* child;
- (void) start: (NSString*) elementName parent: (id) parent;
- (void) makeChild: (Class) class
 elementName: (NSString*) elementName
 parser: (NSXMLParser*) parser;
- (void) finishedChild: (NSString*) s;

@end

Here’s how these properties and methods are intended to work:

906 | Chapter 36: Persistent Storage

name

The name of the element we are parsing now.

text

A place for any characters to accumulate as we parse our element.

parent

The MyXMLParserDelegate who created us and whose child we are.

child

If we encounter a child element, we’ll create a MyXMLParserDelegate and retain
it here, making it the delegate.

start:parent:

When we create a child parser, we’ll call this method on the child so that it knows
who its parent is. The first parameter is the name of the element the child will be
parsing; we know this because we, not the child, received parser:didStart-
Element.... (In a fuller implementation, this method would be more elaborate and
we’d hand the child all the information we got with parser:didStartElement....)

makeChild:elementName:parser:

If we encounter a child element, there’s a standard dance to do: instantiate some
subclass of MyXMLParserDelegate, make it our child, make it the parser’s dele-
gate, and send it start:parent:. This is a utility method that embodies that dance.

finishedChild:

When a child receives parser:didEndElement..., it sends this message to its parent
before making its parent the delegate. The parameter is the text, but the parent
can use this signal to obtain any information it expects from the child before the
child goes out of existence.

Now we can sketch in the default implementation for MyXMLParserDelegate:

- (void) start: (NSString*) el parent: (id) p {
 self.name = el;
 self.parent = p;
 self.text = [NSMutableString string];
}

- (void) makeChild: (Class) class
 elementName: (NSString*) elementName
 parser: (NSXMLParser*) parser {
 MyXMLParserDelegate* del = [[class alloc] init];
 self.child = del;
 parser.delegate = del;
 [del start: elementName parent: self];
}

- (void) finishedChild: (NSString*) s { // subclass implements as desired
}

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string {

XML | 907

 [self.text appendString:string];
}

- (void)parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName {
 if (parent) {
 [parent finishedChild: [self.text copy]];
 parser.delegate = self.parent;
 }
}

We can now create subclasses of MyXMLParserDelegate: one for each kind of element
we expect to parse. The chief responsibility of such a subclass, if it encounters a child
element in parser:didStartElement..., is to create an instance of the appropriate My-
XMLParserDelegate subclass, send it start:parent:, and make it the delegate; we have
already embodied this in the utility method makeChild:elementName:parser:. The re-
verse process is already built into the default implementation of parser:didEnd-
Element...: we call the parent’s finishedChild: and make the parent the delegate.

We can now parse our sample XML into an array of Person objects very easily. We start
by obtaining the URL of the XML file, handing it to an NSXMLParser, creating our first
delegate parser and making it the delegate, and telling the NSXMLParser to start:

NSURL* url = [[NSBundle mainBundle] URLForResource:@"folks" withExtension:@"xml"];
NSXMLParser* parser = [[NSXMLParser alloc] initWithContentsOfURL:url];
MyPeopleParser* people = [[MyPeopleParser alloc] init];
[parser setDelegate: people];
[parser parse];
// ... do something with people.people ...

Here is MyPeopleParser. It is the top-level parser so it has some extra work to do: when
it encounters the <people> element, which is the first thing that should happen, it creates
the people array that will hold the Person objects; this array will be the final result of
the entire parsing operation. If it encounters a <person> element, it does the standard
dance I described earlier, creating a <person> parser (MyPersonParser) as its child and
making it the delegate; when the <person> parser calls back to tell us it’s finished, My-
PeopleParser expects the <person> parser to supply a Person through its person prop-
erty:

- (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qualifiedName
 attributes:(NSDictionary *)attributeDict
{
 if ([elementName isEqualToString: @"people"])
 self.people = [NSMutableArray array];
 if ([elementName isEqualToString: @"person"])
 [self makeChild:[MyPersonParser class] elementName:elementName
 parser:parser];
}

908 | Chapter 36: Persistent Storage

- (void) finishedChild: (NSString*) s {
 [people addObject: [(MyPersonParser*)self.child person]];
}

MyPersonParser does the same child-making dance when it encounters a <firstName>
or a <lastName> element; it uses a plain vanilla MyXMLParserDelegate to parse these
children, because the built-in ability to accumulate text and hand it back is all that’s
needed. In finishedChild:, it makes sure it has a Person object ready to hand back to
its parent through its person property; key–value coding is elegantly used to match the
name of the element with the name of the Person property to be set:

- (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qualifiedName
 attributes:(NSDictionary *)attributeDict {
 [self makeChild:[MyXMLParserDelegate class] elementName:elementName
 parser:parser];
}

- (void) finishedChild:(NSString *)s {
 if (!self.person) {
 Person* p = [[Person alloc] init];
 self.person = p; // retain policy
 }
 [self.person setValue: s forKey: self.child.name];
}

This may seem like a lot of work to parse such a simple bit of XML, but it is neatly
object-oriented and requires very little new code once we’ve established the My-
XMLParserDelegate superclass, which is of course reusable in many other situations.

On the other hand, if you really want tree-based XML parsing along with XPath and
so forth, you can have it, because the libxml2 library is present in the SDK (and on the
device). This is a C dylib (short for “dynamic library,” extension .dylib), and Xcode
doesn’t automatically know during the build process where to find its headers (even
though it’s part of the SDK), so the instructions for accessing it in your project are a
tiny bit more involved than linking to an Objective-C framework:

1. In Xcode, add libxml2.dylib to the Link Binary With Libraries build phase for your
target, just as you would do with a framework.

2. Now comes the extra step that differs from using a framework; it is needed because,
although the Xcode build process automatically looks inside the SDK’s /usr/in-
clude/ folder for headers, it doesn’t automatically recurse down into folders, so it
won’t look inside the libxml2 folder unless you tell it to. Edit the target’s build
settings and set the Header Search Paths build setting to
$SDKROOT/usr/include/libxml2. (When you close the dialog for adding a search
path, this will transform itself into iphoneos/usr/include/libxml2.)

3. In your code, import <libxml/tree.h>.

XML | 909

You now have to talk to libxml2 using C. This is no trivial task. Here’s an example
proving we can do it; we read our XML file, parse it into a tree, and traverse all its
elements:

NSURL* url = [[NSBundle mainBundle] URLForResource:@"folks" withExtension:@"xml"];
NSString* path = [url absoluteString];
const char* filename = [path UTF8String];
xmlDocPtr doc = NULL;
xmlNode *root_element = NULL;
doc = xmlReadFile(filename, NULL, 0);
root_element = xmlDocGetRootElement(doc);
traverse_elements(root_element); // must be previously defined
xmlFreeDoc(doc);
xmlCleanupParser();

Here’s our definition for traverse_elements; it logs each person and the person’s first
and last name, just to prove we are traversing successfully:

void traverse_elements(xmlNode * a_node) {
 xmlNode *cur_node = NULL;
 for (cur_node = a_node; cur_node; cur_node = cur_node->next) {
 if (cur_node->type == XML_ELEMENT_NODE) {
 if (strcmp(cur_node->name, "person") == 0)
 NSLog(@"found a person");
 if (strcmp(cur_node->name, "firstName") == 0)
 NSLog(@"First name: %s", cur_node->children->content);
 if (strcmp(cur_node->name, "lastName") == 0)
 NSLog(@"Last name: %s", cur_node->children->content);
 }
 traverse_elements(cur_node->children);
 }
}

If talking C to libxml2 is too daunting, you can interpose an Objective-C front end by
taking advantage of a third-party library. See, for example, https://github.com/Touch
Code/TouchXML.

Keep in mind, however, that you’re really not supposed to do what I just did. Even if
you use libxml2, you’re supposed to use stream-based parsing, not tree-based parsing.
See Apple’s XMLPerformance example code.

Starting in iOS 5, a foundation class for constructing and parsing JSON
strings is provided — NSJSONSerialization. It’s a very simple class: all
its methods are class methods, and eligible structures are required to be
an array or dictionary (corresponding to what JSON calls an object)
whose elements must be a string, number, array, dictionary, or null.
NSData is used as the medium of exchange; you’ll archive or unarchive
as appropriate. JSON arises often as a lightweight way of communicat-
ing structured data across the network; for more information, see http:
//www.json.org/.

910 | Chapter 36: Persistent Storage

https://github.com/TouchCode/TouchXML
https://github.com/TouchCode/TouchXML
http://www.json.org/
http://www.json.org/

SQLite
SQLite (http://www.sqlite.org/docs.html) is a lightweight, full-featured relational data-
base that you can talk to using SQL, the universal language of databases. This can be
an appropriate storage format when your data comes in rows and columns (records
and fields) and needs to be rapidly searchable.

In the same way as you can link to libxml2.dylib, you can link to libsqlite3.dylib
(and import <sqlite3.h>) to access the power of SQLite. As with libxml2, talking C to
sqlite3 may prove annoying. There are a number of lightweight Objective-C front ends.
In this example, I use fmdb (https://github.com/ccgus/fmdb) to read the names of people
out of a previously created database:

NSString* docsdir = [NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES) lastObject];
NSString* dbpath = [docsdir stringByAppendingPathComponent:@"people.db"];
FMDatabase* db = [FMDatabase databaseWithPath:dbpath];
if (![db open]) {
 NSLog(@"Ooops");
 return;
}
FMResultSet *rs = [db executeQuery:@"select * from people"];
while ([rs next]) {
 NSLog(@"%@ %@",
 [rs stringForColumn:@"firstname"],
 [rs stringForColumn:@"lastname"]);
}
[db close];
/* output:
Matt Neuburg
Snidely Whiplash
Dudley Doright
*/

You can include a previously constructed SQLite file in your app bundle, but you can’t
write to it there; the solution is to copy it from your app bundle into another location,
such as the Documents directory, before you start working with it.

The Core Data framework also uses SQLite as a storage format (or, alternatively, it can
use XML). Core Data is a generalized way of dealing with objects and properties; it is
appropriate particularly when these form a complex relational graph. For example, a
person might have not only multiple addresses but also multiple friends who are also
persons; expressing persons and addresses as explicit object types, working out how
to link them and how to translate between objects in memory and data in storage, and
tracking the effects of changes, such as when a person is deleted from the data, can be
tedious. Core Data can help, but it is not a beginner-level technology, nor should it be
seen as a substitute for a true relational database. Core Data is beyond the scope of this
book; entire books can be written about Core Data alone (and have been). See the Core
Data Programming Guide and the other resources referred to there.

SQLite | 911

http://www.sqlite.org/docs.html
https://github.com/ccgus/fmdb

Image File Formats
The Image I/O framework provides a simple, unified way to open image files (from
disk or downloaded from the network, as described in Chapter 37), to save image files,
to convert between image file formats, and to read metadata from standard image file
formats, including EXIF and GPS information from a digital camera. You’ll need to link
to ImageIO.framework and import <ImageIO/ImageIO.h>.

Obviously, such features were not entirely missing before the Image I/O framework
was introduced (starting in iOS 4). UIImage can read the data from most standard image
formats, and you can convert formats with functions such as UIImage-

JPEGRepresentation and UIImagePNGRepresentation. But you could not, for example,
save an image as a TIFF without the Image I/O framework.

The Image I/O framework introduces the notion of an image source (CGImageSource-
Ref). This can be created from the URL of a file on disk or from an NSData object
(actually CFDataRef, to which NSData is toll-free bridged) obtained or generated in
some way. You can use this to obtain a CGImage of the source’s image (or, if the source
format contains multiple images, a particular image). But you can also obtain metadata
from the source without transforming the source into a CGImage, thus conserving
memory. For example:

NSURL* url = [[NSBundle mainBundle] URLForResource:@"colson" withExtension:@"jpg"];
CGImageSourceRef src = CGImageSourceCreateWithURL((__bridge CFURLRef)url, NULL);
CFDictionaryRef result1 = CGImageSourceCopyPropertiesAtIndex(src, 0, NULL);
NSDictionary* result = CFBridgingRelease(result1);
// ... do something with result ...
CFRelease(src);

Without having opened the image file as an image, we now have a dictionary full of
information about it, including its pixel dimensions (kCGImagePropertyPixelWidth and
kCGImagePropertyPixelHeight), its resolution, its color model, its color depth, and its
orientation — plus, because this picture originally comes from a digital camera, the
EXIF data such as the aperture and exposure at which it was taken, plus the make and
model of the camera.

We can obtain the image as a CGImage, with CGImageSourceCreateImageAtIndex. Al-
ternatively, we can request a thumbnail version of the image. I’m afraid that Apple’s
documentation fails to impress sufficiently on the reader the value of the thumbnail. If
your purpose in opening this image is to display it in your interface, you don’t care
about the original image data; a thumbnail is precisely what you want, especially be-
cause you can specify any size for this “thumbnail” all the way up to the original size
of the image! This is tremendously convenient, because to assign a small UIImageView
a large image wastes all the memory reflected by the size difference.

To generate a thumbnail at a given size, you start with a dictionary specifying the size
along with other instructions, and pass that, together with the image source, to CGImage-
SourceCreateThumbnailAtIndex. The only pitfall is that, because we are working with a

912 | Chapter 36: Persistent Storage

CGImage and specifying actual pixels, we must remember to take account of the scale
of our device’s screen. So, for example, let’s say we want to scale our image so that its
largest dimension is no larger than the width of the UIImageView (iv) into which we
intend to place it:

NSURL* url = [[NSBundle mainBundle] URLForResource:@"colson" withExtension:@"jpg"];
CGImageSourceRef src = CGImageSourceCreateWithURL((__bridge CFURLRef)url, NULL);
CGFloat scale = [UIScreen mainScreen].scale;
CGFloat w = self.iv.bounds.size.width*scale;
NSDictionary* d =
 [NSDictionary dictionaryWithObjectsAndKeys:
 (id)kCFBooleanTrue, kCGImageSourceShouldAllowFloat,
 (id)kCFBooleanTrue, kCGImageSourceCreateThumbnailWithTransform,
 (id)kCFBooleanTrue, kCGImageSourceCreateThumbnailFromImageAlways,
 [NSNumber numberWithInt:(int)w], kCGImageSourceThumbnailMaxPixelSize,
 nil];
CGImageRef imref =
 CGImageSourceCreateThumbnailAtIndex(src, 0, (__bridge CFDictionaryRef)d);
UIImage* im =
 [UIImage imageWithCGImage:imref scale:scale orientation:UIImageOrientationUp];
self.iv.image = im;
CFRelease(imref); CFRelease(src);

The Image I/O framework also introduces the notion of an image destination, used for
saving an image into a specified file format. As a final example, I’ll show how to save
our image as a TIFF. Notice that in this case we never even need to open the image as
an image: we save directly from the image source to the image destination:

NSURL* url = [[NSBundle mainBundle] URLForResource:@"colson" withExtension:@"jpg"];
CGImageSourceRef src = CGImageSourceCreateWithURL((__bridge CFURLRef)url, NULL);
NSFileManager* fm = [[NSFileManager alloc] init];
NSURL* suppurl = [fm URLForDirectory:NSApplicationSupportDirectory
 inDomain:NSUserDomainMask
 appropriateForURL:nil
 create:YES error:NULL];
NSURL* tiff = [suppurl URLByAppendingPathComponent:@"mytiff.tiff"];
CGImageDestinationRef dest =
CGImageDestinationCreateWithURL((__bridge CFURLRef)tiff,
 (CFStringRef)@"public.tiff", 1, NULL);
CGImageDestinationAddImageFromSource(dest, src, 0, NULL);
bool ok = CGImageDestinationFinalize(dest);
// error-checking omitted
CFRelease(src); CFRelease(dest);

Image File Formats | 913

CHAPTER 37

Basic Networking

Networking is difficult and complicated, chiefly because it’s ultimately out of your
control. My motto with regard to the network is, “There’s many a slip ’twixt the cup
and the lip.” You can ask for a resource from across the network, but at that point
anything can happen: the resource might not be found (the server is down, perhaps),
it might take a while to arrive, it might never arrive, the network itself might vanish
after the resource has partially arrived. iOS, however, makes at least the basics of net-
working very easy, so that’s what this chapter will deal with.

Many earlier chapters have dealt with interface and frameworks that network for you
automatically. Put a UIWebView in your interface (Chapter 24) and poof, you’re net-
working; the UIWebView does all the grunt work, and it does it a lot better than you’d
be likely to do it from scratch. The same is true of MPMovieViewController (Chap-
ter 28), MFMailComposeViewController (Chapter 33), and MKMapView (Chap-
ter 37).

HTTP Requests
A simple HTTP request is made through an NSURLConnection object. You hand it an
NSURLRequest describing what you’d like to do, and start the download. The actual
network operations happen asynchronously (unless you specifically demand that they
happen synchronously, which you’d never do); in other words, the NSURLConnection
object does all its work in the background. Data received from the network in response
to your request will arrive as an NSData object.

For the very simplest cases, iOS 5 introduces a way to download a resource asynchro-
nously without using a delegate: call the class method sendAsynchronousRequest:queue:
completionHandler:. This creates an NSURLConnection and starts the download im-
mediately. When the download ends, whether in failure or success, the completion
handler block is called on the NSOperationQueue you specified, with three parameters:
an NSURLResponse, an NSData (which will be the entire download if the download

915

succeeded), and an NSError object. Here’s an example of downloading a JPEG image
file and displaying it in the interface:

NSString* s = @"http://www.someserver.com/somefolder/someimage.jpg";
NSURL* url = [NSURL URLWithString:s];
NSURLRequest* req = [NSURLRequest requestWithURL:url];
NSOperationQueue* q = [NSOperationQueue mainQueue];
[NSURLConnection sendAsynchronousRequest:req queue:q
 completionHandler:^(NSURLResponse *resp, NSData *d, NSError *err) {
 if (d) {
 UIImage* im = [UIImage imageWithData:d];
 self.iv.image = im;
 }
 }];

I specify the main queue (the queue of the main thread), because my completion handler
is going to talk directly to my app’s interface (see also Chapter 38).

The older and more formal approach is to specify the NSURLRequest along with a
delegate. When the download starts, you stand back and let delegate messages arrive.
To obtain and initialize an NSURLConnection object using this approach, call one of
the following:

connectionWithRequest:delegate:
initWithRequest:delegate:

The download begins immediately.

initWithRequest:delegate:startImmediately:

This is the designated initializer; the other two methods call it. If the last argument
is NO, the download does not begin until you send the connection the start mes-
sage. Starting in iOS 5, you can specify an NSOperationQueue (Chapter 38) with
setDelegateQueue: if you’d like the delegate messages to arrive on a background
thread.

The data will arrive piecemeal, so you have to maintain state; in particular, you’ll pre-
pare an NSMutableData object (probably as an instance variable, as it needs to persist
while different methods refer to it) to which you’ll keep appending each new chunk of
NSData until you’re told that the entire data has arrived — or that the request has
failed. (The whole process is somewhat reminiscent of what we did with an
NSXMLParser in Chapter 36.)

All the real work happens in four delegate methods:

connection:didReceiveResponse:

The server is responding. We can now hope that our data will start to arrive, so get
ready. If you like, you can interrogate the NSURLResponse object that is handed
to you, to learn things from the response headers such as the data’s expected size
and MIME type. New in iOS 5, you can also ask for the originalRequest and the
currentRequest to learn whether redirects or other forces have altered the NSURL-
Request that is now being fulfilled.

916 | Chapter 37: Basic Networking

connection:didReceiveData:

Some data has arrived. Append it to the NSMutableData object.

connectiondidFinishLoading:

All of the data has arrived; the NSMutableData object presumably contains it.
Clean up as needed.

connection:didFailWithError:

Something went wrong. Clean up as needed.

Here’s an example of initiating a download of a JPEG image file:

self.receivedData = [NSMutableData data];
NSString* s = @"http://www.someserver.com/somefolder/someimage.jpg";
NSURL* url = [NSURL URLWithString:s];
NSURLRequest* req = [NSURLRequest requestWithURL:url];
NSURLConnection* conn = [NSURLConnection connectionWithRequest:req delegate:self];

Here are the corresponding delegate method implementations:

- (void) connection:(NSURLConnection *)connection
 didReceiveResponse:(NSURLResponse *)response {
 // connection is starting, clear buffer
 [receivedData setLength:0];
}

- (void) connection:(NSURLConnection *)connection didReceiveData:(NSData *)data {
 // data is arriving, add it to the buffer
 [receivedData appendData:data];
}

- (void)connection:(NSURLConnection*)connection didFailWithError:(NSError *)error {
 // something went wrong, clean up interface as needed
}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
 // all done, we are ready to rock and roll
 // do something with receivedData
}

You should be wondering at this point how memory management works for an
NSURLConnection. We don’t retain the NSURLConnection, so how does it live long
enough to do any downloading? The answer is that NSURLConnection memory man-
agement works like NSTimer memory management (Chapter 12): as the download
starts, the run loop retains it (and doesn’t release it until the connection either fails or
finishes). Both connectionWithRequest:delegate: and initWithRequest:delegate: be-
gin the download immediately, so the connection object that they return is retained by
the run loop and doesn’t need to be retained elsewhere.

