
www.allitebooks.com

http://
http://www.allitebooks.org

www.allitebooks.com

http://
http://www.allitebooks.org

Programming Razor

www.allitebooks.com

http://
http://www.allitebooks.org

www.allitebooks.com

http://
http://www.allitebooks.org

Programming Razor

Jess Chadwick

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://
http://www.allitebooks.org

Programming Razor
by Jess Chadwick

Copyright © 2011 Chadwick Software, LLC. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Shawn Wallace and Mike Hendrickson
Production Editor: Teresa Elsey

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
See http://oreilly.com/catalog/errata.csp?isbn=9781449306762 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming Razor, the image of a parrotfish, and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30676-2

[LSI]

1317394199

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://
http://www.allitebooks.org

To my father, for sparking my lifelong passion for
twiddling bits and bytes.

To my wife, for putting up with my lifelong
passion for bits and bytes twiddling.

www.allitebooks.com

http://
http://www.allitebooks.org

www.allitebooks.com

http://
http://www.allitebooks.org

Table of Contents

Preface . xi

1. Introduction . 1
A Brief History of Microsoft’s Web Development Platforms 1

Active Server Pages (ASP) 1
ASP.NET Web Forms 2
ASP.NET MVC 2
WebMatrix 2

Hello, Razor! 3
Differentiating Code and Markup 4

Code Nuggets 4
Code Blocks 4
How Razor Parses Markup and Code 6
Disambiguating Code and Markup 7

Comments 9

2. Razor and Microsoft WebMatrix . 11
Introducing ASP.NET Web Pages 11
Installing WebMatrix 11
Your First WebMatrix Website 12

The File List View 12
Website Administration 12
Hello World, Razor Style 14

Data Access with WebMatrix 14
Creating a Database 14
Populating the Database with Data 15
Displaying Data from the Database 16
Handling Posted Form Data 18
Saving Data to the Database 19
Validating Posted Data 20
Creating the Home Page 25

vii

www.allitebooks.com

http://
http://www.allitebooks.org

3. Organizing Razor Templates . 27
Layouts 27

Layouts Are Pages, Too! 29
Sections 31
IsSectionDefined 32
Nested Layouts 32
Nested Layouts and Sections 33
Redefining Sections 34
The Layout Rendering Life Cycle 35
Nested Layouts 37

Partial Views 37
Creating Partial Views 37
Reusing Partial Views 39

Razor Helpers 41
Razor Helper Packages 44
Razor Helpers versus Partial Views 44

Razor Helpers 45
Partial Views 45

Executing Common Code 45
Executing Code the First Time a Page Executes 45
Executing Code Every Time a Page Executes 46
Wrapping Views with _PageStart.cshtml Logic 47
Executing Multiple _PageStart.cshtml Templates 47

4. Razor and ASP.NET MVC . 51
Installing ASP.NET MVC 51

The Model-View-Controller Architecture 52
ASP.NET MVC View Engines 52

The Razor View Engine 53
Implementing a Blog Site Using ASP.NET MVC 54

The Model 56
The Controller 56
Convention versus Configuration 59

Authoring ASP.NET MVC Views with the Razor Syntax 60
Adding Razor Views to an ASP.NET MVC Application 60
Writing ASP.NET MVC Razor View Markup 61
Strongly-Typed Views 62

Changing the Base Class 63
Applying Custom Base Classes to Multiple Views 65

Layouts and Content Pages 66
Razor View File Locations 66

Controller Views 67
Locating Razor Views 67

viii | Table of Contents

www.allitebooks.com

http://
http://www.allitebooks.org

Shared Views 68
Views in ASP.NET MVC Areas 68

Html and Url Helper Classes 70
ASP.NET MVC’s Razor View Page Rendering Life Cycle 71

Precompiling Razor Views 71

5. The Razor API . 75
Razor Templates: From Markup to .NET Code 75

1. Parse the Razor Template 76
2. Generate .NET Code 76
3. Compile Generated Code into an Executable Class 77
4. Instantiate and Execute the Generated Class 77

Meet the Players 78
Configuring the Razor Template Engine 79
Creating a RazorEngineHost 79
Creating the RazorTemplateEngine 80
Compiling Razor Templates 80
Executing a Razor Template 81

Advanced Templating Logic 81

6. Advanced Techniques . 83
Inline Templates and Templated Delegates 83
Sharing Views Between Projects 85

The Razor Single File Generator 85
Creating Reusable ASP.NET MVC Views 86
Creating Reusable ASP.NET MVC Helpers 90
Razor Single File Generator Generator Implementations 92

Unit Testing Razor Views 93
Applying Razor to Text-Based Scenarios 95

7. Conclusion . 99

Table of Contents | ix

http://

http://

Preface

Razor is a scripting syntax that simplifies the way you create dynamic, data-driven
websites. In this book, you’ll build example websites with Microsoft WebMatrix and
ASP.NET MVC and learn how Razor lets you combine code and content in a fluid and
expressive manner on Windows-based servers. We'll also explore components of the
Razor API and see how Razor templates are turned into rendered HTML. By the end
of this book, you’ll be able to create Razor-based websites with custom extensions that
meet the specific needs of your projects.

RazorPad: A Lightweight Razor Editor
The Razor syntax is designed to be written and executed within development environ-
ments such as WebMatrix and Visual Studio. This book provides instructions on how
to download and install both of these applications.

However, if you are not interested in or able to install additional software on your
computer, the author has created an application named RazorPad, which allows you
to enter, edit, and execute Razor snippets outside of bulky development environments.

RazorPad is available in two flavors:

Online, browser-based editor
RazorPad is hosted online at http://razorpad.net. The online editor provides a
sandbox for you to test out your Razor snippets and see the resulting rendered
output right in your browser.

Stand-alone application
For those who prefer “rich clients,” RazorPad is also available as a small stand-
alone WPF application that does not require any installation. You can download
the RazorPad WPF application from http://razorpad.codeplex.com.

xi

http://razorpad.net
http://razorpad.codeplex.com
http://

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming Razor by Jess Chadwick
(O’Reilly). Copyright 2011 Chadwick Software, LLC, 978-1-449-30676-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

xii | Preface

mailto:permissions@oreilly.com
http://

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/0636920020622/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xiii

http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/0636920020622/
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://

http://

CHAPTER 1

Introduction

HyperText Markup Language (HTML) makes the World Wide Web possible. Every
website uses HTML to render content, and much of HTML’s popularity derives from
its simplicity: with knowledge of just a few concepts, anyone can publish content to
the Web.

HTML may be a way of life for web developers, but when it comes to creating dynamic,
data-driven websites, most developers turn to some kind of tool to make the job of
generating HTML easier. Razor is one of those tools: a scripting syntax for making
templates and web content on Windows-based web servers.

This book is designed to get you acquainted with the Razor syntax and how it fits into
the two primary Microsoft development environments: ASP.NET MVC and WebMa-
trix. The final chapters will dive deeper, cracking open the underlying tooling and API
to see what makes this all possible. By the end of this book, not only will you know
how to create great Razor-based websites, but you will also be able to add custom
extensions and make Razor even better suited to the specific needs of your projects!

A Brief History of Microsoft’s Web Development Platforms
Long ago, Microsoft saw the need for a Windows-based web development platform
and worked hard to produce a solution. Over the last two decades, Microsoft has given
the development community several web development platforms.

Active Server Pages (ASP)
Microsoft’s first answer to web development was Active Server Pages (ASP), a scripting
language in which code and markup are authored together in a single file, with each
physical file corresponding to a page on the website. ASP’s server-side scripting ap-
proach became widely popular and many websites grew out of it; some continue to
serve visitors today! After a while, though, developers wanted more: things like easier
code reuse, better separation of concerns, and easier application of object-oriented

1

http://

programming principles. In 2002, Microsoft offered ASP.NET as a solution to these
concerns.

ASP.NET Web Forms
Like ASP websites, ASP.NET websites rely on the page-based approach, where each
page on the website is represented in the form of a physical file (called a Web Form)
and is accessible using that file’s name. Unlike a page using ASP, a Web Forms page
provides some separation of code and markup by splitting the web content into two
different files: one for the code and one for the markup. ASP.NET and the Web Forms
approach served developers’ needs for years and continues to be the web development
framework of choice for many .NET developers. Some .NET developers, however,
consider the Web Forms approach too much of an abstraction from the underlying
HTML, JavaScript, and CSS. Gee, some developers just can’t be pleased! Or can they?

ASP.NET MVC
Microsoft was quick to spot the growing need in the ASP.NET developer community
for something different from the page-based Web Forms approach, and it released the
first version of ASP.NET MVC in 2008. Representing a total departure from the Web
Forms approach, ASP.NET MVC abandons the page-based architecture completely,
using a Model-View-Controller (MVC) architecture instead. Though it still leverages
much of the previous framework, ASP.NET MVC represents an entirely separate stack.
Instead of markup files, views take the responsibility for rendering HTML to the user.
ASP.NET MVC leaves it up to application developers to choose the syntax they use to
author views. Razor is quickly emerging as the most popular ASP.NET MVC view
syntax for reasons that should become quite clear while reading this book!

WebMatrix
Released at the same time as ASP.NET MVC 3 in early 2011, WebMatrix is Microsoft’s
simple, straightforward, and free web development environment. Comprising a simple
integrated development environment (IDE) and an API (named Web Pages), WebMa-
trix is a natural fit in the evolution of Microsoft’s web development frameworks. Web-
Matrix offers a middle ground for those who view ASP as a hindrance to object-oriented
development, ASP.NET Web Forms as too much of an abstraction from core HTML/
CSS/JavaScript, and ASP.NET MVC as too complex.

At a glance, WebMatrix web pages bear a strong resemblance to ASP web pages, in that
they combine business logic and markup in the same file. However, if you dig deeper,
you’ll quickly find a very object-oriented foundation lurking underneath. By combining
the power of the ASP.NET platform with the simplicity of ASP-like scripting syntax
(the Razor syntax), WebMatrix offers a web development environment that is ap-
proachable by a very broad range of website developers. WebMatrix is straightforward

2 | Chapter 1: Introduction

http://

enough to allow a hobbyist to produce a simple website, yet powerful enough to satisfy
the needs of more advanced web applications.

Hello, Razor!
Razor is a template syntax that allows you to combine code and content in a fluid and
expressive manner. Though it introduces a few symbols and keywords, Razor is not a
new language. Instead, Razor lets you write code using languages you probably already
know, such as C# or Visual Basic .NET.

Razor’s learning curve is very short, as it lets you work with your existing skills rather
than requiring you to learn an entirely new language. Therefore, if you know how to
write HTML and make a .NET API call, you can easily write markup like the following:

<div>This page rendered at @DateTime.Now</div>

which produces output like this:

<div>This page rendered at 12/7/1941 7:38:00 AM</div>

This example begins with a standard HTML tag (the <div> tag), followed by a bit of
static text. In the midst of all of this is some dynamic text rendered via a call to the .NET
System.DateTime object, followed by the closing (</div>) tag.

Razor’s intelligent parser allows developers to be more expressive with their logic and
make easier transitions between code and markup. The more advanced the markup,
the easier it is to see how Razor’s syntax is cleaner and more expressive than the Web
Forms syntax. Compare the following scenarios, each one showing the Razor markup
and Web Forms markup required to produce the same HTML:

if/else statement using Web Forms syntax

<% if(User.IsAuthenticated) { %>
 Hello, <%= User.Username %>!
<% } %>
<% else { %>
 Please <%= Html.ActionLink("log in") %>
<% } %>

if/else statement using Razor syntax

@if(User.IsAuthenticated) {
 Hello, @User.Username!
} else {
 Please @Html.ActionLink("log in")
}

foreach loop using Web Forms syntax

<% foreach(var post in blogPosts) { %>
 <a href="<%= post.Href %>"><%= post.Title %>

Hello, Razor! | 3

http://

<% } %>

foreach loop using Razor syntax

@foreach(var post in blogPosts) {
 @post.Title
}

Though the difference between the Web Forms syntax and Razor syntax is only a few
characters, those characters make a big difference in the readability of the markup! One
of the loudest complaints from developers attempting to use Web Forms to author
dynamic markup is that its “angle-bracket” syntax is so verbose that it can distract from
the page’s logic and content. Additionally, because the Web Forms syntax itself so
closely resembles HTML markup, it is often difficult to determine at a glance which
parts of the template are code and which are markup.

In direct contrast, Razor uses minimal markup to perform the same tasks. What’s more,
Razor’s syntax was deliberately designed to blend in with HTML, not conflict with it.

Differentiating Code and Markup
Razor provides two ways to differentiate code from markup: code nuggets and code
blocks.

Code Nuggets
Code nuggets are simple expressions that are evaluated and rendered inline. They can
be mixed with text and look like this:

 Not Logged In: @Html.ActionLink("Login", "Login")

The expression begins immediately after the @ symbol, and Razor is smart enough to
know that the closing parenthesis indicates the end of this particular statement. The
previous example will render this output:

 Not Logged In: Login

Notice that code nuggets must always return markup for the view to render. If you
write a code nugget that does not return anything (i.e. returns void), you will receive
an error when the view executes.

Code Blocks
A code block is a section of the view that contains strictly code rather than a combi-
nation of markup and code. Razor defines a code block as any section of a Razor

4 | Chapter 1: Introduction

www.allitebooks.com

http://
http://www.allitebooks.org

template wrapped in @{ } characters. The @{ characters mark the beginning of the block,
followed by any number of lines of code. The } character closes the code block.

Keep in mind that the code within a code block is not like code in a code nugget. It is
fully-formed code that must follow the rules of the current language; for example, each
line of code written in C# must include a semicolon (;) at the end, just as if it lived
within a class in a .cs file.

Here is an example of a typical code block:

@{
 LayoutPage = "~/Views/Shared/_Layout.cshtml";
 View.Title = "Product Details for " + Model.ProductName;
}

Code blocks do not render anything to the page. Instead, they allow you to write ar-
bitrary code that requires no return value. Variables defined within code blocks may
be used by code nuggets in the same scope. That is, variables defined within the scope
of a foreach loop or similar container will only be accessible within that container.
Variables that are defined at the page level (not in any kind of container) will be acces-
sible to any other code blocks or code nuggets in the page.

To clarify this, take a look at a view with a few variables defined at different scopes:

@{
 // The customer and order variables are
 // available to the entire page
 var customer = Model.Customer;
 var order = Model.Order;
}

<h1>@customer.Name' Order Details<h1>
<div class="items">
<!-- Loop through the Items property on the order variable -->
@foreach(var item in order.Items) {
 <!-- The item variable is only available within the foreach loop -->
 <div>
 <!-- A hyperlink builds a URL to the Order Item
 page using the Order ID and the Item ID -->
 @item.Name
 </div>
}

<!-- This will throw an error: the item variable does not exist at this scope! -->
<div>Last Item: @item.Name</div>
</div>

Code blocks are a means to execute code within a template and do not render anything
to the view. In direct contrast to the way that code nuggets must provide a return value
for the view to render, the view will completely ignore values that a code block returns.

Differentiating Code and Markup | 5

http://

How Razor Parses Markup and Code
The @ symbol is the heart of the Razor syntax, the character that Razor uses to differ-
entiate code from markup. The @ symbol marks a point at which the developer intends
to switch from markup to code. In simple cases, no additional characters are needed
to indicate when the code stops and the markup resumes. Razor’s intelligent parser
determines which parts of the template are code and which are markup.

What makes a valid code statement? Razor uses the following algorithm to find the end
of a code statement once it reads the @ symbol trigger:

1. Read to the end of a valid identifier (i.e., a C# or VB keyword) or variable name.

2. If the next character is an opening bracket ((or [)…

a. Keep parsing until the corresponding closing bracket is located. Nested brack-
ets are also tracked to avoid premature closing of a block.

b. Loop back to #2.

3. If the next character is a . (period) and precedes a valid identifier, jump to #1.

4. Complete the code statement and continue processing the rest of the markup.

Razor relies on the current language’s syntax to determine the end of a code statement.
Razor also attempts to “read forward,” checking if the upcoming content resembles
code or markup. The specifics depend on the language currently in use (C# or VB).

Here’s a typical Razor snippet:

@foreach(var item in order.Items) {
 @item.Name
}

The first line initializes the loop variables and opens the loop with an opening bracket;
the second line renders markup; and the third line contains the closing bracket to end
the loop. There is a clear transition between code and markup because the second line
begins with an tag that is clearly an HTML element and the third line is clearly the
foreach loop’s closing tag.

In this example there is another line of code following the initial opening foreach line:

@foreach(var item in order.Items) {
 var itemName = item.Name;
 @itemName
}

Since the second line follows the variable initialization C# syntax, Razor continues to
correctly interpret this second line as C# code, as opposed to markup, and executes it
as such. As it continues parsing, Razor correctly assumes that the third line is markup
and renders it correctly. The final line is code again: the closing bracket for the
foreach loop.

6 | Chapter 1: Introduction

http://

Disambiguating Code and Markup
Consider a third example, this time with C# generics syntax thrown into the mix:

@foreach(var item in order.Items) {
 var itemName = GetOrderItemName<string>(item);
 @itemName
}

In this example, the second line contains a generic parameter. While this is perfectly
valid C# code, the bracket-based C# generic syntax is practically indistinguishable
from HTML. Thus, the Razor parser gets confused and cannot determine whether to
interpret the line as code or markup. Razor responds by giving up and throwing an
exception.

While Razor’s ability to differentiate between code and markup is generally impressive,
this example shows that there are certainly scenarios that it cannot accurately parse. In
these scenarios, there are several ways to explicitly state your intent and disambiguate
code from markup.

Explicit code nuggets

The explicit code nugget syntax (@()) allows you to wrap a code statement, unambig-
uously marking the beginning and end of the statement. The explicit code nugget syntax
lets you give Razor some guidance about how your markup should be interpreted.

Here is an example in which Razor incorrectly assumes that the . in the filename ex-
tension is part of the code statement, resulting in a call to the (nonexistent) property
Product.Name.jpg:

The explicit code nugget syntax clears things right up, wrapping the code to separate
it from content:

The same syntax can be applied to differentiate the generic parameter in the example
at the beginning of this section. In this example, however, the preceding @ character is
not required because the trouble spot is already within a code statement:

@foreach(var item in order.Items) {
 var itemName = (GetOrderItemName<string>(item));
 @itemName
}

The @: character sequence

The @: character sequence indicates a transition, telling Razor to assume that the con-
tent that follows the sequence is content, not code. You are still free to use the @ symbol
any time after transitioning to content mode to execute code, just as in any other part

Differentiating Code and Markup | 7

http://

of the Razor template. The following example shows the @: character sequence in
action:

@if(User.IsAuthenticated) {
 @:Hello, @User.Name!
}
else {
 @:Please login
}

The conditional markup in this example does not specify any HTML, so it is difficult
for Razor to figure out when or if to transition to markup mode. After all, how can
Razor know whether “Hello” is a class name or an arbitrary word? The markup in the
if condition uses the @: character sequence to specify that “Hello” is actually content
and not code. The same markup then switches back to code mode to render the value
of the User.Name property. The markup in the else condition also uses the @: character
sequence to indicate that the text should be rendered verbatim.

The <text> block

The <text> block is an alternative to the @: character sequence that allows you to denote
that an entire portion of a template is content. <text> is useful in scenarios where
multiple lines of markup can be interpreted as code or text, such as:

@if(!User.IsAuthenticated) {
 <text>
 Guests are not allowed to view this content.
 Please @Html.ActionLink("login", "Login") to view.
 </text>
}

which produces the following output when the user is not authenticated:

 Guests are not allowed to view this content.
 Please login to view.

As you can see, the opening and closing <text> tags are only used within the template
to mark the beginning and end of the block of content and are not rendered along with
the content. The example also shows that code statements are still perfectly acceptable
within a <text> block.

There are plenty of circumstances that confuse Razor. By default, it will assume that
ambiguous markup is code. Consider the @: character sequence and <text> blocks as
a way to tell Razor “whenever you are unsure about whether something in this block
is code or content, it is content!”

8 | Chapter 1: Introduction

http://

Comments
Many developers strive to write code in such a way that the code documents itself.
Sometimes, however, it’s not possible; perhaps there is a particularly complex bit of
markup, or you need to leave a note for the next developer to come along (who might
be you). Or you need to temporarily exclude a portion of a template without deleting
it entirely.

To support these scenarios, Razor lets you comment out portions of markup with the
@* *@ syntax. Any markup wrapped in a Razor comment block will remain in the tem-
plate but will not have any effect on rendering.

