
www.allitebooks.com

http://www.allitebooks.org

Python 3 Web Development
Beginner's Guide

Use Python to create, theme, and deploy unique web
applications

Michel Anders

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Python 3 Web Development
Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2011

Production Reference: 1060511

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849513-74-6

www.packtpub.com

Cover Image by Rakesh Shejwal (shejwal.rakesh@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Michel Anders

Reviewers

Michael Driscoll

Róman Joost

Tomi Juhola

Andrew Nicholson

Herjend Teny

Acquisition Editor

Sarah Cullington

Development Editor

Neha Mallik

Technical Editors

Sakina Kaydawala

Gauri Iyer

Copy Editor

Leonard D'Silva

Project Coordinators

Poorvi Nair

Michelle Quadros

Proofreader

Mario Cecere

Indexer

Tejal Daruwale

Graphics

Nilesh Mohite

Production Coordinator

Kruthika Bangera

Cover Work

Kruthika Bangera

www.allitebooks.com

http://www.allitebooks.org

About the Author

Michel Anders, after his chemistry and physics studies where he spent more time on
computer simulations than on real world experiments, the author found his real interests
lay with IT and Internet technology, and worked as an IT manager for several different
companies, including an Internet provider, a hospital, and a software development company.

After his initial exposure to Python as the built-in scripting language of Blender, the popular
3D modeling and rendering suite, the language became his tool of choice for many projects.

He lives happily in a small converted farm, with his partner, three cats, and twelve goats.
This tranquil environment proved to be ideally suited to writing his first book, Blender 2.49
Scripting (Packt Publishing, 978-1-849510-40-0).

He loves to help people with Blender and Python-related questions and may be contacted as
'varkenvarken' at http://www.blenderartists.org/ and maintains a blog on Python-
specific subjects at http://michelanders.blogspot.com/.

For Clementine, always.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Michael Driscoll has been programming Python since the Spring of 2006 and has
dabbled in other languages since the late nineties. He graduated from the University with
a Bachelors of Science degree, majoring in Management Information Systems. Michael
enjoys programming for fun and profit. His hobbies include Biblical apologetics, blogging
about Python at http://www.blog.pythonlibrary.org/, and learning photography.
Michael currently works for the local government, where he does programming with Python
as much as possible. Michael was also a Technical Reviewer for Python 3: Object Oriented
Programming by Dusty Phillips and Python Graphics Cookbook by Mike Ohlson de Fine (both
by Packt Publishing).

I would like to thank my friends and family for their support and the fun
times they share with me. Most of all, I want to thank Jesus for saving me
from myself.

Róman Joost discovered open source software in 1997. He is the project manager for
user documentation for GNU Image Manipulation Program (GIMP). Róman also helped with
German internationalization of GIMP. He has been contributing to GIMP and Zope open
source projects for eight years.

Róman has a Diplom-Informatiker (FH) from the University of Applied Sciences in Koethen
(Anhalt). He has worked for Zope companies—Gocept GmbH & Co in Germany, Infrae in
The Netherlands, and is currently working for a Zope company in Brisbane, Australia. For
relaxation, he enjoys photography and digital painting with GIMP.

www.allitebooks.com

http://www.allitebooks.org

Tomi Juhola is a software development professional from Finland. He has a wide range of
development experience from embedded systems to modern distributed enterprise systems
in various roles such as tester, developer, consultant, and trainer.

Currently, he works in a financial company and shares this time between development lead
duties and helping other projects to adopt Scrum and Agile methodologies. He likes to spend
his free time with new interesting development languages and frameworks.

He has reviewed conference proposals, a Python development book, and has also published
his own Master's theses on Agile embedded development.

Andrew Nicholson is a computer engineer with over fourteen years of professional
experience in a broad range of computing technologies. He is currently a Technical Director
with Infinite Recursion Pty Ltd.—a bespoke software engineering company located in Sydney,
Australia. He is a passionate advocate and a participant in the free, libre, and open source
software (FLOSS) community and has actively participated since 1999 contributing code,
ideas, and energy in this engineering community. He was a Technical Reviewer for the book
Python Testing: Beginner's Guide (2010), Packt Publishing.

Nicholson has a B.Eng (Computer) [Honours 1] from Newcastle University, Australia and a
M.Eng (Wireless) with Merit from Sydney University, Australia.

Nicholson's biography can be read at http://www.infiniterecursion.com.au/
people/.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Choosing Your Tools 7
Identifying the components of a web application 7
Time for action – getting an overview of a web application 8
Choosing suitable tools 10
Time for action – choosing a delivery framework, also known as web server 11
Time for action – choosing a server-side scripting language 12
Time for action – choosing a database engine 14
Time for action – deciding on object relational mappers 15
Time for action – choosing a presentation framework 17
Designing for maintainability and usability 18

Testing 18
Time for action – choosing a test framework 19

Version management 19
Usability 20

Good looking – adhering to common GUI paradigms 20
Themable 21
Cross-browser compatible 21
Cross-platform compatible 22

Maintainability 22
Standards compliant 22

Security 23
Reliable 23
Robust 23
Access control and authentication 24
Confidentiality 24
Integrity 25
A final word on security 25

Help, I am confused! 25
Time for action – maintaining overview 26
Summary 28

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Creating a Simple Spreadsheet 29
Python 3 30
Time for action – installing Python 3 CherryPy 30
Time for action – installing CherryPy 31
Installing jQuery and jQuery UI 31
Serving an application 32
Time for action – serving a dummy application 33
Time for action – serving HTML as dynamic content 34

Who serves what: an overview 36
HTML: separating form and content 37

Time for action – a unit convertor 38
HTML: form-based interaction 39
JavaScript: using jQuery UI widgets 40

Time for action – conversion using unitconverter.js 40
jQuery selectors 42
CSS: applying a jQuery UI theme to other elements 43

Time for action – converting a unit convertor into a plugin 45
JavaScript: creating a jQuery UI plugin 46

Designing a spreadsheet application 51
Time for action – serving a spreadsheet application 51

HTML: keeping it simple 52
JavaScript: creating a spreadsheet plugin 52

The missing parts 58
Summary 58

Chapter 3: Tasklist I: Persistence 59
Designing a tasklist application 59
Time for action – creating a logon screen 62

Serving a logon screen 69
Setting up a session 70
Expiring a session 71
Designing a task list 72

Time for action – running tasklist.py 72
Python: the task module 75
Time for action – implementing the task module 76

Adding new tasks 80
Deleting a task 81

JavaScript: tasklist.js 83
Time for action – styling the buttons 83
JavaScript: tooltip.js 85
Time for action – implementing inline labels 86

Table of Contents

[iii]

CSS: tasklist.css 87
Summary 90

Chapter 4: Tasklist II: Databases and AJAX 91
The advantages of a database compared to a filesystem 92
Choosing a database engine 92
Database-driven authentication 93
Time for action – authentication using a database 94

Tasklist II – storing tasks in a database 99
Improving interactivity with AJAX 99

Time for action – getting the time with AJAX 100
Redesigning the Tasklist application 102
Database design 103

Time for action – creating the task database 103
Time for action – retrieving information with select statements 105

TaskDB – interfacing with the database 106
Time for action – connecting to the database 106
Time for action – storing and retrieving information 107
Time for action – updating and deleting information 109

Testing 111
Time for action – testing factorial.py 112

Now what have we gained? 113
Time for action – writing unit tests for tasklistdb.py 114

Designing for AJAX 116
Click handlers 120

The application 121
Time for action – putting it all together 123
Have a go hero – refreshing the itemlist on a regular basis 125
Summary 126

Chapter 5: Entities and Relations 127
Designing a book database 127

The Entity class 128
Time for action – using the Entity class 129
Time for action – creating instances 132

The Relation class 138
Time for action – using the Relation class 138

Relation instances 141
Time for action – defining the Books database 144

The delivery layer 150
Time for action – designing the delivery layer 151
Time for action – adding a new book 162

Table of Contents

[iv]

Auto completion 165
Time for action – using input fields with auto completion 166

The presentation layer 168
Time for action – using an enhanced presentation layer 168
Summary 170

Chapter 6: Building a Wiki 171
The data layer 172
Time for action – designing the wiki data model 172
The delivery layer 175
Time for action – implementing the opening screen 176

The structural components 177
The application methods 179

Time for action – implementing a wiki topic screen 180
Time for action – editing wiki topics 182
Additional functionality 185
Time for action – selecting an image 185
Time for action – implementing a tag cloud 190
Time for action – searching for words 192
The importance of input validation 195
Time for action – scrubbing your content 196
Time for action – rendering content 200
Summary 201

Chapter 7: Refactoring Code for Reuse 203
Time for action – taking a critical look 203
Refactoring 205
Time for action – defining new entities: how it should look 205

Metaclasses 206
Time for action – using metaclasses 207

MetaEntity and AbstractEntity classes 208
Time for action – implementing the MetaEntity and AbstractEntity classes 209

Relations 217
Time for action – defining new relations: how it should look 217

Implementing the MetaRelation and AbstractRelation classes 219
Adding new methods to existing classes 222

Browsing lists of entities 224
Time for action – using a table-based Entity browser 224
Time for action – examining the HTML markup 229

Caching 232
The books application revisited 236
Time for action – creating a books application, take two 236
Summary 242

Table of Contents

[v]

Chapter 8: Managing Customer Relations 243
A critical review 243
Designing a Customer Relationship Management application 244
Time for action – implementing a basic CRM 244
Adding and editing values 248
Time for action – adding an instance 249
Time for action – editing an instance 251
Adding relations 257
Picklists 259
Time for action – implementing picklists 259
Summary 262

Chapter 9: Creating Full-Fledged Webapps: Implementing Instances 263
Even more relations 263
Time for action – showing one-to-many relationships 264
Time for action – adapting MetaRelation 266
Time for action – enhancing Display 270
Time for action – enhancing Browse 271
Access control 274
Time for action – implementing access control 275
Role-based access control 278
Time for action – implementing role-based access control 279
Summary 283

Chapter 10: Customizing the CRM Application 285
Time for action – sorting 285
Time for action – filtering 290
Customization 292
Time for action – customizing entity displays 292
Time for action – customizing entity lists 298
Time for action – adding a delete button 301
Summary 302

Appendix A: References to Resources 303
Good old offline reference books 303
Additional websites, wikis, and blogs 304

Appendix B: Pop Quiz Answers 307
Chapter 2, Creating a Simple Spreadsheet 307
Chapter 3, Tasklist I: Persistence 308
Chapter 4, Tasklist II: Databases and AJAX 309
Chapter 5, Entities and Relations 310
Chapter 6, Building a Wiki 310

Index 311

Preface
Building your own Python web applications provides you with the opportunity to have great
functionality, with no restrictions. However, creating web applications with Python is not
straightforward. Coupled with learning a new skill of developing web applications, you would
normally have to learn how to work with a framework as well.

Python 3 Web Development Beginner's Guide shows you how to independently build your
own web application that is easy to use, performs smoothly, and is themed to your taste—all
without having to learn another web framework.

Web development can take time and is often fiddly to get right. This book will show you
how to design and implement a complex program from start to finish. Each chapter looks
at a different type of web application, meaning that you will learn about a wide variety
of features and how to add them to your customized web application. You will also learn
to implement jQuery into your web application to give it extra functionality. By using the
right combination of a wide range of tools, you can have a fully functional, complex web
application up and running in no time.

A practical guide to building and customizing your own Python web application, without the
restriction of a pre-defined framework.

What this book covers
Chapter 1, Choosing Your Tools, looks at the many aspects of designing web applications.
The idea is to provide you with an overview that may help you recognize components in
subsequent chapters and give you some insight into the arguments used to decide which
tool or library to use. We also illustrate some issues that are relevant when designing an
application that does not deal with coding directly, such as security or usability.

Chapter 2, Creating a Simple Spreadsheet, develops a simple spreadsheet application. The
spreadsheet functionality will be entirely implemented in JavaScript plus jQuery UI, but
on the server-side, we will encounter the application server, CherryPy, for the first time
and we will extend it with Python code to deliver the page that contains the spreadsheet
application dynamically.

Preface

[2]

Chapter 3, Tasklist I: Persistence, a full fledged web application needs functionality to store
information on the server and a way to identify different users. In this chapter, we address
both issues as we develop a simple application to maintain lists of tasks.

Chapter 4, Tasklist II: Databases and AJAX, refactors the tasklist application developed in
the previous chapter. We will use the SQLite database engine on the server to store items
and will use jQuery's AJAX functionality to dynamically update the contents of the web
application. On the presentation side, we will encounter jQuery UI's event system and will
learn how to react on mouse clicks.

Chapter 5, Entities and Relations, most real life applications sport more than one entity and
often many of these entities are related. Modeling these relations is one of the strong points
of a relational database. In this chapter, we will develop a simple framework to manage
these entities and use this framework to build an application to maintain lists of books for
multiple users.

Chapter 6, Building a Wiki, develops a wiki application and in doing so we focus on two
important concepts in building web applications. The first one is the design of the data layer.
The wiki application is quite complex, and in this chapter, we try to see where the limitations
in our simple framework lie. The second one is input validation. Any application that accepts
input from all over the Internet should check the data it receives, and in this chapter, we look
at both client-side and server-side input validation.

Chapter 7, Refactoring Code for Reuse, after doing a substantial bit of work, it is often a good
idea to take a step back and look critically at your own work to see if things could have been
done better. In this chapter, we look at ways to make the entity framework more generally
useful and employ it to implement the books application a second time.

Chapter 8, Managing Customer Relations, there is more to an entity framework and CherryPy
application code than merely browsing lists. The user must be able to add new instances and
edit existing ones. This chapter is the start of the development of a CRM application that will
be extended and refined in the final chapters.

Chapter 9, Creating Full-Fledged Webapps: Implementing Instances, focuses on the design
and implementation of the user interface components to add and maintain entities,
and relations between entities, in a way that is independent of the type of entity. This
functionality is immediately put to use in the CRM application that we develop. Managing
user privileges is another issue we encounter as we explore the concept of role-based access
control.

Chapter 10, Customizing the CRM Application, is the final chapter and it extends our
framework and thereby our CRM application by taking a look at browsing, filtering,
and sorting large numbers of entities. We also take a look at what is needed to allow
customization by the end user of the application's appearance and its functionality.

Preface

[3]

Appendix A, References to Resources, is a convenient overview of both Web and paper
resources.

What you need for this book
Besides a computer running Windows or Linux to develop and test your applications, you will
need the following pieces of open source software:

 � Python 3.2

 � CherryPy 3.2.0

 � jQuery 1.4.4

 � jQuery UI 1.8.6

How to obtain and install these packages is explained in detail in Chapter 2. We also use
some additional plugins for jQuery and provide installation instructions where appropriate.

You will also need a web browser to interact with your applications. The applications were
tested on Firefox 3 and Internet Explorer 8, but any moderately recent versions of these
browsers will probably work just as well, as will Chrome. The Firebug extension for Firefox,
however, is a superior tool to debug the client-side of web applications, so you might want to
try it if you have not done so already. Appendix A provides links to the necessary resources.

Finally, you will need a text editor, preferably with syntax highlighting capabilities for Python
as well as JavaScript and HTML. The author uses Notepad++ (http://notepad-plus-
plus.org/) on Windows and JOE (http://joe-editor.sourceforge.net/) on Linux,
but the choice is entirely up to you.

Who this book is for
Moderately experienced Python programmers who want to learn how to create fairly
complex, database-driven, cross browser compatible web applications that are maintainable
and look good, will find this book of most use. All applications in the book are developed
in Python 3, but experience with Python 2.x is sufficient to understand all examples.
JavaScript plays an important supporting role in many of the example applications and some
introductory level knowledge of JavaScript might be useful, but is not strictly necessary
because the focus is mainly on Python development and the JavaScript code is used either
as building blocks or explained in such detail that anyone comfortable with Python should be
able to understand it.

Preface

[4]

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you have
learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Running CherryPy's setup.py script installs a
number of modules in Python's Lib\site-packages directory."

A block of code is set as follows:

<div id="main">

one
<li class="highlight">two
three

Preface

[5]

</div>
<div id="footer">footer text</div>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

t=t+'<thead class="ui-widget-header">
 <tr class="ui-helper-reset"><th></th>';
 for(i=0;i<opts.cols;i=i+1){
 t=t+'<th class="ui-helper-reset">' +
String.fromCharCode(65+i)+"</th>";
 }

Any command-line input or output is written as follows:

python -c "import cherrypy"

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "New books or authors may
be added by clicking the Add new button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Choosing Your Tools

In this chapter, we look at the many aspects of designing web applications.
The idea is to provide you with an overview that may help you recognize
components in subsequent chapters and give you some insight into the
arguments used to decide which tool or library to use.

Also, as this book covers more than just developing example applications, we
illustrate some issues that are relevant when designing an application that does
not deal with coding directly, like security or usability.

In this chapter, we will be:

 � Indentifying the components that a web application consists of

 � Choosing suitable tools

 � Considering what designing for maintainability and usability implies

There is a lot of ground to cover, so let's get started.

Identifying the components of a web application
A web application is not a monolithic object. In designing such an application, it might
help focus if you look at an application as a collection of related objects, each with its well-
defined purpose. This can be done with multiple levels of detail and even the mile high view
may already give some valuable insights.

Choosing Your Tools

[8]

Time for action – getting an overview of a web application
From the following picture shown, it should be clear that a web application is not a singular
thing. It consists of parts that reside on a server and parts that run on the computer of the
user. Both halves are just as important; although the server may hold the application data
and implement the logic to modify that data following requests from the user, the data is
displayed by the part of the web application running in the browser on the client computer
and the user signals his/her request by interacting with the user interface components in the
browser, for example, by clicking on an "OK" button.

 � Think about your application and consider both server and client-side. The
advantage of looking at the individual halves is that we might make choices
that are optimal for the specific half.

 � Look at the general requirements for the client half. For example, because we want
to offer the user a sophisticated user interface, we opt for the jQuery UI library. This
decision does not touch the overall design decision on the server, because apart
from delivering the files that the jQuery UI library consists of, the choice of user
interface library has no impact on the choice of the database engine or the server
operating system for example.

 � Look at the requirements for the server half. For example, consider which
implementation language to use. We select Python as the language to implement
the server-side code but if we had compelling arguments to switch to C#, we could
do so without the need to change anything on the client.

If we zoom in on our web application, an image emerges of many interacting layers, each
encapsulating a well defined piece of functionality. Everywhere two layers touch, information
flows through a well defined interface (API). This helps in the separation of concepts (our
application is only talking to the database layer to store and retrieve persistent data and only
to the web server to return data upon request) but in practice, the separation between these
layers isn't completely clear in all circumstances. For example, the server-side part of our
application is actually an integral part of the web server.

This simple schematic of a web application is virtually identical to a regular client-server
architecture. However, when we look more closely at the implementation of the client and
the interaction between client and server, differences will emerge as we will see in the next
section where we zoom in a bit closer.

Chapter 1

[9]

What just happened?
With both halves of the application identified, we can now zoom in on each individual half.

This will enable us to get a more detailed image, that will help us to make informed decisions
regarding the smaller components that make up our application.

The main components are easy to identify:

 � The data store holds data on the server (it is often a database engine, sometimes
just files on the filesystem).

 � The server-side application services requests that are passed through from the web
server.

 � The web server forwards those responses to the client again and may serve static
files as well.

The web browser takes care of running the client side of the application, but within the
browser, we can identify several layers of activities. These consist of:

 � Fetching the content to structure the data (often HTML files)

 � Running JavaScript code to enhance the presentation of the data

 � Allowing interaction with the user

Of course we could zoom in even further to reveal additional detail like the operating
system on the client and the server, or even the hardware and the network components and
although occasionally useful, this would generally be overkill. With the main components
clearly identified, we can take the next step and choose suitable tools to implement these
components.

Choosing Your Tools

[10]

Choosing suitable tools
If you want to develop quality applications, you need suitable tools. Tools, of course, do not
guarantee quality, but they can make life a lot easier. When developing web applications,
there are two kinds of tools you need to consider: the ones you use to design, build, test,
and deploy your application, like editors, version management systems, test frameworks,
and maybe a package tool, and the tools that deliver your application to the end user. That
last set of tools consists of a whole chain of components, from server operating system, web
server, and database engine, all the way to the web browser and the JavaScript libraries used
to display and interact with the application.

When we start a project, we have to know which tools we need and have to understand the
capabilities and limitations of the many variations of these tools. There are, for example,
quite a few JavaScript libraries that may be used to provide cross-browser compatible user
interaction.

The trick is to make an informed choice. These choices are not necessarily limited to open
source tools. If budget permits, it might be worthwhile to have the benefit of the special
features many commercial development tools and libraries offer, but in this book, we limit
ourselves to open source and/or free resources. This makes sense as the cost of tooling and
licenses in small projects can make a significant dent in a budget.

The opportunity to use free tools might not exist for the deployment environment. You may
well develop your application on your own Linux box, but test and deploy it on a Windows
server. The latter needs a license that will not be free, but even open source options are not
always free. Many companies nowadays shift to deploying their applications to the cloud
and even though these machines might be running an open source operating system, you
pay not only for CPU power and bandwidth but also for support, the latter being crucial in
applications that will lose you money if they are not running. However, using open source
tools in general gives you a much wider choice because many tools run equally well on any
platform.

In the following sections, we will look at the many components that make up the tool chain
and will try to show what arguments were used for the choices made for developing the
applications in this book and what (if any) viable alternatives are there. Note that some
arguments are quite subjective and the choice finally made does not necessarily indicate that
the alternative is bad; we certainly are not attempting to start flame wars over which tool is
better. We simply list requirements for application development as we see it and try to find
the tools suitable for the task. In some situations, another tool might be better, but for this
book, we try to find a matching toolset that can be used for all sample applications that are
free (as in beer) and easy to learn and use.

Chapter 1

[11]

Time for action – choosing a delivery framework,
also known as web server

In the first section of this chapter, we showed that a web application lives in two realms at the
same time, namely, on the server and on the client. In order to deliver information to the client
and receive a response in return, our web application needs two important items at the server:
a delivery framework and an application to compose content and respond to the request.

The delivery framework might be a full-fledged general purpose web server such as Apache
or Microsoft Information Server, but although these are very versatile and come with many
options to tune the web server to your specific needs, they certainly take quite some time
to get acquainted with and it takes extra attention to integrate the dynamic content of your
application with these servers. If performance is crucial or the requirements for your project
include that your application has to be deployed as part of these servers, you may not have
a choice, but otherwise its worth looking at the alternatives that are simpler to use or offer
integration advantages.

So what do we need?

 � A fairly lightweight web server that is easy to configure and maintain

 � That allows for smooth integration of static and dynamic content

 � That comes with reusable components that ease the development process

 � That is actively maintained and developed

Given these requirements, our choice for delivery framework is CherryPy.

What just happened?
CherryPy fits the bill nicely. Its main advantages are:

 � CherryPy is written in Python and components that deliver dynamic content are
written as Python classes that are tightly integrated with CherryPy's core.

 � CherryPy comes with a whole host of tools; reusable components that can be used
to implement anything from custom error pages to session management.

 � CherryPy has a proven track record as the core web server of the larger TurboGears
network.

 � And finally, CherryPy is actively developed and enjoys a large user community.

The disadvantage of being written in Python is that performance might not be top notch, but
we will look into that in the next section.

Choosing Your Tools

[12]

Time for action – choosing a server-side scripting language
When developing web applications, you have a virtually unlimited choice of programming
languages you can use, so we have to consider what is important for us in our project and
make a tradeoff if necessary.

 � Consider how important development time is compared to performance. Compiled
languages like C# or C++ might be used if CPU power is scarce or if you do not want
to distribute the source code in a readable format. But when development time is
at a premium, using scripting languages often saves time as they make it easier to
develop applications in an incremental way, even to the point where you can type in
commands interactively to see what is possible and later incorporate these trials in
your code.

Performance is generally not an issue, especially when using scripting languages
that are compiled to intermediate byte code, as is the case for languages like Python
and Perl, for example. And while it is true that scripted languages are compiled each
time they are run, this has a negligible effect when the program is a long running
web application.

 � Weigh the importance of debugging. Interpreted languages are often simpler to
debug as compiled languages, both because the debugger has access to more
information that you may explore interactively if something breaks and because you
can try out any modules you have written by interactively calling functions to see
what happens.

 � Think beyond the project. Once implemented and deployed, your application might
have a long and happy life, but that inevitably means that there will be requests for
smaller or larger changes and choosing a suitable language can help to reduce the
maintenance effort. Compared to compiled languages that in general have quite
low-level instructions and language constructs, interpreted languages have (very)
high level constructs that make for condensed code that packs a lot of meaning in a
few statements. That is not only easier to read but also faster to interpret and in the
end these high level constructs, once interpreted, run at (almost) compiled speed
making the performance difference sometimes hard to spot. More meaning and less
code do make for easier reading and this is a huge benefit when maintaining code.

In the end, the choice for the language to implement the web application is at least in part a
matter of taste, but in this book we opt for Python as it offers an optimal tradeoff between
the different considerations.

What just happened?
Now that we have chosen Python as our server-side scripting language, let's have a good
look at the arguments:

Chapter 1

[13]

 � Python is easy to read and therefore easy to learn and maintain. Although Python
is relatively unique among programming languages in treating whitespace as
meaningful in many places, this does enhance readability quite a lot.

 � Python is a very high level language, incorporating concepts like list comprehension
and functional programming. This allows for compact programs that pack a lot of
functionality in little code, enhancing readability and reducing maintenance.

 � Python comes "batteries included". Python is distributed with a vast amount of well
designed and well maintained libraries (modules) that provide anything from access
to .csv files and parsing XML, to building an HTTP server with a handful of code
and these modules are at least as well documented as the language itself. This all
means we can cut down on development time as in many cases we do not have to
reinvent the wheel ourselves.

 � Python has many third party modules. Even if a module is not included with the
distribution, chances are somebody has written just the module you are looking for.

 � Python is an object-oriented language. This is widely regarded as a good thing as it
aids in data abstraction but its main attraction to people developing database-driven
applications is that it allows for a natural way of mapping tables to types (classes).
Records in a table of cars can be mapped to a 'Car' class and instances of this class
can then be manipulated in much the same way as native classes like strings or lists.
This again makes it easier to read the code and therefore maintain the code.

 � Python is available on many cloud platforms. To run a Python program on the server,
you need Python deployed on that server. If you have full access, this might not
be an issue and indeed hosting companies provide (virtual) machines with Python
already installed but for very lightweight cloud platforms like Google Gears, your
choice of available languages might be limited. However, Python (together with
Java) is fully supported by Google Gears and although this is not a consideration for
the example applications in this book, it might be for your applications.

The version of Python we use in this book is version 3 (version 3.2 at the time of writing).
Although not all third party modules are (yet) ported to this new version, it is the best
version to use if you want to develop in a future proof way.

Python's multi-threading capabilities at the moment do not allow for optimal usage
of multi-core processors. Most implementations of Python do not allow running
separate threads truly in parallel. This is by far not as bad as you may think though,
as this restriction is mainly valid for interpreted python code, not necessarily for
code running in, for example, the OS kernel. And because in a web server a lot
of time is spent waiting for packets to be sent or received over the network, this
mostly does not affect the performance of your Python code. In the future, the
multi-threading implementation of Python may change, but this is a hotly debated
subject. More on this subject can be found by searching for "Python 3 GIL".

Choosing Your Tools

[14]

Time for action – choosing a database engine
One of the key requirements of any web-application is that is has access to some sort of
persistent storage. This might be used to store core data like a catalog of car parts, but a
password file also needs a form of persistent storage.

Often it is possible to store the information in files on the filesystem and indeed some of the
applications we develop in this book do just that, but if you have a lot of structured data or
you find that many people want to access this data at the same time, it is usually a better
choice to store this data in a database and access this data through a database engine.

When choosing a database engine, you should consider the following points:

 � Does it offer the functionality you need? Database engines are sophisticated pieces
of software and in general offer a lot of functionality, often more than you need.
Although this may sound like an advantage, all these features must be learned by
a developer to take advantage of them and may complicate your code which may
increase the effort to maintain an application.

 � Is it easy to install and maintain? Database engines often run as separate
applications that are accessed over a network. This means that they have to be
installed, tested, and maintained separately. This may add significantly to the effort
needed to deploy your application. And installation isn't even everything; you will
have to consider operational issues as well, for example, how much effort it is to set
up a suitable backup scheme or how to monitor the availability of the database.

 � Does it offer an API that is simple to use from your chosen programming language
and does this API provide access to all necessary functionality?

 � And finally, does it perform well enough to respond swiftly to the requests of your
application, even during peaks?

Python offers a standardized API to access many available database engines, including
MySQL and PostgreSQL. Fully in line with its 'batteries included' philosophy, Python also
comes included with a database engine and a module to access it. This database is called
SQLite and is a so called embedded database: it doesn't run as a standalone process that can
be accessed through some means of inter-process communication, but the database engine
is an integral part of the program that uses it. Its only external part is a single file containing
the data in the database itself and that may be shared by other programs that include the
SQLite engine. As it fits our requirements, SQLite will be the database engine we will use for
the applications we develop in this book.

What just happened?
Our choice for SQLite as the database for many of our applications is easily justified:

Chapter 1

[15]

 � Although not as feature-rich as, for example, MySQL, it does provide the
functionality we need.

 � Installation is practically a no brainer as SQLite comes included with Python.

 � The API offered by the sqlite3 module gives access to all functionality.

 � It performs well enough for our needs (although statements about performance are
very difficult to make in advance).

The main arguments supporting the use of SQLite in our applications are not its speed, small
memory footprint, or reliability (although these are certainly not drawbacks as SQLite's
reputation as database engine of choice for mobile telephone appliances proves) but the
fact that because it is embedded in your program, it obviates the need for a separately
configured and maintained database engine. This cuts down on maintenance in a serious
manner as database engines are demanding beasts that take a lot of care and feeding. Also,
because it is included in Python, it reduces the number of external dependencies when
deploying an application.

A final argument is its type system that closely resembles Python's type system; in contrast
to many other database engines, SQLite allows you to store any value in a column no
matter how this column was typed when it was created, just like you can store a string in
a Python variable that was first used to store an integer value. This close correspondence
of types allows for an intuitive mapping of Python values to values stored in the database,
an advantage that we will study closely when we encounter our first application that uses
SQLite.

The integration with Python is so close that it is possible to use Python functions
within the SQL expressions used to query SQLite. The native set of functions
in SQLite is quite small compared to other database engines but the ability to
use Python functions removes this limitation completely. It is, for example,
straightforward to add a hash function from Python's hashlib module, that is
very convenient when implementing a password database.

Time for action – deciding on object relational mappers
Relational database engines like SQLite use tables consisting of rows and columns as their
primary data abstraction model. Object-oriented languages like Python define classes to
instantiate objects that have attributes. There is a fair amount of correspondence between
these concepts as class definitions mimic table definitions where object instances with
attributes relate to records with columns but maintaining the integrity of that relation is not
so straightforward.

www.allitebooks.com

http://www.allitebooks.org

Choosing Your Tools

[16]

The problem not only lies in the different languages used to define tables and classes.
The main issue in relational databases is maintaining referential integrity. If you have, for
example, a record representing a car part that references a record in a different table that
represents a car type, then a relational database lets you define explicit actions to execute if,
for example, the record representing the car type is deleted. These constraints are of course
possible to implement in Python data structures as well, but it does take serious effort to
implement.

Finally, most database engines require fixed data types for each column whereas Python
variables and attributes may refer to any kind of data type. This restriction is not present in
SQLite but even SQLite cannot store everything without conversion. A Python variable, for
example, may refer to a list of objects, something that cannot be stored in a single column of
a relational database.

Still, we would very much like to have a way to store object instances in a relational database
or at least the data contained in those object instances, and have the means to define the
relation between classes and tables in a maintainable way. To this end, many people have
designed solutions in the form of object relational mappers. For Python, quite a few exist
that are both mature and robust tools (like SQLAlchemy).

When deciding which tool to use, you should at least consider the following:

 � How much time it will cost to learn to use it. Those tools are usually very versatile
and quite often require a considerable amount of effort to learn.

 � How will it affect development and maintenance? Complex tools may help to
solve the challenge of creating an effective and efficient mapping between classes
and tables, but may require an idiom that detracts from a clear overview of your
implementation. This may well be worth it, if your data model consists of many
classes and performance is an important consideration, but for smaller projects the
added complexity might be too great of a disadvantage when it impacts significantly
on the development time.

Because the focus in this book is on understanding the choices in implementing web
applications and persistent storage, using a complex tool like an object relational mapper
may hide all kinds of aspects necessary to gain understanding.

Therefore, we will not use a third party object relational mapper in the examples in this
book but implement increasingly versatile storage solutions in each chapter, tackling specific
requirements as we encounter them. We will see that in many situations an object relational
mapper is superfluous, but in the final chapters, we will build a simple framework ourselves
to give us not only a tool but an insight into the intricacies of mapping complex assemblies of
classes to tables in a database as well.

Chapter 1

[17]

Time for action – choosing a presentation framework
Web applications might be all about accessing and manipulating data from within a web
browser but the way the application looks and feels to the user is just as important. A user
interface that is non-intuitive, sluggish, or fails to work on some mainstream browser will not
invite users to use your application again.

HTML, the markup language commonly used to display content, does allow for some
interaction through the use of <form> elements and the way a page is presented can be
styled with cascading style sheets, but its use has some major drawbacks:

 � It is quite difficult to create user interface components from basic building blocks
that resemble commonly used applications.

 � The use of HTML feels sluggish because each form, when submitted, fetches a
completely new page.

Fortunately, all major browsers support JavaScript and that language can be used to add
a whole new level of interactivity. However, in order to smooth out all inconsistencies
between browsers, you can save a lot of development time when you use a JavaScript library
that takes care of those inconsistencies and adds cross browser compatible user interface
components (widgets).

Although such libraries are used client side, HTML pages can be composed in a way that
instructs the browser to fetch these libraries from a central source, for example, the same
server that serves the web application. This way, the use of these libraries imposes no extra
requirements on the browser.

Some points to consider when choosing a suitable library are:

 � Is it really cross browser compatible? Not all libraries support each and every
browser. This might be important if your application still needs to work with a fairly
old browser.

 � Does it offer the graphical components and functionality you need?

 � Is it well designed and documented, extensible, and consistently implemented?
After all, such a library should be fairly easy to learn and as no library can offer
everything, extensibility and especially how easy it is to extend it are important
considerations.

 � Does it have an active user community? All the more important here because such
a community may not only provide answers to your questions, but may be a good
source of reusable components.

Based on these considerations, we choose to use two intimately connected JavaScript
libraries: jQuery and jQuery UI.

Choosing Your Tools

[18]

What just happened?
Let's have a look at why jQuery and jQuery UI are such a good choice.

jQuery provides the functionality to select and manipulate HTML elements on a page and
jQuery UI provides a number of sophisticated widgets and effects. Together, they offer many
advantages:

 � jQuery not only hides browser inconsistencies, but its methods take CSS3
compatible selectors even on browsers that do not support CSS3 in the style sheet
they accept.

 � Both libraries are widely used, actively maintained, free, and are distributed as
small files. The latter is important when you consider that these files need to be
transferred from server to client so any bandwidth saved is good.

 � jQuery UI offers a rich set of well designed and professional looking graphical
components and effects.

Other advantages of the wide adoption of these libraries are that there are many resources
available to get you started and that many people have written plugins that extend the
usability of these libraries even more. As we will see on many occasions, the essence of
developing a good application efficiently is often choosing the right plugin for the job.

Designing for maintainability and usability
It is one thing to come up with a great idea on how to implement some web application
but yet another to design an application in such a way that it will be easy to maintain and
use. Designing with these considerations in mind will make all the difference between a
professional application and a mediocre one.

Testing
Everybody will agree that it makes sense to test an application before it is deployed but
thorough testing requires some serious effort. Testing is also often considered as boring
or even detracting from the 'real' development work and shares this aura with writing
documentation.

However, testing gives you a better feel for the quality of the application you deliver and a
test framework, however simple, is always better than none, especially for the kind of small
to medium web applications we look at in this book, as these tend to be written by very
small teams that quickly prototype and often change the code as insight progresses and
customer requirements change. Having a test suite at hand ensures that at least the parts of
the code that don't change keep on performing as expected.

Chapter 1

[19]

Of course, not everything can be tested and the tools needed to test part of your code
should be simple to use, otherwise there is no incentive to keep on using them. We
will look at unit tests for a number of modules we develop in Python. Unit testing is an
approach where we try to define the behavior of an isolated piece of code (for example,
a single method) and check whether this code produces the expected results. If the
implementation of the code changes but the tests still show no failure, we know that the
new implementation can be used safely.

Time for action – choosing a test framework
When choosing a test framework, ask yourself the following questions:

 � What do I want to test? You cannot test everything and developing tests takes time.

 � How easy is it to write and maintain the tests? This question is just as relevant for
developing tests as it is for developing code in general.

 � How much effort is needed to perform the tests? If it is easy to automate the tests,
they can, for example, be run as part of the deployment as an extra check.

Just for Python alone there are quite a few testing frameworks available, but we will choose
the unittest module distributed with Python. Note that although we choose to write
only automated test for the Python parts of the applications, this doesn't mean we have
not tested the JavaScript parts, but user interactions tend to lend themselves less to an
automated way of testing so we do not address that in this book.

What just happened?
For the Python unit tests, we restrict ourselves to the unittest module that is distributed
with Python, as this will not introduce any new dependencies on external tools but also
because:

 � It is fairly simple to learn and use.

 � It produces clear messages if a test fails.

 � It is easy to automate and may easily be integrated with, for example, a setup script.

Version management
A version management tool is normally not part of a web application and not strictly required
to develop one. However, when you want to keep track of changes in your code, especially
when the number of files keeps on growing, a version management tool is invaluable.

Most come with integrated functionality to show the differences between versions and all
have the possibility to annotate a version or revision in order to clearly mark it. Widely used
open source solutions are git and svn.

Choosing Your Tools

[20]

Both may operate as a server that can be accessed through a web browser but command-
line tools are available as well and svn even has a very user-friendly integration within
Windows' file explorer. Both have their strengths and weaknesses and it is hard to declare a
clear winner. This book and its accompanying examples were all maintained in svn, primarily
because of the ease of use of the Windows client.

Usability
Web applications are built for end users, not for developers. It is not always easy to design
an interface that is easy to use. In fact, designing really good interfaces is difficult and takes
considerable skill and knowledge. However, this does not mean that there aren't any rules
of thumb that can help you prevent usability disasters. We look at some of them in the
following sections.

Good looking – adhering to common GUI paradigms
Applications are easier to use if the interface components are already familiar. Therefore, it is
generally a good idea to look at applications that are successful and used by many people.

A common concern in many applications is the need to present a lot of information in a small
amount of space. It is therefore no wonder that many modern applications use accordion
menus and/or a tabbed interface to structure that data, such as the following screenshots:

An accordion menu is great for displaying a fair amount of information in a side bar but even
more information can be presented in tabs:

Chapter 1

[21]

Examples are found in all recent editions of common office productivity software, web
browser, and CRM applications. Having a good look at the ones you like working with
yourself might be a good start. In the larger applications developed in this book, we will
certainly refer to some key applications that may be used as an inspiration.

Themable
Choosing a consistent and pleasing color scheme and font makes an application more
coherent and therefore more pleasurable to use. An overload of information can baffle
people and using a wild color scheme or many different fonts will not help in getting an
overview of the data that is presented.

But whether your user interface supports the concept of a theme that is easy to change plays
an important role in other areas as well. You probably want your web application to blend
in well with the rest of your website or to convey some sort of company or brand identity.
Using a consistent color scheme will help. It might even be desirable to offer a choice of
themes to the end user, for example, to provide people with visual impairments with high
contrast themes for better legibility. The library fully supports the use of themes and makes
it simple to extend this themability to widgets we design ourselves.

Cross-browser compatible
Web applications are often geared to a specific audience, so it might be possible that the
requirements specify only a single browser, but in general, we don't want to deny the user his/
her favorite browser. jQuery takes away most of the pain in supporting more than one browser.
Our apps are designed for Internet Explorer 8, Firefox 3.x, and Google Chrome, but probably
will run on most other browsers as well. Note that 'probably' might not be good enough and it
is always a good idea to test your application specifically on any required platform!

Choosing Your Tools

[22]

Cross-platform compatible
Client-side, the web browser is the key component in our chain to watch out for and
therefore, the operating system it is running on will quite likely not be a source of problems.

Server-side, we want to keep our options open as well. Fortunately, Python is a cross
platform solution, so any Python program that runs on Windows will normally run on GNU/
Linux as well and vice versa.

We should be careful though when using modules that are not distributed with Python and
are not pure Python. These might be available on every platform but it is better to check
beforehand. The applications in this book use only modules provided in the standard Python
distribution, with the exception of CherryPy, which is a pure Python module and should run
on every platform.

Maintainability
Writing code is hard work, maintaining it can be even harder. We briefly touched upon this
subject earlier when we discussed the use of a testing framework, but maintaining code is
more than being able to test it.

Standards compliant
An important concept in creating code that is easy to maintain is being standards compliant.
Adhering to standards means that other people stand a greater chance in understanding
your code.

SQL, for example, is a query language that most database engines understand. Therefore, it
is less relevant which engine we use for people maintaining the code as they do not have to
learn an obscure query language.

Another example is communication between client and server. We can devise our own
protocol to construct requests in JavaScript and respond to those requests in Python, but it
is a lot less error prone to use documented standards like AJAX to communicate and JSON
to encode data. It also saves on documentation as people can be referred to any number of
books, if they want to learn more about those standards.

Standard does not necessarily mean 'approved by some independent
organization'. Many standards are informal but work because everybody uses
them and writes about them. Both AJAX and JSON are examples of that. Also
the Python programming language is a de facto standard but JavaScript enjoys a
formal standard (which doesn't mean all implementations adhere to the standard).

Chapter 1

[23]

Security
Security is often regarded as an obscure or arcane subject, but security covers many practical
issues that play a role in even the smallest web application. We wouldn't want anyone to
access a paid-for web application, for example. However, security is more than just access
control and we touch briefly on some aspects of security in the next sections.

Reliable
A web application should be reliable in its use. Nothing is more annoying than being
presented with a server-side error halfway in the process of filling in a mortgage application,
for example. As a developer and tester, you take care of testing the software thoroughly in
the hope of catching any bugs but before implementing the application, the reliability of the
software and libraries it uses should be taken into consideration.

You should especially be wary of using the latest and greatest nifty feature of some library
in production software. This might be fun when whipping up some mock up or concept
application, but do ask yourself if your customer really needs this bleeding edge feature and
if he's/she's not better off with a tried and tested version.

Many open source projects (including Python) develop and maintain both a so called stable
branch and a development branch to show off new features. The former you should use in
production applications and the latter should be tried elsewhere.

Robust
Applications should not only be as bug-free as possible, but should also perform nicely
under stress as well. The performance should be as high as possible under load, but just as
important you should know what to expect when the load reaches some threshold.

Unfortunately, tuning for performance is one of the trickiest jobs imaginable because all
components in the chain may play a role. Server-side considerations are the performance of
the database engine used, the scripting language, and the web server.

Client-side, the quality of the presentation framework and the overall performance of the
web browser are important and in between the server and client is the great unknown of the
characteristics of the underlying network.

With so many variables, it is not easy to design an optimal solution in advance. However,
we can test the performance of individual components and see if the component is a bottle
neck. For example, if it takes three seconds to refresh a page provided by a web application
you can rule out the database engine as a bottleneck if you can time the database access
independently. The knowledge gained creating unit tests can be reused here because we
already know how to isolate some functionality, and adding a timer and asserting that the
response for a query is fast enough can be made a test itself.

Choosing Your Tools

[24]

It is also quite feasible to separately measure the time it takes to fetch a web component
and to render it in the browser with a tool like Firebug and get an idea whether the
client or the server is the bottleneck. (Firebug is a Firefox extension and can be found at
http://getfirebug.com/).

Access control and authentication
In almost every application that we develop in this book, we implement some sort of
authentication scheme. Most of the time, we will use a simple username/password
combination to verify that the user is who he/she claims to be. Once the user is
authenticated, we can then decide to serve only certain information, for example, just a list
of the tasks belonging to him/her, but no tasks of any other user.

However, whether access to information is allowed, isn't always that basic. Even in simple
applications, there might be a user who should be allowed more than others, for example,
adding new users or resetting passwords. If the number of different things a user is allowed
to do is small, this is straightforward to implement, but if the situation is more complex, it is
not that easy to implement, let alone to maintain.

In the more elaborate applications featured in the later chapters of this book, we will
therefore adopt the concept of role based access. The idea is to define roles that describe
which actions are allowed when assuming a role. In a customer relations management
application, for example, there might be three roles: a sales person, who is only allowed to
access information for his customers, the sales manager who may access all information, and
an administrator who may not access any information, but is allowed to back up and restore
information, for example.

Once the rights of these roles are clear, we can associate any or all of these roles with
specific persons. A small organization, for example, may have a technically savvy sales
person who can also assume the admin role, yet still be unable to access information about
customers other than his own this way.

If rights associated with a certain role are changed, we do not have to repeat this information
for each and every person that may assume that role, thus making administration that much
simpler.

Confidentiality
In some applications, we may want to make sure no one is listening in on the data
transferred between the browser and web server. After all, in general you do not know which
path your data takes, as it is routed across the Internet and at any point there might be
someone who can intercept your data.

Chapter 1

[25]

The easiest way to ensure confidentiality is to use connection level encryption and the HTTPS
protocol does just that. The web server we use, CherryPy, is certainly capable of serving
requests over HTTPS and configuring it to do so is quite simple but it involves creating signed
certificates which is a bit out of the scope of this book. Refer to http://www.cherrypy.
org/wiki/ServerObject for more information.

Integrity
The last aspect of security we talk about in this context is data integrity. Corruption of data
may not always be prevented, but wholesale destruction may be guarded against with
proper backup and restore protocols.

However, data corruption lurks in very small corners too. One of the trickiest things that
can happen is the possibility of inserting data that is wrong. For example, if it is possible to
input a date with a month outside the range 1-12, very strange things might happen if the
application relies elsewhere on dates having the correct format.

It is, therefore, important to prevent the user entering wrong data by building in some sort
of client-side validation. An excellent example is jQuery UI's datepicker widget that we
will encounter in Chapter 3, Tasklist I: Persistence. If a text input field is adorned with a
datepicker, the user can only enter dates by selecting dates from the datepicker. This
is a great aid to the end-user, but we should never rely on client-side validation because
our client-side validation might be inadequate (because it contains a bug or doesn't check
all cases) and certainly cannot prevent malicious users from connecting to the server and
actively inserting wrong data. We do need server-side input validation as well to prevent this
and we will encounter some examples of it.

The key thing is to provide both: server-side validation as a last resort and client-side as an
aid to the user.

A final word on security
Security is complex and tricky and details may be overlooked easily. You might know you
have a front door made of 10 centimeter oak with state of the art steel locks, but if you
forget to lock the backdoor all that oak and steel serves no purpose. Of all the subjects
touched upon in this book, security is the one that you should always talk over with an
expert. Even an expert cannot give you guarantees but taking a fresh look at the security
requirements might keep you out of trouble. Make sure that you run the sample applications
provided in this book in a secure environment behind a well managed firewall.

Help, I am confused!
Reading this chapter, you may get the feeling that developing web applications is horribly
complex, even if you use the right tools. So many things may play a role! Do not despair
though.

www.allitebooks.com

http://www.allitebooks.org

Choosing Your Tools

[26]

Time for action – maintaining overview
If you take a close look, you will see that none of it is rocket science, the most it takes is
common sense and attention for detail, and in every chapter, we highlight the relevant
issues in a straightforward language where it is relevant. Remember that this is a practical
book, there will be many working examples that are examined in close detail and we won't
inundate you with theory, but give you just enough to get things done.

At every step in the development process, ask yourself the following questions?

 � What needs to be done? There is no need to work on all things at the same time,
indeed this is practically impossible. Allow yourself to form a high level idea first and
identify the components in the next level down. Don't get bogged down with details
when the outline is not clear yet.

 � Which components of the application are involved? Identify the specific components
involved when you develop a piece of functionality. The whole idea of identifying
layers and components is to be able concentrate on a limited part of the application
when developing.

This might not always work perfectly, but it certainly helps in maintaining focus.
For example, when developing parts of the presentation layer, you may find that
additional content is needed that should be provided by the delivery layer. Instead
of immediately switching focus to that delivery layer, it's often simpler to define
what is needed and complete the part of the presentation layer you are working on.

 � What are the requirements? There is no need to implement stuff that is not needed.
This may sound obvious, but many developers nevertheless fall into this trap. It is
tempting of course to design your code to be as flexible as possible but it takes a lot
of time, and as requirements change, it is unlikely that it'll prove flexible enough.
Instead, the effort is better spent on writing code that is easy to understand so that
the inevitable changes in requirements take less time to process.

What just happened?
When asking those questions and given the choices we made in this chapter, it might be
helpful to draw a new picture that illustrates the technologies we will use:

Chapter 1

[27]

The different components between the server and client that together make up the web
application can be pictured as a layered stack. For each layer, we have chosen one or a few
technologies, as illustrated in the following diagram:

Each application we encounter will be based on this model, so it might help to refer to this
diagram once in a while if you feel you have lost track.

After reading this book, you will be left with the feeling that writing good, useable web
applications is maybe a little bit more involved than you might have thought at first, but
that is certainly within the reach of even the smallest of teams. Armed with all the fresh
knowledge and practical experience, you will not have to compromise on quality, not even in
the smallest project.

Choosing Your Tools

[28]

Summary
This chapter gave us a head start in providing an overview of the components and
techniques involved in creating a quality web application. Specifically, we looked at:

 � The components that make up a web application.

 � The technologies we choose to implement these components.

 � Which other issues play a role in the design, like security and usability.

With this extra knowledge, nothing can hold us back from writing our first web application in
Python and that is exactly what we will do in the next chapter.

2
Creating a Simple Spreadsheet

In this chapter, we will develop a simple spreadsheet application. The
spreadsheet functionality will be entirely implemented in JavaScript plus
jQuery UI, but we will configure CherryPy to deliver the page that contains the
spreadsheet application dynamically.

On the presentation side, we will encounter our first jQuery UI widgets
(buttons) and will see how we can design other elements to adhere to jQuery
UI standards to fit seamlessly in jQuery UI's theme framework. We will also
see how to find and use publically available jQuery plugins and integrate the
jEditable plugin into our application.

That is a lot to grasp in one go, but don't worry if every detail is not clear the
first time. We will encounter many variants of the issues first encountered here
in the other chapters and will explain all relevant details again in their context.

In this chapter, we will be:

 � Creating an environment to develop and deliver our applications

 � Designing a simple spreadsheet application

 � Learning how to configure CherryPy to deliver this application

 � Encountering our first jQuery UI widgets

 � And designing our own jQuery plugins

There is a lot of ground to cover so let's go...

Creating a Simple Spreadsheet

[30]

Python 3
Python 3 is the language we will use to develop the server-side parts of our applications.
At the time of writing, the current stable version is 3.2. Installers and source archives are
available for various platforms (including Windows, Mac OS, and Linux distributions) and may
be downloaded from http://www.python.org/download/.

Time for action – installing Python 3
Downloading and installing Python is not difficult. The installers for many platforms can be
downloaded from http://www.python.org/download/.

1. Download the installer for your platform and follow the installation instructions.

2. Verify that you correctly installed Python by typing the following command on the
command line (for example, inside a Windows command prompt or a Linux xterm):

>python –-version

The response will be the version:

Python 3.2

What just happened?
On a UNIX-like system (like Ubuntu Linux, or Mac OS), Python might very well be already
installed, so it might be a good idea to verify that first by trying the instructions in step 2. If the
version returned is lower than 3, you should update your Python distribution. Note that it is
perfectly possible to install version 3.x of Python alongside a 2.x version in order to not break
applications depending on version 2.x (Python 3 is not backward compatible with version 2).

CherryPy
Writing an HTTP server in Python isn't that difficult, but writing and maintaining a robust and
fully fledged web server that can act as an application server is quite something else. As we
explained in Chapter 1, Choosing Your Tools, we will use CherryPy as our application server.
At the time of writing, CherryPy's latest stable version for Python 3 is version 3.2.0 and can
be downloaded from http://download.cherrypy.org/cherrypy/3.2.0/.

Chapter 2

[31]

Windows users should use the zip archive and unpack it before proceeding to
the instructions in the next section. There is also a msi installer available at the
indicated location, but this installer might not be able to find the correct Python
installation in the Windows registry and will only work on 32-bit versions of
Windows. Unpacking the zip archive and following the setup instructions next is
therefore a safer bet and also identical on both Windows and Unix-like platforms.

Time for action – installing CherryPy
The one thing to be careful with when you install CherryPy is that you have to make sure
you install it in the right directory if you have more than one Python version on your system.
CherryPy uses a setup script to install itself and one way to make sure the CherryPy modules
end up in the correct place is by invoking Python explicitly with a full path, for example:

cd C:\CherryPy-3.2.0rc1

c:\Python32\python.exe setup.py install

What just happened?
Running CherryPy's setup.py script installs a number of modules in Python's Lib\site-
packages directory. You may verify this was successful by typing the following on the
command line:

python -c "import cherrypy"

This checks whether we can import the cherrypy module. If everything is installed
correctly, there will be no output produced by this command. However, if CherryPy isn't
installed, this may be signaled by an error message:

Traceback (most recent call last):
 File "<string>", line 1, in <module>
ImportError: No module named cherrypy

When you have more than one version of Python installed, be careful to enter the complete
path of the Python executable to select the correct version, for example:

C:\python32\python –c "import cherrypy"

Installing jQuery and jQuery UI
The applications we will design and implement in this chapter and the following chapters
depend heavily on the jQuery and jQuery UI libraries. These libraries consist mainly of
JavaScript files and some cascading style sheets, and images to style the widgets.

Creating a Simple Spreadsheet

[32]

These files are served to the web browser as part of the application, and in general, there are
two locations where they may be served from:

1. A (sub)directory on the server that runs CherryPy together with the other files that
make up our application.

2. Or from an external web location like Google's or Microsoft's content delivery
networks.

The latter option might be the best choice if your application gets a lot of traffic as these
publicly available resources are designed for high availability and can cope with an enormous
number of requests. This might seriously reduce the load on your server and thus reduce
costs. More information on this can be found on jQuery's download section http://docs.
jquery.com/Downloading_jQuery#CDN_Hosted_jQuery.

For development purposes it is often better to download the necessary files and serve them
from the web server that serves the rest of the application as well. This way we can inspect
those files easily when some error occurs or even decide to tweak the contents. If we choose
to theme our application in a customized way (see the info box on jQuery UI's themeroller),
the cascading style sheets will differ from the standard ones so we will have to serve them
from our web server anyway.

In the example code provided with this book, we include both the jQuery and jQuery UI
libraries in the static subdirectory of the directory for each chapter. There is also a css
subdirectory that contains a set of customized style sheets that are optimized to deliver a
visual style that is well readable both in print and onscreen. The version of the jQuery library
used in this book is downloaded from http://code.jquery.com/jquery-1.4.2.js.
Information on downloading a (possible themed) version of jQuery UI can be found on
http://jqueryui.com/download.

Using jQuery UI's themeroller

The theme used throughout this book is called smoothness and can be
downloaded from http://jqueryui.com/themeroller/ by choosing
the Gallery tab and clicking the Download button below the Smoothness
example. It is even possible to create a completely customized theme based on
one of the standard themes by selecting one of the themes from the gallery and
then tweaking it in the Roll Your Own tab. Once you're satisfied with the look
you can download the result. Check the online documentation at http://
jqueryui.com/docs/Getting_Started for all details.

Serving an application
The first task we set ourselves is serving content to the end user. In the end this should
be useful content, of course, but let us first make certain that we can write a tiny web
application that delivers some content at all.

Chapter 2

[33]

Time for action – serving a dummy application
Now that we have the necessary building blocks in place, we can start developing our
application. Let's start with a very simple application:

1. Go to the directory where you unpacked the example code.

2. Go to the directory Chapter 2.

3. Double-click the file nocontent.py, a text window will open (alternatively you can
enter the command python nocontent.py from the command line):

4. Open your favorite browser and enter http://localhost:8080 in the address
bar. You will be presented with a rather dull page:

If your browser is unable to connect to http://localhost:8080, this
might be because your local name server is not configured to resolve the name
localhost. If you do not have the means to correct this, it is equally valid,
though less convenient, to enter http://127.0.0.1:8080 in the address
bar of your browser.

It is also possible that the default port that the application will be listening on
(8080) is already in use, in which case, Python will raise an exception: IOError:
Port 8080 not free on '127.0.0.1'. If that is the case, we can configure CherryPy
to listen on a different port (see the info box in the next section).

Creating a Simple Spreadsheet

[34]

What just happened?
Double-clicking nocontent.py caused the Python interpreter to start and execute the
script. This opened up a console window where the CherryPy framework logged the fact
that it started and that it will be listening on port 8080 at 127.0.0.1 (the so called loop
back IP-address of the local machine, an address present on the machine even if it is not
connected to the Internet).

This address and port are the ones we point our browser to, after which the HTTP server
provides us with an HTML file, and a couple of JavaScript files to serve the application. Each
file that is retrieved by the browser is logged in the console window together with a status.
This will be convenient for spotting the missing files, for example.

Our script can be stopped from serving requests by closing the console window or by
pressing Ctrl + Break (on Windows) or Ctrl + C (on Windows and most other platforms).

Time for action – serving HTML as dynamic content
We have seen how to run an application and access it with a web browser, now let's have a
look at the Python code needed to accomplish this. We will need to serve static files but in
addition to those static files we want to generate the main HTML content dynamically. This
isn't strictly necessary as we could have served it as a static file just as easily but it serves as
a simple example of how to generate dynamic content:

Chapter2/nocontent.py

import cherrypy

import os.path

current_dir = os.path.dirname(os.path.abspath(__file__))

You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

nocontent.py starts off with importing the cherrypy and os.path modules. The latter is
needed to determine the directory that nocontent.py resides in (highlighted), so that we may
refer to other static files and directories relative to nocontent.py. This way, we make life a lot
easier once we want to move this application to its final destination on a production server.

Chapter 2

[35]

Chapter2/nocontent.py

class Root(object): ... <omitted> ...

if __name__ == "__main__":

 cherrypy.quickstart(Root(),config={
 '/static':
 { 'tools.staticdir.on':True,
 'tools.staticdir.dir':os.path.join(current_dir,"static")
 }
 })

What just happened?
The next step is to start the CherryPy server with the quickstart() function (highlighted).
We pass two arguments: the first one is an object instance of a class that exposes some
methods to CherryPy that may deliver dynamic content. We will look at that one in a minute.

The second (named) argument is a dictionary containing a number of configuration items. In
this case, we configure just a static directory, but in other situations, additional configuration
items may appear here. The URL component /static is made to refer to a location on the
file-system relative to nocontent.py by concatenating to the current_dir determined
earlier. Again we use a function from Python's os.path module, os.path.join(), to
create a file path in a platform-independent manner.

The static directory contains all jQuery and jQuery UI files we will need for this application
along with all CSS files and images to style the application. In this example, without real
content there are no additional files besides the ones belonging to the jQuery and jQuery UI
libraries, but if we needed them, we could have placed them here.

If we would like CherryPy to listen on a different port, we should indicate this in
the global configuration. This can be done by preceding the call to cherrypy.
quickstart() with cherrypy.config.update({'server.socket_
port':8088}). CherryPy has a rich palette of configuration options and can
even be instructed to read its configuration from files. A good starting point for
all the possibilities is http://www.cherrypy.org/wiki/ConfigAPI.