On the other hand, an NSURLConnection initialized with initWithRequest:delegate:
startImmediately:, as I mentioned earlier, does not start immediately if the third ar-
gument is NO, and you’ll want to keep a reference to it in order to send it the start
message later; so, in the general case, we ought to have an NSURLConnection property

HTTP Requests | 917

with a normal retain policy. If we’re going to do that, we should probably wrap the
entire connection process in a dedicated object to hold this instance variable, because
otherwise keeping track of multiple simultaneous NSURLConnections would be a
nightmare. Here’s the complete implementation for such a wrapper object, My-
Downloader:

// [MyDownloader.h:]

@interface MyDownloader : NSObject
@property (nonatomic, strong, readonly) NSURLConnection* connection;
@property (nonatomic, strong, readonly) NSData* receivedData;
- (id) initWithRequest: (NSURLRequest*) req;
@end

// [MyDownloader.m]

@interface MyDownloader ()
@property (nonatomic, strong) NSURLConnection* connection;
@property (nonatomic, copy) NSURLRequest* request;
@property (nonatomic, strong) NSMutableData* mutableReceivedData;
@end

@implementation MyDownloader
@synthesize connection=_connection;
@synthesize request=_request;
@synthesize mutableReceivedData=_mutableReceivedData;

- (NSData*) receivedData {
 return [self.mutableReceivedData copy];
}

- (id) initWithRequest: (NSURLRequest*) req {
 self = [super init];
 if (self) {
 self->_request = [req copy];
 self->_connection = [[NSURLConnection alloc] initWithRequest:req
 delegate:self startImmediately:NO];
 self->_mutableReceivedData = [[NSMutableData alloc] init];
 }
 return self;
}

- (void) connection:(NSURLConnection *)connection
 didReceiveResponse:(NSURLResponse *)response {
 [self.mutableReceivedData setLength:0];
}

- (void) connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data {
 [self.mutableReceivedData appendData:data];
}

- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error {

918 | Chapter 37: Basic Networking

 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"connectionFinished"
 object:self
 userInfo:[NSDictionary dictionaryWithObject:error forKey:@"error"]];
}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"connectionFinished"
 object:self];
}
@end

The class uses a combination of private and redeclared properties along with an explicit
getter to make certain that clients have read-only access to instance variables (and, in
the case of our NSMutableData object, access only to an immutable copy). Commu-
nication back to the client when the download finishes is through a notification; it is
up to the client to register for this notification beforehand and to deregister for it later,
as usual.

In the line that creates the NSURLConnection, we have used the designated initializer
with a startImmediately: argument value of NO. Thus, a MyDownloader object can
exist and be ready for action before doing any actual downloading. To set the download
into motion, we tell the MyDownloader’s connection to start. (Sending start to an
NSURLConnection that is already downloading has no effect.) In the past, there have
been complaints that sending start to an NSURLConnection that does not start im-
mediately can cause a crash. I have not seen this myself, so perhaps it has been fixed
in more recent iOS versions, but the solution is to schedule the connection on a run
loop explicitly just before starting it:

[connection scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
[connection start];

The following sentence in the NSURLConnection header file may cause some concern:
“The delegate is retained by the NSURLConnection until a terminal condition is en-
countered.” MyDownloader retains the NSURLConnection and is its delegate, which
raises a worry that a retain cycle may be looming in our future. However, in practice
this should cause no difficulty; as that sentence implies, the delegate is released when
the NSURLConnection is no longer downloading, so one way or another a leak will be
avoided with no special action on our part. The delegate is retained for the same reason
that an NSTimer’s target is retained: if the delegate were to go out of existence while
the download is ongoing, the attempt to send it delegate messages could cause a nasty
crash. In any case we cannot set an NSURLConnection’s delegate to nil, as it has no
delegate property. If a download needs to be abandoned in midflight, the client should
send the NSURLConnection the cancel message (and should also deregister for noti-
fications from this MyDownloader object), and the download will be stopped in the
background in good order.

HTTP Requests | 919

How would we use MyDownloader if we have several objects to download? We might,
for example, keep a mutable array of MyDownloader objects. To initiate a download,
we create a MyDownloader object, register for its @"connectionFinished" notification,
stuff it into the array, and set its connection going:

if (!self.connections)
 self.connections = [NSMutableArray array];
NSString* s = @"http://www.someserver.com/somefolder/someimage.jpg";
NSURL* url = [NSURL URLWithString:s];
NSURLRequest* req = [NSURLRequest requestWithURL:url];
MyDownloader* d = [[MyDownloader alloc] initWithRequest:req];
[self.connections addObject:d];
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(finished:) name:@"connectionFinished" object:d];
[d.connection start];

When the notification arrives, either we’ve failed with an error or we’ve finished in
good order. In the latter case, we grab the received data; either way, we remove the
MyDownloader from the array, thus releasing it, along with its connection and its data:

- (void) finished: (NSNotification*) n {
 MyDownloader* d = [n object];
 NSData* data = nil;
 if ([n userInfo]) {
 // ... error of some kind! ...
 } else {
 data = d.receivedData;
 // ... and do something with the data right now ...
 }
 [[NSNotificationCenter defaultCenter]
 removeObserver:self name:@"connectionFinished" object:d];
 [self.connections removeObject:d];
}

In real life, you’ll probably subclass MyDownloader to fit some particular task, and
incorporate your downloaders directly into your application’s model, letting them fetch
the data on demand. Suppose, for example, you need to download images to serve as
thumbnails in the cells of a UITableView. Let’s consider how these images can be sup-
plied lazily on demand. The model, as we saw in Chapter 21, might be an array of
dictionaries. In this case, the dictionary might contain some text and a downloader
whose job is to supply the image. So what I’m proposing is a model like this:

array
 dictionary
 text: @"Manny"
 pic: Downloader whose job is to supply an image of Manny
 dictionary
 text: @"Moe"
 pic: Downloader whose job is to supply an image of Moe
 dictionary
 text: @"Jack"
 pic: Downloader whose job is to supply an image of Jack

920 | Chapter 37: Basic Networking

When the table turns to the data source for data, the data source will turn to the dic-
tionary corresponding to the requested row, and ask that dictionary’s downloader for
its image. At that point, either the downloader has an image, in which case it supplies
it, or it hasn’t, in which case it returns nil (or some placeholder) and begins the down-
load.

Here’s the key point. When a downloader succeeds in downloading its image, it notifies
the data source. If the corresponding row is visible, the data source immediately tells
the table to reload the corresponding row; the table once again asks the data source for
the data, the data source once again turns to the dictionary corresponding to the re-
quested row and once again asks that dictionary’s downloader for its image, and this
time it obtains the image! Moreover, once an image is downloaded, the downloader
continues to hold on to it and to supply it on request, so as the user scrolls, previously
downloaded images just appear as part of the table.

The downloader we’re imagining here is a MyDownloader subclass, MyImage-
Downloader, with an image property so that the data source can request the image.
MyImageDownloader’s implementation is straightforward:

- (UIImage*) image {
 if (image)
 return image;
 [self.connection start];
 return nil; // or a placeholder
}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
 UIImage* im = [UIImage imageWithData:self.receivedData];
 if (im) {
 self.image = im;
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"imageDownloaded" object:self];
 }
}

The data source looks perfectly normal:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];
 NSDictionary* d = [self.model objectAtIndex: indexPath.row];
 cell.textLabel.text = [d objectForKey:@"text"];
 MyImageDownloader* imd = [d objectForKey:@"pic"];
 cell.imageView.image = imd.image;
 return cell;
}

HTTP Requests | 921

Now for the key point. The data source is also registered for an @"imageDownloaded"
notification. When such a notification arrives, it works out the table row corresponding
to the MyImageDownloader that posted the notification and reloads that row:

- (void) imageDownloaded: (NSNotification*) n {
 MyImageDownloader* d = [n object];
 NSUInteger row = [self.model indexOfObjectPassingTest:
 ^BOOL(id obj, NSUInteger idx, BOOL *stop) {
 return ([(NSDictionary*)obj objectForKey:@"pic"] == d);
 }];
 if (row == NSNotFound) return; // shouldn't happen
 NSIndexPath* ip = [NSIndexPath indexPathForRow:row inSection:0];
 NSArray* ips = [self.tableView indexPathsForVisibleRows];
 if ([ips indexOfObject:ip] != NSNotFound) {
 [self.tableView reloadRowsAtIndexPaths:[NSArray arrayWithObject: ip]
 withRowAnimation:UITableViewRowAnimationFade];
 }
}

What’s missing from the example is robustness with regard to failure. The trouble is
that once an NSURLConnection has failed, it’s dead; you can’t use the same NSURL-
Connection to try again later. We can rectify that in MyImageDownloader by replacing
the NSURLConnection on failure:

- (void)connection:(NSURLConnection *)connection didFailWithError:(NSError *)err {
 self.connection = [[NSURLConnection alloc] initWithRequest:self.request
 delegate:self startImmediately:NO];
}

This partially solves the problem: when the user scrolls a failed cell out of view and
later scrolls it back into view, the table will ask the data source for its data and the
MyImageDownloader will try again to download its image. But that won’t happen for
a failed cell that’s never scrolled out of view. How you deal with this is up to you; it’s
a matter of providing the best user experience without having an undue impact upon
performance, battery, and so forth. In this instance, because these images are fairly
unimportant, I might arrange that when an NSTimer with a fairly large interval fires
(every 60 seconds, say), we reload the visible rows; this will cause any failed MyImage-
Downloader whose corresponding row is visible to try again.

In planning your interface, it is useful to draw a distinction as to whether the user will
experience a particular networking session explicitly or implicitly. This changes noth-
ing about how you network; it’s a matter of presentation. Downloading images to be
slotted into the cells of an existing table view would presumably be implicit networking:
it happens regardless of whether the user wants it, and it doesn’t seriously affect overall
functionality, even if some or all of the images fail to arrive. In the TidBITS News app,
on the other hand, everything displayed comes from a downloaded RSS feed: no feed,
no data. The app saves the previously downloaded feed (in user defaults, see Chap-
ter 36), so the user has something to read even in the absence of the network, but the
feed is explicitly refreshed at launch or if the user taps a button (along with the spinning
network activity indicator, Chapter 25), and if the download fails, we put up an alert.

922 | Chapter 37: Basic Networking

Bonjour
Bonjour is the ingenious technology, originated at Apple and now becoming a universal
standard, for allowing network devices to advertise services they provide and to dis-
cover dynamically other devices offering such services. Once an appropriate service is
detected, a client device can resolve it to get a network address and can then begin
communicating with the server device. Actually communicating is outside the scope of
this book, but device discovery via Bonjour is easy.

In this example, we’ll look to see whether any device, such as a Mac, is running iTunes
with library sharing turned on. We can search for domains or for a particular service;
here, we’ll pass the empty string as the domain to signify “any domain,” and concentrate
on the service, which is @"_daap._tcp". We maintain two instance variables, the NSNet-
ServiceBrowser that will look for devices, and a mutable array in which to store any
services it discovers:

self.services = [NSMutableArray array];
NSNetServiceBrowser* browser = [[NSNetServiceBrowser alloc] init];
self.nsb = browser;
self.nsb.delegate = self;
[self.nsb searchForServicesOfType:@"_daap._tcp" inDomain:@""];

Where’s the NSURLConnection Documentation?
In iOS 4 and previously, NSURLConnection’s delegate protocol, NSURLConnection-
Delegate, was an informal protocol (a category on NSObject; see Chapter 10), and the
delegate methods were listed as part of the class documentation for NSURLConnection
itself. In iOS 5, delegate responsibilities have been formalized into real protocols, and
are divided among two different protocols. (A third protocol, NSURLConnection-
DownloadDelegate, is relevant only if you’re writing a Newsstand app and is not dis-
cussed in this book.) The first two, NSURLConnectionDelegate and
NSURLConnectionDataDelegate, distinguish authentication and initial connection,
on the one hand, from sending a request and receiving a response, on the other; this
will cause your existing code no difficulty, however, because NSURLConnectionData-
Delegate itself adopts NSURLConnectionDelegate, and because this is, after all, only
a protocol — the initialization methods declare the delegate: parameter as a pure id,
so there is no need for your delegate class to adopt NSURLConnectionDownload-
Delegate formally, and your existing code should compile for iOS 5 and continue to
work without any change.

The real difficulty for the programmer is that, as of this writing, the documentation is
a complete mess; for example, there is no documentation whatever on
NSURLConnectionDataDelegate, and the various guides and discussions have not
been updated to reflect the new architecture. Only the NSURLConnection header file
provides any useful information.

Bonjour | 923

The NSNetServiceBrowser is now searching for devices advertising iTunes sharing and
will keep doing so until we destroy it or tell it to stop. It is common to leave the service
browser running, because devices can come and go very readily. As they do, the service
browser’s delegate (NSNetServiceBrowserDelegate) will be informed. For purposes of
this example, I’ll simply maintain a list of services, and update the app’s interface when
the situation changes:

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
 didFindService:(NSNetService *)netService
 moreComing:(BOOL)moreServicesComing {
 [self.services addObject:netService];
 if (!moreServicesComing)
 [self updateInterface];
}

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
 didRemoveService:(NSNetService *)netService
 moreComing:(BOOL)moreServicesComing {
 [self.services removeObject:netService];
 if (!moreServicesComing)
 [self updateInterface];
}

The delegate messages very kindly tell me when they have completed the task of in-
forming me of a series of changes, so I can wait to update the interface until after a full
batch of changes has ended. In this example, I don’t really have any interface to update;
I’ll just log the list of services, each of which is an NSNetService instance:

- (void) updateInterface {
 for (NSNetService* service in self.services) {
 if (service.port == -1) {
 NSLog(@"service %@ of type %@, not yet resolved",
 service.name, service.type);
 }
 }
}

To connect to a service, we would first need to resolve it, thus obtaining an address and
other useful information. An unresolved service has port -1, as shown in the previous
code. To resolve a service, you tell it to resolve (resolveWithTimeout:); you will probably
also set a delegate on the service (NSNetServiceDelegate), so as to be notified when the
resolution succeeds (or fails). Here, I’ll have the delegate call my updateInterface
method again if a resolution succeeds, and I’ll extend updateInterface to show the port
number for any resolved services:

- (void) updateInterface {
 for (NSNetService* service in self.services) {
 if (service.port == -1) {
 NSLog(@"service %@ of type %@, not yet resolved",
 service.name, service.type);
 [service setDelegate:self];
 [service resolveWithTimeout:10];
 } else {

924 | Chapter 37: Basic Networking

 NSLog(@"service %@ of type %@, port %i, addresses %@",
 service.name, service.type, service.port, service.addresses);
 }
 }
}

- (void)netServiceDidResolveAddress:(NSNetService *)sender {
 [self updateInterface];
}

The addresses of a resolved service constitute an array of NSData. Logging an address
like this is largely pointless, as it is not human-readable, but it’s useful for handing to
a CFSocket. In general you’ll call the service’s getInputStream:outputStream: to start
talking over the connection; that’s outside the scope of this discussion. See Apple’s
WiTap example for more.

Push Notifications
If your app uses a server on the network that’s under your control, you can arrange for
the user to be notified when a significant event takes place on the server. This is called
a push notification (or remote notification). The user interface for a push notification is
the same as for a local notification, and the user can disable your app’s notifications
altogether (Chapter 26).

For example, the TidBITS News app is about news stories on the TidBITS website. The
app’s data comes from an RSS feed, which is refreshed on the server side whenever
something changes on the site, such as a new news story being posted. It might be
appropriate (and cool) if we were to add push notifications to the server code that
refreshes the RSS feed, so that users could be alerted to the fact that they might like to
launch TidBITS News and read a newly posted story.

Implementing push notifications is not trivial, and requires cooperation across the net-
work between your app and your server, and between your server and Apple’s push
notification server. I’ve never actually tried this, so I’m just describing what the archi-
tecture is like; for details, read Apple’s Local and Push Notification Programming Guide.

When developing your app, you obtain from the iOS Provisioning Portal (Chapter 9)
credentials identifying your app, and allowing communication between your server and
Apple’s push notification server, and between Apple’s push notification server and your
app running on the user’s device. When your app launches, it calls the UIApplication
method registerForRemoteNotificationTypes:, which communicates asynchronously
with Apple’s push notification server to obtain a token identifying this instance of your
app. If successful, the token comes back in the app delegate method application:did-
RegisterForRemoteNotificationsWithDeviceToken:. At that point, your app must com-
municate with your server to provide it with this token.

The server is now maintaining two pieces of information: its credentials and a list of
tokens effectively representing users. When an event occurs at your server for which

Push Notifications | 925

the server wishes to push a notification out to users, the server uses its credentials to
connect with Apple’s push notification server and — for every individual user whom
the server wishes to notify — streams a message to Apple’s push notification server,
providing the user token plus a “payload” that describes the notification, much as a
UILocalNotification does (Chapter 26). The payload is written in JSON (Chapter 36)

Meanwhile, the user’s device, if it is still on, is (with luck) connected to the network in
a low-power mode that allows it to hear from Apple’s push notification server. The
push notification server sends the message to the user’s device, where the system treats
it much like a local notification. If the user summons your app through the notification
interface, your app can learn what has happened through either the app delegate mes-
sage application:didReceiveRemoteNotification: or (if the app had to be launched
from scratch) through application:didFinishLaunchingWithOptions:, whose dictio-
nary will contain UIApplicationLaunchOptionsRemoteNotificationKey. The notification
itself, instead of being a UILocalNotification object, is an NSDictionary corresponding
to the original JSON payload.

Beyond Basic Networking
There are many aspects of basic networking that I haven’t gone into in this chapter.
For example:

• An NSURLRequest has a cache policy, which you can set to determine whether
the request might be satisfied without freshly downloading previously downloaded
data.

• An NSURLRequest to be handed to an NSURLConnection can specify that it wants
to use the FTP, HTTP, or HTTPS scheme, including POST requests.

• An NSURLConnection can handle redirects and authentication.

See the URL Loading System Programming Guide. You can also get as deep into the
details of networking as you like; see in particular the CFNetwork Programming Guide.

Apple provides a generous amount of sample code. See in particular Simple-
URLConnections, AdvancedURLConnections, SimpleNetworkStreams, Simple-
FTPSample, and MVCNetworking.

926 | Chapter 37: Basic Networking

CHAPTER 38

Threads

A thread is, simply put, a subprocess of your app that can execute even while other
subprocesses are also executing. Such simultaneous execution is called concurrency.
The iOS frameworks use threads all the time; if they didn’t, your app would be less
responsive to the user — perhaps even completely unresponsive. The genius of the
frameworks, though, is that they use threads precisely so that you don’t have to.

For example, suppose your app is downloading something from the network (Chap-
ter 37). This download doesn’t happen all by itself; somewhere, someone is running
code that interacts with the network and obtains data. Similarly, how does Core Motion
work (Chapter 35)? The data from the sensors is being gathered and processed con-
stantly, with extra calculations to separate gravity from user-induced acceleration and
to account for bias and scaling in the gyroscope. Yet neither a download nor sensor
updating prevents your code from running, nor do they prevent the user from tapping
and swiping things in your interface. That’s concurrency in action.

It is a testament to the ingenuity of the iOS frameworks that this book has proceeded
so far with so little mention of threads. Indeed, it would have been nice to avoid the
topic altogether. Threads are difficult and dangerous, and if at all possible you should
avoid them. But sometimes that isn’t possible. So this chapter introduces threads, along
with a warning: threads entail complications and subtle pitfalls, and can make your
code hard to debug. There is much more to threading, and especially to making your
threaded code safe, than this chapter can possibly touch on. For detailed information
about the topics introduced in this chapter, read Apple’s Concurrency Programming
Guide and Threading Programming Guide.

The Main Thread
You are always using some thread. All your code must run somewhere; “somewhere”
means a thread. When code calls a method, that method normally runs on the same
thread as the code that called it. Your code is called through events (Chapter 11); those

927

events normally call your code on the main thread. The main thread has certain special
properties:

The main thread automatically has a run loop.
A run loop is a recipient of events. It is how your code is notified that something is
happening; without a run loop, a thread can’t receive events. Cocoa events nor-
mally arrive on the main thread’s run loop; that’s why your code, called by those
events, executes on the main thread.

The main thread is the interface thread.
When the user interacts with the interface, those interactions are reported as events
— on the main thread. When your code interacts with the interface, it too must do
so on the main thread. Of course that will normally happen automatically, because
your code normally runs on the main thread.

The main thread thus has a very great deal of work to do. Here’s how life goes in your
app:

1. An event arrives on the main thread; the user has tapped a button, for example,
and this is reported to your app as a UIEvent and to the button through the touch
delivery mechanism (Chapter 38) — on the main thread.

2. The control event causes your code (the action handler) to be called — on the main
thread. Your code now runs — on the main thread. While your code runs, nothing
else can happen on the main thread. Your code might command some changes in
the interface; this is safe, because your code is running on the main thread.

3. Your code finishes. The main thread’s run loop is now free to report more events,
and the user is free to interact with the interface once again.

The bottleneck here is obviously step 2, the running of your code. Your code runs on
the main thread. That means the main thread can’t do anything else while your code
is running. No events can arrive while your code is running. The user can’t interact
with the interface while your code is running. But this is usually no problem, because:

What Is Concurrency, Really?
Part of the power of threads is that they implement concurrency without your having
to worry about precisely how they do it. On a Mac Pro with eight cores, you could
theoretically run eight threads truly simultaneously, one on each core. An iPhone 4S or
an iPad 2 has two cores; but as of this writing, all other iOS devices have just one core.
Nevertheless, an iOS app is multithreaded. How can this be? Basically, the processor
performs a little code from one thread, then a little code from another, then a little code
from yet another, and so on; it switches its attention between threads so quickly that
they seem to run at the same time. But this is still concurrency. Concurrency is every
bit as meaningful a reality on an iPod touch as on a Mac Pro; how it is implemented at
the level of the kernel and the processor is, mercifully, no concern of yours.