Here is a simple Razor template with a few parts commented out:

First
@* Second *@
Third @* Fourth *@ Fifth

This template renders the output:

First

Third Fifth

The Second and Fourth words are not included in the output, and are completely ignored
by Razor.

Comment blocks open with the @* characters and close with the *@
characters, regardless of where they appear. Comment blocks can ex-
clude only a small part of a line or span multiple lines.

Comments | 9

http://

http://

CHAPTER 2

Razor and Microsoft WebMatrix

The previous chapter discussed Microsoft’s various forays into web development plat-
forms and editors and how each of them hits or misses with a given crowd. Microsoft
WebMatrix targets a somewhat wide range of developers, but its real sweet spot is the
content-driven website comprising a suite of simple yet dynamic web pages.

Introducing ASP.NET Web Pages
For easy authoring of these dynamic web pages, Microsoft introduced ASP.NET Web
Pages, a straightforward page-based architecture different from existing ASP.NET
technologies, such as Web Forms and ASP.NET MVC. Using the Web Pages approach,
developers create their websites one page at a time, adding logic and behavior inline as
needed.

This approach mimics other platforms and languages, such as PHP, but Web Pages is
backed by the .NET Framework and its popular programming languages, C# and Vis-
ual Basic .NET. Using WebMatrix, developers can start with simple web pages, but
when their sites require a bit more complexity, they can easily access the full power of
the .NET Framework.

Installing WebMatrix
Getting started with WebMatrix is easy. First, install the application using the Web
Platform Installer. To do so, navigate to the Web Platform Installer’s website and look
for the download link. Once in the Web Platform Installer, search through the list of
available products to find the entry for WebMatrix. Click “Install,” and then wait for
the download and installation to finish.

11

http://

Your First WebMatrix Website
One of WebMatrix’s best features is that it offers myriad options for creating a new
website. You may choose to start simply, with just a “normal” site (a single HTML
page, some CSS, and perhaps a layout) or choose one of the many popular open source
packages, such as the .NET-based Umbraco or DotNetNuke Content Management
System (CMS), or even PHP-based solutions such as Joomla!, which are mere clicks
away. Since you're still learning your way around, choose the basic “Empty Site” option.

After WebMatrix has created the new site, you will see a dashboard containing some
information about your new site and displaying several options available to you.

The File List View
The File List view is where you will most likely spend the majority of your time in
WebMatrix. This view lists the content of your site on the left side and opens up an
editor on the right, allowing you to modify and customize your website. Since we se-
lected the “Empty Site” template earlier, you’ll notice that the file list is currently empty
except for a single robots.txt file.

The robots.txt file provides website developers the opportunity to de-
scribe their sites to search engines like Google and Bing. This is part of
Search Engine Optimization (SEO) - a set of techniques that helps drive
traffic to your site through better search rankings.

Finally, it is time to create your first web page using Razor! The easiest way to add a
new page to a WebMatrix site is by using the “New” button in the toolbar, which will
present you with a list of file types like those shown in Figure 2-1. Instead of selecting
the normal HTML page file type (HTML) choose the CSHTML file type. CSHTML is
a web page that uses the Razor syntax and the C# code language. After selecting the
CSHTML option from the list of file types, specify the page name. Since this is the first
page in our site, enter Default.cshtml in the Name field. This will create a new file of
the same name in the root of your site folder, containing an HTML content template
with the standard markup generated for you (see Figure 2-2). Note that at this point
there is no Razor syntax in this file. It is currently pure HTML, but the fact that we
chose the CSHTML file type allows us to use Razor in this page.

Website Administration
WebMatrix websites are very versatile and configurable. However, most of the config-
uration options are not exposed directly in the WebMatrix UI. To access the full con-
figuration settings for a WebMatrix site, navigate to the Site section in the WebMatrix
UI, and then select the ASP.NET Web Pages Administration option.

12 | Chapter 2: Razor and Microsoft WebMatrix

http://

The ASP.NET Web Pages Administration button will open a new browser instance
pointing to the administration web interface for your website. Follow the instructions
provided by the interface to log in. Once you have successfully logged in, you should
be able to access the full administration portal, allowing you to quickly and easily
administer your site.

Figure 2-1. WebMatrix file types

Figure 2-2. New Razor View

Your First WebMatrix Website | 13

http://

Hello World, Razor Style
Though Razor allows an extensive range of code to be included in a page, we will start
small, with a simple code nugget indicating the current time using the .NET Sys
tem.DateTime object. The following listing contains the required markup:

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title></title>
 </head>
 <body>
 The time is @DateTime.Now
 </body>
</html>

Now that the page has content, click the Run button in the WebMatrix toolbar to run
the website for the first time. You should see the markup rendered in the browser with
the @DateTime.Now portion replaced with the current time.

Congratulations, you have created your first Razor web page!

Data Access with WebMatrix
While the “current time” example helps show Razor in action within a WebMatrix
page, real websites typically have a bit more content and logic. At its core, a weblog is
just a list of content posts with metadata, which makes one a great context for beginners
to use to learn the WebMatrix platform. Since WebMatrix web pages use Razor, de-
velopers have access to all of the features and functionality discussed earlier. The fol-
lowing sections leverage these Razor features along with WebMatrix’s powerful data
access technology to build a real, working blog from start to finish.

Creating a Database
The content for the blog site—the blog posts—needs to be stored somewhere. Though
we could create a new static page for each individual post, this approach will quickly
become difficult to maintain. Instead, our blog will rely on the out-of-the-box Web-
Matrix database functionality to create a local database to store the site’s posts. In order
to create a new database, switch to the Databases tab in your WebMatrix site, then
click “Add a database to your site.”

This will add a new file in the site’s File List, named Empty Site.sdf. Rename this file to
Blog.sdf. Directly underneath this new file, you will find an item named “Tables.” Right-
click on this item and select the “New table” option, which will open a new tab in your
Design view, containing a grid in which you can define your database table’s columns
(see Figure 2-3).

14 | Chapter 2: Razor and Microsoft WebMatrix

www.allitebooks.com

http://
http://www.allitebooks.org

Figure 2-3. WebMatrix table designer

Use this designer to create the table that will store the blog posts. Create the columns
shown in Figure 2-4.

Figure 2-4. Building the posts table

When the table definition resembles Figure 2-4, hit Ctrl-S or click the Save icon to save
the new table to the database. When prompted for the table name, enter “Posts,” then
select “OK.” That’s it—you’ve created the blog database!

Populating the Database with Data
Before continuing on, let’s add a few records to the new database so that the website
has something to display when we create the rest of the site. To do this, double-click
or right-click on the “Posts” table and select “Data.”

The Data view, shown in Figure 2-5, allows you to view and edit the data in a database.
Since this database is brand new, it does not yet have any data in it. To add data, double-
click any of the editor fields (such as the field shown in Figure 2-5) and begin typing.

Data Access with WebMatrix | 15

http://

When you are done entering data, hit Enter or click elsewhere in the application to save
your changes. Add a few rows of data so that the blog pages we will soon create will
have a good number of blog posts to display.

Figure 2-5. The WebMatrix database Data view

Displaying Data from the Database
Now that the database is created and has some test data in it, we can create some web
pages to display that data. Before creating new files, let’s take a moment to review the
pages the site will need:

Add Post
The page you’ll use to add new blog posts to the database

Post
The page that displays the full body and details of a specific blog post

Home page
The landing page users will see when they first hit the site; it will contain a list of
the most recent posts with their summaries and links to the full Post page

Creating the Add Post page

You can’t have a website without some kind of content, so we may as well start out by
creating the page that allows authors to post blog entries to the database for display on
the site. To do this, we will create a new folder named “Posts” in the root folder of our
site. (See Figure 2-6.)

Right-click on this new folder and select New File. In the New File dialog, choose the
CSHTML file type and name the new file AddPost.cshtml.

16 | Chapter 2: Razor and Microsoft WebMatrix

http://

The contents of the new file created by this wizard represent a very basic, minimal web
page. This template serves as a starting point for us to add custom HTML and Razor
code. We will start by adding one of the oldest and most useful tools in the HTML
language: a form using the <form> tag. The <form> tag wraps a set of input fields, such
as text boxes and drop-down lists, that allow users to submit data to a server for pro-
cessing. The following markup will provide users with the ability to submit new blog
posts:

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title></title>
 </head>
 <body>
 <form method="post" action="">
 <fieldset>

 <legend>New Blog Post</legend>

 <div>
 <label for="Title">Title</label>
 <input type="text" name="Title" />
 </div>

 <div>
 <label for="Summary">Summary</label>
 <input type="text" name="Summary" />
 </div>

 <div>
 <p><label for="Body">Body</label></p>

Figure 2-6. New folder context menu

Data Access with WebMatrix | 17

http://

 <textarea cols="40" rows="10" name="Body">
 </textarea>
 </div>

 <div>
 <button type="submit">Add Post</button>
 </div>

 </fieldset>
 </form>
 </body>
</html>

What will this markup do? The opening <form> tag indicates to the browser what should
be done with the data the user enters when he or she submits the form by clicking the
submit button or hitting the Enter key. In this instance, the form will use the “POST”
method (as opposed to the “GET” method) to submit the page’s data back to itself.

Handling Posted Form Data
As you may have already realized, posting form data back to this page as it is now will
not be very helpful; the page needs to do something with this data, such as saving it to
a database. Luckily, WebMatrix provides helpers that make working with databases
very easy. To reuse the page we’ve been working on (AddPost.cshtml) to save the posted
form to the database, the page must be updated to extract the form data from the
request, and then execute a database query to save that data.

The following snippet—placed at the top of the page—extracts the form data from the
request into local variables:

@{
 var title = Request["Title"];
 var summary = Request["Summary"];
 var body = Request["Body"];
}

The snippet uses the Request object as a dictionary, copying several values from the
Request to local variables. Notice how the keys used to access the Request dictionary
match those specified in the name field of each of the form’s input fields. To prove that
this works, add the following lines in the page’s body, emitting the values from the
Request:

@{
 var title = Request["Title"];
 var summary = Request["Summary"];
 var body = Request["Body"];
}

<fieldset>
 <legend>Posted Values: </legend>

 <p>

18 | Chapter 2: Razor and Microsoft WebMatrix

http://

 <label>Title: </label>
 @title
 </p>

 <p>
 <label>Summary: </label>
 @summary
 </p>

 <p><label>Body: </label></p>
 <p><div>@body</div></p>

</fieldset>

With the above code in place, try to Run the page. Enter test data into the form fields,
and then click Add Post. You should see the values you’ve entered rendered back at
the top of the page.

Saving Data to the Database
After verifying that the form page can post back to itself and extract the form post data
from the request, the next step is to save those values to the database. Luckily, Web-
Matrix’s database helper makes database access simple and straightforward. As the
following example shows, it takes only a few lines and standard SQL to insert the values
extracted from the request into a database table:

@{
 var title = Request["Title"];
 var summary = Request["Summary"];
 var body = Request["Body"];

 if(IsPost)
 {
 Database
 .Open("Blog")
 .Execute("INSERT INTO Posts (Title, Summary, Body) " +
 "VALUES(@0,@1,@2)",
 title, summary, body);
 }
}

The new section begins with a qualifier: since we are using the same page for both
showing the form and saving the posted data to the database, the database call can only
be made in reaction to a form post. Otherwise, this section should be skipped and the
page displayed without inserting anything into the database. In order to determine
whether or not the page is reacting to a form post, line 6 checks the page’s IsPost
property. When this value is false (i.e., the page is not reacting to a form post), the
database logic will be skipped and the rest of the page shown as expected. When the
page is reacting to a form post, however, this value will be true, and the database query
will be executed.

Data Access with WebMatrix | 19

http://

Lines 8–12 (which are actually one statement spread over multiple lines) show the
database query. The call to Database.Open("Blog") first opens a connection to the da-
tabase, ready to accept queries. The Database.Execute() statement spanning lines 10–
12 executes a standard SQL INSERT statement against this connection, injecting the
form post values previously extracted from the Request object as numbered parameters.

As expected, the Posts table in WebMatrix’s Database view (displayed in Figure 2-7)
shows posted data inserted into the database.

Figure 2-7. Posted form data is visible in WebMatrix’s Database view

Feel free to populate the database with more sample posts to prepare for the next step:
displaying a list of posts on the home page.

Validating Posted Data
Accepting and storing invalid data can often be more detrimental than not accepting
any data at all. On the Web, form posts are the primary way that data is exchanged
between users and applications. Most data collected from users has some sort of re-
quirements placed on it, validating that the data meets certain expectations before the
application does anything with it. Validation can be as simple as requiring that a form
field not be empty, that the field be a certain type, or that a value fall within a particular
range. Since form validation is so ubiquitous, most mature web application frameworks
offer some way to express and evaluate business rules against posted form data.

Conversion helpers

Before we begin writing code to validate our form post values, it is worth pointing out
that WebMatrix offers a handful of helper methods that make the job of validating form
field values simpler and more straightforward. They are broken into two groups: string
conversion helpers and type verification helpers.

The methods AsBool(), AsDateTime(), AsDecimal(), AsFloat(), and AsInt() attempt to
parse values of the respective type from string variables. Strings are the default type
for all Request values. The statement "42".AsInt() would evaluate the string value
"42" and parse the number to the int return value, 42.

Each of these methods also includes an optional parameter to return in the event that
parsing fails. For example, attempts to parse the string value "word" will fail, but if you
provide a default value as a parameter to the .AsInt() method, it will return that value
instead:

20 | Chapter 2: Razor and Microsoft WebMatrix

http://

var intValue = "word".AsInt(10); // returns the int value 10

The methods IsBool(), IsDateTime(), IsDecimal(), IsFloat(), and IsInt() can check
the type of a value. It is often more effective to check that a value can be converted than
to try (and fail) to convert the value. Preemptive conversion checks can help make logic
significantly cleaner and easier to read. For instance:

if(Request["id"].IsInt())

is easier to understand than:

var id = Request["id"].IsInt(-1); // Use -1 as a "magic number"
if(id != -1) { /* ... */ }+

While both of these approaches effectively lead to the same result, the first approach
is much more direct and declarative. The second approach bases its conditional logic
on “magic values,” arbitrary values that affect processing but have no intrinsic meaning.
For example, what happens if Request["id"] actually is -1? The first approach uses very
direct and declarative language that explains exactly how the code behaves and reads
almost like plain English.

Using validation

Razor views can make excellent use of the available helper methods to validate form
post values and determine the best course of action to take. To show the validation in
action, let’s revisit the Add Post page example. As it stands, users can submit
anything—and that includes nothing (a blank field)—into every form field. The data-
base schema will not allow empty values in any of its fields, and if a user tries to submit
an empty value, he or she will be greeted with an ugly database exception. That might
serve to keep empty data out of the database, but it doesn’t make for a very nice user
experience!

To create a better user experience, it is best to check for invalid conditions before at-
tempting to save to the database. That way, if the user attempts to post invalid data,
he or she will be prompted with helpful messages indicating which fields are invalid
and why. Armed with this knowledge, the user can correct the invalid fields and try to
resubmit the form.

The following example shows the previous AddPost.cshtml view, updated to include
some basic validation logic:

@{
 Layout = "~/_AdminLayout.cshtml";

 var title = Request["Title"];
 var summary = Request["Summary"];
 var body = Request["Body"];

 // Only validate form fields during a POST (not during the initial GET)
 if(IsPost) {
 if(title.IsEmpty()) {
 ModelState.AddError("Title", "Post title cannot be empty");

Data Access with WebMatrix | 21

http://

 }

 if(summary.IsEmpty()) {
 ModelState.AddError("Summary", "Post summary cannot be empty");
 }

 if(body.IsEmpty()) {
 ModelState.AddError("Body", "Post body cannot be empty");
 }
 }
}

 @if (IsPost && ModelState.IsValid)
 {
 Database
 .Open("Blog")
 .Execute("INSERT INTO Posts (Title, Summary, Body) " +
 "VALUES(@0,@1,@2)",
 title, summary, body);

 <fieldset>
 <legend>Posted Values: </legend>

 <p>
 <label>Title: </label>
 @title
 </p>

 <p>
 <label>Summary: </label>
 @summary
 </p>

 <p><label>Body: </label></p>
 <p><div>@body</div></p>

 </fieldset>
 }

 <form method="post" action="">
 <fieldset>

 <legend>New Blog Post</legend>

 @Html.ValidationSummary()

 <div>
 @Html.ValidationMessage("Title", "*")
 <label for="Title">Title</label>
 <input type="text" name="Title" value="@title"/>
 </div>

 <div>
 @Html.ValidationMessage("Summary", "*")
 <label for="Summary">Summary</label>

22 | Chapter 2: Razor and Microsoft WebMatrix

http://

 <input type="text" name="Summary" value="@summary" />
 </div>

 <div>
 <p>
 @Html.ValidationMessage("Body", "*")
 <label for="Body">Body</label>
 </p>
 <textarea cols="40" rows="10" name="Body">@body</textarea>
 </div>

 <div>
 <button type="submit">Add Post</button>
 </div>

 </fieldset>
 </form>

There is quite a bit going on in this example!

The template starts out the same, specifying the Layout and reading the form post values
from the Request object. After getting a copy of the form post values, we quickly dive
into the validation logic. Each field gets validated; in this example, users can enter any
value they like, as long as they enter something (i.e., the field is invalid if IsEmpty()
returns true). When a field fails the check, add it to the special ModelState object,
associated with a message to show the user that explains why the field is invalid. The
errors tracked by the ModelState object drive the rest of the logic on the page. Since the
validation errors (if any) are tracked in the ModelState object, it is easy to check if
the form post data as a whole is valid by looking at the ModelState.IsValid property.
If no errors occurred, the ModelState.IsValid property will reflect this by returning
false.

The ModelState.IsValid property can be called throughout the template as many times
as needed, making it very easy to change how the page renders when validation errors
occur. The first code affected by whether or not the posted data is valid is the decision
to execute the SQL statement that saves the values to the database. In other words,
only save the posted data to the database when it is valid: that is the whole reason for
validation logic! Included in this block is the summary markup showing the values that
were saved to the database. The summary is included within the conditional block
because it should only show after the data has been successfully saved to the database.

The main content of the page immediately follows the database logic and summary.
The important part that’s been added here is the call to the @Html.ValidationSum
mary() method—a helper method that displays a list of any errors that were added to
the ModelState object earlier in the page. The summary section only shows when the
ModelState object contains validation errors. Otherwise, no markup regarding valida-
tion renders. When there are validation errors in a page, the @Html.ValidationSum
mary() method renders the errors as an HTML list:

Data Access with WebMatrix | 23

http://

<div class="validation-summary-errors">

 Post title cannot be empty
 Post summary cannot be empty
 Post body cannot be empty

</div>

With no CSS styles applied to it, the list of errors will appear just like any other
on the page. But this list is much more important than those s—it needs to grab
the user’s attention and tell him there were errors in the form he tried to submit! Luckily,
the @Html.ValidationSummary() helper adds the validation-summary-errors CSS class
by default. With the validation-summary-errors CSS class in place, you can easily write
CSS styles that target the list and format it to your liking. Make the text bolder, make
it larger, change the color to red…whatever you think will grab the user’s attention.

Finally, the remainder of the template remains largely untouched, except for calls to
the @Html.ValidationMessage() helper added before every field label, which looks like
this:

@Html.ValidationMessage("Title")

The @Html.ValidationMessage() helper can be applied to any field that might fail vali-
dation. The helper checks the ModelState object to see if a validation error has been
registered for the field name specified by the first parameter of the @Html.Validation
Message() method call (in this example, the "Title" field). If so, the helper emits markup
indicating to the user that the field is invalid and needs to be corrected. By default, the
helper includes the error message that was originally associated with the field when the
ModelState.AddError() call was made; however, you can override the contents of the
inline validation message by adding a second parameter to the @Html.ValidationMes
sage() method call containing the alternative content to display. Here’s what the pre-
vious example looks like with a custom validation message (the * character) specified:

@Html.ValidationMessage("Title", "*")

Using this markup, if there is an error associated with the "Title" field in the Model
State object, the following markup will be rendered to the user:

*

Here again, as with the @Html.ValidationSummary() helper, the @Html.ValidationMes
sage() helper attaches a CSS class (field-validation-error) to the span that it renders
so that you or your designers can leverage CSS styles to call attention to the validation
error.

24 | Chapter 2: Razor and Microsoft WebMatrix

www.allitebooks.com

http://
http://www.allitebooks.org

Creating the Home Page
The home page is the first page that most visitors will see. As such, it should be as
interesting as possible to encourage visitors to explore more of the site. On a blog, the
home page generally contains a list of the most recent posts, along with links to the
RSS feed, social media, etc. The following section demonstrates how to use the Data
base helper to retrieve and display the blog posts entered using the form from the pre-
vious section.