We still have to implement a Root class to provide CherryPy with an object instance that
may act as the root of the document hierarchy that CherryPy may serve. This class should
actually be defined before we can create an instance to pass to the quickstart() method,
but I wanted to concentrate on how to start the server first before concentrating on
producing content:

www.allitebooks.com

http://www.allitebooks.org

Creating a Simple Spreadsheet

[36]

Chapter2/nocontent.py

class Root(object):

 content = '''... <omitted> ...'''

 @cherrypy.expose
 def index(self):
 return Root.content

This Root class contains a single class variable content that holds the HTML code we
will serve. We will examine it in detail in the next section. This HTML is generated by the
index() method and passed to the HTTP server that in its turn will pass it on to the
requesting browser.

It is exposed to CherryPy by the @cherrypy.expose decorator (highlighted). Only exposed
methods will be called by CherryPy to produce content. In the default configuration,
CherryPy will map a URL of the form /name to a method called name(). A URL containing
just a forward slash / will map to a method called index(), just like the one we defined
here. This means we have now configured CherryPy to deliver dynamic content when the
user directs his browser to http://127.0.0.1:8080/ (and he may even omit the final
slash as CherryPy effectively ignores a trailing slash by default).

Note that we let index() return the contents of a single string variable but we could have
returned just about anything, making this a truly dynamic way of producing content.

Who serves what: an overview
Serving an application from a mixture of dynamic and static content may quickly become
confusing. It might help to form a clear picture early on of the relations between
components, of data streams, and directory structures used. This builds on the general
picture sketched in Chapter 1 and will get extended in each chapter.

Almost all applications in this book are served from the same directory structure:

Chapter 2

[37]

The top-level directory contains one or more Python files that you can execute and that will
start a CherryPy server. Those Python files implement the server-side of an application. They
may import additional modules from the same top-level directory.

The top-level directory also contains a subdirectory called static. It holds several JavaScript
files, including the jQuery and jQuery UI libraries and any additional plugins. It also contains
a directory called css that contains one or more subdirectories with additional CSS
stylesheets and images for jQuery UI themes.

Note that although our applications are served by a web server, there are no HTML files to
be seen because all HTML content is generated dynamically.

From an application point of view, the best way to comprehend a web application is to see
the application as distributed. Some of its code (in our case Python) runs on the server, while
other code (JavaScript) runs in the browser. Together, they make up the complete application
as visualized in the following image:

Pop quiz – serving content with CherryPy
We made the choice to serve our content from the index() method so users could get
the content by referring to the URL ending in just a slash (/). But what if we would like our
content to be accessed by referring to a URL like http://127.0.0.1/content? What
would have to change?

HTML: separating form and content
Almost always, it is a good idea to separate form and content. This enables us to concentrate
on the logical structure of the information we want to present and makes it easier to change
the appearance of the data later. This even allows for applying themes in a maintainable way.

Creating a Simple Spreadsheet

[38]

The structure of our data is laid down in the HTML we deliver to the browser. To be more
precise, the structural data can be found within the <body> element, but the <head>
element of the HTML contains important information as well. For example, references to
stylesheets and JavaScript libraries that will be used to style the appearance of the data and
enhance the user interaction.

In the following code, we use a <link> element to refer to a CSS stylesheet from a theme
we downloaded from the jQuery UI website (highlighted). In this example, we do not actually
use this stylesheet and nor are the jQuery and jQuery UI libraries included in the <script>
elements, but this example shows how to refer to those libraries from the HTML we produce,
and in the following examples, we will see that this is also the spot where we refer to any
additional JavaScript libraries that we will create ourselves. The actual content is enclosed in
the highlighted <div> element.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html>
<head>
<link rel="stylesheet"
 href="static/css/redmond/jquery-ui-1.8.1.custom.css"
 type="text/css" media="screen, projection" />
<script type="text/javascript"
 src="static/jquery-1.4.2.js" ></script>
<script type="text/javascript"
 src="static/jquery-ui-1.8.1.custom.min.js" ></script>
</head>
<body id="spreadsheet_example">
<div id="example">an empty div</div>
</body>
</html>

Time for action – a unit convertor
Serving just a piece of text isn't very useful, so our next step is to add some HTML content
and enhance the display and functionality with JavaScript:

1. Go to the same directory where nocontent.py could be found.

2. Double-click the file unitconvertor.py, CherryPy console will again open in a text
window.

3. Enter http://localhost:8080 in the address bar of your browser (or click
refresh if it is still open on that address). You will now see a small unit convertor:

Chapter 2

[39]

You can enter any number (with an optional fraction) in the text input on the left and after
selecting the units to convert from and to, pressing the convert button will present you with
the converted number on the right.

What just happened?
The basic structure of our web application hasn't changed. The content we deliver is
different but that hardly changes the Python code we need to deliver it. The actual content,
that is the HTML we deliver when the index() function is invoked, does differ as it has to
define the <form> elements that our unit convertor consists of and we want to execute
some JavaScript as well.

HTML: form-based interaction
The <head> portion of the HTML doesn't have to be changed as it already refers to the
stylesheet and JavaScript libraries we want to use. However, we do have to change the
<body> element to contain the structural elements that make up our unit convertor.

The unit convertor is structured as a <form> element (highlighted). It contains two drop-
down lists to select the units to convert, both implemented with <select> elements, and a
text <input> element where the user can enter a number. A second text <input> element
is used to display the result of the conversion. This one is set to read only as it is not meant
to receive input from the user. The final element is a <button> that the user may click to
initiate the conversion.

You may have noticed that the <form> element lacks an action attribute. This is intentional
as there is no interaction with a server. The conversion that happens when the user clicks the
button is completely implemented in JavaScript. This JavaScript is included (and executed) in
the final script element (highlighted). We will examine this script in the next section.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html>
<head>
<link rel="stylesheet" href="static/css/redmond/jquery-ui-
1.8.1.custom.css" type="text/css" media="screen, projection" />
<script type="text/javascript" src="static/jquery-1.4.2.js" ></script>
<script type="text/javascript" src="static/jquery-ui-1.8.1.custom.min.
js" ></script>
</head>

Creating a Simple Spreadsheet

[40]

<body id="spreadsheet_example">
<div id="example">
 <form id="unitconversion">
 <input name="from" type="text" value="1" />
 <select name="fromunit">
 <option selected="true">inch</option>
 <option>cm</option>
 </select>
 <label for="to">=</label>
 <input name="to" type="text" readonly="true" />
 <select name="tounit">
 <option>inch</option>
 <option selected="true">cm</option>
 </select>
 <button name="convert" type="button">convert</button>
 </form>
</div>
<script type="text/javascript" src="unitconverter.js" ></script>
</body>
</html>

JavaScript: using jQuery UI widgets
Screen elements or widgets are essential to let the end user interact with you application.
These widgets might be simple buttons that initiate some action when the user clicks them
or more complex widgets like drop-down boxes, radio buttons, or even little calendars that
let you pick a date. The jQuery UI library provides a large number of predefined and easy to
configure widgets, and so our next step is to use jQuery UI to let the button in our conversion
application react to a click of the mouse and initiate the unit conversion.

Time for action – conversion using unitconverter.js
unitconverter.js contains the necessary JavaScript code to do the actual conversion. It
starts with the definition of a conversion map, a dictionary holding the conversion factors
for any conversion we want to define. We restrict ourselves to conversions from inches to
centimeters and vice versa, but additional conversion factors can easily be added.

conversion_map = {
 "inch cm":1.0/2.54,
 "cm inch":2.54
};

$("button").button().click(function(){
 value=$("input[name='from']").val();
 f=$("select[name='tounit'] option:selected").val();

Chapter 2

[41]

 t=$("select[name='fromunit'] option:selected").val();
 if(f != t){
 c=conversion_map[f+' '+t];
 result=parseFloat(value)*c;
 }else{
 result = value;
 }
 $("input[name='to']").val(result);
 }
);

$("form *").addClass("ui-widget");

The highlighted line in the previous code is our first encounter with the jQuery and jQuery
UI libraries and deserves some close attention. The $("button") part selects all <button>
elements on the page. In this case, it will be just a single one. This <button> element is
converted to a button widget from the jQuery UI library with the button() method. This is
a simple widget that styles an element as a recognizable button that will be easy to theme
and customize.

What just happened?
What actually happens once the user clicks the button is defined by the anonymous
function we pass as a click handler to the button element with the click() method. This
anonymous function is called each time the user clicks the button.

The first thing this handler does is retrieve the contents of the text <input> element with a
name attribute equal to from with $("input[name='from']").val(). Next, it retrieves
the currently selected units from both <select> elements.

If those units are not the same, it fetches the conversion factor from the conversion map
with the concatenated units as a key. The result of the conversion is calculated by multiplying
the conversion factor and the contents of the <input> element. The content we retrieve of
any <input> element is always returned as a string, therefore we have to use the built-in
JavaScript function parseFloat() to interpret it as a floating point number. If both units
are equal, the result is simply the same as the input value.

The calculated result is stored in the text <input> element with a name attribute of to.
Note that even though this element has a read-only attribute to prevent the user from
entering any text, we can still alter its content within a script.

Pop quiz – adding an icon to a button
A button with just simple text might be appropriate for many applications but it would look
much better, if it showed an appropriate icon as well. Knowing that the button widget is
highly configurable, how would you add an icon to your button?

Creating a Simple Spreadsheet

[42]

Have a go hero – adding a dynamic title
 � The HTML we served in the nocontent.py example was simply the contents of a

class variable, so not really dynamic! What all would we have to do if we wanted to
serve HTML containing a <title> element that shows the current date?

 � Hint: A <title> element should be contained inside the <head> element. So
instead of returning all the HTML in one go, you could rewrite the Python code to
return HTML composed of three parts: The first and last parts are pieces of static
HTML and the middle part is a dynamically generated string representing a <title>
element containing a date. That date could be obtained from Python's asctime()
function found in the standard time module.

 � A possible implementation can be found in the file nocontenttitle.py.

jQuery selectors
jQuery selectors pop up in many locations and in a sense they are the focus of any JavaScript
program that uses the jQuery library. A complete overview is out of the scope of this book
(for that, refer to the appendix for some books on jQuery with extensive examples or check
jQuery's documentation section on http://docs.jquery.com/Main_Page, especially
the part on selectors) but basically jQuery allows us to select any element or set of elements
in a CSS 3-compliant fashion in a cross browser compatible way. In other words, it works
even in browsers that do not yet support CSS 3.

To give some idea of what is possible, some examples are given next, all of them assume an
HTML document containing the following markup:

<div id="main">

one
<li class="highlight">two
three

</div>
<div id="footer">footer text</div>

 � To select all elements: $("li")

 � To select just the first element: $("li:first")

 � To select the element with the class highlight: $(".highlight")

 � To select the <div> with an ID equal to footer: $("#footer")

Chapter 2

[43]

The jQuery function (often represented by the alias $) returns a jQuery object that refers to
the collection of matched elements. A jQuery object has many methods to manipulate the
elements in this collection. For example, $("li").addClass("red-background") adds
the red-background class to all elements.

The jQuery UI library extends the available methods even further by adding functionality
to change elements to standardized widgets. That is why in our example $("button").
button() alters the appearance of our button element to the stylized button widget that
jQuery UI provides.

Our example application also shows another important jQuery concept: chaining. Most
jQuery and jQuery UI methods return the selection they operated on. That way, it is
easy to call multiple methods on the same selection. In our example, $("button").
button() returns the selected button elements after transforming them into button
widgets, which allows us to chain the click method to define mouse-click behavior by writing
$("button").button().click(…).

CSS: applying a jQuery UI theme to other elements
The last line in unitconverter.js shows how we can style any element in the same
manner as the standard jQuery UI widgets. This is accomplished, in this case, by selecting all
elements contained in the <form> element with $("form *") and then adding the ui-
widget class with the addClass() method.

Any element adorned with the ui-widget class will receive the same styling as any jQuery
UI widget. In our case, this is visible in the font and colors used in the input and select
elements. Even if we change the theme this change will be uniformly applied. There are
more predefined classes available to allow for a more fine grained control and we will
encounter those when we create our own jQuery UI plugin in the next section.

It is important to grasp the effect of one of the predefined jQuery UI classes to an element.
Classes in themselves don't change the way elements are displayed but the jQuery UI
framework associates various CSS style elements with the predefined classes. When the
classes associated with an element change, the browser checks again which style elements
to apply, effecting an immediate style change.

It is also possible to directly alter CSS styles associated with an element. However, defining
styles for a certain class and altering the class makes it easier to maintain a consistent look
without having to resort to individual style components for each and every element that you
want to change.

Creating a Simple Spreadsheet

[44]

Have a go hero – adding zebra stripes to a table
An often required feature when styling HTML tables is to render the rows of tables with an
alternating background color.

Because jQuery allows us to use CSS 3-compliant selectors and add to an elements class
attribute with the .addClass() method, this is now accomplished easily even in the
browsers that do not support CSS 3.

Given the following sample HTML, what JavaScript should be added to the last <script>
element to render the background of all even rows in light gray? (Hints: CSS 3 has an :even
selector and when you add a class to an element with jQuery, any CSS styles applicable to
that class are re-evaluated).

Check zebra.html to see a solution (It is included with the sample code for Chapter 2.
Open the file in your browser to see the effect):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="static/jquery-1.4.2.js"
 ></script>
 <style>
 .light-grey { background-color: #e0e0e0; }
 </style>
</head>
<body>
 <table>
 <tr><td>one</td><td>line 1</td></tr>
 <tr><td>two</td><td>line 2</td></tr>
 <tr><td>three</td><td>line 3</td></tr>
 <tr><td>four</td><td>line 4</td></tr>
 <tr><td>five</td><td>line 5</td></tr>
 <tr><td>siz</td><td>line 6</td></tr>
 </table>
 <script type="text/javascript">
 /* insert some JavaScript here to color even rows grey */
 </script>
</body>
</html>

The result will look something like this in the browser (note that elements are numbered
starting at zero, so maybe the result is not what you expected):

Chapter 2

[45]

Time for action – converting a unit convertor into a plugin
Re-using one of the many well designed jQuery UI widgets is good as it saves us development
and maintenance time but the true power of the jQuery UI framework is the manner in
which it enables us to devise completely new widgets that merge seamlessly with the rest of
the framework and are indistinguishable in their use from the standard widgets. To illustrate
what is possible, let's implement our unit converter again, but this time as a jQuery plugin:

1. Go to the directory containing the example code for Chapter 2.

2. Double-click the file unitconverter2.py, the CherryPy console will again open in
a window.

3. Enter http://localhost:8080 in the address bar of your browser (or click
refresh if it is still open on that address). You will now see a slightly restyled unit
converter:

The interaction with this new unit converter is exactly the same as our previous one.

What just happened?
Instead of structuring a widget with a <form> element containing a number of additional
elements, we now take a simpler approach. We will design a reusable unit converter widget
that can be inserted into any <div> element. Our HTML backbone becomes much simpler
now, as its body will just contain a single <div> element:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html>
<head>

www.allitebooks.com

http://www.allitebooks.org

Creating a Simple Spreadsheet

[46]

<link rel="stylesheet" href="static/css/redmond/jquery-ui-
1.8.1.custom.css" type="text/css" media="screen, projection" />
<script type="text/javascript" src="static/jquery-1.4.2.js" ></script>
<script type="text/javascript" src="static/jquery-ui-1.8.1.custom.min.
js" ></script>
<script type="text/javascript" src="unitconverter2.js" ></script>
</head>
<body id="spreadsheet_example">
<div id="example"></div>
<script type="text/javascript">
$("#example").unitconverter(
{
'km_mile':1.0/0.621371192,
'mile_km':0.621371192
});
</script>
</body>
</html>

The first highlighted line includes the JavaScript file that contains the new implementation of
the unit converter. We refer to the plugin defined in this file in the JavaScript code near the
end of the <body> element (last highlighted line). This script refers to the <div> element
to which we want to add a unit converter by its ID (in this case #example) and apply the
unitconvertor() method.

As we will see when we look at the JavaScript code that implements our converter plugin,
unitconverter() takes an option object as its single argument. This option object may
contain any number of keys defining additional conversion factors for this instance of the
plugin. In this case, we pass additional information to allow for conversion from miles to
kilometers, and vice versa.

Pop quiz – adding conversions to a unitconverter instance
What would the JavaScript look like when we want to add a unit converter plugin with the
possibility of converting from cubic feet to liters?

JavaScript: creating a jQuery UI plugin
All jQuery UI plugins are defined in the same way by adding a new function to the
fn attribute of the jQuery object (the object we mostly refer to by its alias $). In
unitconverter2.js, this is exactly what we do, as it is seen in the first line of the
following code.

Chapter 2

[47]

The next thing we do is merge any options passed to the plugin with defaults (highlighted).
jQuery provides an extend() method that merges the attributes of any number of objects
and returns the first one. As we do not want to overwrite the default options that we have
defined in $.fn.unitconverter.conversion_map, we pass it an empty object. This
object will receive the default attributes and any attributes defined in the options object,
overwriting the ones with a name that is the same. This set of merged attributes is stored in
the cmap variable:

jQuery.fn.unitconverter = function(options){

 var cmap = $.extend({},$.fn.unitconverter.conversion_map,options);

The conversion factors are referred to by keys of the form unit1_unit2. To construct
two drop-down selectors from the keys, we iterate over all these keys and use JavaScript's
split() method to retrieve the individual units (highlighted). These are then stored in the
from and to arrays:

 var from = new Array();
 var to = new Array();

 for (var key in cmap){
 var units = key.split("_");
 from.push(units[0]);
 to.push(units[1]);
 }

The next step is to construct the HTML needed by the plugin to present to the user. The
structure is similar to the handcrafted one used in the previous example, a <form> with
<input> and <select> elements, and a <button>. The <form> element is adorned with
a random ID attribute. This way we may refer to it later even if there is more than one unit
converter present on the page.

The <select> elements contain a number of <option> elements that are created by
retrieving the unit names stored in the from and to arrays one-by-one with the pop()
method. The first of these options is selected by default (highlighted). The HTML code is then
passed to the append() method of this. this is a variable that is available to the function
implementing the plugin that contains the selected elements the plugin is applied to, in our
example the <div> element with the #example ID:

 var id = "unitconverter" + new String(Math.floor(Math.random() *
255 * 255));
 var html = '<form id="' + id + '"><input name="from" type="text"
value="1" />';
 html += '<select name="fromunit">';
 html += '<option selected="true">'+from.pop()+'</option>';
 var len = from.length;
 for (var i=0; i<len; i++){

Creating a Simple Spreadsheet

[48]

html += '<option>' + from.pop() + '</option>' };
 html += '</select> = ';
 html += '<input name="to" type="text" readonly="true" />';
 html += '<select name="tounit">';
 html += '<option selected="true">' + to.pop() + '</option>';
 var len = to.length;
 for (var i=0; i<len; i++){
html += '<option>' + to.pop() + '</option>'};
 html += '</select>';
 html += '<button name="convert" type="button">convert</button>'
html += '</form>';

 this.append(html);

The randomly generated ID for the form element now comes in handy to select just the
<button> element within the form we are currently constructing and convert it to a button:
we construct a suitable selector by concatenating relevant parts with "#"+id+" button".

Note that it is perfectly valid to include other plugins or widgets within a custom plugin. This
time we choose to construct a slightly different looking button with just an icon and no text
by passing an appropriate options object. From the numerous icons shipped with jQuery
UI, we choose the one that represents the function of the button best: ui-icon-refresh
(highlighted).

The conversion that happens when the user clicks the button is implemented by a function
that we will encounter shortly and that is passed by the button object (available to the
click() method as the this variable) and the merged map of conversion factors:

 $("#"+id+" button").button({
 icons: {
 primary: 'ui-icon-refresh'
 },
 text: false
 }).click(function(){return convert(this,cmap);});

The finishing touch is to style our widget in a consistent manner. jQuery provides us with a
css() method that allows us to directly manipulate the style attributes of any element. We
first deal with a layout matter: we apply a float:left style to the <form> element to make
sure it doesn't fill the page completely, but shrink/wraps itself around the elements it contains:

 $("#"+id).css('float','left');

Chapter 2

[49]

We then copy a number of background style attributes from the <button> element to
the <form> element to give the <form> element a look that is consistent with the theme
applied to the standard button widget. Other style elements from the theme like font face
and font size are applied to the form element by adding the ui-widget class (highlighted).
We end by returning the this variable (which in our example contains the <div> element
we selected, but now with the <form> element we just added to it). This allows for chaining
additional jQuery methods:

 $("#"+id).css('background-color',
$("#"+id+" button").css('background-color'));
 $("#"+id).css('background-image',
$("#"+id+" button").css('background-image'));
 $("#"+id).css('background-repeat',
$("#"+id+" button").css('background-repeat'));
 $("#"+id).addClass("ui-widget");

 return this;
};

Of course, we still need to define a function that does the actual conversion when the button
of the unit converter is clicked. It differs slightly from the previous implementation.

The convert() function is passed both the <button> element that is clicked and a map
with conversion factors. The <form> element enclosing the button is determined with the
parent() method and stored in the form variable.

The input value we want to convert is retrieved from the <input> element with a name
attribute equal to from. We can find this specific element by selecting all children of the
<form> element stored in form and filtering these children by passing a suitable selector to
the .children() method (highlighted).

In a similar way, we determine which option is selected in the two <select> elements:

function convert(button,cmap){
 var form = $(button).parent();
 var value = form.children("input[name='from']").val();
 var f = form.children("select[name='tounit']").
children("option:selected").val();
 var t = form.children("select[name='fromunit']").
children("option:selected").val();

Creating a Simple Spreadsheet

[50]

What is left is the actual conversion. If the conversion units are not equal, we retrieve the
conversion factor from the map (highlighted) and then multiply it by the contents of the
<input> element interpreted as a floating point number. If the input can't be interpreted
as a floating point number or there wasn't a suitable conversion factor in the map, the result
of the multiplication is a NaN (Not a Number) and we signal that fact by placing an error
text in the result. However, we convert the result to a number with four decimal digits with
JavaScript's toFixed() method if everything goes well:

var result = value;
 if(f != t){
 var c=cmap[f+'_'+t];
 result=parseFloat(value)*c;
 if (isNaN(result)){
 result = "unknown conversion factor";
 }else{
 result = result.toFixed(4);
 }
 }
 form.children("input[name='to']").val(result);
};

unitconverter2.py concludes by defining an object with defaults:

jQuery.fn.unitconverter.conversion_map = {
 "inch_cm":1.0/2.54,
 "cm_inch":2.54
}

Pop quiz – changing option defaults
If we would:

1. Add a unitconvertor to a <div> element with an ID #first.

2. Add the possibility of converting from cubic feet to liters to the default conversion
map.

3. And finally, add a unitconverter to a <div> element with an id #last.

The code would look something like this:

$("#first").unitconverter();
$.extend($.fn.unitconverter.conversion_map, {'cubic feet_
litres':1.0/28.3168466});
$("#last").unitconverter();

Chapter 2

[51]

If we would execute the preceding code, which <div> element(s) would get a unitconverter
with the added conversion possibility?

a. The div with the #first ID

b. The div with the #last ID

c. Both

Designing a spreadsheet application
Our goal for this chapter was to be able to present the user with a simple spreadsheet
application and we are nearly there. We know how to serve HTML and we saw how we
can implement a custom jQuery UI widget, so let's apply that knowledge to designing a
spreadsheet plugin. First let's see how it will look:

Time for action – serving a spreadsheet application
Go to the directory containing the example code for Chapter 2:

1. Double-click the file spreadsheet.py, the now familiar CherryPy console will open
in a text window.

2. Enter http://localhost:8080 in the address bar of your browser (or click
refresh if it is still open on that address). You will now see a simple spreadsheet
application:

3. You can click on any cell to edit its formula. You should not start a formula with an
equal sign: 42, D2+19 and "text" (including the double quote marks) are examples
of valid formulas. In fact, any JavaScript expression is valid.

Creating a Simple Spreadsheet

[52]

What just happened?
The spreadsheet application served to the end user consists of two major parts, HTML to
structure the spreadsheet and some JavaScript to provide interaction. We look at each of
these in turn.

HTML: keeping it simple
The HTML we need for our spreadsheet is nearly identical to the one for the unit converter.
The highlighted lines in the following code show the differences. spreadsheet.js contains
the definition of the plugin and the final <script> element inserts an 8x10 spreadsheet
into the #example div. Converting a <div> element to a fully functional spreadsheet
widget is just as simple as converting to the standard button widget!

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html>
<head>
<link rel="stylesheet"
href="static/css/redmond/jquery-ui-1.8.1.custom.css" type="text/css"
media="screen, projection" />
<script type="text/javascript"
 src="static/jquery-1.4.2.js" ></script>
<script type="text/javascript"
 src="static/jquery-ui-1.8.1.custom.min.js" ></script>
<script type="text/javascript"
 src="static/jeditable.js" ></script>
<script type="text/javascript"
 src="spreadsheet.js" ></script>
</head>
<body id="spreadsheet_example">
<div id="example"></div>
<script type="text/javascript">
$("#example").sheet({cols:8,rows:10});
</script>
</body>
</html>

JavaScript: creating a spreadsheet plugin
The file spreadsheet.js contains all JavaScript code needed to implement a reusable
spreadsheet widget. The spreadsheet is very similar to our unit converter from a jQuery
perspective although the actual JavaScript to implement the user interaction is somewhat
more involved. Again our plugin is a function that is associated with jQuery's fn attribute as
it can be seen in the very first line in the following code, where we define our widget with
the name sheet.

Chapter 2

[53]

Next we merge the default options for the sheet plugin (defined at the end of the file) with
the options passed to the function:

jQuery.fn.sheet = function(options){

 var opts = $.extend({}, $.fn.sheet.defaults, options);

The next step is to create a table that will represent our spreadsheet. We create this
<table> element with a number of associated classes: its very own sheet class to make
it easily recognizable as a sheet plugin once created, a ui-helper-reset class that will
cause suitable CSS to be applied by jQuery to reset any unwanted default styling added by
the browser and finally a ui-widget class that will cause the selected theme to be applied.
Then we create the table contents step-by-step by adding the needed HTML to a variable t
in incremental steps:

 /* create a cols x rows grid */
 var t='<table class="sheet ui-helper-reset ui-widget"
 cellspacing="0">';

The table contains a <thead> element that will be styled as a ui-widget-header. It
contains a single row of <th> elements. These <th> elements contain the column label, a
capital letter that we construct from the column index with the fromCharCode() method
(highlighted):

 t=t+'<thead class="ui-widget-header">
 <tr class="ui-helper-reset"><th></th>';
 for(i=0;i<opts.cols;i=i+1){
 t=t+'<th class="ui-helper-reset">' +
String.fromCharCode(65+i)+"</th>";
 }

The body of the table consists of a <tbody> element containing a number of rows with <td>
elements. The first <td> element of each row contains the row label (a number) and will be
styled as a ui-widget-header just like the column labels. The regular cells, that is the ones
that will contain our formulas and values, will belong to the class ui-widget-content to
style them in an appropriate manner. These cells will also belong to a class cell to make them
easy to distinguish when we add additional functionality to them (highlighted).

There is initially no content in such a cell except for a element that will contain the
formula and that will be styled as ui-helper-hidden, rendering the formula invisible. The
value of the evaluated formula will be stored both as text content in the <td> element (side-
by-side with the element) and as a global variable with a name equal to the name of
the cell. A global variable in this context is a named attribute of the top-level window object
defined by the browser that may be accessed as window[name].

Creating a Simple Spreadsheet

[54]

Storing the value of a cell in a global variable as well allows us to use any JavaScript
expression as the formula in a cell because we can now refer to the value of any other cell by
name. A1+B3*9, for example will be a perfectly valid expression because A1 and B3 will be
defined as global variables:

 t=t+'</tr></thead><tbody class="ui-widget-content" >';
 for(i=0;i<opts.rows;i=i+1){
 t=t+'<tr class="ui-helper-reset">
 <td class="rowindex ui-helper-reset ui-widget-header">'
 + (i+1)+"</td>";
 for(j=0;j<opts.cols;j=j+1){
 id=String.fromCharCode(65+j)+(i+1)
 t=t+'<td class="cell ui-helper-reset ui-widget-content"
 id="'+id+'">

 </td>';
 /* create a global variable */
 window[id]=0
 }
 t=t+"</tr>";
 }
 t=t+"</tbody></table>";
 this.append(t);

The HTML for the table we created in the t variable is then inserted into the jQuery selection
that we applied the sheet() method with the .append() method of the this object. The
this object is available to any function defining a plugin and holds the current jQuery selection.

To edit a cell, we will employ the jEditable plugin. This plugin will take care of the user
interaction when the user clicks a cell to edit its content. To do this it needs functions to get
and set the contents of a cell.

The jEditable plugin we use here is included in the example code distributed with
this chapter. The latest version can be obtained from Mika Tuupola's website:
http://www.appelsiini.net/projects/jeditable. It comes with
a pretty comprehensive set of documentation. Turning a <td> element into
something that changes into an editable textbox when the user clicks on it with
a mouse, is as simple as selecting the element and invoking the editable()
method. For example, $(".editable").editable("http://www.
example.com/save") will render any element with the editable class
into an editable textbox once clicked and will send the edited contents to the
URL passed as the first parameter to the editable() method. The jEditable
plugin comes with a host of options and we will encounter a few of them when
we employ the jEditable plugin to do the editing of the spreadsheet cells.

Chapter 2

[55]

We need to define a function that will be invoked by jEditable for extracting the content of
the element. This function will require two arguments:

1. The element we are editing (a <td> element in our example).

2. The original settings passed to the jEditable plugin. Those settings we ignore for now.

The <td> elements are structured in such a way that the formula itself is stored in a (hidden)
span element. The getvalue() function then must get access to this element first
before it can obtain the formula.

Therefore, we convert the <td> element first to a jQuery object (highlighted) and then filter
the elements it contains to just elements with a class of formula. This amounts to just the
 element whose text is the formula we are after:

 function getvalue(org, settings){
 d=$(org)
 return d.filter(".formula").text()
 }

The corresponding setvalue() function is used by jEditable to store the edited formula
again in the <td> element. When called this function is passed two arguments:

1. The edited content of the element.

2. The original settings passed to the jEditable plugin and its code is quite complicated
because storing the formula is not the only thing it has to do. It must also calculate
the result of the formula and update any cells that depend on the updated cell.

The cell we are editing (that is the <td> element) is available as the this variable. We
stored the cell index as its id attribute so we retrieve that one first (highlighted). The value
argument that was passed to the setvalue() function is the edited formula.

As we use JavaScript syntax for these formulas, we can simply call JavaScript's eval()
function to calculate the value of the formula. We have to store the result in global variables
with the name of the cell as well to make it reusable by other cells. Note that these global
variables are just attributes of the window object in the context of the browser so assigning
a value to such an attribute is just what we do inside the if … else … clause. If the result
of evaluating the formula was undefined in some way (for example, because of an error) we
set the result to the string '#undef' to signal that situation to the user:

 function setvalue(value, settings) {
 /* determine cell index and update global var */
 currentcell=$(this).attr('id');
 currentresult=eval(value);
 if (typeof(currentresult) == 'undefined'){
 currentresult='#undef';

www.allitebooks.com

http://www.allitebooks.org

Creating a Simple Spreadsheet

[56]

 window[currentcell]=0;
 }else{
 window[currentcell]=currentresult;
 }

After we have evaluated the formula of the current cell and stored its result we must now
recalculate all other cells because they may depend on the contents of the cell we just changed.

We do affect this by selecting all cells in the sheet and applying a function to each of them
(highlighted). If we are looking at a different cell than the one just changed (something we
determine by comparing their id attributes), we recalculate the formula contained in its
 element. If the result is different from the previous value stored for a cell we set
the change variable to true. We repeat the whole procedure until nothing is changed or we
repeated ourselves more often than there are cells in the sheet, at which point we must have a
circular reference somewhere, something we indicate to the user by setting the value of the cell
to a suitable text. This is certainly not the most efficient method to recalculate a spreadsheet,
nor is it a failsafe method to detect all circular references but it works well enough:

 /* update all other cells */
 var changed;
 var depth = 0;
 do{
 depth++;
 changed = false;
 $('.sheet').find('.cell').
 each(function (index,element){
 cell=$(element).attr('id');
 if(currentcell != cell){
 span=$(element).
 children('span').first();
 orig = window[cell];
 window[cell]=0;
 formula=span.text();
 if(formula.length > 0){
 result=eval(formula);
 if (result != orig) {
 changed = true;
 }
 if(typeof(result)=='undefined'){
 result='#undef';
 }else{
 window[cell]=result;
 }
 }else{
 result = ' ';
 }

Chapter 2

[57]

 $(element).empty().
append('' +
formula+''+result);
 }
 });
 }while(changed && (depth <opts.cols*opts.rows));
 if (depth >= opts.cols*opts.rows){
 currentresult = '#Circular!';
 }
 return('<span
 class="formula ui-helper-hidden">'
 +value+''+currentresult);
 }

The purpose of defining functions to set and get a value from a <td> element was to be able
to apply the jEditable plugin to every cell. This we do in the final lines of our sheet plugin.
We find all children with a cell class (highlighted) and invoke an anonymous function on
each of them.

This function first applies the jEditable plugin on the element by invoking the editable()
method with a reference to our setvalue() function as the first argument and an options
object as the second argument. The type attribute marks this editable element as a text
element (and not, for example, a multiline text area element), whereas setting onblur to
cancel indicates that on clicking outside the cell when editing will revert the content to its
original. The data attribute points to our getvalue() function to indicate to the plugin
how to get the value that we want to edit.

The second thing the function does is applies CSS style attributes to each cell. In this case a
fixed width and the border-collapse attribute will make sure that the border between
cells is just as wide as the border on outlying cells:

 /* make every cell editable with the jEditable plugin */
 this.find(".cell").each(function (index,element) {
 $(this).
 editable(setvalue,{type:'text',onblur:'cancel',data:getvalue})
 });

 $(".cell").css({'width':opts.width,'border-collapse':'collapse'});

 return this;
}

spreadsheet.js is completed with the definition of a default options object:

jQuery.fn.sheet.defaults = {
 rows : 4,
 cols : 4,
 width: '100px',
 logging: false
}

Creating a Simple Spreadsheet

[58]

Have a go hero – adding math functions
In the spreadsheet we designed, the user may use any JavaScript expression as the cell
formula. That's fine if we want to use operators like addition (+) or multiplication (*), but
what if we would like to use, for example, trigonometric functions like sin() or cos()?

This is possible by referring to the methods of the built-in JavaScript object Math (an example
would be Math.sin(A1)+Math.cos(B1)) but prefixing every function with Math is
awkward. Devise a way to make these functions available without the Math prefix. (Hint: we
already saw how to create names in the global namespace by assigning to window[<name>]).

A solution can be found in spreadsheet2.js. Its effects can be tested by running
spreadsheet2.py.

The missing parts
In designing and building a spreadsheet application we saw that it is relatively simple to
implement quite sophisticated user interaction by making full use of the jQuery and jQuery UI
libraries and choosing wisely from the wide array of available additional plugins like jEditable.

However, although our spreadsheet application was served from the CherryPy server, the
functionality of the application was limited to client-side activity only. For example, there is
no possibility to save or load a spreadsheet on the server, and neither is there a way to limit
the access to our spreadsheet to authorized users only. Both requirements depend on ways
to store data in a persistent manner and dealing with persistence will be the next step on our
road to developing web applications.

Summary
We have learned a lot in this chapter. Specifically, we covered:

 � How to create an environment to develop and deliver our applications. We saw how
to install Python, CherryPy, and the jQuery and jQuery UI frameworks.

 � The design of a simple spreadsheet application.
 � How to configure CherryPy to deliver static and dynamic content.
 � How to use standard jQuery UI widgets and third party plugins; specifically, the

button widget and the jEditable plugin.
 � The implementation of our own jQuery plugin.

We also discussed how to reuse jQuery UI's concept of ui-widget classes to style our own
widget components in a way that blends seamlessly with jQuery UI's themes.

Now that we've learned about the client-side of web applications, we're ready to tackle
server-side issues—which is the topic of the next chapter.

3
Tasklist I: Persistence

In the previous chapter, we learned how to deliver content to the user. This
content consisted of HTML markup to structure the information together with a
number of JavaScript libraries and code to create a user interface.

We noted that this was not a full-fledged web application yet; it lacked the
functionality to store information on the server and there was no way to
identify different users or any way to authenticate them. In this chapter, we will
address both these issues when we design a simple tasklist application.

This tasklist application will be able to serve multiple users and store the list of
tasks for each user on the server.

Specifically, we will look at:

 � How to design a tasklist application

 � How to implement a logon screen

 � What a session is and how this allows us to work with different users at the same time

 � How to interact with the server and add or delete tasks

 � How to make entering dates attractive and simple with jQuery UI's datapicker widget

 � How to style button elements and provide tooltips and inline labels to input elements

Designing a tasklist application
Designing an application should start with a clear idea of what is expected. Not only to
determine what is technically required, but almost as important, to define clear boundaries
so that we don't lose time on things that are just nice to have. Nice to have features are
something to be added if there is time left in the project.

Tasklist I: Persistence

[60]

So let's draw up a shortlist of the relevant features of our tasklist application. Some of these
may seem obvious, but as we will see, these have a direct impact on some implementation
choices that we have to make, such as:

 � The application will be used by multiple users

 � Task lists should be stored indefinitely

 � A task list may contain an unlimited number of tasks but the user interface is
designed for optimal performance for up to 25 tasks or so

 � Tasks may be added, deleted, and marked as done

Although this list isn't exhaustive, it has some important implications.

The fact that the tasklist application will be used by more than one user means that we have
to identify and authorize people who want to use it. In other words, we will need some sort
of logon screen and a way to check people against some sort of password database. Because
we do not want to burden the user with identifying himself/herself each and every time a
task list is refreshed or altered, we need some way of implementing the concept of a session.

Web applications use the stateless HTTP protocol. This means, from the server's point of
view, every request is a single, unrelated event, and no information is retained at the server.
This obviously presents us with a problem if we want to perform a set of related actions.
The solution is to ask the web browser to send a small piece of information along with every
request it makes to the application after the application has identified the user.

This might be accomplished in a number of ways. The server may add an extra parameter to
all links inside any web page it generates, commonly referred to as a session id, or use the
even more general concept of a cookie.

Once the server asks the web browser to store a cookie, this cookie is sent with every
following request to the same website. The advantage of cookies is that common web
application frameworks (like CherryPy) are already equipped to deal with them and
implementing sessions with cookies is much simpler than designing the application to alter
all hyperlinks it generates to include a proper session ID. The disadvantage might be that
people may block their browser from storing cookies because some websites use them to
track their clicking behavior.

We let the simplicity of implementation prevail and opt for cookies. If users want to block
cookies this is not much of a problem as most browsers also have the option to selectively
allow cookies from designated websites.

The following image illustrates the way CherryPy manages sessions with the help of cookies:

Chapter 3

[61]

It starts when the client (the web browser) sends a request to CherryPy. Upon receiving the
request, the first check is to see if the web browser has sent along a cookie with a session
ID. If it didn't, a new session idea is generated. Also, if there was a cookie with a session ID, if
this ID is no longer valid (because it has expired, for example, or is a remnant from a very old
interaction and doesn't exist in the current cache of session IDs) CherryPy also generates a
new session ID.

At this point, no persistent information is stored if this is a new session, but if it's an existing
session there might be persistent data available. If there is, CherryPy creates a Session
object and initializes it with the available persistent data. If not, it creates an empty Session
object. This object is available as a global variable cherrypy.session.

Tasklist I: Persistence

[62]

The next step for CherryPy is to pass control to the function that will handle the request.
This handler has access to the Session object and may change it, for example, by storing
additional information for later reuse. (Note that the Session object acts like a dictionary
so you can simply associate values with keys with cherrypy.session['key']=value.
The only restriction to the keys and values is that they must be serializable if the persistent
storage is on disk).

Then before returning the results generated by the handler, CherryPy checks if the Session
object has changed. If (and only if) it has, are the contents of the Session object saved to a
more permanent storage.

Finally, the response is returned accompanied by a cookie with the session ID.

Time for action – creating a logon screen
Our first task is to create a small application that does little more than present the user with a
logon screen. It will be the starting point of our tasklist application and many others as well.

The code for this example as well as most other examples in this book is available from the
Packt website. If you have not downloaded it yet, this might be a good time to do so.

Enter the following pieces of code and save it in a file called logonapp.py in the same
directory as the other files distributed with this chapter (Chapter 3 in the sample code):

Chapter3/logonapp.py

import cherrypy

import logon

class Root(object):

 logon = logon.Logon(path="/logon",
 authenticated="/",
 not_authenticated="/goaway")

 @cherrypy.expose
 def index(self):
 username=logon.checkauth('/logon')
 return '''
 <html><body>
 <p>Hello user %s</p>
 </body></html>'''%username

 @cherrypy.expose
 def goaway(self):
 return '''
 <html>

Chapter 3

[63]

 <body><h1>Not authenticated, please go away.</h1>
 </body></html>'''

 @cherrypy.expose
 def somepage(self):
 username=logon.checkauth('/logon',returntopage=True)
 return '''<html>
 <body><h1>This is some page.</h1>
 </body>
 </html>'''

if __name__ == "__main__":

 import os.path
 current_dir = os.path.dirname(os.path.abspath(__file__))

 cherrypy.quickstart(Root(),config={
 '/': {'tools.sessions.on': True }
 }
)

If you now run logonapp.py, a very simple application is available on port 8080. It presents
the user with a logon screen when the top level page http://localhost:8080/ is
accessed. An example is shown in the following illustration:

If a correct username/password combination is entered, a welcome message is shown.
If an unknown username or wrong password is entered, the user is redirected to
http://localhost:8080/goaway.

The somepage() method (highlighted) returns a page with (presumably) some useful
content. If the user is not yet authenticated, the logon screen is shown and upon entering
the correct credentials, the user is directed back to http://localhost:8080/somepage.

http://localhost:8080/
http://localhost:8080/goaway
http://localhost:8080/somepage

Tasklist I: Persistence

[64]

The complete tree of web pages within the logon sample application and the possible paths
the user may pick through is shown next:

Logon + session ID vs. HTTP basic authentication

You may wonder why we choose not to reuse CherryPy's bundled auth_basic
tool that offers basic authentication (for more information on this tool, see
http://www.cherrypy.org/wiki/BuiltinTools#tools.auth_
basic). If all we wanted was to check whether a user is allowed access to a
single page, this would be a good choice. The basic authentication is sufficient to
authenticate a user, but has no concept of a session. This means we lack a way
to store data that needs to be accessible when we process subsequent requests
by the same user. The sessions tool we use here does provide this additional
functionality.

What just happened?
Part of the magic of logonapp.py is achieved by enabling the 'sessions' tool in CherryPy.
This is what is done by passing the tools.sessions.on key with True as a value to the
configuration dictionary for the quickstart() function.

However, most of the hard work in logonapp.py is actually performed by the module
logon:

Chapter3/logon.py

import cherrypy
import urllib.parse

def checkauth(logonurl="/", returntopage=False):
 returnpage=''

Chapter 3

[65]

 if returntopage:
 returnpage='?returnpage='
 + cherrypy.request.script_name
 + cherrypy.request.path_info

 auth = cherrypy.session.get('authenticated',None)
 if auth == None :
 raise cherrypy.HTTPRedirect(logonurl+returnpage)
 return auth

class Logon:
 base_page = '''
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<script type="text/javascript" src="/jquery.js" ></script>
<script type="text/javascript" src="/jquery-ui.js" ></script>
<style type="text/css" title="currentStyle">
 @import "/jquerytheme.css";
 @import "/static/css/logon.css";
</style>
</head>
<body id="logonscreen">
<div id="content">
%s
</div>
<script type="text/javascript">$("button").button({icons: {primary:
'ui-icon-power'}})</script>
</body>
</html>
'''

 logon_screen = base_page % '''
<form class="login" action="%s/logon" method="GET">
<fieldset>
<label for="username">Username</label>
<input id="username" type="text" name="username" />
<script type="text/javascript">$("#username").focus()</script>
<label for="password">Password</label>
<input id="password" type="password" name="password" />
<input type="hidden" name="returnpage" value="%s" />
<button type="submit" class="login-button" value="Log in">
Log in
</button>
</fieldset>

Tasklist I: Persistence

[66]

</form>
'''

 not_authenticated =
 base_page % '''<h1>Login or password not correct</h1>'''

 def __init__(self, path="/logon",
 authenticated="/", not_authenticated="/"):
 self.path=path
 self.authenticated=authenticated
 self.not_authenticated=not_authenticated

 @staticmethod
 def checkpass(username,password):
 if username=='user' and password=='secret': return True
 return False

 @cherrypy.expose
 def index(self,returnpage=''):
 return Logon.logon_screen % (
 self.path,urllib.parse.quote(returnpage))

 @cherrypy.expose
 def logon(self,username,password,returnpage=''):
 returnpage = urllib.parse.unquote(returnpage)
 if Logon.checkpass(username,password):
 cherrypy.session['authenticated']=username
 if returnpage != '':
 raise cherrypy.InternalRedirect(returnpage)
 else:
 raise cherrypy.InternalRedirect(
 self.authenticated)
 raise cherrypy.InternalRedirect(self.not_authenticated)

 @cherrypy.expose
 def logoff(self,logoff):
 cherrypy.lib.sessions.expire()
 cherrypy.session['authenticated']=None
 raise cherrypy.InternalRedirect(self.not_authenticated)

The logon module implements a utility function checkauth() (highlighted). This function
is designed to be called from anywhere inside a CherryPy application. If the user is already
authenticated, it will return the username; otherwise it will redirect the user to a URL that
should present the user with a logon screen. If the returnpage parameter is true, this URL
is augmented with an extra parameter returnpage containing the URL of the page that
invoked checkauth(). The logon page (or rather the handler implementing it) should be
designed to redirect the user to the URL in this parameter if the authentication is successful.

Chapter 3

[67]

As we have seen, typical use for the checkauth() function would be to call it from every
page handler that serves content that requires authentication.

checkauth() itself does just two things: First it determines the page to return to (if
necessary) by concatenating the script_name and path_info attributes from the
cherrypy.request object that CherryPy makes available. The first one contains the path
where a CherryPy tree is mounted, the last one contains the path within that tree. Together
they form the complete path to the handler that invoked this checkauth() function.

The second thing that checkauth() does is it determines whether cherrypy.session
(a dictionary like Session object) contains an authenticated key. If it does, it returns the
associated value, if not, it redirects to the logon page.

The cherrypy.session variable is a cherrypy.lib.sessions.Session object
available to each request. It acts like a dictionary and initially it is devoid of any keys. When
a value is assigned to the first new key, a persistent object is created that is associated with
the session ID and upon finishing a request, the Session object is stored and its session
ID is passed as the value of a session_id cookie in the response headers. If a subsequent
request contains a request header with a session_id cookie, a Session object with
the corresponding session ID is retrieved from storage, making any saved key/value pairs
available again.

The default storage scheme is to keep data in memory. This is fast and simple but has the
disadvantage that restarting the CherryPy server will discard this data, effectively expiring all
sessions. This might be ok for short-lived sessions, but if you need a more persistent solution,
it is possible to store the session information as files (by setting the tools.sessions.
storage_type configuration key to "file") or even to a database backend. For more
about sessions, see CherryPy's online documentation on the subject at http://cherrypy.
org/wiki/CherryPySessions.

http://cherrypy.org/wiki/CherryPySessions

Tasklist I: Persistence

[68]

The various steps in the communication between the client and the server during a session
are shown in the following illustration:

The bulk of the logon module is provided by the Logon class. It implements several
methods (these methods are highlighted in the code listed on the previous pages as well):

 � __init__() will initialize a Logon instance to hold the path to the point where this
Logon instance is mounted on the tree of handlers, together with the default URLs
to redirect to successful and unsuccessful authentication.

 � checkpass() is a static function that takes a username and a password and returns
True if these are a matching pair. It is designed to be overridden by a more suitable
definition.

Chapter 3

[69]

Logon also exposes three handler methods to the CherryPy engine:

 � index() is a method that will serve the actual logon screen

 � logon() is passed the username and password when the user clicks on the logon
button

 � logoff() will expire a session, causing subsequent calls to checkauth() to
redirect the user to the logon screen

The Logon class also contains a number of class variables to hold the HTML presented by the
index() method. Let's look at the methods in detail.

And what about security? The Logon class we design here has no facilities
to prevent people from eavesdropping if they have access to the wire that
transports the HTTP traffic. This is because we transmit the passwords
unencrypted. We may implement some sort of encryption scheme ourselves, but
if your design requires some form of protection, it is probably better and easier
to communicate over a secure HTTPS channel. CherryPy may be configured to
use HTTPS instead of HTTP. More on it can be found at: http://cherrypy.
org/wiki/ServerObject.

Pop quiz – session IDs
1. If the client sends a new session ID again and again, wouldn't that fill up all storage

on the server eventually?

2. If the client has cookies disabled, what happens to the generation of session IDs?

a. The server will stop generating new session IDs, returning the same ID
repeatedly

b. The server will stop returning new session IDs

c. The server will keep generating and returning new session IDs

Serving a logon screen
The index() method serves the HTML to present the user with a logon screen. At its
core, this HTML is a <form> element with three <input> elements: a regular text input
where the user may enter his/her username, a password input (that will hide the characters
that are entered in this field), and an <input> element that has a hidden attribute. The
<form> element has an action attribute that holds the URL of the script that will process
the variables in the form when the user clicks the logon button. This URL is constructed to
point to the logon() method of our Logon class by appending /logon to the path that the
Logon instance was mounted on in the CherryPy tree.

Tasklist I: Persistence

[70]

The <input> element we marked as hidden is initialized to hold the URL that the user will
be redirected to when logon() authenticates the user successfully.

The form that makes up the logon screen also contains a tiny piece of JavaScript:

$("#username").focus()

It uses jQuery to select the input element that will receive the username and gives it focus.
By placing the cursor in this field, we save the user the effort of pointing and clicking on
the username field first before the username can be entered. Now he can start typing right
away. Note that this code snippet is not placed near the end of the document, but right after
the <input> element to ensure execution as soon as the <input> element is defined. The
logon page is so small that this might be irrelevant, but on slow loading pages, key presses
might be misdirected if we waited to shift the focus until the whole page had loaded.

Be aware that the logon form we construct here has a <form> element with an
action="GET" attribute. This works fine, but has a disadvantage: parameters
passed with a GET method are appended to the URL and may end up in the log
files of the server. This is convenient when debugging, but you might not want
that for a production environment, as this might leave passwords exposed.
The action attribute can be changed to POST though without any change
to the Python code handling the request as CherryPy takes care of the details.
Parameters passed to a POST method are not logged, so a POST method might
be better suited to a password verification request.

Setting up a session
The logon() method is passed the contents of all the <input> elements in the form as
parameters. The username and password parameters are passed to the checkpass()
method and if the user's credentials are right, we establish a session by associating the
username with the authenticated key in our session storage with cherrypy.session['au
thenticated']=username.

This will have the effect that every response sent to the browser will contain a cookie with a
session ID and any subsequent request to CherryPy that contains this cookie again will cause
the handler for that request to have access to this same session storage.

After successful authentication, logon() redirects the user to the return page if one was
passed to it or to the default page passed to it upon initialization of the Logon instance. If
authentication fails, the user is redirected to a non-authorized page.

Chapter 3

[71]

Expiring a session
The logoff() method is provided to offer a possibility to actively expire a session. By
default, a session expires after 60 minutes, but the user might want to sign off explicitly,
either to make sure that no one sneaks behind his keyboard and continues in his name or
to log on as a different persona. Therefore, you will find, in most applications, a discrete
logoff button, often positioned in the upper-right corner. This button (or just a link) must
point to the URL that is handled by the logoff() method and will cause the session to be
invalidated immediately by removing all session data.

Note that we have to take special precautions to prevent the browser from caching the
response from the logoff() method, otherwise it may simply redisplay the response from
the last time the logoff button was pressed without actually causing logoff() to be called.
Because logoff() always raises an InternalRedirect exception, the actual response
comes from a different source. This source, for example, the goaway() method in the Root
class must be configured to return the correct response headers in order to prevent the web
browser from caching the result. This is accomplished by configuring the goaway() method
in logonapp.py with CherryPy's expires tool like the following:

Chapter3/logonapp.py

@cherrypy.expose
 def goaway(self):
 return '''
<html><body>
<h1>Not authenticated, please go away.</h1>
</body></html>
'''
 goaway._cp_config = {

 'tools.expires.on':True,
 'tools.expires.secs':0,
 'tools.expires.force':True}

The highlighted line is where we configure the handler (the goaway() method) to set
expiration headers in the response by assigning a configuration dictionary to the _cp_
config variable.

Assigning to a variable that is part of a function might seem odd, but functions
and methods in Python are just objects and any object may have variables. New
variables might be assigned to an object even after its definition. Upon calling a
handler, CherryPy checks if that handler has a _cp_config variable and acts
accordingly. Note that the @cherrypy.expose decorator also merely sets the
expose variable on the handler to true.

Tasklist I: Persistence

[72]

Have a go hero – adding a logon screen to the spreadsheet application
In the previous chapter, we had created an application that serves a spreadsheet. If you
wanted to serve this spreadsheet only to authenticated users, what would we have to
change to use the logon module presented in the previous section?

Hint: You need to do three things, one involves mounting an instance of the Logon class on
the CherryPy tree, the other is changing the handler that serves the spreadsheet to check for
authentication, and finally you need to enable sessions.

An example implementation is available as spreadsheet3.py.

Designing a task list
Now that we have looked at ways to authenticate the users, let's look at the implementation
of the task list itself.

A task list would be unusable if its contents evaporated once the browser was closed. We
therefore need some way to persistently store these task lists. We could use a database
and many of the example applications in this book do use a database to store data. For
this application, we will opt to use the filesystem as a storage medium, simply storing
tasks as files containing information about a task, with separate directories for each user.
If we dealt with huge amounts of users or very long task lists, the performance of such an
implementation probably wouldn't suffice, but by using simple files for storage, we won't
have to design a database schema which saves us quite some time.

By limiting ourselves to fairly short task lists, our user interface may be kept relatively simple
as there will be no need for pagination or searching. This doesn't mean the user interface
shouldn't be easy to use! We will incorporate jQuery UI's datepicker widget to assist the user
with choosing dates and will add tooltips to user interface components to provide a shallow
learning curve of our task list application.

The final requirements more or less define what we understand a task to be and what we are
supposed to do with it: A task has a description and a due date and because it can be marked
as done, it should be able to store that fact as well. Furthermore, we limit this application
to adding and deleting tasks. We explicitly do not provide any way to alter a task, except for
marking it as done.

Time for action – running tasklist.py
Let's first have a look at what the application looks like:

1. Start up tasklist.py from the code directory of this chapter.

2. Point your browser to http://localhost:8080.

Chapter 3

[73]

3. In the logon screen, enter user as the username and secret as the password.

4. You are now presented with a rather stark looking and empty task list:

You should be able to add a new task by entering a date and a description in the input boxes
and pressing the add button. Entering a date is facilitated by jQuery UI's datepicker widget that
will pop up once you click the input field for the date, as shown in the following screenshot:

Once you have added one or more tasks, you can now either delete those tasks by clicking
the button with the little trash can icon or mark it as done by clicking the button with the
check icon. Tasks marked as done have a slightly different background color depending on
the chosen theme. If you mark a task as done, its completion date will be today. You can
select a different date by clicking on the completion date of a task (displayed as None for
an unfinished task). It will present you with yet another datepicker, after which the selected
date will be stored as the completion date once the done button is clicked. The following
screenshot gives an impression of a task list with numerous items:

Tasklist I: Persistence

[74]

There is some hidden magic that might not be immediately obvious. First of all, all the tasks
are sorted according to their Due date. This is done on the client-side with the help of some
JavaScript and a jQuery plugin, as we will see in the section on JavaScript. Also accomplished
with some JavaScript are the tooltips. Both hovering tooltips on every button and the inline
help text inside the <input> elements are added with the same script. We will examine this
in depth.

What just happened?
tasklist.py is rather straightforward as it delegates most work to two modules: the
logon module that we encountered in the previous sections and a task module that deals
with displaying and manipulating task lists.

The highlighted line in the following code shows the core of the application. It starts up
CherryPy with a suitable configuration. Note that we enabled the sessions tool, so that
we can actually use the logon module. Also, we construct the path to jQuery UI's theme
stylesheet in such a way that it depends on the theme variable to make changing the
application's theme simple (second highlight).

The instance of the Root class that we pass to quickstart() creates a simple tree:

/
/logon
/logon/logon
/logon/logoff
/task
/task/add
/task/mark

The top level URL / returns the same content as /login by calling the index() method of
the Logon instance. We could have used an InternalRedirect exception, but this is just
as simple. The paths starting with /task are all handled by an instance of the Task class:

Chapter3/tasklist.py

import cherrypy

import os.path

import logon
import task

current_dir = os.path.dirname(os.path.abspath(__file__))

theme = "smoothness"

class Root(object):
 task = task.Task(logoffpath="/logon/logoff")

 logon = logon.Logon(path="/logon",

Chapter 3

[75]

 authenticated="/task",
 not_authenticated="/")

 @cherrypy.expose
 def index(self):
 return Root.logon.index()

if __name__ == "__main__":

 cherrypy.quickstart(Root(),config={
 '/':
 { 'log.access_file':os.path.join(current_dir,"access.log"),
 'log.screen': False,
 'tools.sessions.on': True
 },
 '/static':
 { 'tools.staticdir.on':True,
 'tools.staticdir.dir':os.path.join(current_dir,"static")
 },
 '/jquery.js':
 { 'tools.staticfile.on':True,
 'tools.staticfile.filename':os.path.join(current_dir,
 "static","jquery","jquery-1.4.2.js")
 },
 '/jquery-ui.js':
 { 'tools.staticfile.on':True,
 'tools.staticfile.filename':os.path.join(current_dir,
 "static","jquery","jquery-ui-1.8.1.custom.min.js")
 },
 '/jquerytheme.css':
 { 'tools.staticfile.on':True,
 'tools.staticfile.filename':os.path.join(current_dir,
 "static","jquery","css",theme,"jquery-ui-1.8.4.custom.css")
 },
 '/images':
 { 'tools.staticdir.on':True,
 'tools.staticdir.dir':os.path.join(current_dir,
 "static","jquery","css",theme,"images")
 }
 })

Python: the task module
The task module is implemented in the file task.py. Let's look at the parts that make up
this file.

Tasklist I: Persistence

[76]

Time for action – implementing the task module
Have a look at the Python code in task.py:

Chapter3/task.py

import cherrypy
import json

import os
import os.path
import glob
from configparser import RawConfigParser as configparser
from uuid import uuid4 as uuid
from datetime import date

import logon

This first part illustrates Python's "batteries included" philosophy nicely: besides the
cherrypy module and our own logon module, we need quite a bit of specific functionality.
For example, to generate unique identifiers, we use the uuid module and to manipulate
dates, we use the datetime module. All of this functionality is already bundled with Python,
saving us an enormous amount of development time. The next part is the definition of the
basic HTML structure that will hold our task list:

Chapter3/task.py

base_page = '''
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html>
<head>
<script type="text/javascript" src="/jquery.js" ></script>
<script type="text/javascript" src="/jquery-ui.js" ></script>
<style type="text/css" title="currentStyle">
 @import "/static/css/tasklist.css";
 @import "/jquerytheme.css";
</style>
<script type="text/javascript" src="/static/js/sort.js" ></script>
<script type="text/javascript" src="/static/js/tooltip.js" ></script>
<script type="text/javascript" src="/static/js/tasklist.js" ></script>
</head>
<body id="%s">
<div id="content">
%s
</div>
</body>

Chapter 3

[77]

</html>
'''

Again the structure is simple, but besides the themed stylesheet needed by jQuery UI (and
reused by the elements we add to the page), we need an additional stylesheet specific to our
task list application. It defines specific layout properties for the elements that make up our
task list (first highlight). The highlighted <script> elements show that besides the jQuery
and jQuery UI libraries, we need some additional libraries. Each of them deserves some
explanation.