928 | Chapter 38: Threads

• Your code executes really fast. It’s true that the user can’t interact with the interface
while your code runs, but this is such a tiny interval of time that the user will
probably never even notice.

• Your code, as it runs, blocks the user from interacting with the interface. But that’s
not bad: it’s good! Your code, in response to what the user does, might update the
interface; it would be insane if the user could do something else in the interface
while you’re in the middle of updating it.

On the other hand, as I’ve already mentioned, the frameworks operate in secondary
threads all the time. The reason this doesn’t affect you is that they talk to your code on
the main thread. You have seen many examples of this in the preceding chapters. For
example:

• During an animation (Chapter 17), the interface remains responsive to the user,
and it is possible for your code to run. The Core Animation framework is running
the animation and updating the presentation layer on a background thread. But
your delegate methods or completion blocks are called on the main thread.

• A UIWebView’s fetching and loading of its content is asynchronous (Chap-
ter 24); that means the work is done in a background thread. But your delegate
methods are called on the main thread. The same is normally true of downloading
a resource from the network with NSURLConnection (Chapter 37).

• Sounds are played asynchronously (Chapter 27). But your delegate methods are
called on the main thread. Obviously, the same is true of music players (Chap-
ter 29). Similarly, movie loading, preparation, and playing happens asynchro-
nously (Chapter 28). But your delegate methods are called on the main thread.

• Saving a movie file takes time (Chapter 28 and Chapter 30). So the saving takes
place on a background thread. Similarly, UIDocument saves and reads on a back-
ground thread (Chapter 36). But your delegate methods or completion blocks are
called on the main thread.

Thus, you can (and should) usually ignore threads and just keep plugging away on the
main thread. However, there are two kinds of situation in which your code will need
to be explicitly aware of threading issues:

Your code is called back, but not on the main thread.
Some frameworks explicitly inform you in their documentation that callbacks are
not guaranteed to take place on the main thread. For example, the documentation
on CATiledLayer (Chapter 20) warns that drawLayer:inContext: is called in a
background thread. By implication, our drawRect: code, triggered by CATiled-
Layer to update tiles, is running in a background thread. Fortunately, in iOS 4 and
later, the UIKit drawing-related classes are thread-safe, and so is accessing the cur-
rent context. Nevertheless, we cannot completely ignore the fact that this code is
not running on the main thread.

The Main Thread | 929

Similarly, the documentation on AV Foundation (Chapter 28, Chapter 30) warns
that its blocks and notifications can arrive on a background thread. So if you intend
to update the user interface, or use a value that might also be used by your main-
thread code, you’ll need to be thread-conscious.

Your code takes significant time.
If your code takes a long time to run and if running it on the main thread would
prevent user interaction, you’ll need to run that code on a background thread in-
stead. I gave an example in Chapter 32: I called enumerateEventsMatching-
Predicate: on a background thread in order to prevent the user interface from
freezing up in case the enumeration took a long time. This isn’t just a matter of
aesthetics; the system will summarily kill your app if it discovers that the main
thread is blocked for too long.

Why Threading Is Hard
The one certain thing about computer code is that it just clunks along the path of
execution, one statement at a time. Lines of code, in effect, are performed in the order
in which they appear. With threading, that certainty goes right out the window. If you
have code that can be performed on a background thread, then you don’t know when
it will be performed in relation to the code being performed on any other thread. For
example, any line of your background-thread code could be interleaved between any
two lines of your main-thread code.

You also might not know how many times a piece of your background-thread code
might be running simultaneously. Unless you take steps to prevent it, the same code
could be spawned off as a thread even while it’s already running in a thread. So any
line of your background-thread code could be interleaved between any two lines of
itself.

This situation is particularly threatening with regard to shared data. Suppose two
threads were to get hold of the same object and change it. Who knows what horrors
might result? Objects in general have state, adding up to the state of your app as a
whole. If multiple threads are permitted to access your objects, they and your entire
app can be put into an indeterminate or nonsensical state.

This problem cannot be solved by simple logic. For example, suppose you try to make
data access safe with a condition, as in this pseudo-code:

if (no other thread is touching this data)
 do something to the data...

Such logic cannot succeed. Suppose the condition succeeds; no other thread is touching
this data. But between the time when that condition is evaluated and the time when
the next line executes and you start to do something to the data, another thread can
come along and start touching the data!

930 | Chapter 38: Threads

It is possible to request assistance at a deeper level to ensure that a section of code is
not run by two threads simultaneously. For example, you can implement a lock around
a section of code. But locks generate an entirely new level of potential pitfalls. In general,
a lock is an invitation to forget to use the lock, or to forget to remove the lock after
you’ve set it. And threads can end up contending for a lock in a way that permits neither
thread to proceed.

Another problem is that the lifetime of a thread is independent of the lifetimes of other
objects in your app. When an object is about to go out of existence and its dealloc has
been called and executed, you are guaranteed that none of your code in that object will
ever run again. But a thread might still be running, and might try to talk to your object,
even after your object has gone out of existence. You cannot solve this problem by
having the thread retain your object, because then there is the danger that the thread
might be the last code retaining your object, so that when the thread releases your
object, your object’s dealloc is called on that thread rather than the main thread, which
could be a disaster.

Not only is threaded code hard to get right; it’s also hard to test and hard to debug. It
introduces indeterminacy, so you can easily make a mistake that never appears in your
testing, but that does appear for some user. The real danger is that the user’s experience
will consist only of distant consequences of your mistake, long after the point where
you made it, making the real cause of the problem extraordinarily difficult to track
down.

All of this is meant to scare you away from using threads if you can possibly avoid it.
For an excellent (and suitably frightening) account of some of the dangers and consid-
erations that threading involves, see Apple’s tech note TN2109. If terms like race con-
dition and deadlock don’t strike fear into your veins, look them up on Wikipedia.

When you call NSLog in your multithreaded code, the output in the
console displays a number (in square brackets, after the colon) identi-
fying the thread on which it was called. This is unbelievably helpful.

Three Ways of Threading
Without pretending to completeness or even safety, this section will illustrate three
approaches to threading, progressing from worst to best. To give the examples a com-
mon base, we envision an app that draws the Mandelbrot set. (The actual code, not all
of which is shown here, is adapted from a small open source project I downloaded from
the Internet.) All it does is draw the basic Mandelbrot set in black and white, but that’s
enough crunching of numbers to introduce a significant delay. The idea is then to see
how we can get that delay off the main thread.

Three Ways of Threading | 931

The app contains a UIView subclass, MyMandelbrotView, which has one instance
variable, a CGContextRef called bitmapContext. Here’s the structure of MyMandelbrot-
View’s implementation:

// jumping-off point: draw the Mandelbrot set
- (void) drawThatPuppy {
 [self makeBitmapContext: self.bounds.size];
 CGPoint center =
 CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
 [self drawAtCenter: center zoom: 1];
 [self setNeedsDisplay];
}

// create (and memory manage) instance variable
- (void) makeBitmapContext:(CGSize)size {
 if (self->bitmapContext)
 CGContextRelease(self->bitmapContext);
 // ... configure arguments ...
 CGContextRef context = CGBitmapContextCreate(NULL, /* ... */);
 self->bitmapContext = context;
}

// draw pixels of self->bitmapContext
- (void) drawAtCenter:(CGPoint)center zoom:(CGFloat)zoom {
 // do stuff to self->bitmapContext
}

// turn pixels of self->bitmapContext into CGImage, draw into ourselves
- (void) drawRect:(CGRect)rect {
 CGContextRef context = UIGraphicsGetCurrentContext();
 CGImageRef im = CGBitmapContextCreateImage(self->bitmapContext);
 CGContextDrawImage(context, self.bounds, im);
 CGImageRelease(im);
}

// final memory managment
- (void) dealloc {
 if (self->bitmapContext)
 CGContextRelease(bitmapContext);
}

(I haven’t discussed creating a bitmap context from scratch; see “Graphics Contexts”
in the Quartz 2D Programming Guide for example code. In this case, we take advantage
of a feature that lets us pass NULL as the first argument to CGBitmapContextCreate,
which relieves us of the responsibility for creating and memory-managing a data buffer
associated with the graphics context.)

The drawAtCenter:zoom: method, which calculates the pixels of the instance variable
bitmapContext, is time-consuming, and we can see this by running the app on a device.
On my iPod touch, for example, if the entire process is kicked off by tapping a button
whose action handler calls drawThatPuppy, there is a significant delay before the Man-
delbrot graphic appears in the interface, during which time the button remains high-
lighted. That is a sure sign that we are blocking the main thread; we’ve got a problem,

932 | Chapter 38: Threads

and we need to do something about it. We will consider three ways of moving this work
off onto a background thread: with an old-fashioned manual thread, with NSOpera-
tion, and with Grand Central Dispatch.

Manual Threads
The simple way to create a thread manually is to send performSelectorInBackground:
withObject: to some object containing a method to be performed on a background
thread. Even with this simple approach, there is additional work to do:

Pack the arguments.
The method designated by the first argument to performSelectorInBackground:
withObject: can take only one parameter, whose value you supply as the second
argument. So, if you want to pass more than one piece of information into the
thread, or if the information you want to pass isn’t an object, you’ll need to pack
it into a single object. Typically, this will be an NSDictionary.

Set up an autorelease pool.
Secondary threads don’t participate in the global autorelease pool. So the first thing
you must do in your threaded code is to wrap everything in an autorelease pool.
Otherwise, you’ll probably leak memory as autoreleased objects are created behind
the scenes and are never released.

We’ll rewrite MyMandelbrotView to use manual threading. Our drawAtCenter:zoom:
method takes two parameters (and neither is an object), so we’ll have to pack the ar-
gument that we pass into the thread, as a dictionary. Once inside the thread, we’ll set
up our autorelease pool and unpack the dictionary. This will all be made much easier
if we interpose a trampoline method between drawThatPuppy and drawAtCenter:zoom:.
So our implementation now looks like this (ignoring the parts that haven’t changed):

- (void) drawThatPuppy {
 [self makeBitmapContext: self.bounds.size];
 CGPoint center =
 CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
 NSDictionary* d = [[NSDictionary alloc] initWithObjectsAndKeys:
 [NSValue valueWithCGPoint:center], @"center",
 [NSNumber numberWithInt: 1], @"zoom",
 nil];
 [self performSelectorInBackground:@selector(reallyDraw:) withObject:d];
 // [self setNeedsDisplay];
}

// trampoline, background thread entry point
- (void) reallyDraw: (NSDictionary*) d {
 @autoreleasepool {
 [self drawAtCenter: [[d objectForKey:@"center"] CGPointValue]
 zoom: [[d objectForKey:@"zoom"] intValue]];
 }
}

Three Ways of Threading | 933

So far so good, but we haven’t yet figured out how to draw our view. We have com-
mented out the call to setNeedsDisplay in drawThatPuppy, because it’s too soon; the call
to performSelectorInBackground:withObject: launches the thread and returns imme-
diately, so our bitmapContext instance variable isn’t ready yet. Clearly, we need to call
setNeedsDisplay after drawAtCenter:zoom: finishes generating the pixels of the graphics
context. We can do this at the end of our trampoline method reallyDraw:, but we must
remember that we’re now in a background thread. Because setNeedsDisplay is a form
of communication with the interface, we should call it on the main thread. We can do
that with easily with performSelectorOnMainThread:withObject:waitUntilDone:. For
maximum flexibility, it will probably be best to implement a second trampoline
method:

// trampoline, background thread entry point
- (void) reallyDraw: (NSDictionary*) d {
 @autoreleasepool {
 [self drawAtCenter: [[d objectForKey:@"center"] CGPointValue]
 zoom: [[d objectForKey:@"zoom"] intValue]];
 [self performSelectorOnMainThread:@selector(allDone)
 withObject:nil waitUntilDone:NO];
 }
}

// called on main thread! background thread exit point
- (void) allDone {
 [self setNeedsDisplay];
}

This code is specious; the seeds of nightmare are already sown. We now have a single
object, MyMandelbrotView, some of whose methods are to be called on the main
thread and some on a background thread; this invites us to become confused at some
later time. Even worse, the main thread and the background thread are constantly
sharing a piece of data, the instance variable bitmapContext; what’s to stop some other
code from coming along and triggering drawRect: while drawAtCenter:zoom: is in the
middle of filling bitmapContext?

To solve these problems, we might need to use locks, and we would probably have to
manage the thread more explicitly. For instance, we might use the NSThread class,
which lets us retain our thread as an instance and query it from outside (with is-
Executing and similar). Such code can become quite elaborate and difficult to under-
stand, even with an extremely basic implementation. It will be easier at this point to
use NSOperation, the subject of the next threading approach.

NSOperation
The essence of NSOperation is that it encapsulates a task, not a thread. The operation
described by an NSOperation object may be performed on a background thread, but
you don’t have to concern yourself with that directly. You describe the operation and
add the NSOperation to an NSOperationQueue to set it going. When the operation

934 | Chapter 38: Threads

finishes, you are notified, typically by the NSOperation posting a notification. You can
query both the queue and its operations from outside with regard to their state.

We’ll rewrite MyMandelbrotView to use NSOperation. We need a new instance vari-
able, an NSOperationQueue; we’ll call it queue. And we have a new class, My-
MandelbrotOperation, an NSOperation subclass. It is possible to take advantage of a
built-in NSOperation subclass such as NSInvocationOperation or NSBlockOperation,
but I’m deliberately illustrating the more general case by subclassing NSOperation it-
self.

Our implementation of drawThatPuppy makes sure that the queue exists; it then creates
an instance of MyMandelbrotOperation, configures it, registers for its notification, and
adds it to the queue:

- (void) drawThatPuppy {
 CGPoint center =
 CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
 if (!self.queue) {
 NSOperationQueue* q = [[NSOperationQueue alloc] init];
 self.queue = q; // retain policy
 }
 MyMandelbrotOperation* op =
 [[MyMandelbrotOperation alloc] initWithSize:self.bounds.size
 center:center zoom:1];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(operationFinished:)
 name:@"MyMandelbrotOperationFinished"
 object:op];
 [self.queue addOperation:op];
}

Our time-consuming calculations are performed by MyMandelbrotOperation. An
NSOperation subclass, such as MyMandelbrotOperation, will typically have at least
two methods:

A designated initializer
The NSOperation may need some configuration data. Once the NSOperation is
added to a queue, it’s too late to talk to it, so you’ll usually hand it this configuration
data as you create it, in its designated initializer.

A main method
This method will be called (with no parameters) automatically by the
NSOperationQueue when it’s time for the NSOperation to start.

Here’s MyMandelbrotOperation’s interface section and the start of its implementation
section:

// [in MyMandelbrotOperation.h:]
@interface MyMandelbrotOperation : NSOperation
- (id) initWithSize: (CGSize) sz center: (CGPoint) c zoom: (CGFloat) z;
- (CGContextRef) bitmapContext;
@end

Three Ways of Threading | 935

// [in MyMandelbrotOperation.m:]
@implementation MyMandelbrotOperation {
 CGSize size;
 CGPoint center;
 CGFloat zoom;
 CGContextRef bitmapContext;
}

We have provided three instance variables for configuration, to be set in the initializer.
Because MyMandelbrotOperation is completely separate from MyMandelbrotView, it
must be told MyMandelbrotView’s size explicitly in the initializer. MyMandelbrot-
Operation also has its own CGContextRef instance variable, bitmapContext, along with
an accessor so MyMandelbrotView can retrieve a reference to this graphics context
when the operation has finished. Note that this is different from MyMandelbrotView’s
bitmapContext; one of the benefits of using NSOperation is that we are no longer sharing
data so promiscuously between threads.

Here’s the implementation for MyMandelbrotOperation. All the calculation work has
been transferred from MyMandelbrotView to MyMandelbrotOperation without
change; the only difference is that bitmapContext now means MyMandelbrot-
Operation’s instance variable:

- (id) initWithSize: (CGSize) sz center: (CGPoint) c zoom: (CGFloat) z {
 self = [super init];
 if (self) {
 self->size = sz;
 self->center = c;
 self->zoom = z;
 }
 return self;
}

- (void) dealloc {
 if (self->bitmapContext)
 CGContextRelease(self->bitmapContext);
}

- (CGContextRef) bitmapContext {
 return self->bitmapContext;
}

- (void)makeBitmapContext:(CGSize)size {
 // ... same as before ...
}

- (void)drawAtCenter:(CGPoint)center zoom:(CGFloat)zoom {
 // ... same as before ...
}

- (void) main {
 if ([self isCancelled])
 return;
 [self makeBitmapContext: self->size];

936 | Chapter 38: Threads

 [self drawAtCenter: self->center zoom: self->zoom];
 if (![self isCancelled])
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"MyMandelbrotOperationFinished" object:self];
}

The only method of interest is main. First, we call the NSOperation method is-
Cancelled to make sure we haven’t been cancelled while sitting in the queue; this is
good practice. Then, we do exactly what drawThatPuppy used to do, initializing our
graphics context and drawing into its pixels.

When the operation is over, we need to notify MyMandelbrotView to come and fetch
our data. There are two ways to do this; either main can post a notification through the
NSNotificationCenter, or MyMandelbrotView can use key–value observing (Chap-
ter 13) to be notified when our isFinished key path changes. We’ve chosen the former
approach; observe that we check one more time to make sure we haven’t been cancelled.

Now we are back in MyMandelbrotView, hearing that MyMandelbrotOperation has
finished. We must immediately pick up any required data, because the NSOperation-
Queue is about to release this NSOperation. However, we must be careful; the notifi-
cation may have been posted on a background thread, in which case our method for
responding to it will also be called on a background thread. We are about to set our
own graphics context and tell ourselves to redraw; those are things we want to do on
the main thread. So we immediately trampoline ourselves out to the main thread:

// warning! called on background thread
- (void) operationFinished: (NSNotification*) n {
 [self performSelectorOnMainThread:@selector(redrawWithOperation:)
 withObject:[n object] waitUntilDone:NO];
}

As we set MyMandelbrotView’s bitmapContext by reading MyMandelbrotOperation’s
bitmapContext, we must concern ourselves with the memory management of a CGCon-
text obtained from an object that may be about to release that context:

// now we're back on the main thread
- (void) redrawWithOperation: (MyMandelbrotOperation*) op {
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:@"MyMandelbrotOperationFinished"
 object:op];
 CGContextRef context = [op bitmapContext];
 if (self->bitmapContext)
 CGContextRelease(self->bitmapContext);
 self->bitmapContext = (CGContextRef) context;
 CGContextRetain(self->bitmapContext);
 [self setNeedsDisplay];
}

Using NSOperation instead of manual threading may not seem like any reduction in
work, but it is a tremendous reduction in headaches:

Three Ways of Threading | 937

The operation is encapsulated.
Because MyMandelbrotOperation is an object, we’ve been able to move all the
code having to do with drawing the pixels of the Mandelbrot set into it. No longer
does MyMandelbrotView contain some code to be called on the main thread and
some code to be called on a background thread. The only MyMandelbrotView
method that can be called in the background is operationFinished:, and that’s a
method we’d never call explicitly ourselves, so we won’t misuse it accidentally.

The data sharing is rationalized.
Because MyMandelbrotOperation is an object, it has its own bitmapContext. The
only moment of data sharing comes in redrawWithOperation:, when we must set
MyMandelbrotView’s bitmapContext to MyMandelbrotOperation’s bitmap-

Context. Even if multiple MyMandelbrotOperation objects are added to the queue,
the moments when we set MyMandelbrotView’s bitmapContext all occur on the
main thread, so they cannot conflict with one another.

The coherence of MyMandelbrotView’s bitmapContext does depend upon our obedi-
ence to an implicit contract not to set it or write into it anywhere except a few specific
moments in MyMandelbrotView’s code. But this is always a problem with data sharing
in a multithreaded world, and we have done all we can to simplify the situation.

If we are concerned with the possibility that more than one instance of MyMandelbrot-
Operation might be added to the queue and executed concurrently, we have a further
defense — we can set the NSOperationQueue’s maximum concurrency level to 1:

NSOperationQueue* q = [[NSOperationQueue alloc] init];
[q setMaxConcurrentOperationCount:1];
self.queue = q;

This turns the NSOperationQueue into a true serial queue; every operation on the
queue must be completely executed before the next can begin. This might cause an
operation added to the queue to take longer to execute, if it must wait for another
operation to finish before it can even get started; however, this delay might not be
important. What is important is that by executing the operations on this queue com-
pletely separately, we guarantee that only one operation at a time can do any data
sharing. A serial queue is thus a form of data locking.

Because MyMandelbrotView can be destroyed (if, for example, its view controller is
destroyed), there is still a risk that it will create an operation that will outlive it and will
try to access it after it has been destroyed. We can reduce that risk by canceling all
operations in our queue before releasing it:

- (void)dealloc {
 // release the bitmap context
 if (self->bitmapContext)
 CGContextRelease(bitmapContext);
 [self->queue cancelAllOperations];
}

938 | Chapter 38: Threads

In our code, we are still using the potentially confusing trampoline technique. Our
operationFinished: method is called by a notification on what may be a background
thread, so it calls redrawWithOperation: on the main thread. By a neat trick involving a
block, we can actually eliminate the trampoline and both of those methods.

Recall, from Chapter 11, the NSNotificationCenter method addObserverForName:
object:queue:usingBlock:. The queue: argument here is an NSOperationQueue — the
queue on which we’d like our block to be called. I said in Chapter 11 that this will
usually be nil, signifying the same thread that posted the notification, which will usually
be the main thread. In this case, though, the thread that posted the notification might
not be the main thread, so we can request explicitly that the block be called on the main
thread. In other words, NSNotificationCenter will perform the trampolining for us.