After using the Database.Execute() method to insert data into the database using
standard SQL statements, it should be no surprise to find out that the Data
base.Query() method allows you to retrieve data, also using standard SQL statements.
The code and markup will look similar to that used for the Add Post page. The following
example shows the page in its entirety:

@{
 var db = Database.Open("Blog");
 var posts = db.Query("SELECT ID,Title,Body FROM Posts");
}

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>My Blog</title>
 </head>
 <body>

 <h1>My Blog</h1>

 @foreach(var post in posts) {
 <div>
 <h3>@post.Title</h3>
 <div>@post.Body</div>
 </div>
 }

</body>
</html>

Just as in the previous section, the page starts, on line 2, by opening a connection to
the Blog database that stores the posts. Line 3 executes a standard SQL statement,
retrieving the ID, Title, and Body columns from the Posts table and storing them in a
local variable. Later, a foreach statement iterates through the posts, pulling each one
into a local post variable. This loop begins with an opening bracket and ends with the
closing bracket after the <div> tag that it wraps.

These brackets contain a combination of code and markup which—when iterated over
in the foreach loop—produces a list of blog posts. Each post will be wrapped in a

Data Access with WebMatrix | 25

http://

<div> tag and contains the post’s Title in an <h3> tag and the post’s Body in its own
<div> tag. When this page executes, it produces this HTML:

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>My Blog</title>
 </head>
 <body>

 <h1>My Blog</h1>

 <div>
 <h3>Test Post #1</h3>
 <div>This is the first test post</div>
 </div>

 <div>
 <h3>Test Post #2</h3>
 <div>This is the second test post</div>
 </div>

 <div>
 <h3>Test Post #3</h3>
 <div>This is the third test post</div>
 </div>

 </body>
</html>

26 | Chapter 2: Razor and Microsoft WebMatrix

http://

CHAPTER 3

Organizing Razor Templates

As the size of a website grows, so does the task of keeping everything organized. And,
as any seasoned web developer will tell you: the bigger your site, the more difficult it
becomes to maintain. Luckily, there are plenty of techniques developers can employ to
keep websites from growing unmanageable. This chapter will introduce a number of
Razor features that help make website organization and management a breeze.

Layouts
Now that our blog site has more than one page, you can begin to see that there is a bit
of redundant markup between them. It is generally a good thing for all pages on your
website to look the same; that is, they should look like they belong to the same site.

Thus far, the pages have maintained a consistent look and feel by duplicating the same
markup on every new page, changing only the main content section. Not only is du-
plicating text in this way inefficient, it quickly becomes practically impossible to man-
age. For example, consider how much work it would take to add a simple CSS stylesheet
to a site with a dozen or more individually maintained pages.

The problem of maintaining a consistent look and feel throughout an entire website is
certainly not limited to WebMatrix and ASP.NET MVC sites. In fact, all good web
frameworks must address this problem. Most address it by introducing the concept of
a “layout.” When using layouts, a single page acts as a template for all other pages to
use, defining the site-wide page layout and style.

A layout template typically includes the main markup (scripts, CSS stylesheets, and
structural HTML elements, such as navigation and content containers), specifying lo-
cations within the markup in which pages can define content. Each page in the site
refers to this layout, including only the content within the locations the layout has
indicated.

27

http://

Take a look at a typical Razor layout file (_Layout.cshtml):

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>@View.Title</title>
 </head>
 <body>
 <div class="header">
 @RenderSection("Header")
 </div>

 @RenderBody()

 <div class="footer">
 @RenderSection("Footer")
 </div>
 </body>
</html>

The layout file contains the main HTML content, defining the HTML structure for the
entire site. The layout relies on variables (such as @View.Title) and special functions
like @RenderSection([Section Name]) and @RenderBody() to interact with individual
pages.

Once a Razor layout is defined, pages reference the layout and supply content for the
sections defined within the layout. The following is a basic content page that refers to
the previously defined _Layout.cshtml file:

@{ Layout = "~/_Layout.cshtml"; }

@section Header {
 <h1>My Blog<h1>
}

@section Footer {
 Copyright 2011
}

<div class="main">
 This is the main content.
</div>

Figure 3-1 shows the HTML that would be rendered from the HTML above. The figure
has been color-coded to help you better visualize which content comes from the layout
and which content comes from the page.

Like puzzle pieces, Razor layouts and the content pages that depend on them work
together, each one defining portions of the entire page. When all the pieces get assem-
bled, the result is a complete web page.

28 | Chapter 3: Organizing Razor Templates

http://

Layouts Are Pages, Too!
Not only does Razor support the concept of layouts, but Razor layouts are also incred-
ibly easy to define and use. Razor uses a master layout file and each page refers to this
master layout. The master layout file is just a Razor template (.cshtml or .vbhtml file)
that includes specific keywords to indicate which portions of the template the individ-
ual pages will replace. To show Razor layouts in action, we will update the example
blog site, adding a new layout template and updating the two existing pages to leverage
this template.

The first step in introducing a new layout is to create a new Razor template file. To add
this file, right-click on the Empty Site folder and select “New File.” Then select the
CSHTML file type (just as we have been doing for the other pages) and name it
_Layout.cshtml.

The contents of the resulting file (shown below) should not be surprising, as they are
the same template that each of the other CSHTML files in our project has started with.
The difference with this file is that, instead of adding content directly to it, we will add
Razor code to define sections that other pages will refer to!

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />

Figure 3-1. HTML with color coding to indicate layout sections

Layouts | 29

http://

 <title></title>
 </head>
 <body>

 </body>
</html>

Since the example pages created so far have been relatively simple—only adding con-
tent within the <body> tag— we will start by defining one section: the main content
body. Assuming the contents of this section should be rendered within the <body> tag
(with no additional surrounding layout elements or CSS), the master layout Razor
template’s contents will match the following:

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>My Blog</title>
 </head>
 <body>
 @RenderBody()
 </body>
</html>

Notice that the only difference between the default contents and the layout template
is the page title and the addition of a single method call: @RenderBody(). This command
renders the output of the executed content view at the same point at which the Render
Body() command is called (line 9 in this case). All Razor layouts must include a call to
the RenderBody() method at some point in their content.

Once the layout is defined, any Razor template may leverage the layout by specifying
the layout’s file location in the Razor template’s Layout property. What follows is a
modified version of the example blog site’s Default.cshtml page, pointing the Layout
property to _Layout.cshtml and removing all of the redundant lines. The result of this
exercise is that Default.cshtml is now much smaller and more focused, defining only
the logic and contents pertinent to displaying this particular page and a pointer to the
desired layout instead of repeating the site’s layout markup. Now Default.cshtml can
concentrate on its specific logic and markup and let the layout page worry about the
site layout!

@{
 Layout = "~/_Layout.cshtml";
 var db = Database.Open("Blog");
 var posts = db.Query("SELECT ID,Title,Body FROM Posts");
}

 <h1>My Blog</h1>

 @foreach(var post in posts) {
 <div>
 <h3>@post.Title</h3>

30 | Chapter 3: Organizing Razor Templates

http://

 <div>@post.Body</div>
 </div>
 }

Sections
Though the RenderBody() command is very useful in allowing content pages to specify
what content should appear within a master page, typically just the simplest layouts
will have only one dynamic section that needs to be replaced. To this end, developers
can use the RenderSection() command to specify sections of the layout template in
which content pages may render additional dynamic content. The next snippet updates
the previous layout example to include two new header and footer sections:

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>My Blog</title>
 </head>
 <body>
 <div class="header">
 @RenderSection("Header")
 </div>

 @RenderBody()

 <div class="footer">
 @RenderSection("Footer", required: false)
 </div>
 </body>
</html>

The RenderSection() call includes an additional parameter—"required"—indicating
whether or not content pages following this layout are required to explicitly implement
a given section. This value is true by default (indicating that content pages are required
to implement a given section); however, if this value is false, content pages can feel free
to ignore that the section is defined, providing content for the optional section only
when prudent. Content pages then refer to these dynamic sections using the Razor
section keyword, with this syntax:

@section [Section Name] {
 [Razor content, code, and markup]
}

The following snippet updates the blog site’s home page (Default.cshtml) to include
content for a Header section, but has opted not to define content for the optional
Footer section by simply omitting a second @section area. Though shown near the top
of the template in this example, section definitions may appear almost anywhere within
the Razor template and need not be constrained to the top of the template before the
main template content:

Layouts | 31

http://

@{
 Layout = "~/_Layout.cshtml";
 var db = Database.Open("Blog");
 var posts = db.Query("SELECT ID,Title,Body FROM Posts");
}

@section Header {
 <h1>My Blog</h1>
}

 @foreach(var post in posts) {
 <div>
 <h3>@post.Title</h3>
 <div>@post.Body</div>
 </div>
 }

IsSectionDefined
Razor also provides another helpful method—IsSectionDefined()—which determines
whether a section of a given name is defined in the content view. This information
allows the layout not only to control the placement of the section’s content but also to
affect other areas of the page.

Consider the Footer section example above, in which the section content is wrapped
in a containing div element. What if you wanted the view to omit the containing div
entirely when a content view does not provide content for the optional Footer section
(it is, after all, an optional section)? Luckily, the IsSectionDefined() method makes
this a trivial task:

 @RenderBody()

 @if(IsSectionDefined("Footer")) {
 <div class="footer">
 @RenderSection("Footer", required: false)
 </div>
 }
</body>
</html>

With this check in place, the footer div will only be rendered when the content view
defines a Footer section. Otherwise, nothing will be rendered!

Nested Layouts
Layouts can also be “nested.” A nested layout is any layout that refers to another, outer
layout. This approach is useful when a subset of pages require the same markup, as is
often the case when certain sections of a website need to appear slightly different from
the others, yet retain the same general look and feel.

32 | Chapter 3: Organizing Razor Templates

http://

Since it provides functionality that only certain people will use, the Add Post (Add-
Post.cshtml) page created in Chapter 2 is a prime candidate for a nested layout. Applying
a nested layout to the Add Post page will allow it to use the same overall theme as the
rest of the site (the _Layout.cshtml layout), yet slightly alter its color scheme to indicate
that the page belongs to an administrative area.

When we first created it, the Add Post page used the default CSHTML file template,
which does not refer to a layout at all. Thus, the first step to applying a nested layout
to the Add Post page is to remove everything but its core content (everything inside the
<body> tag). After this, use the same syntax as earlier examples to associate the page
with a layout, only instead of the _Layout.cshtml layout specify another (not yet created)
layout file named ~/_AdminLayout.cshtml. The first few lines of the modified page are
shown below:

@{
 Layout = "~/_AdminLayout.cshtml";

 var title = Request["Title"];
 var summary = Request["Summary"];
 var body = Request["Body"];
 ...
}

Now it’s time to create the aforementioned _AdminLayout.cshtml layout. To do so, add
a new CSHTML file named _AdminLayout.cshtml to the root of the website (follow the
same steps used previously to create a new layout file). Then, completely clear the
default template text, so that the file is empty, and replace with a reference to the
_Layout.cshtml layout file as well as a call to the RenderBody() method. The following
snippet shows the full implementation of a nested layout: a Razor template that con-
tains a call to the RenderBody() method and refers to another layout:

@{ Layout = "_Layout.cshtml"; }
@RenderBody()

Nested Layouts and Sections
Technically speaking, the above code is all that is required to implement a nested layout.
However, if you attempt to execute the site with only this code in place, you will quickly
find out that the original layout—_Layout.cshtml—is not satisfied: _AdminLay-
out.cshtml does not implement the required Header section!

As shown earlier, a content view can define Razor sections that the view’s layout can
access and execute. These section definitions, however, are only accessible to the im-
mediate layout and vice-versa. In the case of the Add Post → Admin Layout → Main Site
Layout scenario, this means that only the admin layout can access any sections defined
in the Add Post content view. The main site layout cannot interact with the Add Post
content view at all! Conversely, the admin layout is responsible for implementing the

Layouts | 33

http://

required sections that the main site layout expects—it must explicitly implement these
sections and cannot simply pass this responsibility to the Add Post content view.

Redefining Sections
Though this may seem inconvenient at first, consider what a Razor layout actually
represents. At their core, layouts are nothing more than fancy Razor views that leverage
a few special methods (RenderBody, RenderSection, etc.) to access content from the
content views that refer to them. Thus, nested views are unique not only because they
wrap a content view by referring to another layout, but also because they act as a content
view themselves. If you take this into consideration, this layered approach makes much
more sense: each layer must satisfy the layer above it.

What this all means is that each layer is able to redefine what is required of the content
views that will leverage it. Though nested views must implement the sections expected
of layouts higher up the chain, they can also modify how—or if—those sections are
handled by their content views.

Let’s revisit the nested admin layout example. The main site layout refers to two sec-
tions—Header and Footer—but allows one of the sections (the Footer section) to remain
undefined. Thus, in order to get the admin layout working, it must define a Header
section. The updated _AdminLayout.cshtml page contains the bare minimum required
to satisfy the main site layout’s expectations:

@{ Layout = "_Layout.cshtml"; }

@section Header { /* EMPTY! */ }

@RenderBody()

With the Header section definition in place, the Add Post page now executes (hooray!).
However, what if the Add Post page would like to render something in the Header
section defined in the main site layout? It can’t! At least not directly…

Though sections may only be defined by the immediate view (the nested layout), there
is nothing stopping the nested layout from turning around and requesting a section of
the same name from its immediate views. Here’s the updated _AdminLayout.cshtml,
which effectively redefines the Header section for its content views:

@{ Layout = "_Layout.cshtml"; }

@section Header {
 @RenderSection("Header", required: false)
}

@RenderBody()

Notice that, instead of simply passing on the requirement to implement the Header
section, the nested admin layout effectively “converts” it to an optional section by
specifying that it is not required (required: false).

34 | Chapter 3: Organizing Razor Templates

www.allitebooks.com

http://
http://www.allitebooks.org

The Layout Rendering Life Cycle
While it’s nice to know that Razor layouts render HTML as developers intend, it is
useful to know just how they go about doing so. At first glance, you might assume that
the Razor executes in the same order that it gets rendered in, but this is not actually the
case.

Figure 3-2 shows the blog layout we’ve been creating in this chapter split into color-
coded sections, numbered with the order in which they are rendered to the user.

Figure 3-2. A page showing the order in which blocks are rendered

As shown, the numbered sections correspond to the following files:

1. _Layout.cshtml

2. The Header section in Post.cshtml

3. _Layout.cshtml

4. The body of Post.cshtml

5. _Layout.cshtml

6. The Footer section in Post.cshtml

7. _Layout.cshtml

Though this may be the order that they are rendered, this is not actually the order in
which they are executed on the server (see Figure 3-3).

Though this order of execution may be surprising at first, it provides a very telling
glimpse under the hood of the Razor engine. Take a moment to consider the actual web

Layouts | 35

http://

request made by the user—it is a request to the Post.cshtml page. As such, it is only
natural that the body of this page be the first to execute.

Had Post.cshtml not specified a layout, Razor would have gladly rendered only the
output of this page and stopped there. However, since it does reference a layout,
Post.cshtml passes control to the specified layout view after executing itself. The layout
is able to control content placement using the RenderBody() method shown earlier to
access the output of the already-executed Post.cshtml (or any other view referenced in
this manner).

Next, look at where sections 2 and 6—the Header and Footer sections—are located in
the rendering life cycle. As discussed earlier in the book, Razor sections are blocks of
code that may be defined in views for later use by a layout. While layouts are able to
access sections, the page-specific code in these sections is not executed along with the
main body. Razor sections are, in fact, effectively functions (lambda expressions, to be
exact) that are simply defined in views, but only executed when explicitly invoked from
a layout.

Figure 3-3. The parts of a Razor view, displayed in order of execution

36 | Chapter 3: Organizing Razor Templates

http://

Nested Layouts
Now that you have a strong grasp of the Razor layout life cycle, it’s time to throw a
wrench into the mix: how do nested layouts affect the rendering order? The answer:

1. Content view

2. Nested layout

3. Wrapper (main) layout

Previous sections demonstrated that Razor views that leverage layouts render the con-
tent view first, followed by the layout (which injects the output from the content view).
Since nested layouts effectively act as both layouts and content views, they simply add
another layer to the mix. Thus, the requested content view is rendered first, which
passes its output to the nested layout, which subsequently wraps the original content
view with itself, and then passes its output to the final main layout.

Partial Views
Layouts and sections are a powerful and effective technique for creating maintainable
websites because they provide the ability to split a given web page into smaller, more
focused parts. In addition to layouts and sections, WebMatrix offers yet another com-
partmentalization technique called partial views, which are self-contained portions of
markup that can be reused throughout the website. Partial views are also useful for
separating complex or lengthy portions of markup from a page, making them easier to
read and understand (and by extension, easier to maintain).

Creating Partial Views
To create a partial view, it is often easiest to start with existing markup from an existing
web page. For example, assume that we’d like to create a new page to show the contents
of a single blog post, reusing the markup within the foreach loop on the blog’s home
page that lists all of the blog posts:

@foreach(var in posts) {
 var url = "http://www.myblog.com/posts/post.cshtml"id=" + post.ID;

 <div>
 <h3>@post.Title</h3>
 <div>@post.Body</div>
 @TwitterHelpers.TweetButton(url: url, text: @post.Title)
 @Facebook.LikeButton(href: url)
 </div>
}

In order to turn the inner contents of the foreach loop into a partial view, you must
first create a new Razor file to hold the contents of the new partial view. To do so, right-
click on the Posts folder and from the New File dialog, select the CSHTML file type

Partial Views | 37

http://

(that’s right, the same file type we’ve been using for full Razor pages and layouts). Name
the new file _Posts.cshtml, and then cut lines 12 through 19 from the Default.cshtml
file and paste them into this new view, overwriting the existing contents completely.
Then, replace the contents of the foreach loop with a single line—a call to the Render
Page() method, passing in the relative path of the new partial view file, along with any
parameters the partial view expects (which will be explained in a bit), like so:

 RenderPage("Posts/_Post.cshtml", new { Post = post })

Here’s the entire contents of the updated Default.cshtml:

@{
 Layout = "~/_Layout.cshtml";
 var db = Database.Open("Blog");
 var posts = db.Query("SELECT ID,Title,Body FROM Posts");
}

@section Header {
 <h1>My Blog</h1>
}

@foreach(var post in posts) {
 @RenderPage("~/Posts/_Post.cshtml", new { Post = post })
}

And the new _Posts.cshtml file:

@{
 var post = Page.Post;
 var url = "http://www.myblog.com/posts/post.cshtml"id=" + post.ID;
}

<div>
 <h3>@post.Title</h3>
 <div>@post.Body</div>
 @TwitterHelpers.TweetButton(url: url, text: @post.Title)
 @Facebook.LikeButton(href: url)
</div>

Accessing parameter values

For partial views with simple markup, these steps are all that is required. However,
since the markup we chose to turn into a partial view contains references to an object
(the post variable), the partial view must first gain access to a local reference of that
variable. To see where the value of this variable originates, refer back to line 12 of the
updated Default.cshtml markup, which passed new { Post = post } as the second
parameter to the RenderPage method. The partial view is able to access the values in
this second parameter via the Page object, like so:

 var post = Page.Post;

Once created, this local reference satisfies the references to the post variable in the
copied code. With the post variable reference in place, you should be able to execute

38 | Chapter 3: Organizing Razor Templates

http://

the Default.cshtml page and see that it renders the same markup as before the move to
partial views; only now, that markup lives in a separate file!

Alternatively, the RenderPage() method accepts any number of parameters in lieu of a
single object. If we chose to use this approach, Default.cshtml would contain the
following:

 @RenderPage("Posts/_Post.cshtml", post)

The post variable reference in the _Post.cshtml partial view could still be created, this
time using the PageData object’s index accessor, like so:

 var post = PageData[1];

Though this approach may be quite effective in many situations, it—like all index-based
techniques—relies on the relatively arbitrary order in which the parameters are passed.
Should this order change, all calls to the partial view would need to be updated, which
may involve updating multiple locations. Conversely, the named approach shown ear-
lier refers to the parameters by name, regardless of the order in which they are defined.
Though these names are case-sensitive and also somewhat arbitrary, they provide much
more semantic meaning than numerical index values. The named approach is, there-
fore, often much easier to update and maintain and is the author’s recommended
approach.