What just happened?
The first JavaScript library is sort.js, a code snippet from James Padolsey (http://
james.padolsey.com/tag/plugins/) that provides us with a plugin that allows us to
sort HTML elements. We need this to present the list of tasks sorted by their due date.

The second is tooltip.js that combines a number of techniques from various sources to
implement tooltips for our buttons and inline labels for our <input> elements. There are
a number of tooltip plugins available for jQuery, but writing our own provides us with some
valuable insights so we will examine this file in depth in a later section.

The last one is tasklist.js. It employs all the JavaScript libraries and plugins to actually
style and sort the elements in the task list.

The next part of task.py determines the directory we're running the application from. We
will need this bit of information because we store individual tasks as files located relative
to this directory. The gettaskdir() function takes care of determining the exact path for
a given username (highlighted). It also creates the taskdir directory and a sub directory
with a name equal to username, if these do not yet exist with the os.makedirs() function
(notice the final 's' in the function name: this one will create all intermediate directories as
well if they do not yet exist):

Chapter3/task.py

current_dir = os.path.dirname(os.path.abspath(__file__))

def gettaskdir(username):
 taskdir = os.path.join(current_dir,'taskdir',username)
 # fails if name exists but is a file instead of a directory
 if not os.path.exists(taskdir):
 os.makedirs(taskdir)
 return taskdir

The Task class is where the handlers are defined that CherryPy may use to show and
manipulate the task list. The __init__() method stores a path to a location that provides
the user with a possibility to end a session. This path is used by other methods to create a
suitable logoff button.

http://james.padolsey.com/tag/plugins/

Tasklist I: Persistence

[78]

The index() method will present the user with an overview of all his/her tasks plus an
extra line where a new task can be defined. As we have seen, each task is adorned with
buttons to delete a task or mark it as done. The first thing we do is check whether the user is
authenticated by calling the checkauth() function from our logon module (highlighted). If
this call returns, we have a valid username, and with that username, we figure out where to
store the tasks for this user.

Once we know this directory, we use the glob() function from the Python glob module to
retrieve a list of files with a .task extension. We store that list in the tasklist variable:

Chapter3/task.py

class Task(object):

 def __init__(self,logoffpath="/logoff"):
 self.logoffpath=logoffpath

 @cherrypy.expose
 def index(self):
 username = logon.checkauth()
 taskdir = gettaskdir(username)
 tasklist = glob.glob(os.path.join(taskdir,'*.task'))

Next, we create a tasks variable that will hold a list of strings that we will construct when
we iterate over the list of tasks. It is initialized with some elements that together form the
header of our task list. It contains, for example, a small form with a logoff button and the
headers for the columns above the list of tasks. The next step is to iterate over all files that
represent a task (highlighted) and create a form with suitable content together with delete
and done buttons.

Each .task file is structured in a way that is consistent with Microsoft Windows .ini files. Such
files can be manipulated with Python's configparser module. The .task file is structured as
a single [task] section with three possible keys. This is an example of the format:

[task]
description = something
duedate = 2010-08-26
completed = 2010-08-25

When we initialize a configparser object, we pass it a dictionary with default values
in case any of these keys is missing. The configparser will read a file when we pass
an open file descriptor to its readfp() method. The value associated with any key in a
given section may then be retrieved with the get() method that will take a section and
a key as parameters. If the key is missing, it supplies the default if that was provided upon
initialization. The second highlighted line shows how this is used to retrieve the values for
the description key.

Chapter 3

[79]

Next, we construct a form for each .task file. It contains read-only <input> elements to
display the Due date, Description, and the completion date plus buttons to delete the task or
mark it as done. When these buttons are clicked the contents of the form are passed to the /
task/mark URL (handled by the mark() method). The method needs to know which file to
update. Therefore, it is passed a hidden value: the basename of the file. That is, the filename
without any leading directories and stripped of its .task extension:

Chapter3/task.py

 tasks = [
'''
<div class="header">
Tasklist for user %s
 <form class="logoff" action="%s" method="GET">
 <button type="submit" name="logoffurl"
 class="logoff-button" value="/">Log off
 </button>
 </form>
</div>
'''%(username,self.logoffpath),
'''
<div class="taskheader">
 <div class="left">Due date</div>
 <div class="middle">Description</div>
 <div class="right">Completed</div>
</div>
''','<div id="items" class="ui-widget-content">']

 for filename in tasklist:
 d = configparser(
 defaults={'description':'',
 'duedate':'',
 'completed':None})
 id = os.path.splitext(os.path.basename(filename))[0]
 d.readfp(open(filename))
 description = d.get('task','description')
 duedate = d.get('task','duedate')
 completed = d.get('task','completed')
 tasks.append(
'''
<form class="%s" action="mark" method="GET">
 <input type="text" class="duedate left"
 name="duedate" value="%s" readonly="readonly" />
 <input type="text" class="description middle"
 name="description" value="%s" readonly="readonly" />

Tasklist I: Persistence

[80]

 <input type="text" class="completed right editable-date tooltip"
 title="click to select a date, then click done"
 name="completed" value="%s" />
 <input type="hidden" name="id" value="%s" />
 <button type="submit" class="done-button"
 name="done" value="Done" >Done
 </button>
 <button type="submit" class="del-button"
 name="delete" value="Del" >Del
 </button>
</form>
'''%('notdone' if completed==None else 'done',
 duedate,description,completed,id))
 tasks.append(
'''
<form class="add" action="add" method="GET">
 <input type="text" class="duedate left editable-date tooltip"
 name="duedate" title="click to select a date" />
 <input type="text" class="description middle tooltip"
 title="click to enter a description" name="description"/>
 <button type="submit" class="add-button"
 name="add" value="Add" >Add
 </button>
</form>
</div>
''')
 return base_page%('itemlist',"".join(tasks))

Finally, we append one extra form with the same type of input fields for Due date and
Description but this time, not marked as read-only. This form has a single button that will
submit the contents to the /task/add URL. These will be handled by the add() method.
The actual content returned by the index() method consists of all these generated lines
joined together and embedded in the HTML of the base_page variable.

Adding new tasks
New tasks are created by the add() method. Besides the value of the add button (which
is not relevant), it will take a description and a duedate as parameters. To prevent
accidents, it first checks if the user is authenticated, and if so, it determines what the
taskdir for this user is.

Chapter 3

[81]

We are adding a new task so we want to create a new file in this directory. To guarantee
that it has a unique name, we construct this filename from the path to this directory and a
globally unique ID object provided by Python's uuid() function from the uuid module. The
.hex() method of a uuid object returns the ID as a long string of hexadecimal numbers
that we may use as a valid filename. To make the file recognizable to us as a task file, we
append the .task extension (highlighted).

Because we want our file to be readable by a configparser object, we will create it with a
configparser object to which we add a task section with the add_section() method
and description and duedate keys with the set() method. Then we open a file for
writing and use the open file handle to this file within a context manager (the with clause),
thereby ensuring that if anything goes wrong when accessing this file, it will be closed and
we will proceed to redirect the user to that list of tasks again. Note that we use a relative
URL consisting of a single dot to get us the index page. Because the add() method handles
a URL like /task/add redirecting to '.' (the single dot), will mean the user is redirected to /
task/, which is handled by the index() method:

Chapter3/task.py

 @cherrypy.expose
 def add(self,add,description,duedate):
 username = logon.checkauth()
 taskdir = gettaskdir(username)
 filename = os.path.join(taskdir,uuid().hex+'.task')
 d=configparser()
 d.add_section('task')
 d.set('task','description',description)
 d.set('task','duedate',duedate)
 with open(filename,"w") as file:
 d.write(file)
 raise cherrypy.InternalRedirect(".")

Deleting a task
Deleting or marking a task as done are both handled by the mark() method. Besides an ID
(the basename of an existing .task file), it takes duedate, description, and completed
parameters. It also takes optional done and delete parameters, which are set depending on
whether the done or delete buttons are clicked respectively.

Tasklist I: Persistence

[82]

Again, the first actions are to establish whether the user is authenticated and what the
corresponding task directory is. With this information, we can construct the filename we will
act on. We take care to check the validity of the id argument. We expect it to be a string
of hexadecimal characters only and one way to verify this is to convert it using the int()
function with 16 as the base argument. This way, we prevent malicious users from passing
a file path to another user's directory. Even though it is unlikely that a 32 character random
string can be guessed, it never hurts to be careful.

The next step is to see if we are acting on a click on the done button (highlighted in the
following code). If we are, we read the file with a configparser object and update its
completed key.

The completed key is either the date that we were passed as the completed parameter
or the current date if that parameter was either empty or None. Once we have updated the
configparser object, we write it back again to the file with the write() method.

Another possibility is that we are acting on a click on the delete button; in that case, the
delete parameter is set. If so, we simply delete the file with the unlink() function from
Python's os module:

Chapter3/task.py

 @cherrypy.expose
 def mark(self,id,duedate,description,
 completed,done=None,delete=None):
 username = logon.checkauth()
 taskdir = gettaskdir(username)
 try:
 int(id,16)
 except ValueError:
 raise cherrypy.InternalRedirect(self.logoffpath)
 filename = os.path.join(taskdir,id+'.task')
 if done=="Done":
 d=configparser()
 with open(filename,"r") as file:
 d.readfp(file)
 if completed == "" or completed == "None":
 completed = date.today().isoformat()
 d.set('task','completed',completed)
 with open(filename,"w") as file:
 d.write(file)
 elif delete=="Del":
 os.unlink(filename)
 raise cherrypy.InternalRedirect(".")

Chapter 3

[83]

JavaScript: tasklist.js
The buttons we present the end user need to be configured to respond to clicks in an
appropriate manner and it would be nice if these buttons showed some intuitive icons as
well. This is what we will take care of in tasklist.js.

Time for action – styling the buttons
The work done by tasklist.js is mainly concerned with styling the <button> elements
and adding tooltips and inline labels to <input> elements. The results so far are shown in
the following screenshot:

What just happened?
As can be seen in the first line of tasklist.js (code starts on the next page), the work
to be done is scheduled after loading the complete document by passing it to jQuery's
$(document).ready() function.

The first step is to add to any element with a header class the ui-widget and ui-
widget-header classes as well. This will cause these elements to be styled in a way that is
consistent with the chosen theme.

Then we configure the add button (or rather any element with the add-button class) as
a jQuery UI button widget. The option object passed to it will configure it to show no text,
but just a single icon depicting a thick plus sign. We also add an extra function to the click
handler of the button that checks any element marked with the inline-label class to
see if its contents are identical to the contents of its title attribute. If that is the case, we set
the contents to the empty string, as this indicates that the user hasn't filled in anything in
this element and we do not want to store the text of the inline label as the content of our
new task (more about this in the section on tooltips). Note that we do nothing to prevent
propagation of the click event, so if this button is of the submit type (and our add button is)
the submit action will still be performed.

Tasklist I: Persistence

[84]

All elements with the del-button class (highlighted) are then styled with an icon of a trash
can. The buttons also receive an extra click handler that will remove the disabled attribute
from their siblings (the input fields in the same form) to make sure the submit action will
receive the contents even from fields that are marked as disabled.

Next, the other <button> elements are adorned with an appropriate icon and to any text or
password <input> element we add a textinput class to mark it for the tooltip library.

In the second highlighted line, we encounter jQuery UI's datepicker widget. The datepicker
widget greatly simplifies entering dates for the user and is now more or less a staple item
in any web application or website that asks the user to enter a date. jQuery UI's datepicker
is very straightforward to use, yet comes with a host of configuration options (all of them
documented at http://jqueryui.com/demos/datepicker/).

We use the dateFormat option to configure the datepicker to store dates as YYYY-MM-DD.
Datepicker has a number of predefined formats and this one happens to be an international
standard as well as a suitable format to sort dates in a simple way. We also configure the
datepicker to call a function when the user closes the datepicker. This function removes any
inline-label class, preventing the newly entered date to appear in the colors associated
with any inline label (as we see later, when we look at tasklist.css, we style the colors of
any element with an inline-label class in a distinct way).

Earlier, we indicated that we wanted to present the list of tasks ordered by their due date.
We therefore apply the sort() plugin from sort.js to all <input> elements with a
duedate class. sort() takes two arguments. The first one is a comparison function that is
passed two elements to compare. In our case, that will be <input> elements that contain
a date in the YYYY-MM-DD format, so we can simply compare the values of these elements
as text and return plus or minus one. The second argument is a function that takes no
arguments and should return the element to be sorted. The input element with the due
date is available as the this variable within this function and we use it to return the parent
of the input element. This parent will be the <form> element that encloses it and because
we represent each task as a form, we want those forms to be sorted, not just the <input>
elements inside these forms.

The last set of actions in tasklist.js adds a disabled attribute to any <input> element
within an element that has a done class and disables any done button. This will ensure that
tasks marked as done cannot be altered:

Chapter3/tasklist.js

$(document).ready(function(){
 $(".header").addClass("ui-widget ui-widget-header");

 $(".add-button").button(
 {icons:{primary: 'ui-icon-plusthick' },

Chapter 3

[85]

 text:false}).click(function(){
 $(".inline-label").each(function() {
 if($(this).val() === $(this).attr('title')) {
 $(this).val('');
 };
 })
 });

 $(".del-button").button(
 {icons:{primary: 'ui-icon-trash' },
 text:false}).click(function(){
 $(this).siblings("input").removeAttr("disabled");
 });

 $(".done-button").button({icons: {primary:'ui-icon-check'},
 text:false});
 $(".logoff-button").button({icons: {primary:'ui-icon-closethick'},
 text:false});
 $(".login-button").button({icons: {primary:'ui-icon-play'},
 text:false});
 $(":text").addClass("textinput");
 $(":password").addClass("textinput");

 $(".editable-date").datepicker({
 dateFormat: $.datepicker.ISO_8601,
 onClose: function(dateText,datePicker){
 if(dateText != ''){$(this).removeClass("inline-label");}}
 });

 $("#items form input.duedate").sort(
 function(a,b){return $(a).val() > $(b).val() ? 1 : -1;},
 function(){ return this.parentNode; }).addClass(
 "just-sorted");

 $(".done .done-button").button("option", "disabled", true);
 $(".done input").attr("disabled","disabled");

});

JavaScript: tooltip.js
tooltip.js is a bit of a misnomer as its most interesting part is not about tooltips but
inline labels. Inline labels are a way to convey helpful information not by means of a hovering
tooltip, but by putting text inside text input elements. This text then disappears when the
user clicks the input field and starts typing. There are many implementations to be found on
the web, but the most clear and concise one I found is from http://trevordavis.net/
blog/tutorial/jquery-inline-form-labels/.

http://trevordavis.net/blog/tutorial/jquery-inline-form-labels/
http://trevordavis.net/blog/tutorial/jquery-inline-form-labels/

Tasklist I: Persistence

[86]

Time for action – implementing inline labels
Take a look again at the screenshot of the list of tasks:

The highlighted parts show what we mean by inline labels. The input fields display some
helpful text to indicate their use and when we click such a field, this text will disappear and
we can enter our own text. If we abort the input by clicking outside the input field when we
have not yet entered any text, the inline label is shown again.

What just happened?
tooltip.js shows a number of important concepts: First how to apply a function to each
member of a selection (highlighted). In this case, we apply the function to all <input>
elements that have a title attribute. Within the function passed to the each() method,
the selected <input> element is available in the this variable. If the content of an
<input> element is completely empty, we change its content to that of the title attribute
and add the class inline-label to the <input> element. That way, we can style the text
of an inline label differently than the regular input text if we like, for example, a bit lighter to
make it stand out less.

The second concept shown is binding to the focus and blur events. When the user clicks an
<input> element or uses the Tab key to navigate to it, it gains focus. We can act upon this
event by passing a function to the focus() method. In this function, the <input> element
that gains focus is again available in the this variable and we check if the content of this
<input> element is equal to the content of its title attribute. If this is true, the user
hasn't yet changed the content, so we empty this element by assigning an empty string to it
(highlighted).

Chapter 3

[87]

The same line shows another important concept in jQuery, that of chaining. Most jQuery
methods (like val() in this example) return the selection they act upon, allowing additional
methods to be applied to the same selection. Here we apply removeClass() to remove the
inline-label class to show the text the user is typing in the regular font and color for this
<input> element.

We also act on losing focus (commonly referred to as blurring), for example, when the user
clicks outside the <input> element or uses the Tab key to navigate to another element. We
therefore pass a function to the blur() method. This function checks whether the content of
the <input> element is empty. If so, then the user hasn't entered anything and we insert the
content of the title attribute again and mark the element with an inline-label class.

Chapter3/tooltip.js

$(document).ready(function() {
 $('input[title]').each(function() {
 if($(this).val() === '') {
 $(this).val($(this).attr('title'));
 $(this).addClass('inline-label');
 }

 $(this).focus(function() {
 if($(this).val() === $(this).attr('title')) {
 $(this).val('').removeClass('inline-label');
 }
 });

 $(this).blur(function() {
 if($(this).val() === '') {
 $(this).val($(this).attr('title'));
 $(this).addClass('inline-label');
 }
 });
 });
});

CSS: tasklist.css
Without some additional styling to tweak the layout, our tasklist application would look a bit
disheveled, as seen before.

Our main challenges are aligning all columns and moving all buttons consistently to the
right. All elements in our HTML markup that make up the columns are marked with a class to
indicate that they belong in the left, middle, or right column. All we have to do to align these
columns is to set their width based on their class (highlighted).

Tasklist I: Persistence

[88]

The largest part of the rest of tasklist.css is concerned with either floating elements to
the right (like buttons) or to the left (containers, like the <div> element with the id attribute
content). Most containers are not only floated to the left, but also explicitly set to a width of
100 percent to make sure they fill the element they are contained in themselves. This is not
always necessary to position them correctly, but if we do not take care, the background color of
the enclosing element might show if an element doesn't fill its enclosing element:

Chapter3/tasklist.css

input[type="text"] {
 font-size:1.1em;
 margin:0;
 border:0;
 padding:0;}

.left, .right { width: 8em; }

.middle { width: 20em;}

form {
 float:left;
 border:0;
margin:0;
padding:0;
 clear:both;
 width:100%; }

form.logoff{
float:right;
 border:0;
margin:0;
padding:0;
 clear:both;
width:auto;
 font-size:0.5em;}

#items { float:left; clear:both; width:100%; }

.header { width:100%; }

.taskheader, .header, #content{ float:left; clear:both;}

.taskheader div { float:left; font-size:1.1em; font-weight:bold;}

.logoff-button, .done-button, .del-button, .add-button { float:right;}

.done-button, .add-button, .del-button { width: 6em; height: 1.1em; }

#content { min-width:900px;}

Note that our stylesheet only deals with measurements and font sizes. Any coloring is
applied by the chosen jQuery UI theme. With the styles applied, the application looks a fair
bit tidier:

Chapter 3

[89]

Pop quiz – styling screen elements
1. In tasklist.js, we explicitly configured all buttons to show just an icon without

any text. But what if we wanted to show both an icon and some text, what would
we do?

2. If we didn't set the width of the form that makes up a task explicitly to 100 percent,
what would the biggest disadvantage be?

Have a go hero – changing the date format of a datepicker
To display the date as ISO 8701 (or YYYY-MM-DD) isn't everybody's idea of a readable date
format. For many people, the default mm/dd/yy is far more readable. How would you
change tasklist.js to display the tasks with this default date format? Hint: it isn't enough
to leave out the dateFormat option when calling the datepicker() plugin, you also need
to change the comparator function to sort the tasks in a suitable manner.

For the impatient or curious readers: a sample implementation is available as tasklist2.
js (start up tasklist2.py to see the effect).

Have a go hero – serving a task list from a different URL
One way to measure how reusable a piece of code is, is by using it in a situation that you did
not yet have in mind when you designed it. Of course, that doesn't mean our task module
should be able to function as a control application for an automobile construction plant,
but what if we would like it to be part of a larger suite of applications served from the same
root? Would we have to change anything?

Say we want to serve the tasklist application from the URL /apps/task instead of /task,
what would we have to change?

Hint: In CherryPy, you can create a tree of URLs by assigning object instances to class
variables of the object instance that is passed to the quickstart() method.

A possible implementation can be found in tasklistapp.py.

Tasklist I: Persistence

[90]

Summary
We have learned a lot in this chapter about session management and storing persistent
information on the server. Specifically, we saw how to design a tasklist application and
implement a logon screen. What a session is and how this allows us to work with different
users at the same time and how to interact with the server, and add or delete tasks. We also
learned how to make entering dates attractive and simple with jQuery UI's datepicker widget
and how to style button elements and provide tooltips and inline labels to input elements.

Now that you know a little bit more about storing data on the server, you might wonder if
storing information in plain files on the server filesystem is the most convenient solution. In
many cases, it isn't and a database might be more suitable—which is the topic of the next
chapter.

4
Tasklist II: Databases and AJAX

In this chapter, we will refactor our tasklist application. It will use a database
engine on the server to store items and will use jQuery's AJAX functionality to
dynamically update the contents of the web application. On the server side,
we will learn how to use Python's bundled SQLite database engine. On the
presentation side, we will encounter jQuery UI's event system and will learn
how to react to mouse clicks.

In this chapter, we shall:

 � Learn some benefits of using a database engine

 � Get familiar with SQLite, a database engine distributed with Python

 � Implement a password database with SQLite

 � Learn how to design and develop a database-driven tasklist application

 � Implement a test framework

 � Learn how to make a web application more responsive using AJAX calls

 � See how to implement interactive applications without <form> elements

So let's get on with it...

Tasklist II: Databases and AJAX

[92]

The advantages of a database compared to a filesystem
Storing records on a filesystem as separate files might be simple but does have several
drawbacks:

 � You have to define your own interface for accessing these files and parsing their
contents. This is much more serious than it may sound because it compels you to
develop and test a lot of specific functionality that you would otherwise get more or
less for free from an existing library

 � Accessing single files is much slower than selecting records from a table in a
database. That might be workable as long as you know which record you want (as is
the case in our tasklist application) but it certainly isn't workable when you want to
select records based on the value of some attribute. This would necessitate opening
each and every file and checking whether some attribute matches your criteria. On a
data collection of hundreds of items or more, this would be prohibitively slow

 � Also, it is difficult to implement transactions. If we want to guarantee that a set of
actions will either be successful as a whole or will be rolled back if some part of it
doesn't succeed, we will have to implement very sophisticated code ourselves if we
want to use files on a filesystem

 � When using files on a filesystem, it is a nuisance to define and maintain relations
between records, and although our tasklist application is about as simple as it
gets, almost any other application has more than one logical object and relations
between them, so this is a serious issue.

Choosing a database engine
There are many database engines available that can be accessed from Python, both
commercial and open source (http://wiki.python.org/moin/DatabaseInterfaces).
Choosing the right database is not a trivial task as it might not only depend on functional
requirements, but also on performance, the available budget, and hard to define
requirements like easy maintenance.

In the applications we develop in this book, we have chosen to use the SQLite database
engine (http://www.sqlite.org) for a number of reasons. First, it is free and included in
Python's standard distribution. This is important for people writing books because it means
that everyone who is able to run Python has access to the SQLite database engine as well.
However, this is not a toy database: as a matter of fact, SQLite is a database that is used in
many smartphones and high-profile applications like Firefox to store things like configurations
and bookmarks. Furthermore, it is reliable and robust and, on top of that, quite fast.

It does have some drawbacks as well: first of all, it uses its own dialect of SQL (the language
used to interact with the database) but to be fair, most database engines use their own dialect.

Chapter 4

[93]

More seriously, the focus of SQLite is on embedded systems, the most visible consequence
of that is that it doesn't have facilities to limit user access to a subset of tables and columns.
There is just a single file on the filesystem that holds the contents of the database and the
access rights to the file are determined by the filesystem on which it resides.

The final issue is not so much a drawback as a point of serious attention: SQLite does not
enforce types. In many databases, the type defined for column determines rigidly what you
can store in that column. When a column is defined as an INTEGER, the database engine, in
general, won't allow you to store a string or a boolean value, whereas, SQLite does. This isn't as
strange as it sounds once you compare it with the way Python manages variables. In Python, it
is perfectly valid to define a variable and assign an integer to it, and later assign a string to the
same variable. A variable in Python is just like a column in SQLite; it is just a pointer to a value
and that value is not simply the value itself but also has an explicitly associated type.

The combination of availability, reliability, and a type system closely resembling Python's native
way of dealing with values makes SQLite a very suitable database engine in many applications,
although specific applications may have requirements that may be better served by other
database engines, like PostgreSQL or MySQL. The latter might be an attractive alternative if
your application will run on a web server that already provides MySQL.

Database-driven authentication
Before we start designing a database-driven tasklist application, let's first familiarize
ourselves with SQLite in the context of a seemingly much simpler set of requirements:
storing username/password combinations in a database and refactoring the Logon class to
interact with this database.

The functional requirements are deceptively simple: to verify whether a username/password
combination is valid, all we have to do is verify that the username/password combination
given is present in the table of usernames and passwords. Such a table consists of two
columns, one named username and the other named password. As it is never a good
idea to store a collection of passwords in plaintext, we encrypt the passwords with a hash
function so even if the password database is compromised, the bad guys will have a difficult
time retrieving the passwords. This means, of course, that we have to hash a given password
with the same hash function before comparing it to the stored password for the username
but that doesn't add much complexity.

Tasklist II: Databases and AJAX

[94]

What does add complexity is the fact that CherryPy is multi-threaded, meaning that
CherryPy consists of multiple lightweight processes accessing the same data. And although
the developers of SQLite maintain the opinion that threads are evil (http://www.sqlite.
org/faq.html#q6), threads make perfect sense in situations where a lot of time in the
application is spent on waiting. This certainly is the case in web applications that spend a lot
of time waiting for network traffic to complete, even in this time of broadband connections.
The most effective way of using this waiting time is to enable a different thread to serve
another connection so more users might enjoy a better interactive experience.

Hash functions (or Cryptographic hash functions to be more specific) convert any
input string to an output string of limited length in such a way that it is very unlikely
that two input strings that are different produce the same output. Also, conversion
from input to output is a one way operation or at least it will cost a large amount
of computing power to construct the input from the output. There are many useful
hash functions known, the most popular ones are available in Python's hashlib
module. The specific hash function we use here is called SHA1.

More about hashing can be found in the Python documentation at
http://docs.python.org/py3k/library/hashlib.html,
or on Wikipedia at http://en.wikipedia.org/wiki/
Cryptographic_hash_function.

However, in SQLite, the connection object cannot be shared among threads. This doesn't
mean that that we cannot use SQLite in a multi-threaded environment (despite the evilness
of threads), but it does mean we have to make sure that if we want to access the same
SQLite database from different threads, each thread must use a connection object that is
exclusively created for that thread.

Fortunately, it is quite easy to instruct CherryPy to call a function the moment it starts a new
thread and let that function create a new connection to our database, as we will see in the
next section. If we would employ many different threads, this might be wasteful because the
connection objects use some memory, but with a few tens of threads this doesn't pose much
of a problem (The default number of threads in CherryPy is 10 and can be configured with
the server.thread_pool configuration option). If the memory consumption is a problem,
there are alternative solutions available, for example, in the form of a separate worker
thread that handles all database interaction or a small pool of such threads. A starting point
for this might be http://tools.cherrypy.org/wiki/Databases.

Time for action – authentication using a database
To illustrate how to use database-driven user authentication, run logondbapp.py. It will
present you with a logon screen very similar to the one shown in the previous chapter. You
may enter the built-in username/password combination of admin/admin, after which you
will be presented with a welcoming page.

http://docs.python.org/py3k/library/hashlib.html
http://docs.python.org/py3k/library/hashlib.html

Chapter 4

[95]

In order to make this mini application work with the database-driven version of user
authentication, all we have to do is replace the reference to an instance of the Logon class to
one of the LogonDB class, as highlighted in the following code (the full code is available as
logondbapp.py):

Chapter4/logondbdb.py

import cherrypy

import logondb

class Root(object):

 logon = logondb.LogonDB(path="/logon", authenticated="/", not_
authenticated="/goaway", db="/tmp/pwd.db")

 @cherrypy.expose
 def index(self):
 username=Root.logon.checkauth('/logon')
 return '<html><body><p>Hello user %s</p></body></
html>'%username

 @cherrypy.expose
 def goaway(self):
 return '<html><body><h1>Not authenticated, please go away.</h1></
body></html>'
 goaway._cp_config = {'tools.expires.on':True,'tools.expires.
secs':0,'tools.expires.force':True}

 @cherrypy.expose
 def somepage(self):
 username=Root.logon.checkauth('/logon',returntopage=True)
 return '<html><body><h1>This is some page.</h1></body></html>'

if __name__ == "__main__":

 import os.path
 current_dir = os.path.dirname(os.path.abspath(__file__))

 root = Root()

 def connect(thread_index):
 root.logon.connect()

 cherrypy.engine.subscribe('start_thread', connect)

 cherrypy.quickstart(root,config={ ... })

Another important difference with the previous implementation is the highlighted definition
of a connect() function that should be called for each new thread that is started by
CherryPy. It calls the connect() method of the LogonDB instance to create a database
connection object unique for a given thread. We register this function with the cherrypy.
engine.subscribe() function and make it call our connect() function at the start of
each new thread CherryPy starts.

Tasklist II: Databases and AJAX

[96]

What just happened?
The database-centered version of our Logon class, LogonDB inherits a lot from Logon.
Specifically, all HTML-related logic is reused. LogonDB does override the __init__()
method to store a path to a database file and makes sure the database is initialized using the
initdb() method, if it does not yet exist (highlighted). It also overrides the checkpass()
method because this method must now verify the existence of a valid username/password
pair against a database table.

Chapter4/logondb.py

import logon
import sqlite3
from hashlib import sha1 as hash
import threading
import cherrypy

class LogonDB(logon.Logon):
 def __init__(self,path="/logon", authenticated="/", not_
authenticated="/", db="/tmp/pwd.db"):
 super().__init__(path,authenticated,not_authenticated)
 self.db=db
 self.initdb()

 @staticmethod
 def _dohash(s):
 h = hash()
 h.update(s.encode())
 return h.hexdigest()

 def checkpass(self,username,password):
 password = LogonDB._dohash(password)
 c = self.data.conn.cursor()
 c.execute("SELECT count(*) FROM pwdb WHERE username = ? AND
password = ?",(username,password))
 if c.fetchone()[0]==1 :return True
 return False

 def initdb(self):
 conn=sqlite3.connect(self.db)
 c = conn.cursor()
 c.execute("CREATE TABLE IF NOT EXISTS pwdb(username unique not
null,password not null);")
 c.execute('INSERT OR IGNORE INTO pwdb
VALUES("admin",?)',(LogonDB._dohash("admin"),))
 conn.commit()
 conn.close()
 self.data=threading.local()

Chapter 4

[97]

 def connect(self):
 '''call once for every thread as sqlite connection objects cannot
be shared among threads.'''
 self.data.conn = sqlite3.connect(self.db)

The definition of the database consists of a single table pwdb that is defined in the
highlighted line (and only if that table does not yet exist). The pwdb table consists of two
columns, namely, username and password. By marking both columns as not null, we
ensure that we cannot enter empty values in any of them. The username column is also
marked as unique because a username may only occur once. This database schema of a
single table can be depicted in the following diagram where each column has a header with
a name and several lines that list the attributes of a certain column (as our database design
gets more elaborate, we will rely more on these diagrams and less on a detailed expose of
the SQL code):

Pwdb

Username password

not null

unique

not null

Anyone familiar with other dialects of SQL might have noticed that the column
definitions lack any kind of type. This is deliberate: SQLite allows us to store any
kind of value in a column, just as Python allows us to store any kind of value in a
variable. The type of the value is directly associated with the value, not with the
column or variable. SQLite does support the notion of affinity or preferred type
and we will encounter that in other tables we will create in this book.

Besides creating a table, if needed (in the initdb() method, highlighted), we also initialize
it with a username/password combination of admin/admin if the admin username is not yet
there. If it is, we leave it as it is because we do not want to reset an altered password, but we
do want to make sure that there is an admin username present. This is accomplished by the
insert or ignore statement because the insert of an admin username into a table that
already contains one would fail because of the unique constraint. Adding the non standard
or ignore clause will ignore such an occurrence, in other words, it will not insert a new
record with a username of admin if it is already there.

The insert statement also illustrates that we store passwords not as plaintext, but as
hashed values (that are extremely hard to convert back to plaintext again). The hash method
we use here is SHA1 and is imported as hash() from Python's hashlib module. The
conversion from plaintext is handled by the _dohash() static method (marked as private
by leading underscore in its name but note that in Python, this is a convention only, as there
really aren't any private methods).

Tasklist II: Databases and AJAX

[98]

The way we store passwords in this example is still not safe enough for
production environments, but implementing a more secure solution is
out of scope for this book. I strongly suggest reading http://www.
aspheute.com/english/20040105.asp for more on this subject.

The initdb() method also takes care of creating an object that can be used to store data
that is local to a thread with the threading.local() function. Because, normally, all
data in threads is shared, we have to use this function to create a place to store a database
connection object that is different for each thread. If we were to store such a connection
object in a global variable, each thread would have access to the same database connection
and this is not allowed in SQLite.

The fact that we store passwords as hashed values implies that checking username/password
combinations necessarily involves converting a plaintext password as well before it can be
checked for existence. This is implemented in the checkpass() method (highlighted). The
password argument is converted with the _dohash() method before being passed to the
execute() method.

The SQL statement itself then counts the number of rows in the pwdb table that contain
the given username and (hashed) password and retrieves the result. The result is a single
row containing a single value, the number of matching rows. If this is one, we have a valid
username/password combination, otherwise we don't. We do not discriminate between
the cases where the username is unknown or whether there is more than a single row
containing the same username. This is because the latter situation is unlikely to happen
because of the unique constraint on the username column.

Have a go hero – adding new username/passwords
Our LogonDB class does not yet have a method to add a new username/password
combination to the database. How would you implement one?

Hint: You need to provide both an exposed method that offers a page with a form where one
can enter a new username and password and a method that may act as an action attribute in
a <form> element and that is passed the username and password as parameters.

Note that this method has to check not only that the user is authenticated but also that the
user that adds the new username/password is the admin, otherwise everyone could add
new accounts! A sample implementation is already provided in logondb.py.

http://www.aspheute.com/english/20040105.asp
http://www.aspheute.com/english/20040105.asp

Chapter 4

[99]

Tasklist II – storing tasks in a database
Now that we have seen how we may use a database engine to store persistent data and how
to access this data from a CherryPy application, let's apply this new knowledge to the tasklist
application we designed in the previous chapter. Of course, there is more to an application
than storing data and we will also revamp the user interface in order to make it more
responsive and slightly simpler to maintain.

Improving interactivity with AJAX
When you look at the difference between applications that are standalone on a PC versus a
web application, you might notice few differences at a first glance. However, if you look more
closely, there is a major difference: In the standalone application when something changes in
the display, only those onscreen elements are redrawn that are actually modified.

In traditional web pages, this is completely different. Clicking a button that changes the sort
order of a list, for example, might not only retrieve and redraw that list again, but would
retrieve a complete page, including all side bars, navigation headers, advertisements, and
what not.

If that unmodified content is slow to retrieve over the internet, the whole web page might
feel sluggish, even more so if the whole webpage is waiting for the arrival of the last piece of
information to display itself in its full glory. When web pages evolved to mimic applications,
this difference in the interactive experience quickly became a nuisance and people started
thinking about solutions.

One of the most prominent of those solutions is AJAX. It's an abbreviation for asynchronous
JavaScript and XML, that is, a method to retrieve data by using the browser's built-in
JavaScript capabilities. Nowadays, every browser supports AJAX and the jQuery library
smoothes out most browser inconsistencies. The XML part in the name is no longer relevant
as the data that might be retrieved with an AJAX call might be just about anything: besides
XML and its close cousin HTML, JavaScript Object Notation (JSON) is a popular format
to transmit data that might be processed even more simply than XML by the JavaScript
interpreter in the browser.

The asynchronous bit in the AJAX name is still relevant, however: most AJAX calls that retrieve
data return immediately without waiting for the result. However, they do call a function when
the data retrieval is complete. This ensures that other parts of the application are not stalled
and that the overall interactive experience of the web application can be improved.

Tasklist II: Databases and AJAX

[100]

Time for action – getting the time with AJAX
Enter the following code and run it. If you point your web browser to the familiar
http://localhost:8080 address, you will see something similar to the picture below
with the time changing every five seconds or so. (The code is also available as timer.py)

What just happened?
Our small CherryPy application offers just two methods (both highlighted in the code). The
index() method returns a minimalistic HTML page with some static text and a small piece
of JavaScript that takes care of retrieving the current time from the server. It also features a
time() method that simply returns the current time as plain text.

Chapter4/timer.py

import cherrypy
import os.path
from time import asctime

current_dir = os.path.dirname(os.path.abspath(__file__))

class Root(object):

 @cherrypy.expose
 def index(self):
 return '''<html>
 <head><script type="text/javascript" src="/jquery.js" ></script></
head>
 <body><h1>The current time is ...</h1><div id="time"></div>
 <script type="text/javascript">
 window.setInterval(function(){$.ajax({url:"time",cache:false,succe
ss:function(data,status,request){
 $("#time").html(data);
 }});},5000);
 </script>
 </body>
 </html>'''

 @cherrypy.expose
 def time(self,_=None):
 return asctime()

cherrypy.quickstart(Root(),config={

Chapter 4

[101]

 '/jquery.js':
 { 'tools.staticfile.on':True,
 'tools.staticfile.filename':os.path.join(current_
dir,"static","jquery","jquery-1.4.2.js")
 }
 })

The magic is in that small piece of JavaScript (highlighted). This script is executed once
the static page is loaded and it calls the setInterval() method of the window object.
The arguments to the setInterval() method are an anonymous function and a time
interval in milliseconds. We set the time interval to five seconds. The function passed to
setInterval() is called at the end of each interval.

In this example, we pass an anonymous function to setInterval() that relies on jQuery's
ajax() function to retrieve the time. The ajax() function's only argument is an object that
may contain numerous options. The url option tells which URL to use to retrieve the data
from, in this case, the relative URL time (relative to the page that serves the content the
script is embedded in, /, so it actually refers to http://localhost:8080/time).

The cache option is set to false to prevent the browser from using a cached result
when instructed to get the time URL it has seen already. This is ensured by the underlying
JavaScript library by appending an extra _ parameter (that is the name of this parameter
which consists of a single underscore) to the URL. This extra parameter contains a random
number, so the browser will regard each call as a call to a new URL. The time() method is
defined to accept this parameter because otherwise CherryPy would raise an exception, but
the contents of the parameter are ignored.

The success option is set to a function that will be called when the data is successfully
received. This function will receive three arguments when called: the data that was retrieved
by the ajax() function, the status, and the original request object. We will only use the
data here.

We select the <div> element with the time ID and replace its contents by passing the data
to its html() method. Note that even though the time() method just produces text, it
could just as easily have returned text containing some markup this way.

We explicitly instructed the ajax() function not to cache the result of the query, but
instead we could also decorate our time() method with CherryPy's expires tool. This
would instruct the time() method to insert the correct http headers in response to instruct
the browser not to cache the results. This is illustrated in the following code (available in
timer2.py):

@cherrypy.tools.expires(secs=0,force=True)
 @cherrypy.expose
 def time(self,_=None):
 return asctime()

http://localhost:8080/time

Tasklist II: Databases and AJAX

[102]

Using the @cherrypy.tools.expires decorator means we do not have to instruct the
ajax() method not to cache the result, which gives us the option to use a shortcut method.
The JavaScript code may then be rewritten to use jQuery's load() method, shown as
follows:

 <script type="text/javascript">
 window.setInterval(function(){$("#time").load("time");},5000);
 </script>

The load() method is passed the URL where it will retrieve the data and, upon success, will
replace the contents of the selected DOMelement with the data it received.

jQuery provides many AJAX shortcut methods and all these methods share a
common set of defaults that may be set using the ajaxSetup() function. For
example, to make sure all AJAX methods will not cache any returned result, we
could call it like this: $.ajaxSetup({cache:false});

Redesigning the Tasklist application
The tasklist application will consist of two parts: an authentication part for which we will
reuse the LogonDB class and new TaskApp class. The TaskApp class will implement the
methods necessary to deliver the page with an overview of all tasks for the authenticated
user plus additional methods to respond to AJAX requests.

Instead of a filesystem, SQLite will be used to store the tasks for all users. Note that this is
a separate database from the one used to store usernames and passwords. Such a setup
allows us to keep the authentication functionality separate from other concerns, allowing
for easier reuse. Once the user is authenticated, we do, of course, use his/her username to
identify the tasks belonging to him/her.

Access to the task database will be encapsulated in a tasklistdb module. It provides
classes and methods to retrieve, add, and modify tasks for a given user. It is not concerned
with checking access permission, as this is the responsibility of the TaskApp class. You can
picture this separation as a two layer model, the top layer checking user credentials and
serving content, and the bottom layer actually interfacing with a database.

Chapter 4

[103]

Database design
The design of our task database (the database schema) is very straightforward. It consists of
a single table, which contains columns to define a task.

Task

task_id description duedate completed user_id

integer

primary key

autoincrement

Most columns do not have a specific type defined, as SQLite will let us store anything in a
column. Furthermore, most columns do not have special constraints except for the task_id
column that we designate to be the primary key. We do explicitly type the task_id column
as an integer and designate it as autoincrement. This way, we do not have to set the value
of this column explicitly, but a new unique integer will be inserted for us every time we add a
new task to the table.

Time for action – creating the task database
First, let us take some time to familiarize with the steps necessary to create a new database
from Python.

Tasklist II: Databases and AJAX

[104]

Enter the following code and run it (It is also available as taskdb1.py).

Chapter4/taskdb1.py

import sqlite3

database=':memory:'

connection = sqlite3.connect(database)

cursor=connection.executescript('''
create table if not exists task (
 task_id integer primary key autoincrement,
 description,
 duedate,
 completed,
 user_id
);
''')
connection.commit()

sql = '''insert into task (description,duedate,completed,user_id)
values(?,?,?,?)'''
cursor.execute(sql,('work' ,'2010-01-01',None,'alice'))
cursor.execute(sql,('more work' ,'2010-02-01',None,'alice'))
cursor.execute(sql,('work' ,'2010-03-01',None,'john'))
cursor.execute(sql,('even more work','2010-04-01',None,'john'))

connection.commit()

connection.close()

It will create a temporary database in memory and defines a task table. It also populates this
table with a number of tasks using INSERT statements.

What just happened?
After establishing a connection to the database, the first task is to create the task table
(highlighted). Here we use the executescript() method of the connection object,
because this method allows us to pass more than one SQL statement in one go. Here our
database schema consists of a single create statement so the execute() method would
do just as well, but normally when creating a database, we create a number of tables and
then passing all necessary SQL statements together is very convenient.

When you look at the create statement, you may notice it features a if not exists
clause. This is completely redundant in this example because a freshly opened in-memory
database is always empty, but should our database reside on disk, it might contain all the
tables we want already. Once we have created the table, we commit our changes to the
database with the commit() method.

Chapter 4

[105]

The second highlighted line shows how we may create an insert statement that will insert
new records in the task table. The values we will insert are placeholders, each represented
by a question mark. In the next four lines, we execute this insert statement and supply a
tuple of values that will be inserted in place of those placeholders.

Time for action – retrieving information with select statements
In SQL, the select statement can be used to retrieve records from a database. How would
you express a query to retrieve all tasks belonging to the user john?

Answer: select * from task where user_id = 'john'

We may implement this in Python as follows (only relevant lines shown, complete
implementation is available as taskdb2.py):

Chapter4/tasktdb2.py

connection.row_factory = sqlite3.Row

sql = """select * from task where user_id = 'john'"""
cursor.execute(sql)
tasks = cursor.fetchall()
for t in tasks:
 print(t['duedate'],t['description'])

What just happened?
The first line in the code is normally placed just after establishing a connection to the
database and ensures that any row returned from a fetchone() or fetchall() method
are not plain tuples, but sqlite3.Row objects. These objects behave just like tuples, but
their fields can be indexed by the name of the column they represent as well.

The query is executed by passing it to the execute() method of the cursor attribute
(highlighted) and the results are then retrieved with the fetchall() method that will
return a list of tuples, each tuple representing a matching record, its elements equal to the
columns. We print some of those elements by indexing the tuples with the column names
we are interested in.

When taskdb2.py is run, the output will show a list of task records, each with a date
and a description:

C:\Tasklist II>python taskdb2.py
2010-03-01 work
2010-04-01 even more work

Tasklist II: Databases and AJAX

[106]

Pop quiz – using variable selection criteria
Most of the time we would like to pass the user_id to match as a variable. As we saw
in the insert statements used in taskdb1.py, it is possible to construct a query using ?
as placeholders. This way, we could pass a variable containing a user_id to the execute
method. How would you refactor the code to select all records for a user whose user_id is
contained in the variable username?

TaskDB – interfacing with the database
Now we are ready to take on the real implementation of the database interface needed for
the tasklist application.

The database interface layer will have to provide functionality to initialize a database and
to provide thread-safe ways to create, retrieve, update, and delete tasks (collectively, often
called CRUD) as well as list all tasks for a given user. The code to do this is contained in two
classes, Task and TaskDB (both available in tasklistdb.py). TaskDB encapsulates the
connection to the database and contains code to initialize the database as well as methods
to retrieve a selection of tasks and to create new tasks. These tasks are implemented as
instances of the Task class and a Task instance may be updated or deleted.

Time for action – connecting to the database
Let's first have a look at the TaskDB class. It consists of a constructor __init__() that
takes the filename where the database will reside as a parameter. It calls a private method to
initialize this database, and like the LogonDB class, creates some storage to hold connection
objects for each thread (highlighted). It also defines a connect() method that should be
called once for each thread and stores a thread-specific connection object. It also sets the
row_factory attribute of the connection to sqlite3.Row. This causes the tuples returned
by, for example, fetchall() to have their fields named after the columns they represent.
This makes sense as t['user_id'] is a lot more self documenting than t[1], for example.

Chapter4/tasklistdb.py

class TaskDB:

 def __init__(self,db):
 self.data = threading.local()
 self.db = db
 self._initdb()

 def connect(self):
 '''call once for every thread'''
 self.data.conn = sqlite3.connect(self.db)
 self.data.conn.row_factory = sqlite3.Row

Chapter 4

[107]

What just happened?
The code for the __init__() method did not initialize any table in the database itself,
but delegated this to the _initdb() method. This method starts with an underscore so
it is private by convention (but by convention only). It is meant to be called just from __
init__() and initializes the database, if necessary. It opens a connection to the database
and executes a multiline statement (highlighted). Here we use create if not exists to
create the task table, but only if it is not already present. So if we start the application for
the first time, the database will be completely empty and this statement will create a new
table named task. If we start the application again later, this statement will not do anything.
Before closing the connection, we commit our changes.

Chapter4/tasklistdb.py

 def _initdb(self):

 '''call once to initialize the metabase tables'''
 conn = sqlite3.connect(self.db)

 conn.cursor().executescript('''
 create table if not exists task (
 task_id integer primary key autoincrement,
 description,
 duedate,
 completed,
 user_id
);
 '''
)
 conn.commit()
 conn.close()

Time for action – storing and retrieving information
The final part of the TaskDB class defines three methods, create() that will create a
completely new Task instance, retrieve() that will fetch a task from the task table given
a task_id and return it as a Task instance, and list() that will return a list of task_ids
for a given user.

We separated retrieve() and list() because retrieving an object complete with all
its attributes might be quite expensive and not always needed. For example, if we were to
select a list with thousands of tasks, we would likely display them as a page of about twenty
tasks each. If we were to retrieve complete information for all those tasks, we might have
to wait a while, so we might choose to instantiate only a first page-full of them and fetch
the rest on an as-needed basis as the users step through the pages. We will encounter this
pattern a few more times in this book.

Tasklist II: Databases and AJAX

[108]

The create() method itself simply passes on all parameters to the Task constructor
together with the thread local storage that holds the database connection. It returns the
resulting Task instance.

The retrieve() method takes the username and the ID of the task to retrieve. The
username is taken as a sanity check, but not strictly necessary. If a record is found that
matches both the task_id and the username, a Task instance is created and returned
(highlighted). If no such record could be found, a KeyError exception is raised.

The list() method returns a list of task_ids for a given user. It constructs this list from
the list of tuples returned by taking the first (and only) item from each tuple (highlighted).

Chapter4/tasklistdb.py

 def create (self, user=None, id=None, description='', duedate=None,
completed=None):
 return Task(self.data, user=user, id=id, description=description,
duedate=duedate, completed=completed)

 def retrieve(self, user,id):
 sql = """select * from task where task_id = ? and user_id = ?"""
 cursor = self.data.conn.cursor()
 cursor.execute(sql,(id,user))
 tasks = cursor.fetchall()
 if len(tasks):
 return self.create(user, tasks[0]['task_id'], tasks[0]
['description'], tasks[0]['duedate'], tasks[0]['completed'])
 raise KeyError('no such task')

 def list(self,user):
 sql = '''select task_id from task where user_id = ?'''
 cursor = self.data.conn.cursor()
 cursor.execute(sql,(user,))
 return [row[0] for row in cursor.fetchall()]

The constructor for Task takes a number of optional parameters together with a mandatory
username and a taskdb parameter that point to the thread local data that holds the database
connections. If the duedate parameter is not given, it assigns it the date of today (highlighted).

What just happened?
The construction of Task instances in the previous code deserves a closer look. Based on the
value of the id parameter, the constructor can do two things.

If the id is known, this Task instance is constructed based on data just retrieved from a
database query so there is nothing more to be done as all parameters are already stored as
instance variables.

Chapter 4

[109]

However, if id is not given (or None), we apparently are creating a completely new Task
that is not already present in the database. Therefore, we have to insert it into the task table
using an insert statement (highlighted).

We do not pass a new task_id as a value to this insert statement, but one will be
created for us because we defined the task_id column as integer primary key
autoincrement. This generated number is available from the cursor's lastrowid attribute
and we store that for later reuse. All this is quite SQLite-specific, for more information, refer
to the information box.

Only an integer primary key column can be defined as autoincrement and only an
integer primary key autoincrement column will mapped to the internal rowid column
(and that is not even a real column). All this is very useful, but also quite SQLite-specific. More
information on this subject can be found on the SQLite FAQ at http://www.sqlite.org/faq.
html and in the section on rowid in the SQL reference at http://www.sqlite.org/lang_
createtable.html#rowid.

Chapter4/tasklistdb.py

class Task:
 def __init__(self,taskdb,user,id=None,description='',duedate=None,co
mpleted=None):
 self.taskdb=taskdb
 self.user=user
 self.id=id
 self.description=description
 self.completed=completed
 self.duedate=duedate if duedate != None else date.today().
isoformat()
 if id == None:
 cursor = self.taskdb.conn.cursor()
 sql = '''insert into task (description,duedate,completed,user_
id) values(?,?,?,?)'''
 cursor.execute(sql,(self.description,self.duedate,self.
completed,self.user))
 self.id = cursor.lastrowid
 self.taskdb.conn.commit()

Time for action – updating and deleting information
Updating the record for a Task is all about constructing the correct update query. update
will alter any records that match the conditions in the where clause. It will change only
those columns mentioned in its set clause so we start by constructing this set clause
(highlighted).

http://www.sqlite.org/lang_createtable.html#rowid

Tasklist II: Databases and AJAX

[110]

Joining a list of parameters and interpolating it into an SQL query might be a bit overdone
but if we later want to add an extra attribute, this would be very simple (and our SQL query
string now fits on a single line, making it a lot easier to read and typeset).

Once we have executed the insert, we check the number of rows affected. This value is
available as the rowcount attribute of the cursor object and should be 1 as we used the
unique task_id to select the records. If it isn't 1, something strange has happened and we
roll back the insert and raise an exception. If it went well, we commit our changes.

Chapter4/tasklistdb.py

 def update(self,user):
 params= []
 params.append('description = ?')
 params.append('duedate = ?')
 params.append('completed = ?')
 sql = '''update task set %s where task_id = ? and user_id = ?'''
 sql = sql%(",".join(params))
 conn = self.taskdb.conn
 cursor = conn.cursor()
 cursor.execute(sql, (self.description,self.duedate,self.
completed,self.id,user))
 if cursor.rowcount != 1 :
 debug('updated',cursor.rowcount)
 debug(sql)
 conn.rollback()
 raise DatabaseError('update failed')
 conn.commit()

To delete a task with a given task ID, all we have to do is execute a delete query on the
task table with an expression in the where clause that matches our task_id, just like we did
for an update. We do check that our delete query affects a single record only (highlighted) and
roll back otherwise. This shouldn't happen, but it is better to be safe than sorry.

 def delete(self,user):
 sql = '''delete from task where task_id = ? and user_id = ?'''
 conn = self.taskdb.conn
 cursor = conn.cursor()
 cursor.execute(sql,(self.id,user))
 if cursor.rowcount != 1:
 conn.rollback()
 raise DatabaseError('no such task')
 conn.commit()

Chapter 4

[111]

Testing
Developing software without testing it is a little bit like driving a car with your eyes closed: if
the road is straight you might get surprisingly far, but chances are you will crash within a few
seconds. Testing, in other words, is good.

It does take time, however, to test an application thoroughly, so it makes sense to automate
the testing process as much as possible. If tests can be executed easily, it encourages
developers to run these tests often. This is desirable when the implementation changes. It
can also act as a sanity check just before a new release. So although writing serious tests may
sometimes take about as long as writing the code itself, this is a solid investment, as it might
prevent many unwelcome surprises if the code is changed or the environment in which the
code is deployed is altered.

There are many aspects of an application that you might like to test, but not all lend
themselves to automatic testing, like user interaction (although tools like Selenium can get
you quite far. More information on this tool is available at http://seleniumhq.org/).
However, other parts are quite simple to automate.

Python comes with a unittest module that simplifies the task of repeatedly testing small
functional units of code. The idea of unit testing is to isolate small chunks of code and define
its expected behavior by asserting any number of expectations. If one of those assertions
fails, the test fails. (There is much more to unit testing than can be fully covered in this
book. Here we cover just the bare minimum to get a taste of the possibilities and we cover
a few examples that are intended to give you enough information to understand the test
suites supplied with the example code for this book. If you would like to read more on unit
testing in Python, a good starting point would be Python Testing by Daniel Arbuckle, Packt
Publishing, 978-1-847198-84-6).

Python's unittest module contains a number of classes and functions that enable us to
write and run groups of tests and their associated assertions. For example, say we have a
module called factorial that defines a function fac() to calculate a factorial.

A factorial of a number n is the product of all numbers from 1 to n inclusive. For example,
fac(4) = 4 * 3 * 2 * 1 = 24. Zero is an exceptional case as the factorial of 0 = 1.
Factorials are only defined for integers >= 0, so we design our code to raise ValueError
exceptions if the argument n is not an int or is negative (highlighted). The factorial itself
is calculated recursively. If n is either zero or one, we return one, otherwise we return the
factorial of n minus one times n:

Chapter4/factorial.py

def fac(n):
 if n < 0 : raise ValueError("argument is negative")
 if type(n) != int : raise ValueError("argument is not an integer")
 if n == 0 : return 1

Tasklist II: Databases and AJAX

[112]

 if n == 1 : return 1
 return n*fac(n-1)

The code is available as factorial.py.

Time for action – testing factorial.py
The test suite to accompany factorial.py is called test_factorial.py. Run it and you
should see output similar to this:

python test_factorial.py
...
--
Ran 3 tests in 0.000s

OK

Three tests were executed and apparently everything went ok.

What just happened?
The code in test_factorial.py starts by importing both the module we want to test
(factorial) and the unittest module. Then we define a single class named Test
(highlighted) derived from unittest.TestCase. By deriving from this class, our class will
be distinguishable as a test case to the test runner and will provide us with a number of
assertion methods.

Our Test class may consist of any number of methods. The ones with names starting with
test_ will be recognized as tests by the test runner. Because the names of failing tests will
be printed, it is useful to give these tests sensible names reflecting their purpose. Here we
define three such methods: test_number(), test_zero(), and test_illegal().

Chapter4/test_factorial.py

import unittest
from factorial import fac

class Test(unittest.TestCase):

 def test_number(self):
 self.assertEqual(24,fac(4))
 self.assertEqual(120,fac(5))
 self.assertEqual(720,fac(6))

 def test_zero(self):
 self.assertEqual(1,fac(0))

 def test_illegal(self):
 with self.assertRaises(ValueError):

Chapter 4

[113]

 fac(-4)
 with self.assertRaises(ValueError):
 fac(3.1415)

if __name__ == '__main__':
 unittest.main()

test_number() tests a number of regular cases to see if our function returns something
reasonable. In this case, we check three different numbers and use the assertEquals()
method inherited from the TestCase class to check that the value calculated (passed as the
second argument) equals the expected value (the first argument).

test_zero() asserts that the special case of zero indeed returns 1. It again uses the
assertEqual() method to check whether the expected value (1) matches the value returned.

test_illegal() finally asserts that only positive arguments are accepted (or rather it
asserts that negative values correctly raise a ValueError exception) and that arguments to
fac() should be int or raise a ValueError as well.

It utilizes the method assertRaises() provided by TestCase. assertRaises() will return
an object that can be used as a context manager in a with statement. Effectively, it will catch
any exception and check whether it is an expected one. If not, it will flag the test as failed.

These methods show a familiar pattern in unit testing: a fairly small number of tests check
whether the unit behaves correctly in normal cases, while the bulk of the tests are often
devoted to special cases (often referred to as edge cases). And, just as important, serious
effort is spent on testing that illegal cases are correctly flagged as such.

The last thing we find in test_factorial.py is a call to unittest.main(), the test
runner. It will look for any defined classes deriving from TestCase and run any method that
starts with test_, tallying the results.

Now what have we gained?
If we would change, for example, the implementation of fac() to something that does not
use recursion like the following code, we could rapidly check that it behaves as expected by
running test_factorial.py again.

from functools import reduce
def fac(n):
 if n < 0 : raise ValueError("factorial of a negative number is not
defined")
 if type(n) != int : raise ValueError("argument is not an integer")
 if n == 0 : return 1
 if n == 1 : return 1
 return reduce(lambda x,y:x*y,range(3,n+1))

Tasklist II: Databases and AJAX

[114]

The special case handling remains the same, but the highlighted line shows that we now
calculate the factorial with Python's reduce() function from the functools module. The
reduce() function will apply a function to the first pair of items in a list and then again
to the result of this and each remaining item. The product of all numbers in a list can be
calculated by passing reduce() a function that will return the product of two arguments, in
this case, our lambda function.

More on the reduce() function can be found in the documentation of the
functools module, Python's powerful functional programming library:
http://docs.python.org/py3k/library/functools.html.

Pop quiz – spotting the error
1. Can you anticipate any errors in the previous code? Which test method will fail?