As I said in Chapter 12, we have to take precautions to avoid a retain cycle; addObserver-
ForName:object:queue:usingBlock: returns an observer which retains us, so we mustn’t
retain it in turn. We don’t want to keep our observer as an instance variable because
there might be multiple conflicting simultaneous observers. So we declare it as
__weak to prevent the retain cycle, and we declare it as __block so that we can see its
future value (the value it will take on after the call to addObserverForName:object:queue:
usingBlock: returns) inside the block and use it to deregister when the notification
arrives:

MyMandelbrotOperation* op =
 [[MyMandelbrotOperation alloc] initWithSize:self.bounds.size
 center:center zoom:1];
__block __weak id observer = [[NSNotificationCenter defaultCenter]
 addObserverForName:@"MyMandelbrotOperationFinished"
 object:op queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 MyMandelbrotOperation* op2 = note.object;
 CGContextRef context = [op2 bitmapContext];
 if (self->bitmapContext)
 CGContextRelease(self->bitmapContext);
 self->bitmapContext = (CGContextRef) context;
 CGContextRetain(self->bitmapContext);
 [self setNeedsDisplay];
 [[NSNotificationCenter defaultCenter]
 removeObserver:observer
 name:@"MyMandelbrotOperationFinished"
 object:op2];
}];
[self.queue addOperation:op];

That’s pretty elegant, but in the next section we’ll go even further — we’ll effectively
eliminate data sharing entirely by using Grand Central Dispatch.

A number of useful methods mentioned earlier in this book expect an
NSOperationQueue argument; see Chapter 35 (startDeviceMotion-
UpdatesToQueue:withHandler:, and similarly for the other sensors) and
Chapter 37 (sendAsynchronousRequest:queue:completionHandler:).

Three Ways of Threading | 939

Grand Central Dispatch
Grand Central Dispatch, or GCD, is a sort of low-level analogue to NSOperation and
NSOperationQueue (in fact, NSOperationQueue uses GCD under the hood). When I
say GCD is low-level, I’m not kidding; it’s effectively baked into the operating system
kernel. Thus it can be used by any code whatsoever and is tremendously efficient.

Using GCD is like a mixture of the manual threading approach with the NSOperation-
Queue approach. It’s like the manual threading approach because code to be executed
on one thread appears together with code to be executed on another; however, you
have a much better chance of keeping the threads and data management straight, be-
cause GCD uses Objective-C blocks. It’s like the NSOperationQueue approach because
it uses queues; you express a task and add it to a queue, and the task is executed on a
thread as needed. Moreover, by default these queues are serial queues, with each task
on a queue finishing before the next is started, which, as we’ve already seen, is a form
of data locking.

We’ll rewrite MyMandelbrotView to use GCD. The structure of its interface is very
slightly changed from the original, nonthreaded version. We have a new instance vari-
able to hold our queue, which is a dispatch queue; a dispatch queue is a lightweight
opaque object consisting essentially of a list of blocks to be executed. Our makeBitmap-
Context: method now returns a graphics context rather than setting an instance variable
directly; and our drawAtCenter:zoom: method now takes an additional parameter, the
graphics context to draw into:

// [in MyMandelbrotView.h:]
@interface MyMandelbrotView ()
- (void)drawAtCenter:(CGPoint)center zoom:(CGFloat)zoom context:(CGContextRef)c;
- (CGContextRef)makeBitmapContext:(CGSize)size;
@end

@implementation MyMandelbrotView {
 CGContextRef bitmapContext;
 dispatch_queue_t draw_queue;
}

In MyMandelbrotView’s implementation, we add management to create our dispatch
queue as the view is created and to tear it down as the view is destroyed:

- (id)initWithCoder:(NSCoder *)aDecoder {
 self = [super initWithCoder: aDecoder];
 if (self) {
 self->draw_queue = dispatch_queue_create("com.neuburg.mandeldraw", NULL);
 }
 return self;
}

- (void) dealloc {

940 | Chapter 38: Threads

 if (bitmapContext)
 CGContextRelease(bitmapContext);
 dispatch_release(draw_queue);
}

Now for the implementation of drawThatPuppy. Here it is:

- (void) drawThatPuppy {
 CGPoint center =
 CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
 dispatch_async(draw_queue, ^{
 CGContextRef bitmap = [self makeBitmapContext: self.bounds.size];
 [self drawAtCenter: center zoom: 1 context:bitmap];
 dispatch_async(dispatch_get_main_queue(), ^{
 if (self->bitmapContext)
 CGContextRelease(self->bitmapContext);
 self->bitmapContext = bitmap;
 [self setNeedsDisplay];
 });
 });
}

That’s all there is to it. No trampoline methods. No performSelector.... No packing
arguments into a dictionary. No autorelease pools. No instance variables. And effec-
tively no sharing of data across threads. That’s the beauty of blocks.

We begin by calculating our center, as before. This value will be visible within the
blocks, because blocks can see their surrounding context.

Now comes our task to be performed in a background thread on our queue,
draw_queue. We specify this task with the dispatch_async function. GCD has a lot
of functions, but this is the one you’ll use 99 percent of the time; it’s the most im-
portant thing you need to know about GCD. We specify a queue and we provide a
block saying what we’d like to do. Thanks to the block, we don’t need any trampoline
methods. In the block, we begin by declaring bitmap as a variable local to the block.
We then call makeBitmapContext: to create the graphics context bitmap, and drawAt-
Center:zoom:context: to set its pixels; we make these calls directly, just as we would
do if we weren’t threading in the first place.

Now we need to get back onto the main thread. How do we do that? With
dispatch_async again! We specify the main queue (which is effectively the main
thread) with a function provided for this purpose and describe what we want to do
in another block. This second block is nested inside the first, so it isn’t performed
until the preceding commands in the first block have finished; moreover, because
the first block is part of the second block’s surrounding context, the second block
can see our block-local bitmap variable! We set our bitmapContext instance variable
(with no need for further memory management, because makeBitmapContext has re-
turned a retained graphics context), and call setNeedsDisplay.

Three Ways of Threading | 941

For other examples of dispatch_async as a way of getting back onto the
main thread (dispatch_get_main_queue) in order to talk to the interface
from inside a block that might be executed on a background thread, see
Chapter 28, Chapter 29, and Chapter 30.

The benefits and elegance of GCD as a form of concurrency management are stunning.
The bitmap variable is not shared; it is local to each specific call to drawThatPuppy. The
nested blocks are executed in succession, so any instance of bitmap must be completely
filled with pixels before being used to set the bitmapContext instance variable. More-
over, the entire operation is performed on a serial queue, and bitmapContext is touched
only from code running running on the main thread; thus there is no data sharing and
no possibility of conflict. Our code is also highly maintainable, because the entire task
on all threads is expressed within the single drawThatPuppy method, thanks to the use
of blocks; indeed, the code is only very slightly modified from the original, nonthreaded
version.

The two most important GCD functions are:

dispatch_async

Push a block onto the end of a queue for later execution, and proceed immediately
with our own code. Thus, we can finish our own execution without waiting for the
block to execute.

dispatch_sync

Push a block onto the end of a queue for later execution, and wait until the block
has executed before proceeding with our own code. You might want to do that,
for example, if you needed a result that the block is to provide. The purpose of the
queue would be, once again, as a lightweight, reliable version of a lock, mediating
access to a shared resource. Here’s a case in point, from Apple’s own code:

- (AVAsset*)asset {
 __block AVAsset *theAsset = nil;
 dispatch_sync(assetQueue, ^(void) {
 theAsset = [[self getAssetInternal] copy];
 });
 return theAsset;
}

Any thread might call the asset method; to avoid problems, we require that only
blocks run from a particular queue (assetQueue) may touch an AVAsset. But we
need the result that this block returns; hence the call to dispatch_sync.

Examples in this book have also made use of dispatch_after (Chapter 21, Chap-
ter 22, Chapter 23) as an alternative to performSelector:withObject:afterDelay:. An-
other useful GCD function is dispatch_once, a thread-safe way of assuring that a block
is called only once; it’s often used to vend a singleton. For example, here’s a thread-
safe version of an example from Chapter 1:

942 | Chapter 38: Threads

+ (CardPainter*) sharedPainter {
 static CardPainter* sp;
 static dispatch_once_t token;
 dispatch_once(&token, ^{
 sp = [[CardPainter alloc] init];
 });
 return sp;
}

Besides serial dispatch queues, there are also concurrent dispatch queues. A concurrent
queue’s blocks are started in the order in which they were submitted to the queue, but
the next block is allowed to start before the current block finishes executing. Obviously,
you wouldn’t want to submit to a concurrent queue a task that touches a shared re-
source — that would be throwing away the entire point of serial queues. The advantage
of concurrent queues is a possible speed boost when you don’t care about the order in
which multiple tasks are finished — for example, when you want to do something in
response to every element of an array. Before iOS 5, the only concurrent queues were
the built-in global queues (available by calling dispatch_get_global_queue). New in iOS
5, you can create a concurrent queue by passing DISPATCH_QUEUE_CONCURRENT as the
second argument to dispatch_queue_create.

An interesting tweak (also new in iOS 5) is that you can queue up a barrier block on a
concurrent queue; a barrier block has the property that it won’t be dequeued until all
the blocks preceding it on the queue have been not only dequeued but fully executed,
and that no blocks following it in the queue will be dequeued until it itself has fully
executed (rather like Benjamin Britten’s “curlew sign,” signifying that every musician
must wait here until all the other musicians have reached the same point).

A frequent use of concurrent queues is with dispatch_apply. This function is like
dispatch_sync (the caller pauses until the block has finished executing), but the block
is called multiple times with an iterator argument. Thus, dispatch_apply on a concur-
rent queue is like a for loop whose iterations are multithreaded; on a device with mul-
tiple cores, this could result in a speed improvement. (Of course, this technique is
applicable only if the iterations do not depend on one another.)

An intriguing GCD feature that’s new in iOS 5 is that arbitrary data can be attached to
a queue in the form of key–value pairs (dispatch_queue_set_specific) and retrieved by
key (dispatch_queue_get_specific, dispatch_get_specific). I have no idea how this
might be used!

Threads and App Backgrounding
When your app is backgrounded and suspended (Chapter 11), a problem arises if your
code is running. The system doesn’t want to kill your code while it’s executing; on the
other hand, some other app may need to be given the bulk of the device’s resources
now. So as your app goes into the background, the system waits a short time for your

Threads and App Backgrounding | 943

app to finish doing whatever it may be doing, but it then suspends your app and stops
it by force.

This shouldn’t be a problem from your main thread’s point of view, because your app
shouldn’t have any time-consuming code on the main thread in the first place; you now
know that you can avoid this by using a background thread. On the other hand, it could
be a problem for lengthy background operations, including asynchronous tasks per-
formed by the frameworks. You can request time to complete a lengthy task (or at least
abort it yourself, coherently) in case your app is backgrounded, by wrapping it in calls
to UIApplication’s beginBackgroundTaskWithExpirationHandler: and endBackground-
Task:.

You call beginBackgroundTaskWithExpirationHandler: to announce that a lengthy task
is beginning; it returns an identification number. At the end of your lengthy task, you
call endBackgroundTask:, passing in that same identification number. This tells the ap-
plication that your lengthy task is over and that, if your app has been backgrounded
while the task was in progress, it is now okay to suspend you.

The argument to beginBackgroundTaskWithExpirationHandler: is a block, but this block
does not express the lengthy task. It expresses what you will do if your extra time ex-
pires before you finish your lengthy task. At the very least, your expiration handler must
call endBackgroundTask:, just as your lengthy task would have done; otherwise, your
app won’t just be suspended — it will be killed.

If your expiration handler block is called, you should make no assump-
tions about what thread it is running on.

Let’s use MyMandelbrotView, from the preceding section, as an example. Let’s say that
if drawThatPuppy is started, we’d like it to be allowed to finish, even if the app is sus-
pended in the middle of it, so that our bitmapContext instance variable is updated as
requested. To try to ensure this, we call beginBackgroundTaskWithExpirationHandler:
beforehand and call endBackgroundTask: at the end of the innermost block:

- (void) drawThatPuppy {
 CGPoint center =
 CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
 __block UIBackgroundTaskIdentifier bti = [[UIApplication sharedApplication]
 beginBackgroundTaskWithExpirationHandler: ^{
 [[UIApplication sharedApplication] endBackgroundTask:bti];
 }];
 if (bti == UIBackgroundTaskInvalid)
 return;
 dispatch_async(draw_queue, ^{
 CGContextRef bitmap = [self makeBitmapContext: self.bounds.size];
 [self drawAtCenter: center zoom: 1 context:bitmap];
 dispatch_async(dispatch_get_main_queue(), ^{
 if (self->bitmapContext)

944 | Chapter 38: Threads

 CGContextRelease(self->bitmapContext);
 self->bitmapContext = bitmap;
 [self setNeedsDisplay];
 [[UIApplication sharedApplication] endBackgroundTask:bti];
 });
 });
}

If our app is backgrounded while drawThatPuppy is in progress, it will (we hope) be given
enough time to live that it can run all the way to the end. Thus, the instance variable
bitmapContext will be updated, and setNeedsDisplay will be called, before we are ac-
tually suspended. Our drawRect: will not be called until our app is brought back to the
front, but there’s nothing wrong with that.

(The __block qualifier on the declaration of bti is like the __block qualifier in the add-
ObserverForName:object:queue:usingBlock: example earlier: it allows us to see, inside
the block, the value that bti will have when the call to beginBackgroundTaskWith-
ExpirationHandler: returns. The check against UIBackgroundTaskInvalid can do no
harm, and there may be situations or devices where our request to complete this task
in the background will be denied.)

It’s actually pretty good policy to use a similar technique when you’re notified that your
app is being backgrounded. It’s common practice to respond to the app delegate mes-
sage applicationDidEnterBackground: (or the corresponding UIApplicationDidEnter-
BackgroundNotification) by saving state and reducing memory usage, but this can take
time, whereas what you’d like to do is return from applicationDidEnterBackground: as
quickly as possible. A reasonable solution is to implement applicationDidEnter-
Background: very much like drawThatPuppy in the example I just gave: call begin-
BackgroundTaskWithExpirationHandler: and then call dispatch_async to get off the main
thread, and do your state-saving and so forth in its block.

What about lengthy asynchronous operations such as networking (Chapter 37)? As far
as I can tell, it might not strictly be necessary to use beginBackgroundTaskWithExpiration-
Handler: in connection with NSURLConnection; it appears that NSURLConnection
has the ability to resume automatically after an interruption when your app is sus-
pended. Still, it might be better not to rely on that behavior (or on an assumption that,
just because the network is present now, it will be present when the app awakes from
suspension), so you might like to integrate beginBackgroundTaskWithExpiration-
Handler: into your use of NSURLConnection.

Such integration can be just a little tricky, because beginBackgroundTaskWithExpiration-
Handler: and endBackgroundTask: rely on a shared piece of information, the
UIBackgroundTaskIdentifier — but the downloading operation begins in one place
(when the NSURLConnection is created, or when it is told to start) and ends in one
of two other places (the NSURLConnection’s delegate is informed that the download
has failed or succeeded), so information is not so easily shared. However, with some-
thing like our MyDownloader class, an entire single downloading operation is encap-
sulated, and we can give the class a UIBackgroundTaskIdentifier instance variable. So,

Threads and App Backgrounding | 945

we would set this instance variable with a call to beginBackgroundTaskWithExpiration-
Handler: just before telling the connection to start, and then both connection:didFail-
WithError: and connectionDidFinishLoading: would use the value stored in that in-
stance variable to call endBackgroundTask: as their last action.

946 | Chapter 38: Threads

CHAPTER 39

Undo

The ability to undo the most recent action is familiar from Mac OS X. The idea is that,
provided the user realizes soon enough that a mistake has been made, that mistake can
be reversed. Typically, a Mac application will maintain an internal stack of undoable
actions; choosing Edit → Undo or pressing Command-Z will reverse the action at the
top of the stack, and will also make that action available for Redo.

A pervasive, extensive implementation of Undo makes sense on Mac OS X, especially
when real-life objects are involved. For example, a window may represent an actual
document, a file on disk; it would be terrible if every word typed or pasted or cut
represented a permanent, irreversible change to that document. Given the transient,
visual nature of the iOS interface, however, and the sorts of thing for which iOS apps
are typically intended, users do not generally expect Undo at all.

Nevertheless, some iOS apps may benefit from at least a limited version of this facility.
Not every action needs to be undoable, and the ability to undo needn’t persist for very
long. And limited Undo is not difficult to implement. Some built-in views — in par-
ticular, those that involve text entry, UITextField and UITextView (Chapter 23) —
implement Undo already. And you can add it in other areas of your app.

The Undo Manager
Undo is provided through an instance of NSUndoManager, which basically just main-
tains a stack of undoable actions, along with a secondary stack of redoable actions. The
goal in general is to work with the NSUndoManager so as to take care of handling both
Undo and Redo in the standard manner: when the user chooses to undo the most recent
action, the action at the top of the Undo stack is popped off and reversed and is pushed
onto the top of the Redo stack.

To illustrate, I’ll use an artificially simple app in which the user can drag a small square
around the screen. We’ll start with an instance of a UIView subclass, MyView, to which
has been attached a UIPanGestureRecognizer to make it draggable, as described in
Chapter 18. The gesture recognizer’s action target is the MyView instance itself:

947

- (void) dragging: (UIPanGestureRecognizer*) p {
 if (p.state == UIGestureRecognizerStateBegan ||
 p.state == UIGestureRecognizerStateChanged) {
 CGPoint delta = [p translationInView: self.superview];
 CGPoint c = self.center;
 c.x += delta.x; c.y += delta.y;
 self.center = c;
 [p setTranslation: CGPointZero inView: self.superview];
 }
}

To make dragging of this view undoable, we need an NSUndoManager instance. Let’s
store this in an instance variable of MyView itself, accessible through a property, undoer.

There are two ways to register an action as undoable. The one we’ll use involves the
NSUndoManager method registerUndoWithTarget:selector:object:. This method
uses a target–action architecture: you provide a target, a selector for a method that takes
one parameter, and the object value to be passed as argument when the method is
called. Then, later, if the NSUndoManager is sent the undo message, it simply sends
that action with that argument to that target. What we want to undo here is the setting
of our center property. This can’t expressed directly using a target–action architecture:
we can call setCenter:, but its parameter needs to be a CGPoint, which isn’t an object.
This means we’re going to have to provide a secondary method that does take an object
parameter. This is neither bad nor unusual; it is quite common for actions to have a
special representation just for the purpose of making them undoable.

So, in our dragging: method, instead of setting self.center to c directly, we now call
a secondary method (let’s call it setCenterUndoably:):

[self setCenterUndoably: [NSValue valueWithCGPoint:c]];

At a minimum, setCenterUndoably: should do the job that setting self.center used to
do:

- (void) setCenterUndoably: (NSValue*) newCenter {
 self.center = [newCenter CGPointValue];
}

This works in the sense that the view is draggable exactly as before, but we have not
yet made this action undoable. To do so, we must ask ourselves what message the
NSUndoManager would need to send in order to undo the action we are about to
perform. We would want the NSUndoManager to set self.center back to the value it
has now, before we change it as we are about to do. And what method would NSUndo-
Manager call in order to do that? It would call setCenterUndoably:, the very method
we are implementing; that’s why we are implementing it. So:

- (void) setCenterUndoably: (NSValue*) newCenter {
 [self.undoer registerUndoWithTarget:self
 selector:@selector(setCenterUndoably:)
 object:[NSValue valueWithCGPoint:self.center]];
 self.center = [newCenter CGPointValue];
}

948 | Chapter 39: Undo

This not only makes our action undoable, it also makes it redoable. Why? Consider
what happens we want to undo this action:

1. We send undo to the NSUndoManager.

2. The NSUndoManager calls setCenterUndoably: with the new value, which is the
old value that we passed in earlier when we called registerUndo....

3. In our implementation of setCenterUndoably:, we send registerUndo... to the
NSUndoManager — and there’s a rule that, if the NSUndoManager is sent this
message while it is undoing, it puts the target–action information on the Redo stack
instead of the Undo stack (because Redo is the Undo of an Undo, if you see what
I mean). That’s one of the chief tricks to working with an NSUndoManager: it will
respond differently to registerUndo... depending on its state.

So far, so good. But our implementation of Undo is very annoying, because we are
adding a single object to the Undo stack every time dragging: is called — and it is called
many times during the course of a single drag. Thus, undoing merely undoes the tiny
increment corresponding to one individual dragging: call. What we’d like, surely, is
for undoing to undo an entire dragging gesture. We can implement this through undo
grouping. As the gesture begins, we start a group; when the gesture ends, we end the
group:

- (void) dragging: (UIPanGestureRecognizer*) p {
 if (p.state == UIGestureRecognizerStateBegan)
 [self.undoer beginUndoGrouping];
 if (p.state == UIGestureRecognizerStateBegan ||
 p.state == UIGestureRecognizerStateChanged) {
 CGPoint delta = [p translationInView: self.superview];
 CGPoint c = self.center;
 c.x += delta.x; c.y += delta.y;
 [self setCenterUndoably: [NSValue valueWithCGPoint:c]];
 [p setTranslation: CGPointZero inView: self.superview];
 }
 if (p.state == UIGestureRecognizerStateEnded ||
 p.state == UIGestureRecognizerStateCancelled)
 [self.undoer endUndoGrouping];
}

This works: each complete gesture of dragging MyView, from the time the user’s finger
contacts the view to the time it leaves, is now undoable (and then redoable) as a single
unit.