Reusing Partial Views
It’s understandable if you were unimpressed by the result of the previous exercise in
moving markup from a web page to a partial view. The real power of partial views is
best shown when a partial view is used in more than one place. To this end, we will
now create an additional page that will refer to the same partial view, therefore lever-
aging the same markup in multiple pages.

You may have noticed that the previous examples have been referring to the generated
URL http://www.myblog.com/posts/post.cshtml"id=@post.ID and that this tutorial has
not yet created a page named Post.cshtml in the Posts folder of the example website. If
that is the case, you are exactly right—so let’s create it now, using the new partial view.

As opposed to the home page, which lists all of the blog posts, the new page—/Posts/
Post.cshtml—will show only one, making it easy for visitors and search engines to link
to a single post on the blog. What’s more, if you’ve read the previous few sections, the
contents of this new page will be no surprise.

First, begin by creating a new CSHTML page under the Posts folder named
Post.cshtml. Next, begin the page with a code snippet that retrieves the requested post
from the database. Finally, pass the blog post retrieved from the database into the
RenderPage method, just as shown previously. Take a look at the full contents of the
new Post.cshtml file with these changes in place:

Partial Views | 39

http://

@{
 Layout = "~/_Layout.cshtml";
 var db = Database.Open("Blog");
 var post = db.QuerySingle("SELECT ID,Title,Body FROM Posts WHERE ID = @0",
 Request["id"]);
}

@section Header {
 <h1>@post.Title</h1>
}

@RenderPage("_Post.cshtml", new { Post = post })

The _ prefix applied to partial views is more than just a helpful indicator
to help differentiate partial views from full pages; it also offers a bit of
security. As far as IIS is concerned, any Razor view with the _ prefix is
not meant to be viewed by itself, so IIS will reject any direct requests for
files with the _ applied to them.

Though the partial view code in this example should not come as a surprise, the snippet
does include a few things that we have not yet covered. Specifically:

1. Since the page requires and requests only one post object from the database, line
4 uses the QuerySingle method instead of the Query method used in earlier exam-
ples. As expected, this method returns a single object instead of a list of objects.

2. The SQL query later on the same line (line 4) leverages a parameterized SQL string
to help sanitize inputs and protect against SQL injection attacks. This is a standard
best practice as opposed to the use of “dynamic SQL” (using string concatenation
to build SQL query strings).

3. The page determines which post the user wants to view by examining the request
to find the post’s ID value. It does this in line 5 by requesting the value of the
"id" key from the page’s Request dictionary object, which contains the values of
variables from multiple aspects of the request, including its query string and/or
form post data.

At this point, we have created a pretty functional website. The site provides the ability
to add new content and then display that content to users. What’s more, the pages
leverage Razor layouts and sections to maintain a consistent theme across pages, mak-
ing it easier to edit and maintain a centralized look and feel throughout the site. The
next section will take our “functional” site to the next level, using Razor Helpers to
enhance the site and provide users with a better experience.

40 | Chapter 3: Organizing Razor Templates

http://

Razor Helpers
Razor Helpers provide an easy way to define common Razor markup in one centralized
location and reuse that markup across your site. You can think of them much like global
methods, except that Razor markup offers the ability to mix code and HTML markup
rather than containing just code. Luckily, creating and using Razor Helpers is very
simple and straightforward.

The easiest way to begin writing a Razor Helper is to choose an existing Razor page in
your site, and then write and test the Razor markup that you wish to reuse. To dem-
onstrate, let’s modify the blog site’s Post markup, adding a link to the template for each
of the blog posts that allows visitors to share a direct link to the post via Twitter. The
HTML for creating this button, as copied from Twitter’s developer website, is as
follows:

<script src="http://platform.twitter.com/widgets.js" type="text/javascript"></script>
<div>
 <a href="http://twitter.com/share" class="twitter-share-button"
 data-url="http://dev.twitter.com/pages/tweet_button"
 data-text="Checking out this page about Tweet Buttons">Tweet
</div>

After inserting the Twitter markup, the _Post.cshtml partial view looks like this:

@{
 var post = Page.Post;
 var url = "http://www.myblog.com/posts/post.cshtml?id=" + post.ID;
}

<div>
 <h3>@post.Title</h3>
 <div>@post.Body</div>
 <script src="http://platform.twitter.com/widgets.js" type="text/javascript"></
script>
 <div>
 <a href="http://twitter.com/share" class="twitter-share-button"
 data-url="@url" data-text="@post.Title">Tweet
 </div>
</div>

Note that the data-url and data-text portions of the anchor tag now contain the URL
for this specific post and the post’s title, respectively. With this information in place,
this button will prompt the user with a pop-up window (shown in Figure 3-4), providing
him or her the option to post the link and message to a Twitter account.

Razor Helpers | 41

http://

Figure 3-4. The TweetButton helper in action

So far, there is nothing particularly special about this code: it simply takes the Twitter
template and adds a bit of Razor markup to insert details about the current blog post.
The next step is to move this code into a Razor Helper function:

@helper TweetButton(string url, string text) {
 <script src="http://platform.twitter.com/widgets.js" type="text/javascript"></
script>
 <div>
 <a href="http://twitter.com/share" class="twitter-share-button"
 data-url="@url" data-text="@text">Tweet
 </div>
}

@{
 var post = Page.Post;
 var url = "http://www.myblog.com/posts/post.cshtml?id=" + post.ID;
}

<div>
 <h3>@post.Title</h3>
 <div>@post.Body</div>
 @TweetButton(url: url, text: post.Title)
</div>

The newly created Razor Helper is defined in lines 11–17. The syntax is simple:

 @helper [name] ([parameters]) {
 [Razor markup]
 }

42 | Chapter 3: Organizing Razor Templates

http://

The @helper syntax effectively creates a static method behind the scenes, ready to be
consumed throughout the rest of the page (or site!). Note that the “hardcoded” URL
and text have been replaced with method parameters. This allows consumers of the
helper to easily define its behavior without having to know the specifics of the HTML
the helper generates. Lines 23–26 show an example of this helper in action with a simple
call to the newly created TweetButton static method, passing in the post’s URL and title.

The final step in the process of converting a Razor snippet into a global Razor Helper
method that can be used across the entire site is to move the method into a location
that is accessible by the whole site. Luckily, WebMatrix provides a special folder for
just this purpose. If your site does not have this folder already, simply create a new
folder in the root directory of the site named App_Code. In this folder, create a new
CSHTML file named TwitterHelpers.cshtml, and then cut and paste the entire
@helper method into this file, replacing any existing contents in the new file, as shown
in the following TweetButton Helper Method:

@helper TweetButton(string url, string text) {
 <script src="http://platform.twitter.com/widgets.js" type="text/javascript"></
script>
 <div>
 <a href="http://twitter.com/share" class="twitter-share-button"
 data-url="@url" data-text="'@text'">Tweet
 </div>
}

Once this is done, your site layout will look like that shown in Figure 3-5.

Figure 3-5. Website with TwitterHelpers.cshtml

Finally—since the Razor Helper has moved locations—update the @TweetButton refer-
ence to include the name of the new file. In our example, the updated markup will
resemble the following:

<div>
 <h3>@post.Title</h3>
 <div>@post.Body</div>
 @TwitterHelpers.TweetButton(url: url, text: post.Title)
</div>

Razor Helpers | 43

http://

And that’s all it takes—you have now created your first Razor Helper!

Razor Helper Packages
The Twitter Razor Helper demonstrated in this chapter is not very unique. In fact, it
was largely code copied and pasted directly from the Internet. Though it is nice that
Twitter provides code snippets that can be easily copied and pasted, it would be even
nicer if we didn’t have to create the Razor Helper ourselves at all. Luckily, we don’t
have to: WebMatrix websites have full access to an online repository containing po-
tentially thousands of prebuilt packages, ready to install!

To install Razor Helpers from this online repository, start by navigating to your site’s
administration portal. The portal’s Package Manager section should display a list of
packages ready to be installed. Installation is as easy as choosing the package you want
and clicking the Install button. The package is then downloaded and added to your
website, ready for consumption.

For example, let’s add Facebook integration in addition to the custom Twitter Helper
previously created. To do this, search for “Facebook” with the Package Manager’s
search functionality, and then install the Facebook.Helper package. After installing, you
should see a new file named Facebook.cshtml in the website’s App_Code folder (the
same place as the previously created TwitterHelpers.cshtml). Open this file and peruse
it; you will see that it defines numerous functions and Razor Helpers. (The code is also
very well documented and provides great sample code to learn from!)

Accessing the new Helpers defined in Facebook.cshtml is exactly the same as the pre-
vious examples with the custom Helper defined in TwitterHelpers.cshtml. The next
code snippet leverages the Facebook.LikeButton Helper in addition to the TweetButton
added previously, allowing visitors to share links to posts via Twitter or Facebook:

<div>
 <h3>@post.Title</h3>
 <div>@post.Body</div>
 @TwitterHelpers.TweetButton(url: url, text: post.Title)
 @Facebook.LikeButton(href: url)
</div>

Razor Helpers versus Partial Views
You might be thinking that the functionality offered by Razor Helpers seems awfully
redundant with the partial view functionality discussed in the previous section. Though
you are right in that they both provide a convenient way to share and reuse markup,
sometimes it is more appropriate to use one over the other.

44 | Chapter 3: Organizing Razor Templates

www.allitebooks.com

http://
http://www.allitebooks.org

Razor Helpers
A Razor Helper is defined as a function with a specific set of input parameters that
outputs rendered markup. Razor Helpers are most suitable for helping customize small
sections of markup with minimal logic, such as an anchor tag or image tag. Since they
typically contain less application-specific logic, they can often be used not only across
views within the same project but also shared between applications. Think of Razor
Helpers as templates or “macros” that make your code easier to read, write, and
maintain.

Partial Views
Whereas Razor Helpers are best suited for small, generalized sections of markup, partial
views are best for breaking up larger views into more manageable pieces. These pieces
typically contain more application-specific markup and logic. Though partial views can
be reused across views in a project, the application-specific logic present in most views
generally precludes sharing across applications.

Conversely, just because it is possible to reuse a partial view in more than one place
doesn’t mean you have to. Partial views can be a very effective tool for simplifying a
larger view or isolating a particularly complex section of a page. Do not shy away from
creating a partial view because it will only be used in one place—not only is that OK,
it’s sometimes very helpful!

Executing Common Code
Web applications often have cross-cutting concerns. That is, there are site-wide activ-
ities and behaviors that affect some or all pages, regardless of what they have in com-
mon. Website activity logging is one of the classic examples: every page of the appli-
cation triggers a log entry, despite the potentially vast differences between those pages.

Razor offers two ways to apply cross-cutting logic to your web application, both the
first request for each individual page and before and after subsequent page requests.

Executing Code the First Time a Page Executes
Razor makes it very easy to execute code during the website’s start-up phase. It does
so via a special file in the website’s root folder named _AppStart.cshtml, which gets
executed only once during the application’s lifetime, before the very first request. This
is helpful for executing logic that should only ever be executed once per view, such as
setting global variable values or initializing certain components.

As its file extension implies, _AppStart.cshtml is a Razor template like any other, so it
must contain valid Razor markup. Outside of that constraint, you are free to do

Executing Common Code | 45

http://

whatever you like in _AppStart.cshtml. For example, consider the following _App-
Start.cshtml:

@{ AppState["AppStartTime"] = DateTime.Now; }

Once this snippet executes, the AppState["AppStartTime"] property will contain the
timestamp of the very first page hit. AppState is a global collection that all views can
access, so it makes a good candidate to store global variables.

In order to test it out, create a simple Razor view, StartTime.cshtml:

The application started at: @AppState["AppStartTime"]

The first request to any page on the site triggers the _AppStart.cshtml code to execute,
setting the value of the AppState["AppStartTime"] property once. To verify this, hit the
StartTime.cshtml page multiple times, refreshing the page and visiting other pages in
the site, and then coming back to StartTime.cshtml:

Application Start Time: 6/17/2011 1:48:27 AM

Regardless of how many other pages you visit or how many times you visit them, the
value of @AppState["AppStartTime"] will remain the same for the entire time the appli-
cation process continues to live.

Keep in mind that, though code in the _AppStart.cshtml template only
gets executed once per application, applications can restart often. When
this happens, the application needs to be initialized again and the
_AppStart.cshtml code executes once more. In most scenarios, this is the
behavior you want and expect; however, keep in mind that this code
might get executed multiple times a day, depending on how often your
application stops and starts.

Executing Code Every Time a Page Executes
Though it might be useful to execute code when the web application starts up, what
about scenarios in which code should be executed not just once, but every time some-
one browses to a page? Luckily, Razor has another special file named _PageS-
tart.cshtml, which executes before every single page request. Because of this, _PageS-
tart.cshtml makes an excellent location for common code and logic that would other-
wise be duplicated in many pages.

One of the best examples of duplicated code is something you’ve already seen several
times in this chapter: the layout page. Here’s an example to refresh your memory:

@{ Layout = "~/_Layout.cshtml"; }
<div>Some markup here</div>

Layouts allow multiple pages to rely on a single layout page to maintain a consistent
look and feel across pages. Thus, in order for multiple pages to specify the same layout
page, those pages all have to write the same code (namely, @{ Layout = "~/_Lay

46 | Chapter 3: Organizing Razor Templates

http://

out.cshtml"; } in this example). This makes layout assignments excellent candidates
for the _PageStart.cshtml file. To execute the layout line for every page within a folder,
create a new file named _PageStart.cshtml in that folder containing the following:

@{ Layout = "~/_Layout.cshtml"; }

With this new _PageStart.cshtml file in place, the layout assignment line in each indi-
vidual file can be removed and every page will use the same layout.

Wrapping Views with _PageStart.cshtml Logic
Most of the time you will use _PageStart.cshtml templates to run code before pages
execute, but _PageStart.cshtml templates actually let you execute code and markup
both before and after the page content. In fact, it’s quite easy! Like the RenderBody()
method available to layout pages, _PageStart.cshtml templates define the @RunPage()
method, which controls where in the template the requested page content will execute.

To illustrate, let’s say that you are worried that some pages in a folder may cause an
error, but instead of showing the user the error, you’d like to show a custom message
instead. One of the ways to handle this scenario is to create a _PageStart.cshtml template
that wraps the page execution in a try/catch block and show the custom message:

@{
 try {
 RunPage();
 }
 catch {
 <div class="error">
 We're sorry, but we could not process your order at this time.
 </div>
 }
}

This template will catch any exceptions that occur during page processing and render
a friendly error message instead:

<div class="error">
 We're sorry, but we could not process your order at this time.
</div>

Executing Multiple _PageStart.cshtml Templates
_PageStart.cshtml templates affect not only Razor views in the same folder, but in all
descendant folders as well. In addition, defining another _PageStart.cshtml template
deeper in the folder structure does not replace the parent template. Every
_PageStart.cshtml template discovered in a view’s folder hierarchy will execute.
_PageStart.cshtml templates execute in the order they’re discovered, starting from the
root of the website down to the view’s folder.

Executing Common Code | 47

http://

Let’s create multiple levels of _PageStart.cshtml templates to see what happens. We’ll
use the following folder structure:

/
 _Layout.cshtml
 _PageStart.cshtml
 Default.cshtml
 /Level1
 _Layout.cshtml
 _PageStart.cshtml
 Default.cshtml
 /Level2
 _Layout.cshtml
 _PageStart.cshtml
 Default.cshtml

The files contain the following:

/_PageStart.cshtml

@{
 Layout = "~/_Layout.cshtml";
 Context.Trace.Write("Root _PageStart.cshtml");
}
<div>Root Folder</div>

/Level1/_PageStart.cshtml

@{
 Layout = "~/Level1/_Layout.cshtml";
 Context.Trace.Write("Level 1 _PageStart.cshtml");
}
<div>Level 1</div>

/Level1/Default.cshtml

<div>Layout: @Layout</div>
<div>Level 1 Default.cshtml page content</div>

/Level2/_PageStart.cshtml

@{
 Layout = "~/Level2/_Layout.cshtml";
 Context.Trace.Write("Level 2 _PageStart.cshtml");
}
<div>Level 2</div>

/Level2/Default.cshtml

<div>Layout: @Layout</div>
<div>Level 2 Default.cshtml page content</div>

The _PageStart.cshtml at each level overrides the current layout, setting it to the that
level’s _Layout.cshtml. To show that _PageStart.cshtml can contain both code and
content, each one includes a line of content in addition to the layout code. During page
rendering, each page’s respective _PageStart.cshtml templates will render, starting from
the root folder level and ending with the view’s folder.

48 | Chapter 3: Organizing Razor Templates

http://

Thus, a call to /Level1/Default.cshtml will render the following:

<div>Root</div>
<div>Level 1</div>
<div>Layout: ~/Level1/_Layout.cshtml</div>
<div>Level 1 Default.cshtml page content</div>

Likewise, a call to /Level2/Default.cshtml will render the following:

<div>Root</div>
<div>Level 1</div>
<div>Level 2</div>
<div>Layout: ~/Level2/_Layout.cshtml</div>
<div>Level 2 Default.cshtml page content</div>

You may have noticed that the _PageStart.cshtml templates contain calls to Con
text.Trace.Write, writing to the ASP.NET Trace object. The ASP.NET Trace object is
a effective option for lightweight logging. Adding ASP.NET’s tracing capabilities for
logging page requests is another great use for the _PageStart.cshtml template. Placing
the logging logic in a centralized location like the _PageStart.cshtml template not only
reduces duplication of logging code, it also ensures that every page request gets logged.

Though being able to add code in one place and have it execute in many
pages is a powerful feature, it can also be incredibly dangerous. Always
keep in mind that the code you chose to execute in your
PageStart.cshtml templates will execute with every request. When
_PageStart.cshtml templates contain code that consumes a lot of re-
sources or takes a long time to execute, it can quickly destroy the per-
formance of your site.

Executing Common Code | 49

http://

http://

CHAPTER 4

Razor and ASP.NET MVC

First introduced in early 2008, ASP.NET MVC provided an alternative approach to
developing web applications on the ASP.NET platform. As the name indicates,
ASP.NET MVC embraces the Model-View-Controller (MVC) architecture, an ap-
proach favoring the separation of concerns between application layers. ASP.NET MVC
views are much more HTML-focused than views in other frameworks such as Web
Forms. Razor complements ASP.NET MVC quite nicely because its simplistic and el-
egant syntax produces a seamless transition between markup and code, allowing the
markup to remain the main focus and not fade into a sea of code-specific syntax.

This chapter will provide a brief introduction to the ASP.NET MVC framework as well
as demonstrate how to leverage the Razor syntax to create clean and effective ASP.NET
MVC views.

Installing ASP.NET MVC
To begin developing ASP.NET MVC websites using Razor, you’ll need to have at least
ASP.NET MVC version 3. The Web Platform Installer is the easiest way to install
ASP.NET MVC 3.

To begin installation using the Web Platform Installer, visit the ASP.NET MVC web-
site and find the big button that says “Install Visual Studio Express” (or something
similar).

Regardless of what you have installed on your system prior to running the Web Platform
installer, clicking Install will download and install everything you need to start devel-
oping ASP.NET MVC 3 applications using Razor.

51

http://asp.net/mvc
http://asp.net/mvc
http://

The Model-View-Controller Architecture
The MVC architecture comprises three layers, each with unique and independent
responsibilities:

Model
Represents the core business/domain data and logic, typically with POCOs (Plain
Old CLR Objects), devoid of technology-specific implementations

View
Responsible for transforming a Model or Models into a response sent to the user
(typically HTML)

Controller
Interprets incoming web requests, managing the interaction between the user and
the model (typically through database queries, web services calls, etc.) and building
a Model for the View to consume

In the course of an ASP.NET MVC website request, the platform locates and executes
the corresponding controller method, also called the action. The result of this action is
almost always an ActionResult. The most widely used type is the ViewResult—an
ActionResult indicating which view the framework should respond to the request with.
Following ASP.NET MVC’s strict separation of concerns, it is not the controller that
is responsible for rendering HTML. Instead, the ASP.NET MVC framework passes the
ActionResult from the controller to the View Engine, which handles the conversion of
a ViewResult into rendered HTML to send back to the client.

ASP.NET MVC View Engines
The initial ASP.NET MVC releases shipped with the Web Forms View Engine, which
allowed developers to create views with the popular and mature Web Forms syntax.
Ironically, the very aspect that makes the Web Forms View Engine such a great fit for
new ASP.NET MVC developers—its popularity—is also its biggest drawback. Despite
the fact that they are based on the same underlying platform (the ASP.NET framework),
the ASP.NET MVC and Web Forms approaches and architectures are fundamentally
different in many ways. Thus, while the Web Forms syntax may be second nature to
developers creating applications on the Web Forms platform, those same developers
may be tempted to try to leverage the Web Forms platform in MVC views…with dis-
astrous results.