 � test_number()

 � test_zero()

 � test_illegal()

Time for action – writing unit tests for tasklistdb.py
Run test_tasklistdb.py (provided in the code distribution for this chapter). The output
should be a list of test results:

python test_tasklistdb.py
......
--
Ran 6 tests in 1.312s

OK

What just happened?
Let us look at one of the classes defined in test_tasklistdb.py, DBentityTest.
DBentityTest contains a number of methods starting with test_. These are the actual
tests and they verify whether some common operations like retrieving or deleting tasks
behave as expected.

Chapter4/test_tasklistdb.py

from tasklistdb import TaskDB, Task, AuthenticationError,
DatabaseError
import unittest
from os import unlink,close
from tempfile import mkstemp

Chapter 4

[115]

(fileno,database) = mkstemp()
close(fileno)

class DBentityTest(unittest.TestCase):

 def setUp(self):
 try:
 unlink(database)
 except:
 pass
 self.t=TaskDB(database)
 self.t.connect()
 self.description='testtask'
 self.task = self.t.create(user='testuser',description=self.
description)

 def tearDown(self):
 self.t.close()
 try:
 unlink(database)
 except:
 pass

 def test_retrieve(self):
 task = self.t.retrieve('testuser',self.task.id)
 self.assertEqual(task.id,self.task.id)
 self.assertEqual(task.description,self.task.description)
 self.assertEqual(task.user,self.task.user)

 def test_list(self):
 ids = self.t.list('testuser')
 self.assertListEqual(ids,[self.task.id])

 def test_update(self):
 newdescription='updated description' self.task.
description=newdescription
 self.task.update('testuser')
 task = self.t.retrieve('testuser',self.task.id)
 self.assertEqual(task.id,self.task.id)
 self.assertEqual(task.duedate,self.task.duedate)
 self.assertEqual(task.completed,self.task.completed)
 self.assertEqual(task.description,newdescription)

 def test_delete(self):
 task = self.t.create('testuser',description='second task')
 ids = self.t.list('testuser')
 self.assertListEqual(sorted(ids),sorted([self.task.id,task.id]))
 task.delete('testuser')

Tasklist II: Databases and AJAX

[116]

 ids = self.t.list('testuser')
 self.assertListEqual(sorted(ids),sorted([self.task.id]))
 with self.assertRaises(DatabaseError):
 task = self.t.create('testuser',id='short')
 task.delete('testuser')

if __name__ == '__main__':
 unittest.main(exit=False)

All these test_ methods depend on an initialized database containing at least one task
and an open connection to this database. Instead of repeating this setup for each test,
DBentityTest contains the special method setUp() (highlighted) that removes any
test database lingering around from a previous test and then instantiates a TestDB
object. This will initialize the database with proper table definitions. Then it connects to
this new database and creates a single task object. All tests now can rely upon their initial
environment to be the same. The corresponding tearDown() method is provided to close
the database connection and remove the database file.

The file that is used to store the temporary database is created with the mkstemp() function
from Python's tempfile module and stored in the global variable database. (mkstemp()
returns the number of the file handle of the opened as well, which is immediately used to
close the file as we are only interested in the name of the file.)

The test_list() and test_delete() methods feature a new assertion:
assertListEqual(). This assertion checks whether two lists have the same items (and in
the same order, hence the sorted() calls). The unittest module contains a whole host
of specialized assertions that can be applied for specific comparisons. Check Python's online
documentation for the unittest module for more details (http://docs.python.org/
py3k/library/unittest.html).

Many of the modules we develop in this book come bundled with a suite of unit
tests. We will not examine those tests in any detail, but it might be educational
to check some of them. You should certainly use them if you experiment with
the code as that is exactly what they are for.

Designing for AJAX
Using AJAX to retrieve data not only has the potential to make the tasklist application more
responsive, but it will also make it simpler. This is achieved because the HTML will be simpler
as there will be no need for the many <form> elements we created to accommodate the
various delete and done buttons. Instead, we will simply act on click events bound to buttons
and call small methods in our CherryPy application. All these functions have to do is perform
the action and return ok, whereas in the previous version of our application, we would have
to return a completely new page.

Chapter 4

[117]

In fact, apart from a number of <script> elements in the <head>, the core HTML in the
body is rather short (the <header> element and the extra elements in the <div> element
with a taskheader class are omitted for brevity):

<body id="itemlist">
 <div id="content">
 <div class="header"></div>
 <div class="taskheader"></div>
 <div id="items"></div>
 <div class="item newitem">
 <input type="text" class="duedate left editable-date tooltip"
 name="duedate" title="click for a date" />
 <input type="text" class="description middle tooltip"
 title="click to enter a description" name="description"/>
 <button type="submit" class="add-button"
 name="add" value="Add" >Add</button>
 </div>
 </div>
</body>

The <div> element containing the input fields and a submit button takes up most of the
space. It structures the elements that make up the line that allows the user to add new tasks.
The <div> element with the ID items will hold a list of tasks and will be initialized and
managed by the JavaScript code using AJAX calls.

The JavaScript code in tasklistajax.js serves a number of goals:

 � Initializing the list of items

 � Styling and enhancing UI elements with interactive widgets (like a datepicker)

 � Maintaining and refreshing the list of tasks based on button clicks

Let's have a look at tasklistajax.js.

Chapter4/static/js/tasklistajax.js

$.ajaxSetup({cache:false});$.ajaxSetup({cache:false});

function itemmakeup(data,status,req){
 $(".done-button").button({icons: {primary: 'ui-icon-check'
}, text:false});
 $(".del-button").button({icons: {primary: 'ui-icon-trash' },
text:false});
 $("#items input.duedate").sort(
 function(a,b){return $(a).val() > $(b).val() ? 1 : -1;},
 function(){ return this.parentNode; }).addClass("just-sorted");
 // disable input fields and done button on items that are already
marked as completed

Tasklist II: Databases and AJAX

[118]

 $(".done .done-button").button("option", "disabled", true);
 $(".done input").attr("disabled","disabled");
 $("#items .editable-date").datepicker({
 dateFormat: $.datepicker.ISO_8601,
 onClose: function(dateText,datePicker){ if(dateText != '')
{$(this).removeClass("inline-label");}}
 });
 };

$(document).ready(function(){
 $(".header").addClass("ui-widget ui-widget-header");
 $(".add-button").button({icons: {primary: 'ui-icon-plusthick' },
text:false}).click(function(){
 $(".inline-label").each(function() {
 if($(this).val() === $(this).attr('title')) {
 $(this).val('');
 };
 })
 var dd=$(this).siblings(".duedate").val();
 var ds=$(this).siblings(".description").val();
 $.get("add",{description:ds, duedate:dd},function(data,status,req)
{
 $("#items").load("list",itemmakeup);
 });
 return false; // prevent the normal action of the button click
 });
 $(".logoff-button").button({icons: {primary: 'ui-icon-
closethick'}, text:false}).click(function(){
 location.href = $(this).val();
 return false;
 });
 $(".login-button").button({icons: {primary: 'ui-icon-play' },
text:false});
 $(":text").addClass("textinput");
 $(":password").addClass("textinput");
 $(".editable-date").datepicker({
 dateFormat: $.datepicker.ISO_8601,
 onClose: function(dateText,datePicker){ if(dateText != '')
{$(this).removeClass("inline-label");}}
 });

 // give username field focus (only if it's there)
 $("#username").focus();

 $(".newitem input").addClass("ui-state-highlight");

 $(".done-button").live("click",function(){

Chapter 4

[119]

 var item=$(this).siblings("[name='id']").val();
 var done=$(this).siblings(".completed").val();
 $.get("done",{id:item, completed:done},function(data,status,req)
{
 $("#items").load("list",itemmakeup);
 });
 return false;
 });

 $(".del-button").live("click",function(){
 var item=$(this).siblings("[name='id']").val();
 $.get("delete",{id:item},function(data,status,req){
 $("#items").load("list",itemmakeup);
 });
 return false;
 });

 $("#items").load("list",itemmakeup); // get the individual task
items

});

The first line establishes the defaults for all AJAX calls that we will use. It makes sure that the
browser will not cache any results.

Initializing the list of items once the page is loaded is done in the final highlighted line of
code. It calls the load() method with a URL that will be handled by our application and will
return a list of tasks. If the call to load() is successful, it will not only insert this data in the
selected <div> element, but also call the function itemmakeup() passed to it as a second
argument. That function, itemmakeup(), is defined in the beginning of the file. It will style
any <button> element with a done-button or del-button class with a suitable icon. We
do not add any event handlers to those buttons here, which is done elsewhere as we will see
shortly.

Next, we use the sort plugin to sort the items (highlighted), that is, we select any input field
with the duedate class that are children of the <div> element with the ID items (we do
not want to consider input fields that are part of the new item div for example).

The sort plugin is available as sort.js and is based on code by James Padolsey: http://
james.padolsey.com/javascript/sorting-elements-with-jquery/. The
plugin will sort any list of HTML elements and takes two arguments. The first argument is a
comparison function that will return either 1 or -1 and the second argument is a function
that when given an element will return the element that should actually be moved around.
This allows us to compare the values of child elements while swapping the parent elements
they are contained in.

http://james.padolsey.com/javascript/sorting-elements-with-jquery/
http://james.padolsey.com/javascript/sorting-elements-with-jquery/

Tasklist II: Databases and AJAX

[120]

For example, here we compare the due dates. That is, the content of the selected <input>
elements, as retrieved by their val() method, but we sort not the actual input fields but
their parents, the <div> elements containing all elements that make up a task.

Finally, itemmakeup() makes sure any button marked with a done class is disabled as is any
input element with that class to prevent completed tasks from being altered and changes
any input element with an editable-date class into a datapicker widget to allow the user
to choose a completion date before marking a task as done.

Click handlers
Besides styling elements, the $(document).ready() function adds click handlers to the
add, done, and delete buttons (highlighted).

Only one add button is created when the page is created, so we can add a click handler with
the click() method. However, new done and delete buttons may appear each time the list
of items is refreshed. To ensure that freshly appearing buttons that match the same selection
criteria receive the same event handler as the ones present now, we call the live() method.

jQuery's live() method will make sure any event handler is attached to any
element that matches some criterion, now or in the future. More on jQuery's
event methods can be found at http://api.jquery.com/category/
events/.

Apart from the way we bind an event handler to a button, the actions associated with a click
are similar for all buttons. We retrieve the data we want to pass to the server by selecting
the appropriate input elements from among the button's siblings with the siblings()
method. As each task is represented by its own <div> element in the list and the <button>
and <input> elements are all children of that <div> element, so selecting sibling input
elements only ensures that we refer to elements of a single task only.

To get a better understanding of what we are selecting with the siblings() method, take a
look at some of the (simplified) HTML that is generated for the list of items:

<div id="items">
 <div class="item"><input name=""/> … <button name="done"></div
 <div class="item"><input name=""/> … <button name="done"></div
 …
</div>

So each <div> that represents a task contains a number of <input> elements and some
<button> elements. The siblings of any <button> element are the elements within the
same <div> (without the button itself).

http://api.jquery.com/category/events/
http://api.jquery.com/category/events/

Chapter 4

[121]

When we have gathered the relevant data from the input elements, this data is then passed to
a get() call. The get() function is another AJAX shortcut that will make an HTTP GET request
to the URL given as its first argument (a different URL for each button type). The data passed to
the get() function is appended to the GET request as parameters. Upon success, the function
passed as the third argument to get() is called. This is the same itemmakeup() function that
refreshes the list of items that was used when the page was first loaded.

The application
With the JavaScript to implement the interactivity and the means to access the database
in place, we still have to define a class that can act as a CherryPy application. It is available
as taskapp.py and here we show the relevant bits only (Its index() method is omitted
because it simply delivers the HTML shown earlier).

Chapter4/taskapp.py

class TaskApp(object):
 def __init__(self,dbpath,logon,logoffpath):
 self.logon=logon
 self.logoffpath=logoffpath
 self.taskdb=TaskDB(dbpath)

 def connect(self):
 self.taskdb.connect()

The constructor for TaskApp stores a reference to a LogonDB instance in order to be able
to call its checkauth() method in exposed methods to authenticate a user. It also stores
the logoffpath, a URL to a page that will end the user's session. The dbpath argument
is the filename of the file that holds the tasklist database. It is used to create an instance of
TaskDB, used in subsequent methods to access the data (highlighted).

The connect() method should be called for each new CherryPy thread and simply calls the
corresponding method on the TaskDB instance.

To service the AJAX calls of the application, TaskApp exposes four short methods: list()
to generate a list of tasks, add() to add a new task, and done() and delete() to mark a
task as done or to remove a task respectively. All take a dummy argument named _ (a single
underscore) that is ignored. It is added by the AJAX call in the browser to prevent caching of
the results.

list() is the longer one and starts out with authenticating the user making the request
(highlighted). If the user is logged in, this will yield the username. This username is then
passed as an argument to the taskdb.list() method to retrieve a list of task IDs
belonging to this user.

Tasklist II: Databases and AJAX

[122]

With each ID, a Task instance is created that holds all information for that task (highlighted).
This information is used to construct the HTML that makes up the task as visualized on
screen. Finally, all HTML of the individual tasks is joined and returned to the browser.

Chapter4/taskapp.py

 @cherrypy.expose
 def list(self,_=None):
 username = self.logon.checkauth()
 tasks = []
 for t in self.taskdb.list(username):
 task=self.taskdb.retrieve(username,t)
 tasks.append('''<div class="item %s">
 <input type="text" class="duedate left" name="duedate"
value="%s" readonly="readonly" />
 <input type="text" class="description middle" name="description"
value="%s" readonly="readonly" />
 <input type="text" class="completed right editable-date tooltip"
title="click to select a date, then click done" name="completed"
value="%s" />
 <input type="hidden" name="id" value="%s" />
 <button type="submit" class="done-button" name="done"
value="Done" >Done</button>
 <button type="submit" class="del-button" name="delete"
value="Del" >Del</button>
 </div>'''%('notdone' if task.completed==None else 'done',task.
duedate,task.description,task.completed,task.id))
 return '\n'.join(tasks)

The other methods are quite similar to each other. add() takes description and duedate
as arguments and passes them together with the username it got after authentication of the
user to the create() method of the TaskDB instance. It returns 'ok' to indicate success.
(Note that an empty string would do just as well: it's the return code that matters, but this
makes it more obvious to anyone reading the code).

The delete() method (highlighted) has one relevant argument, id. This ID is used together
with the username to retrieve a Task instance. This instance's delete() method is then
called to remove this task from the database.

The done() method (highlighted) also takes an id argument together with completed. The
latter either holds a date or is empty, in which case it is set to today's date. A Task instance
is retrieved in the same manner as for the delete() method, but now its completed
attribute is set with the contents of the argument of the same name and its update()
method is called to synchronize this update with the database.

Chapter 4

[123]

Chapter4/taskapp.py

 @cherrypy.expose
 def add(self,description,duedate,_=None):
 username = self.logon.checkauth()
 task=self.taskdb.create(user=username, description=description,
duedate=duedate)
 return 'ok'

 @cherrypy.expose
 def delete(self,id,_=None):
 username = self.logon.checkauth()
 task=self.taskdb.retrieve(username,id)
 task.delete(username)
 return 'ok'

 @cherrypy.expose
 def done(self,id,completed,_=None):
 username = self.logon.checkauth()
 task=self.taskdb.retrieve(username,id)
 if completed == "" or completed == "None":
 completed = date.today().isoformat()
 task.completed=completed
 task.update(username)
 return 'ok'

Time for action – putting it all together
Now that we have all the requisite components in place (that is, tasklistdb.py,
taskapp.py, and tasklistajax.js), it is straightforward to put them together. If you
run the code below (available as tasklist.py) and point your browser at http://
localhost:8080/, you will get a familiar looking login screen and after entering some
credentials (username admin and password admin are configured by default) the resulting
screen will look almost the same as the application we developed in the previous chapter, as
illustrated in the following screenshot:

http://localhost:8080/
http://localhost:8080/

Tasklist II: Databases and AJAX

[124]

What just happened?
For the CherryPy application, we need a root class that can act as the root of the tree of
pages we serve the user. Again, we call this class simply Root and assign an instance of our
TaskApp application to the task variable and an instance of the LogonDB application to the
logon variable (highlighted in the code below). Together with the index() method, this will
create a tree of pages looking like this:

/
/logon
/task

If the user starts on the top-level page or on the logon page, he/she will be redirected to the
/task page after successful authentication. Below the /task page are, of course, the other
pages that implement the server side of the AJAX communications like, for example, /task/
add.

Chapter4/tasklist.py

import cherrypy

from taskapp import TaskApp
from logondb import LogonDB

import os.path

current_dir = os.path.dirname(os.path.abspath(__file__))

theme = "smoothness"

class Root(object):
 logon = LogonDB()
 task = TaskApp(dbpath='/tmp/taskdb.db', logon=logon, logoffpath="/
logon/logoff")

 @cherrypy.expose
 def index(self):
 return Root.logon.index(returnpage='/task')

if __name__ == "__main__":

 Root.logon.initdb()

 def connect(thread_index):
 Root.task.connect()
 Root.logon.connect()

 # Tell CherryPy to call "connect" for each thread, when it starts up
 cherrypy.engine.subscribe('start_thread', connect)

 cherrypy.quickstart(Root(),config={
 '/':
 { 'log.access_file' : os.path.join(current_dir,"access.log"),

Chapter 4

[125]

 'log.screen': False,
 'tools.sessions.on': True
 },
 '/static':
 { 'tools.staticdir.on':True,
 'tools.staticdir.dir':os.path.join(current_dir,"static")
 },
 '/jquery.js':
 { 'tools.staticfile.on':True,
 'tools.staticfile.filename':os.path.join(current_
dir,"static","jquery","jquery-1.4.2.js")
 },
 '/jquery-ui.js':
 { 'tools.staticfile.on':True,
 'tools.staticfile.filename':os.path.join(current_
dir,"static","jquery","jquery-ui-1.8.1.custom.min.js")
 },
 '/jquerytheme.css':
 { 'tools.staticfile.on':True,
 'tools.staticfile.filename':os.path.join(current_dir,"static","jqu
ery","css",theme,"jquery-ui-1.8.4.custom.css")
 },
 '/images':
 { 'tools.staticdir.on':True,
 'tools.staticdir.dir':os.path.join(current_dir,"static","jquery","
css",theme,"images")
 }
 })

Before the CherryPy application is started in the usual way by calling the quickstart()
function, we first initialize the authentication database and create a function connect()
(highlighted). This is the function we will register with CherryPy to execute each time
CherryPy starts a new thread. The function will create a connection to the SQLite databases
containing the authentication and tasklist data.

Have a go hero – refreshing the itemlist on a regular basis
If you were to access your tasklist from home and keep the application open and later
access it from, for example, your work, any changes made to the list from work wouldn't
be visible at home unless you refreshed the page manually. This is because there is nothing
implemented to refresh the list of tasks regularly; it is refreshed only after some action is
initiated by clicking a button.

Tasklist II: Databases and AJAX

[126]

How could you implement a regular refresh? Hint: in the first AJAX example, we encountered
JavaScript's setInterval() method. Can you devise a way to let it replace the contents of
the <div> element containing the list of tasks using the load() method?

An example implementation is available in tasklistajax2.js. You can either rename it to
tasklistajax.js and run tasklist.py or run tasklist2.py.

Summary
We learned a lot in this chapter about using a database to store persistent data.

Specifically, we covered:

 � The benefits of using a database engine

 � How to use SQLite, a database engine distributed with Python

 � How to implement a password database

 � How to design and develop a database-driven tasklist application

 � How to implement unit tests with Python's unittest module

 � How to make a web application more responsive using AJAX calls

We also discussed how to make a web application respond to mouse clicks and request new
data from the server without using <form> elements but using jQuery's click() and
live() methods.

Now that we've made the first step in using a database, we're ready to create more
elaborate databases designs, consisting of more than a single table, and look at the methods
to define relations between these tables – which is the topic of the next chapter.

5
Entities and Relations

Most real life applications sport more than one entity and often many of these
entities are related. Modeling these relations is one of the strong points of a
relational database. In this chapter, we will develop an application to maintain
lists of books for multiple users.

In this chapter, we will:

 � Design and implement a data model consisting of several entities and relations

 � Implement reusable entity and relation modules

 � Look in depth at the necessity of clearly separating layers of functionality

 � And encounter jQuery UI's autocomplete widget

So let's get started with it...

Designing a book database
Before we start to design our application, let's have a good look at the different entities
that need to be handled by it. The entities we recognize are a book, an author, and a user. A
book may have many attributes, but here we limit ourselves to a title, an ISBN (International
Standard Book Number), and a publisher. An author has just a name, but of course, if we
would like to extend that with extra attributes, like the date of birth or nationality, we can
always add that later. Finally, a user is an entity with a single attribute as well, the user ID.

Entities and Relations

[128]

The next important part is to have a clear understanding of the relations between these
entities. A book may be written by one or more authors, so we need to define a relation
between a book entity and an author entity. Also, any number of users may own a copy of a
book. This is another relation we have to define, this time, between a book entity and a user
entity. The following diagram may help to see those entities and their relations more clearly:

These three entities and the relations between them need to be represented in two realms:
as database tables and as Python classes. Now we could model each entity and relation
separately, like we did in the previous chapter for the tasklist application, but all entities
share a lot of common functionality so there are ample opportunities for reuse. Reuse
means less code and less code equals less maintenance and often better readability. So let's
see what we need to define a reusable Entity class.

The Entity class
From what we learned in the previous chapters, we already know there is a shared body of
functionality that each class that represents an entity needs to implement:

 � It needs to be able to verify that a corresponding table exists in the database and
create one if it doesn't.

 � It needs to implement a way to manage database connections in a thread-safe
manner.

Also, each entity should present us with a CRUD interface:

 � Create new object instances

 � Retrieve individual object instances and find instances that match some criteria

 � Update the attributes of an object instance and synchronize this data to the
database

 � Delete an object instance

That is a lot of shared functionality, but of course a book and an author are not identical:
They differ in the number and type of their attributes. Before we look at the implementation,
let's illustrate how we would like to use an Entity class to define a specific entity, for
example, a car.

Chapter 5

[129]

Time for action – using the Entity class
Let us first define for ourselves how we want to use an Entity class, because the interface
we create must match as closely as possible the things we would like to express in our code.
The following example shows what we have in mind (available as carexample.py):

Chapter5/carexample.py

from entity import Entity

class Car(Entity): pass

Car.threadinit('c:/tmp/cardatabase.db')
Car.inittable(make="",model="",licenseplate="unique")

mycar = Car(make="Volvo",model="C30",licenseplate="12-abc-3")
yourcar = Car(make="Renault",model="Twingo",licenseplate="ab-cd-12")

allcars = Car.list()

for id in allcars:
 car=Car(id=id)
 print(car.make, car.model, car.licenseplate)

The idea is to create a Car class that is a subclass of Entity. We therefore have to take the
following steps:

1. Import the Entity class from the entity module.

2. Define the Car class. The body of this class is completely empty as we simply inherit
all functionality from the Entity class. We could, of course, augment this with
specific functionality, but in general, this shouldn't be necessary.

3. Initialize a connection to the database. Before we can work with the Car instances,
an application has to initialize a connection to the database for each thread. In this
example, we do not create extra threads, so there is just the single main thread of
the application that needs a connection to the database. We create one here with
the threadinit() method (highlighted).

4. Make sure an appropriate table with the necessary columns exists in the database.
Therefore, we call the inittable() method with arguments that specify the
attributes of our entity with possibly extra information on how to define them as
columns in a database table. Here we define three columns: make, model, and
licenseplate. Remember that SQLite doesn't need explicit typing, so make
and model are passed as arguments with just an empty string as the value. The
licenseplate attribute, however, is adorned with a unique constraint in this
example.

Entities and Relations

[130]

Now we can work with Car instances, as illustrated in the lines that create two different
objects or in the last few lines that retrieve the IDs of all Car records in the database and
instantiate Car instances with those IDs to print the various attributes of a Car.

That is the way we would like it to work. The next step is to implement this.

What just happened?
The previous example showed how we could derive the Car class from Entity and use it.
But what does that Entity class look like?

The definition for the Entity class starts off with defining a class variable threadlocal
and a class method threadinit() to initialize this variable with an object that holds data
that is local to each thread (the full code is available as entity.py).

If this threadlocal object does not yet have a connection attribute, a new connection to
the database is created (highlighted) and we configure this connection by setting its
row_factory attribute to sqlite.Row, as this will enable us to access columns in the
results by name.

We also execute a single pragma foreign_keys=1 statement to enable the enforcing of
foreign keys. As we will see, when we discuss the implementation of relations, this is vital
in maintaining a database without dangling references. This pragma must be set for each
connection separately; therefore, we put it in the thread initialization method.

Chapter5/entity.py

import sqlite3 as sqlite
import threading

class Entity:

 threadlocal = threading.local()

 @classmethod
 def threadinit(cls,db):
 if not hasattr(cls.threadlocal,'connection') or
cls.threadlocal.connection is None:
 cls.threadlocal.connection=sqlite.connect(db)
 cls.threadlocal.connection.row_factory = sqlite.Row
 cls.threadlocal.connection.execute("pragma foreign_
keys=1")
 else:
 pass #print('threadinit thread has a connection
object already')

Chapter 5

[131]

Next is the inittable() method. This should be called once to verify that the table necessary
for this entity already exists or to define a table with suitable columns if it doesn't. It takes any
number of keyword arguments. The names of the keywords correspond to the names of the
columns and the value of such a keyword may be an empty string or a string with additional
attributes for the column, for example, unique or an explicit type like float.

Although SQLite allows you to store a value of any type in a column, you may
still define a type. This type (or more accurately, affinity) is what SQLite tries
to convert a value to when it is stored in a column. If it doesn't succeed, the
value is stored as is. Defining a column as float, for example, may save a lot of
space. More on these affinities can be found on http://www.sqlite.org/
datatype3.html.

Chapter5/entity.py

 @classmethod
 def inittable(cls,**kw):
 cls.columns=kw
 connection=cls.threadlocal.connection
 coldefs=",".join(k+' '+v for k,v in kw.items())
 sql="create table if not exists %s (%s_id integer primary
key autoincrement, %s);"%(cls.__name__,cls.__name__,coldefs)
 connection.execute(sql)
 connection.commit()

The column definitions are stored in the columns class variable for later use by the __
init__() method and joined together to a single string. This string, together with the name
of the class (available in the __name__ attribute of a (possibly derived) class) is then used to
compose a SQL statement to create a table (highlighted).

Besides the columns that we defined based on the keyword arguments, we can also create
a primary key column that will be filled with a unique integer automatically. This way, we
ensure that we can refer to each individual row in the table later on, for example, from a
bridging table that defines a relation.

When we take our previous car example, we see that a Python statement like:

Car.inittable(make="",model="",licenseplate="unique")

Is converted to the following SQL statement:

create table if not exists Car (
Car_id integer primary key autoincrement,
make ,
licenseplate unique,
model
);

Entities and Relations

[132]

Note that the order in which we pass the keyword arguments to the inittable() method
is not necessarily preserved as these arguments are stored in a dict object, and regular
dict objects do not preserve the order of their keys.

Sometimes preserving the order of the keys in a dictionary is very desirable.
In this case, column order doesn't matter much, but Python does have an
OrderedDict class available in its collections module (see http://
docs.python.org/library/collections.html#collections.
OrderedDict) that we could have used. However, this would prevent us from
using keywords to define each column.

Also note that there isn't any form of sanity checking implemented: anything may be passed
as a value for one of the column definitions. Judging whether that is anything sensible is left to
SQLite when we pass the SQL statement to the database engine with the execute() method.

This method will raise an sqlite3.OperationalError if there is a syntax error in the
SQL statement. However, many issues are simply ignored. If we pass an argument like
licenseplate="foo", it would happily proceed, assuming foo to be a type it doesn't
recognize, so it is simply ignored! If the execution didn't raise an exception, we finish by
committing our changes to the database.

Have a go hero – checking your input
Silently ignoring things passed as arguments is not considered a good habit. Without explicit
checking, a developer might not even know he/she has done something wrong, something
that might backfire later.

How would you implement code to restrict the value to a limited set of directives?

Hint: Types and constraints in a SQL column definition mostly consist of single words. You
could check each word against a list of allowable types, for example.

Time for action – creating instances
The next method we look at is the constructor—the __init__() method. It will be used to
create individual instances of an entity. The constructor can be called in two ways:

 � With a single id argument, in which case, an existing record will be retrieved from
the database and the instance initialized with the column values of this record, or

Chapter 5

[133]

 � With a number of keyword arguments to create a new instance and save this as a
new database record

The code to implement this behavior looks like the following:

Chapter5/entity.py

 def __init__(self,id=None,**kw):
 for k in kw:
 if not k in self.__class__.columns :
 raise KeyError("unknown column")
 cursor=self.threadlocal.connection.cursor()
 if id:
 if len(kw):
 raise KeyError("columns specified on
retrieval")
 sql="select * from %s where %s_id = ?"%(
 self.__class__.__name__,self.__class__.__name__)

 cursor.execute(sql,(id,))
 entities=cursor.fetchall()

 if len(entities)!=1 :
 raise ValueError("not a singular entity")
 self.id=id
 for k in self.__class__.columns:
 setattr(self,k,entities[0][k])
 else:
 cols=[]
 vals=[]
 for c,v in kw.items():
 cols.append(c)
 vals.append(v)
 setattr(self,c,v)
 cols=",".join(cols)
 nvals=",".join(["?"]*len(vals))
 sql="insert into %s (%s) values(%s)"%(
 self.__class__.__name__,cols,nvals)
 try:
 with self.threadlocal.connection as conn:
 cursor=conn.cursor()
 cursor.execute(sql,vals)
 self.id=cursor.lastrowid
 except sqlite.IntegrityError:
 raise ValueError("duplicate value for unique
col")

Entities and Relations

[134]

The code reflects this dual use. After checking that all keywords indeed refer to the previously
defined columns (highlighted), it checks whether it was passed an id argument. If it was, there
shouldn't be any other keyword arguments. If there are additional keywords, an exception is
raised. If the id argument is present, an SQL statement is constructed next that will retrieve
the records from the associated table. Each record's primary key should match the ID.

What just happened?
Because the primary key is unique, this will match at most a single record, something that is
verified after we retrieve the matching records. If we didn't fetch exactly one (1) record, an
exception is raised (highlighted).

If everything went well, we initialize the attributes of the instance we are creating with
the built-in setattr() function. The columns of the record we retrieved can be accessed
by name because we initialized the row_factory attribute of the connection object to a
sqlite3.Row. We also stored the names of the columns in the columns class variable and
this lets us initialize the instance's attributes with the values of the corresponding column
names (highlighted).

Creating a Car instance with:

Car(id=1)

Will result in a SQL statement like this:

select * from Car where Car_id = ?

Where the question mark is a placeholder for the actual value that is passed to the
execute() method.

The second branch of the code (starting at the else clause) is executed if no id argument
was present. In this case, we separate the keyword names and values and set the attributes
of the instance we are creating. The keyword names and values are then used to construct
an SQL statement to insert a new row in the table associated with this Entity (highlighted).
For example:

Car(make="Volvo", model="C30", licenseplate="12-abc-3")

Will give us:

insert into Car (make,model,licenseplate) values(?,?,?)

The question marks are again placeholders for the values we pass to the execute() method.

Chapter 5

[135]

If calling the execute() method (highlighted) went well, we initialize the id attribute of
the instance we are creating with the value of the lastrowid attribute. Because we defined
the primary key as a primary key integer autoincrement column and did not specify
it in the insert statement, the primary key will hold a new unique integer and this integer is
available as the lastrowid attribute.

This is very SQLite-specific and the primary key should be defined
in exactly this way for this to hold true. More on this can be found at
http://www.sqlite.org/lang_createtable.html#rowid

Any sqlite3.IntegrityError that might be raised due to the violation of a uniqueness
constraint is caught and re-raised as a ValueError with slightly more meaningful text.

The update() method is used to synchronize an instance with the database. It can be
used in two ways: we can alter any attributes of an instance first and then call update(),
or we may pass keyword arguments to update() to let update() alter the corresponding
attributes and synchronize the instance to the database. These two ways may even be
combined. Either way, the database will hold the most current values of all attributes
corresponding to a column once the update() returns. The following two pieces of code are
therefore equivalent:

car.update(make='Peugeot')

And:

car.make='Peugeot'
car.update()

Any keyword arguments we pass to update() should match a column name, otherwise an
exception is raised (highlighted).

Chapter5/entity.py

 def update(self,**kw):
 for k in kw:
 if not k in self.__class__.columns :
 raise KeyError("unknown column")
 for k,v in kw.items():
 setattr(self,k,v)
 updates=[]
 values=[]
 for k in self.columns:
 updates.append("%s=?"%k)
 values.append(getattr(self,k))
 updates=",".join(updates)

Entities and Relations

[136]

 values.append(self.id)
 sql="update %s set %s where %s_id = ?"%(
 self.__class__.__name__, updates, self.__class__.__name__)
 with self.threadlocal.connection as conn:
 cursor=conn.cursor()
 cursor.execute(sql, values)
 if cursor.rowcount != 1 :
 raise ValueError(
 "number of updated entities not 1 (%d)" %
 cursor.rowcount)

The column names and the values of the corresponding attributes are then used to construct
an SQL statement to update records with these values, but only for the single record whose
primary key matches the ID of the instance we are updating. The SQL statement might look
like this:

update Car set make=?, model=?, licenseplate=? where Car_id = ?

The question marks again are placeholders for the values we pass to the execute() method.

After we execute this statement, we do a sanity check by validating that the number of
affected records is indeed one. Just as for an insert statement, this number is available as the
rowcount attribute of the cursor object after an update statement (highlighted).

Deleting an instance is implemented by the delete() method of the Entity class and
consists primarily of composing an SQL statement that will delete the record with a primary
key equal to the id attribute of the instance. The resulting SQL looks like this:

delete from Car where Car_id = ?

Just like in the update() method, we end with a sanity check to verify that just a single
record was affected (highlighted). Note that delete() will only remove the record in the
database, not the Python instance it is called on. If nothing references this object instance, it
will be automatically removed by the Python's garbage collector:

Chapter5/entity.py

 def delete(self):
 sql="delete from %s where %s_id = ?"%(
 self.__class__.__name__,self.__class__.__name__)
 with self.threadlocal.connection as conn:
 cursor=conn.cursor()
 cursor.execute(sql,(self.id,))
 if cursor.rowcount != 1 :
 raise ValueError(
 "number of deleted entities not 1 (%d)" %
 cursor.rowcount)

Chapter 5

[137]

The final method we encounter is the class method list(). This method may be used to
retrieve the IDs of all instances of an entity when called without arguments or to retrieve the
IDs of instances that match certain criteria passed as arguments. For example:

Car.list()

Will return a list of IDs of all cars in the database, whereas:

Car.list(make='Volvo')

Will return the IDs of all the Volvos in the database.

Chapter5/entity.py

 @classmethod
 def list(cls,**kw):
 sql="select %s_id from %s"%(cls.__name__,cls.__name__)
 cursor=cls.threadlocal.connection.cursor()
 if len(kw):
 cols=[]
 values=[]
 for k,v in kw.items():
 cols.append(k)
 values.append(v)
 whereclause = " where "+",".join(c+"=?" for c in
cols)
 sql += whereclause
 cursor.execute(sql,values)
 else:
 cursor.execute(sql)
 for row in cursor.fetchall():
 yield row[0]

The implementation is straightforward and starts off with creating an SQL statement to select
all IDs from the table (highlighted). An example would be:

select Car_id from Car

If there were any keyword arguments passed to the list() method, these are then used
to construct a where clause that will restrict the IDs returned to those of the records that
match. This where clause is appended to our general select statement (highlighted). For
example:

select Car_id from Car where make=?

Entities and Relations

[138]

After invocation of the execute() method, we yield all the IDs. By using the yield
statement, we have identified the list() method as a generator that will return the IDs
found one-by-one rather than in one go. We still can manipulate this generator just like a
list if we wish, but for very large result sets, a generator might be a better option as it does
consume less memory, for example.

The Relation class
The Relation class is used to manage relations between individual instances of entities. If
we have Car entities as well as Owner entities, we might like to define a CarOwner class that
provides us with the functionality to identify the ownership of a certain car by a specific owner.

Like entities, generic relations share a lot of common functionality: we must be able to
create a new relation between two entities, delete a relation, and list related entities given a
primary entity, for example, list all owners of a given car or all cars of a certain owner.

Relations are stored in the database in a table, often called a bridging table, consisting of
records with columns that store the IDs of both related entities. When an application starts
using a (subclass of) the Relation class, we must verify that the corresponding table exists,
and if not, create it.

Time for action – using the Relation class
Let's have a look at how we would like to use our Relation class:

Chapter5/carexample2.py

from entity import Entity
from relation import Relation

class Car(Entity): pass
class Owner(Entity): pass

Car.threadinit('c:/tmp/cardatabase2.db')
Car.inittable(make="",model="",licenseplate="unique")

Owner.threadinit('c:/tmp/cardatabase2.db')
Owner.inittable(name="")

class CarOwner(Relation): pass

CarOwner.threadinit('c:/tmp/cardatabase2.db')
CarOwner.inittable(Car,Owner)

mycar = Car(make="Volvo",model="C30",licenseplate="12-abc-3")
mycar2 = Car(make="Renault",model="Coupe",licenseplate="45-de-67")
me = Owner(name="Michel")

CarOwner.add(mycar,me)

Chapter 5

[139]

CarOwner.add(mycar2,me)

owners = CarOwner.list(mycar)
for r in owners:
 print(Car(id=r.a_id).make,'owned by',Owner(id=r.b_id).name)

owners = CarOwner.list(me)
for r in owners:
 print(Owner(id=r.b_id).name,'owns a',Car(id=r.a_id).make)

 � Like before, we first define a Car class and then an Owner class because the
CarOwner class we define and initialize in the first highlighted lines are only
meaningful if the entities in the relation exist. The highlighted lines show that
defining and initializing a relation follows the same general pattern as initializing the
entities.

 � We then create two Car entities and an Owner and establish a relation between
these (second set of highlighted lines).

 � The final lines show how we can find and print the owners of a car or the cars
belonging to an owner.

Many of these requirements for the Relation class are similar to those of the Entity
class, so when we take a look at the code, some pieces will look familiar.

What just happened?
The first method we encounter is the threadinit() class method (the full code is available
as relation.py). It is identical to the one we encountered in the Entity class and should
be called once for every thread.

Chapter5/relation.py

 @classmethod
 def threadinit(cls,db):
 if not hasattr(cls.threadlocal,'connection') or
cls.threadlocal.connection is None:
 cls.threadlocal.connection=sqlite.connect(db)
 cls.threadlocal.connection.row_factory = sqlite.Row
 cls.threadlocal.connection.execute(
 "pragma
foreign_keys=1")

Entities and Relations

[140]

The inittable() class method is the method that should be called once when we start an
application:

Chapter5/relation.py

 @classmethod
 def inittable(cls, entity_a, entity_b,
 reltype="N:N", cascade=None):
 sql='''create table if not exists %(table)s (
 %(a)s_id references %(a)s on delete cascade,
 %(b)s_id references %(b)s on delete cascade,
 unique(%(a)s_id,%(b)s_id)
);
 '''%{'table':cls.__name__,
 'a':entity_a.__name__,'b':entity_b.__name__}
 with cls.threadlocal.connection as conn:
 cursor=conn.cursor()
 cursor.execute(sql)
 cls.columns=[entity_a.__name__,entity_b.__name__]

It takes the two classes involved in the relations as arguments to construct a proper SQL
statement to create a bridging table if it does not exist yet (highlighted).

For example, CarOwner.inittable(Car,Owner) will result in a statement like this:

create table if not exists CarOwner (
 Car_id references Car on delete cascade,
 Owner_id references Owner on delete cascade,
 unique(Car_id,Owner_id)

There are a couple of interesting things to note here. There are two columns each referring
to a table by way of the references clause. Because we do not explicitly state which
column we reference inside the table, the reference is made to the primary key. This is a
convenient way to write this down and works because we always define a proper primary
key for any table that represents an entity.

Another thing to note is the on delete cascade clause. This helps us to maintain
something called referential integrity. It ensures that when the record that is referenced is
deleted, the records in the bridging table that refer to it are deleted as well. This way, there
will never be entries in a table that represent a relation that points to non-existing entities.
To ensure that this referential integrity checking is actually performed, it is necessary to
execute a pragma foreign_keys = 1 instruction for each connection to the database.
This is taken care of in the threadinit() method.

Chapter 5

[141]

Finally, there is a unique constraint over both the columns. This effectively ensures that we
only maintain, at most, a single entry in this table for each relation between two entities.
That is, if I own a car, I can enter this specific relation only once.

If the execution of this statement went well, inittable() finishes with storing the names
of the entity classes that this relation refers to in the columns class variable.

Pop quiz – how to check a class
How can we make sure that the classes we are passing as arguments to the initdb()
method are subclasses of Entity?

Relation instances
The __init__() method constructs an instance of a Relation, that is, we use it to record
the relation between two specific entities.

Chapter5/relation.py

 def __init__(self,a_id,b_id,stub=False):
 self.a_id=a_id
 self.b_id=b_id
 if stub : return
 cols=self.columns[0]+"_id,"+self.columns[1]+"_id"
 sql='insert or replace into %s (%s) values(?,?)'%(
 self.__class__.__name__,cols)
 with self.threadlocal.connection as conn:
 cursor=conn.cursor()
 cursor.execute(sql,(a_id,b_id))
 if cursor.rowcount!=1:
 raise ValueError()

It takes the IDs of both Entity instances that are involved in this specific relation and a
stub parameter.

The __init__() method is not meant to be called directly as it doesn't know nor check
whether the IDs passed to it make any sense. It simply stores those IDs if the stub
parameter is true or inserts a record in the table if it isn't.

Normally, we would use the add() method to create a new relationship with all necessary
type checking. Separating this makes sense as all this checking is expensive and is unnecessary
if we know that the IDs we pass are correct. The list() method of the Relation class for
example retrieves only pairs of valid IDs so that we can use the __init__() method without
the need for costly additional checks.

Entities and Relations

[142]

The SQL statement that is constructed may look like this for a new CarOwner relation:

insert or replace into CarOwner (Car_id,Owner_id) values(?,?)

If we would try to insert a second relation between the same entities, the unique constraint
on both columns together would be violated. If so, the insert or replace clause would
make sure that the insert statement wouldn't fail, but there still would be just one record
with these two IDs.

Note that the insert statement could fail for another reason. If either of the IDs we try
to insert does not refer to an existing record in the table it refers to, it would fail with an
exception sqlite3.IntegrityError: foreign key constraint failed.

The final sanity check in the last line is to use the rowcount attribute to verify that just one
record was inserted.

The add() method does make sure that the instances passed to it are in the correct
order by checking the names of the classes against the names of the columns stored by
the inittable() method. It raises a ValueError() if this is not correct, otherwise it
instantiates a new relation by calling the class constructor with both IDs.

Chapter5/relation.py

 @classmethod
 def add(cls,instance_a,instance_b):
 if instance_a.__class__.__name__ != cls.columns[0] :
 raise ValueError("instance a, wrong class")
 if instance_b.__class__.__name__ != cls.columns[1] :
 raise ValueError("instance b, wrong class")
 return cls(instance_a.id,instance_b.id)

The list() method is meant to return a list of zero or more Relation objects.

Chapter5/relation.py

 @classmethod
 def list(cls,instance):
 sql='select %s_id,%s_id from %s where %s_id = ?'%(
 cls.columns[0],cls.columns[1],
 cls.__name__,instance.__class__.__name__)
 with cls.threadlocal.connection as conn:
 cursor=conn.cursor()
 cursor.execute(sql,(instance.id,))
 return [cls(r[0],r[1],stub=True)
 for r in cursor.fetchall()]

Chapter 5

[143]

It needs to work for both sides of the relation: if we pass a Car instance, for example, to
the list() method of the CarOwner class, we should find all records where the Car_id
column matches the id attribute of the Car instance.

Likewise, if we pass an Owner instance, we should find all records where the Owner_id
column matches the id attribute of the Owner instance. But precisely because we gave the
columns in the table that represents the relation meaningful names derived from the names
of the classes and hence the tables, this is rather straightforward. For example, the SQL
constructed for CarOwner.list(car) might look like the following:

select Car_id,Owner_id from CarOwner where Car_id = ?

Whereas the SQL for CarOwner.list(owner) would look like the following:

select Car_id,Owner_id from CarOwner where Owner_id = ?

This is accomplished by referring to the class name of the instance passed as argument
(highlighted).

After executing this SQL statement, the results are fetched with the fetchall() method
and returned as a list of relation instances. Note that this list may be of zero length if there
weren't any matching relations.

The last method of note defined for the Relation class is the delete() method.

Chapter5/relation.py

 def delete(self):
 sql='delete from %s where %s_id = ? and %s_id = ?'%(
 self.__class__.__name__,self.columns[0],self.columns[1])
 with self.threadlocal.connection as conn:
 cursor=conn.cursor()
 cursor.execute(sql,(self.a_id,self.b_id))
 if cursor.rowcount!=1:
 raise ValueError()

It constructs an SQL delete statement which, in our CarOwner example, may look like this:

delete from CarOwner where Car_id = ? and Owner_id = ?

The sanity check we perform in the last line means that an exception is raised if the number
of deleted records is not exactly one.

Entities and Relations

[144]

If there was not exactly one record deleted, what would that signify?

If it would be more than one, that would indicate a serious problem because all
the constraints are there to prevent that there is never more than one record
describing the same relationship, but if it would be zero, this would probably
mean we try to delete the same relationship more than once.

You might wonder why there isn't any method to update a Relation object
in any way. The reason is that this hardly makes any sense: either there is a
relation between two entity instances or there isn't. If we would like to transfer
ownership of a car, for example, it is just as simple to delete the relation
between the car and the current owner and then add a new relation between
the car and the new owner.

Now that we have a simple Entity and Relation framework, let's look at how we can use this
to implement the foundation of our books application.

Time for action – defining the Books database
The next step is to create a module booksdb.py that uses the entity and relation
modules to construct a data model that can be used conveniently by the delivery layer (the
parts of the web application that deal with providing content to the client). We therefore
have to define Book, Author, and User entities as well as a BookAuthor relation and a
UserBook relation.

We will also provide some functions that are bit more high-level, for example, a newbook()
function that checks whether a book with a given title already exists and that only creates a
new Book instance if the authors are different (presumably because they wrote a book with
the same title).

Having a separate layer that models data in terms that are meaningful in the context makes
it easier to understand what is going on. It also keeps the delivery layer less cluttered and
therefore easier to maintain.

What just happened?
After importing the Entity and Relation class, the first thing we do is define the
appropriate entities and relations (the full code is available as booksdb.py). The first function
we encounter is threadinit() (highlighted). It is a convenience function that calls all the
individual threadinit() methods of the different entities and relations we have defined:

Chapter5/booksdb.py

from entity import Entity
from relation import Relation

class Book(Entity):

Chapter 5

[145]

 pass

class Author(Entity):
 pass

class User(Entity):
 pass

class BookAuthor(Relation):
 pass

class UserBook(Relation):
 pass

def threadinit(db):
 Book.threadinit(db)
 Author.threadinit(db)
 User.threadinit(db)
 BookAuthor.threadinit(db)
 UserBook.threadinit(db)

Likewise, the inittable() function is a convenience function that calls all the necessary
inittable() methods:

Chapter5/booksdb.py

def inittable():
 Book.inittable(title="",isbn="unique",publisher="")
 Author.inittable(name="")
 User.inittable(userid="unique not null")
 BookAuthor.inittable(Book,Author)
 UserBook.inittable(User,Book)

It defines a Book as a subclass of Entity having a title, a unique isbn, and a
publisher attribute. An Author is defined as a subclass of Entity with just a name
attribute and a User as an Entity with just a userid that must be unique and cannot
be null. Also, the relations that exist between Book and Author, and User and Book are
initialized here.

The newbook() function should be used to add a new book to the database:

Chapter5/booksdb.py

def newbook(title,authors,**kw):
 if not isinstance(title,str) :
 raise TypeError("title is not a str")
 if len(title)<1 :
 raise ValueError("title is empty")
 for a in authors :
 if not isinstance(a,Author) :

Entities and Relations

[146]

 raise TypeError("authors should be of type Author")

 bl=list(Book.list(title=title,**kw))
 if len(bl) == 0:
 b=Book(title=title,**kw)
 elif len(bl) == 1:
 b=Book(id=bl[0])
 else:
 raise ValueError("multiple books match criteria")

 lba=list(BookAuthor.list(b))
 if len(authors):
 lba=[Author(id=r.b_id) for r in lba]
 for a in authors:
 known=False
 for a1 in lba:
 if a.id == a1.id :
 known=True
 break
 if not known:
 r=BookAuthor.add(b,a)
 return b

It takes a title argument and a list of Author objects and any number of optional keywords
to select a unique book if the title is not sufficient to identify a book. If a book with the given
title and additional keywords cannot be found, a new Book object is created (highlighted). If
more than one book is found that matches the criteria, an exception is raised.

The next step is to retrieve a list of authors associated with this book. This list is used to
check if any author in the list of authors passed to the newbook() function is not already
associated with this book. If not, this new author is added. This ensures we do not attempt
to associate an author more than once with the same book, but it also makes it possible to
add authors to the list of authors associated with an existing book.

The newauthor() function verifies that the name passed as an argument is not empty and
is indeed a string (highlighted):

Chapter5/booksdb.py

def newauthor(name):
 if not isinstance(name,str) :
 raise TypeError("name is not a str")
 if len(name)<1 :
 raise ValueError("name is empty")

 al=list(Author.list(name=name))
 if len(al) == 0:

Chapter 5

[147]

 a=Author(name=name)
 elif len(al) == 1:
 a=Author(id=al[0])
 else:
 raise ValueError("multiple authors match criteria")
 return a

Then it checks whether an author with such a name already exists. If it doesn't, a new
Author object is created and returned. If only one Author was found, that one is returned
without creating a new one. If the same name matched more than one Author, an
exception is raised because our current data model does not provide the notion of more
than one author with the same name.

An application to register books is most often used to see if we already own a book. A
function to list books matching a set of criteria should therefore be quite flexible to provide
the end user with enough functionality to make finding books as simple as possible, even if
the books number is in the thousands.

The listbooks() function tries to encapsulate the necessary functionality. It takes a
number of keyword arguments used to match any number of books. If the user argument
is present, the results returned are limited to those books that are owned by that user.
Likewise, the author argument limits the results to books by that author. The pattern
argument may be a string that limits the books returned to those whose title contains the
text in the pattern argument.

Because the number of books matching the criteria could be very large, listbooks() takes
two additional parameters to return a smaller subset. This way, the delivery layer can offer
the list of results in a page-by-page manner. The offset argument determines the start of
the subset and limit of the number of results returned. If limit is -1, all results starting at
the given offset are returned. For example:

booksdb.listbooks(user=me,pattern="blind",limit=3)

Would return the first three books I own that have the text blind in their title.

Given these requirements, the implementation of listbooks() is rather straightforward:

Chapter5/booksdb.py

def listbooks(user=None,author=None,offset=0,limit=-1,pattern=""):
 lba={}
 lbu={}
 if not user is None:
 if not isinstance(user,User):
 raise TypeError("user argument not a User")
 lbu={r.b_id for r in UserBook.list(user)}

Entities and Relations

[148]

 if not author is None:
 if not isinstance(author,Author):
 raise TypeError("author argument not an Author")
 lba={r.a_id for r in BookAuthor.list(author)}

 if user is None and author is None:
 lb={b for b in Book.list()}
 else:
 if len(lbu)==0 : lb=lba
 elif len(lba)==0 : lb=lbu
 else : lb = lba & lbu

 books = [Book(id=id) for id in lb]
 books = sorted(books,key=lambda book:book.title.lower())
 if pattern != "" :
 pattern = pattern.lower()
 books = [b for b in books
 if b.title.lower().find(pattern)>=0]
 if limit<0 :
 limit=len(books)
 else:
 limit=offset+limit
 return len(books),books[offset:limit]

It starts by checking that any user argument is indeed an instance of a User entity and then
finds all books owned by this user (highlighted) and converts this list to a set. It checks any
author argument in a similar way. If neither an author nor a user was specified, we simply
retrieve a list of all books (highlighted) and convert it to a set as well.

Working with sets is convenient, as sets will never contain duplicates and can easily be
manipulated. For example, if we have a non-empty set of books associated with an author
and a non-empty set of books owned by a user, we can obtain the intersection (that is,
books both owned by the given owner and written by the given author) with the & operator.

Either way, we end up with a list of book IDs in lb. This list of IDs is then converted to
Book objects and sorted on the title to ensure consistent results when dealing with offsets
(highlighted). The next step is to reduce the number of results to those books whose title
contains the text in the pattern argument.

All this matching, sorting, and filtering could have been done with SQL as well
and probably in a more efficient manner too. However, this would mean the SQL
would be rather complicated and we would ruin the clear distinction between the
low-level database operations defined in the entity and relation modules
and the more high-level operations defined here in booksdb. If efficiency was
more important, that would be a valid argument, but here we choose for a clear
separation to aid understanding, as Python is a lot easier to read than SQL.

Chapter 5

[149]

All that is left now is to return the proper slice from the list of books based on the offset
and limit arguments, as shown in the last line of the listbooks() function. Note that we
actually return a tuple, the first item being the total number of matching books, the second
item the actual list of matching books. This makes it simple to present information to the end
user like 'showing items 20-29 of 311'.

The listauthors() function either returns a list of authors associated with a book if a
book argument is given or a list of all authors:

Chapter5/booksdb.py

def listauthors(book=None):
 if not book is None:
 if not isinstance(book,Book):
 raise TypeError("book argument not a Book")
 la=[r.b_id for r in BookAuthor.list(book)]
 else:
 la=Author.list()
 return [Author(id=id) for id in la]

It does make sure that any book argument is indeed an instance of a Book entity.

checkuser() may be called to see if there already exists a user with the given username
and if not creates one:

Chapter5/booksdb.py

def checkuser(username):
 users=list(User.list(userid=username))
 if len(users):
 return User(id=users[0])
 return User(userid=username)

Any user that uses this application should have a corresponding User entity, if he/she wants
to be able to register his/her ownership of a book. This function makes sure this is possible.

Note that our application does not authenticate a user at this level, that is left to the delivery
layer as we will see. Any authentication database the delivery layer uses is completely
separate from the User entity in our books database. The delivery layer may, for example,
use the system password database to authenticate a user and pass the username to this
layer if the authentication was successful. If, at that point, the user does not yet exist in our
books database, we can make sure he does by calling the checkuser() function.

The addowner() and delowner() functions are used to establish or remove a specific
ownership relation between a book and a user. Both are thin wrappers around the
underlying methods in the Relation class, but add some additional type checking.

Entities and Relations

[150]

Chapter5/booksdb.py

def addowner(book,user):
 if not isinstance(book,Book):
 raise TypeError("book argument not a Book")
 if not isinstance(user,User):
 raise TypeError("user argument not a User")
 return UserBook.add(user,book)

def delowner(book,user):
 if not isinstance(book,Book):
 raise TypeError("book argument not a Book")
 if not isinstance(user,User):
 raise TypeError("user argument not a User")
 UserBook(user.id,book.id,stub=True).delete()

This foundation will be put to good use in the next section where we will implement the
delivery layer.

Pop quiz – how to select a limited number of books
How would you select the third page of 10 books from a list of all books in the database?

Have a go hero – cleaning up the books database
booksdb.py lacks a delbooks() function because we won't be providing this functionality
in our final application. It is not a disadvantage to just remove ownership and leave the book
as is, even if it doesn't have any owners because other users may register ownership by
referring to this existing book without the need to enter it again. However, occasionally we
might want to clean up the database. How would you implement a function that removes all
books without an owner?

The delivery layer
Because we laid a substantial foundation with the entity, relation, and booksdb modules,
we can now cleanly separate the delivery layer from the rest of the application. The delivery
layer consists of just a couple of CherryPy applications. To authenticate a user, we will reuse the
logon application we encountered in previous chapters and the rest of the application consists
of a single Books class with the necessary methods to provide two main screens: a navigable
and filterable list of books and a screen to add new books to the database.

Chapter 5

[151]

Time for action – designing the delivery layer
To design these screens it is often convenient to make some drawings to have a visual
representation of the screen. This makes it a lot easier to discuss functionality with your
client.

There exist a number of good applications to assist you with drawing up some mock ups
(for example, Microsoft's Expression Blend or Kaxaml http://kaxaml.com/) but often,
especially in the early stages of designing an application, a simple drawing will do, even if it's
hand drawn. The illustrations show the sketches I used in making a rough draft, both done
with the GIMP (http://www.gimp.org/):

Entities and Relations

[152]

The first image is a sketch of the screen that lets the user interact with a list of books, the
second image shows what a screen to add a new book could look like.

Such images are easy to print and annotate during a discussion without the need for a
computer application, all you need is a pen or pencil. Another useful designing technique is
to draw some outline on a whiteboard and add details while you discuss functionality. At the
end of the session, you can take a picture of the whiteboard with your cell phone and use
that as a starting point. The design will likely change anyway during the development and
starting with this simple approach saves a lot of effort that might have to be undone later on.

When we take a look at the design for the screen that lists the books we see immediately
that the key functionality is all in the button bar. Notably, we will have to implement
functionality to:

 � Show a list of books

 � Page forward and backward through this list

 � Limit the list of books to those owned by the current user

 � Filter the list of books on words occurring in the title

The screen to add a new book is deceptively simple. The user must be able to enter a title
and an author to indicate he owns a book, but this means that in the background, we have at
least the following scenarios to check:

 � There is no book in the database with the given title

 � There is a book with the given title but without the given author

 � The combination of book and author is known

Chapter 5

[153]

In the first situation, we have to create a new Book entity, and possibly a new Author entity
if the author is unknown.

In the second situation, we will create a new Book entity as well, because it is very well
possible that different authors write books with the same title. In a more elaborate
application, we might be able to make a distinction based on the ISBN.

In the last situation, we do not have to create a new Book or an Author entity, but we still
have to make sure that we register ownership of that specific book.

The final requirement is one of convenience to the user. If there are many users entering
books in the database, chances will grow that if someone registers a new book he/she owns,
that book is already present in the database. To save the user some typing, it would be nice if
we could present the user with a list of possible titles and authors while he/she types along.
This is called auto completion and is fairly straightforward to implement with a combination
of jQuery UI and Python.

When booksweb.py is started, the list of books will look like the preceding image and the
page to add a new book is shown next. We will enhance these looks in the last section of this
chapter, but we focus on the implementation of the delivery layer in booksweb.py first.

Auto completion is a close companion of client-side input validation. By presenting the user
with a list of possibilities to choose from, we lower the risk of a user entering a similar title
with a slightly different spelling. Of course there are some additional checks to make: a title
may not be empty, for example. If the user does make an erroneous entry, there should also
be some sort of feedback so he/she can correct his mistake.

Entities and Relations

[154]

Of course, client-side validation is a useful tool to enhance the user experience, but it doesn't
protect us from malicious attempts to corrupt our data. Therefore, we have implemented
some server-side checks as well.