A further refinement would be to animate the “drag” that the NSUndoManager per-
forms when it undoes or redoes a user drag gesture. To do so, we take advantage of the
fact that we, too, can examine the NSUndoManager’s state; we animate the center
change when the NSUndoManager is “dragging,” but not when the user is dragging:

- (void) setCenterUndoably: (NSValue*) newCenter {
 [self.undoer registerUndoWithTarget:self
 selector:@selector(setCenterUndoably:)
 object:[NSValue valueWithCGPoint:self.center]];

The Undo Manager | 949

 if (self.undoer.isUndoing || self.undoer.isRedoing) { // animate
 UIViewAnimationOptions opt = UIViewAnimationOptionBeginFromCurrentState;
 [UIView animateWithDuration:0.4 delay:0.1 options:opt animations:^{
 self.center = [newCenter CGPointValue];
 } completion:nil];
 } else { // just do it
 self.center = [newCenter CGPointValue];
 }
}

Earlier I said that registerUndo... was one of two ways to register an action as undo-
able. The other is to use prepareWithInvocationTarget:. In general, the advantage of
prepareWithInvocationTarget: is that it lets you specify a method with any number of
parameters, and those parameters needn’t be objects. You provide the target and, in
the same line of code, send to the object returned from this call the message and argu-
ments you want sent when the NSUndoManager is sent undo (or, if we are undoing
now, redo). So, in our example, instead of this line:

[self.undoer registerUndoWithTarget:self
 selector:@selector(setCenterUndoably:)
 object:[NSValue valueWithCGPoint:self.center]];

You’d say this:

[[self.undoer prepareWithInvocationTarget:self]
 setCenterUndoably: [NSValue valueWithCGPoint:self.center]];

That code seems impossible: how can we send setCenterUndoably: without calling set-
CenterUndoably:? Either we are sending it to self, in which case it should actually be
called at this moment, or we are sending it to some other object that doesn’t implement
setCenterUndoably:, in which case our app should crash. However, under the hood,
the NSUndoManager is cleverly using Objective-C’s dynamism (similarly to the mes-
sage-forwarding example in Chapter 25) to capture this call as an NSInvocation object,
which it can use later to send the same message with the same arguments to the specified
target.

The Undo Interface
We must now decide how to let the user request Undo and Redo. In testing the code
from the preceding section, I used two buttons: an Undo button that sent undo to the
NSUndoManager, and a Redo button that sent redo to the NSUndoManager. This can
be a perfectly reasonable interface, but let’s talk about some others.

By default, your application supports shake-to-edit. This means the user can shake the
device to bring up an undo/redo interface. We discussed this briefly in Chapter 35. If
you don’t turn off this feature by setting the shared UIApplication’s application-
SupportsShakeToEdit property to NO, then when the user shakes the device, the frame-
work walks up the responder chain, starting with the first responder, looking for a
responder whose inherited undoManager property returns an actual NSUndoManager

950 | Chapter 39: Undo

instance. If it finds one, it puts up the undo/redo interface and communicates appro-
priately with that NSUndoManager, depending on the user’s choice in that interface.

You will recall what it takes for a UIResponder to be first responder in this sense: it
must return YES from canBecomeFirstResponder, and it must actually be made first
responder through a call to becomeFirstResponder. Let’s make MyView satisfy these
requirements. For example, we might call becomeFirstResponder at the start of
dragging:, like this:

- (BOOL) canBecomeFirstResponder {
 return YES;
}

- (void) dragging: (UIPanGestureRecognizer*) p {
 [self becomeFirstResponder];
 // ... the rest as before ...
}

Then, to make shake-to-edit work, we have only to provide a getter for the undo-
Manager property that returns our undo manager, undoer:

- (NSUndoManager*) undoManager {
 return self.undoer;
}

This works: shaking the device now brings up the undo/redo interface, and its buttons
work correctly. However, I don’t like the way the buttons are labeled; they just say
Undo and Redo. To make them more expressive, we should provide a string describing
each undoable action by calling setActionName:. We can appropriately and conven-
iently do this in setCenterUndoably:, as follows:

[self.undoer registerUndoWithTarget:self
 selector:@selector(setCenterUndoably:)
 object:[NSValue valueWithCGPoint:self.center]];
[self.undoer setActionName: @"Move"];
// ... and so on ...

Now the buttons say Undo Move and Redo Move, which is a nice touch (Figure 39-1).

Another possible interface is through a menu (Figure 39-2). Personally, I prefer this
approach, as I am not fond of shake-to-edit (it seems both violent and unreliable). This

Figure 39-1. The shake-to-edit undo/redo interface

The Undo Interface | 951

is the same menu used by a UITextField or UITextView for displaying the Copy and
Paste menu items (Chapter 23). The requirements for summoning this menu are ef-
fectively the same as those for shake-to-edit: we need a responder chain with a first
responder at the bottom of it. So the code we’ve just supplied for making MyView first
responder remains applicable.

We can make a menu appear, for example, in response to a long press on our MyView
instance. So let’s suppose we’ve attached another gesture recognizer to MyView. This
will be a UILongPressGestureRecognizer, whose action handler is called longPress:.
Recall from Chapter 23 how to implement the menu: we get the singleton global
UIMenuController object and specify an array of custom UIMenuItems as its menu-
Items property. But a particular menu item will appear only if we return YES from can-
PerformAction:withSender: for that menu item’s action:

- (void) longPress: (UIGestureRecognizer*) g {
 if (g.state == UIGestureRecognizerStateBegan) {
 UIMenuController *m = [UIMenuController sharedMenuController];
 [m setTargetRect:self.bounds inView:self];
 UIMenuItem *mi1 =
 [[UIMenuItem alloc] initWithTitle:[self.undoer undoMenuItemTitle]
 action:@selector(undo:)];
 UIMenuItem *mi2 =
 [[UIMenuItem alloc] initWithTitle:[self.undoer redoMenuItemTitle]
 action:@selector(redo:)];
 [m setMenuItems:[NSArray arrayWithObjects: mi1, mi2, nil]];
 [m setMenuVisible:YES animated:YES];
 }
}

- (BOOL)canPerformAction:(SEL)action withSender:(id)sender {
 if (action == @selector(undo:))
 return [self.undoer canUndo];
 if (action == @selector(redo:))
 return [self.undoer canRedo];
 return [super canPerformAction:action withSender:sender];
}

- (void) undo: (id) dummy {
 [self.undoer undo];
}

Figure 39-2. The shared menu as an undo/redo interface

952 | Chapter 39: Undo

- (void) redo: (id) dummy {
 [self.undoer redo];
}

Observe how we consult our NSUndoManager throughout. We get the titles for our
custom menu items from the NSUndoManager (there might, after all, be more than
one undoable kind of action, and therefore more than one title), and we know whether
to display the Undo menu item or the Redo menu item by calling our NSUndo-
Manager’s canUndo and canRedo, which essentially asks whether there’s anything on the
respective stack.

The Undo Architecture
Implementing basic Undo is not particularly difficult. But maintaining an appropriate
Undo stack at the right point (or points) in your responder hierarchy, so that the right
thing happens at every moment, can require some work and some thought. Many
questions can arise, and there are no simple answers.

In general, your chief concern will be maintaining a consistent state in your app and in
the Undo and Redo stacks of any NSUndoManager instances. You don’t want an Undo
stack to contain a method call that, if actually sent, would be impossible to obey, or,
if obeyed, would make nonsense of your app’s state, because of things that have hap-
pened in the meantime. In order to prevent this, you have to make sure you are not
implementing Undo only partially. Suppose, for example, your app presents a To-Do
list in which the user can add items, edit items, and so forth. And suppose you imple-
mented Undo and Redo for inserting an item but not for editing an item. Then if the
user inserted an item and then edited it, and then did an Undo of an item insertion
followed by a Redo of that item insertion, this would fail to restore the state of the app,
because the editing has been omitted from the Redo.

This is why you typically want each undoable action to pass consistently through a
bottleneck method that will register this action with the NSUndoManager. And you
will usually want this bottleneck method to be the same method that is registered with
the NSUndoManager, so that the Undo and Redo stacks are kept synchronized properly
(as with our simple example earlier in this chapter). The sole exception involves inde-
pendent constructive and destructive actions, such as insertion into a list and deletion
from that list; in that case, the Undo method for insertion will be the deletion method,
and the Undo method for deletion will be the insertion method. You can customize the
arrangement of bottlenecks further and in more complex ways, but it’s easy to become
confused, so you probably won’t want to.

Not all aspects of communication with an NSUndoManager need to be performed in
the same place, however. We already saw this in the examples earlier in this chapter:
setCenterUndoably:, the bottleneck method, knows what method to register with the
NSUndoManager, but dragging: knows what a complete gesture is and therefore

The Undo Architecture | 953

knows where to place the boundaries of a group. Similarly, it happens that our bottle-
neck method is the one that called setActionName:, but in real life it will often be some
other method that knows best what name should be attached to a particular action.
You will thus end up with a single NSUndoManager being bombarded with messages
from various places in your code. Indeed, NSUndoManager accomodates exactly this
sort of design; this is why it accepts methods describing features of an action before
that action is actually registered. Also, NSUndoManager emits many notifications for
which you can register, to help tie together operations that are performed at disparate
locations in your code.

Then there are the larger architectural questions of how many NSUndoManager objects
your app needs and how long each one needs to live. There’s typically nothing wrong
with an iOS app having occasional short-lived, short-depth Undo stacks and no Undo
the rest of the time. Apple’s SimpleUndo example constructs an app with an Edit in-
terface, where the user makes changes and then taps either Cancel or Save, returning
to the main interface. Here, the user can shake to undo what happened during that edit
session. And that’s all that’s undoable within this app. If the user taps Edit again, one
imagines that it would make sense to clear the existing Undo stack; there’s no point in
letting the user return to an earlier Edit session’s state. If the user switches away to a
different view controller altogether, one imagines that it would make sense to release
the NSUndoManager completely and start with a clean slate when we come back; if
the user had any intention of undoing, the time to do so was before abandoning this
part of the interface.

Your architectural decisions will often be closely tied to the actual functionality and
nature of your app. For example, consider again the MyView instance that the user can
move, and whose movements the user can undo. Suppose our app has two MyView
instances in the same window. In our earlier examples, we’ve implemented Undo at
the level of the individual MyView instance. Is this right when there are multiple My-
View instances, or should we move the implementation to a higher point in the res-
ponder chain that effectively contains them both — for example, to the view controller
of whose view they are subviews? The answer is that there’s no right answer. It depends
on what makes sense for what our app actually does. If these are fairly independent
objects, in terms of the app’s functionality and the mental world it creates, then it might
make sense to be able to undo a move of either view, independently of the other. But
if these are, say, two playing cards in a deck, then obviously it isn’t up to an individual
card whether it can be put back into the place it was before; the only undoable card is
the most recently moved of all cards.

In a document based-app, the document itself is the natural locus of Undo: as long as
the user is working in a document, it’s that document’s state that needs to be undoable
and redoable. As I mentioned in Chapter 36, UIDocument has an undo manager (its
undoManager property), and you can mark a file as dirty by using it. Instead of calling
updateChangeCount:, as we did in that chapter, you register undoable actions with the
UIDocument’s undo manager, as in this chapter, and the UIDocument uses this infor-

954 | Chapter 39: Undo

mation to know when a file is dirty and needs autosaving. You do not have to use the
default NSUndoManager object returned from undoManager; this property is settable,
so you can supply your own NSUndoManager subclass if the needs and nature of your
document require specialized behaviors. New in iOS 5, an action can be marked as
discardable by sending the NSUndoManager the setActionIsDiscardable: message
before registering an action as undoable; the idea, apparently, is that UIDocument
might be unable to save the document, and a discardable action is one that can be
harmlessly ejected from the stack.

For more about the NSUndoManager class and how to use it, read Apple’s Undo Ar-
chitecture as well as the documentation for the class itself.

The Undo Architecture | 955

CHAPTER 40

Epilogue

You may go, for you’re at liberty.

—W. S. Gilbert, The Pirates of Penzance

This book must come to an end, but your exploration of iOS will go on and on. There’s
much more to know and to discover. A single book that described completely, or even
introduced, every aspect of iOS programming would be immense — many times the
size of this one. Inevitably, severe limits have had to be set. Having read this book, you
are now in a position to investigate many further areas of iOS that this book hasn’t
explored in any depth. Some of these areas have been mentioned in individual chapters;
here are a few others:

OpenGL
An open source C library for drawing, including 3D drawing, that takes full ad-
vantage of graphics hardware. This is often the most efficient way to draw, espe-
cially when animation is involved. iOS incorporates a simplified version of OpenGL
called OpenGL ES. See the OpenGL Programming Guide for iOS. In iOS 5, Open
GL interface configuration, texture loading, shading, and calculation are simplified
by the addition of the GLKit framework; see the GLKit Framework Reference. Also,
some forms of animated display (chiefly, but not exclusively, those using OpenGL)
will benefit from CADisplayLink, a timer object that calls a method repeatedly
based on the refresh rate of the screen’s physical display.

Accelerate
Certain computation-intensive processes will benefit from the vector-based Accel-
erate framework. See the vDSP Programming Guide.

Game Kit
The Game Kit framework covers three areas that can enhance your user’s game
experience: Wireless or Bluetooth communication directly between devices (peer-
to-peer); voice communication across an existing network connection; and Game
Center, a networking facility that facilitates these and many other aspects of in-
terplayer communication, such as posting and viewing high scores and setting up

957

combinations of players who wish to compete (and, in iOS 5, turn-based matches
whose state is stored in the cloud). See the Game Kit Programming Guide.

Advertising
The iAD framework lets your free app attempt to make money by displaying ad-
vertisements provided by Apple. See the iAD Programming Guide.

Purchases
Your app can allow the user to buy something, using Apple’s App Store to process
payments. For example, you could provide a renewable subscription, or offer to
unlock advanced app features. See the In App Purchase Programming Guide.

Newsstand
Your app may represent a subscription to something like a newspaper or magazine.
New in iOS 5, the Newsstand Kit framework provides the ability to download
directly to disk, and to perform such downloads in the background, possibly in
response to a push notification. See the Newsstand Kit Framework Reference.

Printing
Printing was added to iOS in version 4.2. See the “Printing” chapter of the Drawing
and Printing Guide for iOS.

Security
This book has not discussed security topics such as keychains, certificates, and
encryption. See the Security Overview and the Security framework.

Accessibility
VoiceOver assists visually impaired users by describing the interface aloud. To
participate, views must be configured to describe themselves usefully. Built-in
views already do this to a large extent, and you can extend this functionality. See
the Accessibility Programming Guide for iOS.

Telephone
The Core Telephony framework lets your app get information about a particular
cellular carrier and call.

Twitter
New in iOS 5, the Twitter framework provides user authentication functionality
and a tweet composition interface. See the Twitter Framework Reference and the
Accounts Framework Reference.

External accessories
The user can attach an external accessory to the device, either directly via USB or
wirelessly via Bluetooth. Your app can communicate with such an accessory. See
External Accessory Programming Topics. Also, new in iOS, the Core Bluetooth
framework provides an Objective-C API for talking to Bluetooth low-energy ac-
cessories.

958 | Chapter 40: Epilogue

Index

A
ABNewPersonController, 829
ABPeoplePickerNavigationController, 826
ABPerson, 823
ABPersonViewController, 828
ABRecordRef, 824
ABUnknownPersonViewController, 829
accelerometer, 876
accessors, 89, 275
accessors and memory management, 294
accessors, synthesized, 313
accessory views, 600, 626
action connections, 151
action mechanism, 449
action message, 151, 260
action message of a gesture recognizer, 474
action search, 450
action selector signatures, 261, 717
action sheet, 750
action target of a control, 259
action target of a gesture recognizer, 474
actions (animation), 449
actions (control), 151, 258, 716
actions, nil-targeted, 264
activity indicator, 707

network activity in status bar, 708
activity indicator, colors, 707
ad hoc distribution, 204
address book, 823
Address Book framework, 823
Address Book UI framework, 823
address operator, 23, 61
address, converting to a coordinate, 867
adopting a protocol, 223

ALAsset, 817
alert view, 748, 756
Alfke, Jens, 182
alloc, 78
analyze, 189
angle brackets in import directive, 27
animating a layer, 430, 434
animating a view, 419
animation, 413–455

action mechanism, 449
action search, 450
block-based view animation, 425
canceling an animation, 428, 447
delegate of an animation, 421, 434
emitter layers, 455
grouped animations, 441
hit-testing during animation, 489
keyframe animation, 439
layer animation, explicit, 434
layer animation, implicit, 430
layer, adding an animation to, 447
properties, animatable, 430
properties, custom animatable, 440
redrawing with animation, 424, 428, 445
slowing animation, 414
stuttering animation, 410
subviews, animating, 429, 454
transactions, 431
transitions, 424, 428, 445
UIImage animation, 418
UIImageView animation, 417
view animation, 419

animation blocks, 419
animation of presented view, 531
animation synchronized with video, 792

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

959

animation triggered immediately, 432
animation “movie”, 415
animations list, 447
annotation (on map), 849
API, 3
app bundle, getting a resource inside, 356
app delegate in responder chain, 263
app delegate instance, how created, 127
App Store, 211
appearance proxy, 743
AppKiDo, 161, 222
application lifetime events, 266
Application Support folder, 888
applicationFrame, 342, 509
applications are expected to have a root view

controller, 338, 498
ARC, xxiv, 281, 285–312

(see also memory management)
dealloc, 298
initialization to nil, automatic by ARC, 45,

285
initializer, 298
memory management of instance variables,

297
method naming conventions and ARC, 287
nilifying unsafe references, 301
nilifying, automatic by ARC, 285
notifications and retain cycles, 302
release by nilifying, 298
timers and retain cycles, 305
toll-free bridging and ARC, 63, 310
typecasting and ARC, 308, 312
unrecognized selector, 55, 57
unregistering for a notification, 302
weak references, 300

archives, 205, 211
archiving data, 890
argument, 20
arithmetic operators, 14
array, 13

(see also C arrays)
(see also NSArray)

arrow operator, 90
asserts, 182
Assets Library framework, 817
assignment, 15
assignment from inside a block, 65
assignment of instance, 47
assignment to a pointer, 11, 47

assistant pane, 109, 179
asynchronous, 702
at-sign, forgetting before NSString literal, 8
attitude of device, 876
attributed string, 688
Attributes inspector, 108, 138
audio, 763–780, 781

(see also video)
audio session, 765
Audio Toolbox framework, 763, 765
audio, ducking background, 766
audio, interrupting and interruptible, 765
audio, interruption, 768
audio, playing, 770
audio, playing from music library, 801
audio, playing in background, 775
audio, playing MIDI files, 778
audio, remote control of, 773
audio, routing of, 769
audio, silenced by screen locking, 765
AUSampler, 778
autocompletion, 175
automatic reference counting (see ARC)
autorelease, 291
autorelease pool, 291, 933
autoreleasepool directive, 292
autoresizing, 347
autorotation, dynamic setting of, 521
autosaving, 900
AV Foundation framework, 765, 770, 791,

805
AV Foundation, controlling the camera with,

815
AV Foundation, ducking audio with, 795
AV Foundation, editing video with, 795
AV Foundation, playing audio with, 770
AV Foundation, playing video with, 791
AV Foundation, queuing audio with, 805
availability, 161, 171, 808
AVAsset, 793, 805
AVAsset, conversion to AVPlayerItem,

synchronous, 794
AVAudioPlayer, 770
AVCaptureSession, 815
AVPlayer, 791
AVQueuePlayer, 805
AVSynchronizedLayer, 792

960 | Index

B
back item, 541
background audio, 775
background color of cell, 601
background location information, 870
background of layer, black, 399
background of view, black, 371, 375
background tasks, lengthy, 944
backgrounding of the app, 267

memory, releasing, 568
backwards compatibility, 171
bar button item, 544, 735, 738
bar button item, creating, 545
bar button item, customizing, 736
bar metrics, 736
bar views, 734
base class, 67
Base SDK build setting, 170
base URL, 700
beep, 763
bitmask, 15
bitwise operators, 14
black background, 371, 375, 399
block-based view animation, 425
blocks, 63
blocks and memory management, 304
blurry drawing, 346
Bonjour, 923
books about C, 3
BOOL, 20, 232
borders, 409
bottom and top reversed, 400, 445
bounds, 343
break, 18
Breakpoint navigator, 107
breakpoints, 183
bridge qualifier, 308, 312
bridged, toll-free, 62
browser, web, 697
build, 101
build configurations, 117
build phases, 114
build settings, 115
bundle identifier, 100
buttons, 727
buttons, customizing highlight color, 728
bytes, C array of, 14

C
C arrays, 13
C language, 3–30

assignment, 15
blocks, 63
books about C, 3
C arrays, 13
C string, 7
C99, 4
capitalization, 6
caret character, 63
comma-separated statements, 18
comments, 5
comparison, 18
compiler, 4
compound statements, 18
conditions, 18
curly braces, omitting in flow control, 16
data types of C, 7
enum, 7
flow control, 16
for loop, 17
functions, 20

calling a function, 20
declaring a function, 22
defining a function, 20
pointer to function, 61
scope in function definition, 21
signature of a function, 22