52 | Chapter 4: Razor and ASP.NET MVC

http://

The Razor View Engine
The early 2011 ASP.NET MVC 3 release added the Razor View Engine as part of the
framework, offering an alternative to the Web Forms View Engine. The Razor View
Engine provides developers with a full stack of APIs that leverage the powerful and
lightweight Razor syntax, allowing developers to write simpler views that more effec-
tively and efficiently target the MVC architecture.

The Razor View Engine works in much the same way as the Web Forms View Engine,
in that views are stored in physical files in the same conventions-based folder structure.
Developers author these files using the Razor syntax to create a hybrid document of
code and markup. Then at runtime—also as with the Web Forms View Engine—the
ASP.NET MVC framework compiles the Razor templates into .NET classes and exe-
cutes the compiled classes to render responses for requests to the site. The following
sections explain each of these steps in detail.

Differentiating Razor syntax and API implementations

It is important to note that the Razor syntax, the Razor API, and implementations built
on top of the Razor API are three different things. Previous chapters showcased Web-
Matrix examples of the Razor syntax as well as WebMatrix implementations built on
top of the Razor API. Likewise, the Razor View Engine also leverages the Razor syntax
and API, but also adds subtle enhancements to better suit ASP.NET MVC views.

Though many of the examples shown in previous chapters are relevant to Razor views
in ASP.NET MVC, ASP.NET MVC implements quite a few features either differently
or not at all. As you read on, keep this in mind, and look for the portions of the book
that point out and explain these differences.

ASP.NET MVC View Engines | 53

http://

Implementing a Blog Site Using ASP.NET MVC
To illustrate how to write Razor views in an ASP.NET MVC application, let’s revisit
the WebMatrix blog website and rewrite it “the MVC way.” To start out, open up
Visual Studio and choose File → New Project..., and then select the ASP.NET MVC 3
Web Application option. Name the new project MvcRazorBlog, as shown in Figure 4-1.

Figure 4-1. Creating a new MVC application

Then, from the New ASP.NET MVC 3 Project Wizard, select the Empty site template
and the Razor View Engine (these should be the default settings); Figure 4-2 provides
an example.

54 | Chapter 4: Razor and ASP.NET MVC

www.allitebooks.com

http://
http://www.allitebooks.org

Figure 4-2. The ASP.NET MVC 3 Project Wizard

Once completed, your project should resemble the directory structure shown in
Figure 4-3.

Figure 4-3. Folder structure for a new ASP.NET MVC project

Implementing a Blog Site Using ASP.NET MVC | 55

http://

The Model
The blog site example from the WebMatrix chapter didn’t involve an official “model.”
That is, you never created any classes to hold and manage data; all of the data interac-
tion used method calls directly to the database and saved the results in local dynamic
variables. WebMatrix can get away with accessing and using the data directly because
of the page-based architecture it is built on; every page is responsible for its own data
access (with assistance from helper objects) and for manipulating that data.

ASP.NET MVC’s architecture dictates that the Model and the View are two separate
entities, so in order to demonstrate the Razor syntax within ASP.NET MVC’s Razor
View Engine, you should create a model that can hold and manage the site’s data. Since
you’ve already implemented the blog site once, you already know what data the site
uses. To create the Model for the ASP.NET MVC blog site, add a new class named
Post to the website’s Models folder, with the following code:

namespace MvcRazorBlog.Models
{
 public class Post
 {
 public long ID { get; set; }
 public string Title { get; set; }
 public string Body { get; set; }
 }
}

Since the blog site doesn’t require very complex data, the Post class is all that’s needed
at this point. Once it’s in place, you can create the Controller that will populate the
Post class with data from the database and pass it to the View.

The Controller
The default Empty site template chosen earlier expects a controller named HomeCon
troller, which ASP.NET MVC adds to the Controllers folder by convention. To create
an empty controller, right-click on the Controllers folder and select Add → Controller…,
entering the name HomeController.

The wizard will ask you if you’d like it to generate Create, Update, Delete, and Details
actions for you. We won’t use those actions in this book, but feel free to let the wizard
generate them for you if you’re interested to see what they look like. The wizard will
create a new class file with one action named Index:

using System.Web.Mvc;

namespace MvcRazorBlog.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {

56 | Chapter 4: Razor and ASP.NET MVC

http://

 return View();
 }
 }
}

According to ASP.NET MVC’s default routes, the HomeController’s Index action han-
dles requests for the site’s home page (the root of the site without specifying any file or
folder names). The behavior we want to implement in the Index action directly corre-
lates to logic used in the sample WebMatrix site’s Default.cshtml page in Chapter 2.
So, the next step is to reproduce the same data access logic that the Default.cshtml page
uses to retrieve Post data.

Data access with Entity Framework code first

For better or worse, ASP.NET MVC does not offer the same Database object included
in the WebMatrix platform. Instead, Microsoft’s Entity Framework 4.1 (and up) and
its Code First functionality make data access just as easy as it is in WebMatrix, or
perhaps more so.

To get started with Entity Framework Code First, you’ll need to install it using the
NuGet Package Manager, a Visual Studio extension installed as part of the ASP.NET
MVC 3 install process.

Using the NuGet Package Manager
The Package Manager has two modes:

The graphical user interface
The NuGet Package Manager has a graphical user interface that makes it easy to
search for, install, update, and uninstall packages for a project. You can access the
graphical Package Manager interface by right-clicking the website project in the
Solution Explorer and selecting the Add Library Package Reference… option.

Console Mode
The Library Package Manager Console Mode is a Visual Studio window containing
an integrated PowerShell prompt specially configured for Library Package Man-
ager access. If you do not see the Package Manager Console window already open
in Visual Studio, you can access the window via the Tools → Library Package
Manager → Package Manager Console menu.

To install a package from the Package Manager Console window, simply type the com-
mand Install-Package _Package Name_. In the case of the Entity Framework package,
execute the command Install-Package EntityFramework. The Package Manager Con-
sole should show its progress as it downloads and installs the package into your project.
After you complete the Install-Package step, you should see your assembly referenced
in your project’s References list.

After it’s installed, the only other step you need to take in order to use the Entity
Framework Code First framework is to create a custom class that derives from the

Implementing a Blog Site Using ASP.NET MVC | 57

http://

System.Data.Entity.DbContext class, which tells Entity Framework which objects
you’d like to persist and retrieve from the database. A working DbContext implemen-
tation can be as simple as the following:

using System.Data.Entity;
using MvcRazorBlog.Models;

public class BlogContext : DbContext
{
 public DbSet<Post> Posts;
}

This code extends the DbContext class, exposing a single property (Posts) of type
DBSet<Post>. It is the DbSet<Post> portion of this property that indicates to Entity
Framework that you’d like to use the Post class as your model for data access and that
these objects can be found in the Posts table (corresponding to the name of the property)
in the database.

That’s all that’s needed in regards to setup and configuration; Entity Framework relies
on “convention over configuration” to determine the rest. Entity Framework will even
create the database for you if it does not exist when you attempt to access it!

Querying an Entity Framework Code First data context is even easier than writing one.
All you need to do is create an instance of a DbContext and start making standard LINQ
calls against the DbSet<TModel> properties defined on the context.

Thus, retrieving all of the Posts from the Blog database from the HomeController’s
Index action is trivial:

public class HomeController {
 public ActionResult Index()
 {
 var posts = new BlogContext().Posts;
 return View("Index");
 }
}

Once the Index action retrieves the blog post data from the database, it needs to select
the appropriate View and pass the post data to that View. Since the MVC pattern
deliberately decouples views and controllers, the controller cannot directly communi-
cate with the selected view to provide the view with the data it needs. In order to get
around this limitation, ASP.NET MVC relies on an intermediary dictionary via a prop-
erty named ViewData. Controllers and views both contain this property, so it is easily
accessible in both layers. Here is the updated Index action, adding a line of code to
assign the blog post data to the ViewData dictionary for use in the views that you will
create in the coming sections:

public class HomeController {
 public ActionResult Index()
 {
 var posts = new BlogContext().Posts;

58 | Chapter 4: Razor and ASP.NET MVC

http://

 ViewData["Posts"] = posts;

 return View("Index");
 }
}

Though passing values to views through the ViewData dictionary works just fine, “magic
values” (string constants referenced in multiple places) like "Posts" can become diffi-
cult to manage and maintain. Additionally, the ViewData dictionary is not strongly-
typed, so Visual Studio cannot provide you with IntelliSense on any values passed into
it. Instead of the ViewData dictionary, the preferred approach for passing data from
controllers to views is through the model parameter of the View() helper method.

Below you can see the Index action updated to pass the Posts data via the View() helper
method:

Index action retrieving blog posts and passing them to the view

public ActionResult Index()
{
 var posts = new BlogContext().Posts;
 return View("Index", posts);
}

At this point—even though you have not yet created the View required to render HTML
to the user—you should be able to verify that this code works by placing a debug
breakpoint on the final return View("Index"); line and hitting F5 to run the website.
If everything works, execution should stop at the breakpoint and the posts variable
should contain a list of Post objects with the data from your database!

Convention versus Configuration
To make website development easier and help developers be more productive,
ASP.NET MVC relies on the concept of “convention over configuration” whenever
possible. What this means is that, instead of relying on explicit configuration settings,
ASP.NET MVC simply assumes that developers will follow certain conventions as they
create website components.

The previous section applied several conventions when creating the HomeController
and its Index action. The first convention was placing the controller in the project’s
Controllers folder. Though not required for the application to compile and function,
keeping your controllers in the Controllers folder is a standard practice. The second
convention was the name of the controller, HomeController. Since it is a very good
practice to give classes descriptive names, standard conventions recommend applying
the “Controller” suffix to controller class names. When referring to the controller
throughout the application, however, it is much more straightforward to simply refer
to “Home” instead of the full name, “HomeController.”

Implementing a Blog Site Using ASP.NET MVC | 59

http://

The ASP.NET MVC framework addresses this conflict during the application’s startup
phase, when it searches through all of the website’s assemblies, registering classes that
extend ASP.NET MVC’s ControllerBase base class (using the base class as yet another
convention). As the framework locates classes that derive from ControllerBase, it adds
them to its internal dictionary using the class’s name—after removing the “Controller”
suffix—as the dictionary key. Thus, even though the controller is named “HomeCon-
troller,” the rest of the application can simply refer to it as “Home.”

At first glance, the concept of convention over configuration may seem trivial. However,
when taken altogether over the course of a large site, many of these seemingly small or
meaningless optimizations can really add up to significant time savings, improved code
readability, and increased developer productivity.

Authoring ASP.NET MVC Views with the Razor Syntax
Since WebMatrix and ASP.NET MVC Razor views share the Razor syntax to create
views, the easiest way to create a view in the demo ASP.NET MVC blog site is to copy
the markup we already created in the WebMatrix example. First, however, you need
to create a new view to contain the copied markup.

Adding Razor Views to an ASP.NET MVC Application
The ASP.NET MVC platform adds several convenient and helpful extensions to the
Visual Studio IDE. One of the extensions adds two new context menu items, named
Add View and Go to View, that show up when you right-click on a controller action.
These menu items make it very easy to create and navigate to the views associated with
an action.

The Add View context menu item is the quickest and easiest way to create a new view.
To create a new view for the Index action in the HomeController of the demo blog
application, simply right-click anywhere within the Index action, and then choose Add
View. This should pop up the Add View Wizard.

The Add View Wizard prepopulates several of the fields by using conventions. In this
case, the value in the prepopulated “View name” field is “Index,” the name of the
controller action from which we clicked on the Add View context menu. The “View
engine” field lets developers choose which syntax to use for creating views. The default
view engine is “Razor (CSHTML),” which means the Razor C# syntax (as opposed to,
say, the Razor Visual Basic .NET syntax).

Ignore the rest of the fields in the wizard; later sections of the book will revisit them in
detail. For now, just click the Add button and let’s write a view!

Clicking the Add button tells Visual Studio to create a new view file for you at the
appropriate location within the project. Figure 4-4 shows the contents of the project’s
Views folder after the Add View dialog executes.

60 | Chapter 4: Razor and ASP.NET MVC

http://

As you can see, the Views folder contains child folders named Home and Shared. Why
are these folders named this way? You guessed it: yet another convention! By default,
ASP.NET MVC assumes that all website views exist somewhere underneath the Views
folder. Further, ASP.NET MVC looks for child folders underneath the root Views folder
with folder names corresponding to the names of controllers in the application. Using
all of this information—along with the information we provided—the Add View dialog
chose to create a file named Index.cshtml in a new folder under the root Views folder
named Home (corresponding to the HomeController controller class the Add View
menu action originated from). Leveraging the power of conventions, Visual Studio was
able to do all of this with just two clicks!

Why the .cshtml file extension?

In the course of rendering a view, the ASP.NET MVC runtime will use
the view’s file extension to determine how to compile the markup in the
view. For instance, ASP.NET MVC can safely assume that a file with
the .aspx extension uses the Web Forms syntax, whereas a view with
the .cshtml extension contains Razor markup. Both ASP.NET MVC Ra-
zor views and WebMatrix Web Pages use the .cshtml extension for Razor
views that leverage the C# language and .vbhtml for Razor views that
leverage Visual Basic .NET. ASP.NET MVC supports both languages
equally—they can even be used together in the same project!

Writing ASP.NET MVC Razor View Markup
After creating the new file, replace the entire contents of this new view with this markup:

<h1>My Blog</h1>

@foreach(var post in Model) {
 <div>
 <h3>@post.Title</h3>
 <div>@post.Body</div>
 </div>
}

Figure 4-4. Views folder structure

Authoring ASP.NET MVC Views with the Razor Syntax | 61

http://

This should look familiar; it’s very similar to the markup you used to create the home
page in the WebMatrix blog site. The biggest difference is that, instead of pulling the
posts data from the database, the markup iterates over the View’s Model property, which
represents the model data passed to the View from the Controller in “Data access with
Entity Framework code first” on page 57.

At this point, you have everything in place to generate a web page: the Controller is
retrieving data from the database and passing that data to the View, which the View
can then use to render dynamic HTML. To see it in action, hit F5 to execute the website.
If you have data in the Posts database, it should render something similar to the
following:

<h1>My Blog</h1>

 <div>
 <h3>Test Post #1</h3>
 <div>This is the first test post</div>
 </div>
 <div>
 <h3>Test Post #2</h3>
 <div>This is the second test post</div>
 </div>
 <div>
 <h3>Test Post #3</h3>
 <div>This is the third test post</div>
 </div>

Strongly-Typed Views
The Model property present in the WebViewPage base class from which all ASP.NET MVC
views derive is dynamically-typed by default. This means that it uses .NET 4.0’s dy-
namic type, delaying the specification of the type until runtime. Thus, Controller Ac-
tions and other parts of the ASP.NET MVC framework can populate this field with any
type and the views can apply the concept of “duck-typing” to work with a variety of
types. As long as the model object contains the properties with the name that the view
expects, any type will do!

If this “fast and loose” approach concerns you, you are in good company. You are also
in luck: ASP.NET MVC adds the @model keyword to Razor’s vernacular, which allows
views to specify the type of their Model property. The @model keyword follows the syntax
@model Class Name.

To show the @model keyword in action, let’s modify the previous example and turn it
into a strongly-typed view by specifying a @model:

A strongly-typed view

@model IEnumerable<MvcRazorBlog.Models.Post>

@section Header {
 <h1>My Blog</h1>

62 | Chapter 4: Razor and ASP.NET MVC

http://

}

@foreach(var post in Model) {
 @RenderPage("~/Posts/_Post.cshtml", new { post = post })
}

And just like that, the Model property is now strongly-typed as an IEnumerable<MvcRa
zorBlog.Models.Post>, ready for use without additional casting.

By default, all ASP.NET MVC Razor views inherit from the System.Web.Mvc.WebView
Page class. However, views that specify a model type using the @model keyword inherit
from the generic version of WebViewPage: System.Web.Mvc.WebViewPage<TModel>. With
the exception of a few Razor keywords outlined in the first chapter, the bulk of
ASP.NET MVC’s view-related functionality (such as the @Html and @Url helpers) exists
as properties or extension methods off of the WebViewPage class.

What the @model keyword actually does is tell ASP.NET MVC to add a generic param-
eter to the base page type. In other words, an ASP.NET MVC view without the
@model keyword derives from the WebViewPage base class like so:

public class Index : WebViewPage {
 /* Class stuff in here */
}

But when the @model keyword is applied, as in the previous example, Razor adds the
specified type as a generic parameter to the generated class. For example:

@model IEnumerable<MvcRazorBlog.Models.Post>

will generate the view:

public class Index : WebViewPage<IEnumerable<MvcRazorBlog.Models.Post>> {
 /* Class stuff in here */
}

Changing the Base Class
Despite the great functionality it provides, you will inevitably come across scenarios
where the System.Web.Mvc.WebViewPage class simply doesn’t cut it. In cases where you
need more functionality than the WebViewPage class offers, Razor provides the @inher
its keyword, which lets you specify any base class you want—even your own custom
base class. One of the most common uses of the @inherits keyword is to specify a
custom base class that extends the WebViewPage class, adding custom functionality
through properties and methods.

Let’s say that you have created a bunch of helper methods and you want some kind of
shortcut to access your helper methods from within your views. The quickest way to
provide easy access to custom helper methods is to write extension methods around
the @Html or @Url, since they already exist in the WebViewPage class. However, if you like
to keep your helper methods separate from the core ASP.NET MVC functionality, you
can choose to create your own helper object that acts much like @Html or @Url, and then

Changing the Base Class | 63

http://

add an instance of that custom helper object to a custom base class. The BlogHelper
class below shows an example of such a custom helper object. The custom base class
(BlogViewPage) exposes the custom helper object via a custom property:

public class BlogHelper
{
 private readonly UrlHelper _urlHelper;

 public BlogHelper(UrlHelper urlHelper) {
 _urlHelper = urlHelper;
 }

 public MvcHtmlString BlogPostLink(int postId) {
 var tag = new TagBuilder("a");
 tag.AddCssClass("blog-post");
 tag.Attributes["href"] = _urlHelper.Action("Post", "Posts");

 return new MvcHtmlString(tag.ToString());
 }
}

namespace MvcRazorBlog {
 public abstract class BlogViewPage : BlogViewPage<dynamic>
 {
 }

 public abstract class BlogViewPage<TModel> : WebViewPage<TModel>
 {
 protected BlogHelper Blog
 {
 get { return new BlogHelper(Url); }
 }
 }
}

The first thing you’ll notice about the custom base class BlogViewPage is that there are
actually two of them—one that accepts a generic TModel parameter, and one that is not
generic. The reason you should create both is so that you continue to have the option
of strongly-typed views. Without the generic version of this class, you would not be
able to use the @model keyword to specify the view’s Model type. Likewise, if the non-
generic BlogViewPage doesn’t exist, all of the views that depend on the BlogViewPage
custom base class would be required to specify a TModel parameter (i.e., they’d need to
be strongly-typed views).

The next thing you’ll notice about BlogViewPage is how tiny it is. Because the aim is to
merely extend the core ASP.NET MVC functionality and not replace it, BlogViewPage
can derive from ASP.NET MVC’s WebViewPage<TModel> and in doing so, carry along all
of the core functionality. With the core functionality in place, BlogViewPage’s only goal
is to expose the new custom Blog property, a simple property that just returns a new
instance of the custom BlogHelper helper class.

64 | Chapter 4: Razor and ASP.NET MVC

http://

With the BlogViewPage created, referencing it is as simple as adding the @inherits key-
word to any Razor views that require it:

View inheriting from custom base class

@inherits MvcRazorBlog.BlogViewPage

Here's a link to Post #123:
@Blog.BlogPostLink(123)

Here you can see that the view inherits from BlogViewPage, then refers to the @Blog.Blog
PostLink() method on the custom Blog property.

ASP.NET MVC does not let you specify both the @inherits keyword
and the @model keyword in the same view.

Since ASP.NET MVC does not let you specify both the @inherits keyword and the
@model keyword in the same view, you need to specify the model type (the TModel generic
parameter) directly in the @inherits statement in order to refer to the strongly-typed
version of a custom base class. Thus, to change the previous example from weakly-
typed to strongly-typed, you would change its @inherits statement like so:

@inherits MvcRazorBlog.BlogViewPage<AdminViewModel>

The custom base class approach offers greater levels of customization and productivity
in your websites. Custom base classes are not only easy to create and reference, but
they are also a great way to provide quick and easy access to customized, application-
specific functionality across all views in an application. Whenever the default WebView
Page class just doesn’t cut it, consider implementing your own base class!