What just happened?
We start off by creating a global variable that holds the basic HTML that we will use both in the
booklist screen as well as in the add book screen (the full code is available as booksweb.py):

Chapter5/booksweb.py

with open('basepage.html') as f:
 basepage=f.read(-1)

We read it in from a separate file instead of storing it inside the module as a string. Storing
the HTML in a separate file makes it a lot easier to edit because the editor can use syntax
highlighting for HTML instead of just marking it as a string literal in Python. The file is
available as basepage.html:

Chapter5/basepage.html

<html><head><title>Books</title>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.
min.js" type="text/javascript"></script>
<script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.3/
jquery-ui.min.js" type="text/javascript"></script>
<link rel="stylesheet" href="http://ajax.googleapis.com/ajax/libs/
jqueryui/1.8.3/themes/smoothness/jquery-ui.css" type="text/css"
media="all" />
<link rel="stylesheet" href="/books.css" type="text/css" media="all"
/>
</head><body>
<div id="content">%s</div>
<script src="/booksweb.js" type="text/javascript"></script>
</body>
</html>

This time, we choose to incorporate all external libraries from Google's content delivery
network (highlighted).

You might not want to depend on an external agency for your production application, but
for development, this is an advantage as you don't have to lug around those files. But even
in a production environment, this choice may make sense as this option will reduce the
number of requests made to your server and minimize the bandwidth. Likewise, we refer to
the cascading style sheets and accompanying files for our chosen theme (Smoothness) on
Google's content delivery network.

Chapter 5

[155]

Besides Google, a number of other large players offer a Content Delivery
Network (CDN) that you may use. Even Microsoft (http://www.asp.net/
ajaxlibrary/cdn.ashx) offers free access to the jQuery and jQuery UI
libraries on its CDN.

The head section also contains a link to an additional style sheet books.css that will be
used to tweak the layout and style of the elements that are not jQuery UI widgets.

The body is a single <div> element with a %s placeholder to be filled with different relevant
markup for the booklist and new book pages, followed by a <script> tag that will provide
other script elements within the specific pages with common functionality.

booksweb.py continues with the definition of the Books class that will act as the central
application in the CherryPy framework for this application.

Chapter5/booksweb.py

class Books():
 def __init__(self,logon,logoffpath):
 self.logon=logon
 self.logoffpath=logoffpath

 @cherrypy.expose
 def index(self):
 username = self.logon.checkauth()
 return basepage % '<div id="booklist"></div>'

The index() function serves basepage.html with a single <div> element that will hold
the content.

The list() method will be called from JavaScript functions defined in booksweb.js once
it loads and will be used to fill the content <div> initially, as well as refresh the contents of
this div when the buttons in the navigation button bar are pressed.

Before we examine the list() and addbook() methods, let's have a look at the JavaScript
in booksweb.js to see how these methods are invoked from the AJAX calls in the client (the
full JavaScript code is available as booksweb.js).

Chapter5/booksweb.js

$.ajaxSetup({cache:false,type:"GET"});

The first activity we encounter in booksweb.js is setting global defaults for all AJAX calls.
We disable caching to make sure the browser executes an AJAX call every time we ask it to,
without checking if it made a call to the same URL earlier, because otherwise we would not
actually refresh the content of our list of books.

Entities and Relations

[156]

For debugging purposes, we also make sure every AJAX call uses the HTTP GET method
because arguments to a POST call are not logged normally while arguments to a GET are part
of the URL of the request.

The prepnavbar() function we encounter next is our workhorse: every time we make
the URL /books/list get a list of books, prepnavbar() is called once the request is
completed.

Chapter5/booksweb.js

function prepnavbar(response, status, XMLHttpRequest){
 $("#firstpage").button({
 text: false,
 icons: {
 primary: "ui-icon-seek-start"
 }
 });
 $("#previouspage").button({
 text: false,
 icons: {
 primary: "ui-icon-seek-prev"
 }
 });
 $("#mine").button({
 text: false,
 icons: {
 primary: "ui-icon-tag"
 }
 });
 $("#nextpage").button({
 text: false,
 icons: {
 primary: "ui-icon-seek-next"
 }
 });
 $("#lastpage").button({
 text: false,
 icons: {
 primary: "ui-icon-seek-end"
 }
 });
 $("#addbook").button({
 text: false,
 icons: {
 primary: "ui-icon-plusthick"

Chapter 5

[157]

 }
 });
 t=$("#toolbar").buttonset();
 $("span",t).css({padding:"0px"});

 $(".bookrow:odd").addClass('oddline');
};

$("#booklist").load('/books/list',prepnavbar);$("#booklist").load('/
books/list',prepnavbar);

The HTML returned by /books/list not only contains the matching books, but also the
navigation buttons themselves together with additional information on the number of
matching books returned. These navigation buttons are not yet styled and configuring this is
the task of the prepnavbar() function.

It styles each button (except for the input button that is used to filter on text) as a jQuery UI
button widget without text but with an appropriate icon. It also adds the oddline class to
each odd row of the bookrow class, so we can refer to this class in our style sheet to give it
distinctive zebra stripes, for example.

When booksweb.js is executed, the content of the page consists of an empty <div>.
This <div> element is filled with HTML returned by calling the /books/list URL with
parameters (last line). The prepnavbar() function is passed as the second argument to the
load() method and will be called once loading the data is completed.

The remaining part of booksweb.js is filled with adding live click handlers to all
navigation buttons.

Chapter5/booksweb.js

function getparams(){
 var m=0;
 // apparently the checked attr of a checkbox is magic:
// it returns true/false, not the contents!
 if ($("#mine").attr("checked")==true) { m = 1}
 return { offset:Number($("#firstid").text()),
 limit:Number($("#limitid").text()),
 filter:$("#filter").val(),
 mine:m
 };
};

$("#mine").live('click',function(){
 // this function is fired *after* the click
// toggled the checked attr
 var data = getparams();
 if (data.mine) {

Entities and Relations

[158]

 $("#mine").removeAttr("checked");
 } else {
 $("#mine").attr("checked","yes");
 }
 $("#booklist").load('/books/list',data,prepnavbar);
 return true;
});

$("#firstpage").live('click',function(){
 var data = getparams();
 data.offset=0;
 $("#booklist").load('/books/list',data,prepnavbar);
 return true;
});
$("#previouspage").live('click',function(){
 var data = getparams();
 data.offset -= data.limit;
 if(data.offset<0){ data.offset=0;}
 $("#booklist").load('/books/list',data,prepnavbar);
 return true;
});
$("#nextpage").live('click',function(){
 var data = getparams();
 var n=Number($("#nids").text())
 data.offset += data.limit;
 if(data.offset>=n){ data.offset=n-data.limit;}
 if(data.offset<0){ data.offset=0;}
 $("#booklist").load('/books/list',data,prepnavbar);
 return true;
});
$("#lastpage").live('click',function(){
 var data = getparams();
 var n=Number($("#nids").text())
 data.offset = n-data.limit;
 if(data.offset<0){ data.offset=0;}
 $("#booklist").load('/books/list',data,prepnavbar);
 return true;
});
$("#filter").live('keyup',function(event){
 if (event.keyCode == '13') {
 event.preventDefault();
 data = getparams();
 data.offset=0;
 $("#booklist").load('/books/list',data,prepnavbar);
 }

Chapter 5

[159]

 return true;
});
$("#addbook").live('click',function(){
 window.location.href="/books/addbook";
 return true;
});

A live handler will be attached to any element that matches its selector, even elements that
are not present yet in the documents. This will ensure that when we reload the list of books
complete with new navigation buttons, the click handlers we define here will be bound to
these new buttons as well.

Each of these handlers call the getparams() function to retrieve the information contained
in the <p> element with the id="info". This data is returned as a JavaScript object that
may be passed to the load() method. The load() method will append the attributes
in this object as parameters to the URL it calls. The information in the object reflects the
currently listed books and each handler modifies this data according to its function.

For example, the handler for the #firstpage button (highlighted) modifies the offset
attribute. It simply sets it to zero before calling /books/load to retrieve the first set of books.

The handler for the #previouspage button subtracts the value of the limit attribute from
offset to get the previous page full of books, but makes sure that the offset is not smaller
than zero. The handlers for the other clickable buttons perform similar actions before calling
/books/load.

The exception is the handler for the #mine button, that does not manipulate offsets but
toggles the checked attribute.

The #pattern input element is different as well. It doesn't act on a click, but reacts on
pressing the return key. If that key is pressed, it also calls getparams() just like the other
handlers. The object retrieved this way will also contain a pattern attribute, which holds
the value of the #pattern input element that was just entered by the user. The offset
attribute is set to zero to ensure that when we pass on a new pattern value, we start viewing
the resulting list at the start.

Let's return to the server-side in booksweb.py and see how the list() method is
implemented.

Chapter5/booksweb.py

 @cherrypy.expose
 def list(self,offset=0,limit=10,mine=1,pattern="",_=None):
 username = self.logon.checkauth()
 userid=booksdb.checkuser(username)
 try:

Entities and Relations

[160]

 offset=int(offset)
 if offset<0 : raise ValueError("offset < 0")
 except ValueError:
 raise TypeError("offset not an integer")
 try:
 limit=int(limit)
 if limit<-1 : raise ValueError("limit < -1")
 except ValueError:
 raise TypeError("limit not an integer")
 try:
 mine=int(mine)
 except ValueError:
 raise TypeError("mine not an integer")
 if not mine in (0,1) :
 raise ValueError("mine not in (0,1)")
 if len(pattern)>100 :
 raise ValueError("length of pattern > 100")
 # show titles
 yield '<div class="columnheaders"><div class="title">Title</
div><div class="author">Author</div></div>'
 # get matching books
 if mine==0 : userid=None
 n,books = booksdb.listbooks(user=userid,
 offset=offset,limit=limit,pattern=pattern)
 # yield them as a list of divs
 for b in books:
 a1=booksdb.listauthors(b)[0]
 yield '''<div id="%d" class="bookrow">
<div class="title">%s</div>
<div class="author">%s</div>
</div>'''%(b.id,b.title,a1.name)
 # yield a line of navigation buttons
 yield '''<div id="navigation">
<p id="info">Showing
%d of
%d items,
 owned by %s starting at
%d
</p>
<div id="toolbar">
<button id="firstpage" value="First">First</button>
<button id="previouspage" value="Previous">Prev</button>
<input id="mine" type="checkbox" %s /><label for="mine">Mine</label>
<input id="pattern" type="text" value="%s" />

Chapter 5

[161]

<button id="nextpage" value="Next" >Next</button>
<button id="lastpage" value="Last" >Last</button>
<button id="addbook" value="Add">Add</button>
</div>
</div>'''%(limit,n,username if mine else "all",
 offset,'checked="yes"'if mine else "", pattern)

The list() method takes a number of keyword arguments to determine which books
to return. It doesn't return a complete HTML page but just a list of <div> elements
representing the selection of books together with some additional information on the
number of books selected and the button elements used to browse through the list:

 � The offset argument determines where the list of matching books will start.
Counting starts at 0.

 � The limit argument determines the number of matching books to return. This is
a maximum, less books will be returned if they are not available. When we have 14
matching books, an offset of 10, with a limit of 10, will return 10 books through 13.

 � If the mine argument is non-zero, the list of matching books is limited to the ones
owned by the user issuing the request.

 � if the pattern argument is not an empty string, the list of matching books is limited
to the ones that contain the pattern string in their title.

 � The _ (underscore) argument is ignored. We configured our AJAX calls not to be
cached (in booksweb.js) and jQuery prevents caching by appending each time an
_ argument with a random value to the URL it requests. The URL will look different
each time to the browser this way, and this will prevent caching.

The implementation of the list() method starts off by validating that the user is logged in
and then retrieving the corresponding User object. The next steps systematically validate
the arguments passed to the method and raise a ValueError or TypeError if something
fails to validate. The offset argument, for example, should be larger or equal to zero
(highlighted).

Once the arguments are validated, these are handed off to the booksdb.listbooks()
function, that will take care of the actual selection and will return a tuple consisting of the
number of matching books and the actual list of books sorted on their title.

This list of books is used to step through and generate the appropriate HTML markup. For
each book, we fetch the authors of the book (highlighted) and then yield a string with HTML
markup. This HTML contains the title of the book and the name of the first author. If there
is more information we would like to present, for example, the ISBN of the book, we could
easily add it here. By using yield to return the results one-by–one, we save ourselves the
trouble of constructing a complete string first before returning it in one go.

Entities and Relations

[162]

The final yield statement contains a <div> element with the id="navigation". We
choose to return the complete navigation markup, including buttons, to enable us to easily
set the values of these buttons. The pattern <input> element, for example, should display
the current text we filter on. We could pass this as separate information and use client-side
JavaScript to set these values but this would complicate the JavaScript quite a bit.

Still, the offset and limit values together with the total number of matching books is
returned inside a <p> element. This serves two goals: we can display this as an informational
message to the user, but it is also necessary information for the navigation buttons to function.

Time for action – adding a new book
The screen to add a new book to the database is a simple form. What we need to
implement is:

 � Some HTML to make it possible to display the form

 � A method in our CherryPy application that will produce this HTML

 � A method to process the input once this form is submitted

There is no need to implement two different methods here because based on the arguments
passed to the method we can decide whether to return a form or to process the submitted
contents of the same form. Although it may be considered bad form to design a method to
do two things, it does keep related functionality together.

What just happened?
The addbookform class variable contains the template that refers to a number of string
variables to interpolate. There is also a <script> element to add some extra functionality
that we examine later:

Chapter5/booksweb.py

 addbookform='''<div id="newbook">
<form action="addbook" method="get">
<fieldset><legend>Add new book</legend>
<input name="title" id="title" type="text" value="%(title)s"
%(titleerror)s />
<label for="title">Title</label>
<input name="author" id="author" type="text" value="%(author)s"
%(authorerror)s />
<label for="author">Author</label>
</fieldset>
<div class="buttonbar">
<button name="submit" type="submit" value="Add">Add</button>

Chapter 5

[163]

<button name="cancel" type="submit" value="Cancel">Cancel</button>
</div>
</form>
<div id="errorinfo"></div>
</div>'''

The addbook() method itself is used both to display the initial screen and to process the
results, that is, it acts as the target of the <form> element's action attribute and processes
the values from the various <input> and <button> elements.

All arguments are therefore keyword arguments with default values. If they are all missing,
addbook() will construct an empty form, otherwise it will check and process the information.
In the latter case, there will be two possible scenarios: the values are ok, in which case a new
book will be added and the user will be returned to the page with the book listing, or one or
more of the values are not ok, in which case, the form is presented again, with suitable error
markings, but with the entered values still in place for the user to edit.

Chapter5/booksweb.py

 @cherrypy.expose
 def addbook(self,title=None,author=None,submit=None,cancel=None):
 username = self.logon.checkauth()
 userid=booksdb.checkuser(username)
 if not cancel is None: raise cherrypy.HTTPRedirect("/books")
 data=defaultdict(str)
 if submit is None:
 return basepage%(Books.addbookform%data)
 if title is None or author is None:
 raise cherrypy.HTTPError(400,'missing argument')
 data['title']=title
 data['author']=author
 try:
 a=booksdb.newauthor(author)
 try:
 b=booksdb.newbook(title,[a])
 booksdb.addowner(b,userid)
 raise cherrypy.HTTPRedirect("/books")
 except ValueError as e:
data['titleerror']= 'class="inputerror ui-state-error"
title="%s"'%str(e)
 except ValueError as e:
data['authorerror']= 'class="inputerror ui-state-error"
title="%s"'%str(e)
 return basepage%(Books.addbookform%data)

Entities and Relations

[164]

The addbook() method first verifies if the user is logged in, and if so, fetches the
corresponding User object. The next step is to check if the cancel button contained in the
form was clicked, in which case the cancel argument will contain a value and the user will
be redirected to the list of books (highlighted).

Next, we create a default dictionary that will return an empty string for every missing key
that is accessed. This default dictionary will be used as interpolation data for strings in
addbookform. This way we can set a number of interpolation variables if we want to (for
example, %(title)s in the value attribute of the <input> element for a title), but if we
leave anything out, it will be automatically replaced by an empty string.

If the submit argument is equal to None, this means it wasn't present, so addbook() was
called to display just the empty form and that is just what is done (highlighted). Because
data contains no keys at all at this moment, all interpolation variables will yield an empty
string resulting in an empty form.

If the submit argument was not None, we are processing the values in the form. First we
perform a sanity check. If either the title or the author argument is missing, we raise an
exception (highlighted). Even if the user failed to enter either of them, the corresponding
values would be present in the arguments but as empty strings. So, if either of these
arguments is missing completely, this cannot be the result of a user action and therefore it is
sensible to raise an exception.

If both arguments are present, we save them in the default dictionary so that we can
redisplay them as default values in the form, if we need to present the form again.

The next step is to try the newauthor() function from the booksdb module. It either
returns a valid Author object (because we already know the author or a new one was
created) or it raises an exception. Such an exception is caught and the error text is added to
the authorerror key in the dictionary together with some HTML class attributes that will
enable us to display the corresponding <input> element in a suitable manner to indicate
the error condition.

Once we have a valid Author object, the same approach is used to retrieve a valid Book
object. This may fail (mainly if the title argument is an empty string) in which case we set
the titleerror key in the dictionary.

We end with establishing an ownership relation between the user and the book with a call to
the addowner() function and then redirect the user to the page that lists the books.

If anything goes wrong, we catch some exception and we end up at the return statement
which will return the form again, only this time the dictionary will hold some keys that will
be interpolated, resulting in suitable default values (for example, if a title argument was
empty, but the author argument wasn't, the user doesn't have to enter the name of the
author again) and information on the errors encountered.

Chapter 5

[165]

All this string interpolation business might be a bit daunting, so let's have a brief look at an
example. The definition for the title <input> element in the addbookform variable looks
like this:

<input name="title" id="title" type="text" value="%(title)s"
%(titleerror)s />

If we want to present the user with an empty form, the string is interpolated with a default
dictionary that holds no keys. The references %(title)s and %(titlerror)s will
therefore come up with empty strings resulting in:

<input name="title" id="title" type="text" value="" />

A plain <input> element without a default value.

Now if something went wrong with locating or creating an author, the dictionary would hold
a title key but no titleerror key (but it would have an authorrerror key). Assuming
that the title entered by the user was "A book title", the resulting interpolation would
therefore look like this:

<input name="title" id="title" type="text" value="A book title" />

Finally, if there was an error with the title, for example, because no book title was entered by
the user, both the title key would be present (albeit, in this case, as an empty string) and
the titleerror key. The value of the titleerror key holds both the error message as an
HTML title attribute together with an HTML class attribute that looks like this:

class="inputerror ui-state-error" title="title is empty"

So the final interpolation would result in:

<input name="title" id="title" type="text" value="" class="inputerror
ui-state-error" title="title is empty" />

Auto completion
When we presented the HTML markup for the page that shows a form to add a new book,
we skipped over the <script> element at the end. That script element is used to augment
the title and author <input> elements with auto completion.

Entities and Relations

[166]

Time for action – using input fields with auto completion
With the <script> element in place, the input elements can now retrieve possible
completions with an AJAX call. Now, when we enter a few characters in an input field, we are
presented with a list of choices, as shown in the image:

Let's look in some detail at how this is implemented in, remarkably, a few lines of JavaScript.

What just happened?
If we look at the code again, we see that we call the autocomplete() method on both the
#title and #author <input> elements, but each with a different source argument. The
autocomplete widget in jQuery UI is very versatile and simple to apply (The code shown is
part of booksweb.py, but we skipped this earlier):

Chapter5/booksweb.py

<script>
$("#title").autocomplete({ source:'/books/gettitles',
 minLength:2}).focus();
$("#author").autocomplete({ source:'/books/getauthors',
 minLength:2});
</script>

The source attribute of the options object we pass to the autocomplete() method holds
a URL that will be used to retrieve a list of possible completions for the characters entered
so far.

The minLength attribute ensures that we only start looking for possible completions once the
user has entered at least two characters, otherwise the list would probably be enormous and
not much of a help. Note that it is still possible to enter a completely new value into an input
field. The user is not obliged to pick an item from the list presented and can keep on typing.

The autocomplete widget adds the text entered so far as the term argument to the source
URL. When the user has typed 'foo' in the #author <input> element, this will result in a
call to a URL like /books/getauthors?term=foo&_=12345678.

This means that the gettitles() and getauthors() methods will both take a term
argument (and an _ (underscore) argument to ensure nothing is cached):

Chapter 5

[167]

Chapter5/booksweb.py

@cherrypy.expose
 def getauthors(self,term,_=None):
 return json.dumps(booksdb.getauthors(term))

 @cherrypy.expose
 def gettitles(self,term,_=None):
 titles=json.dumps(booksdb.gettitles(term))
 return titles

Both methods simply pass on the request to the corresponding booksdb functions, but
because autocomplete widgets expect the result as a JSON encoded string, we convert the
list with the json.dumps() function before returning it:

Chapter5/booksdb.py

def gettitles(term):
 titles=Book.getcolumnvalues('title')
 re=compile(term,IGNORECASE)
 return list(takewhile(lambda x:re.match(x),
 dropwhile(lambda x:not re.match(x),titles)))

def getauthors(term):
 names=Author.getcolumnvalues('name')
 re=compile(term,IGNORECASE)
 return list(takewhile(lambda x:re.match(x),
 dropwhile(lambda x:not re.match(x),names)))

The functions getauthors() and gettitles() in booksdb.py could have simply
retrieved a list of Author or Book objects respectively and extracted the name or title
attributes. This would have been fairly slow, however, as creating potentially a lot of objects
is costly in terms of processing power. Moreover, since we are really interested in just a list
of strings and not in whole objects, it is worthwhile to implement a getcolumnvalues()
method in the Entity class:

Chapter5/entity.py

 @classmethod
 def getcolumnvalues(cls,column):
 if not column in cls.columns :
 raise KeyError('unknown column '+column)
 sql="select %s from %s order by lower(%s)"%(column,
 cls.__name__,column)
 cursor=cls.threadlocal.connection.cursor()
 cursor.execute(sql)
 return [r[0] for r in cursor.fetchall()]

Entities and Relations

[168]

getcolumnvalues() first checks if the requested column exists in this Entity (sub)
class and raises an exception if it doesn't. Then it constructs a SQL statement to return the
values in the requested column, sorted without regard for case (highlighted). The result is a
list of tuples consisting of a single item and this is converted to a simple list of items before
returning it.

The presentation layer
Now that we have implemented the delivery layer, the application is almost usable, but looks
a bit rough on the edges. Although some components already look quite good due to the
styling inherent in the jQuery UI widgets used, other parts need some serious tweaking.

Time for action – using an enhanced presentation layer
The additional JavaScript code and CSS information is part of booksweb.js and booksweb.
css respectively. The following illustrations show the end results for the page with the list of
books and the page to add a new book:

We added some zebra stripes to aid readability and changed the look of the column headings.

Chapter 5

[169]

The page to add a book had its buttons styled in the same style as the buttons on the page
with the list of books. Also, the layout was cleaned up and functionality was added to
present any errors returned in a clearly visible way (in the last example, the title is empty so
the background is red).

What just happened?
To effect the changes seen in the previous images, we added the following lines of JavaScript
to booksweb.js:

Chapter5/booksweb.js

$(".buttonbar").buttonset();
$("#newbook button[name=submit]").button({
 text: false,
 icons: {
 primary: "ui-icon-plusthick"
 }
});
$("#newbook button[name=cancel]").button({
 text: false,
 icons: {
 primary: "ui-icon-trash"
 }
});

The effect is just to alter the appearance of the buttons, not to add to their functionality with
some sort of event handler because there is no need for this. The page contains a regular
<form> element with a valid action attribute, so our submit and cancel buttons will behave
as expected.

The rest of the changes, including borders, fonts, and colors are implemented in booksweb.
css, which we do not examine here as the CSS contained in it is very straightforward.

Entities and Relations

[170]

Summary
We have learned a lot in this chapter about designing and implementing a web application
around a data model consisting of several entities and relations.

Specifically, we covered:

 � How to design the data model

 � How to create a reusable entity and relation framework

 � How to maintain a clear separation between database, object layer,
and delivery layer

 � How to implement auto completion using jQuery UI's autocomplete widget

We also discussed the importance of input validation, both client-side and server-side.

We did not yet wield the full power of our entity and relation framework and input validation
might be much more involved. To exercise our new skills and expand them, the next chapter
will be about designing and building a wiki application.

6
Building a Wiki

Nowadays, a wiki is a well-known tool to enable people to maintain a body of
knowledge in a cooperative way. Wikipedia (http://wikipedia.org) might
be the most famous example of a wiki today, but countless numbers of forums
use some sort of wiki and many tools and libraries exist to implement a wiki
application.

In this chapter, we will develop a wiki of our own, and in doing so, we will focus
on two important concepts in building web applications. The first one is the
design of the data layer. We will build upon the simple framework created in
the previous chapter and we will try to establish where the limitations in our
current implementation lie. The wiki application we will be building is a good
test case as it is considerably more complex than the book database developed
earlier.

The second one is input validation. A wiki is normally a very public application
that might not even employ a basic authentication scheme to identify users.
This makes contributing to a wiki very simple, yet also makes a wiki vulnerable
in the sense that anyone can put anything on a wiki page. It's therefore a good
idea to verify the content of any submitted change. You may, for example, strip
out any HTML markup or disallow external links.

Enhancing user interactions in a meaningful way is often closely related with
input validation. As we saw in the previous chapter, client-side input validation
helps prevent the user from entering unwanted input and is therefore a
valuable addition to any application but is not a substitute for server-side input
validation as we cannot trust the outside world not to try and access our server
in unintended ways.

We will address both input validation and user interaction explicitly when we
develop our wiki application in this chapter.

Building a Wiki

[172]

In this chapter, we will:

 � Implement a data layer for a wiki application

 � Implement a delivery layer

 � Take a good look at input validation

 � Encounter jQuery UI's dialog widget

So let's get on with it...

The data layer
A wiki consists of quite a number of distinct entities we can indentify. We will implement
these entities and the relations that exist between them by reusing the Entity/Relation
framework developed earlier.

Time for action – designing the wiki data model
As with any application, when we start developing our wiki application we must first take a
few steps to create a data model that can act as a starting point for the development:

1. Identify each entity that plays a role in the application. This might depend on the
requirements. For example, because we want the user to be able to change the title
of a topic and we want to archive revisions of the content, we define separate Topic
and Page entities.

2. Identify direct relations between entities. Our decision to define separate Topic and
Page entities implies a relation between them, but there are more relations that can
be identified, for example, between Topic and Tag. Do not specify indirect relations:
All topics marked with the same tag are in a sense related, but in general, it is not
necessary to record these indirect relations as they can easily be inferred from the
recorded relation between topics and tags.

The image shows the different entities and relations we can identify in our wiki application.
Note that like in the books application, a User is a separate entity that is distinct from any
user in, for example, a password database.

In the diagram, we have illustrated the fact that a Topic may have more than one Page
while a Page refers to a single User in a rather informal way by representing Page as a stack
of rectangles and User as a single rectangle. In this manner, we can grasp the most relevant
aspects of the relations at a glance. When we want to show more relations or relations with
different characteristics, it might be a good idea to use more formal methods and tools. A
good starting point is the Wikipedia entry on UML: http://en.wikipedia.org/wiki/
Unified_Modelling_Language.

Chapter 6

[173]

What just happened?
With the entities and relations in our data model identified, we can have a look at their
specific qualities.

The basic entity in a wiki is a Topic. A topic, in this context, is basically a title that describes
what this topic is about. A topic has any number of associated Pages. Each instance of a
Page represents a revision; the most recent revision is the current version of a topic. Each
time a topic is edited, a new revision is stored in the database. This way, we can simply
revert to an earlier version if we made a mistake or compare the contents of two revisions.
To simplify identifying revisions, each revision has a modification date. We also maintain a
relation between the Page and the User that modified that Page.

In the wiki application that we will develop, it is also possible to associate any number of
tags with a topic. A Tag entity consists simply of a tag attribute. The important part is the
relation that exists between the Topic entity and the Tag entity.

Like a Tag, a Word entity consists of a single attribute. Again, the important bit is the
relation, this time, between a Topic and any number of Words. We will maintain this
relation to reflect the words used in the current versions (that is, the last revision of a Page)
of a Topic. This will allow for fairly responsive full text search facilities.

The final entity we encounter is the Image entity. We will use this to store images alongside
the pages with text. We do not define any relation between topics and images. Images might
be referred to in the text of the topic, but besides this textual reference, we do not maintain a
formal relation. If we would like to maintain such a relation, we would be forced to scan for image
references each time a new revision of a page was stored, and probably we would need to signal
something if a reference attempt was made to a non-existing image. In this case, we choose to
ignore this: references to images that do not exist in the database will simply show nothing:

Chapter6/wikidb.py

from entity import Entity
from relation import Relation

class User(Entity): pass

Building a Wiki

[174]

class Topic(Entity): pass
class Page(Entity): pass
class Tag(Entity): pass
class Word(Entity): pass
class Image(Entity): pass

class UserPage(Relation): pass
class TopicPage(Relation): pass
class TopicTag(Relation): pass
class ImagePage(Relation): pass
class TopicWord(Relation): pass

def threadinit(db):
 User.threadinit(db)
 Topic.threadinit(db)
 Page.threadinit(db)
 Tag.threadinit(db)
 Word.threadinit(db)
 Image.threadinit(db)
 UserPage.threadinit(db)
 TopicPage.threadinit(db)
 TopicTag.threadinit(db)
 ImagePage.threadinit(db)
 TopicWord.threadinit(db)

def inittable():
 User.inittable(userid="unique not null")
 Topic.inittable(title="unique not null")
 Page.inittable(content="",
 modified="not null default CURRENT_TIMESTAMP")
 Tag.inittable(tag="unique not null")
 Word.inittable(word="unique not null")
 Image.inittable(type="",data="blob",title="",
 modified="not null default CURRENT_TIMESTAMP",
 description="")

 UserPage.inittable(User,Page)
 TopicPage.inittable(Topic,Page)
 TopicTag.inittable(Topic,Tag)
 TopicWord.inittable(Topic,Word)

Because we can reuse the entity and relation modules we developed earlier, the actual
implementation of the database layer is straightforward (full code is available as wikidb.
py). After importing both modules, we first define a subclass of Entity for each entity
we identified in our data model. All these classes are used as is, so they have only a pass
statement as their body.

Chapter 6

[175]

Likewise, we define a subclass of Relation for each relation we need to implement in our
wiki application.

All these Entity and Relation subclasses still need the initialization code to be called
once each time the application starts and that is where the convenience function initdb()
comes in. It bundles the initialization code for each entity and relation (highlighted).

Many entities we define here are simple but a few warrant a closer inspection. The Page
entity contains a modified column that has a non null constraint. It also has a default:
CURRENT_TIMESTAMP (highlighted). This default is SQLite specific (other database engines
will have other ways of specifying such a default) and will initialize the modified column to
the current date and time if we create a new Page record without explicitly setting a value.

The Image entity also has a definition that is a little bit different: its data column is explicitly
defined to have a blob affinity. This will enable us to store binary data without any problem
in this table, something we need to store and retrieve the binary data contained in an image.
Of course, SQLite will happily store anything we pass it in this column, but if we pass it an
array of bytes (not a string that is), that array is stored as is.

The delivery layer
With the foundation, that is, the data layer in place, we build on it when we develop the
delivery layer. Between the delivery layer and the database layer, there is an additional layer
that encapsulates the domain-specific knowledge (that is, it knows how to verify that the
title of a new Topic entity conforms to the requirements we set for it before it stores it in
the database):

Building a Wiki

[176]

Each different layer in our application is implemented in its own file or files. It is easy to get
confused, so before we delve further into these files, have a look at the following table. It
lists the different files that together make up the wiki application and refers to the names of
the layers introduced in Chapter 1, Choosing Your Tools (shown again in the previous image).

File Layer

wikiweb.py Content Delivery Framework Our main CherryPy application

wiki.py Object Relational Mapper The domain specific part; Imported by
wikiweb.py

wikidb.py Object Relational Mapper The domain independent part; Imported
by wikiweb.py

basepage.html Structural Representation Used by wikiweb.py to serve pages to
the client

wikiweb.js Graphical User Interface Referred to in basepage.html;
Implements user interaction like mouse
clicks.

wiki.css Graphical User Interface Referred to in basepage.html;
Implements the layout of graphical
components.

We'll focus on the main CherryPy application first to get a feel for the behavior of the
application.

Time for action – implementing the opening screen
The opening screen of the wiki application shows a list of all defined topics on the right and
several ways to locate topics on the left. Note that it still looks quite rough because, at this
point, we haven't applied any style sheets:

Chapter 6

[177]

Let us first take a few steps to identify the underlying structure. This structure is what we
would like to represent in the HTML markup:

 � Identify related pieces of information that are grouped together. These form the
backbone of a structured web page. In this case, the search features on the left form
a group of elements distinct from the list of topics on the right.

 � Identify distinct pieces of functionality within these larger groups. For example, the
elements (input field and search button) that together make up the word search are
such a piece of functionality, as are the tag search and the tag cloud.

 � Try to identify any hidden functionality, that is, necessary pieces of information that
will have to be part of the HTML markup, but are not directly visible on a page. In
our case, we have links to the jQuery and JQuery UI JavaScript libraries and links to
CSS style sheets.

Identifying these distinct pieces will not only help to put together HTML markup that reflects
the structure of a page, but also help to identify necessary functionality in the delivery layer
because each of these functional pieces is concerned with specific information processed
and produced by the server.

What just happened?
Let us look in somewhat more detail at the structure of the opening page that we identified.

Most notable are three search input fields to locate topics based on words occurring in their
bodies, based on their actual title or based on tags associated with a topic. These search
fields feature auto complete functionality that allows for comma-separated lists. In the
same column, there is also room for a tag cloud, an alphabetical list of tags with font sizes
dependent on the number of topics marked with that tag.

The structural components
The HTML markup for this opening page is shown next. It is available as the file basepage.
html and the contents of this file are served by several methods in the Wiki class
implementing the delivery layer, each with a suitable content segment. Also, some of the
content will be filled in by AJAX calls, as we will see in a moment:

Chapter6/basepage.html

<html>
 <head>
 <title>Wiki</title>
 <script
 src=
"http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js"

Building a Wiki

[178]

 type="text/javascript">
 </script>
 <script
 src=
"http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.3/jquery-ui.min.js"
 type="text/javascript">
 </script>
 <link rel="stylesheet"
 href="http://ajax.googleapis.com/ajax/libs/
jqueryui/1.8.3/themes/smoothness/jquery-ui.css"
 type="text/css" media="all" />
 <link rel="stylesheet" href="/wiki.css"
 type="text/css" media="all" />
 </head>
 <body>
 <div id="navigation">
 <div class="navitem">
 Wiki Home
 </div>
 <div class="navitem">
 Search topic
 <form id="topicsearch">
 <input type="text" >
 <button type="submit" >Search</button>
 </form>
 </div>
 <div class="navitem">
 Search word
 <form id="wordsearch">
 <input type="text" >
 <button type="submit" >Search</button>
 </form>
 </div>
 <div class="navitem">
 Search tag
 <form id="tagsearch">
 <input type="text" >
 <button type="submit" >Search</button>
 </form>
 </div>
 <div class="navitem">
 <p id="tagcloud">Tag cloud</p>
 </div>
 </div>

Chapter 6

[179]

 <div id="content">%s</div>
 <script src="/wikiweb.js" type="text/javascript"></script>
 </body>
</html>

The <head> element contains both links to CSS style sheets and <script> elements that
refer to the jQuery libraries. This time, we choose again to retrieve these libraries from a
public content delivery network.

The highlighted lines show the top-level <div> elements that define the structure of
the page. In this case, we have identified a navigation part and a content part and this is
reflected in the HTML markup.

Enclosed in the navigation part are the search functions, each in their own <div> element.
The content part contains just an interpolation placeholder %s for now, that will be filled in
by the method that serves this markup. Just before the end of the body of the markup is a
final <script> element that refers to a JavaScript file that will perform actions specific to
our application and we will examine those later.

The application methods
The markup from the previous section is served by methods of the Wiki class, an instance
of which class can be mounted as a CherryPy application. The index() method, for
example, is where we produce the markup for the opening screen (the complete file is
available as wikiweb.py and contains several other methods that we will examine in the
following sections):

Chapter6/wikiweb.py

 @cherrypy.expose
 def index(self):
 item = '%s'
 topiclist = "\n".join(
 [item%(t,t)for t in wiki.gettopiclist()])
 content = '<div id="wikihome">%s</div>'%(
 topiclist,)
 return basepage % content

First, we define the markup for every topic we will display in the main area of the opening
page (highlighted). The markup consists of a list item that contains an anchor element that
refers to a URL relative to the page showing the opening screen. Using relative URLs allows
us to mount the class that implements this part of the application anywhere in the tree that
serves the CherryPy application. The show() method that will serve this URL takes a topic
parameter whose value is interpolated in the next line for each topic that is present in the
database.

Building a Wiki

[180]

The result is joined to a single string that is interpolated into yet another string that
encapsulates all the list items we just generated in an unordered list (a element in the
markup) and this is finally returned as the interpolated content of the basepage variable.

In the definition of the index() method, we see a pattern that will be repeated often
in the wiki application: methods in the delivery layer, like index(), concern themselves
with constructing and serving markup to the client and delegate the actual retrieval
of information to a module that knows all about the wiki itself. Here the list of topics
is produced by the wiki.gettopiclist() function, while index() converts this
information to markup. Separation of these activities helps to keep the code readable and
therefore maintainable.

Time for action – implementing a wiki topic screen
When we request a URL of the form show?topic=value, this will result in calling the show()
method. If value equals an existing topic, the following (as yet unstyled) screen is the result:

Just as for the opening screen, we take steps to:

 � Identify the main areas on screen

 � Identify specific functionality

 � Identify any hidden functionality

The page structure is very similar to the opening screen, with the same navigational items,
but instead of a list of topics, we see the content of the requested topic together with some
additional information like the tags associated with this subject and a button that may be
clicked to edit the contents of this topic. After all, collaboratively editing content is what a
Wiki is all about.

Chapter 6

[181]

We deliberately made the choice not to refresh the contents of just a part of the opening
screen with an AJAX call, but opted instead for a simple link that replaces the whole page.
This way, there will be an unambiguous URL in the address bar of the browser that will point
at the topic. This allows for easy bookmarking. An AJAX call would have left the URL of the
opening screen that is visible in the address bar of the browser unaltered and although there
are ways to alleviate this problem, we settle for this simple solution here.

What just happened?
As the main structure we identified is almost identical to the one for the opening page, the
show() method will reuse the markup in basepage.html.

Chapter6/wikiweb.py

 @cherrypy.expose
 def show(self,topic):
 topic = topic.capitalize()
 currentcontent,tags = wiki.gettopic(topic)
 currentcontent = "".join(wiki.render(currentcontent))
 tags = ['%s'%(
 t,t) for t in tags]
 content = '''
 <div>
 <h1>%s</h1>Edit
 </div>
 <div id="wikitopic">%s</div>
 <div id="wikitags">%s</div>
 <div id="revisions">revisions</div>
 ''' % (topic, topic, currentcontent,"\n".join(tags))
 return basepage % content

The show() method delegates most of the work to the wiki.gettopic() method
(highlighted) that we will examine in the next section and concentrates on creating the
markup it will deliver to the client. wiki.gettopic() will return a tuple that consists of
both the current content of the topic and a list of tags.

Those tags are converted to elements with anchors that point to the searchtags URL.
This list of tags provides a simple way for the reader to find related topics with a single click.
The searchtags URL takes a tags argument so a single element constructed this way
may look like this: Python.

The content and the clickable list of tags are embedded in the markup of the basepage
together with an anchor that points to the edit URL. Later, we will style this anchor to look
like a button and when the user clicks it, it will present a page where the content may be
edited.

Building a Wiki

[182]

Time for action – editing wiki topics
In the previous section, we showed how to present the user with the contents of a topic
but a wiki is not just about finding topics, but must present the user with a way to edit the
content as well. This edit screen is presented in the following screenshot:

Besides the navigation column on the left, within the edit area, we can point out the
following functionality:

 � Elements to alter the title of the subject.

 � Modify the tags (if any) associated with the topic.

 � A large text area to edit the contents of the topic. On the top of the text area, we
see a number of buttons that can be used to insert references to other topics,
external links, and images.

 � A Save button that will submit the changes to the server.

What just happened?
The edit() method in wikiweb.py is responsible for showing the edit screen as well as
processing the information entered by the user, once the save button is clicked:

Chapter6/wikiweb.py

 @cherrypy.expose
 def edit(self,topic,
 content=None,tags=None,originaltopic=None):

Chapter 6

[183]

 user = self.logon.checkauth(
 logonurl=self.logon.path, returntopage=True)

 if content is None :
 currentcontent,tags = wiki.gettopic(topic)
 html = '''
 <div id="editarea">
 <form id="edittopic" action="edit"
 method="GET">
 <label for="topic"></label>
 <input name="originaltopic"
 type="hidden" value="%s">
 <input name="topic" type="text"
 value="%s">
 <div id="buttonbar">
 <button type="button"
 id="insertlink">
 External link
 </button>
 <button type="button"
 id="inserttopic">
 Wiki page
 </button>
 <button type="button"
 id="insertimage">
 Image
 </button>
 </div>
 <label for="content"></label>
 <textarea name="content"
 cols="72" rows="24" >
 %s
 </textarea>
 <label for="tags"></label>
 <input name="tags" type="text"
 value="%s">
 <button type="submit">Save</button>
 <button type="button">Cancel</button>
 <button type="button">Preview</button>
 </form>
 </div>
 <div id="previewarea">preview</div>
 <div id="imagedialog">%s</div>
 <script>
 $("#imagedialog").dialog(

Building a Wiki

[184]

 {autoOpen:false,
 width:600,
 height:600});
 </script>
 '''%(topic, topic, currentcontent,
 ", ".join(tags),
 "".join(self.images()))
 return basepage % html
 else :
 wiki.updatetopic(originaltopic,topic,content,tags)
 raise cherrypy.HTTPRedirect('show?topic='+topic)

The first priority of the edit() method is to verify that the user is logged in as we want
only known users to edit the topics. By setting the returntopage parameter to true, the
checkauth() method will return to this page once the user is authenticated.

The edit() method is designed to present the edit screen for a topic as well as to process
the result of this editing when the user clicks the Save button and therefore takes quite a
number of parameters.

The distinction is made based on the content parameter. If this parameter is not present
(highlighted), the method will produce the markup to show the various elements in the edit
screen. If the content parameter is not equal to None, the edit() method was called as a
result of submitting the content of the form presented in the edit screen, in which case, we
delegate the actual update of the content to the wiki.updatetopic() method. Finally, we
redirect the client to a URL that will show the edited content again in its final form without
the editing tools.

At this point, you may wonder what all this business is about with both a topic and an
originaltopic parameter. In order to allow the user to change the title of the topic while
that title is also used to find the topic entity that we are editing, we pass the title of the topic
as a hidden variable in the edit form, and use this value to retrieve the original topic entity,
a ploy necessary because, at this point, we may have a new title and yet have to find the
associated topic that still resides in the database with the old title.

Cross Site Request Forgery
When we process the data sent to the edit() function we make sure that only
authenticated users submit anything. Unfortunately, this might not be enough if
the user is tricked into sending an authenticated request on behalf of someone
else. This is called Cross Site Request Forgery (CSRF) and although there are
ways to prevent this, these methods are out of scope for this example. Security
conscious people should read up on these exploits, however, and a good place
to start is http://www.owasp.org/index.php/Main_Page and for
Python-specific discussions http://www.pythonsecurity.org/.

Chapter 6

[185]

Pop quiz
What other attribute of the Topic entity could we have passed to retrieve a reference to the
topic we are editing?

Additional functionality
In the opening screen as well as in the pages showing the content of topics and in the editing
page, there is a lot of hidden functionality. We already encountered several functions of
the wiki module and we will examine them in detail in this section together with some
JavaScript functionality to enhance the user interface.

Time for action – selecting an image
On the page that allows us to edit a topic, we have half hidden an important element: the
dialog to insert an image. If the insert image button is clicked, a dialog is present, as shown in
the following image:

Building a Wiki

[186]

Because a dialog is, in a way, a page of its own, we take the same steps to identify the
functional components:

 � Identify the main structure

 � Identify specific functional components

 � Identify hidden functionality

The dialog consists of two forms. The top one consists of an input field that can be used to look
for images with a given title. It will be augmented with jQuery UI's auto complete functionality.

The second form gives the user the possibility to upload a new file while the rest of the
dialog is filled with any number of images. Clicking on one of the images will close the dialog
and insert a reference to that image in the text area of the edit page. It is also possible to
close the dialog again without selecting an image by either clicking the small close button on
the top-right or by pressing the Escape key.

What just happened ?
The whole dialog consists of markup that is served by the images() method.

Chapter6/wikiweb.py

 @cherrypy.expose
 def images(self,title=None,description=None,file=None):
 if not file is None:
 data = file.file.read()
 wikidb.Image(title=title,description=description,
 data=data,type=str(file.content_type))
 yield '''
 <div>
 <form>
 <label for="title">select a title</label>
 <input name="title" type="text">
 <button type="submit">Search</button>
 </form>
 <form method="post" action="./images"
 enctype="multipart/form-data">
 <label for="file">New image</label>
 <input type="file" name="file">
 <label for="title">Title</label>
 <input type="text" name="title">
 <label for="description">Description</label>
 <textarea name="description"
 cols="48" rows="3"></textarea>
 <button type="submit">Upload</button>

Chapter 6

[187]

 </form>
 </div>
 '''
 yield '<div id="imagelist">\n'
 for img in self.getimages():
 yield img
 yield '</div>'

There is some trickiness here to understand well: from the edit() method, we call this
images() method to provide the markup that we insert in the page that is delivered to the
client requesting the edit URL, but because we have decorated the images() method with
a @cherrypy.expose decorator, the images() method is visible from the outside and may
be requested with the images URL. If accessed that way, CherryPy will take care of adding
the correct response headers.

Being able to call this method this way is useful in two ways: because the dialog is quite a
complex page with many elements, we may check how it looks without being bothered by it
being part of a dialog, and we can use it as the target of the form that is part of the images
dialog and that allows us to upload new images. As with the edit() method, the distinction
is again made based on a whether a certain parameter is present. The parameter that serves
this purpose is file and will contain a file object if this method is called in response to an
image being submitted (highlighted).

The file object is a cherrypy.file object, not a Python built in file object, and has
several attributes, including an attribute called file that is a regular Python stream object.
This Python stream object serves as an interface to a temporary file that CherryPy has created
to store the uploaded file. We can use the streams read() method to get at its content.

Sorry about all the references to file, I agree it is possibly a bit confusing. Read
it twice if needed and relax. This summary may be convenient:

This item has a which is a

The images() method file parameter herrypy.file object

A cherrypy.file object file attribute Python stream object

A Python stream object name attribute name of a file on disk

The Python stream can belong to a number of classes where all implement
the same API. Refer to http://docs.python.org/py3k/library/
functions.html#open for details on Python streams.

The cherrypy.file also has a content_type attribute whose string representation we
use together with the title and the binary data to create a new Image instance.

The next step is to present the HTML markup that will produce the dialog, possibly including
the uploaded image. This markup contains two forms.

Building a Wiki

[188]

The first one (highlighted in the previous code snippet) consists of an input field and a
submit button. The input field will be augmented with auto complete functionality as we will
see when we examine wikiweb.js. The submit button will replace the selection of images
when clicked. This is also implemented in wikiweb.js by adding a click handler that will
perform an AJAX call to the getimages URL.

The next form is the file upload form. What makes it a file upload form is the <input>
element of the type file (highlighted). Behind the scenes, CherryPy will store the contents
of a file type <input> element in a temporary file and pass it to the method servicing the
requested URL by submitting the form.

There is a final bit of magic to pay attention to: we insert the markup for the dialog as part
of the markup that is served by the edit() method, yet the dialog only shows if the user
clicks the insert image button. This magic is performed by jQuery UI's dialog widget and we
convert the <div> element containing the dialog's markup by calling its dialog method, as
shown in this snippet of markup served by the edit() method():

<script>$("#imagedialog").dialog({autoOpen:false});</script>

By setting the autoOpen option to false, we ensure that the dialog remains hidden when the
page is loaded, after all, the dialog should only be opened if the user clicks the insert image
button.

Opening the dialog is accomplished by several pieces of JavaScript (full code available as
wikiweb.js). The first piece associates a click handler with the insert image button that will
pass the open option to the dialog, causing it to display itself:

Chapter6/wikiweb.js

$("#insertimage").click(function(){
 $("#imagedialog").dialog("open");
});

Note that the default action of a dialog is to close itself when the Escape key is pressed, so
we don't have to do anything about that.

Within the dialog, we have to configure the images displayed there to insert a reference
in the text area when clicked and then close the dialog. We do this by configuring a live
handler for the click event. A live handler will apply to elements that match the selector
(in this case, images with the selectable-image class) even if they are not present yet.
This is crucial, as we may upload new images that are not yet present in the list of images
shown when the dialog is first loaded:

Chapter6/wikiweb.js

$(".selectable-image").live('click',function(){
 $("#imagedialog").dialog("close");

Chapter 6

[189]

 var insert = "<" + $(this).attr("id").substring(3) + "," +
$(this).attr("alt") + ">";

 var Area = $("#edittopic textarea");
 var area = Area[0];
 var oldposition = Area.getCursorPosition();

var pre = area.value.substring(0, oldposition);
 var post = area.value.substring(oldposition);

 area.value = pre + insert + post;

 Area.focus().setCursorPosition(oldposition + insert.length);
});

The first activity of this handler is to close the dialog. The next step is to determine what
text we would like to insert into the text area (highlighted). In this case, we have decided to
represent a reference to an image within the database as a number followed by a description
within angled brackets. For example, image number 42 in the database might be represented
as <42,"Picture of a shovel">. When we examine the render() method in
wikiweb.py, we will see how we will convert this angled bracket notation to HTML markup.

The remaining part of the function is concerned with inserting this reference into the
<textarea> element. We therefore retrieve the jQuery object that matches our text area
first (highlighted) and because such a selection is always an array and we need access to the
underlying JavaScript functionality of the <textarea> element, we fetch the first element.

The value attribute of a <textarea> element holds the text that is being edited and we
split this text into a part before the cursor position and a part after it and then combine it
again with our image reference inserted. We then make sure the text area has the focus
again (which might have shifted when the user was using the dialog) and position the cursor
at a position that is just after the newly inserted text.

Building a Wiki

[190]

Time for action – implementing a tag cloud
One of the distinct pieces of functionality we identified earlier was a so called tag cloud.

The tag cloud that is present in the navigation section of all pages shows an alphabetically
sorted list of tags. The styling of the individual tags represents the relative number of topics
that are marked with this tag. Clicking on the tags will show the list of associated topics. In
this implementation, we vary just the font size but we could have opted for additional impact
by varying the color as well.

Before we implement a tag cloud, we should take a step back and take a good look at what
we need to implement:

 � We need to retrieve a list of tags

 � We need to sort them

 � We need to present markup. This markup should contain links that will refer to a
suitable URL that will represent a list of topics that are marked with this tag. Also,
this markup must in some way indicate what the relative number of topics is that
have this tag so it can be styled appropriately.

The last requirement is again a matter of separating structure from representation. It is
easier to adapt a specific style by changing a style sheet than to alter structural markup.

What just happened?
If we look at the HTML that represents an example tag cloud, we notice that the tags are
represented by elements with a class attribute that indicates its weight. In this
case, we divide the range of weights in five parts, giving us classes from weight0 for the
least important tag to weight4 for the most important one:

Chapter 6

[191]

Intro
Main
Python</
span>
Tutorial</
a>

The actual font size we use to represent these weights is determined by the styles
in wiki.css:

.weight0 { font-size:60%; }

.weight1 { font-size:70%; }

.weight2 { font-size:80%; }

.weight3 { font-size:90%; }

.weight4 { font-size:100%; }

The tag cloud itself is delivered by the tagcloud() method in wikiweb.py.

Chapter6/wikiweb.py

 @cherrypy.expose
 def tagcloud(self,_=None):
 for tag,weight in wiki.tagcloud():
 yield '''

 %s
 '''%(weight,tag,tag)

This method iterates over all tuples retrieved from wiki.tagcloud() (highlighted).
These tuples consist of a weight and a tag name and these are transformed to links and
encapsulated in a element with a fitting class attribute:

Chapter6/wiki.py

def tagcloud():
 tags = sorted([wikidb.Tag(id=t) for t in wikidb.Tag.list()],
 key=attrgetter('tag'))
 totaltopics=0
 tagrank = []
 for t in tags:
 topics = wikidb.TopicTag.list(t)
 if len(topics):
 totaltopics += len(topics)
 tagrank.append((t.tag,len(topics)))
 maxtopics = max(topics for tag,topics in tagrank)
 for tag,topics in tagrank:
 yield tag, int(5.0*topics/(maxtopics+1)) # map to 0 - 4

Building a Wiki

[192]

The tagcloud() function in wiki.py starts off by retrieving a list of all Tag objects and
sorts them based on their tag attribute. Next, it iterates over all these tags and retrieves
their associated topics (highlighted). It then checks if there really are topics by checking
the length of the list of topics. Some tags may not have any associated topics and are not
counted in this ranking operation.

When a tag is removed from a topic, we do not actually delete the tag itself if it
no longer has any associated topics. This might lead to a buildup of unused tags
and, if necessary, you might want to implement some clean-up scheme.

If a tag does have associated topics, the number of topics is added to the total and a tuple
consisting of the tag name and the number of topics is appended to the tagrank list.
Because our list of Tag objects was sorted, tagrank will be sorted as well when we have
finished counting the topics.

In order to determine the relative weight of the tags, we iterate again, this time over the
tagrank list to find the maximum number of topics associated with any tag. Then, in a
final iteration, we yield a tuple consisting of the tag name and it relative weight, where the
relative weight is computed by dividing the number of topics by the maximum number we
encountered (plus one, to prevent divide by zero errors). This weight will then be between
zero and one (exclusive) and by multiplying this by 5 and rounding down to an integer, a
whole number between 0 and 4 (inclusive) is obtained.

Time for action – searching for words
To be able to find a list of all topics which contain one or more specific words, we present the
user with a search form in the navigation area. These are some of the considerations when
designing such a form:

 � The user must be able to enter more than one word to find topics with all those
words in their content

 � Searching should be case insensitive

 � Locating those topics should be fast even if we have a large number of topics with
lots of text

 � Auto completion would be helpful to aid the user in specifying words that are
actually part of the content of some topic

All these considerations will determine how we will implement the functionality in the
delivery layer and on the presentation side.

Chapter 6

[193]

What just happened?
The search options in the navigation area and the tag entry field in the edit screen all feature
autocomplete functionality. We encountered autocomplete functionality before in the
previous chapter where it was employed to show a list of titles and authors.

With the word and tag search fields in the wiki application, we would like to go one step
further. Here we would like to have auto completion on the list of items separated by
commas. The illustrations show what happens if we type a single word and what happens
when a second word is typed in:

We cannot simply send the list of items complete with commas to the server because in
that case we could not impose a minimum character limit. It would work for the first word
of course, but once the first word is present in the input field, each subsequent character
entry would result in a request to the server whereas we would like this to happen when the
minimum character count for the second word is reached.

Fortunately, the jQuery UI website already shows an example of how to use the
autocomplete widget in exactly this situation (check the example at http://jqueryui.
com/demos/autocomplete/#multiple-remote). As this online example is fairly well
explained in its comments, we will not list it here, but note that the trick lies in the fact
that instead of supplying the autocomplete widget with just a source URL, it is also given a
callback function that will be invoked instead of retrieving information directly. This callback
has access to the string of comma-separated items in the input field and can call the remote
source with just the last item in the list.

On the delivery side, the word search functionality is represented by two methods. The first
one is the getwords() method in wikiweb.py:

Chapter6/wikiweb.py

 @cherrypy.expose
 def getwords(self,term,_=None):
 term = term.lower()
 return json.dumps(
 [t for t in wikidb.Word.getcolumnvalues('word')
 if t.startswith(term)])

Building a Wiki

[194]

getwords() will return a list of words that starts with the characters in the term argument
and returns those as a JSON serialized string for use by the auto completion function that
we will add to the input field of the word search form. Words are stored all lowercase in the
database. Therefore, the term argument is lowercased as well before matching any words
(highlighted). Note that the argument to json.dumps() is in square brackets to convert
the generator returned by the list comprehension to a list. This is necessary because json.
dumps does not accept generators.

The second method is called searchwords(), which will return a list of clickable items
consisting of those topics that contain all words passed to it as a string of comma-separated
words. The list will be alphabetically sorted on the name of the topic:

Chapter6/wikiweb.py

 @cherrypy.expose
 def searchwords(self,words):
 yield '\n'
 for topic in sorted(wiki.searchwords(words)):
 yield '%s'%(
 topic,topic)
 yield '\n'

Note that the markup returned by searchwords() is not a complete HTML page, as it will
be called asynchronously when the user clicks the search button and the result will replace
the content part.

Again, the hard work of actually finding the topics that contain the words is not done in the
delivery layer, but delegated to the function wiki.searchwords():

Chapter6/wiki.py

def searchwords(words):
 topics = None
 for word in words.split(','):
 word = word.strip('.,:;!? ').lower() # a list with a final
comma will yield an empty last term
 if word.isalnum():
 w = list(wikidb.Word.list(word=word))
 if len(w):
 ww = wikidb.Word(id=w[0])
 wtopic = set(w.a_id for w in wikidb.
TopicWord.list(ww))
 if topics is None :
 topics = wtopic
 else:
 topics &= wtopic

Chapter 6

[195]

 if len(topics) == 0 :
 break
 if not topics is None:
 for t in topics:
 yield wikidb.Topic(id=t).title

This searchwords() function starts by splitting the comma-separated items in its word
argument and sanitizing each item by stripping, leading, and trailing punctuation and
whitespace and converting it to lowercase (highlighted).

The next step is to consider only items that consist solely of alphanumeric characters
because these are the only ones stored as word entities to prevent pollution by meaningless
abbreviations or markup.

We then check whether the item is present in the database by calling the list() method of
the Word class. This will return either an empty list or a list containing just a single ID. In the
latter case, this ID is used to construct a Word instance and we use that to retrieve a list of
Topic IDs associated with this word by calling the list() method of the TopicWord class
(highlighted) and convert it to a set for easy manipulation.

If this is the first word we are checking, the topics variable will contain None and we simply
assign the set to it. If the topic variable already contains a set, we replace the set by the
intersection of the stored set and the set of topic IDs associated with the word we are now
examining. The intersection of two sets is calculated by the & operator (in this case, replacing
the left-hand side directly, hence the &= variant). The result of the intersection will be that
we have a set of topic IDs of topics that contain all words examined so far.

If the resulting set contains any IDs at all, these are converted to Topic instances to yield
their title attribute.

The importance of input validation
Anything that is passed as an argument to the methods that service the wiki application,
can potentially damage the application. This may sound a bit pessimistic, but remember
that when designing an application, you cannot rely on the goodwill of the public, especially
when the application is accessible over the Internet and your public may consist of dimwitted
search bots or worse.

We may limit the risks by granting the right to edit a page only to people we know by
implementing some sort of authentication scheme, but we don't want even these people
to mess up the appearance of a topic by inserting all sorts of HTML markup, references to
images that do not exist or even malicious snippets of JavaScript. We therefore want to
get rid of any unwanted HTML elements present in the content before we store it in the
database, a process generally known as scrubbing.

Building a Wiki

[196]

Preventing Cross-Site Scripting (XSS) (as the inclusion of unwanted
code in web pages is called) is covered in depth on this webpage:
http://www.pythonsecurity.org/wiki/cross-sitescripting/.