GNU99, 4
macros, 29
operators

address operator, 23, 61
arithmetic operators, 14
arrow operator, 90
bitwise operators, 14
decrement operator, 14
equality operator, 19
increment operator, 14
logical operators, 18
relational operators, 18
sizeof operator, 24
structure pointer operator, 90
ternary operator, 15

pointers, 10
assignment to a pointer, 11
creating a pointer, 23
declaring a pointer, 10
generic pointer, 11

Index | 961

preprocessing, 5
return, 21
scope in flow control, 16
standard C library, 27
structs, 9
typecasting, 7
variables

declaring a variable, 6
initialization of variables, 6
lowercase variable names, 6

C string, 7
C99, 4
CA prefix, 389, 413
CAAction, 449
CAAnimationGroup, 441
CABasicAnimation, 434
caching a drawing, 391
CAEmitterCell, 455
CAEmitterLayer, 455
CAGradientLayer, 402
CAKeyframeAnimation, 439
CALayer, 389

(see also layers)
Calendar app, 831
calendars, creating and deleting, 833
callback, 61
calling a function, 20
calling a method, 50

nesting method calls, 52
calling dealloc, 296
calling super, 88
CAMediaTimingFunction, 432
camera, 812
Camera app, 812
Camera Roll album, 819
canceling an animation, 428, 447
canceling delayed performance, 470
canvas (nib editor), 136
capitalization, 6
CAPropertyAnimation, 435
caret character, 63
CAScrollLayer, 395
CAShapeLayer, 402
cast (see typecasting)
categories, 220
categories documented separately, 222
CATextLayer, 401, 690
CATiledLayer

scrolling with CATiledLayer, 577

zooming with CATiledLayer, 582
CATransaction, 431
CATransform3D, 404
CATransformLayer, 407
CATransition, 445
caveman debugging, 180
ceil function, 28
cell identifier paired with nib, 607
cell identifiers don’t match, 606
cells, 596–610

accessory views, 600, 626
background color of cell, 601
label punches hole in cell, 601
labels in built-in cell styles, 599
layout of cells, 603
nib-loaded cells, 605
storyboard-loaded cells, 609

cells, built-in styles, 597
cells, configuration of, 600
cells, menus in, 646
cells, reusing, 613
CF prefix, 62
CFRelease, 311
CFString vs. NSString, 62
CFStringRef, 62
CFTypeRef, 63
CFTypeRef, memory management of, 310
CGAffineTransform, 349, 382, 403
CGContextClearRect, 375, 399
CGContextRef, 360
CGFloat, 7
CGGradientRef, 379
CGImageRef, 364
CGPathRef, 376
CGPatternRef, 380
CGPoint, 9, 22
CGRect, 9
CGSize, 9
char, pointer to, 14
child view controller, 498
CIFilter, 367
CIImage, 367
Clang, 6
class, 33

conflicting class names, 73
defining a class, 71, 221
inheritance, 56, 68
pointer to class name, 43
uppercase class names, 44

962 | Index

Class class, 75
class clusters, 240
class directive, 72
class documentation page, 159
class does not implement protocol, 225
class extension, 223
class hierarchy, 67
class may not respond to, 54
class method, 36, 73
class method result assigned to wrong class,

78
class methods of all classes, 241
class name, 74
class not key–value coding compliant, 279
class object, 74
class of object in nib, changing, 138
cleaning, 189
CLGeocoder, 866
clipboard, 685
clipping, 340
clipping region, 377
CLLocationManager, 869
closure, 65
cloud-based files, 903
cloud-based music, 801
CMAttitude, 880
CMDeviceMotion, 880
CMMotionManager, 876
Cocoa, 215, 217–331
Cocoa Touch, 215
Code Snippet library, 108, 176
code that differs on iPad, 171, 808
collection, 234, 235, 236, 237
collections and memory management, 288
colons in method name, 50
columnized text, 694
comma-separated statements, 18
comments, 5
company identifier, 100
comparison, 18
comparison of objects, 234
compass, digital, 872
compatibility, backwards, 171
Compile Sources build phase, 114
compiler, 4

static typing, 58
component of a picker view, 711
compound assignment operators, 15
compound paths, 374

compound statements, 18
concatenating literal strings, 8
concurrency, 927
conditions, 18
configurations, 117
conflicting animations, 415
conflicting class names, 73
conflicting gesture recognizers, 478
conflicting signatures, 59
conforming to a protocol, 223
connections, 143

action connections, 151
outlet connections, 143

Connections inspector, 108, 146, 148, 152
console, 106, 180
const variables, 29
constants, 163, 249

defining a constant, 72
Contacts app, 823
contained view controllers, 498
container view controllers, 554
content mode, 386
content of scroll view, 569
contents of a layer, 396
context (see graphics context)
continue, 18
control events, 151, 259
control events of a text field, 682
control state, 717
controls, 151, 258, 716–734
converting coordinates, 346, 394
converting to polar coordinates, 732
coordinate systems, 341
coordinate, converting to an address, 867
coordinates

converting coordinates, 346, 394
converting to polar coordinates, 732
layer coordinates, 394
main window coordinates, 343
screen coordinates, 343
view coordinates, 344

Copy Bundle Resources build phase, 114
Copy Files build phase, 125
Core Animation, 434
Core Data framework, 911
Core Foundation, 62
Core Graphics framework, 129
Core Image framework, 368
Core Location framework, 847, 863

Index | 963

Core Motion framework, 863
Core Text, 688–696
Core Text framework, 688
counterpart, 71, 110
course, 870
Cox, Brad, 43
crash

class not key–value coding compliant, 279
garbage pointer, 45
later feature used on earlier system, 171
unrecognized selector, 55

creating a file, 890
creating a folder, 889
creating a nib file, 142
creating a pointer, 23
creating a view controller, 504–519
creating an instance, 77
creating an outlet, 143
CTM, 382
curly braces, omitting in flow control, 16
current graphics context, 360
current method, logging, 182

D
dangling pointers, 282
data in table view, 611
data in table view, downloading, 920
data in table view, refreshing, 620
data sources, 257
data types of C, 7
data, shared between threads, 930
date calculation, 836
date picker, 720
date to string conversion, 722
date, constructing, 722, 834
dates, 232
dealloc, 295, 298
dealloc and threads, 931
dealloc not called, 302
Debug menu, 191, 411, 414, 592, 865
Debug navigator, 105, 185
Debug pane, 106, 185
debugging, 180

caveman debugging, 180
memory management debugging, 283

debugging a Release build, 183
declaration vs. initialization, 44
declaring a C array, 13
declaring a function, 22

declaring a method, 51, 70
declaring a method privately, 222
declaring a pointer, 10
declaring a property, 315
declaring a property privately, 317
declaring a variable, 6, 44

qualifiers, 29
declaring an instance variable, 70, 89
decrement operator, 14
define directive, 28
defining a category, 220
defining a class, 71, 221
defining a constant, 72
defining a function, 20
defining a method, 69
defining a protocol, 224
delayed performance, 243
delayed performance, canceling, 470
delegate, 253
delegate methods documented as protocols,

254
delegate of a gesture recognizer, 481
delegate of a scroll view, 584
delegate of a text field, 681
delegate of a view controller, 562
delegate of an animation, 421, 434
delegation, 253
delivery of touches, 483
Deployment Target build setting, 170
depth of layers, 393, 406
dereferencing a pointer, 11
Design Patterns (book), 41
designated initializer, 80
destinations, 119
Developer folder, 99
device, attitude, 876
device, attitude with respect to north, 881
device, heading of, 872
device, location of, 864
device, running on, 192
device, shake to undo, 875, 951
device, user acceleration of, 878
dialogs, modal (see modal dialogs)
dictionary, 237
directives

autoreleasepool directive, 292
class directive, 72
define directive, 28
dynamic directive, 317, 440

964 | Index

implementation directive, 69
import directive, 26
include directive, 25
interface directive, 69
NSString literal directive, 8
optional directive, 224
pragma directive, 29, 178
protocol directive, 224
selector directive, 60
synthesize directive, 316
warning directive, 29

directories (see folders)
dispatch queues, 940
dispatch table, 259, 474
distributing your app, 202
do loop, 16
dock (nib editor), 135
document architecture, 899
document types, 894
document, receiving from another app, 894
document, sending to another app, 896
documentation, 157

categories documented separately, 222
class documentation page, 159
delegate methods documented as protocols,

254
Internet as documentation, 166
key–value coding method names hard to

discover, 280
NSObject documentation scattered, 241
protocols documented separately, 226
searching the documentation, 158

documentation sets (doc sets), 157
documentation window, 158
Documents folder, 887
documents in the cloud, 903
dot-notation, 9, 92
double resolution image files, 356
double tap vs. single tap, 471, 478
downloading from the network, 915
dragging a view, 468, 476
drain, 291
drawing a layer, 396
drawing a path, 373
drawing a view, 218, 370
drawing an NSString, 672
drawing efficiently, 354, 411, 591
drawing in a background thread, 362, 578,

582

drawing rotated, 383
drawing text with Core Text, 688
drawing, caching of, 391
drawing, hit-testing of, 487
drawing, when actually happens, 414
ducking background audio, 766
duplicate declaration, 53
dynamic directive, 317, 440
dynamic message sending, 54, 228

E
edit all in scope, 180
editing a table view, 636
editing a text field, 676
editing the project, 114
editing the target, 114
editing your code, 174
editor, 109
EKCalendarChooser, 841
EKEvent, 832
EKEventEditViewController, 840
EKEventViewController, 839
EKRecurrenceRule, 834
email, 845
emitter layers, 455
Empty Application, 338
Empty Window example project, 100, 137,

142, 152, 218, 219
encapsulation, 38
enum, 7
enumerate, 18, 235, 237, 238
equality of objects, 234
equality operator, 19
equality operator and assignment operator,

confusing, 19
errors

animation triggered immediately, 432
at-sign, forgetting before NSString literal, 8
blurry drawing, 346
calling dealloc, 296
cell identifiers don’t match, 606
class method result assigned to wrong class,

78
conflicting signatures, 59
debugging a Release build, 183
duplicate declaration, 53
equality operator and assignment operator,

confusing, 19
expected identifier, 53

Index | 965

expression is not assignable, 93
format specifier and argument mismatch,

181
frame of layer not animatable, 431, 435
frame, forgetting to assign, 342, 395
garbage pointer, 45
global denied access, 821
implicit conversion with ARC, 309
integer division, 14
interface configured too soon, 524
interface type cannot be statically allocated,

44
layer contents, setting to a UIImage, 397
layer delegate, changing, 391, 397
layer size, forgetting to set, 395
missing base SDK, 163
missing sentinel, 54
multiple methods found with mismatched

result, 59
nil terminator, forgetting, 54
no known instance method for selector, 57
Objective-C is C, forgetting, 3
outlet broken by misused accessor name,

276
outlet, forgetting to connect, 148
parentheses around condition, forgetting,

16
protocol documentation, forgetting, 256
receiver type for instance message does not

declare method, 55
semicolon, forgetting, 5
standard C library, forgetting about, 28
superclass documentation, forgetting, 83,

160, 247
symbol(s) not found, 130
target integrity warning, 163
UITableViewController, forgetting to

specify nib name, 513
undeclared symbol, 129
uninitialized instance reference, 45, 181
unrecognized selector, 55
user denied access, 821
variable is not assignable, 65

escaped characters, 8
Event Kit framework, 831
Event Kit UI framework, 831
events, 151, 245
events, called too often, 272
events, remote, 773

events, shake, 874
exception, 55
exception breakpoint, 184
executable, 126
EXIF data, 912
expected identifier, 53
expression is not assignable, 93
external (global) variables, 307

F
factory method, 36, 74
File inspector, 108
file sharing, 888
File Template library, 108
files, 887–913

cloud-based files, 903
creating a file, 890
document types, 894
document, receiving from another app, 894
document, sending to another app, 896
double resolution image files, 356
header files, 25, 71

jumping to header files, 165
precompiled header, 128

HTML, 697
image files, 355, 912
implementation files, 71
iWork, 697
Microsoft Office, 697
nib files, 81, 123, 133–156

creating a nib file, 142
loading a nib file, 140, 142
main nib, 123, 127
nib objects, 135
owner of nib file, 140
proxy objects, 135
top-level objects, 135

PDF, 697
previewing a document, 897
project file, 111
reading a file, 890
RTF, 697
saving to a file, 890, 900
sharing files through iTunes, 893
SQLite, 911
storyboard files, xxiv, 81, 123, 517

(see also nib files)
main storyboard, 123, 127, 518

strings files, 173

966 | Index

TIFF, converting to, 913
XML, 904

File’s Owner proxy object, 141
find and replace, 180
finding, 179

(see also searching)
first responder, 265, 676, 774
First Responder proxy object, 265
first responder, learning, 676
Fix-it, 177
flipping, 365, 384
flow control, 16
fmdb, 911
folders, 125

Application Support folder, 888
creating a folder, 889
Documents folder, 887
listing a folder’s contents, 889
lproj folders, 173
project folder, 111

fonts in app, 672
footer, 602, 616
for loop, 17
format specifier and argument mismatch, 181
format string, 180
Forms, Plato’s theory of, 34
for…in, 18, 235, 237, 238
Foundation framework, 129, 229
Fowler, Martin, 41
frame, 341, 395
frame of layer not animatable, 431, 435
frame, forgetting to assign, 342, 395
frameworks, 128

Address Book framework, 823
Address Book UI framework, 823
Assets Library framework, 817
Audio Toolbox framework, 763, 765
AV Foundation framework, 765, 770, 791,

805
Core Data framework, 911
Core Graphics framework, 129
Core Image framework, 368
Core Location framework, 847, 863
Core Motion framework, 863
Core Text framework, 688
Event Kit framework, 831
Event Kit UI framework, 831
Foundation framework, 129, 229
Image I/O framework, 912

Map Kit framework, 847
Media Player framework, 781, 797
Message UI framework, 845
Mobile Core Services framework, 809
Quartz Core framework, 390, 413
Quick Look framework, 898
UIKit framework, 129
weak-linking, 172

functions, 20
calling a function, 20
declaring a function, 22
defining a function, 20
pointer to function, 61
scope in function definition, 21
signature of a function, 22

G
Gamma, Erich, et al. (the Gang of Four), 41
garbage collection, 281
garbage pointer, 45
GCC, 6
GCD, 940
GDB, 186
generic pointer, 11
geocoding, 866
gesture recognizers, 473–494

action message of a gesture recognizer, 474
action target of a gesture recognizer, 474
conflicting gesture recognizers, 478
delegate of a gesture recognizer, 481

gesture recognizers and exclusivity of touches,
491

gesture recognizers, subclassing, 479
gesture recognizers, views, and touch delivery,

490
gestures, distinguishing, 470
getter, 275
git, 196
global denied access, 821
global utility method, 74
global variables, memory management of, 308
globally visible instances, 324
GNU99, 4
golden rules of memory management, 284
goto, 18
gradients, 379, 402
Grand Central Dispatch, 940
graphics context, 359–385

clipping region, 377

Index | 967

opaque graphics context, 375
size of a graphics context, 378
state of a graphics context, 372

gravity, 875
grouped animations, 441
grouped table view, 595
groups, 103, 113
groups, undo, 949
GUI (see interface)
gyroscope, 879

H
header, 602, 616
header files, 25, 71

jumping to header files, 165
precompiled header, 128

heading, 872
height and width reversed, 524
height of table view row, 602, 621
Hello, World! tutorial, xxvi
hidden, 353
hierarchy

class hierarchy, 67
layer hierarchy, 392
view controller hierarchy, 500
view hierarchy, 339

history of Cocoa, 43
history of Objective-C, 43
hit-testing drawings, 487
hit-testing during animation, 489
hit-testing layers, 486
hit-testing views, 484
Home button, 267
HTML, 697
HTTP requests, 915
HUD, 148

I
IBAction, 152
IBOutlet, 145, 315
iCloud, 903
icons, 206
ICU, 232
id, 56
IDE, 97
Identity inspector, 108, 138
if statement, 16
image context, 359

image files, 355, 912
Image I/O framework, 912
images for tab bar items, 538
images, animated, 418
images, drawing your own, 360
images, resizable, 357
immutable, 239
implementation directive, 69
implementation files, 71
implementation section, instance variables

declared in, 70
implicit conversion with ARC, 309
import directive, 26
include directive, 25
incomplete implementation, 225
increment operator, 14
index of a table view, 617
indirection, 24, 689
Info.plist, 121, 122, 210

(see also property list settings)
informal protocols, 228
inheritance, 56, 68, 82

NSObject, 69
init(With…), 79
initial view controller, 518
initialization

C arrays, 13
structs, 9
variables, 6

initialization of instance, 79
initialization of instance variables, 296
initialization of nib-based instances, additional,

155, 517
initialization of variables, 6, 44
initialization to nil, automatic by ARC, 45,

285
initialization vs. declaration, 44
initializer, 79, 296, 298

designated initializer, 80
initializer, writing, 94
instance, 34

assignment of instance, 47
creating an instance, 77

(see also instantiation)
globally visible instances, 324
initialization of instance, 79
mutability of instances, 48
reference to an instance, 43

968 | Index

relationships between instances, built-in,
323

subclass legal where superclass expected,
82

visibility of one instance to another, 321
instance method, 36
instance methods of NSObject, 241
instance references, 43

nil, 45
instance variables, 37, 89

accessors, 89, 275
declaring an instance variable, 70, 89
initialization of instance variables, 296
key–value coding retains instance variables,

297
key–value coding violates privacy, 277
memory management of instance variables,

293
nilifying, 285
protected, 89, 276
synthesized instance variable, 316

instances, an app’s first, 126
instantiation, 34, 77

nib-based instantiation, 81, 141
Instruments, 198, 283, 411, 592
integer division, 14
interface and threads, 928
Interface Builder, 133
interface configured too soon, 524
interface directive, 69
interface for address book, 826
interface for calendar, 838
interface for mail, 845
interface for map, 847
interface for music library, 806
interface for photo library, 809
interface for playing video or audio, 782
interface for taking pictures, 812
interface for trimming video, 789
interface that differs on iPad, 124, 513
interface type cannot be statically allocated,

44
International Components for Unicode (see

ICU)
Internet as documentation, 166
Internet, displaying resources from, 697
interruption of audio, 768
introspection, 75, 228, 277
iOS 5 differences from iOS 4

app delegate instance, how created, 127
locking screen silences audio, 765
locking screen suspends frontmost app,

268
MPMoviePlayerController requires

prepareToPlay, 782
parent view controller vs. presenting view

controller, 526
root view controller, app without,

discouraged, 338
stretchable images superseded by resizable

images, 358
user interaction, during view animation,

425
iOS 5 new features

activity indicator, colors, 707
appearance proxy, 743
ARC, 281
autoreleasepool directive, 292
autorotation, dynamic setting of, 521
AVAsset, conversion to AVPlayerItem,

synchronous, 794
bar button item, customizing, 736
buttons, customizing highlight color, 728
calendars, creating and deleting, 833
CLGeocoder, 866
container view controllers, 554
Core Image framework, 368
device, attitude with respect to north, 881
EKCalendarChooser, 841
emitter layers, 455
geocoding, 866
iCloud, 903
implementation section, instance variables

declared in, 70
keyboard undockable and splittable on iPad,

677
map view user tracking mode, 866
MIDI files, 778
MKUserTrackingBarButtonItem, 866
navigation bar, customizing, 735
navigation bar, left item with back item,

735
navigation bar, multiple buttons, 735
now-playing interface, 775
NSLinguisticTagger, 231
NSOrderedSet, 237
photo assets and albums creatable, 820
popovers, customizing appearance, 653

Index | 969

presentation context, 533
presented view controller, 526
presenting view controller, 526
progress view, animation, 709
progress view, colors and images, 709
queues, dispatch, concurrent, 943
responder chain includes app delegate, 263
scroll view deceleration, stopping point,

585
scroll view gesture recognizers, 590
scroll view of a web view, 697
search bar, customizing, 713
segmented control, customizing, 726
split views, keeping both views when

rotated, 666
storyboard-loaded cells, 609
storyboards, 557
switch, customizing color, 718
tab bar item, customizing, 739
tab bar, customizing, 739
table views

cell identifier paired with nib, 607
cells, menus in, 646
multiple cell selection, 623
storyboard, table view designed statically

in, 628
text field in alert view, 748
toolbar, customizing, 738
transitions, animation options extended,

429
UIDocument, 899
UIImage animation, 418
UIPageViewController, 551
UIStepper, 718
view controllers (dis)appearing, reason for,

563
iOS Deployment Target build setting, 170
iOS Provisioning Portal, 192
iPad, code that differs on, 171, 808
iPad, interface that differs on, 124, 513
iPad, presented view controllers on, 532
iPad, property list settings that differ on, 210
iPad, resources that differ on, 172, 356
iPod app (see Music app)
Issue navigator, 104
iTunes Connect, 211
iTunes Match, 801
iTunes, sharing files through, 893
ivar, 89

(see also instance variables)
iWork, 697

J
JavaScript, 704
jump bar, 109, 136, 158, 159, 178, 186
jumping after animation, preventing, 422
jumping to header files, 165

K
K&R, 3
Kay, Alan, 43
Kernighan, Brian, 3
key, 237
key paths, 279
keyboard, 676–681, 687–688
keyboard shortcuts in Xcode, 103
keyboard undockable and splittable on iPad,

677
keyboard, customizing, 680
keyboard, dismissing, 677, 683, 687
keyboard, language of, 681
keyboard, scrolling in response to, 677
keyframe animation, 439
key–value coding, 91, 277–281
key–value coding and transforms, 411
key–value coding compliant, 278
key–value coding method names hard to

discover, 280
key–value coding retains instance variables,

297
key–value coding violates privacy, 277
key–value observing, 327
KVC, 277
KVO, 327