Applying Custom Base Classes to Multiple Views
When all of your views need to derive from the same custom base class, having to add
the @inherits keyword to all of them is not only tedious, but it’s also difficult to main-
tain. Luckily, ASP.NET MVC offers an alternative approach to specifying the default
base class for all Razor views: the system.web.webPages.razor > pages > pageBase
Type configuration attribute. To modify this attribute, open the web.config file located
in your application’s Views folder, and then locate the line that looks like this: <pages
pageBaseType="System.Web.Mvc.WebViewPage">. This is where ASP.NET MVC’s default
base page type comes from. To use your own base page type, simply replace the refer-
ence to System.Web.Mvc.WebViewPage with the full type name of your base class type
(e.g., <pages pageBaseType="MvcRazorBlog.BlogViewPage">). After saving the modified
web.config, every view in your application should use your custom base page type.

Changing the Base Class | 65

http://

Layouts and Content Pages
You may have noticed that the markup in “Strongly-Typed Views” on page 62 included
an <h1> header tag and a list of <div>s with blog post content, but no surrounding
HTML document markup like <html> or <body> tags. This is because when you created
the new view and left the “Use a layout or master page” option checked and the text
box empty you told ASP.NET MVC to create a “content page,” a page that relies on a
Layout to define the structure of the page.

Chapter 3 discusses Razor layouts and content pages in depth and all of those concepts
apply to ASP.NET MVC Razor views as well. In addition to that functionality, however,
ASP.NET MVC adds an additional layer of abstraction and helper methods to simplify
working with Razor views.

The most significant example of ASP.NET MVC Razor view helpers is the
HtmlHelper.Partial() method, whose syntax is very similar to the Razor @Render
Page() method, but instead of accepting a static filename, the HtmlHelper.Partial()
method expects a simple view name, which ASP.NET MVC then uses to locate and
render the appropriate view.

For example, “Strongly-Typed Views” on page 62 contains a call to @RenderPage():

@RenderPage("Posts/_Post.cshtml", post)

In this snippet, Posts/_Post.cshtml refers to a physical file in the website. In comparison,
this same call as an ASP.NET MVC HtmlHelper.Partial() would look like this:

@Html.Partial("_Post", post)

The Partial() method call still refers to the same partial view, except the location and
exact filename of that view are now abstracted away. That is, instead of the view dic-
tating the exact file location of Posts/_Post.cshtml, ASP.NET MVC expects a request to
render the partial view named _Post, leaving the implementation details of the _Post
view up to the framework to figure out. Though in this instance ASP.NET MVC will,
in fact, execute the Posts/_Post.cshtml view, consider what would happen if a developer
decided to move the view to a different folder or even rewrite the view in VB.NET (thus
changing the view’s extension to .vbhtml). That’s just fine; as long as ASP.NET MVC
is able to match the view name to a file that it knows about, it will render it no matter
what its physical location or what language it’s written in.

Razor View File Locations
At this point, you may be wondering just how ASP.NET MVC is able to match the
name of a view to its physical location in the filesystem. For that matter, how does
ASP.NET MVC differentiate between two views that share the same file name, yet reside
in different folders? The answer to both of these questions is the same: the Razor View
Engine!

66 | Chapter 4: Razor and ASP.NET MVC

http://

When a controller action returns a ViewResult, ASP.NET MVC knows that it needs to
render a view, so it asks all of its registered view engines if they can figure out how to
locate and render the requested view. Between the routing information for the current
request and the ViewResult, the view engines should have all the information they need:
the view name and the name of the controller that handled the request. By convention,
all ASP.NET MVC views live in subfolders under the ~/Views folder.

In one of the previous examples, the HomeController requested the view named Index.
Let’s see how the Razor View Engine tries to locate the Index view.

Controller Views
The first place the Razor View Engine will look for a view is in the folder with the same
name as the controller that handled the request. Given the request from the HomeCon
troller for the Index view, the view engine will check if the C# Razor template ~/Views/
Home/Index.cshtml exists. If not, the engine tries again, this time looking for the
VB.NET Razor template named ~/Views/Home/Index.vbhtml. Though C# and VB.NET
are the only languages Razor currently supports, the same process would apply for any
new languages that might be added (for example, the engine might look for ~/Views/
Home/Index.fshtml for an F# template if such an implementation existed).

When the view engine locates a file, it stops looking immediately and returns the first
file it found. Otherwise, it continues down its list of search paths to look in the Shared
folder.

Locating Razor Views
Armed with all the information about the controller that handled the current request,
the Razor View Engine relies on the default view locator logic to build a list of possible
locations in which the requested view may reside. After compiling this list, the view
engine simply iterates over it, returning the first match it finds. As you might expect,
the view engine prefers more specific views—views defined in the folder with the same
name as the Controller that requested them—over views in the Shared folder, so the
more specific views will appear higher on the list than shared views.

This example illustrates this point, showing what the list of possible view locations
might look like in order to locate a request for the Index view that generated from a
controller named HomeController:

The view engine’s view candidates

~/Views/Home/Index.cshtml
~/Views/Home/Index.vbhtml
~/Views/Shared/Index.cshtml
~/Views/Shared/Index.vbhtml

Thus, if the ~/Views/Home/Index.cshtml view exists, the view engine will choose it and
ignore the rest of the list. If, however, ~/Views/Home/Index.cshtml does not exist, but

Razor View File Locations | 67

http://

~/Views/Shared/Index.cshtml exists instead, the view engine will continue searching
down the list, checking each entry, until it discovers that ~/Views/Shared/In-
dex.cshtml is valid and chooses it.

Shared Views
You may have noticed that the folder list includes references to the Shared folder. The
~/Views/Shared folder contains views that can be reused by multiple controllers. The
Shared folder is created along with the rest of the initial application artifacts by the
ASP.NET MVC website template and initially contains the basic layout and error-han-
dling views (_Layout.cshtml and Error.cshtml, respectively), two perfect examples of
reusable views.

Views in ASP.NET MVC Areas
The Areas feature of ASP.NET MVC allows a web application to be split up into mul-
tiple sections (“Areas”), enabling developers to work on each section individually in
relative isolation. Though an in-depth discussion of ASP.NET MVC Areas would be
outside the scope of this book, Areas are effectively a “website within a website” and,
as such, it is worth discussing how Areas affect the views that are created within them.

For example, let’s add an Area named “Administration” to the demo blog site. To add
an Area, right-click on the ASP.NET MVC project and select the Add... context menu
option, which should pop up the submenu shown in Figure 4-5 and specify the Area
name “Administration” when prompted.

Figure 4-5. Add Area context menu option

As Figure 4-6 shows, ASP.NET MVC Areas define a folder structure within the main
website that follows the same standard Controllers, Models, and Views convention.
The primary difference is that the root folder of this structure is not the root folder of
the ASP.NET MVC application.

Since Areas use the same folder structure convention, the only significant change they
introduce in regard to Views is adding their folders to the list of search folders that the

68 | Chapter 4: Razor and ASP.NET MVC

http://

View Engine uses to locate the correct view. For example, a ViewResult from an action
within the Administration Area’s DashboardController would modify a default search
folder list:

~/Views/Dashboard/Index.cshtml
~/Views/Dashboard/Index.vbhtml
~/Views/Shared/Index.cshtml
~/Views/Shared/Index.vbhtml

to include the Views folder within the Admin area:

~/Areas/Administration/Views/Dashboard/Index.cshtml
~/Areas/Administration/Views/Dashboard/Index.vbhtml
~/Areas/Administration/Views/Shared/Index.cshtml
~/Areas/Administration/Views/Shared/Index.vbhtml
~/Views/Dashboard/Index.cshtml
~/Views/Dashboard/Index.vbhtml
~/Views/Shared/Index.cshtml
~/Views/Shared/Index.vbhtml

Outside of the modified search path, developing views within Areas is the same as
developing views located in the main website.

Figure 4-6. Website folder structure with an Area

Razor View File Locations | 69

http://

The way the Razor View Engine and the Web Forms View Engine look
for views is almost exactly the same. Both engines look in the folder with
the name of the current controller as well as the Shared folder. Both
engines also respect the Areas folder as well. In fact, the primary differ-
ence in the way the two view engines locate views is the file extension
they’re looking for: the Razor View Engine searches for .cshtml
and .vbhtml files while the Web Forms View Engine searches for files
with the .aspx and .ascx extensions.

Html and Url Helper Classes
While previous chapters discussed almost everything you need to know to write effec-
tive ASP.NET MVC Views, ASP.NET MVC offers a number of additions to the core
Razor syntax and API. The most helpful additions are the HtmlHelper and UrlHelper
classes, exposed in ASP.NET MVC Views as the Html and Url properties, respectively.
These two helper methods provide much-needed access to ASP.NET MVC’s more ad-
vanced and decoupled ways of interacting with Models and other Views.

For example, rather than manually building anchor tags and URLs, ASP.NET MVC
offers the HtmlHelper.ActionLink() method which accepts a number of varying pa-
rameters and emits a complete anchor tag (<a>) to the page. The snippet below shows
the HtmlHelper.ActionLink() method in action:

@Html.ActionLink("Site Members", "Members", "Admin")

This particular overload of the HtmlHelper.ActionLink() method contains three
parameters:

1. The link text to show as the inner HTML within the anchor tag

2. The name of the Action referred to (in this case, the "Members" action)

3. The name of the Controller containing the Action in parameter #2 (in this case,
the "AdminController" class)

When executed during view rendering, the snippet produces the following HTML:

Site Members

While ASP.NET MVC gives developers endless control over the HTML that is rendered
to the client, helper methods like these provide a more declarative—and therefore, more
maintainable—way to implement site functionality.

The HtmlHelper.ActionLink() example is just one of many useful helper methods avail-
able on the Html and Url View properties. Though we will not review all of them at this
point, future examples (in fact, almost any ASP.NET MVC example you will see) will
leverage these properties quite heavily, so keep an eye out!

70 | Chapter 4: Razor and ASP.NET MVC

http://

ASP.NET MVC’s Razor View Page Rendering Life Cycle
ASP.NET leverages a “just in time” (JIT) compilation model in which views are written
and deployed as regular text files and only converted into code for ASP.NET to consume
at the last possible moment. The “last possible moment” is generally the first request
for a view by a visitor to the site. Despite having an entirely different architecture than
Web Forms, Razor views share the same deployment and compilation life cycle. The
only difference between the two rendering engines is how they turn a text file into an
executable class for the web application to use in rendering responses.

Precompiling Razor Views
While the JIT compilation feature of ASP.NET makes it trivial to modify views in a
deployed site (with even a simple text editor), this means that the ASP.NET framework
must compile them in real time on the web server. This approach has several drawbacks:

Increased wait times
The first visitors to each page must wait while the view is compiled and rendered.
Though compilation typically takes just a few seconds, this delay can be unac-
ceptable for businesses that demand total rendering times of 2 seconds or less.

Increased server resources
Even the compilation of simple views requires server resources. While compiling
a few pages on a simple site may take a small amount of CPU time and memory
usage, consider a much larger website with hundreds or thousands of views with
hundreds or thousands of users all waiting for their pages to finish compiling!

Delayed discovery of errors
Since text-based views are only compiled during their first request, they are essen-
tially source code files until that time. Because of this, compilation errors are not
exposed until the “last possible moment,” which effectively means that compila-
tion errors in views will not be discovered until the website is live on the server.

Luckily, ASP.NET provides you with the ability to precompile views before they are
deployed to a web server. That is, you can execute the JIT compilation—the same
application that ASP.NET itself uses to compile views—on demand without having to
wait for website requests. The application (named aspnet_compiler.exe) is located
along with the rest of the core .NET Framework libraries and applications (typically
%WINDIR%\Microsoft.NET\Framework\[framework version]). Thus, if you have the
full .NET Framework installed, you have the ability to compile the views in your web-
site, even in your local development environment.

Executing the aspnet_compiler.exe application is very straightforward. Assuming the
root folder of your website project is C:\Projects\Website, execute the following line
using the Visual Studio Command Prompt:

aspnet_compiler -v / -p "C:\Projects\Website"

ASP.NET MVC’s Razor View Page Rendering Life Cycle | 71

http://

The compiler will run for a short time (anywhere from a few seconds to a minute or
more, depending on the size of your site), and emits warning and error messages as it
compiles each view it finds. If you are lucky, the compiler will exit with no messages
beyond the “splash screen,” indicating that all your views have successfully compiled
with no warnings or errors.

Now, let’s introduce a compilation error and run the compiler again, which spits out
the following error:

Test.cshtml(5): error CS0103: The name 'index' does not exist in the current context

This line says that the compiler found one error on line 5 of the file Test.cshtml: the
Razor markup is trying to refer to a variable named index, but it is not defined in the
page. When the compiler finds warnings or errors such as these, simply edit the re-
spective view to fix the errors and rerun the compiler until the errors go away. Just like
the .NET compilers, aspnet_compiler.exe does not alter anything in the site, so it can
run repeatedly with no side effects.

Using the aspnet_compiler.exe tool, you can precompile every view in any ASP.NET
website (including Web Forms pages as well) before they are accessible to users, en-
suring that the code in your views properly compiles and eliminating unnecessary server
resource utilization and visitor wait times.

Precompiling Razor Views in an ASP.NET MVC application

While the command line approach can be very effective, the ASP.NET MVC Web
Application project type adds a more integrated option. The project file includes a
property named MvcBuildViews, which, when enabled, executes the aspnet_com-
piler.exe as part of the build. This setting is disabled by default because of the additional
time incurred by running the compiler and needs to be enabled to take effect. The
setting is also not accessible via the Visual Studio user interfaces. Despite these draw-
backs, enabling view compilation as part of the ASP.NET MVC website build process
is quite simple:

1. Open the website’s project file with any normal text editor other than Visual Studio
(Windows Notepad is just fine)

2. Locate the XML element named <MvcBuildViews>, whose value should be "false"

3. Modify the value of the <MvcBuildViews> element to "true"

4. Save and close the updated project file

5. Reload the project in Visual Studio

Once the setting is enabled, all builds will include a new step which executes the
aspnet_compiler.exe. As Figure 4-7 shows, any warnings or errors show up in Visual
Studio’s error console, just as any other compile-time errors or warnings.

72 | Chapter 4: Razor and ASP.NET MVC

http://

Compiling views from MSBuild

If you would like to avoid editing the website project file manually and don’t like the
idea of adding time to every build of your website, there is a middle ground between
having the MvcBuildViews setting permanently enabled or never enabled. Another ap-
plication shipped with the .NET Framework, MSBuild.exe, provides the ability to ex-
ecute the same compilation pipeline that Visual Studio itself uses without opening
Visual Studio. What’s more, MSBuild.exe also allows project property settings (like the
MvcBuildViews setting) to be overridden.

When you leave the MvcBuildViews property disabled in the project file
and enable it as an MSBuild flag, you get the best of both worlds: quick
compilation times while developing in Visual studio without losing the
ability to discover errors in your views. Just remember: it is now up to
you to run MSBuild often!

To execute MSBuild.exe, open up the Visual Studio Command Prompt (just as you did
earlier for aspnet_compiler.exe), and then switch to your solution’s directory. Then,
execute the following line (replacing SolutionName with the name of your solution):

msbuild /p:MvcBuildViews=true SolutionName

The command for the example blog project would be:

msbuild /p:MvcBuildViews=true MvcRazorBlog.sln

The MSBuild output includes all of the details of the build. Most importantly, the
MvcBuildViews step executes the aspnet_compiler.exe you manually ran before. In ad-
dition to eliminating the need to execute aspnet_compiler.exe manually, executing
aspnet_compiler.exe as part of the build script makes the compilation a first-class citizen
in the build process. Now, any time a view contains an error, that error will get the
visibility it deserves, just like any other error in the site.

Figure 4-7. MVC view errors in Visual Studio’s error list

ASP.NET MVC’s Razor View Page Rendering Life Cycle | 73

http://

Since continuous integration servers like Team Foundation Server or
CruiseControl.NET execute MSBuild directly to compile projects, it is
very easy to add the MvcBuildViews property to the list of options during
your continuous integration builds. If you are using continuous inte-
gration to build your ASP.NET MVC websites, I highly recommend you
enable this flag during your builds.

74 | Chapter 4: Razor and ASP.NET MVC

http://

CHAPTER 5

The Razor API

Most of this book is dedicated to the Razor syntax and how to use it to interact with
the ASP.NET, WebMatrix, and ASP.NET APIs. However, Razor is more than just a
syntax; it is backed by a full-fledged API that interprets Razor templates and turns them
into executable code (.NET classes) that frameworks such as WebMatrix and ASP.NET
MVC can execute to render text.

“How Razor Parses Markup and Code” on page 6 provides a brief glimpse at how the
Razor parsing logic works, but there is much more that has to happen to turn a docu-
ment that uses the Razor syntax (“a Razor template”) into rendered HTML. Parsing a
Razor template is merely the first step in the process.

Razor Templates: From Markup to .NET Code
Razor templates have a life cycle all their own. Figure 5-1 shows a high-level overview
of how Razor templates are used in the course of an application.

Figure 5-1. The Razor template life cycle

The process of turning Razor markup into .NET code consists of several steps. To
illustrate, let’s look at how the Razor parser breaks down the following Razor template:

<div>
 @foreach(var post in Posts) {
 <div>@post.Title</div>
 }
</div>

75

http://

1. Parse the Razor Template
To begin, the Razor parser analyzes the text (as described in “How Razor Parses Markup
and Code” on page 6), breaking it up into “blocks.” Each of these blocks represents a
section of the template—either markup or code—and they are hierarchical in nature.
A good way to think about them is like an XML document, except in addition to text
elements, the document also includes code expressions. The Razor parser will generate
a markup document with this structure:

<Document>
 <Markup><div>\r\n\t</Markup>
 <Statement>
 <Transition>@</Transition>
 <Code>foreach(var post in posts) { </Code>
 <Markup>
 <Markup><div></Markup>
 <Expression>
 <Transition>@</Transition>
 <ImplicitExpression>post.Title</ImplicitExpression>
 </Expression>
 <Markup></div></Markup>
 </Markup>
 <Code> } </Code>
 <Markup></div></Markup>
 </Statement>
 <Markup>\r\n</div></Markup>
</Document>

2. Generate .NET Code
After the template is parsed into a tree of nodes, the next step is to translate those nodes
into .NET code. The parsed markup from the previous step does not contain enough
to build a class by itself; it is missing some very important and fundamental information,
such as the class name and namespace. To overcome this obstacle, the Razor API takes
a guess at what these values should be, falling back on default values when it cannot
make an accurate guess.

With all the information it needs, the Razor class generator generates a relatively simple
class. Given the example parsed document from the previous step, the Razor C# code
generator will produce the code below. Clearly, this code will not compile as-is; it
breaks basic C# language rules, such as using the override keyword when there is no
base method to override and calling the undefined Write() and WriteLiteral()
methods.

Nobody said that Razor had to generate working code, however—making sure the
generated class properly compiles and executes is not Razor’s responsibility! The Razor
code generator is only responsible for translating the parser results into .NET code.
This is where frameworks like WebMatrix and ASP.NET MVC come into play, imple-
menting a base class that the generated class can derive from which satisfies the code

76 | Chapter 5: The Razor API

http://

that Razor generates (i.e., implements the Write(object) and WriteLiteral(object)
methods). Remember, Razor is not a web development framework; it is just an API that
makes your web development framework of choice easier to use!

C# code generated by the Razor class generator

namespace Razor {
 public class __CompiledTemplate {
 public __CompiledTemplate() {
 }

 public override void Execute() {
 WriteLiteral("<div>\r\n\t");

 @foreach(var post in posts) {
 WriteLiteral("<div>");
 Write(post.Title);
 WriteLiteral("</div>");
 }

 WriteLiteral("\r\n</div>");
 }
 }
}

3. Compile Generated Code into an Executable Class
In most cases, the Razor code generator does not produce files that contain code—at
least not the kind of text-based code that you or I sit down and write. What the gen-
erator produces is a System.CodeDom.CodeCompileUnit that contains a collection of met-
adata that together forms the definition of a class. As its namespace implies, Sys
tem.CodeDom.CodeCompileUnit is part of the .NET Framework, not part of the Razor
API, so technically speaking, the Razor API’s job is done after it produces the
CodeCompileUnit.