Time for action – scrubbing your content
Many wikis do not allow any HTML markup at all, but use simpler markup methods to
indicate bulleted lists, headers, and so on.

Check for examples of possible markup schemes, for example, markdown
http://daringfireball.net/projects/markdown/, REST
http://docutils.sourceforge.net/rst.html, or for markup
that does allow some HTML–the mediawiki software at http://
en.wikipedia.org/wiki/MediaWiki.

Consider the following:

 � Will the user understand some HTML markup or opt for no HTML markup at all?

 � What will the wiki contain? Just text or also external references or references to
binary objects (like images) stored in the wiki?

For this wiki, we will implement a mixed approach. We will allow some HTML markup
like and but not any links. References to topics in the wiki might be entered as
[Topic], whereas links to external pages might be denoted as {www.example.org}.
Images stored in the wiki may be referred to as <143>. Each type of reference will take an
optional description as well. Example markup, as entered by the user, is shown next:

This topic is tried with a mix of legal and illegal markup.

A list is fine:

One
Two
Three

A link using an html tag referring to a <a href="http://www.example.
com" target="blank">nasty popup.

A legal link uses braces {http://www.example.com, "A link"}

When viewed, it will look like the following image:

Chapter 6

[197]

What just happened?
When we encountered the edit() method in wikiweb.py, we saw that the actual update
of the content of a topic was delegated to the updatetopic() function in wiki.py, so let's
have a look at how this function is organized:

Chapter6/wiki.py

def updatetopic(originaltopic,topic,content,tags):
 t=list(wikidb.Topic.list(title=originaltopic))
 if len(t) == 0 :
 t=wikidb.Topic(title=topic)
 else:
 t=wikidb.Topic(id=t[0])
 t.update(title=topic)
 content=scrub(content)
 p=wikidb.Page(content=content)
 wikidb.TopicPage(t.id,p.id)
 # update word index
 newwords = set(splitwords(content))
 wordlist = wikidb.TopicWord.list(t)
 topicwords = { wikidb.Word(id=w.b_id).word:w
 for w in wordlist }
 updateitemrelation(t,topicwords,newwords,
 wikidb.Word,'word',wikidb.TopicWord)
 # update tags
 newtags = set(t.capitalize()
 for t in [t.strip()
 for t in tags.split(',')] if
t.isalnum())
 taglist = wikidb.TopicTag.list(t)

Building a Wiki

[198]

 topictags = { wikidb.Tag(id=t.b_id).tag:t
 for t in taglist }
 updateitemrelation(t,topictags,newtags,
 wikidb.Tag,'tag',wikidb.TopicTag)

First it checks whether the topic already exists by retrieving a list of Topic objects that have a
title attribute that matches the originaltopic parameter. If this list is empty, it creates a
new topic (highlighted), otherwise we update the title attribute of the first matching topic
found. (See the explanation of the edit() method for the rationale behind this).

Then it calls the scrub() function to sanitize the content and then creates a new Page
instance to store this content and associates it with the Topic instance t. So every time
we update the content, we create a new revision and old revisions are still available for
comparison.

The next step is to update the list of words used in the topic. We therefore create a set of
unique words by passing the content to the splitwords() function (not shown here,
available in wiki.py) and converting the list of words to a set. Converting a list to a set will
remove any duplicate items.

We convert the set of words to a dictionary with Word objects as keys and the words
themselves as values and call the updateitemrelation() function to perform the update.

The same scenario is used with any tags associated with the topic. The
updateitemrelation() function may look intimidating, but that is mainly due to the fact
that it is made general enough to deal with any Relation, not just one between Topic
and Word or Topic and Tag. By designing a general function, we have less code to maintain
which is good although, in this case, readability may have suffered too much.

Chapter6/wiki.py

def updateitemrelation(p,itemmap,newitems,Entity,attr,Relation):
 olditems = set()
 for item in itemmap:
 if not item in newitems:
 itemmap[item].delete()
 else:
 olditems.add(item)
 for item in newitems - olditems:
 if not item in itemmap:
 ilist = list(Entity.list(**{attr:item}))
 if (len(ilist)):
 i = Entity(id=ilist[0])
 else:
 i = Entity(**{attr:item})
 Relation.add(p,i)

Chapter 6

[199]

First we determine if any items currently associated with the primary entity p are not in
the new list of items. If so, they are deleted, that is, the recorded relation between the
primary entity and the item is removed from the database, otherwise we store them in the
olditems set.

The next step determines the difference between the newitems and olditmes
(highlighted). The result represents those items that have to be associated with the primary
entity, but may not yet be stored in the database. This is determined by using the list()
method to find any, and if no entity is found, to create one. Finally, we add a new relation
between the primary entity and the item

The scrub() method is used to remove any HTML tags from the content that are not
explicitly listed as being allowed:

Chapter6/wiki.py

def scrub(content):
 parser = Scrubber(('ul','ol','li','b','i','u','em','code','pre','h
1','h2','h3','h4'))
 parser.feed(content)
 return "".join(parser.result)

For this purpose, it instantiates a Scrubber object with a very limited list of allowable tags
(highlighted) and feeds the content to its feed() method. The result is then found in the
result attribute of the Scrubber instance:

Chapter6/wiki.py

class Scrubber(HTMLParser):
 def __init__(self,allowed_tags=[]):
 super().__init__()
 self.result = []
 self.allowed_tags = set(allowed_tags)

 def handle_starttag(self, tag, attrs):
 if tag in self.allowed_tags:
 self.result.append('<%s %s>'%(tag,
 " ".join('%s="%s"'%a for a in attrs)))

 def handle_endtag(self, tag):
 if tag in self.allowed_tags:
 self.result.append('</'+tag+'>')

 def handle_data(self,data):
 self.result.append(data)

Building a Wiki

[200]

The Scrubber class is a subclass of the HTMLParser class provided in Python's html.
parser module. We override suitable methods here to deal with start and end tags and
data and ignore the rest (like processing instructions and the like). Both beginning and end
tags are only appended to the result if they are present in the list of allowable tags. Regular
data (text, that is) is simply appended to the result.

Time for action – rendering content
We added specific JavaScript functionality to the text area editor to insert references to
external websites, other wiki topics, and wiki images in a format that we devised ourselves
and that cannot be interpreted as HTML. Now we have to provide code that will convert this
notation to something that will be understood by the client.

What just happened?
Recognizing those items that we have to convert to HTML is mostly done by using regular
expressions. We therefore define three regular expressions first, each representing a
distinct pattern. Note that we use raw strings here to prevent interpretation of backslashes.
Backslashes are meaningful in regular expression, and if we didn't use raw strings, we would
have to escape each and every backslash with a backslash, resulting in an unreadable sea of
backslashes:

Chapter6/wiki.py

topicref = re.compile(r'\[\s*([^,\]]+?)(\s*,\s*([^\]]+))?\s*\]')
linkref = re.compile(r'\{\s*([^,\}]+?)(\s*,\s*([^\}]+))?\s*\}')
imgref = re.compile(r'\<\s*(\d+?)(\s*,\s*([^\>]*))?\s*\>')

For more on Python regular expressions have a look at http://docs.python.
org/py3k/library/re.html or check the reading list in the appendix.

Next we define three utility functions, one for each pattern. Each function takes a match
object that represents a matching pattern and returns a string that can be used in HTML to
show or link to that reference:

Chapter6/wiki.py

def topicrefreplace(matchobj):
 ref=matchobj.group(1)
 txt=matchobj.group(3) if (not matchobj.group(3)
 is None) else matchobj.group(1)
 nonexist = ""
 if(len(list(wikidb.Topic.list(title=ref)))==0):
 nonexist = " nonexisting"

http://docs.python.org/py3k/library/re.html

Chapter 6

[201]

 return '%s'%(
 ref,nonexist,txt)

def linkrefreplace(matchobj):
 ref=matchobj.group(1)
 txt=matchobj.group(3) if (not matchobj.group(3)
 is None) else matchobj.group(1)
 ref=urlunparse(urlparse(ref,'http'))
 return '%s'%(ref,txt)

def imgrefreplace(matchobj):
 ref=matchobj.group(1)
 txt=matchobj.group(3) if (not matchobj.group(3)
 is None) else matchobj.group(1)
 return '''<img src="showimage?id=%s" alt="%s"
 class="wikiimage">'''%(ref,txt)

def render(content):
 yield '<p>\n'
 for line in content.splitlines(True):
 line = re.sub(imgref ,imgrefreplace ,line)
 line = re.sub(topicref,topicrefreplace,line)
 line = re.sub(linkref ,linkrefreplace ,line)
 if len(line.strip())==0 : line = '</p>\n<p>'
 yield line
 yield '</p>\n'

The render() function is passed a string with content to convert to HTML. For each line
in the content, it tries to find the predefined patterns and converts them by passing the
appropriate function to the re.sub() method. If a line consists of whitespace only, suitable
HTML is produced to end a paragraph (highlighted).

Summary
We learned a lot in this chapter about implementing a web application that consists of more
than a few entities and their relations.

Specifically, we covered:

 � How to create a data model that describes entities and relations accurately

 � How to create a delivery layer that is security conscious and treats incoming data
with care

 � How to use jQuery UI's dialog widget and extend the functionality of the
autocomplete widget

Building a Wiki

[202]

We also encountered some limitations, especially in our entity/relation framework. It is,
for example:

 � Quite a lot of work to initialize the database as each entity and relation needs its
own initialization code

 � Unwieldy to specify things like sort order when retrieving entities

 � Difficult to check input values or display formats in a uniform way

 � Difficult to differentiate between different types of relations, like one-to-many
or many-to-many

This hardly poses a problem for our moderately complex wiki application, but more complex
applications can only be built with a more flexible framework—which is the topic of the next
chapter.

7
Refactoring Code for Reuse

After doing a substantial bit of work, it is often a good idea to take a step back
and look critically at your work to see if things could have been done better.
Quite often, the insight gained in the development process can be used to good
effect in any new code or even to refactor existing code if the benefits are so
substantial that they warrant the extra work.

Often, such a critical reappraisal is motivated by observed shortcomings in the
application, like poor performance, or by noting that requested changes take
more time than we like because the code is designed in a less than optimal way.

Now that we have designed and implemented several applications in the last
few chapters based on a simple entity/relation framework, it is time to have
that critical look and see if there is room for improvement.

Time for action – taking a critical look
Examine each major piece of code (often a Python module that you implemented) and ask
yourself the following questions:

 � Could I reuse it without changes?

 � How much extra code was needed to actually use the module?

 � Did you really understand the documentation (even if you wrote it yourself)?

 � How much of the code is duplicated?

 � How easy is it to add new functionality?

 � How well did it perform?

Refactoring Code for Reuse

[204]

When we ask these questions about the entity and relation modules we developed, we see
that:

 � It was quite easy to reuse the modules

 � But they do require quite a bit of extra code, for example, to initialize tables and
threads

Also, we deliberately wrote specific modules to deal with domain-specific code, like input
validation, but it is worth examining this code to see if we can discover patterns and enhance
our framework to better support these patterns. One example is that we frequently require
auto completion so it is worth looking at how this is implemented.

Performance-wise, we saw in the books application that we have hardly addressed the way
in which large lists of books are browsed and this certainly needs attention if we wish to
reuse our framework in settings that deal with large lists.

What just happened?
Now that we have pointed out several areas where our framework modules might be
improved, it is time to consider if it is worth the effort.

Framework modules are intended to be reused by many applications, so a redesign that
will allow the modules to be used with less additional code is a good idea, as less code
means less maintenance. Of course, rewriting may mean that existing applications need to
be rewritten if they want to use these new versions, but that is the price to pay for better
maintenance.

Refactoring existing functionality is often less problematic, but benefits greatly from a good
test framework to check if the new implementation still behaves as expected. Likewise,
adding completely new functionality is likely to be even less of a problem, as existing
applications do not yet use this functionality.

Because, in our case, we judge the advantages to outweigh the disadvantages, we will
rework the entity/relation framework in the next section. We will not only focus on using
less code, but also on making the definition of the new Entity and Relation classes easier to
read. This will provide for a more intuitive use of these classes.

We will also devote a section to developing functionality to browse through lists of entities in
a way that scales well, even if the lists are large and need to be sorted or filtered.

Chapter 7

[205]

Refactoring
The first area that we will refactor is the way we can use the Entity class. Our goal is to
enable a more intuitive use, without the need for explicit initialization of the database
connections. To get a feeling for what is possible, let us first look at an example of how we
would use the refactored entity module.

Time for action – defining new entities: how it should look
Type in and run the following code (also available as testentity.py). It will use the
refactored entity module to define a MyEntity class and work with some instances of this
class. We will create, list, and update instances and even see an update fail because we try to
assign a value that will not pass a validation for an attribute:

Chapter7/testentity.py

from entity import *

class Entity(AbstractEntity):
 database="/tmp/abc.db"

class MyEntity(Entity):
 a=Attribute(unique=True, notnull=True, affinity='float',
 displayname='Attribute A', validate=lambda x:x<5)

a=MyEntity(a=3.14)
print(MyEntity.list())

e=MyEntity.list(pattern=[('a',3.14)])[0]
print(e)

e.delete()

a=MyEntity(a=2.71)
print([str(e) for e in MyEntity.list()])

a.a=1
a.update()
print([str(e) for e in MyEntity.list()])

a.a=9

The output produced by the print functions should look similar to the lines listed next,
including the raised exception caused by an invalid update attempt:

[MyEntity(id=5)]
<MyEntity: Atrribute A=3.14, id=5>
['<MyEntity: Atrribute A=2.71, id=6>']
['<MyEntity: Atrribute A=1.0, id=6>']
Traceback (most recent call last):

Refactoring Code for Reuse

[206]

 File "testentity.py", line 25, in <module>
 a.a=9
 File "C:\Documents and Settings\Michel\Bureaublad\MetaBase\Books II\
entity.py"
, line 117, in __setattr__
 raise AttributeError("assignment to "+name+" does not validate")
AttributeError: assignment to a does not validate

What just happened?
The first thing we note is that there is no explicit initialization of any database, nor is there
any code to explicitly initialize any threads. All that is needed is to subclass the entity class
from the AbstractEntity class provided in the entity module and define a database class
variable that points to a file to be used as a database.

The next thing is that although we define a specific class (MyEntity, in this example) in a
similar way as before by defining it as a subclass of Entity, we now specify any attributes by
defining class variables that are assigned Attribute instances. In the example, we do this for
just a single attribute a (highlighted). The Attribute instance encapsulates a lot of knowledge
about constraints, and allows for the definition of a default value and a validation function.

Creating an instance isn't any different, but as the second list() example shows, this
implementation allows for filtering so there is no need to retrieve all instance IDs, instantiate
them as true objects and compare their attributes.

The final assignment to the a attribute shows the validation feature in action. It raises
an AttributeError exception because trying to assign a value of 9 to it triggers our
validation function.

These new and less cumbersome semantics are largely due to what can be achieved by using
metaclasses, a concept we explore in the next section.

Metaclasses
Although the Python documentation warns that using metaclasses will make your head
explode (read, for example, http://www.python.org/doc/newstyle/), they are not
that dangerous: they may cause headaches, but these will mostly fade away after some
experimenting and re-reading of the documentation.

Metaclasses allow you to inspect and alter the definition of a class just before this definition
is made final and becomes available to the programmer. This is possible because, in Python,
even classes are objects; specifically, they are instances of a metaclass. When we instantiate
an object, we can control the way this instance is initialized by defining the __init__()
and __new__() methods. Likewise, we can control the way a class is initialized by defining
suitable __init__() and __new__() methods in its metaclass.

Chapter 7

[207]

Just as all classes are ultimately subclasses of the object class, all metaclasses derive from
the type metaclass. This means that if we want our class to be an instance of a different
type of metaclass, we have to subclass type and define our class.

After reading the previous paragraphs, you may still fear your head may explode, but like
most things, an example is much simpler to understand.

Time for action – using metaclasses
Say we want to be able to verify that classes we define always have an __info__() method.
We can accomplish that by defining a suitable metaclass and defining any new class that
should be checked with a reference to this metaclass. Look at the following example code
(also available as metaclassexample.py):

Chapter7/metaclassexample.py

class hasinfo(type):
 def __new__(metaclass, classname, baseclasses, classdict):
 if len(baseclasses) and not '__info__' in classdict:
 raise TypeError('does not have __info__')
 return type.__new__(metaclass,
 classname, baseclasses, classdict)

class withinfo(metaclass=hasinfo):
 pass

class correct(withinfo):
 def __info__(self): pass

class incorrect(withinfo):
 pass

This will raise an exception for the incorrect class, but not for the correct class.

What just happened?
As you can see, the __new__() method of a metaclass receives a number of important
parameters. First, the metaclass itself and the classname of the class that is being defined,
a (possibly empty) list of baseclasses, and finally the class dictionary. That last argument is
very important.

As we define a class with a class statement, all methods and class variables we define here
end up in a dictionary. Once this class is completely defined, this dictionary will be available
as the __dict__ attribute of the class. This is the dictionary that is passed to the __new__()
method of the metaclass and we can examine and alter this dictionary at will.

Refactoring Code for Reuse

[208]

In this example, we simply check whether there exists a key called __info__ in this class
dictionary and raise an exception if it doesn't. (We do not really check that it is a method
but this is possible too of course). If everything went well, we call the __new__() method
of type (the mother of all metaclasses) as that method will take care of making the class
definition available in the current scope.

There is an extra trick involved, however. The withinfo class is abstract in the sense that
it defines the need for an __info__() method by referring to the hasinfo metaclass,
but it does not define one itself. However, because it refers to the hasinfo metaclass, an
exception would be raised because its own class dictionary is checked in the same way as its
subclasses. To prevent this, we only check for the occurrence of the __info__() method
if a class is a subclass, that is, when the list of base classes (available in the baseclasses
parameter) is not empty.

Checking for mandatory methods is nice, but with so much information available, much
more can be done. In the next section, we use this power to ensure that the definition of a
new class will take care of creating suitable tables in a database backend as well.

MetaEntity and AbstractEntity classes
Besides creating a database table, if necessary, the metaclass that we will define will also
examine the Attribute instance assigned to any class variable to build dictionaries of
display names and validation functions. This way, subclasses can easily check if a column has
such an attribute by using the column name as a key, thus obviating the need to check all
class variables themselves again and again.

Chapter 7

[209]

Time for action – implementing the MetaEntity
and AbstractEntity classes

Let's see how this is done:

Chapter7/entity.py

class Attribute:
 def __init__(self, unique=False, notnull=False,
 default=None, affinity=None, validate=None,
 displayname=None, primary=False):
 self.coldef = (
 (affinity+' ' if not affinity is None else '') +
 ('unique ' if unique else '') +
 ('not null ' if notnull else '') +
 ('default %s '%default if not default is None else '')
)
 self.validate = validate
 self.displayname = displayname
 self.primary = primary

The Attribute class is mainly a vehicle to store information about attributes in a structured
way. We could have used strings and parsed them, but by using an Attribute class, it is
possible to explicitly recognize class variables that are meant to be attributes that are stored
as database columns. That way, we can still define class variables that have a different
purpose. Also, writing a parser is a lot of work, while checking parameters is a lot easier.

The highlighted code shows that most parameters are used to create a string that can be
used as a column definition that is part of a create table statement. The other parameters
(displayname and validate) are just stored as is for future reference:

Chapter7/entity.py

class MetaEntity(type):

 @classmethod
 def __prepare__(metaclass, classname, baseclasses, **kwds):
 return collections.OrderedDict()

 @staticmethod
 def findattr(classes,attribute):
 a=None
 for c in classes:
 if hasattr(c,attribute):
 a=getattr(c,attribute)
 break

Refactoring Code for Reuse

[210]

 if a is None:
 for c in classes:
 a = MetaEntity.findattr(c.__bases__,attribute)
 if not a is None:
 break
 return a

 def __new__(metaclass,classname,baseclasses,classdict):
 def connect(cls):
 if not hasattr(cls._local,'conn'):
 cls._local.conn=sqlite.connect(cls._database)
 cls._local.conn.execute('pragma foreign_keys = 1')
 cls._local.conn.row_factory = sqlite.Row
 return cls._local.conn

 entitydefinition = False
 if len(baseclasses):
 if not 'database' in classdict:
 classdict['_database']=MetaEntity.findattr(
 baseclasses,'database')
 if classdict['_database'] is None:
 raise AttributeError(
 '''subclass of AbstractEntity has no
 database class variable''')
 entitydefinition=True
 if not '_local' in classdict:
 classdict['_local']=MetaEntity.findattr(
 baseclasses,'_local')

 classdict['_connect']=classmethod(connect)

 classdict['columns']=[
 k for k,v in classdict.items()
 if type(v) == Attribute]

 classdict['sortorder']=[]

 classdict['displaynames']={
 k:v.displayname if v.displayname else k
 for k,v in classdict.items()
 if type(v) == Attribute}

 classdict['validators']={
 k:v.validate for k,v in classdict.items()
 if type(v) == Attribute
 and not v.validate is None}

 classdict['displaynames']['id']='id'

 PrimaryKey = Attribute()

Chapter 7

[211]

 PrimaryKey.coldef = 'integer primary key '
 PrimaryKey.coldef+= 'autoincrement'

 if entitydefinition:
 sql = 'create table if not exists '
 sql+= classname +' ('
 sql+= ", ".join([k+' '+v.coldef
 for k,v in [('id',PrimaryKey)]
 +list(classdict.items())
 if type(v) == Attribute])
 sql+= ')'
 conn = sqlite.connect(classdict['_database'])
 conn.execute(sql)

 for k,v in classdict.items():
 if type(v) == Attribute:
 if v.primary:
 classdict['primary']=property(
 lambda self:getattr(self,k))
 classdict['primaryname']=k
 break
 if not 'primary' in classdict:
 classdict['primary']=property(
 lambda self:getattr(self,'id'))
 classdict['primaryname']='id'

 return type.__new__(metaclass,
 classname,baseclasses,classdict)

The metaclass we will use to synchronize the creation of database tables and the creation
of entity classes is called MetaEntity. Its __new__() method is where all the action takes
place, but there is one important additional method: __prepare__().

The __prepare__() method is called to provide an object that can be used as a class
dictionary. The default, as provided by the type class, just returns a regular Python dict
object. Here we return an ordered dictionary, a dictionary that will remember the order of
its keys as they are entered. This will enable us to use the order in which class variables are
declared, for example, to use this as the default order to display columns. Without an ordered
dictionary, we wouldn't have any control and would have to supply separate information.

The __new__() method first checks if we are a subclass of MetaEntity by checking
whether the list of base classes is non zero (highlighted) as MetaEntity itself does not have
a database backend.

Then it checks if the database class variable is defined. If not, we are a specific entity that
has a database backend and we try to locate the database class variable in one of our super
classes. If we find it, we store it locally; if not, we raise an exception because we cannot
function without a reference to a database.

Refactoring Code for Reuse

[212]

The AbstractEntity class will have a _local class variable defined that holds a
reference to thread local storage, and subclasses will have their own _local variable that
points to the same thread local storage.

The next step is to gather all sorts of information from all the class variables that refer to
Attribute instances. First we collect a list of column names (highlighted). Remember that
because we caused the class dictionary to be an ordered dictionary, these column names will
be in the order they were defined.

Likewise, we define a list of display names. If any attribute does not have a displayname
attribute, its display name will be identical to its column name. We also construct a
dictionary of validators, that is, a dictionary indexed by column name that holds a function to
validate any value before it is assigned to a column.

Every entity will have an id attribute (and a corresponding column in the database table)
that is created automatically without it being explicitly defined. Therefore, we add its
displayname separately and construct a special Attribute instance (highlighted).

This coldef attribute of this special Attribute together with the coldef attributes of the
other Attribute instances will then be used to compose an SQL statement that will create
a table with the proper column definitions.

Finally, we pass the altered and augmented class dictionary together with the original list of
base classes and the class name to the __new__() method of the type class which will take
care of the actual construction of the class.

The rest of the functionality of any Entity is not implemented by its metaclass, but in the
regular way, that is, by providing methods in the class that all entities should derive from:
AbstractEntity:

Chapter7/entity.py

class AbstractEntity(metaclass=MetaEntity):
 _local = threading.local()

 @classmethod
 def listids(cls,pattern=None,sortorder=None):
 sql = 'select id from %s'%(cls.__name__,)

 args = []

 if not pattern is None and len(pattern)>0:
 for s in pattern:
 if not (s[0] in cls.columns or s[0]=='id'):
 raise TypeError('unknown column '+s[0])
 sql += " where "
 sql += " and ".join("%s like ?"%s[0] for s in
pattern)

Chapter 7

[213]

 args+= [s[1] for s in pattern]

 if sortorder is None:
 if not cls.sortorder is None :
 sortorder = cls.sortorder
 else:
 for s in sortorder:
 if not (s[0] in cls.columns or s[0]=='id'):
 raise TypeError('unknown column '+s[0])
 if not s[1] in ('asc', 'desc') :
 raise TypeError('illegal sort
argument'+s[1])
 if not (sortorder is None or len(sortorder) == 0):
 sql += ' order by '
 sql += ','.join(s[0]+' '+s[1] for s in sortorder)
 cursor=cls._connect().cursor()
 cursor.execute(sql,args)
 return [r['id'] for r in cursor]

 @classmethod
 def list(cls,pattern=None,sortorder=None):
 return [cls(id=id) for id in cls.listids(
 sortorder=sortorder,pattern=pattern)]

 @classmethod
 def getcolumnvalues(cls,column):
 if not column in cls.columns :
 raise KeyError('unknown column '+column)
 sql ="select %s from %s order by lower(%s)"
 sql%=(column,cls.__name__,column)
 cursor=cls._connect().cursor()
 cursor.execute(sql)
 return [r[0] for r in cursor.fetchall()]

 def __str__(self):
 return '<'+self.__class__.__name__+': '+", ".join(
 ["%s=%s"%(displayname, getattr(self,column))
 for column,displayname
 in self.displaynames.items()])+'>'

 def __repr__(self):
 return self.__class__.__name__+"(id="+str(self.id)+")"

 def __setattr__(self,name,value):
 if name in self.validators :
 if not self.validators[name](value):
 raise AttributeError(
 "assignment to "+name+" does not

Refactoring Code for Reuse

[214]

validate")
 object.__setattr__(self,name,value)

 def __init__(self,**kw):
 if 'id' in kw:
 if len(kw)>1 :
 raise AttributeError('extra keywords besides
id')
 sql = 'select * from %s where id = ?'
 sql%= self.__class__.__name__
 cursor = self._connect().cursor()
 cursor.execute(sql,(kw['id'],))
 r=cursor.fetchone()
 for c in self.columns:
 setattr(self,c,r[c])
 self.id = kw['id']
 else:
 rels={}
 attr={}
 for col in kw:
 if not col in self.columns:
 rels[col]=kw[col]
 else:
 attr[col]=kw[col]
 name = self.__class__.__name__
 cols = ",".join(attr.keys())
 qmarks = ",".join(['?']*len(attr))
 if len(cols):
 sql = 'insert into %s (%s) values (%s)'
 sql%= (name,cols,qmarks)
 else:
 sql = 'insert into %s default values'%name
 with self._connect() as conn:
 cursor = conn.cursor()
 cursor.execute(sql,tuple(attr.values()))
 self.id = cursor.lastrowid

 def delete(self):
 sql = 'delete from %s where id = ?'
 sql%= self.__class__.__name__
 with self._connect() as conn:
 cursor = conn.cursor()
 cursor.execute(sql,(self.id,))

 def update(self,**kw):
 for k,v in kw.items():

Chapter 7

[215]

 setattr(self,k,v)
 sets = []
 vals = []
 for c in self.columns:
 if not c == 'id':
 sets.append(c+'=?')
 vals.append(getattr(self,c))
 table = self.__class__.__name__
 sql = 'update %s set %s where id = ?'
 sql%=(table,",".join(sets))
 vals.append(self.id)
 with self._connect() as conn:
 cursor = conn.cursor()
 cursor.execute(sql,vals)

What just happened
AbstractEntity provides a number of methods to provide CRUD functionality:

 � A constructor to refer to the existing entities in the database or to create new ones

 � list() and listids(), to find instances that match certain criteria

 � update(), to synchronize changed attributes of an entity with the database

 � delete(), to delete an entity from the database

It also defines the 'special' Python methods __str__(), __repr__(), and __setattr__()
to render an entity in a legible way and to validate the assignment of a value to an attribute.

Obviously, AbstractEntity refers to the MetaEntity metaclass (highlighted). It also
defines a _local class variable that refers to thread local storage. The MetaEntity class
will make sure this reference (but not its contents) are copied to all subclasses for fast
access. By defining it here, we will make sure that all subclasses refer to the same thread
local storage, and more importantly, will use the same connection to the database for each
thread instead of using a separate database connection for each different entity.

The listids() class method will return a list of IDs of entities that match the criteria in
its pattern argument or the IDs of all the entities if no criteria were given. It will use the
sortorder argument to return the list of IDs in the required order. Both sortorder and
pattern are a list of tuples, each tuple having the column name as its first item. The second
item will be a string to match against for the pattern argument or either asc or desc for
the sortorder argument, signifying an ascending or descending sort respectively.

Refactoring Code for Reuse

[216]

The SQL statement to retrieve any matching IDs is constructed by first creating the select part
(highlighted), as this will be the same irrespective of any additional restrictions. Next, we check
if there are any pattern components specified, and if so, add a where clause with matching
parts for each pattern item. The matches we specify use the SQL like operator, which is
normally only defined for strings, but SQLite will convert any argument to a string if we use the
like operator. Using the like operator will allow us to use SQL wildcards (for example, %).

The next stage is to check if there were any sort order items specified in the sortorder
argument. If not, we use the default sort order stored in the sortorder class variable
(which in our current implementation will still be None). If there are items specified, we add
an order by clause and add specifications for each sort item. A typical SQL statement will
look something like select id from atable where col1 like ? and col2 like
? order by col1 asc.

Finally, we use the _connect() method (that was added by the metaclass) to retrieve a
database connection (and establish one, if needed) that we can use to execute the SQL query
with and retrieve the list of IDs.

The list() method bears a close resemblance to the listids() method and takes the
same arguments. It will, however, return a list of entity instances rather than a list of just
the IDs by calling the entity's constructor with each ID as an argument. This is convenient
if that was what we wanted to do with those IDs anyway, but a list of IDs is often easier to
manipulate. We therefore provide both methods.

Being able to retrieve lists of entities is nice, but we must also have a means to create a new
instance and to retrieve all information associated with a record with a known ID. That is
where the entity's constructor, in the form of the __init__() method, comes in.

Strictly speaking, __init__() isn't a constructor but a method that initializes
an instance after it is constructed.

If a single ID keyword argument is passed to __init__() (highlighted), all columns of the
record matching that ID are retrieved and the corresponding arguments (that is, attributes
with the same name as a column) are set using the setattr() built-in function.

If more than one keyword argument is passed to __init__(), each should be the name of
a defined column. If not, an exception is raised. Otherwise, the keywords and their values
are used to construct an insert statement. If there are more columns defined than there are
keywords given, this will result in default values to be inserted. The default is usually NULL
unless a default argument was specified for the column when the Entity was defined.
If NULL is the default and the column has a non null constraint, an exception will be raised.

Chapter 7

[217]

Because ID columns are defined as autoincrement columns and we do not specify
an explicit ID value, the ID value will be equal to the rowid, a value we retrieve as the
lastrowid attribute of the cursor object (highlighted).

Have a go hero – retrieving instances in a single step
Retrieving a list of IDs first and then instantiating entities means that we have to retrieve all
attributes of each entity with a separate SQL statement. This might have a negative impact
on performance if the list of entities is large.

Create a variant of the list() method that will not convert the selected IDs to entity
instances one-by–one, but will use a single select statement to retrieve all attributes and use
those to instantiate entities.

Relations
Defining relations between entities should be just as hassle free as defining the entities
themselves, and with the power of metaclasses in our hands, we can use the same concepts.
But let's first have a look at how we would use such an implementation.

Time for action – defining new relations: how it should look
The following sample code shows how we would use a Relation class (also available in
relation.py):

Chapter7/relation.py

 from os import unlink

 db="/tmp/abcr.db"

 try:
 unlink(db)
 except:
 pass

 class Entity(AbstractEntity):
 database=db

 class Relation(AbstractRelation):
 database=db

 class A(Entity): pass

 class B(Entity): pass

 class AB(Relation):
 a=A
 b=B

Refactoring Code for Reuse

[218]

 a1=A()
 a2=A()
 b1=B()
 b2=B()

 a1.add(b1)
 a1.add(b2)
 print(a1.get(B))
 print(b1.get(A))

What just happened?
After defining a few entities, defining the relation between those entities follows the same
pattern: we define a Relation class that is a subclass of AbstractRelation to establish a
reference to a database that will be used.

Then we define an actual relation between two entities by subclassing Relation and defining
two class variables, a and b that refer to the Entity classes that form each half of the relation.

If we instantiate a few entities, we may then define a few relations between these instances
by using the add() method and retrieve related entities with the get() method.

Note that those methods are called on the Entity instances, allowing for a much more
natural idiom than the use of class methods in the Relation class. These add() and
get() methods were added to those entity classes by the MetaRelation metaclass, and
in the next section, we will see how this is accomplished.

The class diagram for relation classes looks nearly identical to the one for entities:

Chapter 7

[219]

Implementing the MetaRelation and AbstractRelation classes
The implementation of the AbstractRelation class is very minimalistic because it is only
used to create some thread local storage and establish a relation with the MetaRelation
metaclass:

Chapter7/relation.py

class AbstractRelation(metaclass=MetaRelation):
 _local = threading.local()

No methods are specified since the metaclass will take care of adding suitable methods to
the entity class that are a part of this relationship.

The MetaRelation class has two goals: creating a database table that will hold records for
each individual relation and adding methods to the entity classes involved, so that relations
can be created, removed, and queried:

Chapter7/relation.py

class MetaRelation(type):

 @staticmethod
 def findattr(classes,attribute):
 a=None
 for c in classes:
 if hasattr(c,attribute):
 a=getattr(c,attribute)
 break
 if a is None:
 for c in classes:
 a = MetaRelation.findattr(c.__bases__,attribute)
 if not a is None:
 break
 return a

 def __new__(metaclass,classname,baseclasses,classdict):
 def connect(cls):
 if not hasattr(cls._local,'conn'):
 cls._local.conn=sqlite.connect(cls._database)
 cls._local.conn.execute('pragma foreign_keys = 1')
 cls._local.conn.row_factory = sqlite.Row
 return cls._local.conn

 def get(self,cls):
 return getattr(self,'get'+cls.__name__)()

 def getclass(self,cls,relname):

Refactoring Code for Reuse

[220]

 clsname = cls.__name__
 sql = 'select %s_id from %s where %s_id = ?'%(
 clsname,relname,self.__class__.__name__)
 cursor=self._connect().cursor()
 cursor.execute(sql,(self.id,))
 return [cls(id=r[clsname+'_id']) for r in cursor]

 def add(self,entity):
 return getattr(self,
 'add'+entity.__class__.__name__)(entity)

 def addclass(self,entity,Entity,relname):
 if not entity.__class__ == Entity :
 raise TypeError(
 'entity not of the required class')

 sql = 'insert or replace into %(rel)s '
 sql+= '(%(a)s_id,%(b)s_id) values (?,?)'
 sql%= { 'rel':relname,
 'a':self.__class__.__name__,
 'b':entity.__class__.__name__}
 with self._connect() as conn:
 cursor = conn.cursor()
 cursor.execute(sql,(self.id,entity.id))

 relationdefinition = False
 if len(baseclasses):
 if not 'database' in classdict:
 classdict['_database']=MetaRelation.findattr(
 baseclasses,'database')
 if classdict['_database'] is None:
 raise AttributeError(
 '''subclass of AbstractRelation has no
 database class variable''')
 relationdefinition=True

 if not '_local' in classdict:
 classdict['_local']=MetaRelation.findattr(
 baseclasses,'_local')

 classdict['_connect']=classmethod(connect)

 if relationdefinition:
 a = classdict['a']
 b = classdict['b']
 if not issubclass(a,AbstractEntity) :
 raise TypeError('a not an AbstractEntity')
 if not issubclass(a,AbstractEntity) :
 raise TypeError('b not an AbstractEntity')

Chapter 7

[221]

 sql = 'create table if not exists %(rel)s '
 sql+= '(%(a)s_id references %(a)s '
 sql+= 'on delete cascade, '
 sql+= '%(b)s_id references %(b)s '
 sql+= 'on delete cascade, '
 sql+= 'unique(%(a)s_id,%(b)s_id))'
 sql%= { 'rel':classname,
 'a':a.__name__,
 'b':b.__name__}

 conn = sqlite.connect(classdict['_database'])
 conn.execute(sql)

 setattr(a,'get'+b.__name__,
 lambda self:getclass(self,b,classname))
 setattr(a,'get',get)
 setattr(b,'get'+a.__name__,
 lambda self:getclass(self,a,classname))
 setattr(b,'get',get)
 setattr(a,'add'+b.__name__,
 lambda self,entity:addclass(self,
 entity,b,classname))
 setattr(a,'add',add)
 setattr(b,'add'+a.__name__,
 lambda self,entity:addclass(self,
 entity,a,classname))
 setattr(b,'add',add)

 return type.__new__(metaclass,
 classname,baseclasses,classdict)

As was the case for the MetaEntity class, MetaRelation performs its magic through its
__new__() method.

First, we check if we are creating a subclass of AbstractRelation by checking the length
of the baseclasses parameter (remember that MetaRelation is defined as a metaclass
for AbstractRelation, meaning that not only its subclasses, but also AbstractRelation
itself will be processed by the metaclass machinery, something that is not really needed here).

If it is a subclass, we copy the database and thread local storage references to the class
dictionary for quick access.

If there was no database attribute specified, we know the class being defined is a subclass
of Relation, that is, a specific relation class and mark this in the relationdefinition
variable (highlighted).

Refactoring Code for Reuse

[222]

If we are dealing with a concrete definition of a relation, we will have to work out which
entities are involved. This is done by checking the class dictionary for attributes named a and
b, that should be subclasses of AbstractEntity (highlighted). These are both halves of the
relation and their names are used to create a bridging table if not already present.

If we were to define a relation like this:

class Owner(Relation):
 a=Car
 b=User

The SQL statement generated would be:

create table if not exists Owner (
 Car_id references Car on delete cascade,
 User_id references User on delete cascade,
 unique(Car_id,User_id)
)

Each column references the primary key in the corresponding table (because we did specify
just the table in the references clause) and the on delete cascade constraint will make
sure that if an entity is deleted, the relation is deleted as well. The final unique constraint
will make sure that if there is a relation between specific instances, there will be only one
record reflecting this.

Adding new methods to existing classes
The final part of the __new__() method deals with inserting methods in the entity classes
that are involved in this relation. Adding methods to other classes may sound like magic,
but in Python, classes themselves are objects too and have class dictionaries that hold
the attributes of a class. Methods are just attributes that happen to have a value that is a
function definition.

We can, therefore, add a new method at runtime to any class by assigning a reference
to a suitable function to a class attribute. The MetaEntity class only altered the class
dictionary of an Entity before it was created. The MetaRelation class goes one step
further and not only alters the class dictionary of the Relation class, but also those of
the Entity classes involved.

Altering class definitions at runtime is not limited to metaclasses, but should be
used sparingly because we expect classes to behave consistently anywhere in
the code.

Chapter 7

[223]

If we have two classes, A and B, we want to make sure each has its own complement
of get and add methods. That is, we want to make sure the A class has getB() and
addB() methods and the B class has getA() and addA(). We, therefore, define generic
getclass() and addclass() functions and assign those with tailored lambda functions to
the named attributes in the class concerned (highlighted).

If we assume again that the entity classes are called A and B and our relation is called AB,
the assignment:

setattr(a,'get'+b.__name__,lambda self:getclass(self,b,classname))

will mean that the A class will now have a method called getB and if that method is called
on an instance of A (like a1.getB()) it will result in a call to getclass like:

getclass(a1,B,'AB')

We also create (or redefine) a get() method that when given a class as an argument will
find the corresponding getXXX method.

The getclass() method is defined as follows:

 def getclass(self,cls,relname):
 clsname = cls.__name__
 sql = 'select %s_id from %s where %s_id =
?'%(clsname,relname,self.__class__.__name__)
 cursor=self._connect().cursor()
 cursor.execute(sql,(self.id,))
 return [cls(id=r[clsname+'_id']) for r in cursor]

First, it constructs an SQL statement. If getclass() was invoked like
getclass(a1,B,'AB'), this statement might look like this:

select B_id from AB where A_id = ?

Then it executes this statement with self.id as the argument. The resulting list of IDs is
returned as a list of instances.

The add functionality follows the same pattern, so we only take a quick look at the
addclass() function. It first checks if the entity we are trying to add is of the required
class. Note that if we make a call like a1.addB(b1), it will refer to a function inserted by the
MetaRelation class that will then be called like addclass(a1,b1,B,'AB').

The SQL statement that is subsequently constructed may look like this:

insert or replace into AB (A_id,B_id) values (?,?)

Refactoring Code for Reuse

[224]

Because of the unique constraint we specified earlier, a second insert that specifies the same
specific relation may fail in which case we replace the record (that is effectively ignoring the
failure). This way, we may call add() twice with the same arguments, yet still end up with
just a single record of the relation.

Browsing lists of entities
One of the most important tools for a user to interact with a collection of entities is a table. A
table provides a logical interface to page through lists of data and present relevant attributes
in columns. Other features often found in such a table interface are the options to sort on
one or more attributes and to drill down, that is, to show only those entities that have some
specific value for an attribute.

Time for action – using a table-based Entity browser
Run browse.py and point your browser to http://localhost:8080. A small sample
application is started that shows lists of random data, as can be seen in the following image:

This rather Spartan looking interface may lack most visual adornments, but it is fully
functional nevertheless. You may page through the list of data by clicking the appropriate
buttons in the button bar at the bottom, change the sort order of the list by clicking one or
more times on a header (which will cycle through ascending, descending, or no sort at all,
however, without any visual feedback at the moment) or reduce the list of items shown by
clicking on a value in a column, that will result in a list of items that share the same value in
this column. All items may be shown again by clicking the Clear button.

Chapter 7

[225]

What just happened?
The browse module (which is available as browse.py) contains more than the sample
application. It also defines a reusable Browse class that can be initialized with a reference
to an Entity and used as a CherryPy application. The Browse class can also be given
arguments that specify which, if any, columns should be shown.

Its intended use is best illustrated by taking a look at the sample application:

Chapter7/browse.py

 from random import randint
 import os

 current_dir = os.path.dirname(os.path.abspath(__file__))

 class Entity(AbstractEntity):
 database='/tmp/browsetest.db'

 class Number(Entity):
 n = Attribute(displayname="Size")

 n=len(Number.listids())
 if n<100:
 for i in range(100-n):
 Number(n=randint(0,1000000))

 root = Browse(Number, columns=['id','n'],
 sortorder=[('n','asc'),('id','desc')])

 cherrypy.quickstart(root,config={
 '/':
 { 'log.access_file' :
 os.path.join(current_dir,"access.log"),
 'log.screen': False,
 'tools.sessions.on': True
 }
 })

It initializes an instance of the Browse class with a single mandatory argument as a subclass of
Entity, in this case, Number. It also takes a columns argument that takes a list that specifies
which attributes to show in the table's columns and in which order. It also takes a sortorder
argument, a list of tuples that specifies on which columns to sort and in which direction.

This instance of the Browse class is then passed to CherryPy's quickstart() function
to deliver the functionality to the client. It would be just as simple to mount two different
Browse instances, each servicing a different Entity class within a custom root application.

How is all this implemented? Let's first take a look at the __init__() method:

Refactoring Code for Reuse

[226]

Chapter7/browse.py

class Browse:
 def __init__(self,entity,columns=None,
 sortorder=None,pattern=None,page=10,show="show"):

 if not issubclass(entity,AbstractEntity) :
 raise TypeError()

 self.entity = entity
 self.columns = entity.columns if columns is None else
columns
 self.sortorder = [] if sortorder is None else sortorder
 self.pattern = [] if pattern is None else pattern
 self.page = page
 self.show = show

 self.cache= {}
 self.cachelock=threading.Lock()
 self.cachesize=3

 for c in self.columns:
 if not (c in entity.columns or c == 'id') and not (
 hasattr(self.entity,'get'+c.__name__)) :
 raise ValueError('column %s not defined'%c)
 if len(self.sortorder) > len(self.columns) :
 raise ValueError()
 for s in self.sortorder:
 if s[0] not in self.columns and s[0]!='id':
 raise ValueError(
 'sorting on column %s not
possible'%s[0])
 if s[1] not in ('asc','desc'):
 raise ValueError(
 'column %s, %s is not a valid sort
order'%s)

 for s in self.pattern:
 if s[0] not in self.columns and s[0]!='id':
 raise ValueError(
 'filtering on column %s not
possible'%s[0])

 if self.page < 5 :
 raise ValueError()

The __init__() method takes quite a number of arguments and only the entity
argument is mandatory. It should be a subclass of AbstractEntity and this is checked in
the highlighted code.

Chapter 7

[227]

All parameters are stored and initialized to suitable defaults if missing.

The columns argument defaults to a list of all columns defined for the entity, and we verify
that any column we want to display is actually defined for the entity.

Likewise, we verify that the sortorder argument (a list of tuples containing the column
name and its sort direction) contains no more items than there are columns (as it is not
sensible to sort more than once on the same column) and that the sort directions specified
are either asc or desc (for ascending and descending respectively).

The pattern argument, a list of tuples containing the column name and a value to filter on,
is treated in a similar manner to see if only defined columns are filtered on. Note that it is
perfectly valid to filter or sort on a column or columns that are themselves not shown. This
way, we can display subsets of a large dataset without bothering with too many columns.

The final sanity check is done on the page argument which specifies the number of rows to
show on each page. Very few rows feels awkward and negative values are meaningless, so
we settle for a lower limit of five rows per page:

Chapter7/browse.py

 @cherrypy.expose
 def index(self, _=None, start=0,
 pattern=None, sortorder=None, cacheid=None,
 next=None,previous=None, first=None, last=None,
 clear=None):

 if not clear is None :
 pattern=None
 if sortorder is None :
 sortorder = self.sortorder
 elif type(sortorder)==str:
 sortorder=[tuple(sortorder.split(','))]
 elif type(sortorder)==list:
 sortorder=[tuple(s.split(',')) for s in sortorder]
 else:
 sortorder=None

 if pattern is None :
 pattern = self.pattern
 elif type(pattern)==str:
 pattern=[tuple(pattern.split(','))]
 elif type(pattern)==list:
 pattern=[tuple(s.split(',',1)) for s in pattern]
 else:
 pattern=None
 ids = self.entity.listids(

Refactoring Code for Reuse

[228]

 pattern=pattern,sortorder=sortorder)

 start=int(start)
 if not next is None :
 start+=self.page
 elif not previous is None :
 start-=self.page
 elif not first is None :
 start=0
 elif not last is None :
 start=len(ids)-self.page
 if start >= len(ids) :
 start=len(ids)-1
 if start<0 :
 start=0

 yield '<table class="entitylist" start="%d" page="%d">\
n'%(start,self.page)
 yield '<thead><tr>'
 for col in self.columns:
 if type(col) == str :
 sortclass="notsorted"
 for s in sortorder:
 if s[0]==col :
 sortclass='sorted-'+s[1]
 break
 yield '<th class="%s">'%sortclass+self.entity.
displaynames[col]+'</th>'
 else :
 yield '<th>'+col.__name__+'</th>'
 yield '</tr></thead>\n<tbody>\n'
 entities = [self.entity(id=i)
 for i in ids[start:start+self.page]]
 for e in entities:
 vals=[]
 for col in self.columns:
 if not type(col) == str:
 vals.append(
 "".join(
 ['%s ' % (r.__
class__.__name__, r.primary) for r in e.get(col)]))
 else:
 vals.append(str(getattr(e,col)))
 yield ('<tr id="%d"><td>'
 + '</td><td>'.join(vals)+'</td></tr>\n')%(e.id,)
 yield '</tbody>\n</table>\n'

Chapter 7

[229]

 yield '<form method="GET" action=".">'
 yield '<div class="buttonbar">'
 yield '<input name="start" type="hidden" value="%d">\n'%start
 for s in sortorder:
 yield '<input name="sortorder" type="hidden" value="%s,%s">\n'%s
 for f in pattern:
 yield '<input name="pattern" type="hidden" value="%s,%s">\n'%f
 yield '<input name="cacheid" type="hidden" value="%s">'%cacheid
 yield '<p class="info">items %d-%d/%d</p>'%(start+1,start+len
(entities),len(ids))
 yield '<button name="first" type="submit">First</button>\n'
 yield '<button name="previous" type="submit">Previous</button>\n'
 yield '<button name="next" type="submit">Next</button>\n'
 yield '<button name="last" type="submit">Last</button>\n'
 yield '<button name="clear" type="submit">Clear</button>\n'
 yield '</div>'
 yield '</form>'
 # no name attr on the following button otherwise it may be sent as
an argument!
 yield '<form method="GET" action="add"><button type="submit">Add
new</button></form>'

Both the initial display of the table as well as paging, sorting, and filtering are taken care of
by the same index() method. To understand all the parameters it may take, it might be
helpful to look at the HTML markup it produces for our sample application.

The index() method of the Browse class is not the only place where we
encounter a fair amount of HTML to be delivered to the client. This might
become difficult to read and therefore difficult to maintain and using templates
might be a better solution. A good start point for choosing a template solution
that works well with CherryPy is http://www.cherrypy.org/wiki/
ChoosingATemplatingLanguage.

Time for action – examining the HTML markup
Let's have a look at how the HTML markup produced by the index() method looks:

<table class="entitylist" start="0" page="10">
 <thead>
 <tr>
 <th class="sorted-desc">id</th>
 <th class="sorted-asc">Size</th>
 </tr>
 </thead>

Refactoring Code for Reuse

[230]

 <tbody>
 <tr id="86"><td>86</td><td>7702</td></tr>
 <tr id="14"><td>14</td><td>12331</td></tr>
 <tr id="72"><td>72</td><td>17013</td></tr>
 <tr id="7"><td>7</td><td>26236</td></tr>
 <tr id="12"><td>12</td><td>48481</td></tr>
 <tr id="10"><td>10</td><td>63060</td></tr>
 <tr id="15"><td>15</td><td>64824</td></tr>
 <tr id="85"><td>85</td><td>69352</td></tr>
 <tr id="8"><td>8</td><td>84442</td></tr>
 <tr id="53"><td>53</td><td>94749</td></tr>
 </tbody>
</table>
<form method="GET" action=".">
 <div class="buttonbar">
 <input name="start" type="hidden" value="0">
 <input name="sortorder" type="hidden" value="n,asc">
 <input name="sortorder" type="hidden" value="id,desc">
 <input name="cacheid" type="hidden"
 value="57ec8e0a53e34d428b67dbe0c7df6909">
 <p class="info">items 1-10/100</p>
 <button name="first" type="submit">First</button>
 <button name="previous" type="submit">Previous</button>
 <button name="next" type="submit">Next</button>
 <button name="last" type="submit">Last</button>
 <button name="clear" type="submit">Clear</button>
 </div>
</form>
<form method="GET" action="add">
 <button type="submit">Add new</button>
</form>

Apart from the actual table, we have a <form> element with quite a number of <button>
and <input> elements, albeit that most have their type attribute set to hidden.

The <form> element has an action attribute "." (a single dot), which will cause all the
information in the form to be submitted to the same URL that originated this form, so the
data will be processed by the same index() method we are now examining. A submit is
triggered when any of the <button> elements with a type attribute equal to submit is
clicked, in which case, not only the <input> elements are sent, but also the name of the
button that was clicked.

Chapter 7

[231]

Note that any <input> element that has to be sent to the server should have
a name attribute. Omitting the name attribute will cause it to be missed out.
<input> elements with type equal to hidden are sent as well if they have
a name attribute. Hidden <input> elements are not displayed, but do play an
important role in keeping essential information associated with a form together.

The first hidden <input> element in the form stores the start index of the items currently
displayed in the table. By adding it as a hidden element, we can calculate which items to
show when we take action when the Next or Previous button is clicked.

We also want to remember if and how the items are sorted. Therefore, we include a number
of hidden input elements with a name attribute equal to sortorder, each having a value
consisting of a column name and a sort direction separated by a comma.

When a form is submitted, input elements with the same name are added in order as
arguments to the action URL and CherryPy will recognize this pattern and convert them to
a list of values. In this example, the index() method of the Browse class receives this list as
its sortorder argument. Any pattern values are present as hidden <input> elements as
well and processed in an identical way.

The form also contains an info class <p> element, that contains information on the number
of items and the items actually shown on the current page. The final part of the form is a
collection of submit buttons.

What just happened?
The index() method may be called with no arguments at all or with any or all contents of
the form it displays. If the client-side JavaScript code wants to call it asynchronously while
preventing the browser from caching it, it may even pass an _ (underscore) argument with a
random value, which will be ignored.

The rest of the arguments are relevant and checked for sanity before being acted upon.

We want the sortorder variable to contain a list of tuples, each consisting of a column
name and a sort direction, but the values of the input elements are simply interpreted as
strings by CherryPy, so we have to convert this list of strings to a list of tuples by splitting
those strings on the comma separator. We neither check for the validity of the column
names, nor for that of the sort directions because that will be done by the code doing the
actual work.

The pattern variable is treated in a similar way, but because we may want to filter on
values containing commas, we cannot simply use the split() method here, but have to
pass it a limit of 1 to restrict its splitting to the first comma it encounters.

Refactoring Code for Reuse

[232]

Next, we pass the sortorder and pattern variables to the listids() class method
of the entity we stored with this Browse instance. It will return a list of IDs of instances
that match the pattern criteria (or all instances if no patterns are specified) sorted in the
correct order. Note that since the number of instances might be huge, we do not use the
list() method here because converting all IDs to entity instances at once might render the
application unresponsive. We will just convert those IDs to instances that we will actually
show on the page, based on the start and page variables.

To calculate the new start index, we will have to check if we act upon one of the paging
buttons (highlighted) and add or subtract a page length if we are acting on a click on the
Next or Previous button. We set the start index to 0 if the First button was clicked. If the Last
button was clicked, we set the start index to the number of items minus the length of the
page. If any of these calculations result in a start index that is less than zero, we set it to zero.

The next step is to produce the actual output, yielding one line at a time, beginning with
the <table> element. Our table consists of a head and a body, the head consisting of a
single row of <th> elements, each containing either the display name of the column we are
showing if it represents an attribute of the entity, or the name of the class if it represents
a related entity. Any sort order associated with this column is represented in its class
attribute, so we may use CSS to make this visible to the user.

To display the rows in the body of the table, we convert the relevant IDs in the selection
to actual entities (highlighted) and generate <td> elements for each attribute. If the
column refers to related entities, their primary attributes are displayed, each related entity
encapsulated in its own element. The latter will enable us to associate relevant
actions with each individual item shown, for example, displaying it in full when it is clicked.

The final long list of yield statements is used to produce the form with its many hidden
input elements, each recording the arguments that were passed to the index() method.

Caching
The bulk of the activity when browsing through lists in a typical application is paging forward
and backward. If we would need to retrieve the full list of entities each time we forward a
single page, the application might feel sluggish if the list was huge or the sorting and filtering
was complicated. It might therefore be sensible to implement some sort of caching scheme.

There are a couple of things to consider though:

 � Our CherryPy applications are multithreading, so we should be aware of that,
especially when storing things in a cache, as we don't want threads to trash the
shared cache.

 � We have to devise some scheme to limit the number of cached items as resources
are limited.

Chapter 7

[233]

 � We must overcome the limitations of the statelessness of the HTTP protocol:
each time the client issues a request. This request should contain all necessary
information to determine if we have something cached for him available and of
course we have to understand that each request may be served by a different
thread.

These requirements can be satisfied if we change the line in the index() that retrieves the
matching IDs into the following few lines:

Chapter7/browse.py

 if not (next is None and previous is None
 and first is None and last is None):
 cacheid=self.iscached(cacheid,sortorder,pattern)
 else:
 cacheid=None
 if cacheid is None:
 ids = self.entity.listids(
 pattern=pattern,sortorder=sortorder)
 cacheid = self.storeincache(ids,sortorder,pattern)
 else:
 ids = self.getfromcache(cacheid,sortorder,pattern)
 if ids == None:
 ids = self.entity.listids(
 pattern=pattern,sortorder=sortorder)
 cacheid = self.storeincache(ids,sortorder,
pattern)

Because we will store a unique cacheid in a hidden <input> element, it will be passed
as an argument when the form is submitted. We use this cachid together with the
sortorder and pattern arguments to check whether a previously retrieved list of IDs is
present in the cache with the iscached() method. Passing the sortorder and pattern
arguments will enable the iscached() method to determine if these are changed and
invalidate the cache entry.

iscached() will return the cacheid if it exists in the cache or None if it doesn't.
iscached() will also return None if the cacheid does exist but the sortorder or
pattern arguments were changed.

Next, we check if the cacheid is None. This may seem redundant, but if index() was
called for the first time (without arguments, that is) none of the submit button arguments
would be present and we wouldn't have checked the cache.

Refactoring Code for Reuse

[234]

This is intended: if we would, at a later point, revisit this list, we would want
a fresh set of items, not some old cached ones. After all, the contents of the
database might have changed.

If the cacheid is None we retrieve a fresh list of IDs and store it in the cache together with
the sortorder and pattern arguments. The storeincache() method will return a
freshly minted cacheid for us to store in the hidden <input> element.

If the cacheid was not None, we use the getfromcache() method to retrieve the list
of IDs from the cache. We check the returned value because between our checking for the
existence of the key in the cache and retrieving the associated data, the cache might have
been purged, in which case, we still call the listids() method.

The implementation of the iscached(), getfromcache(), and storeincache()
method takes care of all the thread safety issues:

Chapter7/browse.py

 def chash(self,cacheid,sortorder,pattern):
 return cacheid + '-' + hex(hash(str(sortorder))) + '-' +
hex(hash(str(pattern)))

 def iscached(self,cacheid,sortorder,pattern):
 h=self.chash(cacheid,sortorder,pattern)
 t=False
 with self.cachelock:
 t = h in self.cache
 if t :
 self.cache[h]=(time(),self.cache[h][1])
 return cacheid if t else None

 def cleancache(self):
 t={}
 with self.cachelock:
 t={v[0]:k for k,v in self.cache.items()}
 if len(t) == 0 :
 return
 limit = time()
 oldest = limit
 limit -= 3600
 key=None
 for tt,k in t.items():
 if tt<limit:
 with self.cachelock:
 del self.cache[k]
 else:

Chapter 7

[235]

 if tt<oldest:
 oldest = tt
 key = k
 if key:
 with self.cachelock:
 del self.cache[key]

 def storeincache(self,ids,sortorder,pattern):
 cacheid=uuid().hex
 h=self.chash(cacheid,sortorder,pattern)
 if len(self.cache)>self.cachesize :
 self.cleancache()
 with self.cachelock:
 self.cache[h]=(time(),ids)
 return cacheid

 def getfromcache(self,cacheid,sortorder,pattern):
 ids=None
 h=self.chash(cacheid,sortorder,pattern)
 with self.cachelock:
 try:
 ids=self.cache[h][1]
 except KeyError:
 pass
 return ids

All methods use the chash() method to create a unique key from the cacheid and the
sortorder and pattern arguments. iscached() waits until it acquires a lock to check
if this unique value is present in the cache. If it is, it updates the associated value, a tuple
consisting of a timestamp and a list of IDs. By updating this timestamp here, we reduce the
chance that this item is purged from the cache between the check for existence and the
actual retrieval.