L
label punches hole in cell, 601
labels, 672–673
labels in built-in cell styles, 599
labels in nib editor, 136
landscape orientation at startup, 523
later feature used on earlier system, 171
launch images, 208
launch process of an app, 127
layer animation, explicit, 434
layer animation, implicit, 430
layer contents, setting to a UIImage, 397

970 | Index

layer coordinates, 394
layer delegate, changing, 391, 397
layer hierarchy, 392
layer size, forgetting to set, 395
layer, adding an animation to, 447
layer, transparency, 385
layering order of views, 340
layers, 389–455

animating a layer, 430, 434
animations list, 447
black background, 399
contents of a layer, 396
depth of layers, 393, 406
drawing a layer, 396
emitter layers, 455
gradients, 402
hit-testing layers, 486
layout of sublayers, 396
mask, 409
opaque, 399
position of a sublayer, 394
redisplaying a layer, 397, 399
shape layers, 402
text layers, 401, 690
transparency, 399
transparent background, 399

layout of cells, 603
layout of sublayers, 396
layout of subviews, 346
layout of subviews during animation, 428
leaks, memory, 281, 299
leaks, memory, and blocks, 304
library, music, 797
library, photo, 809
library, standard C, 27
libsqlite3, 911
libxml2, 909
LIFO, 39
Link Binary With Libraries build phase, 114
linking to a framework, 128
listing a folder’s contents, 889
literal NSString, 7
LLDB, 186
LLVM, 6
loading a nib file, 140, 142
loading a view controller’s view, 515
loadView, 507, 514
local notifications, 756
locales, 232

localization, 173
location manager, 868
location services, 864
locking screen silences audio, 765
locking screen suspends frontmost app, 268
locks, 931
locks, queues instead of, 938
Log navigator, 107
logging, 180
logical operators, 18
loop, 16
Love, Tom, 43
lowercase variable names, 6
lproj folders, 173

M
macros, 29
magic numbers, 28
magnetometer, 872
mail, 845
main function, 26, 126
main nib, 123, 127
main storyboard, 123, 127, 518
main thread, 928
main window, 335, 336
main window coordinates, 343
main window, background color of, 338
main window, overlapped by status bar, 342,

509
main window, subclassing, 336
maintenance of state, 38
manual threading, 933
map function, 235, 279
Map Kit framework, 847
map view, 847
map view user tracking mode, 866
map view, displaying user’s location, 865
Maps app, 847
mask, 409
Master–Detail Application, 625, 665
Media library, 108, 140
Media Player framework, 781, 797
media timing functions, 432
memory management, 49, 281–312

ARC, xxiv
memory management debugging, 283
memory management of instance variables,

293, 297
memory management of view controllers, 565

Index | 971

memory management, golden rules of, 284
memory, low, 270, 565
memory, releasing, 566, 568
menus, 951
menus in a table view, 646
menus in a text field, 683
message, 32

action message, 151
dynamic message sending, 54, 228
receiver, 50
selector, 60

message as data, 59
message forwarding, 741
message sending syntax, 50
message to nil, 46
Message UI framework, 845
message vs. method, 33
method, 33

calling a method, 50
nesting method calls, 52

class method, 36, 73
colons in method name, 50
conflicting signatures, 59
current method, logging, 182
declaring a method, 51, 70
declaring a method privately, 222
defining a method, 69
factory method, 36, 74
global utility method, 74
inheritance, 68, 82
instance method, 36
minus sign (instance method), 36, 51
optional methods, 227
overriding, 68, 87
parameter, 50
parameter lists, 53
plus sign (class method), 36, 51
signature of a method, 53, 59

method naming conventions and ARC, 287
method not found, 54
method vs. message, 33
MFMailComposeViewController, 845
MFMessageComposeViewController, 846
Microsoft Office, 697
MIDI files, 778
minus sign (instance method), 36, 51
misaligned images, 192, 346
missing base SDK, 163
missing sentinel, 54

mixin classes, 223
MKAnnotation protocol, 850
MKAnnotationView, 850
MKMapRect, 848
MKMapView, 847, 865
MKOverlay protocol, 856
MKOverlayView, 856
MKUserTrackingBarButtonItem, 866
Mobile Core Services framework, 809
modal dialogs, 747

action sheet, 750
alert view, 748, 756
local notifications, 756

modal dialogs, alternatives to, 754
modal popovers, 657
modal view controller, 498, 526
modal view in a popover, 657
modal views, 526
model–view–controller, 319
More item in tab bar, 540, 739
motion manager, 876
motion of device, 876
movies (see video)
MPMediaEntity, 797
MPMediaLibrary, 801
MPMediaPickerController, 806
MPMoviePlayerController, 782
MPMoviePlayerController requires

prepareToPlay, 782
MPMoviePlayerViewController, 788
MPMusicPlayerController, 801
multiple cell selection, 623
multiple methods found with mismatched

result, 59
multitasking, 266
multitouch sequence, 464
multivalue, 824
Music app, 797
Music app, controlling and querying, 802
Music app, default remote control event target,

774
music library, 797
mutability of instances, 48
mutable, 239
mutable array, observing, 329
MVC, 319

N
namespaces, 73

972 | Index

naming accessors, 275
navigating your code, 177
navigation bar, 540, 734
navigation bar contents, configuring, 546
navigation bar, customizing, 735
navigation bar, hiding and showing, 551
navigation bar, left item with back item, 735
navigation bar, multiple buttons, 735
navigation controller, 541
navigation interface, 541, 625
navigation interface, configuring, 549
navigation item, 541, 546, 734
Navigator pane, 103
navigators

Breakpoint navigator, 107
Debug navigator, 105, 185
Issue navigator, 104
Log navigator, 107
Project navigator, 103, 178
Search navigator, 104
Symbol navigator, 104, 178

nesting method calls, 52
network activity in status bar, 708
new, 80
NeXTStep, 43, 133
nib files, 81, 123

class of object in nib, changing, 138
creating a nib file, 142
loading a nib file, 140, 142
main nib, 123, 127
nib objects, 135
owner of nib file, 140
proxy objects, 135
top-level objects, 135

nib name matching view controller, 512
nib objects, 135
nib-based instantiation, 81, 141
nib-based instantiation and memory

management, 306
nib-instantiated view controller, 515
nib-loaded cells, 605
nib-loaded view of view controller, 511
nil, 19, 45

message to nil, 46
nil in collections illegal, 239
nil terminator, forgetting, 54
nil testing, 45
nilifying, 285

release by nilifying, 298

nilifying unsafe references, 301
nilifying, automatic by ARC, 285
NO, 20
no known instance method for selector, 57
nonatomic, 315
Notification Center, 756
notifications, 248

registering for a notification, 249
unregistering for a notification, 251, 302

notifications and retain cycles, 302
notifications matching delegate methods, 255
notifications, local, 756
notifications, when appropriate, 325
now-playing interface, 775
NS prefix, 43
NSArray, 235
NSArray proxy, key–value coding, 280
NSAttributedString, 688
NSCoding, 890
NSCopying, 224
NSData, 233
NSDate, 232
NSDateFormatter, 232, 722
NSDictionary, 237
NSError, 23, 46
NSFileManager, 889
NSIndexSet, 234
NSInteger, 7
NSInvocation, 950
NSKeyedArchiver, 890
NSKeyedUnarchiver, 890
NSLinguisticTagger, 231
NSLog, 180
NSNetServiceBrowser, 923
NSNotFound, 230
NSNotification, 248
NSNotificationCenter, 248
NSNull, 239
NSNumber, 232
NSObject, 69, 240–243
NSObject documentation scattered, 241
NSOperation, 935
NSOperationQueue, 935
NSOrderedSet, 237
NSPredicate, 236
NSRange, 229
NSRegularExpression, 230
NSScanner, 230
NSSet, 236

Index | 973

NSString, 230
CFString vs. NSString, 62
concatenating literal strings, 8
date to string conversion, 722
drawing an NSString, 672
escaped characters, 8
literal NSString, 7
Unicode characters, 8

NSString literal directive, 8
NSThread, 934
NSTimer, 253
NSUndoManager, 947
NSURLConnection, 915
NSURLRequest, 698, 915
NSUserDefaults, 324, 891
NSValue, 233
NSXMLParser, 905
NULL, 62

O
object, 31
Object library, 108, 137
object-based programming, 31
object-oriented programming, 86
Objective-C, 3, 43–95, 220–229
Objective-C 2.0, 90, 91
Objective-C is C, forgetting, 3
Objective-C, history of, 43
opaque, 354, 371, 399
opaque graphics context, 375
operation queues, 935
operators

address operator, 23, 61
arithmetic operators, 14
arrow operator, 90
bitwise operators, 14
decrement operator, 14
equality operator, 19
increment operator, 14
logical operators, 18
relational operators, 18
sizeof operator, 24
structure pointer operator, 90
ternary operator, 15

optimizing, 199
optional directive, 224
optional methods, 227
orientation of device, 519
orientation of interface at startup, 523

outlet broken by misused accessor name, 276
outlet collections, 150
outlet connections, 143, 276
outlet, forgetting to connect, 148
outlets, 143
overlapping views, 339
overlay (on map), 856
overloading, 53
overriding, 68, 87
overriding a synthesized accessor, 317
owner of nib file, 140

P
page control, 719
page view controller, 551
paging, 576
parameter, 20, 50
parameter lists, 53
parent view controller, 498
parent view controller vs. presenting view

controller, 526
parent view controller, custom, 554
parentheses around condition, forgetting, 16
passing to parameter of incompatible type,

225
password field, 681
pasteboard, 685
path, 373
path, compound, 374
patterns, 380
PDF, 697
phases of a touch, 464
photo assets and albums creatable, 820
photo library, 809
photo, taking, 812
Photos app, 809
picker view, 711
pixels vs. points, 385
pixels, transparent, 488
Plato, 34
plus sign (class method), 36, 51
pointer to class name, 43
pointer to function, 61
pointer to pointer to NSError, 23, 46
pointer to struct (see CFTypeRef)
pointer-to-void, 11
pointer-to-void, memory management of, 308
pointers, 10

assignment to a pointer, 11, 47

974 | Index

creating a pointer, 23
dangling pointers, 282
declaring a pointer, 10
dereferencing a pointer, 11
garbage pointer, 45
generic pointer, 11
indirection, 24
memory management, 49
nilifying, 285
reference to an instance, 23

points vs. pixels, 385
polar coordinates, 732
polymorphism, 82–86
pool, autorelease, 291, 933
popovers, 649–663, 750–754
popovers, automatic, 661
popovers, customizing appearance, 653
popovers, dismissing, 656, 657
popovers, presenting, 651
popovers, rotation and, 656
popovers, size of, 651
popovers, storyboard and, 660
Portal, iOS Provisioning, 192
position of a sublayer, 394
position of a subview, 341
posting a notification, 248
pragma directive, 29, 178
precompiled header, 128
preprocessing, 5

define directive, 28
import directive, 26
include directive, 25
pragma directive, 29
warning directive, 29

presentation context, 533
presentation layer, 417, 489
presented view controller, 499, 526
presented view controllers and rotation, 534
presented view, animation of, 531
presented view, what view it replaces, 532
presenting action sheet clipped by its

superview, 751
presenting and presented view controllers,

communication between, 529
presenting view controller, 526
previewing a document, 897
private methods, 222
private properties, 317
product name, 100

profiling, 198
progress view, 708
progress view, animation, 709
progress view, colors and images, 709
project, 99
project file, 111
project folder, 111
Project navigator, 103, 178

groups, 113
project templates, 100

Empty Application, 338
main window, 336
Master–Detail Application, 625, 665
Single View Application, 336, 498, 514
Tabbed Application, 540
Utility Application, 227, 257

project window, 102
project, renaming, 131
properties, 91, 313–318
properties, animatable, 430
properties, custom animatable, 440
property list settings, 122, 210
property lists, 240
protected, 89, 276
protocol directive, 224
protocol documentation, forgetting, 256
protocols, 223
protocols documented separately, 226
proxy objects, 135
push notifications, 925

Q
QLPreviewController, 898
qualifiers, 29
Quartz Core framework, 390, 413
questions, three big, 612
queues, dispatch, 940
queues, dispatch, concurrent, 943
queues, operation, 935
queues, serial, 938
Quick Help, 108, 164
Quick Look framework, 898
quotation marks in import directive, 27

R
random function, 28
reading a file, 890
readonly, 315

Index | 975

receiver, 50
receiver type for instance message does not

declare method, 55
rectangle, rounded, 377, 409
redisplaying a layer, 397, 399
redraw moment, 414
redrawing with animation, 424, 428, 445
Ref suffix, 63
refactoring, 180
Refactoring (book), 41
reference to an instance, 23, 43
reference, getting, 33, 321
reference, getting, to a UIPopoverController,

656, 663
reference, unsafe, 301
reference, weak, 300
region monitoring, 871
registering for a notification, 249
regular expressions, 230
relational operators, 18
relationships, 557
relationships between instances, built-in, 323
release, 284
release by nilifying, 298
remote control of audio, 773
remote notifications, 925
renaming a project, target, or symbol, 131
replace, 180
resizable image, 357
resolution, 356, 366, 577
resources, 124
resources in your app bundle, 356
resources that differ on iPad, 172, 356
responder, 263
responder chain, 263, 493
responder chain includes app delegate, 263
responders and touches, 493
restricting touches, 467, 491
retain, 284
retain count, 282
retain cycle, 299
retains, unusual, 305
Retina display (see screen, double resolution)
return, 21
Ritchie, Dennis, 3
root class, 67
root view, 136, 336, 498
root view controller, 338, 498, 500

root view controller, app without, discouraged,
338

rotating a drawing, 383
rotating interface, 519–526, 534, 537, 544
rotation, 523

(see also orientation)
rotation 3D transform, 405
rotation and bar height, 736
rotation and navigation controllers, 544
rotation and page view controllers, 554
rotation and popovers, 656
rotation and presented view controllers, 534
rotation and split view controllers, 666
rotation and tab bar controllers, 537
rounded rectangle, 377, 409
routing of audio, 769
RTF, 697
run, 101
run loop, 928
running on a device, 192
runtime environment, testing for, 171, 808

S
sandbox, 887
Saved Photos album, 819
saving state, 269, 892
saving to a file, 890, 900
scene, 518, 557
schemes, 118
scope in flow control, 16
scope in function definition, 21
screen coordinates, 343
screen, double resolution, 356, 366, 577
screen, user locks or unlocks, 268
screens, multiple, 336
screenshots, 209
scroll indicators, 574
scroll view deceleration, stopping point, 585
scroll view gesture recognizers, 590
scroll view of a web view, 697
scroll views, 569–592

content of scroll view, 569
delegate of a scroll view, 584
paging, 576
scrolling, 573
tiling, 577
touches in a scroll view, 587
zooming, 579

scrolling, 573

976 | Index

scrolling in response to keyboard, 677
scrolling with CATiledLayer, 577
SDK, 128
search bar, 713
search bar in a toolbar, 662, 716
search bar, customizing, 713
Search navigator, 104
search results in table view, 630, 662
searching for symbols, 165
searching the documentation, 158
searching your code, 179
sections of a table view, 616
sections of a table view, collapsing, 645
segmented control, 725
segmented control, customizing, 726
segue, 518, 557
segue, popover, 660
SEL, 60
selection in a table view, 623
selection in a text view, 686
selector, 55, 60
selector directive, 60
self, 84
self retained by block, 304
semicolon, forgetting, 5
sending a message, 50
sentinel, 54
separators in table views, 602
serial queues, 938
set, 237
setter, 275
Settings app, 893
settings bundle, 893
shadows, 384, 409
shaking the device, 874, 951
shape layers, 402
shapes, hit-testing of, 487
shared application instance, 78, 127
shared data, 930
sharing files through iTunes, 893
should, delegate method names with, 256
signature of a function, 22
signature of a method, 53, 59
significant location monitoring, 871
Simulator, 190

Debug menu, 191, 411, 414, 592, 865
single tap vs. double tap, 471, 478
Single View Application, 336, 498, 514
singleton, 78

Size inspector, 108, 139
size of a graphics context, 378
size of a label, 673
size of a popover, 651
sizeof operator, 24
slider, 722
slowing animation, 414
small caps, 693
Smalltalk, 43
SMS messages, 845
snapshots, 198
snippets, 176
sound (see audio)
source code for Cocoa, 73
speed, 870
split views, 649, 664–669
split views, alternatives to, 666
split views, keeping both views when rotated,

666
SQLite, 911
stack, 39, 47
stack, navigation bar, 541, 734
stack, navigation controller, 541
standard C library, 27
standard C library, forgetting about, 28
state of a button, 728
state of a control, 717
state of a graphics context, 372
state, maintenance of, 38
state, saving, 269, 892
static analyzer, 189, 283
static tables, 628
static typing, 58
static variables, 30
status bar, 342, 509
stepper, 718
storyboard files, xxiv, 123, 517, 557

(see also nib files)
main storyboard, 123, 127, 518

storyboard, main, and main window instance,
336, 518

storyboard, main, and root view controller,
518

storyboard, table view designed statically in,
628

storyboard-instantiated view controller, 517,
558

storyboard-loaded cells, 609
storyboards, 517–519, 557–562

Index | 977

relationships, 557
scene, 518, 557
segue, 518, 557

stretchable images superseded by resizable
images, 358

stretching a resizable image, 358
string, 7

(see also C string)
(see also NSString)

strings files, 173
strong, 314
struct pointer (see CFTypeRef)
struct properties, setting, 93
structs, 9
structs, logging, 181
structs, wrapping in an object, 233
structure pointer operator, 90
stuttering animation, 410
styled text, 671, 688
subclass, 67
subclass legal where superclass expected, 82
subclassing in Cocoa, 217, 246
subclassing UIApplication, 219, 489
subclassing UIGestureRecognizer, 479
subclassing UIWindow, 336, 489
subclassing view controllers, 497, 537, 544
sublayer, 392
sublayerTransform, 406
Subversion, 197
subview, 135, 335
subviews, animating, 429, 454
subviews, layout of, 346
subviews, removing all, 341
super, 86
superclass, 67
superclass documentation, forgetting, 83, 160,

247
superlayer, 392
superview, 135, 335
suspension of the app, 267, 416, 564, 944
switch, 718
switch statement, 17
switch, customizing color, 718
Symbol navigator, 104, 178
symbol(s) not found, 130
symbol, renaming, 131
symbolic breakpoint, 185
symbols, searching for, 165
syntax checking, 177

synthesize directive, 316
synthesized accessor, 316
synthesized accessor, overriding, 317
synthesized instance variable, 316
system (iOS) versions, xxiii, 169
System Sound Services, 763

T
tab bar, 536, 738
tab bar interface, 536
tab bar interface, configuring, 538
tab bar item, 536, 738

images for tab bar items, 538
More item in tab bar, 540, 739

tab bar item, creating, 537
tab bar item, customizing, 739
tab bar, customizing, 739
Tabbed Application, 540
table views, 593–648

(see also cells)
cell identifier paired with nib, 607
cells, built-in styles, 597
cells, configuration of, 600
cells, menus in, 646
cells, reusing, 613
data in table view, 611
data in table view, downloading, 920
data in table view, refreshing, 620
editing a table view, 636
grouped table view, 595
height of table view row, 602, 621
index of a table view, 617
multiple cell selection, 623
navigation interface, 625
search results in table view, 630, 662
sections of a table view, 616
sections of a table view, collapsing, 645
selection in a table view, 623
separators in table views, 602
storyboard, table view designed statically in,

628
tabs in Xcode, 110
tap, single vs. double, 471, 478
target, 114
target integrity warning, 163
target, action, 259
target, renaming, 131
Targeted Device Family build setting, 169
template (see project template)

978 | Index

ternary operator, 15
text, 671–696
text field in alert view, 748
text fields, 674–685

control events of a text field, 682
delegate of a text field, 681
keyboard, 676–681
menus in a text field, 683

text layers, 401, 690
text views, 685–688

keyboard, 687–688
selection in a text view, 686

text views, self-sizing, 686
texting, 845
there can be only one (movie playing), 788
thread-safety of drawing, 362, 578
threads, 927–946

dealloc and threads, 931
drawing in a background thread, 582
Grand Central Dispatch, 940
interface and threads, 928
locks, 931
main thread, 928
manual threading, 933
NSOperation, 935
shared data, 930

thumb of a slider, 722
TIFF, converting to, 913
tiling, 577
tiling a resizable image, 358
timers, 253
timers and retain cycles, 305
times, 232
toll-free bridged memory management, 311
toll-free bridging, 62
toll-free bridging and ARC, 63, 310
toolbar, 542, 738

search bar in a toolbar, 662, 716
toolbar items, 549, 738
toolbar, customizing, 738
toolbar, hiding and showing, 549, 563
top and bottom reversed, 400, 445
top item, 541
top-level objects, 135
touch phases, 464
touches, 463–494

delivery of touches, 483
responders and touches, 493
restricting touches, 467, 491

touches in a control, 259, 731
touches in a scroll view, 587
touches… methods, 466
TouchXML, 910
track of a slider, 722
transactions, 431
transform, 349, 382, 403
transform, depth, 406
transitions, 424, 428, 445
transitions, animation options extended, 429
transparency, 353, 399
transparency layer, 385
transparent background, 371, 375, 399
transparent pixels, 488
typecasting, 7
typecasting and ARC, 308, 312
typecasting to quiet compiler, 56, 63, 64, 82,