After the API produces the CodeCompileUnit, it is up to the consumer of the Razor API
(e.g., ASP.NET MVC or WebMatrix) to compile the CodeCompileUnit into an execut-
able class. “Compiling Razor Templates” on page 80 walks you through exactly how
this is done.

4. Instantiate and Execute the Generated Class
By this point the Razor API has completed its work and produced an executable class,
so technically this step has nothing to do with the Razor API directly. It is, however,
the most important step, because this is when the consumer of the generated class (e.g.,
WebMatrix or ASP.NET MVC) gets to execute the class and reap the benefits of the
Razor API’s hard work!

Razor Templates: From Markup to .NET Code | 77

http://

As you can see, Razor templates mean nothing by themselves; their only function is to
tell the Razor API how to populate the classes it generates, and after that they are never
referred to again. In this way, Razor template files actually resemble a designer that lets
you use a condensed syntax to produce a .NET class, much like a Visual Studio Settings
file.

Meet the Players
Now that you know how a Razor template gets turned into an executable class, it’s
time to take a tour of the Razor API classes that make it all possible. The basic list is
surprisingly short:

System.Web.Razor.Parser.RazorParser

RazorParser executes the logic discussed in “How Razor Parses Markup and
Code” on page 6, mapping a Razor template into an in-memory document that the
RazorCodeGenerator can consume. Despite its name, RazorParser does not know
anything about HTML or code languages such as C#. Instead, RazorParser relies
on other code and markup implementations to perform the actual parsing. For
example, the MarkupParser class knows how to interpret HTML markup, and the
CSharpCodeParser and VBCodeParser classes know how to parse C# and VB.NET
code, respectively. RazorParser merely acts as the coordinator between various
markup and code parsing implementations.

System.Web.Razor.Generator.RazorCodeGenerator

The RazorCodeGenerator class contains the logic for generating .NET code from
RazorParser’s output. Like RazorParser, the RazorCodeGenerator class itself does
not have any knowledge of any specific languages, only general knowledge of how
to interpret RazorParser output. Unlike RazorParser, however, RazorCodeGenera
tor is an abstract base class from which language-specific implementations (such
as CSharpRazorCodeGenerator and VBRazorCodeGenerator) derive. Razor API con-
sumers reference the language-specific implementations that derive from RazorCo
deGenerator, not RazorCodeGenerator directly.

System.Web.Razor.RazorEngineHost

Contains the metadata required for creating Razor Templating Engines: things like
the base class name and output class name (and namespace), as well as the assem-
blies and namespaces required to execute the generated template.

System.Web.Razor.RazorTemplateEngine

Using configuration data provided by a RazorEngineHost, the Template Engine ac-
cepts a stream of text and transforms this text into .NET code (represented by a
CodeCompileUnit) that gets compiled into a .NET type.

Custom Template Base Class
Though not technically part of the Razor API, the Razor Templating Engine re-
quires a custom template base class to use as a base class for the generated template

78 | Chapter 5: The Razor API

http://

type. Without this class, the code that the Razor API generates will not compile
and is effectively useless.

System.CodeDom.Compiler.CodeDomProvider

Also not technically part of the Razor API, the CodeDomProvider class compiles
CodeCompileUnits into .NET types, making them available for .NET applications
to consume. The Razor Templating API offers two CodeDomProvider implementa-
tions to compile RazorTemplateEngine-generated CodeCompileUnits: the CSharpCo
deProvider and VBCodeProvider. As their names indicate, these two implementa-
tions compile C#-based and Visual Basic–based Razor templates respectively.

Configuring the Razor Template Engine
The RazorTemplateEngine class does most of the heavy lifting to transform Razor tem-
plate text into usable .NET source code. Before creating an instance of the RazorTem
plateEngine, however, the application must provide a set of properties that inform the
engine about how to properly translate the Razor template text it receives. These prop-
erties come in the form of a RazorEngineHost.

Creating a RazorEngineHost
The code snippet below contains an example RazorEngineHost initialization:

var language = new CSharpRazorCodeLanguage();
var host = new RazorEngineHost(language) {
 DefaultBaseClass = "CustomTemplateBase",
 DefaultClassName = "DemoTemplate",
 DefaultNamespace = "ProgrammingRazor",
};

To begin, the RazorEngineHost’s constructor accepts a RazorCodeLanguage specifying the
target template’s code language. This example produces a host that can parse Razor
templates written using C#. To support templates written in Visual Basic, supply a
VBRazorCodeLanguage instance instead. The additional initializer properties instruct the
code generator to emit code with a particular class name, deriving from a custom tem-
plate base class, and residing in a particular namespace. Finally, add the System name-
space to the list of imported namespaces required for the generated class to compile
just as you would import a namespace in a normal, handwritten class.

The custom template base class—called CustomTemplateBase in this example—is some-
what special. Though it does not need to implement any “official” interface, the base
class does need to provide methods with the following signatures:

public abstract void Execute()
Once populated with generated code, this method contains a series of calls to the
Write methods to render the template contents.

Meet the Players | 79

http://

void Write(object value) and void WriteLiteral(object value)
The RazorTemplateEngine populates the Execute() method with calls to the
Write() and WriteLiteral() methods, much like using an HtmlTextWriter to render
a Web Forms server control. While the Execute() method controls the flow of the
template rendering, these two methods do the heavy lifting by converting objects
and literal strings to rendered output.

This next code snippet contains the simplest possible implementation of a Razor tem-
plate base class:

public abstract class CustomTemplateBase
{
 public abstract void Execute();

 public virtual void Write(object value)
 { /* Write value */ }

 public virtual void WriteLiteral(object value)
 { /* Write literal value */ }
}

While this implementation will, of course, do nothing to render any content, it is the
minimum code required to successfully compile and execute a template class. By the
end of this chapter we will revisit and expand upon this class, making it much more
useful.

Creating the RazorTemplateEngine
Using the configuration provided in the previously created RazorEngineHost, this next
example shows how straightforward it is to instantiate and generate code with a Razor
TemplateEngine:

// Create a new Razor Template Engine
RazorTemplateEngine engine = new RazorTemplateEngine(host);

// Generate code for the template
GeneratorResults razorResult = engine.GenerateCode([TextReader]);

The RazorTemplateEngine.GenerateCode() method accepts TextReader parameters to
provide the Razor template text and produces generated code in the form of Generator
Results. This result class holds (among other things) a CodeCompileUnit representing
the template’s generated source code.

Compiling Razor Templates
The final step in the process of converting Razor text into an executable .NET class is
compiling the generated source code into a .NET assembly, as shown below:

CompilerResults compilerResults =
 new CSharpCodeProvider()
 .CompileAssemblyFromDom(

80 | Chapter 5: The Razor API

http://

 new CompilerParameters(/*...*/),
 razorResult.GeneratedCode
);

The CodeDomProvider.CompileAssemblyFromDom() method converts the
CodeCompileUnit from the previous steps (razorResult.GeneratedCode) and outputs the
compiled types in the form of CompilerResults. The CompilerResults object contains
plenty of interesting data describing the compiled output, including a reference to the
assembly with the newly created template class type (in this example, the template class
type is named CustomTemplateBase).

Executing a Razor Template
Configuring and compiling a Razor template produces a usable .NET type deriving
from the base type specified in the RazorEngineHost properties. To process this template
and render template output, simply create a new instance of the template type and
execute it. Though there are several ways to create a new instance of a type, the Acti
vator.CreateInstance(Type) function is the easiest (if perhaps not the most efficient)
way.

Once you’ve created an instance of your custom Razor template type, simply call the
Execute() method to execute the generated code:

var template = (CustomTemplateBase)Activator.CreateInstance(/*...*/);
template.Execute();

Congratulations, you have now leveraged the Razor API directly to manually create,
compile, and execute your first Razor template class!

Advanced Templating Logic
Previously we discovered that, at a minimum, a valid Razor template base class must
implement the Execute(), Write(), and WriteLiteral() methods. However, these meth-
ods are merely a starting point. Like any other .NET base class, template base classes
can expose additional properties or methods to the template classes derived from them.
This is how template base classes provide data and functionality to templates that derive
from them.

For example, remember how the template shown in the beginning of the chapter ref-
erenced the Posts variable?

<div>
 @foreach(var post in Posts) {
 <div>@post.Title</div>
 }
</div>

For this template to compile and execute properly, the custom base class specified as
the RazorEngineHost.DefaultBaseClass must expose a protected (or greater) access level

Advanced Templating Logic | 81

http://

Posts property. Thus, to qualify as a base class for this template, a Posts property must
be added to the CustomTemplateBase class. The result of this change can be seen in this
snippet:

public abstract class CustomTemplateBase
{
 public IEnumerable<Post> Posts { get; set; }

 public abstract void Execute();

 protected void Write(object output) { /* Not shown */ }
 protected void WriteLiteral(object output) { /* Not shown */ }
}

As this next snippet demonstrates, the application can now assign a collection of
Post objects to the template’s Posts property prior to executing the template. With the
Posts property set, the template produces the rendered text originally featured:

var template = (CustomTemplateBase)Activator.CreateInstance(/*...*/);
template.Posts = new BlogContext().Posts;
template.Execute();

82 | Chapter 5: The Razor API

http://

CHAPTER 6

Advanced Techniques

Chapter 2 introduced you to two ways to create reusable markup: “Partial
Views” on page 37 and “Razor Helpers” on page 41. Then Chapter 5 introduced you
to the components that make up the Razor API and how they work together to help
turn Razor templates into classes that render HTML to website visitors.

For most projects, partial views and Razor Helpers are all you need; however, some
circumstances require a bit more customization. This chapter shows how to take the
Razor API to the next level with several techniques that can help make application
development with Razor templates quite a bit easier.

Inline Templates and Templated Delegates
Razor Helpers are an effective way to expose reusable code and markup as methods
that the views in your application can share. Even though the Razor Helper syntax is
pretty straightforward, Templated Delegates offer an even easier approach for accom-
plishing the same result, just with a different syntax.

As a reminder, here is an example snippet of a Razor Helper that renders an list
item:

@helper ListItem(string content) {
 @content
}

 @foreach(var post in Posts) {
 @ListItem(post.Title)
 }

And this is the same snippet as a Templated Delegate:

@{
 Func<dynamic, HelperResult> ListItem = @@item;
}

83

http://

 @foreach(var post in Posts) {
 @ListItem(post.Title)
 }

The Templated Delegate is defined in a code block as a Func<dynamic, HelperResult>
delegate, which is then called later in the markup. At first glance, there is very little
difference between the Razor Helper and the Templated Delegate approaches. In fact,
the code that uses them is exactly the same! The fact is, for scenarios like repeating a
 tag, the differences really are arbitrary and deciding which approach to take is
essentially a toss-up.

Where Templated Delegates really start to shine, however, is dealing with things like
arrays and enumerations (i.e., iterations that use foreach loops). In these cases, you can
eliminate most or all of the “boilerplate” code by incorporating it into the code of the
Templated Delegate itself.

For instance, this is what the previous example would look like after incorporating the
foreach iteration code into the Templated Delegate:

public static class RazorExtensions {
 public static HelperResult ApplyTemplate<T>(
 this IEnumerable<T> items, Func<T, HelperResult> template
)
 {
 return new HelperResult(writer => {
 foreach (var item in items) {
 template(item).WriteTo(writer);
 }
 });
 }
}

 @Posts.ApplyTemplate(
 @@item
)

The RazorExtensions class shown above combines the power of extension methods on
top of generic IEnumerable<T> collections to efficiently apply a Templated Delegate to
multiple items at the same time. The foreach loop is moved into the extension method
and out of the web page markup. What’s even more interesting is that the tag
markup is now passed into the ApplyTemplate() method as a parameter. The template
markup is no different from the previous example, in which it was assigned to a variable,
except in this case, instead of providing a reusable template, it offers a quick and easy
way to pass a Razor snippet into a method.

The end result is that the web page view markup becomes much less imperative and
much more declarative; for example, in this case, instead of saying “for each post, emit
an tag,” the code says, “apply the markup template to every post in the array.”

84 | Chapter 6: Advanced Techniques

http://

Though the difference is subtle, the impact is significant: the view code is simplified
and centralized. This makes the code easier to maintain over time, effectively applying
updates to markup or logic across the entire site with a change to one place.

Sharing Views Between Projects
ASP.NET MVC makes it very easy to share views within the same website. Multiple
controller actions can reference the same view when the shared view lives in the same
folder as the other views for that controller or in the website’s Shared folder. But how
do you share views across projects?

Out of the box, there is no way to create a view in one project and reuse it in other
projects. However, as you discovered in Chapter 5, Razor views are really just fancy
designers that eventually generate .NET code, which can be compiled into assemblies,
and compiled assemblies are certainly reusable across projects! Thus, what you need
is a tool that can take the Razor views that you author in a separate project and run the
Razor API directly against them to generate .NET code. Though this book gives you
all the information you need to build a tool, the good news is that you don’t have to:
some folks in the open source community have already created it for you!

The Razor Single File Generator
The Razor Single File Generator is an open source Visual Studio extension that allows
you to create reusable Razor views that aren’t tied to any specific website. The extension
lets you use Razor templates to generate classes much like the Visual Studio Settings
designer and Windows Forms designer generate settings classes and Windows Forms
classes.

Installing the Razor Single File Generator

Though the complete source code is hosted on CodePlex, the Razor Single File Gen-
erator installer is available in the Visual Studio Extensions Gallery, so the easiest way
to get started with the Generator is to install it from the Gallery. To install, open the
Visual Studio Extension Manager (Tools→Extension Manager…) and search the Online
Gallery for “Razor Generator,” as shown in Figure 6-1.

After the Razor Generator is installed (be sure to restart Visual Studio), create a new
project to house the shared views. Outside of the fact that you will be applying a custom
tool to your view files, there is nothing special about this new project; just create a new
Class Library project (as shown in Figure 6-2) in the Blog solution that you’ve been
working in and name it “ReusableComponents.”

Sharing Views Between Projects | 85

http://razorgenerator.codeplex.com/
http://

Figure 6-2. Creating the new Class Library project for reusable views

Creating Reusable ASP.NET MVC Views
One of the most common scenarios for a view that is shared across projects is a generic
error page, so let’s create one and see how the Razor Single File Generator handles
ASP.NET MVC views.

Figure 6-1. Installing the Razor Generator in the Extension Manager

86 | Chapter 6: Advanced Techniques

http://

Creating reusable ASP.NET MVC views with the Razor Single File Generator is almost
the same as creating views within an ASP.NET MVC project itself. When you create a
folder structure similar to the ~/Views folder convention that ASP.NET MVC expects,
the only thing you have to do is associate the views with the Razor Single File Generator
by setting each view’s Custom Tool property to RazorGenerator.

Since the new ReusableComponents class library is not an ASP.NET MVC project, it
will not have the ~/Views folder, so go ahead and create one. The new view you are
about to add will be used across multiple controllers, so the class library’s folder struc-
ture should reflect this: create another directly under ~/Views named “Shared,” mir-
roring the ASP.NET MVC application folder convention. When you’re done, the Re-
usableComponents class library should look like Figure 6-3.

Figure 6-3. Reusable Components project with the ~/Views folder structure

Now that the folder structure is in place, add a new file named GenericError.cshtml to
the Shared folder using the Add→New Item… content menu. Since the project is a Class
Library project and not an ASP.NET MVC, Visual Studio will refuse to show the MVC
3 View Page (Razor) item type. That’s OK; just choose another plain-content item type,
such as Text File or HTML Page. Since your new item (GenericError.cshtml) has
the .cshtml file extension, Visual Studio will know that it is a Razor template.

Though Visual Studio recognizes the new file as a Razor template, you need to tell the
Razor Single File Generator to start generating code from that template. To wire up the
Generator, open up the properties for the GenericError.cshtml file and set its Custom
Tool property to RazorGenerator. Figure 6-4 shows a properly configured Razor Gen-
erator.

Figure 6-4. Setting the RazorGenerator Custom Tool property

Completely replace all content (if any) in the new GenericError.cshtml file with the
following Razor markup:

@{ Layout = null; }
<html>

Sharing Views Between Projects | 87

http://

<head>
 <title>Website Error!</title>
 <style>
 body { text-align: center; background-color: #6CC5C3; }
 .error-details .stack-trace { display: none; }
 .error-details:hover .stack-trace { display: block; }
 </style>
</head>
<body>
 <h2>We're sorry, but our site has encountered an error!</h2>

@if (ViewData["ErrorMessage"] != null) {
 <div class="error-details">
 <h2>@ViewData["ErrorMessage"]</h2>
 <div class="stack-trace">@ViewData["StackTrace"]</div>
 </div>
}
</body>
</html>

Immediately after you specify the Custom Tool property, you should see that the Razor
Single File Generator has generated the class GenericError.cs, grouped underneath
GenericError.cshtml (as shown in Figure 6-5).

Figure 6-5. New file generated by the Razor Generator

If you do not see the generated file, something has gone wrong! Be sure
that you have spelled the name of the custom tool correctly (RazorGen
erator with no spaces). If it still does not work, try going back and
following the steps from the beginning of this section. Make sure that
you restart Visual Studio after installing the Razor Generator tool and
check all the installation logs to make sure that there were no errors
during installation.

Feel free to open this new file and inspect its generated contents. It should look pretty
similar to code that the Razor API generated in Chapter 5, modified to work with the
ASP.NET MVC framework. The generated code acts like any other code, compiling
into an assembly that you can share with any number of websites.

88 | Chapter 6: Advanced Techniques

http://

Including precompiled views in an ASP.NET MVC web application

After following the steps in this section, you are left with a project library filled with
precompiled ASP.NET MVC Razor views…now what? Because of the standard con-
ventions the ASP.NET MVC Razor View Engine uses, the view engine will not be able
to locate views outside of its standard search paths (the Views folders in the ASP.NET
MVC web application), so it has no idea that your precompiled views even exist, let
alone how to execute them.

The answer to this situation is the PrecompiledMvcEngine, a custom view engine built
by the Razor Single File Generator developers that extends the core Razor View Engine
to look for precompiled views. The easiest way to begin using the PrecompiledMvcEn
gine is to use the NuGet Package Manager (see “Using the NuGet Package Man-
ager” on page 57) to install the PrecompiledMvcEngine package to the class library
project that contains your precompiled views. The PrecompiledMvcEngine package
adds several artifacts to your project:

Several web.config files
The Razor API and Visual Studio Razor IntelliSense assume that Razor views live
within a web application project, and they read their configuration information
from the project’s web.config files. Even though your project is a class library
project, the web.config files that the PrecompiledMvcEngine package adds give
Visual Studio enough information to enable Razor IntelliSense, even for views that
use the Razor Single File Generator.

A sample Razor view
The PrecompiledMvcEngine package adds a sample Razor view named
Test.cshtml in the project’s ~/Views/Home folder to show how precompiled views
should be configured. If everything is working properly, you should see this view
generate a code-behind (Test.cs) file immediately. The Test.cshtml view is just a
reference, so you can modify it as you wish, rename it, or even delete it entirely.

~/App_Start/PrecompiledMvcViewEngineStart.cs
Though its name is not important, the PrecompiledMvcViewEngineStart.cs file
contains logic (shown below) that tells your ASP.NET MVC application to use the
PrecompiledMvcEngine for all the precompiled Razor views in this class library
project. The PrecompiledMvcViewEngineStart.cs file also includes the WebActiva
tor.PreApplicationStartMethod attribute, which tells the WebActivator library to
execute the PrecompiledMvcViewEngineStart.Start() method when the web appli-
cation starts up, registering the PrecompiledMvcEngine in the web application’s
ViewEngines collection:

[assembly: WebActivator.PreApplicationStartMethod(
 typeof(ReusableComponents.App_Start.PrecompiledMvcViewEngineStart),
 "Start"
)]

public static class PrecompiledMvcViewEngineStart {
 public static void Start() {

Sharing Views Between Projects | 89

http://

 var currentAssembly = typeof(PrecompiledMvcViewEngineStart).Assembly;
 var engine = new PrecompiledMvcEngine(currentAssembly);
 ViewEngines.Engines.Insert(0, engine);
 VirtualPathFactoryManager.RegisterVirtualPathFactory(engine);
 }
}

Once the PrecompiledMvcViewEngine NuGet package is installed and you’ve moved
the ~/Views/Home/Index.cshtml file from the sample blog site to the ReusableCompo-
nents class library project, you should be able to run the website and see that everything
works just as it did before. ASP.NET MVC now executes the precompiled In-
dex.cshtml file from the class library, not caring that the file did not exist in its local ~/
Views folder. But how did the PrecompiledMvcViewEngine know which view to render?