The getfromcache() method creates a unique key with the chash() method in the same
way iscached() did and waits to acquire the lock before it uses the key to retrieve the
value from the cache. If this fails, a KeyError will be raised that will be caught, causing the
None value to be returned as that was what the IDs variable was initialized to.

The storeincache() method first creates a new cacheid using one of the uuid()
functions from Python's uuid module, essentially creating a random string of hexadecimal
characters. Together with the sortorder and pattern arguments, this new cacheid is
used to generate a unique key.

Refactoring Code for Reuse

[236]

Before we store the list of IDs in the cache, we check whether there is any space left by
comparing the number of keys in the cache to the maximum length we are prepared to
accept. If there isn't any room left, we make room by calling the cleancache() method
that will remove any entries that are too old. We then store the IDs together with a time
stamp after acquiring a lock and return the cacheid just generated.

The final cog in our caching machinery is the cleancache() method. After requiring a lock,
a reverse map is built, mapping timestamps to keys. If this map holds any items, we use it to
locate any key that is older than an hour. Those are deleted after acquiring a lock.

The whole business with acquiring a lock and releasing it as quick as possible
instead of acquiring the lock and doing all the cache-related business in one go
ensures that other threads accessing the cache do not have to wait very long,
which keeps the whole application responsive.

If the age of an entry is less than an hour, we keep notes to see which of the remaining ones
is the oldest to remove that one at the end. This way, we ensure that we always retire at
least one entry, even if there aren't any really old ones.

The books application revisited
With that much versatile code available, constructing a new lean and mean version of our
books application becomes very straightforward.

Time for action – creating a books application, take two
Run the code in books2.py and point your web browser to http://localhost:8080.

After logging in (a default username/password combination of admin/admin will be present),
you will be presented with a list of entities to browse (books and authors) and after clicking
on Books, a screen will present itself that closely resembles the general Browse application
(the page still has a Spartan look because no CSS is added at this point):

Chapter 7

[237]

Thanks to some JavaScript goodness, our browse screen is embedded in the page instead
of functioning standalone, yet all functionality is retained, including skipping forward and
backward as well as sorting. New books or authors may be added by clicking the Add new
button.

What just happened?
When we take a look at the code in books2.py, we see that its main part consists of
definitions of entities, relations, and specific Browse entities that are combined together to
form a CherryPy application:

Chapter7/books2.py

import os
import cherrypy

from entity import AbstractEntity, Attribute
from relation import AbstractRelation

from browse import Browse
from display import Display
from editor import Editor

from logondb import LogonDB

db="/tmp/book2.db"

class Entity(AbstractEntity):
 database = db

class Relation(AbstractRelation):
 database = db

class User(Entity):
 name = Attribute(notnull=True, unique=True,
 displayname="Name")

class Book(Entity):
 title = Attribute(notnull=True, displayname="Title")
 isbn = Attribute(displayname="Isbn")
 published = Attribute(displayname="Published")

class Author(Entity):
 name = Attribute(notnull=True, unique=True,
 displayname="Name", primary=True)

class OwnerShip(Relation):
 a = User
 b = Book

class Writer(Relation):
 a = Book

Refactoring Code for Reuse

[238]

 b = Author

logon = LogonDB()

class AuthorBrowser(Browse):
 display = Display(Author)
 edit = Display(Author, edit=True, logon=logon)
 add = Display(Author, add=True, logon=logon)

class BookBrowser(Browse):
 display = Display(Book)
 edit = Display(Book, edit=True, logon=logon,
 columns=Book.columns+[Author])
 add = Display(Book, add=True, logon=logon,
 columns=Book.columns+[Author])

with open('basepage.html') as f:
 basepage=f.read(-1)

class Root():
 logon = logon
 books = BookBrowser(Book,
 columns=['title','isbn','published',Author])
 authors = AuthorBrowser(Author)

 @cherrypy.expose
 def index(self):
 return Root.logon.index(returnpage='../entities')

 @cherrypy.expose
 def entities(self):
 username = self.logon.checkauth()
 if username is None :
 raise HTTPRedirect('.')
 user=User.list(pattern=[('name',username)])
 if len(user) < 1 :
 User(name=username)

 return basepage%'''<div class="navigation">
 Books
 Authors
 </div><div class="content">
 </div>
 <script>
 ... Javascript omitted ...
 </script>
 '''

cherrypy.engine.subscribe('start_thread',
 lambda thread_index: Root.logon.connect())

Chapter 7

[239]

current_dir = os.path.dirname(os.path.abspath(__file__))

cherrypy.quickstart(Root(),config={
 '/':
 { 'log.access_file' :
 os.path.join(current_dir,"access.log"),
 'log.screen': False,
 'tools.sessions.on': True
 }
 })

After importing the modules we need, we define User, Book, and Author entities and an
OwnerShip class, to define the relation between a book and a user. Likewise, we define a
Writer class that defines the relation between a book and its author(s).

The next step is to create an instance of a LogonDB class (highlighted) that will be used in
many parts of our CherryPy application to verify that the user is authenticated.

The bulk of the CherryPy application consists of two Browse classes, one for books and
one for authors. Each class has display, edit, and add class variables that point to further
branches of our application that are served by Display instances.

The Root class we define ties all of this together. It refers to the LogonDb instance created
earlier in its logon class variable, and its books and authors class variables point to the
previously defined Browse instances. It also defines an index() method that merely
presents a logon screen if the user is not yet authenticated and if he/she is, redirects the
user to the entities page. The entities() method which serves this page makes sure there
is a corresponding user in the database (highlighted) and presents a base page consisting of
a navigation div and a content div that will be filled when one of the links in the navigation
section is clicked, and some JavaScript to tie everything together.

Refactoring Code for Reuse

[240]

Before we examine the JavaScript, it might be good to take a look at the illustration to see
how the application tree looks:

Path Method

/ Root.index()

/entities Root.entities()

/logon LogonDB.index()

/books BooksBrowser.index()

 /add Display().index()

 /edit Display().index()

 /display Display().index()

/authors AuthorBrowser.index()

 /add Display().index()

 /edit Display().index()

 /display Display().index()

(Note that the edit, add, and display branches are each serviced by a different instance
of Display).

Earlier, we saw that the Browse class we created was able to function standalone: clicking
on any of the buttons referred to the same URL that served up the form in the first place.
This setup makes it possible to use different Browse instances in different parts of an
application tree, but here we want to replace a part of a page with the form produced by the
Browse instance using an AJAX call. The problem then is that submitting a form without an
action attribute will result in a request to the current URL, that is, the one referring to the
page the form is embedded in, not the one that produces the form.

Fortunately, we can use jQuery to solve this problem by altering the action attributes of the
freshly loaded forms to point to the URL that served those forms:

Chapter7/books2.py

 $.ajaxSetup({cache:false,type:"GET"});
 $(".navigation a").click(function (){
 var rel = $(this).attr('href');
 function shiftforms(){
 $(".content form").each(function(i,e){
 $(e).attr('action',
 rel+'/'+$(e).attr('action'));
 $('[type=submit]',e).bind('click',
 function(event){
 var f = $(this).parents('form');
 var n = $(this).attr('name');

Chapter 7

[241]

 if (n != ''){
 n = '&'+n+'='+$(this).attr('value');}
 $(".content").load(f.attr('action'),
 f.serialize()+n,shiftforms);
 return false;
 });
 });
 };
 // change action attributes of form elements
 $(".content").load($(this).attr('href'),shiftforms);
 return false;
 });

This is accomplished by adding a click event handler to the links in the navigation area. That
will not only prevent the default action but load the HTML produced by the URL referred to
by the href attribute and pass a callback function that will alter the action attributes of any
freshly loaded <form> elements (highlighted).

The shiftforms() function first prepends the original href contents to the action
attributes and then binds a click handler to each button or input element with a type
attribute equal to submit.

It would not be sufficient to add a submit handler to the form, because we don't want to let
the <form> perform its default action. When a form is submitted, the contents of the page
are replaced and this is not what we want. Instead, we want to replace the contents of the
content div so we have to load() the URL from the form's action attribute ourselves.

This also means that we have to serialize the contents of the form to add as parameters
to this URL, but jQuery's serialize() function will not serialize submit buttons. We,
therefore, end up with adding a click handler to submit buttons in order to be able to
determine the submit button that was clicked, so we can construct a complete list of
parameters, including the name and value of the submit button.

Refactoring Code for Reuse

[242]

Summary
We took a critical look at the framework we developed so far, and made improvements to
the framework to make it more versatile and simpler to use for a developer.

Specifically, we covered:

 � How to do away with explicit database and thread initialization.

 � How to wield the awesome power of Python metaclasses to synchronize the
creation of Python classes and their corresponding database tables.

 � How to use those same metaclasses to alter the definitions of existing classes to
create a much more intuitive interface when dealing with relations.

 � How to implement a Browse class to navigate through large collections of entities in
an efficient way using caches.

 � How to rewrite the books application in a much simpler way with this reworked
framework.

We have still glossed over several issues, including how to display and edit instances. In the
last three chapters, we will develop a Customer Relationship Management application and
fill in the final bits, including controlling how to restrict some actions to specific persons and
how to allow for end user customization of the application.

8
Managing Customer Relations

There is more to an entity framework and CherryPy application code than just
merely browsing lists. The user must be able to add new instances and edit
existing ones.

In this chapter, we will:

 � See how to display instances

 � How to add and edit instances

 � How to provide auto complete functionality to attributes referring to other entities

 � How to implement picklists

So let's get on with it...

A critical review
Now that we have created an object relational framework in the form of an entity and
relation modules, it is time for a critical reappraisal.

A couple of larger and smaller issues may hinder us in quickly prototyping and implementing
a database-driven application:

 � We already keep an administration of the additional properties of the entity
attributes, for example, whether an attribute has a validator function. It might be a
good idea to store things like the preferred representation of an attribute's value as
well. We also want to have the possibility of keeping a record of allowed values, so
we can implement picklists

Managing Customer Relations

[244]

 � Although the framework is flexible enough for a developer to quickly implement a
database-driven application, it does not have any functionality to let an end user
alter the database schema. It is not possible to add an attribute to an entity, for
example. Even if this were possible, we would still need some authorization scheme
to limit this functionality to authorized users only.

In the following chapters, we will tackle these limitations one-by-one and each step will bring
us closer to implementing our final example: a customer relations management application.
Some parts of this process require us to perform some pretty sophisticated Python tricks, but
these parts are clearly flagged and may be skipped.

Designing a Customer Relationship Management
application
Our first revision of CRM will start off with a bare bones implementation. It is about as
simple as the books application and its data model is illustrated in the next diagram:

The web application will serve a single company and the users are typically the sales
representatives and back office employees. In this basic form, an Account is the company
we are interested in with a couple of attributes like name and the type of business. We also
keep records of Contacts; these are people that may be associated with an Account. These
Contacts have attributes like name, gender, and so on. Both Accounts and Contacts may have
any number of addresses.

Time for action – implementing a basic CRM
Have a look at the following code (available as crm1.py). It will define the entities identified
in the previous section and the result, when run, will have a familiar look:

Chapter 8

[245]

We've added a little bit of CSS styling to order the elements on the page, but in the final
revision, we will give it a much more attractive look. Clicking on the Add new button will
allow you to add a new entity.

What just happened?
These humble beginnings in implementing CRM were accomplished by the code
in crm1.py:

Chapter8/crm1.py

import os
import cherrypy

from entity import AbstractEntity, Attribute, Picklist,
AbstractRelation

from browse import Browse
from display import Display
from editor import Editor

from logondb import LogonDB

db="/tmp/crm1.db"

class Entity(AbstractEntity):
 database = db

class Relation(AbstractRelation):
 database = db

class User(Entity):
 name = Attribute(notnull=True, unique=True,
 displayname="Name", primary=True)

class Account(Entity):
 name = Attribute(notnull=True,
 displayname="Name", primary=True)

class Contact(Entity):
 firstname = Attribute(displayname="First Name")
 lastname = Attribute(displayname="Last Name",

Managing Customer Relations

[246]

 notnull=True, primary=True)
 gender = Attribute(displayname="Gender",
 notnull=True,
 validate=Picklist(
 Male=1,
 Female=2,
 Unknown=0))
 telephone = Attribute(displayname="Telephone")

class Address(Entity):
 address = Attribute(displayname="Address",
 notnull=True, primary=True)
 city = Attribute(displayname="City")
 zipcode = Attribute(displayname="Zip")
 country = Attribute(displayname="Country")
 telephone = Attribute(displayname="Telephone")

class OwnerShip(Relation):
 a = User
 b = Account

class Contacts(Relation):
 a = Account
 b = Contact

class AccountAddress(Relation):
 a = Account
 b = Address

class ContactAddress(Relation):
 a = Contact
 b = Address

The first part is all about defining the entities and the relations between them according to
the data model we sketched earlier. The concept is pretty much the same as for the books
application, but for one important detail, the use of a picklist to limit the allowable choices
for gender (highlighted). We will study these picklists in detail later in this chapter.

The next part creates the actual CherryPy application, with a Browse page for each entity
(highlighted):

Chapter8/crm1.py

logon = LogonDB()

class AccountBrowser(Browse):
 display = Display(Account)
 edit = Display(Account, edit=True, logon=logon,
 columns=Account.columns+[Address,User])

Chapter 8

[247]

 add = Display(Account, add=True, logon=logon,
 columns=Account.columns+[Address,User])

class UserBrowser(Browse):
 display = Display(User)
 edit = Display(User, edit=True, logon=logon)
 add = Display(User, add=True, logon=logon)

class ContactBrowser(Browse):
 display = Display(Contact)
 edit = Display(Contact, edit=True, logon=logon,
 columns=Contact.
columns+[Account,Address])
 add = Display(Contact, add=True, logon=logon,
 columns=Contact.
columns+[Account,Address])

class AddressBrowser(Browse):
 display = Display(Address)
 edit = Display(Address, edit=True, logon=logon)
 add = Display(Address, add=True, logon=logon)

The final part defines a Root class with an index() method that will force the user to
identify himself/herself first (highlighted) and will then redirect the user to the /entities
page, served by the entities() method.

This method will serve up a basepage with a navigation section that will allow the user to
select a browse page for a type of entity and a content division which is initially empty, but
will act as a container for either the chosen browse component or any edit or add page.

Chapter8/crm1.py

with open('basepage.html') as f:
 basepage=f.read(-1)

class Root():
 logon = logon
 user = UserBrowser(User)
 account = AccountBrowser(Account,
 columns=Account.
columns+[User,Address,Contact])
 contact = ContactBrowser(Contact,
 columns=Contact.columns+[Address,Account])
 address = AddressBrowser(Address)

 @cherrypy.expose
 def index(self):
 return Root.logon.index(returnpage='../entities')

 @cherrypy.expose
 def entities(self):

Managing Customer Relations

[248]

 username = self.logon.checkauth()
 if username is None :
 raise HTTPRedirect('.')

 user=User.list(pattern=[('name',username)])
 if len(user) < 1 :
 User(name=username)

 return basepage%'''
 <div class="navigation">
 Users
 Accounts
 Contacts
 Addresses
 </div>
 <div class="content">
 </div>
 <script>

 ... Javascript omitted ...

 </script>
 '''

cherrypy.config.update({'server.thread_pool':1})

cherrypy.engine.subscribe('start_thread',
 lambda thread_index: Root.logon.connect())

current_dir = os.path.dirname(os.path.abspath(__file__))

cherrypy.quickstart(Root(),config={
 '/':
 { 'log.access_file' :
 os.path.join(current_dir,"access.log"),
 'log.screen': False,
 'tools.sessions.on': True
 },
 '/browse.js':
 { 'tools.staticfile.on':True,
 'tools.staticfile.filename':current_dir+"/browse.js"
 },
 '/base.css':
 { 'tools.staticfile.on':True,
 'tools.staticfile.filename':current_dir+"/base.css"
 }
 })

Adding and editing values
Until now, we did not look closely at the Display class, although it is used in various

Chapter 8

[249]

incarnations within the application that we set up with CherryPy. The Display class
combines a number of functions. It:

 � Displays detailed values of an instance

 � Allows those values to be edited

 � Displays a form that allows us to add a completely new instance

 � Processes the input from the edit and add forms

The reason to bundle these functions is twofold: displaying the labels and values for reading,
editing, or adding an instance shares a lot of common logic, and by processing the results
within the same class method, we can refer to the action attribute of a <form> element
in a way that allows us to mount an instance of the Display class from anywhere in the
application tree.

Time for action – adding an instance
To understand the Display class, let us create a very simple application. Type in the
following code and run it:

Chapter8/crmcontact.py

import os
import cherrypy

from entity import AbstractEntity, Attribute, Picklist

from browse import Browse
from display import Display

from logondb import LogonDB

db="/tmp/crmcontact.db"

class Entity(AbstractEntity):
 database = db

class Contact(Entity):
 firstname = Attribute(displayname="First Name")
 lastname = Attribute(displayname="Last Name",
 notnull=True,
primary=True)
 gender = Attribute(displayname="Gender",
 notnull=True,
 validate=Picklist(

Male=1,Female=2,Unknown=0))
 telephone = Attribute(displayname="Telephone")

Managing Customer Relations

[250]

class ContactBrowser(Browse):
 edit = Display(Contact, edit=True)
 add = Display(Contact, add=True)

current_dir = os.path.dirname(os.path.abspath(__file__))

cherrypy.quickstart(ContactBrowser(Contact),config={
 '/':
 { 'log.access_file' :
 os.path.join(current_dir,"access.log"),
 'log.screen': False,
 'tools.sessions.on': True
 }
})

When you point your browser to http://localhost:8080, you will be presented with an
empty list of contacts that you may expand by clicking the Add button. This will present you
with the following screen:

Here you may enter new values, and when you click the add button, a new contact will be
added to the database, after which, you will return to the list of contacts, but now with an
extra one added.

What just happened?
In the application tree that we constructed, we mounted several instances of the Display
class, each with its own initialization parameters. These parameters are merely stored in the
instance by the __init__() method for referral later:

Chapter8/display.py

 def __init__(self, entity, edit=False, add=False,
 logon=None, columns=None):
 self.entity = entity
 self.edit = edit
 self.add = add
 self.logon = logon
 if columns is None:
 self.columns = entity.columns
 else:
 self.columns = columns

The most important parameter is entity. This will be the Entity class that we want
Display to be able to add or edit.

Chapter 8

[251]

__init__() also takes an edit or add parameter that when set will determine the
type of activity this instance of Display will perform. If neither is given, an instance will
just be displayed without the possibility of altering its attributes. In the stripped down
crmcontact.py application, we created a ContactBrowser class that holds references
to two different instances of the Display class. The one in the add class variable is created
with an add attribute set to True, while the one in the edit variable is created with an
edit attribute set to True. The Add new button in the browser is equipped with a click
handler that will replace the browse list with the form that will be served by the Display
instance that was created with the add argument.

Time for action – editing an instance
We also want to open a form that will allow the user to edit an existing instance when
double-clicked in the browse list. In the stripped down application that we created in the
previous section, we merely created the ContactBrowser class as a subclass of Browse. If
we want to add an additional double-click handler to the browse list element, we will have to
override the index() method.

In the definition of the ContactBrowser class, add the following to the definition of the
index() method (the complete code is available as crmcontactedit.py):

Chapter8/crmcontactedit.py

 @cherrypy.expose
 def index(self, _=None,
 start=0, pattern=None, sortorder=None, cacheid=None,
 next=None, previous=None, first=None, last=None,
 clear=None):
 s="".join(super().index(_, start, pattern, sortorder,
 cacheid, next,previous, first, last,
clear))
 s+='''
 <script>
 $("table.entitylist tr").dblclick(function(){
 var id=$(this).attr('id');
 $("body").load('edit/?id='+id);
 });
 </script>
 '''
 return basepage%s

Managing Customer Relations

[252]

The code merely gathers the output from the original index() method of the Browse class
(highlighted) and adds a <script> element to it that will add a double-click handler to
each <tr> element in the browse list. This click handler will replace the body with the form
served by the edit URL, which will be passed an id parameter equal to the id attribute of
the <tr> element.

If you run crmcontactedit.py, you will be presented with the same list of contacts as
before and if it is empty, you may first need to add one or more contacts. Once these are
present, you can double-click on any of them to be presented with an edit screen:

This looks very similar to the add screen, but changing values here and clicking the Edit
button will alter instead of adding a contact and returning you to the list of contacts.

What just happened?
Let us have a look at how the Display class handles the editing of instances.

All interaction by an instance of the Display class is provided by a single method: index()
(full code is available in display.py):

Chapter8/display.py

 @cherrypy.expose
 def index(self, id=None, _=None,
 add=None, edit=None, related=None, **kw):
 mount = cherrypy.request.path_info
 if not id is None :
 id = int(id)
 kv=[]
 submitbutton=""
 if edit or add:
 ... code to process the results of an edit/add form omitted

 action="display"
 autocomplete=''
 if not id is None:
 e=self.entity(id=id)
 for c in self.columns:
 if c in self.entity.columns:
 kv.append('<label for="%s">%s</label>'%
 (c,self.entity.displaynames[c]))
 if c in self.entity.validators and type(
 self.entity.validators[c])==Picklist:

Chapter 8

[253]

 kv.append('<select name="%s">'%c)
 kv.extend(['<option %s>%s</option>'%
 ("selected" if v==getattr(e,c)
 else "",k)
 for k,v in self.entity.validators[c]
 .list.items()])
 kv.append('</select>')
 else:
 kv.append(
 '<input type="text" name="%s" value="%s">'%
 (c,getattr(e,c)))
 elif issubclass(c,AbstractEntity):
 kv.append(
 '<label for="%s">%s</label>'%
 (c.__name__,c.__name__))
 v=",".join([r.primary for r in e.get(c)])
 kv.append(
 '<input type="text" name="%s" value="%s">'%
 (c.__name__,v))
 autocomplete += '''
 $("input[name=%s]").autocomplete({source:"%s",minLength:2});
 '''%(c.__name__,
 mount+'autocomplete?entity='+c.__name__)
 yield self.related_entities(e)

 if self.edit:
 action='edit'
 submitbutton='''
 <input type="hidden" name="id" value="%s">
 <input type="hidden" name="related" value="%s,%s">
 <input type="submit" name="edit" value="Edit">
 '''%(id,self.entity.__name__,id)

 elif self.add:
 action='add'
 for c in self.columns:
 if c in self.entity.columns:
 kv.append('<label for="%s">%s</label>'%(
 c,self.entity.displaynames[c]))
 if c in self.entity.validators and type(
 self.entity.validators[c])==Picklist:
 kv.append('<select name="%s">'%c)
 kv.extend(['<option>%s</option>'%v
 for v in self.entity.validators[c].
 list.keys()])

Managing Customer Relations

[254]

 kv.append('</select>')
 else:
 kv.append('<input type="text" name="%s">'
 %c)
 elif c=="related":
 pass
 elif issubclass(c,AbstractEntity):
 kv.append('<label for="%s">%s</label>'%
 (c.__name__,c.__name__))
 kv.append('<input type="text" name="%s">'%
 c.__name__)
 autocomplete += '''
 $("input[name=%s]").autocomplete({source:"%s",minLength:2});
 '''%(c.__name__,
 mount+'autocomplete?entity='+c.__name__)
 submitbutton='''
 <input type="hidden" name="related" value="%s">
 <input type="submit" name="add" value="Add">
 '''%related
 else:
 yield """cannot happen
 id=%s, edit=%s, add=%s, self.edit=%s, self.add=%s
 """%(id,edit,add,self.edit,self.add)
 yield '<form action="%s">'%action
 for k in kv:
 yield k
 yield submitbutton
 yield "</form>"
 yield '<script>'+autocomplete+'</script>'

Depending on the parameters passed to the index() method and the information stored
when the Display instance was initialized, index() performs different but similar actions.

When called without the add or edit parameter, index() is called to display, edit, or add
an instance and the first part of the code is skipped.

The add and edit parameters to index() are different from the ones passed
to __init__().

First, we check if the id parameter is present (highlighted). If not, we're expected to present
an empty form to let the user enter the attributes for an all new instance. However, if an id
parameter is present, we have to display a form with values.

Chapter 8

[255]

To present such a form, we retrieve the entity with the given ID and check which columns
we have to display and see if such a column is an attribute of the entity we are dealing with
(highlighted). If so, we append to the kv list a <label> element with the display name of
the column and an <input> or <select> element, depending on whether we are dealing
with an unrestricted text field or a picklist. If we are dealing with a picklist, the available
choices are added as <option> elements.

If the column to display is not an attribute of the entity but another entity class, we are
dealing with a relation. Here we also add a <label> element and an <input> field, but we
also add JavaScript code to the autocomplete variable that when executed will convert
this <input> element into an autocomplete widget, which will retrieve its choices from the
autocomplete() method in this same Display instance.

Only if this Display instance was initialized to perform the edit function (highlighted), we
append a submit button and set the action variable to edit (the last part of the URL the
values of the <form> element will be submitted to). We also add an extra hidden input
element that holds the ID of the instance we are editing.

Constructing the empty form to add a new instance is almost the same exercise, only in this
case, no values are filled in any of the <input> elements.

The final lines of code (highlighted) are shared again and used to deliver the <form>
element based on the components just created for either an edit/display form or an empty
add form together with any JavaScript generated to implement the autocomplete features. A
typical sample of HTML generated for an edit form may look like this:

<form action="edit">
 <label for="firstname">First Name</label>
 <input name="firstname" value="Eva" type="text">
 <label for="lastname">Last Name</label>
 <input name="lastname" value="Johnson" type="text">
 <label for="gender">Gender</label>
 <select name="gender">
 <option selected="selected">Unknown</option>
 <option>Male</option>
 <option>Female</option>
 </select>
 <label for="telephone">Telephone</label>
 <input name="telephone" value="" type="text">
 <label for="Account">Account</label>
 <input name="Account" value="" type="text">
 <label for="Address">Address</label>
 <input name="Address" value="" type="text">
 <input name="id" value="2" type="hidden">
 <input name="edit" value="Edit" type="submit">

Managing Customer Relations

[256]

</form>
<script>
$("input[name=Account]").autocomplete({source:"autocomplete?entity=Acc
ount",minLength:2});
$("input[name=Address]").autocomplete({source:"autocomplete?entity=Add
ress",minLength:2});
</script>

If the index() method of Display is called with either the add or the edit parameter
present (typically the result of clicking a submit button in a generated edit or add form),
different code is executed:

Chapter8/display.py

 @cherrypy.expose
 def index(self, id=None, _=None,
 add=None, edit=None, related=None, **kw):
 mount = cherrypy.request.path_info
 if not id is None :
 id = int(id)
 kv=[]
 submitbutton=""
 if edit or add:
 if (edit and add):
 raise HTTPError(500)
 if not self.logon is None:
 username=self.logon.checkauth()
 if username is None:
 raise HTTPRedirect('/')
 if add:
 attr={}
 cols={}
 relations={c.__name__:c for c in self.columns
 if type(c)!=str}
 for k,v in kw.items():
 if not k in self.entity.columns:
 attr[k]=v
 if not k in relations :
 raise KeyError(k,
 'not a defined relation')
 else:
 cols[k]=v
 e=self.entity(**cols)
 for k,v in attr.items():
 if v != None and v != '':

Chapter 8

[257]

 relentity = relations[k]
 primary = relentity.primaryname
 rels = relentity.listids(
 pattern=[(primary,v)])
 if len(rels):
 r = relentity(id=rels[0])
 else:
 r = relentity(**{primary:v})
 e.add(r)

 if not related is None and related != '':
 r=related.split(',')
 re=e.relclass[r[0]](id=int(r[1]))
 e.add(re)

 redit = sub(Display.finaladd,'',mount)
 raise cherrypy.HTTPRedirect(redit)
 elif edit:
 e=self.entity(id=id)
 e.update(**kw)
 raise cherrypy.HTTPRedirect(
 mount.replace('edit','').replace('//','/'))

 ...code to display and instance omitted

Only one of edit or add should be present; if both are present we raise an exception. If the
user is not authenticated, editing an instance or adding a new one is not allowed, and we
unceremoniously redirect him/her to the homepage (highlighted).

If the add parameter is present, we will be creating a brand new instance. The first item of
order is to check all incoming parameters to see if they are either an attribute of the entity that
we will be creating (highlighted) or the name of a related entity. If not, an exception is raised.

The next step is to create the new entity (highlighted) and establish any relations.

Adding relations
One of the things we silently glossed over in the previous sections was the functionality
to define relations between entities. Sure, the implementation of the Display class did
allow for the creation of new instances, but we did not address how to define a relation,
even though Display is already perfectly capable of showing columns that point to related
entities like authors.

We could have hardcoded this behavior into specific implementations of Display like
we did earlier when we implemented the first version of the books application, but this
doesn't play well with the idea of creating components that can figure out those things for
themselves, leaving the developer of the web application with fewer things to worry about.

Managing Customer Relations

[258]

The previous incarnation of the relation module was not quite up to this: we could define
and administer a relation all right, but we'd have to do that by referring explicitly to an
instance of a Relation class.

Because this isn't intuitive, we created a second version of the relation module that allows
us to use the add() method inserted into the class definition of an Entity by the metaclass
that creates a new relation. We do not have to care about the details: if we use add() to
establish a relation between two entities, this is all taken care of.

This means that we can complete the add functionality of the Display class. For each
column that refers to another entity (for example, the Author column of a book), we now
implement some way for the user to make a choice, for example, with the autocomplete
functionality, and process this choice in a rather simple manner: if it is empty, we do not add
a relation, if it refers to a existing entity, add the relation and if not, create the related entity
first before adding it.

We now have the functionality to refer to existing related items by their primary attribute
or define a new one. However, for the end user, it might be very convenient to have auto
completion on input fields that refer to related entities. This not only may save time, it also
prevents inadvertently adding new entities when a typing error is made.

In previous chapters, we already encountered auto completion with the help of jQuery UI's
autocomplete widget and we implemented the server-side functionality to retrieve lists
of possible completions. All we have to do now is to make this functionality available in a
manner that is independent from the actual related entity:

Chapter8/display.py

 @cherrypy.expose
 def autocomplete(self, entity, term, _=None):
 entity={c.__name__:c for c in self.columns
 if type(c)!=str}[entity]
 names=entity.getcolumnvalues(entity.primaryname)
 pat=compile(term,IGNORECASE)
 return json.dumps(list(takewhile(lambda x:pat.match(x),
 dropwhile(lambda x:not pat.
match(x),names))))

The HTML and JavaScript that is generated by the index() method of the Display class
will ensure that the preceding autocomplete() method will be called with the name of the
entity of which we want to retrieve column values.

Any related class that the instance we are editing refers to is stored in the self.columns
instance variable, just like the names of the regular attributes. The highlighted line,
therefore, collects those column names that are actually classes and creates a dictionary
indexed by name, which holds the corresponding classes as values.

Chapter 8

[259]

When we use the name of the related entity passed to the autocomplete() method
as the index, we will get hold of the class. This class is used in the next line to retrieve all
column values for the column marked as the primary column. The final code to return
a JSON encoded list of all those values that start with the term argument is the same as
implemented earlier.

Dictionary comprehensions are a new addition to Python 3.x, so it might be
enlightening to write out the highlighted line in the example code in a more
traditional manner:

classmap = {}
for c in self.columns:
 if type(c)!=str:
 classmap[c.__name__] = c
entity = classmap[entity]

Picklists
When we examined the code to generate a form to edit an instance, we did not look into the
details of implementing picklists. Picklists are a great way to reduce input errors. Anywhere
a limited list of values is permitted, we can use a picklist, thereby preventing the user from
inadvertently entering a value that is not allowed. In doing so, we can also associate each
possible value with a meaningful label.

We already have the possibility to add a validation function, but this function
only checks the input; it does not provide us with a list of possible choices.

Time for action – implementing picklists
What we need is a way to indicate that an entity attribute is a picklist. Run the following code
(available as fruit.py) and point your browser to http://localhost:8080.

Chapter8/fruit.py

import os
import cherrypy

from entity import AbstractEntity, Attribute, Picklist

from browse import Browse
from display import Display

from logondb import LogonDB

db="/tmp/fruits.db"

Managing Customer Relations

[260]

class Entity(AbstractEntity):
 database = db

class Fruit(Entity):
 name = Attribute(displayname="Name")
 color = Attribute(displayname="Color",
 notnull = True,
 validate= Picklist([('Yellow',1),('Green',2),('Orange',0)]))
 taste = Attribute(displayname="Taste",
 notnull = True,
 validate= Picklist(Sweet=1,Sour=2))

class FruitBrowser(Browse):
 edit = Display(Fruit, edit=True)
 add = Display(Fruit, add=True)

current_dir = os.path.dirname(os.path.abspath(__file__))

cherrypy.quickstart(FruitBrowser(Fruit),config={
 '/':
 { 'log.access_file' : os.path.join(current_dir,"access.
log"),
 'log.screen': False,
 'tools.sessions.on': True
 }
})

Click the Add button to create a new fruit instance. The color and taste attributes are
defined as picklists, and clicking on the Color attribute, for example, may look like this:

What just happened?
In the entity.py file, we added a Picklist class to store the available choices
and their values:

Chapter8/entity.py

class Picklist:
 def __init__(self,list=None,**kw):
 self.list = collections.OrderedDict(list) if not list is
None else collections.OrderedDict()
 self.list.update(kw)

 def __getitem__(self,key):

Chapter 8

[261]

 return self.list[key]

The Picklist class is primarily a container for an OrderedDict (highlighted) and may be
initialized either by a list or by passing any number of keywords to the __init__() method.
However, the order of these keywords is not preserved, so even though we defined the color
attribute of the fruit entity with this validate argument validate= Picklist(Yellow=1,
Green=2,Orange=0), the order in the drop-down box was Orange, Green, and Yellow.

So although convenient, passing keywords makes the use of an OrderedDict rather
pointless. Therefore, the __init__() method also accepts a list of tuples of key/value pairs
and if present, uses this list to initialize the dictionary. Now if we would use validate=
Picklist([('Yellow',1),('Green',2),('Orange',0)]), the order would be
preserved, as shown in the following screenshot. It has the added benefit of allowing us to
specify any string as a key and not just strings that are valid Python identifiers.

We already saw in the index() method of the Display class how to retrieve a list of
possible choices. An Entity itself also needs to know how to deal with attributes that are
picklists, for example, when it updates such an attribute. The __setattr__() method of
the AbstractEntity class will have to be adapted as follows:

Chapter8/entity.py

def __setattr__(self,name,value):
 if name in self.validators :
 if type(self.validators[name])==Picklist:
 try:
 value=self.validators[name].list[value]
 except:
 # key not known, try value directly
 if not value in list(
 self.validators[name].list.values()):
 raise AttributeError(
 "assignment to "+name+" fails, "+
 str(value)+" not in picklist")
 elif not self.validators[name](value):
 raise AttributeError(
 "assignment to "+name+" does not validate")
 object.__setattr__(self,name,value)

Managing Customer Relations

[262]

The added lines (highlighted) check whether any validator is a Picklist, and if it is, tries to
retrieve the value associated with the key. If this fails, it checks if the value that is entered is
one of the values allowed. This way, it is valid to update a picklist attribute both with a key as
well as a value. Given a fruit instance of the Fruit class defined earlier, the following lines
are equivalent:

fruit.color = 'Green'
fruit.color = 2

Summary
We learned a lot in this chapter about how to present the end user with forms to manipulate
instances in a way that does not need any hardcoded information.

Specifically, we covered how to display instances, add, and edit them, how to provide
autocomplete functionality to attributes referring to other entities, and how to implement
picklists.

All these items helped us to design and implement the first revision of a CRM application. Of
course, there is more to a CRM application than just Accounts and Contacts and that is what
we will look into in the next chapter.

9
Creating Full-Fledged Webapps:

Implementing Instances

The framework for the rapid development of Python web applications is coming
along nicely, but some distinct features are still lacking.

In this chapter, we take a look at some of them, notably:

 � How to implement more complex relations

 � How to create the necessary user interface components to maintain those relations

 � And how to allow for a more fine-grained control of who is allowed to do what

These are some interesting challenges, so let's get started.

Even more relations
As we have seen, it was not very difficult to make Display capable of handling references
to related entities. These relations, however, are limited to lookup relations (also known as
many-to-one relations). A Contact entity, for example, refers to, at most, a single Account
entity and the Display class allows us to select an Account when we edit a Contact.

But what do we need for the opposite situation? An Account may have many Contacts
and both Account and Contact may have many Addresses. What we need is a way to
make Display show which one-to-many relationships exist for an entity and provide the
means to show those entities when the user clicks on such a relation.

Creating Full-Fledged Webapps: Implementing Instances

[264]

Time for action – showing one-to-many relationships
The illustration shows what we might expect:

We have selected a Contact and its details are available for editing, including a reference
to an Account. Now on the left, however, we have a sidebar showing the available one-
to-many relations, in this case, the only one-to-many relation applicable to a Contact is
Address.

What just happened?
To show a list of entities, we already have a suitable building block, the Browse class that will
not only let us browse a list of entities in various ways, but is also capable of filtering those
entities. In this example, we would want to show just those addresses that are associated
with this specific contact.

We therefore add a new method to the Display class that will produce an HTML fragment
together with some JavaScript to show the list of available one-to-many relations:

Chapter9/display.py

 @staticmethod
 def related_link(re,e):
 return '<li id="%s" class="%s" ref="%s">%s'%(
 e.id,e.__class__.__name__,re.lower(),re)

 def related_entities(self,e):
 r=['<div class="related_entities"><h3>Related</h3>']
 if hasattr(e.__class__,'reltype'):
 r.extend([self.related_link(re,e)
 for re,rt in e.__class__.reltype.items()
 if (rt == '1:N' or rt == 'N:N')])
 r.append('</div>')
 r.append('''
 <script>

Chapter 9

[265]

 $('div.related_entities li').click(function(){
 var rel=$(this).attr("ref");
 var related=$("input[name=related]").val();
 $(".content").load(rel,
 $.param({
 "pattern" : $(this).attr("class") +
 "," + $(this).attr("id"),
 "related": related}),
 function(){shiftforms(rel)});
 });
 </script>''')
 return "\n".join(r)

To determine which relations are available, related_entities() refers to the reltype
class variable (highlighted), which is a dictionary of entity names and their type maintained
by the MetaRelation class when a new relation is defined. For each suitable relation, a
 element is produced with the help of the related_link() method.

These elements have an id attribute that holds the unique ID of the referring entity
(the ID of the contact in this example) and a class attribute that indicates the type of the
referring entity (Contact in this case). The elements also have a rel attribute that
points to the URL that is serviced by a Browse class. For now, we derive this URL from the
name of the entities we are referring to (in this case, address).

The final piece of HTML produced is a <script> element that installs an event handler
on the elements. This click handler will take the ref attribute of its associated
element to construct a URL that is subsequently used to open a new window. We will have
to adapt the index() methods of the Display and Browse classes slightly to pass and
process those attributes around, as we will see in a minute.

In our example, the resulting HTML fragment (minus the script element) would look like this:

<div class="related_entities">
 <h3>Related</h3>

 <li ref="address" class="Contact" id="1">Address

</div>

And the load() call that will replace the contents of the <div> element with the content
class would be passed the following URL, for example: http://127.0.0.1:8080/
address/?_=1295184609212&pattern=Contact,1&related=Contact,1.

Creating Full-Fledged Webapps: Implementing Instances

[266]

Note that we use jQuery's param() function here to convert an object
containing several attributes to a string suitable to add to a URL. We could have
simply passed the object here, but that would result in a POST action even
though we configured all AJAX calls to use the HTTP GET method. Normally, that
wouldn't be a problem, but if the final slash is missing in the URL, CherryPy will
redirect us to the URL with the slash at the end and the AJAX call will be made
again, but this time without the parameters appended! To prevent this possible
awkwardness and to aid in debugging, we force the use of the GET method by
constructing the full URL ourselves with the help of the param() function.

Time for action – adapting MetaRelation
In the Display class, we used the information about the type of relation stored by the
MetaRelation metaclass. This is necessary because in recognizing that there is more than
one type of relation, we need some way to indicate that when we define a new relation and
act upon that information when creating a new class. Look at the following example code:

class A(Entity):
 pass

class B(Entity):
 pass

class AhasmanyB(Relation):
 a=A
 b=B

Here we express the relation between A and B to be one-to-many. If we would like to express
the notion that an instance of A may refer only to a single B instance, we need some way to
indicate that in the definition. One way of doing so is by reversing the assignments in the
class definition of the variable:

class AreferstoasingleB(Relation):
 a=B
 b=A

The MetaRelation metaclass we defined earlier could act on such a definition as we
arranged for the class dictionary of the relation being defined to be an OrderedDict, so in
principle, we can act on the order of the definitions.

A slightly more explicit way of defining this is often clearer, so instead we opt for a relation_
type attribute that can be assigned a string with the type of the relation. For example:

class AhasmanyB(Relation):
 a=A
 b=B

Chapter 9

[267]

 relation_type='1:N'

class AreferstoasingleB(Relation):
 a=A
 b=B
 relation_type='N:1'

If we leave out the relation_type, a one-to-many relation is assumed.

What just happened?
Let's have a look at the changes and additions to MetaRelation needed to implement
those semantics. We need two changes. The first is in the definition of the bridge table we
use to administer the relation. We need an additional unique constraint here to enforce
that in a one-to-many relation, the IDs in the column referring to the many side of the
equation are unique.

This may sound counterintuitive, but let's say we have the following cars: a Volvo, a Renault,
a Ford, and a Nissan. There are also two owners, John and Jill. Jill owns the Volvo and the
Renault, and John the other cars. The tables might look like this:

Car

ID make

1 Volvo

2 Renault

3 Ford

4 Nissan

Owner

ID name

1 Jill

2 John

The table that reflects the ownership of the cars might look like this:

Ownership

Car owner

1 1

2 1

3 2

4 2

Creating Full-Fledged Webapps: Implementing Instances

[268]

We see that while a single owner may have many cars, it is the numbers in the Car column
that are unique because of this relation.

In order to define a table with those additional uniqueness constraints and to make the
information about the type of relation available in the classes that form both halves of a
relation, we have to adapt the final part of the __new__() method in the MetaRelation
metaclass:

Chapter9/entity.py

if relationdefinition or '_meta' in classdict:
 a = classdict['a']
 b = classdict['b']
 r = '1:N'0
 if 'relation_type' in classdict: r = classdict['relation_type']
 if not r in ('N:1','1:N'): raise KeyError("unknown relation_
type %s"%r)
 classdict['relation_type'] = r

 if not issubclass(a,AbstractEntity) : raise TypeError('a not
an AbstractEntity')
 if not issubclass(a,AbstractEntity) : raise TypeError('b not
an AbstractEntity')
 runique = ' ,unique(%s_id)'%a.__name__
 if r == '1:N' : runique = ' ,unique(%s_id)'%b.__name__

 sql = 'create table if not exists %(rel)s (%(a)
s_id references %(a)s on delete cascade, %(b)s_id references
%(b)s on delete cascade, unique(%(a)s_id,%(b)s_id)%(ru)
s)'%{'rel':classname,'a':a.__name__,'b':b.__name__,'ru':runique}

conn = sqlite.connect(classdict['_database'])
 conn.execute(sql)

 setattr(a,'get'+b.__name__,lambda self:getclass(self,b,
classname))
 setattr(a,'get',get)
 setattr(b,'get'+a.__name__,lambda self:getclass(self,a,
classname))
 setattr(b,'get',get)
 setattr(a,'add'+b.__name__,lambda self,entity:addclass(self,
entity,b,classname))
 setattr(a,'add',add)
 setattr(b,'add'+a.__name__,lambda self,entity:addclass(self,
entity,a,classname))
 setattr(b,'add',add)

 reltypes = getattr(a,'reltype',{})
 reltypes[b.__name__]=r

Chapter 9

[269]

 setattr(a,'reltype',reltypes)
 reltypes = getattr(b,'reltype',{})
 reltypes[a.__name__]={'1:N':'N:1','N:N':'N:N','N:1':'1:N'}[r]
 setattr(b,'reltype',reltypes)

 relclasses = getattr(a,'relclass',{})
 relclasses[b.__name__]=b
 setattr(a,'relclass',relclasses)
 relclasses = getattr(b,'relclass',{})
 relclasses[a.__name__]=a
 setattr(b,'relclass',relclasses)

 joins = getattr(a,'joins',{})
 joins[b.__name__]=classname
 setattr(a,'joins',joins)
 joins = getattr(b,'joins',{})
 joins[a.__name__]=classname
 setattr(b,'joins',joins)

 return type.__new__(metaclass,classname,baseclasses,classdict)

The highlighted lines are the ones we added. The first set makes sure there is a relation_
type attribute defined and if not, creates one with a default '1:N' value.

The second set of highlighted lines determines which column in the bridge table should
receive an additional unique constraint and constructs the SQL query to create the table.

The final block of highlighted lines adds class attributes to both classes in the relation. All
those attributes are dictionaries indexed by the name of an entity. The reltype attribute
holds the type of the relation, so in a Car entity, we might obtain the type of relation with an
Owner like this:

Car.reltype('Owner')

Which, if defined as in our previous example, will yield 'N:1' (one or more cars may have a
single owner).

Likewise, we can get information about the same relation from the perspective of the owner:

Owner.reltype('Car')

Which will yield the inverse, '1:N' (an owner may have more than one car).

Creating Full-Fledged Webapps: Implementing Instances

[270]

Time for action – enhancing Display
What do we have to change to add the functionality to the Display class to pop up a list of
items when the user clicks on a related tag?

 � Because all activities of the Display class are served by its index() method, we
will have to apply some changes there.

 � The index() method both displays forms and processes the results when the
submit button is pressed, so we have to look at both the aspects of the edit and add
functionality.

 � When an edit form is shown, this will always be initiated from double-clicking in
a list of items shown by a Browse instance and will therefore be passed a related
argument. This argument must be passed along with the contents of the form when
the submit button is clicked in order to associate it with the item that initiated this
edit action.

These issues require that we apply a few changes to the index() method.

What just happened?
The first thing we have to do is add a related parameter to the index() method. This
parameter may hold the name of the entity and the ID of the specific related instance
separated by a comma:

Chapter9/display.py

@cherrypy.expose
 def index(self,id=None,_=None,add=None,edit=None,related=None,**
kw):

When processing the information passed to the index() method of the Display class,
the portion dealing with the results of an add action has to act on the information in the
related parameter:

Chapter9/display.py

if not related is None and related != '':
 r=related.split(',')
 re=e.relclass[r[0]](id=int(r[1]))
 e.add(re)

If the method was called as the result of clicking the add button in a list of items, the
related parameter will be non empty and we split it on the comma to retrieve the name of
the entity and its ID.

Chapter 9

[271]

The name of the entity is used to retrieve its class that was added to the relclass
dictionary when the relation was defined and this class' constructor is called with the ID
of the instance to create an object (highlighted). The relation between the item we are
currently editing and the related item is subsequently established by the add() method.

Likewise, the portion responsible for delivering the add or edit form in the first place must
include a hidden <input> element that holds the contents of the related parameter passed
to it when the user clicked the add button in a page delivered by a Browse instance:

Chapter9/display.py

 submitbutton='<input type="hidden" name="related"
value="%s"><input type="submit" name="add" value="Add">'%related

Time for action – enhancing Browse
All this passing around of the related parameter originates with the user clicking an 'add'
button in a list of entities that, in its turn, was shown in response to clicking a related tag
when editing or viewing an item.

Those lists of entities are generated by the index() method of the Browse class, so we
have to make sure that suitable information (that is, the name of the entity that is listed
together with the ID of the instance) is passed on.

This means we have to:

 � Enhance the index() method to receive a related parameter that can be passed on
when the 'add' button is clicked.

 � Extend the code that generated the form associated with this add button with a
hidden <input> element to hold this information, so that it may be passed on again
to the index() method of the Display class.

If it sounds a little confusing how Display and Browse are connected, it may help to
envision the following scenario:

 � The user starts looking at a list of owners from the main menu and double-clicks
a certain owner. This will result in an 'edit' form delivered by the Display class.
Because double-clicking on an item will not pass a related argument, this argument
in the index() method of Display will receive its default value of None.

 � The edit form shows the details of the owner in the sidebar labeled ‘Related’, we
see a ‘Cars’entry.

 � When the user clicks this Cars entry to show the list of cars related to this owner,
this will result in the index() method of a Browse instance for the Car entity to be
called with both a related and a pattern argument of Owner,5, for example.

Creating Full-Fledged Webapps: Implementing Instances

[272]

 � This will result in a list of cars of the indicated owner and when the 'add' button
in this list is clicked, it is again the index() method of the Display class that is
called, but this time, a Display instance associated with the Car entity. It will be
passed the related argument of Owner,5.

 � Finally, when the user has entered the new car details and clicks 'add', the same
index() method of the Display class is called, again with a related argument
of Owner,5 but also with an add argument. The car details will be used to create a
new Car instance and the related argument to identify the Owner instance and
associate the new car instance with.

The following series of screenshots illustrates what is happening. We start with a list of
owners:

When we double-click on Knut Larsson, the following URL is sent to the server:
http://127.0.0.1:8080/owner/edit/?id=5&_=1295438048592 (the id=5 indicates
the instance, the number at the end is what jQuery adds to an AJAX call to prevent caching
by the web browser).

The result will be an edit form for Knut:

A click on Car will result in the following URL being sent to the server:
http://127.0.0.1:8080/car/?_=1295438364192&pattern=Owner,5&related=Ow
ner,5.

Chapter 9

[273]

We recognize the related and pattern arguments of Owner,5 (that is, referring to Knut).
Note that the commas in the arguments appended to this URL would be sent to the server
encoded as %2C.

Why do we send both a related argument and a pattern argument
containing the same information? For adding an entity to another entity, this is
indeed redundant but if we would like to add the ability to transfer ownership as
well as add a new entity, we would like to filter those cars that belong to some
other owner and therefore we need to separately provide the pattern and
related arguments.

If this is the first time we will be adding a car to Knut, the list of related cars will be empty:

If we now click on the Add new button, the following URL is constructed:

http://127.0.0.1:8080/car/add/?_=1295438711800&related=Owner,5, which
will result in an add form for a new car:

Creating Full-Fledged Webapps: Implementing Instances

[274]

After filling in the details, clicking on the Add button will result in a new car instance that
will be associated with Knut even if we leave the Owner field empty because of the related
argument passed yet again in the URL:

http://127.0.0.1:8080/car/add/?_=1295439571424&make=Volvo&model=C30&c
olor=Green&license=124-abc&Owner=&related=Owner,5&add=Add.

What just happened?
To allow a Browse instance to receive and pass on a related attribute in the same manner
as a Display instance, we need to make a few small changes. First, we have to alter the
signature of the index() method:

Chapter9/browse.py

@cherrypy.expose
 def index(self, _=None, start=0, pattern=None, sortorder=None,
cacheid=None, next=None,previous=None, first=None, last=None,
clear=None, related=None):

All that is left then is to make sure that clicking the Add new button will pass on this value by
including a hidden <input> element to the form:

Chapter9/browse.py

yield '<form method="GET" action="add">'
 yield '<input name="related" type="hidden"
value="%s">'%related
 yield '<button type="submit">Add new</button>'
 yield '</form>'

Access control
In the applications we designed so far, we took a very simple approach to access control.
Based on someone's login credentials we either allowed access or not. We slightly expanded
this notion in the books applications where deleting a book meant that the association
between a book and an owner was deleted rather that removing the book instance from the
database altogether.

Chapter 9

[275]

In many situations, a finer control of privileges is required, but if this control is hardcoded
into the application maintaining it will rapidly become unwieldy. We therefore need
something that will allow us to manage access privileges in a simple way and in a manner
that allows easy expansion.

Consider the following scenario: In a company using our CRM application, different accounts
are owned by different sales persons. It's a small firm so everybody is allowed to see all the
information on all the accounts but changing information for an account is restricted to the
sales person that owns that account. Of course the sales manager, their boss, is allowed to
change this information also, regardless of whether he owns an account or not.

We could implement such a strategy by letting the update() method of an Entity check
whether this entity has an account and owned by the person doing the update and if not,
whether the person is the sales manager.

Time for action – implementing access control
This scenario is implemented in access1.py:

Note: In the code distributed with this chapter and the following one, the
logon class is not only initialized with an admin user (with admin as a
password) but with the following three name/password combinations: eve/
eve, john/john, and mike/mike.

If your run this application and point your browser to http://localhost:8080, you are
presented with a list of accounts. If you have logged in as either john or mike—both sales
persons—you can only alter the accounts owned by each of them. If however, you log in as
eve, the sales manager, you can alter the information in all accounts.

What just happened?
The application is simple enough and follows a familiar pattern. The relevant definitions are
shown here:

Chapter9/access1.py

from permissions1 import isallowed

class Entity(AbstractEntity):
 database = db

 def update(self,**kw):
 if isallowed('update', self, logon.checkauth(),
 self.getUser()):
 super().update(**kw)

Creating Full-Fledged Webapps: Implementing Instances

[276]

class Relation(AbstractRelation):
 database = db

class User(Entity):
 name = Attribute(notnull=True, unique=True,
 displayname="Name", primary=True)

class Account(Entity):
 name = Attribute(notnull=True, displayname="Name",
 primary=True)

class OwnerShip(Relation):
 a = User
 b = Account

class AccountBrowser(Browse):
 edit = Display(Account, edit=True, logon=logon,
 columns=Account.columns+[User])
 add = Display(Account, add=True, logon=logon,
 columns=Account.columns+[User])

class UserBrowser(Browse):
 edit = Display(User, edit=True, logon=logon)
 add = Display(User, add=True, logon=logon)

The database distributed with the code (access1.db) contains a number of accounts
already so the code does not contain any lines to create those. The important part is
highlighted in the preceding code: it imports a permissions1 module that contains
a dictionary of permissions. This dictionary lists for each combination of entity, action,
ownership, and username whether this is permissible or not.

We can now override the update() method in the AbstractEntity class (highlighted):
We retrieve the username from the current sessions by calling the checkauth() method
and pass it along to the isallowed() function, together with the name of the action we
want to check (update in this case), the entity, and a list of users (the owners). If this checks
out okay, we call the original update() method.

If we take a look at permissions1.py, we see that because, in this example, we only
consider the Account entity and the update action in this list is quite small:

Chapter9/permissions1.py

import entity1

allowed = {
 'Account' : {
 'create' : {
 'admin' : 'all',
 'eve' : 'all',

Chapter 9

[277]

 'john' : 'owner',
 'mike' : 'owner'
 },
 'update' : {
 'admin' : 'all',
 'eve' : 'all',
 'john' : 'owner',
 'mike' : 'owner'
 },
 'delete' : {
 'admin' : 'all',
 'eve' : 'all',
 }
 }
}

def isallowed(action,entity,user,owner):
 if len(owner) < 1 : return True
 try:
 privileges = allowed[entity.__class__.__name__][action]
 if not user in privileges :
 return False
 elif privileges[user] == 'all':
 return True
 elif privileges[user] == 'owner' and user == owner[0].name:
 return True
 else:
 return False
 except KeyError:
 return True

The dictionary with privileges itself is called allowed (highlighted) and permissions1.py
also defines a function called isallowed(), that will return True if there aren't any owners
for this entity. Then it checks if there are any privileges known for this entity and action. If
this is not the case, any exception will be raised because either the key for the entity or the
key for the action does not exist.

If there are privileges known, we check if the user has specific privileges. If there is no key
for the user, we return False. If there is, and the privilege is all, we return True: he/she
may perform the action on this entity even for an entity instance he/she doesn't own. If the
privilege is the owner, we only return True if the user is in fact the owner.

Creating Full-Fledged Webapps: Implementing Instances

[278]

The aforementioned approach outlined is cumbersome for various reasons:

 � If we would like to add a new salesperson, for example, we would have to add
permission entries for each entity/action combination. In the example, we only
considered the Account entity and the update action, but in a somewhat more
realistic application, there would be tens of entities (like Contact, Address,
Quote, Lead, and so on) and quite a few actions more to consider (for example,
delete and create, but also actions that involve other entities like changing
ownership or adding an address to an account). Also, if that sales person was
promoted to sales manager, we would have to repeat the whole exercise again.

 � If we added a new type of entity, we would have to add lines for each and every
person in the company.

 � Administering permissions in a Python module is not something you normally would
expect a non-technical person to do as it is cumbersome, error prone, and requires
the application to be restarted if something changes.

The last reason is why we will implement the list of permissions in the database. After all,
we already have a framework that allows for easy manipulation of database entries with
a web interface. The other reasons are why we will reconsider our first approach and will
implement a scheme called role-based access control.

Role-based access control
The idea in role-based access control is to assign one or more roles to people instead of
specific permissions.

Permissions are then associated with a role, and if a person has more than one role, the
permissions are merged. If a new person needs a set of permissions to use an application,
or if a person's role in the organization changes, only the list of roles associated with that
person needs to be changed instead of having to change the permissions for this person for
each type of entity in the application.

Likewise, if we would extend the available types of entities, we would only have to define
what permissions associated with a role (or roles) would apply to this new entity instead of
defining this for every person.

A good starter for reading more about this is this Wikipedia article: http://en.wikipedia.
org/wiki/Role-based_access_control.

Chapter 9

[279]

The aforementioned concepts described can be captured in this data model:

In our simplified model, a user can have one role, but a role can have one or more
permissions. A permission consists of several attributes, an entity, action, and level, that
together describe under which conditions something is allowed.

Time for action – implementing role-based access control
Run the example application provided in access2.py and log in as admin. You will see that
besides Users and Accounts, you are presented with links to Roles and Permissions as well.
If you click on Roles, you will see we have defined several roles:

As you can see in the screenshot, we have also defined a Superuser role to illustrate that it is
possible to extend the concept of role-based access control to the maintenance of roles and
permissions themselves.

Creating Full-Fledged Webapps: Implementing Instances

[280]

What just happened?
Applications that use this form of access control have to be adapted only slightly. Take a look
at access2.py:

Chapter9/access2.py

import os
import cherrypy

from rbacentity import AbstractEntity, Attribute, Picklist,
AbstractRelation

from browse import Browse
from display import Display

from logondb import LogonDB

db="/tmp/access2.db"

Compared to our previous example, only the first part is different, in that it includes the
rbacentity instead of the entity module. This module provides the same functionality
as the entity module, but the AbstractEntity class defined in this module has some
added magic to provide access to roles and permissions. We will not inspect that in detail
here, but will comment on it when we encounter it in the following code.

The next part is the definition of the Entity class. We could have opted for redefining the
AbstractEntity class, but here we have chosen to add the functionality to the Entity
subclass by adding and overriding methods where necessary:

Chapter9/access2.py

class Entity(AbstractEntity):
 database = db

 userentity = None
 logon = None

 @classmethod
 def setUserEntity(cls,entity):
 cls.userentity = entity

 @classmethod
 def getUserEntity(cls):
 return cls.userentity

 @classmethod
 def setLogon(cls,logon):
 cls.logon = logon

 @classmethod
 def getAuthenticatedUsername(cls):

Chapter 9

[281]

 if cls.logon :
 return cls.logon.checkauth()
 return None

 def isallowed(self,operation):
 user = self.getUserEntity().list(
 pattern=[('name',self.getAuthenticatedUsername())])[0]
 entity = self.__class__.__name__
 if user.name == 'admin' :
 return True
 roles = user.getRole()
 if len(roles):
 role = roles[0]
 permissions = role.getPermission()
 for p in permissions :
 if p.entity == entity:
 if p.operation=='*' or p.operation==operation:
 if p.level == 0 :
 return True
 elif p.level == 1:
 for owner in self.getUser():
 if user.id == owner.id :
 return True
 return False

 def update(self,**kw):
 if self.isallowed('update'):
 super().update(**kw)

Instead of just defining a database class variable, we now also define a userentity class
variable to hold a reference to the class of the entity that represents a user and a logon
class variable to hold a reference to a logon instance that can provide us with the name of an
authenticated user.