337, 396, 402, 451

U
UIAccelerometer, 876
UIActionSheet, 750
UIActivityIndicatorView, 707
UIAlertView, 748
UIApplication

shared application instance, 78, 127
subclassing UIApplication, 219, 489

UIBarButtonItem, 544, 735, 738
UIBarItem, 537, 544
UIBezierPath, 376
UIButton, 727
UIControl, 716

(see also controls)
UIDatePicker, 720
UIDocument, 899
UIDocumentInteractionController, 896
UIEdgeInsets, 357, 574
UIEvent, 463
UIGestureRecognizer, 473

(see also gesture recognizer)
subclassing UIGestureRecognizer, 479

UIGestureRecognizer built-in subclasses, 474
UIImage, 355, 360

(see also images)
UIImage animation, 418
UIImagePickerController, 809
UIImageView, 355
UIImageView animation, 417
UIKit framework, 129

Index | 979

UILabel, 219, 599, 672–673
(see also labels)

UILocalizedIndexedCollation, 618
UILocalNotification, 756
UIMenuController, 684, 952
UIMenuItem, 684, 952
UINavigationBar, 540, 734
UINavigationController, 541
UINavigationItem, 541, 546, 734
UIPageControl, 719
UIPageViewController, 551
UIPickerView, 257, 711
UIPopoverController, 651

(see also popovers)
UIPopoverController, reference to, 656, 663
UIPopoverControllers, distinguishing, 659
UIProgressView, 708
UIResponder, 263
UIScrollView, 569

(see also scroll views)
UISearchBar, 713
UISearchDisplayController, 630, 662
UISegmentedControl, 725
UISlider, 722

thumb of a slider, 722
track of a slider, 722

UISplitViewController, 664
(see also split views)

UIStepper, 718
UIStoryboardPopoverSegue, 660
UIStoryboardSegue, 557
UISwitch, 718
UITabBar, 536, 738
UITabBarController, 536
UITabBarItem, 536, 738
UITableView, 593

(see also table views)
UITableViewCell, 593

(see also cells)
UITableViewController, 595
UITableViewController, forgetting to specify

nib name, 513
UITextField, 674

(see also text fields)
UITextView, 685

(see also text views)
UIToolbar, 542, 738
UITouch, 463, 466

(see also touches)

UIVideoEditorController, 789
UIView, 218, 335

(see also views)
UIViewController, 497

(see also view controllers)
UIWebView, 697

(see also web views)
UIWindow, 335, 336

(see also window)
subclassing UIWindow, 489

unarchiving data, 890
undeclared symbol, 129
underlying layer, 390
underlying layer, animating, 430, 434
undo alert, button titles in, 951
Undo and Redo, 947–955
Undo by shaking, 875, 951
Unicode characters, 8
uninitialized instance reference, 45, 181
unique an array, 237
unit testing, 188
universal app, 124, 169
unrecognized selector, 55, 57
unregistering for a notification, 251, 302
unsafe references, 301
uppercase class names, 44
URL, 698

base URL, 700
user address book, 823
user calendar, 831
user defaults, 891
user denied access, 821
user interaction, allowing, 425
user interaction, during view animation, 425
user interaction, preventing, 416, 467
user library, music, 797
user library, photo, 809
Utilities pane, 108
Utility Application, 227, 257

V
variable is not assignable, 65
variables, 6

const variables, 29
declaring a variable, 6, 44
external (global) variables, 307
initialization of variables, 6, 44
instance references, 43
instance variables, 37, 89

980 | Index

lowercase variable names, 6
static variables, 30

variables list, 106, 186
version control, 196
version string, 211
versions of iOS, xxiii, 169
versions of Xcode, xxiii
video, 781–796
video playback controls, 783
video, recording, 812
video, trimming, 789
view animation, 419
view controller for address book, 826
view controller for calendar, 838
view controller for mail, 845
view controller for music library, 806
view controller for photo library, 809
view controller for playing video or audio, 788
view controller for taking pictures, 812
view controller for trimming video, 789
view controller hierarchy, 500
view controller's view, creating, 507–519
view controllers, 497–568

child view controller, 498
contained view controllers, 498
delegate of a view controller, 562
memory management of view controllers,

565
modal view controller, 498, 526
navigation bar, hiding and showing, 551
navigation item, 546
nib name matching view controller, 512
nib-instantiated view controller, 515
nib-loaded view of view controller, 511
parent view controller, 498
parent view controller, custom, 554
presented view controller, 499, 526
root view controller, 498, 500
rotating interface, 534, 537, 544
storyboard-instantiated view controller,

517, 558
subclassing view controllers, 497, 537, 544
toolbar items, 549
toolbar, hiding and showing, 549, 563

view controllers (dis)appearing, reason for,
563

view controllers, creating, 504–519
view controllers, lifetime events of, 562
view controllers, retaining, 504

view controller’s view, loading of, 515
view controller’s view, placement in view

hierarchy, 500, 506, 554
view controller’s view, populating, 510
view controller’s view, unloading of, 565
view coordinates, 344
view for map, 847
view for playing video or audio, 782
view hierarchy, 339
viewDidLoad, 513
viewport, 703
views, 134, 335–494

animating a view, 419
autoresizing, 347
black background, 371, 375
bounds, 343
content mode, 386
dragging a view, 468, 476
drawing a view, 370
frame, 341
gesture recognizers, views, and touch

delivery, 490
hidden, 353
hit-testing views, 484
layering order of views, 340
layout of subviews, 346
layout of subviews during animation, 428
misaligned images, 192, 346
modal views, 526
opaque, 354, 371
overlapping views, 339
position of a subview, 341
root view, 336, 498
transform, 349
transparency, 353
transparent background, 371, 375
underlying layer, 390
view controller’s view, loading of, 515
view controller’s view, unloading of, 565

visibility of one instance to another, 321
void, 21, 50

W
warning directive, 29
warnings

applications are expected to have a root view
controller, 338, 498

class does not implement protocol, 225
class may not respond to, 54

Index | 981

incomplete implementation, 225
method not found, 54
passing to parameter of incompatible type,

225
presenting action sheet clipped by its

superview, 751
typecasting to quiet compiler, 56

weak references, 300
weak-linking, 172
weak–strong dance, 304
web views, 671, 697–705
WebKit, 697
while loop, 16
width and height reversed, 524
window, main, 336

(see also main window)
windows, secondary, in Xcode, 110

X
Xcode, 99–213

archives, 205, 211
assistant pane, 109, 179
Attributes inspector, 108, 138
autocompletion, 175
build configurations, 117
build phases, 114
build settings, 115
canvas (nib editor), 136
cleaning, 189
Code Snippet library, 108, 176
configurations, 117
connections, 143

action connections, 151
outlet connections, 143

Connections inspector, 108, 146, 148, 152
console, 106
Debug pane, 106, 185
debugging, 180
destinations, 119
dock (nib editor), 135
documentation, 157
editing your code, 174
editor, 109
executable, 126
File inspector, 108
File Template library, 108
File’s Owner proxy object, 141
First Responder proxy object, 265
Fix-it, 177

groups, 103
Identity inspector, 108, 138
Info.plist, 121, 122, 210
jump bar, 109, 136, 178, 186
keyboard shortcuts in Xcode, 103
labels in nib editor, 136
Media library, 108, 140
navigating your code, 177
Navigator pane, 103
navigators

Breakpoint navigator, 107
Debug navigator, 105, 185
Issue navigator, 104
Log navigator, 107
Project navigator, 103, 178
Search navigator, 104
Symbol navigator, 104, 178

Object library, 108, 137
outlet collections, 150
outlets, 143
precompiled header, 128
profiling, 198
project file, 111
project templates, 100

Empty Application, 338
main window, 336
Master–Detail Application, 625, 665
Single View Application, 336, 498, 514
Tabbed Application, 540
Utility Application, 227, 257

project window, 102
Quick Help, 108, 164
resources, 124
running on a device, 192
schemes, 118
searching your code, 179
Size inspector, 108, 139
static analyzer, 189, 283
target, 114
unit testing, 188
Utilities pane, 108
variables list, 106, 186
version control, 196
versions of Xcode, xxiii

xib file extension, 133
XML, 904

Y
YES, 20

982 | Index

Z
zombies, 283
zooming, 579
zooming with CATiledLayer, 582

Index | 983

About the Author
Matt Neuburg has a PhD in Classics and has taught at many universities and colleges.
He has been programming computers since 1968. He has written applications for Mac
OS X and iOS, is a former editor of MacTech Magazine, and is a long-standing contri-
buting editor for TidBITS. His previous O'Reilly books are Frontier: The Definitive
Guide, REALbasic: The Definitive Guide, and AppleScript: The Definitive Guide. He
makes a living writing books, articles, and software documentation, as well as by pro-
gramming, consulting, and training.

Colophon
The animal on the cover of Programming iOS 5 is a kingbird, one of the 13 species of
North American songbirds making up the genus Tyrannus. A group of kingbirds is
called a “coronation,” a “court,” or a “tyranny.”

Kingbirds eat insects, which they often catch in flight, swooping from a perch to grab
the insect midair. They may also supplement their diets with berries and fruits. They
have long, pointed wings, and males perform elaborate aerial courtship displays.

Both the genus name (meaning “tyrant” or “despot”) and the common name (“king-
bird”) refer to these birds’ aggressive defense of their territories, breeding areas, and
mates. They have been documented attacking red-tailed hawks (which are more than
twenty times their size), knocking bluejays out of trees, and driving away crows and
ravens. (For its habit of standing up to much larger birds, the gray kingbird has been
adopted as a Puerto Rican nationalist symbol.)

“Kingbird” most often refers to the Eastern kingbird (T. tyrannus), an average-size
kingbird (7.5–9 inches long, wingspan 13–15 inches) found all across North America.
This common and widespread bird has a dark head and back, with a white throat,
chest, and belly. Its red crown patch is rarely seen. Its high-pitched, buzzing, stuttering
sounds have been described as resembling “sparks jumping between wires” or an elec-
tric fence.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments for the First Edition
	Notes on the Second Printing
	Acknowledgments for the Second Edition
	Notes on the Second Edition

	Part I. Language
	Chapter 1. Just Enough C
	Compilation, Statements, and Comments
	Variable Declaration, Initialization, and Data Types
	Structs
	Pointers
	Arrays
	Operators
	Flow Control and Conditions
	Functions
	Pointer Parameters and the Address Operator
	Files
	The Standard Library
	More Preprocessor Directives
	Data Type Qualifiers

	Chapter 2. Object-Based Programming
	Objects
	Messages and Methods
	Classes and Instances
	Class Methods
	Instance Variables
	The Object-Based Philosophy

	Chapter 3. Objective-C Objects and Messages
	An Instance Reference Is a Pointer
	Instance References, Initialization, and nil
	Instance References and Assignment
	Instance References and Memory Management

	Messages and Methods
	Sending a Message
	Declaring a Method
	Nesting Method Calls
	No Overloading
	Parameter Lists
	Unrecognized Selectors

	Typecasting and the id Type
	Messages as Data Type
	C Functions
	CFTypeRefs
	Blocks

	Chapter 4. Objective-C Classes
	Class and Superclass
	Interface and Implementation
	Header File and Implementation File
	Class Methods
	The Secret Life of Classes

	Chapter 5. Objective-C Instances
	How Instances Are Created
	Ready-Made Instances
	Instantiation from Scratch
	Initialization
	The designated initializer

	Nib-Based Instantiation

	Polymorphism
	The Keyword self
	The Keyword super
	Instance Variables and Accessors
	Key–Value Coding
	Properties
	How to Write an Initializer

	Part II. IDE
	Chapter 6. Anatomy of an Xcode Project
	New Project
	The Project Window
	The Navigator Pane
	The Utilities Pane
	The Editor

	The Project File and Its Dependents
	The Target
	Build Phases
	Build Settings
	Configurations
	Schemes and Destinations

	From Project to App
	Build Settings
	Property List Settings
	Nib Files and Storyboard Files
	Other Resources
	Code
	Frameworks and SDKs

	Chapter 7. Nib Management
	A Tour of the Nib-Editing Interface
	The Dock
	Canvas
	Inspectors and Libraries

	Nib Loading and File’s Owner
	Making and Loading a Nib
	Outlet Connections
	More Ways to Create Outlets
	More About Outlets

	Action Connections
	Additional Initialization of Nib-Based Instances

	Chapter 8. Documentation
	The Documentation Window
	Class Documentation Pages
	Sample Code
	Other Resources
	Quick Help
	Symbols
	Header Files
	Internet Resources

	Chapter 9. Life Cycle of a Project
	Choosing a Device Architecture
	Localization
	Editing Your Code
	Autocompletion
	Snippets
	Live Syntax Checking and Fix-it

	Navigating Your Code
	Debugging
	Caveman Debugging
	The Xcode Debugger

	Unit Testing
	Static Analyzer
	Clean
	Running in the Simulator
	Running on a Device
	Device Management
	Version Control
	Instruments
	Distribution
	Ad Hoc Distribution
	Final App Preparations
	Icons in the App
	Other Icons
	Launch Images
	Screenshots
	Property List Settings

	Submission to the App Store

	Part III. Cocoa
	Chapter 10. Cocoa Classes
	Subclassing
	Categories
	Splitting a Class
	Private Method Declarations

	Protocols
	Optional Methods
	Some Foundation Classes
	Useful Structs and Constants
	NSString and Friends
	NSDate and Friends
	NSNumber
	NSValue
	NSData
	Equality and Comparison
	NSIndexSet
	NSArray and NSMutableArray
	NSSet and Friends
	NSDictionary and NSMutableDictionary
	NSNull
	Immutable and Mutable
	Property Lists

	The Secret Life of NSObject

	Chapter 11. Cocoa Events
	Reasons for Events
	Subclassing
	Notifications
	Receiving a Built-In Notification
	Unregistering
	NSTimer

	Delegation
	Data Sources
	Actions
	The Responder Chain
	Deferring Responsibility
	Nil-Targeted Actions

	Application Lifetime Events
	Swamped by Events

	Chapter 12. Accessors and Memory Management
	Accessors
	Key–Value Coding
	Memory Management
	Principles of Cocoa Memory Management
	The Golden Rules of Memory Management
	What ARC Is and What It Does
	How Cocoa Objects Manage Memory
	Autorelease
	Memory Management of Instance Variables (Non-ARC)
	Memory Management of Instance Variables (ARC)
	Retain Cycles and Weak References
	Nib Loading and Memory Management
	Memory Management of Global Variables
	Memory Management of Pointer-to-Void Context Info
	Memory Management of CFTypeRefs

	Properties

	Chapter 13. Data Communication
	Model–View–Controller
	Instance Visibility
	Visibility by Instantiation
	Visibility by Relationship
	Global Visibility

	Notifications
	Key–Value Observing

	Part IV. Views
	Chapter 14. Views
	The Window
	Subview and Superview
	Frame
	Bounds and Center
	Layout
	Transform
	Visibility and Opacity

	Chapter 15. Drawing
	UIImage and UIImageView
	Graphics Contexts
	UIImage Drawing
	CGImage Drawing
	CIFilter and CIImage
	Drawing a UIView
	Graphics Context Settings
	Paths and Drawing
	Clipping
	Gradients
	Colors and Patterns
	Graphics Context Transforms
	Shadows
	Points and Pixels
	Content Mode

	Chapter 16. Layers
	View and Layer
	Layers and Sublayers
	Manipulating the Layer Hierarchy
	Positioning a Sublayer
	CAScrollLayer
	Layout of Sublayers

	Drawing in a Layer
	Content Resizing and Positioning
	Layers that Draw Themselves

	Transforms
	Depth

	Shadows, Borders, and More
	Layers and Key–Value Coding

	Chapter 17. Animation
	Drawing, Animation, and Threading
	UIImageView and UIImage Animation
	View Animation
	Animation Blocks
	Modifying an Animation Block
	Transition Animations
	Block-Based View Animation

	Implicit Layer Animation
	Animation Transactions
	Media Timing Functions

	Core Animation
	CABasicAnimation and Its Inheritance
	Using a CABasicAnimation
	Keyframe Animation
	Making a Property Animatable
	Grouped Animations
	Transitions
	The Animations List

	Actions
	What an Action Is
	The Action Search
	Hooking Into the Action Search
	Nonproperty Actions

	Emitter Layers

	Chapter 18. Touches
	Touch Events and Views
	Receiving Touches
	Restricting Touches
	Interpreting Touches
	Gesture Recognizers
	Gesture Recognizer Classes
	Multiple Gesture Recognizers
	Subclassing Gesture Recognizers
	Gesture Recognizer Delegate

	Touch Delivery
	Hit-Testing
	Hit-testing for layers
	Hit-testing for drawings
	Hit-testing during animation

	Initial Touch Event Delivery
	Gesture Recognizer and View
	Touch Exclusion Logic
	Recognition
	Touches and the Responder Chain

	Part V. Interface
	Chapter 19. View Controllers
	The View Controller Hierarchy
	View Controller and View Creation
	Manual View
	Generic Automatic View
	View in a Separate Nib
	Nib-Instantiated View Controller
	Storyboard-Instantiated View Controller

	Rotation
	Rotation Events
	Initial Orientation

	Presented View Controller
	Presented View Animation
	Presentation Styles
	Presented Views and Rotation

	Tab Bar Controllers
	Tab Bar Items
	Configuring a Tab Bar Controller

	Navigation Controllers
	Bar Button Items
	Navigation Items
	Toolbar Items
	Configuring a Navigation Controller

	Page View Controller
	Container View Controllers
	Storyboards
	View Controller Lifetime Events
	View Controller Memory Management

	Chapter 20. Scroll Views
	Creating a Scroll View
	Scrolling
	Paging
	Tiling

	Zooming
	Zooming Programmatically
	Zooming with Detail

	Scroll View Delegate
	Scroll View Touches
	Scroll View Performance

	Chapter 21. Table Views
	Table View Cells
	Built-In Cell Styles
	Custom Cells
	Overriding a cell’s subview layout
	Adding subviews in code
	Designing a cell in a nib
	Designing a cell in a storyboard

	Table View Data
	The Three Big Questions
	Table View Sections
	Refreshing Table View Data
	Variable Row Heights

	Table View Selection
	Table View Scrolling and Layout
	Table View Searching
	Table View Editing
	Deleting Table Items
	Editable Content in Table Items
	Inserting Table Items
	Rearranging Table Items
	Dynamic Table Content

	Table View Menus

	Chapter 22. Popovers and Split Views
	Configuring and Displaying a Popover
	Managing a Popover
	Dismissing a Popover
	Popover Segues
	Automatic Popovers
	Split Views

	Chapter 23. Text
	UILabel
	UITextField
	Editing and the Keyboard
	Dismissing the keyboard
	Keyboard covers text field

	Configuring the Keyboard
	Text Field Delegate and Control Event Messages
	The Text Field Menu

	UITextView
	Core Text

	Chapter 24. Web Views
	Loading Content
	Communicating with a Web View

	Chapter 25. Controls and Other Views
	UIActivityIndicatorView
	UIProgressView
	UIPickerView
	UISearchBar
	UIControl
	UISwitch
	UIStepper
	UIPageControl
	UIDatePicker
	UISlider
	UISegmentedControl
	UIButton
	Custom Controls

	Bars
	UINavigationBar
	UIToolbar
	UITabBar

	Appearance Proxy

	Chapter 26. Modal Dialogs
	Alert View
	Action Sheet
	Dialog Alternatives
	Local Notifications

	Part VI. Some Frameworks
	Chapter 27. Audio
	System Sounds
	Audio Session
	Interruptions
	Routing Changes

	Audio Player
	Remote Control of Your Sound
	Playing Sound in the Background
	Further Topics in Sound

	Chapter 28. Video
	MPMoviePlayerController
	MPMoviePlayerViewController
	UIVideoEditorController
	An Introduction to AV Foundation Video

	Chapter 29. Music Library
	Exploring the Music Library
	The Music Player
	The Music Picker

	Chapter 30. Photo Library and Image Capture
	UIImagePickerController
	Choosing from the Photo Library
	Using the Camera

	Image Capture With AV Foundation
	The Assets Library Framework

	Chapter 31. Address Book
	Address Book Database
	Address Book Interface
	ABPeoplePickerNavigationController
	ABPersonViewController
	ABNewPersonViewController
	ABUnknownPersonViewController

	Chapter 32. Calendar
	Calendar Database
	Calendar Interface

	Chapter 33. Mail
	Mail Message
	SMS Message

	Chapter 34. Maps
	Displaying a Map
	Annotations
	Overlays

	Chapter 35. Sensors
	Location
	Map Kit and Core Location
	Geocoding
	Location Manager

	Heading
	Acceleration and Attitude
	Shake Events
	Raw Acceleration
	Gyroscope

	Part VII. Final Topics
	Chapter 36. Persistent Storage
	The Sandbox
	Basic File Operations
	Saving and Reading Files
	User Defaults
	File Sharing
	Document Types
	Handing Off a Document
	The Document Architecture
	XML
	SQLite
	Image File Formats

	Chapter 37. Basic Networking
	HTTP Requests
	Bonjour
	Push Notifications
	Beyond Basic Networking

	Chapter 38. Threads
	The Main Thread
	Why Threading Is Hard
	Three Ways of Threading
	Manual Threads
	NSOperation
	Grand Central Dispatch

	Threads and App Backgrounding

	Chapter 39. Undo
	The Undo Manager
	The Undo Interface
	The Undo Architecture

	Chapter 40. Epilogue

	Index