We’ve seen that the PrecompiledMvcViewEngine knows how to render precompiled Ra-
zor views in an ASP.NET MVC application and the PrecompiledMvcViewEngineStart
takes care of registering the PrecompiledMvcViewEngine with the web application, so
there is only one missing piece in the puzzle: locating the precompiled view. Though
it may be surprising, PrecompiledMvcViewEngine still relies on the ASP.NET MVC Views
folder convention, using relative file paths to locate the views. However, this is slightly
misleading. The PrecompiledMvcViewEngine doesn’t look at physical files; it looks for
the System.Web.WebPages.PageVirtualPathAttribute that the Razor Single File Gener-
ator adds to every view that it generates that includes the view’s relative file path.

The following shows the first few lines of the sample view Test.cshtml that includes that
PageVirtualPathAttribute:

[System.Web.WebPages.PageVirtualPathAttribute("~/Views/Home/Test.cshtml")]
public class Test : System.Web.Mvc.WebViewPage<dynamic>

Since the virtual path name is relative, whether the ~/Views/Home/Test.cshtml view
resides in the ASP.NET MVC application or the class library project, its virtual path is
the same. Thus, when the ASP.NET MVC application requests the Test view in the
Home controller, the PrecompiledMvcViewEngine knows to use the precompiled
Test.cshtml view registered with the virtual path ~/Views/Home/Test.cshtml.

Be sure to add the PrecompiledMvcEngine package to the class library
project that contains your precompiled views, not your ASP.NET MVC
web application project. Your web application will need the Precompi-
ledMvcEngine assembly at runtime, but the artifacts that the NuGet
package installs to your package are only meant for class library projects
that contained precompiled Razor views.

Creating Reusable ASP.NET MVC Helpers
You can also apply the Razor Single File Generator to Razor templates that include
Razor Helpers to produce a result similar to as if the templates resided in an ASP.NET
MVC application’s App_Code folder.

90 | Chapter 6: Advanced Techniques

http://

The Razor Single File Generator expects Razor Helper templates to live in the ~/Views/
Helpers folder, so before you can create any helpers, you’ll need to create this folder.
After you create the Helpers folder, follow the same steps you followed earlier to add
a Razor template file to the new Helpers folder. Name the file TwitterHelpers.cshtml.
Then set the Custom Tool property to RazorGenerator, just as you did for the ASP.NET
MVC view template.

Immediately after setting the property, you should see the autogenerated file Twitter-
Helpers.cs. Open the file and take a look: the Razor Generator has successfully parsed
the empty Razor template and generated a C# class for us, ready to hold some Helper
functions. An empty class doesn’t do us any good, however, so let’s create a helper
function using the standard Razor syntax that we used to create the TweetButton
Helper Method (see “Razor Helpers” on page 41). As a matter of fact, just go ahead
and copy the contents of that file:

@helper TweetButton(string url, string text) {
 <script src="http://platform.twitter.com/widgets.js" type="text/javascript">
 </script>
 <div>
 <a href="http://twitter.com/share" class="twitter-share-button"
 data-url="@url" data-text="'@text'">Tweet
 </div>
}

Saving the file and switching back to the generated TwitterHelpers.cs file shows that’s
it’s been updated again in real time. This time the static helper class contains the code
for our custom TweetButton Helper. Example 6-1 contains the complete autogenerated
code.*

Example 6-1. Auto-Generated MvcHelper Code

namespace ReusableComponents.Views.Helpers
{
 using System;
 using System.Collections.Generic;
 using System.IO;
 using System.Linq;
 using System.Net;
 using System.Text;
 using System.Web;
 using System.Web.Helpers;
 using System.Web.Mvc;
 using System.Web.Mvc.Ajax;
 using System.Web.Mvc.Html;
 using System.Web.Routing;
 using System.Web.Security;
 using System.Web.UI;
 using System.Web.WebPages;

 [System.CodeDom.Compiler.GeneratedCodeAttribute("RazorGenerator", "1.1.0.0")]

* The comments and some whitespace have been removed for better readability

Sharing Views Between Projects | 91

http://

 public static class TwitterHelpers
 {
 public static System.Web.WebPages.HelperResult
 TweetButton(string url, string text) {
 return new System.Web.WebPages.HelperResult(__razor_helper_writer => {
 WebViewPage.WriteLiteralTo(@__razor_helper_writer,
 "<script src=\"http://platform.twitter.com/widgets.js\" "+
 "type=\"text/javascript\">" +
 "</script>\r\n");

 WebViewPage.WriteLiteralTo(@__razor_helper_writer,
 "<div>\r\n" +
 "<a href=\"http://twitter.com/share\" "+
 "class=\"twitter-share-button data-url=\""
);

 WebViewPage.WriteTo(@__razor_helper_writer, url);

 WebViewPage.WriteLiteralTo(@__razor_helper_writer, "\" data-text=\"\'");

 WebViewPage.WriteTo(@__razor_helper_writer, text);

 WebViewPage.WriteLiteralTo(@__razor_helper_writer,
 "\'\">Tweet\r\n" +
 "</div>\r\n"
);
 });
 }
 }
}

With the autogenerated class in place, ASP.NET MVC websites that reference the Re-
usableComponents assembly will be able to use the TweetButton Helper just like any
other Helper method defined in the website’s App_Code folder. For example:

@using ReusableComponents.Views.Helpers
<div>
 @TwitterHelpers.TweetButton(url, message)
</div>

Razor Single File Generator Generator Implementations
The Razor Generator tool is actually a shell that hosts several different kinds of gener-
ators. All of them leverage the core Razor API, much like you saw in Chapter 5, though
each generator uses a different implementation to generate code that targets specific
scenarios.

As of this writing, the Razor Generator includes the following generators:

MvcHelper

Creates a static type that is best suited for writing MVC-specific helper methods.

92 | Chapter 6: Advanced Techniques

http://

MvcView

Creates a WebViewPage which allows the use of precompiled MVC views.

WebPage

Creates a WebPage type that can be used as a WebPages Application Part (such as
Admin and RazorDebugger).

WebPagesHelper

Creates a HelperPage type that is suited for precompiling and distributing Web-
Pages helper.

Template

Generator based on T4 preprocessed template.

You’ve seen the first two—MvcHelper and MvcView—in action already. The Razor Single
File Generator figured out which generator to use based on the file’s location in the
site. By virtue of the fact that the GenericError.cshtml file is in the ~/Views/Shared folder,
the Generator assumes that the file is an ASP.NET MVC view, so it uses the
MvcHelper generator implementation to generate the code file. Likewise, the Generator
assumes that files in the ~/Views/Helpers folder are ASP.NET MVC Helpers and uses
the MvcHelper generator implementation.

The Razor Single File Generator offers an alternative method (which looks like this: @*
Generator: MvcHelper *@) to explicitly specify which generator implementation it
should use to generate code for a given Razor template.

The following example shows how you can tell the Razor Single File Generator to
generate code for a WebMatrix WebPages Application Part:

@* Generator: WebPage *@
<div>The time is: @DateTime.Now</div>

The generator declaration always takes precedence when it is specified, even when the
Razor template file resides in a folder that falls under a different collection. Thus, you
can store your Razor template however you like and let the Razor Single File Generator
know which templates should be handled differently.

Unit Testing Razor Views
Many best practices advocate keeping the logic in your views as limited and simple as
possible; however, the ability to execute unit tests against Razor-based MVC views can
still be beneficial in some scenarios.

Take a look at the code snippet for an example of an ASP.NET MVC Razor view:

<p>
 Order ID:
 @Model.OrderID
</p>
<p>
 Customer:

Unit Testing Razor Views | 93

http://

 @(Html.ActionLink(
 @Model.CustomerName,
 "Details", "Customer",
 new { id = @Model.CustomerID },
 null))
</p>

The default ASP.NET MVC Razor view class exposes properties such as Model and
Html that this view relies on. Thus, in order to compile and execute the view outside of
the ASP.NET MVC runtime, you must create a custom template base class that imple-
ments these properties as well. This next example contains a snippet from the OrderIn
foTemplateBase, modified to include the Model and Html properties so that it may be
used to compile the previous view:

public abstract class OrderInfoTemplateBase
{
 public CustomerOrder Model { get; set; }
 public HtmlHelper Html { get; set; }
 ...
}

The OrderInfoTemplateBase class now fulfills the template’s dependencies on the
ASP.NET MVC base classes, allowing the OrderInfoTemplateBase to act as a stand-in
for the ASP.NET MVC base classes. Introducing custom base classes such as OrderIn
foTemplateBase provides complete control over the properties and functionality provi-
ded to the template. Custom base classes also alleviate the need to execute ASP.NET
MVC views within the ASP.NET MVC runtime.

Example 6-2 shows the power of swapping production components with mock objects.

Example 6-2. Unit test executing a Razor template instance using mock objects

public void ShouldRenderLinkToCustomerDetails()
{
 var mockHtmlHelper = new Moq.Mock<HtmlHelper>();
 var order = new CustomerOrder()
 {
 OrderID = 1234,
 CustomerName = "Homer Simpson",
 };

 // Create the instance and set the properties
 var template = (OrderInfoTemplateBase)Activator.CreateInstance(/*...*/);

 template.Html = mockHtmlHelper.Object;
 template.Model = customerOrder;

 template.Execute();

 // Verify that the link was generated
 mockHtmlHelper.Verify(htmlHelper =>
 htmlHelper.ActionLink(
 order.CustomerName,
 "Details", "Customer",

94 | Chapter 6: Advanced Techniques

http://

 It.IsAny<object>()
);
}

By replacing the production HtmlHelper class with a mock implementation, the unit
test can easily make assertions against—and therefore confirm the validity of—code in
the view without relying on the ASP.NET MVC runtime.

If you are using the Razor Single File Generator to create reusable views,
you do not need to use reflection-based approaches such as Activa
tor.CreateInstance(). Since the Razor Single File Generator generates
actual classes, all you need to do is create a new instance of the class
(e.g., var template = new CustomerOrderTemplate();) and run tests
against the new instance.

The ability to inject mock and stub objects to take the place of production types is a
great boon for unit tests. Without this ability, most sites must resort to running all UI
tests through slow and unreliable browser-based testing. In stark contrast, injecting
mock and stub objects allows developers to create unit tests that execute in mere mil-
liseconds.

Applying Razor to Text-Based Scenarios
Chapter 5 walks you through the life cycle of a Razor template and how the Razor API
converts template text into an executable class. The WebMatrix and ASP.NET MVC
frameworks leverage the Razor syntax and the Razor API as a way for developers to
define how HTML should be rendered for a web page. However, Chapter 5 shows that
it’s relatively straightforward to execute the Razor API outside of WebMatrix or
ASP.NET MVC, allowing you to leverage the Razor syntax in your own applications.
Not only is it straightforward, but Razor templates can output much more than just
HTML, which makes Razor suitable for many templating tasks.

Though Chapter 5 explains everything you need to leverage the Razor API directly, let’s
run though an example to show it in action, using Razor templates to drive a theoretical
custom email mail merging application. We’ll start with a sample email template and
build what we need to turn it into a .NET class that the mail merge application can
execute to generate email text:

 Hello, @ServiceRequest.CustomerName!

 Thank you for requesting more information about
 @ServiceRequest.ServiceName on @ServiceRequest.CreateDateDisplayValue.
 Please find the information you requested below
 and we look forward to hearing from you again!

 @ServiceRequest.DetailedInformation

Applying Razor to Text-Based Scenarios | 95

http://

 Sincerely,
 @ServiceRequest.SenderInformation

 [Information current as of @DateTime.Now]

Though the custom mail merge application is not an ASP.NET MVC application, cre-
ating a model to hold all the data that the template needs makes it much easier to pass
data to the template when it is rendering. The following shows the model class that
contains all of the properties that the template needs:

public class ServiceRequestEmailModel
{
 public string SenderEmail { get; set; }
 public string CustomerEmail { get; set; }

 public string CustomerName { get; set; }
 public DateTime CreateDate { get; set; }
 public string DetailedInformation { get; set; }
 public string SenderInformation { get; set; }
 public string ServiceName { get; set; }

 // Wrap the CreateDate value in a property that
 // provides a formatted display value to the view.
 // This way, the formatting logic can be centralized
 // and stay out of the view.
 public string CreateDateDisplayValue
 {
 get { return CreateDate.ToString("G"); }
 }
}

Next, the generated class will need a base class that implements the Write() and Write
Literal() methods. The next example contains the full Razor email template base class
necessary to compile the template text:

namespace RazorTemplateMailer
{
 using System.Net.Mail;
 using System.Text;

 public abstract class ServiceRequestEmailGeneratorBase
 {
 private StringBuilder _buffer;

 public string SenderEmail { get; set; }

 protected ServiceRequestEmailModel ServiceRequest { get; private set; }

 public MailMessage GenerateMailMessage(ServiceRequestEmailModel model)
 {
 // Update the model reference
 ServiceRequest = model;

 // Clear any existing buffered content
 _buffer = new StringBuilder();

96 | Chapter 6: Advanced Techniques

http://

 // Render the template to the buffer
 Execute();

 // Return a new Mail Message with the buffer contents
 return new MailMessage(SenderEmail, model.CustomerEmail)
 {
 Body = _buffer.ToString()
 };
 }

 public abstract void Execute();

 public void Write(object value)
 {
 WriteLiteral(value);
 }

 public void WriteLiteral(object value)
 {
 _buffer.Append(value);
 }
 }
}

Notice how the ServiceRequestEmailGeneratorBase class’s Write() methods populate
a string buffer. After it’s done populating the buffer, the class then converts the buffered
text into the body of a new System.Net.Mail.MailMessage. This particular base class
remains happily unaware of how its descendants call the Write() methods. In fact, it
knows nothing about the Razor Templating API at all!

The following example shows the template in action in the form of an application that
pulls customer service requests from a database and sends the customer a custom email
generated from the Razor template:

Custom application using the Razor API

public void EmailServiceRequests()
{
 // Get Service Requests from the database
 var requests = ServiceRequests.GetAll();

 // Map the database data to the email model
 var serviceRequestEmailModels =
 from request in requests
 select new ServiceRequestEmailModel
 {
 CustomerName = request.CustomerName,
 CreateDate = request.CreateDate,
 DetailedInformation = request.Information,
 SenderEmail = request.CustomerEmailAddress,
 SenderInformation = request.SenderInformation,
 ServiceName = request.ServiceName,
 };

Applying Razor to Text-Based Scenarios | 97

http://

 // Get an instance of the compiled template
 Type generatorType = Type.GetType("RazorDemo.ServiceRequestEmailGenerator");
 var emailGenerator =

(ServiceRequestEmailGeneratorBase)Activator.CreateInstance(emailGeneratorType);

 // Supply any required properties
 emailGenerator.SenderEmail = "mailmerger@bigcorp.com";

 // Execute the template for each model
 // and send the email to the customer
 SmtpClient smtp = new SmtpClient();
 foreach (var emailModel in serviceRequestEmailModels)
 {
 var email = emailGenerator.GenerateMailMessage(emailModel);
 smtp.Send(email);
 }
}

This application retrieves template data from a database and executes an instance of
the ServiceRequestEmailGeneratorBase template class against each set of data, produc-
ing the previously discussed email message as a result. The application then sends the
resulting email to the user via the System.Net.Mail.SmtpClient:

 Hello, Homer Simpson!

 Thank you for requesting more information about
 Donuts on 1/15/2011 11:04:12 AM.
 Please find the information you requested below
 and we look forward to hearing from you again!

 Donuts are delicious!

 Sincerely,
 Big Corp.

 [Information current as of 1/15/2011 11:04 AM]

It seems email generation applications like this get built time and time again, each
implementation drastically different from the next. Since this approach leverages stand-
ardized and well-documented components of the .NET Framework, the resulting sol-
ution becomes easy for any developer to understand and maintain.

98 | Chapter 6: Advanced Techniques

http://

CHAPTER 7

Conclusion

At first glance, many consider Razor to be just another way to generate HTML. Hope-
fully, the examples in this book have shown that Razor is far more than a simple markup
syntax. Razor is a versatile templating framework that can power simple websites or
complex applications. What’s more, Razor’s extensible API lets developers further
customize their environments, helping to make their applications easier to create and
maintain.

The next time you sit down to evaluate which ASP.NET MVC View Engine or tem-
plating platform is the best fit for your next application, consider the benefits that Razor
and its API offer. You may be pleasantly surprised!

99

http://

http://

About the Author
Jess Chadwick is an independent software consultant specializing in web technolo-
gies. He has over a decade of development experience ranging from embedded devices
in startups to enterprise-scale web farms at Fortune 500 companies. He is an
ASPInsider, a Microsoft MVP in ASP.NET, and an avid community member, frequently
delivering technical presentations as well as leading the NJDOTNET Central New Jer-
sey .NET user group. Jess lives in the Philadelphia area with his wonderful wife, baby
daughter, and black Lab.

http://

http://

	Table of Contents
	Preface
	RazorPad: A Lightweight Razor Editor
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Introduction
	A Brief History of Microsoft’s Web Development Platforms
	Active Server Pages (ASP)
	ASP.NET Web Forms
	ASP.NET MVC
	WebMatrix

	Hello, Razor!
	Differentiating Code and Markup
	Code Nuggets
	Code Blocks
	How Razor Parses Markup and Code
	Disambiguating Code and Markup
	Explicit code nuggets
	The @: character sequence
	The <text> block

	Comments

	Chapter 2. Razor and Microsoft WebMatrix
	Introducing ASP.NET Web Pages
	Installing WebMatrix
	Your First WebMatrix Website
	The File List View
	Website Administration
	Hello World, Razor Style

	Data Access with WebMatrix
	Creating a Database
	Populating the Database with Data
	Displaying Data from the Database
	Creating the Add Post page

	Handling Posted Form Data
	Saving Data to the Database
	Validating Posted Data
	Conversion helpers
	Using validation

	Creating the Home Page

	Chapter 3. Organizing Razor Templates
	Layouts
	Layouts Are Pages, Too!
	Sections
	IsSectionDefined
	Nested Layouts
	Nested Layouts and Sections
	Redefining Sections
	The Layout Rendering Life Cycle
	Nested Layouts

	Partial Views
	Creating Partial Views
	Accessing parameter values

	Reusing Partial Views

	Razor Helpers
	Razor Helper Packages
	Razor Helpers versus Partial Views
	Razor Helpers
	Partial Views

	Executing Common Code
	Executing Code the First Time a Page Executes
	Executing Code Every Time a Page Executes
	Wrapping Views with _PageStart.cshtml Logic
	Executing Multiple _PageStart.cshtml Templates

	Chapter 4. Razor and ASP.NET MVC
	Installing ASP.NET MVC
	The Model-View-Controller Architecture

	ASP.NET MVC View Engines
	The Razor View Engine
	Differentiating Razor syntax and API implementations

	Implementing a Blog Site Using ASP.NET MVC
	The Model
	The Controller
	Data access with Entity Framework code first

	Convention versus Configuration

	Authoring ASP.NET MVC Views with the Razor Syntax
	Adding Razor Views to an ASP.NET MVC Application
	Writing ASP.NET MVC Razor View Markup
	Strongly-Typed Views

	Changing the Base Class
	Applying Custom Base Classes to Multiple Views

	Layouts and Content Pages
	Razor View File Locations
	Controller Views
	Locating Razor Views
	Shared Views
	Views in ASP.NET MVC Areas

	Html and Url Helper Classes
	ASP.NET MVC’s Razor View Page Rendering Life Cycle
	Precompiling Razor Views
	Precompiling Razor Views in an ASP.NET MVC application
	Compiling views from MSBuild

	Chapter 5. The Razor API
	Razor Templates: From Markup to .NET Code
	1. Parse the Razor Template
	2. Generate .NET Code
	3. Compile Generated Code into an Executable Class
	4. Instantiate and Execute the Generated Class

	Meet the Players
	Configuring the Razor Template Engine
	Creating a RazorEngineHost
	Creating the RazorTemplateEngine
	Compiling Razor Templates
	Executing a Razor Template

	Advanced Templating Logic

	Chapter 6. Advanced Techniques
	Inline Templates and Templated Delegates
	Sharing Views Between Projects
	The Razor Single File Generator
	Installing the Razor Single File Generator

	Creating Reusable ASP.NET MVC Views
	Including precompiled views in an ASP.NET MVC web application

	Creating Reusable ASP.NET MVC Helpers
	Razor Single File Generator Generator Implementations

	Unit Testing Razor Views
	Applying Razor to Text-Based Scenarios

	Chapter 7. Conclusion