This distinction is identical to examples in the previous chapters: we have a User entity in
our main database where we may store all sorts of information related to the user (like full
name, telephone number, gender, and so on) and a separate password database that holds
just usernames and encrypted passwords. If the user is correctly authenticated against the
password database, we know his/her username, which we can then use to retrieve the
corresponding User instance with all the extra associated information. The class methods
provide the means to get access to these class variables.

Creating Full-Fledged Webapps: Implementing Instances

[282]

In this example, we only override the update() method (highlighted) but in a full
implementation you might want to override other Entity methods as well. The pattern is
simple: we call the isallowed() method with an argument that indicates which action we
would like to check and if isallowed() returns True, we call the original method.

The first thing the isallowed() method itself does, is retrieve the username of the
authenticated user with the getAuthenticatedUsername() class method. It then uses
this name to find a User instance. Even though we might want to implement a role-based
access scheme in our application to allow for the administration of roles and permissions
by various users, we still provide a shortcut for the administrator here as a convenience
(highlighted). This way we do not have to prime the database with roles and permissions for
the admin user. For a real world application, you may choose differently of course.

Next we check if there are any roles associated with the user, and if this is the case, we
retrieve all permissions associated with the first role (in this example, users have just one
role). We then loop over all those permissions to check if there is one that applies to the
entity we are interested in. If so, we check the operation field. If this field contains an
asterisk (*) or is equal to the operation we are checking, we look at the level. If this level
is zero, this means that the current user may perform this operation on this entity even if he/
she is not the owner. If the level is one, he/she is only allowed to perform the operation if
he/she owns the entity, so we check whether the user is in the list of users associated with
the current entity.

Retrieving roles and permissions each time an operation is performed might
incur a serious performance hit. It might be a good idea to cache some of this
information. You have to be careful though and invalidate that cache as soon as
the set of permissions for a user changes.

The next part of access2.py, as shown, illustrates how we may use this augmented version
of the Entity class:

Chapter9/access2.py

class Relation(AbstractRelation):
 database = db

class User(Entity):
 name = Attribute(notnull=True, unique=True, displayname="Name",
primary=True)

class Account(Entity):
 name = Attribute(notnull=True, displayname="Name", primary=True)

class OwnerShip(Relation):
 a = User
 b = Account

Chapter 9

[283]

class UserRoles(Relation):
 a = User
 b = User._rbac().getRole()
 relation_type = "N:1"

logon = LogonDB()

Entity.setUserEntity(User)
Entity.setLogon(logon)

As before, we define User and Account entities, and an ownership relation between them.
The rbacentity module will have provided for Role and Permission classes and we
can gain access to those with the _rbac() class method available to all AbstractEntity
derived classes. The object returned by this _rbac() method provides a getRole()
method that returns the class of the Role entity. We use it here to create a relation between
users and their roles (highlighted). The final lines associate the password database and the
User class with our new Entity class.

To provide access to the lists of roles and permissions, we can use the same _rbac()
method to provide the Role and Permission classes needed to create Browse classes:

Chapter9/access2.py

class RoleBrowser(Browse):
 edit = Display(User._rbac().getRole(), edit=True, logon=logon)
 add = Display(User._rbac().getRole(), add=True, logon=logon)

class PermissionBrowser(Browse):
 edit = Display(User._rbac().getPermission(), edit=True,
 logon=logon, columns=User._rbac().getPermission().columns +
[User._rbac().getRole()])
 add = Display(User._rbac().getPermission(), add=True,
logon=logon, columns=User._rbac().getPermission().columns + [User._
rbac().getRole()])

Summary
In this chapter, we filled in some gaps in our framework, Specifically, we learned how
to implement more complex relations, for example, one-to-many and many-to-one
relationships, how to create the necessary user interface components to maintain those
relations, and how to implement role-based access control.

We're not quite there yet, because we are missing facilities to let end-users customize the
datamodel, which is the subject of the next chapter.

10
Customizing the CRM Application

In this final chapter, we will add functionality to our framework to allow for
some finishing touches.

Specifically, we will see:

 � What is needed to enhance the user interface to use the sort and filter capabilities
in the framework

 � How we can provide the end user with the means to customize an application
without the need to program

 � How to use these customizations to enhance the display of items and list of items

 � How to enhance the stored information with information from external sources such
as Google Maps

Time for action – sorting
When we implemented the Browse class in Chapter 8, Managing Customer Relations,
together with the underlying functionality in the listids() method of the
AbstractEntity class, we already took care of sorting and filtering.

Customizing the CRM Application

[286]

We did not yet allow for any user interaction to make it actually possible to sort the list
of entities shown. What was missing was the JavaScript code and some CSS to make this
happen. Take a look at the following screenshot and notice the small arrow icons next to
some headers on top of the list of accounts:

You can try the sort options for yourself when you run crm2.py.

Clicking once on a column marked with the small double arrows will sort the list on that
specific column in ascending order. The header will change its background color to indicate
that the list is now sorted and the small icon will change into a single up arrow.

Clicking it again will sort the list in descending order and this will be indicated by a small icon
of a downward pointing arrow. A final click will render the list of items unsorted, as clicking
the reset button will (not shown).

What just happened?
This sorting behavior is implemented by a few small parts:

 � jQuery click handlers associated with the table headers

 � Some CSS to style those headers with suitable icons

 � Minor changes to the Python code that produces the table to make it simpler to
track the sorting state in the browser.

First, let's see what has to be added to the JavaScript (the complete file is available as
browse.js):

Chapter10/browse.js

$(".notsorted").live('click',function(){
 $("input[name=sortorder]").remove();
 $(".content form").first()
 .append('<input type="hidden" name="sortorder" value="'
 +$("div.colname",this).text()+',asc">');
 $("button[name=first]").click();
}).live('mouseenter mouseleave',function(){
 $(this).toggleClass("ui-state-highlight");

Chapter 10

[287]

});
$(".sorted-asc").live('click',function(){
 //alert('sorted-asc '+$(this).text())
 $("input[name=sortorder]").remove();
 $(".content form").first()
 .append('<input type="hidden" name="sortorder" value="'
 +$("div.colname",this).text()+',desc">');
 $("button[name=first]").click();
}).live('mouseenter mouseleave',function(){
 $(this).toggleClass("ui-state-highlight");
});
$(".sorted-desc").live('click',function(){
 //alert('sorted-desc '+$(this).text())
 $("button[name=clear]").click();
}).live('mouseenter mouseleave',function(){
 $(this).toggleClass("ui-state-highlight");
});

Installing the click handlers is straightforward in itself, but what they have to accomplish is a
little complicated.

The click handler must first determine which column will be used as the sort key. The
element that is clicked on is available to the handler as this and this will give us access to a
<div> element within the header that contains the column's name. This <div> element is
not shown because its display attribute will be set to none. It is added because we need
access to the column's canonical name. The <th> element itself contains just the display
name of the column, which may be different from its canonical name.

This sort key will have to be passed to the application server and to this end we will use the
machinery already in place: if we trigger submission of the form with the navigation buttons
and make sure the proper sort parameters are passed along, we're almost there. How can
this be accomplished?

jQuery provides convenient methods to insert new HTML elements into the existing markup
(highlighted). From the name of the column, we construct a suitable value by appending
either asc or desc to it, separated by a comma and use this as the value of a new hidden
input element with a name of sortorder and insert this into the first <form> element
with the append() method. The first form in the page is the form element containing the
navigation buttons.

Because these same types of hidden <input> elements are used to maintain state when
the user pages through the list of items, we first remove any <input> elements with a name
attribute equal to sortorder to make sure these elements reflect the newly selected sort
order and not any old one. The removal is accomplished by the aptly named remove()
method.

Customizing the CRM Application

[288]

The final step is to submit the form. We could trigger the submit event itself but because we
have several buttons with a type attribute equal to submit, we have to be more specific.

It is not possible to trigger a submit event on a button, only on a form, but it is possible to
trigger the click event on a button, thus mimicking the user interaction. Once the click
event is triggered on the button with the name attribute of first, the form is submitted
together with all its <input> elements, even hidden ones, including the new or replaced
ones that indicate the sort order.

The handler for a <th> element that is already sorted in ascending order and marked by
a sorted-asc class is almost identical. The only change we make is that the value of the
hidden <input> element with name=sortorder is the column name with a ,desc suffix
instead of an ,asc suffix.

Clicking on the <th> element when it is already sorted in descending order will cycle back
to showing the unsorted state, so this click handler is even simpler as it just triggers the click
handler of the clear button, which will result in an unsorted list.

The changes in the index() method in the Browse class are as follows (full code available
as browse.py):

Chapter10/browse.py

yield '<thead><tr>'
 for col in self.columns:
 if type(col) == str :
 sortclass="notsorted"
 iconclass="ui-icon ui-icon-triangle-2-n-s"
 for s in sortorder:
 if s[0]==col :
 sortclass='sorted-'+s[1]
 iconclass=' ui-icon ui-icon-
triangle-1-%s'%({'asc':'n','desc':'s'}[s[1]])
 break
 yield '<th class="%s"><div class="colname"
style="display:none">%s</div>'%(sortclass,col)+self.entity.
displaynames[col]+'</th>'%iconclass
 else :
 yield '<th>'+col.__name__+'</th>'
 yield '</tr></thead>\n<tbody>\n'

The Python code in our application barely has to change to accommodate this way of
interaction. We merely adorn the <th> element of a column with a class that indicates the
state of sorting.

Chapter 10

[289]

It's either notsorted, sorted-asc, or sorted-desc. We also insert a <div> element
to hold the true name of the column and an empty element flagged with suitable
jQuery UI icon classes to hold the icons that signal the sorting state (highlighted).

The sortorder list holds a number of tuples, each with the name of the column to sort
as the first element and either asc or desc as the second element. This second element is
used as the index into a dictionary that maps asc to n and desc to s, resulting in choosing
either a ui-icon-triangle-1-n or a ui-icon-triangle-1-s class. Appending these
classes together with a ui-icon class is all we need to let the jQuery UI stylesheets render
our element with a meaningful icon.

Many arrow-like icons, available in jQuery UI, follow a naming pattern similar to
those for the small triangles here. The final part indicates a compass direction (here
n for north, or upward) and the number indicates how many arrowheads are
depicted in the icon (here just one, but there are many double-headed variants).

The resulting HTML for a column named time that is currently sorted in ascending order,
would look something like this:

<th class="sorted-asc">
<div class="colname" style="display:none">time</div>
Time

</th>

Besides the icon, we add some additional styles to base.css to make the headers more
visible:

Chapter10/base.css

th.notsorted { padding-right:1px; border:solid 1px #f0f0f0; }
th.sorted-asc { padding-right:1px; border:solid 1px #f0f0f0;
background-color: #fff0f0; }
th.sorted-desc { padding-right:1px; border:solid 1px #f0f0f0;
background-color: #fffff0; }
th span { float:right; }

The table headers themselves are merely styled with a light gray color, but floating the
 element that will hold the icon to the right is important, otherwise it would move
below the text in the column header instead of the side.

Customizing the CRM Application

[290]

Time for action – filtering
Almost the same approach we used for sorting can be used for filtering as well, only this time
it is not a single click on a column header that does the trick, but we must provide the user
with a way to enter the filter values. Take a look at the following screenshot or filter the data
yourself by running crm2.py again:

If you insert values in any of the input fields below the columns in the table and click on the
filter button (the one with the magnifying glass icon), the list of items to show is reduced to
those items that match the filter values. Note that sorting and filtering may be combined and
that clicking the clear button will remove both sorting and filtering settings.

What just happened?
Let's have a look at the JavaScript code:

Chapter10/browse.js

 $("button[name=search]").button({
 icons: {
 primary: "ui-icon-search"
 },
 text: false
 }).click(function(){
 $("input[name=pattern]",
 $(".content form").first()).remove();
 $("input[name=pattern]").each(function(i,e){
 var val=$(e).val();
 var col=$(e).next().text();
 $(".content form").first()
 .append(
 '<input type="hidden" name="pattern" value="'
 +col+','+val+'">');
 });

Chapter 10

[291]

 $("button[name=first]").click();
 });

Most of the work is done in the click handler of the search button. When the search button
is clicked, we have to construct hidden <input> elements in the first form with a name
attribute equal to pattern because it is those hidden filter inputs that will be passed to the
server as arguments to the action URL when we trigger a submit of the form.

Note the second argument to the jQuery function ($) that selects an <input> element
(highlighted). Both the visible <input> elements provided for the user to enter pattern
values and the hidden ones in the form containing the navigation buttons have the same
name attribute (pattern). We do not want to remove the visible ones as they contain the
pattern values we are interested in. Therefore, we restrict the selection to the context of the
first form, which is passed as the second argument.

After this, we are left with just the visible <input> elements which we iterate over with the
.each() method. We collect both, the value of the <input> element and the content of
its next sibling, which will be a (hidden) element containing the true name of the
column to filter. Together, these are used to construct a new hidden <input> element that
is appended to the form that will be submitted.

After the elements are inserted, we submit this form by triggering the click handler of the
submit button with the name attribute equal to first.

Chapter10/browse.py

 yield '<tfoot><tr>'
 for col in self.columns:
 if type(col)==str:
 filtervalue=dict(pattern).get(col,'')
 yield '''<td><input name="pattern"
 value="%s"><span
 style="display:none">%s
 </td>'''%(filtervalue,col)
 yield '</tr></tfoot>\n'

The only changes needed in the Python part of our web application are the insertion of
suitable <input> elements that are initialized with the current pattern values to give a
visible feedback to the user. The resulting HTML for a column that is currently filtered on the
value ABC might look like this:

<td>
<input name="pattern" value="ABC">
name
</td>

Customizing the CRM Application

[292]

Customization
No matter how well designed and elaborate your application is, there is always more
functionality that the user wants from it. Of course, with a proper framework in place and
your code well documented, changes should not be a big problem, but on the other hand,
you wouldn't want to restart an application just because some minor customizations are
needed.

Many requests regarding an application will be concerned with the usability of the user
interface, for example, different behavior of widgets or some additional features with regard
to the information shown, like spell-checking entered text, finding stock market information
related to a company shown, or the current exchange rate of a value on screen in a different
currency. Quite a few companies including Microsoft, Yahoo!, and Google offer all sorts of
free API's that may be used to enhance the display of values.

Time for action – customizing entity displays
Say we want to offer the end user the possibility to locate an address on Google Maps by
simply clicking a button next to an address. Run crmcustomize.py and add a new address
or edit an existing address. The edit/add screen will look similar to this:

When you click on the Map button, a new window will open, showing a map of that address
as long as Google Maps was able to find it.

This functionality was added by the end user without the need to restart the server. Notice
that in the opening screen, we have a new menu, Customize. If that menu is selected, we get
a familiar looking interface showing a list of customizations added for different entities. If we
double-click the one for Address with the Google Maps description, we get an edit screen,
as shown in the following illustration:

Chapter 10

[293]

A quick glance will show that the customization itself is simply HTML mixed with some
JavaScript that is added to the markup produced by the application each time we open an
edit or add screen for an Address entity.

It might not always be a good idea to allow any end user to customize an
application. You might want to restrict some or all of the customization options
to a subset of end users. Role-based access control is then again a suitable way
to administer privileges.

What just happened?
Let's first have a look at the customization itself to get a feel of what can be accomplished.
The code consists of a few lines of HTML and an embedded piece of JavaScript:

Chapter10/customization.html

<button id="showmap">Map</button>
<script>
$("#showmap").click(function(){
 var url = "http://maps.google.com/maps?f=q&q="
 url +=$("input[name=address]").val()+',';
 url +=$("input[name=city]").val()+',';
 url +=$("input[name=country]").val();
 window.open(url);
});
</script>

Customizing the CRM Application

[294]

Because our application itself relies on jQuery, any customization code may use this library
as well, so after we have defined a suitable button, we add a click handler to this button
(highlighted) that constructs a Google Maps URL from the values of several <input>
elements that will be present on the edit or add page of an Address, notably address,
city, and country. This URL is then passed the window.open() method to open a new
screen or tab with the results of this query.

Even better results may be obtained when the Google Maps API is
used—see http://code.google.com/intl/nl/apis/maps/
documentation/javascript.

What do we need to change in our framework to allow for this simple end user customization?

We need several related components to make this work:

 � The Display class needs to be adapted to produce the custom code suitable for the
instance that is shown.

 � We need some way of storing the customization in the database together with the
rest of the application.

 � We need to allow a way to edit these customizations.

Let's look at these requirements in detail. The most important part is a way to store
this information. Like we did for role-based access control, we can actually use our
framework again; this time by defining a custom class. This custom class will create a
DisplayCustomization class and provide access to it for all entities derived from the
AbstractEntity class. The changes needed in the entity module are modest (the full code
is available in rbacentity.py):

Chapter10/rbacentity.py

class custom:

 def __init__(self,db):
 class CustomEntity(AbstractEntity):
 database=db

 class DisplayCustomization(CustomEntity):
 entity = Attribute(notnull= True,
 displayname = "Entity")
 description = Attribute(displayname = "Description")
 customhtml = Attribute(displayname = "Custom HTML",
 htmlescape=True, displayclass="mb-textarea")

 self.DisplayCustomization = DisplayCustomization

 def getDisplayCustomization(self):
 return self.DisplayCustomization

Chapter 10

[295]

 def getDisplayCustomHTML(self,entity):
 return "".join(dc.customhtml for dc in self.
DisplayCustomization.list(pattern=[('entity',entity)]))

Now that we have access to this storage for customization, any application can use it, but it
also has to provide a way to let the application user edit these customizations. This entails
defining a Browse class and adding a link to provide access to it. This is how it was done
in the crmcustomize application, shown in the example (relevant changes only, full code
available in crmcustomize.py):

Chapter10/crmcustomize.py

...
displaycustom = User._custom().getDisplayCustomization()

class DisplayCustomizationBrowser(Browse):
 edit = Display(displaycustom, edit=True, logon=logon)
 add = Display(displaycustom, add=True, logon=logon)

...
class Root():
 logon = logon
 user = UserBrowser(User)
 account = AccountBrowser(Account,
 columns=Account.columns+[User,Address,Contact])
 contact = ContactBrowser(Contact,
 columns=Contact.columns+[Address,Account])
 address = AddressBrowser(Address)
 displaycustomization = DisplayCustomizationBrowser(displaycustom,
 columns=['entity','description'])

 @cherrypy.expose
 def index(self):
 return Root.logon.index(returnpage='../entities')

 @cherrypy.expose
 def entities(self):
 username = self.logon.checkauth()
 if username is None : raise HTTPRedirect('.')
 user=User.list(pattern=[('name',username)])
 if len(user) < 1 : User(name=username)
 return basepage%'''<div class="navigation">
 Users
 Customize
 Accounts
 Contacts
 Addresses
 </div><div class="content">

Customizing the CRM Application

[296]

 </div>
 <script src="/browse.js" type="text/javascript"></script>
 '''

The final step is to enhance the display module with the means to retrieve and deliver these
customizations. This is done by adding a few lines to the end of the index() method, as
shown:

Chapter10/display.py

yield self.entity._custom().getDisplayCustomHTML('*')
yield self.entity._custom().getDisplayCustomHTML(self.entity.__name__)

Retrieving is straightforward enough and we actually retrieve two bits of customization: one
for the specific entity we are showing and one for the customization code that is relevant
for all entities. The user can add such customization with a special entity name of * (a single
asterisk character). By putting the general customizations first in the markup we deliver, it is
possible to override anything that is provided for the general case with customizations for
the specific entities.

There is a bit of trickery needed elsewhere in the code of the Display class, however.
Because the customization code may consist of HTML, including <script> elements
containing JavaScript and <style> elements containing CSS, we might run into trouble
when we display the forms to edit the customization code as these forms are HTML
themselves. We, therefore, need some way to escape this code to prevent the content of the
input box from being interpreted as HTML.

This is accomplished in the following way (the relevant changes to the Attribute class
are shown):

Chapter10/rbacentity.py

class Attribute:
 def __init__(self,
 unique =False,
 notnull =False,
 default =None,
 affinity =None,
 validate =None,
 displayname =None,
 primary =False,
 displayclass =None,
 htmlescape =False):

 self.unique =unique
 self.notnull =notnull
 self.default =default

Chapter 10

[297]

 self.affinity=affinity

 self.coldef = (
 affinity+' ' if not affinity is None else '')
 + ('unique ' if unique else '')
 + ('not null ' if notnull else '')
 + ('default %s '%default if not default is None else '')
 self.validate = validate?
 self.displayname = displayname
 self.primary = primary
 self.displayclass = displayclass
 self.htmlescape = htmlescape

The Attribute class provided in the entity module is extended to take an extra
htmlescape parameter. If we set this to True, we indicate that the contents of this
attribute should be escaped prior to showing it in a page.

The MetaEntity class will have to be extended as well to act upon these new features in
the Attribute class:

Chapter10/rbacentity.py

classdict['htmlescape']={ k:v.htmlescape
 for k,v in classdict.items() if type(v) == Attribute}

The MetaEntity class is changed to store any htmlescape attributes in the htmlescape
class attribute, a dictionary indexed by the attribute name.

At this point, we can create new entities with attributes marked for escape, but the Display
class itself has to act on this information. We therefore add the following lines to the
index() method of the Display class:

Chapter10/display.py

 val=getattr(e,c)
 if self.entity.htmlescape[c] :
 val=escape(val,{'"':'"','\n':'
'})
 line='''<input type="text" name="%s"
 value="%s"
 class="%s">'''%(c,val,displayclass)

In the index() method of the Display class, before constructing an <input> element
we can now check this htmlescape dictionary to see if we should escape the value of the
attribute, and if so, use the escape() function provided in Python's xml.sax.saxutils
module to convert any characters that might interfere.

Customizing the CRM Application

[298]

A note of caution:

Allowing people to customize an application with HTML and JavaScript carries an
inherent risk. When we developed a wiki application, we restricted the allowed input
on pages by scrubbing the input of unwanted HTML. If you are serious about security
(and you should be!), you have to think about what you will allow for customizations
as well, especially to prevent cross-site scripting (XSS). Check, for example,
http://www.owasp.org/ for more on this and other security subjects.

Time for action – customizing entity lists
Of course, if we offer the user the opportunity to customize the display of individual entities,
it makes sense to offer the same functionality for lists of entities. If you run crm4.py and
click on the Contacts menu item, you will see a list as follows:

You will notice that in the column containing the telephone numbers, those beginning with
a plus sign are shown in a bold font. This will give a visible hint that this is probably a foreign
number that needs some special code on your telephone switch.

What just happened?
The customization itself is a small piece of JavaScript that is inserted at the end of the page
that shows the list of contacts:

Chapter10/customizationexample3.html

<script>
var re = new RegExp("^\\s*\\+");
$("td:nth-child(4)").each(function(i){
 if($(this).text().match(re)){
 $(this).css({'font-weight':'bold'})
 };
});
</script>

It uses jQuery to iterate over all <td> elements, which is the fourth child of their parent (a
<tr> element, code highlighted). If the text contained in that element matches something that
begins with optional whitespace and a plus sign (the regular expression itself is defined in the
first line of the script), we set the font-weight CSS attribute of that element to bold.

http://www.owasp.org/
http://www.owasp.org/

Chapter 10

[299]

Just as with the customization of Display, we need to add some way to store the
customizations. The alterations to the custom class in the entity module are straightforward
and copy the pattern set for Display (the complete code is available in rbacentity.py):

Chapter10/rbacentity.py

 def __init__(self):

 ...

 class BrowseCustomization(CustomEntity):
 entity = Attribute(notnull= True,
 displayname = "Entity")
 description = Attribute(displayname = "Description")
 customhtml = Attribute(displayname = "Custom HTML",
 htmlescape=True, displayclass="mb-textarea")

 self.BrowseCustomization = BrowseCustomization

 ...

 def getBrowseCustomization(self):
 return self.BrowseCustomization

 def getBrowseCustomHTML(self,entity):
 return "".join(dc.customhtml
 for dc in self.BrowseCustomization.list(
 pattern=[('entity',entity)]))

The definition of the Browse class in browse.py needs to be extended as well to retrieve
and deliver the customizations (shown are the relevant lines from browse.py):

Chapter10/browse.py

yield self.entity._custom().getBrowseCustomHTML('*')
yield self.entity._custom().getBrowseCustomHTML(self.entity.__name__)

And the final step is to provide the user with a link to edit the customizations. This is done
in the main application (available as crm4.py) by adding these lines, again following the
pattern set for the display customizations (the lines relevant for the browse customizations
are highlighted):

Chapter10/crm4.py

displaycustom = User._custom().getDisplayCustomization()
browsecustom = User._custom().getBrowseCustomization()

class DisplayCustomizationBrowser(Browse):
 edit = Display(displaycustom, edit=True, logon=logon)
 add = Display(displaycustom, add=True, logon=logon)

class BrowseCustomizationBrowser(Browse):

Customizing the CRM Application

[300]

 edit = Display(browsecustom, edit=True, logon=logon)
 add = Display(browsecustom, add=True, logon=logon)

with open('basepage.html') as f:
 basepage=f.read(-1)

class Root():
 logon = logon
 user = UserBrowser(User)
 account = AccountBrowser(Account,
 columns=Account.columns+[User,Address,Contact])
 contact = ContactBrowser(Contact,
 columns=Contact.columns+[Address,Account])
 address = AddressBrowser(Address)
 displaycustomization = DisplayCustomizationBrowser(
 displaycustom,columns=['entity','description'])
 browsecustomization = BrowseCustomizationBrowser(
 browsecustom,columns=['entity','description'])

 @cherrypy.expose
 def index(self):
 return Root.logon.index(returnpage='../entities')

 @cherrypy.expose
 def entities(self):
 username = self.logon.checkauth()
 if username is None : raise HTTPRedirect('.')
 user=User.list(pattern=[('name',username)])
 if len(user) < 1 : User(name=username)
 return basepage%'''<div class="navigation">
 Users
 Customize Item
 Customize List
 Accounts
 Contacts
 Addresses
 </div><div class="content">
 </div>
 <script src="/browse.js" type="text/javascript"></script>
 '''

We are, of course, not restricted to actions on the client-side only. As we may utilize all the
AJAX capabilities of jQuery, we can do quite elaborate things.

Our entity browser already has the functionality to mark a row as selected if we click it a
single time. However, we did not implement any useful action to go with this selection.

Chapter 10

[301]

When we first implemented the Display class, we added a delete() method and exposed
it to the CherryPy engine. We do not make use of this method in any way. Now that we can
customize the entity browser, we can correct this and implement some functionality to add
a button that when clicked will delete all selected entries. Mind you, it probably makes more
sense to provide such basic functionality in a real application from the start, but it does show
what is possible.

Time for action – adding a delete button
Run crm4.py once more, and in the Customize List menu, add an item that applies to all
entities (and hence is marked as '*') as follows:

If we now open, for example, the list of contacts, we see a new button with a trashcan icon:

Customizing the CRM Application

[302]

What just happened?
The customization we added consists of some HTML to define a <button> element and
some JavaScript to render it as a nice trashcan button and to act on a click:

Chapter10/customizationexample4.html

<button class="delete">delete</button>
<script>
$("button.delete").click(function(){
 var url = $("form").last().attr('action')+'/delete';
 $("tr.selected").each(function(i){
 var id=$(this).attr('id');
 $.get(url,{'id':id});
 });
 $("input[name=cacheid]").remove();
 $("button[name=first]").click();
 false;
}).button({icons: { primary: "ui-icon-trash" },text: false});
</script>

The click handler fetches the action attribute from the last form in the list of entities
(highlighted). This form holds the add button and this action attribute will therefore point
to the URL serviced by the index() method of a Display instance. We simply add delete
to it to make it point to the URL that will be serviced by the delete() method.

The next step is to iterate over all <tr> elements with a selected class and use jQuery's get()
method to fetch the URL with the id attribute from the <tr> element added as an argument.

Finally, we have to redisplay the list of entities to show the effects of the deletion. If the
list was filtered and/or sorted, we would like to retain that, but we still have to remove the
hidden <input> element that holds the cacheid, otherwise we would be presenting the
old list. After removing it, we trigger the click handler on the first button to initiate a reload.

Like almost every jQuery method, the click() method returns the selected elements it
was invoked on, so we can chain a button() method to adorn our button element with a
proper icon.

Summary
This final chapter was all about polishing up our CRM application. We enhanced the user
interface to utilize the sort and filter features of the underlying framework, reused the
framework itself to store and manage user customizations, and showed how powerful these
customizations can be by enhancing the display of items and list of items by retrieving data
from Google Maps.

A
References to Resources

Without repeating each and every reference given in the book, this appendix
lists a number of resources that give good and comprehensive information on
various subjects of interest to people building web applications.

Good old offline reference books
Sometimes it's nice to leave the keyboard and just relax with a book (or e-reader) and do
some reading about our favorite subjects. The following small selection of books is reference
work I pick up regularly (some ISBNs may reflect the e-book version):

Especially for people familiar with Python, having some good books around about JavaScript
and the jQuery libraries is very convenient. The following three books are good starters:

 � Learning JavaScript, Second Edition, Shelley Powers, O'Reilly, 978-0-596-52187-5

Comprehensive introduction to JavaScript basics.

 � jQuery Cookbook, Cody Lindley, O'Reilly, 978-0-596-15977-1

A large selection of practical examples of how to solve common requirements with
jQuery.

 � jQuery UI 1.7, Dan Wellman, Packt, 978-1-847199-72-0

A step-by-step explanation of all the functionality of the jQuery UI library, including
advanced features like drag-and-drop.

Python has very good documentation online. Especially the coverage of the standard
modules distributed with Python is excellent, but to get a thorough insight into the language
itself and the features added in version 3, this book is a good start: Programming in Python
3, Mark Summerfield, Addison Wesley, 978-0-32168056-3

References to Resources

[304]

All of the following books cover Python subjects that play an important role in this book:

 � Python Testing Beginner's Guide, Daniel Arbuckle, Packt, 978-1847198-84-6

Testing doesn't have to be difficult and this book shows why.

 � CherryPy Essentials, Sylvain Hellegouarch, Packt, 978-1904811-84-8

The CherryPy application server that we use extensively in the examples in this book
is capable of much more. Written by its primary developer, this book covers all the
features and gives practical examples of some web applications as well.

 � Using SQLite, Jay A. Kreibich, O'Reilly, 978-0-596-52118-9

This book shows what SQLite is capable of and is even a good introduction to
database design and the use of SQL. Not Python-specific (SQLite is used in many
more places than Python alone).

 � Mastering Regular Expressions, Third Edition, O'Reilly, 978-0-596-52812-6

This book is everything there is to know about regular expressions. It's mostly not
Python-specific, but as the regular expression library in Python closely resembles
the one in Perl, almost all examples can be used as is in Python.

 � CSS Mastery, Andy Budd, Friends of Ed, 978-159059-614-2

Not all style issues are covered by jQuery UI of course and CSS can be tricky. This
book is one of the most readable ones I've found.

Additional websites, wikis, and blogs
Additional information on the tools and resources used in the book can be found online.

Tools and frameworks
 � http://www.cherrypy.org/

The pure Python application server used in the examples in this book.

 � http://projects.apache.org/projects/http_server.html

Apache is much more than just a web server, but this links to this webserver
workhorse directly.

 � http://jquery.com/

http://jqueryui.com/

All about the JavaScript libraries used throughout this book to spice up the user
interface.

 � http://www.prototypejs.org/

http://www.sencha.com/products/extjs/

Appendix A

[305]

http://mootools.net/

http://dojotoolkit.org/

Possible alternatives to the jQuery/jQuery UI libraries. Each has its own strengths
and weaknesses.

 � http://sqlite.org/

http://wiki.python.org/moin/DatabaseInterfaces

The home of the embedded database engine bundled with Python and a list of
alternative database engines that work with Python.

 � http://www.aminus.net/dejavu

http://www.djangoproject.com/

http://www.sqlalchemy.org/

http://elixir.ematia.de/trac/

Some quality object relational mappers.

 � http://subversion.apache.org/

http://git-scm.com/

Both good! Widely used version management tools.

 � http://code.google.com/apis/libraries/devguide.html

http://www.asp.net/ajaxlibrary/cdn.ashx

Content delivery frameworks may reduce the load on your own web server
significantly.

 � http://pypi.python.org/pypi

The Python package index. Lists thousands of packages ready for use with Python.
Check this first before reinventing the wheel.

 � http://www.datatables.net/

http://www.appelsiini.net/projects/jeditable

Two very capable jQuery plugins. Both are excellent examples of how to extend
jQuery.

 � http://getfirebug.com/

An extension for the Firefox browser. Invaluable when debugging web applications.

 � http://seleniumhq.org

A tool to test user interfaces/web pages.

 � http://www.owasp.org/index.php/Main_Page

Securing your application is very important. On this site, you will find information
about general principles as well as specific attack patterns (and their remedies).

References to Resources

[306]

Newsfeeds
 � http://planet.python.org/

A large collection of blogs about Python.

 � http://michelanders.blogspot.com/

The author's blog about writing web applications in Python.

B
Pop Quiz Answers

Chapter 2, Creating a Simple Spreadsheet

Serving content with CherryPy
Answer:

Rename the index() method to content()

Remember that in order to serve the content referred to by a URL such as
http://127.0.0.1/content, CherryPy looks for a method named content() in
the object instance passed to the quickstart() function. Later on, we will see that
it is also possible to build hierarchies of classes that enable CherryPy to serve URLs like
http://127.0.0.1/app/toplevel/content as well.

Adding an icon to a button
Answer:

$("button").button({icons: {primary: 'ui-icon-refresh'}})

Like many jQuery and jQuery UI plugins, the button widget takes an options object as
an argument. This options object may have a number of attributes, one of them—the
icons attribute. The value of this attribute itself is an object again, its primary attribute
determining which of the many standard icons will be displayed on the button. Refer to the
online documentation of the button widget to see all options: http://jqueryui.com/
demos/button/ and check jQuery UI's themeroller page at http://jqueryui.com/
themeroller/ for an overview of all available icons for a given theme.

Pop Quiz Answers

[308]

Adding conversions to a unitconverter instance
Answer:

$("#example").unitconverter({'cubic feet_litres':1.0/28.3168466 })

Changing option defaults
Answer: b

Chapter 3, Tasklist I: Persistence

Session IDs
Answer 1:

No, CherryPy will only save the session data to persistent storage if something is written
to the session data while preparing a response. If an unknown session ID is received, the
application cannot identify the user and will signal that to the client, but it will not store
anything in the session data.

Answer 2:

c, because a client that doesn't store cookies will never send a request containing the session
ID, the server will generate a new one.

Styling screen elements
Answer 1:

Either leave out the text:false in the options object passed to the button() function
or explicitly show it with text:true.

Answer 2:

The <div> element that encloses the <form> element might be wider and an unsuitable
background color may show up where the form isn't covering the full width.

Appendix B

[309]

Chapter 4, Tasklist II: Databases and AJAX

Using variable selection criteria
Answer:

cursor.execute('select * from task where user_id = ?',(username,))

A working implementation is available as taskdb3.py. Note that because there may be more
than one placeholder present in a query, we pass the actual values for these placeholders as
a tuple. A peculiarity of the Python syntax demands that a tuple is defined as parentheses
containing a comma separated list of expressions and that a tuple consisting of a single item
still has to contain a comma. (username,) is, therefore, a tuple with a single item.

Spotting the error
Answer:

test_number()

It will fail in the very first assertion with an output like the following:

python.exe test_factorial.py
.F.
==
FAIL: test_number (__main__.Test)
--
Traceback (most recent call last):
 File "test_factorial.py", line 7, in test_number
 self.assertEqual(24,fac(4))
AssertionError: 24 != 12

--
Ran 3 tests in 0.094s

FAILED (failures=1)

It still doesn't say what is wrong in the code, but now you know that the new
implementation does not calculate the factorial of a number correctly. The solution might
not be hard to spot this time: the range() function should be passed 2 as its first argument,
because only 0 and 1 are treated as special-case in the code

Pop Quiz Answers

[310]

Chapter 5, Entities and Relations

How to check a class
Answer:

Python's built-in function issubclass() can provide the information we need. Checking,
for example, the instance_a attribute might be implemented like:

if not issubclass(instance_a, Entity) : raise TypeError()

How to select a limited number of books
Answer:

booksdb.list(offset=20,limit=10)

Chapter 6, Building a Wiki

Pop quiz
Answer:

The id, as it is unique as well.

Index
Symbols
<body> element 38, 39
<button> element 41, 230, 302
@cherrypy.tools.expires decorator 102
.csv files 13
<div> element 38, 45, 117, 179, 287
<form> element 17, 39, 45, 49, 69, 169, 230,

249, 287
<head> element 179
<header> element 117
__info__() method 207, 208
__init__() method 68, 141, 206, 226
<input> element 39, 69, 70, 255, 271
<label> element 255
 element 42, 181
<link> element 38
__new__() method 206-211
<option> element 255
<p> element 231
__prepare__() method 211
<script> element 44, 117, 162, 166, 179, 265
<script> tag 155
<select> element 39, 47, 255
 element 53-56, 191, 232, 289
<table> element 53, 232
<tbody> element 53
<td> element 53, 55, 232
<textarea> element 189
<thead> element 53
<th> element 53, 232, 287
<tr> element 298
 element 180

A
AbstractEntity class

about 206, 261, 276, 280, 285

implementing 209-216
AbstractRelation class

about 218
implementing 219-221

access control
about 24, 274
implementing 275-278

accordion menu 20
Account entity 263
action attribute 39, 69, 70, 169, 241, 249, 302
addbook() method 155, 163, 164
addclass() function 223
addClass() method 43
add() method 80, 141, 218, 258, 271
addowner() function 149, 164
add parameter 254, 257
AJAX

interactivity, improving with 99-102
used, in tasklist application 116-119

ajax() function 101, 102
ajaxSetup() function 102
Apache 304
append() method 47, 287
application

about 7
serving 32-34

asctime() function 42
assertEquals() method 113
assertRaises() method 113
Attribute class 209, 297
AttributeError exception 206
Attribute instance 206
authentication

about 24
performing, database used 94-98

author argument 147, 148, 164
Author entity 153
autocomplete functionality 193

[312]

autocomplete() method 166, 255, 259
autocomplete variable 255
auto completion

about 153, 165
input elements, using with 166-168

autoOpen option 188

B
backslashes 200
baseclasses parameter 221
basepage.html file 176
basic CRM

implementing 244-248
blur() method 87
book database

cleaning up 150
defining 144-149
designing 127
new book, adding to 162-165

Book entity 153
bookrow class 157
books application

creating 236-241
bridging table 138
Browse class

about 225, 229, 264, 285
enhancing 271-274

browser module 225
button() method 41

C
C# 12
C++ 12
cache option 101
caching

about 232
implementing 232-236

cancel argument 164
Car class 129
CarOwner class 138, 139
chaining 43, 87
chash() method 235
checkauth() method 66, 67, 121, 184, 276
checkpass() method 68, 70, 96, 98
checkuser() function 149

CherryPy
about 11, 25, 30, 61, 94
advantages 11
content, serving with 37
installing 31
sessions, managing 60
setup.py script 31

cherrypy.engine.subscribe() function 95
cherrypy.file 187
cherrypy module 31
cherrypy.quickstart() function 35
cherrypy.session variable 61, 67
class attribute 44, 190, 191, 265
cleancache() method 236
click event 188, 288
click handlers 41, 120, 287
click() method 48, 120, 302
client side, web application 8, 9
coldef attribute 212
columns argument 225, 227
commit() method 104
compiled languages 12
completed key 82
complex relations

implementing 263-266
components

identifying, for web applications 9
confidentality 24
connection object 94, 104
connect() method 95, 121
ContactBrowser class 251
Contact entity 263
content

rendering 200
scrubbing 196-198
separating 37, 38
serving, with CherryPy 37

Content Delivery Network (CDN) 155
content parameter 184
convert() function 49
cookies

about 60
advantages 60
disadvantages 60

create() method 108
create statement 104

[313]

CRM application
designing 244-248
implementing 244-248
delete button, adding 301, 302
entity displays, customizing 292-297
entity lists, customizing 298-300

CRM application, customizing
filtering 290, 291
sorting 285-289

Cross Site Request Forgery (CSRF) 184
CRUD functionality 106, 215
CRUD interface 128
CSS

jQuery UI theme, applying to elements 43
css directory 37
css() method 48
CURRENT_TIMESTAMP variable 175
Customer Relationship Management application.

See CRM application

D
data attribute 57
database

advantages 92
connecting to 106
creating, from Python 103, 104
interfacing with 106, 107
tasks, storing in 99
used, for authentication 94-98

database design 103
database-driven authentication 93, 94
database engine

about 14
selecting, for web applications 14, 15
selecting 92, 93

database interface
implementing 106, 107

data integrity 25
data layer

implementing, for wiki application 172-174
data store 9
date format

modifying, for datepicker 89
datepicker widget

about 25, 72
date format, modifying for 89

datetime module 76
dbpath argument 121
debugging 12
delbooks() function 150
delete() method 122, 136, 143, 215, 301
delete parameter 82
delivery framework

about 11
selecting, for web application 11

delivery layer
about 175
designing 150-162
implementing, for web application 175-177

delowner() function 149
description parameter 80
dialog widget, jQuery 185-189
dict object 211
display attribute 287
Display class

about 263-266
enhancing 270
functions 249
instance, adding 249-251
instance, editing 251-257
modifying 270
relations, adding 257-259

DisplayCustomization class 294
displayname attribute 209
done() method 122
duedate parameter 80, 108
dummy application

serving 33, 34
dynamic content

HTML, serving as 34-36
dynamic title

adding 42

E
editable() method 57
edit() method 182, 184, 187, 188, 197, 198
edit parameter 254
elements

jQuery UI theme, applying to 43
embedded database 14
enhanced presentation layer

using 168, 169

[314]

entities
about 128
instances, creating for 132-138

entities() method 239, 247
entity argument 226
Entity class

about 128, 205, 250, 280
using 129-132

entity displays
customizing 292-297

entity list
browsing 224
customizing 298-300

entity module 204
escape() function 297
execute() method 98, 104, 105, 132-138
executescript() method 104
existing classes

new methods, adding to 222-224
extend() method 47

F
fac() method 111, 113
factorial.py

testing 112
feed() method 199
fetchall() method 105, 106, 143
fetchone() method 105
filesystem

drawbacks 92
filtering 290, 291
Firebug 24
focus() method 86
framework modules 204
fromCharCode() method 53
functools module 114

G
generator 138
getAuthenticatedUsername() method 282
getauthors() method 166, 167
getclass() method 223
getcolumnvalues() method 167, 168
getfromcache() method 234, 235
get() function 78, 121, 218
GET method 70

getparams() function 159
getRole() method 283
gettaskdir() function 77
gettitles() method 166, 167
getvalue() function 55, 57
getwords() function 194
git 19
glob() function 78
goaway() method 71
Google Gears 13

H
hash functions 94
hashlib module 15, 97
href attribute 241
HTML

about 17, 38
content, separating 37, 38
form based interaction 39, 40
form, separating 37, 38
for spreadsheet application 52
serving, as dynamic content 34-36

HTML markup
examining 229, 231

html() method 101
HTMLParser class 200
html.parser module 200

I
id argument 134
id attribute 136, 212
id parameter 108
ignore statement 97
Image entity 173, 175
images() method 186, 187
index() function 36, 39, 69, 78, 155, 179, 229,

247, 251, 258, 270, 271
information

deleting 109, 110
retrieving 107, 108
retrieving, with select statements 105
storing 107, 108
updating 109, 110

initdb() method 96, 98, 175
inittable() method 129, 131, 132, 140, 142, 145

[315]

inline labels
implementing 86

input fields
using, with auto completion 166-168

input validation 171, 195, 204
insert statement 97
installation, CherryPy 31
installation, jQuery 32
installation, jQuery UI 32
installation, Python 3 30
installing

CherryPy 31
jQuery 32
jQuery UI 32
Python 3 30

instance
adding 249-251
creating, for entity 132-138
creating, for relation 141-144
editing 251-257

interactivity
improving, with AJAX 99-102

InternalRedirect exception 71
interpreted languages 12
int() function 82
isallowed() function 276, 277, 282
iscached() method 233, 235
itemlist

refreshing 125, 126
itemmakeup() function 119

J
JavaScript

spreadsheet plugin, creating 53-58
JavaScript Object Notation. See JSON
jEditable plugin 54, 55
jQuery

about 18, 31
advantages 18
dialog widget 185-189
installing 32
URL, for documentation 42

jQuery selectors 42, 43
jQuery UI

about 31, 40, 193
installing 32
themeroller 32

jQuery UI library 8
jQuery UI plugin

creating 46-50
jQuery UI theme

applying, to elements 43
JSON 99
json.dumps() function 167

L
lastrowid attribute 135, 217
licenseplate attribute 129
like operator 216
limit argument 161
listauthors() function 149
listbooks() function 147, 149
listids() method 215, 285
list() method

about 107, 108, 121, 137, 138, 142, 155, 195,
199, 206, 215

arguments 161
live() method 120
load() method 102, 119, 157, 159, 265
logoff() method 69, 71
logonapp.py file 62
Logon class

about 68, 69
handler methods 69
methods 68

LogonDB class 95, 98
logon() method 69
logon module 76
logon screen

adding, to spreadsheet application 72
creating 62-69
serving 69, 70

M
many-to-one relations 263
mark() method 79
match object 200
metaclasses

about 206
using 207, 208

MetaEntity class
about 297
implementing 209-216

[316]

MetaRelation metaclass
defining 266-269
implementing 219-221

mine argument 161
minLength attribute 166
mkstemp() function 116
msi installer 31
multithreading capabilities, Python 13
MyEntity class 205
MySQL 14

N
name attribute 41, 231
newauthor() function 146, 164
new book

adding, to book database 162-165
newbook() function 144, 145, 146
new entities

defining 205, 206
new methods

adding, to existing classes 222-224
new tasks

adding 80

O
object-oriented language 13, 15
object relational mapper

about 16
selecting 16

oddline class 157
offset argument 147, 161
one-to-many relationships

displaying 264-266
opening screen

designing, for wiki application 176, 177
structural components 177, 179

originaltopic parameter 184, 198
os.makedirs() function 77
OwnerShip class 239

P
page argument 227
Page entity 172, 173
param() function 266
parent() method 49

parseFloat() function 41
password parameter 70
path_info attribute 67
pattern argument 147, 148, 161, 227
pattern variable 231
Perl 12
Picklist class 261
picklists

about 246, 259
implementing 259-261

plugin
unit convertor, converting to 45, 46

PostgreSQL 14
prepnavbar() function 156, 157
presentation framework

selecting, for web applications 17, 18
presentation layer 168
pwdb table 97
Python

about 8, 12, 14
database, creating from 103, 104
features 13
multithreading capabilities 13
offline books, for references 303, 304
resources 305
tools 304, 305
URL, for documentation 206

Python 3
about 30
installing 30
URL, for downloading 30

Python documentation
URL 206

Q
quickstart() function 35, 64, 125, 225

R
rbacentity module 283
readfp() method 78
read() method 187
reduce() function 114
refactoring 205, 206
referential integrity 140
related_entities() function 265
related_link() method 265

[317]

related parameter 270
relational database engines 15
Relation class

about 138, 218, 258
using 138-141

relationdefinition variable 221
relation module 204, 258
relations

about 128, 217, 263
adding 257-259
defining 217, 218
instances, creating for 141-144

relation_type attribute 266, 269
rel attribute 265
reltype attribute 269
removeClass() method 87
remove() method 287
render() method 189, 201
re.sub() method 201
retrieve() method 107
returnpage parameter 66
returntopage parameter 184
role-based access control

about 278
implementing 279-283

Roll Your Own tab 32
Root class 36, 239, 247
rowcount attribute 110, 136, 142
row_factory attribute 106, 130, 134

S
script_name attribute 67
Scrubber class 200
Scrubber object 199
scrub() function 198, 199
searchwords() function 194, 195
security 23
select statements

information, retrieving with 105
serialize() function 241
server-side application 9
server-side scripting language

selecting, for web applications 12, 13
server side, web application 8, 9
server.thread_pool configuration option 94
session

about 60

expiring 71
managing, CherryPy used 60
setting up 70

session id 60
session ID 61, 62
Session object 61
setattr() function 134
setInterval() method 101, 126
setup.py script 31
setvalue() function 55
SHA1 94, 97
sheet() method 54
shiftforms() function 241
show() method 179, 181
siblings() method 120
somepage() method 63
sorting 285-289
sort.js 77
sortorder argument 227, 231
sortorder variable 231
source attribute 166
split() method 47, 231
splitwords() function 198
spreadsheet application

designing 51
logon screen, adding to 72
math functions, adding to 58
serving 51, 52

spreadsheet.js file 52
spreadsheet plugin

creating 53-58
SQL 22
SQLAlchemy 16
SQLite

about 14, 15, 92
drawbacks 92
features 15

sqlite3 module 15
SQLite database engine

URL 92
stateless HTTP protocol 60
static directory 35, 37
storeincache() method 234, 235
submit argument 164
submit event 288
success option 101

[318]

suitable tools
selecting, for web applications 10

svn 19

T
table

zebra stripes, adding to 44
table-based Entity browser

using 224-229
tag attribute 173
tag cloud

about 190
implementing 190, 192

tagcloud() method 191, 192
Tag entity 173
task

about 72
deleting 81
storing, in database 99

TaskApp class 102
taskapp.py 121, 122
Task class 77
taskdb parameter 108
task list

about 72
designing 72
serving, from different URL 89

tasklist application
about 102, 128
AJAX, used 116-119
database design 103
designing 59-62
features 60
logon screen, creating 62-69
logon screen, serving 69, 70
session, expiring 71
session, setting up 70
testing 111, 113

tasklist application, designing 59-62
tasklist.css file 87, 88
tasklistdb module 102
tasklistdb.py

unit tests, writing for 114, 116
tasklist.js file 77, 83, 84
tasklist.py file

running 72-75
task module 75, 77

task.py file 76
tearDown() method 116
TestCase class 113
TestDB object 116
test_delete() method 116
test framework

selecting, for web applications 19
test_illegal() method 112, 113
testing 111, 113
test_list() method 116
test_number() method 112, 113
test_zero() method 112, 113
themeroller 32
threading.local() function 98
threadinit() method 129, 130, 140, 144
threadlocal object 130
threadlocal variable 130
time() method 100, 101
title argument 146
title attribute 195, 198
toFixed() method 50
tooltip.js file 77

running 86
topic 173
Topic entity 172, 173
topics

words, searching in 192-195
TopicWord class 195
top-level directory 37
TurboGears network 11

U
unique constraint 98, 267
unitconverter.js 40
unit convertor

about 38, 39
converting, to plugin 45, 46

unitconvertor() method 46
unittest module 19, 111
unit tests

about 19
writing, for tasklistdb.py 114, 116

updateitemrelation() function 198
update() method 135, 136, 215, 275, 276, 282
updatetopic() function 197
url option 101
user argument 147, 148

[319]

User entity 172, 173
username parameter 70
uuid() function 81

V
validate attribute 209
val() method 120
value attribute 189
ValueError exception 111
variable 93
version management 19
version management tool 19

W
web application

about 7, 60
client side 8, 9
components, identifying for 9
database engine, selecting for 14, 15
delivery framework, selecting for 11
delivery layer, implementing for 175-177
maintainability 22
overview 8
presentation framework, selecting for 17, 18
security 23
server side 8, 9
server-side scripting language,

selecting for 12, 13
suitable tools, selecting 10
test framework, selecting for 19
testing 18, 19
usability 20

web application, maintainability
about 22
standards compliant 22

web application, security
about 23, 25
access control 24
authentication 24
confidentiality 24
data integrity 25
reliable 23
robust 23

web application, usability
about 20
common GUI paradigms 20, 21

cross browser compatible 21
cross platform compatible 22

web browser
about 9
contents 9

web server 9
where clause 137, 216
widgets 40
wiki 171, 172
wiki application

about 171
data layer, implementing for 172-174
designing 172-174
opening screen, designing 176, 177

Wiki class 179
wiki.css file 176
wiki data model

designing 172-174
wikidb.py file 176
wiki.gettopiclist() function 180
wiki.gettopic() method 181
Wikipedia

about 171
URL 171

wiki.py file 176
wiki.searchwords() function 194
wiki topics

editing 182-184
wiki topic screen

implementing 180, 181
wiki.updatetopic() method 184
wikiweb.js file 176
wikiweb.py file 176
window object 101
window.open() method 294
word argument 195
Word class 195
words

searching, in topics 192-195

Z
zebra stripes

adding, to table 44
zip archive 31

Thank you for buying
Python 3 Web Development Beginner’s Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Python 3 Object Oriented Programming
ISBN: 978-1-849511-26-1 Paperback: 404 pages

Harness the power of Python 3 objects

1. Learn how to do Object Oriented Programming in
Python using this step-by-step tutorial

2. Design public interfaces using abstraction,
encapsulation, and information hiding

3. Turn your designs into working software by studying
the Python syntax

4. Raise, handle, define, and manipulate exceptions
using special error objects

Python Testing: Beginner's Guide
ISBN: 978-1-847198-84-6 Paperback: 256 pages

An easy and convenient approach to testing your
powerful Python projects

1. Covers everything you need to test your code in
Python

2. Easiest and enjoyable approach to learn Python
testing

3. Write, execute, and understand the result of tests in
the unit test framework

4. Packed with step-by-step examples and clear
explanations

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:Choosing Your Tools
	Identifying the components of a web application
	Time for action – getting an overview of a web application
	Choosing suitable tools
	Time for action – choosing a delivery framework,
	Time for action – choosing a server-side scripting language
	Time for action – choosing a database engine
	Time for action – deciding on object relational mappers
	Time for action – choosing a presentation framework
	Designing for maintainability and usability
	Testing

	Time for action – choosing a test framework
	Version management
	Usability
	Good looking – adhering to common GUI paradigms
	Themable
	Cross browser compatible
	Cross platform compatible

	Maintainability
	Standards compliant

	Security
	Reliable
	Robust
	Access control and authentication
	Confidentiality
	Integrity
	A final word on security

	Help, I am confused!

	Time for action – maintaining overview
	Summary

	Chapter 2:Creating a Simple Spreadsheet
	Python 3
	Time for action – installing Python 3
	CherryPy
	Time for action – installing CherryPy
	Installing jQuery and jQuery UI
	Serving an application
	Time for action – serving a dummy application
	Time for action – serving HTML as dynamic content
	Who serves what: an overview
	HTML: separating form and content

	Time for action – a unit convertor
	HTML: form based interaction
	JavaScript: using jQuery UI widgets

	Time for action – conversion using unitconverter.js
	jQuery selectors
	CSS: applying a jQuery UI theme to other elements

	Time for action – converting a unit convertor into a plugin
	JavaScript: creating a jQuery UI plugin

	Designing a spreadsheet application
	Time for action – serving a spreadsheet application
	HTML: keeping it simple
	JavaScript: creating a spreadsheet plugin

	The missing parts
	Summary

	Chapter 3:Tasklist I: Persistence
	Designing a tasklist application
	Time for action – creating a logon screen
	Serving a logon screen
	Setting up a session
	Expiring a session
	Designing a task list

	Time for action – running tasklist.py
	Python: the task module
	Time for action – implementing the task module
	Adding new tasks
	Deleting a task

	JavaScript: tasklist.js
	Time for action – styling the buttons
	JavaScript: tooltip.js
	Time for action – implementing inline labels
	CSS: tasklist.css

	Summary

	Chapter 4:Tasklist II: Databases and AJAX
	The advantages of a database compared to a filesystem
	Choosing a database engine
	Database-driven authentication
	Time for action – authentication using a database
	Tasklist II – storing tasks in a database
	Improving interactivity with AJAX

	Time for action – getting the time with AJAX
	Redesigning the Tasklist application
	Database design

	Time for action – creating the task database
	Time for action – retrieving information with select statements
	TaskDB – interfacing with the database

	Time for action – connecting to the database
	Time for action – storing and retrieving information
	Time for action – updating and deleting information
	Testing

	Time for action – testing factorial.py
	Now what have we gained?

	Time for action – writing unit tests for tasklistdb.py
	Designing for AJAX
	Click handlers

	The application

	Time for action - putting it all together
	Have a go hero - refreshing the itemlist on a regular basis
	Summary

	Chapter 5:Entities and Relations
	Designing a book database
	The Entity class

	Time for action – using the Entity class
	Time for action – creating instances
	The Relation class

	Time for action – using the Relation class
	Relation instances

	Time for action – defining the Books database
	The delivery layer

	Time for action – designing the delivery layer
	Time for action – adding a new book
	Auto completion

	Time for action – using input fields with auto completion
	The presentation layer

	Time for action – using an enhanced presentation layer
	Summary

	Chapter 6:Building a Wiki
	The data layer
	Time for action – designing the wiki data model
	The delivery layer
	Time for action – implementing the opening screen
	The structural components
	The application methods

	Time for action – implementing a wiki topic screen
	Time for action – editing wiki topics
	Additional functionality
	Time for action – selecting an image
	Time for action – implementing a tag cloud
	Time for action – searching for words
	The importance of input validation
	Time for action – scrubbing your content
	Time for action – rendering content
	Summary

	Chapter 7:Refactoring Code for Reuse
	Time for action – taking a critical look
	Refactoring
	Time for action – defining new entities: how it should look
	Metaclasses

	Time for action – using metaclasses
	MetaEntity and AbstractEntity classes

	Time for action – implementing the MetaEntity and AbstractEntity classes
	Relations

	Time for action – defining new relations: how it should look
	Implementing the MetaRelation and AbstractRelation classes
	Adding new methods to existing classes

	Browsing lists of entities

	Time for action – using a table-based Entity browser
	Time for action – examining the HTML markup
	Caching

	The books application revisited
	Time for action – creating a books application, take two
	Summary

	Chapter 8:Managing Customer Relations
	A critical review
	Designing a Customer Relationship Management
application
	Time for action – implementing a basic CRM
	Adding and editing values
	Time for action – adding an instance
	Time for action – editing an instance
	Adding relations
	Picklists
	Time for action – implementing picklists
	Summary

	Chapter 9:Creating Full-Fledged Webapps: Implementing Instances
	Even more relations
	Time for action – showing one-to-many relationships
	Time for action – adapting MetaRelation
	Time for action – enhancing Display
	Time for action – enhancing Browse
	Access control
	Time for action – implementing access control
	Role-based access control
	Time for action – implementing role-based access control
	Summary

	Chapter 10:Customizing the CRM Application
	Time for action – sorting
	Time for action – filtering
	Customization
	Time for action – customizing entity displays
	Time for action – customizing entity lists
	Time for action – adding a delete button
	Summary

	Appendix A:References to Resources
	Good old offline reference books
	Additional websites, wikis, and blogs

	Appendix B:Pop Quiz Answers
	Chapter 2, Creating a Simple Spreadsheet
	Chapter 3, Tasklist I: Persistence
	Chapter 4, Tasklist II: Databases and AJAX
	Chapter 5, Entities and Relations
	Chapter 6, Building a Wiki

	Index

